Community Structure and Vietnamese Refugee Adaptation: The Significance of Context.
ERIC Educational Resources Information Center
Starr, Paul D.; Roberts, Alden E.
1982-01-01
Describes research investigating the effects of community structure on the adjustment of Vietnamese refugees in America. Emphasizes how congruence between individual characteristics and characteristics of the receiving community determine successful refugee adaptation to a new environment. (MJL)
Evidence for the functional significance of diazotroph community structure in soil.
Hsu, Shi-Fang; Buckley, Daniel H
2009-01-01
Microbial ecologists continue to seek a greater understanding of the factors that govern the ecological significance of microbial community structure. Changes in community structure have been shown to have functional significance for processes that are mediated by a narrow spectrum of organisms, such as nitrification and denitrification, but in some cases, functional redundancy in the community seems to buffer microbial ecosystem processes. The functional significance of microbial community structure is frequently obscured by environmental variation and is hard to detect in short-term experiments. We examine the functional significance of free-living diazotrophs in a replicated long-term tillage experiment in which extraneous variation is minimized and N-fixation rates can be related to soil characteristics and diazotroph community structure. Soil characteristics were found to be primarily impacted by tillage management, whereas N-fixation rates and diazotroph community structure were impacted by both biomass management practices and interactions between tillage and biomass management. The data suggest that the variation in diazotroph community structure has a greater impact on N-fixation rates than do soil characteristics at the site. N-fixation rates displayed a saturating response to increases in diazotroph community diversity. These results show that the changes in the community structure of free-living diazotrophs in soils can have ecological significance and suggest that this response is related to a change in community diversity.
Cisneros, Laura M; Fagan, Matthew E; Willig, Michael R
2016-01-01
Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities have been implemented to determine the relative importance of particular environmental (or niche-based) mechanisms. Nonetheless, few studies have integrated these quantitative approaches to comprehensively assess the relative importance of particular structuring processes. We employed a novel variation partitioning approach to evaluate the relative importance of particular spatial and environmental drivers of taxonomic, functional, and phylogenetic aspects of bat communities in a human-modified landscape in Costa Rica. Specifically, we estimated the amount of variation in species composition (taxonomic structure) and in two aspects of functional and phylogenetic structure (i.e., composition and dispersion) along a forest loss and fragmentation gradient that are uniquely explained by landscape characteristics (i.e., environment) or space to assess the importance of competing mechanisms. The unique effects of space on taxonomic, functional and phylogenetic structure were consistently small. In contrast, landscape characteristics (i.e., environment) played an appreciable role in structuring bat communities. Spatially-structured landscape characteristics explained 84% of the variation in functional or phylogenetic dispersion, and the unique effects of landscape characteristics significantly explained 14% of the variation in species composition. Furthermore, variation in bat community structure was primarily due to differences in dispersion of species within functional or phylogenetic space along the gradient, rather than due to differences in functional or phylogenetic composition. Variation among bat communities was related to environmental mechanisms, especially niche-based (i.e., environmental) processes, rather than spatial mechanisms. High variation in functional or phylogenetic dispersion, as opposed to functional or phylogenetic composition, suggests that loss or gain of niche space is driving the progressive loss or gain of species with particular traits from communities along the human-modified gradient. Thus, environmental characteristics associated with landscape structure influence functional or phylogenetic aspects of bat communities by effectively altering the ways in which species partition niche space.
Fagan, Matthew E.; Willig, Michael R.
2016-01-01
Background Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities have been implemented to determine the relative importance of particular environmental (or niche-based) mechanisms. Nonetheless, few studies have integrated these quantitative approaches to comprehensively assess the relative importance of particular structuring processes. Methods We employed a novel variation partitioning approach to evaluate the relative importance of particular spatial and environmental drivers of taxonomic, functional, and phylogenetic aspects of bat communities in a human-modified landscape in Costa Rica. Specifically, we estimated the amount of variation in species composition (taxonomic structure) and in two aspects of functional and phylogenetic structure (i.e., composition and dispersion) along a forest loss and fragmentation gradient that are uniquely explained by landscape characteristics (i.e., environment) or space to assess the importance of competing mechanisms. Results The unique effects of space on taxonomic, functional and phylogenetic structure were consistently small. In contrast, landscape characteristics (i.e., environment) played an appreciable role in structuring bat communities. Spatially-structured landscape characteristics explained 84% of the variation in functional or phylogenetic dispersion, and the unique effects of landscape characteristics significantly explained 14% of the variation in species composition. Furthermore, variation in bat community structure was primarily due to differences in dispersion of species within functional or phylogenetic space along the gradient, rather than due to differences in functional or phylogenetic composition. Discussion Variation among bat communities was related to environmental mechanisms, especially niche-based (i.e., environmental) processes, rather than spatial mechanisms. High variation in functional or phylogenetic dispersion, as opposed to functional or phylogenetic composition, suggests that loss or gain of niche space is driving the progressive loss or gain of species with particular traits from communities along the human-modified gradient. Thus, environmental characteristics associated with landscape structure influence functional or phylogenetic aspects of bat communities by effectively altering the ways in which species partition niche space. PMID:27761338
Freimann, Remo; Bürgmann, Helmut; Findlay, Stuart EG; Robinson, Christopher T
2013-01-01
Glaciated alpine floodplains are responding quickly to climate change through shrinking ice masses. Given the expected future changes in their physicochemical environment, we anticipated variable shifts in structure and ecosystem functioning of hyporheic microbial communities in proglacial alpine streams, depending on present community characteristics and landscape structures. We examined microbial structure and functioning during different hydrologic periods in glacial (kryal) streams and, as contrasting systems, groundwater-fed (krenal) streams. Three catchments were chosen to cover an array of landscape features, including interconnected lakes, differences in local geology and degree of deglaciation. Community structure was assessed by automated ribosomal intergenic spacer analysis and microbial function by potential enzyme activities. We found each catchment to contain a distinct bacterial community structure and different degrees of separation in structure and functioning that were linked to the physicochemical properties of the waters within each catchment. Bacterial communities showed high functional plasticity, although achieved by different strategies in each system. Typical kryal communities showed a strong linkage of structure and function that indicated a major prevalence of specialists, whereas krenal sediments were dominated by generalists. With the rapid retreat of glaciers and therefore altered ecohydrological characteristics, lotic microbial structure and functioning are likely to change substantially in proglacial floodplains in the future. The trajectory of these changes will vary depending on contemporary bacterial community characteristics and landscape structures that ultimately determine the sustainability of ecosystem functioning. PMID:23842653
Freimann, Remo; Bürgmann, Helmut; Findlay, Stuart E G; Robinson, Christopher T
2013-12-01
Glaciated alpine floodplains are responding quickly to climate change through shrinking ice masses. Given the expected future changes in their physicochemical environment, we anticipated variable shifts in structure and ecosystem functioning of hyporheic microbial communities in proglacial alpine streams, depending on present community characteristics and landscape structures. We examined microbial structure and functioning during different hydrologic periods in glacial (kryal) streams and, as contrasting systems, groundwater-fed (krenal) streams. Three catchments were chosen to cover an array of landscape features, including interconnected lakes, differences in local geology and degree of deglaciation. Community structure was assessed by automated ribosomal intergenic spacer analysis and microbial function by potential enzyme activities. We found each catchment to contain a distinct bacterial community structure and different degrees of separation in structure and functioning that were linked to the physicochemical properties of the waters within each catchment. Bacterial communities showed high functional plasticity, although achieved by different strategies in each system. Typical kryal communities showed a strong linkage of structure and function that indicated a major prevalence of specialists, whereas krenal sediments were dominated by generalists. With the rapid retreat of glaciers and therefore altered ecohydrological characteristics, lotic microbial structure and functioning are likely to change substantially in proglacial floodplains in the future. The trajectory of these changes will vary depending on contemporary bacterial community characteristics and landscape structures that ultimately determine the sustainability of ecosystem functioning.
Community Structural Instability, Anomie, Imitation and Adolescent Suicidal Behavior
ERIC Educational Resources Information Center
Thorlindsson, Thorolfur; Bernburg, Jon Gunnar
2009-01-01
The current study examines the contextual effects of community structural characteristics, as well as the mediating role of key social mechanisms, on youth suicidal behavior in Iceland. We argue that the contextual influence of community structural instability on youth suicidal behavior should be mediated by weak attachment to social norms and…
Dannemiller, Karen C.; Gent, Janneane F.; Leaderer, Brian P.; Peccia, Jordan
2015-01-01
Variations in home characteristics, such as moisture and occupancy, affect indoor microbial ecology as well as human exposure to microorganisms. Our objective was to determine how indoor bacterial and fungal community structure and diversity are associated with the broader home environment and its occupants. Next-generation DNA sequencing was used to describe fungal and bacterial communities in house dust sampled from 198 homes of asthmatic children in southern New England. Housing characteristics included number of people/children, level of urbanization, single/multifamily home, reported mold, reported water leaks, air conditioning (AC) use, and presence of pets. Both fungal and bacterial community structure were non-random and demonstrated species segregation (C-score, p<0.00001). Increased microbial richness was associated with the presence of pets, water leaks, longer AC use, suburban (vs. urban) homes, and dust composition measures (p<0.05). The most significant differences in community composition were observed for AC use and occupancy (people, children, and pets) characteristics. Occupant density measures were associated with beneficial bacterial taxa, including Lactobacillus johnsonii as measured by qPCR. A more complete knowledge of indoor microbial communities is useful for linking housing characteristics to human health outcomes. Microbial assemblies in house dust result, in part, from the building’s physical and occupant characteristics. PMID:25833176
Zhang, Xiaolong; Guan, Tianyu; Zhou, Jihua; Cai, Wentao; Gao, Nannan; Du, Hui; Jiang, Lianhe; Lai, Liming; Zheng, Yuanrun
2018-01-10
Precipitation is a key environmental factor determining plant community structure and function. Knowledge of how community characteristics and leaf stoichiometric traits respond to variation in precipitation is crucial for assessing the effects of global changes on terrestrial ecosystems. In this study, we measured community characteristics, leaf stoichiometric traits, and soil properties along a precipitation gradient (35-209 mm) in a desert ecosystem of Northwest China to explore the drivers of these factors. With increasing precipitation, species richness, aboveground biomass, community coverage, foliage projective cover (FPC), and leaf area index (LAI) all significantly increased, while community height decreased. The hyperarid desert plants were characterized by lower leaf carbon (C) and nitrogen/phosphorus (N/P) levels, and stable N and P, and these parameters did not change significantly with precipitation. The growth of desert plants was limited more by N than P. Soil properties, rather than precipitation, were the main drivers of desert plant leaf stoichiometric traits, whereas precipitation made the biggest contribution to vegetation structure and function. These results test the importance of precipitation in regulating plant community structure and composition together with soil properties, and provide further insights into the adaptive strategy of communities at regional scale in response to global climate change.
Guan, Tianyu; Zhou, Jihua; Cai, Wentao; Gao, Nannan; Du, Hui; Jiang, Lianhe; Lai, Liming; Zheng, Yuanrun
2018-01-01
Precipitation is a key environmental factor determining plant community structure and function. Knowledge of how community characteristics and leaf stoichiometric traits respond to variation in precipitation is crucial for assessing the effects of global changes on terrestrial ecosystems. In this study, we measured community characteristics, leaf stoichiometric traits, and soil properties along a precipitation gradient (35–209 mm) in a desert ecosystem of Northwest China to explore the drivers of these factors. With increasing precipitation, species richness, aboveground biomass, community coverage, foliage projective cover (FPC), and leaf area index (LAI) all significantly increased, while community height decreased. The hyperarid desert plants were characterized by lower leaf carbon (C) and nitrogen/phosphorus (N/P) levels, and stable N and P, and these parameters did not change significantly with precipitation. The growth of desert plants was limited more by N than P. Soil properties, rather than precipitation, were the main drivers of desert plant leaf stoichiometric traits, whereas precipitation made the biggest contribution to vegetation structure and function. These results test the importance of precipitation in regulating plant community structure and composition together with soil properties, and provide further insights into the adaptive strategy of communities at regional scale in response to global climate change. PMID:29320458
Dannemiller, K C; Gent, J F; Leaderer, B P; Peccia, J
2016-04-01
Variations in home characteristics, such as moisture and occupancy, affect indoor microbial ecology as well as human exposure to microorganisms. Our objective was to determine how indoor bacterial and fungal community structure and diversity are associated with the broader home environment and its occupants. Next-generation DNA sequencing was used to describe fungal and bacterial communities in house dust sampled from 198 homes of asthmatic children in southern New England. Housing characteristics included number of people/children, level of urbanization, single/multifamily home, reported mold, reported water leaks, air conditioning (AC) use, and presence of pets. Both fungal and bacterial community structures were non-random and demonstrated species segregation (C-score, P < 0.00001). Increased microbial richness was associated with the presence of pets, water leaks, longer AC use, suburban (vs. urban) homes, and dust composition measures (P < 0.05). The most significant differences in community composition were observed for AC use and occupancy (people, children, and pets) characteristics. Occupant density measures were associated with beneficial bacterial taxa, including Lactobacillus johnsonii as measured by qPCR. A more complete knowledge of indoor microbial communities is useful for linking housing characteristics to human health outcomes. Microbial assemblies in house dust result, in part, from the building's physical and occupant characteristics. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Toward Gleasonian landscape ecology: From communities to species, from patches to pixels
Samuel A. Cushman; Jeffrey S. Evans; Kevin McGarigal; Joseph M. Kiesecker
2010-01-01
The fusion of individualistic community ecology with the Hutchinsonian niche concept enabled a broad integration of ecological theory, spanning all the way from the niche characteristics of individual species, to the composition, structure, and dynamics of ecological communities. Landscape ecology has been variously described as the study of the structure, function,...
Community structural characteristics and the adoption of fluoridation.
Smith, R A
1981-01-01
A study of community structural characteristics associated with fluoridation outcomes was conducted in 47 communities. A three-part outcome distinction was utilized: communities never having publicly considered the fluoridation issue, those rejecting it, and those accepting it. The independent variables reflect the complexity of the community social and economic structure, social integration, and the centralization of authority. Results of mean comparisons show statistically significant differences between the three outcome types on the independent variables. A series of discriminant analyses provides furtheor evidence of how the independent variables are associated with each outcome type. Non-considering communities are shown to be low in complexity, and high in social integration and the centralization of governmental authority. Rejecters are shown to be high in complexity, but low in social integration and centralized authority. Adopters are relatively high on all three sets of variables. Theretical reasoning is provided to support the hypothesis and why these results are expected. The utility of these results and structural explanations in general are discussed, especially for public/environmental health planning and political activities. PMID:7258427
ERIC Educational Resources Information Center
Kollasch, Korey
2017-01-01
This study focused on building a profile of characteristics of community college (CC) athletics coaches in Iowa and on exploring the possible relationships among these characteristics. Using a mixed-method research design that incorporates SPSS quantitative analysis of a survey and seven semi-structured interviews, the research data draws a…
Tatariw, Corianne; Chapman, Elise L; Sponseller, Ryan A; Mortazavi, Behzad; Edmonds, Jennifer W
2013-10-01
Ecological theory argues that the controls over ecosystem processes are structured hierarchically, with broader-scale drivers acting as constraints over the interactions and dynamics at nested levels of organization. In river ecosystems, these interactions may arise from broadscale variation in channel form that directly shapes benthic habitat structure and indirectly constrains resource supply and biological activity within individual reaches. To evaluate these interactions, we identified sediment characteristics, water chemistry, and denitrifier community structure as factors influencing benthic denitrification rates in a sixth-order river that flows through two physiographic provinces and the transitional zone between them, each with distinct geomorphological properties. We found that denitrification rates tracked spatial changes in sediment characteristics and varied seasonally with expected trends in stream primary production. Highest rates were observed during the spring and summer seasons in the physiographic province dominated by fine-grained sediments, illustrating how large-scale changes in river structure can constrain the location of denitrification hotspots. In addition, nirS and nirK community structure each responded differently to variation in channel form, possibly due to changes in dissolved oxygen and organic matter supply. This shift in denitrifier community structure coincident with higher rates of N removal via denitrification suggests that microbial community structure may influence biogeochemical processes.
ENVIRONMENTAL INFLUENCES ON BENTHIC COMMUNITY STRUCTURE IN A GREAT LAKES EMBAYMENT
An Intensified Environmental Monitoring and Assessment Program (EMAP) sampling grid in the St. Louis River estuary of western Lake Superior was used toassess the relationship between surficial sediment characteristics and benthic community structure. Ninety sites within two habit...
Dickson-Gomez, Julia; McAuliffe, Timothy; de Mendoza, Lorena Rivas; Glasman, Laura; Gaborit, Mauricio
2012-01-01
This paper explores community structural factors in different low-income communities in the San Salvador, El Salvador that account for differences in the social context in which crack is used and in the HIV risk behaviors among crack users. Results suggest that both more distal (type of low-income community, level of violent crime and poverty) and proximate structural factors (type of site where drugs are used, and whether drugs are used within or outside of community of residence) influence HIV risk behaviors among drug users. Additionally, our results suggest that community structural factors influence the historical and geographic variation in drug use sites. PMID:22217125
Ortmann, Alice C; Brannock, Pamela M; Wang, Lei; Halanych, Kenneth M
2018-04-17
Meiobenthic community structure in the northern Gulf of Mexico has been shown to be driven by geographical differences due to inshore-offshore gradients and location relative to river discharge. Samples collected along three transects spanning Mobile Bay, Alabama, showed significant differences in meiobenthic communities east of the bay compared to those sampled from the west. In contrast, analysis of bacterial and archaeal communities from the same sediment samples shows that the inshore-offshore gradient has minimal impact on their community structure. Significant differences in community structure were observed for Bacteria and Archaea between the east and west samples, but there was no difference in richness or diversity. Grouped by sediment type, higher richness was observed in silty samples compared to sandy samples. Significant differences were also observed among sediment types for community structure with bacteria communities in silty samples having more anaerobic sulfate reducers compared to aerobic heterotrophs, which had higher abundances in sandy sediments. This is likely due to increased organic matter in the silty sediments from the overlying river leading to low oxygen habitats. Most archaeal sequences represented poorly characterized high-level taxa, limiting interpretation of their distributions. Overlap between groups based on transect and sediment characteristics made determining which factor is more important in structuring bacterial and archaeal communities difficult. However, both factors are driven by discharge from the Mobile River. Although inshore-offshore gradients do not affect Bacteria or Archaea to the same extent as the meiobenthic communities, all three groups are strongly affected by sediment characteristics.
Epidemic spreading on complex networks with overlapping and non-overlapping community structure
NASA Astrophysics Data System (ADS)
Shang, Jiaxing; Liu, Lianchen; Li, Xin; Xie, Feng; Wu, Cheng
2015-02-01
Many real-world networks exhibit community structure where vertices belong to one or more communities. Recent studies show that community structure plays an import role in epidemic spreading. In this paper, we investigate how the extent of overlap among communities affects epidemics. In order to experiment on the characteristic of overlapping communities, we propose a rewiring algorithm that can change the community structure from overlapping to non-overlapping while maintaining the degree distribution of the network. We simulate the Susceptible-Infected-Susceptible (SIS) epidemic process on synthetic scale-free networks and real-world networks by applying our rewiring algorithm. Experiments show that epidemics spread faster on networks with higher level of overlapping communities. Furthermore, overlapping communities' effect interacts with the average degree's effect. Our work further illustrates the important role of overlapping communities in the process of epidemic spreading.
NASA Astrophysics Data System (ADS)
Stegen, J.; Bottos, E. M.; Kennedy, D.; Romero, E. B.; Fansler, S.; Chu, R. K.; Tfaily, M.; Jansson, J.; Bernstein, H. C.; Brown, J. M.; Markillie, L. M.
2017-12-01
Understanding drivers of permafrost microbial community structure and function is critical for understanding permafrost microbiology and predicting ecosystem responses to thaw; however, studies describing ecological controls on these communities are lacking. We hypothesize that permafrost communities are uniquely shaped by constraints imposed by prolonged freezing, and decoupled from the selective factors that influence non-permafrost soil communities, but that pre-thaw environmental and community characteristics will be strong determinants of community structure and function post-thaw. We characterized patterns of environmental variation and microbial community composition in sixty permafrost samples spanning landscape gradients in a boreal forest watershed, and monitored community responses to thaw. Consistent with our hypothesis, we found that, proportionally, the strongest process influencing permafrost community composition was dispersal limitation (0.36), exceeding the influence of homogenous selection (0.21) and variable selection (0.16), and that deterministic selection arose primarily from energetic constraints of the permafrost environment. Our data supported a structural equation model in which organic carbon thermodynamics and organic acid content, influenced redox conditions and total selection. Post-thaw community composition was found to be driven primarily by pre-thaw community composition, indicating a strong influence of historical conditions. Together, these results suggest that community responses to thaw may be highly varied over short distances and that changes in community structure and function are likely to be drastic, as changes to system hydrology mobilize organisms and nutrients, thereby relieving the primary constraints on the system. These findings are being integrated with metabolomic and metatranscriptomic analyses to improve understanding of how pre-thaw conditions can be used to predict microbial activity post-thaw.
Wang, Shaoguo; Hu, Xiaopan; Jiao, Kangli; He, Xiangyi; Li, Zhiqiang; Wang, Jizeng
2016-01-01
Recently, high-throughput sequencing has improved the understanding of the microbiological etiology of caries, but the characteristics of the microbial community structure in the human oral cavity with and without caries are not completely clear. To better understand these characteristics, Illumina MiSeq high-throughput sequencing was utilized to analyze 20 salivary samples (10 caries-free and 10 caries) from subjects from the same town in Dongxiang, Gansu, China. A total of 5,113 OTUs (Operational Taxonomic Units, 97% cutoff) were characterized in all of the salivary samples obtained from the 20 subjects. A comparison of the two groups revealed that (i) the predominant phyla were constant between the two groups; (ii) the relative abundance of the genera Veillonella, Bifidobacterium, Selenomonas, Olsenella, Parascardovia, Scardovia, Chryseobacterium, Terrimonas, Burkholderia and Sporobacter was significantly higher in the group with caries (P < 0.05); and (iii) four genera with low relative abundance (< 0.01% on average), including two characteristic genera in caries (Chryseobacterium and Scardovia), significantly influenced the microbial community structure at the genus and OTU levels. Moreover, via co-occurrence and principal component analyses, the co-prevalence of the pathogenic genera was detected in the caries samples, but in the caries-free samples, the function of clustered genera was more random. This result suggests that a synergistic effect may be influencing the assembly of the caries microbial community, whereas competition may play a more dominant role in governing the microbial community in the caries-free group. Our findings regarding the characteristics of the microbial communities of the groups with and without caries might improve the understanding of the microbiological etiology of caries and might improve the prevention and cure of caries in the future. PMID:26784334
Méndez, Verónica; Wood, Jamie R; Butler, Simon J
2018-05-01
Functional diversity metrics are increasingly used to augment or replace taxonomic diversity metrics to deliver more mechanistic insights into community structure and function. Metrics used to describe landscape structure and characteristics share many of the same limitations as taxonomy-based metrics, particularly their reliance on anthropogenically defined typologies with little consideration of structure, management, or function. However, the development of alternative metrics to describe landscape characteristics has been limited. Here, we extend the functional diversity framework to characterize landscapes based on the diversity of resources available across habitats present. We then examine the influence of resource diversity and provenance on the functional diversities of native and exotic avian communities in New Zealand. Invasive species are increasingly prevalent and considered a global threat to ecosystem function, but the characteristics of and interactions between sympatric native and exotic communities remain unresolved. Understanding their comparative responses to environmental change and the mechanisms underpinning them is of growing importance in predicting community dynamics and changing ecosystem function. We use (i) matrices of resource use (species) and resource availability (habitats) and (ii) occurrence data for 62 native and 25 exotic species and 19 native and 13 exotic habitats in 2015 10 × 10 km quadrats to examine the relationship between native and exotic avian and landscape functional diversity. The numbers of species in, and functional diversities of, native and exotic communities were positively related. Each community displayed evidence of environmental filtering, but it was significantly stronger for exotic species. Less environmental filtering occurred in landscapes providing a more diverse combination of resources, with resource provenance also an influential factor. Landscape functional diversity explained a greater proportion of variance in native and exotic community characteristics than the number of habitat types present. Resource diversity and provenance should be explicitly accounted for when characterizing landscape structure and change as they offer additional mechanistic understanding of the links between environmental filtering and community structure. Manipulating resource diversity through the design and implementation of management actions could prove a powerful tool for the delivery of conservation objectives, be they to protect native species, control exotic species, or maintain ecosystem service provision.
Host ecology and variation in helminth community structure in Mastomys rodents from Senegal.
Brouat, C; Kane, M; Diouf, M; Bâ, K; Sall-Dramé, R; Duplantier, J M
2007-03-01
We studied patterns of variation in parasite communities of 2 closely related species of Mastomys rodents. These 2 species live in sympatry in South-eastern Senegal, but differ drastically in their habitat choice. We asked (a) whether the host species have the same parasites; (b) whether there is any observable pattern relative to the host species/habitat type in the structure of parasite communities; (c) whether the variability in parasite community for each host species is related to habitat characteristics. We analysed 220 and 264 individuals of each host species, sampled respectively in 10 and 11 trap sites. Twenty parasite taxa were recorded, and the majority were nematodes. Between-host species comparisons showed that helminth communities were slightly more diversified in M. natalensis. Many parasite species were found in both Mastomys. However, various helminth taxa varied in frequency and abundance between host species. Within each host species, helminth diversity, prevalence and/or abundance of some parasites were correlated with habitat or host population factors that may influence parasite life-cycles, such as village structure, or the presence/absence of a pool. Our results suggest that habitat characteristics have a strong impact on helminth community structure.
Busse, Annika; Antiqueira, Pablo A P; Neutzling, Alexandre S; Wolf, Anna M; Romero, Gustavo Q; Petermann, Jana S
2018-01-01
The mechanisms which structure communities have been the focus of a large body of research. Here, we address the question if habitat characteristics describing habitat quality may drive changes in community composition and beta diversity of bromeliad-inhabiting microfauna. In our system, changes in canopy cover along an environmental gradient may affect resource availability, disturbance in form of daily water temperature fluctuations and predation, and thus may lead to changes in community structure of bromeliad microfauna through differences in habitat quality along this gradient. Indeed, we observed distinct changes in microfauna community composition along the environmental gradient explained by changes in the extent of daily water temperature fluctuations. We found beta diversity to be higher under low habitat quality (low canopy cover) than under high habitat quality (high canopy cover), which could potentially be explained by a higher relative importance of stochastic processes under low habitat quality. We also partitioned beta diversity into turnover and nestedness components and we found a nested pattern of beta diversity along the environmental gradient, with communities from the lower-quality habitat being nested subsets of communities from the higher-quality habitat. However, this pattern resulted from an increase in microfauna alpha diversity with an increase in habitat quality. By providing insights into microfauna-environment relationships our results contribute to the mechanistic understanding of community dynamics in small freshwater bodies. Here, we highlight the importance of habitat characteristics representing habitat quality in structuring communities, and suggest that this information may help to improve conservation practices of small freshwater ecosystems.
Antiqueira, Pablo A. P.; Neutzling, Alexandre S.; Wolf, Anna M.; Romero, Gustavo Q.; Petermann, Jana S.
2018-01-01
The mechanisms which structure communities have been the focus of a large body of research. Here, we address the question if habitat characteristics describing habitat quality may drive changes in community composition and beta diversity of bromeliad-inhabiting microfauna. In our system, changes in canopy cover along an environmental gradient may affect resource availability, disturbance in form of daily water temperature fluctuations and predation, and thus may lead to changes in community structure of bromeliad microfauna through differences in habitat quality along this gradient. Indeed, we observed distinct changes in microfauna community composition along the environmental gradient explained by changes in the extent of daily water temperature fluctuations. We found beta diversity to be higher under low habitat quality (low canopy cover) than under high habitat quality (high canopy cover), which could potentially be explained by a higher relative importance of stochastic processes under low habitat quality. We also partitioned beta diversity into turnover and nestedness components and we found a nested pattern of beta diversity along the environmental gradient, with communities from the lower-quality habitat being nested subsets of communities from the higher-quality habitat. However, this pattern resulted from an increase in microfauna alpha diversity with an increase in habitat quality. By providing insights into microfauna-environment relationships our results contribute to the mechanistic understanding of community dynamics in small freshwater bodies. Here, we highlight the importance of habitat characteristics representing habitat quality in structuring communities, and suggest that this information may help to improve conservation practices of small freshwater ecosystems. PMID:29401522
Community Decision-Making for Education Associations. PR Bookshelf No. 10.
ERIC Educational Resources Information Center
National Education Association, Washington, DC.
This booklet seeks to acquaint education association leaders with the concept of the community power structure, specifically with how to identify powerful individuals in the community and their role in decision making. The following topics are covered: the nature of community decision making, bases for community influence, characteristics of power…
Predator community structure and trophic linkage strength to a focal prey.
Lundgren, Jonathan G; Fergen, Janet K
2014-08-01
Predator abundance and community structure can affect the suppression of lower trophic levels, although studies of these interactions under field conditions are relatively few. We investigated how the frequency of consumption (measured using PCR-based gut content analysis) is affected by predator abundance, community diversity and evenness under realistic conditions. Soil arthropod communities in sixteen maize fields were measured (number of predators, diversity [Shannon H] and evenness [J]), and predator guts were searched for DNA of the focal subterranean herbivore, the corn rootworm (Diabrotica virgifera). Predator abundance and diversity were positively correlated with trophic linkage strength (the proportion positive for rootworm DNA), although the latter characteristic was not significantly so. The diversity and evenness of the predator community with chewing mouthparts were strongly correlated with their linkage strength to rootworms, whereas the linkage strength of fluid-feeding predators was unaffected by their community characteristics. Within this community, chewing predators are more affected by the rootworm's hemolymph defence. This research clearly shows that predator abundance and diversity influence the strength of a community's trophic linkage to a focal pest and that these community characteristics may be particularly important for less palatable or protected prey species. We also make the case for conserving diverse and abundant predator communities within agroecosystems as a form of pest management. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Bauermeister, José A.; Eaton, Lisa; Andrzejewski, Jack; Loveluck, Jimena; VanHemert, William; Pingel, Emily S.
2017-01-01
Structural characteristics are linked to HIV/STI risks, yet few studies have examined the mechanisms through which structural characteristics influence the HIV/STI risk of young men who have sex with men (YMSM). Using data from a cross-sectional survey of YMSM (ages 18–29) living in Detroit Metro (N=328; 9% HIV-positive; 49% Black, 27% White, 15% Latino, 9% Other race), we used multilevel modeling to examine the association between community-level characteristics (e.g., socioeconomic disadvantage; distance to LGBT-affirming institutions) and YMSM’s HIV testing behavior and likelihood of engaging in unprotected anal intercourse with serodiscordant partner(s). We accounted for individual-level factors (race/ethnicity, poverty, homelessness, alcohol and marijuana use) and contextual factors (community acceptance and stigma regarding same-sex sexuality). YMSM in neighborhoods with greater disadvantage and nearer to an AIDS Service Organization were more likely to have tested for HIV and less likely to report serodiscordant partners. Community acceptance was associated with having tested for HIV. Efforts to address YMSM’s exposure to structural barriers in Detroit Metro are needed to inform HIV prevention strategies from a socioecological perspective. PMID:26334445
Yergeau, Etienne; Bezemer, T Martijn; Hedlund, Katarina; Mortimer, Simon R; Kowalchuk, George A; Van Der Putten, Wim H
2010-08-01
Microbial communities respond to a variety of environmental factors related to resources (e.g. plant and soil organic matter), habitat (e.g. soil characteristics) and predation (e.g. nematodes, protozoa and viruses). However, the relative contribution of these factors on microbial community composition is poorly understood. Here, we sampled soils from 30 chalk grassland fields located in three different chalk hill ridges of Southern England, using a spatially explicit sampling scheme. We assessed microbial communities via phospholipid fatty acid (PLFA) analyses and PCR-denaturing gradient gel electrophoresis (DGGE) and measured soil characteristics, as well as nematode and plant community composition. The relative influences of space, soil, vegetation and nematodes on soil microorganisms were contrasted using variation partitioning and path analysis. Results indicate that soil characteristics and plant community composition, representing habitat and resources, shape soil microbial community composition, whereas the influence of nematodes, a potential predation factor, appears to be relatively small. Spatial variation in microbial community structure was detected at broad (between fields) and fine (within fields) scales, suggesting that microbial communities exhibit biogeographic patterns at different scales. Although our analysis included several relevant explanatory data sets, a large part of the variation in microbial communities remained unexplained (up to 92% in some analyses). However, in several analyses, significant parts of the variation in microbial community structure could be explained. The results of this study contribute to our understanding of the relative importance of different environmental and spatial factors in driving the composition of soil-borne microbial communities. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.
Is the community of fish gill parasites structured in a Neotropical floodplain?
Bellay, Sybelle; Takemoto, Ricardo Massato; Oliveira, Edson Fontes
2012-03-01
Sixty-one specimens of the piranha Serrasalmus marginatus Valenciennes, 1837 were analyzed, aiming at assessing the community structure of their gill parasites. The samples were collected in lagoons of the Paraná, Ivinheima and Baia Subsystems within the Upper Paraná River Floodplain (Brazil). Host size and sex had little or no influence on the abundance and prevalence of parasites. The organization of the gill parasite infracommunities of S. marginatus was significantly non-random according to null models and ordination analyses. In general, parasite infrapopulations were not affected by interspecific associations or host characteristics (e.g. size, sex), what highlights the importance of local habitat characteristics to community organization of gill parasites of S. marginatus in the Upper Paraná River Floodplain.
ERIC Educational Resources Information Center
Schwarzweller, Harry K.; Brown, James S.
An investigation of the characteristic structuring of rural communities in Appalachia and the institutional channels for change which exist within such communities comprise this revised version of a paper read at the Extension Leaders Conference, Morgantown, West Virginia, 1968. Specifically, this essay discusses how education, the mass media,…
An Investigation of the Normative Structure for Community College Students
ERIC Educational Resources Information Center
Akin, Selenia Renea
2010-01-01
This exploratory study was designed to determine if a normative structure exists among a community college student body by extending the work of Caboni, Braxton, Deusterhous, Mundy, McClendon, and Lee (2005). The study also sought to determine if the level of espousal for the norms differed across student characteristics. This study analyzed data…
Pillsbury, Finn C; Miller, James R
2008-07-01
Urbanization has been cited as an important factor in worldwide amphibian declines, and although recent work has illustrated the important influence of broad-scale ecological patterns and processes on amphibian populations, little is known about the factors structuring amphibian communities in urban landscapes. We therefore examined amphibian community responses to wetland habitat availability and landscape characteristics along an urban-rural gradient in central Iowa, USA, a region experiencing rapid suburban growth. We conducted call surveys at 61 wetlands to estimate anuran calling activity, and quantified wetland habitat structure and landscape context. We used canonical correspondence analysis (CCA) to examine patterns in anuran community structure and identify the most important variables associated with those patterns. Urban density at the landscape scale had a significant negative influence on overall anuran abundance and diversity. While every species exhibited a decrease in abundance with increasing urban density, this pattern was especially pronounced for species requiring post-breeding upland habitats. Anurans most affected by urbanization were those associated with short hydroperiods, early breeding activity, and substantial upland habitat use. We suggest that broad-scale landscape fragmentation is an important factor underlying anuran community structure in this region, possibly due to limitations on the accessibility of otherwise suitable habitat in fragmented urban landscapes. This study underscores the importance of a regional approach to amphibian conservation in urban and urbanizing areas; in fragmented landscapes, a network of interconnected wetland and upland habitats may be more likely to support a successful, diverse anuran community than will isolated sites.
Program factors that influence utilization of adult day care.
Conrad, K J; Hughes, S L; Wang, S
1992-01-01
Health planners, policymakers, and providers urgently require methods and information that explain the factors that affect health services utilization. This information is especially critical for planning programs that are effective in maintaining the burgeoning elderly population in community care. In this study, correlation and regression analyses examined the characteristics of adult day care (ADC) centers that were associated with utilization as operationalized by demand for and actual attendance in 822 centers. Community, client population, services and activities, and structural characteristics were associated with demand per center whereas the social environment of the ADC center was not. The attendance rate was most strongly affected by services and activities and structural characteristics. The significance of the study, its limitations, and future directions for research are discussed. PMID:1399653
Locating Structural Centers: A Density-Based Clustering Method for Community Detection
Liu, Gongshen; Li, Jianhua; Nees, Jan P.
2017-01-01
Uncovering underlying community structures in complex networks has received considerable attention because of its importance in understanding structural attributes and group characteristics of networks. The algorithmic identification of such structures is a significant challenge. Local expanding methods have proven to be efficient and effective in community detection, but most methods are sensitive to initial seeds and built-in parameters. In this paper, we present a local expansion method by density-based clustering, which aims to uncover the intrinsic network communities by locating the structural centers of communities based on a proposed structural centrality. The structural centrality takes into account local density of nodes and relative distance between nodes. The proposed algorithm expands a community from the structural center to the border with a single local search procedure. The local expanding procedure follows a heuristic strategy as allowing it to find complete community structures. Moreover, it can identify different node roles (cores and outliers) in communities by defining a border region. The experiments involve both on real-world and artificial networks, and give a comparison view to evaluate the proposed method. The result of these experiments shows that the proposed method performs more efficiently with a comparative clustering performance than current state of the art methods. PMID:28046030
Grundel, Ralph; Beamer, David; Glowacki, Gary A.; Frohnapple, Krystal; Pavlovic, Noel B.
2014-01-01
Temperate savannas are threatened across the globe. If we prioritize savanna restoration, we should ask how savanna animal communities differ from communities in related open habitats and forests. We documented distribution of amphibian and reptile species across an open-savanna–forest gradient in the Midwest U.S. to determine how fire history and habitat structure affected herpetofaunal community composition. The transition from open habitats to forests was a transition from higher reptile abundance to higher amphibian abundance and the intermediate savanna landscape supported the most species overall. These differences warn against assuming that amphibian and reptile communities will have similar ecological responses to habitat structure. Richness and abundance also often responded in opposite directions to some habitat characteristics, such as cover of bare ground or litter. Herpetofaunal community species composition changed along a fire gradient from infrequent and recent fires to frequent but less recent fires. Nearby (200-m) wetland cover was relatively unimportant in predicting overall herpetofaunal community composition while fire history and fire-related canopy and ground cover were more important predictors of composition, diversity, and abundance. Increased developed cover was negatively related to richness and abundance. This indicates the importance of fire history and fire related landscape characteristics, and the negative effects of development, in shaping the upland herpetofaunal community along the native grassland–forest continuum.
Primary socialization theory. The influence of the community on drug use and deviance. III.
Oetting, E R; Donnermeyer, J F; Deffenbacher, J L
1998-06-01
Primary socialization theory states that drug use and deviance are social behaviors learned predominantly through three sources, the family, the school, and peer clusters. This paper shows that the theory provides a parsimonious explanation of how characteristics of both the local community and the larger extended community influence drug use and deviance. These characteristics affect deviance because they either strengthen or weaken bonding with the three primary socialization sources, or affect the norms that are transmitted through the primary socialization process. The paper considers the following social structure characteristics of the local neighborhood or community: physical characteristics, rurality, ethnicity, heterogeneity, occupational type, mobility, poverty, neighborhood deviance, and age distribution. It also examines how other secondary socialization sources, the extended family, associational groups, religion, the peer environment, and the media influence the primary socialization process and, in turn, drug use and deviance.
Kleinman, Lawrence C; Lutz, David; Plumb, Ellen J; Barkley, Pearl; Nazario, Hector R; Ramos, Michelle A; Horowitz, Carol R
2011-01-01
The Communities IMPACT Diabetes Center uses partnered methods to address diabetes-related conditions among African Americans and Latinos in East Harlem, New York. To describe a novel, partnered approach that integrates simultaneous structured observation by community and academic partners with "on-the-spot" resolution of differences to collect baseline data regarding the built and food environments in a two census tract area of East Harlem and present select findings. We designed an environmental assessment to explore characteristics of the environment related to walking and eating. We paired community and academic partners to assess each block, resolve any differences, and report results. Nearly one year later, we surveyed the data collectors and analyzed responses using standard qualitative methods. Key themes included connection to and characteristics of the community; interactions with partners; surprises and learning, and aspects of data collection. All but the first were common to academic and community partners. Relationships between partners were generally amiable. Both community-"I think it was very helpful, we made sure neither of us made mistakes, and helped each other when we could"-and academic-"I really enjoyed it . . . I learned a lot about the areas I surveyed"-partners were complimentary. Community partners' strengths included local knowledge of the community, whereas academic partners' focus on adherence to the specifications was critical. Structured observation identified many sidewalks in disrepair or obstructed, few benches, and highly variable times allocated for pedestrians to cross at cross walks. The partnered data collection was both successful and formative, building additional relationships and further capacity for ongoing partnership. Community partners saw their community in a new way, seeing, "little things that are important but people don't pay attention to." Structured observations added to our understanding of how an environment may contribute to diabetes.
Research on energy stock market associated network structure based on financial indicators
NASA Astrophysics Data System (ADS)
Xi, Xian; An, Haizhong
2018-01-01
A financial market is a complex system consisting of many interacting units. In general, due to the various types of information exchange within the industry, there is a relationship between the stocks that can reveal their clear structural characteristics. Complex network methods are powerful tools for studying the internal structure and function of the stock market, which allows us to better understand the stock market. Applying complex network methodology, a stock associated network model based on financial indicators is created. Accordingly, we set threshold value and use modularity to detect the community network, and we analyze the network structure and community cluster characteristics of different threshold situations. The study finds that the threshold value of 0.7 is the abrupt change point of the network. At the same time, as the threshold value increases, the independence of the community strengthens. This study provides a method of researching stock market based on the financial indicators, exploring the structural similarity of financial indicators of stocks. Also, it provides guidance for investment and corporate financial management.
NASA Astrophysics Data System (ADS)
Jha, Neha; Saggar, Surinder; Giltrap, Donna; Tillman, Russ; Deslippe, Julie
2017-09-01
Denitrification is an anaerobic respiration process that is the primary contributor of the nitrous oxide (N2O) produced from grassland soils. Our objective was to gain insight into the relationships between denitrifier community size, structure, and activity for a range of pasture soils. We collected 10 dairy pasture soils with contrasting soil textures, drainage classes, management strategies (effluent irrigation or non-irrigation), and geographic locations in New Zealand, and measured their physicochemical characteristics. We measured denitrifier abundance by quantitative polymerase chain reaction (qPCR) and assessed denitrifier diversity and community structure by terminal restriction fragment length polymorphism (T-RFLP) of the nitrite reductase (nirS, nirK) and N2O reductase (nosZ) genes. We quantified denitrifier enzyme activity (DEA) using an acetylene inhibition technique. We investigated whether varied soil conditions lead to different denitrifier communities in soils, and if so, whether they are associated with different denitrification activities and are likely to generate different N2O emissions. Differences in the physicochemical characteristics of the soils were driven mainly by soil mineralogy and the management practices of the farms. We found that nirS and nirK communities were strongly structured along gradients of soil water and phosphorus (P) contents. By contrast, the size and structure of the nosZ community was unrelated to any of the measured soil characteristics. In soils with high water content, the richnesses and abundances of nirS, nirK, and nosZ genes were all significantly positively correlated with DEA. Our data suggest that management strategies to limit N2O emissions through denitrification are likely to be most important for dairy farms on fertile or allophanic soils during wetter periods. Finally, our data suggest that new techniques that would selectively target nirS denitrifiers may be the most effective for limiting N2O emissions through denitrification across a wide range of soil types.
McCulloch, Andrew
2003-04-01
Recent developments in social science research suggest that social environmental factors may be important for explaining community variations in health. We investigate the structural sources of two mechanisms that produce community variations in health. Using survey data collected from a representative cross-section of British households we examine variations in neighbourhood social capital and neighbourhood social disorganisation across a sample of British neighbourhoods. Adjusting for respondent's attributes, we assess the effects of neighbourhood characteristics measured by the 1991 census in Britain. The results show that concentrated affluence, residential instability and ethnic heterogeneity predict social capital for women. Population density is the only neighbourhood characteristic to predict social capital for men. For both men and women concentrated disadvantage and population density are associated with social disorganisation. Residential instability is additionally associated with social disorganisation for women. For women it was found that neighbourhood characteristics interact with individual social class in accounting for variations in social capital, the effects of neighbourhood characteristics being larger for those in professional and managerial and skilled non-manual occupations. The results show that neighbourhood structural characteristics influence social organisation processes. This helps establish a link between the structural characteristics of neighbourhoods and individual health outcomes.
Chambers, Douglas B.; Messinger, Terence
2001-01-01
The effects of selected environmental factors on the composition and structure of benthic invertebrate communities in the Kanawha River Basin of West Virginia, Virginia and North Carolina were investigated in 1997 and 1998. Environmental factors investigated include physiography, land-use pattern, streamwater chemistry, streambed- sediment chemistry, and habitat characteristics. Land-use patterns investigated include coal mining, agriculture, and low intensity rural-residential patterns, at four main stem and seven tributary sites throughout the basin. Of the 37 sites sampled, basin size and physiography most strongly affected benthic invertebrate-community structure. Land-use practices also affected invertebrate community structure in these basins. The basins that differed most from the minimally affected reference condition were those basins in which coal mining was the dominant nonforest land use, as determined by comparing invertebrate- community metric values among sites. Basins in which agriculture was important were more similar to the reference condition. The effect of coal mining upon benthic invertebrate communities was further studied at 29 sites and the relations among invertebrate communities and the selected environmental factors of land use, streamwater chemistry, streambed- sediment chemistry, and habitat characteristics analyzed. Division of coal-mining synoptic-survey sites based on invertebrate-community composition resulted in two groups?one with more than an average production of 9,000 tons of coal per square mile per year since 1980, and one with lesser or no recent coal production. The group with significant recent coal production showed higher levels of community impairment than the group with little or no recent coal production. Median particle size of streambed sediment, and specific conductance and sulfate concentration of streamwater were most strongly correlated with effects on invertebrate communities. These characteristics were related to mining intensity, as measured by thousands of tons of coal produced per square mile of drainage area.
Matt D. Busse; Samual E. Beattie; Robert F. Powers; Felipe G. Sanchez; Allan E. Tiarks
2006-01-01
We tested three disturbance hypotheses in young conifer plantations: H1: soil compaction and removal of surface organic matter produces sustained changes in microbial community size, activity, and structure in mineral soil; H2: microbial community characteristics in mineral soil are linked to the recovery of plant diversity...
HARSHNESS: CHARACTERIZATION OF INTERMITTENT STREAM HABITAT OVER SPACE AND TIME
Frequently disturbed environments, such as intermittent streams, are ecologically useful for studying how disturbance characteristics (e.g., frequency, magnitude) affect community structure and succession. A harshness index summarizing spatial and temporal characteristics of pra...
Energy Spectral Behaviors of Communication Networks of Open-Source Communities
Yang, Jianmei; Yang, Huijie; Liao, Hao; Wang, Jiangtao; Zeng, Jinqun
2015-01-01
Large-scale online collaborative production activities in open-source communities must be accompanied by large-scale communication activities. Nowadays, the production activities of open-source communities, especially their communication activities, have been more and more concerned. Take CodePlex C # community for example, this paper constructs the complex network models of 12 periods of communication structures of the community based on real data; then discusses the basic concepts of quantum mapping of complex networks, and points out that the purpose of the mapping is to study the structures of complex networks according to the idea of quantum mechanism in studying the structures of large molecules; finally, according to this idea, analyzes and compares the fractal features of the spectra in different quantum mappings of the networks, and concludes that there are multiple self-similarity and criticality in the communication structures of the community. In addition, this paper discusses the insights and application conditions of different quantum mappings in revealing the characteristics of the structures. The proposed quantum mapping method can also be applied to the structural studies of other large-scale organizations. PMID:26047331
Collaboration in Community Based Rehabilitation Agencies.
ERIC Educational Resources Information Center
Boyce, W.; Johnston, C.
1998-01-01
Discussion of a survey on non-governmental organizations involved in community-based rehabilitation for people with disabilities focuses on differences between collaboration in industrialized and less developed countries; resource dependency; and structural characteristics of organizations that influence their interactions. The limited public…
ERIC Educational Resources Information Center
Elliott, Alexandria
2016-01-01
Purpose: The community-college system in the United States has evolved tremendously since its beginning in 1901. There have been many changes, but one important aspect of the community college's structure that has continued to remain of utmost importance is the roles and responsibilities of faculty. The faculty has been traditionally hired based…
Towards a Dialogical Pedagogy: Some Characteristics of a Community of Mathematical Inquiry
ERIC Educational Resources Information Center
Kennedy, Nadia Stoyanova
2009-01-01
This paper discusses a teaching model called community of mathematical inquiry (CMI), characterized by dialogical and inquiry-driven communication and a dynamic structure of intertwined cognitive processes including distributed thinking, mathematical argumentation, integrated reasoning, conceptual transformation, internalization of critical…
Vegetation, soil, and flooding relationships in a blackwater floodplain forest
Burke, M.K.; King, S.L.; Gartner, D.; Eisenbies, M.H.
2003-01-01
Hydroperiod is considered the primary determinant of plant species distribution in temperate floodplain forests, but most studies have focused on alluvial (sediment-laden) river systems. Few studies have evaluated plant community relationships in blackwater river systems of the South Atlantic Coastal Plain of North America. In this study, we characterized the soils, hydroperiod, and vegetation communities and evaluated relationships between the physical and chemical environment and plant community structure on the floodplain of the Coosawhatchie River, a blackwater river in South Carolina, USA. The soils were similar to previous descriptions of blackwater floodplain soils but had greater soil N and P availability, substantially greater clay content, and lower soil silt content than was previously reported for other blackwater river floodplains. Results of a cluster analysis showed there were five forest communities on the site, and both short-term (4 years) and long-term (50 years) flooding records documented a flooding gradient: water tupelo community > swamp tupelo > laurel oak = overcup oak > mixed oak. The long-term hydrologic record showed that the floodplain has flooded less frequently from 1994 to present than in previous decades. Detrended correspondence analysis of environmental and relative basal area values showed that 27% of the variation in overstory community structure could be explained by the first two axes; however, fitting the species distributions to the DCA axes using Gaussian regression explained 67% of the variation. Axes were correlated with elevation (flooding intensity) and soil characteristics related to rooting volume and cation nutrient availability. Our study suggests that flooding is the major factor affecting community structure, but soil characteristics also may be factors in community structure in blackwater systems. ?? 2003, The Society of Wetland Scientists.
Investigating the link between fish community structure and environmental state in deep-time
NASA Astrophysics Data System (ADS)
Sibert, E. C.
2017-12-01
In the modern ocean, a bottom-up ecological viewpoint posits that the composition of plankton communities is often a function of ambient oceanographic conditions, including nutrient concentrations and water temperature. Thus, certain plankton species or communities can be associated with specific oceanographic conditions, giving them potential as carriers of paleoceanographic information. Furthermore, consumer groups, such as fish, depend on the structure and composition of these plankton, and therefore different plankton communities will support different types of fish. In addition, fish have their own physiological constraints for surviving in particular environments, such as oxygen demand, and metabolic rate, causing certain clades to be selectively associated with different water mass characteristics. Thus, the relative or absolute abundances of different fish species or groups could shed light on shifting oxygen concentrations, temperature, or primary productivity in the past. To assess whether fish communities have sufficient environmental control to provide paleoceanographic insights, I use a variety of morphological, phylogenetic, and ecological statistical approaches, to correlate modern fish communities from around the world with environmental variables. I then apply these principles to a series of ichthyolith assemblages from the Cretaceous and Cenozoic, across both space and time, to assess whether fish community composition, abundance, or other characteristics can be predictive of ocean temperature or export productivity. I find that while the abundance of fish fossils in deep-sea cores is often, though not always, correlated with certain export production and temperature proxies, community composition appears to vary independently of these variables on long timescales, driven more by evolutionary processes. However, there are distinct differences in contemporary communities in different locations, suggesting that there is potential in using fish community composition in well-constrained systems. Furthermore, when fish community structure or abundance diverges from the expected state, this may provide significant insight into the structure and functioning of marine ecosystems.
Robustness of the bacterial community in the cabbage white butterfly larval midgut.
Robinson, Courtney J; Schloss, Patrick; Ramos, Yolied; Raffa, Kenneth; Handelsman, Jo
2010-02-01
Microbial communities typically vary in composition and structure over space and time. Little is known about the inherent characteristics of communities that govern various drivers of these changes, such as random variation, changes in response to perturbation, or susceptibility to invasion. In this study, we use 16S ribosomal RNA gene sequences to describe variation among bacterial communities in the midguts of cabbage white butterfly (Pieris rapae) larvae and examine the influence of community structure on susceptibility to invasion. We compared communities in larvae experiencing the same conditions at different times (temporal variation) or fed different diets (perturbation). The most highly represented phylum was Proteobacteria, which was present in all midgut communities. The observed species richness ranged from six to 15, and the most abundant members affiliated with the genera Methylobacteria, Asaia, Acinetobacter, Enterobacter, and Pantoea. Individual larvae subjected to the same conditions at the same time harbored communities that were highly similar in structure and membership, whereas the communities observed within larval populations changed with diet and over time. In addition, structural changes due to perturbation coincided with enhanced susceptibility to invasion by Enterobacter sp. NAB3R and Pantoea stewartii CWB600, suggesting that resistance to invasion is in part governed by community structure. These findings along with the observed conservation of membership at the phylum level, variation in structure and membership at lower taxonomic levels, and its relative simplicity make the cabbage white butterfly larval community an attractive model for studying community dynamics and robustness.
Lv, Xiaofei; Ma, Bin; Yu, Junbao; Chang, Scott X.; Xu, Jianming; Li, Yunzhao; Wang, Guangmei; Han, Guangxuan; Bo, Guan; Chu, Xiaojing
2016-01-01
Coastal ecosystems play significant ecological and economic roles but are threatened and facing decline. Microbes drive various biogeochemical processes in coastal ecosystems. Tidal flats are critical components of coastal ecosystems; however, the structure and function of microbial communities in tidal flats are poorly understood. Here we investigated the seasonal variations of bacterial communities along a tidal flat series (subtidal, intertidal and supratidal flats) and the factors affecting the variations. Bacterial community composition and diversity were analyzed over four seasons by 16S rRNA genes using the Ion Torrent PGM platform. Bacterial community composition differed significantly along the tidal flat series. Bacterial phylogenetic diversity increased while phylogenetic turnover decreased from subtidal to supratidal flats. Moreover, the bacterial community structure differed seasonally. Canonical correspondence analysis identified salinity as a major environmental factor structuring the microbial community in the sediment along the successional series. Meanwhile, temperature and nitrite concentration were major drivers of seasonal microbial changes. Despite major compositional shifts, nitrogen, methane and energy metabolisms predicted by PICRUSt were inhibited in the winter. Taken together, this study indicates that bacterial community structure changed along the successional tidal flat series and provides new insights on the characteristics of bacterial communities in coastal ecosystems. PMID:27824160
Lv, Xiaofei; Ma, Bin; Yu, Junbao; Chang, Scott X; Xu, Jianming; Li, Yunzhao; Wang, Guangmei; Han, Guangxuan; Bo, Guan; Chu, Xiaojing
2016-11-08
Coastal ecosystems play significant ecological and economic roles but are threatened and facing decline. Microbes drive various biogeochemical processes in coastal ecosystems. Tidal flats are critical components of coastal ecosystems; however, the structure and function of microbial communities in tidal flats are poorly understood. Here we investigated the seasonal variations of bacterial communities along a tidal flat series (subtidal, intertidal and supratidal flats) and the factors affecting the variations. Bacterial community composition and diversity were analyzed over four seasons by 16S rRNA genes using the Ion Torrent PGM platform. Bacterial community composition differed significantly along the tidal flat series. Bacterial phylogenetic diversity increased while phylogenetic turnover decreased from subtidal to supratidal flats. Moreover, the bacterial community structure differed seasonally. Canonical correspondence analysis identified salinity as a major environmental factor structuring the microbial community in the sediment along the successional series. Meanwhile, temperature and nitrite concentration were major drivers of seasonal microbial changes. Despite major compositional shifts, nitrogen, methane and energy metabolisms predicted by PICRUSt were inhibited in the winter. Taken together, this study indicates that bacterial community structure changed along the successional tidal flat series and provides new insights on the characteristics of bacterial communities in coastal ecosystems.
NASA Astrophysics Data System (ADS)
Cone, Neporcha
2012-12-01
The purpose of this study was to investigate the effects of community-based service learning (CBSL) on preservice elementary teachers' beliefs of the characteristics of effective science teachers of diverse students. Using semi-structured interviews, data were collected from 74 preservice teachers enrolled in four sections of an elementary science methods course over a semester. Findings suggest that preservice teachers who participated in CBSL developed beliefs about the characteristics of effective science teachers that are complimentary to the descriptions of effective teachers of diverse students provided in the literature.
Daniela F. Cusack; Whendee L. Silver; Margaret S. Torn; Sarah D. Burton; Mary K. Firestone
2011-01-01
Microbial communities and their associated enzyme activities affect the amount and chemical quality of carbon (C) in soils. Increasing nitrogen (N) deposition, particularly in N-rich tropical forests, is likely to change the composition and behavior of microbial communities and feed back on ecosystem structure and function. This study presents a novel assessment of...
Williams, Jessica Roberts; Dusablon, Tracy; Williams, Weston O; Blais, Marissa Puckett; Hennessy, Kevin D
2014-07-01
Research related to the adoption of comparative effectiveness research (CER) in mental health practice is limited. This study explores the factors that influence decisions to adopt motivational interviewing (MI)-an evidence-based practice (EBP) grounded in CER-among decision-makers (n = 311) in community health organizations (n = 92). Descriptive analyses focus on organization and decision-maker characteristics and processes that may influence the decision to adopt an EBP, including demographics, structure and operations, readiness, attitudes, barriers, and facilitators. Within-group agreement is examined to determine the degree to which participants within each organization gave similar responses. Results show characteristics differed according to type of organization (community health versus community behavioral health) and position (directors versus staff). Within-group agreement was also influenced by position. These findings indicate different strategies may be needed to best disseminate CER to the two groups.
Wang, Ke; Mao, Hailong; Li, Xiangkun
2018-02-01
The metabolic function of microbial community dominated organics and nutrients transformation in aerobic composting process. In this study, the metabolic characteristics of bacterial and fungal communities were evaluated in 60 days composting of sludge and pumice by using FUNGuild and PICRUSt, respectively. The results showed that microbial community structure and metabolic characteristics were distinctively different at four composting periods. Bacterial genes related to carbohydrate metabolisms decreased during the first 30 days, but bacterial sequences associated with oxidative phosphorylation and fatty acids synthesis were enhanced in curing phase. Most of fungal animal pathogen and plant pathogen disappeared after treatment, and the abundance of saprotroph fungi increased from 44.3% to 97.8%. Oxidation reduction potential (ORP) significantly increased from -28 to 175 mV through incubation. RDA analysis showed that ORP was a crucial factor on the succession of both bacterial and fungal communities in sludge composting system. Copyright © 2017. Published by Elsevier Ltd.
Pathways To Scaling-Up in Community Based Rehabilitation Agencies.
ERIC Educational Resources Information Center
Boyce, W.; Johnston, C.; Thomas, M.; Enns, H.; Naidu, D. M.; Tjandrakusuma, H.
1997-01-01
Scaling-up (the expansion or development of organizational activities of nongovernmental agencies to achieve greater impact) in community-based rehabilitation is described by using case study materials from industrialized and less-developed countries (India, Canada, and Indonesia) and focusing on differences in structural characteristics of…
Partnership Working in Community Alcohol Prevention Programmes
ERIC Educational Resources Information Center
Mastache, Claudia; Mistral, Willm; Velleman, Richard; Templeton, Lorna
2008-01-01
The National Alcohol Harm Reduction Strategy for England places much emphasis on creating partnerships at both national and local levels between government, the drinks industry, health services, police, individuals and communities to tackle alcohol misuse and associated harm and disorder. This article describes the characteristic structures and…
Identification of hybrid node and link communities in complex networks
He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong
2015-01-01
Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately. PMID:25728010
Identification of hybrid node and link communities in complex networks.
He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong
2015-03-02
Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.
Identification of hybrid node and link communities in complex networks
NASA Astrophysics Data System (ADS)
He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong
2015-03-01
Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.
Understanding the Link between Social Organization and Crime in Rural Communities
Chilenski, Sarah M.; Syvertsen, Amy K.; Greenberg, Mark T.
2015-01-01
Rural communities make up much of America's heartland, yet we know little about their social organization, and how elements of their social organization relate to crime rates. The current study sought to remedy this gap by examining the associations between two measures of social organization – collective efficacy and social trust – with a number of structural community characteristics, local crime rates, and perceptions of safety in a sample of 27 rural and small town communities in two states. Measures of collective efficacy, social trust, and perceived safety, were gathered from key community members in 2006; other measures were drawn from the 2000 Census and FBI Uniform Crime Reporting system. A series of competing hypotheses were tested to examine the relative importance of social trust and collective efficacy in predicting local crime rates. Results do not support the full generalization of the social disorganization model. Correlational analyses showed that neither collective efficacy nor social trust had a direct association with community crime, nor did they mediate the associations between community structural characteristics and crime. However, perceived safety mediated the association between community crime and both measures of social organization. Analyses suggest that social trust may be more important than collective efficacy when understanding the effect of crime on a community's culture in rural areas. Understanding these associations in rural settings can aid decision makers in shaping policies to reduce crime and juvenile delinquency. PMID:26120326
Falling palm fronds structure amazonian rainforest sapling communities.
Peters, Halton A; Pauw, Anton; Silman, Miles R; Terborgh, John W
2004-08-07
The senescence and loss of photosynthetic and support structures is a nearly universal aspect of tree life history, and can be a major source of disturbance in forest understoreys, but the ability of falling canopy debris in determining the stature and composition of understorey communities seems not to have been documented. In this study, we show that senescent fronds of the palm Iriartea deltoidea cause substantial disturbance in tropical forest sapling communities. This disturbance influences the species composition of the canopy and subcanopy by acting as an ecological filter, favouring sapling species with characteristics conducive to recovery after physical damage. The scale of this dominance suggests that falling I. deltoidea debris may be influencing sapling community structure and species composition in Amazonian rainforests over very large spatial scales.
Characterizing the role benthos plays in large coastal seas and estuaries: A modular approach
Tenore, K.R.; Zajac, R.N.; Terwin, J.; Andrade, F.; Blanton, J.; Boynton, W.; Carey, D.; Diaz, R.; Holland, Austin F.; Lopez-Jamar, E.; Montagna, P.; Nichols, F.; Rosenberg, R.; Queiroga, H.; Sprung, M.; Whitlatch, R.B.
2006-01-01
Ecologists studying coastal and estuarine benthic communities have long taken a macroecological view, by relating benthic community patterns to environmental factors across several spatial scales. Although many general ecological patterns have been established, often a significant amount of the spatial and temporal variation in soft-sediment communities within and among systems remains unexplained. Here we propose a framework that may aid in unraveling the complex influence of environmental factors associated with the different components of coastal systems (i.e. the terrestrial and benthic landscapes, and the hydrological seascape) on benthic communities, and use this information to assess the role played by benthos in coastal ecosystems. A primary component of the approach is the recognition of system modules (e.g. marshes, dendritic systems, tidal rivers, enclosed basins, open bays, lagoons). The modules may differentially interact with key forcing functions (e.g. temperature, salinity, currents) that influence system processes and in turn benthic responses and functions. Modules may also constrain benthic characteristics and related processes within certain ecological boundaries and help explain their overall spatio-temporal variation. We present an example of how benthic community characteristics are related to the modular structure of 14 coastal seas and estuaries, and show that benthic functional group composition is significantly related to the modular structure of these systems. We also propose a framework for exploring the role of benthic communities in coastal systems using this modular approach and offer predictions of how benthic communities may vary depending on the modular composition and characteristics of a coastal system. ?? 2006 Elsevier B.V. All rights reserved.
Structure and composition of oligohaline marsh plant communities exposed to salinity pulses
Howard, R.J.; Mendelssohn, I.A.
2000-01-01
The response of two oligohaline marsh macrophyte communities to pulses of increased salinity was studied over a single growing season in a greenhouse experiment. The plant communities were allowed a recovery period in freshwater following the pulse events. The experimental treatments included: (1) salinity influx rate (rate of salinity increase from 0 to 12 gl-1); (2) duration of exposure to elevated salinity; and (3) water depth. The communities both included Sagittaria lancifolia L.; the codominant species were Eleocharis palustris (L.) Roemer and J.A. Schultes in community 1 and Schoenoplectus americanus (Pers.) Volk. ex Schinz and R. Keller in community 2. Effects of the treatments on sediment chemical characteristics (salinity, pH, redox potential, and sulfide and ammonium concentrations) and plant community attributes (aboveground and belowground biomass, stem density, leaf tissue nutrients, and species richness) were examined. The treatment effects often interacted to influence sediment and plant communities characteristics following recovery in fresh water. Salinity influx rate per se, however, had little effect on the abiotic or biotic response variables; significant influx effects were found when the 0 gl-1 (zero influx) treatment was compared to the 12 gl-1 treatments, regardless of the rate salinity was raised. A salinity level of 12 gl-1 had negative effects on plant community structure and composition; these effects were usually associated with 3 months of salinity exposure. Water depth often interacted with exposure duration, but increased water depth did independently decrease the values of some community response measures. Community 1 was affected more than community 2 in the most extreme salinity treatment (3 months exposure/15-cm water depth). Although species richness in both communities was reduced, structural changes were more dramatic in community 1. Biomass and stem density were reduced in community 1 overall and in both dominant species. Structural changes in community 2 consisted of reduced biomass and stem density in the community overall and in S. lancifolia; S. americanus was not affected by salinity. In this most extreme treatment, community 2 tended to change to a monospecific S. americanus stand while community 1 was reduced to a few surviving stems of secondary species. Our results suggest that vegetation recovery or establishment of new species following a temporary increase in soil water salinity will vary with exposure duration and water depth. (C) 2000 Elsevier Science B.V.
1. Sublethal effects of predation can affect both population and community structure. Despite this, little is known about how the frequency of injury varies in relation to habitat, aquatic community characteristics or between trophically similar, coexisting taxa. 2. In a tidal ...
A Collaborative Recommend Algorithm Based on Bipartite Community
Fu, Yuchen; Liu, Quan; Cui, Zhiming
2014-01-01
The recommendation algorithm based on bipartite network is superior to traditional methods on accuracy and diversity, which proves that considering the network topology of recommendation systems could help us to improve recommendation results. However, existing algorithms mainly focus on the overall topology structure and those local characteristics could also play an important role in collaborative recommend processing. Therefore, on account of data characteristics and application requirements of collaborative recommend systems, we proposed a link community partitioning algorithm based on the label propagation and a collaborative recommendation algorithm based on the bipartite community. Then we designed numerical experiments to verify the algorithm validity under benchmark and real database. PMID:24955393
Kleinman, Lawrence C.; Lutz, David; Plumb, Ellen J.; Barkley, Pearl; Nazario, Hector R.; Ramos, Michelle A.; Horowitz, Carol R.
2012-01-01
Background The Communities IMPACT Diabetes Center uses partnered methods to address diabetes-related conditions among African Americans and Latinos in East Harlem, New York. Objectives To describe a novel, partnered approach that integrates simultaneous structured observation by community and academic partners with “on-the-spot” resolution of differences to collect baseline data regarding the built and food environments in a two census tract area of East Harlem and present select findings. Methods We designed an environmental assessment to explore characteristics of the environment related to walking and eating. We paired community and academic partners to assess each block, resolve any differences, and report results. Nearly one year later, we surveyed the data collectors and analyzed responses using standard qualitative methods. Results Key themes included connection to and characteristics of the community; interactions with partners; surprises and learning, and aspects of data collection. All but the first were common to academic and community partners. Relationships between partners were generally amiable. Both community—“I think it was very helpful, we made sure neither of us made mistakes, and helped each other when we could”—and academic–“I really enjoyed it … I learned a lot about the areas I surveyed”—partners were complimentary. Community partners’ strengths included local knowledge of the community, whereas academic partners’ focus on adherence to the specifications was critical. Structured observation identified many sidewalks in disrepair or obstructed, few benches, and highly variable times allocated for pedestrians to cross at cross walks. Conclusions The partnered data collection was both successful and formative, building additional relationships and further capacity for ongoing partnership. Community partners saw their community in a new way, seeing, “little things that are important but people don’t pay attention to.” Structured observations added to our understanding of how an environment may contribute to diabetes. PMID:22080773
Holder, H D; Moore, R S
2000-01-01
This article reviews papers from a recent conference on community action research in order to identify factors that contribute to long-term maintenance, sustainability, or institutionalization of community project interventions. The descriptions of long-term outcomes and aftereffects of projects that emerged in the conference are valuable because relatively few instances of institutionalization have been documented in the scientific literature. After a general theoretical discussion of institutionalization in communities, the article identifies characteristics of successful community action programs that outlived their original funding. These characteristics include honoring community values and cultural relevance, cultivating key leader support, and utilizing indigenous staff. They also include developing local resources, maintaining flexibility, and leveraging prior success. The paper concludes by noting that aiming for policy and structural changes is a goal for an institutionalization of measures positively affecting desired health outcomes, even if the programs which created them are not themselves sustained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, Sarah L.; Gibbons, Sean M.; Owens, Sarah M.
Soil microbial communities are essential for ecosystem function, but linking community composition to biogeochemical processes is challenging because of high microbial diversity and large spatial variability of most soil characteristics. We investigated soil bacterial community structure in a switchgrass stand planted on soil with a history of grassland vegetation at high spatial resolution to determine whether biogeographic trends occurred at the centimeter scale. Moreover, we tested whether such heterogeneity, if present, influenced community structure within or among ecosystems. Pronounced heterogeneity was observed at centimeter scales, with abrupt changes in relative abundance of phyla from sample to sample. At the ecosystemmore » scale (> 10 m), however, bacterial community composition and structure were subtly, but significantly, altered by fertilization, with higher alpha diversity in fertilized plots. Moreover, by comparing these data with data from 1772 soils from the Earth Microbiome Project, it was found that 20% diverse globally sourced soil samples, while grassland soils shared approximately 40% of their operational taxonomic units with the current study. By spanning several orders of magnitude, the analysis suggested that extreme patchiness characterized community structure at smaller scales but that coherent patterns emerged at larger length scales.« less
Microbial diversity and interactions in subgingival biofilm communities.
Diaz, Patricia I
2012-01-01
The human subgingival environment is a complex environmental niche where microorganisms from the three domains of life meet to form diverse biofilm communities that exist in close proximity to the host. Bacteria constitute the most abundant, diverse and ultimately well-studied component of these communities with about 500 bacterial taxa reported to occur in this niche. Cultivation and molecular approaches are revealing the breadth and depth of subgingival biofilm diversity as part of an effort to understand the subgingival microbiome, the collection of microorganisms that inhabit the gingival crevices. Although these investigations are constructing a pretty detailed taxonomical census of subgingival microbial communities, including inter-subject and temporal variability in community structure, as well as differences according to periodontal health status, we are still at the front steps in terms of understanding community function. Clinical studies that evaluate community structure need to be coupled with biologically relevant models that allow evaluation of the ecological determinants of subgingival biofilm maturation. Functional characteristics of subgingival biofilm communities that still need to be clarified include main metabolic processes that support microbial communities, identification of keystone species, microbial interactions and signaling events that lead to community maturation and the relationship of different communities with the host. This manuscript presents a summary of our current understanding of subgingival microbial diversity and an overview of experimental models used to dissect the functional characteristics of subgingival communities. Future coupling of 'omics'-based approaches with such models will facilitate a better understanding of subgingival ecology opening opportunities for community manipulation. Copyright © 2012 S. Karger AG, Basel.
Zheng, Li Ting; Su, Tian; Liu, Xiang Yu; Yin, Fang; Guo, Chao; Tuo, Bin; Yan, En Rong
2018-02-01
Island vegetation plays an important role in biodiversity research across the world. The study of plant diversity in island is helpful for understanding the mechanism of plant diversity maintenance under land-sea interaction. Here, four typical plant communities (Quercus acutissima community, Robinia pseudoacacia community, Pinus thunbergii community and Vitex negundo community) in Miao Archipelago were selected to examine the species, functional and structural diversities and their responses to environmental factors at the community scale by using species diversity indices, functional diversity indices, as well as structural diversity indices. The results showed that the species richness and Rao index of P. thunbergii community was higher than that of Q. acutissima community and R. pseudoacacia community, but the structural diversity was lower. The species diversity and structural diversity of V. Negundo shrub were lower than that of forest community, but the functional diversity was higher than some forest communities. The relationship between the diversity of typical plant communities in island area illustrated a significant positive correlation between species richness with Rao index and tree height diversity, however the correlation with functional evenness was significantly negative. The structural diversity and functional evenness were determined by slope with negative and positive relationships, respectively. Functional heterogeneity, functional divergence and species diversity were affected largely by soil physical and chemical properties, displaying the positive relationship with soil bulk density and soil total carbon content, and a negative relationship with soil water content. In conclusion, diversity pattern of plant community in Miao Archipelago reflected not only the characteristics in mainland vegetation but also the special nature of the sea island.
Strobl, Ralf; Maier, Werner; Ludyga, Alicja; Mielck, Andreas; Grill, Eva
2016-01-01
Community and neighbourhood structures contribute not only to the health and well-being, but also to the participation of older adults. The degree of participation depends on both the living environment and the individual's personal characteristics, preferences and perception. However, there is still limited empirical evidence on how community and neighbourhood structures are linked to participation and health in the aged population. A qualitative exploratory approach was chosen with a series of problem-centred, semi-structured focus group discussions. Study participants were selected from within the city of Augsburg, Southern Germany, and from two municipalities in surrounding rural districts. The interviews took place in 2013. Structuring content analysis was used to identify key concepts. We conducted 11 focus group discussions with a total of 78 different study participants. The study participants (33 men and 45 women) had a mean age of 74 years (range 65-92 years). Only two study participants lived in an assisted living facility. Of all study participants, 77% lived in urban and 23% in rural areas. We extracted four metacodes ('Usual activities', 'Requirements for participation', 'Barriers to participation' and 'Facilitators for participation') and 15 subcodes. Health and poorly designed infrastructure were mentioned as important barriers to participation, and friendship and neighbourhood cohesion as important facilitators. This qualitative study revealed that poor design and accessibility of municipal infrastructure are major barriers to participation in old age in Germany. Community and neighbourhood structures can be part of the problem but also part of the solution when accessibility and social networks are taken into account.
Community detection in sequence similarity networks based on attribute clustering
Chowdhary, Janamejaya; Loeffler, Frank E.; Smith, Jeremy C.
2017-07-24
Networks are powerful tools for the presentation and analysis of interactions in multi-component systems. A commonly studied mesoscopic feature of networks is their community structure, which arises from grouping together similar nodes into one community and dissimilar nodes into separate communities. Here in this paper, the community structure of protein sequence similarity networks is determined with a new method: Attribute Clustering Dependent Communities (ACDC). Sequence similarity has hitherto typically been quantified by the alignment score or its expectation value. However, pair alignments with the same score or expectation value cannot thus be differentiated. To overcome this deficiency, the method constructs,more » for pair alignments, an extended alignment metric, the link attribute vector, which includes the score and other alignment characteristics. Rescaling components of the attribute vectors qualitatively identifies a systematic variation of sequence similarity within protein superfamilies. The problem of community detection is then mapped to clustering the link attribute vectors, selection of an optimal subset of links and community structure refinement based on the partition density of the network. ACDC-predicted communities are found to be in good agreement with gold standard sequence databases for which the "ground truth" community structures (or families) are known. ACDC is therefore a community detection method for sequence similarity networks based entirely on pair similarity information. A serial implementation of ACDC is available from https://cmb.ornl.gov/resources/developments« less
Community detection in sequence similarity networks based on attribute clustering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhary, Janamejaya; Loeffler, Frank E.; Smith, Jeremy C.
Networks are powerful tools for the presentation and analysis of interactions in multi-component systems. A commonly studied mesoscopic feature of networks is their community structure, which arises from grouping together similar nodes into one community and dissimilar nodes into separate communities. Here in this paper, the community structure of protein sequence similarity networks is determined with a new method: Attribute Clustering Dependent Communities (ACDC). Sequence similarity has hitherto typically been quantified by the alignment score or its expectation value. However, pair alignments with the same score or expectation value cannot thus be differentiated. To overcome this deficiency, the method constructs,more » for pair alignments, an extended alignment metric, the link attribute vector, which includes the score and other alignment characteristics. Rescaling components of the attribute vectors qualitatively identifies a systematic variation of sequence similarity within protein superfamilies. The problem of community detection is then mapped to clustering the link attribute vectors, selection of an optimal subset of links and community structure refinement based on the partition density of the network. ACDC-predicted communities are found to be in good agreement with gold standard sequence databases for which the "ground truth" community structures (or families) are known. ACDC is therefore a community detection method for sequence similarity networks based entirely on pair similarity information. A serial implementation of ACDC is available from https://cmb.ornl.gov/resources/developments« less
Zhu, Duo Ju; Wen, Zhong Ming; Zhang, Jing; Tao, Yu; Zeng, Hong Wen; Tang, Yang
2018-02-01
To investigate the effects of the introduction of Robinia pseudoacacia on the functional structure of plant communities, we selected paired-plots of R. pseudoacacia communities and native plant communities across different vegetation zones, i.e., steppe zone, forest-steppe zone, forest zone in hilly-gully region of Loess Plateau, China. We measured several functional characteristics and then compared the functional structures of R. pseudoacacia and native plant communities in different vegetation zones. The results showed that the variation of the functional traits across different vegetation zones were consistent in R. pseudoacacia community and native plant community, including leaf carbon concentration, leaf nitrogen concentration, leaf phosphorus concentration, specific leaf area, and leaf tissue density. The leaf carbon concentration, leaf nitrogen concentration, and specific leaf area of the R. pseudoacacia community were significantly higher than those of the native plant community. The trend of change that the functional diversity indices, i.e., FR ic , FE ve , FD iv , FD is , Rao of the R. pseudoacacia community and the native plant community with vegetation zones were different. The introduction of R. pseudoacacia enhanced the plant community functional diversity in the forest zone but reduced community functional diversity in the steppe zone.
Tang, Bing; Zhao, Yiliang; Bin, Liying; Huang, Shaosong; Fu, Fenglian
2017-11-01
The presented investigation focused on exploring the characteristics of the biofilm formed on a novel semi-suspended bio-carrier and revealing their variation during the whole growing cycle. This used semi-suspended bio-carrier was designed to be a spindle shape, and then fabricated by using a 3D printing technique. Results indicated the bio-carrier provided a suitable environment for the attachment of diverse microorganisms. During the experimental period lasted for 45days, the biofilm quickly attached on the surface of the bio-carrier and grew to maturity, but its characteristics, including the chemical compositions, adhesion force, surface roughness, structure of microbial communities, varied continuously along with the operational time, which greatly influenced the performance of the bioreactor. The shape and structure of bio-carrier, and the shearing force caused by the aeration are important factors that influence the microbial community and its structure, and also heavily affect the formation and growth of biofilm. Copyright © 2017 Elsevier Ltd. All rights reserved.
Song, Lun; Wang, Nian-bin; Song, Yong-Gang; Li, Nan
2013-04-01
Estuary and nearshore waters have complicated environment, where plankton community has a frequent feedback regulation and a very unstable particle size structure. In this paper, an investigation was made on the particle size structure of plankton in the turbidity zone of nearshore and port area waters in Liaoning Province of Northeast China. In the waters with high concentration inorganic nitrogen, phytoplankton biomass was mainly of small particle sizes, with the equivalent sphere diameter (ESD) being primarily 20-100 micro m, while in low nutrient waters, the phytoplankton biomass was mainly of larger size particles, with the ESD>100 micro m, indicating that the phytoplankton feedback regulation caused the phytoplankton community to be comprised of small sized organisms as part of the biological responses to high concentration suspended solids, which reduced the individual number of larger organisms such as Coscinodiscus. sp. and other species, and in turn, directly affected the fisheries resources, including a variety of fish and shrimp larvae fed on phytoplankton. A normalized biomass size spectrum with the characteristics of nearshore shallow aquatic oceanic ecosystems exhibiting eutrophication was constructed. The spectrum slope indicated that the plankton community biomass would gradually increase in size. The feasibility of using dinoflagellates and cladocerans as the bio-indicators for eutrophication was discussed.
Social significance of community structure: Statistical view
NASA Astrophysics Data System (ADS)
Li, Hui-Jia; Daniels, Jasmine J.
2015-01-01
Community structure analysis is a powerful tool for social networks that can simplify their topological and functional analysis considerably. However, since community detection methods have random factors and real social networks obtained from complex systems always contain error edges, evaluating the significance of a partitioned community structure is an urgent and important question. In this paper, integrating the specific characteristics of real society, we present a framework to analyze the significance of a social community. The dynamics of social interactions are modeled by identifying social leaders and corresponding hierarchical structures. Instead of a direct comparison with the average outcome of a random model, we compute the similarity of a given node with the leader by the number of common neighbors. To determine the membership vector, an efficient community detection algorithm is proposed based on the position of the nodes and their corresponding leaders. Then, using a log-likelihood score, the tightness of the community can be derived. Based on the distribution of community tightness, we establish a connection between p -value theory and network analysis, and then we obtain a significance measure of statistical form . Finally, the framework is applied to both benchmark networks and real social networks. Experimental results show that our work can be used in many fields, such as determining the optimal number of communities, analyzing the social significance of a given community, comparing the performance among various algorithms, etc.
Geographic variation in public health spending: correlates and consequences.
Mays, Glen P; Smith, Sharla A
2009-10-01
To examine the extent of variation in public health agency spending levels across communities and over time, and to identify institutional and community correlates of this variation. Three cross-sectional surveys of the nation's 2,900 local public health agencies conducted by the National Association of County and City Health Officials in 1993, 1997, and 2005, linked with contemporaneous information on population demographics, socioeconomic characteristics, and health resources. A longitudinal cohort design was used to analyze community-level variation and change in per-capita public health agency spending between 1993 and 2005. Multivariate regression models for panel data were used to estimate associations between spending, institutional characteristics, health resources, and population characteristics. The top 20 percent of communities had public health agency spending levels >13 times higher than communities in the lowest quintile, and most of this variation persisted after adjusting for differences in demographics and service mix. Local boards of health and decentralized state-local administrative structures were associated with higher spending levels and lower risks of spending reductions. Local public health agency spending was inversely associated with local-area medical spending. The mechanisms that determine funding flows to local agencies may place some communities at a disadvantage in securing resources for public health activities.
Multi-scale structural community organisation of the human genome.
Boulos, Rasha E; Tremblay, Nicolas; Arneodo, Alain; Borgnat, Pierre; Audit, Benjamin
2017-04-11
Structural interaction frequency matrices between all genome loci are now experimentally achievable thanks to high-throughput chromosome conformation capture technologies. This ensues a new methodological challenge for computational biology which consists in objectively extracting from these data the structural motifs characteristic of genome organisation. We deployed the fast multi-scale community mining algorithm based on spectral graph wavelets to characterise the networks of intra-chromosomal interactions in human cell lines. We observed that there exist structural domains of all sizes up to chromosome length and demonstrated that the set of structural communities forms a hierarchy of chromosome segments. Hence, at all scales, chromosome folding predominantly involves interactions between neighbouring sites rather than the formation of links between distant loci. Multi-scale structural decomposition of human chromosomes provides an original framework to question structural organisation and its relationship to functional regulation across the scales. By construction the proposed methodology is independent of the precise assembly of the reference genome and is thus directly applicable to genomes whose assembly is not fully determined.
Institutional and Economic Determinants of Public Health System Performance
Mays, Glen P.; McHugh, Megan C.; Shim, Kyumin; Perry, Natalie; Lenaway, Dennis; Halverson, Paul K.; Moonesinghe, Ramal
2006-01-01
Objectives. Although a growing body of evidence demonstrates that availability and quality of essential public health services vary widely across communities, relatively little is known about the factors that give rise to these variations. We examined the association of institutional, financial, and community characteristics of local public health delivery systems and the performance of essential services. Methods. Performance measures were collected from local public health systems in 7 states and combined with secondary data sources. Multivariate, linear, and nonlinear regression models were used to estimate associations between system characteristics and the performance of essential services. Results. Performance varied significantly with the size, financial resources, and organizational structure of local public health systems, with some public health services appearing more sensitive to these characteristics than others. Staffing levels and community characteristics also appeared to be related to the performance of selected services. Conclusions. Reconfiguring the organization and financing of public health systems in some communities—such as through consolidation and enhanced intergovernmental coordination—may hold promise for improving the performance of essential services. PMID:16449584
[Influence of Submerged Plants on Microbial Community Structure in Sediment of Hongze Lake].
Zhang, Ding-yu; Zhang, Ting-xi; Dong, Dan-ping; Li, De-fang; Wang, Guo-xiang
2016-05-15
Phospholipid fatty acids (PLFAs) method was applied to analyze the influence of submerged plants on sediment microbial community structure, in order to investigate the changes of sediment microbial community structure for different kinds of the submerged plants in different growth periods. Particularly, Potamogeton crispus L., Potamogeton pectinatus L and the mixed group were chosen as the typical submerged plants in Hongze Lake for investigation in this paper. The results indicated that the change of total PLFAs in different periods was significant, on the contrary, the PLFA change for different groups in the same period was insignificant. The values of G⁺ PLFA/G⁻ PLFA in the submerged plant group were also highly related to the different growth periods, which demonstrated that the root function of the submerged plant had a severe impact on the microbial community in sediment. Furthermore, some environmental factors, such as Temperature, pH, TOC and DO, were correlated to characteristic phospholipid of PLFAs in sediment, which means the environmental factors could also affect the microbial community structure.
Community Structure in Online Collegiate Social Networks
NASA Astrophysics Data System (ADS)
Traud, Amanda; Kelsic, Eric; Mucha, Peter; Porter, Mason
2009-03-01
Online social networking sites have become increasingly popular with college students. The networks we studied are defined through ``friendships'' indicated by Facebook users from UNC, Oklahoma, Caltech, Georgetown, and Princeton. We apply the tools of network science to study the Facebook networks from these five different universities at a single point in time. We investigate each single-institution network's community structure, which we obtain through partitioning the graph using an eigenvector method. We use both graphical and quantitative tools, including pair-counting methods, which we interpret through statistical analysis and permutation tests to measure the correlations between the network communities and a set of characteristics given by each user (residence, class year, major, and high school). We also analyze the single gender subsets of these networks, and the impact of missing demographical data. Our study allows us to compare the online social networks for the five schools as well as infer differences in offline social interactions. At the schools studied, we were able to define which characteristics of the Facebook users correlate best with friendships.
Use of the intestinal parasite community of Sigmodon hispidus as a biomonitor in terrestrial systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faulkner, B.C.; Lochmiller, R.L.
1995-12-31
The goal of this study was to assess the potential usefulness of parasite communities of small mammals as an endpoint for community level risk assessment in terrestrial ecosystems. A total of 350 wild cotton rats (Sigmodon hispidus) were collected from a Superfund site in southwestern Oklahoma between fall 1993 and fall 1995. Three contaminated study sites, representing common petrochemical disposal methods and all containing complex mixtures of contaminants, including arsenic, lead, fluoride, phenols, and hydrocarbons, were monitored seasonally. Animals were collected and gastrointestinal contents were examined grossly and microscopically for helminths and coccidial parasites. All parasites were identified to speciesmore » and enumerated so that measurable alterations of the parasite community structure could be established. The authors also sampled possible intermediate host communities concurrently with Sigmodon collections. Structural characteristics of the parasite communities were compared between replicated toxic and reference study sites.« less
Historical and contemporary factors generate unique butterfly communities on islands
NASA Astrophysics Data System (ADS)
Vodă, Raluca; Dapporto, Leonardo; Dincă, Vlad; Shreeve, Tim G.; Khaldi, Mourad; Barech, Ghania; Rebbas, Khellaf; Sammut, Paul; Scalercio, Stefano; Hebert, Paul D. N.; Vila, Roger
2016-06-01
The mechanisms shaping island biotas are not yet well understood mostly because of a lack of studies comparing eco-evolutionary fingerprints over entire taxonomic groups. Here, we linked community structure (richness, frequency and nestedness) and genetic differentiation (based on mitochondrial DNA) in order to compare insular butterfly communities occurring over a key intercontinental area in the Mediterranean (Italy-Sicily-Maghreb). We found that community characteristics and genetic structure were influenced by a combination of contemporary and historical factors, and among the latter, connection during the Pleistocene had an important impact. We showed that species can be divided into two groups with radically different properties: widespread taxa had high dispersal capacity, a nested pattern of occurrence, and displayed little genetic structure, while rare species were mainly characterized by low dispersal, high turnover and genetically differentiated populations. These results offer an unprecedented view of the distinctive butterfly communities and of the main processes determining them on each studied island and highlight the importance of assessing the phylogeographic value of populations for conservation.
Schulz, Amy; Mentz, Graciela; Johnson-Lawrence, Vicki; Israel, Barbara A; Max, Paul; Zenk, Shannon N; Wineman, Jean; Marans, Robert W
2013-10-01
Physical activity is associated with reduced risk of a number of health outcomes, yet fewer than half of adults in the United States report recommended levels of physical activity. Analyses of structural characteristics of the built environment as correlates of physical activity have yielded mixed results. We examine associations between multiple aspects of urban neighborhood environments and physical activity in order to understand their independent and joint effects, with a focus on the extent to which the condition of the built environment and indicators of the social environment modify associations between structural characteristics and physical activity. We use data from a stratified, multi-stage proportional probability sample of 919 non-Hispanic Black, non-Hispanic White, and Hispanic adults in an urban community, observational data from their residential neighborhoods, and census data to examine independent and joint associations of structural characteristics (e.g., street network connectivity), their condition (e.g., sidewalk condition), and social environments (e.g., territoriality) with physical activity. Our findings suggest that sidewalk condition is associated with physical activity, above and beyond structural characteristics of the built environment. Associations between some structural characteristics of the built environment and physical activity were conditional upon street condition, physical deterioration, and the proportion of parks and playgrounds in good condition. We found modest support for the hypothesis that associations between structural characteristics and physical activity are modified by aspects of the social environment. Results presented here point to the value of and need for understanding and addressing the complexity of factors that contribute to the relationships between the built and social environments and physical activity, and in turn, obesity and co-morbidities. Bringing together urban planners, public health practitioners and policy makers to understand and address aspects of urban environment associated with health outcomes is critical to promoting health and health equity.
Plant traits determine the phylogenetic structure of arbuscular mycorrhizal fungal communities.
López-García, Álvaro; Varela-Cervero, Sara; Vasar, Martti; Öpik, Maarja; Barea, José M; Azcón-Aguilar, Concepción
2017-12-01
Functional diversity in ecosystems has traditionally been studied using aboveground plant traits. Despite the known effect of plant traits on the microbial community composition, their effects on the microbial functional diversity are only starting to be assessed. In this study, the phylogenetic structure of arbuscular mycorrhizal (AM) fungal communities associated with plant species differing in life cycle and growth form, that is, plant life forms, was determined to unravel the effect of plant traits on the functional diversity of this fungal group. The results of the 454 pyrosequencing showed that the AM fungal community composition differed across plant life forms and this effect was dependent on the soil collection date. Plants with ruderal characteristics tended to associate with phylogenetically clustered AM fungal communities. By contrast, plants with resource-conservative traits associated with phylogenetically overdispersed AM fungal communities. Additionally, the soil collected in different seasons yielded AM fungal communities with different phylogenetic dispersion. In summary, we found that the phylogenetic structure, and hence the functional diversity, of AM fungal communities is dependent on plant traits. This finding adds value to the use of plant traits for the evaluation of belowground ecosystem diversity, functions and processes. © 2017 John Wiley & Sons Ltd.
Components of School Capacity: Structures, Practices, and Perceptions. Research Brief
ERIC Educational Resources Information Center
Appalachia Educational Laboratory at Edvantia (NJ1), 2005
2005-01-01
This brief defines school capacity as the presence of characteristics needed to support the development of a thriving learning community. The literature on school improvement suggests that a school's capacity for improvement can be supported by coherent structures, constructive teacher and leadership practices, and positive staff perceptions of…
Structure and composition of vegetation along an elevational gradient in Puerto Rico.
W.A. Gould; G. Gonzalez; G. Carrero Rivera
2006-01-01
Question: What are the composition, conservation status, and structural and environmental characteristics of eight mature tropical forest plant communities that occur along an elevational gradient. Location: Northeastern Puerto Rico. Methods: We quantified the species composition, diversity, conservation status, and ecological attributes of eight mature tropical forest...
Small Business Success in Rural Communities: Explaining the Sex Gap.
ERIC Educational Resources Information Center
Bird, Sharon R.; Sapp, Stephen G.; Lee, Motoko Y.
2001-01-01
Supporting a "structural relational" view of small business success, data from 423 small business owners in Iowa suggest that links between owner characteristics, social relational processes, business structure, and success operate differently depending on urban-rural location and owner sex. Female owners had more professional training…
Ecological observations on an East African bat community
O'Shea, Thomas J.; Vaughan, Terry A.
1980-01-01
The structure and ecology of bat faunas is a subject of interest to mammalogists (Findley, 1976; Wilson, 1973). Syntopic African bat communities, however, have received little study in comparison with neotropical faunas (cf. Fleming et al., 1972; LaVal and Fitch, 1977; McNab, 1971). Verschuren (1957) presented natural history information and species accounts for a localized central African bat fauna. Foraging related characteristics of a Rhodesian community have also been analyzed (Fenton, 1975; Fenton et al., 1977), but not on a seasonal basis. Other reports on African bat faunas are restricted to regional summaries (cf. Koopman, 1975 or Rosevear, 1965) and do not consider ecological aspects of a single localized community. The purpose of our study was to follow species composition, reproduction, and foraging related characteristics of an East African bat fauna over a full annual cycle.
Luo, Da; Liu, Shun; Shi, Zuo Min; Feng, Qiu Hong; Liu, Qian Li; Zhang, Li; Huang, Quan; He, Jian She
2017-02-01
The effects of four Picea asperata plantations with different ages (50-, 38-, 27- and 20-year-old), in subalpine of western Sichuan, on the characteristics of soil microbial diversity and microbial community structure were studied by the method of phospholipid fatty acid (PLFA) profiles. The results showed that, with the increase of age, the contents of soil organic carbon and total nitrogen gradually improved, while Shannon's diversity index and Pielou's evenness index of soil microorganisms increased at first and then decreased. The amounts of microbial total PLFAs, bacterial PLFAs, fungal PLFAs, actinobacterial PLFAs, and arbuscular mycorrhizal fungal (AMF) PLFAs in soils consistently increased with increasing age. The principal component analysis (PCA) indicated that the soil microbial communities in different plantations were structurally distinct from each other. The first principal component (PC1) and the second principal component (PC2) together accounted for 66.8% of total variation of the soil microbial community structure. The redundancy analysis (RDA) of soil microbial community structure and environmental factors showed that soil organic carbon, total nitrogen, total potassium, and fine root mass were the key determinants influencing the microbial community structure. Our study suggested that, with the extension of artificialafforestation time, the soil fertility and microbial biomass were enhanced, and the restoration processes of forest ecosystem were stable.
Eggleton, M.A.; Ramirez, R.; Hargrave, C.W.; Gido, K.B.; Masoner, J.R.; Schnell, G.D.; Matthews, W.J.
2005-01-01
We sampled larval, juvenile and adult fishes from littoral-zone areas of a large reservoir (Lake Texoma, Oklahoma-Texas) (1) to characterize environmental factors that influenced fish community structure, (2) to examine how consistent fish-environment relationships were through ontogeny (i.e., larval vs. juvenile and adult), and (3) to measure the concordance of larval communities sampled during spring to juvenile and adult communities sampled at the same sites later in the year. Larval, juvenile and adult fish communities were dominated by Atherinidae (mainly inland silverside, Menidia beryllina) and Moronidae (mainly juvenile striped bass, Morone saxatilis) and were consistently structured along a gradient of site exposure to prevailing winds and waves. Larval, juvenile and adult communities along this gradient varied from atherinids and moronids at highly exposed sites to mostly centrarchids (primarily Lepomis and Micropterus spp.) at protected sites. Secondarily, zooplankton densities, water clarity, and land-use characteristics were related to fish community structure. Rank correlation analyses and Mantel tests indicated that the spatial consistency and predictability of fish communities was high as larval fishes sampled during spring were concordant with juvenile and adult fishes sampled at the same sites during summer and fall in terms of abundance, richness, and community structure. We propose that the high predictability and spatial consistency of littoral-zone fishes in Lake Texoma was a function of relatively simple communities (dominated by 1-2 species) that were structured by factors, such as site exposure to winds and waves, that varied little through time. ?? Springer 2005.
Kim, Hye Min; Lee, Min Jin; Jung, Ji Young; Hwang, Chung Yeon; Kim, Mincheol; Ro, Hee-Myong; Chun, Jongsik; Lee, Yoo Kyung
2016-11-01
The increasing temperature in Arctic tundra deepens the active layer, which is the upper layer of permafrost soil that experiences repeated thawing and freezing. The increasing of soil temperature and the deepening of active layer seem to affect soil microbial communities. Therefore, information on soil microbial communities at various soil depths is essential to understand their potential responses to climate change in the active layer soil. We investigated the community structure of soil bacteria in the active layer from moist acidic tundra in Council, Alaska. We also interpreted their relationship with some relevant soil physicochemical characteristics along soil depth with a fine scale (5 cm depth interval). The bacterial community structure was found to change along soil depth. The relative abundances of Acidobacteria, Gammaproteobacteria, Planctomycetes, and candidate phylum WPS-2 rapidly decreased with soil depth, while those of Bacteroidetes, Chloroflexi, Gemmatimonadetes, and candidate AD3 rapidly increased. A structural shift was also found in the soil bacterial communities around 20 cm depth, where two organic (upper Oi and lower Oa) horizons are subdivided. The quality and the decomposition degree of organic matter might have influenced the bacterial community structure. Besides the organic matter quality, the vertical distribution of bacterial communities was also found to be related to soil pH and total phosphorus content. This study showed the vertical change of bacterial community in the active layer with a fine scale resolution and the possible influence of the quality of soil organic matter on shaping bacterial community structure.
Xiang, Hong; Lü, Xi-Wu; Yang, Fei; Yin, Li-Hong; Zhu, Guang-Can
2011-04-01
In order to explore characteristics of microbial community and operation efficiency in biofilter (biologically-enhanced active filter and biological activated carbon filter) process for drinking water purification, Biolog and polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) techniques were applied to analyze the metabolic function and structure of microbial community developing in biofilters. Water quality parameters, such as NH; -N, NO; -N, permanganate index, UV254 and BDOC etc, were determined in inflow and outflow of biofilters for investigation of operation efficiency of the biofilters. The results show that metabolic capacity of microbial community of the raw water is reduced after the biofilters, which reflect that metabolically active microbial communities in the raw water can be intercepted by biofilters. After 6 months operation of biofilters, the metabolic profiles of microbial communities are similar between two kinds of biologically-enhanced active filters, and utilization of carbon sources of microbial communities in the two filters are 73.4% and 75.5%, respectively. The metabolic profiles of microbial communities in two biological activated carbon filters showed significant difference. The carbon source utilization rate of microbial community in granule-activated carbon filter is 79.6%, which is obviously higher than 53.8% of the rate in the columnar activated carbon filter (p < 0.01). The analysis results of PCR-SSCP indicate that microbial communities in each biofilter are variety, but the structure of dominant microorganisms is similar among different biofilters. The results also show that the packing materials had little effect on the structure and metabolic function of microbial community in biologically-enhanced active filters, and the difference between two biofilters for the water purification efficiency was not significant (p > 0.05). However, in biological activated carbon filters, granule-activated carbon is conducive to microbial growth and reproduction, and the microbial communities in the biofilter present high metabolic activities, and the removal efficiency for NH4(+)-N, permanganate index and BDOC is better than the columnar activated carbon filter(p < 0.05). The results also suggest that operation efficiency of biofilter is related to the metabolic capacity of microbial community in biofilter.
Quang, Ngo Xuan; Chau, Nguyen Ngoc; Smol, Nic; Prozorova, Larisa; Vanreusel, Ann
2016-02-01
Nematode communities in eight Mekong estuaries were investigated during the dry season. The aim of the study was to identify the structure and the diversity of the communities in relation to the main environmental characteristics. In each estuary, three to four intertidal sampling stations were identified at regular distances from the mouth to up to 45 km land inward. The nematode communities showed a strong correlation with sediment composition and to a lesser degree with chlorophyll a concentrations. Multivariate analysis resulted in the identification of four types of communities. We identified two types of Desmodora communities in the sandy mouth stations and two types of Parodontophora communities in the silty sand stations. One of the silt associated communities showed a preference for higher chlorophyll a concentrations, resulting in higher densities and higher diversity, mainly of monhysterid species. Because of the strong association between community structure and sediment composition, nematodes are a meaningful tool for monitoring changes in their environment. In case their community deviates from what is expected based on sediment, it may serve as an early warning for disturbance.
NASA Astrophysics Data System (ADS)
Rooney-Varga, J. N.; Dunaj, S. J.; Vallino, J. J.; Hines, M. E.; Gay, M.; Kobyljanec, C.
2011-12-01
Microbial fuel cells (MFCs) offer the potential for generating electricity, mitigating greenhouse gas emissions, and bioremediating pollutants through utilization of a plentiful, natural, and renewable resource: soil organic carbon. In the current study, we analyzed microbial community structure, MFC performance, and soil characteristics in different microhabitats (bulk soil, anode, and cathode) within MFCs constructed from agricultural or forest soils in order to determine how soil type and microbial dynamics influence MFC performance. MFCs were constructed with soils from agricultural and hardwood forest sites at Harvard Forest (Petersham, MA). The bulk soil characteristics were analyzed, including polyphenols, short chain fatty acids, total organic C and N, abiotic macronutrients, N and P mineralization rates, CO2 respiration rates, and MFC power output. Microbial community structure of the anodes, cathodes, and bulk soils was determined with molecular fingerprinting methods, which included terminal restriction length polymorphism (T-RFLP) analysis and 16S rRNA gene sequencing analysis. Our results indicated that MFCs constructed from agricultural soil had power output about 17 times that of forest soil-based MFCs and respiration rates about 10 times higher than forest soil MFCs. Agricultural soil MFCs had lower C:N ratios, polyphenol content, and acetate concentrations than forest soil MFCs, suggesting that active agricultural MFC microbial communities were supported by higher quality organic carbon. Microbial community profile data indicate that the microbial communities at the anode of the high power MFCs were less diverse than in low power MFCs and were dominated by Deltaproteobacteria, Geobacter, and, to a lesser extent, Clostridia, while low-power MFC anode communities were dominated by Clostridia. These data suggest that the presence of organic carbon substrate (acetate) was not the major limiting factor in selecting for highly electrogenic microbial communities, while the quality of available organic matter may have played a significant role in supporting high performing microbial communities.
Hui Zhu; Deli Wang; Qinfeng Guo; Jun Liu; Ling Wang
2015-01-01
The structure and dynamics of insect community in grasslands can be influenced by grazing management via altered characteristics of plant community. However, attempts to better understand the complex relationships among plants, insects, and large herbivores is still hampered largely by the interactive effects of plants, insects, and large grazers on each other. In this...
2013-06-01
setting, landscape position, watershed size), the structural components of the wetland ecosystem (e.g., plants , animals, soil , water, and the...Community Support Characteristic Invertebrate Community Support Landscape/Regional Biodiversity Diversity of native plant species (index, H’) Number of...Flagging GPS and Digital Camera / Spare Batteries Clipboard, Calculator, and Pencils County Soil Survey Plant Identification Keys Munsell
The community structure of over-wintering larval and small juvenile fish in a large estuary
NASA Astrophysics Data System (ADS)
Munk, Peter; Cardinale, Massimiliano; Casini, Michele; Rudolphi, Ann-Christin
2014-02-01
The Skagerrak and Kattegat are estuarine straits of high hydrographical and ecological diversity, situated between the saline waters of the North Sea and the brackish waters of the Baltic Sea. These sustain important nursery grounds of many fish species, of which several overwinter during the larval and early juvenile stages. In order to give more insight into the communities of the overwintering ichthyoplankton in estuarine areas, we examine an annual series of observations from a standard survey carried out 1992-2010. Species differences and annual variability in distributions and abundances are described, and linkages between ichthyoplankton abundances and corresponding hydrographical information are analysed by GAM methods. Communities were dominated by herring, gobies, butterfish, sprat, pipefishes, lemon sole and European eel (i.e. glass eel), and all the sampled species showed large annual fluctuations in abundances. The species showed quite specific patterns of distribution although species assemblages with common distributional characteristics were identified. Within these assemblages, the ichthyoplankton abundances showed linkage to environmental characteristics described by bottom-depth and surface temperature and salinity. Hence the study points to a significant structuring of overwintering ichthyoplankton communities in large estuaries, based on the species habitat choice and its response to physical gradients.
Qin, Zhong; Li, Zhan-dong; Cheng, Fang-yun; Sha, Hai-feng
2015-06-01
To investigate the diurnal variation of the correlations between the cooling and humidifying effects and canopy structural characteristics of the Koelreuteria paniculata community, the measurements of air temperature, relative humidity, canopy density, leaf area index (LAI) and mean leaf angle (MLA) were performed on calm sunny summer days in the community in Beijing Olympic Forest Park, China. There were significant correlations between the canopy density, LAI and MLA, which affected the cooling and humidifying effects together. The cooling effect reached its maximum by 12:00, whereas the humidifying effect reached its peak at 10:00. Compared with the control open space site, the community appeared to lower the air temperature by 0.43 to 7.53 °C and to increase the relative humidity by 1%-22% during the daytime. However, the cooling and humidifying effects seem to be not effective during the night. The canopy density and LAI were better for determining the cooling and humidifying effects from 9:00 to 12:00. However, these effects were largely controlled only by the canopy density from 12:00 to 14:00 and were significantly correlated with the canopy density and LAI afterwards until 18:00.
Coal mining activities change plant community structure due to air pollution and soil degradation.
Pandey, Bhanu; Agrawal, Madhoolika; Singh, Siddharth
2014-10-01
The aim of this study was to investigate the effects of coal mining activities on the community structures of woody and herbaceous plants. The response of individual plants of community to defilement caused by coal mining was also assessed. Air monitoring, soil physico-chemical and phytosociological analyses were carried around Jharia coalfield (JCF) and Raniganj coalfield. The importance value index of sensitive species minified and those of tolerant species enhanced with increasing pollution load and altered soil quality around coal mining areas. Although the species richness of woody and herbaceous plants decreased with higher pollution load, a large number of species acclimatized to the stress caused by the coal mining activities. Woody plant community at JCF was more affected by coal mining than herbaceous community. Canonical correspondence analysis revealed that structure of herbaceous community was mainly driven by soil total organic carbon, soil nitrogen, whereas woody layer community was influenced by sulphur dioxide in ambient air, soil sulphate and soil phosphorus. The changes in species diversity observed at mining areas indicated an increase in the proportion of resistant herbs and grasses showing a tendency towards a definite selection strategy of ecosystem in response to air pollution and altered soil characteristics.
Goetz, Katja; Kleine-Budde, Katja; Bramesfeld, Anke; Stegbauer, Constance
2018-03-01
Working requirements of community mental healthcare professionals in integrated care are complex. There is a lack of research concerning the relation of job satisfaction, working atmosphere and individual characteristics. For the current study, a survey evaluating job satisfaction and working atmosphere of mental healthcare professionals in integrated care was performed. About 321 community mental healthcare professionals were included in the survey; the response rate was 59.5%. The professional background of community mental healthcare professionals included nursing, social work and psychology. Community mental healthcare professionals reported the highest satisfaction with colleagues and the lowest satisfaction with income. Moreover, it could be shown that more responsibility, more recognition and more variety in job tasks lead to an increase of overall job satisfaction. Healthcare for mentally ill patients in the community setting is complex and requires well-structured care with appropriate responsibilities within the team. A co-operative relationship among colleagues as well as clearly defined responsibilities seem to be the key for the job satisfaction of community mental healthcare professionals in integrated care. © 2017 John Wiley & Sons Ltd.
Schaub, Michael T.; Delvenne, Jean-Charles; Yaliraki, Sophia N.; Barahona, Mauricio
2012-01-01
In recent years, there has been a surge of interest in community detection algorithms for complex networks. A variety of computational heuristics, some with a long history, have been proposed for the identification of communities or, alternatively, of good graph partitions. In most cases, the algorithms maximize a particular objective function, thereby finding the ‘right’ split into communities. Although a thorough comparison of algorithms is still lacking, there has been an effort to design benchmarks, i.e., random graph models with known community structure against which algorithms can be evaluated. However, popular community detection methods and benchmarks normally assume an implicit notion of community based on clique-like subgraphs, a form of community structure that is not always characteristic of real networks. Specifically, networks that emerge from geometric constraints can have natural non clique-like substructures with large effective diameters, which can be interpreted as long-range communities. In this work, we show that long-range communities escape detection by popular methods, which are blinded by a restricted ‘field-of-view’ limit, an intrinsic upper scale on the communities they can detect. The field-of-view limit means that long-range communities tend to be overpartitioned. We show how by adopting a dynamical perspective towards community detection [1], [2], in which the evolution of a Markov process on the graph is used as a zooming lens over the structure of the network at all scales, one can detect both clique- or non clique-like communities without imposing an upper scale to the detection. Consequently, the performance of algorithms on inherently low-diameter, clique-like benchmarks may not always be indicative of equally good results in real networks with local, sparser connectivity. We illustrate our ideas with constructive examples and through the analysis of real-world networks from imaging, protein structures and the power grid, where a multiscale structure of non clique-like communities is revealed. PMID:22384178
Negassa, Wakene C.; Guber, Andrey K.; Kravchenko, Alexandra N.; Marsh, Terence L.; Hildebrandt, Britton; Rivers, Mark L.
2015-01-01
Physical protection of soil carbon (C) is one of the important components of C storage. However, its exact mechanisms are still not sufficiently lucid. The goal of this study was to explore the influence of soil structure, that is, soil pore spatial arrangements, with and without presence of plant residue on (i) decomposition of added plant residue, (ii) CO2 emission from soil, and (iii) structure of soil bacterial communities. The study consisted of several soil incubation experiments with samples of contrasting pore characteristics with/without plant residue, accompanied by X-ray micro-tomographic analyses of soil pores and by microbial community analysis of amplified 16S–18S rRNA genes via pyrosequencing. We observed that in the samples with substantial presence of air-filled well-connected large (>30 µm) pores, 75–80% of the added plant residue was decomposed, cumulative CO2 emission constituted 1,200 µm C g-1 soil, and movement of C from decomposing plant residue into adjacent soil was insignificant. In the samples with greater abundance of water-filled small pores, 60% of the added plant residue was decomposed, cumulative CO2 emission constituted 2,000 µm C g-1 soil, and the movement of residue C into adjacent soil was substantial. In the absence of plant residue the influence of pore characteristics on CO2 emission, that is on decomposition of the native soil organic C, was negligible. The microbial communities on the plant residue in the samples with large pores had more microbial groups known to be cellulose decomposers, that is, Bacteroidetes, Proteobacteria, Actinobacteria, and Firmicutes, while a number of oligotrophic Acidobacteria groups were more abundant on the plant residue from the samples with small pores. This study provides the first experimental evidence that characteristics of soil pores and their air/water flow status determine the phylogenetic composition of the local microbial community and directions and magnitudes of soil C decomposition processes. PMID:25909444
Negassa, Wakene C.; Guber, Andrey K.; Kravchenko, Alexandra N.; ...
2015-07-01
Physical protection of soil carbon (C) is one of the important components of C storage. However, its exact mechanisms are still not sufficiently lucid. The goal of this study was to explore the influence of soil structure, that is, soil pore spatial arrangements, with and without presence of plant residue on (i) decomposition of added plant residue, (ii) CO₂ emission from soil, and (iii) structure of soil bacterial communities. The study consisted of several soil incubation experiments with samples of contrasting pore characteristics with/without plant residue, accompanied by X-ray micro-tomographic analyses of soil pores and by microbial community analysis ofmore » amplified 16S–18S rRNA genes via pyrosequencing. We observed that in the samples with substantial presence of air-filled well-connected large (>30 µm) pores, 75–80% of the added plant residue was decomposed, cumulative CO₂ emission constituted 1,200 µm C g⁻¹ soil, and movement of C from decomposing plant residue into adjacent soil was insignificant. In the samples with greater abundance of water-filled small pores, 60% of the added plant residue was decomposed, cumulative CO₂ emission constituted 2,000 µm C g⁻¹ soil, and the movement of residue C into adjacent soil was substantial. In the absence of plant residue the influence of pore characteristics on CO₂ emission, that is on decomposition of the native soil organic C, was negligible. The microbial communities on the plant residue in the samples with large pores had more microbial groups known to be cellulose decomposers, that is, Bacteroidetes, Proteobacteria, Actinobacteria, and Firmicutes, while a number of oligotrophic Acidobacteria groups were more abundant on the plant residue from the samples with small pores. This study provides the first experimental evidence that characteristics of soil pores and their air/water flow status determine the phylogenetic composition of the local microbial community and directions and magnitudes of soil C decomposition processes.« less
Negassa, Wakene C; Guber, Andrey K; Kravchenko, Alexandra N; Marsh, Terence L; Hildebrandt, Britton; Rivers, Mark L
2015-01-01
Physical protection of soil carbon (C) is one of the important components of C storage. However, its exact mechanisms are still not sufficiently lucid. The goal of this study was to explore the influence of soil structure, that is, soil pore spatial arrangements, with and without presence of plant residue on (i) decomposition of added plant residue, (ii) CO2 emission from soil, and (iii) structure of soil bacterial communities. The study consisted of several soil incubation experiments with samples of contrasting pore characteristics with/without plant residue, accompanied by X-ray micro-tomographic analyses of soil pores and by microbial community analysis of amplified 16S-18S rRNA genes via pyrosequencing. We observed that in the samples with substantial presence of air-filled well-connected large (>30 µm) pores, 75-80% of the added plant residue was decomposed, cumulative CO2 emission constituted 1,200 µm C g(-1) soil, and movement of C from decomposing plant residue into adjacent soil was insignificant. In the samples with greater abundance of water-filled small pores, 60% of the added plant residue was decomposed, cumulative CO2 emission constituted 2,000 µm C g(-1) soil, and the movement of residue C into adjacent soil was substantial. In the absence of plant residue the influence of pore characteristics on CO2 emission, that is on decomposition of the native soil organic C, was negligible. The microbial communities on the plant residue in the samples with large pores had more microbial groups known to be cellulose decomposers, that is, Bacteroidetes, Proteobacteria, Actinobacteria, and Firmicutes, while a number of oligotrophic Acidobacteria groups were more abundant on the plant residue from the samples with small pores. This study provides the first experimental evidence that characteristics of soil pores and their air/water flow status determine the phylogenetic composition of the local microbial community and directions and magnitudes of soil C decomposition processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Negassa, Wakene C.; Guber, Andrey K.; Kravchenko, Alexandra N.
Physical protection of soil carbon (C) is one of the important components of C storage. However, its exact mechanisms are still not sufficiently lucid. The goal of this study was to explore the influence of soil structure, that is, soil pore spatial arrangements, with and without presence of plant residue on (i) decomposition of added plant residue, (ii) CO₂ emission from soil, and (iii) structure of soil bacterial communities. The study consisted of several soil incubation experiments with samples of contrasting pore characteristics with/without plant residue, accompanied by X-ray micro-tomographic analyses of soil pores and by microbial community analysis ofmore » amplified 16S–18S rRNA genes via pyrosequencing. We observed that in the samples with substantial presence of air-filled well-connected large (>30 µm) pores, 75–80% of the added plant residue was decomposed, cumulative CO₂ emission constituted 1,200 µm C g⁻¹ soil, and movement of C from decomposing plant residue into adjacent soil was insignificant. In the samples with greater abundance of water-filled small pores, 60% of the added plant residue was decomposed, cumulative CO₂ emission constituted 2,000 µm C g⁻¹ soil, and the movement of residue C into adjacent soil was substantial. In the absence of plant residue the influence of pore characteristics on CO₂ emission, that is on decomposition of the native soil organic C, was negligible. The microbial communities on the plant residue in the samples with large pores had more microbial groups known to be cellulose decomposers, that is, Bacteroidetes, Proteobacteria, Actinobacteria, and Firmicutes, while a number of oligotrophic Acidobacteria groups were more abundant on the plant residue from the samples with small pores. This study provides the first experimental evidence that characteristics of soil pores and their air/water flow status determine the phylogenetic composition of the local microbial community and directions and magnitudes of soil C decomposition processes.« less
Homonnay, Zalán G; Török, György; Makk, Judit; Brumbauer, Anikó; Major, Eva; Márialigeti, Károly; Tóth, Erika
2014-07-01
Bacterial communities of a bank-filtered drinking water system were investigated by aerobic cultivation and clone library analysis. Moreover, bacterial communities were compared using sequence-aided terminal restriction fragment length polymorphism (T-RFLP) fingerprinting at ten characteristic points located at both the collecting and the distributing part of the water supply system. Chemical characteristics of the samples were similar, except for the presence of chlorine residuals in the distribution system and increased total iron concentration in two of the samples. Assimilable organic carbon (AOC) concentration increased within the collection system, it was reduced by chlorination and it increased again in the distribution system. Neither fecal indicators nor pathogens were detected by standard cultivation techniques. Chlorination reduced bacterial diversity and heterotrophic plate counts. Community structures were found to be significantly different before and after chlorination: the diverse communities in wells and the collection system were dominated by chemolithotrophic (e.g., Gallionella and Nitrospira) and oligocarbophilic-heterotrophic bacteria (e.g., Sphingomonas, Sphingopyxis, and Bradyrhizobium). After chlorination in the distribution system, the most characteristic bacterium was related to the facultative methylotrophic Methylocella spp. Communities changed within the distribution system too, Mycobacterium spp. or Sphingopyxis spp. became predominant in certain samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Unraveling the Complexity of Wildland Urban Interface Fires.
Mahmoud, Hussam; Chulahwat, Akshat
2018-06-18
Recent wildland urban interface fires have demonstrated the unrelenting destructive nature of these events and have called for an urgent need to address the problem. The Wildfire paradox reinforces the ideology that forest fires are inevitable and are actually beneficial; therefore focus should to be shifted towards minimizing potential losses to communities. This requires the development of vulnerability-based frameworks that can be used to provide holistic understanding of risk. In this study, we devise a probabilistic approach for quantifying community vulnerability to wildfires by applying concepts of graph theory. A directed graph for community in question is developed to model wildfire inside a community by incorporating different fire propagation modes. The model accounts for relevant community-specific characteristics including wind conditions, community layout, individual structural features, and the surrounding wildland vegetation. We calibrate the framework to study the infamous 1991 Oakland fire in an attempt to unravel the complexity of community fires. We use traditional centrality measures to identify critical behavior patterns and to evaluate the effect of fire mitigation strategies. Unlike current practice, the results are shown to be community-specific with substantial dependency of risk on meteorological conditions, environmental factors, and community characteristics and layout.
The Impact of Community Structure on the Status of the Elderly.
ERIC Educational Resources Information Center
Bastida, Elena M.; O'Flaherty, Kathleen M.
This study examined the underlying influence of the social context, as measured by selected structural characteristics, on the resources available to the elderly in 99 counties across Kansas, Missouri, New Mexico, and Arkansas. These four states were chosen because each reflected national patterns for age concentrations and for the historical…
Arroyo, Paula; Sáenz de Miera, Luis E; Ansola, Gemma
2015-02-15
Bacteria are key players in wetland ecosystems, however many essential aspects regarding the ecology of wetland bacterial communities remain unknown. The present study characterizes soil bacterial communities from natural and constructed wetlands through the pyrosequencing of 16S rDNA genes in order to evaluate the influence of wetland variables on bacterial community composition and structure. The results show that the composition of soil bacterial communities was significantly associated with the wetland type (natural or constructed wetland), the type of environment (lagoon, Typha or Salix) and three continuous parameters (SOM, COD and TKN). However, no clear associations were observed with soil pH. Bacterial diversity values were significantly lower in the constructed wetland with the highest inlet nutrient concentrations. The abundances of particular metabolic groups were also related to wetland characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.
Structure and similarity of helminth communities of six species of Australian turtles.
Zelmer, Derek A; Platt, Thomas R
2008-08-01
Patterns of infracommunity structure and infra- and component community similarity were examined for helminths of 6 species of turtles, each collected from a single locality in Australia in 1993 and 1994. Elseya latisternum (N = 11) and Emydura kreffti (N = 16) were collected from northern Queensland, Emydura macquarii macquarii (N = 11) from southern Queensland, Emydura macquarii dhara (N = 11) and Chelodina longicollis (N = 11) from northern New South Wales, and Chelodina oblonga (N = 5) from Western Australia. Local parasite species richness was not correlated with host geographical range. Differences in parasite diversity among host species were related primarily to differences in evenness, a pattern attributed to local habitat characteristics, rather than species-specific differences in colonization potential. Ordination and analysis of similarity demonstrated the patterns of infracommunity structure of Chelodina spp. to be distinct from those of the other host species sampled, which showed considerable overlap among patterns of infracommunity structure. Despite overlap with the component communities of Em. kreffti and El. latisternum, the component communities of Em. m. dhara and Em. m. macquarii were more distinct from one another than either was to the component communities of Em. kreffti or El. latisternum.
Sprague, Lori A.; Zuellig, Robert E.; Dupree, Jean A.
2006-01-01
This report describes the effects of urbanization on physical, chemical, and biological characteristics of stream ecosystems in 28 basins along an urban land-use gradient in the South Platte River Basin, Colorado and Wyoming, from 2002 through 2003. Study basins were chosen to minimize natural variability among basins due to factors such as geology, elevation, and climate and to maximize coverage of different stages of urban development among basins. Because land use or population density alone often are not a complete measure of urbanization, land use, land cover, infrastructure, and socioeconomic variables were integrated in a multimetric urban intensity index to represent the degree of urban development in each study basin. Physical characteristics studied included stream hydrology, stream temperature, and habitat; chemical characteristics studied included nutrients, pesticides, suspended sediment, sulfate, chloride, and fecal bacteria concentrations; and biological characteristics studied included algae, fish, and invertebrate communities. Semipermeable membrane devices (SPMDs), passive samplers that concentrate trace levels of hydrophobic organic contaminants like polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), also were used. The objectives of the study were to (1) examine physical, chemical, and biological responses along the gradient of urbanization; (2) determine the major physical, chemical, and landscape variables affecting the structure of aquatic communities; and (3) evaluate the relevance of the results to the management of water resources in the South Platte River Basin. Commonly observed effects of urbanization on instream physical, chemical, and biological characteristics, such as increased flashiness, higher magnitude and more frequent peak flows, increased concentrations of chemicals, and changes in aquatic community structure, generally were not observed in this study. None of the hydrologic, temperature, habitat, or chemical variables were correlated strongly (Spearman's rho greater than or equal to 0.7) with urban intensity, with the exception of some of the SPMD-based toxicity and chemical variables. SPMD-based measures of potential toxicity and PAH concentrations were positively correlated with urban intensity. The PAH concentrations also were positively correlated with measures of road density and negatively correlated with distance to the nearest road, indicating that automobile exhaust is a major source of these compounds in the study area. This source may be localized enough that the transport of PAHs would be minimally affected by water-management practices such as diversion or storage upstream. In contrast, the predominant sources of nutrients, bacteria, suspended sediment, sulfate, chloride, and pesticides may be more dispersed throughout the drainage area and, therefore, their transport to downstream sites may be subject to greater disruption by water regulation. Although no direct link was found between most water-chemistry characteristics and urbanization, invertebrate, algae, and fish-community characteristics were strongly associated with nutrients, pesticides, sulfate, chloride, and suspended sediment. None of the biological community variables were strongly correlated with the urban intensity index. Algal biomass predominantly was associated with total nitrogen concentrations, nitrite-plus-nitrate concentrations, and the duration of high flows. Fish communities predominantly were associated with housing age, the percentage of suspended sediment finer than 0.063 millimeters and chloride concentrations. Invertebrate communities predominantly were associated with the frequency of rising and falling flow events, the duration of high flows, total nitrogen concentrations, nitrite-plus-nitrate concentrations, and total herbicide concentrations. Historical records indicate that aquatic communities in the region may have been altered prior to any substantial urban development by early agricultural and water-management practices. Present-day aquatic communities are composed primarily of tolerant species even in areas of minimal urban development; when development does occur, the communities already may be resistant to disturbance. In addition to the effects of historical stressors on aquatic community structure, it is possible that current water-management practices in the study basins are having an effect. In the absence of natural, unaltered hydrologic conditions, more sensitive taxa may be unable to recolonize urban streams. The movement and storage of water also may lead to a disconnect between the land surface and streams, resulting in instream physical, chemical, and biological characteristics that, to some degree, are independent of land-cover characteristics.
Campião, K M; da Silva, R J; Ferreira, V L
2014-03-01
Several factors may influence the structure of parasite communities in amphibian hosts. In this study, we describe the helminth parasites of three allopatric populations of the frog Leptodactylus podicipinus and test whether host size and sex were determinants of the structure and composition of the helminth communities. One hundred and twenty-three anurans were collected from three different study sites within the Pantanal wetlands and surveyed for helminth parasites. We found 14 helminth taxa: 7 species of nematodes, 4 species of trematodes, 1 species of cestodes, 1 species of acanthocephalan and one unidentified cyst. Host sex and size did not cause significant differences in helminth abundance or richness. The structure of helminth communities from the three study sites varied in terms of species composition, abundance and diversity. Six out of 14 helminth taxa were found in the three localities. Among those, the nematodes Cosmocerca podicipinus and Rhabdias sp., the trematode Catadiscus propinquus and the helminth cyst showed significant differences in mean abundances. We suggest that such differences found among the three component communities are driven by biotic and abiotic factors operating locally. Moreover, these differences stress the importance of local conditions, such as hydrologic characteristics and landscape composition, on helminth community structure.
Komyakova, Valeriya; Munday, Philip L.; Jones, Geoffrey P.
2013-01-01
The structure of coral reef habitat has a pronounced influence on the diversity, composition and abundance of reef-associated fishes. However, the particular features of the habitat that are most critical are not always known. Coral habitats can vary in many characteristics, notably live coral cover, topographic complexity and coral diversity, but the relative effects of these habitat characteristics are often not distinguished. Here, we investigate the strength of the relationships between these habitat features and local fish diversity, abundance and community structure in the lagoon of Lizard Island, Great Barrier Reef. In a spatial comparison using sixty-six 2m2 quadrats, fish species richness, total abundance and community structure were examined in relation to a wide range of habitat variables, including topographic complexity, habitat diversity, coral diversity, coral species richness, hard coral cover, branching coral cover and the cover of corymbose corals. Fish species richness and total abundance were strongly associated with coral species richness and cover, but only weakly associated with topographic complexity. Regression tree analysis showed that coral species richness accounted for most of the variation in fish species richness (63.6%), while hard coral cover explained more variation in total fish abundance (17.4%), than any other variable. In contrast, topographic complexity accounted for little spatial variation in reef fish assemblages. In degrading coral reef environments, the potential effects of loss of coral cover and topographic complexity are often emphasized, but these findings suggest that reduced coral biodiversity may ultimately have an equal, or greater, impact on reef-associated fish communities. PMID:24349455
Komyakova, Valeriya; Munday, Philip L; Jones, Geoffrey P
2013-01-01
The structure of coral reef habitat has a pronounced influence on the diversity, composition and abundance of reef-associated fishes. However, the particular features of the habitat that are most critical are not always known. Coral habitats can vary in many characteristics, notably live coral cover, topographic complexity and coral diversity, but the relative effects of these habitat characteristics are often not distinguished. Here, we investigate the strength of the relationships between these habitat features and local fish diversity, abundance and community structure in the lagoon of Lizard Island, Great Barrier Reef. In a spatial comparison using sixty-six 2m(2) quadrats, fish species richness, total abundance and community structure were examined in relation to a wide range of habitat variables, including topographic complexity, habitat diversity, coral diversity, coral species richness, hard coral cover, branching coral cover and the cover of corymbose corals. Fish species richness and total abundance were strongly associated with coral species richness and cover, but only weakly associated with topographic complexity. Regression tree analysis showed that coral species richness accounted for most of the variation in fish species richness (63.6%), while hard coral cover explained more variation in total fish abundance (17.4%), than any other variable. In contrast, topographic complexity accounted for little spatial variation in reef fish assemblages. In degrading coral reef environments, the potential effects of loss of coral cover and topographic complexity are often emphasized, but these findings suggest that reduced coral biodiversity may ultimately have an equal, or greater, impact on reef-associated fish communities.
ERIC Educational Resources Information Center
Cho, YoonJung; Hathcoat, John D.; Bridges, Stacey L.; Mathew, Susan; Bang, Hyeyoung
2014-01-01
The aim of the present study was to develop a more integrated measure of classroom sense of community (SOC) while testing factorial invariance of the measurement structure across face-to-face and online courses. We incorporated two existing SOC measures to capture both context-specific and context-general characteristics of SOC and developed an…
[Characteristics of arthropod community in alpine cabbage fields].
Wang, Xiang-ping; Zhang, Zhong-ning
2007-01-01
The study on the community structure of arthropod in the alpine cabbage fields of Hubei Province showed that the dominant pests were Brevicoryne brassicae, Mamestra brassicae and Plutella xylostella, while the dominant natural enemies were Diaeretiella rapae, Cotesia plutella, Erigonidum gramiaicolum and Syrphus corollae. The richness, diversity index, evenness index and dominance index of pest and natural enemy sub-communities all changed with time. The dominance index of pest sub-community was higher, while its diversity and evenness indices were lower than those of natural enemy sub-community. Based on fuzzy clustering analysis, the pest and natural enemy subcommunities of 14 time sequences were grouped into 4 and 3 sorts, respectively.
Guo, Xing-Pan; Lu, Da-Pei; Niu, Zuo-Shun; Feng, Jing-Nan; Chen, Yu-Ru; Tou, Fei-Yun; Liu, Min; Yang, Yi
2018-01-01
This study was designed to investigate the characteristics of bacterial communities in intertidal sediments along the Yangtze Estuary and their responses to environmental factors. The results showed that bacterial abundance was significantly correlated with salinity, SO 4 2- and total organic carbon, while bacterial diversity was significantly correlated with SO 4 2- and total nitrogen. At different taxonomic levels, both the dominant taxa and their abundances varied among the eight samples, with Proteobacteria being the most dominant phylum in general. Cluster analysis revealed that the bacterial community structure was influenced by river runoff and sewerage discharge. Moreover, SO 4 2- , salinity and total phosphorus were the vital environmental factors that influenced the bacterial community structure. Quantitative PCR and sequencing of sulphate-reducing bacteria indicated that the sulphate reduction process occurs frequently in intertidal sediments. These findings are important to understand the microbial ecology and biogeochemical cycles in estuarine environments. Copyright © 2017 Elsevier Ltd. All rights reserved.
How to Trigger Emergence and Self-Organisation in Learning Networks
NASA Astrophysics Data System (ADS)
Brouns, Francis; Fetter, Sibren; van Rosmalen, Peter
The previous chapters of this section discussed why the social structure of Learning Networks is important and present guidelines on how to maintain and allow the emergence of communities in Learning Networks. Chapter 2 explains how Learning Networks rely on social interaction and active participations of the participants. Chapter 3 then continues by presenting guidelines and policies that should be incorporated into Learning Network Services in order to maintain existing communities by creating conditions that promote social interaction and knowledge sharing. Chapter 4 discusses the necessary conditions required for knowledge sharing to occur and to trigger communities to self-organise and emerge. As pointed out in Chap. 4, ad-hoc transient communities facilitate the emergence of social interaction in Learning Networks, self-organising them into communities, taking into account personal characteristics, community characteristics and general guidelines. As explained in Chap. 4 community members would benefit from a service that brings suitable people together for a specific purpose, because it will allow the participant to focus on the knowledge sharing process by reducing the effort or costs. In the current chapter, we describe an example of a peer support Learning Network Service based on the mechanism of peer tutoring in ad-hoc transient communities.
Warren, Lesley A.; Kendra, Kathryn E.
2015-01-01
Microbial communities in engineered terrestrial haloalkaline environments have been poorly characterized relative to their natural counterparts and are geologically recent in formation, offering opportunities to explore microbial diversity and assembly in dynamic, geochemically comparable contexts. In this study, the microbial community structure and geochemical characteristics of three geographically dispersed bauxite residue environments along a remediation gradient were assessed and subsequently compared with other engineered and natural haloalkaline systems. In bauxite residues, bacterial communities were similar at the phylum level (dominated by Proteobacteria and Firmicutes) to those found in soda lakes, oil sands tailings, and nuclear wastes; however, they differed at lower taxonomic levels, with only 23% of operational taxonomic units (OTUs) shared with other haloalkaline environments. Although being less diverse than natural analogues, bauxite residue harbored substantial novel bacterial taxa, with 90% of OTUs nonmatchable to cultured representative sequences. Fungal communities were dominated by Ascomycota and Basidiomycota, consistent with previous studies of hypersaline environments, and also harbored substantial novel (73% of OTUs) taxa. In bauxite residues, community structure was clearly linked to geochemical and physical environmental parameters, with 84% of variation in bacterial and 73% of variation in fungal community structures explained by environmental parameters. The major driver of bacterial community structure (salinity) was consistent across natural and engineered environments; however, drivers differed for fungal community structure between natural (pH) and engineered (total alkalinity) environments. This study demonstrates that both engineered and natural terrestrial haloalkaline environments host substantial repositories of microbial diversity, which are strongly shaped by geochemical drivers. PMID:25979895
Wang, Xiaohui; Xia, Yu; Wen, Xianghua; Yang, Yunfeng; Zhou, Jizhong
2014-01-01
Biological WWTPs must be functionally stable to continuously and steadily remove contaminants which rely upon the activity of complex microbial communities. However, knowledge is still lacking in regard to microbial community functional structures and their linkages to environmental variables. To investigate microbial community functional structures of activated sludge in wastewater treatment plants (WWTPs) and to understand the effects of environmental factors on their structure. 12 activated sludge samples were collected from four WWTPs in Beijing. A comprehensive functional gene array named GeoChip 4.2 was used to determine the microbial functional genes involved in a variety of biogeochemical processes such as carbon, nitrogen, phosphorous and sulfur cycles, metal resistance, antibiotic resistance and organic contaminant degradation. High similarities of the microbial community functional structures were found among activated sludge samples from the four WWTPs, as shown by both diversity indices and the overlapped genes. For individual gene category, such as egl, amyA, lip, nirS, nirK, nosZ, ureC, ppx, ppk, aprA, dsrA, sox and benAB, there were a number of microorganisms shared by all 12 samples. Canonical correspondence analysis (CCA) showed that the microbial functional patterns were highly correlated with water temperature, dissolved oxygen (DO), ammonia concentrations and loading rate of chemical oxygen demand (COD). Based on the variance partitioning analyses (VPA), a total of 53% of microbial community variation from GeoChip data can be explained by wastewater characteristics (25%) and operational parameters (23%), respectively. This study provided an overall picture of microbial community functional structures of activated sludge in WWTPs and discerned the linkages between microbial communities and environmental variables in WWTPs.
Taheri, Mehrshad; Braeckman, Ulrike; Vincx, Magda; Vanaverbeke, Jan
2014-08-01
The responses of nematode communities to short-term hypoxia (1 and 7 days) were investigated in three North Sea stations with different sediment types (coarse silt, fine sand and medium sand). In the field, nematode density, diversity, vertical distribution and community structure differ among the stations. In the laboratory, oxic and hypoxic treatments were established for 1 and 7 days for all sediment types. Comparison between field control and oxic day 1 treatments showed that experimental sediment handling did not affect nematode characteristics. Our results revealed that short-term hypoxia did not affect total density, diversity, community composition, vertical density profiles (except in the fine sand) and densities of five dominant species in all sediment types. Copyright © 2014 Elsevier Ltd. All rights reserved.
A clustering algorithm for determining community structure in complex networks
NASA Astrophysics Data System (ADS)
Jin, Hong; Yu, Wei; Li, ShiJun
2018-02-01
Clustering algorithms are attractive for the task of community detection in complex networks. DENCLUE is a representative density based clustering algorithm which has a firm mathematical basis and good clustering properties allowing for arbitrarily shaped clusters in high dimensional datasets. However, this method cannot be directly applied to community discovering due to its inability to deal with network data. Moreover, it requires a careful selection of the density parameter and the noise threshold. To solve these issues, a new community detection method is proposed in this paper. First, we use a spectral analysis technique to map the network data into a low dimensional Euclidean Space which can preserve node structural characteristics. Then, DENCLUE is applied to detect the communities in the network. A mathematical method named Sheather-Jones plug-in is chosen to select the density parameter which can describe the intrinsic clustering structure accurately. Moreover, every node on the network is meaningful so there were no noise nodes as a result the noise threshold can be ignored. We test our algorithm on both benchmark and real-life networks, and the results demonstrate the effectiveness of our algorithm over other popularity density based clustering algorithms adopted to community detection.
NASA Astrophysics Data System (ADS)
De Troch, Marleen; Gurdebeke, Shirley; Fiers, Frank; Vincx, Magda
2001-02-01
This study deals with the relation between tropical meiofauna and environmental variables by comparing the 'benthic' (i.e. in the bare sediment adjacent to seagrass plants) and the 'epiphytic' (i.e. in samples including seagrass plants) meiofauna associated with five seagrass species from the high intertidal to the high subtidal zone in Gazi Bay (Kenya). Ordination and variance analysis revealed three distinct 'benthic' and two 'epiphytic' meiofauna assemblages. These assemblages corresponded entirely with those identified for the seagrass species: a high intertidal pioneer association ( Halophila ovalis/ Halodule wrightii), an intertidal climax assemblage ( Thalassia hemprichii) and a high subtidal pioneer association ( Halophila stipulacea/ Syringodium isoetifolium). These data support the hypothesis that meiofaunal communities correspond to the characteristic zonation of the seagrass vegetation in Gazi Bay. In beds of the pioneer seagrass species, the close relationship between sediment characteristics and both 'benthic' and 'epiphytic' meiofauna communities suggests that these pioneer communities were mainly driven by physical factors. The 'benthic' communities adjacent to the climax seagrass species T. hemprichii were more structured by biogenic factors, e.g. % TOM, chlorophyll a and c, fucoxanthin, habitat complexity and growth form of the seagrass species. For its associated 'epiphytic' meiofauna the latter conclusion was even more striking. These data corroborate the importance of physical factors in disturbed environments (intertidal zone, near pioneer seagrasses) and of biotic factors in more stable conditions (subtidal zone, near climax seagrasses).
Fei, Xunchang; Zekkos, Dimitrios; Raskin, Lutgarde
2015-02-01
Duplicate carefully-characterized municipal solid waste (MSW) specimens were reconstituted with waste constituents obtained from a MSW landfill and biodegraded in large-scale landfill simulators for about a year. Repeatability and relationships between changes in physical, chemical, and microbial characteristics taking place during the biodegradation process were evaluated. Parameters such as rate of change of soluble chemical oxygen demand in the leachate (rsCOD), rate of methane generation (rCH4), rate of specimen volume reduction (rVt), DNA concentration in the leachate, and archaeal community structures in the leachate and solid waste were monitored during operation. The DNA concentration in the leachate was correlated to rCH4 and rVt. The rCH4 was related to rsCOD and rVt when waste biodegradation was intensive. The structures of archaeal communities in the leachate and solid waste of both simulators were very similar and Methanobacteriaceae were the dominant archaeal family throughout the testing period. Monitoring the chemical and microbial characteristics of the leachate was informative of the biodegradation process and volume reduction in the simulators, suggesting that leachate monitoring could be informative of the extent of biodegradation in a full-scale landfill. Copyright © 2014 Elsevier Ltd. All rights reserved.
Marzinelli, Ezequiel M; Campbell, Alexandra H; Zozaya Valdes, Enrique; Vergés, Adriana; Nielsen, Shaun; Wernberg, Thomas; de Bettignies, Thibaut; Bennett, Scott; Caporaso, J Gregory; Thomas, Torsten; Steinberg, Peter D
2015-10-01
Interactions between hosts and associated microbial communities can fundamentally shape the development and ecology of 'holobionts', from humans to marine habitat-forming organisms such as seaweeds. In marine systems, planktonic microbial community structure is mainly driven by geography and related environmental factors, but the large-scale drivers of host-associated microbial communities are largely unknown. Using 16S-rRNA gene sequencing, we characterized 260 seaweed-associated bacterial and archaeal communities on the kelp Ecklonia radiata from three biogeographical provinces spanning 10° of latitude and 35° of longitude across the Australian continent. These phylogenetically and taxonomically diverse communities were more strongly and consistently associated with host condition than geographical location or environmental variables, and a 'core' microbial community characteristic of healthy kelps appears to be lost when hosts become stressed. Microbial communities on stressed individuals were more similar to each other among locations than those on healthy hosts. In contrast to biogeographical patterns of planktonic marine microbial communities, host traits emerge as critical determinants of associated microbial community structure of these holobionts, even at a continental scale. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Transformation of socio-cultural aspect of gated housing’s residence in Medan City, Indonesia.
NASA Astrophysics Data System (ADS)
Nirfalini Aulia, Dwira
2018-03-01
Gated Community Housing develops rapidly in Medan City and other big cities in Indonesia. These housing types initially reserved for middle to high-income residents. Transformation can describe as changes from one condition to another condition that can happen continuously in time. Change is affected by internal and external factors. Internal factors include culture, perspective, and social system while external factors include science progress and other cultural influence. This research is a descriptive study which tries to describe the phenomenon that is currently ongoing. Gated housing chosen are Perumahan Taman Setia Budi Indah, Perumahan Bumi Asri dan Perumahan Graha Helvetia. Characteristics of gated housing’s residents transform by the regional or national socioeconomic transformation. The structure and function of human social life are not uniform; meaning in every social life setting each of the structure and function are different. The characteristic of a community will transform in continuity.
Judge, Jenna; Barry, James P
2016-11-01
Environmental filtering, including the influence of environmental constraints and biological interactions on species' survival, is known to significantly affect patterns of community assembly in terrestrial ecosystems. However, its role in regulating patterns and processes of community assembly in deep-sea environments is poorly studied. Here we investigated the role of wood characteristics in the assembly of deep-sea wood fall communities. Ten different wood species (substrata) that varied in structural complexity were sunk to a depth of 3,100 m near Monterey Bay, CA. In total, 28 wood parcels were deployed on the deep-sea bed. After 2 yr, the wood parcels were recovered with over 7,000 attached or colonizing macroinvertebrates. All macroinvertebrates were identified to the lowest taxonomic level possible, and included several undescribed species. Diversity indices and multivariate analyses of variance detected significant variation in the colonizing community assemblages among different wood substrata. Structural complexity seemed to be the primary factor altering community composition between wood substrata. For example, wood-boring clams were most abundant on solid logs, while small arthropods and limpets were more abundant on bundles of branches that provided more surface area and small, protected spaces to occupy. Other factors such as chemical defenses, the presence of bark, and wood hardness likely also played a role. Our finding that characteristics of woody debris entering the marine realm can have significant effects on community assembly supports the notion of ecological and perhaps evolutionarily significant links between land and sea. © 2016 by the Ecological Society of America.
Molecular ecology of aquatic communities: Reflections and future directions
Zehr, J.P.; Voytek, M.A.
1999-01-01
During the 1980s, many new molecular biology techniques were developed, providing new capabilities for studying the genetics and activities of organisms. Biologists and ecologists saw the promise that these techniques held for studying different aspects of organisms, both in culture and in the natural environment. In less than a decade, these techniques were adopted by a large number of researchers studying many types of organisms in diverse environments. Much of the molecular-level information acquired has been used to address questions of evolution, biogeography, population structure and biodiversity. At this juncture, molecular ecologists are poised to contribute to the study of the fundamental characteristics underlying aquatic community structure. The goal of this overview is to assess where we have been, where we are now and what the future holds for revealing the basis of community structure and function with molecular-level information.
Han, Feng; Xiao, Jie-yi; Cao, Hou-qiang; Luo, Chuan; Yang, Tian-jian; Lin, Mao-xiang
2015-10-01
To investigate the damage and community structure of weeds in Scrophularia ningpoensis fields in Nanchuan, Chongqing. From 2013 to 2014, an investigation was carried out by inverted W-9 point sampling method to study the weed species. 96 weed species belonged to 75 genera of 30 families were observed, including 18 species of Asteraceae weeds (accounted for 18.75%), 10 species of Poaceae weeds (accounted for 10.42%). Moreover, there were 57 species of annual weeds (accounted for 59.38%) and 39 species of perennial weeds (accounted for 40.63%). The overall abundance of Erigeron annuus, Digitaria adscendens, Torilis scabra, Polygonum nepalense, Ranunculus japonicas, Stellaria media and Commelina communis were relatively higher than that of the others. The difference of weed species and community structure might result from the physical and chemical characteristics of soil, moisture content, cropping system, tillage type, environmental and climatic conditions, crop distribution and weed control.
Ferraguti, Martina; Martínez-de la Puente, Josué; Bensch, Staffan; Roiz, David; Ruiz, Santigo; Viana, Duarte S; Soriguer, Ramón C; Figuerola, Jordi
2018-05-01
Vector and host communities, as well as habitat characteristics, may have important but different impacts on the prevalence, richness and evenness of vector-borne parasites. We investigated the relative importance of (1) the mosquito community composition, (2) the vertebrate community composition and (3) landscape characteristics on the prevalence, richness and evenness of avian Plasmodium. We hypothesized that parasite prevalence will be more affected by vector-related parameters, while host parameters should be also important to explain Plasmodium richness and evenness. We sampled 2,588 wild house sparrows (Passer domesticus) and 340,829 mosquitoes, and we performed vertebrate censuses at 45 localities in the Southwest of Spain. These localities included urban, rural and natural landscapes that were characterized by several habitat variables. Twelve Plasmodium lineages were identified in house sparrows corresponding to three major clades. Variation partitioning showed that landscape characteristics explained the highest fraction of variation in all response variables (21.0%-44.8%). Plasmodium prevalence was in addition explained by vector-related variables (5.4%) and its interaction with landscape (10.2%). Parasite richness and evenness were mostly explained by vertebrate community-related variables. The structuring role of landscape characteristics in vector and host communities was a key factor in determining parasite prevalence, richness and evenness, although the role of each factor differed according to the parasite parameters studied. These results show that the biotic and abiotic contexts are important to explain the transmission dynamics of mosquito-borne pathogens in the wild. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.
From calls to communities: a model for time-varying social networks
NASA Astrophysics Data System (ADS)
Laurent, Guillaume; Saramäki, Jari; Karsai, Márton
2015-11-01
Social interactions vary in time and appear to be driven by intrinsic mechanisms that shape the emergent structure of social networks. Large-scale empirical observations of social interaction structure have become possible only recently, and modelling their dynamics is an actual challenge. Here we propose a temporal network model which builds on the framework of activity-driven time-varying networks with memory. The model integrates key mechanisms that drive the formation of social ties - social reinforcement, focal closure and cyclic closure, which have been shown to give rise to community structure and small-world connectedness in social networks. We compare the proposed model with a real-world time-varying network of mobile phone communication, and show that they share several characteristics from heterogeneous degrees and weights to rich community structure. Further, the strong and weak ties that emerge from the model follow similar weight-topology correlations as real-world social networks, including the role of weak ties.
Wang, Xue-Feng; Su, Yong-Zhong; Yang, Rong
2010-08-01
This paper studied the characteristics of soil nematode community following the conversion of native sandy desert soil to irrigated farmland in a marginal oasis of the middle reaches of Heihe River basin, aimed to approach the bioindicating function of soil nematodes in soil evolution process. A total of 27921 soil nematode individuals were captured, belonging to 25 families and 34 genera. The total number of nematodes increased gradually with increasing age of cultivation. At all sampling sites, bacterivores and plant parasites were the dominant trophic groups, and made up the main parts of nematode community in oasis farmland. Through the analysis of the evenness index (J) and dominance index (lambda) of nematode community, the ecosystems were found to be fragile for the farmlands having cultivated for 0, 10, and > 50 years. The maturity index MI2-5 and MMI decreased with increasing cultivation age, suggesting that the practice of agricultural use enhanced the disturbance on farmland. The soil properties changed significantly after 10 years of cultivation, which was at a significant change stage for the structure stability of soil ecosystems. The characteristics of soil nematode community could be used as the bioindicator of soil evolution following the conversion of native desert soil to irrigated farmland.
Biogeochemical drivers of microbial community convergence across actively retreating glaciers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castle, Sarah C.; Nemergut, Diana R.; Grandy, A. Stuart
The ecological processes that influence biogeographical patterns of microorganisms are actively debated. To investigate how such patterns emerge during ecosystem succession, we examined the biogeochemical drivers of bacterial community assembly in soils over two environmentally distinct, recently deglaciated chronosequences separated by a distance of more than 1,300 kilometers. Our results show that despite different geographic, climatic, and soil chemical and physical characteristics at the two sites, soil bacterial community structure and decomposer function converged during plant succession. In a comparative analysis, we found that microbial communities in early succession soils were compositionally distinct from a group of diverse, mature forestmore » soils, but that the differences between successional soils and mature soils decreased from early to late stages of succession. Differences in bacterial community composition across glacial sites were largely explained by pH. However, successional patterns and community convergence across sites were more consistently related to soil organic carbon and organic matter chemistry, which appeared to be tightly coupled with bacterial community structure across both young and mature soils.« less
Hansen-Nord, Nete Sloth; Kjaerulf, Finn; Almendarez, Juan; Rodas, Victor Morales; Castro, Julio
2016-11-01
To examine the impact of a 3 year community-based violence prevention intervention on risk of violence and social capital in two poor urban communities in Honduras in 2011-2014. A quasi-experimental design pre and post implementation of the intervention was conducted based on data from two randomly selected samples using the same structured questionnaire in 2011 and in 2014. Community members had a 42 % lower risk of violence in 2014 compared to 2011. There was a positive relation between participation in the intervention and structural social capital, and participants had more than twice the likelihood of engaging in citizenship activities compared to the general population. The intervention contributed to decreasing violence and increasing community resilience in two urban areas in Honduras. Citizenship activities and active community participation in the violence prevention agenda rather than social trust and cohesion characteristics was affected by the intervention. This research introduces important lessons learned to future researchers aiming to retrieve very sensitive data in a similarly violent setting, and provides strong research opportunities within areas, which to this date remain undiscovered.
Kelman, Ilan; Luthe, Tobias; Wyss, Romano; Tørnblad, Silje H; Evers, Yvette; Curran, Marina Martin; Williams, Richard J; Berlow, Eric L
2016-01-01
This study integrates quantitative social network analysis (SNA) and qualitative interviews for understanding tourism business links in isolated communities through analysing spatial characteristics. Two case studies are used, the Surselva-Gotthard region in the Swiss Alps and Longyearbyen in the Arctic archipelago of Svalbard, to test the spatial characteristics of physical proximity, isolation, and smallness for understanding tourism business links. In the larger Surselva-Gotthard region, we found a strong relationship between geographic separation of the three communities on compartmentalization of the collaboration network. A small set of businesses played a central role in steering collaborative decisions for this community, while a group of structurally 'peripheral' actors were less influential. By contrast, the business community in Svalbard showed compartmentalization that was independent of geographic distance between actors. Within towns of similar size and governance scale, Svalbard is more compartmentalized, and those compartments are not driven by geographic separation of the collaboration clusters. This compartmentalization in Svalbard was reflected in a lower density of formal business collaboration ties compared to the communities of the Alps. We infer that the difference is due to Svalbard having higher cultural diversity and population turnover than the Alps communities. We propose that integrating quantitative network analysis from simple surveys with qualitative interviews targeted from the network results is an efficient general approach to identify regionally specific constraints and opportunities for effective governance.
Luthe, Tobias; Wyss, Romano; Tørnblad, Silje H.; Evers, Yvette; Curran, Marina Martin; Williams, Richard J.; Berlow, Eric L.
2016-01-01
This study integrates quantitative social network analysis (SNA) and qualitative interviews for understanding tourism business links in isolated communities through analysing spatial characteristics. Two case studies are used, the Surselva-Gotthard region in the Swiss Alps and Longyearbyen in the Arctic archipelago of Svalbard, to test the spatial characteristics of physical proximity, isolation, and smallness for understanding tourism business links. In the larger Surselva-Gotthard region, we found a strong relationship between geographic separation of the three communities on compartmentalization of the collaboration network. A small set of businesses played a central role in steering collaborative decisions for this community, while a group of structurally ‘peripheral’ actors were less influential. By contrast, the business community in Svalbard showed compartmentalization that was independent of geographic distance between actors. Within towns of similar size and governance scale, Svalbard is more compartmentalized, and those compartments are not driven by geographic separation of the collaboration clusters. This compartmentalization in Svalbard was reflected in a lower density of formal business collaboration ties compared to the communities of the Alps. We infer that the difference is due to Svalbard having higher cultural diversity and population turnover than the Alps communities. We propose that integrating quantitative network analysis from simple surveys with qualitative interviews targeted from the network results is an efficient general approach to identify regionally specific constraints and opportunities for effective governance. PMID:27258007
NASA Astrophysics Data System (ADS)
Martinson, Guntars; Brandt, Franziska; Conrad, Ralf
2016-04-01
Several thousands of tank bromeliads per hectare of neotropical forest create a unique wetland ecosystem that harbors diverse communities of archaea and bacteria and emit substantial amounts of methane. We studied spatial distribution of archaeal and bacterial communities, microbial methane cycling and their environmental drivers in tank bromeliad wetlands. We selected tank bromeliads of different species and functional types (terrestrial and canopy bromeliads) in a neotropical montane forest of Southern Ecuador and sampled the organic tank slurry. Archaeal and bacterial communities were characterized using terminal-restriction fragment length polymorphism (T-RFLP) and Illumina MiSeq sequencing, respectively, and linked with physico-chemical tank-slurry properties. Additionally, we performed tank-slurry incubations to measure methane production potential, stable carbon isotope fractionation and pathway of methane formation. Archaeal and bacterial community composition in bromeliad wetlands was dominated by methanogens and by Alphaproteobacteria, respectively, and did not differ between species but between functional types. Hydrogenotrophic Methanomicrobiales were the dominant methanogens among all bromeliads but the relative abundance of aceticlastic Methanosaetaceae increased in terrestrial bromeliads. Complementary, hydrogenotrophic methanogenesis was the dominant pathway of methane formation but the relative contribution of aceticlastic methanogenesis increased in terrestrial bromeliads and led to a concomitant increase in total methane production. Rhodospirillales were characteristic for canopy bromeliads, Planctomycetales and Actinomycetalis for terrestrial bromeliads. While nitrogen concentration and pH explained 32% of the archaeal community variability, 29% of the bacterial community variability was explained by nitrogen, acetate and propionate concentrations. Our study demonstrates that bromeliad functional types, associated with different forest strata, and their constrained environmental characteristics shape the spatial structure of archaeal and bacterial communities and microbial methane cycling in neotropical bromeliad wetlands.
Neal, Zachary
2015-06-01
The concept of social capital is becoming increasingly common in community psychology and elsewhere. However, the multiple conceptual and operational definitions of social capital challenge its utility as a theoretical tool. The goals of this paper are to clarify two forms of social capital (bridging and bonding), explicitly link them to the structural characteristics of small world networks, and explore the behavioral and ecological prerequisites of its formation. First, I use the tools of network science and specifically the concept of small-world networks to clarify what patterns of social relationships are likely to facilitate social capital formation. Second, I use an agent-based model to explore how different ecological characteristics (diversity and segregation) and behavioral tendencies (homophily and proximity) impact communities' potential for developing social capital. The results suggest diverse communities have the greatest potential to develop community social capital, and that segregation moderates the effects that the behavioral tendencies of homophily and proximity have on community social capital. The discussion highlights how these findings provide community-based researchers with both a deeper understanding of the contextual constraints with which they must contend, and a useful tool for targeting their efforts in communities with the greatest need or greatest potential.
ANALYSIS OF LOTIC MACROINVERTEBRATE ASSEMBLAGES IN CALIFORNIA'S CENTRAL VALLEY
Using multivariate and cluster analyses, we examined the relaitonships between chemical and physical characteristics and macroinvertebrate assemblages at sites sampled by R-EMAP in California's Central Valley. By contrasting results where community structure was summarized as met...
Tanenbaum, Sandra J
2012-08-01
Consumer-operated service organizations (COSOs) are independent organizations whose administrative and financial control resides with consumers. Based on a 2008 mail survey and followup interviews conducted in 2009, this study depicts the internal characteristics and external relationships, as well as some relationships between the two, of COSOs in one state. Profiles include on the one hand, governance structures, services provided, sources and levels of funding, etc. and on the other, relationships between COSOs and other actors in the mental health system and the local community. COSOs emerge as more self-governing and community-based than required by certification requirements and as developing internally and externally in tandem. COSOs are not only adjunct or alternative service providers, but also civic associations and loci for the expression of citizenship by mentally ill people.
Influence of Mowing Artemisia tridentata ssp. wyomingensis on Winter Habitat for Wildlife
NASA Astrophysics Data System (ADS)
Davies, Kirk W.; Bates, Jonathan D.; Johnson, Dustin D.; Nafus, Aleta M.
2009-07-01
Mowing is commonly implemented to Artemisia tridentata ssp. wyomingensis (Beetle & A. Young) S.L. Welsh (Wyoming big sagebrush) plant communities to improve wildlife habitat, increase forage production for livestock, and create fuel breaks for fire suppression. However, information detailing the influence of mowing on winter habitat for wildlife is lacking. This information is crucial because many wildlife species depended on A. tridentata spp. wyomingensis plant communities for winter habitat and consume significant quantities of Artemisia during this time . Furthermore, information is generally limited describing the recovery of A. tridentata spp. wyomingensis to mowing and the impacts of mowing on stand structure. Stand characteristics and Artemisia leaf tissue crude protein (CP), acid detergent fiber (ADF), and neutral detergent fiber (NDF) concentrations were measured in midwinter on 0-, 2-, 4-, and 6-year-old fall-applied mechanical (mowed at 20 cm height) treatments and compared to adjacent untreated (control) areas. Mowing compared to the control decreased Artemisia cover, density, canopy volume, canopy elliptical area, and height ( P < 0.05), but all characteristics were recovering ( P < 0.05). Mowing A. tridentata spp. wyomingensis plant communities slightly increases the nutritional quality of Artemisia leaves ( P < 0.05), but it simultaneously results in up to 20 years of decrease in Artemisia structural characteristics. Because of the large reduction in A. tridentata spp. wyomingensis for potentially 20 years following mowing, mowing should not be applied in Artemisia facultative and obligate wildlife winter habitat. Considering the decline in A. tridentata spp. wyomingensis-dominated landscapes, we caution against mowing these communities.
NASA Astrophysics Data System (ADS)
Kodama, Taketoshi; Wagawa, Taku; Iguchi, Naoki; Takada, Yoshitake; Takahashi, Takashi; Fukudome, Ken-Ichi; Morimoto, Haruyuki; Goto, Tsuneo
2018-06-01
This study evaluates spatial variations in zooplankton community structure and potential controlling factors along the Japanese coast under the influence of the coastal branch of the Tsushima Warm Current (CBTWC). Variations in the density of morphologically identified zooplankton in the surface layer in May were investigated for a 15-year period. The density of zooplankton (individuals per cubic meter) varied between sampling stations, but there was no consistent west-east trend. Instead, there were different zooplankton community structures in the west and east, with that in Toyama Bay particularly distinct: Corycaeus affinis and Calanus sinicus were dominant in the west and Oithona atlantica was dominant in Toyama Bay. Distance-based redundancy analysis (db-RDA) was used to characterize the variation in zooplankton community structure, and four axes (RD1-4) provided significant explanation. RD2-4 only explained < 4.8 % of variation in the zooplankton community and did not show significant spatial difference; however, RD1, which explained 89.9 % of variation, did vary spatially. Positive and negative species scores on RD1 represent warm- and cold-water species, respectively, and their variation was mainly explained by water column mean temperature, and it is considered to vary spatially with the CBTWC. The CBTWC intrusion to the cold Toyama Bay is weak and occasional due to the submarine canyon structure of the bay. Therefore, the varying bathymetric characteristics along the Japanese coast of the Japan Sea generate the spatial variation in zooplankton community structure, and dominance of warm-water species can be considered an indicator of the CBTWC.
Macleod, Adrian K; Stanley, Michele S; Day, John G; Cook, Elizabeth J
2016-01-01
Knowledge of biofouling typical of marine structures is essential for engineers to define appropriate loading criteria in addition to informing other stakeholders about the ecological implications of creating novel artificial environments. There is a lack of information regarding biofouling community composition (including weight and density characteristics) on floating structures associated with future marine renewable energy generation technologies. A network of navigation buoys were identified across a range of geographical areas, environmental conditions (tidal flow speed, temperature and salinity), and deployment durations suitable for future developments. Despite the perceived importance of environmental and temporal factors, geographical location explained the greatest proportion of the observed variation in community composition, emphasising the importance of considering geography when assessing the impact of biofouling on device functioning and associated ecology. The principal taxa associated with variation in biofouling community composition were mussels (Mytilus edulis), which were also important when determining loading criteria.
Cappello, S; Caruso, G; Zampino, D; Monticelli, L S; Maimone, G; Denaro, R; Tripodo, B; Troussellier, M; Yakimov, M; Giuliano, L
2007-01-01
Microcosm experiments simulating an oil spill event were performed to evaluate the response of the natural microbial community structure of Messina harbour seawater following the accidental load of petroleum. An experimental harbour seawater microcosm, supplemented with nutrients and crude oil, was monitored above 15 days in comparison with unpolluted ones (control microcosms). Bacterial cells were counted with a Live/Dead BacLight viability kit; leucine aminopeptidase, beta-glucosidase, alkaline phosphatase, lipase and esterase enzymes were measured using fluorogenic substrates. The microbial community dynamic was monitored by isolation of total RNA, RT-PCR amplification of 16S rRNA, cloning and sequencing. Oil addition stimulated an increase of the total bacterial abundance, leucine aminopeptidase and phosphatase activity rates, as well as a change in the community structure. This suggested a prompt response of micro-organisms to the load of petroleum hydrocarbons. The present study on the viability, specific composition and metabolic characteristics of the microbial community allows a more precise assessment of oil pollution. Both structural and functional parameters offer interesting perspectives as indicators to monitor changes caused by petroleum hydrocarbons. A better knowledge of microbial structural successions at oil-polluted sites is essential for environmental bioremediation. Data obtained in microcosm studies improve our understanding of natural processes occurring during oil spills.
Impact of phytoplankton community structure and function on marine particulate optical properties
NASA Astrophysics Data System (ADS)
McFarland, Malcolm Neil
Phytoplankton are an ecologically important and diverse group of organisms whose distribution, abundance, and population dynamics vary significantly over small spatial (cm) and temporal (minutes) scales in the coastal ocean. Our inability to observe phytoplankton community structure and function at these small scales has severely limited our understanding of the fundamental ecological and evolutionary mechanisms that drive phytoplankton growth, mortality, adaptation and speciation. The goal of this dissertation was to enhance our understanding of phytoplankton ecology by improving in situ observational techniques based on the optical properties of cells, colonies, populations, and communities. Field and laboratory studies were used to determine the effects of phytoplankton species composition, morphology, and physiology on the inherent optical properties of communities and to explore the adaptive significance of bio-optically important cellular characteristics. Initial field studies found a strong association between species composition and the relative magnitude and shape of particulate absorption, scattering, and attenuation coefficient spectra. Subsequent field studies using scanning flow cytometry to directly measure optically important phytoplankton and non-algal particle characteristics demonstrated that the size and pigment content of large (>20 microm) phytoplankton cells and colonies vary significantly with the slope of particulate attenuation and absorption spectra, and with the ratio of particulate scattering to absorption. These relationships enabled visualization of phytoplankton community composition and mortality over small spatial and temporal scales derived from high resolution optical measurements acquired with an autonomous profiling system. Laboratory studies with diverse uni-algal cultures showed that morphological and physiological characteristics of cells and colonies can account for ˜30% of the optical variation observed in natural communities and that complex morphologies and low intracellular pigment concentrations minimize pigment self-shading that could otherwise limit bio-optical fitness. These results demonstrate that optical properties reveal detailed information about the distribution, abundance, morphology, and physiology of phytoplankton that can help explain their ecological dynamics over small spatial scales and the bio-optical function of diverse forms in the ocean.
Eddie L. Shea; Lisa A. Schulte; Brian J. Palik
2017-01-01
Structural complexity is widely recognized as an inherent characteristic of unmanaged forests critical to their function and resilience, but often reduced in their managed counterparts. Variable retention harvesting (VRH) has been proposed as a way to restore or enhance structural complexity in managed forests, and thereby sustain attendant biodiversity and ecosystem...
Chen, Yan-Yan; Wong, Gloria H Y; Lum, Terry Y; Lou, Vivian W Q; Ho, Andy H Y; Luo, Hao; Tong, Tracy L W
2016-01-01
Depressive symptoms are common in older people; most previous research on elderly depression focused on individual-level characteristics or neighborhood socioeconomic status. Modifiable neighborhood characteristics of older people dwelling in low-income communities are under-studied. This study aims to identify potentially modifiable social and physical neighborhood characteristics that influence depressive symptoms independent of individual-level characteristics among older Chinese. Data came from a cross-sectional survey conducted in four low-income public rental housing estates in Hong Kong in 2012. We interviewed a total of 400 elderly residents. The structured questionnaire covered demographics, activities of daily living, recent fall history, neighborhood support networks, and perceived proximity by walk to community facilities. Multiple regression was used to test whether inclusion of neighborhood factors in addition to individual characteristics increases model fit in explaining depressive symptoms in elders with low socioeconomic status. At individual level, activities of daily living and income significantly predicted depressive symptoms. Receiving support from friends or neighbors is associated with fewer depressive symptoms. However, participants who received organizational support had a 1.17 points of increase on the 15-item Geriatric Depression Scale (GDS-15). At-ease walkable proximity to medical facilities was positively associated with a better GDS score. Neighborhood support networks and perceived proximity by walk to community facilities contribute significantly to depressive symptoms among low-income elders. Programs and policies that facilitate neighborhood support and commuting or promote facility accessibility may help ameliorate depressive symptoms common among low-income elders.
Bai, Ren; Wang, Jun-Tao; Deng, Ye; He, Ji-Zheng; Feng, Kai; Zhang, Li-Mei
2017-01-01
Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria, Chloroflexi, and Firmicutes increased whereas Cyanobacteria, β-proteobacteria, and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils. PMID:28611747
Bai, Ren; Wang, Jun-Tao; Deng, Ye; He, Ji-Zheng; Feng, Kai; Zhang, Li-Mei
2017-01-01
Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria , Chloroflexi , and Firmicutes increased whereas Cyanobacteria , β -proteobacteria , and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota , Thaumarchaeota , and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils.
Liu, Ji-Liang; Cao, Jing; Li, Shi-Jie; Pan, Chun-Lin; Pan, Cheng-Chen
2012-09-01
Long-term disturbance of human beings on secondary forest ecosystem would have profound impacts on belowground ecological processes, whereas the community structure and functional diversity of soil fauna would be sensitive to the changes of belowground ecological processes, with significance as an indicator of the changes. In this study, the method of hand-sorting was adopted to investigate the density of soil macrofaunal community in a secondary forest and the Pinus tabulaeformis, Larix kaempferi, Picea abie, and Picea asperata plantations of nearly 30 years old in Xiaolongshan forest area of western Qinling Mountains, and the PCA ordination and one-way ANOVA analysis were applied to analyze the community structure and trophic group composition of soil macrofauna in the five forest types. In the P. tabulaeformis and L. kaempferi plantations, the density of soil macrofaunal community was 3.0 and 2.1 times of that in the secondary forest, respectively, and the consumers/decomposers ratio of the community was obviously higher than that in the secondary forest. Among the plantations, P. tabulaeformis and L. kaempferi plantations had a significantly higher consumers/decomposers ratio of soil macrofaunal community than P. abies and P. asperata plantations. There was an obvious difference in community structure of soil macrofauna among the four plantations. The density of soil macrofaunal community in P. tabulaeformis and L. kaempferi plantations was 3.5 and 2.1 times higher than that in P. asperata plantation, respectively, whereas the group richness of soil macrofaunal community in P. tabulaeformis plantation was 1.5 times of that in P. abies and P. asperata plantations.
Graw, Michael F.; D'Angelo, Grace; Borchers, Matthew; Thurber, Andrew R.; Johnson, Joel E.; Zhang, Chuanlun; Liu, Haodong; Colwell, Frederick S.
2018-01-01
The deep marine subsurface is a heterogeneous environment in which the assembly of microbial communities is thought to be controlled by a combination of organic matter deposition, electron acceptor availability, and sedimentology. However, the relative importance of these factors in structuring microbial communities in marine sediments remains unclear. The South China Sea (SCS) experiences significant variability in sedimentation across the basin and features discrete changes in sedimentology as a result of episodic deposition of turbidites and volcanic ashes within lithogenic clays and siliceous or calcareous ooze deposits throughout the basin's history. Deep subsurface microbial communities were recently sampled by the International Ocean Discovery Program (IODP) at three locations in the SCS with sedimentation rates of 5, 12, and 20 cm per thousand years. Here, we used Illumina sequencing of the 16S ribosomal RNA gene to characterize deep subsurface microbial communities from distinct sediment types at these sites. Communities across all sites were dominated by several poorly characterized taxa implicated in organic matter degradation, including Atribacteria, Dehalococcoidia, and Aerophobetes. Sulfate-reducing bacteria comprised only 4% of the community across sulfate-bearing sediments from multiple cores and did not change in abundance in sediments from the methanogenic zone at the site with the lowest sedimentation rate. Microbial communities were significantly structured by sediment age and the availability of sulfate as an electron acceptor in pore waters. However, microbial communities demonstrated no partitioning based on the sediment type they inhabited. These results indicate that microbial communities in the SCS are structured by the availability of electron donors and acceptors rather than sedimentological characteristics. PMID:29696012
Lohse, Christian; Bassett, Danielle S; Lim, Kelvin O; Carlson, Jean M
2014-10-01
Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease.
Changes in structure and function of fungal community in cow manure composting.
Wang, Ke; Yin, Xiangbo; Mao, Hailong; Chu, Chu; Tian, Yu
2018-05-01
In this study, dynamic changes in fungal communities, trophic modes and effect factors in 60 days composting of cow manure were analyzed by using high throughput sequencing, FUNGuild and Biolog FF MicroPlate, respectively. Orpinomyces (relative abundance >10.85%) predominated in feedstock, and Mycothermus became the dominating genus (relative abundance >75%) during the active phase. Aerobic composting treatment had a significant effect on fungal trophic modes with pathogenic fungi fading away and wood saprotrophs increasing over composting time. Fungal communities had the higher carbon sources utilization capabilities at the thermophilic phase and mature phase than those in the other periods. Oxidation reduction potential (ORP) significantly increased from -180 to 180 mV during the treatment. Redundancy analysis showed that the succession of fungal community during composting had a significant association with ORP (p < .05). This indicated that aerobic composting treatment not only influenced fungal community structure, but also changed fungal trophic modes and metabolic characteristics. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mnemonic convergence in social networks: The emergent properties of cognition at a collective level.
Coman, Alin; Momennejad, Ida; Drach, Rae D; Geana, Andra
2016-07-19
The development of shared memories, beliefs, and norms is a fundamental characteristic of human communities. These emergent outcomes are thought to occur owing to a dynamic system of information sharing and memory updating, which fundamentally depends on communication. Here we report results on the formation of collective memories in laboratory-created communities. We manipulated conversational network structure in a series of real-time, computer-mediated interactions in fourteen 10-member communities. The results show that mnemonic convergence, measured as the degree of overlap among community members' memories, is influenced by both individual-level information-processing phenomena and by the conversational social network structure created during conversational recall. By studying laboratory-created social networks, we show how large-scale social phenomena (i.e., collective memory) can emerge out of microlevel local dynamics (i.e., mnemonic reinforcement and suppression effects). The social-interactionist approach proposed herein points to optimal strategies for spreading information in social networks and provides a framework for measuring and forging collective memories in communities of individuals.
Schultz, J A; Collie-Akers, V L; Fawcett, S B; Strauss, W J; Nagaraja, J; Landgraf, A J; McIver, K L; Weber, S A; Arteaga, S S; Nebeling, L C; Rauzon, S M
2018-06-19
Little is known about whether characteristics of communities are associated with differential implementation of community programmes and policies to promote physical activity and healthy eating. This study examines associations between community characteristics (e.g. region and race/ethnicity) and the intensity of community programmes and policies implemented to prevent childhood obesity. It explores whether community characteristics moderate the intensity of community efforts to prevent childhood obesity. The objective of this study is to investigate associations between community characteristics and the intensity of community policies and programmes to prevent childhood obesity documented in the Healthy Communities Study that engaged a diverse sample of US communities. Programmes and policies were documented in 130 communities across the USA, reporting over 9000 different community programmes and policies to prevent obesity among children ages 4-15. We examined associations between community characteristics and the intensity of community programmes and policies implemented (i.e. their amount and reach, duration and strength of change strategy). Community characteristics explain 25% of the variability in the intensity of community programmes and policies implemented in communities. Particular characteristics - urbanicity, region, being a large county and the per cent of African-Americans in a community - contributed to more (over 18% of the 25%) of the observed variability. © 2018 World Obesity Federation.
Beckett, Stephen J.; Williams, Hywel T. P.
2013-01-01
Phage and their bacterial hosts are the most diverse and abundant biological entities in the oceans, where their interactions have a major impact on marine ecology and ecosystem function. The structure of interaction networks for natural phage–bacteria communities offers insight into their coevolutionary origin. At small phylogenetic scales, observed communities typically show a nested structure, in which both hosts and phages can be ranked by their range of resistance and infectivity, respectively. A qualitatively different multi-scale structure is seen at larger phylogenetic scales; a natural assemblage sampled from the Atlantic Ocean displays large-scale modularity and local nestedness within each module. Here, we show that such ‘nested-modular’ interaction networks can be produced by a simple model of host–phage coevolution in which infection depends on genetic matching. Negative frequency-dependent selection causes diversification of hosts (to escape phages) and phages (to track their evolving hosts). This creates a diverse community of bacteria and phage, maintained by kill-the-winner ecological dynamics. When the resulting communities are visualized as bipartite networks of who infects whom, they show the nested-modular structure characteristic of the Atlantic sample. The statistical significance and strength of this observation varies depending on whether the interaction networks take into account the density of the interacting strains, with implications for interpretation of interaction networks constructed by different methods. Our results suggest that the apparently complex community structures associated with marine bacteria and phage may arise from relatively simple coevolutionary origins. PMID:24516719
Kumaresan, Deepak; Stralis-Pavese, Nancy; Abell, Guy C J; Bodrossy, Levente; Murrell, J Colin
2011-10-01
Aggregates of different sizes and stability in soil create a composite of ecological niches differing in terms of physico-chemical and structural characteristics. The aim of this study was to identify, using DNA-SIP and mRNA-based microarray analysis, whether shifts in activity and community composition of methanotrophs occur when ecological niches created by soil structure are physically perturbed. Landfill cover soil was subject to three treatments termed: 'control' (minimal structural disruption), 'sieved' (sieved soil using 2 mm mesh) and 'ground' (grinding using mortar and pestle). 'Sieved' and 'ground' soil treatments exhibited higher methane oxidation potentials compared with the 'control' soil treatment. Analysis of the active community composition revealed an effect of physical disruption on active methanotrophs. Type I methanotrophs were the most active methanotrophs in 'sieved' and 'ground' soil treatments, whereas both Type I and Type II methanotrophs were active in the 'control' soil treatment. The result emphasize that changes to a particular ecological niche may not result in an immediate change to the active bacterial composition and change in composition will depend on the ability of the bacterial communities to respond to the perturbation. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
[Analysis of Camellia rosthorniana populations fecundity].
Cao, Guoxing; Zhong, Zhangcheng; Xie, Deti; Liu, Yun
2004-03-01
With the method of space substituting time, the structure of Camellia rosthorniana populations in three forest communities, i.e., Jiant bamboo forest, coniferous and broad-leaved mixed forest, and evergreen broad-leaved forest in Mt. Jinyun was investigated, and based on static life-tables, the fecundity tables and reproductive value tables of C. rosthorniana populations were constructed. Each reproductive parameter and its relation to bionomic strategies of C. rosthorniana populations were also analyzed. The results indicated that in evergreen broad-leaved forest, C. rosthorniana population had the longest life span and the greatest fitness. The stage of maximum reproductive value increased with increasing stability of the community. The sum of each population's reproductive value, residual reproductive value and total reproductive value for the whole life-history of C. rosthorniana also increased with increasing maturity of the community, showing their inherent relationships with reproductive fitness. As regards to bionomic strategy, C. rosthorniana showed mainly the characteristics of a k-strategies, but in less stable community, the reproductive parameters were greatly changed, showing some characteristics of a r-strategies.
Microbiome Profiles in Periodontitis in Relation to Host and Disease Characteristics
Hong, Bo-Young; Furtado Araujo, Michel V.; Strausbaugh, Linda D.; Terzi, Evimaria; Ioannidou, Effie; Diaz, Patricia I.
2015-01-01
Periodontitis is an inflammatory condition that affects the supporting tissues surrounding teeth. The occurrence of periodontitis is associated with shifts in the structure of the communities that inhabit the gingival sulcus. Although great inter-subject variability in the subgingival microbiome has been observed in subjects with periodontitis, it is unclear whether distinct community types exist and if differences in microbial signatures correlate with host characteristics or with the variable clinical presentations of periodontitis. Therefore, in this study we explored the existence of different community types in periodontitis and their relationship with host demographic, medical and disease-related clinical characteristics. Clustering analyses of microbial abundance profiles suggested two types of communities (A and B) existed in the 34 subjects with periodontitis evaluated. Type B communities harbored greater proportions of certain periodontitis-associated taxa, including species historically associated with the disease, such as Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola, and taxa recently linked to periodontitis. In contrast, subjects with type A communities had increased proportions of different periodontitis-associated species, and were also enriched for health-associated species and core taxa (those equally prevalent in health and periodontitis). Periodontitis subgingival clusters were not associated with demographic, medical or disease-specific clinical parameters other than periodontitis extent (proportion of sites affected), which positively correlated with the total proportion of cluster B signature taxa. In conclusion, two types of microbial communities were detected in subjects with periodontitis. Host demographics and underlying medical conditions did not correlate with these profiles, which instead appeared to be related to periodontitis extent, with type B communities present in more widespread disease cases. The two identified periodontitis profiles may represent distinct dysbiotic processes potentially requiring community-tailored therapeutic interventions. PMID:25984952
Network communities within and across borders
Cerina, Federica; Chessa, Alessandro; Pammolli, Fabio; Riccaboni, Massimo
2014-01-01
We investigate the impact of borders on the topology of spatially embedded networks. Indeed territorial subdivisions and geographical borders significantly hamper the geographical span of networks thus playing a key role in the formation of network communities. This is especially important in scientific and technological policy-making, highlighting the interplay between pressure for the internationalization to lead towards a global innovation system and the administrative borders imposed by the national and regional institutions. In this study we introduce an outreach index to quantify the impact of borders on the community structure and apply it to the case of the European and US patent co-inventors networks. We find that (a) the US connectivity decays as a power of distance, whereas we observe a faster exponential decay for Europe; (b) European network communities essentially correspond to nations and contiguous regions while US communities span multiple states across the whole country without any characteristic geographic scale. We confirm our findings by means of a set of simulations aimed at exploring the relationship between different patterns of cross-border community structures and the outreach index. PMID:24686380
Network communities within and across borders.
Cerina, Federica; Chessa, Alessandro; Pammolli, Fabio; Riccaboni, Massimo
2014-04-01
We investigate the impact of borders on the topology of spatially embedded networks. Indeed territorial subdivisions and geographical borders significantly hamper the geographical span of networks thus playing a key role in the formation of network communities. This is especially important in scientific and technological policy-making, highlighting the interplay between pressure for the internationalization to lead towards a global innovation system and the administrative borders imposed by the national and regional institutions. In this study we introduce an outreach index to quantify the impact of borders on the community structure and apply it to the case of the European and US patent co-inventors networks. We find that (a) the US connectivity decays as a power of distance, whereas we observe a faster exponential decay for Europe; (b) European network communities essentially correspond to nations and contiguous regions while US communities span multiple states across the whole country without any characteristic geographic scale. We confirm our findings by means of a set of simulations aimed at exploring the relationship between different patterns of cross-border community structures and the outreach index.
Moxley, Robert L; Jicha, Karl A; Thompson, Gretchen H
2011-01-01
This study investigates the influence of family solidarity, community structure, information access, social capital, and socioeconomic status on the extent of nutrition and health knowledge (NHK) among primary household meal planners. In turn, we pose the question: does this knowledge influence dietary decision making? Data are taken from a survey determining socioeconomic impacts of vitamin A fortified peanut butter on Philippine households. Questions on the relationships of nutrition to health were selected to construct a knowledge index on which household respondents could be ranked. We then tested hypotheses regarding what types of individual, family-level, and community structural characteristics would predict performance on this index. The results indicate that the strongest predictors of NHK come from sociological theory related to family solidarity and community centrality, in addition to information accessibility and household income. Our findings also indicate that NHK influences dietary choices with regard to the purchase of a vitamin fortified staple food product, which is essential when addressing nutritional deficiency problems in developing countries.
Lu, Shuang; Quan, Wang; Wang, Shao-Ming; Liu, Hong-Ling; Tan, Yong; Zeng, Guang-Ping; Zhang, Xia
2013-04-01
Microbial community structure and ecological functions are influenced by interactions between above and belowground biota. There is an urgent need for intensive monitoring of microbes feedback of soil micro-ecosystem for setting up a good agricultural practice. Recent researches have revealed that many soils characteristic can effect microbial community structure. In the present study factors affecting microbial community structure and soil in Carthamus tinctorius plantations in arid agricultural ecosystem of northern Xinjiang, China were identified. The result of the study revealed that soil type was the key factor in safflower yield; Unscientific field management resulted high fertility level (bacteria dominant) of soil to turn to low fertility level (fungi dominant), and Detruded Canonical Correspondence Analysis (DCCA) showed that soil water content, organic matter, available N, P and K were the dominant factors affecting distribution of microbial community. Soil water content showed a significant positive correlation with soil microbes quantity (P < 0.01), while others showed a significant quantity correlation with soil microbe quantity (P < 0.05).
[Community structure of soil meso- and micro-fauna in different habitats of urbanized region].
Qin, Zhong; Zhang, Jia-en; Li, Qing-fang
2009-12-01
Investigations were made in May, June, and November 2007 and January 2008 to study the structural characteristics and their seasonal variations of soil meso- and micro-fauna communities in six habitats of three land use types (forest land, constructed grassland and farmland) in Tianhe District of Guangzhou City. The horizontal spatial distribution of soil fauna differed with habitat. During the investigation periods, the Botanical Garden of South China Agricultural University had the highest individual number (1286) of soil mesa- and micro-fauna, while the farmland, especially in the Fenghuang Street area, had the lowest number of individuals and groups. The seasonal variation of the individual number was in order of autumn (1815) > spring (1623) > winter (1365) > summer (1276). Hierarchical clustering and detrended correspondence analysis also showed that the community composition of soil meso- and micro-fauna in different habitats exhibited distinct seasonal variation. In the same seasons, the community structure and composition of soil meso- and micro-fauna in different habitats were correlated to the degrees of human interferences and the properties of soil environment.
Niu, Lihua; Zhang, Xue; Li, Yi; Wang, Peifang; Zhang, Wenlong; Wang, Chao; Wang, Qing
2017-07-01
Due to the important roles of archaea in wastewater treatment processes, archaeal communities have been studied extensively in various anaerobic reactors, but the knowledge of archaeal communities in full-scale activated sludge wastewater treatment plants (WWTPs) remains quite poor. In this study, 454-pyrosequencing was for the first time employed to investigate archaeal communities from 20 full-scale activated sludge WWTPs distributed at a 3,660-meter elevational scale in China. Results showed that archaeal communities from WWTPs were dominated by Methanosarcinales (84.6%). A core archaeal population (94.5%) composed of Methanosaeta, Methanosarcina, Methanogenium and Methanobrevibacter was shared among WWTPs. The elevational pattern of archaeal communities was observed in WWTPs, with an elevational threshold associated with archaeal community richness and structures at approximately 1,500 meters above sea level (masl). A declining trend in community richness with increasing elevation was observed at higher elevations, whereas no trend was presented at lower elevations. Spearman correlation analysis indicated that the archaeal community richness at higher elevations was associated with more environmental variables than that at lower elevations. Redundancy analysis indicated that wastewater variables were the dominant contributors to the variation of community structures at higher elevations, followed by operational variables and elevation.
Laverock, Bonnie; Smith, Cindy J; Tait, Karen; Osborn, A Mark; Widdicombe, Steve; Gilbert, Jack A
2010-12-01
Bioturbation is a key process in coastal sediments, influencing microbially driven cycling of nutrients as well as the physical characteristics of the sediment. However, little is known about the distribution, diversity and function of the microbial communities that inhabit the burrows of infaunal macroorganisms. In this study, terminal-restriction fragment length polymorphism analysis was used to investigate variation in the structure of bacterial communities in sediment bioturbated by the burrowing shrimp Upogebia deltaura or Callianassa subterranea. Analyses of 229 sediment samples revealed significant differences between bacterial communities inhabiting shrimp burrows and those inhabiting ambient surface and subsurface sediments. Bacterial communities in burrows from both shrimp species were more similar to those in surface-ambient than subsurface-ambient sediment (R=0.258, P<0.001). The presence of shrimp was also associated with changes in bacterial community structure in surrounding surface sediment, when compared with sediments uninhabited by shrimp. Bacterial community structure varied with burrow depth, and also between individual burrows, suggesting that the shrimp's burrow construction, irrigation and maintenance behaviour affect the distribution of bacteria within shrimp burrows. Subsequent sequence analysis of bacterial 16S rRNA genes from surface sediments revealed differences in the relative abundance of bacterial taxa between shrimp-inhabited and uninhabited sediments; shrimp-inhabited sediment contained a higher proportion of proteobacterial sequences, including in particular a twofold increase in Gammaproteobacteria. Chao1 and ACE diversity estimates showed that taxon richness within surface bacterial communities in shrimp-inhabited sediment was at least threefold higher than that in uninhabited sediment. This study shows that bioturbation can result in significant structural and compositional changes in sediment bacterial communities, increasing bacterial diversity in surface sediments and resulting in distinct bacterial communities even at depth within the burrow. In an area of high macrofaunal abundance, this could lead to alterations in the microbial transformations of important nutrients at the sediment-water interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, S.
1995-12-31
Time-dependent responses to sediment-associated copper were studies at hierarchical levels of biological organization along an extreme concentration gradient (40 to 40,000 mg/kg total Cu). Laboratory and in situ estimates of molecular to tissue-level responses (Na/K-ATPase activity, DNA content, histopathology) were monitored in Corbicula fluminea (Asiatic clam), and compared with laboratory and field based survival of Corbicula and Elimia teres (an indigenous Gastropoda). Mollusc survival was, in turn, compared with effects on macrobenthic community composition along the stream/[Cu] gradient. Relationships between selected sediment characteristics and the bioavailability and toxicity of sediment associated copper were also investigated. Sediment-associated copper depressed Na/K-ATPase activitymore » and led to histopathological damage of renal and gill epithelia (vacuolization, degeneration), indicating that impaired ion regulation was an important mechanism of toxicity. Concurrent reductions in DNA content were believed to be secondary effects due to cell death, not an indication of genotoxicity. Sublethal responses were significantly correlated with survival in both species; however, while survival in situ was indicative of differences in community structure, laboratory-based survival was not. Copper levels in tissues were indicative of exposure, but were not significantly correlated with adverse effects. Copper levels in sediments, interstitial water, and overlying water varied independently of sediment characteristics except pH. Cu/AVS ratios were predictive of Corbicula and Elimia survival, but were not significantly related to differences in community structure. Instead, macrobenthic community structure was influenced by other sediment factors (grain size, Eh, pH).« less
Controls on coral-ground development along the northern Mesoamerican Reef tract.
Rodríguez-Martínez, Rosa E; Jordán-Garza, Adán G; Maldonado, Miguel A; Blanchon, Paul
2011-01-01
Coral-grounds are reef communities that colonize rocky substratum but do not form framework or three-dimensional reef structures. To investigate why, we used video transects and underwater photography to determine the composition, structure and status of a coral-ground community located on the edge of a rocky terrace in front of a tourist park, Xcaret, in the northern Mesoamerican Reef tract, Mexico. The community has a relatively low coral, gorgonian and sponge cover (<10%) and high algal cover (>40%). We recorded 23 species of Scleractinia, 14 species of Gorgonacea and 30 species of Porifera. The coral community is diverse but lacks large coral colonies, being dominated instead by small, sediment-tolerant, and brooding species. In these small colonies, the abundance of potentially lethal interactions and partial mortality is high but decreases when colonies are larger than 40 cm. Such characteristics are consistent with an environment control whereby storm waves periodically remove larger colonies and elevate sediment flux. The community only survives these storm conditions due to its slope-break location, which ensures lack of burial and continued local recruitment. A comparison with similar coral-ground communities in adjacent areas suggests that the narrow width of the rock terrace hinders sediment stabilization, thereby ensuring that communities cannot escape bottom effects and develop into three-dimensional reef structures on geological time scales.
NASA Astrophysics Data System (ADS)
Hardy, S. M.; Bik, H.; Walker, A.; Sharma, J.; Blanchard, A.
2016-02-01
Rapid change is occurring in the Arctic concurrently with increased human activity, yet our knowledge of the structure and function of high-Arctic sediment communities is still rudimentary. The Beaufort Sea is particularly poorly sampled, and largely unexplored at slope depths, providing little information with which to assess the impacts of petroleum exploration activities now beginning in this area. We are investigating diversity and community structure of meio- and macrobenthic infauna on the continental shelf and slope of the Beaufort Sea across a range of depths (50 to 1000 m) using traditional taxonomic and environmental DNA sequencing approaches, and comparing results to additional sites in the adjacent NE Chukchi Sea petroleum lease-sale area. The Beaufort slope is topographically complex and characterized by an east-west gradient in benthic habitat characteristics, with heavy input of terrestrial organic matter particularly in the region of the Mackenzie River delta. Warmer, saltier subsurface Atlantic water masses impact benthic communities at mid-slope depths, likely influencing turnover in community structure observed with depth. Food resources are variable across the region, with very high sediment chlorophyll concentrations at 350 m depth in some areas. Differences in nematode assemblages were detected across the Beaufort Sea shelf/slope, across depths within the Beaufort Sea, and between the Beaufort and adjacent NE Chukchi Sea. These differences were apparent in both morphological and environmental sequencing data. Macrofaunal communities showed variable community structure among transects, with high abundance and high dominance in polychaete assemblages coincident with the chlorophyll maximum. Sequencing data also revealed an abundance of protists in sediments which have been mostly ignored in studies of ecosystem dynamics in this region, and may represent an important component of the food web.
Mechanisms of maintenance of tropical freshwater fish communities in the face of disturbance.
Martin-Smith, K M; Laird, L M; Bullough, L; Lewis, M G
1999-01-01
Community resistance to, and resilience from, perturbation will determine the trajectory of recovery from disturbance. Although selective timber extraction is considered a severe disturbance, fish communities from headwater streams around Danum Valley Field Centre, Sabah, Malaysia, showed few long-term changes in species composition or abundance. However, some species showed short-term (< 18 months) absence or decrease in abundance. These observations suggested that both resistance and resilience were important in maintaining long-term fish community structure. Resistance to perturbation was tested by monitoring fish communities before and after the creation of log-debris dams, while resilience was investigated by following the time-course of recolonization following complete removal of all fish. High community resistance was generally shown although the response was site-specific, dependent on the composition of the starting community, the size of the stream and physical habitat changes. High resilience was demonstrated in all recolonization experiments with strong correlations between pre- and post-defaunation communities, although there was a significant difference between pool and riffle habitats in the time-course of recovery. These differences can be explained by the movement characteristics of the species found in the different habitats. Resilience appeared to be a more predictable characteristic of the community than resistance and the implications of this for ensuring the long-term persistence of fish in the area are discussed. PMID:11605623
Inference and Analysis of Population Structure Using Genetic Data and Network Theory
Greenbaum, Gili; Templeton, Alan R.; Bar-David, Shirli
2016-01-01
Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance-based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of statistical rigor, model-based approaches entail assumptions of prior conditions such as that the subpopulations are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference about population structure using genetic data by defining population structure using network theory terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of all sampled individuals. The community partition, a partition of a network to dense subgraphs, is equated with population structure, a partition of the population to genetically related groups. Community-detection algorithms are used to partition the network into communities, interpreted as a partition of the population to subpopulations. The statistical significance of the structure can be estimated by using permutation tests to evaluate the significance of the partition’s modularity, a network theory measure indicating the quality of community partitions. To further characterize population structure, a new measure of the strength of association (SA) for an individual to its assigned community is presented. The strength of association distribution (SAD) of the communities is analyzed to provide additional population structure characteristics, such as the relative amount of gene flow experienced by the different subpopulations and identification of hybrid individuals. Human genetic data and simulations are used to demonstrate the applicability of the analyses. The approach presented here provides a novel, computationally efficient model-free method for inference about population structure that does not entail assumption of prior conditions. The method is implemented in the software NetStruct (available at https://giligreenbaum.wordpress.com/software/). PMID:26888080
Inference and Analysis of Population Structure Using Genetic Data and Network Theory.
Greenbaum, Gili; Templeton, Alan R; Bar-David, Shirli
2016-04-01
Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance-based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of statistical rigor, model-based approaches entail assumptions of prior conditions such as that the subpopulations are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference about population structure using genetic data by defining population structure using network theory terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of all sampled individuals. The community partition, a partition of a network to dense subgraphs, is equated with population structure, a partition of the population to genetically related groups. Community-detection algorithms are used to partition the network into communities, interpreted as a partition of the population to subpopulations. The statistical significance of the structure can be estimated by using permutation tests to evaluate the significance of the partition's modularity, a network theory measure indicating the quality of community partitions. To further characterize population structure, a new measure of the strength of association (SA) for an individual to its assigned community is presented. The strength of association distribution (SAD) of the communities is analyzed to provide additional population structure characteristics, such as the relative amount of gene flow experienced by the different subpopulations and identification of hybrid individuals. Human genetic data and simulations are used to demonstrate the applicability of the analyses. The approach presented here provides a novel, computationally efficient model-free method for inference about population structure that does not entail assumption of prior conditions. The method is implemented in the software NetStruct (available at https://giligreenbaum.wordpress.com/software/). Copyright © 2016 by the Genetics Society of America.
Säde, Elina; Penttinen, Katri; Björkroth, Johanna; Hultman, Jenni
2017-04-01
Understanding the factors influencing meat bacterial communities is important as these communities are largely responsible for meat spoilage. The composition and structure of a bacterial community on a high-O 2 modified-atmosphere packaged beef product were examined after packaging, on the use-by date and two days after, to determine whether the communities at each stage were similar to those in samples taken from different production lots. Furthermore, we examined whether the taxa associated with product spoilage were distributed across production lots. Results from 16S rRNA amplicon sequencing showed that while the early samples harbored distinct bacterial communities, after 8-12 days storage at 6 °C the communities were similar to those in samples from different lots, comprising mainly of common meat spoilage bacteria Carnobacterium spp., Brochothrix spp., Leuconostoc spp. and Lactococcus spp. Interestingly, abundant operational taxonomic units associated with product spoilage were shared between the production lots, suggesting that the bacteria enable to spoil the product were constant contaminants in the production chain. A characteristic succession pattern and the distribution of common spoilage bacteria between lots suggest that both the packaging type and the initial community structure influenced the development of the spoilage bacterial community. Copyright © 2016 Elsevier Ltd. All rights reserved.
An edge-centric perspective on the human connectome: link communities in the brain.
de Reus, Marcel A; Saenger, Victor M; Kahn, René S; van den Heuvel, Martijn P
2014-10-05
Brain function depends on efficient processing and integration of information within a complex network of neural interactions, known as the connectome. An important aspect of connectome architecture is the existence of community structure, providing an anatomical basis for the occurrence of functional specialization. Typically, communities are defined as groups of densely connected network nodes, representing clusters of brain regions. Looking at the connectome from a different perspective, instead focusing on the interconnecting links or edges, we find that the white matter pathways between brain regions also exhibit community structure. Eleven link communities were identified: five spanning through the midline fissure, three through the left hemisphere and three through the right hemisphere. We show that these link communities are consistently identifiable and investigate the network characteristics of their underlying white matter pathways. Furthermore, examination of the relationship between link communities and brain regions revealed that the majority of brain regions participate in multiple link communities. In particular, the highly connected and central hub regions showed a rich level of community participation, supporting the notion that these hubs play a pivotal role as confluence zones in which neural information from different domains merges. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Social contagions on time-varying community networks
NASA Astrophysics Data System (ADS)
Liu, Mian-Xin; Wang, Wei; Liu, Ying; Tang, Ming; Cai, Shi-Min; Zhang, Hai-Feng
2017-05-01
Time-varying community structures exist widely in real-world networks. However, previous studies on the dynamics of spreading seldom took this characteristic into account, especially those on social contagions. To study the effects of time-varying community structures on social contagions, we propose a non-Markovian social contagion model on time-varying community networks based on the activity-driven network model. A mean-field theory is developed to analyze the proposed model. Through theoretical analyses and numerical simulations, two hierarchical features of the behavior adoption processes are found. That is, when community strength is relatively large, the behavior can easily spread in one of the communities, while in the other community the spreading only occurs at higher behavioral information transmission rates. Meanwhile, in spatial-temporal evolution processes, hierarchical orders are observed for the behavior adoption. Moreover, under different information transmission rates, three distinctive patterns are demonstrated in the change of the whole network's final adoption proportion along with the growing community strength. Within a suitable range of transmission rate, an optimal community strength can be found that can maximize the final adoption proportion. Finally, compared with the average activity potential, the promoting or inhibiting of social contagions is much more influenced by the number of edges generated by active nodes.
Crane, Nicole L; Nelson, Peter; Abelson, Avigdor; Precoda, Kristin; Rulmal, John; Bernardi, Giacomo; Paddack, Michelle
2017-01-01
The dynamic relationship between reefs and the people who utilize them at a subsistence level is poorly understood. This paper characterizes atoll-scale patterns in shallow coral reef habitat and fish community structure, and correlates these with environmental characteristics and anthropogenic factors, critical to conservation efforts for the reefs and the people who depend on them. Hierarchical clustering analyses by site for benthic composition and fish community resulted in the same 3 major clusters: cluster 1-oceanic (close proximity to deep water) and uninhabited (low human impact); cluster 2-oceanic and inhabited (high human impact); and cluster 3-lagoonal (facing the inside of the lagoon) and inhabited (highest human impact). Distance from village, reef exposure to deep water and human population size had the greatest effect in predicting the fish and benthic community structure. Our study demonstrates a strong association between benthic and fish community structure and human use across the Ulithi Atoll (Yap State, Federated States of Micronesia) and confirms a pattern observed by local people that an 'opportunistic' scleractinian coral (Montipora sp.) is associated with more highly impacted reefs. Our findings suggest that small human populations (subsistence fishing) can nevertheless have considerable ecological impacts on reefs due, in part, to changes in fishing practices rather than overfishing per se, as well as larger global trends. Findings from this work can assist in building local capacity to manage reef resources across an atoll-wide scale, and illustrates the importance of anthropogenic impact even in small communities.
Zambrano, L.; Vazquez-Dominguez, E.; Garcia-Bedoya, D.; Loftus, W.F.; Trexler, J.C.
2006-01-01
We evaluated the relationship between limnetic characteristics and fish community structure (based on species richness, abundance and individual size) in contrasting but interconnected inland aquatic habitats of freshwater karstic wetlands in the Yucatan peninsula, Mexico. In the western hemisphere, freshwater karstic wetlands are found in south-eastern Mexico, northern Belize, western Cuba, Andros Island, Bahamas and the Everglades of southern Florida. Only in the Everglades have fish communities been well described. Karstic wetlands are typically oligotrophic because calcium carbonate binds phosphorus, making it relatively unavailable for plants. Fourteen permanent and seasonally flooded water bodies were sampled in both wet and dry seasons in Sian Ka'an Biosphere Reserve, in the Mexican state of Quintana Roo. Water systems were divided by morphology in four groups: cenotes with vegetation (CWV), cenotes without vegetation (CNV), wetlands (WTL), and temporal cenotes (TPC). Discriminant analysis based on physical characteristics such as turbidity, temperature, depth and oxygen confirmed that these habitats differed in characteristics known to influence fish communities. A sample-based rarefaction test showed that species richness was significantly different between water systems groups, showing that WTL and CWV had higher richness values than CNV and TPC. The most abundant fish families, Poeciliidae, Cichlidae and Characidae, differed significantly in average size among habitats and seasons. Seasonal and inter-annual variation, reflecting temporal variation in rainfall, strongly influenced the environmental differences between shallow and deep habitats, which could be linked to fish size and life cycles. Five new records of species were found for the reserve, and one new record for Quintana Roo state. ?? 2006 by Verlag Dr. Friedrich Pfeil.
NASA Astrophysics Data System (ADS)
Wetz, J. J.; Ajemian, M. J.; Streich, M.; Stunz, G. W.
2016-02-01
Artificial habitat in the northwestern Gulf of Mexico is predominantly comprised of both active and reefed oil and gas platforms. In the last few decades, Texas alone has converted over 140 decommissioned oil and gas platforms into permitted artificial reefs. Despite the predominance of this habitat type, the associated fish communities remain poorly studied and few comparisons with natural habitat have been done. Using remotely operated vehicles in 2012 and 2013, we documented fish assemblages surrounding 15 artificial structures and several natural banks located on the Texas shelf. Artificial sites were variable in depth (30-84 m), number of structures, and vertical relief. Both structure type and relief influenced species richness and community structure at these sites. However, bottom depth was most influential with a shift in community composition and high diversity observed at approximately 60 m depth. In this same region, drowned coralgal reefs (the South Texas Banks) provide natural hard substrate with relief up to 20 m. Comparisons between these natural habitats and artificial reefs with similar depths and relief clearly demonstrate fish community differences, perhaps indicating differences in habitat function. To attain species-specific management goals, reefing programs should carefully consider the ambient environmental conditions (i.e., depth) and proximity of natural habitats, as these will most certainly affect the fish assemblage and characteristics of exploited fisheries species.
Characterization of the ecological requirements for three plethodontid salamander species
Jessica A. Wooten; William B. Sutton; Thomas K. Pauley
2010-01-01
Increased availability of habitat and climate data has facilitated much research concerning the influence of these characteristics on the structure of salamander communities. We aimed to outline environmental requirements influencing the distribution of three sympatric plethodontid salamander species, including Plethodon cinereus, Desmognathus ochrophaeus...
Fellowships in community pharmacy research: Experiences of five schools and colleges of pharmacy.
Snyder, Margie E; Frail, Caitlin K; Gernant, Stephanie A; Bacci, Jennifer L; Coley, Kim C; Colip, Lauren M; Ferreri, Stefanie P; Hagemeier, Nicholas E; McGivney, Melissa Somma; Rodis, Jennifer L; Smith, Megan G; Smith, Randall B
2016-01-01
To describe common facilitators, challenges, and lessons learned in 5 schools and colleges of pharmacy in establishing community pharmacy research fellowships. Five schools and colleges of pharmacy in the United States. Schools and colleges of pharmacy with existing community partnerships identified a need and ability to develop opportunities for pharmacists to engage in advanced research training. Community pharmacy fellowships, each structured as 2 years long and in combination with graduate coursework, have been established at the University of Pittsburgh, Purdue University, East Tennessee State University, University of North Carolina at Chapel Hill, and The Ohio State University. Program directors from each of the 5 community pharmacy research fellowships identified common themes pertaining to program structure, outcomes, and lessons learned to assist others planning similar programs. Common characteristics across the programs include length of training, prerequisites, graduate coursework, mentoring structure, and immersion into a pharmacist patient care practice. Common facilitators have been the existence of strong community pharmacy partnerships, creating a fellowship advisory team, and networking. A common challenge has been recruitment, with many programs experiencing at least one year without filling the fellowship position. All program graduates (n = 4) have been successful in securing pharmacy faculty positions. Five schools and colleges of pharmacy share similar experiences in implementing community pharmacy research fellowships. Early outcomes show promise for this training pathway in growing future pharmacist-scientists focused on community pharmacy practice. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Fellowships in Community Pharmacy Research: Experiences of Five Schools and Colleges of Pharmacy
Snyder, Margie E.; Frail, Caitlin K.; Gernant, Stephanie A.; Bacci, Jennifer L.; Coley, Kim C.; Colip, Lauren M.; Ferreri, Stefanie P.; Hagemeier, Nicholas E.; McGivney, Melissa Somma; Rodis, Jennifer L.; Smith, Megan G.; Smith, Randall B.
2017-01-01
Objective To describe common facilitators, challenges, and lessons learned of five schools and colleges of pharmacy in establishing community pharmacy research fellowships. Setting Five schools and colleges of pharmacy in the United States. Practice Description Schools and colleges of pharmacy with existing community partnerships identified a need and ability to develop opportunities for pharmacists to engage in advanced research training. Practice Innovation Community pharmacy fellowships, each structured as two years in length and in combination with graduate coursework, have been established at the University of Pittsburgh, Purdue University, East Tennessee State University, University of North Carolina at Chapel Hill and The Ohio State University. Evaluation Program directors from each of the five community pharmacy research fellowships identified common themes pertaining to program structure, outcomes, and lessons learned to assist others planning similar programs. Results Common characteristics across the programs include length of training, pre-requisites, graduate coursework, mentoring structure, and immersion into a pharmacist patient care practice. Common facilitators have been the existence of strong community pharmacy partnerships, creating a fellowship advisory team, and networking. A common challenge has been recruitment, with many programs experiencing at least one year without filling the fellowship position. All program graduates (n=4) have been successful in securing pharmacy faculty positions. Conclusion Five schools and colleges of pharmacy share similar experiences in implementing community pharmacy research fellowships. Early outcomes show promise for this training pathway in growing future pharmacist-scientists focused on community pharmacy practice. PMID:27083852
Ethnicity, Social Support, and Depression Among Elderly Chilean People.
Gallardo-Peralta, Lorena P; Sánchez-Moreno, Esteban; López De Roda, Ana Barrón; Arias Astray, Andrés
2015-01-01
Recent evidence regarding the relationship between social support and depression in elderly people shows the important role of ethnicity. This research describes the characteristics of social support in a sample of elderly people aged 60 and above living in northern Chile (n = 493), and analyzes the differences in the relationship between social support and depression between an indigenous group (Aymara population, n = 147) and a nonindigenous group (white, Caucasian, mestizo, n = 346). Various dimensions of social support were considered: structural elements, functional social support according to source, and community participation. The results show the existence of significant differences in the characteristics and dimensions of social support depending on sex, ethnicity, and marital status. Further, the central role of the family group is observed for both Aymara and nonindigenous elderly people. The hierarchical regression models obtained result in notable differences in the role of the structural, functional, and community elements of support in explaining depression for the ethnic groups considered.
Kanaya, Gen; Uehara, Tadayasu; Kikuchi, Eisuke
2016-08-15
An annual field survey and in situ recolonization experiment revealed the effects of sedimentary sulfide (H2S) on macrozoobenthos in a eutrophic brackish lagoon. Species diversity was much lower throughout the year in muddy opportunist-dominant sulfidic areas. Mass mortality occurred during warmer months under elevated H2S levels. An enclosure experiment demonstrated that sedimentary H2S modified community composition, size structure, and colonization depth of macrozoobenthos. Species-specific responses to each sediment type (sand, sulfidic mud, and mud with H2S removed) resulted in changes in the established community structure. Dominant polychaetes (Hediste spp., Pseudopolydora spp., and Capitella teleta) occurred predominantly in a thin surface layer in the presence of H2S. On the other hand, organic-rich mud facilitated settlement of polychaete larvae if it does not contain H2S. These results demonstrate that sediment characteristics, including H2S level and organic content, were key structuring factors for the macrozoobenthic assemblage in organically polluted estuarine sediments. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Daly, Aisling J.; Baetens, Jan M.; De Baets, Bernard
2016-12-01
Biodiversity has a critical impact on ecosystem functionality and stability, and thus the current biodiversity crisis has motivated many studies of the mechanisms that sustain biodiversity, a notable example being non-transitive or cyclic competition. We therefore extend existing microscopic models of communities with cyclic competition by incorporating resource dependence in demographic processes, characteristics of natural systems often oversimplified or overlooked by modellers. The spatially explicit nature of our individual-based model of three interacting species results in the formation of stable spatial structures, which have significant effects on community functioning, in agreement with experimental observations of pattern formation in microbial communities.
Badin, Anne Laure; Monier, Armelle; Volatier, Laurence; Geremia, Roberto A; Delolme, Cécile; Bedell, Jean-Philippe
2011-05-01
The sedimentary layer deposited at the surface of stormwater infiltration basins is highly organic and multicontaminated. It undergoes considerable moisture content fluctuations due to the drying and inundation cycles (called hydric dynamics) of these basins. Little is known about the microflora of the sediments and its dynamics; hence, the purpose of this study is to describe the physicochemical and biological characteristics of the sediments at different hydric statuses of the infiltration basin. Sediments were sampled at five time points following rain events and dry periods. They were characterized by physical (aggregation), chemical (nutrients and heavy metals), and biological (total, bacterial and fungal biomasses, and genotypic fingerprints of total bacterial and fungal communities) parameters. Data were processed using statistical analyses which indicated that heavy metal (1,841 μg/g dry weight (DW)) and organic matter (11%) remained stable through time. By contrast, aggregation, nutrient content (NH₄⁺, 53-717 μg/g DW), pH (6.9-7.4), and biological parameters were shown to vary with sediment water content and sediment biomass, and were higher consecutive to stormwater flows into the basin (up to 7 mg C/g DW) than during dry periods (0.6 mg C/g DW). Coinertia analysis revealed that the structure of the bacterial communities is driven by the hydric dynamics of the infiltration basin, although no such trend was found for fungal communities. Hydric dynamics more than rain events appear to be more relevant for explaining variations of aggregation, microbial biomass, and shift in the microbial community composition. We concluded that the hydric dynamics of stormwater infiltration basins greatly affects the structural stability of the sedimentary layer, the biomass of the microbial community living in it and its dynamics. The decrease in aggregation consecutive to rewetting probably enhances access to organic matter (OM), explaining the consecutive release of NH₄⁺, the bloom of the microbial biomass, and the change in structure of the bacterial community. These results open new perspectives for basin management since the risk of OM and pollutant transfer to the aquifer is greatly affected by alternating dry and flood periods.
The role of banks in the Brazilian interbank market: Does bank type matter?
NASA Astrophysics Data System (ADS)
Cajueiro, Daniel O.; Tabak, Benjamin M.
2008-12-01
This paper analyzes the Brazilian interbank network structure using a complex network-based approach. Results suggest a weak evidence of community structure, high heterogeneity of the network and that this market is characterized by money centers having exposures to many banks. Furthermore, we go beyond the structure of the network using information about the characteristics of the nodes and a non-parametric test in order to understand the role of the banks in the interbanking market.
Effects of timber harvesting on birds in the Black Hills of South Dakota and Wyoming, USA
Brian L. Dykstra; Mark A. Rumble; Lester D. Flake
1997-01-01
Timber harvest alters structural characteristics in ponderosa pine forests. In the Black Hills, harvested stands with 40-70% overstory canopy cover are managed as sapling/pole (3.0 - 22.9 cm dbh) or mature (> 22.9 cm dbh) stands. Changing the forest structure to two size classes has unknown effects on bird communities in this region. We counted birds in 20 harvested...
Hutchinson, Susan L; Fenton, Lara
2018-05-01
There is merit in understanding how recreation-oriented programs for adults living with mental illness address barriers to participation and how programming is structured to create safe and inclusive environments, resulting in programming that amplifies the benefits of recreation for mental well-being. Following an environmental scan of programs targeting adults living with mental illness in Canada, ten coordinators in community mental health settings were interviewed. Four themes were constructed to reflect characteristics deemed to be 'promising practices' related to recreation-oriented programming: (a) barriers and solutions to individual participation, (b) characteristics of welcoming and supportive environments, (c) leadership characteristics, and (d) program characteristics.
Untangling the fungal niche: the trait-based approach.
Crowther, Thomas W; Maynard, Daniel S; Crowther, Terence R; Peccia, Jordan; Smith, Jeffrey R; Bradford, Mark A
2014-01-01
Fungi are prominent components of most terrestrial ecosystems, both in terms of biomass and ecosystem functioning, but the hyper-diverse nature of most communities has obscured the search for unifying principles governing community organization. In particular, unlike plants and animals, observational studies provide little evidence for the existence of niche processes in structuring fungal communities at broad spatial scales. This limits our capacity to predict how communities, and their functioning, vary across landscapes. We outline how a shift in focus, from taxonomy toward functional traits, might prove to be valuable in the search for general patterns in fungal ecology. We build on theoretical advances in plant and animal ecology to provide an empirical framework for a trait-based approach in fungal community ecology. Drawing upon specific characteristics of the fungal system, we highlight the significance of drought stress and combat in structuring free-living fungal communities. We propose a conceptual model to formalize how trade-offs between stress-tolerance and combative dominance are likely to organize communities across environmental gradients. Given that the survival of a fungus in a given environment is contingent on its ability to tolerate antagonistic competitors, measuring variation in combat trait expression along environmental gradients provides a means of elucidating realized, from fundamental niche spaces. We conclude that, using a trait-based understanding of how niche processes structure fungal communities across time and space, we can ultimately link communities with ecosystem functioning. Our trait-based framework highlights fundamental uncertainties that require testing in the fungal system, given their potential to uncover general mechanisms in fungal ecology.
NASA Astrophysics Data System (ADS)
Rosli, Norliana; Leduc, Daniel; Rowden, Ashley A.; Probert, P. Keith; Clark, Malcolm R.
2018-01-01
Deep-sea community attributes vary at a range of spatial scales. However, identifying the scale at which environmental factors affect variability in deep-sea communities remains difficult, as few studies have been designed in such a way as to allow meaningful comparisons across more than two spatial scales. In the present study, we investigated nematode diversity, community structure and trophic structure at different spatial scales (sediment depth (cm), habitat (seamount, canyon, continental slope; 1-100 km), and geographic region (100-10000 km)), while accounting for the effects of water depth, in two regions on New Zealand's continental margin. The greatest variability in community attributes was found between sediment depth layers and between regions, which explained 2-4 times more variability than habitats. The effect of habitat was consistently stronger in the Hikurangi Margin than the Bay of Plenty for all community attributes, whereas the opposite pattern was found in the Bay of Plenty where effect of sediment depth was greater in Bay of Plenty. The different patterns at each scale in each region reflect the differences in the environmental variables between regions that control nematode community attributes. Analyses suggest that nematode communities are mostly influenced by sediment characteristics and food availability, but that disturbance (fishing activity and bioturbation) also accounts for some of the observed patterns. The results provide new insight on the relative importance of processes operating at different spatial scales in regulating nematode communities in the deep-sea, and indicate potential differences in vulnerability to anthropogenic disturbance.
Depending upon the classification scheme applied, there are between 10 and 45 different wetland types in Florida. Land use and land cover change has a marked effect on wetland condition, and different wetland types are affected differentially depending on many abiotic and biotic ...
Drug Abuse & the Criminal Justice System. Chapter 7.
ERIC Educational Resources Information Center
Acampora, Alfonso P., Ed.; Nebelkopf, Ethan, Ed.
This document contains seven papers from the ninth World Conference of Therapeutic Communities (TCs) that deal with drug abuse and the criminal justice system. Papers include: (1) "Some Characteristics of the Social Structure & Social Organization of the TCs" (Lewis Yablonsky); (2) "Therapeutics & Incarceration: They Said It…
'Net Equity: A Report on Income and Internet Access.
ERIC Educational Resources Information Center
Moss, Mitchell; Mitra, Steve
1998-01-01
Examines the structure of the subscriber base formed under the current pricing policies of Internet providers and investigates how access to the Internet varies in communities with different demographic characteristics. Report is based on a survey from a national Internet service provided in 1997. (SLD)
Effective numbers in the partitioning of biological diversity.
Gregorius, Hans-Rolf
2016-11-21
Admissible measures of diversity allow specification of the number of types (species, alleles, etc.) that are "effectively" involved in producing the diversity (the "diversity effective number", also referred to as "true diversity") of a community or population. In metacommunities, effective numbers additionally serve in partitioning the total diversity (symbolized by γ) into one component summarizing the diversity within communities (symbolized by α) and an independent component summarizing the differences between communities (symbolized by β). There is growing consensus that the β-component should be treated in terms of an effective number of "distinct" communities in the metacommunity. Yet, the notion of distinctness is shown in the present paper to remain conceptually ambiguous at least with respect to the diversity within the "distinct" communities. To overcome this ambiguity and to provide the means for designing further desirable effective numbers, a new approach is taken that involves a generalized concept of effective number. The approach relies on first specifying the distributional characteristics of partitioning diversity among communities (among which are differentiation, where the same types tend to occur in the same communities, and apportionment, where different types tend to occur in different communities), then developing the indices which measure these characteristics, and finally inferring the effective numbers from these indices. (1) The β-component reflects apportionment characteristics of metacommunity structure and is quantified by the "apportionment effective number" of communities (number of effectively monomorphic communities). Since differentiation between communities arises only as a side effect of apportionment, the common interpretation of the β-component in terms of differentiation is unwarranted. (2) Multiplicative as well as additive methods of partitioning the total type diversity (γ) involve apportionment effective numbers of communities that are based on different apportionment indices. (3) "Differentiation effective numbers" of communities exist but do not conform with the classical concept of partitioning total type diversity into components within and between communities. (4) Differentiation characteristics are measured as effective numbers of distinct types (rather than communities) from the dual perspective, in which the roles of type and community membership are exchanged. This is relevant e.g. in studies of endemism and competitive exclusion. (5) For Shannon-Wiener diversity, all of the differentiation and apportionment effective numbers are equal, with the exception of those representing additive partitioning. (6) Under either perspective, that is dual or non-dual, measures of compositional differentiation (as originally suggested for the assessment of β-diversity) do not figure in the partitioning of total diversity into components, since they do not build on the intrinsic concept of diversity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Siles, José A; Margesin, Rosa
2018-05-01
The study of microbial communities involved in soil bioremediation is important to identify the specific microbial characteristics that determine improved decontamination rates. Here, we characterized bacterial, archaeal, and fungal communities in terms of (i) abundance (using quantitative PCR) and (ii) taxonomic diversity and structure (using Illumina amplicon sequencing) during the bioremediation of long-term hydrocarbon-contaminated soil from an Alpine former military site during 15 weeks comparing biostimulation (inorganic NPK fertilization) vs. natural attenuation and considering the effect of temperature (10 vs. 20 °C). Although a considerable amount of total petroleum hydrocarbon (TPH) loss could be attributed to natural attenuation, significantly higher TPH removal rates were obtained with NPK fertilization and at increased temperature, which were related to the stimulation of the activities of indigenous soil microorganisms. Changing structures of bacterial and fungal communities significantly explained shifts in TPH contents in both natural attenuation and biostimulation treatments at 10 and 20 °C. However, archaeal communities, in general, and changing abundances and diversities in bacterial and fungal communities did not play a decisive role on the effectiveness of soil bioremediation. Gammaproteobacteria and Bacteroidia classes, within bacterial community, and undescribed/novel groups, within fungal community, proved to be actively involved in TPH removal in natural attenuation and biostimulation at both temperatures.
King, Gillian; Servais, Michelle; Kertoy, Marilyn; Specht, Jacqueline; Currie, Melissa; Rosenbaum, Peter; Law, Mary; Forchuk, Cheryl; Chalmers, Heather; Willoughby, Teena
2009-08-01
Currently, there are no psychometrically sound outcome measures by which to assess the impacts of research partnerships. This article describes the development of a 33-item, survey questionnaire measuring community members' perceptions of the impact of research partnerships addressing health or social issues. The Community Impacts of Research Oriented Partnerships (CIROP) was developed using information from the literatures on health promotion, community development, research utilization, and community-based participatory research, and from focus groups involving 29 key informants. Data from 174 community members were used to determine the factor structure, internal consistency, and test-retest reliability of the four CIROP scales, and to provide evidence of construct validity. The CIROP informs research partnerships about the extent of their impact in the areas of Personal Knowledge Development, Personal Research Skill Development, Organizational/Group Access To and Use of Information, and Community and Organizational Development, allowing them to demonstrate accountability to funding bodies. As well, the CIROP can be used as a research tool to assess the effectiveness of knowledge sharing approaches, determine the most influential activities of research partnerships, and determine structural characteristics of partnerships associated with various types of impact. The CIROP provides a better understanding of community members' perspectives and expectations of research partnerships, with important implications for knowledge transfer and uptake.
Mnemonic convergence in social networks: The emergent properties of cognition at a collective level
Coman, Alin; Momennejad, Ida; Drach, Rae D.; Geana, Andra
2016-01-01
The development of shared memories, beliefs, and norms is a fundamental characteristic of human communities. These emergent outcomes are thought to occur owing to a dynamic system of information sharing and memory updating, which fundamentally depends on communication. Here we report results on the formation of collective memories in laboratory-created communities. We manipulated conversational network structure in a series of real-time, computer-mediated interactions in fourteen 10-member communities. The results show that mnemonic convergence, measured as the degree of overlap among community members’ memories, is influenced by both individual-level information-processing phenomena and by the conversational social network structure created during conversational recall. By studying laboratory-created social networks, we show how large-scale social phenomena (i.e., collective memory) can emerge out of microlevel local dynamics (i.e., mnemonic reinforcement and suppression effects). The social-interactionist approach proposed herein points to optimal strategies for spreading information in social networks and provides a framework for measuring and forging collective memories in communities of individuals. PMID:27357678
Uroz, S; Oger, P; Tisserand, E; Cébron, A; Turpault, M-P; Buée, M; De Boer, W; Leveau, J H J; Frey-Klett, P
2016-06-15
The impacts of plant species on the microbial communities and physico-chemical characteristics of soil are well documented for many herbs, grasses and legumes but much less so for tree species. Here, we investigate by rRNA and ITS amplicon sequencing the diversity of microorganisms from the three domains of life (Archaea, Bacteria and Eukaryota:Fungi) in soil samples taken from the forest experimental site of Breuil-Chenue (France). We discovered significant differences in the abundance, composition and structure of the microbial communities associated with two phylogenetically distant tree species of the same age, deciduous European beech (Fagus sylvatica) and coniferous Norway spruce (Picea abies Karst), planted in the same soil. Our results suggest a significant effect of tree species on soil microbiota though in different ways for each of the three microbial groups. Fungal and archaeal community structures and compositions are mainly determined according to tree species, whereas bacterial communities differ to a great degree between rhizosphere and bulk soils, regardless of the tree species. These results were confirmed by quantitative PCR, which revealed significant enrichment of specific bacterial genera, such as Burkholderia and Collimonas, known for their ability to weather minerals within the tree root vicinity.
Structure of Benthic Communities along the Taiwan Latitudinal Gradient
De Palmas, Stéphane; Kuo, Chao-Yang; Hsieh, Hernyi Justin; Chen, Chaolun Allen
2016-01-01
The distribution and the structure of benthic assemblages vary with latitude. However, few studies have described benthic communities along large latitudinal gradients, and patterns of variation are not fully understood. Taiwan, lying between 21.90°N and 25.30°N, is located at the center of the Philippine-Japan arc and lies at the northern margin of coral reef development. A wide range of habitats is distributed along this latitudinal gradient, from extensive fringing coral reefs at the southern coast to non-reefal communities at the north. In this study, we examined the structure of benthic communities around Taiwan, by comparing its assemblages in four regions, analyzing the effects of the latitudinal gradient, and highlighting regional characteristics. A total of 25 sites, 125 transects, and 2,625 photographs were used to analyze the benthic communities. Scleractinian corals present an obvious gradient of increasing diversity from north to south, whereas macro-algae diversity is higher on the north-eastern coast. At the country scale, Taiwanese coral communities were dominated by turf algae (49%). At the regional scale, we observed an important heterogeneity that may be caused by local disturbances and habitat degradation that smooths out regional differences. In this context, our observations highlight the importance of managing local stressors responsible for reef degradation. Overall, this study provides an important baseline upon which future changes in benthic assemblages around Taiwan can be assessed. PMID:27513665
Geographic Clustering of Underage Drinking and the Influence of Community Characteristics
Reboussin, Beth A.; Preisser, John S.; Song, Eun-Young; Wolfson, Mark
2009-01-01
The aim of this paper was to examine the extent to which underage drinking clusters geographically in a sample of communities, and to investigate the manner in which community-level contexts are related to this process. We used data from a randomized community trial of underage drinking to provide the first quantitative estimates of the magnitude of the geographic clustering of underage drinking based upon pairwise odds ratios (PWORs). The Enforcing Underage Drinking Laws Randomized Community Trial provided data from repeated cross-sectional samples of youth aged 14-20 from 68 communities surveyed in 2004, 2006, and 2007 (n=18, 730). Past 30-day drinking, binge drinking, getting drunk, experiencing non-violent consequences as a result of drinking and making a purchase attempt all significantly clustered within-communities with PWORs ranging from 1.05 to 1.21. After adjustment for individual-level characteristics, results remained relatively unchanged. However, there was evidence that the magnitude of the clustering varied as a function of neighborhood disadvantage, neighborhood disorder, and family structure. Clustering of drunkenness and experiencing non-violent consequences as a result of drinking was greatest in the least economically disadvantaged and least disordered communities with the greatest percentage of married couple families. The clustering of making a purchase attempt, however, was greatest in more disordered communities, specifically the largest communities with the highest degree of residential mobility and housing density. These findings that clustering of underage drinking behaviors varies by community context has the potential for identifying the types of communities to target for underage drinking behavior-specific preventive interventions. PMID:19740611
Geographic clustering of underage drinking and the influence of community characteristics.
Reboussin, Beth A; Preisser, John S; Song, Eun-Young; Wolfson, Mark
2010-01-01
The aim of this paper was to examine the extent to which underage drinking clusters geographically in a sample of communities, and to investigate the manner in which community-level contexts are related to this process. We used data from a randomized community trial of underage drinking to provide the first quantitative estimates of the magnitude of the geographic clustering of underage drinking based upon pairwise odds ratios (PWORs). The Enforcing Underage Drinking Laws Randomized Community Trial provided data from repeated cross-sectional samples of youth aged 14-20 from 68 communities surveyed in 2004, 2006, and 2007 (n=18,730). Past 30-day drinking, binge drinking, getting drunk, experiencing non-violent consequences as a result of drinking and making a purchase attempt all significantly clustered within-communities with PWORs ranging from 1.05 to 1.21. After adjustment for individual-level characteristics, results remained relatively unchanged. However, there was evidence that the magnitude of the clustering varied as a function of neighborhood disadvantage, neighborhood disorder, and family structure. Clustering of drunkenness and experiencing non-violent consequences as a result of drinking was greatest in the least economically disadvantaged and least disordered communities with the greatest percentage of married-couple families. The clustering of making a purchase attempt, however, was greatest in more disordered communities, specifically the largest communities with the highest degree of residential mobility and housing density. These findings that clustering of underage drinking behaviors varies by community context has the potential for identifying the types of communities to target for underage drinking behavior-specific preventive interventions. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Performance in quasi-firms: an example from the Community Clinical Oncology Program.
Lacey, L M; Hynes, D M; Kaluzny, A D
1992-01-01
In this analysis, the authors examined the effects of different sets of process, structure, and environmental variables on the performance of the CCOP as a quasi-firm. Specifically, they distinguished between internal organizational processes, structural, and size characteristics of the CCOP and the organizational environment created by prior NCI program experience and the relationship within the quasi-firm. The analysis revealed that these sets of organizational and environmental characteristics have differential effects on treatment accrual. The strongest predictors are those associated with the quasi-firm relationship between the CCOP and its chosen research bases. Any definitive policy implications for the design of organizational network relationships--especially the CCOPs--will require further analysis. Particular attention needs to be given to the longitudinal nature of the relationships and the ability of these organizational and environmental factors to affect other aspects of performance. Several points have been made within this initial assessment. First, the structural character of the CCOP and its relationship to its organizational environment are important factors affecting accrual performance. The subtleties of this multivariate model are not as important as simply demonstrating that the various internal and external characteristics of these organizations as quasi-firms simultaneously affect their ability to accrue patients to clinical trials. Secondly, the importance of research base relations, and particularly the significant role of nurses, needs to be emphasized. While CCOPs were originally designed as a network of physicians and hospitals, it appears that an infrastructure of professionally active nurses working within a larger organizational environment is critical to success--at least as defined by accrual to treatment protocols. Finally, the failure of prior experience with other NCI community programs to affect CCOP accrual performance suggests that such experience does not assure "organizational learning" that may enhance performance. This suggests that CCOPs can be designated de novo to maximize performance without necessarily having to undergo a developmental or experiential phase involving community cancer programs to be effective. However, the authors suspect that another method of characterizing experience may produce different results. Further analyses of these data will test these results against other measures of CCOP performance. Specifically, attention will be given to whether this same set of characteristics is predictive of accrual to cancer control research protocols. Similarly, these same organizational characteristics may or may not be associated with other dimensions of CCOP performance such as changes in physician practice patterns and/or levels of institutionalization of the CCOP within its local community.(ABSTRACT TRUNCATED AT 400 WORDS)
Pyrosequencing analysis of the bacterial community in drinking water wells.
Navarro-Noya, Yendi E; Suárez-Arriaga, Mayra C; Rojas-Valdes, Aketzally; Montoya-Ciriaco, Nina M; Gómez-Acata, Selene; Fernández-Luqueño, Fabián; Dendooven, Luc
2013-07-01
Wells used for drinking water often have a large biomass and a high bacterial diversity. Current technologies are not always able to reduce the bacterial population, and the threat of pathogen proliferation in drinking water sources is omnipresent. The environmental conditions that shape the microbial communities in drinking water sources have to be elucidated, so that pathogen proliferation can be foreseen. In this work, the bacterial community in nine water wells of a groundwater aquifer in Northern Mexico were characterized and correlated to environmental characteristics that might control them. Although a large variation was observed between the water samples, temperature and iron concentration were the characteristics that affected the bacterial community structure and composition in groundwater wells. Small increases in the concentration of iron in water modified the bacterial communities and promoted the growth of the iron-oxidizing bacteria Acidovorax. The abundance of the genera Flavobacterium and Duganella was correlated positively with temperature and the Acidobacteria Gp4 and Gp1, and the genus Acidovorax with iron concentrations in the well water. Large percentages of Flavobacterium and Pseudomonas bacteria were found, and this is of special concern as bacteria belonging to both genera are often biofilm developers, where pathogens survival increases.
Zinzow, Heidi M.; Ruggiero, Kenneth J.; Hanson, Rochelle F.; Smith, Daniel W.; Saunders, Benjamin E.; Kilpatrick, Dean G.
2009-01-01
This study examined whether witnessed community and parental violence represented risk factors for substance use and delinquency among adolescents, beyond the contribution of direct violence and other risk factors. We also examined the role of violence characteristics. Participants were a national sample of 3,614 adolescents. Structured telephone interviews assessed demographics, trauma history, witnessed violence, delinquency, and substance use. While accounting for trauma history and other risk factors, witnessed community and parental violence were associated with delinquency. Community violence was associated with substance use. Chronic violence, knowing the perpetrator, and violence outside of school were correlated with substance use and delinquency among adolescents who witnessed community violence. These findings highlight the importance of targeting witnessed violence in prevention and intervention efforts. PMID:19885872
Zinzow, Heidi M; Ruggiero, Kenneth J; Hanson, Rochelle F; Smith, Daniel W; Saunders, Benjamin E; Kilpatrick, Dean G
2009-12-01
This study examined whether witnessed community and parental violence represented risk factors for substance use and delinquency among adolescents, beyond the contribution of direct violence and other risk factors. We also examined the role of violence characteristics. Participants were a national sample of 3,614 adolescents. Structured telephone interviews assessed demographics, trauma history, witnessed violence, delinquency, and substance use. While accounting for trauma history and other risk factors, witnessed community and parental violence were associated with delinquency. Community violence was associated with substance use. Chronic violence, knowing the perpetrator, and violence outside of school were correlated with substance use and delinquency among adolescents who witnessed community violence. These findings highlight the importance of targeting witnessed violence in prevention and intervention efforts.
Community characteristics as predictors of perceived HMO quality.
Ahern, M M; Hendryx, M S
1998-06-01
We model the impact of community characteristics on people's perceptions of the quality of their health care experiences in HMOs. We focus on three community characteristics: sense of community, population density, and population diversity. Sense of community refers to people's perception of interconnection, shared responsibility, and common goals. Population density and population diversity are community characteristics that affect transactions costs in terms of time and energy, and affect people's perceptions of their community. We use data from a 1993 Florida poll to estimate the relationship between HMO members' perceptions of problems with health care experiences (cost, choice, access, satisfaction) and community characteristics. We find that all three community variables are significantly associated with perceptions of health care problems. We also find that effects of community variables operate differently for those in HMOs vs. those under traditional insurance. This study is consistent with research showing that community characteristics impact the health status of community institutions. Results suggest that providers may be able to improve care by being more responsive to individuals' need for community, that providers and communities can mutually gain by collaborating to improve community health, and that it may be cost-beneficial to factor community issues more strongly into health care policy.
Song, Woojin; Kim, Mincheol; Tripathi, Binu M; Kim, Hyoki; Adams, Jonathan M
2016-06-01
It is difficult to understand the processes that structure immensely complex bacterial communities in the soil environment, necessitating a simplifying experimental approach. Here, we set up a microcosm culturing experiment with soil bacteria, at a range of nutrient concentrations, and compared these over time to understand the relationship between soil bacterial community structure and time/nutrient concentration. DNA from each replicate was analysed using HiSeq2000 Illumina sequencing of the 16S rRNA gene. We found that each nutrient treatment, and each time point during the experiment, produces characteristic bacterial communities that occur predictably between replicates. It is clear that within the context of this experiment, many soil bacteria have distinct niches from one another, in terms of both nutrient concentration, and successional time point since a resource first became available. This fine niche differentiation may in part help to explain the coexistence of a diversity of bacteria in soils. In this experiment, we show that the unimodal relationship between nutrient concentration/time and species diversity often reported in communities of larger organisms is also evident in microbial communities. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Integrating limnological characteristics of high mountain lakes into the landscape of a natural area
Larson, Gary L.; Wones, A.; McIntire, C.D.; Samora, B.
1994-01-01
A general conceptual watershed-lake model of the complex interactions among climatic conditions, watershed location and characteristics, lake morphology, and fish predation was used to evaluate limnological characteristics of high mountain lakes. Our main hypothesis was that decreasing elevation in mountainous terrain corresponds to an increase in diversity of watershed size and lake area, depth, temperature, nutrient concentrations, and productivity. A second hypothesis was that watershed location and aspect relative to climatic gradients within mountainous terrain influences the limnological characteristics of the lakes. We evaluated these hypotheses by examining watershed location, aspect and size; lake morphology; water quality; and phytoplankton and zooplankton community characteristics among high mountain forest and subalpine lakes in Mount Rainier National Park. Although many of the comparisons between all forest and subalpine lakes were statistically insignificant, the results revealed trends that were consistent with our hypotheses. The forest lake group included more lakes with larger watersheds, larger surface areas, greater depths, higher concentrations of nutrients, and higher algal biovolumes than did the group of subalpine lakes. Deep lakes, which were mostly of the forest lake type, exhibited thermal stratification and relatively high values of some of the water-quality variables near the lake bottoms. However, the highest near-surface water temperatures and phytoplankton densities and the taxonomic structures of the phytoplankton and zooplankton assemblages were more closely related to geographical location, which corresponded to a west-east climate gradient in the park, than to lake type. Some crustacean and rotifer taxa, however, were limited in distribution by lake type. Fish predation did not appear to play an important role in the structure of the crustacean zooplankton communities at the genus level with the exception of Mowich Lake, where crustacean taxa were absent from the zooplankton community. This was the only lake inhabited by a true zooplanktivourous species of fish.
Isazadeh, Siavash; Jauffur, Shameem; Frigon, Dominic
2016-12-01
Effect of ecological variables on community assembly of heterotrophic bacteria at eight full-scale and two pilot-scale activated sludge wastewater treatment plants (AS-WWTPs) were explored by pyrosequencing of 16S rRNA gene amplicons. In total, 39 samples covering a range of abiotic factors spread over space and time were analyzed. A core bacterial community of 24 families detected in at least six of the eight AS-WWTPs was defined. In addition to the core families, plant-specific families (observed at <50% AS-WWTPs) were found to be also important in the community structure. Observed beta diversity was partitioned with respect to ecological variables. Specifically, the following variables were considered: influent wastewater characteristics, season (winter vs. summer), process operations (conventional, oxidation ditch, and sequence batch reactor), reactor sizes (pilot-scale vs. full-scale reactors), chemical stresses defined by ozonation of return activated sludge, interannual variation, and geographical locations. Among the assessed variables, influent wastewater characteristics and geographical locations contributed more in explaining the differences between AS-WWTP bacterial communities with a maximum of approximately 26% of the observed variations. Partitioning of beta diversity is necessary to interpret the inherent variability in microbial community assembly and identify the driving forces at play in engineered microbial ecosystem. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Family Characteristics of Anxious ADHD Children: Preliminary Results
ERIC Educational Resources Information Center
Kepley, Hayden O.; Ostrander, Rick
2007-01-01
Objective: To investigate the family environments of children in a community sample with ADHD and co-occurring anxiety. Method: Family Environment Scale, Behavioral Assessment System for Children, and Structured Clinical Interview are administered to parents of children with ADHD with and without anxiety. Results: ADHD families are uniformly less…
Why Leadership Matters: Empowering Teachers to Implement Formative Assessment
ERIC Educational Resources Information Center
Hollingworth, Liz
2012-01-01
Purpose: The focus of this research is to understand the role of the district superintendent, the building principal, and the school leadership team of classroom teachers as catalysts for innovation in instruction and classroom assessment. School characteristics and structures designed to specifically support professional learning communities are…
USDA-ARS?s Scientific Manuscript database
Climate models predict increased variability in precipitation regimes, which will likely increase frequency/duration of drought. Reductions in soil moisture affect physical and chemical characteristics of the soil habitat and can influence soil organisms such as mites and nematodes. These organisms ...
ERIC Educational Resources Information Center
Diggins, Patrick B.
1997-01-01
Reflects on what schools must do to become genuine learning organizations. Traditional organizational culture was typically inward looking, centralized, and insular. Bureaucratic systems make schools structurally ineffective. Mintzberg's varied government and normative-control models are less suitable for education than Alfred C. Crane's…
David Stoker; Amber J. Falkner; Kelly M. Murray; Ashley K. Lang; Thomas R. Barnum; Jeffrey Hepinstall-Cymerman; Michael J. Conroy; Robert J. Cooper; Catherine M. Pringle
2017-01-01
Resource subsidies and biodiversity are essential for maintaining community structure and ecosystem functioning, but the relative importance of consumer diversity and resource characteristics to decomposition remains unclear. Forested headwater streams are detritus-based systems, dependent on leaf litter inputs from adjacent riparian ecosystems, and...
The Hoosier-Shawnee Ecological assessment
Frank R., III, ed. Thompson; ed.
2004-01-01
This report is a scientific assessment of the characteristic composition, structure, and processes of ecosystems in the southern one-third of Illinois and Indiana and a small part of western Kentucky. It includes chapters on ecological sections and soils, water resources, forest, plants, and communities, aquatic animals, terrestrial animals, forest diseases and pests...
The Incorporation of Animal-Assisted Interventions in Social Work Education
ERIC Educational Resources Information Center
Tedeschi, Philip; Fitchett, Jennifer; Molidor, Christian E.
2005-01-01
Successful social work practice requires orientation to diverse social and cultural characteristics which structure the framework for our communities and families. This paper explores the necessity of incorporating the connection between people and non-human relationships in our understanding of social support systems. Specifically, we examine our…
Exotic plants as ecosystem dominants
Julie S. Denslow; R. Flint Hughes
2004-01-01
Dominant species have long been appreciated for their role in determining ecosystem attributes such as vegetation structure, successional patterns, soil characteristics, hydrology, and productivity. Exotic species may reach such high densities that they become community dominants, and it is in this role that exotics pose the greatest threat to native ecosystems. Four...
Distribution of periphytic algae in wetlands (Palm swamps, Cerrado), Brazil.
Dunck, B; Nogueira, I S; Felisberto, S A
2013-05-01
The distribution of periphytic algae communities depends on various factors such as type of substrate, level of disturbance, nutrient availability and light. According to the prediction that impacts of anthropogenic activity provide changes in environmental characteristics, making impacted Palm swamps related to environmental changes such as deforestation and higher loads of nutrients via allochthonous, the hypothesis tested was: impacted Palm swamps have higher richness, density, biomass and biovolume of epiphytic algae. We evaluated the distribution and structure of epiphytic algae communities in 23 Palm swamps of Goiás State under different environmental impacts. The community structure attributes here analyzed were composition, richness, density, biomass and biovolume. This study revealed the importance of the environment on the distribution and structuration of algal communities, relating the higher values of richness, biomass and biovolume with impacted environments. Acidic waters and high concentration of silica were important factors in this study. Altogether 200 taxa were identified, and the zygnemaphycea was the group most representative in richness and biovolume, whereas the diatoms, in density of studied epiphyton. Impacted Palm swamps in agricultural area presented two indicator species, Gomphonema lagenula Kützing and Oedogonium sp, both related to mesotrophic to eutrophic conditions for total nitrogen concentrations of these environments.
Vitali, Francesco; Mastromei, Giorgio; Senatore, Giuliana; Caroppo, Cesarea; Casalone, Enrico
2016-01-01
In this study, we evaluate the long-lasting effects on soil microbial communities of a change within a single land-use category, specifically the conversion from natural forest to forest plantation. To minimize the effects of impacts other than land-use (i.e., climatic and anthropogenic), we chose three sites within a Natural Park, with homogeneous orographic and soil texture characteristics. We compared microbial diversity in a total of 156 soil samples from two natural mixed forests and a similar forest converted to poplar plantation about thirty years ago. The diversity and structure of bacterial and fungal communities were investigated by terminal restriction fragments length polymorphism (T-RFLP) analysis of the 16S-rRNA gene and the ITS-rDNA regions, respectively. Bacterial and fungal communities from the forest plantation, compared to those from natural forest soils, showed different community structure and lower α-diversity values, consistently with the significantly higher pH values and lower organic matter content of those soils. β-diversity values, the number of measured and estimated dominant OTUs, and their distribution among the three sites showed that microbial communities from the two natural forests were much more similar to each other than they were to communities from the poplar plantation, suggesting an effect of the forest conversion on the composition and diversity of soil microbial communities. α-diversity in cultivated forest soils had narrower temporal fluctuations than in natural forest soils, suggesting higher temporal stability of microbial communities. Overall, we demonstrated that the conversion from natural forest to forest plantation altered soil microbial communities, changing their structure, lowering their diversity, and causing a spatial and temporal homogenization. Copyright © 2015 Elsevier GmbH. All rights reserved.
Du, Yi-fei; Fang, Kai-kai; Wang, Zhi-kang; Li, Hui-ke; Mao, Peng-juan; Zhang, Xiang-xu; Wang, Jing
2015-11-01
As soil fertility in apple orchard with clean tillage is declined continuously, interplanting herbage in orchard, which is a new orchard management model, plays an important role in improving orchard soil conditions. By using biolog micro-plate technique, this paper studied the functional diversity of soil microbial community under four species of management model in apple orchards, including clear tillage model, interplanting white clover model, interplanting small crown flower model and interplanting cocksfoot model, and the carbon source utilization characteristics of microbial community were explored, which could provide a reference for revealing driving mechanism of ecological process of orchard soil. The results showed that the functional diversity of microbial community had a significant difference among different treatments and in the order of white clover > small crown flower > cocksfoot > clear tillage. The correlation analysis showed that the average well color development (AWCD), Shannon index, Richness index and McIntosh index were all highly significantly positively correlated with soil organic carbon, total nitrogen, microbial biomass carbon, and Shannon index was significantly positively correlated with soil pH. The principal component analysis and the fingerprints of the physiological carbon metabolism of the microbial community demonstrated that grass treatments improved carbon source metabolic ability of soil microbial community, and the soil microbes with perennial legumes (White Clover and small crown flower) had a significantly higher utilization rate in carbohydrates (N-Acetyl-D-Glucosamine, D-Mannitol, β-Methyl-D-Glucoside), amino acids (Glycyl-L-Glutamic acid, L-Serine, L-Threonine) and polymers (Tween 40, Glycogen) than the soil microbes with clear tillage. It was considered that different treatments had the unique microbial community structure and peculiar carbon source utilization characteristics.
Benbenishty, Rami; Jedwab, Merav; Chen, Wendy; Glasser, Saralee; Slutzky, Hanna; Siegal, Gil; Lavi-Sahar, Zohar; Lerner-Geva, Liat
2014-01-01
This study examines judgments made by hospital-based child protection teams (CPTs) when determining if there is reasonable suspicion that a child has been maltreated, and whether to report the case to a community welfare agency, to child protective services (CPS) and/or to the police. A prospective multi-center study of all 968 consecutive cases referred to CPTs during 2010-2011 in six medical centers in Israel. Centers were purposefully selected to represent the heterogeneity of medical centers in Israel in terms of size, geographical location and population characteristics. A structured questionnaire was designed to capture relevant information and judgments on each child referred to the team. Bivariate associations and multivariate multinomial logistic regressions were conducted to predict whether the decisions would be (a) to close the case, (b) to refer the case to community welfare services, or (c) to report it to CPS and/or the police. Bivariate and multivariate analyses identified a large number of case characteristics associated with higher probability of reporting to CPS/police or of referral to community welfare services. Case characteristics associated with the decisions include socio-demographic (e.g., ethnicity and financial status), parental functioning (e.g., mental health), previous contacts with authorities and hospital, current referral characteristics (e.g., parental referral vs. child referral), physical findings, and suspicious behaviors of child and parent. Most of the findings suggest that decisions of CPTs are based on indices that have strong support in the professional literature. Existing heterogeneity between cases, practitioners and medical centers had an impact on the overall predictability of the decision to report. Attending to collaboration between hospitals and community agencies is suggested to support learning and quality improvement. Copyright © 2013 Elsevier Ltd. All rights reserved.
Organic content influences sediment microbial fuel cell performance and community structure.
Zhao, Qing; Li, Ruying; Ji, Min; Ren, Zhiyong Jason
2016-11-01
This study constructed sediment microbial fuel cells (SMFCs) with different organic loadings without the amendment of external substrates, and it investigated how such variation affects electricity generation and microbial community structure. Results found sediment characteristics significantly influenced SMFC performance and appropriate organic content is important to maintain stable power outputs. SMFCs with loss of ignition (LOI) of 5% showed the most reliable performance in this study, while high organic content (LOI 10-16%) led to higher but very unstable voltage output because of biogas accumulation and worm activities. SMFCs with low organic content (1-3%) showed low power output. Different bacterial communities were found in SMFCs shown various power generation performance even those with similar organic contents. Thermodesulfovibrionaceae was found closely related to the system startup and Desulfobulbaceae showed great abundance in SMFCs with high power production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Drug-related offenses and the structure of communities in rural Australia.
Donnermeyer, Joseph F; Barclay, Elaine M; Jobes, Patrick C
2002-01-01
This article examines the relationship of drug use with the social and economic characteristics of rural communities in New South Wales (NSW), Australia. Data is derived from the 1996 Australian Census of Population and Housing, and data on drug-related offenses from the NSW police between 1995 and 1999. Arrest rates for breaking and entering, assault, and vandalism showed statistically significant associations across types of rural communities, but drug-related arrests varied considerably less. The widespread, relatively-even distribution of drug arrests in rural NSW suggests that the underlying causes of drug-related violations are unique when compared to other types of crime.
Rotem, Guy; Gavish, Yoni; Shacham, Boaz; Giladi, Itamar; Bouskila, Amos; Ziv, Yaron
2016-01-01
Grazing plays an important role in shaping ecological communities in human-related ecosystems. Although myriad studies have explored the joint effect of grazing and climate on plant communities, this interactive effect has rarely been studied in animals. We hypothesized that the effect of grazing on the reptile community varies along a climatic gradient in relation to the effect of grazing on habitat characteristics, and that grazing differentially affects reptiles of different biogeographic regions. We tested our hypotheses by collecting data on environmental characteristics and by trapping reptiles in four heterogeneous landscapes experiencing differing grazing intensities and distributed along a sharp climatic gradient. We found that while reptile diversity increased with grazing intensity at the mesic end of the gradient, it decreased with grazing intensity at the arid end. Moreover, the proportion of reptile species of differing biogeographic origins varied with the interactive effect of climate and grazing. The representation of species originating in arid biogeographic zones was highest at the arid end of the climatic gradient, and representation increased with grazing intensity within this area. Regardless of the climatic context, increased grazing pressure results in a reduction in vegetation cover and thus in changes in habitat characteristics. By reducing vegetation cover, grazing increased habitat heterogeneity in the dense mesic sites and decreased habitat heterogeneity in the arid sites. Thus, our results suggest that the same direction of habitat alteration caused by grazing may have opposite effects on biodiversity and community composition in different climatic contexts.
Atoll-scale patterns in coral reef community structure: Human signatures on Ulithi Atoll, Micronesia
Nelson, Peter; Abelson, Avigdor; Precoda, Kristin; Rulmal, John; Bernardi, Giacomo; Paddack, Michelle
2017-01-01
The dynamic relationship between reefs and the people who utilize them at a subsistence level is poorly understood. This paper characterizes atoll-scale patterns in shallow coral reef habitat and fish community structure, and correlates these with environmental characteristics and anthropogenic factors, critical to conservation efforts for the reefs and the people who depend on them. Hierarchical clustering analyses by site for benthic composition and fish community resulted in the same 3 major clusters: cluster 1–oceanic (close proximity to deep water) and uninhabited (low human impact); cluster 2–oceanic and inhabited (high human impact); and cluster 3–lagoonal (facing the inside of the lagoon) and inhabited (highest human impact). Distance from village, reef exposure to deep water and human population size had the greatest effect in predicting the fish and benthic community structure. Our study demonstrates a strong association between benthic and fish community structure and human use across the Ulithi Atoll (Yap State, Federated States of Micronesia) and confirms a pattern observed by local people that an ‘opportunistic’ scleractinian coral (Montipora sp.) is associated with more highly impacted reefs. Our findings suggest that small human populations (subsistence fishing) can nevertheless have considerable ecological impacts on reefs due, in part, to changes in fishing practices rather than overfishing per se, as well as larger global trends. Findings from this work can assist in building local capacity to manage reef resources across an atoll-wide scale, and illustrates the importance of anthropogenic impact even in small communities. PMID:28489903
Architectural Design Drives the Biogeography of Indoor Bacterial Communities
O’Connor, Timothy K.; Mhuireach, Gwynne; Northcutt, Dale; Kline, Jeff; Moriyama, Maxwell; Brown, G. Z.; Bohannan, Brendan J. M.; Green, Jessica L.
2014-01-01
Background Architectural design has the potential to influence the microbiology of the built environment, with implications for human health and well-being, but the impact of design on the microbial biogeography of buildings remains poorly understood. In this study we combined microbiological data with information on the function, form, and organization of spaces from a classroom and office building to understand how design choices influence the biogeography of the built environment microbiome. Results Sequencing of the bacterial 16S gene from dust samples revealed that indoor bacterial communities were extremely diverse, containing more than 32,750 OTUs (operational taxonomic units, 97% sequence similarity cutoff), but most communities were dominated by Proteobacteria, Firmicutes, and Deinococci. Architectural design characteristics related to space type, building arrangement, human use and movement, and ventilation source had a large influence on the structure of bacterial communities. Restrooms contained bacterial communities that were highly distinct from all other rooms, and spaces with high human occupant diversity and a high degree of connectedness to other spaces via ventilation or human movement contained a distinct set of bacterial taxa when compared to spaces with low occupant diversity and low connectedness. Within offices, the source of ventilation air had the greatest effect on bacterial community structure. Conclusions Our study indicates that humans have a guiding impact on the microbial biodiversity in buildings, both indirectly through the effects of architectural design on microbial community structure, and more directly through the effects of human occupancy and use patterns on the microbes found in different spaces and space types. The impact of design decisions in structuring the indoor microbiome offers the possibility to use ecological knowledge to shape our buildings in a way that will select for an indoor microbiome that promotes our health and well-being. PMID:24489843
Spurgeon, David J; Keith, Aidan M; Schmidt, Olaf; Lammertsma, Dennis R; Faber, Jack H
2013-12-01
Change in land use and management can impact massively on soil ecosystems. Ecosystem engineers and other functional biodiversity in soils can be influenced directly by such change and this in turn can affect key soil functions. Here, we employ meta-analysis to provide a quantitative assessment of the effects of changes in land use and land management across a range of successional/extensification transitions (conventional arable → no or reduced tillage → grassland → wooded land) on community metrics for two functionally important soil taxa, earthworms and fungi. An analysis of the relationships between community change and soil structural properties was also included. Meta-analysis highlighted a consistent trend of increased earthworm and fungal community abundances and complexity following transitions to lower intensity and later successional land uses. The greatest changes were seen for early stage transitions, such as introduction of reduced tillage regimes and conversion to grassland from arable land. Not all changes, however, result in positive effects on the assessed community metrics. For example, whether woodland conversion positively or negatively affects community size and complexity depends on woodland type and, potentially, the changes in soil properties, such as pH, that may occur during conversion. Alterations in soil communities tended to facilitate subsequent changes in soil structure and hydrology. For example, increasing earthworm abundances and functional group composition were shown to be positively correlated with water infiltration rate (dependent on tillage regime and habitat characteristics); while positive changes in fungal biomass measures were positively associated with soil microaggregate stability. These findings raise the potential to manage landscapes to increase ecosystem service provision from soil biota in relation to regulation of soil structure and water flow.
Pearson, Cythina R.; Duran, Bonnie; Oetzel, John; Margarati, Maya; Villegas, Malia; Lucero, Julie; Wallerstein, Nina
2016-01-01
Background Although there is strong scientific, policy, and community support for community-engaged research (CEnR)—including community-based participatory research (CBPR)—the science of CEnR is still developing. Objective To describe structural differences in federally funded CEnR projects by type of research (i.e., descriptive, intervention, or dissemination/policy change) and race/ethnicity of the population served. Methods We identified 333 federally funded projects in 2009 that potentially involved CEnR, 294 principal investigators/project directors (PI/PD) were eligible to participate in a key informant (KI) survey from late 2011 to early 2012 that asked about partnership structure (68% response rate). Results The National Institute on Minority Health & Health Disparities (19.1%), National Cancer Institute (NCI; 13.3%), and the Centers for Disease Control and Prevention (CDC; 12.6%) funded the most CEnR projects. Most were intervention projects (66.0%). Projects serving American Indian or Alaskan Native (AIAN) populations (compared with other community of color or multiple-race/unspecified) were likely to be descriptive projects (p < .01), receive less funding (p < .05), and have higher rates of written partnership agreements (p < .05), research integrity training (p < .05), approval of publications (p < .01), and data ownership (p < .01). AIAN-serving projects also reported similar rates of research productivity and greater levels of resource sharing compared with those serving multiple-race/unspecified groups. Conclusions There is clear variability in the structure of CEnR projects with future research needed to determine the impact of this variability on partnering processes and outcomes. In addition, projects in AIAN communities receive lower levels of funding yet still have comparable research productivity to those projects in other racial/ethnic communities. PMID:25981421
Luo, Youfa; Wu, Yonggui; Wang, Hu; Xing, Rongrong; Zheng, Zhilin; Qiu, Jing; Yang, Lian
2018-05-01
This comparative field study examined the responses of bacterial community structure and diversity to the revegetation of zinc (Zn) smelting waste slag with eight plant species after 5 years. The microbial community structure of waste slag with and without vegetation was evaluated using high-throughput sequencing. The physiochemical properties of Zn smelting slag after revegetation with eight plant rhizospheres for 5 years were improved compared to those of bulk slag. Revegetation significantly increased the microbial community diversity in plant rhizospheres, and at the phylum level, Proteobacteria, Acidobacteria, and Bacteroidetes were notably more abundant in rhizosphere slags than those in bulk waste slag. Additionally, revegetation increased the relative abundance of plant growth-promoting rhizobacteria such as Flavobacterium, Streptomyces, and Arthrobacter as well as symbiotic N 2 fixers such as Bradyrhizobium. Three dominant native plant species (Arundo donax, Broussonetia papyrifera, and Robinia pseudoacacia) greatly increased the quality of the rhizosphere slags. Canonical correspondence analysis showed that the differences in bacterial community structure between the bulk and rhizosphere slags were explained by slag properties, i.e., pH, available copper (Cu) and lead (Pb), moisture, available nitrogen (N), phosphorus (P), and potassium (K), and organic matter (OM); however, available Zn and cadmium (Cd) contents were the slag parameters that best explained the differences between the rhizosphere communities of the eight plant species. The results suggested that revegetation plays an important role in enhancing bacterial community abundance and diversity in rhizosphere slags and that revegetation may also regulate microbiological properties and diversity mainly through changes in heavy metal bioavailability and physiochemical slag characteristics.
Tree Leaf Bacterial Community Structure and Diversity Differ along a Gradient of Urban Intensity
Messier, Christian; Kembel, Steven W.
2017-01-01
ABSTRACT Tree leaf-associated microbiota have been studied in natural ecosystems but less so in urban settings, where anthropogenic pressures on trees could impact microbial communities and modify their interaction with their hosts. Additionally, trees act as vectors spreading bacterial cells in the air in urban environments due to the density of microbial cells on aerial plant surfaces. Characterizing tree leaf bacterial communities along an urban gradient is thus key to understand the impact of anthropogenic pressures on urban tree-bacterium interactions and on the overall urban microbiome. In this study, we aimed (i) to characterize phyllosphere bacterial communities of seven tree species in urban environments and (ii) to describe the changes in tree phyllosphere bacterial community structure and diversity along a gradient of increasing urban intensity and at two degrees of tree isolation. Our results indicate that, as anthropogenic pressures increase, urban leaf bacterial communities show a reduction in the abundance of the dominant class in the natural plant microbiome, the Alphaproteobacteria. Our work in the urban environment here reveals that the structures of leaf bacterial communities differ along the gradient of urban intensity. The diversity of phyllosphere microbial communities increases at higher urban intensity, also displaying a greater number and variety of associated indicator taxa than the low and medium urban gradient sites. In conclusion, we find that urban environments influence tree bacterial community composition, and our results suggest that feedback between human activity and plant microbiomes could shape urban microbiomes. IMPORTANCE In natural forests, tree leaf surfaces host diverse bacterial communities whose structure and composition are primarily driven by host species identity. Tree leaf bacterial diversity has also been shown to influence tree community productivity, a key function of terrestrial ecosystems. However, most urban microbiome studies have focused on the built environment, improving our understanding of indoor microbial communities but leaving much to be understood, especially in the nonbuilt microbiome. Here, we provide the first multiple-species comparison of tree phyllosphere bacterial structures and diversity along a gradient of urban intensity. We demonstrate that urban trees possess characteristic bacterial communities that differ from those seen with trees in nonurban environments, with microbial community structure on trees influenced by host species identity but also by the gradient of urban intensity and by the degree of isolation from other trees. Our results suggest that feedback between human activity and plant microbiomes could shape urban microbiomes. PMID:29238751
Tree Leaf Bacterial Community Structure and Diversity Differ along a Gradient of Urban Intensity.
Laforest-Lapointe, Isabelle; Messier, Christian; Kembel, Steven W
2017-01-01
Tree leaf-associated microbiota have been studied in natural ecosystems but less so in urban settings, where anthropogenic pressures on trees could impact microbial communities and modify their interaction with their hosts. Additionally, trees act as vectors spreading bacterial cells in the air in urban environments due to the density of microbial cells on aerial plant surfaces. Characterizing tree leaf bacterial communities along an urban gradient is thus key to understand the impact of anthropogenic pressures on urban tree-bacterium interactions and on the overall urban microbiome. In this study, we aimed (i) to characterize phyllosphere bacterial communities of seven tree species in urban environments and (ii) to describe the changes in tree phyllosphere bacterial community structure and diversity along a gradient of increasing urban intensity and at two degrees of tree isolation. Our results indicate that, as anthropogenic pressures increase, urban leaf bacterial communities show a reduction in the abundance of the dominant class in the natural plant microbiome, the Alphaproteobacteria . Our work in the urban environment here reveals that the structures of leaf bacterial communities differ along the gradient of urban intensity. The diversity of phyllosphere microbial communities increases at higher urban intensity, also displaying a greater number and variety of associated indicator taxa than the low and medium urban gradient sites. In conclusion, we find that urban environments influence tree bacterial community composition, and our results suggest that feedback between human activity and plant microbiomes could shape urban microbiomes. IMPORTANCE In natural forests, tree leaf surfaces host diverse bacterial communities whose structure and composition are primarily driven by host species identity. Tree leaf bacterial diversity has also been shown to influence tree community productivity, a key function of terrestrial ecosystems. However, most urban microbiome studies have focused on the built environment, improving our understanding of indoor microbial communities but leaving much to be understood, especially in the nonbuilt microbiome. Here, we provide the first multiple-species comparison of tree phyllosphere bacterial structures and diversity along a gradient of urban intensity. We demonstrate that urban trees possess characteristic bacterial communities that differ from those seen with trees in nonurban environments, with microbial community structure on trees influenced by host species identity but also by the gradient of urban intensity and by the degree of isolation from other trees. Our results suggest that feedback between human activity and plant microbiomes could shape urban microbiomes.
Complexity of Bacterial Communities in a River-Floodplain System (Danube, Austria)
Besemer, Katharina; Moeseneder, Markus M.; Arrieta, Jesus M.; Herndl, Gerhard J.; Peduzzi, Peter
2005-01-01
Natural floodplains play an essential role in the processing and decomposition of organic matter and in the self-purification ability of rivers, largely due to the activity of bacteria. Knowledge about the composition of bacterial communities and its impact on organic-matter cycling is crucial for the understanding of ecological processes in river-floodplain systems. Particle-associated and free-living bacterial assemblages from the Danube River and various floodplain pools with different hydrological characteristics were investigated using terminal restriction fragment length polymorphism analysis. The particle-associated bacterial community exhibited a higher number of operational taxonomic units (OTUs) and was more heterogeneous in time and space than the free-living community. The temporal dynamics of the community structure were generally higher in isolated floodplain pools. The community structures of the river and the various floodplain pools, as well as those of the particle-associated and free-living bacteria, differed significantly. The compositional dynamics of the planktonic bacterial communities were related to changes in the algal biomass, temperature, and concentrations of organic and inorganic nutrients. The OTU richness of the free-living community was correlated with the concentration and origin of organic matter and the concentration of inorganic nutrients, while no correlation with the OTU richness of the particle-associated assemblage was found. Our results demonstrate the importance of the river-floodplain interactions and the influence of damming and regulation on the bacterial-community composition. PMID:15691909
Dunaj, Sara J; Vallino, Joseph J; Hines, Mark E; Gay, Marcus; Kobyljanec, Christine; Rooney-Varga, Juliette N
2012-02-07
Microbial fuel cells (MFCs) offer the potential for generating electricity, mitigating greenhouse gas emissions, and bioremediating pollutants through utilization of a plentiful renewable resource: soil organic carbon. We analyzed bacterial community structure, MFC performance, and soil characteristics in different microhabitats within MFCs constructed from agricultural or forest soils in order to determine how soil type and bacterial dynamics influence MFC performance. Our results indicated that MFCs constructed from agricultural soil had power output about 17 times that of forest soil-based MFCs and respiration rates about 10 times higher than forest soil MFCs. Agricultural soil MFCs had lower C:N ratios, polyphenol content, and acetate concentrations than forest soil MFCs. Bacterial community profile data indicate that the bacterial communities at the anode of the high power MFCs were less diverse than in low power MFCs and were dominated by Deltaproteobacteria, Geobacter, and to a lesser extent, Clostridia, while low-power MFC anode communities were dominated by Clostridia. These results suggest that the presence of organic carbon substrate (acetate) was not the major limiting factor in selecting for highly electrogenic bacterial communities, while the quality of available organic matter may have played a significant role in supporting high performing bacterial communities.
Azandégbé, Afi; Poly, Franck; Andrieux-Loyer, Françoise; Kérouel, Roger; Philippon, Xavier; Nicolas, Jean-Louis
2012-10-01
Bacterial community structure and some biogeochemical parameters were studied in the sediment of two Pacific oyster farming sites, Aber Benoît (AB) and Rivière d'Auray (RA) in Brittany (France), to examine the ecological impact of oysters and to evaluate the emission of sulfide and ammonia from sediment. At AB, the organic matter accumulated in the sediment beneath the oyster tables was rapidly mineralized, with strong fluxes of ammonia and sulfide that reached 1014 and 215 μmol m(-2) h(-1), respectively, in June 2007. At RA, the fluxes were about half as strong on average and better distributed through the year. The ammonia and sulfide concentrations in the overlying water never reached levels that would be toxic to oysters in either site, nor did hypoxia occur. Total culturable bacteria (TCB) varied greatly according to the temperature: from 1.6 × 10(4) to 9.4 × 10(7) cell g(-1) sediment. Inversely, the bacterial community structure remained surprising stable through the seasons, marginally influenced by the presence of oysters and by temperature. Bacterial communities appeared to be characteristic of the sites, with only one common phylotype, Vibrio aestuarianus, a potential oyster pathogen. These data refine the hypothesis of seawater toxicity to oysters because of ammonia and sulfide fluxes and show that the measured environmental factors had only a weak influence on bacterial community structure. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Patterns of rare and abundant marine microbial eukaryotes.
Logares, Ramiro; Audic, Stéphane; Bass, David; Bittner, Lucie; Boutte, Christophe; Christen, Richard; Claverie, Jean-Michel; Decelle, Johan; Dolan, John R; Dunthorn, Micah; Edvardsen, Bente; Gobet, Angélique; Kooistra, Wiebe H C F; Mahé, Frédéric; Not, Fabrice; Ogata, Hiroyuki; Pawlowski, Jan; Pernice, Massimo C; Romac, Sarah; Shalchian-Tabrizi, Kamran; Simon, Nathalie; Stoeck, Thorsten; Santini, Sébastien; Siano, Raffaele; Wincker, Patrick; Zingone, Adriana; Richards, Thomas A; de Vargas, Colomban; Massana, Ramon
2014-04-14
Biological communities are normally composed of a few abundant and many rare species. This pattern is particularly prominent in microbial communities, in which most constituent taxa are usually extremely rare. Although abundant and rare subcommunities may present intrinsic characteristics that could be crucial for understanding community dynamics and ecosystem functioning, microbiologists normally do not differentiate between them. Here, we investigate abundant and rare subcommunities of marine microbial eukaryotes, a crucial group of organisms that remains among the least-explored biodiversity components of the biosphere. We surveyed surface waters of six separate coastal locations in Europe, independently considering the picoplankton, nanoplankton, and microplankton/mesoplankton organismal size fractions. Deep Illumina sequencing of the 18S rRNA indicated that the abundant regional community was mostly structured by organismal size fraction, whereas the rare regional community was mainly structured by geographic origin. However, some abundant and rare taxa presented similar biogeography, pointing to spatiotemporal structure in the rare microeukaryote biosphere. Abundant and rare subcommunities presented regular proportions across samples, indicating similar species-abundance distributions despite taxonomic compositional variation. Several taxa were abundant in one location and rare in other locations, suggesting large oscillations in abundance. The substantial amount of metabolically active lineages found in the rare biosphere suggests that this subcommunity constitutes a diversity reservoir that can respond rapidly to environmental change. We propose that marine planktonic microeukaryote assemblages incorporate dynamic and metabolically active abundant and rare subcommunities, with contrasting structuring patterns but fairly regular proportions, across space and time. Copyright © 2014 Elsevier Ltd. All rights reserved.
Unifying Inference of Meso-Scale Structures in Networks.
Tunç, Birkan; Verma, Ragini
2015-01-01
Networks are among the most prevalent formal representations in scientific studies, employed to depict interactions between objects such as molecules, neuronal clusters, or social groups. Studies performed at meso-scale that involve grouping of objects based on their distinctive interaction patterns form one of the main lines of investigation in network science. In a social network, for instance, meso-scale structures can correspond to isolated social groupings or groups of individuals that serve as a communication core. Currently, the research on different meso-scale structures such as community and core-periphery structures has been conducted via independent approaches, which precludes the possibility of an algorithmic design that can handle multiple meso-scale structures and deciding which structure explains the observed data better. In this study, we propose a unified formulation for the algorithmic detection and analysis of different meso-scale structures. This facilitates the investigation of hybrid structures that capture the interplay between multiple meso-scale structures and statistical comparison of competing structures, all of which have been hitherto unavailable. We demonstrate the applicability of the methodology in analyzing the human brain network, by determining the dominant organizational structure (communities) of the brain, as well as its auxiliary characteristics (core-periphery).
Outsourcing veterans for long-term care: comparison of community and state veterans' nursing homes.
Laberge, Alexandre; Weech-Maldonado, Robert; Johnson, Christopher E; Jia, Huanguang; Dewald, Lloyd
2008-01-01
This study compares the characteristics of state veterans' nursing homes and community nursing homes with VA per-diem residentes between 1999 - 2002. A structure, process, and outcome model was used to examine whether there was any difference in the multi-dimensional quality measures among the three types of community nursing homes (for profit, not-for-profit, and government) and state veterans' nursing homes. For profit community nursing homes were less likely to achieve nurse staffing standards while government facilities were more likely to achieve CNA staffing standards when compared to the state veterans' homes. All community nursing homes had a lower prevelance of tube feeds and catheterization when compared to state veterans' nursing homes. Only government community nursing homes had significantly lower quality of life deficiencies and pressure sore prevelance when compared to state veterans' nursing homes. Vigilant monitoring of all long-term care facilities utilized by veterans is needed.
Modeling species-abundance relationships in multi-species collections
Peng, S.; Yin, Z.; Ren, H.; Guo, Q.
2003-01-01
Species-abundance relationship is one of the most fundamental aspects of community ecology. Since Motomura first developed the geometric series model to describe the feature of community structure, ecologists have developed many other models to fit the species-abundance data in communities. These models can be classified into empirical and theoretical ones, including (1) statistical models, i.e., negative binomial distribution (and its extension), log-series distribution (and its extension), geometric distribution, lognormal distribution, Poisson-lognormal distribution, (2) niche models, i.e., geometric series, broken stick, overlapping niche, particulate niche, random assortment, dominance pre-emption, dominance decay, random fraction, weighted random fraction, composite niche, Zipf or Zipf-Mandelbrot model, and (3) dynamic models describing community dynamics and restrictive function of environment on community. These models have different characteristics and fit species-abundance data in various communities or collections. Among them, log-series distribution, lognormal distribution, geometric series, and broken stick model have been most widely used.
Zhang, Zhiming; Yang, Jiantao; Zhu, Yiwei
2017-01-01
Arbuscular mycorrhizal fungi (AMF) play an essential role in complex ecosystems. However, the species diversity and composition of AMF communities remain unclear in semi-arid mountains. Further, it is not well understood if the characteristics of AMF community assemblies differ for different habitat types, e.g., agricultural arable land, artificial forest land, natural grassland, and bush/wood land. Here, using the high-throughput technology by Illumina sequencing on the MiSeq platform, we explored the species diversity and composition of soil AMF communities among different habitat types in a semi-arid mountain (Taihang Mountain, Mid-western region of China). Then, we analyzed the effect of nutrient composition and soil texture on AMF community assembly. Our results showed that members of the Glomus genera were predominated in all soil types. The distance-based redundancy analysis indicated that the content of water, available phosphorus, and available potassium were the most crucial geochemical factors that significantly affected AMF communities (p < 0.05). The analysis of the soil texture confirmed that AMF diversity was negatively correlated with soil clay content. The comparison of AMF diversity among the various habitat types revealed that the artificial forest land had the lowest AMF diversity in comparison with other land types. Our findings suggest that there were differences in species diversity and composition of soil AMF communities among different habitat types. These findings shed new light on the characteristics of community structure and drivers of community assembly in AMF in semi-arid mountains, and point to the potential importance of different habitat types on AMF communities. PMID:29230378
Dalu, Tatenda; Wasserman, Ryan J; Tonkin, Jonathan D; Mwedzi, Tongayi; Magoro, Mandla L; Weyl, Olaf L F
2017-12-31
Water pollution is a critical management issue, with many rivers and streams draining urban areas being polluted by the disposal of untreated solid waste and wastewater discharge, storm water and agricultural runoff. This has implications for biodiversity, and many rivers in the developing world are now considered compromised. We investigated benthic macroinvertebrate community structure and composition in relation to physico-chemical conditions of the water column and sediments. The study was conducted in an Austral catchment subject to both urban and agricultural pollutants in two different seasons. We assessed whether sediment characteristics were more important drivers of macroinvertebrate community composition than water column characteristics. We expected clear differences in macroinvertebrate community composition and in the associated community metrics due to distinct flow conditions between the two seasons. A combination of multivariate analyses (canonical correspondence analysis (CCA)) and biological indicator analysis were used to examine these patterns. Chironomidae was the most abundant family (>60%) in the upper mainstem river and stream sites. Stream sites were positively associated with CCA axis 2, being characterised by high turbidity and lower pH, salinity, phosphate concentration, channel width and canopy cover. Canopy cover, channel width, substrate embeddedness, phosphate concentration, pH, salinity and turbidity all had a significant effect on macroinvertebrate community composition. Using CCA variation partitioning, water quality was, however, a better predictor of benthic macroinvertebrate composition than sediment chemical conditions. Furthermore, our results suggest that seasonality had little effect on structuring benthic macroinvertebrate communities in this south-eastern zone of South Africa, despite clear changes in sediment chemistry. This likely reflects the relative lack of major variability in water chemistry compared to sediment chemistry between seasons and the relatively muted variability in precipitation between seasons than the more classic Austral temperate climates. Copyright © 2017 Elsevier B.V. All rights reserved.
Urban green space and vibrant communities: exploring the linkage in the Portland Vancouver area
Edward A. Stone; JunJie Wu; Ralph Alig
2015-01-01
This report investigates the interactions between household location decisions and community characteristics, including green space. Household location decisions are a primary driver of land-use change, and collective location decisions affect community characteristics. At the same time, community characteristics affect location decisions. Neighborhoods or communities...
NASA Astrophysics Data System (ADS)
Wei, Min; Xu, Caihong; Chen, Jianmin; Zhu, Chao; Li, Jiarong; Lv, Ganglin
2017-04-01
Bacteria are widely distributed in atmospheric aerosols and are indispensable components of clouds, playing an important role in the atmospheric hydrological cycle. However, limited information is available about the bacterial community structure and function, especially for the increasing air pollution in the North China Plain. Here, we present a comprehensive characterization of bacterial community composition, function, variation, and environmental influence for cloud water collected at Mt Tai from 24 July to 23 August 2014. Using Miseq 16S rRNA gene sequencing, the highly diverse bacterial community in cloud water and the predominant phyla of Proteobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes were investigated. Bacteria that survive at low temperature, radiation, and poor nutrient conditions were found in cloud water, suggesting adaption to an extreme environment. The bacterial gene functions predicted from the 16S rRNA gene using the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) suggested that the pathways related to metabolism and disease infections were significantly correlated with the predominant genera. The abundant genera Acinetobacter, Stenotrophomonas, Pseudomonas, and Empedobacter originated from a wide range of habitats including cloud condensation nuclei and ice nuclei active species, opportunistic pathogens, and functional species, demonstrating the importance of ecology and health in cloud water. Cluster analysis including hierarchical cluster (Hcluster) and principal coordinate analysis (PCoA) indicated a significant disparity between polluted and non-polluted samples. Linear discriminant analysis effect size (LEfSe) demonstrated that potential pathogens were enriched in the polluted cloud samples, whereas the diverse ecological function groups were significant in the non-polluted samples. Discrepant community structure determined by redundancy analysis (RDA) indicated that the major ions in cloud water and PM2. 5 in the atmosphere have a negative impact on bacteria, playing a vital role in shaping microbial community structure. The major ions might provide nutrition to bacteria and directly influence the bacterial community, whereas PM2. 5 in air has an indirect impact on bacterial community structure. During wet deposition, soluble particulate matter was dissolved in water droplets resulting in elevated concentration in cloud water. PM2. 5 was possibly associated with different origins and pathways of air mass as determined using source tracking by the backward trajectory, mainly related to long-range transport. This work enhanced our understanding of the characteristics of bacterial ecology in the atmospheric aqueous phase, highlighting the potential influence of environmental variables on the bacterial community in cloud processes. It may provide fundamental information of the bacterial community response in cloud water under increasing pollution. However, due to the limited sample size (13 samples) collected at the summit of Mt Tai, these issues need in-depth discussion. Further studies based on an annual series of field observation experiments and laboratory simulations will continue to track these issues.
ERIC Educational Resources Information Center
Kong, Eric; Harmsworth, Sarah; Rajaeian, Mohammad Mehdi; Parkes, Geoffrey; Bishop, Sue; AlMansouri, Bassim; Lawrence, Jill
2016-01-01
Culturally and linguistically diverse (CALD) is used broadly and inclusively to describe communities with diverse language, ethnic background, nationality, dress, traditions, food, societal structures, art and religion characteristics. Domestic CALD people are either refugees or voluntary migrants and have obtained permanent residency or…
The Hoosier-Shawnee ecological assessment: Table of contents
Frank R., III ed. Thompson
2004-01-01
This report is a scientific assessment of the characteristic composition, structure, and processes of ecosystems in the southern one-third of Illinois and Indiana and a small part of western Kentucky. It includes chapters on ecological sections and soils, water resources, forest, plants, and communities, aquatic animals, terrestrial animals, forest diseases and pests,...
Substitute Care Entry: The Relationship between Race or Ethnicity and Levels of County Organization
ERIC Educational Resources Information Center
Jantz, Ian; Rolock, Nancy; Leathers, Sonya J.; Dettlaff, Alan J.; Gleeson, James P.
2012-01-01
Objective: Past studies demonstrate a relationship between race and the likelihood of children entering state custody subsequent to a maltreatment investigation. Research also shows that community structural characteristics such as poverty and residential mobility are correlated with entry rates. The combined effect, however, of race and community…
The "triad" approach, including analysis of the total content of toxicants, bioassay of bottom sediments, and the study of the structure of zoo- and phytobenthos communities, was used in assessing the quality of bottom sediments. It has been found that the studied bottom sediment...
Reserve size and fragmentation alter community assembly, diversity, and dynamics.
Lasky, Jesse R; Keitt, Timothy H
2013-11-01
Researchers have disputed whether a single large habitat reserve will support more species than many small reserves. However, relatively little is known from a theoretical perspective about how reserve size affects competitive communities structured by spatial abiotic gradients. We investigate how reserve size affects theoretical communities whose assembly is governed by dispersal limitation, abiotic niche differentiation, and source-sink dynamics. Simulations were conducted with varying scales of dispersal across landscapes with variable environmental spatial autocorrelation. Landscapes were inhabited by simulated trees with seedling and adult stages. For a fixed total area in reserves, we found that small reserve systems increased the distance between environments dominated by different species, diminishing the effects of source-sink dynamics. As reserve size decreased, environmental limitations to community assembly became stronger, α species richness decreased, and γ richness increased. When dispersal occurred across short distances, a large reserve strategy caused greater stochastic community variation, greater α richness, and lower γ richness than in small reserve systems. We found that reserve size variation trades off between preserving different aspects of natural communities, including α diversity versus γ diversity. Optimal reserve size will depend on the importance of source-sink dynamics and the value placed on different characteristics of natural communities. Anthropogenic changes to the size and separation of remnant habitats can have far-reaching effects on community structure and assembly.
Cryptogamic community structure as a bioindicator of soil condition along a pollution gradient.
Rola, Kaja; Osyczka, Piotr
2014-09-01
This study aims to determine changes in the structure of cryptogamic vegetation of poor psammophilous grassland along a pollution gradient near a zinc smelter to evaluate the potential of species assemblages as bioindicators of soil condition. Lichens and bryophytes were examined in study plots along six transects in four distance zones, and the physicochemical properties of corresponding soil samples were analysed. Four different responses of species to substrate contamination were identified, with a distinct group of species resistant to and favoured by metal contamination. Although species richness decreases as one approaches the smelter, the gradual replacement of certain sensitive species by resistant ones was observed along the pollution gradient. The results enabled us to develop a useful tool to diagnose strongly polluted sites. Two different cryptogamic assemblages of well-recognised key species characteristic for strongly polluted and lightly polluted sites were distinguished. We conclude that cryptogamic community structure clearly corresponds to the degree of soil contamination, thus demonstrating high bioindicative value. The study confirmed the high relevance of the community approach in metal pollution biomonitoring.
Living in the branches: population dynamics and ecological processes in dendritic networks
Grant, E.H.C.; Lowe, W.H.; Fagan, W.F.
2007-01-01
Spatial structure regulates and modifies processes at several levels of ecological organization (e.g. individual/genetic, population and community) and is thus a key component of complex systems, where knowledge at a small scale can be insufficient for understanding system behaviour at a larger scale. Recent syntheses outline potential applications of network theory to ecological systems, but do not address the implications of physical structure for network dynamics. There is a specific need to examine how dendritic habitat structure, such as that found in stream, hedgerow and cave networks, influences ecological processes. Although dendritic networks are one type of ecological network, they are distinguished by two fundamental characteristics: (1) both the branches and the nodes serve as habitat, and (2) the specific spatial arrangement and hierarchical organization of these elements interacts with a species' movement behaviour to alter patterns of population distribution and abundance, and community interactions. Here, we summarize existing theory relating to ecological dynamics in dendritic networks, review empirical studies examining the population- and community-level consequences of these networks, and suggest future research integrating spatial pattern and processes in dendritic systems.
Samuel A. Cushman; Bradley W. Compton; Kevin McGarigal
2010-01-01
Habitat loss and fragmentation are widely believed to be the most important drivers of extinction (Leakey and Lewin 1995). The habitats in which organisms live are spatially structured at a number of scales, and these patterns interact with organism perception and behavior to drive population dynamics and community structure (Johnson et al. 1992). Anthropogenic habitat...
Fahrenfeld, Nicole; Cozzarelli, Isabelle M.; Bailey, Zach; Pruden, Amy
2014-01-01
Small-scale geochemical gradients are a key feature of aquifer contaminant plumes, highlighting the need for functional and structural profiling of corresponding microbial communities on a similar scale. The purpose of this study was to characterize the microbial functional and structural diversity with depth across representative redox zones of a hydrocarbon plume and an adjacent wetland, at the Bemidji Oil Spill site. A combination of quantitative PCR, denaturing gradient gel electrophoresis, and pyrosequencing were applied to vertically sampled sediment cores. Levels of the methanogenic marker gene, methyl coenzyme-M reductase A (mcrA), increased with depth near the oil body center, but were variable with depth further downgradient. Benzoate degradation N (bzdN) hydrocarbon-degradation gene, common to facultatively anaerobic Azoarcus spp., was found at all locations, but was highest near the oil body center. Microbial community structural differences were observed across sediment cores, and bacterial classes containing known hydrocarbon degraders were found to be low in relative abundance. Depth-resolved functional and structural profiling revealed the strongest gradients in the iron-reducing zone, displaying the greatest variability with depth. This study provides important insight into biogeochemical characteristics in different regions of contaminant plumes, which will aid in improving models of contaminant fate and natural attenuation rates.
Ding, Jian; Zhang, Yu; Wang, Han; Jian, Huahua; Leng, Hao; Xiao, Xiang
2017-01-01
Southwest Indian Ridge (SWIR) is a typical oceanic ultraslow spreading ridge with intensive hydrothermal activities. The microbial communities in hydrothermal fields including primary producers to support the entire ecosystem by utilizing geochemical energy generated from rock-seawater interactions. Here we have examined the microbial community structures on four hydrothermal vents from SWIR, representing distinct characteristics in terms of temperature, pH and metal compositions, by using Illumina sequencing of the 16S small subunit ribosomal RNA (rRNA) genes, to correlate bacterial and archaeal populations with the nature of the vents influenced by ultraslow spreading features. Epsilon-, Gamma-, Alpha-, and Deltaproteobacteria and members of the phylum Bacteroidetes and Planctomycetes, as well as Thaumarchaeota, Woesearchaeota, and Euryarchaeota were dominant in all the samples. Both bacterial and archaeal community structures showed distinguished patterns compared to those in the fast-spreading East Pacific Ridge or the slow-spreading Mid-Atlantic Ridge as previously reported. Furthermore, within SWIR, the microbial communities are highly correlated with the local temperatures. For example, the sulfur-oxidizing bacteria were dominant within bacteria from low-temperature vents, but were not represented as the dominating group recovered from high temperature (over 300°C) venting chimneys in SWIR. Meanwhile, Thaumarchaeota, the ammonium oxidizing archaea, only showed high relative abundance of amplicons in the vents with high-temperature in SWIR. These findings provide insights on the microbial community in ultraslow spreading hydrothermal fields, and therefore assist us in the understanding of geochemical cycling therein. PMID:28659873
Teittinen, Anette; Taka, Maija; Ruth, Olli; Soininen, Janne
2015-10-15
Intensive anthropogenic land use such as urbanization alters the hydrological cycle, water chemistry and physical habitat characteristics, thus impairing stream physicochemical and biological quality. Diatoms are widely used to assess stream water quality as they integrate water chemistry temporally and reflect the joint influence of multiple stressors on stream biota. However, knowledge of the major community patterns of diatoms in urban streams remains limited especially in boreal regions. The aim of this study was to examine the effects of water chemistry and catchment characteristics on stream diatom communities, and to test the performance of the Index of Pollution Sensitivity (IPS) as a stream water quality indicator across an urban-to-rural gradient in southern Finland. Diatom community structure and species richness were related to local-scale variables such as water temperature, aluminium concentration, and electrical conductivity, which were in turn influenced by patterns in catchment land use and land cover. Diatoms reflected the intensity of human activities as more intensive land use increased the occurrence of pollution-tolerant species. The change in community structure along the land use intensity gradient was accompanied by a distinct decline in species richness. On the contrary, the IPS index failed to indicate differences in water quality along the urban-to-rural gradient as no consistent differences in the IPS values were found. Our results highlight the joint influence of multifaceted factors that underlie diatom patterns, and show that diatom biodiversity can be used as cost-effective metric indicating urban stream conditions. However, the IPS index turned out to be an unsuitable tool for assessing water quality among these streams. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Li; Zhang, Li; Wu, Dong-Xia; Zhang, Jun-Jun
2014-06-01
In order to clarify the effects of tillage patterns on farmland weed community structure and crop production characteristics, based on 10 years location experiment with no-tillage, subsoiling and conventional tillage in the cold and arid region of North China, and supplementary experiment of plowing after 10 years no-tillage and subsoiling, oat was planted in 2 soils under different tillage patterns, and field weed total density, dominant weed types, weed diversity index, field weed biomass and oats yield were measured. The results showed that the regional weed community was dominated by foxtail weed (Setaira viridis); the weed density under long-term no-tillage was 2.20-5.14 times of tillage at different growing stages of oat, but there were no significant differences between conditional tillage and plowing after long-term no-tillage and subsoiling. Field weed Shannon diversity indices were 0.429 and 0.531, respectively, for sandy chestnut soil and loamy meadow soil under no-tillage conditions, and field weed biomass values were 1.35 and 2.26 times of plowing treatment, while the oat biomass values were only 2807.4 kg x hm(-2) and 4053.9 kg x hm(-2), decreased by 22.3% and 46.2%, respectively. The results showed that the weed community characteristics were affected by both tillage patterns and soil types. Long-term no-tillage farmland in the cold and arid region of North China could promote the natural evolution of plant communities by keeping more perennial weeds, and the plowing pattern lowered the annual weed density, eliminated perennial weeds with shallow roots, and stimulated perennial weeds with deep roots.
The Dubai Community Psychiatric Survey: II. Development of the Socio-cultural Change Questionnaire.
Bebbington, P; Ghubash, R; Hamdi, E
1993-04-01
The Dubai Community Psychiatric Survey was carried out to assess the effect of very rapid social change on the mental health of women in Dubai, one of the United Arab Emirates. In order to measure social change at an individual level, we developed a questionnaire covering behaviour and attitudes in a wide range of situations, the Socio-cultural Change Questionnaire (ScCQ). In this paper we give an account of the considerations that determined the form of the ScCQ, its structural characteristics, and its validity.
Identifying the Community Structure of the Food-Trade International Multi-Network
NASA Technical Reports Server (NTRS)
Torreggiani, S.; Mangioni, G.
2018-01-01
Achieving international food security requires improved understanding of how international trade networks connect countries around the world through the import-export flows of food commodities. The properties of international food trade networks are still poorly documented, especially from a multi-network perspective. In particular, nothing is known about the multi-network's community structure. Here we find that the individual crop-specific layers of the multi-network have densely connected trading groups, a consistent characteristic over the period 2001-2011. Further, the multi-network is characterized by low variability over this period but with substantial heterogeneity across layers in each year. In particular, the layers are mostly assortative: more-intensively connected countries tend to import from and export to countries that are themselves more connected. We also fit econometric models to identify social, economic and geographic factors explaining the probability that any two countries are co-present in the same community. Our estimates indicate that the probability of country pairs belonging to the same food trade community depends more on geopolitical and economic factors-such as geographical proximity and trade-agreement co-membership-than on country economic size and/or income. These community-structure findings of the multi-network are especially valuable for efforts to understand past and emerging dynamics in the global food system, especially those that examine potential 'shocks' to global food trade.
Identifying the community structure of the food-trade international multi-network
NASA Astrophysics Data System (ADS)
Torreggiani, S.; Mangioni, G.; Puma, M. J.; Fagiolo, G.
2018-05-01
Achieving international food security requires improved understanding of how international trade networks connect countries around the world through the import-export flows of food commodities. The properties of international food trade networks are still poorly documented, especially from a multi-network perspective. In particular, nothing is known about the multi-network’s community structure. Here we find that the individual crop-specific layers of the multi-network have densely connected trading groups, a consistent characteristic over the period 2001–2011. Further, the multi-network is characterized by low variability over this period but with substantial heterogeneity across layers in each year. In particular, the layers are mostly assortative: more-intensively connected countries tend to import from and export to countries that are themselves more connected. We also fit econometric models to identify social, economic and geographic factors explaining the probability that any two countries are co-present in the same community. Our estimates indicate that the probability of country pairs belonging to the same food trade community depends more on geopolitical and economic factors—such as geographical proximity and trade-agreement co-membership—than on country economic size and/or income. These community-structure findings of the multi-network are especially valuable for efforts to understand past and emerging dynamics in the global food system, especially those that examine potential ‘shocks’ to global food trade.
Characteristics of drug demand reduction structures in Britain and Iran
Narenjiha, Hooman; Noori, Roya; Ghiabi, Maziyar; Khoddami-Vishteh, Hamid-Reza
2016-01-01
Administrative structure of drug demand reduction and the way in which involved organizations interact with each other has been neglected by researchers, policy makers, and administrators at the national level and even in international institutions in this field. Studying such structures in different countries can reveal their attributes and features. In this study, key experts from the addictive behavior department of St George’s University of London and a group of Iranian specialists in the field of drug demand reduction first wrote on a sheet the name of organizations that are in charge of drug demand reduction. Then, via teamwork, they drew the connections between the organizations and compared the two charts to assess the relations between the member organizations. In total, 17 features of efficient structure were obtained as follow: multi-institutional nature, collaborative inter-institutional activities, clear and relevant inter-institutional and intra-institutional job description, the ability to share the experiences, virtual institutions activity, community-based associations activity, mutual relationships, the existence of feedback sys-tems, evaluation, changeability, the ability to collect data rapidly, being rooted in community, flexibility at the local and regional levels, connection with research centers, updated policymaking, empowering the local level, and seeking the maximum benefit and the minimum resources. Recognizing the characteristics of substance related organizations in various countries could help policy makers to improve drug demand reduction structures and to manage the wide-spread use of psychoactive substances more effectively. PMID:27853729
Characteristics of drug demand reduction structures in Britain and Iran.
Narenjiha, Hooman; Noori, Roya; Ghiabi, Maziyar; Khoddami-Vishteh, Hamid-Reza
2015-01-01
Administrative structure of drug demand reduction and the way in which involved organizations interact with each other has been neglected by researchers, policy makers, and administrators at the national level and even in international institutions in this field. Studying such structures in different countries can reveal their attributes and features. In this study, key experts from the addictive behavior department of St George's University of London and a group of Iranian specialists in the field of drug demand reduction first wrote on a sheet the name of organizations that are in charge of drug demand reduction. Then, via teamwork, they drew the connections between the organizations and compared the two charts to assess the relations between the member organizations. In total, 17 features of efficient structure were obtained as follow: multi-institutional nature, collaborative inter-institutional activities, clear and relevant inter-institutional and intra-institutional job description, the ability to share the experiences, virtual institutions activity, community-based associations activity, mutual relationships, the existence of feedback sys-tems, evaluation, changeability, the ability to collect data rapidly, being rooted in community, flexibility at the local and regional levels, connection with research centers, updated policymaking, empowering the local level, and seeking the maximum benefit and the minimum resources. Recognizing the characteristics of substance related organizations in various countries could help policy makers to improve drug demand reduction structures and to manage the wide-spread use of psychoactive substances more effectively.
Year-round behaviour of soil microarthropod communities under plant protection product application.
Vaj, Claudia; Van Gestel, Cornelis A M; Vighi, Marco
2014-07-01
The use of plant protection products (PPPs) in agro-environments can lead to undesired exposure of non-target organisms in non-target compartments. A year-round field survey was conducted in a vineyard in Northern Italy, for monitoring the changes in the structure of soil microarthropod communities under the application of PPPs, focusing on springtails and mites, both inside and 4 and 10 m outside the vineyard. Exposure to PPPs was estimated as time-weighted average soil concentrations. The fluctuations in the abundances of the different organisms after the application of PPPs, especially insecticides, were recorded. A recovery in abundances was observed at the end of the productive season outside the field and at the beginning of the next spring within the vineyard. Using multivariate statistical tools, the behaviour of each taxon in relation to the stressors was assessed. Some organisms were affected by the stressors, while others were favoured because of low vulnerability to PPPs and the indirect effect of the absence of other taxa. The principal response curves (PRC) method was the most sensitive tool for assessing PPP effects on soil arthropod communities. Strong differences were evident in the structure of the communities inside and outside the vineyard, with the communities sampled 4 and 10 m outside the vineyard being fairly similar, the latter considered as control. The role of physical stressors on community composition is recognised. However, chemical stressors, and in particular PPP exposure seemed to have larger effects on structural and functional characteristics of soil arthropod communities than physical stressors.
Vescovi Rosa, Beatriz Figueiraujo Jabour; de Oliveira, Vívian Campos; Alves, Roberto da Gama
2011-01-01
The Chironomidae occupy different habitats along the lotic system with their distribution determined by different factors such as the substrate characteristics and water speed. The input of vegetable material from the riparian forest allows a higher habitat diversity and food to the benthic fauna. The main aim of this paper is to verify the structure and spatial distribution of the Chironomidae fauna in different mesohabitats in a first order stream located at a Biological Reserve in the southeast of Brazil. In the months of July, August, and September 2007, and in January, February, and March 2008, samples were collected with a hand net (250 µm) in the following mesohabitats: litter from riffles, litter from pools, and sediment from pools. The community structure of each mesohabitat was analyzed through the abundance of organisms, taxa richness, Pielou's evenness, Shannon's diversity, and taxa dominance. Similarity among the mesohabitats was obtained by Cluster analysis, and Chironomidae larvae distribution through the Correspondence analysis. Indicator species analysis was used to identify possible taxa preference for a determined mesohabitat. The analyzed mesohabitats showed high species richness and diversity favored by the large environmental heterogeneity. Some taxa were indicators of the type of mesohabitat. The substrate was the main factor that determined taxa distribution in relation to water flow differences (riffle and pool). Stream characteristics such as low water speed and the presence of natural mechanisms of retention may have provided a higher faunistic similarity between the areas with different flows. The results showed that the physical characteristics of each environment presented a close relationship with the structure and spatial distribution of the Chironomidae fauna in lotic systems. PMID:21529258
Li, Guixiang; Xu, Guorui; Shen, Congcong; Tang, Yong; Zhang, Yuxin; Ma, Keming
2016-11-01
Above- and below-ground organisms are closely linked, but how elevational distribution pattern of soil microbes shifting across the treeline still remains unknown. Sampling of 140 plots with transect, we herein investigated soil bacterial distribution pattern from a temperate forest up to a subalpine meadow along an elevational gradient using Illumina sequencing. Our results revealed distinct elevational patterns of bacterial diversity above and below the treeline in responding to changes in soil conditions: a hollow elevational pattern in the forest (correlated with soil temperature, pH, and C:N ratio) and a significantly decreasing pattern in the meadow (correlated with soil pH, and available phosphorus). The bacterial community structure was also distinct between the forest and meadow, relating to soil pH in the forest and soil temperature in the meadow. Soil bacteria did not follow the distribution pattern of herb diversity, but bacterial community structure could be predicted by herb community composition. These results suggest that plant communities have an important influence on soil characteristics, and thus change the elevational distribution of soil bacteria. Our findings are useful for future assessments of climate change impacts on microbial community.
Cho, Kyungjin; Choi, Minkyu; Lee, Seockheon; Bae, Hyokwan
2018-05-26
This study investigated the effect of seeding source on the mature anaerobic ammonia oxidation (ANAMMOX) bacterial community niche in continuous poly(vinyl alcohol) (PVA) gel systems operated under high nitrogen loading rate (NLR) condition. Four identical column reactors packed with PVA gels were operated for 182 d using different seeding sources which had distinct community structures. The ANAMMOX reaction was achieved in all the bioreactors with comparable total and ANAMMOX bacterial 16S rRNA gene quantities. The bacterial community structure of the bioreactors became similar during operation; some major bacteria were commonly found. Interestingly, one ANAMMOX species, "Candidatus Brocadia sinica", was conclusively predominant in all the bioreactors, even though different seeding sludges were used as inoculum source, possibly due to the unique physiological characteristics of "Ca. Brocadia sinica" and the operating conditions (i.e., PVA gel-based continuous system and 1.0 kg-N/(m 3 ·d) of NLR). The results clearly suggest that high NLR condition is a more significant factor determining the final ANAMMOX community niche than is the type of seeding source. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rabaut, Marijn; Vincx, Magda; Degraer, Steven
2009-03-01
The positive effects of the tube dwelling polychaete Lanice conchilega for the associated benthic community emphasizes this bio-engineer’s habitat structuring capacity (Rabaut et al. in Estuar Coastal Shelf Sci, 2007). Therefore, L. conchilega aggregations are often referred to as reefs. The reef building capacity of ecosystem engineers is important for marine management as the recognition as reef builder will increase the protected status the concerned species. To classify as reefs however, bio-engineering activities need to significantly alter several habitat characteristics: elevation, sediment consolidation, spatial extent, patchiness, reef builder density, biodiversity, community structure, longevity and stability [guidelines to apply the EU reef-definition by Hendrick and Foster-Smith (J Mar Biol Assoc UK 86:665-677, 2006)]. This study investigates the physical and temporal characteristics of high density aggregations of L. conchilega. Results show that the elevation and sediment consolidation of the biogenic mounds was significantly higher compared to the surrounding unstructured sediment. Areas with L. conchilega aggregations tend to be extensive and patchiness is high (coverage 5-18%). The discussion of present study evaluates whether L. conchilega aggregations can be considered as reefs (discussing physical, biological and temporal characteristics). Individual aggregations were found to persist for several years if yearly renewal of existing aggregations through juvenile settlement occurred. This renewal is enhanced by local hydrodynamic changes and availability of attaching structures (adult tubes). We conclude that the application of the EU definition for reefs provides evidence that all physical and biological characteristics are present to classify L. conchilega as a reef builder. For temporal characteristics, this study shows several mechanisms exist for reefs to persist for a longer period of time. However, a direct evidence of long-lived individual reefs does not exist. As a range of aggregation development exists, ‘reefiness’ is not equal for all aggregations and a scoring table to quantify L. conchilega reefiness is presented.
Temporal change in biological community structure in the Fountain Creek basin, Colorado, 2001-2008
Zuellig, Robert E.; Bruce, James F.; Stogner, Sr., Robert W.
2010-01-01
In 2001, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, began a study to better understand the relations between environmental characteristics and biological communities in the Fountain Creek basin in order to aide water-resource management and guide future monitoring activities. To accomplish this task, environmental (streamflow, habitat, and water chemistry) and biological (fish and macroinvertebrate) data were collected annually at 24 sites over a 6- or 8-year period (fish, 2003 to 2008; macroinvertebrates, 2001 to 2008). For this report, these data were first analyzed to determine the presence of temporal change in macroinvertebrate and fish community structure among years using nonparametric multivariate statistics. Where temporal change in the biological communities was found, these data were further analyzed using additional nonparametric multivariate techniques to determine which subset of selected streamflow, habitat, or water-chemistry variables best described site-specific changes in community structure relative to a gradient of urbanization. This study identified significant directional patterns of temporal change in macroinvertebrate and fish community structure at 15 of 24 sites in the Fountain Creek basin. At four of these sites, changes in environmental variables were significantly correlated with the concurrent temporal change identified in macroinvertebrate and fish community structure (Monument Creek above Woodmen Road at Colorado Springs, Colo.; Monument Creek at Bijou Street at Colorado Springs, Colo.; Bear Creek near Colorado Springs, Colo.; Fountain Creek at Security, Colo.). Combinations of environmental variables describing directional temporal change in the biota appeared to be site specific as no single variable dominated the results; however, substrate composition variables (percent substrate composition composed of sand, gravel, or cobble) collectively were present in 80 percent of the environmental variable subsets that were significantly correlated with temporal change in the macroinvertebrate and fish community structure. Other important environmental variables related to temporal change in the biological community structure included those describing channel form (streambank height) and streamflow (normalized annual mean daily flow, high flood-pulse count). Site-specific results from this study were derived from a relatively small number of observations (6 or 8 years of data); therefore, additional years of data may reveal other sites with temporal change in biological community structure, or could define stronger and more consistent linkages between environmental variables and observed temporal change. Likewise current variable subsets could become weaker. Nonetheless, there were several sites where temporal change was detected in this study that could not be explained by the available environmental variables studied herein. Modification of current data-collection activities may be necessary to better understand site-specific temporal relations between biological communities and environmental variables.
Dickin, Katherine L; Dollahite, Jamie S; Habicht, Jean-Pierre
2011-01-01
Mixed-methods research investigated the work motivation of paraprofessional community nutrition educators (CNEs) delivering a long-running public health nutrition program. In interviews, CNEs (n = 9) emphasized "freedom," supportive supervision, and "making a difference" as key sources of motivation. Community nutrition educator surveys (n = 115) confirmed high levels of autonomy, which was associated with supervisors' delegation and support, CNE decision-making on scheduling and curricula, and job satisfaction. Supervisors (n = 32) rated CNEs' job design as having inherently motivating characteristics comparable to professional jobs. Supervisory strategies can complement job design to create structured, supportive contexts that maintain fidelity, while granting autonomy to paraprofessionals to enhance intrinsic work motivation.
Thrush, Simon F; Hewitt, Judi E; Lohrer, Andrew M; Chiaroni, Luca D
2013-01-01
Interaction between the diversity of local communities and the degree of connectivity between them has the potential to influence local recovery rates and thus profoundly affect community dynamics in the face of the cumulative impacts that occur across regions. Although such complex interactions have been modeled, field experiments in natural ecosystems to investigate the importance of interactions between local and regional processes are rare, especially so in coastal marine seafloor habitats subjected to many types of disturbance. We conducted a defaunation experiment at eight subtidal sites, incorporating manipulation of habitat structure, to test the relative importance of local habitat features and colonist supply in influencing macrobenthic community recovery rate. Our sites varied in community composition, habitat characteristics, and hydrodynamic conditions, and we conducted the experiment in two phases, exposing defaunated plots to colonists during periods of either high or low larval colonist supply. In both phases of the experiment, five months after disturbance, we were able to develop models that explained a large proportion of variation in community recovery rate between sites. Our results emphasize that the connectivity to the regional species pool influences recovery rate, and although local habitat effects were important, the strength of these effects was affected by broader-scale site characteristics and connectivity. Empirical evidence that cross-scale interactions are important in disturbance-recovery dynamics emphasizes the complex dynamics underlying seafloor community responses to cumulative disturbance.
Nicastro, Andrea; Bishop, Melanie J.
2013-01-01
Among the impacts of coastal settlements to estuaries, nutrient pollution is often singled out as a leading cause of modification to the ecological communities of soft sediments. Through sampling of 48 sites, distributed among 16 estuaries of New South Wales, Australia, we tested the hypotheses that (1) anthropogenic nutrient loads would be a better predictor of macrofaunal communities than estuarine geomorphology or local sediment characteristics; and (2) local environmental context, as determined largely by sediment characteristics, would modify the relationship between nutrient loading and community composition. Contrary to the hypothesis, multivariate multiple regression analyses revealed that sediment grain size was the best predictor of macrofaunal assemblage composition. When samples were stratified according to median grain size, relationships between faunal communities and nitrogen loading and latitude emerged, but only among estuaries with sandier sediments. In these estuaries, capitellid and nereid polychaetes and chironomid larvae were the taxa that showed the strongest correlations with nutrient loading. Overall, this study failed to provide evidence of a differential relationship between diffuse nutrient enrichment and benthic macrofauna across a gradient of 7° of latitude and 4°C temperature. Nevertheless, as human population growth continues to place increasing pressure on southeast Australian estuaries, manipulative field studies examining when and where nutrient loading will lead to significant changes in estuarine community structure are needed. PMID:23799037
NASA Astrophysics Data System (ADS)
Cavender-Bares, J.; Schweiger, A. K.; Madritch, M. D.; Gamon, J. A.; Hobbie, S. E.; Montgomery, R.; Townsend, P. A.
2017-12-01
Above-and below-ground plant traits are important for substrate input to the rhizosphere. The substrate composition of the rhizosphere, in turn, affects the diversity of soil organisms, influences soil biochemistry, and water content, and resource availability for plant growth. This has substantial consequences for ecosystem functions, such as above-ground productivity and stability. Above-ground plant chemical and structural traits can be linked to the characteristics of other plant organs, including roots. Airborne imaging spectroscopy has been successfully used to model and predict chemical and structural traits of the above-ground vegetation. However, remotely sensed images capture, almost exclusively, signals from the top of the canopy, providing limited direct information about understory vegetation. Here, we use a data set collected in a savanna ecosystem consisting of spectral measurements gathered at the leaf, the whole plant, and vegetation canopy level to test for hypothesized linkages between above- and below-ground processes that influence root biomass, soil biochemistry, and the diversity of the soil community. In this environment, consisting of herbaceous vegetation intermixed with shrubs and trees growing at variable densities, we investigate the contribution of different vegetation strata to soil characteristics and test the ability of imaging spectroscopy to detect these in plant communities with contrasting vertical structure.
Industrial activated sludge exhibit unique bacterial community composition at high taxonomic ranks.
Ibarbalz, Federico M; Figuerola, Eva L M; Erijman, Leonardo
2013-07-01
Biological degradation of domestic and industrial wastewater by activated sludge depends on a common process of separation of the diverse self-assembled and self-sustained microbial flocs from the treated wastewater. Previous surveys of bacterial communities indicated the presence of a common core of bacterial phyla in municipal activated sludge, an observation consistent with the concept of ecological coherence of high taxonomic ranks. The aim of this work was to test whether this critical feature brings about a common pattern of abundance distribution of high bacterial taxa in industrial and domestic activated sludge, and to relate the bacterial community structure of industrial activated sludge with relevant operational parameters. We have applied 454 pyrosequencing of 16S rRNA genes to evaluate bacterial communities in full-scale biological wastewater treatment plants sampled at different times, including seven systems treating wastewater from different industries and one plant that treats domestic wastewater, and compared our datasets with the data from municipal wastewater treatment plants obtained by three different laboratories. We observed that each industrial activated sludge system exhibited a unique bacterial community composition, which is clearly distinct from the common profile of bacterial phyla or classes observed in municipal plants. The influence of process parameters on the bacterial community structure was evaluated using constrained analysis of principal coordinates (CAP). Part of the differences in the bacterial community structure between industrial wastewater treatment systems were explained by dissolved oxygen and pH. Despite the ecological relevance of floc formation for the assembly of bacterial communities in activated sludge, the wastewater characteristics are likely to be the major determinant that drives bacterial composition at high taxonomic ranks. Copyright © 2013 Elsevier Ltd. All rights reserved.
Environmental Drivers of the Canadian Arctic Megabenthic Communities
Roy, Virginie; Iken, Katrin; Archambault, Philippe
2014-01-01
Environmental gradients and their influence on benthic community structure vary over different spatial scales; yet, few studies in the Arctic have attempted to study the influence of environmental gradients of differing spatial scales on megabenthic communities across continental-scales. The current project studied for the first time how megabenthic community structure is related to several environmental factors over 2000 km of the Canadian Arctic, from the Beaufort Sea to northern Baffin Bay. Faunal trawl samples were collected between 2007 and 2011 at 78 stations from 30 to 1000 m depth and patterns in biomass, density, richness, diversity, and taxonomic composition were examined in relation to indirect/spatial gradients (e.g., depth), direct gradients (e.g., bottom oceanographic variables), and resource gradients (e.g., food supply proxies). Six benthic community types were defined based on their biomass-based taxonomic composition. Their distribution was significantly, but moderately, associated with large-scale (100–1000 km) environmental gradients defined by depth, physical water properties (e.g., bottom salinity), and meso-scale (10–100 km) environmental gradients defined by substrate type (hard vs. soft) and sediment organic carbon content. We did not observe a strong decline of bulk biomass, density and richness with depth or a strong increase of those community characteristics with food supply proxies, contrary to our hypothesis. We discuss how local- to meso-scale environmental conditions, such as bottom current regimes and polynyas, sustain biomass-rich communities at specific locations in oligotrophic and in deep regions of the Canadian Arctic. This study demonstrates the value of considering the scales of variability of environmental gradients when interpreting their relevance in structuring of communities. PMID:25019385
Small, Neil; Green, John; Spink, Joanna; Forster, Anne; Young, John
2009-01-01
This article contrasts community hospital and general hospital philosophies of care and examines how they relate to patients' and caregivers' experiences. Semi-structured interviews with 42 staff were used to produce care setting vignettes in six community hospitals and four general hospitals in the midlands and north of England. The vignettes were used with 26 patients and 10 caregivers in semi-structured interviews. Community hospital and general hospital staff identified shared understandings of requirements for post-acute rehabilitation care for older people. Distinctive features were: general hospital--medical efficiency, helping patients get better, high standard of care, need for stimulation; community hospital--home-like setting, quiet, calm ambience, good views, orientated to elderly people, encouragement of social interaction, involvement of relatives in care. In the main there was symmetry between staff aspirations and patients' experience. However some concepts used and assumptions made by staff were not recognised by patients. These were characteristically reframed in patients' answers as if they were discussing subjective dimensions of care. There was patient and caregiver preference for the home-like environment of community hospitals. In care of older people, where the focus is rehabilitation, patient preferences are particularly pertinent and should be considered alongside clinical outcomes and cost-effectiveness.
Soil fungi colony growth and community dynamics
NASA Astrophysics Data System (ADS)
Falconer, Ruth E.; Kravchenko, Alexandra; Otten, Wilfred
2010-05-01
Fungi are a major player in soil functioning, they contribute to soil structure formation and shaping of plant communities through their role in nutrient cycling, pathogenesis and symbiosis. Theoretical approaches which have emerged over the years and improved considerably our understanding of above ground plant communities are still lacking below ground. A theoretical framework is needed, such that links soil physics, fungal biology and mathematical biology in order to understand fungal community dynamics and diversity in undisturbed soils. Such a framework is essential if we are to understand how environmental change or soil manipulation impacts biodiversity. Different land use and management practices significantly affect soil environmental characteristics crucial for fungal communities by contributing different quantities and qualities of biomass inputs, generating different levels of soil disturbance, influencing soil temperature and moisture regimes, and affecting structure and geometry of soil pore space. Differences in pore structures generated by long-term differences in land use and management are reflected in notable changes in soil physical and hydraulic properties, including soil porosity, hydraulic conductivity and water retention (Brye and Pirani, 2005). Changes in numbers, shapes, and distributions of soil macropores have been often observed (e.g., Pachepsky et al., 1996; Giménez et al., 1997; Udawatta et al., 2008). However, specific implications of these differences in pore structure and geometries for ability of pathogenic as well as non-pathogenic fungi to colonize soil have not yet been addressed. Recent advances in computed tomography and microscopy facilitate detailed examination of the inner pore structures of undisturbed soil samples as well as visualization of fungal mycelia. Such tools together with modelling generate a new level of understanding of the mechanisms governing fungal behaviour at microscopic scales, and for the first time allow us to examine species interactions in a 3D soil environment.
[Effect of flooding time on community structure and abundance of Geobacteraceae in paddy soil].
You, Jiaohua; Xia, Shuhong; Wang, Baoli; Qu, Dong
2011-06-01
The dynamic characteristics of community structure and relative abundance of Geobacteraceae were investigated to understand their response to microbial iron (III) reducing in flooded paddy soil. The paddy soil was incubated anaerobically and the amount of Fe(II) was determined during the flooding incubation. We retrieved Geobacteraceae sequences from clone libraries constructed for different time points (1 h and day 1, 5, 10, 20 and 30) after flooding of the paddy soil. The diversity and community structure were analyzed by using RFLP method, and the relative abundance of Geobacteraceae was detected by real-time PCR. Microbial reduction of iron (III) changed greatly in early time and was stable after incubated for 20 d in paddy soil. The largest iron reduction potential was 10.16 mg/g with a Vmax of 1.064 mg/(g x d) at the time of 4.84 d whereas this process achieved plateau after 20 days flooding. Diversity of Geobacteraceae, given by alpha indices, fluctuated during the flooding incubation. Two peaks of diversity were observed in treatments of 5 d and 20 d respectively, while significant low diversity appeared in samples of 10 d and 30 d. Beta indices described the differences between community structures of Geobacteraceae and hence reflected the variation of the flooding situation over time. In all samples, 10 RFLP-based preponderant types were found, which fell into clade 1 and clade 2 of Geobacteraceae. The relative abundance of Geobacteraceae was the lowest in 1 d (1.20% ) and the highest in 20 d (4.54%). The dynamic variation of Geobacteraceae diversity, community structure and abundance are closely related to microbial iron (III) reducing in flooding paddy soil.
Seasonal variations in the diversity and abundance of diazotrophic communities across soils.
Pereira e Silva, Michele C; Semenov, Alexander V; van Elsas, Jan Dirk; Salles, Joana Falcão
2011-07-01
The nitrogen (N)-fixing community is a key functional community in soil, as it replenishes the pool of biologically available N that is lost to the atmosphere via anaerobic ammonium oxidation and denitrification. We characterized the structure and dynamic changes in diazotrophic communities, based on the nifH gene, across eight different representative Dutch soils during one complete growing season, to evaluate the amplitude of the natural variation in abundance and diversity, and identify possible relationships with abiotic factors. Overall, our results indicate that soil type is the main factor influencing the N-fixing communities, which were more abundant and diverse in the clay soils (n=4) than in the sandy soils (n=4). On average, the amplitude of variation in community size as well as the range-weighted richness were also found to be higher in the clay soils. These results indicate that N-fixing communities associated with sandy and clay soil show a distinct amplitude of variation under field conditions, and suggest that the diazotrophic communities associated with clay soil might be more sensitive to fluctuations associated with the season and agricultural practices. Moreover, soil characteristics such as ammonium content, pH and texture most strongly correlated with the variations observed in the diversity, size and structure of N-fixing communities, whose relative importance was determined across a temporal and spatial scale. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Zhao, Ruifeng; Zhou, Huarong; Qian, Yibing; Zhang, Jianjun
2006-06-01
A total of 16 quadrants of wetlands and surrounding lands in the mid- and lower reaches of Tarim River were surveyed, and the data about the characteristics of plant communities and environmental factors were collected and counted. By using PCA (principal component analysis) ordination and regression procedure, the distribution patterns of plant communities and the relationships between the characteristics of plant community structure and environmental factors were analyzed. The results showed that the distribution of the plant communities was closely related to soil moisture, salt, and nutrient contents. The accumulative contribution rate of soil moisture and salt contents in the first principal component accounted for 35.70%, and that of soil nutrient content in the second principal component reached 25.97%. There were 4 types of habitats for the plant community distribution, i. e., fenny--light salt--medium nutrient, moist--medium salt--medium nutrient, mesophytic--medium salt--low nutrient, and medium xerophytic-heavy salt--low nutrient. Along these habitats, swamp vegetation, meadow vegetation, riparian sparse forest, halophytic desert, and salinized shrub were distributed. In the wetlands and surrounding lands of mid- and lower reaches of Tarim River, the ecological dominance of the plant communities was markedly and unitary-linearly correlated with the compound gradient of soil moisture and salt contents. The relationships between species diversity, ecological dominance, and compound gradient of soil moisture and salt contents were significantly accorded to binary-linear regression model.
[Green space vegetation quantity in workshop area of Wuhan Iron and Steel Company].
Chen, Fang; Zhou, Zhixiang; Wang, Pengcheng; Li, Haifang; Zhong, Yingfei
2006-04-01
Aimed at the complex community structure and higher fragmentation of urban green space, and based on the investigation of synusia structure and its coverage, this paper studied the vegetation quantity of ornamental green space in the workshop area of Wuhan Iron and Steel Company, with the help of GIS. The results showed that different life forms of ornamental plants in this area had a greater difference in their single leaf area and leaf area index (LAI), and the LAI was not only depended on single leaf area, but also governed by the shape of tree crown and the intensive degree of branches and leaves. The total vegetation quantity was 1 694.2 hm2, with the average LAI being 7.75, and the vegetation quantity of arbor-shrub-herb and arbor-shrub communities accounted for 79.7% and 92.3% of the total, respectively, reflecting that the green space structure was dominated by arbor species and by arbor-shrub-herb and arbor-shrub community types. Single layer-structured lawn had a less percentage, while the vegetation quantity of herb synusia accounted for 22.9% of the total, suggesting an afforestation characteristic of "making use of every bit of space" in the workshop area. The vegetation quantity of urban ornamental green space depended on the area of green space, its synusia structure, and the LAI and coverage of ornamental plants. In enlarging urban green space, ornamental plant species with high LAI should be selected, and community structure should be improved to have a higher vegetation quantity in urban area. To quantify the vegetation quantity of urban ornamental green space more accurately, synusia should be taken as the unit to measure the LAI of typical species, and the synusia structure and its coverage of different community types should be investigated with the help of remote sensing images and GIS.
Ajemian, Matthew J.; Wetz, Jennifer J.; Shipley-Lozano, Brooke; Shively, J. Dale; Stunz, Gregory W.
2015-01-01
Artificial structures are the dominant complex marine habitat type along the northwestern Gulf of Mexico (GOM) shelf. These habitats can consist of a variety of materials, but in this region are primarily comprised of active and reefed oil and gas platforms. Despite being established for several decades, the fish communities inhabiting these structures remain poorly investigated. Between 2012 and 2013 we assessed fish communities at 15 sites using remotely operated vehicles (ROVs). Fish assemblages were quantified from standing platforms and an array of artificial reef types (Liberty Ships and partially removed or toppled platforms) distributed over the Texas continental shelf. The depth gradient covered by the surveys (30–84 m) and variability in structure density and relief also permitted analyses of the effects of these characteristics on fish richness, diversity, and assemblage composition. ROVs captured a variety of species inhabiting these reefs from large transient piscivores to small herbivorous reef fishes. While structure type and relief were shown to influence species richness and community structure, major trends in species composition were largely explained by the bottom depth where these structures occurred. We observed a shift in fish communities and relatively high diversity at approximately 60 m bottom depth, confirming trends observed in previous studies of standing platforms. This depth was also correlated with some of the largest Red Snapper captured on supplementary vertical longline surveys. Our work indicates that managers of artificial reefing programs (e.g., Rigs-to-Reefs) in the GOM should carefully consider the ambient environmental conditions when designing reef sites. For the Texas continental shelf, reefing materials at a 50–60 m bottom depth can serve a dual purpose of enhancing diving experiences and providing the best potential habitat for relatively large Red Snapper. PMID:25954943
Torres, Maria Pilar; Montesinos-Navarro, Alicia; Roldán, Antonio
2016-01-01
ABSTRACT We investigated communities of arbuscular mycorrhizal fungi (AMF) in the roots and the rhizosphere soil of Brachypodium retusum in six different natural soils under field conditions. We explored phylogenetic patterns of AMF composition using indicator species analyses to find AMF associated with a given habitat (root versus rhizosphere) or soil type. We tested whether the AMF characteristics of different habitats or contrasting soils were more closely related than expected by chance. Then we used principal-component analysis and multivariate analysis of variance to test for the relative contribution of each factor in explaining the variation in fungal community composition. Finally, we used redundancy analysis to identify the soil properties that significantly explained the differences in AMF communities across soil types. The results pointed out a tendency of AMF communities in roots to be closely related and different from those in the rhizosphere soil. The indicator species analyses revealed AMF associated with rhizosphere soil and the root habitat. Soil type also determined the distribution of AMF communities in soils, and this effect could not be attributed to a single soil characteristic, as at least three soil properties related to microbial activity, i.e., pH and levels of two micronutrients (Mn and Zn), played significant roles in triggering AMF populations. IMPORTANCE Communities of arbuscular mycorrhizal fungi (AMF) are main components of soil biota that can determine the productivity of ecosystems. These fungal assemblages vary across host plants and ecosystems, but the main ecological processes that shape the structures of these communities are still largely unknown. A field study in six different soil types from semiarid areas revealed that AMF communities are significantly influenced by habitat (soil versus roots) and soil type. In addition, three soil properties related to microbiological activity (i.e., pH and manganese and zinc levels) were the main factors triggering the distribution of AMF. These results contribute to a better understanding of the ecological factors that can shape AMF communities, an important soil microbial group that affects multiple ecosystem functions. PMID:27016567
Alguacil, Maria Del Mar; Torres, Maria Pilar; Montesinos-Navarro, Alicia; Roldán, Antonio
2016-06-01
We investigated communities of arbuscular mycorrhizal fungi (AMF) in the roots and the rhizosphere soil of Brachypodium retusum in six different natural soils under field conditions. We explored phylogenetic patterns of AMF composition using indicator species analyses to find AMF associated with a given habitat (root versus rhizosphere) or soil type. We tested whether the AMF characteristics of different habitats or contrasting soils were more closely related than expected by chance. Then we used principal-component analysis and multivariate analysis of variance to test for the relative contribution of each factor in explaining the variation in fungal community composition. Finally, we used redundancy analysis to identify the soil properties that significantly explained the differences in AMF communities across soil types. The results pointed out a tendency of AMF communities in roots to be closely related and different from those in the rhizosphere soil. The indicator species analyses revealed AMF associated with rhizosphere soil and the root habitat. Soil type also determined the distribution of AMF communities in soils, and this effect could not be attributed to a single soil characteristic, as at least three soil properties related to microbial activity, i.e., pH and levels of two micronutrients (Mn and Zn), played significant roles in triggering AMF populations. Communities of arbuscular mycorrhizal fungi (AMF) are main components of soil biota that can determine the productivity of ecosystems. These fungal assemblages vary across host plants and ecosystems, but the main ecological processes that shape the structures of these communities are still largely unknown. A field study in six different soil types from semiarid areas revealed that AMF communities are significantly influenced by habitat (soil versus roots) and soil type. In addition, three soil properties related to microbiological activity (i.e., pH and manganese and zinc levels) were the main factors triggering the distribution of AMF. These results contribute to a better understanding of the ecological factors that can shape AMF communities, an important soil microbial group that affects multiple ecosystem functions. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Hope and despair: community health assistants' experiences of working in a rural district in Zambia.
Zulu, Joseph Mumba; Kinsman, John; Michelo, Charles; Hurtig, Anna-Karin
2014-05-25
In order to address the challenges facing the community-based health workforce in Zambia, the Ministry of Health implemented the national community health assistant strategy in 2010. The strategy aims to address the challenges by creating a new group of workers called community health assistants (CHAs) and integrating them into the health system. The first group started working in August 2012. The objective of this paper is to document their motivation to become a CHA, their experiences of working in a rural district, and how these experiences affected their motivation to work. A phenomenological approach was used to examine CHAs' experiences. Data collected through in-depth interviews with 12 CHAs in Kapiri Mposhi district and observations were analysed using a thematic analysis approach. Personal characteristics such as previous experience and knowledge, passion to serve the community and a desire to improve skills motivated people to become CHAs. Health systems characteristics such as an inclusive work culture in some health posts motivated CHAs to work. Conversely, a non-inclusive work culture created a social structure which constrained CHAs' ability to learn, to be innovative and to effectively conduct their duties. Further, limited supervision, misconceptions about CHA roles, poor prioritisation of CHA tasks by some supervisors, as well as non- and irregular payment of incentives also adversely affected CHAs' ability to work effectively. In addition, negative feedback from some colleagues at the health posts affected CHA's self-confidence and professional outlook. In the community, respect and support provided to CHAs by community members instilled a sense of recognition, appreciation and belonging in CHAs which inspired them to work. On the other hand, limited drug supplies and support from other community-based health workers due to their exclusion from the government payroll inhibited CHAs' ability to deliver services. Programmes aimed at integrating community-based health workers into health systems should adequately consider multiple incentives, effective management, supervision and support from the district. These should be tailored towards enhancing the individual, health system and community characteristics that positively impact work motivation at the local level if such programmes are to effectively contribute towards improved primary healthcare.
Hope and despair: community health assistants’ experiences of working in a rural district in Zambia
2014-01-01
Background In order to address the challenges facing the community-based health workforce in Zambia, the Ministry of Health implemented the national community health assistant strategy in 2010. The strategy aims to address the challenges by creating a new group of workers called community health assistants (CHAs) and integrating them into the health system. The first group started working in August 2012. The objective of this paper is to document their motivation to become a CHA, their experiences of working in a rural district, and how these experiences affected their motivation to work. Methods A phenomenological approach was used to examine CHAs’ experiences. Data collected through in-depth interviews with 12 CHAs in Kapiri Mposhi district and observations were analysed using a thematic analysis approach. Results Personal characteristics such as previous experience and knowledge, passion to serve the community and a desire to improve skills motivated people to become CHAs. Health systems characteristics such as an inclusive work culture in some health posts motivated CHAs to work. Conversely, a non-inclusive work culture created a social structure which constrained CHAs’ ability to learn, to be innovative and to effectively conduct their duties. Further, limited supervision, misconceptions about CHA roles, poor prioritisation of CHA tasks by some supervisors, as well as non- and irregular payment of incentives also adversely affected CHAs’ ability to work effectively. In addition, negative feedback from some colleagues at the health posts affected CHA’s self-confidence and professional outlook. In the community, respect and support provided to CHAs by community members instilled a sense of recognition, appreciation and belonging in CHAs which inspired them to work. On the other hand, limited drug supplies and support from other community-based health workers due to their exclusion from the government payroll inhibited CHAs’ ability to deliver services. Conclusions Programmes aimed at integrating community-based health workers into health systems should adequately consider multiple incentives, effective management, supervision and support from the district. These should be tailored towards enhancing the individual, health system and community characteristics that positively impact work motivation at the local level if such programmes are to effectively contribute towards improved primary healthcare. PMID:24886146
Flores-Rentería, Dulce; Curiel Yuste, Jorge; Rincón, Ana; Brearley, Francis Q; García-Gil, Juan Carlos; Valladares, Fernando
2015-05-01
Ecological transformations derived from habitat fragmentation have led to increased threats to above-ground biodiversity. However, the impacts of forest fragmentation on soils and their microbial communities are not well understood. We examined the effects of contrasting fragment sizes on the structure and functioning of soil microbial communities from holm oak forest patches in two bioclimatically different regions of Spain. We used a microcosm approach to simulate the annual summer drought cycle and first autumn rainfall (rewetting), evaluating the functional response of a plant-soil-microbial system. Forest fragment size had a significant effect on physicochemical characteristics and microbial functioning of soils, although the diversity and structure of microbial communities were not affected. The response of our plant-soil-microbial systems to drought was strongly modulated by the bioclimatic conditions and the fragment size from where the soils were obtained. Decreasing fragment size modulated the effects of drought by improving local environmental conditions with higher water and nutrient availability. However, this modulation was stronger for plant-soil-microbial systems built with soils from the northern region (colder and wetter) than for those built with soils from the southern region (warmer and drier) suggesting that the responsiveness of the soil-plant-microbial system to habitat fragmentation was strongly dependent on both the physicochemical characteristics of soils and the historical adaptation of soil microbial communities to specific bioclimatic conditions. This interaction challenges our understanding of future global change scenarios in Mediterranean ecosystems involving drier conditions and increased frequency of forest fragmentation.
How Relations are Built within a SNS World -- Social Network Analysis on Mixi --
NASA Astrophysics Data System (ADS)
Matsuo, Yutaka; Yasud, Yuki
Our purpose here is to (1) investigate the structure of the personal networks developed on mixi, a Japanese social networking service (SNS), and (2) to consider the governing mechanism which guides participants of a SNS to form an aggregate network. Our findings are as follows:the clustering coefficient of the network is as high as 0.33 while the characteristic path lenght is as low as 5.5. A network among central users (over 300 edges) consist of two cliques, which seems to be very fragile. Community-affiliation network suggests there are several easy-entry communities which later lead users to more high-entry, unique-theme communities. The analysis on connectedness within a community reveals the importance of real-world interaction. Lastly, we depict a probable image of the entire ecology on {\\\\em mixi} among users and communities, which contributes broadly to social systems on the Web.
Taucher, Jan; Haunost, Mathias; Boxhammer, Tim; Bach, Lennart T.; Algueró-Muñiz, María; Riebesell, Ulf
2017-01-01
Plankton communities play a key role in the marine food web and are expected to be highly sensitive to ongoing environmental change. Oceanic uptake of anthropogenic carbon dioxide (CO2) causes pronounced shifts in marine carbonate chemistry and a decrease in seawater pH. These changes–summarized by the term ocean acidification (OA)–can significantly affect the physiology of planktonic organisms. However, studies on the response of entire plankton communities to OA, which also include indirect effects via food-web interactions, are still relatively rare. Thus, it is presently unclear how OA could affect the functioning of entire ecosystems and biogeochemical element cycles. In this study, we report from a long-term in situ mesocosm experiment, where we investigated the response of natural plankton communities in temperate waters (Gullmarfjord, Sweden) to elevated CO2 concentrations and OA as expected for the end of the century (~760 μatm pCO2). Based on a plankton-imaging approach, we examined size structure, community composition and food web characteristics of the whole plankton assemblage, ranging from picoplankton to mesozooplankton, during an entire winter-to-summer succession. The plankton imaging system revealed pronounced temporal changes in the size structure of the copepod community over the course of the plankton bloom. The observed shift towards smaller individuals resulted in an overall decrease of copepod biomass by 25%, despite increasing numerical abundances. Furthermore, we observed distinct effects of elevated CO2 on biomass and size structure of the entire plankton community. Notably, the biomass of copepods, dominated by Pseudocalanus acuspes, displayed a tendency towards elevated biomass by up to 30–40% under simulated ocean acidification. This effect was significant for certain copepod size classes and was most likely driven by CO2-stimulated responses of primary producers and a complex interplay of trophic interactions that allowed this CO2 effect to propagate up the food web. Such OA-induced shifts in plankton community structure could have far-reaching consequences for food-web interactions, biomass transfer to higher trophic levels and biogeochemical cycling of marine ecosystems. PMID:28178268
Eichler, Stefan; Christen, Richard; Höltje, Claudia; Westphal, Petra; Bötel, Julia; Brettar, Ingrid; Mehling, Arndt; Höfle, Manfred G.
2006-01-01
Bacterial community dynamics of a whole drinking water supply system (DWSS) were studied from source to tap. Raw water for this DWSS is provided by two reservoirs with different water characteristics in the Harz mountains of Northern Germany. Samples were taken after different steps of treatment of raw water (i.e., flocculation, sand filtration, and chlorination) and at different points along the supply system to the tap. RNA and DNA were extracted from the sampled water. The 16S rRNA or its genes were partially amplified by reverse transcription-PCR or PCR and analyzed by single-strand conformation polymorphism community fingerprints. The bacterial community structures of the raw water samples from the two reservoirs were very different, but no major changes of these structures occurred after flocculation and sand filtration. Chlorination of the processed raw water strongly affected bacterial community structure, as reflected by the RNA-based fingerprints. This effect was less pronounced for the DNA-based fingerprints. After chlorination, the bacterial community remained rather constant from the storage containers to the tap. Furthermore, the community structure of the tap water did not change substantially for several months. Community composition was assessed by sequencing of abundant bands and phylogenetic analysis of the sequences obtained. The taxonomic compositions of the bacterial communities from both reservoirs were very different at the species level due to their different limnologies. On the other hand, major taxonomic groups, well known to occur in freshwater, such as Alphaproteobacteria, Betaproteobacteria, and Bacteroidetes, were found in both reservoirs. Significant differences in the detection of the major groups were observed between DNA-based and RNA-based fingerprints irrespective of the reservoir. Chlorination of the drinking water seemed to promote growth of nitrifying bacteria. Detailed analysis of the community dynamics of the whole DWSS revealed a significant influence of both source waters on the overall composition of the drinking water microflora and demonstrated the relevance of the raw water microflora for the drinking water microflora provided to the end user. PMID:16517632
Short-term effects of gypsy moth defoliation on nongame birds
Robert C. Whitmore; Richard D. Greer
1991-01-01
The response of a nongame bird community to tree defoliation and mortality caused by gypsy moths was studied during the summers of 1984, 1985, 1987, and 1988 in deciduous forest habitat of eastern West Virginia. Birds and structural vegetation characteristics were sampled on 42 permanent stations. The 1984 and 1985 stations were considered undefoliated because whole...
Hydrobiological investigations of Kytalyk Wildlife Reserve polygonal ponds (North-Eastern Yakutia)
NASA Astrophysics Data System (ADS)
Nigamatzyanova, G.; Frolova, L.; Pestryakova, L.
2018-01-01
In the following article there are introduced the first researching results of 27 water bodies of polygonal tundra in Kytalyk Wildlife Reserve in the summer 2011. The evaluation of physic-hydrochemical indexes of water bodies is given. The basic structure-forming characteristics of zooplankton communities are analyzed. The ecological state of the lakes is estimated.
Vegetation and soils of a serpentine barren in western North Carolina
Laura Mansberg; Thomas Wentworth
1984-01-01
Vegetation of a pine-savanna on an olivine-serpentine outcrop is described Soil characteristics, community structure, species composition, species richness, and representation of life-forms and geographic areas are discussed and compared with those of oak-mixed hardwood vegetation growing on mica gneiss slopes in the same area The pine-savanna differs from the oak-...
New Technologies as a Tool for Changing Academic Communities in the Global Context
ERIC Educational Resources Information Center
Jankowska, Dorota; Tanas, Maciej
2016-01-01
It has been defined that knowledge society emerges at the end of the twentieth century as the socio-economic structure characteristic for developed societies in which unlike in industrial societies, the dominant sector of economy is services and the largest social group is the "men of knowledge". It has been indicated that the…
Estelle V. Balian; Robert J. Naiman
2005-01-01
Riparian zones associated with alluvial rivers are spatially dynamic, forming distinct vegetative mosaics that exhibit sharp contrasts in structure and processes related to the underlying biophysical template. The productivity of riparian plants, especially trees, influences streamside community characteristics as, well as the forms and fluxes of organic matter to...
ERIC Educational Resources Information Center
Pollet, Ignace; And Others
An international team of researchers studied the following aspects of training in Belgium's retail sector: structure and characteristics, institutional and social context, employment and labor, changing conditions and their implications for skill requirements, and training and recruitment. Data were collected from an analysis of social and…
Cathryn H. Greenberg; Daniel G. Neary; Lawrence D. Harris; Steven P. Linda
1994-01-01
We hypothesized that clear-cutting mimics natural high-intensity disturbance by wildfire followed by salvage logging in sand pine scrub, and tested whether vegetation adapted to recovery from fire would respond similarly to another type of biomass removal. We measured plant community composition and structural characteristics in three replicated disturbance treatments...
Friendship Concept and Community Network Structure among Elementary School and University Students.
Hernández-Hernández, Ana María; Viga-de Alva, Dolores; Huerta-Quintanilla, Rodrigo; Canto-Lugo, Efrain; Laviada-Molina, Hugo; Molina-Segui, Fernanda
2016-01-01
We use complex network theory to study the differences between the friendship concepts in elementary school and university students. Four friendship networks were identified from surveys. Three of these networks are from elementary schools; two are located in the rural area of Yucatán and the other is in the urban area of Mérida, Yucatán. We analyzed the structure and the communities of these friendship networks and found significant differences among those at the elementary schools compared with those at the university. In elementary schools, the students make friends mainly in the same classroom, but there are also links among different classrooms because of the presence of siblings and relatives in the schools. These kinds of links (sibling-friend or relative-friend) are called, in this work, "mixed links". The classification of the communities is based on their similarity with the classroom composition. If the community is composed principally of students in different classrooms, the community is classified as heterogeneous. These kinds of communities appear in the elementary school friendship networks mainly because of the presence of relatives and siblings. Once the links between siblings and relatives are removed, the communities resembled the classroom composition. On the other hand, the university students are more selective in choosing friends and therefore, even when they have friends in the same classroom, those communities are quite different to the classroom composition. Also, in the university network, we found heterogeneous communities even when the presence of sibling and relatives is negligible. These differences made up a topological structure quite different at different academic levels. We also found differences in the network characteristics. Once these differences are understood, the topological structure of the friendship network and the communities shaped in an elementary school could be predicted if we know the total number of students and the ties between siblings and relatives. However, at the university, we cannot do the same. This discovery implies that friendship is a dynamic concept that produces several changes in the friendship network structure and the way that people make groups of friends; it provides the opportunity to give analytic support to observational studies. Communities were also studied by gender and we found that when the links among relatives and siblings were removed, the number of communities formed by one gender alone increased. At the university, many communities formed by students of the same gender were also found.
Prescott, Cindy E.; Renaut, Sébastien; Terrat, Yves; Grayston, Sue J.
2017-01-01
ABSTRACT The Athabasca oil sand deposit is one of the largest single oil deposits in the world. Following surface mining, companies are required to restore soil-like profiles that can support the previous land capabilities. The objective of this study was to assess whether the soil prokaryotic alpha diversity (α-diversity) and β-diversity in oil sand soils reconstructed 20 to 30 years previously and planted to one of three vegetation types (coniferous or deciduous trees and grassland) were similar to those found in natural boreal forest soils subject to wildfire disturbance. Prokaryotic α-diversity and β-diversity were assessed using massively parallel sequencing of 16S rRNA genes. The β-diversity, but not the α-diversity, differed between reconstructed and natural soils. Bacteria associated with an oligotrophic lifestyle were more abundant in natural forest soils, whereas bacteria associated with a copiotrophic lifestyle were more abundant in reconstructed soils. Ammonia-oxidizing archaea were most abundant in reconstructed soils planted with grasses. Plant species were the main factor influencing α-diversity in natural and in reconstructed soils. Nitrogen deposition, pH, and plant species were the main factors influencing the β-diversity of the prokaryotic communities in natural and reconstructed soils. The results highlight the importance of nitrogen deposition and aboveground-belowground relationships in shaping soil microbial communities in natural and reconstructed soils. IMPORTANCE Covering over 800 km2, land disturbed by the exploitation of the oil sands in Canada has to be restored. Here, we take advantage of the proximity between these reconstructed ecosystems and the boreal forest surrounding the oil sand mining area to study soil microbial community structure and processes in both natural and nonnatural environments. By identifying key characteristics shaping the structure of soil microbial communities, this study improved our understanding of how vegetation, soil characteristics and microbial communities interact and drive soil functions. PMID:28213542
Masse, Jacynthe; Prescott, Cindy E; Renaut, Sébastien; Terrat, Yves; Grayston, Sue J
2017-05-01
The Athabasca oil sand deposit is one of the largest single oil deposits in the world. Following surface mining, companies are required to restore soil-like profiles that can support the previous land capabilities. The objective of this study was to assess whether the soil prokaryotic alpha diversity (α-diversity) and β-diversity in oil sand soils reconstructed 20 to 30 years previously and planted to one of three vegetation types (coniferous or deciduous trees and grassland) were similar to those found in natural boreal forest soils subject to wildfire disturbance. Prokaryotic α-diversity and β-diversity were assessed using massively parallel sequencing of 16S rRNA genes. The β-diversity, but not the α-diversity, differed between reconstructed and natural soils. Bacteria associated with an oligotrophic lifestyle were more abundant in natural forest soils, whereas bacteria associated with a copiotrophic lifestyle were more abundant in reconstructed soils. Ammonia-oxidizing archaea were most abundant in reconstructed soils planted with grasses. Plant species were the main factor influencing α-diversity in natural and in reconstructed soils. Nitrogen deposition, pH, and plant species were the main factors influencing the β-diversity of the prokaryotic communities in natural and reconstructed soils. The results highlight the importance of nitrogen deposition and aboveground-belowground relationships in shaping soil microbial communities in natural and reconstructed soils. IMPORTANCE Covering over 800 km 2 , land disturbed by the exploitation of the oil sands in Canada has to be restored. Here, we take advantage of the proximity between these reconstructed ecosystems and the boreal forest surrounding the oil sand mining area to study soil microbial community structure and processes in both natural and nonnatural environments. By identifying key characteristics shaping the structure of soil microbial communities, this study improved our understanding of how vegetation, soil characteristics and microbial communities interact and drive soil functions. Copyright © 2017 American Society for Microbiology.
Brasher, Anne M.D.; Konrad, Chris P.; May, Jason T.; Edmiston, C. Scott; Close, Rebecca N.
2010-01-01
Hydrographic characteristics of streamflow, such as high-flow pulses, base flow (background discharge between floods), extreme low flows, and floods, significantly influence aquatic organisms. Streamflow can be described in terms of magnitude, timing, duration, frequency, and variation (hydrologic regime). These characteristics have broad effects on ecosystem productivity, habitat structure, and ultimately on resident fish, invertebrate, and algae communities. Increasing human use of limited water resources has modified hydrologic regimes worldwide. Identifying the most ecologically significant hydrographic characteristics would facilitate the development of water-management strategies.Benthic invertebrates include insects, mollusks (snails and clams), worms, and crustaceans (shrimp) that live on the streambed. Invertebrates play an important role in the food web, consuming other invertebrates and algae and being consumed by fish and birds. Hydrologic alteration associated with land and water use can change the natural hydrologic regime and may affect benthic invertebrate assemblage composition and structure through changes in density of invertebrates or taxa richness (number of different species).This study examined associations between the hydrologic regime and characteristics of benthic invertebrate assemblages across the western United States and developed tools to identify streamflow characteristics that are likely to affect benthic invertebrate assemblages.
Mindful attention and awareness: relationships with psychopathology and emotion regulation.
Gregório, Sónia; Pinto-Gouveia, José
2013-01-01
The growing interest in mindfulness from the scientific community has originated several self-report measures of this psychological construct. The Mindful Attention and Awareness Scale (MAAS) is a self-report measure of mindfulness at a trait-level. This paper aims at exploring MAAS psychometric characteristics and validating it for the Portuguese population. The first two studies replicate some of the original author's statistical procedures in two different samples from the Portuguese general community population, in particular confirmatory factor analyses. Results from both analyses confirmed the scale single-factor structure and indicated a very good reliability. Moreover, cross-validation statistics showed that this single-factor structure is valid for different respondents from the general community population. In the third study the Portuguese version of the MAAS was found to have good convergent and discriminant validities. Overall the findings support the psychometric validity of the Portuguese version of MAAS and suggest this is a reliable self-report measure of trait-mindfulness, a central construct in Clinical Psychology research and intervention fields.
Wakeley, J.S.; Guilfoyle, M.P.; Antrobus, T.J.; Fischer, R.A.; Barrow, W.C.; Hamel, P.B.
2007-01-01
We used an ordination approach to identify factors important to the organization of breeding bird communities in three floodplains: Cache River, Arkansas (AR), Iatt Creek, Louisiana (LA), and the Coosawhatchie River, South Carolina (SC), USA. We used 5-min point counts to sample birds in each study area each spring from 1995 to 1998, and measured ground-surface elevations and a suite of other habitat variables to investigate bird distributions and community characteristics in relation to important environmental gradients. In both AR and SC, the average number of Neotropical migrant species detected was lowest in semipermanently flooded Nyssa aquatica Linnaeus habitats and greatest in the highest elevation floodplain zone. Melanerpes carolinus Linnaeus, Protonotaria citrea Boddaert, Quiscalus quiscula Linnaeus, and other species were more abundant in N. aquatica habitats, whereas Wilsonia citrina Boddaert, Oporornis formosus Wilson, Vireo griseus Boddaert, and others were more abundant in drier floodplain zones. In LA, there were no significant differences in community metrics or bird species abundances among forest types. Canonical correspondence analyses revealed that structural development of understory vegetation was the most important factor affecting bird distributions in all three study areas; however, potential causes of these structural gradients differed. In AR and SC, differences in habitat structure were related to the hydrologic gradient, as indexed by ground-surface elevation. In LA, structural variations were related mainly to the frequency of canopy gaps. Thus, bird communities in all three areas appeared to be organized primarily in response to repeated localized disturbance. Our results suggest that regular disturbance due to flooding plays an important role in structuring breeding bird communities in floodplains subject to prolonged inundation, whereas other agents of disturbance (e.g., canopy gaps) may be more important in headwater systems subject to only short-duration flooding. Management for avian community integrity in these systems should strive to maintain forest zonation and natural disturbance regimes. ?? 2007 Springer Science+Business Media B.V.
Emily L. Bernhardt; Teresa N. Hollingsworth; F. Stuart Chapin
2011-01-01
Question: How do pre-fire conditions (community composition and environmental characteristics) and climate-driven disturbance characteristics (fire severity) affect post-fire community composition in black spruce stands? Location: Northern boreal forest, interior Alaska. Methods: We compared plant community composition and environmental stand characteristics in 14...
Zhu, Yao-Jun; Bourgeois, C; Lin, Guang-Xuan; Wu, Xiao-Dong; Guo, Ju-Lan; Guo, Zhi-Hua
2012-08-01
Mangrove wetland is an important type of coastal wetlands, and also, an important sediment trap. Sediment is an essential medium for mangrove recruitment and development, which records the environmental history of mangrove wetlands and can be used for the analysis of material sources and the inference of the materials depositing process, being essential to the ecological restoration and conservation of mangrove. In this paper, surface sediment samples were collected along a hydrodynamic gradient in Gaoqiao, Zhanjiang Mangrove National Nature Reserve in 2011. The characteristics of the surface sediments were analyzed based on grain size analysis, and the prediction surfaces were generated by the geo-statistical methods with ArcGIS 9.2 software. A correlation analysis was also conducted on the sediment organic matter content and the mangrove community structure. In the study area, clay and silt dominated the sediment texture, and the mean content of sand, silt, and clay was (27.8 +/- 15.4)%, (40.3 +/- 15.4)%, and (32.1 +/- 11.4)%, respectively. The spatial gradient of the sediment characteristics was expressed in apparent interpolation raster. With increasing distance from the seawall, the sediment sand content increased, clay content decreased, and silt content was relatively stable at a certain level. There was a positive correlation between the contents of sediment organic matter and silt, and a negative correlation between the contents of sediment organic matter and sand. Much more sediment organic matter was located at the high tide area with weak tide energy. There existed apparent discrepancies in the characteristics of the surface sediments in different biotopes. The sediment characteristics had definite correlations with the community structure of mangroves, reflecting the complicated correlations between the hydrodynamic conditions and the mangroves.
Depressive Symptoms of Older Adults Living Alone: The Role of Community Characteristics.
Kim, Kyeongmo; Lee, Minhong
2015-03-01
Although some evidence suggests that community characteristics may play an important role in the development of depressive symptoms among older adults, current literature has not attended to the role of community characteristics in depression in South Korea. This study begins to address this gap in the literature by examining the relationship of community characteristics and depressive symptoms, controlling for individual characteristics. Using a cross-sectional design and probability sampling, we surveyed 949 older adults living alone in 70 communities in the Busan metropolitan area in South Korea in 2012. A multilevel logistic regression analysis was conducted to test the hypothesis that community characteristics are predictive of depressive symptoms. We find that both the proportion of older adults and the number of senior citizen facilities in a community are associated with depressive symptoms, whereas community poverty is not related to depressive symptoms. Men with lower income, with lower levels of functional abilities, and without stronger family and friend social networks have a higher risk of depressive symptoms. Implications for research, practice, and policy are discussed. © The Author(s) 2015.
Kohout, Petr; Doubková, Pavla; Bahram, Mohammad; Suda, Jan; Tedersoo, Leho; Voříšková, Jana; Sudová, Radka
2015-04-01
Arbuscular mycorrhizal fungi (AMF) represent an important soil microbial group playing a fundamental role in many terrestrial ecosystems. We explored the effects of deterministic (soil characteristics, host plant life stage, neighbouring plant communities) and stochastic processes on AMF colonization, richness and community composition in roots of Knautia arvensis (Dipsacaceae) plants from three serpentine grasslands and adjacent nonserpentine sites. Methodically, the study was based on 454-sequencing of the ITS region of rDNA. In total, we detected 81 molecular taxonomical operational units (MOTUs) belonging to the Glomeromycota. Serpentine character of the site negatively influenced AMF root colonization, similarly as higher Fe concentration. AMF MOTUs richness linearly increased along a pH gradient from 3.5 to 5.8. Contrary, K and Cr soil concentration had a negative influence on AMF MOTUs richness. We also detected a strong relation between neighbouring plant community composition and AMF MOTUs richness. Although spatial distance between the sampled sites (c. 0.3-3 km) contributed to structuring AMF communities in K. arvensis roots, environmental parameters were key factors in this respect. In particular, the composition of AMF communities was shaped by the complex of serpentine conditions, pH and available soil Ni concentration. The composition of AMF communities was also dependent on host plant life stage (vegetative vs. generative). Our study supports the dominance of deterministic factors in structuring AMF communities in heterogeneous environment composed of an edaphic mosaic of serpentine and nonserpentine soils. © 2015 John Wiley & Sons Ltd.
Legay, N.; Baxendale, C.; Grigulis, K.; Krainer, U.; Kastl, E.; Schloter, M.; Bardgett, R. D.; Arnoldi, C.; Bahn, M.; Dumont, M.; Poly, F.; Pommier, T.; Clément, J. C.; Lavorel, S.
2014-01-01
Background and Aims Abiotic properties of soil are known to be major drivers of the microbial community within it. Our understanding of how soil microbial properties are related to the functional structure and diversity of plant communities, however, is limited and largely restricted to above-ground plant traits, with the role of below-ground traits being poorly understood. This study investigated the relative contributions of soil abiotic properties and plant traits, both above-ground and below-ground, to variations in microbial processes involved in grassland nitrogen turnover. Methods In mountain grasslands distributed across three European sites, a correlative approach was used to examine the role of a large range of plant functional traits and soil abiotic factors on microbial variables, including gene abundance of nitrifiers and denitrifiers and their potential activities. Key Results Direct effects of soil abiotic parameters were found to have the most significant influence on the microbial groups investigated. Indirect pathways via plant functional traits contributed substantially to explaining the relative abundance of fungi and bacteria and gene abundances of the investigated microbial communities, while they explained little of the variance in microbial activities. Gene abundances of nitrifiers and denitrifiers were most strongly related to below-ground plant traits, suggesting that they were the most relevant traits for explaining variation in community structure and abundances of soil microbes involved in nitrification and denitrification. Conclusions The results suggest that consideration of plant traits, and especially below-ground traits, increases our ability to describe variation in the abundances and the functional characteristics of microbial communities in grassland soils. PMID:25122656
Anthropogenic and natural disturbances to marine benthic communities in Antarctica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenihan, H.; Oliver, J.S.
1995-05-01
Sampling and field experiments were conducted from 1975 to 1990 to test how the structure of marine benthic communities around McMurdo Station, Antarctica varied with levels of anthropogenic contaminants in marine sediments. The structure of communities (e.g., infauna density, species composition, and life history characteristics) in contaminated and uncontaminated areas were compared with the structure of communities influenced by two large-scale natural disturbances, anchor ice formation and uplift or iceberg scour. Benthic communities changed radically along a steep spatial gradient of anthropogenic hydrocarbon, metal, and PCB contamination around McMurdo Station. The heavily contaminated end of the gradient, Winter Quarters Bay,more » was low in infaunal and epifaunal abundance and was dominated by a few opportunistic species of polychaete worms. The edge of the heavily contaminated bay, the transition area, contained several motile polychaete species with less opportunistic life histories. Uncontaminated sedimentary habitats harbored dense tube mats of infaunal animals numerically dominated by populations of polychaete worms, crustaceans, and a large suspension feeding bivalve. These species are generally large and relatively sessile, except for several crustacean species living among the tubes. Although the community patterns around anthropogenic and natural disturbances were similar, particularly motile and opportunistic species at heavily disturbed and marginal areas, the natural disturbances cover much greater areas of the sea floor about the entire Antarctic continent. On the other hand, recovery from chemical contamination is likely to take many more decades than recovery from natural disturbances as contaminant degradation is a slow process. 77 refs., 6 figs., 5 tabs.« less
Interactions between Natural Organic Matter and Native Microbes in the Oak Ridge FRC Groundwater
NASA Astrophysics Data System (ADS)
Wu, X.; Hazen, T.; Fox, P. M.; Nico, P. S.; Li, Q.; Yang, W.; Liu, Y.; Hess, N. J.; Zhang, P.; Qin, Y.; Zhou, J.; Chakraborty, R.
2016-12-01
Natural organic matter (NOM) is central to microbial food webs; however, little is known about the interplay between the physical and chemical characteristics of the carbon in NOM and its turnover by microbial communities. Microbial activity changes NOM's structure and properties, which may further influence the bioavailability of NOM. The change of NOM may reversely affect the microbial community structure as well. To date, our understanding of these interactions is insufficient, and it is critical to identify the role of NOM to carbon turnover, structure of microbial community and to the metabolic potential of that community. In this study, we aimed to study the interactions between NOM and native microbial communities present in groundwater at a background site (FW305 well) at Oak Ridge Field Research Center, TN. The total organic carbon and inorganic carbon in FW305 deep sediment samples were 0.071% and 0.011%, respectively. Water-soluble NOM was extracted from these sediment samples, the extraction efficiencies were 3.2% for organic carbon and 1.6% for inorganic carbon. The extracted NOM was then provided as the sole carbon source to native microbes present in groundwater. Subsamples were harvested several times from these incubations during a 50-day study. 16S rRNA gene amplicon sequencing and Geochip were used to identify the changes of microbial communities and expression of functional genes during transformation of the NOM. Several advanced chemical techniques including FTICR-MS and NEXAFS were used to characterize the C pool (i.e., NOM metabolites and microbial byproducts). Preliminary data clearly showed that microbial community responded to NOM, and shifted as functional groups in NOM transformed. Further detailed metabolite and gene-based analysis to elucidate these changes is currently being conducted.
NASA Astrophysics Data System (ADS)
Assigbetsé, K.; Ciss, I.; Bakhoum, N.; Dieng, L.
2012-04-01
Inoculation of legume plants with symbiotic microorganisms is widely used to improve their development and productivity. The objective of this study was to investigate the effect of inoculation of Acacia senegal mature trees with rhizobium (Sinorhizobium) and arbuscular mycorrhizal fungus (G. mosseae, G. fasciculatum, G. intraradices) either singly or in combination, on soil properties, activity and the genetic structure of soil microbial communities. The experiment set up in Southern Senegal consisted of 4 randomized blocks of A. senegal mature trees with 4 treatments including inoculated trees with Rhizobium (R), mycorrhizal fungus (M) and with Rhizobium+mycorhizal fungus (RM) and non-inoculated control (CON). Soil were sampled 2 years after the inoculation. Soil pH, C and N and available P contents were measured. The microbial abundance and activity were measured in terms of microbial biomass C (MBC) and basal soil respiration. The community structure of the total bacterial, diazotrophic and denitrifying communities was assessed by denaturing gradient gel electrophoresis of 16S rDNA, nifH and nirK genes respectively. Inoculations with symbiont under field conditions have increased soil pH. The C and N contents were enhanced in the dual-inoculated treatments (RM). The mycorrhized treatment have displayed the lowest available P contents while RM and R treatments exhibited higher contents rates. The microbial biomass C rates were higher in treatments co-inoculated with AM fungi and Rhizobium than in those inoculated singly with AM fungi or Rhizobium strains. The basal soil respiration were positively correlated to MBC, and the highest rates were found in the co-inoculated treatments. Fingerprints of 16S rDNA gene exhibited similar patterns between inoculated treatments and the control showing that the inoculation of mature trees have not impacted the total bacterial community structure. In contrast, the inoculated treatments have displayed individually different diazotrophic and denitrifying communities fingerprints, indicating that the inoculation with microsymbionts have modified the genetic structure of the two functional communities in soil. Further, the diazotrophic community richness was reduced over the control indicating the impact of the addition of symbionts on the free-living N2-fixing bacterial (nifH) diversity. This study shows that inoculation of A. senegal mature trees with rhizobium and arbuscular mycorrhizal fungus has enhanced soil biofunctioning and modified the genetic structure of microbial community involved in N-cycling. Combined inoculation of AM fungi and Rhizobium have improved these effects on chemical characteristics, microbial community abundance and activity demonstrating synergism between the two microsymbionts.
Sex education and adolescent sexual behavior: do community characteristics matter?
Kraft, Joan Marie; Kulkarni, Aniket; Hsia, Jason; Jamieson, Denise J; Warner, Lee
2012-09-01
Studies point to variation in the effects of formal sex education on sexual behavior and contraceptive use by individual and community characteristics. Using the 2002 National Survey of Family Growth, we explored associations between receipt of sex education and intercourse by age 15, intercourse by the time of the interview and use of effective contraception at first sex among 15-19-year-olds, stratified by quartiles of three community characteristics and adjusted for demographics. Across all quartiles of community characteristics, sex education reduced the odds of having sex by age 15. Sex education resulted in reduced odds of having sex by the date of the interview and increased odds of using contraception in the middle quartiles of community characteristics. Variation in the effects of sex education should be explored. Research might focus on programmatic differences by community type and programmatic needs in various types of communities. Published by Elsevier Inc.
Rúa, Megan A.; Wilson, Emily C.; Steele, Sarah; Munters, Arielle R.; Hoeksema, Jason D.; Frank, Anna C.
2016-01-01
Studies of the ecological and evolutionary relationships between plants and their associated microbes have long been focused on single microbes, or single microbial guilds, but in reality, plants associate with a diverse array of microbes from a varied set of guilds. As such, multitrophic interactions among plant-associated microbes from multiple guilds represent an area of developing research, and can reveal how complex microbial communities are structured around plants. Interactions between coniferous plants and their associated microbes provide a good model system for such studies, as conifers host a suite of microorganisms including mutualistic ectomycorrhizal (ECM) fungi and foliar bacterial endophytes. To investigate the potential role ECM fungi play in structuring foliar bacterial endophyte communities, we sampled three isolated, native populations of Monterey pine (Pinus radiata), and used constrained analysis of principal coordinates to relate the community matrices of the ECM fungi and bacterial endophytes. Our results suggest that ECM fungi may be important factors for explaining variation in bacterial endophyte communities but this effect is influenced by population and environmental characteristics, emphasizing the potential importance of other factors — biotic or abiotic — in determining the composition of bacterial communities. We also classified ECM fungi into categories based on known fungal traits associated with substrate exploration and nutrient mobilization strategies since variation in these traits allows the fungi to acquire nutrients across a wide range of abiotic conditions and may influence the outcome of multi-species interactions. Across populations and environmental factors, none of the traits associated with fungal foraging strategy types significantly structured bacterial assemblages, suggesting these ECM fungal traits are not important for understanding endophyte-ECM interactions. Overall, our results suggest that both biotic species interactions and environmental filtering are important for structuring microbial communities but emphasize the need for more research into these interactions. PMID:27065966
NASA Astrophysics Data System (ADS)
Orson, Richard A.; Howes, Brian L.
1992-11-01
Stochastic events relating to beach formation and inlet dynamics have been the major factors influencing the development of the Waquoit Bay tidal marshes. This results from the physical structure of the Waquoit Bay system where tidal exchange is limited to one or two small inlets and is in contrast to marsh development in nearby Barnstable Marsh where direct unrestricted exchange with Cape Cod Bay has smoothed the effects of stochastic events on vegetation development. We contend that vegetation development in salt marshes where connections to adjacent waters are restricted will be dominated by abiotic factors (e.g. storms, sedimentation rates, etc.) while those marshes directly linked to open bodies of water and where alterations to hydrodynamic factors are gradual, autecological processes (e.g. interspecific competition) will dominate long-term plant community development. The results from the five marsh systems within the Waquoit Bay complex suggest that once a vegetation change occurs the new community tended to persist for long periods of time (100's-1000's years). Stability of the 'new' community appeared to depend upon the stability of the physical structure of the system and/or time between perturbations necessary to allow the slower autecological processes to have a discernable effect. In order for the plant community to persist as long as observed, the vegetation must also be exerting an influence on the processes of development. Increased production of roots and rhizomes and growth characteristics (density of culms) are some of the factors which help to maintain long-term species dominance. It is clear from this investigation that the structure of the plant community at any one point in time is dependent upon numerous factors including historical developmental influences. To properly assess changes to the present plant community or determine recent rates of accretion, historic developmental trends must be considered. The factors that have influenced the development of marsh in the past will be important in understanding and formulating predictive models in the future.
[Ecological characteristics of phytoplankton in Suining tributary under bio-remediation].
Liu, Dongyan; Zhao, Jianfu; Zhang, Yalei; Ma, Limin
2005-04-01
Based on the analyses of phytoplankton community in the treated and untreated reaches of Suining tributary of Suzhou River, this paper studied the effects of bio-remediation on phytoplankton. As the result of the remediation, the density and Chl-a content of phytoplankton in treated reach were greatly declined, while the species number and Shannon-Wiener diversity index ascended obviously. The percentage of Chlorophyta and Baeillariophyta ascended, and some species indicating medium-and oligo-pollution were found. All of these illustrated that bio-remediation engineering might significantly benefit to the improvement of phytoplankton community structure and water quality.
The use of community pharmacies in North West England: an observational study.
Mackridge, Adam J; Stokes, Elizabeth C; Gray, Nicola J
2017-04-01
There are few studies of community pharmacy footfall and activity in the existing literature, especially by direct observation. To describe the characteristics of counter interactions between pharmacy staff and customers. Structured observation of all interactions between pharmacy staff and customers across the weekly opening hours of five pharmacies diverse in location and ownership. Three-quarters (76%) of observed interactions were associated with prescriptions, but a significant minority accessed cognitive services. Dispensing was the primary activity across the diverse range of pharmacies. Reasons for visits are diversifying into advice and services, particularly among younger users. © 2016 Royal Pharmaceutical Society.
Defining Disturbance for Microbial Ecology.
Plante, Craig J
2017-08-01
Disturbance can profoundly modify the structure of natural communities. However, microbial ecologists' concept of "disturbance" has often deviated from conventional practice. Definitions (or implicit usage) have frequently included climate change and other forms of chronic environmental stress, which contradict the macrobiologist's notion of disturbance as a discrete event that removes biomass. Physical constraints and disparate biological characteristics were compared to ask whether disturbances fundamentally differ in microbial and macroorganismal communities. A definition of "disturbance" for microbial ecologists is proposed that distinguishes from "stress" and other competing terms, and that is in accord with definitions accepted by plant and animal ecologists.
Campião, Karla Magalhães; Delatorre, Milena; Rodrigues, Rozangela Batista; da Silva, Reinaldo José; Ferreira, Vanda Lúcia
2012-04-01
Understanding the patterns of species distribution and abundance has been at the core of ecology. In general, these patterns are determined by species dispersion as well as by abiotic and biotic environmental conditions. Similarly, host-parasite relations and the structure of parasite assemblages are also shaped by environmental conditions and landscape composition. Herein, we assessed the influence of environmental variables and parasite species dispersion on the structure of helminth parasites communities in the frog Leptodactylus podicipinus. We sampled 10 ponds and recorded area, depth, altitude, pH, dissolved oxygen, salinity, temperature, and extent of soil, water, and vegetation cover as well as the distances between the ponds. We collected 121 frogs and found 9 helminth taxa; 2 of them were core species (prevalence higher than 50%), which contributed to the relatively high similarity observed among the ponds. Most of the helminths showed some variation in the frequencies of occurrence among communities from different ponds. The change in species composition among ponds was explained by the environmental variables but not by the distance between the ponds. Moreover, the results indicated that local processes (variation in environmental conditions) were more important than the regional processes (species distribution) in determining the structure of parasite communities. The variation in helminth communities among ponds in response to moderate differences in pond environmental characteristics points to the potential of helminth species as indicators of environmental conditions.
Xi, Jing-Ru; Liu, Su-Qin; Li, Lin; Liu, Jun-Xin
2014-12-01
The greenhouse effect of methane is 26 times worse than that of carbon dioxide, and wastewater containing high concentrations of sulfate is harmful to water, soil and plants. Therefore, anaerobic oxidation of methane driven by sulfate is one of the effective ways for methane reduction. In this paper, with sulfate as the electron accepter, a microbial consortium capable of oxidating methane under anaerobic condition was cultured. The diversity and characteristics of bacterial and archaeal community were investigated by PCR-DGGE, and phylogenetic analysis of the dominant microorganisms was also carried out. The DGGE fingerprints showed that microbial community structure changed distinctly, and the abundance of methane-oxidizing archea and sulfate-reducing bacteria increased in the acclimatization system added sulfate. After acclimatization, the bacterial diversity increased, while archaea diversity decreased slightly. The representative bands in the DGGE profiles were excised and sequenced. Results indicated that the dominant species in the acclimatization system were Spirochaetes, Desulfuromonadales, Methanosarcinales, Methanosaeta. Methane converted into carbon dioxide while sulfate transformed into hydrogen sulfide and sulfur in the process of anaerobic methane oxidation accompanied by sulphate reduction.
Shi, X. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Thornton, P. E. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Ricciuto, D. M. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Mao, J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Sebestyen, S. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Griffiths, N. A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Bisht, G. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
2016-09-01
Here we provide model code, inputs, outputs and evaluation datasets for a new configuration of the Community Land Model (CLM) for SPRUCE, which includes a fully prognostic water table calculation for SPRUCE. Our structural and process changes to CLM focus on modifications needed to represent the hydrologic cycle of bogs environment with perched water tables, as well as distinct hydrologic dynamics and vegetation communities of the raised hummock and sunken hollow microtopography characteristic of SPRUCE and other peatland bogs. The modified model was parameterized and independently evaluated against observations from an ombrotrophic raised-dome bog in northern Minnesota (S1-Bog), the site for the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE).
NASA Astrophysics Data System (ADS)
Todd, J.; Pumo, D.; Azaele, S.; Muneepeerakul, R.; Miralles-Wilhelm, F. R.; Rinaldo, A.; Rodriguez-Iturbe, I.
2009-12-01
The influence of hydrological dynamics on vegetational biodiversity and structuring of wetland environments is of growing interest as wetlands are modified by human alteration and the increasing threat from climate change. Hydrology has long been considered a driving force in shaping wetland communities as the frequency of inundation along with the duration and depth of flooding are key determinants of wetland structure. We attempt to link hydrological dynamics with vegetational distribution and species richness across Everglades National Park (ENP) using two publicly available datasets. The first, the Everglades Depth Estimation Network (EDEN),is a water-surface model which determines the median daily measure of water level across a 400mX400m grid over seven years of measurement. The second is a vegetation map and classification system at the 1:15,000 scale which categorizes vegetation within the Everglades into 79 community types. From these data, we have studied the probabilistic structure of the frequency, duration, and depth of hydroperiods. Preliminary results indicate that the percentage of time a location is inundated is a principal structuring variable with individual communities responding differently. For example, sawgrass appears to be more of a generalist community as it is found across a wide range of time inundated percentages while spike rush has a more restricted distribution and favors wetter environments disproportionately more than predicted at random. Further, the diversity of vegetation communities (e.g. a measure of biodiversity) found across a hydrologic variable does not necessarily match the distribution function for that variable on the landscape. For instance, the number of communities does not differ across the percentage of time inundated. Different measures of vegetation biodiversity such as the local number of community types are also studied at different spatial scales with some characteristics, like the slope of the semi-logarithmic relation between rank and occupancy, found to be robust to scale changes. The ENP offers an expansive natural environment in which to study how vegetational dynamics and community composition are affected by hydrologic variables from the small scale (at the individual community level) to the large (biodiversity measures at differing spatial scales).
NASA Astrophysics Data System (ADS)
Purbasari, Novia; Manaf, Asnawi
2018-02-01
Community-based tourism is one of the tourism development models that effectively used as a tool to alleviate poverty through empowerment strategy of the local community. Nevertheless, many people do not have adequate understanding on the characteristics of community-based tourism, which are used as a determinant in the tourism development. This article describes the comparison on characteristics of community-based tourism between Pentingsari and Nglanggeran. These villages were chosen because Pentingsari was a tourism village that able to apply the principles ethical codes of world tourism, shown by an award from the World Committee on Tourism Ethics Code and Nglanggeran was awarded as Best Tourism Village award in Indonesia from ASEAN Community Based Tourism Award 2017.The objectives of this study is to explore the characteristics of community-based tourism applied in the Pentingsari and Nglanggeran, and to identify any indicators that could be used to indicate those characteristics. The research achieves through in-depth interviews, observation, and review of documents. There were 17 persons as informants. Further, the observation was reached by directly observing in the both study cases. In addition, the data obtained through the review of secondary data from the local manager of tourism village. Generally, Pentingsari has characteristics as a community-based rural tourism, while Nglanggeran has characteristics as community-based ecotourism.
Martinez, Suzanna M.; Ayala, Guadalupe X.; Patrick, Kevin; Arredondo, Elva M.; Roesch, Scott; Elder, John
2014-01-01
Purpose To examine pathways between individual, social, and environmental factors associated with leisure-time physical activity (LTPA) among Mexican-American adults. Design Cross-sectional design using random digit dialing to administer a structured telephone interview. Setting Mexican-American adults living in a U.S./Mexican border community in San Diego, CA (N=672). Measures Data were collected on LTPA, demographic characteristics, acculturation, and other psychosocial and environmental factors associated with LTPA. Analysis Structural equation modeling to test an a priori model of LTPA. Results Participants were mostly female (71%) with a mean age of 39 years (SD = 13). Only 32% of participants met PA guidelines in their leisure time, with men (39%) meeting the guidelines more than women (29%). Using structural equation modeling, neighborhood factors, both social and environmental, showed indirect relationships with meeting PA guidelines through community resource factors. Significant covariates included marital status and age. Conclusion Individual, social and environmental factors were associated with LTPA in this sample of Mexican-American adults. These findings can inform intervention studies that aim to increase LTPA in this population. PMID:22548422
NASA Astrophysics Data System (ADS)
Johnston, L.; Heron, S. F.; Johnson, S.; Okano, R.; Benavente, D.; Iguel, J.; Perez, D. I.; Liu, G.; Geiger, E.; Eakin, C. M.
2016-02-01
In 2013 and 2014, the Mariana Archipelago experienced consecutive thermal stress events that resulted in widespread coral bleaching and mortality. Using in situ survey data collected across seven of the Northern Mariana Islands during the 2014 event, we undertook the first quantitative comparison between the National Oceanic and Atmospheric Administration's Coral Reef Watch 5 km satellite monitoring products and coral bleaching observations. Analysis of coral community characteristics, historical temperature conditions and thermal stress revealed a strong influence of coral biodiversity in the patterns of observed bleaching. This illustrates the importance of using local benthic characteristics to interpret the level of impact from thermal stress exposure. In an era of continuing climate change, accurate monitoring of thermal stress and prediction of coral bleaching are essential for resource managers and stakeholders to direct resources to the most effective management actions to conserve coral reefs.
Dong, XinQi; Bergren, Stephanie M
2017-08-01
Characteristics of neighborhood have been found to be associated with physical and psychological health status of older adults, especially in relationship to social dynamics like cohesion and disorder. This study aims to examine correlations and associations between sociodemographic characteristics, self-reported health status, cohesion, and disorder among Chinese older adults in the greater Chicago area. The Population Study of Chinese Elderly in Chicago is a cross-sectional, population-based study with community-dwelling Chinese older adults aged 60 and older, recruited through a community-based participatory research approach. Cohesion was measured through six questions; disorder was measured through eight questions. Correlation and regression analyses were conducted using SAS. Among 3,158 participants enrolled in the study, 92.3% reported any neighborhood cohesion; 69.8% reported any neighborhood disorder. After controlling for age, sex, education, income, marital status, living arrangement, number of children, years in the community, years in the United States, country of origin, language preference, and location, a higher level of cohesion is associated with higher quality of life (odds ratio [OR]: 1.25, 95% confidence interval [CI]: 1.13, 1.39) and a higher level of disorder is associated with lower overall health status (OR: 0.97, 95% CI: 0.95, 0.99) and lower quality of life (OR: 0.96, 95% CI: 0.95, 0.98). Our findings suggest that neighborhood cohesion and neighborhood disorder are correlated to the health of U.S. Chinese older adults. Future longitudinal research should examine the relationship between community characteristics, both structural and social, and health-related outcomes. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Demystifying knowledge translation: learning from the community.
Bowen, Sarah; Martens, Patricia
2005-10-01
While there is increasing interest in research related to so-called Knowledge Translation, much of this research is undertaken from the perspective of researchers. The objective of this paper is to explore, through the participatory evaluation of Manitoba's The Need to Know Project, the characteristics of effective knowledge translation initiatives from the perspective of community partners. The multi-method evaluation adopted a utilization-focused approach, where stakeholders participated in identifying evaluation questions, and methods were made transparent to participants. Over 100 open-ended, semi-structured interviews were conducted with project stakeholders over the first three years of the project. These interviews explored the perspectives of participants on all aspects of project development. Formal feedback processes allowed further refinement of emerging theory. This research suggests that there has been insufficient emphasis on personal factors in knowledge translation. The themes of 'quality of relationships' and 'trust' connected many different components of knowledge translation, and were essential for collaborative research. Organizational barriers and lack of confidence in researchers present greater challenges to knowledge translation than individual interest or community capacity. The costs of participation in collaborative research for community partners and the benefits for researchers, also require greater attention. Participation of community partners in The Need to Know Project has provided unique perspectives on knowledge translation theory. It has identified limitations to the common interpretations of knowledge translation principles and highlighted the characteristics of collaborative research initiatives that are of greatest importance to community partners.
Community Identity and User Engagement in a Multi-Community Landscape.
Zhang, Justine; Hamilton, William L; Danescu-Niculescu-Mizil, Cristian; Jurafsky, Dan; Leskovec, Jure
2017-05-01
A community's identity defines and shapes its internal dynamics. Our current understanding of this interplay is mostly limited to glimpses gathered from isolated studies of individual communities. In this work we provide a systematic exploration of the nature of this relation across a wide variety of online communities. To this end we introduce a quantitative, language-based typology reflecting two key aspects of a community's identity: how distinctive , and how temporally dynamic it is. By mapping almost 300 Reddit communities into the landscape induced by this typology, we reveal regularities in how patterns of user engagement vary with the characteristics of a community. Our results suggest that the way new and existing users engage with a community depends strongly and systematically on the nature of the collective identity it fosters, in ways that are highly consequential to community maintainers. For example, communities with distinctive and highly dynamic identities are more likely to retain their users. However, such niche communities also exhibit much larger acculturation gaps between existing users and newcomers, which potentially hinder the integration of the latter. More generally, our methodology reveals differences in how various social phenomena manifest across communities, and shows that structuring the multi-community landscape can lead to a better understanding of the systematic nature of this diversity.
Community resiliency as a measure of collective health status: perspectives from rural communities.
Kulig, Judith C; Edge, Dana; Joyce, Brenda
2008-12-01
Community resiliency is a theoretical framework useful for describing the process used by communities to address adversity. A mixed-method 2-year case study was conducted to gather information about community resiliency in 2 rural communities. This article focuses on the themes generated from qualitative interviews with 55 members of these communities. The participants viewed community as a place of interdependence and interaction. The majority saw community resiliency as the ability to address challenges. Characteristics included physical and social infrastructure, population characteristics, conceptual characteristics, and problem-solving processes. Barriers included negative individual attitudes and lack of infrastructure in rural communities. Nurses could play a key role in enhancing the resiliency of rural communities by developing and implementing programs based on the Community Resiliency Model, which was supported in this study.
ERIC Educational Resources Information Center
Sánchez, V.; Sanders, M.; Andrews, M. L.; Hale, R.; Carrillo, C.
2014-01-01
The coalition literature recognizes context (geography, demographics and history) as a variable of interest, yet few coalition evaluation studies have focused on it. This study explores the association between geographic context and structures (e.g. member type) with functional characteristics (e.g. decision making or levels of conflict) in a…
Indications of marine bioinvasion from network theory. An analysis of the global cargo ship network
NASA Astrophysics Data System (ADS)
Kölzsch, A.; Blasius, B.
2011-12-01
The transport of huge amounts of small aquatic organisms in the ballast tanks and at the hull of large cargo ships leads to ever increasing rates of marine bioinvasion. In this study, we apply a network theoretic approach to examine the introduction of invasive species into new ports by global shipping. This is the first stage of the invasion process where it is still possible to intervene with regulating measures. We compile a selection of widely used and newly developed network properties and apply these to analyse the structure and spread characteristics of the directed and weighted global cargo ship network (GCSN). Our results reveal that the GCSN is highly efficient, shows small world characteristics and is positive assortative, indicating that quick spread of invasive organisms between ports is likely. The GCSN shows strong community structure and contains two large communities, the Atlantic and Pacific trading groups. Ports that appear as connector hubs and are of high centralities are the Suez and Panama Canal, Singapore and Shanghai. Furthermore, from robustness analyses and the network's percolation behaviour, we evaluate differences of onboard and in-port ballast water treatment, set them into context with previous studies and advise bioinvasion management strategies.
The local environment determines the assembly of root endophytic fungi at a continental scale.
Glynou, Kyriaki; Ali, Tahir; Buch, Ann-Katrin; Haghi Kia, Sevda; Ploch, Sebastian; Xia, Xiaojuan; Çelik, Ali; Thines, Marco; Maciá-Vicente, Jose G
2016-09-01
Root endophytic fungi are found in a great variety of plants and ecosystems, but the ecological drivers of their biogeographic distribution are poorly understood. Here, we investigate the occurrence of root endophytes in the non-mycorrhizal plant genus Microthlaspi, and the effect of environmental factors and geographic distance in structuring their communities at a continental scale. We sampled 52 plant populations across the northern Mediterranean and central Europe and used a cultivation approach to study their endophytic communities. Cultivation of roots yielded 2601 isolates, which were grouped into 296 operational taxonomic units (OTUs) by internal transcribed spacer sequencing of 1998 representative colonies. Climatic and spatial factors were the best descriptors of the structure of endophytic communities, outweighing soil characteristics, host genotype and geographical distance. OTU richness was negatively affected by precipitation, and the composition of communities followed latitudinal gradients of precipitation and temperature. Only six widespread OTUs belonging to the orders Pleosporales, Hypocreales and Helotiales represented about 50% of all isolates. Assessments of their individual distribution revealed particular ecological preferences or a cosmopolitan occurrence. Our findings support a strong influence of the local environment in determining root endophytic communities, and show a different niche occupancy by individual endophytes. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Brind'Amour, Anik; Boisclair, Daniel; Dray, Stéphane; Legendre, Pierre
2011-03-01
Understanding the relationships between species biological traits and the environment is crucial to predicting the effect of habitat perturbations on fish communities. It is also an essential step in the assessment of the functional diversity. Using two complementary three-matrix approaches (fourth-corner and RLQ analyses), we tested the hypothesis that feeding-oriented traits determine the spatial distributions of littoral fish species by assessing the relationship between fish spatial distributions, fish species traits, and habitat characteristics in two Laurentian Shield lakes. Significant associations between the feeding-oriented traits and the environmental characteristics suggested that fish communities in small lakes (displaying low species richness) can be spatially structured. Three groups of traits, mainly categorized by the species spatial and temporal feeding activity, were identified. The water column may be divided in two sections, each of them corresponding to a group of traits related to the vertical distribution of the prey coupled with the position of the mouth. Lake areas of low structural complexity were inhabited by functional assemblages dominated by surface feeders while structurally more complex areas were occupied by mid-water and benthic feeders. A third group referring to the time of feeding activity was observed. Our work could serve as a guideline study to evaluate species traits x environment associations at multiple spatial scales. Our results indicate that three-matrix statistical approaches are powerful tools that can be used to study such relationships. These recent statistical approaches open up new research directions such as the study of spatially based biological functions in lakes. They also provide new analytical tools for determining, for example, the potential size of freshwater protected areas.
Hou, Zhiyuan; Lin, Senlin; Zhang, Donglan
2017-01-01
Objectives We examined the association between structural social capital and public health services use, and explored the modifiable effect of neighbourhood factors on this association among domestic migrants in China. Methods Data were from a 2014 nationally representative cross-sectional sample of domestic migrants aged 15–59 years in China. Survey-weighted logistic regression models were applied to assess the association between structural social capital, measured by participation in social organisations and social activities, and use of public health services. Interaction terms between neighbourhood urban status, neighbourhood composition and social capital were further assessed in the models. Results Migrants who participated in social organisations were more likely to establish health records (OR 1.467, 95% CI 1.201 to 1.793) and receive health education information (OR 1.729, 95% CI 1.484 to 2.016) than those who did not. Participation in social activities was positively associated with establishing health records only in urban communities (OR 1.853, 95% CI 1.060 to 3.239), and it was positively linked to receiving health education information among those living with a higher percentage of local neighbours (OR 1.451, 95% CI 1.044 to 2.017). Conclusions Structural social capital was related to an increased utilisation of local public health services among migrants. The findings of this study provided new evidence for the differential influences of social capital by neighbourhood characteristics in China, which suggested the importance to enhance social capital in rural/suburban communities and communities where the majority of the residents were migrants. PMID:28821507
Hou, Zhiyuan; Lin, Senlin; Zhang, Donglan
2017-08-18
We examined the association between structural social capital and public health services use, and explored the modifiable effect of neighbourhood factors on this association among domestic migrants in China. Data were from a 2014 nationally representative cross-sectional sample of domestic migrants aged 15-59 years in China. Survey-weighted logistic regression models were applied to assess the association between structural social capital, measured by participation in social organisations and social activities, and use of public health services. Interaction terms between neighbourhood urban status, neighbourhood composition and social capital were further assessed in the models. Migrants who participated in social organisations were more likely to establish health records (OR 1.467, 95% CI 1.201 to 1.793) and receive health education information (OR 1.729, 95% CI 1.484 to 2.016) than those who did not. Participation in social activities was positively associated with establishing health records only in urban communities (OR 1.853, 95% CI 1.060 to 3.239), and it was positively linked to receiving health education information among those living with a higher percentage of local neighbours (OR 1.451, 95% CI 1.044 to 2.017). Structural social capital was related to an increased utilisation of local public health services among migrants. The findings of this study provided new evidence for the differential influences of social capital by neighbourhood characteristics in China, which suggested the importance to enhance social capital in rural/suburban communities and communities where the majority of the residents were migrants. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Armstrong, D; Strogatz, D; Wang, R
2002-01-01
Study objective: Examine the association between county occupational structure, services availability, prevalence of risk factors, and coronary mortality rates by sex, for 1980–96, in New York state. Design: New York's 62 counties were classified into three occupational structure categories; counties with the lowest percentages of the labour force in managerial, professional, and technical occupations were classified in category I, counties with the highest percentages were in category III. Directly age adjusted coronary heart disease (CHD) mortality rates, aged 35–64 years, (from vital statistics and census data), per capita services (Census County Business Patterns), and the prevalence of CHD risk factors (BRFSS data) were calculated for each occupational structure category. Results: CHD mortality rates and the prevalence of risk factors were inversely associated with occupational structure for men and women. Income from manufacturing jobs declined most in category I and per capita numbers of producer services for banking, business credit, overall business services, and personnel/employment services were 9–15 times greater in category III compared with I counties. Consumer services such as grocery stores, fitness facilities, doctors offices, and social services were 1.5–4 times greater in category III compared with I counties. Conclusions: An ecological model for conceptualising communities and health and for intervention design is discussed; key community characteristics are occupational and industrial structure, availability and diversity of consumer services, prevalence of health practices, and level of premature CHD. PMID:12388580
Friedline, Terri; West, Stacia; Rosell, Nehemiah; Serido, Joyce; Shim, Soyeon
2017-03-01
This study examines the extent of emergent, outstanding credit card debt among young adult college students and investigates whether any associations existed between this credit card debt and the characteristics of the communities in which these students grew up or lived. Using data (N = 748) from a longitudinal survey and merging community characteristics measured at the zip code level, we confirmed that a community's unemployment rate, average total debt, average credit score, and number of bank branch offices were associated with a young adult college student's acquisition and accumulation of credit card debt. For example, a community's higher unemployment rate and lower number of bank branches were associated with a young adult college student's greater accumulated debt. Community characteristics had the strongest associations with credit card debt, especially after controlling for individual characteristics (i.e., a young adult college student's race and financial independence) and familial characteristics (i.e., their parents' income and parents' discussions of financial matters while growing up at home). The findings may help to understand the unique roles that communities play in shaping children and young adults' financial capability, and how communities can be better capacitated to support the financial goals of their residents. © Society for Community Research and Action 2017.
Differences in health care seeking behaviour between rural and urban communities in South Africa
2012-01-01
Objective The aim of this study was to explore possible differences in health care seeking behaviour among a rural and urban African population. Design A cross sectional design was followed using the infrastructure of the PURE-SA study. Four rural and urban Setswana communities which represented different strata of urbanisation in the North West Province, South Africa, were selected. Structured interviews were held with 206 participants. Data on general demographic and socio-economic characteristics, health status, beliefs about health and (access to) health care was collected. Results The results clearly illustrated differences in socio-economic characteristics, health status, beliefs about health, and health care utilisation. In general, inhabitants of urban communities rated their health significantly better than rural participants. Although most urban and rural participants consider their access to health care as sufficient, they still experienced difficulties in receiving the requested care. The difference in employment rate between urban and rural communities in this study indicated that participants of urban communities were more likely to be employed. Consequently, participants from rural communities had a significantly lower available weekly budget, not only for health care itself, but also for transport to the health care facility. Urban participants were more than 5 times more likely to prefer a medical doctor in private practice (OR:5.29, 95% CI 2.83-988). Conclusion Recommendations are formulated for infrastructure investments in rural communities, quality of health care and its perception, improvement of household socio-economical status and further research on the consequences of delay in health care seeking behaviour. PMID:22691443
Meeboon, Naruemon; Leewis, Mary-Cathrine; Kaewsuwan, Sireewan; Maneerat, Suppasil; Leigh, Mary Beth
2017-08-01
Used lubricating oil (ULO) is a widespread contaminant, particularly throughout tropical regions, and may be a candidate for bioremediation. However, little is known about the biodegradation potential or basic microbial ecology of ULO-contaminated soils. This study aims to determine the effects of used ULO on bacterial community structure and diversity. Using a combination of culture-based (agar plate counts) and molecular techniques (16S rRNA gene sequencing and DGGE), we investigated changes in soil bacterial communities from three different ULO-contaminated soils collected from motorcycle mechanical workshops (soil A, B, and C). We further explored the relationship between bacterial community structure, physiochemical soil parameters, and ULO composition in three ULO-contaminated soils. Results indicated that the three investigated soils had different community structures, which may be a result of the different ULO characteristics and physiochemical soil parameters of each site. Soil C had the highest ULO concentration and also the greatest diversity and richness of bacteria, which may be a result of higher nutrient retention, organic matter and cation exchange capacity, as well as freshness of oil compared to the other soils. In soils A and B, Proteobacteria (esp. Gammaproteobacteria) dominated the bacterial community, and in soil C, Actinobacteria and Firmicutes dominated. The genus Enterobacter, a member of the class Gammaproteobacteria, is known to include ULO-degraders, and this genus was the only one found in all three soils, suggesting that it could play a key role in the in situ degradation of ULO-contaminated tropical Thai soils. This study provides insights into our understanding of soil microbial richness, diversity, composition, and structure in tropical ULO-contaminated soils, and may be useful for the development of strategies to improve bioremediation.
Touceda-González, M; Prieto-Fernández, Á; Renella, G; Giagnoni, L; Sessitsch, A; Brader, G; Kumpiene, J; Dimitriou, I; Eriksson, J; Friesl-Hanl, W; Galazka, R; Janssen, J; Mench, M; Müller, I; Neu, S; Puschenreiter, M; Siebielec, G; Vangronsveld, J; Kidd, P S
2017-12-01
Gentle remediation options (GRO) are based on the combined use of plants, associated microorganisms and soil amendments, which can potentially restore soil functions and quality. We studied the effects of three GRO (aided-phytostabilisation, in situ stabilisation and phytoexclusion, and aided-phytoextraction) on the soil microbial biomass and respiration, the activities of hydrolase enzymes involved in the biogeochemical cycles of C, N, P, and S, and bacterial community structure of trace element contaminated soils (TECS) from six field trials across Europe. Community structure was studied using denaturing gradient gel electrophoresis (DGGE) fingerprinting of Bacteria, α- and β-Proteobacteria, Actinobacteria and Streptomycetaceae, and sequencing of DGGE bands characteristic of specific treatments. The number of copies of genes involved in ammonia oxidation and denitrification were determined by qPCR. Phytomanagement increased soil microbial biomass at three sites and respiration at the Biogeco site (France). Enzyme activities were consistently higher in treated soils compared to untreated soils at the Biogeco site. At this site, microbial biomass increased from 696 to 2352 mg ATP kg -1 soil, respiration increased from 7.4 to 40.1 mg C-CO 2 kg -1 soil d -1 , and enzyme activities were 2-11-fold higher in treated soils compared to untreated soil. Phytomanagement induced shifts in the bacterial community structure at both, the total community and functional group levels, and generally increased the number of copies of genes involved in the N cycle (nirK, nirS, nosZ, and amoA). The influence of the main soil physico-chemical properties and trace element availability were assessed and eventual site-specific effects elucidated. Overall, our results demonstrate that phytomanagement of TECS influences soil biological activity in the long term. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ahrens, David; Uebelher, Paul; Remington, Patrick L
2005-07-01
Smoke-free restaurant ordinance campaigns were conducted in 15 Wisconsin cities during 1992 through 2002. Community and health coalition organizational characteristics varied with each campaign; nine campaigns were successful in enacting ordinances, and six campaigns failed. Data on community and coalition characteristics were analyzed. Community characteristics included adjusted gross income, percentage of Democratic voters in recent elections, and county smoking prevalence. Coalition characteristics included the number of supporters identified, leadership experience, level of print news media coverage, and editorial position of local newspaper. Successful campaigns were more likely to have leadership with high levels of political experience; eight of nine successful campaigns had leadership with high levels of experience, and two of six unsuccessful campaigns had leadership with high levels of experience. Every successful campaign had high levels of newspaper coverage and strong editorial support. None of the unsuccessful campaigns had high levels of news coverage or strong editorial support. Characteristics controlled or influenced by coalitions are associated with successful outcomes. Community characteristics were not associated with outcomes. These results should assist communities planning to implement smoke-free ordinances or other health policy campaigns.
Lo, Celia C.; Weber, Joe; Cheng, Tyrone C.
2013-01-01
Background and Objectives This study of Alabama public school students sought urban-rural differences in social and spatial mechanisms connecting structural factors to recent use of alcohol and marijuana. Methods Its dataset comprised a state-sponsored 2002 need-assessment survey of Alabama students; Alabama education department data; U. S. Census data; and alcohol-outlet locations listed by Alabama’s Alcoholic Beverage Control Board. It measured structural-disadvantage factors (population disadvantages, community instability, alcohol-outlet density), social-organization factors (protective role of community, protective role of school), and recent-use factors. Using Geographic Information Systems (GIS), it generated maps of school catchment areas (SCAs)—the units of analysis for the study—that outline spatial patterns (across areas deemed urban or rural) of students’ recent use of alcohol and marijuana. Results In the final sample of 370 SCAs, significant urban-versus-rural differences were observed for certain structural factors and in how these factors were associated with substance use. These differences aside, spatial analysis weighing the SCAs’ particular geographic characteristics suggested location’s importance, showing that a school playing a strong protective role significantly reduced not just its own students’ recent substance use, but that of students in neighboring SCAs as well. Conclusions and Scientific Significance The findings show students’ recent use of alcohol and marijuana are associated with characteristics of the environment. PMID:23617858
Zheng, Wei; Cai, Teng; Huang, Manhong; Chen, Donghui
2017-11-01
Microbial fuel cells (MFCs) have attracted intensive interest for their power generation and pollutants removal characteristics. Electrochemical performances and community structures of two algae cathode photosynthetic MFCs were investigated and compared. Microbial consortia of these two MFCs were taken from wetland sediment (named SMFC) and an up-flow anaerobic wastewater treatment reactor (named UMFC). Maximum power density of the SMFC and UMFC achieved 202.9 ± 18.1 mW/m 2 and 158.2±15.1 mW/m 2 , respectively. The SMFC displayed higher columbic efficiency but lower chemical oxygen demand (COD) removal efficiency than that of UMFC. The results also revealed the addition of riboflavin (RF) and neutral red (NR) decreased the redox current of the SMFC but promoted that of UMFC. Community structure analysis showed the SMFC was dominated by photosynthetic genus Rhodopseudomonas (61.25%), while bacterial genera in the UMFC were more evenly distributed. The difference of electrochemical activities of the two MFCs was caused by the different roles of exoelectrogens such as Rhodopseudomonas spp. and Citrobacter spp. in the electron transfer process. Newly developed photosynthetic microbial fuel cells (PMFCs) provide a suitable process to generate power and remove pollutants. The consortia have a significant role in the performance and microbial community of the system. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Social Networks and Community-Based Natural Resource Management
NASA Astrophysics Data System (ADS)
Lauber, T. Bruce; Decker, Daniel J.; Knuth, Barbara A.
2008-10-01
We conducted case studies of three successful examples of collaborative, community-based natural resource conservation and development. Our purpose was to: (1) identify the functions served by interactions within the social networks of involved stakeholders; (2) describe key structural properties of these social networks; and (3) determine how these structural properties varied when the networks were serving different functions. The case studies relied on semi-structured, in-depth interviews of 8 to 11 key stakeholders at each site who had played a significant role in the collaborative projects. Interview questions focused on the roles played by key stakeholders and the functions of interactions between them. Interactions allowed the exchange of ideas, provided access to funding, and enabled some stakeholders to influence others. The exchange of ideas involved the largest number of stakeholders, the highest percentage of local stakeholders, and the highest density of interactions. Our findings demonstrated the value of tailoring strategies for involving stakeholders to meet different needs during a collaborative, community-based natural resource management project. Widespread involvement of local stakeholders may be most appropriate when ideas for a project are being developed. During efforts to exert influence to secure project approvals or funding, however, involving specific individuals with political connections or influence on possible sources of funds may be critical. Our findings are consistent with past work that has postulated that social networks may require specific characteristics to meet different needs in community-based environmental management.
NASA Astrophysics Data System (ADS)
Sun, Dong; Wang, Chunsheng
2017-05-01
A total of 51 mesozooplankton samples collected with a WP2 net from 0 to 200 m depth along 160°E (4°S-46°N) in the Western Pacific from June to July 2014 were analyzed. The latitudinal distribution of mesozooplankton community structure was analyzed. The average biomass and abundance in different provinces generally increased with latitude: the biomass of zooplankton ranged from 1.18 mg DW m- 3 (11°N) to 97.81 mg DW m- 3 (45°N), and the abundance of zooplankton ranged from 45.11 ind. m- 3 (3°S) to 439.84 ind. m- 3 (41°N). The community structure of zooplankton also showed a significant latitudinal variation. At lower latitudes, calanoid copepods were the most abundant group, while cyclopoid copepods were the most abundant group at higher latitudes. Multidimensional scaling analysis of community structure and other physical/chemical/biological characteristics supported five ecological provinces in the northwestern Pacific: the Western Pacific Warm Pool Province (WARM), the North Pacific Tropical Gyre (NPTG), the North Pacific Subtropical Gyre (NPST), the Kuroshio Current Province (KURO) and the Pacific Subarctic Gyres Province (PSAG). The Kuroshio Current Province can be regarded as a transitional zone between the subarctic and northern subtropical area, and this transitional zone corresponds much more closely to the ecocline concept, rather than the ecotone concept.
Sirisena, Kosala A; Daughney, Christopher J; Moreau-Fournier, Magali; Ryan, Ken G; Chambers, Geoffrey K
2013-12-01
Groundwater is a vital component of rural and urban water supplies in New Zealand. Although extensive monitoring of chemical and physical properties is conducted due to the high demand for this valuable resource, current information on its bacterial content is limited. However, bacteria provide an immense contribution to drive the biogeochemical processes in the groundwater ecosystem as in any other ecosystem. Therefore, a proper understanding of bacterial diversity is crucial to assess the effectiveness of groundwater management policies. In this study, we investigated the bacterial community structure in NZ groundwater at a national scale using the terminal restriction fragment length polymorphism (T-RFLP) molecular profiling tool and determined the relationships between bacterial diversity and groundwater chemistry, geological parameters and human impact. Considerable bacterial diversity was present and the community structures were strongly related to groundwater chemistry, and in particular to redox potential and human impact, reflecting their potential influence on determination of bacterial diversity. Further, the mean residence time of groundwater also showed relationships with bacterial community structure. These novel findings pertaining to community composition and its relationships with environmental parameters will provide a strong foundation for qualitative exploration of the bacterial diversity in NZ groundwater in relation to sustainable management of this valuable resource. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Kegler, Michelle C.; Swan, Deanne W.
2012-01-01
Community coalitions have the potential to enhance a community’s capacity to engage in effective problem solving for a range of community concerns. Although numerous studies have documented correlations between member engagement and coalition processes and structural characteristics, fewer have examined associations between coalition factors and community capacity outcomes. The current study uses data from an evaluation of the California Healthy Cities and Communities program to examine pathways between coalition factors (i.e. membership, processes), member engagement (i.e. participation, satisfaction) and community capacity as hypothesized by the Community Coalition Action Theory (CCAT). Surveys were completed by 231 members of 19 healthy cities and communities coalitions. Multilevel mediation analyses were used to examine possible mediating effects of member engagement on three community capacity indicators: new skills, sense of community and social capital. Results generally supported CCAT. Member engagement mediated the effects of leadership and staffing on community capacity outcomes. Results also showed that member engagement mediated several relationships between process variables (i.e. task focus, cohesion) and community capacity, but several unmediated direct effects were also observed. This suggests that although member engagement does explain some relationships, it alone is not sufficient to explain how coalition processes influence indicators of community capacity. PMID:21911845
How plants connect pollination and herbivory networks and their contribution to community stability.
Sauve, Alix M C; Thébault, Elisa; Pocock, Michael J O; Fontaine, Colin
2016-04-01
Pollination and herbivory networks have mainly been studied separately, highlighting their distinct structural characteristics and the related processes and dynamics. However, most plants interact with both pollinators and herbivores, and there is evidence that both types of interaction affect each other. Here we investigated the way plants connect these mutualistic and antagonistic networks together, and the consequences for community stability. Using an empirical data set, we show that the way plants connect pollination and herbivory networks is not random and promotes community stability. Analyses of the structure of binary and quantitative networks show different results: the plants' generalism with regard to pollinators is positively correlated to their generalism with regard to herbivores when considering binary interactions, but not when considering quantitative interactions. We also show that plants that share the same pollinators do not share the same herbivores. However, the way plants connect pollination and herbivory networks promotes stability for both binary and quantitative networks. Our results highlight the relevance of considering the diversity of interaction types in ecological communities, and stress the need to better quantify the costs and benefits of interactions, as well as to develop new metrics characterizing the way different interaction types are combined within ecological networks.
Zhou, Xue; Tian, Lei; Zhang, Jianfeng; Ma, Lina; Li, Xiujun; Tian, Chunjie
2017-12-01
Sea buckthorn (Hippophae rhamnoides L.) is a pioneer plant used for land reclamation and an appropriate material for studying the interactions of symbiotic microorganisms because of its nitrogen-fixing root nodules and mycorrhiza. We used high-throughput sequencing to reveal the diversities and community structures of rhizospheric fungi and their link with nitrogen-fixing Frankia harbored in sea buckthorn collected along an altitude gradient from the Qinghai Tibet Plateau to interior areas. We found that the fungal diversities and compositions varied between different sites. Ascomycota, Basidiomycota, and Zygomycota were the dominant phyla. The distribution of sea buckthorn rhizospheric fungi was driven by both environmental factors and the geographic distance. Among all examined soil characteristics, altitude, AP, and pH were found to have significant (p < 0.05) effect on the rhizospheric fungal community. The rhizospheric fungal communities became more distinct as the distance increased. Moreover, co-inertia analysis identified significant co-structures between Frankia and AMF communities in the rhizosphere of sea buckthorn. We conclude that at the large scale, there are certain linkages between nitrogen-fixing bacteria and the AMF expressed in the distributional pattern. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cha, Seho; Lee, Dongwook; Jang, Jun Hyeong; Lim, Sora; Yang, Dahye; Seo, Taegun
2016-01-01
During Asian dust events, a relatively high concentration of particulate matter is transported by wind from arid and semi-arid regions, such as the Gobi and Taklamakan deserts, to nearby countries, including China, Korea, and Japan. The dust particles contain various microorganisms, which can affect human health as well as the environmental microbe population. In the current study, we investigated the characteristics of the airborne bacterial community during Asian dust events between February and March 2015 in South Korea. Bacterial diversity indexes such as operational taxonomic units, Chao1 and Inverse Simpson index were increased, along with total 16S rRNA gene copy number during Asian dust events. The bacterial community structure during Asian dust events was clearly distinguishable from that during non-Asian dust days. The genera Bacillus and Modestobacter were increased 3.9- and 2.7-fold, respectively, while Escherichia-Shigella was decreased by 89.8%. A non-metric multidimensional scaling plot with metadata analysis revealed association of particulate matter concentration, but not temperature, humidity or wind speed, with bacterial community structure, suggesting that the newly transported dust particles contain various microorganisms that influence the airborne bacterial environment. PMID:27849049
Complementary Microorganisms in Highly Corrosive Biofilms from an Offshore Oil Production Facility.
Vigneron, Adrien; Alsop, Eric B; Chambers, Brian; Lomans, Bartholomeus P; Head, Ian M; Tsesmetzis, Nicolas
2016-04-01
Offshore oil production facilities are frequently victims of internal piping corrosion, potentially leading to human and environmental risks and significant economic losses. Microbially influenced corrosion (MIC) is believed to be an important factor in this major problem for the petroleum industry. However, knowledge of the microbial communities and metabolic processes leading to corrosion is still limited. Therefore, the microbial communities from three anaerobic biofilms recovered from the inside of a steel pipe exhibiting high corrosion rates, iron oxide deposits, and substantial amounts of sulfur, which are characteristic of MIC, were analyzed in detail. Bacterial and archaeal community structures were investigated by automated ribosomal intergenic spacer analysis, multigenic (16S rRNA and functional genes) high-throughput Illumina MiSeq sequencing, and quantitative PCR analysis. The microbial community analysis indicated that bacteria, particularly Desulfovibrio species, dominated the biofilm microbial communities. However, other bacteria, such as Pelobacter, Pseudomonas, and Geotoga, as well as various methanogenic archaea, previously detected in oil facilities were also detected. The microbial taxa and functional genes identified suggested that the biofilm communities harbored the potential for a number of different but complementary metabolic processes and that MIC in oil facilities likely involves a range of microbial metabolisms such as sulfate, iron, and elemental sulfur reduction. Furthermore, extreme corrosion leading to leakage and exposure of the biofilms to the external environment modify the microbial community structure by promoting the growth of aerobic hydrocarbon-degrading organisms. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Hwang, Eun Jeong; Sim, In Ok
2016-02-01
The study purposes were to construct and test structural equation modeling on the causal relationship of community residents' perceived quality of care, image, and role performance with satisfaction, intention to (re)visit and intention to recommend hospital. A cross-sectional survey was conducted with 3,900 community residents from 39 district public hospitals. The questionnaire was designed to collected information on personal characteristics and community awareness of public hospitals. Community awareness consisted of 6 factors and 18 items. The data were collected utilizing call-interview by a survey company. Research data were collected via questionnaires and analyzed using SPSS version 20.0 and AMOS version 20.0. Model fit indices for the hypothetical model were suitable for the recommended level: χ²=796.40 (df=79, p<.001), GFI=.93, AGFI=.90, RMSR=.08, NFI=.94. Quality of care, image, and role performance explained 68.1% of variance in community awareness. Total effect of quality of care process factors on satisfaction (path coefficients=3.67), intention to (re)visit (path coefficients=2.67) and intention to recommend hospital (coefficients=2.45) were higher than other factors. Findings show that public hospitals have to make an effort to improve community image through the provision of quality care, and excellent role performance. Support for these activities is available from both Central and Local Governments.
Complementary Microorganisms in Highly Corrosive Biofilms from an Offshore Oil Production Facility
Alsop, Eric B.; Chambers, Brian; Lomans, Bartholomeus P.; Head, Ian M.; Tsesmetzis, Nicolas
2016-01-01
Offshore oil production facilities are frequently victims of internal piping corrosion, potentially leading to human and environmental risks and significant economic losses. Microbially influenced corrosion (MIC) is believed to be an important factor in this major problem for the petroleum industry. However, knowledge of the microbial communities and metabolic processes leading to corrosion is still limited. Therefore, the microbial communities from three anaerobic biofilms recovered from the inside of a steel pipe exhibiting high corrosion rates, iron oxide deposits, and substantial amounts of sulfur, which are characteristic of MIC, were analyzed in detail. Bacterial and archaeal community structures were investigated by automated ribosomal intergenic spacer analysis, multigenic (16S rRNA and functional genes) high-throughput Illumina MiSeq sequencing, and quantitative PCR analysis. The microbial community analysis indicated that bacteria, particularly Desulfovibrio species, dominated the biofilm microbial communities. However, other bacteria, such as Pelobacter, Pseudomonas, and Geotoga, as well as various methanogenic archaea, previously detected in oil facilities were also detected. The microbial taxa and functional genes identified suggested that the biofilm communities harbored the potential for a number of different but complementary metabolic processes and that MIC in oil facilities likely involves a range of microbial metabolisms such as sulfate, iron, and elemental sulfur reduction. Furthermore, extreme corrosion leading to leakage and exposure of the biofilms to the external environment modify the microbial community structure by promoting the growth of aerobic hydrocarbon-degrading organisms. PMID:26896143
Dickens, Sara Jo M.; Allen, Edith B.; Santiago, Louis S.; Crowley, David
2015-01-01
Grasslands have a long history of invasion by exotic annuals, which may alter microbial communities and nutrient cycling through changes in litter quality and biomass turnover rates. We compared plant community composition, soil chemical and microbial community composition, potential soil respiration and nitrogen (N) turnover rates between invaded and restored plots in inland and coastal grasslands. Restoration increased microbial biomass and fungal : bacterial (F : B) ratios, but sampling season had a greater influence on the F : B ratio than did restoration. Microbial community composition assessed by phospholipid fatty acid was altered by restoration, but also varied by season and by site. Total soil carbon (C) and N and potential soil respiration did not differ between treatments, but N mineralization decreased while extractable nitrate and nitrification and N immobilization rate increased in restored compared with unrestored sites. The differences in soil chemistry and microbial community composition between unrestored and restored sites indicate that these soils are responsive, and therefore not resistant to feedbacks caused by changes in vegetation type. The resilience, or recovery, of these soils is difficult to assess in the absence of uninvaded control grasslands. However, the rapid changes in microbial and N cycling characteristics following removal of invasives in both grassland sites suggest that the soils are resilient to invasion. The lack of change in total C and N pools may provide a buffer that promotes resilience of labile pools and microbial community structure. PMID:25555522
Chen, Sue-Hui; Chiou, Chii-Jun
2010-04-01
Children of the so-called "net generation" began joining the nurse workforce from the mid-1990s. Studies on the characteristics of this generation have been done primarily outside of Taiwan, and results may not adequately reflect conditions in Taiwan due to cultural differences. This study aimed to investigate the relationships amongst work values, job characteristics and job involvement in "net generation" nurses. This study employed a cross-sectional design. A randomized sample of 370 nurses born between 1977 and 1985 working in a medical center or a community hospital in Southern Taiwan accepted our invitation to join this study. A structured questionnaire was used to collect data. (1) Variables including work values, job characteristics, head nurse leadership qualities, job structure and opportunities for in-service education all correlated significantly with job involvement. (2) Regression analysis showed work values, job characteristics, head nurse leadership and religious belief to be significant predictors of job involvement, explaining 22.6% of the variance. This study provides insights that may be of potential value to nursing administrators. We suggest that administrators adopt democratic management practices, build diverse learning methods, strengthen autonomy, completeness, and feedback, and provide appropriate work guidance for nurses to increase job involvement.
Lesnik, Keaton Larson; Liu, Hong
2017-09-19
The complex interactions that occur in mixed-species bioelectrochemical reactors, like microbial fuel cells (MFCs), make accurate predictions of performance outcomes under untested conditions difficult. While direct correlations between any individual waste stream characteristic or microbial community structure and reactor performance have not been able to be directly established, the increase in sequencing data and readily available computational power enables the development of alternate approaches. In the current study, 33 MFCs were evaluated under a range of conditions including eight separate substrates and three different wastewaters. Artificial Neural Networks (ANNs) were used to establish mathematical relationships between wastewater/solution characteristics, biofilm communities, and reactor performance. ANN models that incorporated biotic interactions predicted reactor performance outcomes more accurately than those that did not. The average percent error of power density predictions was 16.01 ± 4.35%, while the average percent error of Coulombic efficiency and COD removal rate predictions were 1.77 ± 0.57% and 4.07 ± 1.06%, respectively. Predictions of power density improved to within 5.76 ± 3.16% percent error through classifying taxonomic data at the family versus class level. Results suggest that the microbial communities and performance of bioelectrochemical systems can be accurately predicted using data-mining, machine-learning techniques.
Classification of reaches in the Missouri and lower Yellowstone Rivers based on flow characteristics
Pegg, Mark A.; Pierce, Clay L.
2002-01-01
Several aspects of flow have been shown to be important determinants of biological community structure and function in streams, yet direct application of this approach to large rivers has been limited. Using a multivariate approach, we grouped flow gauges into hydrologically similar units in the Missouri and lower Yellowstone Rivers and developed a model based on flow variability parameters that could be used to test hypotheses about the role of flow in determining aquatic community structure. This model could also be used for future comparisons as the hydrological regime changes. A suite of hydrological parameters for the recent, post-impoundment period (1 October 1966–30 September 1996) for each of 15 gauges along the Missouri and lower Yellowstone Rivers were initially used. Preliminary graphical exploration identified five variables for use in further multivariate analyses. Six hydrologically distinct units composed of gauges exhibiting similar flow characteristics were then identified using cluster analysis. Discriminant analyses identified the three most influential variables as flow per unit drainage area, coefficient of variation of mean annual flow, and flow constancy. One surprising result was the relative similarity of flow regimes between the two uppermost and three lowermost gauges, despite large differences in magnitude of flow and separation by roughly 3000 km. Our results synthesize, simplify and interpret the complex changes in flow occurring along the Missouri and lower Yellowstone Rivers, and provide an objective grouping for future tests of how these changes may affect biological communities.
Caldwell, W.S.
1992-01-01
Selected physical, chemical and biological components of streams draining undeveloped, forested basins in North Carolina were characterized on the basis of samples collected at nine sites on streams in basins that ranged in size from 0.67 to 11.2 sq mi. Water analysis included specific conductance, dissolved oxygen, water temperature, suspended sediment, pH, major dissolved constituents, nutrients, minor constituents, organochlorine insecticides, and biochemical oxygen demand. Biological characteristics included fish tissue analysis for minor constituents and synthetic organic compounds, fish community structure, and benthic macroinvertebrates. Precipitation is the source of 10 to 40% of the chloride concentration and 20 to 30% of the sulfate concentration in stormflow. Mean total nitrogen concentrations ranged from 0.16 mg/L during low-flow conditions to 1.2 mg/L during stormflow. Organic nitrogen was 60 to 85% of the total nitrogen concentration. Stream water was free of organochlorine insecticides. DDD, DDE, DDT, Lindane, and Mirex were detected in 18 of 60 samples of streambed material. About 35% of fish tissue analyses showed detectable concentrations of copper, lead, mercury and nickel. Synthetic organic chemicals were not detected in fish tissue. Fish community structure data were rated using Karr's Index of Biotic Integrity. Streams rated poor to good because of natural stresses on fish communities. Five streams in the Piedmont and mountains received excellent bioclassification ratings based on benthic macroinvertebrtate data. Two streams in the Coastal Plain rated good to fair because of natural stresses.
Hui, Cang; Richardson, David M.; Pyšek, Petr; Le Roux, Johannes J.; Kučera, Tomáš; Jarošík, Vojtěch
2013-01-01
Species gain membership of regional assemblages by passing through multiple ecological and environmental filters. To capture the potential trajectory of structural changes in regional meta-communities driven by biological invasions, one can categorize species pools into assemblages of different residence times. Older assemblages, having passed through more environmental filters, should become more functionally ordered and structured. Here we calculate the level of compartmentalization (modularity) for three different-aged assemblages (neophytes, introduced after 1500 AD; archaeophytes, introduced before 1500 AD, and natives), including 2,054 species of vascular plants in 302 reserves in central Europe. Older assemblages are more compartmentalized than younger ones, with species composition, phylogenetic structure and habitat characteristics of the modules becoming increasingly distinctive. This sheds light on two mechanisms of how alien species are functionally incorporated into regional species pools: the settling-down hypothesis of diminishing stochasticity with residence time, and the niche-mosaic hypothesis of inlaid neutral modules in regional meta-communities. PMID:24045305
Wong, Moses; Yu, Ruby; Woo, Jean
2017-06-07
In response to the growing number of older people living in cities, the World Health Organization (WHO) introduced the concept of "Age-Friendly Cities" (AFC) to guide the way in designing physical and social environments to encourage active ageing. Limited research has studied the effects of neighbourhood age-friendliness on elderly health outcomes. Using the example of a highly urbanized city in Asia, this study examined the effects of perceived age-friendliness of neighbourhood environments on self-rated health (SRH) among community-dwelling older Chinese. A multi-stage sampling method was used to collect views of community-dwelling older people from two local districts of Hong Kong. A structured questionnaire covering the WHO's eight AFC domains was developed to collect information on the perceived neighbourhood environments, SRH and individual characteristics. Age-friendliness of neighbourhood was assessed by mean scores of AFC domains, which was used to predict SRH with adjustment for individual and objective neighbourhood characteristics. Furthermore, 719 respondents aged ≥60 years completed the questionnaire, of which 44.5% reported good SRH. Independent of individual and objective neighbourhood characteristics, multiple logistics regressions showed that higher satisfaction on outdoor spaces and buildings, transportation, housing, social participation, and respect and social inclusion was significantly associated with increased odds of reporting good SRH by more than 20% ( p < 0.05). Individuals aged 70-79 years, being female, lower education and residents of public or subsidized housing were less likely to report good SRH, after controlling for individual and neighbourhood characteristics. In addition to age, gender, education and housing type, AFC environments have important contributive influence on SRH, after controlling for individual and objective neighbourhood characteristics.
Wong, Moses; Yu, Ruby; Woo, Jean
2017-01-01
In response to the growing number of older people living in cities, the World Health Organization (WHO) introduced the concept of “Age-Friendly Cities” (AFC) to guide the way in designing physical and social environments to encourage active ageing. Limited research has studied the effects of neighbourhood age-friendliness on elderly health outcomes. Using the example of a highly urbanized city in Asia, this study examined the effects of perceived age-friendliness of neighbourhood environments on self-rated health (SRH) among community-dwelling older Chinese. A multi-stage sampling method was used to collect views of community-dwelling older people from two local districts of Hong Kong. A structured questionnaire covering the WHO’s eight AFC domains was developed to collect information on the perceived neighbourhood environments, SRH and individual characteristics. Age-friendliness of neighbourhood was assessed by mean scores of AFC domains, which was used to predict SRH with adjustment for individual and objective neighbourhood characteristics. Furthermore, 719 respondents aged ≥60 years completed the questionnaire, of which 44.5% reported good SRH. Independent of individual and objective neighbourhood characteristics, multiple logistics regressions showed that higher satisfaction on outdoor spaces and buildings, transportation, housing, social participation, and respect and social inclusion was significantly associated with increased odds of reporting good SRH by more than 20% (p < 0.05). Individuals aged 70–79 years, being female, lower education and residents of public or subsidized housing were less likely to report good SRH, after controlling for individual and neighbourhood characteristics. In addition to age, gender, education and housing type, AFC environments have important contributive influence on SRH, after controlling for individual and objective neighbourhood characteristics. PMID:28590435
Structure constrained by metadata in networks of chess players.
Almeira, Nahuel; Schaigorodsky, Ana L; Perotti, Juan I; Billoni, Orlando V
2017-11-09
Chess is an emblematic sport that stands out because of its age, popularity and complexity. It has served to study human behavior from the perspective of a wide number of disciplines, from cognitive skills such as memory and learning, to aspects like innovation and decision-making. Given that an extensive documentation of chess games played throughout history is available, it is possible to perform detailed and statistically significant studies about this sport. Here we use one of the most extensive chess databases in the world to construct two networks of chess players. One of the networks includes games that were played over-the-board and the other contains games played on the Internet. We study the main topological characteristics of the networks, such as degree distribution and correlations, transitivity and community structure. We complement the structural analysis by incorporating players' level of play as node metadata. Although both networks are topologically different, we show that in both cases players gather in communities according to their expertise and that an emergent rich-club structure, composed by the top-rated players, is also present.
Family characteristics of anxious ADHD children: preliminary results.
Kepley, Hayden O; Ostrander, Rick
2007-02-01
To investigate the family environments of children in a community sample with ADHD and co-occurring anxiety. Family Environment Scale, Behavioral Assessment System for Children, and Structured Clinical Interview are administered to parents of children with ADHD with and without anxiety. ADHD families are uniformly less cohesive and expressive and possess more conflict than families representing the community sample. In contrast to community or nonanxious ADHD families, anxious ADHD families do not encourage independence and tend to be distinctly less assertive, self-sufficient, and autonomous. Although anxious and nonanxious ADHD children tend to have a uniformly high incidence of maternal ADHD, mothers of anxious ADHD children tend to display a much higher incidence of substance/alcohol abuse than either nonanxious or community participants. Findings are consistent with the notion that an insular, dependent, and somewhat controlling family environment characterizes families of children with ADHD and comorbid childhood anxiety.
Marine fish community structure and habitat associations on the Canadian Beaufort shelf and slope
NASA Astrophysics Data System (ADS)
Majewski, Andrew R.; Atchison, Sheila; MacPhee, Shannon; Eert, Jane; Niemi, Andrea; Michel, Christine; Reist, James D.
2017-03-01
Marine fishes in the Canadian Beaufort Sea have complex interactions with habitats and prey, and occupy a pivotal position in the food web by transferring energy between lower- and upper-trophic levels, and also within and among habitats (e.g., benthic-pelagic coupling). The distributions, habitat associations, and community structure of most Beaufort Sea marine fishes, however, are unknown thus precluding effective regulatory management of emerging offshore industries in the region (e.g., hydrocarbon development, shipping, and fisheries). Between 2012 and 2014, Fisheries and Oceans Canada conducted the first baseline survey of offshore marine fishes, their habitats, and ecological relationships in the Canadian Beaufort Sea. Benthic trawling was conducted at 45 stations spanning 18-1001 m depths across shelf and slope habitats. Physical oceanographic variables (depth, salinity, temperature, oxygen), biological variables (benthic chlorophyll and integrated water-column chlorophyll) and sediment composition (grain size) were assessed as potential explanatory variables for fish community structure using a non-parametric statistical approach. Selected stations were re-sampled in 2013 and 2014 for a preliminary assessment of inter-annual variability in the fish community. Four distinct fish assemblages were delineated on the Canadian Beaufort Shelf and slope: 1) Nearshore-shelf: <50 m depth, 2) Offshore-shelf: >50 and ≤200 m depths, 3) Upper-slope: ≥200 and ≤500 m depths, and 4) Lower-slope: ≥500 m depths. Depth was the environmental variable that best explained fish community structure, and each species assemblage was spatially associated with distinct aspects of the vertical water mass profile. Significant differences in the fish community from east to west were not detected, and the species composition of the assemblages on the Canadian Beaufort Shelf have not changed substantially over the past decade. This community analysis provides a framework for testing hypotheses regarding the trophic dynamics and ecosystem roles of Beaufort Sea marine fishes, including biological linkages (i.e., fish movements and trophic interactions) among offshore habitats. Understanding regional-scale habitat associations will also provide context to identify potentially unique and/or sensitive habitats and fish community characteristics, thus aiding identification of ecologically and biologically significant areas, and to inform conservation efforts.
Climate and edaphic controllers influence rhizosphere community assembly for a wild annual grass
Nuccio, Erin E.; Anderson-Furgeson, James; Estera, Katerina Y.; ...
2016-05-09
The interface between roots and soil, known as the rhizosphere, is a dynamic habitat in the soil ecosystem. Unraveling the factors that control rhizosphere community assembly is a key starting point for understanding the diversity of plant-microbial interactions that occur in soil. The goals of this study were to determine how environmental factors shape rhizosphere microbial communities, such as local soil characteristics and the regional climate, and to determine the relative influence of the rhizosphere on microbial community assembly compared to the pressures imposed by the local and regional environment. We identified the bacteria present in the soil immediately adjacentmore » to the roots of wild oat (Avena spp.) in three California grasslands using deep Illumina 16S sequencing. Rhizosphere communities were more similar to each other than to the surrounding soil communities from which they were derived, despite the fact that the grasslands studied were separated by hundreds of kilometers. The rhizosphere was the dominant factor structuring bacterial community composition (38% variance explained), and was comparable in magnitude to the combined local and regional effects (22% and 21%, respectively). Rhizosphere communities were most influenced by factors related to the regional climate (soil moisture and temperature), while background soil communities were more influenced by soil characteristics (pH, CEC, exchangeable cations, clay content). The Avena core microbiome was strongly phylogenetically clustered according to the metrics NRI and NTI, which indicates that selective processes likely shaped these communities. Furthermore, 17% of these taxa were not detectable in the background soil, even with a robust sequencing depth of approximately 70,000 sequences per sample. In conclusion, these results support the hypothesis that roots select less abundant or possibly rare populations in the soil microbial community, which appear to be lineages of bacteria that have made a physiological tradeoff for rhizosphere competence at the expense of their competitiveness in non-rhizosphere soil.« less
Climate and edaphic controllers influence rhizosphere community assembly for a wild annual grass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuccio, Erin E.; Anderson-Furgeson, James; Estera, Katerina Y.
The interface between roots and soil, known as the rhizosphere, is a dynamic habitat in the soil ecosystem. Unraveling the factors that control rhizosphere community assembly is a key starting point for understanding the diversity of plant-microbial interactions that occur in soil. The goals of this study were to determine how environmental factors shape rhizosphere microbial communities, such as local soil characteristics and the regional climate, and to determine the relative influence of the rhizosphere on microbial community assembly compared to the pressures imposed by the local and regional environment. We identified the bacteria present in the soil immediately adjacentmore » to the roots of wild oat (Avena spp.) in three California grasslands using deep Illumina 16S sequencing. Rhizosphere communities were more similar to each other than to the surrounding soil communities from which they were derived, despite the fact that the grasslands studied were separated by hundreds of kilometers. The rhizosphere was the dominant factor structuring bacterial community composition (38% variance explained), and was comparable in magnitude to the combined local and regional effects (22% and 21%, respectively). Rhizosphere communities were most influenced by factors related to the regional climate (soil moisture and temperature), while background soil communities were more influenced by soil characteristics (pH, CEC, exchangeable cations, clay content). The Avena core microbiome was strongly phylogenetically clustered according to the metrics NRI and NTI, which indicates that selective processes likely shaped these communities. Furthermore, 17% of these taxa were not detectable in the background soil, even with a robust sequencing depth of approximately 70,000 sequences per sample. In conclusion, these results support the hypothesis that roots select less abundant or possibly rare populations in the soil microbial community, which appear to be lineages of bacteria that have made a physiological tradeoff for rhizosphere competence at the expense of their competitiveness in non-rhizosphere soil.« less
Felsmann, Katja; Baudis, Mathias; Gimbel, Katharina; Kayler, Zachary E.; Ellerbrock, Ruth; Bruehlheide, Helge; Bruckhoff, Johannes; Welk, Erik; Puhlmann, Heike; Weiler, Markus; Gessler, Arthur; Ulrich, Andreas
2015-01-01
Soil microbial communities play an important role in forest ecosystem functioning, but how climate change will affect the community composition and consequently bacterial functions is poorly understood. We assessed the effects of reduced precipitation with the aim of simulating realistic future drought conditions for one growing season on the bacterial community and its relation to soil properties and forest management. We manipulated precipitation in beech and conifer forest plots managed at different levels of intensity in three different regions across Germany. The precipitation reduction decreased soil water content across the growing season by between 2 to 8% depending on plot and region. T-RFLP analysis and pyrosequencing of the 16S rRNA gene were used to study the total soil bacterial community and its active members after six months of precipitation reduction. The effect of reduced precipitation on the total bacterial community structure was negligible while significant effects could be observed for the active bacteria. However, the effect was secondary to the stronger influence of specific soil characteristics across the three regions and management selection of overstorey tree species and their respective understorey vegetation. The impact of reduced precipitation differed between the studied plots; however, we could not determine the particular parameters being able to modify the response of the active bacterial community among plots. We conclude that the moderate drought induced by the precipitation manipulation treatment started to affect the active but not the total bacterial community, which points to an adequate resistance of the soil microbial system over one growing season. PMID:25875835
Felsmann, Katja; Baudis, Mathias; Gimbel, Katharina; Kayler, Zachary E; Ellerbrock, Ruth; Bruelheide, Helge; Bruehlheide, Helge; Bruckhoff, Johannes; Welk, Erik; Puhlmann, Heike; Weiler, Markus; Gessler, Arthur; Ulrich, Andreas
2015-01-01
Soil microbial communities play an important role in forest ecosystem functioning, but how climate change will affect the community composition and consequently bacterial functions is poorly understood. We assessed the effects of reduced precipitation with the aim of simulating realistic future drought conditions for one growing season on the bacterial community and its relation to soil properties and forest management. We manipulated precipitation in beech and conifer forest plots managed at different levels of intensity in three different regions across Germany. The precipitation reduction decreased soil water content across the growing season by between 2 to 8% depending on plot and region. T-RFLP analysis and pyrosequencing of the 16S rRNA gene were used to study the total soil bacterial community and its active members after six months of precipitation reduction. The effect of reduced precipitation on the total bacterial community structure was negligible while significant effects could be observed for the active bacteria. However, the effect was secondary to the stronger influence of specific soil characteristics across the three regions and management selection of overstorey tree species and their respective understorey vegetation. The impact of reduced precipitation differed between the studied plots; however, we could not determine the particular parameters being able to modify the response of the active bacterial community among plots. We conclude that the moderate drought induced by the precipitation manipulation treatment started to affect the active but not the total bacterial community, which points to an adequate resistance of the soil microbial system over one growing season.
Yang, Wenhao; Zhang, Taoxiang; Lin, Sen; Ni, Wuzhong
2017-06-01
The recovery of microbial community and activities is crucial to the remediation of contaminated soils. Distance-dependent variations of microbial community composition and metabolic characteristics in the rhizospheric soil of hyperaccumulator during phytoextraction are poorly understood. A 12-month phytoextraction experiment with Sedum alfredii in a Cd-contaminated soil was conducted. A pre-stratified rhizobox was used for separating sub-layer rhizospheric (0-2, 2-4, 4-6, 6-8, 8-10 mm from the root mat)/bulk soils. Soil microbial structure and function were analyzed by phospholipid fatty acid (PLFA) and MicroResp™ methods. The concentrations of total and specified PLFA biomarkers and the utilization rates for the 14 substrates (organic carbon) in the 0-2-mm sub-layer rhizospheric soil were significantly increased, as well as decreased with the increase in the distance from the root mat. Microbial structure measured by the ratios of different groups of PLFAs such as fungal/bacterial, monounsaturated/saturated, ratios of Gram-positive to Gram-negative (GP/GN) bacterial, and cyclopropyl/monoenoic precursors and 19:0 cyclo/18:1ω7c were significantly changed in the 0-2-mm soil. The PLFA contents and substrate utilization rates were negatively correlated with pH and total, acid-soluble, and reducible fractions of Cd, while positively correlated with labile carbon. The dynamics of microbial community were likely due to root exudates and Cd uptake by S. alfredii. This study revealed the stimulations and gradient changes of rhizosphere microbial community through phytoextraction, as reduced Cd concentration, pH, and increased labile carbons are due to the microbial community responses.
Vegetation-Associated Impacts on Arctic Tundra Bacterial and Microeukaryotic Communities
Shi, Yu; Xiang, Xingjia; Shen, Congcong; Neufeld, Josh D.; Walker, Virginia K.
2014-01-01
The Arctic is experiencing rapid vegetation changes, such as shrub and tree line expansion, due to climate warming, as well as increased wetland variability due to hydrological changes associated with permafrost thawing. These changes are of global concern because changes in vegetation may increase tundra soil biogeochemical processes that would significantly enhance atmospheric CO2 concentrations. Predicting the latter will at least partly depend on knowing the structure, functional activities, and distributions of soil microbes among the vegetation types across Arctic landscapes. Here we investigated the bacterial and microeukaryotic community structures in soils from the four principal low Arctic tundra vegetation types: wet sedge, birch hummock, tall birch, and dry heath. Sequencing of rRNA gene fragments indicated that the wet sedge and tall birch communities differed significantly from each other and from those associated with the other two dominant vegetation types. Distinct microbial communities were associated with soil pH, ammonium concentration, carbon/nitrogen (C/N) ratio, and moisture content. In soils with similar moisture contents and pHs (excluding wet sedge), bacterial, fungal, and total eukaryotic communities were correlated with the ammonium concentration, dissolved organic nitrogen (DON) content, and C/N ratio. Operational taxonomic unit (OTU) richness, Faith's phylogenetic diversity, and the Shannon species-level index (H′) were generally lower in the tall birch soil than in soil from the other vegetation types, with pH being strongly correlated with bacterial richness and Faith's phylogenetic diversity. Together, these results suggest that Arctic soil feedback responses to climate change will be vegetation specific not just because of distinctive substrates and environmental characteristics but also, potentially, because of inherent differences in microbial community structure. PMID:25362064
Vegetation-associated impacts on arctic tundra bacterial and microeukaryotic communities.
Shi, Yu; Xiang, Xingjia; Shen, Congcong; Chu, Haiyan; Neufeld, Josh D; Walker, Virginia K; Grogan, Paul
2015-01-01
The Arctic is experiencing rapid vegetation changes, such as shrub and tree line expansion, due to climate warming, as well as increased wetland variability due to hydrological changes associated with permafrost thawing. These changes are of global concern because changes in vegetation may increase tundra soil biogeochemical processes that would significantly enhance atmospheric CO2 concentrations. Predicting the latter will at least partly depend on knowing the structure, functional activities, and distributions of soil microbes among the vegetation types across Arctic landscapes. Here we investigated the bacterial and microeukaryotic community structures in soils from the four principal low Arctic tundra vegetation types: wet sedge, birch hummock, tall birch, and dry heath. Sequencing of rRNA gene fragments indicated that the wet sedge and tall birch communities differed significantly from each other and from those associated with the other two dominant vegetation types. Distinct microbial communities were associated with soil pH, ammonium concentration, carbon/nitrogen (C/N) ratio, and moisture content. In soils with similar moisture contents and pHs (excluding wet sedge), bacterial, fungal, and total eukaryotic communities were correlated with the ammonium concentration, dissolved organic nitrogen (DON) content, and C/N ratio. Operational taxonomic unit (OTU) richness, Faith's phylogenetic diversity, and the Shannon species-level index (H') were generally lower in the tall birch soil than in soil from the other vegetation types, with pH being strongly correlated with bacterial richness and Faith's phylogenetic diversity. Together, these results suggest that Arctic soil feedback responses to climate change will be vegetation specific not just because of distinctive substrates and environmental characteristics but also, potentially, because of inherent differences in microbial community structure. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Blanchet, Hugues; de Montaudouin, Xavier; Chardy, Pierre; Bachelet, Guy
2005-09-01
Fourteen years after a previous investigation in Arcachon Bay (SW France), the quantitative distribution of subtidal macrozoobenthic communities was assessed in 2002 through a stratified sampling strategy involving a larger number of stations (89 vs. 18) than in 1988. A total of 226 taxa were recorded. Cluster Analysis and Correspondence Analysis identified nine station groups corresponding to benthic faunal assemblages and their characteristic species. Multiple Discriminant Analysis showed that the main environmental factors influencing the distribution of faunal assemblages were sediment parameters and distance from the ocean. Depth was a minor structuring factor. At the scale of the lagoon, biogenic structures such as Zostera marina beds, Crepidula fornicata-dominated bottoms or dead oyster shell bottoms did not display any particular assemblage of infauna. Comparison with previous quantitative data from the 1988 survey provided more precision on the distribution of benthic assemblages and revealed community changes at a 14-year scale. These modifications reflected a general increase of silt and clay content in the sediment in the internal parts of channels, inducing community change. These changes can be correlated to the recent first signs of a moderate eutrophication process which have appeared, since 1988, through the development of green macroalgae in some parts of the lagoon. This trend was enhanced in transverse channels with reduced hydrodynamics and led to muddy areas where green macroalgae tended to accumulate. Locally, the dredging of sandbanks induced stronger currents and allowed the marine influence to occur, and also induced community change. These observations confirm that surveys of macrobenthic communities are useful tools to assess coastal ecosystem change even in moderately disturbed environments.
Gilder, David A; Stouffer, Gina M; Lau, Philip; Ehlers, Cindy L
2016-04-01
Alcohol and other substance use disorders (SUD) pose major problems of morbidity and mortality in some American Indian communities, but little is known about the clinical characteristics, risk factors, and consequences of combined alcohol and other substance use disorders (multi-substance use disorder, MSUD) in those communities. Using the Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA), in a community sample of 876 American Indians, the clinical characteristics of lifetime DSM-5 moderate or severe alcohol use disorder alone (AUD alone) (n=146) and MSUD (defined as alcohol and ≥1 other SUD) (n=284) were evaluated and compared to 347 participants with no lifetime SUD (no SUD). The majority (57%) of participants with a SUD had multi-substance use disorder and 94% of those were with AUD. Stimulants (cocaine and/or amphetamine) and/or cannabis were the most common other SUDs. Participants with AUD alone were more likely to be male and have an earlier age of first alcohol intoxication than those with no SUD. Those with MSUD were more likely to have dropped out of high school, have antisocial personality disorder (ASPD) or conduct disorder (CD), have earlier ages of first alcohol intoxication and first use of cannabis and stimulants, an earlier age of onset of AUD, and more of several AUD symptoms than those with AUD alone, but the same temporal course and time to remission of AUD. MSUD is prevalent in this sample, is associated with multiple comorbidities and denotes a more severe alcohol syndrome than AUD alone. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Gebregeorgise, Dawit Teshome; Belay, Yajeb Melesse; Kälvemark Sporrong, Sofia
2018-02-01
Background Studies have reported misuse of sildenafil citrate for recreational purpose, not least by healthy young men. This is becoming a major concern, for medical and other reasons. Objective The aim of this study was to document the characteristics of sildenafil citrate users and to explore the dispensing practices of the medicine in selected community pharmacies in Addis Ababa, Ethiopia. Setting Data was collected in community pharmacies in Addis Ababa, Ethiopia. Method A survey, using a self-administrated questionnaire, was conducted among customers who purchased sildenafil citrate from community pharmacies. Simple descriptive statistics were used to analyse data. Also, semi-structured interviews were conducted with community pharmacists. These were analysed thematically. Main outcome measures Socio-demographic characteristics (survey), themes (interviews). Results All survey respondents (n = 197) were men, 57.9% were below 40 years old, 53.8% had never been married and 58.4% had used sildenafil citrate before. A minority (16.2%) were diagnosed with erectile dysfunction. The main reason for buying sildenafil citrate was experimentation (45.7%). Pharmacists reported that sildenafil citrate was often dispensed without a prescription. The reason for this was, according to the interviewees, competition in the market. Also, the medicine was often dispensed without adequate information or counselling. Conclusions Selling and buying sildenafil citrate without a prescription seems to be common practice in pharmacies in Addis Ababa. It is crucial to strengthen the regulatory activity to protect customers from health risks. In addition pharmacy professionals should be supported to work in accordance with professional and legal standards.
Fall, S; Nazaret, S; Chotte, J L; Brauman, A
2004-08-01
The building and foraging activities of termites are known to modify soil characteristics such as the heterogeneity. In tropical savannas the impact of the activity of soil-feeding termites ( Cubitermes niokoloensis) has been shown to affect the properties of the soil at the aggregate level by creating new soil microenvironments (aggregate size fractions) [13]. These changes were investigated in greater depth by looking at the microbial density (AODC) and the genetic structure (automated rRNA intergenic spacer analysis: ARISA) of the communities in the different aggregate size fractions (i.e., coarse sand, fine sand, coarse silt, fine silt, and dispersible clays) separated from compartments (internal and external wall) of three Cubitermes niokoloensis mounds. The bacterial density of the mounds was significantly higher (1.5 to 3 times) than that of the surrounding soil. Within the aggregate size fractions, the termite building activity resulted in a significant increase in bacterial density within the coarser fractions (>20 mum). Multivariate analysis of the ARISA profiles revealed that the bacterial genetic structures of unfractionated soil and soil aggregate size fractions of the three mounds was noticeably different from the savanna soil used as a reference. Moreover, the microbial community associated with the different microenvironments in the three termite mounds revealed three distinct clusters formed by the aggregate size fractions of each mound. Except for the 2-20 mum fraction, these results suggest that the mound microbial genetic structure is more dependent upon microbial pool affiliation (the termite mound) than on the soil location (aggregate size fraction). The causes of the specificity of the microbial community structure of termite mound aggregate size fractions are discussed.
Cusack, Daniela F; Silver, Whendee L; Torn, Margaret S; Burton, Sarah D; Firestone, Mary K
2011-03-01
Microbial communities and their associated enzyme activities affect the amount and chemical quality of carbon (C) in soils. Increasing nitrogen (N) deposition, particularly in N-rich tropical forests, is likely to change the composition and behavior of microbial communities and feed back on ecosystem structure and function. This study presents a novel assessment of mechanistic links between microbial responses to N deposition and shifts in soil organic matter (SOM) quality and quantity. We used phospholipid fatty acid (PLFA) analysis and microbial enzyme assays in soils to assess microbial community responses to long-term N additions in two distinct tropical rain forests. We used soil density fractionation and 13C nuclear magnetic resonance (NMR) spectroscopy to measure related changes in SOM pool sizes and chemical quality. Microbial biomass increased in response to N fertilization in both tropical forests and corresponded to declines in pools of low-density SOM. The chemical quality of this soil C pool reflected ecosystem-specific changes in microbial community composition. In the lower-elevation forest, there was an increase in gram-negative bacteria PLFA biomass, and there were significant losses of labile C chemical groups (O-alkyls). In contrast, the upper-elevation tropical forest had an increase in fungal PLFAs with N additions and declines in C groups associated with increased soil C storage (alkyls). The dynamics of microbial enzymatic activities with N addition provided a functional link between changes in microbial community structure and SOM chemistry. Ecosystem-specific changes in microbial community composition are likely to have far-reaching effects on soil carbon storage and cycling. This study indicates that microbial communities in N-rich tropical forests can be sensitive to added N, but we can expect significant variability in how ecosystem structure and function respond to N deposition among tropical forest types.
Wu, Zeyan; Haack, Stacey Elizabeth; Lin, Wenxiong; Li, Bailian; Wu, Linkun; Fang, Changxun; Zhang, Zhixing
2015-01-01
Soil microbes play an essential role in the forest ecosystem as an active component. This study examined the hypothesis that soil microbial community structure and metabolic activity would vary with the increasing stand ages in long-term pure plantations of Pinus elliottii. The phospholipid fatty acids (PLFA) combined with community level physiological profiles (CLPP) method was used to assess these characteristics in the rhizospheric soils of P. elliottii. We found that the soil microbial communities were significantly different among different stand ages of P. elliottii plantations. The PLFA analysis indicated that the bacterial biomass was higher than the actinomycic and fungal biomass in all stand ages. However, the bacterial biomass decreased with the increasing stand ages, while the fungal biomass increased. The four maximum biomarker concentrations in rhizospheric soils of P. elliottii for all stand ages were 18:1ω9c, 16:1ω7c, 18:3ω6c (6,9,12) and cy19:0, representing measures of fungal and gram negative bacterial biomass. In addition, CLPP analysis revealed that the utilization rate of amino acids, polymers, phenolic acids, and carbohydrates of soil microbial community gradually decreased with increasing stand ages, though this pattern was not observed for carboxylic acids and amines. Microbial community diversity, as determined by the Simpson index, Shannon-Wiener index, Richness index and McIntosh index, significantly decreased as stand age increased. Overall, both the PLFA and CLPP illustrated that the long-term pure plantation pattern exacerbated the microecological imbalance previously described in the rhizospheric soils of P. elliottii, and markedly decreased the soil microbial community diversity and metabolic activity. Based on the correlation analysis, we concluded that the soil nutrient and C/N ratio most significantly contributed to the variation of soil microbial community structure and metabolic activity in different stand ages of P. elliottii plantations.
Wu, Zeyan; Haack, Stacey Elizabeth; Lin, Wenxiong; Li, Bailian; Wu, Linkun; Fang, Changxun; Zhang, Zhixing
2015-01-01
Soil microbes play an essential role in the forest ecosystem as an active component. This study examined the hypothesis that soil microbial community structure and metabolic activity would vary with the increasing stand ages in long-term pure plantations of Pinus elliottii. The phospholipid fatty acids (PLFA) combined with community level physiological profiles (CLPP) method was used to assess these characteristics in the rhizospheric soils of P. elliottii. We found that the soil microbial communities were significantly different among different stand ages of P. elliottii plantations. The PLFA analysis indicated that the bacterial biomass was higher than the actinomycic and fungal biomass in all stand ages. However, the bacterial biomass decreased with the increasing stand ages, while the fungal biomass increased. The four maximum biomarker concentrations in rhizospheric soils of P. elliottii for all stand ages were 18:1ω9c, 16:1ω7c, 18:3ω6c (6,9,12) and cy19:0, representing measures of fungal and gram negative bacterial biomass. In addition, CLPP analysis revealed that the utilization rate of amino acids, polymers, phenolic acids, and carbohydrates of soil microbial community gradually decreased with increasing stand ages, though this pattern was not observed for carboxylic acids and amines. Microbial community diversity, as determined by the Simpson index, Shannon-Wiener index, Richness index and McIntosh index, significantly decreased as stand age increased. Overall, both the PLFA and CLPP illustrated that the long-term pure plantation pattern exacerbated the microecological imbalance previously described in the rhizospheric soils of P. elliottii, and markedly decreased the soil microbial community diversity and metabolic activity. Based on the correlation analysis, we concluded that the soil nutrient and C/N ratio most significantly contributed to the variation of soil microbial community structure and metabolic activity in different stand ages of P. elliottii plantations. PMID:26267338
Lee, Seung-Hoon; Kang, Hojeong
2016-02-01
The distribution of soil microorganisms often shows variations along soil depth, and even in the same soil layer, each microbial group has a specific niche. In particular, the estuary soil is intermittently flooded, and the characteristics of the surface soil layer are different from those of other terrestrial soils. We investigated the microbial community structure and activity across soil depths and biological gradients composed of invasive and native plants in the shallow surface layer of an estuary ecosystem by using molecular approaches. Our results showed that the total and denitrifying bacterial community structures of the estuarine wetland soil differed according to the short depth gradient. In growing season, gene copy number of 16S rRNA were 1.52(±0.23) × 10(11), 1.10(±0.06) × 10(11), and 4.33(±0.16) × 10(10) g(-1) soil; nirS were 5.41(±1.25) × 10(8), 4.93(±0.94) × 10(8), and 2.61(±0.28) × 10(8) g(-1) soil; and nirK were 9.67(±2.37) × 10(6), 3.42(±0.55) × 10(6), and 2.12(±0.19) × 10(6) g(-1) soil in 0 cm, 5 cm, and 10 cm depth layer, respectively. The depth-based difference was distinct in the vegetated sample and in the growing season, evidencing the important role of plants in structuring the microbial community. In comparison with other studies, we observed differences in the microbial community and functions even across very short depth gradients. In conclusion, our results suggested that (i) in the estuary ecosystem, the denitrifying bacterial community could maintain its abundance and function within shallow surface soil layers through facultative anaerobiosis, while the total bacterial community would be both quantitatively and qualitatively affected by the soil depth, (ii) the nirS gene community, rather than the nirK one, should be the first candidate used as an indicator of the microbial denitrification process in the estuary system, and (iii) as the microbial community is distributed and plays a certain niche role according to biogeochemical factors, the study of the microbial community even in surface soil should be performed in detail by considering the soil depth.
Barberán, Albert; McGuire, Krista L; Wolf, Jeffrey A; Jones, F Andrew; Wright, Stuart Joseph; Turner, Benjamin L; Essene, Adam; Hubbell, Stephen P; Faircloth, Brant C; Fierer, Noah
2015-12-01
The complexities of the relationships between plant and soil microbial communities remain unresolved. We determined the associations between plant aboveground and belowground (root) distributions and the communities of soil fungi and bacteria found across a diverse tropical forest plot. Soil microbial community composition was correlated with the taxonomic and phylogenetic structure of the aboveground plant assemblages even after controlling for differences in soil characteristics, but these relationships were stronger for fungi than for bacteria. In contrast to expectations, the species composition of roots in our soil core samples was a poor predictor of microbial community composition perhaps due to the patchy, ephemeral, and highly overlapping nature of fine root distributions. Our ability to predict soil microbial composition was not improved by incorporating information on plant functional traits suggesting that the most commonly measured plant traits are not particularly useful for predicting the plot-level variability in belowground microbial communities. © 2015 John Wiley & Sons Ltd/CNRS.
Lan, Mu-ling; Gao, Ming
2015-11-01
Based on rice, wheat, corn straw and rape, broad bean green stalk as the research object, using phospholipid fatty acid (PLFA) method, combining principal component analysis method to study the soil microbial quantity, distribution of flora, community structure characteristics under dry and water farming as two different cultivated land use types. The PLFA analysis results showed that: under dry farming, total PLFA quantity ranged 8.35-25.15 nmol x g(-1), showed rape > broad bean > corn > rice > wheat, rape and broad bean significantly increased total PLFA quantity by 1.18 and 1.08 times compared to the treatment without straw; PLFA quantity of bacterial flora in treatments with straws was higher than that without straw, and fungal biomass was significantly increased, so was the species richness of microbial community. Under water faming, the treatments of different straws returning with landfill have improved the PLFA quantity of total soil microbial and flora comparing with the treatment without straw, fungi significantly increased, and species richness of microbial communities value also increased significantly. Total PLFA quantity ranged 4.04-22.19 nmol x g(-1), showed rice > corn > wheat > broad bean > rape, which in rape and broad bean treatments were lower than the treatment without straw; fungal PLFA amount in 5 kinds of straw except broad bean treatment was significantly higher than that of the treatment without straw, bacteria and total PLFA quantity in broad bean processing were significantly lower than those of other treatments, actinomycetes, G+, G- had no significant difference between all treatments; rice, wheat, corn, rape could significantly increase the soil microbial species richness index and dominance index under water faming. The results of principal component analysis showed that broad bean green stalk had the greatest impact on the microbial community structure in the dry soil, rape green stalk and wheat straw had the biggest influence on soil microbial community structure in water soil.
Simeon T. Caskey; Tyanna S. Blaschak; Ellen Wohl; Elizabeth Schnackenberg; David M. Merritt; Kathleen A. Dwire
2015-01-01
Flow diversions are widespread and numerous throughout the semi-arid mountains of the western United States. Diversions vary greatly in their structure and ability to divert water, but can alter the magnitude and duration of base and peak flows, depending upon their size and management. Channel geometry and riparian plant communities have adapted to unique hydrologic...
National Biological Service Research Supports Watershed Planning
Snyder, Craig D.
1996-01-01
The National Biological Service's Leetown Science Center is investigating how human impacts on watershed, riparian, and in-stream habitats affect fish communities. The research will provide the basis for a Ridge and Valley model that will allow resource managers to accurately predict and effectively mitigate human impacts on water quality. The study takes place in the Opequon Creek drainage basin of West Virginia. A fourth-order tributary of the Potomac, the basin falls within the Ridge and Valley. The study will identify biological components sensitive to land use patterns and the condition of the riparian zone; the effect of stream size, location, and other characteristics on fish communities; the extent to which remote sensing can reliable measure the riparian zone; and the relationship between the rate of landscape change and the structure of fish communities.
Bird-community responses to habitat creation in a long-term, large-scale natural experiment.
Whytock, Robin C; Fuentes-Montemayor, Elisa; Watts, Kevin; Barbosa De Andrade, Patanjaly; Whytock, Rory T; French, Paul; Macgregor, Nicholas A; Park, Kirsty J
2018-04-01
Ecosystem function and resilience are compromised when habitats become fragmented due to land-use change. This has led to national and international conservation strategies aimed at restoring habitat extent and improving functional connectivity (i.e., maintaining dispersal processes). However, biodiversity responses to landscape-scale habitat creation and the relative importance of spatial and temporal scales are poorly understood, and there is disagreement over which conservation strategies should be prioritized. We used 160 years of historic post-agricultural woodland creation as a natural experiment to evaluate biodiversity responses to habitat creation in a landscape context. Birds were surveyed in 101 secondary, broadleaf woodlands aged 10-160 years with ≥80% canopy cover and in landscapes with 0-17% broadleaf woodland cover within 3000 m. We used piecewise structural equation modeling to examine the direct and indirect relationships between bird abundance and diversity, ecological continuity, patch characteristics, and landscape structure and quantified the relative conservation value of local and landscape scales for bird communities. Ecological continuity indirectly affected overall bird abundance and species richness through its effects on stand structure, but had a weaker influence (effect size near 0) on the abundance and diversity of species most closely associated with woodland habitats. This was probably because woodlands were rapidly colonized by woodland generalists in ≤10 years (minimum patch age) but were on average too young (median 50 years) to be colonized by woodland specialists. Local patch characteristics were relatively more important than landscape characteristics for bird communities. Based on our results, biodiversity responses to habitat creation depended on local- and landscape-scale factors that interacted across time and space. We suggest that there is a need for further studies that focus on habitat creation in a landscape context and that knowledge gained from studies of habitat fragmentation and loss should be used to inform habitat creation with caution because the outcomes are not necessarily reciprocal. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
Community-based organizations in the health sector: A scoping review
2012-01-01
Community-based organizations are important health system stakeholders as they provide numerous, often highly valued programs and services to the members of their community. However, community-based organizations are described using diverse terminology and concepts from across a range of disciplines. To better understand the literature related to community-based organizations in the health sector (i.e., those working in health systems or more broadly to address population or public health issues), we conducted a scoping review by using an iterative process to identify existing literature, conceptually map it, and identify gaps and areas for future inquiry. We searched 18 databases and conducted citation searches using 15 articles to identify relevant literature. All search results were reviewed in duplicate and were included if they addressed the key characteristics of community-based organizations or networks of community-based organizations. We then coded all included articles based on the country focus, type of literature, source of literature, academic discipline, disease sector, terminology used to describe organizations and topics discussed. We identified 186 articles addressing topics related to the key characteristics of community-based organizations and/or networks of community-based organizations. The literature is largely focused on high-income countries and on mental health and addictions, HIV/AIDS or general/unspecified populations. A large number of different terms have been used in the literature to describe community-based organizations and the literature addresses a range of topics about them (mandate, structure, revenue sources and type and skills or skill mix of staff), the involvement of community members in organizations, how organizations contribute to community organizing and development and how they function in networks with each other and with government (e.g., in policy networks). Given the range of terms used to describe community-based organizations, this scoping review can be used to further map their meanings/definitions to develop a more comprehensive typology and understanding of community-based organizations. This information can be used in further investigations about the ways in which community-based organizations can be engaged in health system decision-making and the mechanisms available for facilitating or supporting their engagement. PMID:23171160
Community-based organizations in the health sector: a scoping review.
Wilson, Michael G; Lavis, John N; Guta, Adrian
2012-11-21
Community-based organizations are important health system stakeholders as they provide numerous, often highly valued programs and services to the members of their community. However, community-based organizations are described using diverse terminology and concepts from across a range of disciplines. To better understand the literature related to community-based organizations in the health sector (i.e., those working in health systems or more broadly to address population or public health issues), we conducted a scoping review by using an iterative process to identify existing literature, conceptually map it, and identify gaps and areas for future inquiry.We searched 18 databases and conducted citation searches using 15 articles to identify relevant literature. All search results were reviewed in duplicate and were included if they addressed the key characteristics of community-based organizations or networks of community-based organizations. We then coded all included articles based on the country focus, type of literature, source of literature, academic discipline, disease sector, terminology used to describe organizations and topics discussed. We identified 186 articles addressing topics related to the key characteristics of community-based organizations and/or networks of community-based organizations. The literature is largely focused on high-income countries and on mental health and addictions, HIV/AIDS or general/unspecified populations. A large number of different terms have been used in the literature to describe community-based organizations and the literature addresses a range of topics about them (mandate, structure, revenue sources and type and skills or skill mix of staff), the involvement of community members in organizations, how organizations contribute to community organizing and development and how they function in networks with each other and with government (e.g., in policy networks).Given the range of terms used to describe community-based organizations, this scoping review can be used to further map their meanings/definitions to develop a more comprehensive typology and understanding of community-based organizations. This information can be used in further investigations about the ways in which community-based organizations can be engaged in health system decision-making and the mechanisms available for facilitating or supporting their engagement.
Rieck, Allison Margaret
2014-09-01
To improve collaboration in Australian primary health care, there is a need to understand aspects of the general practitioner (GP)/community pharmacist relationship, its influence on collaborative chronic disease management (CDM) and if this influence can be explained by a pre-existing theory or concept. Adopting a grounded theory approach, 22 GP and 22 community pharmacist semi-structured interviews were undertaken. Analysis of the transcripts identified common themes regarding the GP/community pharmacist relationship. Trustworthiness of the themes identified was tested through negative case analysis and member checking. Hofstede's (in 1980) phenomenon of power distance was employed to illuminate the nature of GP/community pharmacist relations. The majority of GPs and community pharmacists described the characteristics of this phenomenon. The power distance was based on knowledge and expertise and was shown to be a barrier to collaboration between GPs and community pharmacists because GPs perceived that community pharmacists did not have the required expertise to improve CDM above what the GP could deliver alone. Power distance exists within the GP/community pharmacist relationship and has a negative influence on GP/community pharmacist collaborative CDM. Understanding and improving GP awareness of community pharmacist expertise has important implications for the future success of collaborative CDM.
The Roles of Sea-Ice, Light and Sedimentation in Structuring Shallow Antarctic Benthic Communities
Clark, Graeme F.; Stark, Jonathan S.; Palmer, Anne S.; Riddle, Martin J.; Johnston, Emma L.
2017-01-01
On polar coasts, seasonal sea-ice duration strongly influences shallow marine environments by affecting environmental conditions, such as light, sedimentation, and physical disturbance. Sea-ice dynamics are changing in response to climate, but there is limited understanding of how this might affect shallow marine environments and benthos. Here we present a unique set of physical and biological data from a single region of Antarctic coast, and use it to gain insights into factors shaping polar benthic communities. At sites encompassing a gradient of sea-ice duration, we measured temporal and spatial variation in light and sedimentation and hard-substrate communities at different depths and substrate orientations. Biological trends were highly correlated with sea-ice duration, and appear to be driven by opposing gradients in light and sedimentation. As sea-ice duration decreased, there was increased light and reduced sedimentation, and concurrent shifts in community structure from invertebrate to algal dominance. Trends were strongest on shallower, horizontal surfaces, which are most exposed to light and sedimentation. Depth and substrate orientation appear to mediate exposure of benthos to these factors, thereby tempering effects of sea-ice and increasing biological heterogeneity. However, while light and sedimentation both varied spatially with sea-ice, their dynamics differed temporally. Light was sensitive to the site-specific date of sea-ice breakout, whereas sedimentation fluctuated at a regional scale coincident with the summer phytoplankton bloom. Sea-ice duration is clearly the overarching force structuring these shallow Antarctic benthic communities, but direct effects are imposed via light and sedimentation, and mediated by habitat characteristics. PMID:28076438
The Roles of Sea-Ice, Light and Sedimentation in Structuring Shallow Antarctic Benthic Communities.
Clark, Graeme F; Stark, Jonathan S; Palmer, Anne S; Riddle, Martin J; Johnston, Emma L
2017-01-01
On polar coasts, seasonal sea-ice duration strongly influences shallow marine environments by affecting environmental conditions, such as light, sedimentation, and physical disturbance. Sea-ice dynamics are changing in response to climate, but there is limited understanding of how this might affect shallow marine environments and benthos. Here we present a unique set of physical and biological data from a single region of Antarctic coast, and use it to gain insights into factors shaping polar benthic communities. At sites encompassing a gradient of sea-ice duration, we measured temporal and spatial variation in light and sedimentation and hard-substrate communities at different depths and substrate orientations. Biological trends were highly correlated with sea-ice duration, and appear to be driven by opposing gradients in light and sedimentation. As sea-ice duration decreased, there was increased light and reduced sedimentation, and concurrent shifts in community structure from invertebrate to algal dominance. Trends were strongest on shallower, horizontal surfaces, which are most exposed to light and sedimentation. Depth and substrate orientation appear to mediate exposure of benthos to these factors, thereby tempering effects of sea-ice and increasing biological heterogeneity. However, while light and sedimentation both varied spatially with sea-ice, their dynamics differed temporally. Light was sensitive to the site-specific date of sea-ice breakout, whereas sedimentation fluctuated at a regional scale coincident with the summer phytoplankton bloom. Sea-ice duration is clearly the overarching force structuring these shallow Antarctic benthic communities, but direct effects are imposed via light and sedimentation, and mediated by habitat characteristics.
ERIC Educational Resources Information Center
Pearce, Terisa Ronette
2010-01-01
This qualitative naturalistic descriptive case study provides an understanding of the characteristics of a community of practice within a National Writing Project invitational summer institute. This study utilized naturalistic, descriptive case study methodology to answer the research question: What characteristics of a community of practice are…
Knoll, Fátima do Rosário Naschenveng; Penatti, N C
2012-10-01
The effect of habitat fragmentation on the structure of orchid bee communities was analyzed by the investigation of the existence of a spatial structure in the richness and abundance of Euglossini species and by determining the relationship between these data and environmental factors. The surveys were carried out in four different forest fragments and one university campus. Richness, abundance, and diversity of species were analyzed in relation to abiotic (size of the area, extent of the perimeter, perimeter/area ratio, and shape index) and biotic characteristics (vegetation index of the fragment and of the matrix of each of the locations studied). We observed a highly significant positive correlation between the diversity index and the vegetation index of the fragment, landscape and shape index. Our analysis demonstrated that the observed variation could be explained mainly by the vegetation index and the size of the fragment. Variations in relative abundance showed a tendency toward an aggregated spatial distribution between the fragments studied, as well as between the sampling stations within the same habitat, demonstrating the existence of a spatial structure on a small scale in the populations of Euglossini. This distribution will determine the composition of species that coexist in the area after fragmentation. These data help in understanding the differences and similarities in the structure of communities of Euglossini resulting from forest fragmentation.
Adaptive root foraging strategies along a boreal-temperate forest gradient.
Ostonen, Ivika; Truu, Marika; Helmisaari, Heljä-Sisko; Lukac, Martin; Borken, Werner; Vanguelova, Elena; Godbold, Douglas L; Lõhmus, Krista; Zang, Ulrich; Tedersoo, Leho; Preem, Jens-Konrad; Rosenvald, Katrin; Aosaar, Jürgen; Armolaitis, Kęstutis; Frey, Jane; Kabral, Naima; Kukumägi, Mai; Leppälammi-Kujansuu, Jaana; Lindroos, Antti-Jussi; Merilä, Päivi; Napa, Ülle; Nöjd, Pekka; Parts, Kaarin; Uri, Veiko; Varik, Mats; Truu, Jaak
2017-08-01
The tree root-mycorhizosphere plays a key role in resource uptake, but also in the adaptation of forests to changing environments. The adaptive foraging mechanisms of ectomycorrhizal (EcM) and fine roots of Picea abies, Pinus sylvestris and Betula pendula were evaluated along a gradient from temperate to subarctic boreal forest (38 sites between latitudes 48°N and 69°N) in Europe. Variables describing tree resource uptake structures and processes (absorptive fine root biomass and morphology, nitrogen (N) concentration in absorptive roots, extramatrical mycelium (EMM) biomass, community structure of root-associated EcM fungi, soil and rhizosphere bacteria) were used to analyse relationships between root system functional traits and climate, soil and stand characteristics. Absorptive fine root biomass per stand basal area increased significantly from temperate to boreal forests, coinciding with longer and thinner root tips with higher tissue density, smaller EMM biomass per root length and a shift in soil microbial community structure. The soil carbon (C) : N ratio was found to explain most of the variability in absorptive fine root and EMM biomass, root tissue density, N concentration and rhizosphere bacterial community structure. We suggest a concept of absorptive fine root foraging strategies involving both qualitative and quantitative changes in the root-mycorrhiza-bacteria continuum along climate and soil C : N gradients. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Inferring and analysis of social networks using RFID check-in data in China
Liu, Tao; Liu, Shouyin; Ge, Shuangkui
2017-01-01
Social networks play an important role in our daily lives. However, social ties are rather elusive to quantify, especially for large groups of subjects over prolonged periods of time. In this work, we first propose a methodology for extracting social ties from long spatio-temporal data streams, where the subjects are 17,795 undergraduates from a university of China and the data streams are the 9,147,106 time-stamped RFID check-in records left behind by them during one academic year. By several metrics mentioned below, we then analyze the structure of the social network. Our results center around three main observations. First, we characterize the global structure of the network, and we confirm the small-world phenomenon on a global scale. Second, we find that the network shows clear community structure. And we observe that younger students at lower levels tend to form large communities, while students at higher levels mostly form smaller communities. Third, we characterize the assortativity patterns by studying the basic demographic and network properties of users. We observe clear degree assortativity on a global scale. Furthermore, we find a strong effect of grade and school on tie formation preference, but we do not find any strong region homophily. Our research may help us to elucidate the structural characteristics and the preference of the formation of social ties in college students’ social network. PMID:28570586
NASA Astrophysics Data System (ADS)
Xu, Yong; Li, Xinzheng; Ma, Lin; Dong, Dong; Kou, Qi; Sui, Jixing; Gan, Zhibin; Wang, Hongfa
2017-09-01
In spring and summer 2011, the macro- and megabenthic fauna in two sections of the East China Sea were investigated using an Agassiz net trawl to detect the seasonal and spatial variations of benthic community characteristics and the relation to environmental variables. The total number of species increased slightly from spring (131 species) to summer (133) whereas the percentage of Mollusca decreased significantly. The index of relative importance (IRI) indicated that the top five important species changed completely from spring to summer. Species number, abundance and biomass in summer were significantly higher than in spring, but no significant difference was observed among areas (coastal, transitional and oceanic areas, divided basically from inshore to offshore). Species richness ( d), diversity ( H') and evenness ( J') showed no significant seasonal or spatial variations. Cluster analysis and nMDS ordination identified three benthic communities from inshore to offshore, corresponding to the three areas. Analysis of Similarity (ANOSIM) indicated the overall significant difference in community structure between seasons and among areas. K-dominance curves revealed the high intrinsic diversity in the offshore area. Canonical correspondence analysis showed that the coastal community was positively correlated to total nitrogen and total organic carbon in spring, but negatively in summer; oceanic community was positively correlated to total nitrogen and total organic carbon in both seasons. Species such as Coelorhynchus multispinulosus, Neobythites sivicola, Lepidotrigla alata, Solenocera melantho, Parapenaeus fissuroides, Oratosquilla gonypetes and Spiropagurus spiriger occurred exclusively in the offshore oceanic area and their presence may reflect the influence of the offshore Kuroshio Current.
Measuring Contextual Characteristics for Community Health
Hillemeier, Marianne M; Lynch, John; Harper, Sam; Casper, Michele
2003-01-01
Objective To conceptualize and measure community contextual influences on population health and health disparities. Data Sources We use traditional and nontraditional secondary sources of data comprising a comprehensive array of community characteristics. Study Design Using a consultative process, we identify 12 overarching dimensions of contextual characteristics that may affect community health, as well as specific subcomponents relating to each dimension. Data Collection An extensive geocoded library of data indicators relating to each dimension and subcomponent for metropolitan areas in the United States is assembled. Principal Findings We describe the development of community contextual health profiles, present the rationale supporting each of the profile dimensions, and provide examples of relevant data sources. Conclusions Our conceptual framework for community contextual characteristics, including a specified set of dimensions and components, can provide practical ways to monitor health-related aspects of the economic, social, and physical environments in which people live. We suggest several guiding principles useful for understanding how aspects of contextual characteristics can affect health and health disparities. PMID:14727793
Spatio-temporal patterns of major bacterial groups in alpine waters.
Freimann, Remo; Bürgmann, Helmut; Findlay, Stuart E G; Robinson, Christopher T
2014-01-01
Glacial alpine landscapes are undergoing rapid transformation due to changes in climate. The loss of glacial ice mass has directly influenced hydrologic characteristics of alpine floodplains. Consequently, hyporheic sediment conditions are likely to change in the future as surface waters fed by glacial water (kryal) become groundwater dominated (krenal). Such environmental shifts may subsequently change bacterial community structure and thus potential ecosystem functioning. We quantitatively investigated the structure of major bacterial groups in glacial and groundwater-fed streams in three alpine floodplains during different hydrologic periods. Our results show the importance of several physico-chemical variables that reflect local geological characteristics as well as water source in structuring bacterial groups. For instance, Alpha-, Betaproteobacteria and Cytophaga-Flavobacteria were influenced by pH, conductivity and temperature as well as by inorganic and organic carbon compounds, whereas phosphorous compounds and nitrate showed specific influence on single bacterial groups. These results can be used to predict future bacterial group shifts, and potential ecosystem functioning, in alpine landscapes under environmental transformation.
The Footprint of Continental-Scale Ocean Currents on the Biogeography of Seaweeds
Wernberg, Thomas; Thomsen, Mads S.; Connell, Sean D.; Russell, Bayden D.; Waters, Jonathan M.; Zuccarello, Giuseppe C.; Kraft, Gerald T.; Sanderson, Craig; West, John A.; Gurgel, Carlos F. D.
2013-01-01
Explaining spatial patterns of biological organisation remains a central challenge for biogeographic studies. In marine systems, large-scale ocean currents can modify broad-scale biological patterns by simultaneously connecting environmental (e.g. temperature, salinity and nutrients) and biological (e.g. amounts and types of dispersed propagules) properties of adjacent and distant regions. For example, steep environmental gradients and highly variable, disrupted flow should lead to heterogeneity in regional communities and high species turnover. In this study, we investigated the possible imprint of the Leeuwin (LC) and East Australia (EAC) Currents on seaweed communities across ~7,000 km of coastline in temperate Australia. These currents flow poleward along the west and east coasts of Australia, respectively, but have markedly different characteristics. We tested the hypothesis that, regional seaweed communities show serial change in the direction of current flow and that, because the LC is characterised by a weaker temperature gradient and more un-interrupted along-shore flow compared to the EAC, then coasts influenced by the LC have less variable seaweed communities and lower species turnover across regions than the EAC. This hypothesis was supported. We suggest that this pattern is likely caused by a combination of seaweed temperature tolerances and current-driven dispersal. In conclusion, our findings support the idea that the characteristics of continental-scale currents can influence regional community organisation, and that the coupling of ocean currents and marine biological structure is a general feature that transcends taxa and spatial scales. PMID:24260352
Hummel, Michelle; Wood, Nathan J.; Schweikert, Amy; Stacey, Mark T.; Jones, Jeanne; Barnard, Patrick L.; Erikson, Li H.
2018-01-01
Sea level is projected to rise over the coming decades, further increasing the extent of flooding hazards in coastal communities. Efforts to address potential impacts from climate-driven coastal hazards have called for collaboration among communities to strengthen the application of best practices. However, communities currently lack practical tools for identifying potential partner communities based on similar hazard exposure characteristics. This study uses statistical cluster analysis to identify similarities in community exposure to flooding hazards for a suite of sea level rise and storm scenarios. We demonstrate this approach using 63 jurisdictions in the San Francisco Bay region of California (USA) and compare 21 distinct exposure variables related to residents, employees, and structures for six hazard scenario combinations of sea level rise and storms. Results indicate that cluster analysis can provide an effective mechanism for identifying community groupings. Cluster compositions changed based on the selected societal variables and sea level rise scenarios, suggesting that a community could participate in multiple networks to target specific issues or policy interventions. The proposed clustering approach can serve as a data-driven foundation to help communities identify other communities with similar adaptation challenges and to enhance regional efforts that aim to facilitate adaptation planning and investment prioritization.
Chai, Bei-Bei; Huang, Ting-Lin; Zhao, Xiao-Guang; Li, Ya-Jiao
2015-07-01
Microbial communities in three drinking water reservoirs, with different depth in Xi'an city, were quantified by phospholipids fatty acids analysis and multivariate statistical analysis was employed to interpret their response to different hydrostatic pressure and other physico-chemical properties of sediment and overlying water. Principle component analyses of sediment characteristics parameters showed that hydrostatic pressure was the most important effect factor to differentiate the overlying water quality from three drinking water reservoirs from each other. NH4+ content in overlying water was positive by related to hydrostatic pressure, while DO in water-sediment interface and sediment OC in sediment were negative by related with it. Three drinking water reservoir sediments were characterized by microbial communities dominated by common and facultative anaerobic Gram-positive bacteria, as well as, by sulfur oxidizing bacteria. Hydrostatic pressure and physico-chemical properties of sediments (such as sediment OC, sediment TN and sediment TP) were important effect factors to microbial community structure, especially hydrostatic pressure. It is also suggested that high hydrostatic pressure and low dissolved oxygen concentration stimulated Gram-positive and sulfate-reducing bacteria (SRB) bacterial population in drinking water reservoir sediment. This research supplied a successful application of phospholipids fatty acids and multivariate analysis to investigate microbial community composition response to different environmental factors. Thus, few physico-chemical factors can be used to estimate composition microbial of community as reflected by phospholipids fatty acids, which is difficult to detect.
Aida, Azrina A; Hatamoto, Masashi; Yamamoto, Masamitsu; Ono, Shinya; Nakamura, Akinobu; Takahashi, Masanobu; Yamaguchi, Takashi
2014-11-01
A novel wastewater treatment system consisting of an up-flow anaerobic sludge blanket (UASB) reactor and a down-flow hanging sponge (DHS) reactor with sulfur-redox reaction was developed for treatment of municipal sewage under low-temperature conditions. In the UASB reactor, a novel phenomenon of anaerobic sulfur oxidation occurred in the absence of oxygen, nitrite and nitrate as electron acceptors. The microorganisms involved in anaerobic sulfur oxidation have not been elucidated. Therefore, in this study, we studied the microbial communities existing in the UASB reactor that probably enhanced anaerobic sulfur oxidation. Sludge samples collected from the UASB reactor before and after sulfur oxidation were used for cloning and terminal restriction fragment length polymorphism (T-RFLP) analysis of the 16S rRNA genes of the bacterial and archaeal domains. The microbial community structures of bacteria and archaea indicated that the genus Smithella and uncultured bacteria within the phylum Caldiserica were the dominant bacteria groups. Methanosaeta spp. was the dominant group of the domain archaea. The T-RFLP analysis, which was consistent with the cloning results, also yielded characteristic fingerprints for bacterial communities, whereas the archaeal community structure yielded stable microbial community. From these results, it can be presumed that these major bacteria groups, genus Smithella and uncultured bacteria within the phylum Caldiserica, probably play an important role in sulfur oxidation in UASB reactors. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Network Community Detection based on the Physarum-inspired Computational Framework.
Gao, Chao; Liang, Mingxin; Li, Xianghua; Zhang, Zili; Wang, Zhen; Zhou, Zhili
2016-12-13
Community detection is a crucial and essential problem in the structure analytics of complex networks, which can help us understand and predict the characteristics and functions of complex networks. Many methods, ranging from the optimization-based algorithms to the heuristic-based algorithms, have been proposed for solving such a problem. Due to the inherent complexity of identifying network structure, how to design an effective algorithm with a higher accuracy and a lower computational cost still remains an open problem. Inspired by the computational capability and positive feedback mechanism in the wake of foraging process of Physarum, which is a large amoeba-like cell consisting of a dendritic network of tube-like pseudopodia, a general Physarum-based computational framework for community detection is proposed in this paper. Based on the proposed framework, the inter-community edges can be identified from the intra-community edges in a network and the positive feedback of solving process in an algorithm can be further enhanced, which are used to improve the efficiency of original optimization-based and heuristic-based community detection algorithms, respectively. Some typical algorithms (e.g., genetic algorithm, ant colony optimization algorithm, and Markov clustering algorithm) and real-world datasets have been used to estimate the efficiency of our proposed computational framework. Experiments show that the algorithms optimized by Physarum-inspired computational framework perform better than the original ones, in terms of accuracy and computational cost. Moreover, a computational complexity analysis verifies the scalability of our framework.
Lejon, David P H; Chaussod, Rémi; Ranger, Jacques; Ranjard, Lionel
2005-11-01
Overexploitation of forests to increase wood production has led to the replacement of native forest by large areas of monospecific tree plantations. In the present study, the effects of different monospecific tree cover plantations on density and composition of the indigenous soil microbial community are described. The experimental site of "Breuil-Chenue" in the Morvan (France) was the site of a comparison of a similar mineral soil under Norway spruce (Picea abies), Douglas fir (Pseudotuga menziesii), oak (Quercus sessiflora), and native forest [mixed stand dominated by oak and beech (Fagus sylvatica)]. Sampling was performed during winter (February) at three depths (0-5, 5-10, and 10-15 cm). Abundance of microorganisms was estimated via microbial biomass measurements, using the fumigation-extraction method. The genetic structure of microbial communities was investigated using the bacterial- and fungal-automated ribosomal intergenic spacer analysis (B-ARISA and F-ARISA, respectively) DNA fingerprint. Only small differences in microbial biomass were observed between tree species, the highest values being recorded under oak forest and the lowest under Douglas fir. B- and F-ARISA community profiles of the different tree covers clustered separately, but noticeable similarities were observed for soils under Douglas fir and oak. A significant stratification was revealed under each tree species by a decrease in microbial biomass with increasing depths and by distinct microbial communities for each soil layer. Differences in density and community composition according to tree species and depth were related to soil physicochemical characteristics and organic matter composition.
Ben-David, Eric A; Zaady, Eli; Sher, Yoni; Nejidat, Ali
2011-06-01
Arid and semi-arid ecosystems are often characterized by vegetation patchiness and variable availability of resources. Phospholipid fatty acid (PLFA) and 16S rRNA gene fragment analyses were used to compare the bulk soil microbial community structure at patchy arid and semi-arid landscapes. Multivariate analyses of the PLFA data and the 16S rRNA gene fragments were in agreement with each other, suggesting that the differences between bulk soil microbial communities were primarily related to shrub vs intershrub patches, irrespective of climatic or site differences. This suggests that the mere presence of a living shrub is the dominant driving factor for the differential adaptation of the microbial communities. Lipid markers suggested as indicators of Gram-positive bacteria were higher in soils under the shrub canopies, while markers suggested as indicators of cyanobacteria and anaerobic bacteria were elevated in the intershrub soils. Secondary differences between soil microbial communities were associated with intershrub characteristics and to a lesser extent with the shrub species. This study provides an insight into the multifaceted nature of the factors that shape the microbial community structure in patchy desert landscapes. It further suggests that these drivers not only act in concert but also in a way that is dependent on the aridity level. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xie, Shilin; Lu, Fei; Cao, Lei; Zhou, Weiqi; Ouyang, Zhiyun
2016-07-01
Understanding the factors that influence the characteristics of avian communities using urban parks at both the patch and landscape level is important to focus management effort towards enhancing bird diversity. Here, we investigated this issue during the breeding season across urban parks in Beijing, China, using high-resolution satellite imagery. Fifty-two bird species were recorded across 29 parks. Analysis of residence type of birds showed that passengers were the most prevalent (37%), indicating that Beijing is a major node in the East Asian-Australasian Flyway. Park size was crucial for total species abundance, but foliage height diversity was the most important factor influencing avian species diversity. Thus, optimizing the configuration of vertical vegetation structure in certain park areas is critical for supporting avian communities in urban parks. Human visitation also showed negative impact on species diversity. At the landscape level, the percentage of artificial surface and largest patch index of woodland in the buffer region significantly affected total species richness, with insectivores and granivores being more sensitive to the landscape pattern of the buffer region. In conclusion, urban birds in Beijing are influenced by various multi-scale factors; however, these effects vary with different feeding types.
Xie, Shilin; Lu, Fei; Cao, Lei; Zhou, Weiqi; Ouyang, Zhiyun
2016-07-11
Understanding the factors that influence the characteristics of avian communities using urban parks at both the patch and landscape level is important to focus management effort towards enhancing bird diversity. Here, we investigated this issue during the breeding season across urban parks in Beijing, China, using high-resolution satellite imagery. Fifty-two bird species were recorded across 29 parks. Analysis of residence type of birds showed that passengers were the most prevalent (37%), indicating that Beijing is a major node in the East Asian-Australasian Flyway. Park size was crucial for total species abundance, but foliage height diversity was the most important factor influencing avian species diversity. Thus, optimizing the configuration of vertical vegetation structure in certain park areas is critical for supporting avian communities in urban parks. Human visitation also showed negative impact on species diversity. At the landscape level, the percentage of artificial surface and largest patch index of woodland in the buffer region significantly affected total species richness, with insectivores and granivores being more sensitive to the landscape pattern of the buffer region. In conclusion, urban birds in Beijing are influenced by various multi-scale factors; however, these effects vary with different feeding types.
Malanson, George P.; Zimmerman, Dale L.; Kinney, Mitch; Fagre, Daniel B.
2017-01-01
Alpine plant communities vary, and their environmental covariates could influence their response to climate change. A single multilevel model of how alpine plant community composition is determined by hierarchical relations is compared to a separate examination of those relations at different scales. Nonmetric multidimensional scaling of species cover for plots in four regions across the Rocky Mountains created dependent variables. Climate variables are derived for the four regions from interpolated data. Plot environmental variables are measured directly and the presence of thirty-seven site characteristics is recorded and used to create additional independent variables. Multilevel and best subsets regressions are used to determine the strength of the hypothesized relations. The ordinations indicate structure in the assembly of plant communities. The multilevel analyses, although revealing significant relations, provide little explanation; of the site variables, those related to site microclimate are most important. In multiscale analyses (whole and separate regions), different variables are better explanations within the different regions. This result indicates weak environmental niche control of community composition. The weak relations of the structure in the patterns of species association to the environment indicates that either alpine vegetation represents a case of the neutral theory of biogeography being a valid explanation or that it represents disequilibrium conditions. The implications of neutral theory and disequilibrium explanations are similar: Response to climate change will be difficult to quantify above equilibrium background turnover.
Seasonal Patterns of the Insect Community Structure in Urban Rain Pools of Temperate Argentina
Fontanarrosa, M. Soledad; Collantes, Marta B.; Bachmann, Axel O.
2009-01-01
Temporary aquatic environments are widespread in the world, and although there are considerable regional differences in their type and method of formation they have many physical, chemical and biological properties in common. With the aim to increase knowledge of urban temporary pool fauna, the objectives of this work were to assess the seasonal patterns of species composition, richness, and diversity of the aquatic insect community inhabiting rain pools in urban temperate Argentina, and to identify the environmental variables associated to these patterns. Four temporary pools of an urban green space in Buenos Aires City were studied throughout a 1-year period. Eleven flood cycles with very varied hydroperiods and dry periods, mainly associated with rainfall, were identified. Insect species richness in these temporary urban pools, 86 taxa were documented, was found to be within the range reported for wild temporary water bodies of other regions of the world. The present results provide evidence for the existence of a clear link between habitat and community variability. Hydroperiod and seasonality were the main environmental factors involved in structuring the insect communities of the studied water bodies. Urban pools in green spaces have the potential to act to its dwellers like corridors through the urban matrix. Taking into account these characteristics and their accessibility, urban temporary pools can be considered as promising habitats for the study of ecological processes involving the insect community. PMID:19611261
NASA Astrophysics Data System (ADS)
Neumann, Hermann; Diekmann, Rabea; Kröncke, Ingrid
2016-02-01
Analysis of ecosystem functioning is essential to describe the ecological status of ecosystems and is therefore directly requested in international directives. There is a lack of knowledge regarding functional aspects of benthic communities and their environmental and anthropogenic driving forces in the southern North Sea. This study linked functional composition of epibenthic communities to environmental conditions and fishing effort and investigated spatial correlations between habitat characteristics to gain insight into potential synergistic and/or cumulative effects. Functional composition of epifauna was assessed by using biological trait analysis (BTA), which considered 15 ecological traits of 54 species. Functional composition was related to ten predictor variables derived from sediment composition, bottom temperature and salinity, hydrodynamics, annual primary production and fishing effort. Our results revealed significantly different functional composition between the Dogger Bank, the Oyster Ground, the West and North Frisian coast. Mobility, feeding type, size and adult longevity were the most important traits differentiating the communities. A high proportion of trait modalities related to an opportunistic life mode were obvious in coastal areas especially at the West Frisian coast and in the area of the Frisian Front indicating disturbed communities. In contrast, functional composition in the Dogger Bank area indicated undisturbed communities with prevalence of large, long-lived and permanently attached species being sensitive towards disturbance such as fishing. Tidal stress, mud content of sediments, salinity, stratification and fishing effort were found to be the most important habitat characteristics shaping functional composition. Strong correlations were found between variables, especially between those which changed gradually from the coast to offshore areas including fishing effort. Unfavourable extremes of these factors in coastal areas resulted in disturbed epibenthic communities, while the relative influence of a single factor on functional composition cannot be quantified. Coastal communities seemed to be well adapted to disturbance and the prevalence of opportunistic trait modalities not necessarily revealed a poor ecological status according to the Marine Strategy Framework Directive (MSFD). The integration of functional aspects into the assessment of ecosystem health is recommended, since widely used structural measures failed in naturally disturbed habitats.
Incentives in financing mental health care in Austria.
Zechmeister, Ingrid; Oesterle, August; Denk, Peter; Katschnig, Heinz
2002-09-01
In Austria, financing health care -and even more so mental health care- is characterized by a mix of federal and provincial responsibilities, lack of uniformity in service provision and service providers, and diverse funding arrangements. The division between financing structures for health care and social care makes the situation even more complex. This state of affairs results in various, partly counterproductive and sometimes paradoxical financial incentives and disincentives for the providers, recipients and financiers of mental health services. In several provinces of Austria, recent reform plans in mental health care have focused strongly on establishing community-based and patient-oriented mental health care. One of the main challenges in implementing this new policy is the re-allocation of resources. The authors hypothesize that the existing structure of mental health care financing, with its incentives and disincentives, constitutes an obstacle to patient-oriented community-based mental health care. Analyzing the characteristics of the overall mental health care financing system in one Austrian province, Lower Austria, will provide a better understanding of actor-relationships and inherent incentives and highlight implications for the process of deinstitutionalization. The authors used an analytical framework based on the principal-agent theory, empirical evidence, and information on financial, organizational and legal structures to identify the characteristics of actor-relationships and the position of single actors within the system. The article shows how incentives are linked to existing constellations of actors involved in mental health care financing and identifies significant power relations. As a consequence, incentives and disincentives within the financing system result in hospital- centered and supply-oriented mental health care in Lower Austria. The current system of financing mental health care provides an obstacle to the provision of patient-oriented and community-based mental care. This is due to existing constellations and power relations among the actors where, most importantly, patients are the weakest party in the patient-payer-provider triangle. Balancing power relations will be a significant prerequisite for alternative financing systems. IMPLICATIONS FOR HEALTH POLICIES AND FURTHER RESEARCH: If a community and needs-based mental health care system is to be established in Austria, the financing structures have to be changed accordingly. Applying a principal-agent framework is useful for identifying key aspects in mental health care financing in relation to the provision of services. Further research is needed to help develop alternative financing mechanisms that support community-based and patient-oriented mental health care systems.
Making Leaders: Leadership Characteristics of Makers and Engineers in the Maker Community
ERIC Educational Resources Information Center
Oplinger, James; Lande, Micah; Jordan, Shawn; Camarena, Leonor
2016-01-01
This study examines the emergence of leadership characteristics within a new organizational community of individuals: the Maker community. The Maker community is a group of individuals that classify themselves as "Makers" and have become innovators and entrepreneurs through the creation of technological gadgets, artistic projects, and…
Urban Clan Mothers: Key Households in Cities
ERIC Educational Resources Information Center
Lobo, Susan
2003-01-01
Although each urban Indian community is distinctive, there are a number of common features or characteristics that are found in most urban Indian communities. The salient characteristics of the San Francisco Bay Area Indian community and many other urban Indian communities are that they are multitribal and therefore multicultural; dispersed…
Leadership Characteristics of Workforce Development Administrators in Community Colleges
ERIC Educational Resources Information Center
Lebesch, Anna Marie
2011-01-01
The community college environment is a complex and ever-changing system that requires effective leadership. The leadership characteristics in community colleges have been investigated substantially with studies primarily focused on the presidency and the pathway of the traditional academic pipeline. But as community colleges have struggled to do…
Fierer, Noah; Lauber, Christian L; Ramirez, Kelly S; Zaneveld, Jesse; Bradford, Mark A; Knight, Rob
2012-05-01
Terrestrial ecosystems are receiving elevated inputs of nitrogen (N) from anthropogenic sources and understanding how these increases in N availability affect soil microbial communities is critical for predicting the associated effects on belowground ecosystems. We used a suite of approaches to analyze the structure and functional characteristics of soil microbial communities from replicated plots in two long-term N fertilization experiments located in contrasting systems. Pyrosequencing-based analyses of 16S rRNA genes revealed no significant effects of N fertilization on bacterial diversity, but significant effects on community composition at both sites; copiotrophic taxa (including members of the Proteobacteria and Bacteroidetes phyla) typically increased in relative abundance in the high N plots, with oligotrophic taxa (mainly Acidobacteria) exhibiting the opposite pattern. Consistent with the phylogenetic shifts under N fertilization, shotgun metagenomic sequencing revealed increases in the relative abundances of genes associated with DNA/RNA replication, electron transport and protein metabolism, increases that could be resolved even with the shallow shotgun metagenomic sequencing conducted here (average of 75 000 reads per sample). We also observed shifts in the catabolic capabilities of the communities across the N gradients that were significantly correlated with the phylogenetic and metagenomic responses, indicating possible linkages between the structure and functioning of soil microbial communities. Overall, our results suggest that N fertilization may, directly or indirectly, induce a shift in the predominant microbial life-history strategies, favoring a more active, copiotrophic microbial community, a pattern that parallels the often observed replacement of K-selected with r-selected plant species with elevated N.
Spatial P heterogeneity in forest soil: Influence on microbial P uptake and community structure
NASA Astrophysics Data System (ADS)
Zilla, Thomas; Angulo-Schipper, Bridith; Méndez, Juan Carlos; Dippold, Michaela A.; Kuzyakov, Yakov; Spielvogel, Sandra
2017-04-01
Other than nitrogen, phosphorus (P) is the most important growth limiting nutrient in soils. Yet, little information is available concerning the spatial heterogeneity of P content in forest soils. More so, the effects of a homogeneous vs. heterogeneous soil P distribution on microbial P acquisition and community structure have yet to be determined. Thus, a rhizotron experiment based on a P-deficient forest soil was conducted to investigate competitive P uptake strategies of microbes. F. sylvatica-bearing rhizotrons were labeled with Fe33PO4, a relatively immobile P source native to the study soil. Homogeneous and heterogeneous P patterns were created to study the effects of spatial P heterogeneity on plant and microbial P acquisition. P mobilization by microorganisms was tracked by an improved 33P-PLFA method, linking 33P incorporation in microbes with changes in microbial community structure in soils in situ. The microbial P uptake was enhanced in rhizotrons with high P availability and in those with a patchy P distribution. Characteristic PLFAs indicate a congregation of beech-associated ectomycorrhizal fungi in P-rich patches. These ectomycorrhizal fungi are likely to strongly increase P mobilization from the used Fe33PO4 in high P habitats. In contrast, habitats with low P availability require a more complex microbial community structure without a dominant group to mobilize this inaccessible P source. Therefore, hotspots of P are likely to promote the efforts of fungal hyphae for P mobilization - an effect which decreases with lower P content. Additionally, gram positive and negative bacteria exhibit a vastly higher P uptake under increasingly patchy P distributions. However, they form a smaller portion of the microbial community than in homogeneously P enriched rhizotrons, suggesting that filamentous organisms benefit from the patchy P distribution. Thus, only a heterogeneous P distribution promotes P acquisition of forest microbial communities from mineral P sources with low bioavailability. These novel insights into the effects of spatial P distributions on forest soil community dynamics will hopefully shed further light on microbial P cycling, thereby helping to tackle the impending global P crisis.|
Paule, A; Roubeix, V; Swerhone, G D W; Roy, J; Lauga, B; Duran, R; Delmas, F; Paul, E; Rols, J L; Lawrence, J R
2016-03-01
Residual pesticides applied to crops migrate from agricultural lands to surface and ground waters. River biofilms are the first aquatic non-target organisms which interact with pesticides. Therefore, ecotoxicological experiments were performed at laboratory scale under controlled conditions to investigate the community-level responses of river biofilms to a chloroacetanilide herbicide (alachlor) and organic solvent (methanol) exposure through the development referenced to control. Triplicate rotating annular bioreactors, inoculated with river water, were used to cultivate river biofilms under the influence of 1 and 10 μg L(-1) of alachlor and 25 mg L(-1) of methanol. For this purpose, functional (thymidine incorporation and carbon utilization spectra) and structural responses of microbial communities were assessed after 5 weeks of development. Structural aspects included biomass (chlorophyll a, confocal laser scanning microscopy) and composition (fluor-conjugated lectin binding, molecular fingerprinting, and diatom species composition). The addition of alachlor resulted in a significant reduction of bacterial biomass at 1 μg L(-1), whereas at 10 μg L(-1), it induced a significant reduction of exopolymer lectin binding, algal, bacterial, and cyanobacterial biomass. However, there were no changes in biofilm thickness or thymidine incorporation. No significant difference between the bacterial community structures of control and alachlor-treated biofilms was revealed by terminal restriction fragment length polymorphism (T-RFLP) analyses. However, the methanol-treated bacterial communities appeared different from control and alachlor-treated communities. Moreover, methanol treatment resulted in an increase of bacterial biomass and thymidine incorporation as well. Changes in dominant lectin binding suggested changes in the exopolymeric substances and community composition. Chlorophyll a and cyanobacterial biomass were also altered by methanol. This study suggested that the concentration-dependent effect of alachlor mainly remains limited to biomass and growth inhibition without apparent changes of structural and functional characteristics measured. Our work also establishes the potential toxic effects of organic solvents on river biofilm in ecotoxicological experiments. For the ecotoxicological experiments, the alternative of dissolution in organic solvent followed by its evaporation, depositing the chemical on a glass surface prior to dissolution in river water used here, appears to allow exposure while minimizing the effect of organic solvent.
Habitat loss and gain: Influence on habitat attractiveness for estuarine fish communities
NASA Astrophysics Data System (ADS)
Amorim, Eva; Ramos, Sandra; Elliott, Michael; Franco, Anita; Bordalo, Adriano A.
2017-10-01
Habitat structure and complexity influence the structuring and functioning of fish communities. Habitat changes are one of the main pressures affecting estuarine systems worldwide, yet the degree and rate of change and its impact on fish communities is still poorly understood. In order to quantify historical modifications in habitat structure, an ecohydrological classification system using physiotopes, i.e. units with homogenous abiotic characteristics, was developed for the lower Lima estuary (NW Portugal). Field data, aerial imagery, historical maps and interpolation methods were used to map input variables, including bathymetry, substratum (hard/soft), sediment composition, hydrodynamics (current velocity) and vegetation coverage. Physiotopes were then mapped for the years of 1933 and 2013 and the areas lost and gained over the 80 years were quantified. The implications of changes for the benthic and demersal fish communities using the lower estuary were estimated using the attractiveness to those communities of each physiotope, while considering the main estuarine habitat functions for fish, namely spawning, nursery, feeding and refuge areas and migratory routes. The lower estuary was highly affected due to urbanisation and development and, following a port/harbour expansion, its boundary moved seaward causing an increase in total area. Modifications led to the loss of most of its sandy and saltmarsh intertidal physiotopes, which were replaced by deeper subtidal physiotopes. The most attractive physiotopes for fish (defined as the way in which they supported the fish ecological features) decreased in area while less attractive ones increased, producing an overall lower attractiveness of the studied area in 2013 compared to 1933. The implications of habitat alterations for the fish using the estuary include potential changes in the nursery carrying capacity and the functioning of the fish community. The study also highlighted the poor knowledge of the impacts of habitat changes on fish due to coastal development and urbanisation and emphasises that ecosystem management and conservation will benefit from a wider understanding of habitat functional roles and habitat changes influencing the functioning and structure of the fish communities.
Effects of three pharmaceutical and personal care products on natural freshwater algal assemblages.
Wilson, Brittan A; Smith, Val H; deNoyelles, Frank; Larive, Cynthia K
2003-05-01
Treated wastewaters in the United States contain detectable quantities of surfactants, antibiotics, and other types of antimicrobial chemicals contained in pharmaceutical and personal-care products (PPCPs) that are released into stream ecosystems. The degradation characteristics of many of these chemicals are not yet known, nor are the chemical properties of their byproducts. They also are not currently mandated for removal under the U.S. Clean Water Act. Three representative PPCPs were individually tested in this study using a series of laboratory dilution bioassays: Ciprofloxacin (an antibiotic), Triclosan (an antimicrobial agent), and Tergitol NP 10 (a surfactant), to determine their effects on natural algal communities sampled both upstream and downstream of the Olathe, KS wastewater treatment plant (WWTP). There were no significant treatment effects on algal community growth rates during the exponential phase of growth, but significant differences were observed in the final biomass yields (p < 0.001). All three compounds caused marked shifts in the community structure of suspended and attached algae at both the upstream and downstream sites (p < 0.05). Increasing the concentrations of all three compounds over a 3 orders of magnitude range also caused a consistent decline in final algal genus richness in the bioassays. Our results suggest that these three PPCPs may potentially influence both the structure and the function of algal communities in stream ecosystems receiving WWTP effluents. These changes could result in shifts in both the nutrient processing capacity and the natural food web structure of these streams.
Hoang, Hang Thi Thu; Duong, Thi Thuy; Nguyen, Kien Trung; Le, Quynh Thi Phuong; Luu, Minh Thi Nguyet; Trinh, Duc Anh; Le, Anh Hung; Ho, Cuong Tu; Dang, Kim Dinh; Némery, Julien; Orange, Didier; Klein, Judith
2018-01-08
Planktons are a major component of food web structure in aquatic ecosystems. Their distribution and community structure are driven by the combination and interactions between physical, chemical, and biological factors within the environment. In the present study, water quality and the community structure of phytoplankton and zooplankton were monthly investigated from January to December 2015 at 11 sampling sites along the gradient course of the Day River (Red River Delta, northern Vietnam). The study demonstrated that the Day River was eutrophic with the average values of total phosphorus concentration 0.17 mg/L, total nitrogen concentration 1.98 mg/L, and Chl a 54 μg/L. Microscopic plankton analysis showed that phytoplankton comprised 87 species belonging to seven groups in which Chlorophyceae, Bacillariophyceae, and Cyanobacteria accounted for the most important constituents of the river's phytoplankton assemblage. A total 53 zooplankton species belonging to three main groups including Copepoda, Cladocera, and Rotatoria were identified. Plankton biomass values were greatest in rainy season (3002.10-3 cell/L for phytoplankton and 12.573 individuals/m 3 for zooplankton). Using principal correspondence and Pearson correlation analyses, it was found that the Day River was divided into three main site groups based on water quality and characteristics of plankton community. Temperature and nutrients (total phosphorus and total nitrogen) are key factors regulating plankton abundance and distribution in the Day River.
Fronto-Parietal Subnetworks Flexibility Compensates For Cognitive Decline Due To Mental Fatigue.
Taya, Fumihiko; Dimitriadis, Stavros I; Dragomir, Andrei; Lim, Julian; Sun, Yu; Wong, Kian Foong; Thakor, Nitish V; Bezerianos, Anastasios
2018-04-24
Fronto-parietal subnetworks were revealed to compensate for cognitive decline due to mental fatigue by community structure analysis. Here, we investigate changes in topology of subnetworks of resting-state fMRI networks due to mental fatigue induced by prolonged performance of a cognitively demanding task, and their associations with cognitive decline. As it is well established that brain networks have modular organization, community structure analyses can provide valuable information about mesoscale network organization and serve as a bridge between standard fMRI approaches and brain connectomics that quantify the topology of whole brain networks. We developed inter- and intramodule network metrics to quantify topological characteristics of subnetworks, based on our hypothesis that mental fatigue would impact on functional relationships of subnetworks. Functional networks were constructed with wavelet correlation and a data-driven thresholding scheme based on orthogonal minimum spanning trees, which allowed detection of communities with weak connections. A change from pre- to posttask runs was found for the intermodule density between the frontal and the temporal subnetworks. Seven inter- or intramodule network metrics, mostly at the frontal or the parietal subnetworks, showed significant predictive power of individual cognitive decline, while the network metrics for the whole network were less effective in the predictions. Our results suggest that the control-type fronto-parietal networks have a flexible topological architecture to compensate for declining cognitive ability due to mental fatigue. This community structure analysis provides valuable insight into connectivity dynamics under different cognitive states including mental fatigue. © 2018 Wiley Periodicals, Inc.
Ondracková, M; Simková, A; Gelnar, M; Jurajda, P
2004-12-01
Infection parameters of Posthodiplostomum cuticola, a digenean parasite with a complex life-cycle, were investigated in fish (the second intermediate host) from 6 floodplain water bodies over 2 years. A broad range of factors related to abiotic characteristics of localities, density of the first intermediate (planorbid snails) and definitive (wading birds) hosts and fish community structure were tested for their effects on P. cuticola infection in juvenile and adult fish. Characters of the littoral zone and flood duration were found to be important factors for the presence of the first intermediate and definitive hosts. Visitation time of definitive bird hosts was also related to adult fish host density. Localities with P. cuticola infected fish were visited by a higher number of bird species. Infection of P. cuticola in fish and similarities in infection among fish host assemblages were correlated with fish host density and fish species composition. Parasite infection in both adult and juvenile fishes was associated with the slope of the bank and the bottom type, in particular in juvenile fish assemblages with snail host density. We conclude that habitat characteristics, snail host density and fish community structure contribute significantly to P. cuticola infection in fish hosts.
A Path Model for Evaluating Dosing Parameters for Children With Cerebral Palsy
Christy, Jennifer B.; Heathcock, Jill C.; Kolobe, Thubi H.A.
2014-01-01
Dosing of pediatric rehabilitation services for children with cerebral palsy (CP) has been identified as a national priority. Establishing dosing parameters for pediatric physical therapy interventions is critical for informing clinical decision making, health policy, and guidelines for reimbursement. The purpose of this perspective article is to describe a path model for evaluating dosing parameters of interventions for children with CP. The model is intended for dose-related and effectiveness studies of pediatric physical therapy interventions. The premise of the model is: Intervention type (focus on body structures, activity, or the environment) acts on a child first through the family, then through the dose (frequency, intensity, time), to yield structural and behavioral changes. As a result, these changes are linked to improvements in functional independence. Community factors affect dose as well as functional independence (performance and capacity), influencing the relationships between type of intervention and intervention responses. The constructs of family characteristics; child characteristics (eg, age, level of severity, comorbidities, readiness to change, preferences); plastic changes in bone, muscle, and brain; motor skill acquisition; and community access warrant consideration from researchers who are designing intervention studies. Multiple knowledge gaps are identified, and a framework is provided for conceptualizing dosing parameters for children with CP. PMID:24231231
Stetz, Gabrielle; Verkhivker, Gennady M.
2017-01-01
Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of allostery, we introduced a community-hopping model of allosteric communication. Atomistic reconstruction of signaling pathways in the DnaK structures captured a direction-specific mechanism and molecular details of signal transmission that are fully consistent with the mutagenesis experiments. The results of our study reconciled structural and functional experiments from a network-centric perspective by showing that global properties of the residue interaction networks and coevolutionary signatures may be linked with specificity and diversity of allosteric regulation mechanisms. PMID:28095400
Stetz, Gabrielle; Verkhivker, Gennady M
2017-01-01
Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of allostery, we introduced a community-hopping model of allosteric communication. Atomistic reconstruction of signaling pathways in the DnaK structures captured a direction-specific mechanism and molecular details of signal transmission that are fully consistent with the mutagenesis experiments. The results of our study reconciled structural and functional experiments from a network-centric perspective by showing that global properties of the residue interaction networks and coevolutionary signatures may be linked with specificity and diversity of allosteric regulation mechanisms.
Delparte, D; Gates, RD; Takabayashi, M
2015-01-01
The structural complexity of coral reefs plays a major role in the biodiversity, productivity, and overall functionality of reef ecosystems. Conventional metrics with 2-dimensional properties are inadequate for characterization of reef structural complexity. A 3-dimensional (3D) approach can better quantify topography, rugosity and other structural characteristics that play an important role in the ecology of coral reef communities. Structure-from-Motion (SfM) is an emerging low-cost photogrammetric method for high-resolution 3D topographic reconstruction. This study utilized SfM 3D reconstruction software tools to create textured mesh models of a reef at French Frigate Shoals, an atoll in the Northwestern Hawaiian Islands. The reconstructed orthophoto and digital elevation model were then integrated with geospatial software in order to quantify metrics pertaining to 3D complexity. The resulting data provided high-resolution physical properties of coral colonies that were then combined with live cover to accurately characterize the reef as a living structure. The 3D reconstruction of reef structure and complexity can be integrated with other physiological and ecological parameters in future research to develop reliable ecosystem models and improve capacity to monitor changes in the health and function of coral reef ecosystems. PMID:26207190
A Technique for the Assessment of Flight Operability Characteristics of Human Rated Spacecraft
NASA Technical Reports Server (NTRS)
Crocker, Alan
2010-01-01
In support of new human rated spacecraft development programs, the Mission Operations Directorate at NASA Johnson Space Center has implemented a formal method for the assessment of spacecraft operability. This "Spacecraft Flight Operability Assessment Scale" defines six key themes of flight operability, with guiding principles and goals stated for each factor. A standardized rating technique provides feedback that is useful to the operations, design and program management communities. Applicability of this concept across the program structure and life cycle is addressed. Examples of operationally desirable and undesirable spacecraft design characteristics are provided, as is a sample of the assessment scale product.
Transformation of soil and vegetable conditions at oil production territories
NASA Astrophysics Data System (ADS)
Gatina, Evgeniia
2017-04-01
On the territory of modern oil production soil, vegetation, ecosystem conditions of the environment are significantly transformed. Researches have been conducted on the oil production territories located in a boreal coniferous forest natural zone from 2005 to 2015. Standard geobotanical and soil methods are used. Mechanical destruction of a plant cover, change of the water conditions, intake of oil products and salty waters in ecosystems, pollution of the atmosphere are considered as the major technology-related factors defining transformation of land ecosystems at operation of the oil field. Under the mechanical destruction of a plant cover the pioneer plant communities are formed. These communities are characterized by most reduced specific wealth with prevalence of types of meadow groups of plants and presence of types of wetland groups of plants. The biodiversity of biocenosis which are affected linear infrastructure facilities of oil production territories and change of the water conditions, decreases. It is observed decrease in species wealth, simplification of structure of communities. Under the salting of soils in ecosystems there is a decrease species diversity of communities to prevalence nitrophilous and meadow plant species. At the increased content of organic substances in the soils that is a consequence of intake of oil products, is characteristic increase in specific richness of communities, introduction of types of wetland and oligotrophic groups of plants in forest communities. Influence depends on distance to an influence source. In process of removal from a source of atmospheric pollution in forest communities there is a decrease in species diversity and complication of structure of community. It is caused by introduction of types of meadow groups of plants in ecotone sites of the forest communities located near a source of influence and restoration of structural features of forest communities in process of removal from an influence source. Operation of oil fields leads to introduction of the synanthropes relating to meadow and wetland groups of plants. Transformation depends on loading time. At the initial stage of operation of the oil field the synantropization of a plant cover leads to increase in species diversity. At long technogenic loading decrease in values of indexes of a biodiversity due to oppression of native species of plants is observed. Technology-related influence of oil fields is a regional factor of change of specific structure of plant communities. Modern oil production has to be followed by purposeful formation of the operated natural and technology-related ecosystems with adjustable parameters and higher stability in relation to a complex of technogenic oil-field influence.
Liang, Huipeng; Li, Wenfang; Luo, Qingchun; Liu, Chaolan; Wu, Zhengyun; Zhang, Wenxue
2015-10-01
The community structure of bacteria in aged and aging pit mud, which was judged according to their sensory and physicochemical characteristics, was analysed using polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) and quantitative real-time PCR (qPCR). The phyla Firmicutes, Actinobacteria, Proteobacteria, Synergistetes and Unclassified Bacteria were detected and the fermentative Firmicutes was predominant in both types of pit mud in the PCR-DGGE analysis. Among Firmicutes, Clostridiales was dominant in aged pit mud while Bacillales and Lactobacillales were dominant in aging pit mud. The diversity of bacterial communities in aged pit mud was higher than that in aging pit mud. In the qPCR analysis the abundance of Clostridium IV in aged pit mud was higher than that in aging pit mud and there were significant differences in the quantity of Clostridium IV between aged and aging pit mud of the same cellar (P < 0.05). There were some significant differences in the microbial community structure between aged and aging pit mud. The differences in the quantity of Clostridium IV might be involved in the distinction that the aged pit mud has a strong aroma while the aging pit mud does not. © 2014 Society of Chemical Industry.
Pine Forest Harvest Leads to Decade-Scale Alterations in Soil Fungal Communities
NASA Astrophysics Data System (ADS)
Boutton, T. W.; Mushinski, R. M.; Gentry, T. J.
2016-12-01
Forestlands provide a multitude of ecosystem services, and sustainable management is crucial to maintaining the benefits of these ecosystems. Intensive organic matter removal (OMR) of logging residues and forest litter during forest harvest may result in long-term alterations to soil properties and processes. Because fungal activity regulates essential biogeochemical processes in forestlands, changes in soil fungal community structure following OMR may translate into altered soil function. Using a replicated field experiment in southern pine forest in eastern Texas, USA, we sampled soil to a depth of 1 m to assess the impact of intensive OMR on soil fungal communities. Soils were collected from replicated (n = 3 ) loblolly pine (Pinus taeda L.) stands subjected to 3 different harvest intensities (i.e., unharvested old growth stands, bole-only harvest stands, and whole-tree harvest + forest floor removal stands) in 1997. Nearly two decades after trees were harvested and replanted, next generation sequencing of the fungal internal transcribed spacer showed the diversity and community structure of the entire fungal community was altered relative to the unharvested stands. The relative abundance of Ascomycetes increased as OMR intensity increased and was positively correlated to concurrent changes in soil pH. The community composition of fungal functional groups (e.g., ecto- and arbuscular mycorrhizal, saprophytic fungi) was also altered by OMR. The most abundant taxa, Russula exhibited significant reductions in response to increasing intensity of OMR. Results of this study illustrate a linkage between anthropogenically-induced aboveground perturbation, edaphic factors, and belowground soil fungal communities of southern pine forests. Also, these results indicate that tree harvesting effects on soil fungal communities can persist for decades post-harvest, with potential implications for soil functional characteristics.
NASA Astrophysics Data System (ADS)
Balmonte, J. P.; Teske, A.; Arnosti, C.
2016-02-01
The structure and function of Arctic bacterial communities have rarely been studied in concert, but are crucial to our understanding of biogeochemical cycles. As the Arctic transitions to become seasonally-ice free, a critical priority is to elucidate the present ecological role and environmental dependence of Arctic bacterial communities. We investigated the depth and regional variations in Central Arctic bacterial community composition (BCC) and extracellular enzymatic activities (EEA)—the initial step in organic matter breakdown—to explore links between community structure and function. Samples were collected across a gradient of sea-ice cover (open ocean, first year ice, multi-year ice) from 79°N to 88°N and from surface to bottom waters ( 3.5 to 4.5 km). Pelagic BCC most strongly varies with hydrography and with particle-association, which likely selects for a specialized community of heterotrophic opportunists; benthic BCC show little regional variation. In contrast, EEA reveal significant depth and regional differences in hydrolysis rates as well as in the spectrum of substrates hydrolyzed. Particle-associated EEA reveal an equal or greater range of enzymatic capabilities than in bulk-seawater measurements, supporting previous findings that particles are hotspots of microbial heterotrophic activity. These patterns suggest a complex relationship between BCC, EEA, and the environment: while water mass characteristics consistently differentiate bacterial communities, additional local factors shape their capabilities to hydrolyze organic matter. Multivariate analyses will be used to further explore the relationships between composition and function as well as their correlations with environmental data. Our findings provide a baseline for future comparisons and initial insight into the functionality and biogeography of Arctic bacterial communities.
Microbial Interactions with Natural Organic Matter Extracted from the Oak Ridge FRC
NASA Astrophysics Data System (ADS)
Wu, X.; Jagadamma, S.; Lancaster, A.; Adams, M. W. W.; Hazen, T.; Justice, N.; Chakraborty, R.
2015-12-01
Natural organic matter (NOM) is central to microbial food webs; however, little is known about the interplay between the physical and chemical characteristics of NOM and its turnover by microbial communities based upon biotic and abiotic parameters (e.g., biogenic precursors, redox state, bioavailability). Microbial activity changes the structures and properties that influence further bioavailability of NOM. To date, our understanding of these interactions is insufficient, and indigenous microbial activities that regulate NOM turnover are poorly resolved. It is critical to identify NOM characteristics to the structure and composition of microbial communities and to the metabolic potential of that community. Towards that end, sediment samples collected from the background area well FW305 (Oak Ridge Field Research Center, Oak Ridge, TN) were tested for NOM extraction methods that used three mild solvents, e.g., phosphate buffered saline (PBS), pyrophosphate, and MilliQ-water. MilliQ-water was finally chosen for extracting sediment samples via shaking and sonication. Groundwater from well FW301 was used as an inoculum to which the extracted NOM was added as carbon sources to feed native microbes. To identify the specific functional groups of extracted NOM that are bioavailable to indigenous microbes, several techniques, including FTIR, LC-MS, EEM, were applied to characterize the extracted NOM as well as the transformed NOM metabolites. 16S rDNA amplicon sequencing was also performed to identify the specific microbial diversity that was enriched and microbial isolates that preferentially grew with these NOM was also cultivated in the lab for future detailed studies.
Visibility graph network analysis of natural gas price: The case of North American market
NASA Astrophysics Data System (ADS)
Sun, Mei; Wang, Yaqi; Gao, Cuixia
2016-11-01
Fluctuations in prices of natural gas significantly affect global economy. Therefore, the research on the characteristics of natural gas price fluctuations, turning points and its influencing cycle on the subsequent price series is of great significance. Global natural gas trade concentrates on three regional markets: the North American market, the European market and the Asia-Pacific market, with North America having the most developed natural gas financial market. In addition, perfect legal supervision and coordinated regulations make the North American market more open and more competitive. This paper focuses on the North American natural gas market specifically. The Henry Hub natural gas spot price time series is converted to a visibility graph network which provides a new direction for macro analysis of time series, and several indicators are investigated: degree and degree distribution, the average shortest path length and community structure. The internal mechanisms underlying price fluctuations are explored through the indicators. The results show that the natural gas prices visibility graph network (NGP-VGN) is of small-world and scale-free properties simultaneously. After random rearrangement of original price time series, the degree distribution of network becomes exponential distribution, different from the original ones. This means that, the original price time series is of long-range negative correlation fractal characteristic. In addition, nodes with large degree correspond to significant geopolitical or economic events. Communities correspond to time cycles in visibility graph network. The cycles of time series and the impact scope of hubs can be found by community structure partition.
Studdert, Lisa J; Soekirman; Rasmussen, Kathleen M; Habicht, Jean-Pierre
2004-06-01
The Indonesian Government initiated a community-based national school-feeding program in 1996. Implementation was decentralized and involved multiple participants. In 1998 we evaluated the implementation of the program and the perceived benefits for community stakeholders using a survey of principals in 143 randomly selected schools and follow-up with in-depth interviews and observations in a subsample of 16 communities. The evaluation covered the period of the 1998 Asian economic crisis, affording the opportunity to assess its impact on the program. The program was implemented in all targeted schools, with excellent community participation. Feeding was sustained through the crisis, in spite of a dramatic escalation in food costs. The families of schoolchildren, farmers, and those who prepared food received economic benefits. The snacks replaced those sold at schools and were of better nutritional value. The children benefited because the snacks compensated for losses in the home diet resulting from the economic crisis. Characteristics of the program that may be important in explaining its success include the involvement of a range of community stakeholders, engagement with existing village administrative structures, scope for local community adaptation and innovation, and the use of local foods that dispersed benefits and ensured sustained implementation during the crisis.
Forrest, Jamie I; Stevenson, Benjamin; Rich, Ashleigh; Michelow, Warren; Pai, Jayaram; Jollimore, Jody; Raymond, H. Fisher; Moore, David; Hogg, Robert S; Roth, Eric A
2014-01-01
Literature suggests formative research is vital for those using respondent-driven sampling (RDS) to study hidden populations of interest. However, few authors have described in detail how different qualitative methodologies can address the objectives of formative research for understanding the social network properties of the study population, selecting seeds, and adapting survey logistics to best fit the population. In this paper we describe the use of community mapping exercises as a tool within focus groups to collect data on social and sexual network characteristics of gay and bisexual men in the metropolitan area of Vancouver, Canada. Three key themes emerged from analyzing community maps along with other formative research data: (a) connections between physical spaces and social networks of gay and bisexual men, (b) diversity in communities, and (c) substance use connected with formation of sub-communities. We discuss how these themes informed the planning and operations of a longitudinal epidemiological cohort study recruited by RDS. We argue that using community mapping within formative research is a valuable qualitative tool for characterizing network structures of a diverse and differentiated population of gay and bisexual men in a highly developed urban setting. PMID:24512070
Dynamic robustness of knowledge collaboration network of open source product development community
NASA Astrophysics Data System (ADS)
Zhou, Hong-Li; Zhang, Xiao-Dong
2018-01-01
As an emergent innovative design style, open source product development communities are characterized by a self-organizing, mass collaborative, networked structure. The robustness of the community is critical to its performance. Using the complex network modeling method, the knowledge collaboration network of the community is formulated, and the robustness of the network is systematically and dynamically studied. The characteristics of the network along the development period determine that its robustness should be studied from three time stages: the start-up, development and mature stages of the network. Five kinds of user-loss pattern are designed, to assess the network's robustness under different situations in each of these three time stages. Two indexes - the largest connected component and the network efficiency - are used to evaluate the robustness of the community. The proposed approach is applied in an existing open source car design community. The results indicate that the knowledge collaboration networks show different levels of robustness in different stages and different user loss patterns. Such analysis can be applied to provide protection strategies for the key users involved in knowledge dissemination and knowledge contribution at different stages of the network, thereby promoting the sustainable and stable development of the open source community.
Lim, Tee Teng; Jung, Sun Young; Kim, Eunyi
2018-04-01
This study examined the impact of community and neighborhood on time spent computer gaming. Computer gaming for over 20 hours a week was set as the cutoff line for "engaged use" of computer games. For the analysis, this study analyzed data for about 1,800 subjects who participated in the Korean Children and Youth Panel Survey. The main findings are as follows: first, structural community characteristics and neighborhood social capital affected the engaged use of computer games. Second, adolescents who reside in regions with a higher divorce rate or higher residential mobility were likely to exhibit engaged use of computer games. Third, adolescents who highly perceive neighborhood social capital exhibited lower possibility of engaged use of computer games. Based on these findings, practical implications and directions for further study are suggested.
NASA Technical Reports Server (NTRS)
Foster, P.
1977-01-01
The NASA Lewis Research Center has held a series of six major and unique technology utilization conferences which were major milestones in planned structured efforts to establish effective working relationships with specific technology user communities. These efforts were unique in that the activities undertaken prior to the conference were extensive, and effectively laid the groundwork for productive technology transfer following, and as a direct result of, the conferences. The effort leading to the conference was in each case tailored to the characteristics of the potential user community, however, the common factors comprise a basic framework applicable to similar endeavors. The process is essentially a planned sequence of steps that constitute a technical market survey and a marketing program for the development of beneficial applications of aerospace technology beyond the aerospace field.
Chung, He Len; Steinberg, Laurence
2009-01-01
The present study examined relations among neighborhood structural and social characteristics, parenting practices, peer group affiliations, and delinquency among a group of serious adolescent offenders. The sample of 14–18-year-old boys (N = 488) was composed primarily of economically disadvantaged, ethnic-minority youth living in urban communities. The results indicate that weak neighborhood social organization is indirectly related to delinquency through its associations with parenting behavior and peer deviance and that a focus on just 1 of these microsystems can lead to oversimplified models of risk for juvenile offending. The authors also find that community social ties may confer both pro- and antisocial influences to youth, and they advocate for a broad conceptualization of neighborhood social processes as these relate to developmental risk for youth living in disadvantaged communities. PMID:16569170
[Adolescense pregnancy in a marginalized rural community in Mexico].
Jiménez-González, Alberto; Granados-Cosme, José Arturo; Rosales-Flores, Roselia Arminda
2017-01-01
To identify objective and subjective conditions in the lives of pregnant teens within a highly-marginalized community in the state of Puebla, Mexico. Objective and subjective conditions of pregnant teens were evaluated through a mixed methodology (surveys, observation guides and a structured interview guide). The main family characteristic is the absence of a father due to migration, no desire to study or work and the new meaning of pregnancy: the initial social stigma for engaging in a sexual activity and then, the stigma for being a young mother. Objective conditions show family disintegration, lack of access to education at the community, high school and college level as well as unemployment as processes linked to teen pregnancy; thus, making it practically impossible to develop life goals. Subjective conditions center around the reproduction of gender stereotypes related to maternity.
Šket, Robert; Treichel, Nicole; Kublik, Susanne; Debevec, Tadej; Eiken, Ola; Mekjavić, Igor; Schloter, Michael; Vital, Marius; Chandler, Jenna; Tiedje, James M.; Murovec, Boštjan; Prevoršek, Zala; Likar, Matevž
2017-01-01
We explored the assembly of intestinal microbiota in healthy male participants during the randomized crossover design of run-in (5 day) and experimental phases (21-day normoxic bed rest (NBR), hypoxic bed rest (HBR) and hypoxic ambulation (HAmb) in a strictly controlled laboratory environment, with balanced fluid and dietary intakes, controlled circadian rhythm, microbial ambiental burden and 24/7 medical surveillance. The fraction of inspired O2 (FiO2) and partial pressure of inspired O2 (PiO2) were 0.209 and 133.1 ± 0.3 mmHg for NBR and 0.141 ± 0.004 and 90.0 ± 0.4 mmHg for both hypoxic variants (HBR and HAmb; ~4000 m simulated altitude), respectively. A number of parameters linked to intestinal environment such as defecation frequency, intestinal electrical conductivity (IEC), sterol and polyphenol content and diversity, indole, aromaticity and spectral characteristics of dissolved organic matter (DOM) were measured (64 variables). The structure and diversity of bacterial microbial community was assessed using 16S rRNA amplicon sequencing. Inactivity negatively affected frequency of defecation and in combination with hypoxia increased IEC (p < 0.05). In contrast, sterol and polyphenol diversity and content, various characteristics of DOM and aromatic compounds, the structure and diversity of bacterial microbial community were not significantly affected over time. A new in-house PlanHab database was established to integrate all measured variables on host physiology, diet, experiment, immune and metabolic markers (n = 231). The observed progressive decrease in defecation frequency and concomitant increase in IEC suggested that the transition from healthy physiological state towards the developed symptoms of low magnitude obesity-related syndromes was dose dependent on the extent of time spent in inactivity and preceded or took place in absence of significant rearrangements in bacterial microbial community. Species B. thetaiotamicron, B. fragilis, B. dorei and other Bacteroides with reported relevance for dysbiotic medical conditions were significantly enriched in HBR, characterized with most severe inflammation symptoms, indicating a shift towards host mucin degradation and proinflammatory immune crosstalk. PMID:29211803
Rosenheck, R; Morrissey, J; Lam, J; Calloway, M; Johnsen, M; Goldman, H; Randolph, F; Blasinsky, M; Fontana, A; Calsyn, R; Teague, G
1998-11-01
This study evaluated the hypothesis that greater integration and coordination between agencies within service systems is associated with greater accessibility of services and improved client housing outcomes. As part of the Access to Community Care and Effective Services and Supports program, data were obtained on baseline client characteristics, service use, and 3-month and 12-month outcomes from 1832 clients seen at 18 sites during the first year of program operation. Data on interorganizational relationships were obtained from structured interviews with key informants from relevant organizations in each community (n = 32-82 at each site). Complete follow-up data were obtained from 1340 clients (73%). After control for baseline characteristics, service system integration was associated with superior housing outcomes at 12 months, and this relationship was mediated through greater access to housing agencies. Service system integration is related to improved access to housing services and better housing outcomes among homeless people with mental illness.
Wang, Pan; Wang, Hongtao; Qiu, Yinquan; Ren, Lianhai; Jiang, Bin
2018-01-01
Food waste (FW) is rich in starch, fat, protein and cellulose. It is easy to decay and brings environmental pollution and other social problems. FW shows a high potential to produce methane by anaerobic digestion (AD) due to its high organic content. However, many inhibitors, such as accumulation of ammonia and volatile fatty acids (VFAs), usually result in inefficient performances and even process failure. Microorganisms play an important role in the process of hydrolysis, acidogenesis, acetogenesis and methanogenesis. This review provided a critical summary of microbial characteristics to obtain connects of microbial community structure with operational conditions at various states of AD, such as mesophilic and thermophilic, wet and dry, success and failure, pretreated or not, lab-scale and full-scale. This article emphasizes that it is necessary to analyze changes and mechanisms of microbial communities in unbalanced system and seek efficiency dynamic succession rules of the dominant microorganisms. Copyright © 2017. Published by Elsevier Ltd.
ERIC Educational Resources Information Center
Griffin, Megan M.; Kane, Lydia W.; Taylor, Courtney; Francis, Susan H.; Hodapp, Robert M.
2012-01-01
Background: Although participation in faith communities is important to many individuals with disabilities, few studies have examined differences between communities that are more (versus less) inclusive. This study investigated characteristics of faith communities in the United States related to greater inclusion. Methods: Participants were 160…
Social network types and functional dependency in older adults in Mexico.
Doubova Dubova, Svetlana Vladislavovna; Pérez-Cuevas, Ricardo; Espinosa-Alarcón, Patricia; Flores-Hernández, Sergio
2010-02-27
Social networks play a key role in caring for older adults. A better understanding of the characteristics of different social networks types (TSNs) in a given community provides useful information for designing policies to care for this age group. Therefore this study has three objectives: 1) To derive the TSNs among older adults affiliated with the Mexican Institute of Social Security; 2) To describe the main characteristics of the older adults in each TSN, including the instrumental and economic support they receive and their satisfaction with the network; 3) To determine the association between functional dependency and the type of social network. Secondary data analysis of the 2006 Survey of Autonomy and Dependency (N = 3,348). The TSNs were identified using the structural approach and cluster analysis. The association between functional dependency and the TSNs was evaluated with Poisson regression with robust variance analysis in which socio-demographic characteristics, lifestyle and medical history covariates were included. We identified five TSNs: diverse with community participation (12.1%), diverse without community participation (44.3%); widowed (32.0%); nonfriends-restricted (7.6%); nonfamily-restricted (4.0%). Older adults belonging to widowed and restricted networks showed a higher proportion of dependency, negative self-rated health and depression. Older adults with functional dependency more likely belonged to a widowed network (adjusted prevalence ratio 1.5; 95%CI: 1.1-2.1). The derived TSNs were similar to those described in developed countries. However, we identified the existence of a diverse network without community participation and a widowed network that have not been previously described. These TSNs and restricted networks represent a potential unmet need of social security affiliates.
Determinants of Zambian men's extra-marital sex: a multi-level analysis.
Benefo, Kofi D
2008-08-01
Research interest in extra-marital sex has increased as scholars have become aware of its role in sustaining epidemics of STDs in sub-Saharan Africa and elsewhere. While most research has used the socioeconomic and demographic features of individuals as determinants of extra-marital sexual behavior, this study examined the role played by community characteristics. Using data from the 2003 Zambian Sexual Behavior Survey for a sample of 1,118 men aged 15-59 and multilevel logistic regression techniques, the study analyzed the effects of community social and demographic characteristics on involvement in extra-marital sex while controlling for the men's individual-level characteristics. Men's involvement in extra-marital sex was found to vary with the characteristics of communities. The chances of men's involvement in extra-marital sex increased with community-level ethnic heterogeneity and urbanization, decreased in commercial centers, and in communities with a demographic surplus of males, health workers active in AIDS prevention, and access to the mass media. These results show that scholars trying to understand the motivations for extra-marital sex must pay attention to the characteristics of both individuals and communities.
Fischer, Barbara M; Schatz, Heinrich; Maraun, Mark
2010-11-01
The community structure, stable isotope ratios ((15)N/(14)N, (13)C/(12)C) and reproductive mode of oribatid mites (Acari, Oribatida) were investigated in four habitats (upper tree bark, lower tree bark, dry grassland soil, forest soil) at two sites in the Central Alps (Tyrol, Austria). We hypothesized that community structure and trophic position of oribatid mites of dry grassland soils and bark of trees are similar since these habitats have similar abiotic characteristics (open, dry) compared with forest soil. Further, we hypothesized that derived taxa of oribatid mites reproducing sexually dominate on the bark of trees since species in this habitat consume living resources such as lichens. In contrast to our hypothesis, the community structure of oribatid mites differed among grassland, forest and bark indicating the existence of niche differentiation in the respective oribatid mite species. In agreement with our hypothesis, sexually reproducing taxa of oribatid mites dominated on the bark of trees whereas parthenogenetic species were more frequent in soil. Several species of bark-living oribatid mites had stable isotope signatures that were similar to lichens indicating that they feed on lichens. However, nine species that frequently occurred on tree bark did not feed on lichens according to their stable isotope signatures. No oribatid mite species could be ascribed to moss feeding. We conclude that sexual reproduction served as preadaptation for oribatid mites allowing them to exploit new habitats and new resources on the bark of trees. Abiotic factors likely are of limited importance for bark-living oribatid mites since harsh abiotic conditions are assumed to favor parthenogenesis.
Social structure of Facebook networks
NASA Astrophysics Data System (ADS)
Traud, Amanda L.; Mucha, Peter J.; Porter, Mason A.
2012-08-01
We study the social structure of Facebook “friendship” networks at one hundred American colleges and universities at a single point in time, and we examine the roles of user attributes-gender, class year, major, high school, and residence-at these institutions. We investigate the influence of common attributes at the dyad level in terms of assortativity coefficients and regression models. We then examine larger-scale groupings by detecting communities algorithmically and comparing them to network partitions based on user characteristics. We thereby examine the relative importance of different characteristics at different institutions, finding for example that common high school is more important to the social organization of large institutions and that the importance of common major varies significantly between institutions. Our calculations illustrate how microscopic and macroscopic perspectives give complementary insights on the social organization at universities and suggest future studies to investigate such phenomena further.
Mathematics and science acceleration in grade eight: School leaders' perceptions and satisfaction
NASA Astrophysics Data System (ADS)
Graham, Kenneth
Shifts in attitudes regarding academic program accessibility to provide the most rigorous academic opportunities to all students will not occur smoothly without departmental level leaders who believe in the potential benefits of accelerating larger numbers of students. Without the support and the belief of the department level leadership, practices such as open enrollment and universal acceleration that target school equity will be doomed to failure. This study was conducted using a questionnaire developed by the researcher called the Perceptions of Acceleration and Leadership Survey. The survey was distributed to all math and science department leaders within a suburban region of New York. The survey sought to determine how the perceptions of acceleration, job satisfaction, self-efficacy, and role longevity for the department level leaders are impacted by their personal demographics, professional characteristics, and community characteristics. The study did not reveal any statistically significant differences among department level leaders' personal, professional, and community characteristics with respect to perceptions of acceleration. There were significant differences for job satisfaction, self-efficacy, and role longevity for several intervening and independent variables within the study. Statistically significant correlations were found between beliefs in college preparation and perceptions of acceleration as well as relationships with the community and perceptions of acceleration. The results indicate the importance of hiring department leaders who recognize the potential for accelerating more students, hiring more ethnically diverse candidates for these leadership positions, affording department level leaders with significant professional development, and evaluation of administrative structures to maximize student success.
Influence of governance structure on green stormwater infrastructure investment
Hopkins, Kristina G.; Grimm, Nancy B.; York, Abigail M.
2018-01-01
Communities are faced with the challenge of meeting regulatory requirements mandating reductions in water pollution from stormwater and combined sewer overflows (CSO). Green stormwater infrastructure and gray stormwater infrastructure are two types of water management strategies communities can use to address water pollution. In this study, we used long-term control plans from 25 U.S. cities to synthesize: the types of gray and green infrastructure being used by communities to address combined sewer overflows; the types of goals set; biophysical characteristics of each city; and factors associated with the governance of stormwater management. These city characteristics were then used to identify common characteristics of “green leader” cities—those that dedicated >20% of the control plan budget in green infrastructure. Five “green leader” cities were identified: Milwaukee, WI, Philadelphia, PA, Syracuse, NY, New York City, NY, and Buffalo, NY. These five cities had explicit green infrastructure goals targeting the volume of stormwater or percentage of impervious cover managed by green infrastructure. Results suggested that the management scale and complexity of the management system are less important factors than the ability to harness a “policy window” to integrate green infrastructure into control plans. Two case studies—Philadelphia, PA, and Milwaukee, WI—indicated that green leader cities have a long history of building momentum for green infrastructure through a series of phases from experimentation, demonstration, and finally—in the case of Philadelphia—a full transition in the approach used to manage CSOs.
Xu, Muqi; Cao, Hong; Xie, Ping; Deng, Daogui; Feng, Weisong; Xu, Jian
2005-07-01
Structural and functional parameters of protozoan communities colonizing on PFU (polyurethane foam unit) artificial substrate were assessed as indicators of water quality in the Chaohu Lake, a large, shallow and highly polluted freshwater lake in China. Protozoan communities were sampled 1, 3, 6, 9 and 14 days after exposure of PFU artificial substrate in the lake during October 2003. Four study stations with the different water quality gradient changes along the lake were distinguishable in terms of differences in the community's structural (species richness, individual abundance, etc.) and functional parameters (protozoan colonization rates on PFU). The concentrations of TP, TN, COD and BOD as the main chemical indicators of pollution at the four sampling sites were also obtained each year during 2002-2003 for comparison with biological parameters. The results showed that the species richness and PFU colonization rate decreased as pollution intensity increased and that the Margalef diversity index values calculated at four sampling sites also related to water quality. The three functional parameters based on the PFU colonization process, that is, S(eq), G and T90%, were strongly related to the pollution status of the water. The number of protozoan species colonizing on PFU after exposure of 1 to 3 days was found to give a clear comparative indication of the water quality at the four sampling stations. The research provides further evidence that the protozoan community may be utilized effectively in the assessment of water quality and that the PFU method furnishes rapid, cost-effective and reliable information that may be useful for measuring responses to pollution stress in aquatic ecosystems.
Zhu, Linjiang; Fan, Zihao; Kuai, Hui; Li, Qi
2017-09-01
During natural fermentation processes, a characteristic microbial community structure (MCS) is naturally formed, and it is interesting to know about its batch-batch stability. This issue was explored in a traditional semi-solid-state fermentation process of huyumei, a Chinese broad bean paste product. The results showed that this MCS mainly contained four aerobic Bacillus species (8 log CFU per g), including B. subtilis, B. amyloliquefaciens, B. methylotrophicus, and B. tequilensis, and the facultative anaerobe B. cereus with a low concentration (4 log CFU per g), besides a very small amount of the yeast Zygosaccharomyces rouxii (2 log CFU per g). The dynamic change of the MCS in the brine fermentation process showed that the abundance of dominant species varied within a small range, and in the beginning of process the growth of lactic acid bacteria was inhibited and Staphylococcus spp. lost its viability. Also, the MCS and its dynamic change were proved to be highly reproducible among seven batches of fermentation. Therefore, the MCS naturally and stably forms between different batches of the traditional semi-solid-state fermentation of huyumei. Revealing microbial community structure and its batch-batch stability is helpful for understanding the mechanisms of community formation and flavour production in a traditional fermentation. This issue in a traditional semi-solid-state fermentation of huyumei broad bean paste was firstly explored. This fermentation process was revealed to be dominated by a high concentration of four aerobic species of Bacillus, a low concentration of B. cereus and a small amount of Zygosaccharomyces rouxii. Lactic acid bacteria and Staphylococcus spp. lost its viability at the beginning of fermentation. Such the community structure was proved to be highly reproducible among seven batches. © 2017 The Society for Applied Microbiology.
Smith, Richard J; Lehning, Amanda J; Dunkle, Ruth E
2013-01-01
Accurate conceptualization and measurement of age-friendly community characteristics would help to reduce barriers to documenting the effects on elders of interventions to create such communities. This article contributes to the measurement of age-friendly communities through an exploratory factor analysis of items reflecting an existing US Environmental Protection Agency policy framework. From a sample of urban elders (n = 1,376), we identified 6 factors associated with demographic and health characteristics: access to business and leisure, social interaction, access to health care, neighborhood problems, social support, and community engagement. Future research should explore the effects of these factors across contexts and populations.
Stockdale, Susan E; Tang, Lingqi; Zhang, Lily; Belin, Thomas R; Wells, Kenneth B
2007-06-01
This study adapts Andersen's Behavioral Model to determine if health sector market conditions affect vulnerable subgroups' use of alcohol, drug, and mental health services (ADM) differently than the general population, focusing specifically on community-level predisposing and enabling characteristics. Wave 2 data (2000-2001) from the Health Care for Communities study, supplemented with cases from wave 1 (1997-1998), were merged with area characteristics taken from Census, Area Resource File (ARF), and other data sources. The study used four-level hierarchical logistic regression to examine access to ADM care from any provider and specialty ADM access. Interactions between community-level predisposing and enabling vulnerability characteristics with individual race/ethnicity, age, income category, and insurance type were explored. Nonwhites, the poor, uninsured, and elderly had lower likelihoods of service use, but interactions between race/ethnicity, income, age and insurance status with community-level vulnerability factors were not statistically significant for any service use. For ADM specialty care, those with Medicare, Medicaid, private fully managed, and private partially managed insurance, the likelihood of utilization was higher in areas with higher HMO penetration. However, for those with other insurance or no insurance plan, the likelihood of utilization was lower in areas with higher HMO penetration. Community-level enabling factors explain part of the effect of disadvantaged status but, with the exception of the effect of HMO penetration on the relationship between insurance and specialty care use, do not modify any of the residual individual-level effects of disadvantage. Interventions targeting both structural and individual levels may be necessary to address the problem of health disparities. More research with longitudinal data is necessary to sort out the causal direction of social context and ADM access outcomes, and whether policy interventions to change health sector market conditions can shift ADM treatment utilization.
Carline, Jan D; Patterson, Davis G
2003-05-01
To identify characteristics of health professions schools, public schools, and community-based organizations in successful partnerships to increase the number of underrepresented minority students entering health professions. The Robert Wood Johnson Foundation and the W. K. Kellogg Foundation funded the Health Professions Partnership Initiative program developed from Project 3000 by 2000 of the Association of American Medical Colleges. Semi-structured interviews were completed with awardees and representatives of the funding agencies, the national program office, and the national advisory committee between the fall of 2000 and the summer of 2002. Site visits were conducted at ten sites, with representatives of partner institutions, teachers, parents, and children. Characteristics that supported and hindered development of successful partnerships were identified using an iterative qualitative approach. Successful partnerships included professional schools that had a commitment to community service. Successful leaders could work in both cultures of the professional and public schools. Attitudes of respect and listening to the needs of partners were essential. Public school governance supported innovation. Happenstance and convergence of interests played significant roles in partnership development. The most telling statement was "We did it, together." This study identifies characteristics associated with smoothly working partnerships, and barriers to successful program development. Successful partnerships can form the basis on which educational interventions are built. The study is limited by the definition of success used, and its focus on one funded program. The authors were unable to identify outcomes in terms of numbers of children influenced by programs or instances in which lasting changes in health professions schools had occurred.
Li, Zhigang; Chen, Dan; Cai, Shize; Che, Shengquan
2018-01-01
Mitigating extreme heat in urban areas is beneficial and sometimes critical to human health. Thriving plant communities in community parks play an important role in mitigating extreme heat through providing cooling effect, while inevitably affecting how people perceive the benefits of using community parks for recreation. Thus, the impacts of plant communities on the thermal environment should be quantified to determine the optimal structure of the plant community. The goal would be to harmonize the functions of improving the thermal environment with the preferences people have related to the recreational benefits of plant communities with various levels of vegetation density. In this paper, the correlations between the structural characteristics of plant communities and their function in mitigating the thermal environment were investigated on calm summer days in Xincheng Central Park, Minhang District, Shanghai, China. In addition to analyzing the plant communities present and their effects on the park microclimate, a questionnaire was employed to determine the plant community preferences of recreational park users. The results showed that plant communities could reduce the air temperature by 1.23-2.42 °C and increase the relative humidity by 2.4-4.2% during the daytime. The microclimate conditions in plant communities with varying vegetation densities were significantly different. The canopy density and leaf area index primarily controlled the temperature reduction, while the canopy density and total canopy cover ratio primarily controlled the increase in humidity; meanwhile, these correlations varied at different times of the day. Moreover, most of the park users preferred a moderately dense plant community which met their environmental perceptions for recreation in parks. Age or education level variables of park users would also predict preferences for different plant community densities. Ultimately, one plant community pattern with appropriate canopy density (60%), leaf area index (≥3) and canopy cover ratio (total 0.80-1.20, with 0.6-0.75 for trees and 0.20-0.45 for shrubs/woodland area) was recommended, which would harmonize the functions of the mitigation of the thermal environment with most people's perception of a desirable vegetation density.
Li, Zhigang; Chen, Dan; Cai, Shize; Che, Shengquan
2018-01-01
Mitigating extreme heat in urban areas is beneficial and sometimes critical to human health. Thriving plant communities in community parks play an important role in mitigating extreme heat through providing cooling effect, while inevitably affecting how people perceive the benefits of using community parks for recreation. Thus, the impacts of plant communities on the thermal environment should be quantified to determine the optimal structure of the plant community. The goal would be to harmonize the functions of improving the thermal environment with the preferences people have related to the recreational benefits of plant communities with various levels of vegetation density. In this paper, the correlations between the structural characteristics of plant communities and their function in mitigating the thermal environment were investigated on calm summer days in Xincheng Central Park, Minhang District, Shanghai, China. In addition to analyzing the plant communities present and their effects on the park microclimate, a questionnaire was employed to determine the plant community preferences of recreational park users. The results showed that plant communities could reduce the air temperature by 1.23–2.42 °C and increase the relative humidity by 2.4–4.2% during the daytime. The microclimate conditions in plant communities with varying vegetation densities were significantly different. The canopy density and leaf area index primarily controlled the temperature reduction, while the canopy density and total canopy cover ratio primarily controlled the increase in humidity; meanwhile, these correlations varied at different times of the day. Moreover, most of the park users preferred a moderately dense plant community which met their environmental perceptions for recreation in parks. Age or education level variables of park users would also predict preferences for different plant community densities. Ultimately, one plant community pattern with appropriate canopy density (60%), leaf area index (≥3) and canopy cover ratio (total 0.80–1.20, with 0.6–0.75 for trees and 0.20–0.45 for shrubs/woodland area) was recommended, which would harmonize the functions of the mitigation of the thermal environment with most people’s perception of a desirable vegetation density. PMID:29694401
Mohammed, Selma F; Borlaug, Barry A; Roger, Véronique L; Mirzoyev, Sultan A; Rodeheffer, Richard J; Chirinos, Julio A; Redfield, Margaret M
2012-11-01
Patients with heart failure and preserved ejection fraction (HFpEF) display increased adiposity and multiple comorbidities, factors that in themselves may influence cardiovascular structure and function. This has sparked debate as to whether HFpEF represents a distinct disease or an amalgamation of comorbidities. We hypothesized that fundamental cardiovascular structural and functional alterations are characteristic of HFpEF, even after accounting for body size and comorbidities. Comorbidity-adjusted cardiovascular structural and functional parameters scaled to independently generated and age-appropriate allometric powers were compared in community-based cohorts of HFpEF patients (n=386) and age/sex-matched healthy n=193 and hypertensive, n=386 controls. Within HFpEF patients, body size and concomitant comorbidity-adjusted cardiovascular structural and functional parameters and survival were compared in those with and without individual comorbidities. Among HFpEF patients, comorbidities (obesity, anemia, diabetes mellitus, and renal dysfunction) were each associated with unique clinical, structural, functional, and prognostic profiles. However, after accounting for age, sex, body size, and comorbidities, greater concentric hypertrophy, atrial enlargement and systolic, diastolic, and vascular dysfunction were consistently observed in HFpEF compared with age/sex-matched normotensive and hypertensive. Comorbidities influence ventricular-vascular properties and outcomes in HFpEF, yet fundamental disease-specific changes in cardiovascular structure and function underlie this disorder. These data support the search for mechanistically targeted therapies in this disease.
ERIC Educational Resources Information Center
Nieboer, Anna P.; Pijpers, Vanessa; Strating, Mathilde M. H.
2011-01-01
Background: Community care is the support of people with intellectual disability in everyday life aimed at enhancing their integration into society. This article investigates influences of organizational characteristics on the implementation of community care in the Netherlands. In addition, we explored whether the attributes of community care as…
Institutional Determinants of Labor Market Outcomes for Community College Students in North Carolina
ERIC Educational Resources Information Center
Kalleberg, Arne L.; Dunn, Michael
2015-01-01
Objective: The labor market success of community college students depends on both the attributes of individual students and the characteristics of the community colleges they attend. In this article, we examine the impact of community college characteristics on the earnings of first-time college students who enrolled in the North Carolina…
Zhu, Yong-heng; Li, Ke-zhong; Zhang, Heng; Han, Fei; Zhou, Ju-hua; Gao, Ting-ting
2015-02-01
A survey was carried out to investigate soil nematode communities in the plant associations of gramineae (Arthraxon lanceolatus, AL; Imperata cylindrica, IC) and leguminosae (Glycine soja, GS) in reclaimed land of copper-mine-tailings and in the plant associations of gramineae (Digitaria chrysoblephara, DC-CK) of peripheral control in Fenghuang Mountain, Tongling City. A total of 1277 nematodes were extracted and sorted into 51 genera. The average individual density of the nematodes was 590 individuals · 100 g(-1) dry soil. In order to analyze the distribution character- istics of soil nematode communities in reclaimed land of copper-mine-tailings, Shannon community diversity index and soil food web structure indices were applied in the research. The results showed that the total number of nematode genus and the Shannon community diversity index of soil nematode in the three plant associations of AL, IC and GS were less than that in the plant associations of DC-CK. Compared with the ecological indices of soil nematode communities among the different plant associations in reclaimed land of copper-mine-tailings and peripheral natural habitat, we found that the structure of soil food web in the plant associations of GS was more mature, with bacterial decomposition being dominant in the soil organic matter decomposition, and that the soil ecosystem in the plant associations of GS was not stable with low interference. This indicated that the soil food web in the plant associations of leguminosae had a greater development potential to improve the ecological stability of the reclaimed land of copper-mine-tailings. On the other hand, the structure of soil food web in the plant associations of AL and IC were relatively stable in a structured state with fungal decomposition being dominant in the decomposition of soil organic matter. This indicated that the soil food web in the plant associations of gramineae was at a poor development level.
Brasher, Anne M.D.; Wolff, Reuben H.; Luton, Corene D.
2003-01-01
The island of Oahu is one of 51 study units established as part of the U.S. Geological Surveys National Water-Quality Assessment (NAWQA) program to assess the status and trends of the Nations surface and ground-water resources, and to link status and trends with an understanding of the natural and human factors that affect water quality. As part of the NAWQA program, benthic invertebrate communities were surveyed at ten sites in nine streams representing the three main types of land use on Oahu: urban, agriculture, and forested. At each sampling site, habitat characteristics were determined at a range of spatial scales including drainage basin, segment, reach, transect, and point. Associations among land use, habitat characteristics, and benthic invertebrate community structure were examined. The rapid population growth and increasing urbanization on Oahu has resulted in substantial stream habitat alteration. Instream habitat characteristics at the urban and mixed (urban and agriculture) land-use sites were markedly different from those at the forested sites. Urban and mixed land-use sites, most of which were channelized, tended to have less riparian vegetation, higher water temperatures, smaller substrate, and higher levels of embeddedness and siltation than sites in forested watersheds. The majority of invertebrate taxa identified during this study were non-native. Invertebrate abundance was lower at urban and mixed land-use sites than at forested sites, while species richness (the number of different species) showed the opposite pattern. Multivariate analyses indicated that invertebrate species composition was similar at sites with similar land use. Aquatic insects of the orders Diptera and Trichoptera were the most common insects in all samples. The ratio of Diptera to Trichoptera abundance varied with urbanization. Forested sites were dominated by Trichoptera, and urban and mixed land-use sites were dominated by Diptera. Molluscs typically occurred in channelized urban streams although no native molluscs were collected during this study. The most abundant molluscs were pan-tropical thiarid snails, the introduced clam Corbicula fluminea, and the limpet Ferrissia sharpi. Two native and four introduced species of Crustacea were collected at the sampling sites. To effectively manage Hawaiian watersheds for native species and the communities they form, the ways in which these species respond to human-induced changes needs to be understood. This report provides important information describing the usefulness of invertebrates as indicators of stream quality conditions and how an integrated assessment of stream quality will allow for the development of appropriate monitoring and management strategies.
The Optimizer Topology Characteristics in Seismic Hazards
NASA Astrophysics Data System (ADS)
Sengor, T.
2015-12-01
The characteristic data of the natural phenomena are questioned in a topological space approach to illuminate whether there is an algorithm behind them bringing the situation of physics of phenomena to optimized states even if they are hazards. The optimized code designing the hazard on a topological structure mashes the metric of the phenomena. The deviations in the metric of different phenomena push and/or pull the fold of the other suitable phenomena. For example if the metric of a specific phenomenon A fits to the metric of another specific phenomenon B after variation processes generated with the deviation of the metric of previous phenomenon A. Defining manifold processes covering the metric characteristics of each of every phenomenon is possible for all the physical events; i.e., natural hazards. There are suitable folds in those manifold groups so that each subfold fits to the metric characteristics of one of the natural hazard category at least. Some variation algorithms on those metric structures prepare a gauge effect bringing the long time stability of Earth for largely scaled periods. The realization of that stability depends on some specific conditions. These specific conditions are called optimized codes. The analytical basics of processes in topological structures are developed in [1]. The codes are generated according to the structures in [2]. Some optimized codes are derived related to the seismicity of NAF beginning from the quakes of the year 1999. References1. Taner SENGOR, "Topological theory and analytical configuration for a universal community model," Procedia- Social and Behavioral Sciences, Vol. 81, pp. 188-194, 28 June 2013, 2. Taner SENGOR, "Seismic-Climatic-Hazardous Events Estimation Processes via the Coupling Structures in Conserving Energy Topologies of the Earth," The 2014 AGU Fall Meeting, Abstract no.: 31374, ABD.
From disaster to development: a systematic review of community-driven humanitarian logistics.
Bealt, Jennifer; Mansouri, S Afshin
2018-01-01
A plethora of untapped resources exist within disaster-affected communities that can be used to address relief and development concerns. A systematic review of the literature relating to community participation in humanitarian logistics activities revealed that communities are able to form ad hoc networks that have the ability to meet a wide range of disaster management needs. These structures, characterised as Collaborative Aid Networks (CANs), have demonstrated efficient logistical capabilities exclusive of humanitarian organisations. This study proposes that CANs, as a result of their unique characteristics, present alternatives to established humanitarian approaches to logistics, while also mitigating the challenges commonly faced by traditional humanitarian organisations. Furthermore, CANs offer a more holistic, long-term approach to disaster management, owing to their impact on development through their involvement in humanitarian logistics. This research provides the foundation for further theoretical analysis of effective and efficient disaster management, and details opportunities for policy and practice. © 2018 The Author(s). Disasters © Overseas Development Institute, 2018.
Sun, Lianpeng; Chen, Jianfan; Wei, Xiange; Guo, Wuzhen; Lin, Meishan; Yu, Xiaoyu
2016-05-01
To further reveal the mechanism of sludge reduction in the oxic-settling-anaerobic (OSA) process, the polymerase chain reaction - denaturing gradient gel electrophoresis protocol was used to study the possible difference in the microbial communities between a sequencing batch reactor (SBR)-OSA process and its modified process, by analyzing the change in the diversity of the microbial communities in each reactor of both systems. The results indicated that the structure of the microbial communities in aerobic reactors of the 2 processes was very different, but the predominant microbial populations in anaerobic reactors were similar. The predominant microbial population in the aerobic reactor of the SBR-OSA belonged to Burkholderia cepacia, class Betaproteobacteria, while those of the modified process belonged to the classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. These 3 types of microbes had a cryptic growth characteristic, which was the main cause of a greater sludge reduction efficiency achieved by the modified process.
Characteristics of sports-based youth development programs.
Perkins, Daniel F; Noam, Gil G
2007-01-01
The term "sports-based youth development programs" is coined and defined in the context of the community youth development framework. Sports-based youth development programs are out-of-school-time programs that use a particular sport to facilitate learning and life skill development in youth. Community youth development programs use a community youth development approach to create opportunities for youth to connect to others, develop skills, and use those skills to contribute to their communities. This, in turn, increases their ability to succeed. The authors describe how sports-based youth development programs can be contexts that promote positive youth development. The features of positive developmental settings for youth from the work of the National Research Council and the Institute of Medicine, as well as the features identified by other researchers, are presented in the context of sports-based youth development programs. For example, a sports program that provides appropriate structure has delineated clear rules, expectations, and responsibilities for youth, parents, coaches, officials, and other organizers.
Ortega-Beltran, Alejandro; Jaime, Ramon; Cotty, Peter J
2015-04-01
Aflatoxins, highly toxic carcinogens produced by several members of Aspergillus section Flavi, contaminate crops in temperate zones. In the state of Sonora, Mexico, maize is cultivated from 0 to 2100 masl with diverse cultivation practices. This is typical of the nation. In order to design better sampling strategies across Mexico, aflatoxin-producing fungal communities associated with maize production during 2006, 2007, and 2008 in Sonora were investigated in four agro-ecological zones (AEZ) at varying elevation. Fungal communities were dominated by the Aspergillus flavus L strain morphotype (46%), but variation occurred between years and among AEZ. Several atoxigenic isolates with potential to be used as biocontrol agents for aflatoxin mitigation were detected in all AEZ. The characteristics of each AEZ had minimal influences on fungal community structure and should not be a major consideration for future sampling designs for Mexico. Insights into the dynamics and stability of aflatoxin-producing fungal communities across AEZ are discussed. Published by Elsevier Ltd.
Huggett, Megan J; Nedved, Brian T; Hadfield, Michael G
2009-01-01
Hydroides elegans is a major fouling organism in tropical waters around the world, including Pearl Harbor, Hawaii. To determine the importance of initial surface characteristics on biofilm community composition and subsequent colonization by larvae of H. elegans, the settlement and recruitment of larvae to biofilmed surfaces with six different initial surface wettabilities were tested in Pearl Harbor. Biofilm community composition, as determined by a combined approach of denaturing gradient gel electrophoresis and fluorescence in situ hybridization, was similar across all surfaces, regardless of initial wettability, and all surfaces had distinct temporal shifts in community structure over a 10 day period. Larvae settled and recruited in higher numbers to surfaces with medium to low wettability in both May and August, and also to slides with high wettability in August. Pearl Harbor biofilm communities developed similarly on a range of surface wettabilities, and after 10 days in Pearl Harbor all surfaces were equally attractive to larvae of Hydroides elegans, regardless of initial surface properties.
Phelps, Q.E.; Ward, M.J.; Paukert, C.P.; Chipps, S.R.; Willis, D.W.
2005-01-01
We explored relationships among black bullhead (Ameiurus melas) population characteristics and physicochemical attributes in shallow lakes and quantified relationships between population characteristics of black bullhead and sport fishes. Lake characteristics and fisheries survey data were collected from the Sandhills region of northcentral Nebraska from May through June, 1998 and 1999. Relative abundance of black bullheads was inversely related to proportional stock density (r=-0.672, df=15, P=0.004); however, neither relative weight nor growth was significantly (P ??? 0.20) related to black bullhead relative abundance. Population characteristics of common panfish species such as bluegill (Lepomis macrochirus), green sunfish (L. cyanellus), pumpkinseed (L. gibbosus), and yellow perch (Perca flavescens) were not correlated with black bullhead relative abundance or size structure. Rather, proportional stock density (r=0.655, df=10, P=0.029) and growth (r=0.59, df=11, P=0.04) of black bullhead were positively related to relative abundance of largemouth bass (Micropterus salmoides). Similarly, black bullhead relative abundance was inversely related to largemouth bass size structure (r=-0.51, df=14, P= 0.05). Black bullhead mean length at age 3 was positively related to total phosphorous concentration (r=0.65, df=16, P=0.004), and bullhead relative abundance was positively related to shoreline development index (r=0.46, df=22, P=0.03). Population characteristics of black bullhead appeared to have little influence on panfish communities. Rather, black bullhead abundance, predator density, and lake productivity exhibited stronger relationships with black bullhead population characteristics.
Temporal variation in the mating structure of Sanday, Orkney Islands.
Brennan, E R; Relethford, J H
1983-01-01
Pedigree and vital statistics data from the population of Sanday, Orkney Islands, Scotland, were used to assess temporal changes in population structure. Secular trends in patterns of mate choice were analysed for three separate birth cohorts of spouses: 1855-1884, 1885-1924 and 1925-1964. The degree to which mating was random or assortative with respect to both genealogical and geographic distance was determined by comparing average characteristics of all potential mates of married males with those of actual wives. We integrated this procedure, originally developed by Dyke (1971), into a three-fold investigation of population structure: (1) comparison of random and non-random components of relatedness as measured from pedigree data; (2) an analysis of marital distance distributions for actual and potential mates of married males; and (3) the relationship between genealogical relatedness and geographic distance. As population size decreased from 1881 to the present, total kinship and spatial distances between spouses increased. Whereas the random component of relatedness increased over time, consanguinity avoidance was sufficient to decrease the total coefficient of kinship over time. Part of the increase in consanguinity avoidance was associated with isolate breakdown, as distances between island-born spouses, as well as the total amount of off-island migration, increased from the mid-nineteenth century to the present. Mate choice was influenced by geographic distance for all time periods, although this effect diminished over time. Since decreases in population size, concomitant with increases in consanguinity avoidance and community exogamy, have probably occurred quite frequently in small human populations, as well as in rural Western communities in the past century, observed secular trends illustrate the potential for change in population structure characteristic of isolate breakdown.
Does geography or ecology best explain 'cultural' variation among chimpanzee communities?
Kamilar, Jason M; Marshack, Joshua L
2012-02-01
Much attention has been paid to geographic variation in chimpanzee behavior, but few studies have applied quantitative techniques to explain this variation. Here, we apply methods typically utilized in macroecology to explain variation in the putative cultural traits of chimpanzees. We analyzed published data containing 39 behavioral traits from nine chimpanzee communities. We used a canonical correspondence analysis to examine the relative importance of environmental characteristics and geography, which may be a proxy for inter-community gene flow and/or social transmission, for explaining geographic variation in chimpanzee behavior. We found that geography, and longitude in particular, was the best predictor of behavioral variation. Chimpanzee communities in close longitudinal proximity to each other exhibit similar behavioral repertoires, independent of local ecological factors. No ecological variables were significantly related to behavioral variation. These results support the idea that inter-community dispersal patterns have played a major role in structuring behavioral variation. We cannot be certain whether behavioral variation has a genetic basis, is the result of innovation and diffusion, or a combination of the two. Copyright © 2011 Elsevier Ltd. All rights reserved.
Crooks, Jeffrey A.; Reyns, Nathalie B.
2016-01-01
A combination of historical bivalve surveys spanning 30–50 years and contemporary sampling were used to document the changes in bivalve community structure over time at four southern California and one northern Baja California estuaries. While there are limitations to the interpretation of historic data, we observed generally similar trends of reduced total bivalve species richness, losses of relatively large and/or deeper-dwelling natives, and gains of relatively small, surface dwelling introduced species across the southern California estuaries, despite fairly distinct bivalve communities. A nearly 50-year absence of bivalves from two wetlands surveyed in a Baja California estuary continued. A combination of site history and current characteristics (e.g., location, depth) likely contributes to maintenance of distinct communities, and both episodic and gradual environmental changes likely contribute to within-estuary temporal shifts (or absences). We highlight future research needed to determine mechanisms underlying patterns so that we can better predict responses of bivalve communities to future scenarios, including climate change and restoration. PMID:26840744
Perceptions of risk among households in two Australian coastal communities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elrick-Barr, Carmen E.; Smith, Timothy F.; Thomsen, Dana C.
There is limited knowledge of risk perceptions in coastal communities despite their vulnerability to a range of risks including the impacts of climate change. A survey of 400 households in two Australian coastal communities, combined with semi-structured interviews, provides insight into household perceptions of the relative importance of climatic and non-climatic risks and the subsequent risk priorities that may inform household adaptive action. In contrast to previous research, the results demonstrated that geographic location and household characteristics might not affect perceptions of vulnerability to environmental hazards. However, past experience was a significant influence, raising the priority of environmental concerns. Overall,more » the results highlight the priority concerns of coastal households (from finance, to health and environment) and suggest to increase the profile of climate issues in coastal communities climate change strategies need to better demonstrate links between climate vulnerability and other household concerns. Moreover, promoting generic capacities in isolation from understanding the context in which households construe climate risks is unlikely to yield the changes required to decrease the vulnerability of coastal communities.« less
Perceptions of risk among households in two Australian coastal communities
Elrick-Barr, Carmen E.; Smith, Timothy F.; Thomsen, Dana C.; ...
2015-04-20
There is limited knowledge of risk perceptions in coastal communities despite their vulnerability to a range of risks including the impacts of climate change. A survey of 400 households in two Australian coastal communities, combined with semi-structured interviews, provides insight into household perceptions of the relative importance of climatic and non-climatic risks and the subsequent risk priorities that may inform household adaptive action. In contrast to previous research, the results demonstrated that geographic location and household characteristics might not affect perceptions of vulnerability to environmental hazards. However, past experience was a significant influence, raising the priority of environmental concerns. Overall,more » the results highlight the priority concerns of coastal households (from finance, to health and environment) and suggest to increase the profile of climate issues in coastal communities climate change strategies need to better demonstrate links between climate vulnerability and other household concerns. Moreover, promoting generic capacities in isolation from understanding the context in which households construe climate risks is unlikely to yield the changes required to decrease the vulnerability of coastal communities.« less
Ensuring Access to Quality Health Care in Vulnerable Communities.
Bhatt, Jay; Bathija, Priya
2018-04-24
For millions of Americans living in vulnerable rural and urban communities, their hospital is an important, and often their only, source of health care. As transformation in the hospital and health care field continues, some communities may be at risk of losing access to health care services and the opportunities and resources they need to improve and maintain their health. Integrated, comprehensive strategies to reform health care delivery and payment, within which vulnerable communities can make individual choices based on their needs, support structures, and preferences, are needed.In this Invited Commentary, the authors outline characteristics and parameters of vulnerable communities as well as the essential health care services that hospitals should strive to maintain locally identified by the American Hospital Association Task Force on Ensuring Access in Vulnerable Communities. They also describe four of nine emerging strategies-recommended by the task force-to reform health care delivery and payment and allow hospitals to provide the essential health care services, along with implementation barriers and how to address them. While this Invited Commentary focuses on vulnerable communities, the four highlighted strategies (addressing the social determinants of health, adopting new and innovative virtual care strategies, designing global budgets, and using inpatient/outpatient transformation strategy), as well as the other five strategies, may have broader applicability for all communities.
Pawar, Samraat S; Rawat, Gopal S; Choudhury, Binod C
2004-08-06
Community recovery following primary habitat alteration can provide tests for various hypotheses in ecology and conservation biology. Prominent among these are questions related to the manner and rate of community assembly after habitat perturbation. Here we use space-for-time substitution to analyse frog and lizard community assembly along two gradients of habitat recovery following slash and burn agriculture (jhum) in Mizoram, Northeast India. One recovery gradient undergoes natural succession to mature tropical rainforest, while the other involves plantation of jhum fallows with teak Tectona grandis monoculture. Frog and lizard communities accumulated species steadily during natural succession, attaining characteristics similar to those from mature forest after 30 years of regeneration. Lizards showed higher turnover and lower augmentation of species relative to frogs. Niche based classification identified a number of guilds, some of which contained both frogs and lizards. Successional change in species richness was due to increase in the number of guilds as well as the number of species per guild. Phylogenetic structure increased with succession for some guilds. Communities along the teak plantation gradient on the other hand, did not show any sign of change with chronosere age. Factor analysis revealed sets of habitat variables that independently determined changes in community and guild composition during habitat recovery. The timescale of frog and lizard community recovery was comparable with that reported by previous studies on different faunal groups in other tropical regions. Both communities converged on primary habitat attributes during natural vegetation succession, the recovery being driven by deterministic, nonlinear changes in habitat characteristics. On the other hand, very little faunal recovery was seen even in relatively old teak plantation. In general, tree monocultures are unlikely to support recovery of natural forest communities and the combined effect of shortened jhum cultivation cycles and plantation forestry could result in landscapes without mature forest. Lack of source pools of genetic diversity will then lead to altered vegetation succession and faunal community reassembly. It is therefore important that the value of habitat mosaics containing even patches of primary forest and successional secondary habitats be taken into account.
Pawar, Samraat S; Rawat, Gopal S; Choudhury, Binod C
2004-01-01
Background Community recovery following primary habitat alteration can provide tests for various hypotheses in ecology and conservation biology. Prominent among these are questions related to the manner and rate of community assembly after habitat perturbation. Here we use space-for-time substitution to analyse frog and lizard community assembly along two gradients of habitat recovery following slash and burn agriculture (jhum) in Mizoram, Northeast India. One recovery gradient undergoes natural succession to mature tropical rainforest, while the other involves plantation of jhum fallows with teak Tectona grandis monoculture. Results Frog and lizard communities accumulated species steadily during natural succession, attaining characteristics similar to those from mature forest after 30 years of regeneration. Lizards showed higher turnover and lower augmentation of species relative to frogs. Niche based classification identified a number of guilds, some of which contained both frogs and lizards. Successional change in species richness was due to increase in the number of guilds as well as the number of species per guild. Phylogenetic structure increased with succession for some guilds. Communities along the teak plantation gradient on the other hand, did not show any sign of change with chronosere age. Factor analysis revealed sets of habitat variables that independently determined changes in community and guild composition during habitat recovery. Conclusions The timescale of frog and lizard community recovery was comparable with that reported by previous studies on different faunal groups in other tropical regions. Both communities converged on primary habitat attributes during natural vegetation succession, the recovery being driven by deterministic, nonlinear changes in habitat characteristics. On the other hand, very little faunal recovery was seen even in relatively old teak plantation. In general, tree monocultures are unlikely to support recovery of natural forest communities and the combined effect of shortened jhum cultivation cycles and plantation forestry could result in landscapes without mature forest. Lack of source pools of genetic diversity will then lead to altered vegetation succession and faunal community reassembly. It is therefore important that the value of habitat mosaics containing even patches of primary forest and successional secondary habitats be taken into account. PMID:15298711
Brokering Community-University Engagement
ERIC Educational Resources Information Center
McNall, Miles; Reed, Celeste Sturdevant; Brown, Robert; Allen, Angela
2009-01-01
Although substantial areas of agreement exist regarding the characteristics of effective community-university partnerships for research, there is little empirical research on the relationship between the characteristics of such partnerships and their outcomes. In this study, we explored the relationship between partnership characteristics and…
NASA Astrophysics Data System (ADS)
Pillay, D.; Branch, G. M.; Dawson, J.; Henry, D.
2011-01-01
Ecosystem engineering by plants and animals significantly influences community structure and the physico-chemical characteristics of marine habitats. In this paper we document the contrasting effects of ecosystem engineering by the cordgrass Spartina maritima and the burrowing sandprawn Callianassa kraussi on physico-chemical characteristics, microflora, macrofaunal community structure and morphological attributes in the high shore intertidal sandflats of Langebaan Lagoon, a marine-dominated system on the west coast of South Africa. Comparisons were made at six sites in the lagoon within Spartina and Callianassa beds, and in a "bare zone" of sandflat between these two habitats that lacks both sandprawns and cordgrass. Sediments in Spartina habitats were consolidated by the root-shoot systems of the cordgrass, leading to low sediment penetrability, while sediments in beds of C. kraussi were more penetrable, primarily due to the destabilising effects of sandprawn bioturbation. Sediments in the "bare zone" had intermediate to low values of penetrability. Sediment organic content was lowest in bare zones and greatest in Spartina beds, while sediment chl- a levels were greatest on bare sand, but were progressively reduced in the Spartina and Callianassa beds. These differences among habitats induced by ecosystem engineering in turn affected the macrofauna. Community structure was different between all three habitats sampled, with species richness being surprisingly greater in Callianassa beds than either the bare zone or Spartina beds. In general, the binding of surface sediments by the root systems of Spartina favoured rigid-bodied, surface-dwelling and tube-building species, while the destabilising effect of bioturbation by C. kraussi favoured burrowing species. The contrasting effects of these ecosystem engineers suggest that they play important roles in increasing habitat heterogeneity. Importantly, the role of bioturbation by C. kraussi in enhancing macrofaunal richness was unexpected. By loosening sediments, reducing anoxia and enhancing organic content, C. kraussi may engineer these high shore habitats to ameliorate environmental stresses or increase food availability.
Ripplinger, Julie; Franklin, Janet; Edwards, Thomas C.
2015-01-01
Questions(i) What role does the type of managed disturbance play in structuring sagebrush steppe plant communities? (ii) How does the composition of post-disturbance plant communities change with time since disturbance? (iii) Does plant community diversity change over time following managed disturbance?LocationField study within the sagebrush steppe ecosystem. Rich County, Utah, USA.MethodsWe developed a chronosequence spanning up to 50 yrs post-treatment to study sagebrush steppe vegetation dynamics. Direct ordination was used to examine plant community composition by managed disturbance type and time since disturbance, and factorial analysis of covariance was used to examine diversity dynamics following disturbance. Indicator species values were calculated in order to identify characteristic species for each disturbance type.ResultsPlant communities experienced a shift toward distinct community composition for each of the three managed disturbance types, and gave no indication of returning to untreated community composition or diversity. Small post-disturbance increases in the number of non-native grass species were observed in the treatments relative to reference, with native forb species making the largest contribution to altered composition. On fire- and chemically-treated sites the proportional native forb species richness increased over time since disturbance, while the proportional contribution of non-native forbs to total species richness decreased. For all three treatment types, native grasses contributed less on average to total richness than on reference sites, while non-native grasses made up a higher proportion of total richness.ConclusionsCommon shrubland management techniques have legacy effects on the composition and diversity of sagebrush steppe plant communities, and no-analogue disturbances, such as chemical or mechanical treatments, have more pronounced legacy effects than treatments similar to natural disturbance regimes (fire). This study informs a broader understanding of how management actions affect natural systems by highlighting the importance of long-term management legacies as drivers of plant community structure and function.
Plant diversity and plant identity influence Fusarium communities in soil.
LeBlanc, Nicholas; Kinkel, Linda; Kistler, H Corby
2017-01-01
Fusarium communities play important functional roles in soil and in plants as pathogens, endophytes, and saprotrophs. This study tests how rhizosphere Fusarium communities may vary with plant species, changes in the diversity of the surrounding plant community, and soil physiochemical characteristics. Fusarium communities in soil associated with the roots of two perennial prairie plant species maintained as monocultures or growing within polyculture plant communities were characterized using targeted metagenomics. Amplicon libraries targeting the RPB2 locus were generated from rhizosphere soil DNAs and sequenced using pyrosequencing. Sequences were clustered into operational taxonomic units (OTUs) and assigned a taxonomy using the Evolutionary Placement Algorithm. Fusarium community composition was differentiated between monoculture and polyculture plant communities, and by plant species in monoculture, but not in polyculture. Taxonomic classification of the Fusarium OTUs showed a predominance of F. tricinctum and F. oxysporum as well of the presence of a clade previously only found in the Southern Hemisphere. Total Fusarium richness was not affected by changes in plant community richness or correlated with soil physiochemical characteristics. However, OTU richness within two predominant phylogenetic lineages within the genus was positively or negatively correlated with soil physiochemical characteristics among samples within each lineage. This work shows that plant species, plant community richness, and soil physiochemical characteristics may all influence the composition and richness of Fusarium communities in soil.
Community-based participatory research in complex settings: clean mind–dirty hands
Makhoul, Jihad; Nakkash, Rima; Harpham, Trudy; Qutteina, Yara
2014-01-01
Despite the abundance of the literature which discusses factors supporting or inhibiting effective participation of community members in community-based research, there is a paucity of publications analysing challenges to participation in complex settings. This manuscript describes an intervention built on researcher–community partnership amid complex social conditions which challenged participation of community members at different stages of the research process. The research took place in a Palestinian refugee camp in Beirut, Lebanon and 1 of 12 in Lebanon which suffer from deteriorating social, economic and physical conditions perpetuated by state-imposed restrictions. The research team developed a community coalition which was involved in all stages of planning, designing, implementation and dissemination. In all those stages the aim was to maintain rigorous research, to follow a ‘clean mind’ approach to research, but maintain principles of community participation which necessitate ‘a dirty hand’. Despite commitment to the principles of community-based participatory research, participation of community members (including youth, parents and teachers) was affected to a great extent by the social, physical and structural conditions of the community context. Characteristics of the context where research is conducted and how it affects community members should not be overlooked since multiple factors beyond the researchers' control could interfere with the rigour of scientific research. Researchers need to develop a plan for participation with the community from the beginning with an understanding of the community forces that affect meaningful participation and address possible deterrence. PMID:23872385
Seemann, Janina; Yingst, Alexandra; Stuart-Smith, Rick D; Edgar, Graham J; Altieri, Andrew H
2018-01-01
Fish communities associated with coral reefs worldwide are threatened by habitat degradation and overexploitation. We assessed coral reefs, mangrove fringes, and seagrass meadows on the Caribbean coast of Panama to explore the influences of their proximity to one another, habitat cover, and environmental characteristics in sustaining biomass, species richness and trophic structure of fish communities in a degraded tropical ecosystem. We found 94% of all fish across all habitat types were of small body size (≤10 cm), with communities dominated by fishes that usually live in habitats of low complexity, such as Pomacentridae (damselfishes) and Gobiidae (gobies). Total fish biomass was very low, with the trend of small fishes from low trophic levels over-represented, and top predators under-represented, relative to coral reefs elsewhere in the Caribbean. For example, herbivorous fishes comprised 27% of total fish biomass in Panama relative to 10% in the wider Caribbean, and the small parrotfish Scarus iseri comprised 72% of the parrotfish biomass. We found evidence that non-coral biogenic habitats support reef-associated fish communities. In particular, the abundance of sponges on a given reef and proximity of mangroves were found to be important positive correlates of reef fish species richness, biomass, abundance and trophic structure. Our study indicates that a diverse fish community can persist on degraded coral reefs, and that the availability and arrangement within the seascape of other habitat-forming organisms, including sponges and mangroves, is critical to the maintenance of functional processes in such ecosystems.
Tsai, Jenny Hsin-Chin; Petrescu-Prahova, Miruna
2016-06-02
Cross-sector community partnerships are a potentially powerful strategy to address population health problems, including health disparities. US immigrants - commonly employed in low-wage jobs that pose high risks to their health - experience such disparities because of hazardous exposures in the workplace. Hazardous exposures contribute to chronic health problems and complicate disease management. Moreover, prevention strategies such as worksite wellness programs are not effective for low-wage immigrant groups. The purpose of this article was to describe an innovative application of social network analysis to characterize interagency connections and knowledge needed to design and deliver a comprehensive community-based chronic disease prevention program for immigrant workers. Using iterative sample expansion, we identified 42 agencies representing diverse community sectors (service agencies, faith-based organizations, unions, nonprofits, government agencies) pertinent to the health of Chinese immigrant workers. To capture data on shared information, resources, and services as well as organizational characteristics, we jointly interviewed 2 representatives from each agency. We used social network analysis to describe interagency network structure and the positions of agencies within the networks. Agency interconnections were established primarily for information sharing. In the overall interagency network, a few service-oriented agencies held central or gatekeeper positions. Strong interconnectedness occurred predominately across service, public, and nonprofit sectors. The Chinese and Pan-Asian service sectors showed the strongest interconnectedness. Network analysis yields critical understanding of community structural links and assets needed to inform decisions about actual and potential community collaborations. Alternative intervention strategies may be needed to address health disparities among immigrant workers.
Integrated Risk Research. Case of Study: Motozintla, Chiapas, Mexico
NASA Astrophysics Data System (ADS)
Novelo-Casanova, D. A.; Jaimes, M.
2015-12-01
This integrated risk research include the analysis of all components of individual constituents of risk such hazard identification, hazard exposure, and vulnerability. We determined risk to natural hazards in the community of Motozintla located in southern Mexico in the state of Chiapas (15.37ºN, 92.25ºW. Due to its geographical and geological location, this community is continuously exposed mainly to earthquakes, landslides and floods. We developed integrated studies and analysis of seismic zonation, landslides and flood susceptibility using standard methodologies. Vulnerability was quantified from data collected from local families interviews considering five social variables: characteristics of housing construction, availability of basic public services, family economic conditions, existing community plans for disaster preparedness, and risk perception. Local families surveyed were randomly selected considering a sample statistically significant. Our results were spatially represented using a Geographical Information System (GIS). Structural vulnerability curves were generated for typical housing constructions. Our integrated risk analysis demonstrates that the community of Motozintla has a high level of structural and socio-economical risk to floods and earthquakes. More than half of the population does not know any existing Civil Protection Plan and perceive that they are in high risk to landslides and floods. Although the community is located in a high seismic risk zone, most of the local people believe that cannot be impacted by a large earthquake. These natural and social conditions indicate that the community of Motozintla has a very high level of risk to natural hazards. This research will support local decision makers in developing an integrated comprehensive natural hazards mitigation and prevention program.
Chapman, Eric; Cadillo-Quiroz, Hinsby; Childers, Daniel L.; Turetsky, Merritt R.; Waldrop, Mark P.
2017-01-01
Climate change is modifying global biogeochemical cycles. Microbial communities play an integral role in soil biogeochemical cycles; knowledge about microbial composition helps provide a mechanistic understanding of these ecosystem-level phenomena. Next generation sequencing approaches were used to investigate changes in microbial functional groups during ecosystem development, in response to climate change, in northern boreal wetlands. A gradient of wetlands that developed following permafrost degradation was used to characterize changes in the soil microbial communities that mediate C cycling: a bog representing an “undisturbed” system with intact permafrost, and a younger bog and an older bog that formed following the disturbance of permafrost thaw. Reference 16S rRNA databases and several diversity indices were used to assess structural differences among these communities, to assess relationships between soil microbial community composition and various environmental variables including redox potential and pH. Rates of potential CO2 and CH4 gas production were quantified to correlate sequence data with gas flux. The abundance of organic C degraders was highest in the youngest bog, suggesting higher rates of microbial processes, including potential CH4 production. In addition, alpha diversity was also highest in the youngest bog, which seemed to be related to a more neutral pH and a lower redox potential. These results could potentially be driven by increased niche differentiation in anaerobic soils. These results suggest that ecosystem structure, which was largely driven by changes in edaphic and plant community characteristics between the “undisturbed” permafrost bog and the two bogs formed following permafrost thaw, strongly influenced microbial function.
Yingst, Alexandra; Stuart-Smith, Rick D.; Edgar, Graham J.; Altieri, Andrew H.
2018-01-01
Fish communities associated with coral reefs worldwide are threatened by habitat degradation and overexploitation. We assessed coral reefs, mangrove fringes, and seagrass meadows on the Caribbean coast of Panama to explore the influences of their proximity to one another, habitat cover, and environmental characteristics in sustaining biomass, species richness and trophic structure of fish communities in a degraded tropical ecosystem. We found 94% of all fish across all habitat types were of small body size (≤10 cm), with communities dominated by fishes that usually live in habitats of low complexity, such as Pomacentridae (damselfishes) and Gobiidae (gobies). Total fish biomass was very low, with the trend of small fishes from low trophic levels over-represented, and top predators under-represented, relative to coral reefs elsewhere in the Caribbean. For example, herbivorous fishes comprised 27% of total fish biomass in Panama relative to 10% in the wider Caribbean, and the small parrotfish Scarus iseri comprised 72% of the parrotfish biomass. We found evidence that non-coral biogenic habitats support reef-associated fish communities. In particular, the abundance of sponges on a given reef and proximity of mangroves were found to be important positive correlates of reef fish species richness, biomass, abundance and trophic structure. Our study indicates that a diverse fish community can persist on degraded coral reefs, and that the availability and arrangement within the seascape of other habitat-forming organisms, including sponges and mangroves, is critical to the maintenance of functional processes in such ecosystems. PMID:29610704
Condon, Lea A.; Pyke, David A.
2018-01-01
Shrubs, bunchgrasses and biological soil crusts (biocrusts) are believed to contribute to site resistance to plant invasions in the presence of cattle grazing. Although fire is a concomitant disturbance with grazing, little is known regarding their combined impacts on invasion resistance. We are the first to date to test the idea that biotic communities mediate the effects of disturbance on site resistance. We assessed cover of Bromus tectorum, shrubs, native bunchgrasses, lichens and mosses in 99 burned and unburned plots located on similar soils where fires occurred between 12 and 23 years before sampling. Structural equation modeling was used to test hypothesized relationships between environmental and disturbance characteristics, the biotic community and resistance to B. tectorum cover. Characteristics of fire and grazing did not directly relate to cover of B. tectorum. Relationships were mediated through shrub, bunchgrass and biocrust communities. Increased site resistance following fire was associated with higher bunchgrass cover and recovery of bunchgrasses and mosses with time since fire. Evidence of grazing was more pronounced on burned sites and was positively correlated with the cover of B. tectorum, indicating an interaction between fire and grazing that decreases site resistance. Lichen cover showed a weak, negative relationship with cover of B. tectorum. Fire reduced near-term site resistance to B. tectorum on actively grazed rangelands. Independent of fire, grazing impacts resulted in reduced site resistance to B. tectorum, suggesting that grazing management that enhances plant and biocrust communities will also enhance site resistance.
Community Colleges: General Information and Resources. ERIC Digest.
ERIC Educational Resources Information Center
Foote, Elizabeth
This digest offers general information about American community colleges and lists a variety of sources of additional information about these institutions. The digest provides the defining characteristics of community colleges and information on their curricula; statistics on enrollments and student characteristics; information on faculty…
NASA Astrophysics Data System (ADS)
Fytilis, N.; Lamb, R.; Kerans, B.; Stevens, L.; Rizzo, D. M.
2011-12-01
Fish diseases are often caused by waterborne parasites, making them ideal systems for modeling the non-linear relationships between disease dynamics, stream dwelling oligochaete communities and geochemical features. Myxobolus cerebralis, the causative agent of whirling disease in salmonid fishes, has been a major contributor to the loss of wild rainbow trout populations in numerous streams within the Intermountain West. The parasite alternates between an invertebrate and vertebrate host, being transmitted between the sediment feeding worm Tubifex tubifex (T.tubifex) and salmonid fishes. Worm community biodiversity and abundance are influenced by biogeochemical features and have been linked to disease severity in fish. The worm (T.tubifex) lives in communities with 3-4 other types of worms in stream sediments. Unfortunately, taxonomic identification of oligochaetes is largely dependent on morphological characteristics of sexually mature adults. We have collected and identified ~700 worms from eight sites using molecular genetic probes and a taxonomic key. Additionally, ~1700 worms were identified using only molecular genetic probes. To facilitate distinguishing among tubificids, we developed two multiplex molecular genetic probe-based quantitative polymerase reaction (qPCR) assays to assess tubificid communities in the study area. Similar qPCR techniques specific for M.cerebralis used to determine if individual worms were infected with the parasite. We show how simple Bayesian analysis of the qPCR data can predict the worm community structure and reveal relationships between biodiversity of host communities and host-parasite dynamics. To our knowledge, this is the first study that combines molecular data of both the host and the parasite to examine the effects of host community structure on the transmission of a parasite. Our work can be extended to examine the links between worm community structure and biogeochemical features using molecular genetics and Bayesian statistics to assist in identifying new nonlinear relationships and suggest new subsets of input parameters. Future work includes the development of a new complex systems tool capable of assimilating biological DNA sequence data and biogeochemical features using artificial neural networks and Bayesian analysis. The methodologies developed here helped mine the relationships between biodiversity of host communities and host-parasite dynamics. The results from our study will be useful to managers and researchers for assessing the risk of whirling disease in drainages where tubificid community composition data are needed. This collaboration between modelers, field ecologists and geneticists will prove useful in modeling efforts and will enable more effective, high-volume hypothesis generation. The ability to characterize areas of high whirling disease risk is essential for improving our understanding of the dynamics of M.cerebralis such that appropriate management strategies can be implemented.
Muster, Christoph; Meyer, Marc; Sattler, Thomas
2014-01-01
Understanding how space affects the occurrence of native and non-native species is essential for inferring processes that shape communities. However, studies considering spatial and environmental variables for the entire community - as well as for the native and non-native assemblages in a single study - are scarce for animals. Harvestmen communities in central Europe have undergone drastic turnovers during the past decades, with several newly immigrated species, and thus provide a unique system to study such questions. We studied the wall-dwelling harvestmen communities from 52 human settlements in Luxembourg and found the assemblages to be largely dominated by non-native species (64% of specimens). Community structure was analysed using Moran's eigenvector maps as spatial variables, and landcover variables at different radii (500 m, 1000 m, 2000 m) in combination with climatic parameters as environmental variables. A surprisingly high portion of pure spatial variation (15.7% of total variance) exceeded the environmental (10.6%) and shared (4%) components of variation, but we found only minor differences between native and non-native assemblages. This could result from the ecological flexibility of both, native and non-native harvestmen that are not restricted to urban habitats but also inhabit surrounding semi-natural landscapes. Nevertheless, urban landcover variables explained more variation in the non-native community, whereas coverage of semi-natural habitats (forests, rivers) at broader radii better explained the native assemblage. This indicates that some urban characteristics apparently facilitate the establishment of non-native species. We found no evidence for competitive replacement of native by invasive species, but a community with novel combination of native and non-native species.
Muster, Christoph; Meyer, Marc; Sattler, Thomas
2014-01-01
Understanding how space affects the occurrence of native and non-native species is essential for inferring processes that shape communities. However, studies considering spatial and environmental variables for the entire community – as well as for the native and non-native assemblages in a single study – are scarce for animals. Harvestmen communities in central Europe have undergone drastic turnovers during the past decades, with several newly immigrated species, and thus provide a unique system to study such questions. We studied the wall-dwelling harvestmen communities from 52 human settlements in Luxembourg and found the assemblages to be largely dominated by non-native species (64% of specimens). Community structure was analysed using Moran's eigenvector maps as spatial variables, and landcover variables at different radii (500 m, 1000 m, 2000 m) in combination with climatic parameters as environmental variables. A surprisingly high portion of pure spatial variation (15.7% of total variance) exceeded the environmental (10.6%) and shared (4%) components of variation, but we found only minor differences between native and non-native assemblages. This could result from the ecological flexibility of both, native and non-native harvestmen that are not restricted to urban habitats but also inhabit surrounding semi-natural landscapes. Nevertheless, urban landcover variables explained more variation in the non-native community, whereas coverage of semi-natural habitats (forests, rivers) at broader radii better explained the native assemblage. This indicates that some urban characteristics apparently facilitate the establishment of non-native species. We found no evidence for competitive replacement of native by invasive species, but a community with novel combination of native and non-native species. PMID:24595309
ERIC Educational Resources Information Center
Kalleberg, Arne L.; Dunn, Michael
2014-01-01
The extent to which community college students experience labor market success depends on both the attributes of the individual students and the characteristics of the community colleges they attend. In this paper, we examine the impact of community college characteristics on the earnings of first-time college students who enrolled in the North…
Gray, Claudia L; Lewis, Owen T; Chung, Arthur Y C; Fayle, Tom M
2015-01-01
The expansion of oil palm plantations at the expense of tropical forests is causing declines in many species and altering ecosystem functions. Maintaining forest-dependent species and processes in these landscapes may therefore limit the negative impacts of this economically important industry. Protecting riparian vegetation may be one such opportunity; forest buffer strips are commonly protected for hydrological reasons, but can also conserve functionally important taxa and the processes they support. We surveyed leaf litter ant communities within oil palm-dominated landscapes in Sabah, Malaysia, using protein baits. As the scavenging activity of ants influences important ecological characteristics such as nutrient cycling and soil structure, we quantified species-specific rates of bait removal to examine how this process may change across land uses and establish which changes in community structure underlie observed shifts in activity. Riparian reserves had similar ant species richness, community composition and scavenging rates to nearby continuous logged forest. Reserve width and vegetation structure did not affect ant species richness significantly. However, the number of foraging individuals decreased with increasing reserve width, and scavenging rate increased with vegetation complexity. Oil palm ant communities were characterized by significantly lower species richness than logged forest and riparian reserves and also by altered community composition and reduced scavenging rates. Reduced scavenging activity in oil palm was not explained by a reduction in ant species richness, nor by replacement of forest ant species by those with lower per species scavenging rates. There was also no significant effect of land use on the scavenging activity of the forest species that persisted in oil palm. Rather, changes in scavenging activity were best explained by a reduction in the mean rate of bait removal per individual ant across all species in the community. Synthesis and applications. Our results suggest that riparian reserves are comparable to areas of logged forest in terms of ant community composition and ant-mediated scavenging. Hence, in addition to protecting large continuous areas of primary and logged forest, maintaining riparian reserves is a successful strategy for conserving leaf litter ants and their scavenging activities in tropical agricultural landscapes. PMID:25678717
Dziadkowiec, O; Meissen, G J; Merkle, E C
2017-11-01
The link between social capital and self-reported health has been widely explored. On the other hand, we know less about the relationship between social capital, community socioeconomic characteristics, and non-social capital-related individual differences, and about their impact on self-reported health in community settings. Cross-sectional study design with a proportional sample of 7965 individuals from 20 US communities were analyzed using multilevel linear regression models, where individuals were nested within communities. The response rates ranged from 13.5% to 25.4%. Findings suggest that perceptions of the community and individual level socioeconomic characteristics were stronger predictors of self-reported health than were social capital or community socioeconomic characteristics. Policy initiatives aimed at increasing social capital should first assess community member's perceptions of their communities to uncover potential assets to help increase social capital. Copyright © 2017 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rodrigues, Ana Maria; Quintino, Victor; Pereira, Fábio; Freitas, Rosa
2012-09-01
The macroinvertebrate spatial distribution patterns in the Lagoon of Óbidos were studied in 1984 and revisited in 2002. The overall surficial sediments and benthic community patterns show consistent similarities in the two sampling periods, but also important differences. The lagoon is relatively shallow, with about 1/3 of the area covered with extensive intertidal sand banks. These are interrupted by a navigation channel bordering the northern margin (1984) and, following dredging operations, a new navigation channel was opened along the southern margin (2002). The sediments in the navigation channels were coarser and with less percentage of fines in 2002 than in 1984. Arthropods dominated the species richness and abundance in 1984, but were much less important in 2002, when the community was dominated by molluscs and annelids, both in species numbers as well as in abundance. In 1984, the structure of the macrofauna communities closely followed a general model proposed for Atlantic and Mediterranean lagoons, with the marine, the transition and the lagoon communities occupying very well defined areas. This gradient was in accordance with an increase in the fines and organic matter content directed inwards allowing for the coexistence of several characteristic lagoon species with others characteristic of organic enriched sediments. In 2002 this spatial pattern is still recognized but the marine and the transition communities are spatially mixed, occupying both the entrance region and the navigation channels, whereas the characteristic lagoon community identified in 1984 was only recognized in a group of sites located along the southern margin in 2002. Several species show very important changes in their distribution extent in the lagoon system. These changes essentially show a generalized inward expansion of the distribution range of the marine species, in agreement with a larger influence of marine conditions toward the inner areas of the lagoon. This study shows how sensitive lagoon systems can be to the regime of water exchange rate with the ocean being possible to induce more or less marine conditions to the system as a response to the flow and exchange rate of water through the communication inlet following dredging interventions.
Sun, Yu; Li, Junhua; Suckling, John; Feng, Lei
2017-01-01
Human brain is structurally and functionally asymmetrical and the asymmetries of brain phenotypes have been shown to change in normal aging. Recent advances in graph theoretical analysis have showed topological lateralization between hemispheric networks in the human brain throughout the lifespan. Nevertheless, apparent discrepancies of hemispheric asymmetry were reported between the structural and functional brain networks, indicating the potentially complex asymmetry patterns between structural and functional networks in aging population. In this study, using multimodal neuroimaging (resting-state fMRI and structural diffusion tensor imaging), we investigated the characteristics of hemispheric network topology in 76 (male/female = 15/61, age = 70.08 ± 5.30 years) community-dwelling older adults. Hemispheric functional and structural brain networks were obtained for each participant. Graph theoretical approaches were then employed to estimate the hemispheric topological properties. We found that the optimal small-world properties were preserved in both structural and functional hemispheric networks in older adults. Moreover, a leftward asymmetry in both global and local levels were observed in structural brain networks in comparison with a symmetric pattern in functional brain network, suggesting a dissociable process of hemispheric asymmetry between structural and functional connectome in healthy older adults. Finally, the scores of hemispheric asymmetry in both structural and functional networks were associated with behavioral performance in various cognitive domains. Taken together, these findings provide new insights into the lateralized nature of multimodal brain connectivity, highlight the potentially complex relationship between structural and functional brain network alterations, and augment our understanding of asymmetric structural and functional specializations in normal aging. PMID:29209197
NASA Astrophysics Data System (ADS)
Ma, Tianren; Xia, Zhengyou
2017-05-01
Currently, with the rapid development of information technology, the electronic media for social communication is becoming more and more popular. Discovery of communities is a very effective way to understand the properties of complex networks. However, traditional community detection algorithms consider the structural characteristics of a social organization only, with more information about nodes and edges wasted. In the meanwhile, these algorithms do not consider each node on its merits. Label propagation algorithm (LPA) is a near linear time algorithm which aims to find the community in the network. It attracts many scholars owing to its high efficiency. In recent years, there are more improved algorithms that were put forward based on LPA. In this paper, an improved LPA based on random walk and node importance (NILPA) is proposed. Firstly, a list of node importance is obtained through calculation. The nodes in the network are sorted in descending order of importance. On the basis of random walk, a matrix is constructed to measure the similarity of nodes and it avoids the random choice in the LPA. Secondly, a new metric IAS (importance and similarity) is calculated by node importance and similarity matrix, which we can use to avoid the random selection in the original LPA and improve the algorithm stability. Finally, a test in real-world and synthetic networks is given. The result shows that this algorithm has better performance than existing methods in finding community structure.
Linking microbial community structure to function in representative simulated systems.
Marcus, Ian M; Wilder, Hailey A; Quazi, Shanin J; Walker, Sharon L
2013-04-01
Pathogenic bacteria are generally studied as a single strain under ideal growing conditions, although these conditions are not the norm in the environments in which pathogens typically proliferate. In this investigation, a representative microbial community along with Escherichia coli O157:H7, a model pathogen, was studied in three environments in which such a pathogen could be found: a human colon, a septic tank, and groundwater. Each of these systems was built in the lab in order to retain the physical/chemical and microbial complexity of the environments while maintaining control of the feed into the models. The microbial community in the colon was found to have a high percentage of bacteriodetes and firmicutes, while the septic tank and groundwater systems were composed mostly of proteobacteria. The introduction of E. coli O157:H7 into the simulated systems elicited a shift in the structures and phenotypic cell characteristics of the microbial communities. The fate and transport of the microbial community with E. coli O157:H7 were found to be significantly different from those of E. coli O157:H7 studied as a single isolate, suggesting that the behavior of the organism in the environment was different from that previously conceived. The findings in this study clearly suggest that to gain insight into the fate of pathogens, cells should be grown and analyzed under conditions simulating those of the environment in which the pathogens are present.
Linking Microbial Community Structure to Function in Representative Simulated Systems
Marcus, Ian M.; Wilder, Hailey A.; Quazi, Shanin J.
2013-01-01
Pathogenic bacteria are generally studied as a single strain under ideal growing conditions, although these conditions are not the norm in the environments in which pathogens typically proliferate. In this investigation, a representative microbial community along with Escherichia coli O157:H7, a model pathogen, was studied in three environments in which such a pathogen could be found: a human colon, a septic tank, and groundwater. Each of these systems was built in the lab in order to retain the physical/chemical and microbial complexity of the environments while maintaining control of the feed into the models. The microbial community in the colon was found to have a high percentage of bacteriodetes and firmicutes, while the septic tank and groundwater systems were composed mostly of proteobacteria. The introduction of E. coli O157:H7 into the simulated systems elicited a shift in the structures and phenotypic cell characteristics of the microbial communities. The fate and transport of the microbial community with E. coli O157:H7 were found to be significantly different from those of E. coli O157:H7 studied as a single isolate, suggesting that the behavior of the organism in the environment was different from that previously conceived. The findings in this study clearly suggest that to gain insight into the fate of pathogens, cells should be grown and analyzed under conditions simulating those of the environment in which the pathogens are present. PMID:23396331
Li, Yong-Chun; Liu, Bu-Rong; Guo, Shuai; Wu, Qi-Feng; Qin, Hua; Wu, Jia-Sen; Xu, Qiu-Fang
2014-01-01
To investigate the effects of different forest stands in subtropical China on the communities of soil ammonia-oxidizing microorganisms, we characterized the abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB), and the community structure of AOA in soils under stands of broad-leaved (BF) , Chinese fir (CF) , Pinus massoniana (PF) and moso bamboo (MB) forests using real-time quantitative PCR and denaturing gradient gel electrophoresis (DGGE). The results showed that the AOA gene copy numbers (1.62 x 10(6)-1.88 x 10(7) per gram of dry soil) were significantly higher than those of AOB genes (2.41 x 10(5)-4.36 x 10(5) per gram of dry soil). Significantly higher soil AOA abundance was detected in the MB than that in the CF (P < 0.05), and the latter was significantly higher than that in the BF and PF soils (P < 0.05). There were no significant differences in the soil AOB abundance among the four forest stands. As indicated by DGGE pattern, soil AOA species varied among the four forest stands. There was a difference in the soil AOA communities between the CF and MB stands. The AOA demonstrated a competitive advantage over the AOB in the soils under these major subtropical forests. Soil pH, concentrations of soil available potassium and organic carbon as well as the forest type were the main factors that influence the variation of AOA community structure and diversity.
Smith, Richard J.; Lehning, Amanda J.; Dunkle, Ruth E.
2012-01-01
Accurate conceptualization and measurement of age-friendly community characteristics would help to reduce barriers to documenting the effects on elders of interventions to create such communities. This article contributes to the measurement of age-friendly communities through an exploratory factor analysis of items reflecting an existing U.S. Environmental Protection Agency policy framework. From a sample of urban elders (n =1,376), we identified six factors associated with demographic and health characteristics: Access to Business and Leisure, Social Interaction, Access to Health Care, Neighborhood Problems, Social Support, and Community Engagement. Future research should explore the effects of these factors across contexts and populations. PMID:23350565