Science.gov

Sample records for community structural shifts

  1. Distributional shifts in size structure of phytoplankton community

    NASA Astrophysics Data System (ADS)

    Waga, H.; Hirawake, T.; Fujiwara, A.; Nishino, S.; Kikuchi, T.; Suzuki, K.; Takao, S.

    2015-12-01

    Increased understanding on how marine species shift their distribution is required for effective conservation of fishery resources under climate change. Previous studies have often predicted distributional shifts of fish using satellite derived sea surface temperature (SST). However, SST may not fully represent the changes in species distribution through food web structure and as such this remains an open issue due to lack of ecological perspective on energy transfer process in the earlier studies. One of the most important factors in ecosystem is composition of phytoplankton community, and its size structure determines energy flow efficiency from base to higher trophic levels. To elucidate spatiotemporal variation in phytoplankton size structure, chlorophyll-a size distribution (CSD) algorithm was developed using spectral variance of phytoplankton absorption coefficient through principal component analysis. Slope of CSD (CSD slope) indicates size structure of phytoplankton community where, strong and weak magnitudes of CSD slope indicate smaller and larger phytoplankton structure, respectively. Shifts in CSD slope and SST were derived as the ratio of temporal trend over the 12-year period (2003-2014) to 2-dimensional spatial gradient and the resulting global median velocity of CSD slope and SST were 0.361 and 0.733 km year-1, respectively. In addition, the velocity of CSD slope monotonically increases with increasing latitude, while relatively complex latitudinal pattern for SST emerged. Moreover, angle of shifts suggest that species are required to shift their distribution toward not limited to simple pole-ward migration, and some regions exhibit opposite direction between the velocity of CSD slope and SST. These findings further imply that combined phytoplankton size structure and SST may contribute for more accurate prediction of species distribution shifts relative to existing studies which only considering variations in thermal niches.

  2. Perfluoroalkyl Acids Shift Microbial Community Structure Across Experimental Scales

    NASA Astrophysics Data System (ADS)

    Weathers, T. S.; Sharp, J.

    2016-12-01

    Perfluoroalkyl acids (PFAAs) are contaminants of emerging concern that have increasingly been found in groundwater and drinking water systems. Previously, we demonstrated that PFAAs significantly alter the abundance of specific microbial clades in batch reductive dechlorinating systems, resulting in decreased chlorinated solvent attenuation capabilities. To further understand the impacts of PFAA exposure on subsurface microbial processes and PFAA transport, we investigated changes in microbial community structure as a function of PFAA presence in flow-through columns simulating aquifer transport. Phylogenetic analysis using high throughput, next generation sequencing performed after exposure to 250 pore volumes of source zone concentrations of PFAAs (10 mg/L each of 11 analytes including PFOS and PFOA) resulted in patterns that mirrored those observed in batch systems, demonstrating a conservation of community dynamics across experimental scales. Of the nine clades observed in both batch and flow-through systems, six were similarly impacted as a function of PFAA exposure, regardless of the experimental differences in transport and redox state. Specifically, the presence of PFAAs enhanced the relative abundance of Archaea, Bacteroidetes (phylum), and the family Veillonellaceae in both systems. Repressed clades include the genus Sedimentibacter, Ruminococcaceae (family), and the Anaerolineales, which contains Dehalococcoides, a genus known for its ability to fully dechlorinate TCE. As PFAAs are often co-located with TCE and BTEX, changes in microbial community structure can result in hindered bioremediation of these co-contaminants. Consideration of community shifts and corresponding changes in behavior, such as repressed reductive dechlorination or increased biofilm formation, will aid in the development of conceptual site models that account for co-contaminant bioremediation potential and PFAA transport.

  3. Soil phosphorus depletion and shifts in plant communities change bacterial community structure in a long-term grassland management trial.

    PubMed

    Adair, Karen L; Wratten, Steve; Lear, Gavin

    2013-06-01

    Agricultural systems rely on healthy soils and their sustainability requires understanding the long-term impacts of agricultural practices on soils, including microbial communities. We examined the impact of 17 years of land management on soil bacterial communities in a New Zealand randomized-block pasture trial. Significant variation in bacterial community structure related to mowing and plant biomass removal, while nitrogen fertilizer had no effect. Changes in soil chemistry and legume abundance described 52% of the observed variation in the bacterial community structure. Legumes (Trifolium species) were absent in unmanaged plots but increased in abundance with management intensity; 11% of the variation in soil bacterial community structure was attributed to this shift in the plant community. Olsen P explained 10% of the observed heterogeneity, which is likely due to persistent biomass removal resulting in P limitation; Olsen P was significantly lower in plots with biomass removed (14 mg kg(-1) ± 1.3SE) compared with plots that were not mown, or where biomass was left after mowing (32 mg kg(-1) ± 1.6SE). Our results suggest that removal of plant biomass and associated phosphorus, as well as shifts in the plant community, have greater long-term impacts on soil bacterial community structure than application of nitrogen fertilizers.

  4. The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide.

    PubMed

    He, Zhili; Piceno, Yvette; Deng, Ye; Xu, Meiying; Lu, Zhenmei; Desantis, Todd; Andersen, Gary; Hobbie, Sarah E; Reich, Peter B; Zhou, Jizhong

    2012-02-01

    One of the major factors associated with global change is the ever-increasing concentration of atmospheric CO(2). Although the stimulating effects of elevated CO(2) (eCO(2)) on plant growth and primary productivity have been established, its impacts on the diversity and function of soil microbial communities are poorly understood. In this study, phylogenetic microarrays (PhyloChip) were used to comprehensively survey the richness, composition and structure of soil microbial communities in a grassland experiment subjected to two CO(2) conditions (ambient, 368 p.p.m., versus elevated, 560 p.p.m.) for 10 years. The richness based on the detected number of operational taxonomic units (OTUs) significantly decreased under eCO(2). PhyloChip detected 2269 OTUs derived from 45 phyla (including two from Archaea), 55 classes, 99 orders, 164 families and 190 subfamilies. Also, the signal intensity of five phyla (Crenarchaeota, Chloroflexi, OP10, OP9/JS1, Verrucomicrobia) significantly decreased at eCO(2), and such significant effects of eCO(2) on microbial composition were also observed at the class or lower taxonomic levels for most abundant phyla, such as Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Acidobacteria, suggesting a shift in microbial community composition at eCO(2). Additionally, statistical analyses showed that the overall taxonomic structure of soil microbial communities was altered at eCO(2). Mantel tests indicated that such changes in species richness, composition and structure of soil microbial communities were closely correlated with soil and plant properties. This study provides insights into our understanding of shifts in the richness, composition and structure of soil microbial communities under eCO(2) and environmental factors shaping the microbial community structure.

  5. Shifts in bacterial community structure during succession in a glacier foreland of the High Arctic.

    PubMed

    Kim, Mincheol; Jung, Ji Young; Laffly, Dominique; Kwon, Hye Young; Lee, Yoo Kyung

    2017-01-01

    Primary succession after glacier retreat has been widely studied in plant communities, but bacterial succession is still poorly understood. In particular, few studies of microbial succession have been performed in the Arctic. We investigated the shifts in bacterial community structure and soil physicochemical properties along a successional gradient in a 100-year glacier foreland of the High Arctic. Multivariate analyses revealed that time after glacier retreat played a key role in associated bacterial community structure during succession. However, environmental filtering (i.e. pH and soil temperature) also accounted for a different, but substantial, proportion of the bacterial community structure. Using the functional trait-based approach, we found that average rRNA operon (rrn) copy number of bacterial communities is high in earlier successional stages and decreased over time. This suggests that soil bacterial taxa with higher rrn copy number have a selective advantage in early successional stages due to their ability of rapidly responding to nutrient inputs in newly exposed soils after glacier retreat. Taken together, our results demonstrate that both deglaciation time and environmental filters play key roles in structuring bacterial communities and soil bacterial groups with different ecological strategies occur in different stages of succession in this glacier foreland. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Halotolerant PGPRs Prevent Major Shifts in Indigenous Microbial Community Structure Under Salinity Stress.

    PubMed

    Bharti, Nidhi; Barnawal, Deepti; Maji, Deepamala; Kalra, Alok

    2015-07-01

    The resilience of soil microbial populations and processes to environmental perturbation is of increasing interest as alteration in rhizosphere microbial community dynamics impacts the combined functions of plant-microbe interactions. The present study was conducted to investigate the effect of inoculation with halotolerant rhizobacteria Bacillus pumilus (STR2), Halomonas desiderata (STR8), and Exiguobacterium oxidotolerans (STR36) on the indigenous root-associated microbial (bacterial and fungal) communities in maize under non-saline and salinity stress. Plants inoculated with halotolerant rhizobacteria recorded improved growth as illustrated by significantly higher shoot and root dry weight and elongation in comparison to un-inoculated control plants under both non-saline and saline conditions. Additive main effect and multiplicative interaction ordination analysis revealed that plant growth promoting rhizobacteria (PGPR) inoculations as well as salinity are major drivers of microbial community shift in maize rhizosphere. Salinity negatively impacts microbial community as analysed through diversity indices; among the PGPR-inoculated plants, STR2-inoculated plants recorded higher values of diversity indices. As observed in the terminal-restriction fragment length polymorphism analysis, the inoculation of halotolerant rhizobacteria prevents major shift of the microbial community structure, thus enhancing the resilience capacity of the microbial communities.

  7. A Dissolved Oxygen Threshold for Shifts in Bacterial Community Structure in a Seasonally Hypoxic Estuary

    PubMed Central

    Spietz, Rachel L.; Williams, Cheryl M.; Rocap, Gabrielle; Horner-Devine, M. Claire

    2015-01-01

    Pelagic ecosystems can become depleted of dissolved oxygen as a result of both natural processes and anthropogenic effects. As dissolved oxygen concentration decreases, energy shifts from macrofauna to microorganisms, which persist in these hypoxic zones. Oxygen-limited regions are rapidly expanding globally; however, patterns of microbial communities associated with dissolved oxygen gradients are not yet well understood. To assess the effects of decreasing dissolved oxygen on bacteria, we examined shifts in bacterial community structure over space and time in Hood Canal, Washington, USA−a glacial fjord-like water body that experiences seasonal low dissolved oxygen levels known to be detrimental to fish and other marine organisms. We found a strong negative association between bacterial richness and dissolved oxygen. Bacterial community composition across all samples was also strongly associated with the dissolved oxygen gradient, and significant changes in bacterial community composition occurred at a dissolved oxygen concentration between 5.18 and 7.12 mg O2 L-1. This threshold value of dissolved oxygen is higher than classic definitions of hypoxia (<2.0 mg O2 L-1), suggesting that changes in bacterial communities may precede the detrimental effects on ecologically and economically important macrofauna. Furthermore, bacterial taxa responsible for driving whole community changes across the oxygen gradient are commonly detected in other oxygen-stressed ecosystems, suggesting that the patterns we uncovered in Hood Canal may be relevant in other low oxygen ecosystems. PMID:26270047

  8. A Dissolved Oxygen Threshold for Shifts in Bacterial Community Structure in a Seasonally Hypoxic Estuary.

    PubMed

    Spietz, Rachel L; Williams, Cheryl M; Rocap, Gabrielle; Horner-Devine, M Claire

    2015-01-01

    Pelagic ecosystems can become depleted of dissolved oxygen as a result of both natural processes and anthropogenic effects. As dissolved oxygen concentration decreases, energy shifts from macrofauna to microorganisms, which persist in these hypoxic zones. Oxygen-limited regions are rapidly expanding globally; however, patterns of microbial communities associated with dissolved oxygen gradients are not yet well understood. To assess the effects of decreasing dissolved oxygen on bacteria, we examined shifts in bacterial community structure over space and time in Hood Canal, Washington, USA-a glacial fjord-like water body that experiences seasonal low dissolved oxygen levels known to be detrimental to fish and other marine organisms. We found a strong negative association between bacterial richness and dissolved oxygen. Bacterial community composition across all samples was also strongly associated with the dissolved oxygen gradient, and significant changes in bacterial community composition occurred at a dissolved oxygen concentration between 5.18 and 7.12 mg O2 L(-1). This threshold value of dissolved oxygen is higher than classic definitions of hypoxia (<2.0 mg O2 L(-1)), suggesting that changes in bacterial communities may precede the detrimental effects on ecologically and economically important macrofauna. Furthermore, bacterial taxa responsible for driving whole community changes across the oxygen gradient are commonly detected in other oxygen-stressed ecosystems, suggesting that the patterns we uncovered in Hood Canal may be relevant in other low oxygen ecosystems.

  9. Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions

    PubMed Central

    Bletz, Molly C.; Goedbloed, Daniel J.; Sanchez, Eugenia; Reinhardt, Timm; Tebbe, Christoph C.; Bhuju, Sabin; Geffers, Robert; Jarek, Michael; Vences, Miguel; Steinfartz, Sebastian

    2016-01-01

    Complex microbial communities inhabit vertebrate digestive systems but thorough understanding of the ecological dynamics and functions of host-associated microbiota within natural habitats is limited. We investigate the role of environmental conditions in shaping gut and skin microbiota under natural conditions by performing a field survey and reciprocal transfer experiments with salamander larvae inhabiting two distinct habitats (ponds and streams). We show that gut and skin microbiota are habitat-specific, demonstrating environmental factors mediate community structure. Reciprocal transfer reveals that gut microbiota, but not skin microbiota, responds differentially to environmental change. Stream-to-pond larvae shift their gut microbiota to that of pond-to-pond larvae, whereas pond-to-stream larvae change to a community structure distinct from both habitat controls. Predicted functions, however, match that of larvae from the destination habitats in both cases. Thus, microbial function can be matched without taxonomic coherence and gut microbiota appears to exhibit metagenomic plasticity. PMID:27976718

  10. Rapid shifts in picoeukaryote community structure in response to ocean acidification.

    PubMed

    Meakin, Nicholas G; Wyman, Michael

    2011-09-01

    Rapid shifts in picoeukaryote community structure were observed during a CO(2) perturbation experiment in which we followed the development of phytoplankton blooms in nutrient-amended mesocosms under the present day or predicted future atmospheric pCO(2) (750 μatm, seawater pH 7.8). Analysis of rbcL clone libraries (encoding the large subunit of RubisCO) and specific quantitative PCR assays showed that two prasinophytes closely related to Micromonas pusilla and Bathycoccus prasinos were present, but responded very differently to high CO(2)/acidification. We found that the abundance of Micromonas-like phylotypes was significantly higher (>20-fold) under elevated CO(2)/low pH, whereas the Bathycoccus-like phylotypes were more evenly distributed between treatments and dominated the prasinophyte community under ambient conditions.

  11. Plant secondary metabolite-induced shifts in bacterial community structure and degradative ability in contaminated soil.

    PubMed

    Uhlik, Ondrej; Musilova, Lucie; Ridl, Jakub; Hroudova, Miluse; Vlcek, Cestmir; Koubek, Jiri; Holeckova, Marcela; Mackova, Martina; Macek, Tomas

    2013-10-01

    The aim of the study was to investigate how selected natural compounds (naringin, caffeic acid, and limonene) induce shifts in both bacterial community structure and degradative activity in long-term polychlorinated biphenyl (PCB)-contaminated soil and how these changes correlate with changes in chlorobiphenyl degradation capacity. In order to address this issue, we have integrated analytical methods of determining PCB degradation with pyrosequencing of 16S rRNA gene tag-encoded amplicons and DNA-stable isotope probing (SIP). Our model system was set in laboratory microcosms with PCB-contaminated soil, which was enriched for 8 weeks with the suspensions of flavonoid naringin, terpene limonene, and phenolic caffeic acid. Our results show that application of selected plant secondary metabolites resulted in bacterial community structure far different from the control one (no natural compound amendment). The community in soil treated with caffeic acid is almost solely represented by Proteobacteria, Acidobacteria, and Verrucomicrobia (together over 99 %). Treatment with naringin resulted in an enrichment of Firmicutes to the exclusion of Acidobacteria and Verrucomicrobia. SIP was applied in order to identify populations actively participating in 4-chlorobiphenyl catabolism. We observed that naringin and limonene in soil foster mainly populations of Hydrogenophaga spp., caffeic acid Burkholderia spp. and Pseudoxanthomonas spp. None of these populations were detected among 4-chlorobiphenyl utilizers in non-amended soil. Similarly, the degradation of individual PCB congeners was influenced by the addition of different plant compounds. Residual content of PCBs was lowest after treating the soil with naringin. Addition of caffeic acid resulted in comparable decrease of total PCBs with non-amended soil; however, higher substituted congeners were more degraded after caffeic acid treatment compared to all other treatments. Finally, it appears that plant secondary metabolites

  12. Shift of anammox bacterial community structure along the Pearl Estuary and the impact of environmental factors

    NASA Astrophysics Data System (ADS)

    Fu, Bingbing; Liu, Jiwen; Yang, Hongmei; Hsu, Ting Chang; He, Biyan; Dai, Minhan; Kao, Shuh Ji; Zhao, Meixun; Zhang, Xiao-Hua

    2015-04-01

    Anaerobic ammonium oxidation (anammox) plays an important role in the marine nitrogen cycle. The Pearl Estuary, a typical subtropical estuary characterized by hypoxia upstream and high loads of organic matter and inorganic nutrients caused by anthropogenic activities, has received extensive attention. In this study, anammox bacterial community structures in surface sediments along the Pearl Estuary were investigated using 16S rRNA and hydrazine oxidoreductase (HZO) genes. In addition, abundance of anammox bacteria in both water and surface sediments was investigated by quantitative PCR. Obvious anammox bacterial community structure shift was observed in surface sediments, in which the dominant genus changed from "Candidatus Brocadia" or "Candidatus Anammoxoglobus" to "Candidatus Scalindua" along the salinity gradient from freshwater to the open ocean based on 16S rRNA gene and HZO amino acid phylotypes. This distribution pattern was associated with salinity, temperature, pH of overlying water, and particularly C/N ratio. Phylogenetic analysis unraveled a rich diversity of anammox bacteria including four novel clusters provisionally named "Candidatus Jugangensis," "Candidatus Oceanicum," "Candidatus Anammoxidans," and "Candidatus Aestuarianus." The abundance of anammox bacteria in surface sediments, bottom and surface waters ranged from 4.22 × 105 to 2.55 × 106 copies g-1, 1.24 × 104 to 1.01×105 copies L-1, and 8.07×103 to 8.86×105 copies L-1, respectively. The abundance of anammox bacteria in the water column was positively correlated with NO2- and NO3-, and negatively correlated with dissolved oxygen, although an autochthonous source might contribute to the observed abundance of anammox bacteria.

  13. Shifts in microbial community structure and function in surface waters impacted by unconventional oil and gas wastewater revealed by metagenomics.

    PubMed

    Fahrenfeld, N L; Delos Reyes, Hannah; Eramo, Alessia; Akob, Denise M; Mumford, Adam C; Cozzarelli, Isabelle M

    2017-02-15

    Unconventional oil and gas (UOG) production produces large quantities of wastewater with complex geochemistry and largely uncharacterized impacts on surface waters. In this study, we assessed shifts in microbial community structure and function in sediments and waters upstream and downstream from a UOG wastewater disposal facility. To do this, quantitative PCR for 16S rRNA and antibiotic resistance genes along with metagenomic sequencing were performed. Elevated conductivity and markers of UOG wastewater characterized sites sampled downstream from the disposal facility compared to background sites. Shifts in overall high level functions and microbial community structure were observed between background sites and downstream sediments. Increases in Deltaproteobacteria and Methanomicrobia and decreases in Thaumarchaeota were observed at downstream sites. Genes related to dormancy and sporulation and methanogenic respiration were 18-86 times higher at downstream, impacted sites. The potential for these sediments to serve as reservoirs of antimicrobial resistance was investigated given frequent reports of the use of biocides to control the growth of nuisance bacteria in UOG operations. A shift in resistance profiles downstream of the UOG facility was observed including increases in acrB and mexB genes encoding for multidrug efflux pumps, but not overall abundance of resistance genes. The observed shifts in microbial community structure and potential function indicate changes in respiration, nutrient cycling, and markers of stress in a stream impacted by UOG waste disposal operations.

  14. Shifts in microbial community structure and function in surface waters impacted by unconventional oil and gas wastewater revealed by metagenomics

    USGS Publications Warehouse

    Fahrenfeld, N.L.; Reyes, Hannah Delos; Eramo, Alessia; Akob, Denise M.; Mumford, Adam; Cozzarelli, Isabelle M.

    2017-01-01

    Unconventional oil and gas (UOG) production produces large quantities of wastewater with complex geochemistry and largely uncharacterized impacts on surface waters. In this study, we assessed shifts in microbial community structure and function in sediments and waters upstream and downstream from a UOG wastewater disposal facility. To do this, quantitative PCR for 16S rRNA and antibiotic resistance genes along with metagenomic sequencing were performed. Elevated conductivity and markers of UOG wastewater characterized sites sampled downstream from the disposal facility compared to background sites. Shifts in overall high level functions and microbial community structure were observed between background sites and downstream sediments. Increases in Deltaproteobacteria and Methanomicrobia and decreases in Thaumarchaeota were observed at downstream sites. Genes related to dormancy and sporulation and methanogenic respiration were 18–86 times higher at downstream, impacted sites. The potential for these sediments to serve as reservoirs of antimicrobial resistance was investigated given frequent reports of the use of biocides to control the growth of nuisance bacteria in UOG operations. A shift in resistance profiles downstream of the UOG facility was observed including increases in acrB and mexB genes encoding for multidrug efflux pumps, but not overall abundance of resistance genes. The observed shifts in microbial community structure and potential function indicate changes in respiration, nutrient cycling, and markers of stress in a stream impacted by UOG waste disposal operations.

  15. Shifting the balance of fermentation products between hydrogen and volatile fatty acids: microbial community structure and function.

    PubMed

    Miceli, Joseph F; Torres, César I; Krajmalnik-Brown, Rosa

    2016-12-01

    Fermentation is a key process in many anaerobic environments. Varying the concentration of electron donor fed to a fermenting community is known to shift the distribution of products between hydrogen, fatty acids and alcohols. Work to date has focused mainly on the fermentation of glucose, and how the microbial community structure is affected has not been explored. We fed ethanol, lactate, glucose, sucrose or molasses at 100 me- eq. L(-1), 200 me- eq. L(-1) or 400 me- eq. L(-1) to batch-fed cultures with fermenting, methanogenic communities. In communities fed high concentrations of electron donor, the fraction of electrons channeled to methane decreased, from 34% to 6%, while the fraction of electrons channeled to short chain fatty acids increased, from 52% to 82%, averaged across all electron donors. Ethanol-fed cultures did not produce propionate, but did show an increase in electrons directed to acetate as initial ethanol concentration increased. In glucose, sucrose, molasses and lactate-fed cultures, propionate accumulation co-occurred with known propionate producing organisms. Overall, microbial communities were determined by the substrate provided, rather than its initial concentration, indicating that a change in community function, rather than community structure, is responsible for shifts in the fermentation products produced. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Bacterial community structure and function shift along a successional series of tidal flats in the Yellow River Delta

    PubMed Central

    Lv, Xiaofei; Ma, Bin; Yu, Junbao; Chang, Scott X.; Xu, Jianming; Li, Yunzhao; Wang, Guangmei; Han, Guangxuan; Bo, Guan; Chu, Xiaojing

    2016-01-01

    Coastal ecosystems play significant ecological and economic roles but are threatened and facing decline. Microbes drive various biogeochemical processes in coastal ecosystems. Tidal flats are critical components of coastal ecosystems; however, the structure and function of microbial communities in tidal flats are poorly understood. Here we investigated the seasonal variations of bacterial communities along a tidal flat series (subtidal, intertidal and supratidal flats) and the factors affecting the variations. Bacterial community composition and diversity were analyzed over four seasons by 16S rRNA genes using the Ion Torrent PGM platform. Bacterial community composition differed significantly along the tidal flat series. Bacterial phylogenetic diversity increased while phylogenetic turnover decreased from subtidal to supratidal flats. Moreover, the bacterial community structure differed seasonally. Canonical correspondence analysis identified salinity as a major environmental factor structuring the microbial community in the sediment along the successional series. Meanwhile, temperature and nitrite concentration were major drivers of seasonal microbial changes. Despite major compositional shifts, nitrogen, methane and energy metabolisms predicted by PICRUSt were inhibited in the winter. Taken together, this study indicates that bacterial community structure changed along the successional tidal flat series and provides new insights on the characteristics of bacterial communities in coastal ecosystems. PMID:27824160

  17. Bacterial community structure and function shift along a successional series of tidal flats in the Yellow River Delta

    NASA Astrophysics Data System (ADS)

    Lv, Xiaofei; Ma, Bin; Yu, Junbao; Chang, Scott X.; Xu, Jianming; Li, Yunzhao; Wang, Guangmei; Han, Guangxuan; Bo, Guan; Chu, Xiaojing

    2016-11-01

    Coastal ecosystems play significant ecological and economic roles but are threatened and facing decline. Microbes drive various biogeochemical processes in coastal ecosystems. Tidal flats are critical components of coastal ecosystems; however, the structure and function of microbial communities in tidal flats are poorly understood. Here we investigated the seasonal variations of bacterial communities along a tidal flat series (subtidal, intertidal and supratidal flats) and the factors affecting the variations. Bacterial community composition and diversity were analyzed over four seasons by 16S rRNA genes using the Ion Torrent PGM platform. Bacterial community composition differed significantly along the tidal flat series. Bacterial phylogenetic diversity increased while phylogenetic turnover decreased from subtidal to supratidal flats. Moreover, the bacterial community structure differed seasonally. Canonical correspondence analysis identified salinity as a major environmental factor structuring the microbial community in the sediment along the successional series. Meanwhile, temperature and nitrite concentration were major drivers of seasonal microbial changes. Despite major compositional shifts, nitrogen, methane and energy metabolisms predicted by PICRUSt were inhibited in the winter. Taken together, this study indicates that bacterial community structure changed along the successional tidal flat series and provides new insights on the characteristics of bacterial communities in coastal ecosystems.

  18. Shift of bacterial community structure along different coastal reclamation histories in Jiangsu, Eastern China.

    PubMed

    Hua, Jianfeng; Feng, Youzhi; Jiang, Qian; Bao, Xuewen; Yin, Yunlong

    2017-08-30

    Tideland reclamation has drastic effects on coastal ecosystem involved in soil microorganisms. However, the knowledge regarding temporal variations of microbial community along reclamation chronosequence and their environmental variable predictor is still poorly known. Using Illumina sequencing, we qualified bacterial community composition in soils collected from one tideland and four reclamation stages, i.e. 2-year, 7-year, 19-year and 39-year in Jiangsu, Eastern China. Across all samples, the dominant groups were Proteobacteria, Bacteroidete, Acidobacteria, Planctomycetes and Chloroflexi. Reclamation activity and its histories greatly altered bacterial community structure, and only 0.28% of phylotypes were shared by five soils. Specially, some typical marine bacteria (Gaetulibacter, Alcanivorax …) disappeared in reclamation soils, while other groups (Niabella, Flavisolibacter…) were gradually eminent. Generally, bacterial diversity and richness increased with reclamation histories. Bacterial community was correlated with most of soil physico-chemical properties. Amongst, mean weight diameter of soil aggregates (MWD) was detected as a primary factor predicting bacterial community composition. Together, our results indicated that effects of reclamation on bacterial community varied with diked histories, and MWD was a major factor predicting bacterial community during progressive reclamation. These findings offer predicting case study for understanding the impact of reclamation and its histories on microbial community in a coastal ecosystem.

  19. Fungal Community Shifts in Structure and Function across a Boreal Forest Fire Chronosequence.

    PubMed

    Sun, Hui; Santalahti, Minna; Pumpanen, Jukka; Köster, Kajar; Berninger, Frank; Raffaello, Tommaso; Jumpponen, Ari; Asiegbu, Fred O; Heinonsalo, Jussi

    2015-11-01

    Forest fires are a common natural disturbance in forested ecosystems and have a large impact on the microbial communities in forest soils. The response of soil fungal communities to forest fire is poorly documented. Here, we investigated fungal community structure and function across a 152-year boreal forest fire chronosequence using high-throughput sequencing of the internal transcribed spacer 2 (ITS2) region and a functional gene array (GeoChip). Our results demonstrate that the boreal forest soil fungal community was most diverse soon after a fire disturbance and declined over time. The differences in the fungal communities were explained by changes in the abundance of basidiomycetes and ascomycetes. Ectomycorrhizal (ECM) fungi contributed to the increase in basidiomycete abundance over time, with the operational taxonomic units (OTUs) representing the genera Cortinarius and Piloderma dominating in abundance. Hierarchical cluster analysis by using gene signal intensity revealed that the sites with different fire histories formed separate clusters, suggesting differences in the potential to maintain essential biogeochemical soil processes. The site with the greatest biological diversity had also the most diverse genes. The genes involved in organic matter degradation in the mature forest, in which ECM fungi were the most abundant, were as common in the youngest site, in which saprotrophic fungi had a relatively higher abundance. This study provides insight into the impact of fire disturbance on soil fungal community dynamics.

  20. Fungal Community Shifts in Structure and Function across a Boreal Forest Fire Chronosequence

    PubMed Central

    Santalahti, Minna; Pumpanen, Jukka; Köster, Kajar; Berninger, Frank; Raffaello, Tommaso; Jumpponen, Ari; Asiegbu, Fred O.; Heinonsalo, Jussi

    2015-01-01

    Forest fires are a common natural disturbance in forested ecosystems and have a large impact on the microbial communities in forest soils. The response of soil fungal communities to forest fire is poorly documented. Here, we investigated fungal community structure and function across a 152-year boreal forest fire chronosequence using high-throughput sequencing of the internal transcribed spacer 2 (ITS2) region and a functional gene array (GeoChip). Our results demonstrate that the boreal forest soil fungal community was most diverse soon after a fire disturbance and declined over time. The differences in the fungal communities were explained by changes in the abundance of basidiomycetes and ascomycetes. Ectomycorrhizal (ECM) fungi contributed to the increase in basidiomycete abundance over time, with the operational taxonomic units (OTUs) representing the genera Cortinarius and Piloderma dominating in abundance. Hierarchical cluster analysis by using gene signal intensity revealed that the sites with different fire histories formed separate clusters, suggesting differences in the potential to maintain essential biogeochemical soil processes. The site with the greatest biological diversity had also the most diverse genes. The genes involved in organic matter degradation in the mature forest, in which ECM fungi were the most abundant, were as common in the youngest site, in which saprotrophic fungi had a relatively higher abundance. This study provides insight into the impact of fire disturbance on soil fungal community dynamics. PMID:26341215

  1. Temperature impacts on anaerobic biotransformation of LNAPL and concurrent shifts in microbial community structure.

    PubMed

    Zeman, Natalie R; Irianni Renno, Maria; Olson, Mitchell R; Wilson, L Paige; Sale, Thomas C; De Long, Susan K

    2014-07-01

    Thermally-enhanced bioremediation is a promising treatment approach for petroleum contamination; however, studies examining temperature effects on anaerobic biodegradation in zones containing light non-aqueous phase liquids (LNAPLs) are lacking. Herein, laboratory microcosm studies were conducted for a former refinery to evaluate LNAPL transformation, sulfate reduction, and methane generation over a one-year period for temperatures ranging from 4 to 40 °C, and microbial community shifts were characterized. Temperatures of 22 and 30 °C significantly increased total biogas generation compared to lower (4 and 9 °C) and higher temperatures (35 and 40 °C; p < 0.1). Additionally, at 22 and 30 °C methane generation commenced ~6 months earlier than for 35 and 40 °C. Statistically significant biodegradation of benzene, toluene and xylenes was observed at elevated temperatures but not at lower temperatures (p < 0.1). Additionally, a novel differential chromatogram approach was developed to overcome challenges associated with resolving losses in complex mixtures of hydrocarbons, and application of this method revealed greater losses of hydrocarbons at 22 and 30 °C as compared to lower and higher temperatures. Finally, molecular biology assays revealed that the composition and activity of microbial communities shifted in a temperature-dependent manner. Collectively, results demonstrated that anaerobic biodegradation processes can be enhanced by increasing the temperature of LNAPL-containing soils, but biodegradation does not simply increase as temperature increases likely due to a lack of microorganisms that thrive at temperatures well above the historical high temperatures for a site. Rather, optimal degradation is achieved by holding soils at the high end of, or slightly higher than, their natural range.

  2. Conservation of Forest Birds: Evidence of a Shifting Baseline in Community Structure

    PubMed Central

    Rittenhouse, Chadwick D.; Pidgeon, Anna M.; Albright, Thomas P.; Culbert, Patrick D.; Clayton, Murray K.; Flather, Curtis H.; Huang, Chengquan; Masek, Jeffrey G.; Stewart, Susan I.; Radeloff, Volker C.

    2010-01-01

    Background Quantifying changes in forest bird diversity is an essential task for developing effective conservation actions. When subtle changes in diversity accumulate over time, annual comparisons may offer an incomplete perspective of changes in diversity. In this case, progressive change, the comparison of changes in diversity from a baseline condition, may offer greater insight because changes in diversity are assessed over longer periods of times. Our objectives were to determine how forest bird diversity has changed over time and whether those changes were associated with forest disturbance. Methodology/Principal Findings We used North American Breeding Bird Survey data, a time series of Landsat images classified with respect to land cover change, and mixed-effects models to associate changes in forest bird community structure with forest disturbance, latitude, and longitude in the conterminous United States for the years 1985 to 2006. We document a significant divergence from the baseline structure for all birds of similar migratory habit and nest location, and all forest birds as a group from 1985 to 2006. Unexpectedly, decreases in progressive similarity resulted from small changes in richness (<1 species per route for the 22-year study period) and modest losses in abundance (−28.7–−10.2 individuals per route) that varied by migratory habit and nest location. Forest disturbance increased progressive similarity for Neotropical migrants, permanent residents, ground nesting, and cavity nesting species. We also documented highest progressive similarity in the eastern United States. Conclusions/Significance Contemporary forest bird community structure is changing rapidly over a relatively short period of time (e.g., ∼22 years). Forest disturbance and forest regeneration are primary factors associated with contemporary forest bird community structure, longitude and latitude are secondary factors, and forest loss is a tertiary factor. Importantly, these

  3. Bacterial community structure and function shift across a northern boreal forest fire chronosequence

    PubMed Central

    Sun, Hui; Santalahti, Minna; Pumpanen, Jukka; Köster, Kajar; Berninger, Frank; Raffaello, Tommaso; Asiegbu, Fred O.; Heinonsalo, Jussi

    2016-01-01

    Soil microbial responses to fire are likely to change over the course of forest recovery. Investigations on long-term changes in bacterial dynamics following fire are rare. We characterized the soil bacterial communities across three different times post fire in a 2 to 152-year fire chronosequence by Illumina MiSeq sequencing, coupled with a functional gene array (GeoChip). The results showed that the bacterial diversity did not differ between the recently and older burned areas, suggesting a concomitant recovery in the bacterial diversity after fire. The differences in bacterial communities over time were mainly driven by the rare operational taxonomic units (OTUs < 0.1%). Proteobacteria (39%), Acidobacteria (34%) and Actinobacteria (17%) were the most abundant phyla across all sites. Genes involved in C and N cycling pathways were present in all sites showing high redundancy in the gene profiles. However, hierarchical cluster analysis using gene signal intensity revealed that the sites with different fire histories formed separate clusters, suggesting potential differences in maintaining essential biogeochemical soil processes. Soil temperature, pH and water contents were the most important factors in shaping the bacterial community structures and function. This study provides functional insight on the impact of fire disturbance on soil bacterial community. PMID:27573440

  4. Shift of bacterial community structure in two Thai soil series affected by silver nanoparticles using ARISA.

    PubMed

    Chunjaturas, Wariya; Ferguson, John A; Rattanapichai, Wutthida; Sadowsky, Michael J; Sajjaphan, Kannika

    2014-07-01

    In this study we examined the influence of silver nanoparticles (SNP) on the bacterial community and microbial processes in two soils from Thailand, a Ayutthaya (Ay) and Kamphaengsaen soil series (Ks). Results of this analysis revealed that SNP did not affect to pH, electrical conductivity, cation exchange capacity, and organic matter in both the Ay and Ks series. Automated ribosomal intergenic spacer analysis (ARISA) analysis profiles showed that bacterial community decreased with increasing SNP concentration. Pearson's correlation coefficient and multidimensional scaling analyses indicated that the effects of SNP on the bacterial community structure depended more on soil types than SNP application rates and incubation periods. Additionally, the results showed that SNP application rates affected on amount of CO2 emissions, while SNP application rates had no effect on N mineralization in both soil types. This study is the first investigation of the effects of SNP on bacterial community using ARISA analysis. Our results might be useful to evaluate the risk associated with the applications of SNP for consumer products and agricultural practices.

  5. Long-term changes in plankton community structure and productivity in the North Pacific Subtropical Gyre: The domain shift hypothesis

    NASA Astrophysics Data System (ADS)

    Karl, D. M.; Bidigare, R. R.; Letelier, R. M.

    Oceanic productivity, fishery yields and the net marine sequestration of atmospheric greenhouse gases are all controlled by the structure and function of planktonic communities. Detailed paleoceanographic studies have documented abrupt changes in these processes over timescales ranging from centuries to millennia. Most of these major shifts in oceanic productivity and biodiversity are attributable to changes in Earth's climate, manifested through large-scale ocean-atmosphere interactions. By comparison, contemporary biodiversity and plankton community dynamics are generally considered to be "static", in part due to the lack of a suitable time frame of reference, and the absence of oceanic data to document ecosystem change over relatively short timescales (decades to centuries). Here we show that the average concentrations of chlorophyll a (chl a) and the estimated rates of primary production in the surface waters of the North Pacific Subtropical Gyre (NPSG) off Hawaii have more than doubled while the concentrations of dissolved silicate and phosphate have decreased during the past three decades. These changes are accompanied by an increase in the concentration of chl b, suggesting a shift in phytoplankton community structure. We hypothesize that these observed ecosystem trends and other related biogeochemical processes in the upper portion of the NPSG are manifestations of plankton community succession in response to climate variations. The hypothesized photosynthetic population "domain shift" toward an ecosystem dominated by prokaryotes has altered nutrient flux pathways and affected food web structure, new and export production processes, and fishery yields. Further stratification of the surface ocean resulting from global warming could lead to even more enhanced selection pressures and additional changes in biogeochemical dynamics.

  6. The shifts of sediment microbial community phylogenetic and functional structures during chromium (VI) reduction.

    PubMed

    Yu, Zhengsheng; He, Zhili; Tao, Xuanyu; Zhou, Jizhong; Yang, Yunfeng; Zhao, Mengxin; Zhang, Xiaowei; Zheng, Zhe; Yuan, Tong; Liu, Pu; Chen, Yong; Nolan, Virgo; Li, Xiangkai

    2016-12-01

    The Lanzhou reach of the Yellow River, located at the upstream of Lanzhou, has been contaminated by heavy metals and polycyclic aromatic hydrocarbons over a long-time. We hypothesized that indigenous microbial communities would remediate those contaminants and some unique populations could play an important role in this process. In this study, we investigated the sediment microbial community structure and function from the Lanzhou reach. Sediment samples were collected from two nearby sites (site A and site B) in the Lanzhou reach along the Yellow River. Sediment geochemical property data showed that site A sediment samples contained significantly (p < 0.05) higher heavy metals than site B, such as chromium (Cr), manganese (Mn), and copper (Cu). Both site A and B samples were incubated with or without hexavalent chromium (Cr (VI)) for 30 days in the laboratory, and Cr (VI) reduction was only observed in site A sediment samples. After incubation, MiSeq sequencing of 16S rRNA gene amplicons revealed that the phylogenetic composition and structure of microbial communities changed in both samples, and especially Proteobacteria, as the most abundant phylum increased from 45.1 % to 68.2 % in site A, and 50.1 % to 71.3 % in site B, respectively. Some unique OTUs and populations affiliated with Geobacter, Clostridium, Desulfosporosinus and Desulfosporosinus might be involved in Cr (VI) reduction in site A. Furthermore, GeoChip 4.0 (a comprehensive functional gene array) data showed that genes involved in carbon and nitrogen cycling and metal resistance significantly (p < 0.05) increased in site A sediment samples. All the results indicated that indigenous sediment microbial communities might be able to remediate contaminants like Cr (VI), and this information provides possible strategies for future bioremediation of the Lanzhou reach.

  7. Exploring the Shift in Structure and Function of Microbial Communities Performing Biological Phosphorus Removal.

    PubMed

    Mao, Yanping; Wang, Zhiping; Li, Liguan; Jiang, Xiaotao; Zhang, Xuxiang; Ren, Hongqiang; Zhang, Tong

    2016-01-01

    A sequencing batch reactor fed mainly by acetate was operated to perform enhanced biological phosphorus removal (EBPR). A short-term pH shock from 7.0 to 6.0 led to a complete loss of phosphate-removing capability and a drastic change of microbial communities. 16S rRNA gene pyrosequencing showed that large proportions of glycogen accumulating organisms (GAOs) (accounted for 16% of bacteria) bloomed, including Candidatus Competibacter phosphatis and Defluviicoccus-related tetrad-forming organism, causing deteriorated EBPR performance. The EBPR performance recovered with time and the dominant Candidatus Accumulibacter (Accumulibacter) clades shifted from Clade IIC to IIA while GAOs populations shrank significantly. The Accumulibacter population variation provided a good opportunity for genome binning using a bi-dimensional coverage method, and a genome of Accumulibacter Clade IIC was well retrieved with over 90% completeness. Comparative genomic analysis demonstrated that Accumulibacter clades had different abilities in nitrogen metabolism and carbon fixation, which shed light on enriching different Accumulibacter populations selectively.

  8. Exploring the Shift in Structure and Function of Microbial Communities Performing Biological Phosphorus Removal

    PubMed Central

    Mao, Yanping; Wang, Zhiping; Li, Liguan; Jiang, Xiaotao; Zhang, Xuxiang; Ren, Hongqiang; Zhang, Tong

    2016-01-01

    A sequencing batch reactor fed mainly by acetate was operated to perform enhanced biological phosphorus removal (EBPR). A short-term pH shock from 7.0 to 6.0 led to a complete loss of phosphate-removing capability and a drastic change of microbial communities. 16S rRNA gene pyrosequencing showed that large proportions of glycogen accumulating organisms (GAOs) (accounted for 16% of bacteria) bloomed, including Candidatus Competibacter phosphatis and Defluviicoccus-related tetrad-forming organism, causing deteriorated EBPR performance. The EBPR performance recovered with time and the dominant Candidatus Accumulibacter (Accumulibacter) clades shifted from Clade IIC to IIA while GAOs populations shrank significantly. The Accumulibacter population variation provided a good opportunity for genome binning using a bi-dimensional coverage method, and a genome of Accumulibacter Clade IIC was well retrieved with over 90% completeness. Comparative genomic analysis demonstrated that Accumulibacter clades had different abilities in nitrogen metabolism and carbon fixation, which shed light on enriching different Accumulibacter populations selectively. PMID:27547976

  9. Elevated CO2 shifts the functional structure and metabolic potentials of soil microbial communities in a C4 agroecosystem

    NASA Astrophysics Data System (ADS)

    Xiong, Jinbo; He, Zhili; Shi, Shengjing; Kent, Angela; Deng, Ye; Wu, Liyou; van Nostrand, Joy D.; Zhou, Jizhong

    2015-03-01

    Atmospheric CO2 concentration is continuously increasing, and previous studies have shown that elevated CO2 (eCO2) significantly impacts C3 plants and their soil microbial communities. However, little is known about effects of eCO2 on the compositional and functional structure, and metabolic potential of soil microbial communities under C4 plants. Here we showed that a C4 maize agroecosystem exposed to eCO2 for eight years shifted the functional and phylogenetic structure of soil microbial communities at both soil depths (0-5 cm and 5-15 cm) using EcoPlate and functional gene array (GeoChip 3.0) analyses. The abundances of key genes involved in carbon (C), nitrogen (N) and phosphorus (P) cycling were significantly stimulated under eCO2 at both soil depths, although some differences in carbon utilization patterns were observed between the two soil depths. Consistently, CO2 was found to be the dominant factor explaining 11.9% of the structural variation of functional genes, while depth and the interaction of depth and CO2 explained 5.2% and 3.8%, respectively. This study implies that eCO2 has profound effects on the functional structure and metabolic potential/activity of soil microbial communities associated with C4 plants, possibly leading to changes in ecosystem functioning and feedbacks to global change in C4 agroecosystems.

  10. Elevated CO2 shifts the functional structure and metabolic potentials of soil microbial communities in a C4 agroecosystem.

    PubMed

    Xiong, Jinbo; He, Zhili; Shi, Shengjing; Kent, Angela; Deng, Ye; Wu, Liyou; Van Nostrand, Joy D; Zhou, Jizhong

    2015-03-20

    Atmospheric CO2 concentration is continuously increasing, and previous studies have shown that elevated CO2 (eCO2) significantly impacts C3 plants and their soil microbial communities. However, little is known about effects of eCO2 on the compositional and functional structure, and metabolic potential of soil microbial communities under C4 plants. Here we showed that a C4 maize agroecosystem exposed to eCO2 for eight years shifted the functional and phylogenetic structure of soil microbial communities at both soil depths (0-5 cm and 5-15 cm) using EcoPlate and functional gene array (GeoChip 3.0) analyses. The abundances of key genes involved in carbon (C), nitrogen (N) and phosphorus (P) cycling were significantly stimulated under eCO2 at both soil depths, although some differences in carbon utilization patterns were observed between the two soil depths. Consistently, CO2 was found to be the dominant factor explaining 11.9% of the structural variation of functional genes, while depth and the interaction of depth and CO2 explained 5.2% and 3.8%, respectively. This study implies that eCO2 has profound effects on the functional structure and metabolic potential/activity of soil microbial communities associated with C4 plants, possibly leading to changes in ecosystem functioning and feedbacks to global change in C4 agroecosystems.

  11. Elevated CO2 shifts the functional structure and metabolic potentials of soil microbial communities in a C4 agroecosystem

    PubMed Central

    Xiong, Jinbo; He, Zhili; Shi, Shengjing; Kent, Angela; Deng, Ye; Wu, Liyou; Van Nostrand, Joy D.; Zhou, Jizhong

    2015-01-01

    Atmospheric CO2 concentration is continuously increasing, and previous studies have shown that elevated CO2 (eCO2) significantly impacts C3 plants and their soil microbial communities. However, little is known about effects of eCO2 on the compositional and functional structure, and metabolic potential of soil microbial communities under C4 plants. Here we showed that a C4 maize agroecosystem exposed to eCO2 for eight years shifted the functional and phylogenetic structure of soil microbial communities at both soil depths (0–5 cm and 5–15 cm) using EcoPlate and functional gene array (GeoChip 3.0) analyses. The abundances of key genes involved in carbon (C), nitrogen (N) and phosphorus (P) cycling were significantly stimulated under eCO2 at both soil depths, although some differences in carbon utilization patterns were observed between the two soil depths. Consistently, CO2 was found to be the dominant factor explaining 11.9% of the structural variation of functional genes, while depth and the interaction of depth and CO2 explained 5.2% and 3.8%, respectively. This study implies that eCO2 has profound effects on the functional structure and metabolic potential/activity of soil microbial communities associated with C4 plants, possibly leading to changes in ecosystem functioning and feedbacks to global change in C4 agroecosystems. PMID:25791904

  12. Bacterial diversity and community structure in lettuce soil are shifted by cultivation time

    NASA Astrophysics Data System (ADS)

    Liu, Yiqian; Chang, Qing; Guo, Xu; Yi, Xinxin

    2017-08-01

    Compared with cereal production, vegetable production usually requires a greater degree of management and larger input of nutrients and irrigation, but these systems are not sustainable in the long term. This study aimed to what extent lettuce determine the bacterial community composition in the soil, during lettuce cultivation, pesticides and fertilizers were not apply to soil. Soil samples were collected from depths of 0-20cm and 20-40cm. A highthroughput sequencing approach was employed to investigate bacterial communities in lettuce-cultivated soil samples in a time-dependent manner. The dominant bacteria in the lettuce soil samples were mainly Proteobacteria, Actinobacteria, Chloroflexi, Nitrospirae, Firmicutes, Acidobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, Gemmatimo nadetes, Cyanobacteria. Proteobacteria was the most abundant phylum in the 6 soil samples. The relative abundance of Acidobacteria, Firmicutes, Bacteroidetes, Verrucomicrobia and Cyanobacteria decreased through time of lettuce cultivation, but the relative abundance of Proteobacteria, Actinobacteria, Gemmatimonadetes, Chloroflexi, Planctomycetes and Nitrospirae increased over time. In the 0-20cm depth group and the 20-40cm depth soil, a similar pattern was observed that the percentage number of only shared OTUs between the early and late stage was lower than that between the early and middle stage soil, the result showed that lettuce growth can affect structure of soil bacterial communities.

  13. Shifts in methanogen community structure and function across a coastal marsh transect: effects of exotic Spartina alterniflora invasion

    NASA Astrophysics Data System (ADS)

    Yuan, Junji; Ding, Weixin; Liu, Deyan; Kang, Hojeong; Xiang, Jian; Lin, Yongxin

    2016-01-01

    Invasion of Spartina alterniflora in coastal areas of China increased methane (CH4) emissions. To elucidate the underlying mechanisms, we measured CH4 production potential, methanogen community structure and biogeochemical factors along a coastal wetland transect comprised of five habitat regions: open water, bare tidal flat, invasive S. alterniflora marsh and native Suaeda salsa and Phragmites australis marshes. CH4 production potential in S. alterniflora marsh was 10 times higher than that in other regions, and it was significantly correlated with soil organic carbon, dissolved organic carbon and trimethylamine concentrations, but was not correlated with acetate or formate concentrations. Although the diversity of methanogens was lowest in S. alterniflora marsh, invasion increased methanogen abundance by 3.48-fold, compared with native S. salsa and P. australis marshes due to increase of facultative Methanosarcinaceae rather than acetotrophic and hydrogenotrophic methanogens. Ordination analyses suggested that trimethylamine was the primary factor regulating shift in methanogen community structure. Addition of trimethylamine increased CH4 production rates by 1255-fold but only by 5.61- and 11.4-fold for acetate and H2/CO2, respectively. S. alterniflora invasion elevated concentration of non-competitive trimethylamine, and shifted methanogen community from acetotrophic to facultative methanogens, which together facilitated increased CH4 production potential.

  14. Shifts in methanogen community structure and function across a coastal marsh transect: effects of exotic Spartina alterniflora invasion

    PubMed Central

    Yuan, Junji; Ding, Weixin; Liu, Deyan; Kang, Hojeong; Xiang, Jian; Lin, Yongxin

    2016-01-01

    Invasion of Spartina alterniflora in coastal areas of China increased methane (CH4) emissions. To elucidate the underlying mechanisms, we measured CH4 production potential, methanogen community structure and biogeochemical factors along a coastal wetland transect comprised of five habitat regions: open water, bare tidal flat, invasive S. alterniflora marsh and native Suaeda salsa and Phragmites australis marshes. CH4 production potential in S. alterniflora marsh was 10 times higher than that in other regions, and it was significantly correlated with soil organic carbon, dissolved organic carbon and trimethylamine concentrations, but was not correlated with acetate or formate concentrations. Although the diversity of methanogens was lowest in S. alterniflora marsh, invasion increased methanogen abundance by 3.48-fold, compared with native S. salsa and P. australis marshes due to increase of facultative Methanosarcinaceae rather than acetotrophic and hydrogenotrophic methanogens. Ordination analyses suggested that trimethylamine was the primary factor regulating shift in methanogen community structure. Addition of trimethylamine increased CH4 production rates by 1255-fold but only by 5.61- and 11.4-fold for acetate and H2/CO2, respectively. S. alterniflora invasion elevated concentration of non-competitive trimethylamine, and shifted methanogen community from acetotrophic to facultative methanogens, which together facilitated increased CH4 production potential. PMID:26728134

  15. Bacterial Community Structure Shifted by Geosmin in Granular Activated Carbon System of Water Treatment Plants.

    PubMed

    Pham, Ngoc Dung; Lee, Eun-Hee; Chae, Seon-Ha; Cho, Yongdeok; Shin, Hyejin; Son, Ahjeong

    2016-01-01

    We investigated the relation between the presence of geosmin in water and the bacterial community structure within the granular activated carbon (GAC) system of water treatment plants in South Korea. GAC samples were collected in May and August of 2014 at three water treatment plants (Sungnam, Koyang, and Yeoncho in Korea). Dissolved organic carbon and geosmin were analyzed before and after GAC treatment. Geosmin was found in raw water from Sungnam and Koyang water treatment plants but not in that from Yeoncho water treatment plant. Interestingly, but not surprisingly, the 16S rRNA clone library indicated that the bacterial communities from the Sungnam and Koyang GAC systems were closely related to geosmin-degrading bacteria. Based on the phylogenetic tree and multidimensional scaling plot, bacterial clones from GAC under the influence of geosmin were clustered with Variovorax paradoxus strain DB 9b and Comamonas sp. DB mg. In other words, the presence of geosmin in water might have inevitably contributed to the growth of geosmin degraders within the respective GAC system.

  16. Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil.

    PubMed

    Wang, Lingwen; Li, Feng; Zhan, Yu; Zhu, Lizhong

    2016-07-01

    This study aims to reveal the microbial mechanism of in situ surfactant-enhanced bioremediation (SEBR). Various concentrations of rhamnolipids, Tween 80, and sodium dodecyl benzenesulfonate (SDBS) were separately sprayed onto soils contaminated with polycyclic aromatic hydrocarbons (PAHs) for years. Within 90 days, the highest level of degradation (95 %) was observed in the soil treated with rhamnolipids (10 mg/kg), followed by 92 % degradation with Tween 80 (50 mg/kg) and 90 % degradation with SDBS (50 mg/kg). The results of the microbial phospholipid fatty acids (PLFAs) suggest that bacteria dominated the enhanced PAH biodegradation (94 % of the maximum contribution). The shift of bacterial community structure during the surfactant treatment was analyzed by using the 16S rRNA gene high-throughput sequencing. In the presence of surfactants, the number of the operational taxonomic units (OTUs) associated with Bacillus, Pseudomonas, and Sphingomonas increased from 2-3 to 15-30 % at the end of the experiment (two to three times of control). Gene prediction with phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) shows that the PAH-degrading genes, such as 1-hydroxy-2-naphthoate dioxygenase and PAH dioxygenase large subunit, significantly increased after the surfactant applications (p < 0.05). The findings of this study provide insights into the surfactant-induced shifts of microbial community, as well as critical factors for efficient bioremediation.

  17. Shifts in bacterial and archaeal community structures during the batch biomethanation of Ulva biomass under mesophilic conditions.

    PubMed

    Kim, Jaai; Jung, Heejung; Lee, Changsoo

    2014-10-01

    Mesophilic biomethanation of Ulva biomass was performed in a batch bioreactor, and a high organic removal of 77% was obtained on the basis of chemical oxygen demand (COD) after a month of operation. The estimated methane yield was 0.43 ± 0.02 L CH4/g COD(removed) which is close to the theoretical methane potential. Transitions of bacterial and archaeal community structures, associated with process performance data, were investigated using a combination of molecular fingerprinting and biostatistical tools. During the operation, archaeal community structure had no significant changes while bacterial community structure shifted continuously and dynamically. The reactor completely stabilized volatile fatty acids (primarily acetate and propionate) accumulated from the acidogenesis phase, with Methanosaeta- and Methanolinea-related microbes respectively being the main aceticlastic and hydrogenotrophic methanogens. Methanolinea- and Syntrophobacter-related populations were likely the key members to form a syntrophic propionate-degrading consortium. A Methanolinea-related population was likely the dominant methane producer in the experimental reactor. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Water flow buffers shifts in bacterial community structure in heat-stressed Acropora muricata

    PubMed Central

    Lee, Sonny T. M.; Davy, Simon K.; Tang, Sen-Lin; Kench, Paul S.

    2017-01-01

    Deterioration of coral health and associated change in the coral holobiont’s bacterial community are often a result of different environmental stressors acting synergistically. There is evidence that water flow is important for a coral’s resistance to elevated seawater temperature, but there is no information on how water flow affects the coral-associated bacterial community under these conditions. In a laboratory cross-design experiment, Acropora muricata nubbins were subjected to interactive effects of seawater temperature (27 °C to 31 °C) and water flow (0.20 m s−1 and 0.03 m s−1). In an in situ experiment, water flow manipulation was conducted with three colonies of A. muricata during the winter and summer, by partially enclosing each colony in a clear plastic mesh box. 16S rRNA amplicon pyrosequencing showed an increase in the relative abundance of Flavobacteriales and Rhodobacterales in the laboratory experiment, and Vibrio spp. in the in situ experiment when corals were exposed to elevated temperature and slow water flow. In contrast, corals that were exposed to faster water flow under laboratory and in situ conditions had a stable bacterial community. These findings indicate that water flow plays an important role in the maintenance of specific coral-bacteria associations during times of elevated thermal stress. PMID:28240318

  19. Water flow buffers shifts in bacterial community structure in heat-stressed Acropora muricata.

    PubMed

    Lee, Sonny T M; Davy, Simon K; Tang, Sen-Lin; Kench, Paul S

    2017-02-27

    Deterioration of coral health and associated change in the coral holobiont's bacterial community are often a result of different environmental stressors acting synergistically. There is evidence that water flow is important for a coral's resistance to elevated seawater temperature, but there is no information on how water flow affects the coral-associated bacterial community under these conditions. In a laboratory cross-design experiment, Acropora muricata nubbins were subjected to interactive effects of seawater temperature (27 °C to 31 °C) and water flow (0.20 m s(-1) and 0.03 m s(-1)). In an in situ experiment, water flow manipulation was conducted with three colonies of A. muricata during the winter and summer, by partially enclosing each colony in a clear plastic mesh box. 16S rRNA amplicon pyrosequencing showed an increase in the relative abundance of Flavobacteriales and Rhodobacterales in the laboratory experiment, and Vibrio spp. in the in situ experiment when corals were exposed to elevated temperature and slow water flow. In contrast, corals that were exposed to faster water flow under laboratory and in situ conditions had a stable bacterial community. These findings indicate that water flow plays an important role in the maintenance of specific coral-bacteria associations during times of elevated thermal stress.

  20. Bacterial Diversity and Community Structure in Korean Ginseng Field Soil Are Shifted by Cultivation Time

    PubMed Central

    Hoang, Van-An; Subramaniyam, Sathiyamoorthy; Kang, Jong-Pyo; Kang, Chang Ho; Yang, Deok-Chun

    2016-01-01

    Traditional molecular methods have been used to examine bacterial communities in ginseng-cultivated soil samples in a time-dependent manner. Despite these efforts, our understanding of the bacterial community is still inadequate. Therefore, in this study, a high-throughput sequencing approach was employed to investigate bacterial diversity in various ginseng field soil samples over cultivation times of 2, 4, and 6 years in the first and second rounds of cultivation. We used non-cultivated soil samples to perform a comparative study. Moreover, this study assessed changes in the bacterial community associated with soil depth and the health state of the ginseng. Bacterial richness decreased through years of cultivation. This study detected differences in relative abundance of bacterial populations between the first and second rounds of cultivation, years of cultivation, and health states of ginseng. These bacterial populations were mainly distributed in the classes Acidobacteria, Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Sphingobacteria. In addition, we found that pH, available phosphorus, and exchangeable Ca+ seemed to have high correlations with bacterial class in ginseng cultivated soil. PMID:27187071

  1. Shifts in Attitudes, Knowledge, and Social Goals in Nursing Students Following Structured Contact With Community-Dwelling Older Adults.

    PubMed

    Redfield, Carol S; McGuire, Adam P; Lin, Ting-Chun; Orton, Valorie J; Aust, Melissa; Erickson, Thane M

    2016-10-01

    Traditional nursing pedagogies have not systematically addressed the ageist perspectives students bring into training that threaten competent care for older adults. The current study evaluated nursing students' shifts in attitudes, knowledge about aging, and social goals during a program of repeated and structured social interactions with community-dwelling older adults. Beginning nursing students in pairs met with high-functioning older adults four times over 8 months to provide brief health promotion activities. Students' knowledge and attitudes on aging were assessed at baseline and prior to each visit; social goals were assessed after each visit. Multilevel growth curves revealed increases in students' knowledge about aging and positive views on caring for older adults. Motivation to help older adults (i.e., compassionate goals) did not change, but students' motivation to defend their competence (i.e., self-image goals) declined. A relational contact-based program may shift knowledge, attitudes, and social goals in nursing students, complementing traditional classroom nursing education. [J Nurs Educ. 2016;55(10):569-573.]. Copyright 2016, SLACK Incorporated.

  2. Does invasive Chondrostoma nasus shift the parasite community structure of endemic Parachondrostoma toxostoma in sympatric zones?

    PubMed Central

    2012-01-01

    Background The composition of parasite communities in two cyprinid species in southern France – native and threatened Parachondrostoma toxostoma and introduced Chondrostoma nasus – was investigated. In sympatry, these two species form two hybrid zones in the Durance and Ardeche Rivers. Due to their different feeding preference and habitat positions in allopatry, we supposed a difference in parasite communities between fish species. We expected more similar parasite communities in sympatric zones associated with habitat overlap (facilitating the transmission of ectoparasites) and similar feeding (more generalist behaviour when compared to allopatry, facilitating the transmission of endoparasites) in both fish species. Finally, we investigated whether P. toxostoma x C. nasus hybrids are less parasitized then parental species. Methods One allopatric population of each fish species plus two sympatric zones were sampled. Fish were identified using cytochrome b gene and 41 microsatellites loci and examined for all metazoan parasites. Results A high Monogenea abundance was found in both allopatric and sympatric populations of C. nasus. Trematoda was the dominant group in parasite communities of P. toxostoma from the allopatric population. In contrast, the populations of P. toxostoma in sympatric zones were parasitized by Dactylogyrus species found in C. nasus populations, but their abundance in endemic species was low. Consequently, the similarity based on parasite presence/absence between the sympatric populations of P. toxostoma and C. nasus was high. Sympatric populations of P. toxostoma were more similar than allopatric and sympatric populations of this species. No difference in ectoparasite infection was found between P. toxostoma and hybrids, whilst C. nasus was more parasitized by Monogenea. Conclusions The differences in endoparasites between P. toxostoma and C. nasus in allopatry are probably linked to different feeding or habitat conditions, but host

  3. Shifts in Microbial Community Structure with Changes in Cathodic Potential in Marine Sediment Microcosms

    NASA Astrophysics Data System (ADS)

    Lam, B. R.; Rowe, A. R.; Nealson, K. H.

    2014-12-01

    Microorganisms comprise more than 90% of the biomass of the ocean. Their ability to thrive and survive in a wide range of environments from oligotrophic waters to the deep subsurface stems from the great metabolic versatility that exists among them. This metabolic versatility has further expanded with the discovery of extracellular electron transport (EET). EET is the capability of microorganisms to transfer electrons to and from insoluble substrates outside of the cell. Much of what is known about EET comes from studies of model metal reducing microorganisms in the groups Shewanellaceae and Geobacteraceae. However, EET is not limited to these metal reducing microorganisms, and may play a large role in the biogeochemical cycling of several elements. We have developed an electrochemical culturing technique designed to target microorganisms with EET ability and tested these methods in marine sediments. The use of electrodes allows for greater control and quantification of electrons flowing to insoluble substrates as opposed to insoluble substrates such as minerals that are often difficult to measure. We have recently shown that poising electrodes at different redox potentials will enrich for different microbial groups and thus possible metabolisms. In marine sediment microcosms, triplicate electrodes were poised at different cathodic (electron donating) potentials (-300, -400, -500 and -600 mV) and incubated for eight weeks. Community analysis of the 16S rRNA revealed that at lower negative potentials (-500 and -600 mV), more sulfate reducing bacteria in the class Deltaproteobacteria were enriched in comparison to the communities at -300 and -400 mV being dominated by microorganisms within Alphaproteobacteria, Gammaproteobacteria, and Clostridia. This can be explained by sulfate (abundant in seawater) becoming a more energetically favorable electron acceptor with lower applied potentials. In addition, communities at higher potentials showed greater enrichment of the

  4. Shift in community structure in an early-successional Mediterranean shrubland driven by long-term experimental warming and drought and natural extreme droughts.

    PubMed

    Liu, Daijun; Estiarte, Marc; Ogaya, Romà; Yang, Xiaohong; Peñuelas, Josep

    2017-10-01

    Global warming and recurring drought are expected to accelerate water limitation for plant communities in semiarid Mediterranean ecosystems and produce directional shifts in structure and composition that are not easily detected, and supporting evidence is scarce. We conducted a long-term (17 years) nocturnal-warming (+0.6°C) and drought (-40% rainfall) experiments in an early-successional Mediterranean shrubland to study the changes in community structure and composition, contrasting functional groups and dominant species, and the superimposed effects of natural extreme drought. Species richness decreased in both the warming and drought treatments. Responses to the moderate warming were associated with decreases in herb abundance, and responses to the drought were associated with decreases in both herb and shrub abundances. The drought also significantly decreased community diversity and evenness. Changes in abundance differed between herbs (decreases) and shrubs (increases or no changes). Both warming and drought, especially drought, increased the relative species richness and abundance of shrubs, favoring the establishment of shrubs. Both warming and drought produced significant shifts in plant community composition. Experimental warming shifted the community composition from Erica multiflora toward Rosmarinus officinalis, and drought consistently shifted the composition toward Globularia alypum. The responses in biodiversity (e.g., community biodiversity, changes of functional groups and compositional shifts) were also strongly correlated with atmospheric drought (SPEI) in winter-spring and/or summer, indicating sensitivity to water limitation in this early-successional Mediterranean ecosystem, especially to natural extreme droughts. Our results suggest that the shifts in species assembles and community diversity and composition are accelerated by the long-term nocturnal-warming and drought, combined with natural severe droughts, and that the magnitude of the

  5. Regime shifts in exploited marine food webs: detecting mechanisms underlying alternative stable states using size-structured community dynamics theory

    PubMed Central

    Gårdmark, Anna; Casini, Michele; Huss, Magnus; van Leeuwen, Anieke; Hjelm, Joakim; Persson, Lennart; de Roos, André M.

    2015-01-01

    Many marine ecosystems have undergone ‘regime shifts’, i.e. abrupt reorganizations across trophic levels. Establishing whether these constitute shifts between alternative stable states is of key importance for the prospects of ecosystem recovery and for management. We show how mechanisms underlying alternative stable states caused by predator–prey interactions can be revealed in field data, using analyses guided by theory on size-structured community dynamics. This is done by combining data on individual performance (such as growth and fecundity) with information on population size and prey availability. We use Atlantic cod (Gadus morhua) and their prey in the Baltic Sea as an example to discuss and distinguish two types of mechanisms, ‘cultivation-depensation’ and ‘overcompensation’, that can cause alternative stable states preventing the recovery of overexploited piscivorous fish populations. Importantly, the type of mechanism can be inferred already from changes in the predators' body growth in different life stages. Our approach can thus be readily applied to monitored stocks of piscivorous fish species, for which this information often can be assembled. Using this tool can help resolve the causes of catastrophic collapses in marine predatory–prey systems and guide fisheries managers on how to successfully restore collapsed piscivorous fish stocks.

  6. Shifts in the community structure and activity of anaerobic ammonium oxidation bacteria along an estuarine salinity gradient

    NASA Astrophysics Data System (ADS)

    Zheng, Yanling; Jiang, Xiaofen; Hou, Lijun; Liu, Min; Lin, Xianbiao; Gao, Juan; Li, Xiaofei; Yin, Guoyu; Yu, Chendi; Wang, Rong

    2016-06-01

    Anaerobic ammonium oxidation (anammox) is a major microbial pathway for nitrogen (N) removal in estuarine and coastal environments. However, understanding of anammox bacterial dynamics and associations with anammox activity remains scarce along estuarine salinity gradient. In this study, the diversity, abundance, and activity of anammox bacteria, and their potential contributions to total N2 production in the sediments along the salinity gradient (0.1-33.8) of the Yangtze estuarine and coastal zone, were studied using 16S rRNA gene clone library, quantitative polymerase chain reaction assay, and isotope-tracing technique. Phylogenetic analysis showed a significant change in anammox bacterial community structure along the salinity gradient (P < 0.01), with the dominant genus shifting from Brocadia in the freshwater region to Scalindua in the open ocean. Anammox bacterial abundance ranged from 3.67 × 105 to 8.22 × 107 copies 16S rRNA gene g-1 and related significantly with salinity (P < 0.05). The anammox activity varied between 0.08 and 6.46 nmol N g-1 h-1 and related closely with anammox bacterial abundance (P < 0.01). Contributions of anammox activity to total N loss were highly variable along the salinity gradient, ranging from 5 to 77% and were significantly negatively correlated with salinity (P < 0.01). Sediment organic matter was also recognized as an important factor in controlling the relative role of anammox to total N2 production in the Yangtze estuarine and coastal zone. Overall, our data demonstrated a biogeographical distribution of anammox bacterial diversity, abundance, and activity along the estuarine salinity gradient and suggested that salinity is a major environmental control on anammox process in the estuarine and coastal ecosystems.

  7. Caribbean-wide, long-term study of seagrass beds reveals local variations, shifts in community structure and occasional collapse.

    PubMed

    van Tussenbroek, Brigitta I; Cortés, Jorge; Collin, Rachel; Fonseca, Ana C; Gayle, Peter M H; Guzmán, Hector M; Jácome, Gabriel E; Juman, Rahanna; Koltes, Karen H; Oxenford, Hazel A; Rodríguez-Ramirez, Alberto; Samper-Villarreal, Jimena; Smith, Struan R; Tschirky, John J; Weil, Ernesto

    2014-01-01

    The CARICOMP monitoring network gathered standardized data from 52 seagrass sampling stations at 22 sites (mostly Thalassia testudinum-dominated beds in reef systems) across the Wider Caribbean twice a year over the period 1993 to 2007 (and in some cases up to 2012). Wide variations in community total biomass (285 to >2000 g dry m(-2)) and annual foliar productivity of the dominant seagrass T. testudinum (<200 and >2000 g dry m(-2)) were found among sites. Solar-cycle related intra-annual variations in T. testudinum leaf productivity were detected at latitudes > 16°N. Hurricanes had little to no long-term effects on these well-developed seagrass communities, except for 1 station, where the vegetation was lost by burial below ∼1 m sand. At two sites (5 stations), the seagrass beds collapsed due to excessive grazing by turtles or sea-urchins (the latter in combination with human impact and storms). The low-cost methods of this regional-scale monitoring program were sufficient to detect long-term shifts in the communities, and fifteen (43%) out of 35 long-term monitoring stations (at 17 sites) showed trends in seagrass communities consistent with expected changes under environmental deterioration.

  8. Caribbean-Wide, Long-Term Study of Seagrass Beds Reveals Local Variations, Shifts in Community Structure and Occasional Collapse

    PubMed Central

    van Tussenbroek, Brigitta I.; Cortés, Jorge; Collin, Rachel; Fonseca, Ana C.; Gayle, Peter M. H.; Guzmán, Hector M.; Jácome, Gabriel E.; Juman, Rahanna; Koltes, Karen H.; Oxenford, Hazel A.; Rodríguez-Ramirez, Alberto; Samper-Villarreal, Jimena; Smith, Struan R.; Tschirky, John J.; Weil, Ernesto

    2014-01-01

    The CARICOMP monitoring network gathered standardized data from 52 seagrass sampling stations at 22 sites (mostly Thalassia testudinum-dominated beds in reef systems) across the Wider Caribbean twice a year over the period 1993 to 2007 (and in some cases up to 2012). Wide variations in community total biomass (285 to >2000 g dry m−2) and annual foliar productivity of the dominant seagrass T. testudinum (<200 and >2000 g dry m−2) were found among sites. Solar-cycle related intra-annual variations in T. testudinum leaf productivity were detected at latitudes > 16°N. Hurricanes had little to no long-term effects on these well-developed seagrass communities, except for 1 station, where the vegetation was lost by burial below ∼1 m sand. At two sites (5 stations), the seagrass beds collapsed due to excessive grazing by turtles or sea-urchins (the latter in combination with human impact and storms). The low-cost methods of this regional-scale monitoring program were sufficient to detect long-term shifts in the communities, and fifteen (43%) out of 35 long-term monitoring stations (at 17 sites) showed trends in seagrass communities consistent with expected changes under environmental deterioration. PMID:24594732

  9. PLFA profiling of microbial community structure and seasonal shifts in soils of a Douglas-fir chronosequence

    Treesearch

    Jennifer Moore-Kucera; Richard P. Dick

    2008-01-01

    The impact and frequency of forest harvesting could significantly affect soil microbial community (SMC) structure and functioning. The ability of soil microorganisms to perform biogeochemical processes is critical for sustaining forest productivity and has a direct impact on decomposition dynamics and carbon storage potential. The Wind River Canopy Crane Research...

  10. [Decline of Activity and Shifts in the Methanotrophic Community Structure of an Ombrotrophic Peat Bog after Wildfire].

    PubMed

    Danilova, O V; Belova, S E; Kulichevskaya, I S; Dedysh, S N

    2015-01-01

    This study examined potential disturbances of methanotrophic communities playing a key role in reducing methane emissions from the peat bog Tasin Borskoye, Vladimir oblast, Russia as a result of the 2007 wildfire. The potential activity of the methane-oxidizing filter in the burned peatland site and the abundance of indigenous methanotrophic bacteria were significantly reduced in comparison to the undisturbed site. Molecular analysis of methanotrophic community structure by means of PCR amplification and cloning of the pmoAgene encoding particulate methane monooxygenase revealed the replacement of typical peat-inhabiting, acidophilic type II methanotrophic bacteria with type I methanotrophs, which are less active in acidic environments. In summary, both the structure and the activity of the methane-oxidizing filter in burned peatland sites underwent significant changes, which were clearly pronounced even after 7 years of the natural ecosystem recovery. These results point to the long-term character of the disturbances caused by wildfire in peatlands.

  11. Combining Population Structure with Historic Abitoic Processes to Better Understand Species and Community Range Shifts in Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Graham, N. M.

    2015-12-01

    The evolution and speciation of plants is directly tied to the environment as the constrained stages of dispersal creates strong genetic differentiation among populations. This can result in differing genetic patterns between nuclear and chloroplast loci, where genes are inherited differently and dispersed via separate vectors. By developing distribution models based on genetic patterns found within a species, it is possible to begin understanding the influence of historic geomorphic and/or climatic processes on population evolution. If genetic patterns of the current range correlate with specific patterns of climate variability within the Pleistocene, it is possible that future shifts in species distribution in response to climate change can be more accurately modelled due to the historic signature that is found within inherited genes. Preliminary genetic analyses of Linanthus dichotomus, an annual herb distributed across California, suggests that the current taxonomic treatment does not accurately depict how this species is evolving. Genetic patterns of chloroplast genes suggest that populations are more correlated with biogeography than what the current nomenclature states. Additionally, chloroplast and nuclear genes show discrepancies in the dispersal across the landscape, suggesting pollinator driven gene flow overcoming seed dispersal boundaries. By comparing discrepancies between pollinator and seed induced gene flow we may be able to gain insight into historical pollinator communities within the Pleistocene. This information can then be applied to projected climate models to more accurately understand how species and/or communities will respond to a changing environment.

  12. Shifts in microbial community structure and diversity in a MBR combined with worm reactors treating synthetic wastewater.

    PubMed

    Liu, Jia; Zuo, Wei; Zhang, Jun; Li, Hui; Li, Lipin; Tian, Yu

    2017-04-01

    The chemical oxygen demand (COD) and NH3-N removal, membrane fouling, sludge characteristics and microbial community structure in a membrane bioreactor (MBR) coupled with worm reactors (SSBWR) were evaluated for 210days. The obtained results were compared to those from a conventional MBR (C-MBR) operated in parallel. The results indicated that the combined MBR (S-MBR) achieved higher COD and NH3-N removal efficiency, slower increase in membrane fouling, better sludge settleability and higher activities of the related enzymes in the activated sludge. Denaturing gradient gel electrophoresis was used to analyze the microbial community structures in the C-MBR and the S-MBR. The microbial community structure in the S-MBR was more diverse than that in the C-MBR. Additionally, the slow-growing microbes such as Saprospiraceae, Actinomyces, Frankia, Clostridium, Comamonas, Pseudomonas, Dechloromonas and Flavobacterium were enriched in the S-MBR, further accounting for the sludge reduction, membrane fouling alleviation and wastewater treatment. Copyright © 2016. Published by Elsevier B.V.

  13. Community structures of actively growing bacteria shift along a north-south transect in the western North Pacific.

    PubMed

    Taniguchi, Akito; Hamasaki, Koji

    2008-04-01

    Bacterial community structures and their activities in the ocean are tightly coupled with organic matter fluxes and thus control ocean biogeochemical cycles. Bromodeoxyuridine (BrdU), halogenated nucleoside and thymidine analogue, has been recently used to monitor actively growing bacteria (AGB) in natural environments. We labelled DNA of proliferating cells in seawater bacterial assemblages with BrdU and determined community structures of the bacteria that were possible key species in mediating biochemical reactions in the ocean. Surface seawater samples were collected along a north-south transect in the North Pacific in October 2003 and subjected to BrdU magnetic beads immunocapture and PCR-DGGE (BUMP-DGGE) analysis. Change of BrdU-incorporated community structures reflected the change of water masses along a north-south transect from subarctic to subtropical gyres in the North Pacific. We identified 25 bands referred to AGB as BrdU-incorporated phylotypes, belonging to Alphaproteobacteria (5 bands), Betaproteobacteria (1 band), Gammaproteobacteria (4 bands), Cytophaga-Flavobacterium-Bacteroides (CFB) group bacteria (5 bands), Gram-positive bacteria (6 bands), and Cyanobacteria (4 bands). BrdU-incorporated phylotypes belonging to Vibrionales, Alteromonadales and Gram-positive bacteria appeared only at sampling stations in a subtropical gyre, while those belonging to Roseobacter-related bacteria and CFB group bacteria appeared at the stations in both subarctic and subtropical gyres. Our result revealed phylogenetic affiliation of AGB and their dynamic change along with north-south environmental gradients in open oceans. Different species of AGB utilize different amount and kinds of substrates, which can affect the change of organic matter fluxes along transect.

  14. Structure and function of the methanogenic microbial communities in Uruguayan soils shifted between pasture and irrigated rice fields.

    PubMed

    Scavino, Ana Fernandez; Ji, Yang; Pump, Judith; Klose, Melanie; Claus, Peter; Conrad, Ralf

    2013-09-01

    Irrigated rice fields in Uruguay are temporarily established on soils used as cattle pastures. Typically, 4 years of cattle pasture are alternated with 2 years of irrigated rice cultivation. Thus, oxic upland conditions are rotated with seasonally anoxic wetland conditions. Only the latter conditions are suitable for the production of CH4 from anaerobic degradation of organic matter. We studied soil from a permanent pasture as well as soils from different years of the pasture-rice rotation hypothesizing that activity and structure of the bacterial and archaeal communities involved in production of CH4 change systematically with the duration of either oxic or anoxic conditions. Soil samples were taken from drained fields, air-dried and used for the experiments. Indeed, methanogenic archaeal gene copy numbers (16S rRNA, mcrA) were lower in soil from the permanent pasture than from the pasture-rice alternation fields, but within the latter, there was no significant difference. Methane production started to accumulate after 16 days and 7 days of anoxic incubation in soil from the permanent pasture and the pasture-rice alternation fields respectively. Then, CH4 production rates were slightly higher in the soils used for pasture than for rice production. Analysis of δ(13) C in CH4, CO2 and acetate in the presence and absence of methyl fluoride, an inhibitor of aceticlastic methanogenesis, indicated that CH4 was mainly (58-75%) produced from acetate, except in the permanent pasture soil (42%). Terminal restriction fragment length polymorphism (T-RFLP) of archaeal 16S rRNA genes showed no difference among the soils from the pasture-rice alternation fields with Methanocellaceae and Methanosarcinaceae as the main groups of methanogens, but in the permanent pasture soil, Methanocellaceae were relatively less abundant. T-RFLP analysis of bacterial 16S rRNA genes allowed the distinction of permanent pasture and fields from the pasture-rice rotation, but nevertheless with a

  15. Shifts in the abundance and community structure of soil ammonia oxidizers in a wet sclerophyll forest under long-term prescribed burning.

    PubMed

    Long, Xi-En; Chen, Chengrong; Xu, Zhihong; He, Ji-Zheng

    2014-02-01

    Fire shapes global biome distribution and promotes the terrestrial biogeochemical cycles. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) play a vital role in the biogeochemical cycling of nitrogen (N). However, behaviors of AOB and AOA under long-term prescribed burning remain unclear. This study was to examine how fire affected the abundances and communities of soil AOB and AOA. A long-term repeated forest fire experiment with three burning treatments (never burnt, B0; biennially burnt, B2; and quadrennially burnt, B4) was used in this study. The abundances and community structure of soil AOB and AOA were determined using quantitative PCR, restriction fragment length polymorphism and clone library. More frequent fires (B2) increased the abundance of bacterium amoA gene, but tended to decrease archaeal amoA genes. Fire also modified the composition of AOA and AOB communities. Canonical correspondence analysis showed soil pH and dissolved organic C (DOC) strongly affected AOB genotypes, while nitrate-N and DOC shaped the AOA distribution. The increased abundance of bacterium amoA gene by fires may imply an important role of AOB in nitrification in fire-affected soils. The fire-induced shift in the community composition of AOB and AOA demonstrates that fire can disturb nutrient cycles.

  16. The Expansion of Dreissena and Long-term Shifts in Benthic Macroinvertebrate Community Structure in Lake Ontario, 1998-2008

    EPA Science Inventory

    The introduction of Dreissena to the Great lakes has profoundly impacted benthic ecosystems, resulting in the decline of native species and dramatic community restructuring. In Lake Ontario, long-term monitoring has yielded a wealth of detailed information regarding both the exp...

  17. The Expansion of Dreissena and Long-term Shifts in Benthic Macroinvertebrate Community Structure in Lake Ontario, 1998-2008

    EPA Science Inventory

    The introduction of Dreissena to the Great lakes has profoundly impacted benthic ecosystems, resulting in the decline of native species and dramatic community restructuring. In Lake Ontario, long-term monitoring has yielded a wealth of detailed information regarding both the exp...

  18. Reductions in fish-community contamination following lowhead dam removal linked more to shifts in food-web structure than sediment pollution.

    PubMed

    Davis, Robert P; Sullivan, S Mažeika P; Stefanik, Kay C

    2017-08-25

    Recent increases in dam removals have prompted research on ecological and geomorphic river responses, yet contaminant dynamics following dam removals are poorly understood. We investigated changes in sediment concentrations and fish-community body burdens of mercury (Hg), selenium (Se), polychlorinated biphenyls (PCB), and chlorinated pesticides before and after two lowhead dam removals in the Scioto and Olentangy Rivers (Columbus, Ohio). These changes were then related to documented shifts in fish food-web structure. Seven study reaches were surveyed from 2011 to 2015, including controls, upstream and downstream of the previous dams, and upstream restored vs. unrestored. For most contaminants, fish-community body burdens declined following dam removal and converged across study reaches by the last year of the study in both rivers. Aldrin and dieldrin body burdens in the Olentangy River declined more rapidly in the upstream-restored vs. the upstream-unrestored reach, but were indistinguishable by year three post dam removal. No upstream-downstream differences were observed in body burdens in the Olentangy River, but aldrin and dieldrin body burdens were 138 and 148% higher, respectively, in downstream reaches than in upstream reaches of the Scioto River following dam removal. The strongest relationships between trophic position and body burdens were observed with PCBs and Se in the Scioto River, and with dieldrin in the Olentangy River. Food-chain length - a key measure of trophic structure - was only weakly related to aldrin body burdens, and unrelated to other contaminants. Overall, we demonstrate that lowhead dam removal may effectively reduce ecosystem contamination, largely via shifts in fish food-web dynamics versus sediment contaminant concentrations. This study presents some of the first findings documenting ecosystem contamination following dam removal and will be useful in informing future dam removals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Shifts in microbial community structure and function in light- and dark-grown biofilms driven by warming.

    PubMed

    Romaní, Anna M; Borrego, Carles M; Díaz-Villanueva, Verónica; Freixa, Anna; Gich, Frederic; Ylla, Irene

    2014-08-01

    Biofilms are dynamic players in biogeochemical cycling in running waters and are subjected to environmental stressors like those provoked by climate change. We investigated whether a 2°C increase in flowing water would affect prokaryotic community composition and heterotrophic metabolic activities of biofilms grown under light or dark conditions. Neither light nor temperature treatments were relevant for selecting a specific bacterial community at initial phases (7-day-old biofilms), but both variables affected the composition and function of mature biofilms (28-day-old). In dark-grown biofilms, changes in the prokaryotic community composition due to warming were mainly related to rotifer grazing, but no significant changes were observed in functional fingerprints. In light-grown biofilms, warming also affected protozoan densities, but its effect on prokaryotic density and composition was less evident. In contrast, heterotrophic metabolic activities in light-grown biofilms under warming showed a decrease in the functional diversity towards a specialized use of several carbohydrates. Results suggest that prokaryotes are functionally redundant in dark biofilms but functionally plastic in light biofilms. The more complex and self-serving light-grown biofilm determines a more buffered response to temperature than dark-grown biofilms. Despite the moderate increase in temperature of only 2°C, warming conditions drive significant changes in freshwater biofilms, which responded by finely tuning a complex network of interactions among microbial populations within the biofilm matrix.

  20. History of adaptation determines short-term shifts in performance and community structure of hydrogen-producing microbial communities degrading wheat straw.

    PubMed

    Valdez-Vazquez, Idania; Morales, Ana L; Escalante, Ana E

    2017-03-14

    This study addresses the question of ecological interest for the determination of structure and diversity of microbial communities that degrade lignocellulosic biomasses to produce biofuels. Two microbial consortia with different history, native of wheat straw (NWS) and from a methanogenic digester (MD) fed with cow manure, were contrasted in terms of hydrogen performance, substrate disintegration and microbial diversity. NWS outperformed the hydrogen production rate of MD. Microscopic images revealed that NWS acted on the cuticle and epidermis, generating cellulose strands with high crystallinity, while MD degraded deeper layers, equally affecting all polysaccharides. The bacterial composition markedly differed according to the inocula origin. NWS almost solely comprised hydrogen producers of the phyla Firmicutes and Proteobacteria, with 38% members of Enterococcus. After hydrogen fermentation, NWS comprised 8% Syntrophococcus, an acetogen that cleaves aryl ethers of constituent groups on the aromatic components of lignin. Conversely, MD comprised thirteen phyla, primarily including Firmicutes with H2 -producing members, and Bacteroidetes with non-H2 -producing members, which reduced the hydrogen performance. Overall, the results of this study provide clear evidence that the history of adaptation of NWS enhanced the hydrogen performance from untreated wheat straw. Further, native wheat straw communities have the potential to refine cellulose fibers and produce biofuels simultaneously.

  1. The malleable gut microbiome of juvenile rainbow trout (Oncorhynchus mykiss): Diet-dependent shifts of bacterial community structures.

    PubMed

    Michl, Stéphanie Céline; Ratten, Jenni-Marie; Beyer, Matt; Hasler, Mario; LaRoche, Julie; Schulz, Carsten

    2017-01-01

    Plant-derived protein sources are the most relevant substitutes for fishmeal in aquafeeds. Nevertheless, the effects of plant based diets on the intestinal microbiome especially of juvenile Rainbow trout (Oncorhynchus mykiss) are yet to be fully investigated. The present study demonstrates, based on 16S rDNA bacterial community profiling, that the intestinal microbiome of juvenile Rainbow trout is strongly affected by dietary plant protein inclusion levels. After first feeding of juveniles with either 0%, 50% or 97% of total dietary protein content derived from plants, statistically significant differences of the bacterial gut community for the three diet-types were detected, both at phylum and order level. The microbiome of juvenile fish consisted mainly of the phyla Proteobacteria, Firmicutes, Bacteroidetes, Fusobacteria and Actinobacteria, and thus fits the salmonid core microbiome suggested in previous studies. Dietary plant proteins significantly enhanced the relative abundance of the orders Lactobacillales, Bacillales and Pseudomonadales. Animal proteins in contrast significantly promoted Bacteroidales, Clostridiales, Vibrionales, Fusobacteriales and Alteromonadales. The overall alpha diversity significantly decreased with increasing plant protein inclusion levels and with age of experimental animals. In order to investigate permanent effects of the first feeding diet-type on the early development of the microbiome, a diet change was included in the study after 54 days, but no such effects could be detected. Instead, the microbiome of juvenile trout fry was highly dependent on the actual diet fed at the time of sampling.

  2. Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity.

    PubMed

    Cowles, Jane M; Wragg, Peter D; Wright, Alexandra J; Powers, Jennifer S; Tilman, David

    2016-02-01

    Ecosystems worldwide are increasingly impacted by multiple drivers of environmental change, including climate warming and loss of biodiversity. We show, using a long-term factorial experiment, that plant diversity loss alters the effects of warming on productivity. Aboveground primary productivity was increased by both high plant diversity and warming, and, in concert, warming (≈1.5 °C average above and belowground warming over the growing season) and diversity caused a greater than additive increase in aboveground productivity. The aboveground warming effects increased over time, particularly at higher levels of diversity, perhaps because of warming-induced increases in legume and C4 bunch grass abundances, and facilitative feedbacks of these species on productivity. Moreover, higher plant diversity was associated with the amelioration of warming-induced environmental conditions. This led to cooler temperatures, decreased vapor pressure deficit, and increased surface soil moisture in higher diversity communities. Root biomass (0-30 cm) was likewise consistently greater at higher plant diversity and was greater with warming in monocultures and at intermediate diversity, but at high diversity warming had no detectable effect. This may be because warming increased the abundance of legumes, which have lower root : shoot ratios than the other types of plants. In addition, legumes increase soil nitrogen (N) supply, which could make N less limiting to other species and potentially decrease their investment in roots. The negative warming × diversity interaction on root mass led to an overall negative interactive effect of these two global change factors on the sum of above and belowground biomass, and thus likely on total plant carbon stores. In total, plant diversity increased the effect of warming on aboveground net productivity and moderated the effect on root mass. These divergent effects suggest that warming and changes in plant diversity are likely to have both

  3. Microbial community shifts influence patterns in tropical forest nitrogen fixation.

    PubMed

    Reed, Sasha C; Townsend, Alan R; Cleveland, Cory C; Nemergut, Diana R

    2010-10-01

    The role of biodiversity in ecosystem function receives substantial attention, yet despite the diversity and functional relevance of microorganisms, relationships between microbial community structure and ecosystem processes remain largely unknown. We used tropical rain forest fertilization plots to directly compare the relative abundance, composition and diversity of free-living nitrogen (N)-fixer communities to in situ leaf litter N fixation rates. N fixation rates varied greatly within the landscape, and 'hotspots' of high N fixation activity were observed in both control and phosphorus (P)-fertilized plots. Compared with zones of average activity, the N fixation 'hotspots' in unfertilized plots were characterized by marked differences in N-fixer community composition and had substantially higher overall diversity. P additions increased the efficiency of N-fixer communities, resulting in elevated rates of fixation per nifH gene. Furthermore, P fertilization increased N fixation rates and N-fixer abundance, eliminated a highly novel group of N-fixers, and increased N-fixer diversity. Yet the relationships between diversity and function were not simple, and coupling rate measurements to indicators of community structure revealed a biological dynamism not apparent from process measurements alone. Taken together, these data suggest that the rain forest litter layer maintains high N fixation rates and unique N-fixing organisms and that, as observed in plant community ecology, structural shifts in N-fixing communities may partially explain significant differences in system-scale N fixation rates.

  4. Butterfly community shifts over two centuries.

    PubMed

    Habel, Jan Christian; Segerer, Andreas; Ulrich, Werner; Torchyk, Olena; Weisser, Wolfgang W; Schmitt, Thomas

    2016-08-01

    Environmental changes strongly impact the distribution of species and subsequently the composition of species assemblages. Although most community ecology studies represent temporal snap shots, long-term observations are rather rare. However, only such time series allow the identification of species composition shifts over several decades or even centuries. We analyzed changes in the species composition of a southeastern German butterfly and burnet moth community over nearly 2 centuries (1840-2013). We classified all species observed over this period according to their ecological tolerance, thereby assessing their degree of habitat specialisation. This classification was based on traits of the butterfly and burnet moth species and on their larval host plants. We collected data on temperature and precipitation for our study area over the same period. The number of species declined substantially from 1840 (117 species) to 2013 (71 species). The proportion of habitat specialists decreased, and most of these are currently endangered. In contrast, the proportion of habitat generalists increased. Species with restricted dispersal behavior and species in need of areas poor in soil nutrients had severe losses. Furthermore, our data indicated a decrease in species composition similarity between different decades over time. These data on species composition changes and the general trends of modifications may reflect effects from climate change and atmospheric nitrogen loads, as indicated by the ecological characteristics of host plant species and local changes in habitat configuration with increasing fragmentation. Our observation of major declines over time of currently threatened and protected species shows the importance of efficient conservation strategies.

  5. Shift in the Use of Migrant Community Languages in Australia

    ERIC Educational Resources Information Center

    Karidakis, Maria; Arunachalam, Dharma

    2016-01-01

    In this paper, we first explore the trends in the maintenance of migrant community languages among the first generation migrants and then the socio-economic variation in the shift in use of community languages. Our analysis showed that language shift to English among first generation migrants has not been uniform, with some migrant groups adopting…

  6. Shift in the Use of Migrant Community Languages in Australia

    ERIC Educational Resources Information Center

    Karidakis, Maria; Arunachalam, Dharma

    2016-01-01

    In this paper, we first explore the trends in the maintenance of migrant community languages among the first generation migrants and then the socio-economic variation in the shift in use of community languages. Our analysis showed that language shift to English among first generation migrants has not been uniform, with some migrant groups adopting…

  7. Shifts of microbial community structure in soils of a photovoltaic plant observed using tag-encoded pyrosequencing of 16S rRNA.

    PubMed

    Wu, Shijin; Li, Yuan; Wang, Penghua; Zhong, Li; Qiu, Lequan; Chen, Jianmeng

    2016-04-01

    The environmental risk of fluoride and chloride pollution is pronounced in soils adjacent to solar photovoltaic sites. The elevated levels of fluoride and chloride in these soils have had significant impacts on the population size and overall biological activity of the soil microbial communities. The microbial community also plays an essential role in remediation of these soils. Questions remain as to how the fluoride and chloride contamination and subsequent remediation at these sites have impacted the population structure of the soil microbial communities. We analyzed the microbial communities in soils collected from close to a solar photovoltaic enterprise by pyrosequencing of the 16S rRNA tag. In addition, we used multivariate statistics to identity the relationships shared between sequence diversity and heterogeneity in the soil environment. The overall microbial communities were surprisingly diverse, harboring a wide variety of taxa and sharing significant correlations with different degrees of fluoride and chloride contamination. The contaminated soils harbored abundant bacteria that were probably resistant to the high acidity, high fluoride and chloride concentration, and high osmotic pressure environment. The dominant genera were Sphingomonas, Subgroup_6_norank, Clostridium sensu stricto, Nitrospira, Rhizomicrobium, and Acidithiobacillus. The results of this study provide new information regarding a previously uncharacterized ecosystem and show the value of high-throughput sequencing in the study of complex ecosystems.

  8. Experimental soil warming at the treeline shifts fungal communities species

    NASA Astrophysics Data System (ADS)

    Solly, Emily; Lindahl, Björn; Dawes, Melissa; Peter, Martina; Rixen, Christian; Hagedorn, Frank

    2016-04-01

    In terrestrial ecosystems, fungi play a major role in decomposition processes, plant nutrient uptake and nutrient cycling. In high elevation ecosystems in Alpine and Arctic regions, the fungal community may be particularly sensitive to climate warming due to the removal of temperature limitation in the plant and soil system, faster nutrient cycling and changes in plant carbon allocation to maintain roots systems and sustain the rhizosphere. In our study, we estimated the effects of 9 years CO2 enrichment and three years of experimental soil warming on the community structure of fungal microorganisms in an alpine treeline ecosystem. In the Swiss Alps, we worked on a total of 40 plots, with c. 40-year-old Larix decidua and Pinus mugo ssp. uncinata trees (20 plots for each tree species). Half of the plots with each tree species were randomly assigned to an elevated CO2 treatment (ambient concentration +200 ppm), whereas the remaining plots received no supplementary CO2. Five individual plots for each combination of CO2 concentration and tree species were heated by an average of 4°C during the growing season with heating cables at the soil surface. At the treeline, the fungal diversity analyzed by high-throughput 454-sequencing of genetic markers, was generally low as compared to low altitude systems and mycorrhizal species made a particularly small contribution to the total fungal DNA. Soil warming led to a shift in the structure and composition of the fungal microbial community, with an increase of litter degraders and ectomycorrhizal fungi. We further observed changes in the productivity of specific fungal fruiting bodies (i.e. more Lactarius rufus sporocarps and less Hygrophorus lucorum sporocarps) during the course of the experiment, that were consistent with the 454-sequencing data. The warming effect was more pronounced in the Larix plots. These shifts were accompanied by an increased soil CO2 efflux (+40%), evidence of increased N availability and a

  9. Protein structure determination from NMR chemical shifts.

    PubMed

    Cavalli, Andrea; Salvatella, Xavier; Dobson, Christopher M; Vendruscolo, Michele

    2007-06-05

    NMR spectroscopy plays a major role in the determination of the structures and dynamics of proteins and other biological macromolecules. Chemical shifts are the most readily and accurately measurable NMR parameters, and they reflect with great specificity the conformations of native and nonnative states of proteins. We show, using 11 examples of proteins representative of the major structural classes and containing up to 123 residues, that it is possible to use chemical shifts as structural restraints in combination with a conventional molecular mechanics force field to determine the conformations of proteins at a resolution of 2 angstroms or better. This strategy should be widely applicable and, subject to further development, will enable quantitative structural analysis to be carried out to address a range of complex biological problems not accessible to current structural techniques.

  10. Shifts in flowering phenology reshape a subalpine plant community.

    PubMed

    CaraDonna, Paul J; Iler, Amy M; Inouye, David W

    2014-04-01

    Phenology--the timing of biological events--is highly sensitive to climate change. However, our general understanding of how phenology responds to climate change is based almost solely on incomplete assessments of phenology (such as first date of flowering) rather than on entire phenological distributions. Using a uniquely comprehensive 39-y flowering phenology dataset from the Colorado Rocky Mountains that contains more than 2 million flower counts, we reveal a diversity of species-level phenological shifts that bring into question the accuracy of previous estimates of long-term phenological change. For 60 species, we show that first, peak, and last flowering rarely shift uniformly and instead usually shift independently of one another, resulting in a diversity of phenological changes through time. Shifts in the timing of first flowering on average overestimate the magnitude of shifts in the timing of peak flowering, fail to predict shifts in the timing of last flowering, and underrepresent the number of species changing phenology in this plant community. Ultimately, this diversity of species-level phenological shifts contributes to altered coflowering patterns within the community, a redistribution of floral abundance across the season, and an expansion of the flowering season by more than I mo during the course of our study period. These results demonstrate the substantial reshaping of ecological communities that can be attributed to shifts in phenology.

  11. Shifts in flowering phenology reshape a subalpine plant community

    PubMed Central

    CaraDonna, Paul J.; Iler, Amy M.; Inouye, David W.

    2014-01-01

    Phenology—the timing of biological events—is highly sensitive to climate change. However, our general understanding of how phenology responds to climate change is based almost solely on incomplete assessments of phenology (such as first date of flowering) rather than on entire phenological distributions. Using a uniquely comprehensive 39-y flowering phenology dataset from the Colorado Rocky Mountains that contains more than 2 million flower counts, we reveal a diversity of species-level phenological shifts that bring into question the accuracy of previous estimates of long-term phenological change. For 60 species, we show that first, peak, and last flowering rarely shift uniformly and instead usually shift independently of one another, resulting in a diversity of phenological changes through time. Shifts in the timing of first flowering on average overestimate the magnitude of shifts in the timing of peak flowering, fail to predict shifts in the timing of last flowering, and underrepresent the number of species changing phenology in this plant community. Ultimately, this diversity of species-level phenological shifts contributes to altered coflowering patterns within the community, a redistribution of floral abundance across the season, and an expansion of the flowering season by more than I mo during the course of our study period. These results demonstrate the substantial reshaping of ecological communities that can be attributed to shifts in phenology. PMID:24639544

  12. Phase-shifting structures for isolated features

    NASA Astrophysics Data System (ADS)

    Garofalo, Joseph G.; Kostelak, Robert L.; Yang, Tungsheng

    1991-07-01

    The technique for improving optical projection-system resolution by phase-shifting alternate apertures of a periodic grating was introduced in 1982. This halves the frequency content of the image passing through the optics and should therefore double the effective resolution of such patterns. Unfortunately, as feature separation increases, the efficacy of this method diminishes. Previous work applying a similar approach to isolated features involves introducing minute, non-printable, phase-shifted assist slots around the desired feature. The diffraction side-lobes of these slots constructively interfere with the center lobe of the primary aperture. The resolution enhancement afforded be this technique is limited by the printability of the assist slots. This restraint also dictates 1X-size reticle feature dimensions and the employment of high contrast imaging resists. A new approach entails significantly oversizing the desired feature and introducing a phase-shifting region around the periphery. This type of structure affords substantial focus-exposure improvements and may either be fabricated in a single-level, self-aligned scheme or by a two-level exposure with conventional e-beam tools since the phase-shifting regions are on the order of 1 micrometers (reticle dimensions). Extensive modeling of this structure for isolated contact holes and spaces explores the myriad of trade- offs involved in an optimum design. Mask-fabrication tolerances, such as phase-shift uniformity, are also investigated. It is shown that the focus-exposure window enlarges as the overall structure dimensions increase. The degree of enhancement must therefore by weighed against packing density restrictions. Also, the structure suffers, to some degree, from the effect of side-lobes. However, for a given side-lobe intensity, this technique yields enhancements superior to the assist-slot approach. As is typical of phase-shifted systems, performance is improved as the partial coherence ((sigma

  13. Long-term changes in the fish community structure from the Tsushima warm current region of the Japan/East Sea with an emphasis on the impacts of fishing and climate regime shift over the last four decades

    NASA Astrophysics Data System (ADS)

    Tian, Yongjun; Kidokoro, Hideaki; Watanabe, Tatsuro

    2006-02-01

    climatic regime shifts in the North Pacific. These results strongly suggest that the structure of the fish community in the Japan/East Sea was largely affected by climatic and oceanic regime shifts rather than by fishing. There is no evidence showing “fishing down food webs” in the Japan/East Sea. However, in addition to the impacts of abrupt shifts that occurred in the late 1980s, the large predatory and demersal fishes seem to be facing stronger fishing pressure with the collapse of the Japanese sardine.

  14. Contrasting energy pathways at the community level as a consequence of regime shifts.

    PubMed

    Xu, Jun; Wen, Zhourui; Ke, Zhixin; Zhang, Meng; Zhang, Min; Guo, Nichun; Hansson, Lars-Anders; Xie, Ping

    2014-05-01

    Ecological regime shifts typically result in abrupt changes in ecosystem structure through several trophic levels, which leads to rapid ecosystem reconfiguration between regimes. An interesting aspect of the impact of regime shift is that alternative regimes may induce distinct shifts in energy pathways; these have been less tested than structural changes. This paper addresses this by using stable isotopes to establish the energy pathways in fish communities. We specifically focus on the impact of regime shift on changes of the energy pathways, and how the magnitude and direction of these changes affect the local community. We found that energy pathways significantly varied among the planktivorous, benthivorous, and piscivorous trophic guilds as a result of the alternative regimes. The regime shift from a clear to a turbid state altered the food web towards planktonic energy pathways and truncated food chain length, which is indicative of less ecological efficiency. This was confirmed by the adaptive foraging strategies of prevalent omnivores in the current communities. These structural and functional characteristics of trophic interactions might not facilitate classic trophic cascading effects in such a turbid regime and suppress the system's response to environmental changes, e.g., nutrient loading, and restoration efforts in turbid to clear water regime shifts.

  15. Invertebrate community response to a shifting mosaic of habitat

    USGS Publications Warehouse

    Engle, David M.; Fuhlendorf, S.D.; Roper, A.; Leslie, David M.

    2008-01-01

    Grazing management has focused largely on promoting vegetation homogeneity through uniform distribution of grazing to minimize area in a pasture that is either heavily disturbed or undisturbed. An alternative management model that couples grazing and fire (i.e., patch burning) to promote heterogeneity argues that grazing and fire interact through a series of positive and negative feedbacks to cause a shifting mosaic of vegetation composition and structure across the landscape. We compared patch burning with traditional homogeneity-based management in tallgrass prairie to determine the influence of the two treatments on the aboveground invertebrate community. Patch burning resulted in a temporal flush of invertebrate biomass in patches transitional between unburned and patches burned in the current year. Total invertebrate mass was about 50% greater in these transitional patches within patch-burned pastures as compared to pastures under traditional, homogeneity-based management. Moreover, the mosaic of patches in patch-burned pastures contained a wider range of invertebrate biomass and greater abundance of some invertebrate orders than did the traditionally managed pastures. Patch burning provides habitat that meets requirements for a broad range of invertebrate species, suggesting the potential for patch burning to benefit other native animal assemblages in the food chain.

  16. Community structure in networks

    NASA Astrophysics Data System (ADS)

    Newman, Mark

    2004-03-01

    Many networked systems, including physical, biological, social, and technological networks, appear to contain ``communities'' -- groups of nodes within which connections are dense, but between which they are sparser. The ability to find such communities in an automated fashion could be of considerable use. Communities in a web graph for instance might correspond to sets of web sites dealing with related topics, while communities in a biochemical network or an electronic circuit might correspond to functional units of some kind. We present a number of new methods for community discovery, including methods based on ``betweenness'' measures and methods based on modularity optimization. We also give examples of applications of these methods to both computer-generated and real-world network data, and show how our techniques can be used to shed light on the sometimes dauntingly complex structure of networked systems.

  17. Microbial community structure and function in response to the shift of sulfide/nitrate loading ratio during the denitrifying sulfide removal process.

    PubMed

    Huang, Cong; Li, Zhi-Ling; Chen, Fan; Liu, Qian; Zhao, You-Kang; Zhou, Ji-Zhong; Wang, Ai-Jie

    2015-12-01

    Influence of acetate-C/NO3(-)-N/S(2-) ratio to the functional microbial community during the denitrifying sulfide removal process is poorly understood. Here, phylogenetic and functional bacterial community for elemental sulfur (S(0)) recovery and nitrate (NO3(-)) removal were investigated with the switched S(2-)/NO3(-) molar ratio ranged from 5/2 to 5/9. Optimized S(2-)/NO3(-) ratio was evaluated as 5/6, with the bacterial genera predominated with Thauera, Enterobacter, Thiobacillus and Stappia, and the sqr gene highly expressed. However, insufficient or high loading of acetate and NO3(-) resulted in the low S(0) recovery, and also significantly modified the bacterial community and genetic activity. With S(2-)/NO3(-) ratio of 5/2, autotrophic S(2-) oxidization genera were dominated and NO3(-) reduction activity was low, confirmed by the low expressed nirK gene. In contrast, S(2-)/NO3(-) ratio switched to 5/8 and 5/9 introduced diverse heterotrophic nitrate reduction and S(0) over oxidization genera in accompanied with the highly expressed nirK and sox genes.

  18. Language Shift and the Speech Community: Sociolinguistic Change in a Garifuna Community in Belize

    ERIC Educational Resources Information Center

    Ravindranath, Maya

    2009-01-01

    Language shift is the process by which a speech community in a contact situation (i.e. consisting of bilingual speakers) gradually stops using one of its two languages in favor of the other. The causal factors of language shift are generally considered to be social, and researchers have focused on speakers' attitudes (both explicit and unstated)…

  19. Language Shift and the Speech Community: Sociolinguistic Change in a Garifuna Community in Belize

    ERIC Educational Resources Information Center

    Ravindranath, Maya

    2009-01-01

    Language shift is the process by which a speech community in a contact situation (i.e. consisting of bilingual speakers) gradually stops using one of its two languages in favor of the other. The causal factors of language shift are generally considered to be social, and researchers have focused on speakers' attitudes (both explicit and unstated)…

  20. Range shifting species reduce phylogenetic diversity in high latitude communities via competition.

    PubMed

    Fitt, Robert N L; Lancaster, Lesley T

    2017-02-19

    Under anthropogenic climate change, many species are expanding their ranges to higher latitudes and altitudes, resulting in novel species interactions. The consequences of these range shifts for native species, patterns of local biodiversity and community structure in high latitude ecosystems are largely unknown but critical to understand in light of widespread poleward expansions by many warm-adapted generalists. Using niche modelling, phylogenetic methods, and field and laboratory studies, we investigated how colonization of Scotland by a range expanding damselfly, Ischnura elegans, influences patterns of competition and niche shifts in native damselfly species, and changes in phylogenetic community structure. Colonization by I. elegans was associated with reduced population density and niche shifts in the resident species least related to I. elegans (Lestes sponsa), reflecting enhanced competition. Furthermore, communities colonized by I. elegans exhibited phylogenetic underdispersion, reflecting patterns of relatedness and competition. Our results provide a novel example of a potentially general mechanism whereby climate change-mediated range shifts can reduce phylogenetic diversity within high latitude communities, if colonizing species are typically competitively superior to members of native communities that are least-closely related to the colonizer.

  1. Soil bacterial community shifts associated with sugarcane straw removal

    NASA Astrophysics Data System (ADS)

    Pimentel, Laisa; Gumiere, Thiago; Andreote, Fernando; Cerri, Carlos

    2017-04-01

    In Brazil, the adoption of the mechanical unburned sugarcane harvest potentially increase the quantity of residue left in the field after harvesting. Economically, this material has a high potential for second generation ethanol (2G) production. However, crop residues have an essential role in diverse properties and processes in the soil. The greater part of the uncertainties about straw removal for 2G ethanol production is based on its effects in soil microbial community. In this sense, it is important to identify the main impacts of sugarcane straw removal on soil microbial community. Therefore, we conducted a field study, during one year, in Valparaíso (São Paulo state - Brazil) to evaluate the effects of straw decomposition on soil bacterial community. Specifically, we wanted: i) to compare the rates of straw removal and ii) to evaluate the effects of straw decomposition on soil bacterial groups over one year. The experiment was in a randomized block design with treatments arranged in strip plot. The treatments are different rates of sugarcane straw removal, namely: no removal, 50, 75 and 100% of straw removal. Soil sampling was carried out at 0, 4, 8 and 12 months after the sugarcane harvest (August 2015). Total DNA was extracted from soil using the PowersoilTM DNA Isolation kit. And the abundance of bacterial in each soil sample was estimated via quantification of 16S rRNA gene. The composition of the bacterial communities was estimated via terminal restriction fragment length polymorphism (T-RFLP) analysis, and the T-RF sizes were performed on a 3500 Genetic Analyzer. Finally, the results were examined with GeneMapper 4.1 software. There was bacterial community shifts through the time and among the rates of sugarcane straw removal. Bacterial community was firstly determined by the time scale, which explained 29.16% of total variation. Rates of straw removal explained 11.55% of shifts on bacterial community. Distribution through the time is an important

  2. Holocene shifts in the assembly of plant and animal communities implicate human impacts.

    PubMed

    Lyons, S Kathleen; Amatangelo, Kathryn L; Behrensmeyer, Anna K; Bercovici, Antoine; Blois, Jessica L; Davis, Matt; DiMichele, William A; Du, Andrew; Eronen, Jussi T; Faith, J Tyler; Graves, Gary R; Jud, Nathan; Labandeira, Conrad; Looy, Cindy V; McGill, Brian; Miller, Joshua H; Patterson, David; Pineda-Munoz, Silvia; Potts, Richard; Riddle, Brett; Terry, Rebecca; Tóth, Anikó; Ulrich, Werner; Villaseñor, Amelia; Wing, Scott; Anderson, Heidi; Anderson, John; Waller, Donald; Gotelli, Nicholas J

    2016-01-07

    Understanding how ecological communities are organized and how they change through time is critical to predicting the effects of climate change. Recent work documenting the co-occurrence structure of modern communities found that most significant species pairs co-occur less frequently than would be expected by chance. However, little is known about how co-occurrence structure changes through time. Here we evaluate changes in plant and animal community organization over geological time by quantifying the co-occurrence structure of 359,896 unique taxon pairs in 80 assemblages spanning the past 300 million years. Co-occurrences of most taxon pairs were statistically random, but a significant fraction were spatially aggregated or segregated. Aggregated pairs dominated from the Carboniferous period (307 million years ago) to the early Holocene epoch (11,700 years before present), when there was a pronounced shift to more segregated pairs, a trend that continues in modern assemblages. The shift began during the Holocene and coincided with increasing human population size and the spread of agriculture in North America. Before the shift, an average of 64% of significant pairs were aggregated; after the shift, the average dropped to 37%. The organization of modern and late Holocene plant and animal assemblages differs fundamentally from that of assemblages over the past 300 million years that predate the large-scale impacts of humans. Our results suggest that the rules governing the assembly of communities have recently been changed by human activity.

  3. Mapping of protein structural ensembles by chemical shifts.

    PubMed

    Baskaran, Kumaran; Brunner, Konrad; Munte, Claudia E; Kalbitzer, Hans Robert

    2010-10-01

    Applying the chemical shift prediction programs SHIFTX and SHIFTS to a data base of protein structures with known chemical shifts we show that the averaged chemical shifts predicted from the structural ensembles explain better the experimental data than the lowest energy structures. This is in agreement with the fact that proteins in solution occur in multiple conformational states in fast exchange on the chemical shift time scale. However, in contrast to the real conditions in solution at ambient temperatures, the standard NMR structural calculation methods as well chemical shift prediction methods are optimized to predict the lowest energy ground state structure that is only weakly populated at physiological temperatures. An analysis of the data shows that a chemical shift prediction can be used as measure to define the minimum size of the structural bundle required for a faithful description of the structural ensemble.

  4. Shifts in soil testate amoeba communities associated with forest diversification.

    PubMed

    Bobrov, Anatoly A; Zaitsev, Andrei S; Wolters, Volkmar

    2015-05-01

    We studied changes of testate amoeba communities associated with the conversion of spruce monocultures into mixed beech-fir-spruce forests in the Southern Black Forest Mountains (Germany). In this region, forest conversion is characterized by a gradual development of beech undergrowth within thinned spruce tree stands leading to multiple age continuous cover forests with a diversified litter layer. Strong shifts in the abundance of testate amoeba observed in intermediate stages levelled off to monoculture conditions again after the final stage of the conversion process had been reached. The average number of species per conversion stage (i.e., local richness) did not respond strongly to forest conversion, but the total number of species (i.e., regional richness) was considerably higher in the initial stage than in the mixed forests, due to the large number of hygrophilous species inhabiting spruce monocultures. Functional diversity of the testate amoeba community, however, significantly increased during the conversion process. This shift was closely associated with improved C and N availability as well as higher niche diversity in the continuous cover stands. Lower soil acidity in these forests coincided with a higher relative abundance of eurytopic species. Our results suggest that testate amoeba communities are much more affected by physicochemical properties of the soil than directly by litter diversity.

  5. Estimating carnivore community structures

    PubMed Central

    Jiménez, José; Nuñez-Arjona, Juan Carlos; Rueda, Carmen; González, Luis Mariano; García-Domínguez, Francisco; Muñoz-Igualada, Jaime; López-Bao, José Vicente

    2017-01-01

    Obtaining reliable estimates of the structure of carnivore communities is of paramount importance because of their ecological roles, ecosystem services and impact on biodiversity conservation, but they are still scarce. This information is key for carnivore management: to build support for and acceptance of management decisions and policies it is crucial that those decisions are based on robust and high quality information. Here, we combined camera and live-trapping surveys, as well as telemetry data, with spatially-explicit Bayesian models to show the usefulness of an integrated multi-method and multi-model approach to monitor carnivore community structures. Our methods account for imperfect detection and effectively deal with species with non-recognizable individuals. In our Mediterranean study system, the terrestrial carnivore community was dominated by red foxes (0.410 individuals/km2); Egyptian mongooses, feral cats and stone martens were similarly abundant (0.252, 0.249 and 0.240 individuals/km2, respectively), whereas badgers and common genets were the least common (0.130 and 0.087 individuals/km2, respectively). The precision of density estimates improved by incorporating multiple covariates, device operation, and accounting for the removal of individuals. The approach presented here has substantial implications for decision-making since it allows, for instance, the evaluation, in a standard and comparable way, of community responses to interventions. PMID:28120871

  6. Estimating carnivore community structures.

    PubMed

    Jiménez, José; Nuñez-Arjona, Juan Carlos; Rueda, Carmen; González, Luis Mariano; García-Domínguez, Francisco; Muñoz-Igualada, Jaime; López-Bao, José Vicente

    2017-01-25

    Obtaining reliable estimates of the structure of carnivore communities is of paramount importance because of their ecological roles, ecosystem services and impact on biodiversity conservation, but they are still scarce. This information is key for carnivore management: to build support for and acceptance of management decisions and policies it is crucial that those decisions are based on robust and high quality information. Here, we combined camera and live-trapping surveys, as well as telemetry data, with spatially-explicit Bayesian models to show the usefulness of an integrated multi-method and multi-model approach to monitor carnivore community structures. Our methods account for imperfect detection and effectively deal with species with non-recognizable individuals. In our Mediterranean study system, the terrestrial carnivore community was dominated by red foxes (0.410 individuals/km(2)); Egyptian mongooses, feral cats and stone martens were similarly abundant (0.252, 0.249 and 0.240 individuals/km(2), respectively), whereas badgers and common genets were the least common (0.130 and 0.087 individuals/km(2), respectively). The precision of density estimates improved by incorporating multiple covariates, device operation, and accounting for the removal of individuals. The approach presented here has substantial implications for decision-making since it allows, for instance, the evaluation, in a standard and comparable way, of community responses to interventions.

  7. Regime Shift in an Exploited Fish Community Related to Natural Climate Oscillations

    PubMed Central

    Auber, Arnaud; Travers-Trolet, Morgane; Villanueva, Maria Ching; Ernande, Bruno

    2015-01-01

    Identifying the various drivers of marine ecosystem regime shifts and disentangling their respective influence are critical tasks for understanding biodiversity dynamics and properly managing exploited living resources such as marine fish communities. Unfortunately, the mechanisms and forcing factors underlying regime shifts in marine fish communities are still largely unknown although climate forcing and anthropogenic pressures such as fishing have been suggested as key determinants. Based on a 24-year-long time-series of scientific surveys monitoring 55 fish and cephalopods species, we report here a rapid and persistent structural change in the exploited fish community of the eastern English Channel from strong to moderate dominance of small-bodied forage fish species with low temperature preferendum that occurred in the mid-1990s. This shift was related to a concomitant warming of the North Atlantic Ocean as attested by a switch of the Atlantic Multidecadal Oscillation from a cold to a warm phase. Interestingly, observed changes in the fish community structure were opposite to those classically induced by exploitation as larger fish species of higher trophic level increased in abundance. Despite not playing a direct role in the regime shift, fishing still appeared as a forcing factor affecting community structure. Moreover, although related to climate, the regime shift may have been facilitated by strong historic exploitation that certainly primed the system by favoring the large dominance of small-bodied fish species that are particularly sensitive to climatic variations. These results emphasize that particular attention should be paid to multidecadal natural climate variability and its interactions with both fishing and climate warming when aiming at sustainable exploitation and ecosystem conservation. PMID:26132268

  8. Regime Shift in an Exploited Fish Community Related to Natural Climate Oscillations.

    PubMed

    Auber, Arnaud; Travers-Trolet, Morgane; Villanueva, Maria Ching; Ernande, Bruno

    2015-01-01

    Identifying the various drivers of marine ecosystem regime shifts and disentangling their respective influence are critical tasks for understanding biodiversity dynamics and properly managing exploited living resources such as marine fish communities. Unfortunately, the mechanisms and forcing factors underlying regime shifts in marine fish communities are still largely unknown although climate forcing and anthropogenic pressures such as fishing have been suggested as key determinants. Based on a 24-year-long time-series of scientific surveys monitoring 55 fish and cephalopods species, we report here a rapid and persistent structural change in the exploited fish community of the eastern English Channel from strong to moderate dominance of small-bodied forage fish species with low temperature preferendum that occurred in the mid-1990s. This shift was related to a concomitant warming of the North Atlantic Ocean as attested by a switch of the Atlantic Multidecadal Oscillation from a cold to a warm phase. Interestingly, observed changes in the fish community structure were opposite to those classically induced by exploitation as larger fish species of higher trophic level increased in abundance. Despite not playing a direct role in the regime shift, fishing still appeared as a forcing factor affecting community structure. Moreover, although related to climate, the regime shift may have been facilitated by strong historic exploitation that certainly primed the system by favoring the large dominance of small-bodied fish species that are particularly sensitive to climatic variations. These results emphasize that particular attention should be paid to multidecadal natural climate variability and its interactions with both fishing and climate warming when aiming at sustainable exploitation and ecosystem conservation.

  9. Microbial Community Dynamics and Stability during an Ammonia-Induced Shift to Syntrophic Acetate Oxidation

    PubMed Central

    Werner, Jeffrey J.; Garcia, Marcelo L.; Perkins, Sarah D.; Yarasheski, Kevin E.; Smith, Samuel R.; Muegge, Brian D.; Stadermann, Frank J.; DeRito, Christopher M.; Floss, Christine; Madsen, Eugene L.; Gordon, Jeffrey I.

    2014-01-01

    Anaerobic digesters rely on the diversity and distribution of parallel metabolic pathways mediated by complex syntrophic microbial communities to maintain robust and optimal performance. Using mesophilic swine waste digesters, we experimented with increased ammonia loading to induce a shift from aceticlastic methanogenesis to an alternative acetate-consuming pathway of syntrophic acetate oxidation. In comparison with control digesters, we observed shifts in bacterial 16S rRNA gene content and in functional gene repertoires over the course of the digesters' 3-year operating period. During the first year, under identical startup conditions, all bioreactors mirrored each other closely in terms of bacterial phylotype content, phylogenetic structure, and evenness. When we perturbed the digesters by increasing the ammonia concentration or temperature, the distribution of bacterial phylotypes became more uneven, followed by a return to more even communities once syntrophic acetate oxidation had allowed the experimental bioreactors to regain stable operation. The emergence of syntrophic acetate oxidation coincided with a partial shift from aceticlastic to hydrogenotrophic methanogens. Our 16S rRNA gene analysis also revealed that acetate-fed enrichment experiments resulted in communities that did not represent the bioreactor community. Analysis of shotgun sequencing of community DNA suggests that syntrophic acetate oxidation was carried out by a heterogeneous community rather than by a specific keystone population with representatives of enriched cultures with this metabolic capacity. PMID:24657858

  10. Shifts in Campylobacter species abundance may reflect general microbial community shifts in periodontitis progression

    PubMed Central

    Henne, Karsten; Fuchs, Felix; Kruth, Sebastian; Horz, Hans-Peter; Conrads, Georg

    2014-01-01

    Background Oral Campylobacter species have been found to be associated with periodontitis progression. While the etiological significance of Campylobacter rectus is quite established, the association of C. gracilis, C. concisus, and C. curvus with health or disease remains contradictory. Objectives This study hypothesizes that the proportion of species within the Campylobacter genus rather than the absolute abundance of a single species is a suitable indicator for periodontitis progression. Design Subgingival plaque from 90 periodontitis patients and gingival sulcus fluid of 32 healthy individuals were subjected to a newly developed nested PCR approach, in which all Campylobacter spp. were amplified simultaneously. The resulting mixture of 16S-rRNA-gene-amplicons were separated by single-stranded conformation polymorphism (SSCP) gel electrophoresis, followed by sequencing and identification of excised bands and relative quantification of band intensities. In all samples, the abundance of selected periodontitis marker species was determined based on DNA hybridization on a microarray. Results The highly prevalent Campylobacter community was composed of varying proportions of C. rectus, C. gracilis, C. concisus, and C. curvus. Cluster analysis based on SSCP-banding pattern resulted in distinct groups which in turn coincided with significant differences in abundance of established periodontitis marker species (Tannerella forsythia, Porphyromonas gingivalis, and Fusobacterium nucleatum) and progression. Conclusions The shift in the Campylobacter community composition seems to display the general microbial community shift during clinical progression in a simplified manner. The focus on members of the Campylobacter in this study suggests that this genus can be an indicator of ecological changes in the subgingival oral microflora. PMID:25412608

  11. Regime shifts in marine communities: a complex systems perspective on food web dynamics.

    PubMed

    Yletyinen, Johanna; Bodin, Örjan; Weigel, Benjamin; Nordström, Marie C; Bonsdorff, Erik; Blenckner, Thorsten

    2016-02-24

    Species composition and habitats are changing at unprecedented rates in the world's oceans, potentially causing entire food webs to shift to structurally and functionally different regimes. Despite the severity of these regime shifts, elucidating the precise nature of their underlying processes has remained difficult. We address this challenge with a new analytic approach to detect and assess the relative strength of different driving processes in food webs. Our study draws on complexity theory, and integrates the network-centric exponential random graph modelling (ERGM) framework developed within the social sciences with community ecology. In contrast to previous research, this approach makes clear assumptions of direction of causality and accommodates a dynamic perspective on the emergence of food webs. We apply our approach to analysing food webs of the Baltic Sea before and after a previously reported regime shift. Our results show that the dominant food web processes have remained largely the same, although we detect changes in their magnitudes. The results indicate that the reported regime shift may not be a system-wide shift, but instead involve a limited number of species. Our study emphasizes the importance of community-wide analysis on marine regime shifts and introduces a novel approach to examine food webs.

  12. Regime shifts in marine communities: a complex systems perspective on food web dynamics

    PubMed Central

    Yletyinen, Johanna; Bodin, Örjan; Weigel, Benjamin; Nordström, Marie C.; Bonsdorff, Erik; Blenckner, Thorsten

    2016-01-01

    Species composition and habitats are changing at unprecedented rates in the world's oceans, potentially causing entire food webs to shift to structurally and functionally different regimes. Despite the severity of these regime shifts, elucidating the precise nature of their underlying processes has remained difficult. We address this challenge with a new analytic approach to detect and assess the relative strength of different driving processes in food webs. Our study draws on complexity theory, and integrates the network-centric exponential random graph modelling (ERGM) framework developed within the social sciences with community ecology. In contrast to previous research, this approach makes clear assumptions of direction of causality and accommodates a dynamic perspective on the emergence of food webs. We apply our approach to analysing food webs of the Baltic Sea before and after a previously reported regime shift. Our results show that the dominant food web processes have remained largely the same, although we detect changes in their magnitudes. The results indicate that the reported regime shift may not be a system-wide shift, but instead involve a limited number of species. Our study emphasizes the importance of community-wide analysis on marine regime shifts and introduces a novel approach to examine food webs. PMID:26888032

  13. A shift from exploitation to interference competition with increasing density affects population and community dynamics.

    PubMed

    Holdridge, Erica M; Cuellar-Gempeler, Catalina; terHorst, Casey P

    2016-08-01

    Intraspecific competition influences population and community dynamics and occurs via two mechanisms. Exploitative competition is an indirect effect that occurs through use of a shared resource and depends on resource availability. Interference competition occurs by obstructing access to a resource and may not depend on resource availability. Our study tested whether the strength of interference competition changes with protozoa population density. We grew experimental microcosms of protozoa and bacteria under different combinations of protozoan density and basal resource availability. We then solved a dynamic predator-prey model for parameters of the functional response using population growth rates measured in our experiment. As population density increased, competition shifted from exploitation to interference, and competition was less dependent on resource levels. Surprisingly, the effect of resources was weakest when competition was the most intense. We found that at low population densities, competition was largely exploitative and resource availability had a large effect on population growth rates, but the effect of resources was much weaker at high densities. This shift in competitive mechanism could have implications for interspecific competition, trophic interactions, community diversity, and natural selection. We also tested whether this shift in the mechanism of competition with protozoa density affected the structure of the bacterial prey community. We found that both resources and protozoa density affected the structure of the bacterial prey community, suggesting that competitive mechanism may also affect trophic interactions.

  14. Migration and father absence: shifting family structure in Mexico.

    PubMed

    Nobles, Jenna

    2013-08-01

    Despite many changing demographic processes in Mexico-declining adult mortality, rising divorce, and rising nonmarital fertility-Mexican children's family structure has been most affected by rising migration rates. Data from five national surveys spanning three decades demonstrate that since 1976, migration has shifted from the least common to the most common form of father household absence. Presently, more than 1 in 5 children experience a father's migration by age 15; 1 in 11 experiences his departure to the United States. The proportions are significantly higher among those children born in rural communities and those born to less-educated mothers. The findings emphasize the importance of framing migration as a family process with implications for children's living arrangements and attendant well-being, particularly in resource-constrained countries. The stability of children's family life in these regions constitutes a substantial but poorly measured cost of worldwide increases in migration.

  15. Migration and Father Absence: Shifting Family Structure in Mexico

    PubMed Central

    2013-01-01

    Despite many changing demographic processes in Mexico—declining adult mortality, rising divorce, and rising nonmarital fertility—Mexican children’s family structure has been most affected by rising migration rates. Data from five national surveys spanning three decades demonstrate that since 1976, migration has shifted from the least common to the most common form of father household absence. Presently, more than 1 in 5 children experience a father’s migration by age 15; 1 in 11 experiences his departure to the United States. The proportions are significantly higher among those children born in rural communities and those born to less-educated mothers. The findings emphasize the importance of framing migration as a family process with implications for children’s living arrangements and attendant well-being, particularly in resource-constrained countries. The stability of children’s family life in these regions constitutes a substantial but poorly measured cost of worldwide increases in migration. PMID:23355282

  16. Fungal Communities in Rhizosphere Soil under Conservation Tillage Shift in Response to Plant Growth.

    PubMed

    Wang, Ziting; Li, Tong; Wen, Xiaoxia; Liu, Yang; Han, Juan; Liao, Yuncheng; DeBruyn, Jennifer M

    2017-01-01

    Conservation tillage is an extensively used agricultural practice in northern China that alters soil texture and nutrient conditions, causing changes in the soil microbial community. However, how conservation tillage affects rhizosphere and bulk soil fungal communities during plant growth remains unclear. The present study investigated the effect of long-term (6 years) conservation (chisel plow, zero) and conventional (plow) tillage during wheat growth on the rhizosphere fungal community, using high-throughput sequencing of the internal transcribed spacer (ITS) gene and quantitative PCR. During tillering, fungal alpha diversity in both rhizosphere and bulk soil were significantly higher under zero tillage compared to other methods. Although tillage had no significant effect during the flowering stage, fungal alpha diversity at this stage was significantly different between rhizosphere and bulk soils, with bulk soil presenting the highest diversity. This was also reflected in the phylogenetic structure of the communities, as rhizosphere soil communities underwent a greater shift from tillering to flowering compared to bulk soil communities. In general, less variation in community structure was observed under zero tillage compared to plow and chisel plow treatments. Changes in the relative abundance of the fungal orders Capnodiales, Pleosporales, and Xylariales contributed the highest to the dissimilarities observed. Structural equation models revealed that the soil fungal communities under the three tillage regimes were likely influenced by the changes in soil properties associated with plant growth. This study suggested that: (1) differences in nutrient resources between rhizosphere and bulk soils can select for different types of fungi thereby increasing community variation during plant growth; (2) tillage can alter fungal communities' variability, with zero tillage promoting more stable communities. This work suggests that long-term changes in tillage regimes may

  17. Quantum-mechanics-derived 13Cα chemical shift server (CheShift) for protein structure validation

    PubMed Central

    Vila, Jorge A.; Arnautova, Yelena A.; Martin, Osvaldo A.; Scheraga, Harold A.

    2009-01-01

    A server (CheShift) has been developed to predict 13Cα chemical shifts of protein structures. It is based on the generation of 696,916 conformations as a function of the φ, ψ, ω, χ1 and χ2 torsional angles for all 20 naturally occurring amino acids. Their 13Cα chemical shifts were computed at the DFT level of theory with a small basis set and extrapolated, with an empirically-determined linear regression formula, to reproduce the values obtained with a larger basis set. Analysis of the accuracy and sensitivity of the CheShift predictions, in terms of both the correlation coefficient R and the conformational-averaged rmsd between the observed and predicted 13Cα chemical shifts, was carried out for 3 sets of conformations: (i) 36 x-ray-derived protein structures solved at 2.3 Å or better resolution, for which sets of 13Cα chemical shifts were available; (ii) 15 pairs of x-ray and NMR-derived sets of protein conformations; and (iii) a set of decoys for 3 proteins showing an rmsd with respect to the x-ray structure from which they were derived of up to 3 Å. Comparative analysis carried out with 4 popular servers, namely SHIFTS, SHIFTX, SPARTA, and PROSHIFT, for these 3 sets of conformations demonstrated that CheShift is the most sensitive server with which to detect subtle differences between protein models and, hence, to validate protein structures determined by either x-ray or NMR methods, if the observed 13Cα chemical shifts are available. CheShift is available as a web server. PMID:19805131

  18. Changes in plant species richness induce functional shifts in soil nematode communities in experimental grassland.

    PubMed

    Eisenhauer, Nico; Migunova, Varvara D; Ackermann, Michael; Ruess, Liliane; Scheu, Stefan

    2011-01-01

    Changes in plant diversity may induce distinct changes in soil food web structure and accompanying soil feedbacks to plants. However, knowledge of the long-term consequences of plant community simplification for soil animal food webs and functioning is scarce. Nematodes, the most abundant and diverse soil Metazoa, represent the complexity of soil food webs as they comprise all major trophic groups and allow calculation of a number of functional indices. We studied the functional composition of nematode communities three and five years after establishment of a grassland plant diversity experiment (Jena Experiment). In response to plant community simplification common nematode species disappeared and pronounced functional shifts in community structure occurred. The relevance of the fungal energy channel was higher in spring 2007 than in autumn 2005, particularly in species-rich plant assemblages. This resulted in a significant positive relationship between plant species richness and the ratio of fungal-to-bacterial feeders. Moreover, the density of predators increased significantly with plant diversity after five years, pointing to increased soil food web complexity in species-rich plant assemblages. Remarkably, in complex plant communities the nematode community shifted in favour of microbivores and predators, thereby reducing the relative abundance of plant feeders after five years. The results suggest that species-poor plant assemblages may suffer from nematode communities detrimental to plants, whereas species-rich plant assemblages support a higher proportion of microbivorous nematodes stimulating nutrient cycling and hence plant performance; i.e. effects of nematodes on plants may switch from negative to positive. Overall, food web complexity is likely to decrease in response to plant community simplification and results of this study suggest that this results mainly from the loss of common species which likely alter plant-nematode interactions.

  19. Bayesian inference of protein structure from chemical shift data.

    PubMed

    Bratholm, Lars A; Christensen, Anders S; Hamelryck, Thomas; Jensen, Jan H

    2015-01-01

    Protein chemical shifts are routinely used to augment molecular mechanics force fields in protein structure simulations, with weights of the chemical shift restraints determined empirically. These weights, however, might not be an optimal descriptor of a given protein structure and predictive model, and a bias is introduced which might result in incorrect structures. In the inferential structure determination framework, both the unknown structure and the disagreement between experimental and back-calculated data are formulated as a joint probability distribution, thus utilizing the full information content of the data. Here, we present the formulation of such a probability distribution where the error in chemical shift prediction is described by either a Gaussian or Cauchy distribution. The methodology is demonstrated and compared to a set of empirically weighted potentials through Markov chain Monte Carlo simulations of three small proteins (ENHD, Protein G and the SMN Tudor Domain) using the PROFASI force field and the chemical shift predictor CamShift. Using a clustering-criterion for identifying the best structure, together with the addition of a solvent exposure scoring term, the simulations suggests that sampling both the structure and the uncertainties in chemical shift prediction leads more accurate structures compared to conventional methods using empirical determined weights. The Cauchy distribution, using either sampled uncertainties or predetermined weights, did, however, result in overall better convergence to the native fold, suggesting that both types of distribution might be useful in different aspects of the protein structure prediction.

  20. Bayesian inference of protein structure from chemical shift data

    PubMed Central

    Bratholm, Lars A.; Christensen, Anders S.; Hamelryck, Thomas

    2015-01-01

    Protein chemical shifts are routinely used to augment molecular mechanics force fields in protein structure simulations, with weights of the chemical shift restraints determined empirically. These weights, however, might not be an optimal descriptor of a given protein structure and predictive model, and a bias is introduced which might result in incorrect structures. In the inferential structure determination framework, both the unknown structure and the disagreement between experimental and back-calculated data are formulated as a joint probability distribution, thus utilizing the full information content of the data. Here, we present the formulation of such a probability distribution where the error in chemical shift prediction is described by either a Gaussian or Cauchy distribution. The methodology is demonstrated and compared to a set of empirically weighted potentials through Markov chain Monte Carlo simulations of three small proteins (ENHD, Protein G and the SMN Tudor Domain) using the PROFASI force field and the chemical shift predictor CamShift. Using a clustering-criterion for identifying the best structure, together with the addition of a solvent exposure scoring term, the simulations suggests that sampling both the structure and the uncertainties in chemical shift prediction leads more accurate structures compared to conventional methods using empirical determined weights. The Cauchy distribution, using either sampled uncertainties or predetermined weights, did, however, result in overall better convergence to the native fold, suggesting that both types of distribution might be useful in different aspects of the protein structure prediction. PMID:25825683

  1. Bacterial community shift during the startup of a full-scale oxidation ditch treating sewage.

    PubMed

    Chen, Yajun; Ye, Lin; Zhao, Fuzheng; Xiao, Lin; Cheng, Shupei; Zhang, Xu-Xiang

    2016-10-06

    Oxidation ditch (OD) is one of the most widely used processes for treating municipal wastewater. However, the microbial communities in the OD systems have not been well characterized and little information about the shift of bacterial community during the startup process of the OD systems is available. In this study, we investigated the bacterial community changes during the startup period (over 100 days) of a full-scale OD. The results showed that the bacterial community dramatically changed during the startup period. Similar to the activated sludge samples in other studies, Proteobacteria (accounting for 26.3%~48.4%) was the most dominant bacterial phylum in the OD system but its relative abundance declined nearly 40% during the startup process. It was also found that Planctomycetes proliferated greatly (from 4.79% to 13.5%) and finally replaced Bacteroidetes as the second abundant phylum in the OD system. Specifically, some bacteria affiliated with Flavobacterium genus of exhibited remarkable decreasing trends, while bacterial species belonging to OD1 candidate division and Saprospiraceae family were found to increase during the startup process. Despite of the bacterial community shift, the organic matter, nitrogen and phosphorus in the effluent were always in low concentrations, suggesting the functional redundancy of the bacterial community. Moreover, by comparing with the bacterial community in other municipal wastewater treatment bioreactors, some potentially novel bacterial species were found to be present in the OD system. Collectively, this study improved our understandings of bacterial community structure and the microbial ecology during the startup of full-scale wastewater treatment bioreactor.

  2. Community structure affects behavior.

    PubMed

    Jaenson, C

    1991-06-01

    AID's prevention efforts can benefit from taking into account 5 main aspects (KEPRA) of community structure identified by anthropologists: 1) kinship patterns, 2) economics, 3) politics, 4) religion, and 5) associations. For example, in Uganda among the Basoga and paternal aunt or senga is responsible for female sex education. Such culturally determined patterns need to be targeted in order to enhance education and effectiveness. Economics can reflect differing systems of family support through sexual means. The example given involves a poor family with a teenager in Thailand who exchanges a water buffalo or basic necessity for this daughter's prostitution. Politics must be considered because every society identifies people who have the power to persuade, influence, exchange resources, coerce, or in some way get people to do what is wanted. Utilizing these resources whether its ministers of health, factory owners, or peers is exemplified in the Monterey, Mexico factor floor supervisor and canteen worker introducing to workers the hows and whys of a new AID's education program. His peer status will command more respect than the director with direct authority. Religious beliefs have explanations for causes of sickness or disease, or provide instruction in sex practices. The example given is of a health workers in Uganda discussing AIDS with rural women by saying that we all know that disease and deaths are caused by spells. "But not AIDS - slim. AIDS is different." Associations can help provide educational, economic, and emotional assistance to the AID's effort or families affected.

  3. Shifts in microbial communities in bioaugmented grease interceptors removing fat, oil, and grease (FOG).

    PubMed

    He, Xia; So, Mark Jason; de Los Reyes, Francis L

    2016-08-01

    To understand the effect of daily bioaugmentation in full-scale grease interceptors (GIs), we compared the microbial communities occurring in two full-scale GIs during bioaugmented and non-bioaugmented cycles. The changes in microbial communities were determined using terminal restriction fragment length polymorphism (T-RFLP) and 16S rRNA gene clone library construction. Differences in the microbial community structure between control and bioaugmented cycles were observed in all cases, although the dominant terminal restriction fragments in the biological product were not detected. The addition of bioaugmentation products and changes in the GI microbial ecology were related to differences in GI performance. Understanding the shifts due to bioaugmentation will result in more informed assessments of the benefits of bioadditives on FOG removal in GIs as well as the effects on downstream sewer lines.

  4. Protein Structure Refinement Using 13Cα Chemical Shift Tensors

    PubMed Central

    Wylie, Benjamin J.; Schwieters, Charles D.; Oldfield, Eric; Rienstra, Chad M.

    2009-01-01

    We have obtained the 13Cα chemical shift tensors for each amino acid in the protein GB1. We then developed a CST force field and incorporated this into the Xplor-NIH structure determination program. GB1 structures obtained by using CST restraints had improved precision over those obtained in the absence of CST restraints, and were also more accurate. When combined with isotropic chemical shifts, distance and vector angle restraints, the root-mean squared error with respect to existing x-ray structures was better than ~1.0 Å. These results are of broad general interest since they show that chemical shift tensors can be used in protein structure refinement, improving both structural accuracy and precision, opening up the way to accurate de novo structure determination. PMID:19123862

  5. Climate Change and Eutrophication Induced Shifts in Northern Summer Plankton Communities

    PubMed Central

    Suikkanen, Sanna; Pulina, Silvia; Engström-Öst, Jonna; Lehtiniemi, Maiju; Lehtinen, Sirpa; Brutemark, Andreas

    2013-01-01

    Marine ecosystems are undergoing substantial changes due to human-induced pressures. Analysis of long-term data series is a valuable tool for understanding naturally and anthropogenically induced changes in plankton communities. In the present study, seasonal monitoring data were collected in three sub-basins of the northern Baltic Sea between 1979 and 2011 and statistically analysed for trends and interactions between surface water hydrography, inorganic nutrient concentrations and phyto- and zooplankton community composition. The most conspicuous hydrographic change was a significant increase in late summer surface water temperatures over the study period. In addition, salinity decreased and dissolved inorganic nutrient concentrations increased in some basins. Based on redundancy analysis (RDA), warming was the key environmental factor explaining the observed changes in plankton communities: the general increase in total phytoplankton biomass, Cyanophyceae, Prymnesiophyceae and Chrysophyceae, and decrease in Cryptophyceae throughout the study area, as well as increase in rotifers and decrease in total zooplankton, cladoceran and copepod abundances in some basins. We conclude that the plankton communities in the Baltic Sea have shifted towards a food web structure with smaller sized organisms, leading to decreased energy available for grazing zooplankton and planktivorous fish. The shift is most probably due to complex interactions between warming, eutrophication and increased top-down pressure due to overexploitation of resources, and the resulting trophic cascades. PMID:23776676

  6. Climate change and eutrophication induced shifts in northern summer plankton communities.

    PubMed

    Suikkanen, Sanna; Pulina, Silvia; Engström-Öst, Jonna; Lehtiniemi, Maiju; Lehtinen, Sirpa; Brutemark, Andreas

    2013-01-01

    Marine ecosystems are undergoing substantial changes due to human-induced pressures. Analysis of long-term data series is a valuable tool for understanding naturally and anthropogenically induced changes in plankton communities. In the present study, seasonal monitoring data were collected in three sub-basins of the northern Baltic Sea between 1979 and 2011 and statistically analysed for trends and interactions between surface water hydrography, inorganic nutrient concentrations and phyto- and zooplankton community composition. The most conspicuous hydrographic change was a significant increase in late summer surface water temperatures over the study period. In addition, salinity decreased and dissolved inorganic nutrient concentrations increased in some basins. Based on redundancy analysis (RDA), warming was the key environmental factor explaining the observed changes in plankton communities: the general increase in total phytoplankton biomass, Cyanophyceae, Prymnesiophyceae and Chrysophyceae, and decrease in Cryptophyceae throughout the study area, as well as increase in rotifers and decrease in total zooplankton, cladoceran and copepod abundances in some basins. We conclude that the plankton communities in the Baltic Sea have shifted towards a food web structure with smaller sized organisms, leading to decreased energy available for grazing zooplankton and planktivorous fish. The shift is most probably due to complex interactions between warming, eutrophication and increased top-down pressure due to overexploitation of resources, and the resulting trophic cascades.

  7. Monitoring bacterial and archaeal community shifts in a mesophilic anaerobic batch reactor treating a high-strength organic wastewater.

    PubMed

    Lee, Changsoo; Kim, Jaai; Shin, Seung Gu; Hwang, Seokhwan

    2008-09-01

    Shifts in bacterial and archaeal communities, associated with changes in chemical profiles, were investigated in an anaerobic batch reactor treating dairy-processing wastewater prepared with whey permeate powder. The dynamics of bacterial and archaeal populations were monitored by quantitative real-time PCR and showed good agreement with the process data. A rapid increase in bacterial populations and a high rate of substrate fermentation were observed during the initial period. Growth and regrowth of archaeal populations occurred with biphasic production of methane, corresponding to the diauxic consumption of acetate and propionate. Bacterial community structure was examined by denaturing gel gradient electrophoresis (DGGE) targeting 16S rRNA genes. An Aeromonas-like organism was suggested to be mainly responsible for the rapid fermentation of carbohydrate during the initial period. Several band sequences closely related to the Clostridium species, capable of carbohydrate fermentation, lactate or ethanol fermentation, and/or homoacetogenesis, were also detected. Statistical analyses of the DGGE profiles showed that the bacterial community structure, as well as the process performance, varied with the incubation time. Our results demonstrated that the bacterial community shifted, reflecting the performance changes and, particularly, that a significant community shift corresponded to a considerable process event. This suggested that the diagnosis of an anaerobic digestion process could be possible by monitoring bacterial community shifts.

  8. Environmental Regulation of Microbial Community Structure

    NASA Technical Reports Server (NTRS)

    Bebout, Leslie; DesMarais, D.; Heyenga, G.; Nelson, F.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Most naturally occurring microbes live in complex microbial communities consisting of thousands of phylotypes of microorganisms living in close proximity. Each of these draws nutrients from the environment and releases metabolic waste products, which may in turn serve as substrates for other microbial groups. Gross environmental changes, such as irradiance level, hydrodynamic flow regime, temperature or water chemistry can directly affect the productivity of some community members, which in turn will affect other dependent microbial populations and rate processes. As a first step towards the development of "standard" natural communities of microorganisms for a variety of potential NASA applications, we are measuring biogeochemical cycling in artificially structured communities of microorganisms, created using natural microbial mat communities as inoculum. The responses of these artificially assembled communities of microorganisms to controlled shifts in ecosystem incubation conditions is being determined. This research requires close linking of environmental monitoring, with community composition in a closed and controlled incubation setting. We are developing new incubation chamber designs to allow for this integrated approach to examine the interplay between environmental conditions, microbial community composition and biogeochemical processes.

  9. Environmental Regulation of Microbial Community Structure

    NASA Technical Reports Server (NTRS)

    Bebout, Leslie; DesMarais, D.; Heyenga, G.; Nelson, F.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Most naturally occurring microbes live in complex microbial communities consisting of thousands of phylotypes of microorganisms living in close proximity. Each of these draws nutrients from the environment and releases metabolic waste products, which may in turn serve as substrates for other microbial groups. Gross environmental changes, such as irradiance level, hydrodynamic flow regime, temperature or water chemistry can directly affect the productivity of some community members, which in turn will affect other dependent microbial populations and rate processes. As a first step towards the development of "standard" natural communities of microorganisms for a variety of potential NASA applications, we are measuring biogeochemical cycling in artificially structured communities of microorganisms, created using natural microbial mat communities as inoculum. The responses of these artificially assembled communities of microorganisms to controlled shifts in ecosystem incubation conditions is being determined. This research requires close linking of environmental monitoring, with community composition in a closed and controlled incubation setting. We are developing new incubation chamber designs to allow for this integrated approach to examine the interplay between environmental conditions, microbial community composition and biogeochemical processes.

  10. Bacterial structures and ecosystem functions in glaciated floodplains: contemporary states and potential future shifts

    PubMed Central

    Freimann, Remo; Bürgmann, Helmut; Findlay, Stuart EG; Robinson, Christopher T

    2013-01-01

    Glaciated alpine floodplains are responding quickly to climate change through shrinking ice masses. Given the expected future changes in their physicochemical environment, we anticipated variable shifts in structure and ecosystem functioning of hyporheic microbial communities in proglacial alpine streams, depending on present community characteristics and landscape structures. We examined microbial structure and functioning during different hydrologic periods in glacial (kryal) streams and, as contrasting systems, groundwater-fed (krenal) streams. Three catchments were chosen to cover an array of landscape features, including interconnected lakes, differences in local geology and degree of deglaciation. Community structure was assessed by automated ribosomal intergenic spacer analysis and microbial function by potential enzyme activities. We found each catchment to contain a distinct bacterial community structure and different degrees of separation in structure and functioning that were linked to the physicochemical properties of the waters within each catchment. Bacterial communities showed high functional plasticity, although achieved by different strategies in each system. Typical kryal communities showed a strong linkage of structure and function that indicated a major prevalence of specialists, whereas krenal sediments were dominated by generalists. With the rapid retreat of glaciers and therefore altered ecohydrological characteristics, lotic microbial structure and functioning are likely to change substantially in proglacial floodplains in the future. The trajectory of these changes will vary depending on contemporary bacterial community characteristics and landscape structures that ultimately determine the sustainability of ecosystem functioning. PMID:23842653

  11. Bacterial structures and ecosystem functions in glaciated floodplains: contemporary states and potential future shifts.

    PubMed

    Freimann, Remo; Bürgmann, Helmut; Findlay, Stuart E G; Robinson, Christopher T

    2013-12-01

    Glaciated alpine floodplains are responding quickly to climate change through shrinking ice masses. Given the expected future changes in their physicochemical environment, we anticipated variable shifts in structure and ecosystem functioning of hyporheic microbial communities in proglacial alpine streams, depending on present community characteristics and landscape structures. We examined microbial structure and functioning during different hydrologic periods in glacial (kryal) streams and, as contrasting systems, groundwater-fed (krenal) streams. Three catchments were chosen to cover an array of landscape features, including interconnected lakes, differences in local geology and degree of deglaciation. Community structure was assessed by automated ribosomal intergenic spacer analysis and microbial function by potential enzyme activities. We found each catchment to contain a distinct bacterial community structure and different degrees of separation in structure and functioning that were linked to the physicochemical properties of the waters within each catchment. Bacterial communities showed high functional plasticity, although achieved by different strategies in each system. Typical kryal communities showed a strong linkage of structure and function that indicated a major prevalence of specialists, whereas krenal sediments were dominated by generalists. With the rapid retreat of glaciers and therefore altered ecohydrological characteristics, lotic microbial structure and functioning are likely to change substantially in proglacial floodplains in the future. The trajectory of these changes will vary depending on contemporary bacterial community characteristics and landscape structures that ultimately determine the sustainability of ecosystem functioning.

  12. Health consequences of shift work and implications for structural design.

    PubMed

    Figueiro, M G; White, R D

    2013-04-01

    The objective of the study was to perform a literature review on the health consequences of working rotating shifts and implications for structural design. A literature search was performed in June 2012 and a selection of the most relevant peer-review articles was included in the present review. Shift workers are more likely to suffer from a circadian sleep disorder characterized by sleepiness and insomnia. Shift work is associated with decreased productivity, impaired safety, diminished quality of life and adverse effects on health. Circadian disruption resulting from rotating shift work has also been associated with increased risk for metabolic syndrome, diabetes, cardiovascular disease and cancer. This article summarizes the known health effects of shift work and discusses how light can be used as a countermeasure to minimize circadian disruption at night while maintaining alertness. In the context of the lighted environment, implications for the design of newborn intensive care units are also discussed.

  13. Environmental Filtering of Microbial Communities in Agricultural Soil Shifts with Crop Growth

    PubMed Central

    Hargreaves, Sarah K.; Williams, Ryan J.; Hofmockel, Kirsten S.

    2015-01-01

    Plant and soil properties cooperatively structure soil microbial communities, with implications for ecosystem functioning. However, the extent to which each factor contributes to community structuring is not fully understood. To quantify the influence of plants and soil properties on microbial diversity and composition in an agricultural context, we conducted an experiment within a corn-based annual cropping system and a perennial switchgrass cropping system across three topographic positions. We sequenced barcoded 16S ribosomal RNA genes from whole soil three times throughout a single growing season and across two years in July. To target the belowground effects of plants, we also sampled rhizosphere soil in July. We hypothesized that microbial community α-diversity and composition (β-diversity) would be more sensitive to cropping system effects (annual vs. perennial inputs) than edaphic differences among topographic positions, with greater differences occurring in the rhizosphere compared to whole soil. We found that microbial community composition consistently varied with topographic position, and cropping system and the rhizosphere influenced α-diversity. In July, cropping system and rhizosphere structured a small but specific group of microbes implying a subset of microbial taxa, rather than broad shifts in community composition, may explain previously observed differences in resource cycling between treatments. Using rank abundance analysis, we detected enrichment of Saprospirales and Actinomycetales, including cellulose and chitin degraders, in the rhizosphere soil and enrichment of Nitrospirales, Syntrophobacterales, and MND1 in the whole soil. Overall, these findings support environmental filtering for the soil microbial community first by soil and second by the rhizosphere. Across cropping systems, plants selected for a general rhizosphere community with evidence for plant-specific effects related to time of sampling. PMID:26226508

  14. Community structure affects trophic ontogeny in a predatory fish.

    PubMed

    Sánchez-Hernández, Javier; Eloranta, Antti P; Finstad, Anders G; Amundsen, Per-Arne

    2017-01-01

    While most studies have focused on the timing and nature of ontogenetic niche shifts, information is scarce about the effects of community structure on trophic ontogeny of top predators. We investigated how community structure affects ontogenetic niche shifts (i.e., relationships between body length, trophic position, and individual dietary specialization) of a predatory fish, brown trout (Salmo trutta). We used stable isotope and stomach content analyses to test how functional characteristics of lake fish community compositions (competition and prey availability) modulate niche shifts in terms of (i) piscivorous behavior, (ii) trophic position, and (iii) individual dietary specialization. Northern Scandinavian freshwater fish communities were used as a study system, including nine subarctic lakes with contrasting fish community configurations: (i) trout-only systems, (ii) two-species systems (brown trout and Arctic charr [Salvelinus alpinus] coexisting), and (iii) three-species systems (brown trout, Arctic charr, and three-spined sticklebacks [Gasterosteus aculeatus] coexisting). We expected that the presence of profitable small prey (stickleback) and mixed competitor-prey fish species (charr) supports early piscivory and high individual dietary specialization among trout in multispecies communities, whereas minor ontogenetic shifts were expected in trout-only systems. From logistic regression models, the presence of a suitable prey fish species (stickleback) emerged as the principal variable determining the size at ontogenetic niche shifts. Generalized additive mixed models indicated that fish community structure shaped ontogenetic niche shifts in trout, with the strongest positive relationships between body length, trophic position, and individual dietary specialization being observed in three-species communities. Our findings revealed that the presence of a small-sized prey fish species (stickleback) rather than a mixed competitor-prey fish species (charr) was

  15. A shift in the archaeal nitrifier community in response to natural and anthropogenic disturbances in the northern Gulf of Mexico.

    PubMed

    Newell, Silvia E; Eveillard, Damien; McCarthy, Mark J; Gardner, Wayne S; Liu, Zhanfei; Ward, Bess B

    2014-02-01

    The Gulf of Mexico is affected by hurricanes and suffers seasonal hypoxia. The Deepwater Horizon oil spill impacted every trophic level in the coastal region. Despite their importance in bioremediation and biogeochemical cycles, it is difficult to predict the responses of microbial communities to physical and anthropogenic disturbances. Here, we quantify sediment ammonia-oxidizing archaeal (AOA) community diversity, resistance and resilience, and important geochemical factors after major hurricanes and the oil spill. Dominant AOA archetypes correlated with different geochemical factors, suggesting that different AOA are constrained by distinct parameters. Diversity was lowest after the hurricanes, showing weak resistance to physical disturbances. However, diversity was highest during the oil spill and coincided with a community shift, suggesting a new alternative stable state sustained for at least 1 year. The new AOA community was not significantly different from that at the spill site 1 year after the spill. This sustained shift in nitrifier community structure may be a result of oil exposure.

  16. First steps of ecological restoration in Mediterranean lagoons: Shifts in phytoplankton communities

    NASA Astrophysics Data System (ADS)

    Leruste, A.; Malet, N.; Munaron, D.; Derolez, V.; Hatey, E.; Collos, Y.; De Wit, R.; Bec, B.

    2016-10-01

    Along the French Mediterranean coast, a complex of eight lagoons underwent intensive eutrophication over four decades, mainly related to nutrient over-enrichment from continuous sewage discharges. The lagoon complex displayed a wide trophic gradient from mesotrophy to hypertrophy and primary production was dominated by phytoplankton communities. In 2005, the implementation of an 11 km offshore outfall system diverted the treated sewage effluents leading to a drastic reduction of anthropogenic inputs of nitrogen and phosphorus into the lagoons. Time series data have been examined from 2000 to 2013 for physical, chemical and biological (phytoplankton) variables of the water column during the summer period. Since 2006, total nitrogen and phosphorus concentrations as well as chlorophyll biomass strongly decreased revealing an improvement in lagoon water quality. In summertime, the decline in phytoplankton biomass was accompanied by shifts in community structure and composition that could be explained by adopting a functional approach by considering the common functional traits of the main algal groups. These phytoplankton communities were dominated by functional groups of small-sized and fast-growing algae (diatoms, cryptophytes and green algae). The trajectories of summer phytoplankton communities displayed a complex response to changing nutrient loads over time. While diatoms were the major group in 2006 in all the lagoons, the summer phytoplankton composition in hypertrophic lagoons has shifted towards green algae, which are particularly well adapted to summertime conditions. All lagoons showed increasing proportion and occurrence of peridinin-rich dinophytes over time, probably related to their capacity for mixotrophy. The diversity patterns were marked by a strong variability in eutrophic and hypertrophic lagoons whereas phytoplankton community structure reached the highest diversity and stability in mesotrophic lagoons. We observe that during the re

  17. Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability.

    PubMed

    Dieleman, Catherine M; Branfireun, Brian A; McLaughlin, James W; Lindo, Zoë

    2015-01-01

    The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO2 ), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO2 had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid-dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens.

  18. Sheep-urine-induced changes in soil microbial community structure.

    PubMed

    Nunan, Naoise; Singh, Brajesh; Reid, Eileen; Ord, Brian; Papert, Artemis; Squires, Julie; Prosser, Jim I; Wheatley, Ron E; McNicol, Jim; Millard, Peter

    2006-05-01

    Soil microbial communities play an important role in nutrient cycling and nutrient availability, especially in unimproved soils. In grazed pastures, sheep urine causes local changes in nutrient concentration which may be a source of heterogeneity in microbial community structure. In the present study, we investigated the effects of synthetic urine on soil microbial community structure, using physiological (community level physiological profiling, CLPP), biochemical (phospholipid fatty acid analysis, PLFA) and molecular (denaturing gradient gel electrophoresis, DGGE) fingerprinting methods. PLFA data suggested that synthetic urine treatment had no significant effect on total microbial (total PLFA), total bacterial or fungal biomass; however, significant changes in microbial community structure were observed with both PLFA and DGGE data. PLFA data suggested that synthetic urine induced a shift towards communities with higher concentrations of branched fatty acids. DGGE banding patterns derived from control and treated soils differed, due to a higher proportion of DNA sequences migrating only to the upper regions of the gel in synthetic urine-treated samples. The shifts in community structure measured by PLFA and DGGE were significantly correlated with one another, suggesting that both datasets reflected the same changes in microbial communities. Synthetic urine treatment preferentially stimulated the use of rhizosphere-C in sole-carbon-source utilisation profiles. The changes caused by synthetic urine addition accounted for only 10-15% of the total variability in community structure, suggesting that overall microbial community structure was reasonably stable and that changes were confined to a small proportion of the communities.

  19. Shifts in Archaeal Communities Associated with Lithological and Geochemical Variations in Subsurface Cretaceous Rock

    SciTech Connect

    Takai, Ken; Mormile, Melanie R.; Mckinley, J P.; Brockman, Fred J.; Holben, William E.; Kovacik, William P.; Fredrickson, Jim K.

    2003-04-01

    Subsurface microbial community structure in relation to geochemical gradients and lithology was investigated using a combination of molecular phylogenetic and geochemical analyses. Discreet groundwater and substratum samples were obtained from depths ranging from 182 to 190 m beneath the surface at approximately 10-cm intervals using a multi-level sampler (MLS) that straddled Cretaceous shale and sandstone formations at a site in the southern San Juan Basin in New Mexico. DNA and RNA were extracted directly from quartzite sand substratum loaded into individual cells of the MLS and colonized in situ for six months. PCR-mediated T-RFLP analysis of archaeal rRNA genes (rDNA) in conjunction with partial sequencing analysis of archaeal rDNA libraries and quantitative RNA hybridization with oligonucleotide probes were used to probe community structure and function. Although total microbial populations remained relatively constant over the entire depth interval sampled, significant shifts in archaeal populations, predominantly methanogens, were observed. These shifts coincided with the geochemical transition from relatively high methane (26 mM), low sulfate (<3 mg l-1) concentrations in the region adjacent to the organic matter-rich shale to relatively low-methane (<0.5 mM), high-sulfate (48 mg l-1) conditions in the organic-poor sandstone beneath the shale. These results indicate that active, phylogenetically diverse archaeal communities were present in the subsurface Cretaceous rock environment at this site and that major archaeal clades shifted dramatically over scales of tens of centimeters, corresponding to changes in the lithology and geochemical gradients.

  20. Pyrosequencing-based assessment of microbial community shifts in leachate from animal carcass burial lysimeter.

    PubMed

    Kim, Hyun Young; Seo, Jiyoung; Kim, Tae-Hun; Shim, Bomi; Cha, Seok Mun; Yu, Seungho

    2017-02-26

    This study examined the use of microbial community structure as a bio-indicator of decomposition levels. High-throughput pyrosequencing technology was used to assess the shift in microbial community of leachate from animal carcass lysimeter. The leachate samples were collected monthly for one year and a total of 164,639 pyrosequencing reads were obtained and used in the taxonomic classification and operational taxonomy units (OTUs) distribution analysis based on sequence similarity. Our results show considerable changes in the phylum-level bacterial composition, suggesting that the microbial community is a sensitive parameter affected by the burial environment. The phylum classification results showed that Proteobacteria (Pseudomonas) were the most influential taxa in earlier decomposition stage whereas Firmicutes (Clostridium, Sporanaerobacter, and Peptostreptococcus) were dominant in later stage under anaerobic conditions. The result of this study can provide useful information on a time series of leachate profiles of microbial community structures and suggest patterns of microbial diversity in livestock burial sites. In addition, this result can be applicable to predict the decomposition stages under clay loam based soil conditions of animal livestock.

  1. Warming and Resource Availability Shift Food Web Structure and Metabolism

    PubMed Central

    O'Connor, Mary I.; Piehler, Michael F.; Leech, Dina M.; Anton, Andrea; Bruno, John F.

    2009-01-01

    Climate change disrupts ecological systems in many ways. Many documented responses depend on species' life histories, contributing to the view that climate change effects are important but difficult to characterize generally. However, systematic variation in metabolic effects of temperature across trophic levels suggests that warming may lead to predictable shifts in food web structure and productivity. We experimentally tested the effects of warming on food web structure and productivity under two resource supply scenarios. Consistent with predictions based on universal metabolic responses to temperature, we found that warming strengthened consumer control of primary production when resources were augmented. Warming shifted food web structure and reduced total biomass despite increases in primary productivity in a marine food web. In contrast, at lower resource levels, food web production was constrained at all temperatures. These results demonstrate that small temperature changes could dramatically shift food web dynamics and provide a general, species-independent mechanism for ecological response to environmental temperature change. PMID:19707271

  2. Isotope shift and hyperfine structure measurements in titanium I

    NASA Astrophysics Data System (ADS)

    Luc, P.; Vetter, R.; Bauche-Arnoult, C.; Bauche, J.

    1994-09-01

    High accuracy measurements of hyperfine structure due to47Ti and49Ti in the 3 d 2 4 s 2 a 3 F 2-3 d 2 4 s4 p z 5 D 1 absorption line at σ=18482.772 cm-1 have been performed by use of a Doppler-free experiment, where a beam of titanium atoms is crossed by a CW single mode tunable dye laser. They have allowed for the determination of isotope shifts between46Ti,47Ti,48Ti,49Ti and50Ti. By use of accurate values of mean square nuclear charge radii for the even isotopes, it has been possible to separate mass shifts from field shifts and to determine accurate values for the mean square nuclear charge radii of47Ti and49Ti. The field shift presents a marked odd-even staggering.

  3. Community climatic niche means as a tool to understand species range shifts across scales

    NASA Astrophysics Data System (ADS)

    Olliff Yang, R. L.; Oldfather, M. F.; Papper, P. D.; Flint, L. E.; Flint, A. L.; Ackerly, D.

    2016-12-01

    Shifts in species distributions across topographic gradients may represent an important initial response to climate change. Our understanding of community composition, and predicting community shifts, can be enhanced by examining the climate niche space of the component species both at large and small scales. A community weighted climatic niche mean can be calculated as the abundance-weighted mean of each component species' average niche space across its range. Community weighed means can be used as a tool for understanding species distributions at multiple scales, as well as predicating changes in species ranges with a changing climate. In this study of mixed hardwood woodlands in coastal California (Pepperwood Preserve), we examine the community weighted means of plant communities in fifty vegetation plots in relation to topographic and environmental gradients. For each species a climate trait mean was extracted from climate data across its range within California, and these values were averaged across species to calculate a community weighted mean for each plot. We find that range-wide climate community means correlate with local Climatic Water Deficit (CWD). This relationship holds for both woody and herbaceous species. These results indicate that range wide climatic values predict aggregated properties of plant community distributions across environmental gradients. We expect that community responses to climate change will appear as shifts towards warmer and/or drier community mean values in each location (`thermophilization'), and as shifts in species towards cooler and/or moister locations along environmental gradients.

  4. Functional outcomes of fungal community shifts driven by tree genotype and spatial-temporal factors in Mediterranean pine forests.

    PubMed

    Pérez-Izquierdo, Leticia; Zabal-Aguirre, Mario; Flores-Rentería, Dulce; González-Martínez, Santiago C; Buée, Marc; Rincón, Ana

    2017-02-09

    Fungi provide relevant ecosystem services contributing to primary productivity and the cycling of nutrients in forests. These fungal inputs can be decisive for the resilience of Mediterranean forests under global change scenarios, making necessary an in-deep knowledge about how fungal communities operate in these ecosystems. By using high-throughput sequencing and enzymatic approaches, we studied the fungal communities associated with three genotypic variants of Pinus pinaster trees, in 45-year-old common garden plantations. We aimed to determine the impact of biotic (i.e., tree genotype) and abiotic (i.e., season, site) factors on the fungal community structure, and to explore whether structural shifts triggered functional responses affecting relevant ecosystem processes. Tree genotype and spatial-temporal factors were pivotal structuring fungal communities, mainly by influencing their assemblage and selecting certain fungi. Diversity variations of total fungal community and of that of specific fungal guilds, together with edaphic properties and tree's productivity, explained relevant ecosystem services such as processes involved in carbon turnover and phosphorous mobilization. A mechanistic model integrating relations of these variables and ecosystem functional outcomes is provided. Our results highlight the importance of structural shifts in fungal communities because they may have functional consequences for key ecosystem processes in Mediterranean forests.

  5. Shifts in composition of microbial communities of subtidal sandy sediments maximise retention of nutrients.

    PubMed

    Forehead, Hugh; Thomson, Peter; Kendrick, Gary A

    2013-02-01

    The density and composition of microbial communities of subtidal sandy sediments determines their role in the cycling of nutrients in coastal waters. It has previously been found that sediments disturbed by waves and currents have reduced biomass, greater productivity to respiration (P/R) ratios and a tendency to take up nutrients. Conversely, with shelter and greater biomass, P/R ratios were smaller and nutrients released. This study, in warm temperate waters, examined the consequences of high and low levels of hydrodynamic energy on the microbial community structure and biogeochemistry at two locations at different times of year. Measurements included biomarkers, sediment properties and exchanges of gases and nutrients. Microbial communities were dominated by diatoms and bacteria. Exposed sites, relative to paired sheltered sites, had smaller ratios of bacteria to benthic microalgae (BMA), larger C/N ratios, smaller indices of diagenetic activity, but smaller P/R ratios. The bacteria in exposed sediments exhibited biomass-normalised rates of respiration almost double those in sheltered sediments. This increased activity was most likely fuelled by elevated concentrations of photosynthates, secreted by BMA attached to sand grains. Changes in community composition owing to different levels of disturbance led to shifts in functioning that resulted in consistently small exchanges of nutrients.

  6. Nematode community shifts in response to experimental warming and canopy conditions are associated with plant community changes in the temperate-boreal forest ecotone.

    PubMed

    Thakur, Madhav Prakash; Reich, Peter B; Fisichelli, Nicholas A; Stefanski, Artur; Cesarz, Simone; Dobies, Tomasz; Rich, Roy L; Hobbie, Sarah E; Eisenhauer, Nico

    2014-06-01

    Global climate warming is one of the key forces driving plant community shifts, such as range shifts of temperate species into boreal forests. As plant community shifts are slow to observe, ecotones, boundaries between two ecosystems, are target areas for providing early evidence of ecological responses to warming. The role of soil fauna is poorly explored in ecotones, although their positive and negative effects on plant species can influence plant community structure. We studied nematode communities in response to experimental warming (ambient, +1.7, +3.4 °C) in soils of closed and open canopy forest in the temperate-boreal ecotone of Minnesota, USA and calculated various established nematode indices. We estimated species-specific coverage of understory herbaceous and shrub plant species from the same experimental plots and tested if changes in the nematode community are associated with plant cover and composition. Individual nematode trophic groups did not differ among warming treatments, but the ratio between microbial-feeding and plant-feeding nematodes increased significantly and consistently with warming in both closed and open canopy areas and at both experimental field sites. The increase in this ratio was positively correlated with total cover of understory plant species, perhaps due to increased predation pressure on soil microorganisms causing higher nutrient availability for plants. Multivariate analyses revealed that temperature treatment, canopy conditions and nematode density consistently shaped understory plant communities across experimental sites. Our findings suggest that warming-induced changes in nematode community structure are associated with shifts in plant community composition and productivity in the temperate-boreal forest ecotones.

  7. Refinement by shifting secondary structure elements improves sequence alignments.

    PubMed

    Tong, Jing; Pei, Jimin; Otwinowski, Zbyszek; Grishin, Nick V

    2015-03-01

    Constructing a model of a query protein based on its alignment to a homolog with experimentally determined spatial structure (the template) is still the most reliable approach to structure prediction. Alignment errors are the main bottleneck for homology modeling when the query is distantly related to the template. Alignment methods often misalign secondary structural elements by a few residues. Therefore, better alignment solutions can be found within a limited set of local shifts of secondary structures. We present a refinement method to improve pairwise sequence alignments by evaluating alignment variants generated by local shifts of template-defined secondary structures. Our method SFESA is based on a novel scoring function that combines the profile-based sequence score and the structure score derived from residue contacts in a template. Such a combined score frequently selects a better alignment variant among a set of candidate alignments generated by local shifts and leads to overall increase in alignment accuracy. Evaluation of several benchmarks shows that our refinement method significantly improves alignments made by automatic methods such as PROMALS, HHpred and CNFpred. The web server is available at http://prodata.swmed.edu/sfesa. © 2014 Wiley Periodicals, Inc.

  8. Nitrogen addition shifts the microbial community in the rhizosphere of Pinus tabuliformis in Northwestern China.

    PubMed

    Lv, Fenglian; Xue, Sha; Wang, Guoliang; Zhang, Chao

    2017-01-01

    Atmospheric nitrogen (N) deposition profoundly alters the soil microbial communities and will thus affect nutrient cycles. The effects of N availability on microbial community, however, are not clear. We used PLFA analysis to evaluate the effects of a gradient of N addition (0, 2.8, 5.6, 11.2, and 22.4 g N m-2 y-1) for three years on the rhizospheric microbial community of Pinus tabuliformis seedlings. The main factors influencing the community were quantified using structural equation modelling and redundancy analysis. At the microbial-community level, N addition increased the total phospholipid fatty acids content by increasing the dissolved organic carbon (DOC) and root biomass. Increases in soil microbial biomass carbon and N, however, was attributed to the increased DOC, N content and decreased pH. At the microbial-groups level, Fungal, arbuscular mycorrhizal fungal (AMF), gram-positive bacterial (GP) abundances and the GP:GN ratio first increased and then decreased with N addition. Nitrogen addition increased the abundances of bacteria, fungi, and actinomycetes mainly by increasing the DOC content and decreasing root biomass. Additionally, the decrease of pH and ammonium N caused by N addition increased the fungal abundances and reduced actinomycete abundances, respectively. Nitrogen addition shifted the rhizospheric microbial community mainly by altering the DOC content and root biomass. The current rate of N deposition (2.5 g N m-2 y-1) benefits plant growth and increases the abundances of fungi, arbuscular mycorrhizal fungi, GP, actinomycetes and the GP:GN ratio.

  9. Nitrogen addition shifts the microbial community in the rhizosphere of Pinus tabuliformis in Northwestern China

    PubMed Central

    Lv, Fenglian; Xue, Sha; Wang, Guoliang; Zhang, Chao

    2017-01-01

    Atmospheric nitrogen (N) deposition profoundly alters the soil microbial communities and will thus affect nutrient cycles. The effects of N availability on microbial community, however, are not clear. We used PLFA analysis to evaluate the effects of a gradient of N addition (0, 2.8, 5.6, 11.2, and 22.4 g N m-2 y-1) for three years on the rhizospheric microbial community of Pinus tabuliformis seedlings. The main factors influencing the community were quantified using structural equation modelling and redundancy analysis. At the microbial-community level, N addition increased the total phospholipid fatty acids content by increasing the dissolved organic carbon (DOC) and root biomass. Increases in soil microbial biomass carbon and N, however, was attributed to the increased DOC, N content and decreased pH. At the microbial-groups level, Fungal, arbuscular mycorrhizal fungal (AMF), gram-positive bacterial (GP) abundances and the GP:GN ratio first increased and then decreased with N addition. Nitrogen addition increased the abundances of bacteria, fungi, and actinomycetes mainly by increasing the DOC content and decreasing root biomass. Additionally, the decrease of pH and ammonium N caused by N addition increased the fungal abundances and reduced actinomycete abundances, respectively. Nitrogen addition shifted the rhizospheric microbial community mainly by altering the DOC content and root biomass. The current rate of N deposition (2.5 g N m-2 y-1) benefits plant growth and increases the abundances of fungi, arbuscular mycorrhizal fungi, GP, actinomycetes and the GP:GN ratio. PMID:28234932

  10. Electronic structure and isomer shifts of neptunium compounds

    NASA Astrophysics Data System (ADS)

    Svane, A.; Petit, L.; Temmerman, W. M.; Szotek, Z.

    2002-08-01

    The electronic structures of αNp metal and 28 Np compounds are calculated with the generalized gradient approximation to density-functional theory, implemented with the full-potential linear-muffin-tin-orbital method. The calculations are compared to experimental isomer shifts providing a calibration of the 237Np isomeric transition with a value of Δ=(-40.1+/-1.3)×10- 3 fm2 for the difference in nuclear radius between the excited isomeric level and the ground state. The isomer shift is primarily determined by the chemical environment. Decreasing the volume, either by external or chemical pressure, causes an f-->s+d charge transfer on Np, which leads to a higher electron contact density. The possible f-electron localization in Np compounds is discussed using self-interaction corrections, and it is concluded that f-electron localization has only a minor influence on the isomer shift.

  11. Shifts in soil bacterial community after eight years of land-use change.

    PubMed

    Suleiman, Afnan Khalil Ahmad; Manoeli, Lupatini; Boldo, Juliano Tomazzoni; Pereira, Marcos G; Roesch, Luiz Fernando Wurdig

    2013-03-01

    The interaction between plants, soil and microorganisms is considered to be the major driver of ecosystem functions and any modification of plant cover and/or soil properties might affect the microbial structure, which, in turn, will influence ecological processes. Assuming that soil properties are the major drivers of soil bacterial diversity and structure within the same soil type, it can be postulated whether plant cover causes significant shifts in soil bacterial community composition. To address this question, this study used 16S rRNA pyrosequencing to detect differences in diversity, composition and/or relative abundance of bacterial taxa from an area covered by pristine forest, as well as eight-year-old grassland surrounded by the same forest. It was shown that a total of 69% of the operational taxonomic units (OTUs) were shared between environments. Overall, forest and grassland samples presented the same diversity and the clustering analysis did not show the occurrence of very distinctive bacterial communities between environments. However, 11 OTUs were detected in statistically significant higher abundance in the forest samples but in lower abundance in the grassland samples, whereas 12 OTUs occurred in statistically significant higher abundance in the grassland samples but in lower abundance in the forest samples. The results suggested the prevalence of a resilient core microbial community that did not suffer any change related to land use, soil type or edaphic conditions. The results illustrated that the history of land use might influence present-day community structure. Copyright © 2012 Elsevier GmbH. All rights reserved.

  12. Analysis of GI Community Shifts in Response to Dietary Fiber

    DTIC Science & Technology

    2007-11-02

    omnivorous and similar to the human diet, pigs recover much more energy from microbial digestion of fiber/cellulose in the lower GI tract (ca. 17-30%). In...similar to the human tract ( omnivorous , non-ruminant but better cellulose utilization), 3) show gut community response to change in diet fiber, 4

  13. Is bacterial moisture niche a good predictor of shifts in community composition under long-term drought?

    PubMed

    Evans, Sarah E; Wallenstein, Matthew D; Burke, Ingrid C

    2014-01-01

    Both biogeographical and rainfall manipulation studies show that soil water content can be a strong driver of microbial community composition. However, we do not yet know if these patterns emerge because certain bacterial taxa are better able to survive at dry soil moisture regimes or if they are due to other drought-sensitive ecosystem properties indirectly affecting microbial community composition. In this study, we evaluated (1) whether bacterial community composition changed under an 11-year drought manipulation and (2) whether shifts under drought could be explained by variation in the moisture sensitivity of growth among bacterial taxa (moisture niche partitioning). Using 454 pyrosequencing of 16S rRNA, we observed shifts in bacterial community composition under drought, coincident with changes in other soil properties. We wet-up dry soils from drought plots to five moisture levels, and measured respiration and the composition of actively growing communities using bromodeoxyuridine (BrdU) labeling of DNA. The field drought experiment affected the composition of the active community when incubated at different moisture levels in the laboratory, as well as short-term (36-hour) respiration rates. Independent of history, bacterial communities also displayed strong niche partitioning across the wet-up moisture gradient. Although this indicates that moisture has the potential to drive bacterial community composition under long-term drought, species distributions predicted by response to moisture did not reflect the community composition of plots that were subjected to long-term drought. Bacterial community structure was likely more strongly driven by other environmental factors that changed under long-term drought, or not shaped by response to water level upon wet-up. The approach that we present here for linking niches to community composition could be adapted for other environmental variables to aid in predicting microbial species distributions and community

  14. Shift in a Large River Fish Assemblage: Body-Size and Trophic Structure Dynamics

    PubMed Central

    Broadway, Kyle J.; Pyron, Mark; Gammon, James R.; Murry, Brent A.

    2015-01-01

    As the intensity and speed of environmental change increase at both local and global scales it is imperative that we gain a better understanding of the ecological implications of community shifts. While there has been substantial progress toward understanding the drivers and subsequent responses of community change (e.g. lake trophic state), the ecological impacts of food web changes are far less understood. We analyzed Wabash River fish assemblage data collected from 1974-2008, to evaluate temporal variation in body-size structure and functional group composition. Two parameters derived from annual community size-spectra were our major response variables: (1) the regression slope is an index of ecological efficiency and predator-prey biomass ratios, and (2) spectral elevation (regression midpoint height) is a proxy for food web capacity. We detected a large assemblage shift, over at least a seven year period, defined by dramatic changes in abundance (measured as catch-per-unit-effort) of the dominant functional feeding groups among two time periods; from an assemblage dominated by planktivore-omnivores to benthic invertivores. There was a concurrent increase in ecological efficiency (slopes increased over time) following the shift associated with an increase in large-bodied low trophic level fish. Food web capacity remained relatively stable with no clear temporal trends. Thus, increased ecological efficiency occurred simultaneous to a compensatory response that shifted biomass among functional feeding groups. PMID:25902144

  15. Shift in a large river fish assemblage: body-size and trophic structure dynamics.

    PubMed

    Broadway, Kyle J; Pyron, Mark; Gammon, James R; Murry, Brent A

    2015-01-01

    As the intensity and speed of environmental change increase at both local and global scales it is imperative that we gain a better understanding of the ecological implications of community shifts. While there has been substantial progress toward understanding the drivers and subsequent responses of community change (e.g. lake trophic state), the ecological impacts of food web changes are far less understood. We analyzed Wabash River fish assemblage data collected from 1974-2008, to evaluate temporal variation in body-size structure and functional group composition. Two parameters derived from annual community size-spectra were our major response variables: (1) the regression slope is an index of ecological efficiency and predator-prey biomass ratios, and (2) spectral elevation (regression midpoint height) is a proxy for food web capacity. We detected a large assemblage shift, over at least a seven year period, defined by dramatic changes in abundance (measured as catch-per-unit-effort) of the dominant functional feeding groups among two time periods; from an assemblage dominated by planktivore-omnivores to benthic invertivores. There was a concurrent increase in ecological efficiency (slopes increased over time) following the shift associated with an increase in large-bodied low trophic level fish. Food web capacity remained relatively stable with no clear temporal trends. Thus, increased ecological efficiency occurred simultaneous to a compensatory response that shifted biomass among functional feeding groups.

  16. Hydrogenic Lamb shift in iron Fe{sup 25+} and fine-structure Lamb shift

    SciTech Connect

    Chantler, C. T.; Laming, J. M.; Dietrich, D. D.; Hallett, W. A.; McDonald, R.; Silver, J. D.

    2007-10-15

    1s-2p Lyman {alpha} transitions in hydrogenic iron Fe{sup 25+} have been observed from a beam-foil source in fourth-order diffraction off ADP 101 and PET 002 crystals, simultaneously with the n=2 to n=4 Balmer {beta} transitions diffracted in first order. Calibration of the local dispersion relation of the spectrometer using Balmer {beta} lines provides measurements of Lyman {alpha} wavelengths. The approach of fitting the full two-dimensional dispersion relation, including other members of Balmer and Lyman series, limits random and systematic correlation of parameters, and reveals a major systematic due to dynamical diffraction depth penetration into a curved crystal. The development of a theory of x-ray diffraction from mosaic crystals was necessary for the accurate interpretation of the experimental data. Photographic theory was also developed in the process of this research. Several systematics are discussed and quantified for the first time for these medium-Z QED comparisons. 2s-1s and 4f-2p satellites are explicitly investigated, and a dominant systematic is uncovered, which is due to the variable location of spectral emission downstream of the beam-foil target. 1s-2p{sub 3/2}, 1s-2p{sub 1/2} iron Lamb shifts are measured to be 35 376{+-}1900 cm{sup -1} and 35 953{+-}1800 cm{sup -1}. These agree with but lie higher than theory. This represents a 5.7% measurement of the hydrogenic 1s-2p{sub 1/2} Lamb shift in iron. The technique also reports the iron 2p{sub 3/2}-2p{sub 1/2} fine structure as 171 108 cm{sup -1}{+-}180 cm{sup -1}, which represents a 51% measurement of the hydrogenic iron fine-structure Lamb shift, and reports measurements of secondary lines.

  17. Biogeography and body size shuffling of aquatic salamander communities on a shifting refuge.

    PubMed

    Bonett, Ronald M; Trujano-Alvarez, Ana Lilia; Williams, Michael J; Timpe, Elizabeth K

    2013-05-07

    Freshwater habitats of coastal plains are refugia for many divergent vertebrate lineages, yet these environments are highly vulnerable to sea-level fluctuations, which suggest that resident communities have endured dynamic histories. Using the fossil record and a multi-locus nuclear phylogeny, we examine divergence times, biogeography, body size evolution and patterns of community assembly of aquatic salamanders from North American coastal plains since the Late Cretaceous. At least five salamander families occurred on the extensive Western Interior Coastal Plain (WICP), which existed from the Late Cretaceous through the Eocene. Four of these families subsequently colonized the emergent Southeastern Coastal Plain (SECP) by the Early Oligocene to Late Miocene. Three families ultimately survived and underwent extensive body size evolution in situ on the SECP. This included at least two major size reversals in recent taxa that are convergent with confamilial WICP ancestors. Dynamics of the coastal plain, major lineage extinctions and frequent extreme changes in body size have resulted in significant shuffling of the size structure of aquatic salamander communities on this shifting refuge since the Cretaceous.

  18. Biogeography and body size shuffling of aquatic salamander communities on a shifting refuge

    PubMed Central

    Bonett, Ronald M.; Trujano-Alvarez, Ana Lilia; Williams, Michael J.; Timpe, Elizabeth K.

    2013-01-01

    Freshwater habitats of coastal plains are refugia for many divergent vertebrate lineages, yet these environments are highly vulnerable to sea-level fluctuations, which suggest that resident communities have endured dynamic histories. Using the fossil record and a multi-locus nuclear phylogeny, we examine divergence times, biogeography, body size evolution and patterns of community assembly of aquatic salamanders from North American coastal plains since the Late Cretaceous. At least five salamander families occurred on the extensive Western Interior Coastal Plain (WICP), which existed from the Late Cretaceous through the Eocene. Four of these families subsequently colonized the emergent Southeastern Coastal Plain (SECP) by the Early Oligocene to Late Miocene. Three families ultimately survived and underwent extensive body size evolution in situ on the SECP. This included at least two major size reversals in recent taxa that are convergent with confamilial WICP ancestors. Dynamics of the coastal plain, major lineage extinctions and frequent extreme changes in body size have resulted in significant shuffling of the size structure of aquatic salamander communities on this shifting refuge since the Cretaceous. PMID:23466988

  19. Measurement of hyperfine structure and isotope shifts in Gd II

    NASA Astrophysics Data System (ADS)

    Del Papa, Dylan F.; Rose, Christopher D. M.; Rosner, S. David; Holt, Richard A.

    2017-07-01

    We have applied fast-ion-beam laser-fluorescence spectroscopy to measure the isotope shifts of 73 optical transitions in the wavelength range 421.5-455.8 nm and the hyperfine structures of 35 even parity and 33 odd parity levels in Gd II. Many of the isotope shifts and hyperfine structure measurements are the first for these transitions and levels. These atomic data can be used to correct for saturation and blending in the analysis of stellar spectra to determine chemical abundances. As a result, they have an important impact on studies of the history of nucleosynthesis in the Universe and on the use of photospheric abundance anomalies in Chemically Peculiar stars to infer indirect information about stellar interiors.

  20. Warming alters community size structure and ecosystem functioning.

    PubMed

    Dossena, Matteo; Yvon-Durocher, Gabriel; Grey, Jonathan; Montoya, José M; Perkins, Daniel M; Trimmer, Mark; Woodward, Guy

    2012-08-07

    Global warming can affect all levels of biological complexity, though we currently understand least about its potential impact on communities and ecosystems. At the ecosystem level, warming has the capacity to alter the structure of communities and the rates of key ecosystem processes they mediate. Here we assessed the effects of a 4°C rise in temperature on the size structure and taxonomic composition of benthic communities in aquatic mesocosms, and the rates of detrital decomposition they mediated. Warming had no effect on biodiversity, but altered community size structure in two ways. In spring, warmer systems exhibited steeper size spectra driven by declines in total community biomass and the proportion of large organisms. By contrast, in autumn, warmer systems had shallower size spectra driven by elevated total community biomass and a greater proportion of large organisms. Community-level shifts were mirrored by changes in decomposition rates. Temperature-corrected microbial and macrofaunal decomposition rates reflected the shifts in community structure and were strongly correlated with biomass across mesocosms. Our study demonstrates that the 4°C rise in temperature expected by the end of the century has the potential to alter the structure and functioning of aquatic ecosystems profoundly, as well as the intimate linkages between these levels of ecological organization.

  1. Warming alters community size structure and ecosystem functioning

    PubMed Central

    Dossena, Matteo; Yvon-Durocher, Gabriel; Grey, Jonathan; Montoya, José M.; Perkins, Daniel M.; Trimmer, Mark; Woodward, Guy

    2012-01-01

    Global warming can affect all levels of biological complexity, though we currently understand least about its potential impact on communities and ecosystems. At the ecosystem level, warming has the capacity to alter the structure of communities and the rates of key ecosystem processes they mediate. Here we assessed the effects of a 4°C rise in temperature on the size structure and taxonomic composition of benthic communities in aquatic mesocosms, and the rates of detrital decomposition they mediated. Warming had no effect on biodiversity, but altered community size structure in two ways. In spring, warmer systems exhibited steeper size spectra driven by declines in total community biomass and the proportion of large organisms. By contrast, in autumn, warmer systems had shallower size spectra driven by elevated total community biomass and a greater proportion of large organisms. Community-level shifts were mirrored by changes in decomposition rates. Temperature-corrected microbial and macrofaunal decomposition rates reflected the shifts in community structure and were strongly correlated with biomass across mesocosms. Our study demonstrates that the 4°C rise in temperature expected by the end of the century has the potential to alter the structure and functioning of aquatic ecosystems profoundly, as well as the intimate linkages between these levels of ecological organization. PMID:22496185

  2. Ultrahigh resolution protein structures using NMR chemical shift tensors

    PubMed Central

    Wylie, Benjamin J.; Sperling, Lindsay J.; Nieuwkoop, Andrew J.; Franks, W. Trent; Oldfield, Eric; Rienstra, Chad M.

    2011-01-01

    NMR chemical shift tensors (CSTs) in proteins, as well as their orientations, represent an important new restraint class for protein structure refinement and determination. Here, we present the first determination of both CST magnitudes and orientations for 13Cα and 15N (peptide backbone) groups in a protein, the β1 IgG binding domain of protein G from Streptococcus spp., GB1. Site-specific 13Cα and 15N CSTs were measured using synchronously evolved recoupling experiments in which 13C and 15N tensors were projected onto the 1H-13C and 1H-15N vectors, respectively, and onto the 15N-13C vector in the case of 13Cα. The orientations of the 13Cα CSTs to the 1H-13C and 13C-15N vectors agreed well with the results of ab initio calculations, with an rmsd of approximately 8°. In addition, the measured 15N tensors exhibited larger reduced anisotropies in α-helical versus β-sheet regions, with very limited variation (18 ± 4°) in the orientation of the z-axis of the 15N CST with respect to the 1H-15N vector. Incorporation of the 13Cα CST restraints into structure calculations, in combination with isotropic chemical shifts, transferred echo double resonance 13C-15N distances and vector angle restraints, improved the backbone rmsd to 0.16 Å (PDB ID code 2LGI) and is consistent with existing X-ray structures (0.51 Å agreement with PDB ID code 2QMT). These results demonstrate that chemical shift tensors have considerable utility in protein structure refinement, with the best structures comparable to 1.0-Å crystal structures, based upon empirical metrics such as Ramachandran geometries and χ1/χ2 distributions, providing solid-state NMR with a powerful tool for de novo structure determination. PMID:21969532

  3. Minimization of color shift generated in RGBW quad structure.

    NASA Astrophysics Data System (ADS)

    Kim, Hong Chul; Yun, Jae Kyeong; Baek, Heume-Il; Kim, Ki Duk; Oh, Eui Yeol; Chung, In Jae

    2005-03-01

    The purpose of RGBW Quad Structure Technology is to realize higher brightness than that of normal panel (RGB stripe structure) by adding white sub-pixel to existing RGB stripe structure. However, there is side effect called 'color shift' resulted from increasing brightness. This side effect degrades general color characteristics due to change of 'Hue', 'Brightness' and 'Saturation' as compared with existing RGB stripe structure. Especially, skin-tone colors show a tendency to get darker in contrast to normal panel. We"ve tried to minimize 'color shift' through use of LUT (Look Up Table) for linear arithmetic processing of input data, data bit expansion to 12-bit for minimizing arithmetic tolerance and brightness weight of white sub-pixel on each R, G, B pixel. The objective of this study is to minimize and keep Δu'v' value (we commonly use to represent a color difference), quantitative basis of color difference between RGB stripe structure and RGBW quad structure, below 0.01 level (existing 0.02 or higher) using Macbeth colorchecker that is general reference of color characteristics.

  4. Determination of amyloid core structure using chemical shifts.

    PubMed

    Skora, Lukasz; Zweckstetter, Markus

    2012-12-01

    Amyloid fibrils are the pathological hallmark of a large variety of neurodegenerative disorders. The structural characterization of amyloid fibrils, however, is challenging due to their non-crystalline, heterogeneous, and often dynamic nature. Thus, the structure of amyloid fibrils of many proteins is still unknown. We here show that the structure calculation program CS-Rosetta can be used to obtain insight into the core structure of amyloid fibrils. Driven by experimental solid-state NMR chemical shifts and taking into account the polymeric nature of fibrils CS-Rosetta allows modeling of the core of amyloid fibrils. Application to the Y145X stop mutant of the human prion protein reveals a left-handed β-helix.

  5. Changes in Soil Microbial Community Structure with Flooding

    USDA-ARS?s Scientific Manuscript database

    Flooding disturbs both above- and below-ground ecosystem processes. Although often ignored, changes in below-ground environments are no less important than those that occur above-ground. Shifts in soil microbial community structure are expected when anaerobic conditions develop from flooding. The ...

  6. Shifting Regimes and Changing Interactions in the Lake Washington, U.S.A., Plankton Community from 1962–1994

    PubMed Central

    Francis, Tessa B.; Wolkovich, Elizabeth M.; Scheuerell, Mark D.; Katz, Stephen L.; Holmes, Elizabeth E.; Hampton, Stephanie E.

    2014-01-01

    Understanding how changing climate, nutrient regimes, and invasive species shift food web structure is critically important in ecology. Most analytical approaches, however, assume static species interactions and environmental effects across time. Therefore, we applied multivariate autoregressive (MAR) models in a moving window context to test for shifting plankton community interactions and effects of environmental variables on plankton abundance in Lake Washington, U.S.A. from 1962–1994, following reduced nutrient loading in the 1960s and the rise of Daphnia in the 1970s. The moving-window MAR (mwMAR) approach showed shifts in the strengths of interactions between Daphnia, a dominant grazer, and other plankton taxa between a high nutrient, Oscillatoria-dominated regime and a low nutrient, Daphnia-dominated regime. The approach also highlighted the inhibiting influence of the cyanobacterium Oscillatoria on other plankton taxa in the community. Overall community stability was lowest during the period of elevated nutrient loading and Oscillatoria dominance. Despite recent warming of the lake, we found no evidence that anomalous temperatures impacted plankton abundance. Our results suggest mwMAR modeling is a useful approach that can be applied across diverse ecosystems, when questions involve shifting relationships within food webs, and among species and abiotic drivers. PMID:25338087

  7. Shifting regimes and changing interactions in the Lake Washington, U.S.A., plankton community from 1962-1994.

    PubMed

    Francis, Tessa B; Wolkovich, Elizabeth M; Scheuerell, Mark D; Katz, Stephen L; Holmes, Elizabeth E; Hampton, Stephanie E

    2014-01-01

    Understanding how changing climate, nutrient regimes, and invasive species shift food web structure is critically important in ecology. Most analytical approaches, however, assume static species interactions and environmental effects across time. Therefore, we applied multivariate autoregressive (MAR) models in a moving window context to test for shifting plankton community interactions and effects of environmental variables on plankton abundance in Lake Washington, U.S.A. from 1962-1994, following reduced nutrient loading in the 1960s and the rise of Daphnia in the 1970s. The moving-window MAR (mwMAR) approach showed shifts in the strengths of interactions between Daphnia, a dominant grazer, and other plankton taxa between a high nutrient, Oscillatoria-dominated regime and a low nutrient, Daphnia-dominated regime. The approach also highlighted the inhibiting influence of the cyanobacterium Oscillatoria on other plankton taxa in the community. Overall community stability was lowest during the period of elevated nutrient loading and Oscillatoria dominance. Despite recent warming of the lake, we found no evidence that anomalous temperatures impacted plankton abundance. Our results suggest mwMAR modeling is a useful approach that can be applied across diverse ecosystems, when questions involve shifting relationships within food webs, and among species and abiotic drivers.

  8. Phylogenetic shifts of bacterioplankton community composition along the Pearl Estuary: the potential impact of hypoxia and nutrients.

    PubMed

    Liu, Jiwen; Fu, Bingbing; Yang, Hongmei; Zhao, Meixun; He, Biyan; Zhang, Xiao-Hua

    2015-01-01

    The significance of salinity in shaping bacterial communities dwelling in estuarine areas has been well documented. However, the influences of other environmental factors such as dissolved oxygen and nutrients in determining distribution patterns of both individual taxa and bacterial communities inhabited local estuarine regions remain elusive. Here, bacterioplankton community structures of surface and bottom waters from eight sites along the Pearl Estuary were characterized with 16S rRNA gene pyrosequencing. The results showed significant differences of bacterioplankton community between freshwater and saltwater sites, and further between surface and bottom waters of saltwater sites. Synechococcus dominated the surface water of saltwater sites while Oceanospirillales, SAR11 and SAR406 were prevalent in the bottom water. Betaproteobacteria was abundant in freshwater sites, with no significant difference between water layers. Occurrence of phylogenetic shifts in taxa affiliated to the same clade was also detected. Dissolved oxygen explained most of the bacterial community variation in the redundancy analysis targeting only freshwater sites, whereas nutrients and salinity explained most of the variation across all samples in the Pearl Estuary. Methylophilales (mainly PE2 clade) was positively correlated to dissolved oxygen, whereas Rhodocyclales (mainly R.12up clade) was negatively correlated. Moreover, high nutrient inputs to the freshwater area of the Pearl Estuary have shifted the bacterial communities toward copiotrophic groups, such as Sphingomonadales. The present study demonstrated that the overall nutrients and freshwater hypoxia play important roles in determining bacterioplankton compositions and provided insights into the potential ecological roles of specific taxa in estuarine environments.

  9. Phylogenetic shifts of bacterioplankton community composition along the Pearl Estuary: the potential impact of hypoxia and nutrients

    PubMed Central

    Liu, Jiwen; Fu, Bingbing; Yang, Hongmei; Zhao, Meixun; He, Biyan; Zhang, Xiao-Hua

    2015-01-01

    The significance of salinity in shaping bacterial communities dwelling in estuarine areas has been well documented. However, the influences of other environmental factors such as dissolved oxygen and nutrients in determining distribution patterns of both individual taxa and bacterial communities inhabited local estuarine regions remain elusive. Here, bacterioplankton community structures of surface and bottom waters from eight sites along the Pearl Estuary were characterized with 16S rRNA gene pyrosequencing. The results showed significant differences of bacterioplankton community between freshwater and saltwater sites, and further between surface and bottom waters of saltwater sites. Synechococcus dominated the surface water of saltwater sites while Oceanospirillales, SAR11 and SAR406 were prevalent in the bottom water. Betaproteobacteria was abundant in freshwater sites, with no significant difference between water layers. Occurrence of phylogenetic shifts in taxa affiliated to the same clade was also detected. Dissolved oxygen explained most of the bacterial community variation in the redundancy analysis targeting only freshwater sites, whereas nutrients and salinity explained most of the variation across all samples in the Pearl Estuary. Methylophilales (mainly PE2 clade) was positively correlated to dissolved oxygen, whereas Rhodocyclales (mainly R.12up clade) was negatively correlated. Moreover, high nutrient inputs to the freshwater area of the Pearl Estuary have shifted the bacterial communities toward copiotrophic groups, such as Sphingomonadales. The present study demonstrated that the overall nutrients and freshwater hypoxia play important roles in determining bacterioplankton compositions and provided insights into the potential ecological roles of specific taxa in estuarine environments. PMID:25713564

  10. Biotic Stress Shifted Structure and Abundance of Enterobacteriaceae in the Lettuce Microbiome

    PubMed Central

    Erlacher, Armin; Cardinale, Massimiliano; Grube, Martin; Berg, Gabriele

    2015-01-01

    Lettuce cultivars are not only amongst the most popular vegetables eaten raw, they are also involved in severe pathogen outbreaks world-wide. While outbreaks caused by Enterobacteriaceae species are well-studied, less is known about their occurrence in natural environments as well as the impact of biotic stress. Here, we studied the ecology of the human health-relevant bacterial family Enterobacteriaceae and assessed the impact of biotic disturbances by a soil-borne phytopathogenic fungus and Gastropoda on their structure and abundance in mesocosm and pot experiments. Using a polyphasic approach including network analyses of 16S rRNA gene amplicon libraries, quantitative PCR and complementary fluorescence in situ hybridization (FISH) microscopy we found substantial yet divergent Enterobacteriaceae communities. A similar spectrum of 14 genera was identified from rhizo- and phyllospheres but the abundance of Enterobacteriaceae was on average 3fold higher in phyllosphere samples. Both stress factors shifted the bacterial community of the leaf habitat, characterized by increases of species abundance and diversity. For the rhizosphere, we observed significant structural shifts of Enterobacteriaceae communities but also a high degree of resilience. These results could be confirmed by FISH microscopy but it was difficult to visualize phyllosphere communities. Additional inoculation experiments with Escherichia coli as model revealed their presence below the wax layer as well as in the endosphere of leaves. The observed presence influenced by stress factors and the endophytic life style of Enterobacteriaceae on lettuce can be an important aspect in relation to human health. PMID:25714833

  11. Triggers and maintenance of multiple shifts in the state of a natural community

    PubMed Central

    Schmitt, Russell J.; Holbrook, Sally J.

    2010-01-01

    Ecological communities can undergo sudden and dramatic shifts between alternative persistent community states. Both ecological prediction and natural resource management rely on understanding the mechanisms that trigger such shifts and maintain each state. Differentiating between potential mechanisms is difficult, however, because shifts are often recognized only in hindsight and many occur on such large spatial scales that manipulative experiments to test their causes are difficult or impossible. Here we use an approach that focuses first on identifying changes in environmental factors that could have triggered a given state change, and second on examining whether these changes were sustained (and thus potentially maintained the new state) or transitory (explaining the shift but not its persistence). We use this approach to evaluate a community shift in which a benthic marine species of filter feeding sea cucumber (Pachythyone rubra) suddenly came to dominate subtidal rocky reefs that had previously supported high abundances of macroalgae, persisted for more than a decade, then abruptly declined. We found that a sustained period without large wave events coincided with the shift to sea cucumber dominance, but that the sea cucumbers persisted even after the end of this low wave period, indicating that different mechanisms maintained the new community. Additionally, the period of sea cucumber dominance occurred when their predators were rare, and increases in the abundance of these predators coincided with the end of sea cucumber dominance. These results underscore the complex nature of regime shifts and illustrate that focusing separately on the causes and maintenance of state change can be a productive first step for analyzing these shifts in a range of systems. PMID:20526781

  12. Shifts in coastal sediment oxygenation cause pronounced changes in microbial community composition and associated metabolism.

    PubMed

    Broman, Elias; Sjöstedt, Johanna; Pinhassi, Jarone; Dopson, Mark

    2017-08-09

    A key characteristic of eutrophication in coastal seas is the expansion of hypoxic bottom waters, often referred to as 'dead zones'. One proposed remediation strategy for coastal dead zones in the Baltic Sea is to mix the water column using pump stations, circulating oxygenated water to the sea bottom. Although microbial metabolism in the sediment surface is recognized as key in regulating bulk chemical fluxes, it remains unknown how the microbial community and its metabolic processes are influenced by shifts in oxygen availability. Here, coastal Baltic Sea sediments sampled from oxic and anoxic sites, plus an intermediate area subjected to episodic oxygenation, were experimentally exposed to oxygen shifts. Chemical, 16S rRNA gene, metagenomic, and metatranscriptomic analyses were conducted to investigate changes in chemistry fluxes, microbial community structure, and metabolic functions in the sediment surface. Compared to anoxic controls, oxygenation of anoxic sediment resulted in a proliferation of bacterial populations in the facultative anaerobic genus Sulfurovum that are capable of oxidizing toxic sulfide. Furthermore, the oxygenated sediment had higher amounts of RNA transcripts annotated as sqr, fccB, and dsrA involved in sulfide oxidation. In addition, the importance of cryptic sulfur cycling was highlighted by the oxidative genes listed above as well as dsvA, ttrB, dmsA, and ddhAB that encode reductive processes being identified in anoxic and intermediate sediments turned oxic. In particular, the intermediate site sediments responded differently upon oxygenation compared to the anoxic and oxic site sediments. This included a microbial community composition with more habitat generalists, lower amounts of RNA transcripts attributed to methane oxidation, and a reduced rate of organic matter degradation. These novel data emphasize that genetic expression analyses has the power to identify key molecular mechanisms that regulate microbial community responses

  13. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities.

    PubMed

    Barton, Andrew D; Irwin, Andrew J; Finkel, Zoe V; Stock, Charles A

    2016-03-15

    Anthropogenic climate change has shifted the biogeography and phenology of many terrestrial and marine species. Marine phytoplankton communities appear sensitive to climate change, yet understanding of how individual species may respond to anthropogenic climate change remains limited. Here, using historical environmental and phytoplankton observations, we characterize the realized ecological niches for 87 North Atlantic diatom and dinoflagellate taxa and project changes in species biogeography between mean historical (1951-2000) and future (2051-2100) ocean conditions. We find that the central positions of the core range of 74% of taxa shift poleward at a median rate of 12.9 km per decade (km⋅dec(-1)), and 90% of taxa shift eastward at a median rate of 42.7 km⋅dec(-1) The poleward shift is faster than previously reported for marine taxa, and the predominance of longitudinal shifts is driven by dynamic changes in multiple environmental drivers, rather than a strictly poleward, temperature-driven redistribution of ocean habitats. A century of climate change significantly shuffles community composition by a basin-wide median value of 16%, compared with seasonal variations of 46%. The North Atlantic phytoplankton community appears poised for marked shift and shuffle, which may have broad effects on food webs and biogeochemical cycles.

  14. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities

    PubMed Central

    Barton, Andrew D.; Finkel, Zoe V.; Stock, Charles A.

    2016-01-01

    Anthropogenic climate change has shifted the biogeography and phenology of many terrestrial and marine species. Marine phytoplankton communities appear sensitive to climate change, yet understanding of how individual species may respond to anthropogenic climate change remains limited. Here, using historical environmental and phytoplankton observations, we characterize the realized ecological niches for 87 North Atlantic diatom and dinoflagellate taxa and project changes in species biogeography between mean historical (1951–2000) and future (2051–2100) ocean conditions. We find that the central positions of the core range of 74% of taxa shift poleward at a median rate of 12.9 km per decade (km⋅dec−1), and 90% of taxa shift eastward at a median rate of 42.7 km⋅dec−1. The poleward shift is faster than previously reported for marine taxa, and the predominance of longitudinal shifts is driven by dynamic changes in multiple environmental drivers, rather than a strictly poleward, temperature-driven redistribution of ocean habitats. A century of climate change significantly shuffles community composition by a basin-wide median value of 16%, compared with seasonal variations of 46%. The North Atlantic phytoplankton community appears poised for marked shift and shuffle, which may have broad effects on food webs and biogeochemical cycles. PMID:26903635

  15. Leveraging disjoint communities for detecting overlapping community structure

    NASA Astrophysics Data System (ADS)

    Chakraborty, Tanmoy

    2015-05-01

    Network communities represent mesoscopic structure for understanding the organization of real-world networks, where nodes often belong to multiple communities and form overlapping community structure in the network. Due to non-triviality in finding the exact boundary of such overlapping communities, this problem has become challenging, and therefore huge effort has been devoted to detect overlapping communities from the network. In this paper, we present PVOC (Permanence based Vertex-replication algorithm for Overlapping Community detection), a two-stage framework to detect overlapping community structure. We build on a novel observation that non-overlapping community structure detected by a standard disjoint community detection algorithm from a network has high resemblance with its actual overlapping community structure, except the overlapping part. Based on this observation, we posit that there is perhaps no need of building yet another overlapping community finding algorithm; but one can efficiently manipulate the output of any existing disjoint community finding algorithm to obtain the required overlapping structure. We propose a new post-processing technique that by combining with any existing disjoint community detection algorithm, can suitably process each vertex using a new vertex-based metric, called permanence, and thereby finds out overlapping candidates with their community memberships. Experimental results on both synthetic and large real-world networks show that PVOC significantly outperforms six state-of-the-art overlapping community detection algorithms in terms of high similarity of the output with the ground-truth structure. Thus our framework not only finds meaningful overlapping communities from the network, but also allows us to put an end to the constant effort of building yet another overlapping community detection algorithm.

  16. Examining shifts in zooplankton community as a response of environmental change in Lakes

    NASA Astrophysics Data System (ADS)

    Ghadouani, Anas; Mines, Conor; Legendre, Pierre; Yan, Norman

    2014-05-01

    We examined 20 years of zooplankton samples from Harp Lake for shifts in zooplankton variability following invasion by zooplankton predator Bythotrephes longimanus, using organism body size—as measured at high resolution by Laser Optical Plankton Counter (LOPC)—as the primary metric of investigation. A period of transitory high variability in the 2yr post-invasion was observed for both body size compositional variability and aggregate variability metrics, with both measures of variability shifting from low or intermediate to high variability immediately following invasion, before shifting again to intermediate variability, 2 yr post-invasion. Aggregate and compositional variability dynamics were also considered in combination over the study period, revealing that the period of transitory high variability coincided with a shift from a community-wide stasis variability pattern to one of asynchrony, before a shift back to stasis 2 yr post-invasion. These dynamics were related to changes in the significant zooplankton species within the Harp Lake community over the pre- and post- invasion periods, and are likely to be indicative of changes in the stability in the zooplankton community following invasion by Bythotrephes. The dual consideration of aggregate and compositional variability as measured by LOPC was found to provide a valuable means to assess the ecological effects of biological invasion on zooplankton communities as a whole, extending our knowledge of the effects of invasion beyond that already revealed through more traditional taxonomic investigation.

  17. Community-wide changes in intertaxonomic temporal co-occurrence resulting from phenological shifts.

    PubMed

    Hua, Fangyuan; Hu, Junhua; Liu, Yang; Giam, Xingli; Lee, Tien Ming; Luo, Hao; Wu, Jia; Liang, Qiaoyi; Zhao, Jian; Long, Xiaoyan; Pang, Hong; Wang, Biao; Liang, Wei; Zhang, Zhengwang; Gao, Xuejie; Zhu, Jiang

    2016-05-01

    Global climate change is known to affect the assembly of ecological communities by altering species' spatial distribution patterns, but little is known about how climate change may affect community assembly by changing species' temporal co-occurrence patterns, which is highly likely given the widely observed phenological shifts associated with climate change. Here, we analyzed a 29-year phenological data set comprising community-level information on the timing and span of temporal occurrence in 11 seasonally occurring animal taxon groups from 329 local meteorological observatories across China. We show that widespread shifts in phenology have resulted in community-wide changes in the temporal overlap between taxa that are dominated by extensions, and that these changes are largely due to taxa's altered span of temporal occurrence rather than the degree of synchrony in phenological shifts. Importantly, our findings also suggest that climate change may have led to less phenological mismatch than generally presumed, and that the context under which to discuss the ecological consequences of phenological shifts should be expanded beyond asynchronous shifts. © 2015 John Wiley & Sons Ltd.

  18. Community shifts within anaerobic digestion microbiota facing phenol inhibition: Towards early warning microbial indicators?

    PubMed

    Poirier, Simon; Bize, Ariane; Bureau, Chrystelle; Bouchez, Théodore; Chapleur, Olivier

    2016-09-01

    Performance stability is a key operational issue for anaerobic digestion (AD) and phenolic compounds are regularly mentioned as a major cause of digester failures. To get more insights into AD microbiota response to a wide range of inhibition levels, anaerobic batch toxicity assays were conducted with ten phenol concentrations up to 5.00 g/L. Final AD performance was not impaired up to 1.00 g/L. However, progressive shifts in microbial community structure were detected from 0.50 g/L. The methanogenic function was maintained along with increasing initial phenol concentrations up to 2.00 g/L thanks to the emergence of genus Methanoculleus at the expense of Methanosarcina. Within syntrophic populations, family Syntrophomonadaceae proportion was gradually reduced by phenol while Synergistaceae gained in importance in the microbiome. Moreover, at 2.00 g/L, the relative abundance of families belonging to order Clostridiales dropped, leading to the predominance of populations assigned to order Bacteroidales even though it did not prevent final AD performance deterioration. It illustrates the high level of adaptability of archaeal and bacterial communities and suggests the possibility of determining early warning microbial indicators associated with phenol inhibition.

  19. A multiple shift QR-step for structured rank matrices

    NASA Astrophysics Data System (ADS)

    Vandebril, Raf; van Barel, Marc; Mastronardi, Nicola

    2010-01-01

    Eigenvalue computations for structured rank matrices are the subject of many investigations nowadays. There exist methods for transforming matrices into structured rank form, QR-algorithms for semiseparable and semiseparable plus diagonal form, methods for reducing structured rank matrices efficiently to Hessenberg form and so forth. Eigenvalue computations for the symmetric case, involving semiseparable and semiseparable plus diagonal matrices have been thoroughly explored. A first attempt for computing the eigenvalues of nonsymmetric matrices via intermediate Hessenberg-like matrices (i.e. a matrix having all subblocks in the lower triangular part of rank at most one) was restricted to the single shift strategy. Unfortunately this leads in general to the use of complex shifts switching thereby from real to complex operations. This paper will explain a general multishift implementation for Hessenberg-like matrices (semiseparable matrices are a special case and hence also admit this approach). Besides a general multishift QR-step, this will also admit restriction to real computations when computing the eigenvalues of arbitrary real matrices. Details on the implementation are provided as well as numerical experiments proving the viability of the presented approach.

  20. Temperature oscillation coupled with fungal community shifts can modulate warming effects on litter decomposition.

    PubMed

    Dang, Christian K; Schindler, Markus; Chauvet, Eric; Gessner, Mark O

    2009-01-01

    Diel temperature oscillations are a nearly ubiquitous phenomenon, with amplitudes predicted to change along with mean temperatures under global-warming scenarios. Impact assessments of global warming have largely disregarded diel temperature oscillations, even though key processes in ecosystems, such as decomposition, may be affected. We tested the effect of a 5 degrees C temperature increase with and without diel oscillations on litter decomposition by fungal communities in stream microcosms. Five temperature regimes with identical thermal sums (degree days) were applied: constant 3 degrees and 8 degrees C; diel temperature oscillations of 5 degrees C around each mean; and oscillations of 9 degrees C around 8 degrees C. Temperature oscillations around 8 degrees C (warming scenario), but not 3 degrees C (ambient scenario), accelerated decomposition by 18% (5 degrees C oscillations) and 31% (9 degrees C oscillations), respectively, compared to the constant temperature regime at 8 degrees C. Community structure was not affected by oscillating temperatures, although the rise in mean temperature from 3 degrees to 8 degrees C consistently shifted the relative abundance of species. A simple model using temperature-growth responses of the dominant fungal decomposers accurately described the experimentally observed pattern, indicating that the effect of temperature oscillations on decomposition in our warming scenario was caused by strong curvilinear responses of species to warming at low temperature, particularly of the species becoming most abundant at 8 degrees C (Tetracladium marchalianum). These findings underscore the need to consider species-specific temperature characteristics in concert with changes in communities when assessing consequences of global warming on ecosystem processes.

  1. Invading parasites cause a structural shift in red fox dynamics.

    PubMed Central

    Forchhammer, M C; Asferg, T

    2000-01-01

    The influence of parasites on host life histories and populations is pronounced. Among several diseases affecting animal populations throughout the world, sarcoptic mange has influenced many carnivore populations dramatically and during the latest epizootic in Fennoscandia reduced the abundance of red fox by over 70%. While the numerical responses of red fox populations, their prey and their competitors as well as clinical implications are well known, knowledge of how sarcoptic mange affects the structure of the dynamics of red fox populations is lacking. Integrating ecological theory and statistical modelling, we analysed the long-term dynamics (1955-1996) of 14 Danish red fox populations. As suggested by the model, invading sarcoptic mange significantly affected direct and delayed density dependence in red fox dynamics and concomitant shifts in fluctuation patterns were observed. Our statistical analyses also revealed that the spatial progressive spread of mange mites was mirrored in the autocovariate structures of red fox populations progressively exposed to sarcoptic mange. PMID:10819147

  2. Iranian Critical ELT: A Belated but Growing Intellectual Shift in Iranian ELT Community

    ERIC Educational Resources Information Center

    Aghagolzadeh, Ferdows; Davari, Hossein

    2014-01-01

    Reviewing and discussing the development of critical studies in the field of applied linguistics in general and English language teaching (ELT) in particular in Iran, this paper attempts to highlight the main contributions in this field. Introducing a new growing critical-oriented shift in Iranian ELT community as the one which has been mostly…

  3. Iranian Critical ELT: A Belated but Growing Intellectual Shift in Iranian ELT Community

    ERIC Educational Resources Information Center

    Aghagolzadeh, Ferdows; Davari, Hossein

    2014-01-01

    Reviewing and discussing the development of critical studies in the field of applied linguistics in general and English language teaching (ELT) in particular in Iran, this paper attempts to highlight the main contributions in this field. Introducing a new growing critical-oriented shift in Iranian ELT community as the one which has been mostly…

  4. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts

    PubMed Central

    Vergés, Adriana; Steinberg, Peter D.; Hay, Mark E.; Poore, Alistair G. B.; Campbell, Alexandra H.; Ballesteros, Enric; Heck, Kenneth L.; Booth, David J.; Coleman, Melinda A.; Feary, David A.; Figueira, Will; Langlois, Tim; Marzinelli, Ezequiel M.; Mizerek, Toni; Mumby, Peter J.; Nakamura, Yohei; Roughan, Moninya; van Sebille, Erik; Gupta, Alex Sen; Smale, Dan A.; Tomas, Fiona; Wernberg, Thomas; Wilson, Shaun K.

    2014-01-01

    Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to ‘barrens’ when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs. PMID:25009065

  5. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts.

    PubMed

    Vergés, Adriana; Steinberg, Peter D; Hay, Mark E; Poore, Alistair G B; Campbell, Alexandra H; Ballesteros, Enric; Heck, Kenneth L; Booth, David J; Coleman, Melinda A; Feary, David A; Figueira, Will; Langlois, Tim; Marzinelli, Ezequiel M; Mizerek, Toni; Mumby, Peter J; Nakamura, Yohei; Roughan, Moninya; van Sebille, Erik; Gupta, Alex Sen; Smale, Dan A; Tomas, Fiona; Wernberg, Thomas; Wilson, Shaun K

    2014-08-22

    Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to 'barrens' when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs.

  6. Discovering Network Structure Beyond Communities

    NASA Astrophysics Data System (ADS)

    Nishikawa, Takashi; Motter, Adilson E.

    2011-11-01

    To understand the formation, evolution, and function of complex systems, it is crucial to understand the internal organization of their interaction networks. Partly due to the impossibility of visualizing large complex networks, resolving network structure remains a challenging problem. Here we overcome this difficulty by combining the visual pattern recognition ability of humans with the high processing speed of computers to develop an exploratory method for discovering groups of nodes characterized by common network properties, including but not limited to communities of densely connected nodes. Without any prior information about the nature of the groups, the method simultaneously identifies the number of groups, the group assignment, and the properties that define these groups. The results of applying our method to real networks suggest the possibility that most group structures lurk undiscovered in the fast-growing inventory of social, biological, and technological networks of scientific interest.

  7. A task shifting mental health program for an impoverished rural Indian community.

    PubMed

    Nimgaonkar, Alok U; Menon, Shylaja Devi

    2015-08-01

    Psychiatric disorders constitute a major source of disability across the globe. In India, individuals with mental disorders are diagnosed and treated inadequately, particularly in under-served rural areas. We implemented and evaluated a psychiatric 'task shifting' program for a rural, marginalized, impoverished South Indian tribal community. The program was added to a pre-existing medical program and utilized community workers to improve health care delivery. Following community wide discussions, health workers were trained to provide community education and to identify and refer individuals with psychiatric problems to a community hospital. Subsequently, they also followed up the psychiatric patients to improve treatment adherence. The program was evaluated through medical records and community surveys. Treated patients experienced significant improvement in daily function (p=0.01). Mean treatment adherence scores remained stable at the beginning and end of treatment, overall. The proportion of self-referrals increased from 27% to 57% over three years. Surveys conducted before and after program initiation also suggested improved knowledge, attitudes and acceptance of mental illness by the community. The annual per capita cost of the program was 122.53 Indian Rupees per person per annum (USD 1.61). In conclusion, the community-driven psychiatric task shifting program was implemented successfully. It was accompanied by positive changes in knowledge, attitudes and practice. Initial community consultations and integration with a pre-existing medical program increased acceptance by the community and reduced costs. We recommend a similar model with integrated medical and psychiatric health care in other resource-deficient communities.

  8. Intraspecific diet shift of Macoma balthica during community reassembly in an estuarine intertidal flat

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Middelburg, Jack J.

    2011-05-01

    During community reassembly, consumers may express adaptive feeding behaviour in response to the presence of other species or according to their development. During the community reassembly after hypoxia of a temperate estuarine intertidal area, we quantified the microphytobenthos contribution to the diet of the three numerically dominant macrofauna consumers, using 13C-carbon tracing experiments. We then explored the relationships between their size and the microphytobenthos contribution to their diet. The polychaetes Hediste diversicolor and Pygospio elegans did not show a clear pattern of diet shift. Conversely, at a late stage of community reassembly, there was a dramatic decrease in the contribution of benthic microalgae to the diet of the clam Macoma balthica within the juvenile specimens (≤5 mm), which were recolonising the sediment. The contribution of microphytobenthos decreased with the size ( r = -0.81, n = 18) and the largest juveniles incorporated benthic microalgal carbon similarly to their co-specific adults found in the undisturbed areas. Including both juveniles and adults, the size-diet relationship of M. balthica followed an inverse logarithmic curve during community reassembly. Such shape differed from the linear relationship based on the natural abundance of stable carbon isotope as previously collected in the undisturbed surroundings. Our study provides evidence of diet shift during community reassembly and suggests that such diet shift might follow both consumer development in the recolonising areas and other processes related to successional stages.

  9. Evidence of a Shift in the Littoral Fish Community of the Sacramento-San Joaquin Delta

    PubMed Central

    Farruggia, Mary Jade; Schreier, Brian; Sommer, Ted

    2017-01-01

    Many estuarine and freshwater ecosystems worldwide have undergone substantial changes due to multiple anthropogenic stressors. Over the past two decades, the Sacramento-San Joaquin Delta (Delta) in California, USA, saw a severe decline in pelagic fishes, a shift in zooplankton community composition, and a rapid expansion of invasive aquatic vegetation. To evaluate whether major changes have also occurred in the littoral fish community, we analyzed a beach seine survey dataset collected from 1995 to 2015 from 26 sites within the Delta. We examined changes in the Delta fish community at three different ecological scales (species, community, and biomass), using clustering analyses, trend tests, and change-point analyses. We found that the annual catch per effort for many introduced species and some native species have increased since 1995, while few experienced a decline. We also observed a steady pattern of change over time in annual fish community composition, driven primarily by a steady increase in non-native Centrarchid species. Lastly, we found that littoral fish biomass has essentially doubled over the 21-year study period, with Mississippi Silverside Menidia audens and fishes in the Centrarchidae family driving most of this increase. The changes in the catch per effort, fish community composition, and biomass per volume indicate that a shift has occurred in the Delta littoral fish community and that the same factors affecting the Delta’s pelagic food web may have been a key driver of change. PMID:28118393

  10. Evidence of a Shift in the Littoral Fish Community of the Sacramento-San Joaquin Delta.

    PubMed

    Mahardja, Brian; Farruggia, Mary Jade; Schreier, Brian; Sommer, Ted

    2017-01-01

    Many estuarine and freshwater ecosystems worldwide have undergone substantial changes due to multiple anthropogenic stressors. Over the past two decades, the Sacramento-San Joaquin Delta (Delta) in California, USA, saw a severe decline in pelagic fishes, a shift in zooplankton community composition, and a rapid expansion of invasive aquatic vegetation. To evaluate whether major changes have also occurred in the littoral fish community, we analyzed a beach seine survey dataset collected from 1995 to 2015 from 26 sites within the Delta. We examined changes in the Delta fish community at three different ecological scales (species, community, and biomass), using clustering analyses, trend tests, and change-point analyses. We found that the annual catch per effort for many introduced species and some native species have increased since 1995, while few experienced a decline. We also observed a steady pattern of change over time in annual fish community composition, driven primarily by a steady increase in non-native Centrarchid species. Lastly, we found that littoral fish biomass has essentially doubled over the 21-year study period, with Mississippi Silverside Menidia audens and fishes in the Centrarchidae family driving most of this increase. The changes in the catch per effort, fish community composition, and biomass per volume indicate that a shift has occurred in the Delta littoral fish community and that the same factors affecting the Delta's pelagic food web may have been a key driver of change.

  11. Outbreaks by canopy-feeding geometrid moth cause state-dependent shifts in understorey plant communities.

    PubMed

    Karlsen, Stein Rune; Jepsen, Jane Uhd; Odland, Arvid; Ims, Rolf Anker; Elvebakk, Arve

    2013-11-01

    The increased spread of insect outbreaks is among the most severe impacts of climate warming predicted for northern boreal forest ecosystems. Compound disturbances by insect herbivores can cause sharp transitions between vegetation states with implications for ecosystem productivity and climate feedbacks. By analysing vegetation plots prior to and immediately after a severe and widespread outbreak by geometrid moths in the birch forest-tundra ecotone, we document a shift in forest understorey community composition in response to the moth outbreak. Prior to the moth outbreak, the plots divided into two oligotrophic and one eutrophic plant community. The moth outbreak caused a vegetation state shift in the two oligotrophic communities, but only minor changes in the eutrophic community. In the spatially most widespread communities, oligotrophic dwarf shrub birch forest, dominance by the allelopathic dwarf shrub Empetrum nigrum ssp. hermaphroditum, was effectively broken and replaced by a community dominated by the graminoid Avenella flexuosa, in a manner qualitatively similar to the effect of wild fires in E. nigrum communities in coniferous boreal forest further south. As dominance by E. nigrum is associated with retrogressive succession the observed vegetation state shift has widespread implications for ecosystem productivity on a regional scale. Our findings reveal that the impact of moth outbreaks on the northern boreal birch forest system is highly initial-state dependent, and that the widespread oligotrophic communities have a low resistance to such disturbances. This provides a case for the notion that climate impacts on arctic and northern boreal vegetation may take place most abruptly when conveyed by changed dynamics of irruptive herbivores.

  12. Plant species loss decreases arthropod diversity and shifts trophic structure.

    PubMed

    Haddad, Nick M; Crutsinger, Gregory M; Gross, Kevin; Haarstad, John; Knops, Johannes M H; Tilman, David

    2009-10-01

    Plant diversity is predicted to be positively linked to the diversity of herbivores and predators in a foodweb. Yet, the relationship between plant and animal diversity is explained by a variety of competing hypotheses, with mixed empirical results for each hypothesis. We sampled arthropods for over a decade in an experiment that manipulated the number of grassland plant species. We found that herbivore and predator species richness were strongly, positively related to plant species richness, and that these relationships were caused by different mechanisms at herbivore and predator trophic levels. Even more dramatic was the threefold increase, from low- to high-plant species richness, in abundances of predatory and parasitoid arthropods relative to their herbivorous prey. Our results demonstrate that, over the long term, the loss of plant species propagates through food webs, greatly decreasing arthropod species richness, shifting a predator-dominated trophic structure to being herbivore dominated, and likely impacting ecosystem functioning and services.

  13. Catastrophic regime shifts in model ecological communities are true phase transitions

    NASA Astrophysics Data System (ADS)

    Capitán, J. A.; Cuesta, J. A.

    2010-10-01

    Ecosystems often undergo abrupt regime shifts in response to gradual external changes. These shifts are theoretically understood as a regime switch between alternative stable states of the ecosystem dynamical response to smooth changes in external conditions. Usual models introduce nonlinearities in the macroscopic dynamics of the ecosystem that lead to different stable attractors among which the shift takes place. Here we propose an alternative explanation of catastrophic regime shifts based on a recent model that pictures ecological communities as systems in continuous fluctuation, according to certain transition probabilities, between different micro-states in the phase space of viable communities. We introduce a spontaneous extinction rate that accounts for gradual changes in external conditions, and upon variations on this control parameter the system undergoes a regime shift with similar features to those previously reported. Under our microscopic viewpoint we recover the main results obtained in previous theoretical and empirical work (anomalous variance, hysteresis cycles, trophic cascades). The model predicts a gradual loss of species in trophic levels from bottom to top near the transition. But more importantly, the spectral analysis of the transition probability matrix allows us to rigorously establish that we are observing the fingerprints, in a finite size system, of a true phase transition driven by background extinctions.

  14. Shift in fungal communities and associated enzyme activities along an age gradient of managed Pinus sylvestris stands.

    PubMed

    Kyaschenko, Julia; Clemmensen, Karina E; Hagenbo, Andreas; Karltun, Erik; Lindahl, Björn D

    2017-04-01

    Forestry reshapes ecosystems with respect to tree age structure, soil properties and vegetation composition. These changes are likely to be paralleled by shifts in microbial community composition with potential feedbacks on ecosystem functioning. Here, we assessed fungal communities across a chronosequence of managed Pinus sylvestris stands and investigated correlations between taxonomic composition and extracellular enzyme activities. Not surprisingly, clear-cutting had a negative effect on ectomycorrhizal fungal abundance and diversity. In contrast, clear-cutting favoured proliferation of saprotrophic fungi correlated with enzymes involved in holocellulose decomposition. During stand development, the re-establishing ectomycorrhizal fungal community shifted in composition from dominance by Atheliaceae in younger stands to Cortinarius and Russula species in older stands. Late successional ectomycorrhizal taxa correlated with enzymes involved in mobilisation of nutrients from organic matter, indicating intensified nutrient limitation. Our results suggest that maintenance of functional diversity in the ectomycorrhizal fungal community may sustain long-term forest production by retaining a capacity for symbiosis-driven recycling of organic nutrient pools.

  15. Significant Scales in Community Structure

    PubMed Central

    Traag, V. A.; Krings, G.; Van Dooren, P.

    2013-01-01

    Many complex networks show signs of modular structure, uncovered by community detection. Although many methods succeed in revealing various partitions, it remains difficult to detect at what scale some partition is significant. This problem shows foremost in multi-resolution methods. We here introduce an efficient method for scanning for resolutions in one such method. Additionally, we introduce the notion of “significance” of a partition, based on subgraph probabilities. Significance is independent of the exact method used, so could also be applied in other methods, and can be interpreted as the gain in encoding a graph by making use of a partition. Using significance, we can determine “good” resolution parameters, which we demonstrate on benchmark networks. Moreover, optimizing significance itself also shows excellent performance. We demonstrate our method on voting data from the European Parliament. Our analysis suggests the European Parliament has become increasingly ideologically divided and that nationality plays no role. PMID:24121597

  16. The complexities of elder homelessness, a shifting political landscape and emerging community responses.

    PubMed

    Gonyea, Judith G; Mills-Dick, Kelly; Bachman, Sara S

    2010-10-01

    Despite their growing numbers, homeless older adults remain largely invisible in society and there has been a pervasive lack of public focus on elder homelessness. In this article, we seek to shine light on this forgotten population and deepen understanding of difficult challenges they confront in regaining housing security. We also examine the shifting political climate regarding homelessness, particularly the enactment and subsequent reauthorizations of the McKinney-Vento Homeless Assistance Act, and how these shifts are influencing community responses to elder homelessness. Finally, future challenges and policy directions for breaking the cycle of elder homelessness in the U.S. are discussed.

  17. Community detection in networks: Structural communities versus ground truth

    NASA Astrophysics Data System (ADS)

    Hric, Darko; Darst, Richard K.; Fortunato, Santo

    2014-12-01

    Algorithms to find communities in networks rely just on structural information and search for cohesive subsets of nodes. On the other hand, most scholars implicitly or explicitly assume that structural communities represent groups of nodes with similar (nontopological) properties or functions. This hypothesis could not be verified, so far, because of the lack of network datasets with information on the classification of the nodes. We show that traditional community detection methods fail to find the metadata groups in many large networks. Our results show that there is a marked separation between structural communities and metadata groups, in line with recent findings. That means that either our current modeling of community structure has to be substantially modified, or that metadata groups may not be recoverable from topology alone.

  18. Dynamic insight into protein structure utilizing red edge excitation shift.

    PubMed

    Chattopadhyay, Amitabha; Haldar, Sourav

    2014-01-21

    Proteins are considered the workhorses in the cellular machinery. They are often organized in a highly ordered conformation in the crowded cellular environment. These conformations display characteristic dynamics over a range of time scales. An emerging consensus is that protein function is critically dependent on its dynamics. The subtle interplay between structure and dynamics is a hallmark of protein organization and is essential for its function. Depending on the environmental context, proteins can adopt a range of conformations such as native, molten globule, unfolded (denatured), and misfolded states. Although protein crystallography is a well established technique, it is not always possible to characterize various protein conformations by X-ray crystallography due to transient nature of these states. Even in cases where structural characterization is possible, the information obtained lacks dynamic component, which is needed to understand protein function. In this overall scenario, approaches that reveal information on protein dynamics are much appreciated. Dynamics of confined water has interesting implications in protein folding. Interfacial hydration combines the motion of water molecules with the slow moving protein molecules. The red edge excitation shift (REES) approach becomes relevant in this context. REES is defined as the shift in the wavelength of maximum fluorescence emission toward higher wavelengths, caused by a shift in the excitation wavelength toward the red edge of absorption spectrum. REES arises due to slow rates (relative to fluorescence lifetime) of solvent relaxation (reorientation) around an excited state fluorophore in organized assemblies such as proteins. Consequently, REES depends on the environment-induced motional restriction imposed on the solvent molecules in the immediate vicinity of the fluorophore. In the case of a protein, the confined water in the protein creates a dipolar field that acts as the solvent for a fluorophore

  19. The Influence of Predator-prey Interactions on Climate-induced Range Shifts in Marine Communities

    NASA Astrophysics Data System (ADS)

    Selden, R. L.; Batt, R. D.; Morley, J. W.; Pinsky, M. L.

    2016-02-01

    Trawl surveys conducted over the last 40 years have provided evidence of widespread shifts in the distribution of marine species in the coastal United States. For many species, the shift in their distribution matched the shift in their preferred temperatures. However, some species, notably American lobster, Homarus americanus, shifted poleward substantially faster than would be predicted from climate alone, while others lagged significantly behind. We investigated the degree to which ecological interactions could alter climate-induced range shifts in marine communities, focusing specifically on American lobster and its key predators. Parallel analysis of the changes in distribution and abundance of lobster, cod, and black sea bass revealed that the increase in lobster abundance and northeastern shift in the center of its range occurred in conjunction with a decline in cod biomass in the northern part of its range. The contraction of the southern lobster range limit was tracked by the northward expansion of its southern predator, black sea bass. These results suggest that predator release in the Gulf of Maine in conjunction with predator invasion at the southern limit may have contributed to the accelerated response of lobster to ocean warming.

  20. Task shifting of HIV/AIDS case management to Community Health Service Centers in urban China: a qualitative policy analysis.

    PubMed

    Ma, Fuchang; Lv, Fan; Xu, Peng; Zhang, Dapeng; Meng, Sining; Ju, Lahong; Jiang, Huihui; Ma, Liping; Sun, Jiangping; Wu, Zunyou

    2015-07-02

    The growing number of people living with HIV/AIDS (PLWHA) in China points to an increased need for case management services of HIV/AIDS. This study sought to explore the challenges and enablers in shifting the HIV/AIDS case management services from Centers for Disease Control and Prevention (CDCs) to Community Health Service Centers (CHSCs) in urban China. A qualitative method based on the Health Policy Triangle (HPT) framework was employed to gain in-depth insights into four elements of the task shifting strategy. This included a review on published literature and health policy documents, 15 focus group discussions (FGDs) and 30 in-depth interviews (IDIs) with four types of key actors from three cities in China. A total of 78 studies and 17 policy files at the national, municipal and local levels were obtained and reviewed comprehensively. Three semi-structured interview guides were used to explore key actors' views on shifting the HIV/AIDS case management services to CHSCs. It is necessary and feasible for CHSCs to engage in case management services for PLWHA in local communities. The increasing number of PLWHA and shortage of qualified health professionals in CDCs made shifting case management services downwards to CHSCs an urgent agenda. CHSCs' wide distribution, technical capacity, accessibility and current practice enabled them to carry out case management services for PLWHA. However our findings indicated several challenges in this task shifting process. Those challenges included lack of specific policy and stable financial support for CHSCs, inadequate manpower, relatively low capacity for health service delivery, lack of coordination among sectors, PLWHA's fear for discrimination and privacy disclosure in local communities, which may compromise the effectiveness and sustainability of those services. Shifting the HIV/AIDS case management services from CDCs to CHSCs is a new approach to cope with the rising number of PLWHA in China, but it should be

  1. Shifts in Microbial Community and Its Correlation with Degradative Efficiency in a Wastewater Treatment Plant.

    PubMed

    Kapley, Atya; Liu, Ruyin; Jadeja, Niti B; Zhang, Yu; Yang, Min; Purohit, Hemant J

    2015-08-01

    A wastewater treatment plant controls the level of pollution reaching the environment. Yet, despite being the most common aerobic route for treatment of wastewater, the activated sludge process is not utilized to its full potential. This is mainly due to the lack of knowledge base correlating the microbial community in the activated sludge to its degradative performance. In this study, the activated biomass at the treatment site was monitored for five consecutive months. Even though operational parameters were kept constant, the microbial community was observed to change after 3 months. This shift was seen to correlate with 25 % loss of degradative efficiency. Target oxygenases were monitored at two time points, and results indicated that the dominating pathway operating in the common effluent treatment plant (CETP) is the degradation of chlorinated aromatics. This study demonstrates the change in degradative efficiency in a CETP with the change in microbial community and analyzes the parameters influencing the microbial community of activated sludge.

  2. Habitat, topographical, and geographical components structuring shrubsteppe bird communities

    USGS Publications Warehouse

    Knick, S.T.; Rotenberry, J.T.; Leu, M.

    2008-01-01

    Landscapes available to birds to select for breeding locations are arrayed along multiple dimensions. Identifying the primary gradients structuring shrubsteppe bird communities in the western United States is important because widespread habitat loss and alteration are shifting the environmental template on which these birds depend. We integrated field habitat surveys, GIS coverages, and bird counts from 61 Breeding Bird Survey routes located in shrubsteppe habitats across a >800 000 km2 region to determine the gradients of habitat, topography, and geography underlying bird communities. A small set of habitat features dominated the primary environmental gradients in a canonical ordination; the 13 species in the shrubsteppe bird community were closely packed along the first two axes. Using hierarchical variance partitioning, we identified habitat as the most important pure (31% explained variation) or shared component. Topography (9%) and geography (4%) were minor components but each shared a larger contribution with habitat (habitat-topography 21%; habitat-geography 22%) in explaining the organization of the bird community. In a second tier partition of habitat structure, pure composition (% land cover) was more important (45%) than configuration (patch size and edge) (7%); the two components shared 27% of the explained variation in the bird community axes. Local (9%), community (14%), and landscape (10%) levels contributed equally. Adjacent organizational levels had a larger shared contribution (local-community 26%; community-landscape 27%) than more separated local-landscape levels (21%). Extensive conversion of shrubsteppe habitats to agriculture, exotic annual grasslands, or pinyon (Pinus spp.)-juniper (Juniperus spp.) woodlands is occurring along the primary axes of habitat structure. Because the shrubsteppe bird community was organized along short gradients dominated by habitat features, relatively small shifts in their available environment will exert a

  3. Alternative community structures in a kelp-urchin community: A qualitative modeling approach

    USGS Publications Warehouse

    Montano-Moctezuma, G.; Li, H.W.; Rossignol, P.A.

    2007-01-01

    Shifts in interaction patterns within a community may result from periodic disturbances and climate. The question arises as to the extent and significance of these shifting patterns. Using a novel approach to link qualitative mathematical models and field data, namely using the inverse matrix to identify the community matrix, we reconstructed community networks from kelp forests off the Oregon Coast. We simulated all ecologically plausible interactions among community members, selected the models whose outcomes match field observations, and identified highly frequent links to characterize the community network from a particular site. We tested all possible biologically reasonable community networks through qualitative simulations, selected those that matched patterns observed in the field, and further reduced the set of possibilities by retaining those that were stable. We found that a community can be represented by a set of alternative structures, or scenarios. From 11,943,936 simulated models, 0.23% matched the field observations; moreover, only 0.006%, or 748 models, were highly reliable in their predictions and met conditions for stability. Predator-prey interactions as well as non-predatory relationships were consistently found in most of the 748 models. These highly frequent connections were useful to characterize the community network in the study site. We suggest that alternative networks provide the community with a buffer to disturbance, allowing it to continuously reorganize to adapt to a variable environment. This is possible due to the fluctuating capacities of foraging species to consume alternate resources. This suggestion is sustained by our results, which indicate that none of the models that matched field observations were fully connected. This plasticity may contribute to the persistence of these communities. We propose that qualitative simulations represent a powerful technique to raise new hypotheses concerning community dynamics and to

  4. Mortality, recovery, and community shifts of scleractinian corals in Puerto Rico one decade after the 2005 regional bleaching event

    PubMed Central

    Amirrezvani, Ali

    2017-01-01

    This work analyzes the mortality, recovery, and shifts in the composition of scleractinian corals from Puerto Rico one decade after the 2005 regional coral bleaching event. Temporal and spatial patterns of coral community structure were examined using a stratified, non-random sampling approach based on five permanent transects per reef at 16 reef stations. A negative correlation between percent coral cover loss and light attenuation coefficient (Kd490) was observed, suggesting that light attenuation, as influenced by water turbidity and depth, played a major role in coral protection during the bleaching event (“sunblock effect”). Responses of coral assemblages varied after the bleaching event, including shifts of cover from massive corals (Orbicella spp.) to opportunistic (Porites astreoides) and branching corals (Madracis auretenra, P. porites) and/or turf algae; partial recovery of reef substrate cover by O. annularis complex; and no measurable changes in coral assemblages before and after the event. PMID:28761791

  5. In situ permafrost thaw due to climate change drives holistic microbial community shifts with implications for methane cycling

    NASA Astrophysics Data System (ADS)

    Mondav, Rhiannon; McCalley, Carmody; Hodgkins, Suzanne; Rich, Virginia; Frolking, Steve; Saleska, Scott; Barnes, Andrew; Chanton, Jeff; Crill, Patrick

    2014-05-01

    Thawing permafrost is a potentially significant source of radiative forcing feedback due to increased emissions of methane, a biogenic greenhouse gas (GHG). This study investigated changes in the microbial community along a permafrost thaw gradient at Stordalen Mire, Sweden using 16S rRNA gene amplicon and metagenomic methods. In situ measurements of geochemical parameters, including CH4 and C isotopes, enabled linkage of community dynamics to significant shifts in C balance. The thaw gradient ranged from intact at a palsa (low productivity and GHG emissions), through partially thawed in a bog (high productivity, low GHG emissions) to a completely thawed fen (high productivity and GHG emissions). Microbial assemblages in both the palsa and fen were highly diverse (in both richness and evenness), consistent with climax communities. The microbial community in the bog had distinctly lower diversity, characteristic of ecosystem disturbance. The palsa community was dominated by Acidobacteria and Proteobacteria, as is typical of a range of soils including permafrost. Methanogens dominated both the bog and fen and were most abundant within the zone of water table fluctuation. Inferring methanogens' production pathway from phylogeny showed a shift from mostly hydrogenotrophic methanogens in the bog towards acetotrophic methanogens in the fen. This corroborated porewater and flux emitted CH4 and CO2 carbon isotopic 13C signatures of CH4 and CO2. The fen, where the highest CH4 flux was recorded, was significantly richer in methanogenic archaea. A novel archaea, Candidatus Methanoflorens stordalenmirensis, was present at up to 70% relative abundance in the bog, enabling recovery of a population genome. The genome (and associated metaproteome) of 'M. stordalenmirensis' indicates that hydrogenotrophic methane production is its main energy conservation pathway. 'Methanoflorens' may be an indicator species of permafrost thaw, it is globally ubiquitous, and appears a major

  6. Temperature-driven shifts in the epibiotic bacterial community composition of the brown macroalga Fucus vesiculosus.

    PubMed

    Stratil, Stephanie B; Neulinger, Sven C; Knecht, Henrik; Friedrichs, Anette K; Wahl, Martin

    2013-04-01

    The thallus surface of the brown macroalga Fucus vesiculosus is covered by a specific biofilm community. This biofilm supposedly plays an important role in the interaction between host and environment. So far, we know little about compositional or functional shifts of this epibiotic bacterial community under changing environmental conditions. In this study, the response of the microbiota to different temperatures with respect to cell density and community composition was analyzed by nonculture-based methods (denaturing gradient gel electrophoresis and 454 pyrosequencing of the 16S rRNA gene). Redundancy analysis showed that despite high variability among host individuals temperature accounted for 20% of the variation in the bacterial community composition, whereas cell density did not differ between groups. Across all samples, 4341 bacterial operational taxonomic units (OTUs) at a 97% similarity level were identified. Eight percent of OTUs were significantly correlated with low, medium, and high temperatures. Notably, the family Rhodobacteraceae increased in relative abundance from 20% to 50% with increasing temperature. OTU diversity (evenness and richness) was higher at 15 °C than at the lower and higher temperatures. Considering their known and presumed ecological functions for the host, change in the epibacterial community may entail shifts in the performance of the host alga.

  7. Temperature-driven shifts in the epibiotic bacterial community composition of the brown macroalga Fucus vesiculosus

    PubMed Central

    Stratil, Stephanie B; Neulinger, Sven C; Knecht, Henrik; Friedrichs, Anette K; Wahl, Martin

    2013-01-01

    The thallus surface of the brown macroalga Fucus vesiculosus is covered by a specific biofilm community. This biofilm supposedly plays an important role in the interaction between host and environment. So far, we know little about compositional or functional shifts of this epibiotic bacterial community under changing environmental conditions. In this study, the response of the microbiota to different temperatures with respect to cell density and community composition was analyzed by nonculture-based methods (denaturing gradient gel electrophoresis and 454 pyrosequencing of the 16S rRNA gene). Redundancy analysis showed that despite high variability among host individuals temperature accounted for 20% of the variation in the bacterial community composition, whereas cell density did not differ between groups. Across all samples, 4341 bacterial operational taxonomic units (OTUs) at a 97% similarity level were identified. Eight percent of OTUs were significantly correlated with low, medium, and high temperatures. Notably, the family Rhodobacteraceae increased in relative abundance from 20% to 50% with increasing temperature. OTU diversity (evenness and richness) was higher at 15°C than at the lower and higher temperatures. Considering their known and presumed ecological functions for the host, change in the epibacterial community may entail shifts in the performance of the host alga. PMID:23568841

  8. Performance and sleepiness in nurses working 12-h day shifts or night shifts in a community hospital.

    PubMed

    Wilson, Marian; Permito, Regan; English, Ashley; Albritton, Sandra; Coogle, Carlana; Van Dongen, Hans P A

    2017-10-05

    Hospitals are around-the-clock operations and nurses are required to care for patients night and day. The nursing shortage and desire for a more balanced work-to-home life has popularized 12-h shifts for nurses. The present study investigated sleep/wake cycles and fatigue levels in 22 nurses working 12-h shifts, comparing day versus night shifts. Nurses (11day shift and 11 night shift) were recruited from a suburban acute-care medical center. Participants wore a wrist activity monitor and kept a diary to track their sleep/wake cycles for 2 weeks. They also completed a fatigue test battery, which included the Psychomotor Vigilance Test (PVT) and the Karolinska Sleepiness Scale (KSS), at the beginning, middle and end of 4 duty shifts. Daily sleep duration was 7.1h on average. No overall difference in mean daily sleep duration was found between nurses working day shifts versus night shifts. Objective performance on the PVT remained relatively good and stable at the start, middle, and end of duty shifts in day shift workers, but gradually degraded across duty time in night shift workers. Compared to day shift workers, night shift workers also exhibited more performance variability among measurement days and between participants at each testing time point. The same pattern was observed for subjective sleepiness on the KSS. However, congruence between objective and subjective measures of fatigue was poor. Our findings suggest a need for organizations to evaluate practices and policies to mitigate the inevitable fatigue that occurs during long night shifts, in order to improve patient and healthcare worker safety. Examination of alternative shift lengths or sanctioned workplace napping may be strategies to consider. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Temperature and nutrients are significant drivers of seasonal shift in phytoplankton community from a drinking water reservoir, subtropical China.

    PubMed

    Lv, Hong; Yang, Jun; Liu, Lemian; Yu, Xiaoqing; Yu, Zheng; Chiang, Penchi

    2014-05-01

    Reservoirs are an important source of water supply in many densely populated areas in southeast China. Phytoplankton plays an important role in maintaining the structure and function of these reservoir ecosystems. Understanding of seasonal succession in phytoplankton communities and its driving factors is essential for effective water quality management in drinking-water reservoirs. In this study, water samples were collected monthly at the surface layers of riverine, transitional, and lacustrine zones from May 2010 to April 2011 in Tingxi Reservoir, southeast China. The phytoplankton showed distinct seasonal shifts in community structure at both taxonomic and functional levels. Cyanophyta was the dominant group in summer, especially species of Raphidiopsis in May and Aphanizomenon in June, and cyanobacterial dominance was promoted by both warmer conditions and excessive nutrients loading. Cyanophyta was gradually replaced by Cryptophyta (e.g., Chroomonas caudata) in abundance and by Bacillariophyta (Fragilaria sp. or Synedra sp. and Melosira sp.) in biomass with decreasing temperature. It appeared that seasonal shifts in phytoplankton composition were closely related to climate, nutrient status, and hydrology in this reservoir. Our partial RDA results clearly showed that water temperature and nutrients (TN and TP) were the most critical factors driving phytoplankton community shift in the abundance and biomass data, respectively. Further, with the global warming, cyanobacterial blooms may increase in distribution, duration, and intensity. In our study, the abundance and biomass of cyanobacteria had significant and positive correlations with temperature and phosphorus. Therefore, a stricter limit on nutrient input should be a priority in watershed management to protect drinking water from the effects of cyanobacterial blooms, especially in high-temperature period.

  10. Temperature-driven regime shifts in the dynamics of size-structured populations.

    PubMed

    Ohlberger, Jan; Edeline, Eric; Vøllestad, Leif Asbjørn; Stenseth, Nils C; Claessen, David

    2011-02-01

    Global warming impacts virtually all biota and ecosystems. Many of these impacts are mediated through direct effects of temperature on individual vital rates. Yet how this translates from the individual to the population level is still poorly understood, hampering the assessment of global warming impacts on population structure and dynamics. Here, we study the effects of temperature on intraspecific competition and cannibalism and the population dynamical consequences in a size-structured fish population. We use a physiologically structured consumer-resource model in which we explicitly model the temperature dependencies of the consumer vital rates and the resource population growth rate. Our model predicts that increased temperature decreases resource density despite higher resource growth rates, reflecting stronger intraspecific competition among consumers. At a critical temperature, the consumer population dynamics destabilize and shift from a stable equilibrium to competition-driven generation cycles that are dominated by recruits. As a consequence, maximum age decreases and the proportion of younger and smaller-sized fish increases. These model predictions support the hypothesis of decreasing mean body sizes due to increased temperatures. We conclude that in size-structured fish populations, global warming may increase competition, favor smaller size classes, and induce regime shifts that destabilize population and community dynamics.

  11. Characterizing the Community Structure of Complex Networks

    PubMed Central

    Lancichinetti, Andrea; Kivelä, Mikko; Saramäki, Jari; Fortunato, Santo

    2010-01-01

    Background Community structure is one of the key properties of complex networks and plays a crucial role in their topology and function. While an impressive amount of work has been done on the issue of community detection, very little attention has been so far devoted to the investigation of communities in real networks. Methodology/Principal Findings We present a systematic empirical analysis of the statistical properties of communities in large information, communication, technological, biological, and social networks. We find that the mesoscopic organization of networks of the same category is remarkably similar. This is reflected in several characteristics of community structure, which can be used as “fingerprints” of specific network categories. While community size distributions are always broad, certain categories of networks consist mainly of tree-like communities, while others have denser modules. Average path lengths within communities initially grow logarithmically with community size, but the growth saturates or slows down for communities larger than a characteristic size. This behaviour is related to the presence of hubs within communities, whose roles differ across categories. Also the community embeddedness of nodes, measured in terms of the fraction of links within their communities, has a characteristic distribution for each category. Conclusions/Significance Our findings, verified by the use of two fundamentally different community detection methods, allow for a classification of real networks and pave the way to a realistic modelling of networks' evolution. PMID:20711338

  12. Microalgae community shifts during the biogas upgrading in an alkaline open photobioreactor.

    PubMed

    Granada-Moreno, C I; Aburto-Medina, A; de Los Cobos Vasconcelos, D; González-Sánchez, A

    2017-10-01

    To achieve the functional specialization of a microalgae community through operational tuning of an open photobioreactor used for biogas upgrading under alkaline conditions. An open photobioreactor was inoculated with an indigenous microalgae sample from the Texcoco Soda Lake. A microalgae community was adapted to fix CO2 from synthetic biogas through different culture conditions reaching a maximum of 220 mg CO2  l(-1) per day. Picochlorum sp. and Scenedesmus sp. were identified as the prominent microalgae genera by molecular fingerprinting (partial sequencing of 16S rRNA and 18S rRNA genes) but only the first was detected by microscopy screening. Changes in the microalgae community profile were monitored by a range-weighted richness index, reaching the lowest value when biogas was upgraded. A robust microalgae community in the open photobioreactor was obtained after different culture conditions. The specialization of microalgae community for CO2 fixation under H2 S presence was driven by biogas upgrading conditions. The alkaline conditions enhance the CO2 absorption from biogas and could optimize specialized microalgae communities in the open photobioreactor. Denaturing gradient gel electrophoresis fingerprinting and richness index comparison are useful methods for the evaluation of microalgae community shifts and photosynthetic activity performance, particularly in systems intended for CO2 removal from biogas where the CO2 assimilation potential can be related to the microbial richness. © 2017 The Society for Applied Microbiology.

  13. Regime shift in sandy beach microbial communities following Deepwater Horizon oil spill remediation efforts.

    PubMed

    Engel, Annette Summers; Gupta, Axita A

    2014-01-01

    Sandy beaches support a wide variety of underappreciated biodiversity that is critical to coastal ecosystems. Prior to the 2010 Deepwater Horizon oil spill, the diversity and function of supratidal beach sediment microbial communities along Gulf of Mexico coastlines were not well understood. As such, it was unclear if microbial community compositional changes would occur following exposure to beached oil, if indigenous communities could biodegrade oil, or how cleanup efforts, such as sand washing and sediment redistribution, would impact microbial ecosystem resiliency. Transects perpendicular to the shoreline were sampled from public beaches on Grand Isle, Louisiana, and Dauphin Island, Alabama, over one year. Prior to oil coming onshore, elevated levels of bacteria associated with fecal contamination were detected (e.g., Enterobacteriales and Campylobacterales). Over time, significant shifts within major phyla were identified (e.g., Proteobacteria, Firmicutes, Actinobacteria) and fecal indicator groups were replaced by taxa affiliated with open-ocean and marine systems (e.g., Oceanospirillales, Rhodospirillales, and Rhodobacterales). These new bacterial groups included putative hydrocarbon degraders, similar to those identified near the oil plume offshore. Shifts in the microbial community composition strongly correlated to more poorly sorted sediment and grain size distributional changes. Natural oceanographic processes could not account for the disrupted sediment, especially from the backshore well above the maximum high-tide levels recorded at these sites. Sand washing and tilling occurred on both open beaches from August through at least December 2010, which were mechanisms that could replace fecal indicator groups with open-ocean groups. Consequently, remediation efforts meant to return beaches to pre-spill compositions caused a regime shift that may have added potential ecosystem function, like hydrocarbon degradation, to the sediment. Future research will

  14. Regime Shift in Sandy Beach Microbial Communities following Deepwater Horizon Oil Spill Remediation Efforts

    PubMed Central

    Engel, Annette Summers; Gupta, Axita A.

    2014-01-01

    Sandy beaches support a wide variety of underappreciated biodiversity that is critical to coastal ecosystems. Prior to the 2010 Deepwater Horizon oil spill, the diversity and function of supratidal beach sediment microbial communities along Gulf of Mexico coastlines were not well understood. As such, it was unclear if microbial community compositional changes would occur following exposure to beached oil, if indigenous communities could biodegrade oil, or how cleanup efforts, such as sand washing and sediment redistribution, would impact microbial ecosystem resiliency. Transects perpendicular to the shoreline were sampled from public beaches on Grand Isle, Louisiana, and Dauphin Island, Alabama, over one year. Prior to oil coming onshore, elevated levels of bacteria associated with fecal contamination were detected (e.g., Enterobacteriales and Campylobacterales). Over time, significant shifts within major phyla were identified (e.g., Proteobacteria, Firmicutes, Actinobacteria) and fecal indicator groups were replaced by taxa affiliated with open-ocean and marine systems (e.g., Oceanospirillales, Rhodospirillales, and Rhodobacterales). These new bacterial groups included putative hydrocarbon degraders, similar to those identified near the oil plume offshore. Shifts in the microbial community composition strongly correlated to more poorly sorted sediment and grain size distributional changes. Natural oceanographic processes could not account for the disrupted sediment, especially from the backshore well above the maximum high-tide levels recorded at these sites. Sand washing and tilling occurred on both open beaches from August through at least December 2010, which were mechanisms that could replace fecal indicator groups with open-ocean groups. Consequently, remediation efforts meant to return beaches to pre-spill compositions caused a regime shift that may have added potential ecosystem function, like hydrocarbon degradation, to the sediment. Future research will

  15. Long-term declines in an intertidal foundation species parallel shifts in community composition.

    PubMed

    Sorte, Cascade J B; Davidson, Victoria E; Franklin, Marcus C; Benes, Kylla M; Doellman, Meredith M; Etter, Ron J; Hannigan, Robyn E; Lubchenco, Jane; Menge, Bruce A

    2017-01-01

    The earth is in the midst of a biodiversity crisis, and projections indicate continuing and accelerating rates of global changes. Future alterations in communities and ecosystems may be precipitated by changes in the abundance of strongly interacting species, whose disappearance can lead to profound changes in abundance of other species, including an increase in extinction rate for some. Nearshore coastal communities are often dependent on the habitat and food resources provided by foundational plant (e.g., kelp) and animal (e.g., shellfish) species. We quantified changes in the abundance of the blue mussel (Mytilus edulis), a foundation species known to influence diversity and productivity of intertidal habitats, over the past 40 years in the Gulf of Maine, USA, one of the fastest warming regions in the global ocean. Using consistent survey methods, we compared contemporary population sizes to historical data from sites spanning >400 km. The results of these comparisons showed that blue mussels have declined in the Gulf of Maine by >60% (range: 29-100%) at the site level since the earliest benchmarks in the 1970s. At the same time as mussels declined, community composition shifted: at the four sites with historical community data, the sessile community became increasingly algal dominated. Contemporary (2013-2014) surveys across 20 sites showed that sessile species richness was positively correlated to mussel abundance in mid to high intertidal zones. These results suggest that declines in a critical foundation species may have already impacted the intertidal community. To inform future conservation efforts, we provide a database of historical and contemporary baselines of mussel population abundance and dynamics in the Gulf of Maine. Our results underscore the importance of anticipating not only changes in diversity but also changes in the abundance and identity of component species, as strong interactors like foundation species have the potential to drive

  16. Transient Shifts in Bacterial Communities Associated with the Temperate Gorgonian Paramuricea clavata in the Northwestern Mediterranean Sea

    PubMed Central

    La Rivière, Marie; Roumagnac, Marie; Garrabou, Joaquim; Bally, Marc

    2013-01-01

    Background Bacterial communities that are associated with tropical reef-forming corals are being increasingly recognized for their role in host physiology and health. However, little is known about the microbial diversity of the communities associated with temperate gorgonian corals, even though these communities are key structural components of the ecosystem. In the Northwestern Mediterranean Sea, gorgonians undergo recurrent mass mortalities, but the potential relationship between these events and the structure of the associated bacterial communities remains unexplored. Because microbial assemblages may contribute to the overall health and disease resistance of their host, a detailed baseline of the associated bacterial diversity is required to better understand the functioning of the gorgonian holobiont. Methodology/Principal Findings The bacterial diversity associated with the gorgonian Paramuricea clavata was determined using denaturing gradient gel electrophoresis, terminal-restriction fragment length polymorphism and the construction of clone libraries of the bacterial 16S ribosomal DNA. Three study sites were monitored for 4 years to assess the variability of communities associated with healthy colonies. Bacterial assemblages were highly dominated by one Hahellaceae-related ribotype and exhibited low diversity. While this pattern was mostly conserved through space and time, in summer 2007, a deep shift in microbiota structure toward increased bacterial diversity and the transient disappearance of Hahellaceae was observed. Conclusion/Significance This is the first spatiotemporal study to investigate the bacterial diversity associated with a temperate shallow gorgonian. Our data revealed an established relationship between P. clavata and a specific bacterial group within the Oceanospirillales. These results suggest a potential symbiotic role of Hahellaceae in the host-microbe association, as recently suggested for tropical corals. However, a transient

  17. Transient shifts in bacterial communities associated with the temperate gorgonian Paramuricea clavata in the Northwestern Mediterranean Sea.

    PubMed

    La Rivière, Marie; Roumagnac, Marie; Garrabou, Joaquim; Bally, Marc

    2013-01-01

    Bacterial communities that are associated with tropical reef-forming corals are being increasingly recognized for their role in host physiology and health. However, little is known about the microbial diversity of the communities associated with temperate gorgonian corals, even though these communities are key structural components of the ecosystem. In the Northwestern Mediterranean Sea, gorgonians undergo recurrent mass mortalities, but the potential relationship between these events and the structure of the associated bacterial communities remains unexplored. Because microbial assemblages may contribute to the overall health and disease resistance of their host, a detailed baseline of the associated bacterial diversity is required to better understand the functioning of the gorgonian holobiont. The bacterial diversity associated with the gorgonian Paramuricea clavata was determined using denaturing gradient gel electrophoresis, terminal-restriction fragment length polymorphism and the construction of clone libraries of the bacterial 16S ribosomal DNA. Three study sites were monitored for 4 years to assess the variability of communities associated with healthy colonies. Bacterial assemblages were highly dominated by one Hahellaceae-related ribotype and exhibited low diversity. While this pattern was mostly conserved through space and time, in summer 2007, a deep shift in microbiota structure toward increased bacterial diversity and the transient disappearance of Hahellaceae was observed. This is the first spatiotemporal study to investigate the bacterial diversity associated with a temperate shallow gorgonian. Our data revealed an established relationship between P. clavata and a specific bacterial group within the Oceanospirillales. These results suggest a potential symbiotic role of Hahellaceae in the host-microbe association, as recently suggested for tropical corals. However, a transient imbalance in bacterial associations can be tolerated by the holobiont

  18. Amplicon-pyrosequencing-based detection of compositional shifts in bryophyte-associated fungal communities along an elevation gradient.

    PubMed

    Davey, Marie L; Heegaard, Einar; Halvorsen, Rune; Kauserud, Håvard; Ohlson, Mikael

    2013-01-01

    Although bryophytes are a dominant vegetation component of boreal and alpine ecosystems, little is known about their associated fungal communities. HPLC assays of ergosterol (fungal biomass) and amplicon pyrosequencing of the ITS2 region of rDNA were used to investigate how the fungal communities associated with four bryophyte species changed across an elevational gradient transitioning from conifer forest to the low-alpine. Fungal biomass and OTU richness associated with the four moss hosts did not vary significantly across the gradient (P > 0.05), and both were more strongly affected by host and tissue type. Despite largely constant levels of fungal biomass, distinct shifts in community composition of fungi associated with Hylocomium, Pleurozium and Polytrichum occurred between the elevation zones of the gradient. This likely is a result of influence on fungal communities by major environmental factors such as temperature, directly or indirectly mediated by, or interacting with, the response of other components of the vegetation (i.e. the dominant trees). Fungal communities associated with Dicranum were an exception, exhibiting spatial autocorrelation between plots, and no significant structuring by elevation. Nevertheless, the detection of distinct fungal assemblages associated with a single host growing in different elevation zones along an elevational gradient is of particular relevance in the light of the ongoing changes in vegetation patterns in boreal and alpine systems due to global climate warming.

  19. Retreat from Alma Ata? The WHO's report on Task Shifting to community health workers for AIDS care in poor countries.

    PubMed

    Campbell, C; Scott, K

    2011-01-01

    This paper examines the potential of community health worker (CHW) programmes, as proposed by the 2008 World Health Organisation (WHO) document Task Shifting to tackle health worker shortages, to contribute to HIV/AIDS prevention and treatment and various Millennium Development Goals in low-income countries. It examines the WHO proposal through a literature review of factors that have facilitated the success of previous CHW experiences. The WHO has taken account of five key lessons learnt from past CHW programmes (the need for strong management, appropriate selection, suitable training, adequate retention structures and good relationships with other healthcare workers). It has, however, neglected to emphasise the importance of a sixth lesson, the 'community embeddedness' of CHWs, found to be of critical importance to the success of past CHW programmes. We have no doubt that the WHO plans will increase the number of workers able to perform medically oriented tasks. However, we argue that without community embeddedness, CHWs will be unable to successfully perform the socially oriented tasks assigned to them by the WHO, such as health education and counselling. We locate the WHO's neglect of community embeddedness within the context of a broader global public health trend away from community-focused primary healthcare towards biomedically focused selective healthcare.

  20. Using chemical shifts to determine structural changes in proteins upon complex formation.

    PubMed

    Cavalli, Andrea; Montalvao, Rinaldo W; Vendruscolo, Michele

    2011-08-04

    Methods for determining protein structures using only chemical shift information are progressively becoming more accurate and reliable. A major problem, however, in the use of chemical shifts for the determination of the structures of protein complexes is that the changes in the chemical shifts upon binding tend to be rather limited and indeed often smaller than the standard errors made in the predictions of chemical shifts corresponding to given structures. We present a procedure that, despite this problem, enables one to use of chemical shifts to determine accurately the conformational changes that take place upon complex formation.

  1. Bacterial Community Shift Drives Antibiotic Resistance Promotion during Drinking Water Chlorination.

    PubMed

    Jia, Shuyu; Shi, Peng; Hu, Qing; Li, Bing; Zhang, Tong; Zhang, Xu-Xiang

    2015-10-20

    For comprehensive insights into the effects of chlorination, a widely used disinfection technology, on bacterial community and antibiotic resistome in drinking water, this study applied high-throughput sequencing and metagenomic approaches to investigate the changing patterns of antibiotic resistance genes (ARGs) and bacterial community in a drinking water treatment and distribution system. At genus level, chlorination could effectively remove Methylophilus, Methylotenera, Limnobacter, and Polynucleobacter, while increase the relative abundance of Pseudomonas, Acidovorax, Sphingomonas, Pleomonas, and Undibacterium in the drinking water. A total of 151 ARGs within 15 types were detectable in the drinking water, and chlorination evidently increased their total relative abundance while reduced their diversity in the opportunistic bacteria (p < 0.05). Residual chlorine was identified as the key contributing factor driving the bacterial community shift and resistome alteration. As the dominant persistent ARGs in the treatment and distribution system, multidrug resistance genes (mainly encoding resistance-nodulation-cell division transportation system) and bacitracin resistance gene bacA were mainly carried by chlorine-resistant bacteria Pseudomonas and Acidovorax, which mainly contributed to the ARGs abundance increase. The strong correlation between bacterial community shift and antibiotic resistome alteration observed in this study may shed new light on the mechanism behind the chlorination effects on antibiotic resistance.

  2. Comparison of microbial community shifts in two parallel multi-step drinking water treatment processes.

    PubMed

    Xu, Jiajiong; Tang, Wei; Ma, Jun; Wang, Hong

    2017-04-11

    Drinking water treatment processes remove undesirable chemicals and microorganisms from source water, which is vital to public health protection. The purpose of this study was to investigate the effects of treatment processes and configuration on the microbiome by comparing microbial community shifts in two series of different treatment processes operated in parallel within a full-scale drinking water treatment plant (DWTP) in Southeast China. Illumina sequencing of 16S rRNA genes of water samples demonstrated little effect of coagulation/sedimentation and pre-oxidation steps on bacterial communities, in contrast to dramatic and concurrent microbial community shifts during ozonation, granular activated carbon treatment, sand filtration, and disinfection for both series. A large number of unique operational taxonomic units (OTUs) at these four treatment steps further illustrated their strong shaping power towards the drinking water microbial communities. Interestingly, multidimensional scaling analysis revealed tight clustering of biofilm samples collected from different treatment steps, with Nitrospira, the nitrite-oxidizing bacteria, noted at higher relative abundances in biofilm compared to water samples. Overall, this study provides a snapshot of step-to-step microbial evolvement in multi-step drinking water treatment systems, and the results provide insight to control and manipulation of the drinking water microbiome via optimization of DWTP design and operation.

  3. Linking seasonal inorganic nitrogen shift to the dynamics of microbial communities in the Chesapeake Bay.

    PubMed

    Hong, Yiguo; Xu, Xiongrong; Kan, Jinjun; Chen, Feng

    2014-04-01

    Seasonal shifts of dissolved inorganic nitrogen (DIN) and the dynamics of microbial communities for nitrogen transformation were investigated in the water column of Chesapeake Bay. The relative abundance of nitrogen over phosphorus (N) showed a strong seasonal and spatial pattern: gradually decreased from upstream to downstream; high in winter and low in summer. Because the phosphorus concentration remained relatively stable, the spatiotemporal pattern of N implied that a substantial fraction of DIN was removed in the bay, especially in summer. Correlation analyses indicated the functional microbial communities and environmental variables, such as temperature, dissolved oxygen, salinity, played important roles for connecting the seasonal variation of N. Among them, temperature was the trigger factor. High temperature in the summer induced the growth of functional microbes, which subsequently consumed a large portion of DIN inputted from the tributaries and reduced the N. The current study provided the relative importance of microbial communities and environmental variables in driving the DIN loss in the bay.

  4. Shifting species interaction in soil microbial community and its influence on ecosystem functions modulating.

    PubMed

    Li, Hua; Colica, Giovanni; Wu, Pei-pei; Li, Dunhai; Rossi, Federico; De Philippis, Roberto; Liu, Yongding

    2013-04-01

    The supportive and negative evidence for the stress gradient hypothesis (SGH) led to an ongoing debate among ecologists and called for new empirical and theoretical work. In this study, we took various biological soil crust (BSCs) samples along a spatial gradient with four environmental stress levels to examine the fitness of SGH in microbial interactions and evaluate its influence on biodiversity-function relationships in BSCs. A new assessment method of species interactions within hard-cultured invisible soil community was employed, directly based on denaturing gradient gel electrophoresis fingerprint images. The results showed that biotic interactions in soil phototroph community dramatically shifted from facilitation to dominant competition with the improvement of microhabitats. It offered new evidence, which presented a different perspective on the hypothesis that the relative importance of facilitation and competition varies inversely along the gradient of abiotic stress. The path analysis indicated that influence of biotic interactions (r = 0.19, p < 0.05) on ecosystem functions is lower than other community properties (r = 0.62, p < 0.001), including soil moisture, crust coverage, and biodiversity. Furthermore, the correlation between species interactions and community properties was non-significant with low negative influence (r = -0.27, p > 0.05). We demonstrate that the inversion of biotic interaction as a response to the gradient of abiotic stresses existed not only in the visible plant community but also in the soil microbial community.

  5. Modelling Vulnerability and Range Shifts in Ant Communities Responding to Future Global Warming in Temperate Forests.

    PubMed

    Kwon, Tae-Sung; Li, Fengqing; Kim, Sung-Soo; Chun, Jung Hwa; Park, Young-Seuk

    2016-01-01

    Global warming is likely leading to species' distributional shifts, resulting in changes in local community compositions and diversity patterns. In this study, we applied species distribution models to evaluate the potential impacts of temperature increase on ant communities in Korean temperate forests, by testing hypotheses that 1) the risk of extinction of forest ant species would increase over time, and 2) the changes in species distribution ranges could drive upward movements of ant communities and further alter patterns of species richness. We sampled ant communities at 335 evenly distributed sites across South Korea and modelled the future distribution range for each species using generalized additive models. To account for spatial autocorrelation, autocovariate regressions were conducted prior to generalized additive models. Among 29 common ant species, 12 species were estimated to shrink their suitable geographic areas, whereas five species would benefit from future global warming. Species richness was highest at low altitudes in the current period, and it was projected to be highest at the mid-altitudes in the 2080s, resulting in an upward movement of 4.9 m yr-1. This altered the altitudinal pattern of species richness from a monotonic-decrease curve (common in temperate regions) to a bell-shaped curve (common in tropical regions). Overall, ant communities in temperate forests are vulnerable to the on-going global warming and their altitudinal movements are similar to other faunal communities.

  6. Strong shift in the diazotrophic endophytic bacterial community inhabiting rice (Oryza sativa) plants after flooding.

    PubMed

    Ferrando, Lucía; Fernández Scavino, Ana

    2015-09-01

    Flooding impacts soil microbial communities, but its effect on endophytic communities has rarely been explored. This work addresses the effect of flooding on the abundance and diversity of endophytic diazotrophic communities on rice plants established in a greenhouse experiment. The nifH gene was significantly more abundant in roots after flooding, whereas the nifH gene copy numbers in leaves were unaffected and remained low. The PCA (principal component analysis) of T-RFLP (terminal restriction fragment length polymorphism) profiles indicated that root communities of replicate plots were more similar and diverse after flooding than before flooding. The nifH libraries obtained by cloning and 454 pyrosequencing consistently showed a remarkable shift in the diazotrophic community composition after flooding. Gammaproteobacteria (66-98%), mainly of the genus Stenotrophomonas, prevailed in roots before flooding, whereas Betaproteobacteria was the dominant class (26-34%) after flooding. A wide variety of aerotolerant and anaerobic diazotrophic bacteria (e.g. Dechloromonas, Rhodopseudomonas, Desulfovibrio, Geobacter, Chlorobium, Spirochaeta, Selenomonas and Dehalobacter) with diverse metabolic traits were retrieved from flooded rice roots. These findings suggest that endophytic communities could be significantly impacted by changes in plant-soil conditions derived from flooding during rice cropping. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Spatial community shift from hard to soft corals in acidified water

    NASA Astrophysics Data System (ADS)

    Inoue, Shihori; Kayanne, Hajime; Yamamoto, Shoji; Kurihara, Haruko

    2013-07-01

    Anthropogenic increases in the partial pressure of CO2 (pCO2) cause ocean acidification, declining calcium carbonate saturation states, reduced coral reef calcification and changes in the compositions of marine communities. Most projected community changes due to ocean acidification describe transitions from hard coral to non-calcifying macroalgal communities; other organisms have received less attention, despite the biotic diversity of coral reef communities. We show that the spatial distributions of both hard and soft coral communities in volcanically acidified, semi-enclosed waters off Iwotorishima Island, Japan, are related to pCO2 levels. Hard corals are restricted to non-acidified low- pCO2 (225μatm) zones, dense populations of the soft coral Sarcophyton elegans dominate medium- pCO2 (831μatm) zones, and both hard and soft corals are absent from the highest- pCO2 (1,465μatm) zone. In CO2-enriched culture experiments, high- pCO2 conditions benefited Sarcophyton elegans by enhancing photosynthesis rates and did not affect light calcification, but dark decalcification (negative net calcification) increased with increasing pCO2. These results suggest that reef communities may shift from reef-building hard corals to non-reef-building soft corals under pCO2 levels (550-970μatm) predicted by the end of this century, and that higher pCO2 levels would challenge the survival of some reef organisms.

  8. Modelling Vulnerability and Range Shifts in Ant Communities Responding to Future Global Warming in Temperate Forests

    PubMed Central

    Kim, Sung-Soo; Chun, Jung Hwa; Park, Young-Seuk

    2016-01-01

    Global warming is likely leading to species’ distributional shifts, resulting in changes in local community compositions and diversity patterns. In this study, we applied species distribution models to evaluate the potential impacts of temperature increase on ant communities in Korean temperate forests, by testing hypotheses that 1) the risk of extinction of forest ant species would increase over time, and 2) the changes in species distribution ranges could drive upward movements of ant communities and further alter patterns of species richness. We sampled ant communities at 335 evenly distributed sites across South Korea and modelled the future distribution range for each species using generalized additive models. To account for spatial autocorrelation, autocovariate regressions were conducted prior to generalized additive models. Among 29 common ant species, 12 species were estimated to shrink their suitable geographic areas, whereas five species would benefit from future global warming. Species richness was highest at low altitudes in the current period, and it was projected to be highest at the mid-altitudes in the 2080s, resulting in an upward movement of 4.9 m yr−1. This altered the altitudinal pattern of species richness from a monotonic-decrease curve (common in temperate regions) to a bell-shaped curve (common in tropical regions). Overall, ant communities in temperate forests are vulnerable to the on-going global warming and their altitudinal movements are similar to other faunal communities. PMID:27504632

  9. Host Niches and Defensive Extended Phenotypes Structure Parasitoid Wasp Communities

    PubMed Central

    Bailey, Richard; Schönrogge, Karsten; Cook, James M.; Melika, George; Csóka, György; Thuróczy, Csaba; Stone, Graham N.

    2009-01-01

    traits on community structure can be high, reaching 62% in one analysis. The observed patterns derive mainly from partial niche specialisation of highly generalist parasitoids with broad host ranges (>20 hosts), rather than strict separation of enemies with narrower host ranges, and so may contribute to maintenance of the richness of generalist parasitoids in gallwasp communities. Though evolutionary escape from parasitoids might most effectively be achieved via changes in host oak taxon, extreme conservatism in this trait for gallwasps suggests that selection is more likely to have acted on gall morphology and location. Any escape from parasitoids associated with evolutionary shifts in these traits has probably only been transient, however, due to subsequent recruitment of parasitoid species already attacking other host galls with similar trait combinations. PMID:19707266

  10. Protein structure prediction using global optimization by basin-hopping with NMR shift restraints

    NASA Astrophysics Data System (ADS)

    Hoffmann, Falk; Strodel, Birgit

    2013-01-01

    Computational methods that utilize chemical shifts to produce protein structures at atomic resolution have recently been introduced. In the current work, we exploit chemical shifts by combining the basin-hopping approach to global optimization with chemical shift restraints using a penalty function. For three peptides, we demonstrate that this approach allows us to find near-native structures from fully extended structures within 10 000 basin-hopping steps. The effect of adding chemical shift restraints is that the α and β secondary structure elements form within 1000 basin-hopping steps, after which the orientation of the secondary structure elements, which produces the tertiary contacts, is driven by the underlying protein force field. We further show that our chemical shift-restraint BH approach also works for incomplete chemical shift assignments, where the information from only one chemical shift type is considered. For the proper implementation of chemical shift restraints in the basin-hopping approach, we determined the optimal weight of the chemical shift penalty energy with respect to the CHARMM force field in conjunction with the FACTS solvation model employed in this study. In order to speed up the local energy minimization procedure, we developed a function, which continuously decreases the width of the chemical shift penalty function as the minimization progresses. We conclude that the basin-hopping approach with chemical shift restraints is a promising method for protein structure prediction.

  11. Consensus of population systems with community structures.

    PubMed

    Wang, Jing; Wu, Bin; Wang, Long; Fu, Feng

    2008-11-01

    Multicommunity population systems may reach a consensus state where the fractions of each species in different communities agree on a common value. In this paper, by analyzing the evolutionary dynamics based on an extended replicator equation incorporating community effects, the consensus problem of population systems with n communities is studied. In particular, the simple case of two communities is investigated in detail. In general, for n communities, a sufficient and necessary condition for population systems to reach a consensus of coexistent state is provided. Regarding the population dynamics for the four different types of games, whether the population systems can achieve consensus is determined. The dynamics of community-structured populations shows richer features than nonstructured populations, and some nontrivial phenomena arising from different community-structured population systems are illustrated with concrete numerical examples.

  12. A new level-shifting structure with multiply metal rings by divided RESURF technique

    NASA Astrophysics Data System (ADS)

    Jizhi, Liu; Xmgbi, Chen

    2009-04-01

    A new structure of a lateral n-MOST and a new level-shifting structure with multiply metal rings (MMRs) by divided RESURF technique have been proposed. The device and electrical performances of the structure are analyzed and simulated by MEDICI. In comparison to the level-shifting structure with multiply floating field plates (MFFPs) used before, the structure stated here improves the reliability and diminishes the voltage difference between the voltage of the power supply of the high-side gate driver and the voltage of the output terminal of the level-shifting structure, which is also that of the input terminal of the high-side gate driver. The maximal voltage difference of the level-shifting structure in this paper is 30% lower than that used before. Therefore, good voltage isolation and current isolation are obtained. The structure can be used in the level-shifting circuit of various applications.

  13. Identifying secondary structures in proteins using NMR chemical shift 3D correlation maps

    NASA Astrophysics Data System (ADS)

    Kumari, Amrita; Dorai, Kavita

    2013-06-01

    NMR chemical shifts are accurate indicators of molecular environment and have been extensively used as aids in protein structure determination. This work focuses on creating empirical 3D correlation maps of backbone chemical shift nuclei for use as identifiers of secondary structure elements in proteins. A correlated database of backbone nuclei chemical shifts was constructed from experimental structural data gathered from entries in the Protein Data Bank (PDB) as well as isotropic chemical shift values from the RefDB database. Rigorous statistical analysis of the maps led to the conclusion that specific correlations between triplets of backbone chemical shifts are best able to differentiate between different secondary structures such as α-helices, β-strands and turns. The method is compared with similar techniques that use NMR chemical shift information as aids in biomolecular structure determination and performs well in tests done on experimental data determined for different types of proteins, including large multi-domain proteins and membrane proteins.

  14. Experimental soil warming shifts the fungal community composition at the alpine treeline.

    PubMed

    Solly, Emily F; Lindahl, Björn D; Dawes, Melissa A; Peter, Martina; Souza, Rômulo C; Rixen, Christian; Hagedorn, Frank

    2017-07-01

    Increased CO2 emissions and global warming may alter the composition of fungal communities through the removal of temperature limitation in the plant-soil system, faster nitrogen (N) cycling and changes in the carbon (C) allocation of host plants to the rhizosphere. At a Swiss treeline featuring Larix decidua and Pinus uncinata, the effects of multiple years of CO2 enrichment and experimental soil warming on the fungal community composition in the organic horizons were analysed using 454-pyrosequencing of ITS2 amplicons. Sporocarp production and colonization of ectomycorrhizal root tips were investigated in parallel. Fungal community composition was significantly altered by soil warming, whereas CO2 enrichment had little effect. Tree species influenced fungal community composition and the magnitude of the warming responses. The abundance of ectomycorrhizal fungal taxa was positively correlated with N availability, and ectomycorrhizal taxa specialized for conditions of high N availability proliferated with warming, corresponding to considerable increases in inorganic N in warmed soils. Traits related to N utilization are important in determining the responses of ectomycorrhizal fungi to warming in N-poor cold ecosystems. Shifts in the overall fungal community composition in response to higher temperatures may alter fungal-driven processes with potential feedbacks on ecosystem N cycling and C storage at the alpine treeline. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  15. Microbial community compositional shifts in bleached colonies of the Brazilian reef-building coral Siderastrea stellata.

    PubMed

    Lins-de-Barros, Monica M; Cardoso, Alexander M; Silveira, Cynthia B; Lima, Joyce L; Clementino, Maysa M; Martins, Orlando B; Albano, Rodolpho M; Vieira, Ricardo P

    2013-01-01

    The association of metazoan, protist, and microbial communities with Scleractinian corals forms the basis of the coral holobiont. Coral bleaching events have been occurring around the world, introducing changes in the delicate balance of the holobiont symbiotic interactions. In this study, Archaea, bacteria, and eukaryotic phototrophic plastids of bleached colonies of the Brazilian coral Siderastrea stellata were analyzed for the first time, using 16S rRNA gene libraries. Prokaryotic communities were slightly more diverse in healthy than in bleached corals. However, the eukaryotic phototrophic plastids community was more diverse in bleached corals. Archaea phylogenetic analyses revealed a high percentage of Crenarchaeota sequences, mainly related to Nitrosopumilus maritimus and Cenarchaeum symbiosum. Dramatic changes in bacterial community composition were observed in this bleaching episode. The dominant bacterial group was Alphaproteobacteria followed by Gammaproteobacteria in bleached and Betaproteobacteria in healthy samples. Plastid operational taxonomic units (OTUs) from both coral samples were mainly related to red algae chloroplasts (Florideophycea), but we also observed some OTUs related to green algae chloroplasts (Chlorophyta). There seems to be a strong relationship between the Bacillariophyta phylum and our bleached coral samples as clones related to members of the diatom genera Amphora and Nitzschia were detected. The present study reveals information from a poorly investigated coral species and improves the knowledge of coral microbial community shifts that could occur during bleaching episodes.

  16. The shift of microbial communities and their roles in sulfur and iron cycling in a copper ore bioleaching system

    PubMed Central

    Niu, Jiaojiao; Deng, Jie; Xiao, Yunhua; He, Zhili; Zhang, Xian; Van Nostrand, J. D.; Liang, Yili; Deng, Ye; Liu, Xueduan; Yin, Huaqun

    2016-01-01

    Bioleaching has been employed commercially to recover metals from low grade ores, but the production efficiency remains to be improved due to limited understanding of the system. This study examined the shift of microbial communities and S&Fe cycling in three subsystems within a copper ore bioleaching system: leaching heap (LH), leaching solution (LS) and sediment under LS. Results showed that both LH and LS had higher relative abundance of S and Fe oxidizing bacteria, while S and Fe reducing bacteria were more abundant in the Sediment. GeoChip analysis showed a stronger functional potential for S0 oxidation in LH microbial communities. These findings were consistent with measured oxidation activities to S0 and Fe2+, which were highest by microbial communities from LH, lower by those from LS and lowest form Sediment. Moreover, phylogenetic molecular ecological network analysis indicated that these differences might be related to interactions among microbial taxa. Last but not the least, a conceptual model was proposed, linking the S&Fe cycling with responsible microbial populations in the bioleaching systems. Collectively, this study revealed the microbial community and functional structures in all three subsystems of the copper ore, and advanced a holistic understanding of the whole bioleaching system. PMID:27698381

  17. The shift of microbial communities and their roles in sulfur and iron cycling in a copper ore bioleaching system.

    PubMed

    Niu, Jiaojiao; Deng, Jie; Xiao, Yunhua; He, Zhili; Zhang, Xian; Van Nostrand, J D; Liang, Yili; Deng, Ye; Liu, Xueduan; Yin, Huaqun

    2016-10-04

    Bioleaching has been employed commercially to recover metals from low grade ores, but the production efficiency remains to be improved due to limited understanding of the system. This study examined the shift of microbial communities and S&Fe cycling in three subsystems within a copper ore bioleaching system: leaching heap (LH), leaching solution (LS) and sediment under LS. Results showed that both LH and LS had higher relative abundance of S and Fe oxidizing bacteria, while S and Fe reducing bacteria were more abundant in the Sediment. GeoChip analysis showed a stronger functional potential for S(0) oxidation in LH microbial communities. These findings were consistent with measured oxidation activities to S(0) and Fe(2+), which were highest by microbial communities from LH, lower by those from LS and lowest form Sediment. Moreover, phylogenetic molecular ecological network analysis indicated that these differences might be related to interactions among microbial taxa. Last but not the least, a conceptual model was proposed, linking the S&Fe cycling with responsible microbial populations in the bioleaching systems. Collectively, this study revealed the microbial community and functional structures in all three subsystems of the copper ore, and advanced a holistic understanding of the whole bioleaching system.

  18. The shift of microbial communities and their roles in sulfur and iron cycling in a copper ore bioleaching system

    NASA Astrophysics Data System (ADS)

    Niu, Jiaojiao; Deng, Jie; Xiao, Yunhua; He, Zhili; Zhang, Xian; van Nostrand, J. D.; Liang, Yili; Deng, Ye; Liu, Xueduan; Yin, Huaqun

    2016-10-01

    Bioleaching has been employed commercially to recover metals from low grade ores, but the production efficiency remains to be improved due to limited understanding of the system. This study examined the shift of microbial communities and S&Fe cycling in three subsystems within a copper ore bioleaching system: leaching heap (LH), leaching solution (LS) and sediment under LS. Results showed that both LH and LS had higher relative abundance of S and Fe oxidizing bacteria, while S and Fe reducing bacteria were more abundant in the Sediment. GeoChip analysis showed a stronger functional potential for S0 oxidation in LH microbial communities. These findings were consistent with measured oxidation activities to S0 and Fe2+, which were highest by microbial communities from LH, lower by those from LS and lowest form Sediment. Moreover, phylogenetic molecular ecological network analysis indicated that these differences might be related to interactions among microbial taxa. Last but not the least, a conceptual model was proposed, linking the S&Fe cycling with responsible microbial populations in the bioleaching systems. Collectively, this study revealed the microbial community and functional structures in all three subsystems of the copper ore, and advanced a holistic understanding of the whole bioleaching system.

  19. Community structure in the phonological network

    PubMed Central

    Siew, Cynthia S. Q.

    2013-01-01

    Community structure, which refers to the presence of densely connected groups within a larger network, is a common feature of several real-world networks from a variety of domains such as the human brain, social networks of hunter-gatherers and business organizations, and the World Wide Web (Porter et al., 2009). Using a community detection technique known as the Louvain optimization method, 17 communities were extracted from the giant component of the phonological network described in Vitevitch (2008). Additional analyses comparing the lexical and phonological characteristics of words in these communities against words in randomly generated communities revealed several novel discoveries. Larger communities tend to consist of short, frequent words of high degree and low age of acquisition ratings, and smaller communities tend to consist of longer, less frequent words of low degree and high age of acquisition ratings. Real communities also contained fewer different phonological segments compared to random communities, although the number of occurrences of phonological segments found in real communities was much higher than that of the same phonological segments in random communities. Interestingly, the observation that relatively few biphones occur very frequently and a large number of biphones occur rarely within communities mirrors the pattern of the overall frequency of words in a language (Zipf, 1935). The present findings have important implications for understanding the dynamics of activation spread among words in the phonological network that are relevant to lexical processing, as well as understanding the mechanisms that underlie language acquisition and the evolution of language. PMID:23986735

  20. Soil bacterial community and functional shifts in response to altered snowpack in moist acidic tundra of northern Alaska

    NASA Astrophysics Data System (ADS)

    Ricketts, Michael P.; Poretsky, Rachel S.; Welker, Jeffrey M.; Gonzalez-Meler, Miquel A.

    2016-09-01

    Soil microbial communities play a central role in the cycling of carbon (C) in Arctic tundra ecosystems, which contain a large portion of the global C pool. Climate change predictions for Arctic regions include increased temperature and precipitation (i.e. more snow), resulting in increased winter soil insulation, increased soil temperature and moisture, and shifting plant community composition. We utilized an 18-year snow fence study site designed to examine the effects of increased winter precipitation on Arctic tundra soil bacterial communities within the context of expected ecosystem response to climate change. Soil was collected from three pre-established treatment zones representing varying degrees of snow accumulation, where deep snow ˜ 100 % and intermediate snow ˜ 50 % increased snowpack relative to the control, and low snow ˜ 25 % decreased snowpack relative to the control. Soil physical properties (temperature, moisture, active layer thaw depth) were measured, and samples were analysed for C concentration, nitrogen (N) concentration, and pH. Soil microbial community DNA was extracted and the 16S rRNA gene was sequenced to reveal phylogenetic community differences between samples and determine how soil bacterial communities might respond (structurally and functionally) to changes in winter precipitation and soil chemistry. We analysed relative abundance changes of the six most abundant phyla (ranging from 82 to 96 % of total detected phyla per sample) and found four (Acidobacteria, Actinobacteria, Verrucomicrobia, and Chloroflexi) responded to deepened snow. All six phyla correlated with at least one of the soil chemical properties (% C, % N, C : N, pH); however, a single predictor was not identified, suggesting that each bacterial phylum responds differently to soil characteristics. Overall, bacterial community structure (beta diversity) was found to be associated with snow accumulation treatment and all soil chemical properties

  1. Shifts in bacterial communities of two caribbean reef-building coral species affected by white plague disease

    PubMed Central

    Cárdenas, Anny; Rodriguez-R, Luis M; Pizarro, Valeria; Cadavid, Luis F; Arévalo-Ferro, Catalina

    2012-01-01

    Coral reefs are deteriorating at an alarming rate mainly as a consequence of the emergence of coral diseases. The white plague disease (WPD) is the most prevalent coral disease in the southwestern Caribbean, affecting dozens of coral species. However, the identification of a single causal agent has proved problematic. This suggests more complex etiological scenarios involving alterations in the dynamic interaction between environmental factors, the coral immune system and the symbiotic microbial communities. Here we compare the microbiome of healthy and WPD-affected corals from the two reef-building species Diploria strigosa and Siderastrea siderea collected at the Tayrona National Park in the Caribbean of Colombia. Microbiomes were analyzed by combining culture-dependent methods and pyrosequencing of 16S ribosomal DNA (rDNA) V5-V6 hypervariable regions. A total of 20 410 classifiable 16S rDNA sequences reads were obtained including all samples. No significant differences in operational taxonomic unit diversity were found between healthy and affected tissues; however, a significant increase of Alphaproteobacteria and a concomitant decrease in the Beta- and Gammaproteobacteria was observed in WPD-affected corals of both species. Significant shifts were also observed in the orders Rhizobiales, Caulobacteriales, Burkholderiales, Rhodobacterales, Aleteromonadales and Xanthomonadales, although they were not consistent between the two coral species. These shifts in the microbiome structure of WPD-affected corals suggest a loss of community-mediated growth control mechanisms on bacterial populations specific for each holobiont system. PMID:21955993

  2. Environmental drivers of microbial community shifts in the giant barrel sponge, Xestospongia muta, over a shallow to mesophotic depth gradient.

    PubMed

    Morrow, Kathleen M; Fiore, Cara L; Lesser, Michael P

    2016-06-01

    The giant barrel sponge, Xestospongia muta, is a high microbial abundance sponge found on Caribbean coral reefs along shallow to mesophotic depth gradients where multiple abiotic factors change with depth. Sponges were collected along a depth gradient at Little Cayman (LC) and Lee Stocking Island (LSI), and the microbiome of these samples was analysed using 16S rRNA amplicon sequencing. Statistically significant shifts in community structure and dissimilarity (∼ 40%) were detected from 10 to 90 m in LC sponges, but a similar shift was not identified in sponges from 10 to 60 m at LSI (only 17% dissimilar). Additionally, inorganic nutrient levels steadily increased with depth at LSI but not at LC. Based on bulk stable isotopic variability, sponges collected from LC were generally more enriched in (15) N and less enriched in (13) C as depth increased, suggesting a transition from dependency on photoautotrophy to heterotrophy as depth increased. Patterns of stable isotopic enrichment were largely invariant at LSI, which is also reflected in the more stable microbial community along the depth gradient. It appears that environmental factors that change with depth may contribute to differences in X. muta microbial assemblages, demonstrating the importance of contemporaneous environmental sampling in studies of the microbiome of sponges. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Shifts in Symbiotic Endophyte Communities of a Foundational Salt Marsh Grass following Oil Exposure from the Deepwater Horizon Oil Spill.

    PubMed

    Kandalepas, Demetra; Blum, Michael J; Van Bael, Sunshine A

    2015-01-01

    Symbiotic associations can be disrupted by disturbance or by changing environmental conditions. Endophytes are fungal and bacterial symbionts of plants that can affect performance. As in more widely known symbioses, acute or chronic stressor exposure might trigger disassociation of endophytes from host plants. We tested this hypothesis by examining the effects of oil exposure following the Deepwater Horizon (DWH) oil spill on endophyte diversity and abundance in Spartina alterniflora - the foundational plant in northern Gulf coast salt marshes affected by the spill. We compared bacterial and fungal endophytes isolated from plants in reference areas to isolates from plants collected in areas with residual oil that has persisted for more than three years after the DWH spill. DNA sequence-based estimates showed that oil exposure shifted endophyte diversity and community structure. Plants from oiled areas exhibited near total loss of leaf fungal endophytes. Root fungal endophytes exhibited a more modest decline and little change was observed in endophytic bacterial diversity or abundance, though a shift towards hydrocarbon metabolizers was found in plants from oiled sites. These results show that plant-endophyte symbioses can be disrupted by stressor exposure, and indicate that symbiont community disassembly in marsh plants is an enduring outcome of the DWH spill.

  4. Shifts in Symbiotic Endophyte Communities of a Foundational Salt Marsh Grass following Oil Exposure from the Deepwater Horizon Oil Spill

    PubMed Central

    Kandalepas, Demetra; Blum, Michael J.; Van Bael, Sunshine A.

    2015-01-01

    Symbiotic associations can be disrupted by disturbance or by changing environmental conditions. Endophytes are fungal and bacterial symbionts of plants that can affect performance. As in more widely known symbioses, acute or chronic stressor exposure might trigger disassociation of endophytes from host plants. We tested this hypothesis by examining the effects of oil exposure following the Deepwater Horizon (DWH) oil spill on endophyte diversity and abundance in Spartina alterniflora – the foundational plant in northern Gulf coast salt marshes affected by the spill. We compared bacterial and fungal endophytes isolated from plants in reference areas to isolates from plants collected in areas with residual oil that has persisted for more than three years after the DWH spill. DNA sequence-based estimates showed that oil exposure shifted endophyte diversity and community structure. Plants from oiled areas exhibited near total loss of leaf fungal endophytes. Root fungal endophytes exhibited a more modest decline and little change was observed in endophytic bacterial diversity or abundance, though a shift towards hydrocarbon metabolizers was found in plants from oiled sites. These results show that plant-endophyte symbioses can be disrupted by stressor exposure, and indicate that symbiont community disassembly in marsh plants is an enduring outcome of the DWH spill. PMID:25923203

  5. Improved network community structure improves function prediction

    PubMed Central

    Lee, Juyong; Gross, Steven P.; Lee, Jooyoung

    2013-01-01

    We are overwhelmed by experimental data, and need better ways to understand large interaction datasets. While clustering related nodes in such networks—known as community detection—appears a promising approach, detecting such communities is computationally difficult. Further, how to best use such community information has not been determined. Here, within the context of protein function prediction, we address both issues. First, we apply a novel method that generates improved modularity solutions than the current state of the art. Second, we develop a better method to use this community information to predict proteins' functions. We discuss when and why this community information is important. Our results should be useful for two distinct scientific communities: first, those using various cost functions to detect community structure, where our new optimization approach will improve solutions, and second, those working to extract novel functional information about individual nodes from large interaction datasets. PMID:23852097

  6. Social significance of community structure: Statistical view

    NASA Astrophysics Data System (ADS)

    Li, Hui-Jia; Daniels, Jasmine J.

    2015-01-01

    Community structure analysis is a powerful tool for social networks that can simplify their topological and functional analysis considerably. However, since community detection methods have random factors and real social networks obtained from complex systems always contain error edges, evaluating the significance of a partitioned community structure is an urgent and important question. In this paper, integrating the specific characteristics of real society, we present a framework to analyze the significance of a social community. The dynamics of social interactions are modeled by identifying social leaders and corresponding hierarchical structures. Instead of a direct comparison with the average outcome of a random model, we compute the similarity of a given node with the leader by the number of common neighbors. To determine the membership vector, an efficient community detection algorithm is proposed based on the position of the nodes and their corresponding leaders. Then, using a log-likelihood score, the tightness of the community can be derived. Based on the distribution of community tightness, we establish a connection between p -value theory and network analysis, and then we obtain a significance measure of statistical form . Finally, the framework is applied to both benchmark networks and real social networks. Experimental results show that our work can be used in many fields, such as determining the optimal number of communities, analyzing the social significance of a given community, comparing the performance among various algorithms, etc.

  7. Social significance of community structure: statistical view.

    PubMed

    Li, Hui-Jia; Daniels, Jasmine J

    2015-01-01

    Community structure analysis is a powerful tool for social networks that can simplify their topological and functional analysis considerably. However, since community detection methods have random factors and real social networks obtained from complex systems always contain error edges, evaluating the significance of a partitioned community structure is an urgent and important question. In this paper, integrating the specific characteristics of real society, we present a framework to analyze the significance of a social community. The dynamics of social interactions are modeled by identifying social leaders and corresponding hierarchical structures. Instead of a direct comparison with the average outcome of a random model, we compute the similarity of a given node with the leader by the number of common neighbors. To determine the membership vector, an efficient community detection algorithm is proposed based on the position of the nodes and their corresponding leaders. Then, using a log-likelihood score, the tightness of the community can be derived. Based on the distribution of community tightness, we establish a connection between p-value theory and network analysis, and then we obtain a significance measure of statistical form . Finally, the framework is applied to both benchmark networks and real social networks. Experimental results show that our work can be used in many fields, such as determining the optimal number of communities, analyzing the social significance of a given community, comparing the performance among various algorithms, etc.

  8. Fine structure of Tibetan kefir grains and their yeast distribution, diversity, and shift.

    PubMed

    Lu, Man; Wang, Xingxing; Sun, Guowei; Qin, Bing; Xiao, Jinzhou; Yan, Shuling; Pan, Yingjie; Wang, Yongjie

    2014-01-01

    Tibetan kefir grains (TKGs), a kind of natural starter for fermented milk in Tibet, China, host various microorganisms of lactic acid bacteria, yeasts, and occasionally acetic acid bacteria in a polysaccharide/protein matrix. In the present study, the fine structure of TKGs was studied to shed light on this unusual symbiosis with stereomicroscopy and thin sections. The results reveal that TKGs consist of numerous small grain units, which are characterized by a hollow globular structure with a diameter between 2.0 and 9.0 mm and a wall thickness of approximately 200 µm. A polyhedron-like net structure, formed mainly by the bacteria, was observed in the wall of the grain units, which has not been reported previously to our knowledge. Towards the inside of the grain unit, the polyhedron-like net structures became gradually larger in diameter and fewer in number. Such fine structures may play a crucial role in the stability of the grains. Subsequently, the distribution, diversity, and shift of yeasts in TKGs were investigated based on thin section, scanning electron microscopy, cloning and sequencing of D1/D2 of the 26S rRNA gene, real-time quantitative PCR, and in situ hybridization with specific fluorescence-labeled oligonucleotide probes. These show that (i) yeasts appear to localize on the outer surface of the grains and grow normally together to form colonies embedded in the bacterial community; (ii) the diversity of yeasts is relatively low on genus level with three dominant species--Saccharomyces cerevisiae, Kluyveromyces marxianus, and Yarrowia lipolytica; (iii) S. cerevisiae is the stable predominant yeast species, while the composition of Kluyveromyces and Yarrowia are subject to change over time. Our results indicate that TKGs are relatively stable in structure, and culture conditions to some extent shape the microbial community and interaction in kefir grains. These findings pave the way for further study of the specific symbiotic associations between S

  9. Fine Structure of Tibetan Kefir Grains and Their Yeast Distribution, Diversity, and Shift

    PubMed Central

    Lu, Man; Wang, Xingxing; Sun, Guowei; Qin, Bing; Xiao, Jinzhou; Yan, Shuling; Pan, Yingjie; Wang, Yongjie

    2014-01-01

    Tibetan kefir grains (TKGs), a kind of natural starter for fermented milk in Tibet, China, host various microorganisms of lactic acid bacteria, yeasts, and occasionally acetic acid bacteria in a polysaccharide/protein matrix. In the present study, the fine structure of TKGs was studied to shed light on this unusual symbiosis with stereomicroscopy and thin sections. The results reveal that TKGs consist of numerous small grain units, which are characterized by a hollow globular structure with a diameter between 2.0 and 9.0 mm and a wall thickness of approximately 200 µm. A polyhedron-like net structure, formed mainly by the bacteria, was observed in the wall of the grain units, which has not been reported previously to our knowledge. Towards the inside of the grain unit, the polyhedron-like net structures became gradually larger in diameter and fewer in number. Such fine structures may play a crucial role in the stability of the grains. Subsequently, the distribution, diversity, and shift of yeasts in TKGs were investigated based on thin section, scanning electron microscopy, cloning and sequencing of D1/D2 of the 26S rRNA gene, real-time quantitative PCR, and in situ hybridization with specific fluorescence-labeled oligonucleotide probes. These show that (i) yeasts appear to localize on the outer surface of the grains and grow normally together to form colonies embedded in the bacterial community; (ii) the diversity of yeasts is relatively low on genus level with three dominant species – Saccharomyces cerevisiae, Kluyveromyces marxianus, and Yarrowia lipolytica; (iii) S. cerevisiae is the stable predominant yeast species, while the composition of Kluyveromyces and Yarrowia are subject to change over time. Our results indicate that TKGs are relatively stable in structure, and culture conditions to some extent shape the microbial community and interaction in kefir grains. These findings pave the way for further study of the specific symbiotic associations between S

  10. Shifts of microbial communities of wheat (Triticum aestivum L.) cultivation in a closed artificial ecosystem.

    PubMed

    Qin, Youcai; Fu, Yuming; Dong, Chen; Jia, Nannan; Liu, Hong

    2016-05-01

    The microbial communities of plant ecosystems are in relation to plant growing environment, but the alteration in biodiversity of rhizosphere and phyllosphere microbial communities in closed and controlled environments is unknown. The purpose of this study is to analyze the change regularity of microbial communities with wheat plants dependent-cultivated in a closed artificial ecosystem. The microbial community structures in closed-environment treatment plants were investigated by a culture-dependent approach, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), and Illumina Miseq high-throughput sequencing. The results indicated that the number of microbes decreased along with time, and the magnitude of bacteria, fungi, and actinomycetes were 10(7)-10(8), 10(5), and 10(3)-10(4) CFU/g (dry weight), respectively. The analysis of PCR-DGGE and Illumina Miseq revealed that the wheat leaf surface and near-root substrate had different microbial communities at different periods of wheat ecosystem development and showed that the relative highest diversity of microbial communities appeared at late and middle periods of the plant ecosystem, respectively. The results also indicated that the wheat leaf and substrate had different microbial community compositions, and the wheat substrate had higher richness of microbial community than the leaf. Flavobacterium, Pseudomonas, Paenibacillus, Enterobacter, Penicillium, Rhodotorula, Acremonium, and Alternaria were dominant in the wheat leaf samples, and Pedobacter, Flavobacterium, Halomonas, Marinobacter, Salinimicrobium, Lysobacter, Pseudomonas, Halobacillus, Xanthomonas, Acremonium, Monographella, and Penicillium were dominant populations in the wheat near-root substrate samples.

  11. Rumor propagation on networks with community structure

    NASA Astrophysics Data System (ADS)

    Zhang, Ruixia; Li, Deyu

    2017-10-01

    In this paper, based on growth and preferential attachment mechanism, we give a network generation model aiming at generating networks with community structure. There are three characteristics for the networks generated by the generation model. The first is that the community sizes can be nonuniform. The second is that there are bridge hubs in each community. The third is that the strength of community structure is adjustable. Next, we investigate rumor propagation behavior on the generated networks by performing Monte Carlo simulations to reveal the influence of bridge hubs, nonuniformity of community sizes and the strength of community structure on the dynamic behavior of the rumor propagation. We find that bridge hubs have outstanding performance in propagation speed and propagation size, and larger modularity can reduce rumor propagation. Furthermore, when the decay rate of rumor spreading β is large, the final density of the stiflers is larger if the rumor originates in larger community. Additionally, when on networks with different strengths of community structure, rumor propagation exhibits greater difference in the density of stiflers and in the peak prevalence if the decay rate β is larger.

  12. Rapid Shifts in Soil and Forest Floor Microbial Communities with Changes in Vegetation during Secondary Tropical Forest Succession

    NASA Astrophysics Data System (ADS)

    Smith, A.; Marin-Spiotta, E.; Balser, T. C.

    2012-12-01

    anaerobic gram-negative bacteria (c19:0) in the wet season, which suggests the presence of anaerobic microsites in these very clayey Oxisols. Enzymatic activity did not differ with succession but was highest in the dry season. We expect this may be due to decreased turnover of enzymes with low soil moisture. Interannual sampling has revealed a very rapid microbial response to changes in aboveground cover. Within a year following woody biomass encroachment, we detected a shift in the soil microbial community from a pasture-associated community to an early secondary forest community in one of our replicate pasture sites. This very rapid response in the belowground microbial community structure to changes in vegetation has not been strongly documented in the literature. This data supports a direct link between aboveground and belowground biotic community structures and highlights the importance of long-term repeated sampling of microbial communities in dynamic ecosystems. Our findings have implications for predicting rapid ecological responses to land-cover change.

  13. A probabilistic model for secondary structure prediction from protein chemical shifts.

    PubMed

    Mechelke, Martin; Habeck, Michael

    2013-06-01

    Protein chemical shifts encode detailed structural information that is difficult and computationally costly to describe at a fundamental level. Statistical and machine learning approaches have been used to infer correlations between chemical shifts and secondary structure from experimental chemical shifts. These methods range from simple statistics such as the chemical shift index to complex methods using neural networks. Notwithstanding their higher accuracy, more complex approaches tend to obscure the relationship between secondary structure and chemical shift and often involve many parameters that need to be trained. We present hidden Markov models (HMMs) with Gaussian emission probabilities to model the dependence between protein chemical shifts and secondary structure. The continuous emission probabilities are modeled as conditional probabilities for a given amino acid and secondary structure type. Using these distributions as outputs of first- and second-order HMMs, we achieve a prediction accuracy of 82.3%, which is competitive with existing methods for predicting secondary structure from protein chemical shifts. Incorporation of sequence-based secondary structure prediction into our HMM improves the prediction accuracy to 84.0%. Our findings suggest that an HMM with correlated Gaussian distributions conditioned on the secondary structure provides an adequate generative model of chemical shifts. Copyright © 2013 Wiley Periodicals, Inc.

  14. Herbivory and dominance shifts among exotic and congeneric native plant species during plant community establishment.

    PubMed

    Engelkes, Tim; Meisner, Annelein; Morriën, Elly; Kostenko, Olga; Van der Putten, Wim H; Macel, Mirka

    2016-02-01

    Invasive exotic plant species often have fewer natural enemies and suffer less damage from herbivores in their new range than genetically or functionally related species that are native to that area. Although we might expect that having fewer enemies would promote the invasiveness of the introduced exotic plant species due to reduced enemy exposure, few studies have actually analyzed the ecological consequences of this situation in the field. Here, we examined how exposure to aboveground herbivores influences shifts in dominance among exotic and phylogenetically related native plant species in a riparian ecosystem during early establishment of invaded communities. We planted ten plant communities each consisting of three individuals of each of six exotic plant species as well as six phylogenetically related natives. Exotic plant species were selected based on a rapid recent increase in regional abundance, the presence of a congeneric native species, and their co-occurrence in the riparian ecosystem. All plant communities were covered by tents with insect mesh. Five tents were open on the leeward side to allow herbivory. The other five tents were completely closed in order to exclude insects and vertebrates. Herbivory reduced aboveground biomass by half and influenced which of the plant species dominated the establishing communities. Exposure to herbivory did not reduce the total biomass of natives more than that of exotics, so aboveground herbivory did not selectively enhance exotics during this early stage of plant community development. Effects of herbivores on plant biomass depended on plant species or genus but not on plant status (i.e., exotic vs native). Thus, aboveground herbivory did not promote the dominance of exotic plant species during early establishment of the phylogenetically balanced plant communities.

  15. Projected shifts in copepod surface communities in the Mediterranean Sea under several climate change scenarios

    NASA Astrophysics Data System (ADS)

    Benedetti, F.; Guilhaumon, F.; Adloff, F.; Irisson, J. O.; Ayata, S. D.

    2016-02-01

    Although future increases in water temperature and future changes in regional circulation are expected to have great impacts on the pelagic food-web, estimates focusing on community-level shifts are still lacking for the planktonic compartment. By combining statistical niche models (or species distribution models) with projections from a regional circulation model, the impact of climate change on copepod epipelagic communities is assessed for the Mediterranean Sea. Habitat suitability maps are generated for 106 of the most abundant copepod species to analyze emerging patterns of diversity at the community level. Using variance analysis, we also quantified the uncertainties associated to our modeling strategy (niche model choice, CO2 emission scenario, boundary forcings of the circulation model). Comparing present and future projections, changes in species richness (alpha diversity) and in community composition (beta diversity, decomposed into turnover and nestedness component) are calculated. Average projections show that copepod communities will mainly experience turn-over processes, with little changes in species richness. Species gains are mainly located in the Gulf of Lions, the Northern Adriatic and the Northern Aegean seas. However, projections are highly variable, especially in the Eastern Mediterranean basin. We show that such variability is mainly driven by the choice of the niche model, through interactions with the CO2 emission scenario or the boundary forcing of the circulation model can be locally important. Finally, the possible impact of the estimated community changes on zooplanktonic functional and phylogenetic diversity is also assessed. We encourage the enlargement of this type of study to other components of the pelagic food-web, and argue that niche models' outputs should always be given along with a measure of uncertainty, and explained in light of a strong theoretical background.

  16. Understanding Microbial Communities: Function, Structure and Dynamics

    DTIC Science & Technology

    2015-02-11

    microbial communities: Function, structure and dynamics’, at the Isaac Newton Institute, University of Cambridge, United Kingdom, from August to...dynamics’, at the Isaac Newton Institute, University of Cambridge, United Kingdom, from August to December 2014. The programme involved over 150...Communities: Function, Structure and Dynamics’, at the Isaac Newton Institute, Cambridge University, UK, from 19th August 2014 – 19th December 2014

  17. Sensitivity of coral recruitment to subtle shifts in early community succession.

    PubMed

    Doropoulos, Christopher; Roff, George; Visser, Mart-Simone; Mumby, Peter J

    2017-02-01

    Community succession following disturbance depends on positive and negative interactions, the strength of which change along environmental gradients. To investigate how early succession affects coral reef recovery, we conducted an 18-month experiment in Palau, using recruitment tiles and herbivore exclusion cages. One set of reefs has higher wave exposure and had previously undergone a phase shift to macroalgae following a major typhoon, whereas the other set of reefs have lower wave exposure and did not undergo a macroalgal phase shift. Similar successional trajectories were observed at all sites when herbivores were excluded: turf algae dominated early succession, followed by shifts to foliose macroalgae and heterotrophic invertebrates. However, trajectories differed in the presence of herbivores. At low wave exposure reefs, herbivores promoted coralline algae and limited turf and encrusting fleshy algae in crevice microhabitats, facilitating optimal coral recruitment. Under medium wave exposure, relatively higher but still low coverage of turf and encrusting fleshy algae (15-25%) found in crevice microhabitats inhibited coral recruitment, persisting throughout multiple recruitment events. Our results indicate that altered interaction strength in different wave environments following disturbance can drive subtle changes in early succession that cascade to alter secondary succession to coral recruitment and system recovery.

  18. Community Shift from Phototrophic to Chemotrophic Sulfide Oxidation following Anoxic Holomixis in a Stratified Seawater Lake

    PubMed Central

    Korlević, Marino; Berg, Jasmine S.; Bura-Nakić, Elvira; Ciglenečki, Irena; Amann, Rudolf; Orlić, Sandi

    2014-01-01

    Most stratified sulfidic holomictic lakes become oxygenated after annual turnover. In contrast, Lake Rogoznica, on the eastern Adriatic coast, has been observed to undergo a period of water column anoxia after water layer mixing and establishment of holomictic conditions. Although Lake Rogoznica's chemistry and hydrography have been studied extensively, it is unclear how the microbial communities typically inhabiting the oxic epilimnion and a sulfidic hypolimnion respond to such a drastic shift in redox conditions. We investigated the impact of anoxic holomixis on microbial diversity and microbially mediated sulfur cycling in Lake Rogoznica with an array of culture-independent microbiological methods. Our data suggest a tight coupling between the lake's chemistry and occurring microorganisms. During stratification, anoxygenic phototrophic sulfur bacteria were dominant at the chemocline and in the hypolimnion. After an anoxic mixing event, the anoxygenic phototrophic sulfur bacteria entirely disappeared, and the homogeneous, anoxic water column was dominated by a bloom of gammaproteobacterial sulfur oxidizers related to the GSO/SUP05 clade. This study is the first report of a community shift from phototrophic to chemotrophic sulfide oxidizers as a response to anoxic holomictic conditions in a seasonally stratified seawater lake. PMID:25344237

  19. Coral–algal phase shifts alter fish communities and reduce fisheries production

    PubMed Central

    Ainsworth, Cameron H; Mumby, Peter J

    2015-01-01

    Anthropogenic stress has been shown to reduce coral coverage in ecosystems all over the world. A phase shift towards an algae-dominated system may accompany coral loss. In this case, the composition of the reef-associated fish assemblage will change and human communities relying on reef fisheries for income and food security may be negatively impacted. We present a case study based on the Raja Ampat Archipelago in Eastern Indonesia. Using a dynamic food web model, we simulate the loss of coral reefs with accompanied transition towards an algae-dominated state and quantify the likely change in fish populations and fisheries productivity. One set of simulations represents extreme scenarios, including 100% loss of coral. In this experiment, ecosystem changes are driven by coral loss itself and a degree of habitat dependency by reef fish is assumed. An alternative simulation is presented without assumed habitat dependency, where changes to the ecosystem are driven by historical observations of reef fish communities when coral is lost. The coral–algal phase shift results in reduced biodiversity and ecosystem maturity. Relative increases in the biomass of small-bodied fish species mean higher productivity on reefs overall, but much reduced landings of traditionally targeted species. PMID:24953835

  20. Coral-algal phase shifts alter fish communities and reduce fisheries production.

    PubMed

    Ainsworth, Cameron H; Mumby, Peter J

    2015-01-01

    Anthropogenic stress has been shown to reduce coral coverage in ecosystems all over the world. A phase shift towards an algae-dominated system may accompany coral loss. In this case, the composition of the reef-associated fish assemblage will change and human communities relying on reef fisheries for income and food security may be negatively impacted. We present a case study based on the Raja Ampat Archipelago in Eastern Indonesia. Using a dynamic food web model, we simulate the loss of coral reefs with accompanied transition towards an algae-dominated state and quantify the likely change in fish populations and fisheries productivity. One set of simulations represents extreme scenarios, including 100% loss of coral. In this experiment, ecosystem changes are driven by coral loss itself and a degree of habitat dependency by reef fish is assumed. An alternative simulation is presented without assumed habitat dependency, where changes to the ecosystem are driven by historical observations of reef fish communities when coral is lost. The coral-algal phase shift results in reduced biodiversity and ecosystem maturity. Relative increases in the biomass of small-bodied fish species mean higher productivity on reefs overall, but much reduced landings of traditionally targeted species.

  1. Detecting community structure in networks

    NASA Astrophysics Data System (ADS)

    Newman, M. E. J.

    2004-03-01

    There has been considerable recent interest in algorithms for finding communities in networks—groups of vertices within which connections are dense, but between which connections are sparser. Here we review the progress that has been made towards this end. We begin by describing some traditional methods of community detection, such as spectral bisection, the Kernighan Lin algorithm and hierarchical clustering based on similarity measures. None of these methods, however, is ideal for the types of real-world network data with which current research is concerned, such as Internet and web data and biological and social networks. We describe a number of more recent algorithms that appear to work well with these data, including algorithms based on edge betweenness scores, on counts of short loops in networks and on voltage differences in resistor networks.

  2. Climate change and physical disturbance cause similar community shifts in biological soil crusts

    DOE PAGES

    Ferrenberg, Scott; Reed, Sasha C.; Belnap, Jayne

    2015-09-14

    In biological soil crusts (biocrusts)—communities of mosses, lichens, cyanobacteria, and heterotrophs living at the soil surface— fundamental components of drylands worldwide, and destruction of biocrusts dramatically alters biogeochemical processes, hydrology, surface energy balance, and vegetation cover are present.Though there has been long-standing concern over impacts of physical disturbances on biocrusts (e.g., trampling by livestock, damage from vehicles), there is increasing concern over the potential for climate change to alter biocrust community structure. Using long-term data from the Colorado Plateau, in this paper we examined the effects of 10 y of experimental warming and altered precipitation (in full-factorial design) on biocrustmore » communities and compared the effects of altered climate with those of long-term physical disturbance (>10 y of replicated human trampling). Surprisingly, altered climate and physical disturbance treatments had similar effects on biocrust community structure. Warming, altered precipitation frequency [an increase of small (1.2 mm) summer rainfall events], and physical disturbance from trampling all promoted early successional community states marked by dramatic declines in moss cover and increases in cyanobacteria cover, with more variable effects on lichens. Although the pace of community change varied significantly among treatments, these results suggest that multiple aspects of climate change will affect biocrusts to the same degree as physical disturbance. Finally, this is particularly disconcerting in the context of warming, as temperatures for drylands are projected to increase beyond those imposed as treatments in our study.« less

  3. Climate change and physical disturbance cause similar community shifts in biological soil crusts

    USGS Publications Warehouse

    Ferrenberg, Scott; Reed, Sasha C.; Belnap, Jayne

    2015-01-01

    Biological soil crusts (biocrusts)—communities of mosses, lichens, cyanobacteria, and heterotrophs living at the soil surface—are fundamental components of drylands worldwide, and destruction of biocrusts dramatically alters biogeochemical processes, hydrology, surface energy balance, and vegetation cover. While there has been long-standing concern over impacts of 5 physical disturbances on biocrusts (e.g., trampling by livestock, damage from vehicles), there is also increasing concern over the potential for climate change to alter biocrust community structure. Using long-term data from the Colorado Plateau, USA, we examined the effects of 10 years of experimental warming and altered precipitation (in full-factorial design) on biocrust communities, and compared the effects of altered climate with those of long-term physical 10 disturbance (>10 years of replicated human trampling). Surprisingly, altered climate and physical disturbance treatments had similar effects on biocrust community structure. Warming, altered precipitation frequency [an increase of small (1.2 mm) summer rainfall events], and physical disturbance from trampling all promoted early successional community states marked by dramatic declines in moss cover and increased cyanobacteria cover, with more variable effects 15 on lichens. While the pace of community change varied significantly among treatments, our results suggest that multiple aspects of climate change will affect biocrusts to the same degree as physical disturbance. This is particularly disconcerting in the context of warming, as temperatures for drylands are projected to increase beyond those imposed by the climate treatments used in our study.

  4. Climate change and physical disturbance cause similar community shifts in biological soil crusts.

    PubMed

    Ferrenberg, Scott; Reed, Sasha C; Belnap, Jayne

    2015-09-29

    Biological soil crusts (biocrusts)—communities of mosses, lichens, cyanobacteria, and heterotrophs living at the soil surface—are fundamental components of drylands worldwide, and destruction of biocrusts dramatically alters biogeochemical processes, hydrology, surface energy balance, and vegetation cover. Although there has been long-standing concern over impacts of physical disturbances on biocrusts (e.g., trampling by livestock, damage from vehicles), there is increasing concern over the potential for climate change to alter biocrust community structure. Using long-term data from the Colorado Plateau, we examined the effects of 10 y of experimental warming and altered precipitation (in full-factorial design) on biocrust communities and compared the effects of altered climate with those of long-term physical disturbance (>10 y of replicated human trampling). Surprisingly, altered climate and physical disturbance treatments had similar effects on biocrust community structure. Warming, altered precipitation frequency [an increase of small (1.2 mm) summer rainfall events], and physical disturbance from trampling all promoted early successional community states marked by dramatic declines in moss cover and increases in cyanobacteria cover, with more variable effects on lichens. Although the pace of community change varied significantly among treatments, our results suggest that multiple aspects of climate change will affect biocrusts to the same degree as physical disturbance. This is particularly disconcerting in the context of warming, as temperatures for drylands are projected to increase beyond those imposed as treatments in our study.

  5. Climate change effects on soil microarthropod abundance and community structure

    SciTech Connect

    Kardol, Paul; Reynolds, W. Nicholas; Norby, Richard J; Classen, Aimee T

    2011-01-01

    Long-term ecosystem responses to climate change strongly depend on how the soil subsystem and its inhabitants respond to these perturbations. Using open-top chambers, we studied the response of soil microarthropods to single and combined effects of ambient and elevated atmospheric [CO{sub 2}], ambient and elevated temperatures and changes in precipitation in constructed old-fields in Tennessee, USA. Microarthropods were assessed five years after treatments were initiated and samples were collected in both November and June. Across treatments, mites and collembola were the most dominant microarthropod groups collected. We did not detect any treatment effects on microarthropod abundance. In November, but not in June, microarthropod richness, however, was affected by the climate change treatments. In November, total microarthropod richness was lower in dry than in wet treatments, and in ambient temperature treatments, richness was higher under elevated [CO{sub 2}] than under ambient [CO{sub 2}]. Differential responses of individual taxa to the climate change treatments resulted in shifts in community composition. In general, the precipitation and warming treatments explained most of the variation in community composition. Across treatments, we found that collembola abundance and richness were positively related to soil moisture content, and that negative relationships between collembola abundance and richness and soil temperature could be explained by temperature-related shifts in soil moisture content. Our data demonstrate how simultaneously acting climate change factors can affect the structure of soil microarthropod communities in old-field ecosystems. Overall, changes in soil moisture content, either as direct effect of changes in precipitation or as indirect effect of warming or elevated [CO{sub 2}], had a larger impact on microarthropod communities than did the direct effects of the warming and elevated [CO{sub 2}] treatments. Moisture-induced shifts in soil

  6. Determination of subpixel microdisplacements of speckle structure using the phase shift of spatial spectrum field

    NASA Astrophysics Data System (ADS)

    Maksimova, L. A.; Ryabukho, P. V.; Mysina, N. Yu.; Ryabukho, V. P.

    2017-08-01

    An experimental method for measurement of subpixel microdisplacements of speckle structure based on the parameters of the linear phase shift in the field of the complex spatial spectrum of the displaced structure is proposed and experimentally implemented. The phase shift is determined when a phase shift of spectrum is numerically added and the correlation analysis of the resulting linear phase shift in the spatial spectrum of specklegrams is performed. The method provides additional possibilities in the measurements using digital speckle photography when the period of interference fringes formed in the total spatial spectrum of specklegrams is significantly greater than the spectral width.

  7. Deciphering Network Community Structure by Surprise

    PubMed Central

    Aldecoa, Rodrigo; Marín, Ignacio

    2011-01-01

    The analysis of complex networks permeates all sciences, from biology to sociology. A fundamental, unsolved problem is how to characterize the community structure of a network. Here, using both standard and novel benchmarks, we show that maximization of a simple global parameter, which we call Surprise (S), leads to a very efficient characterization of the community structure of complex synthetic networks. Particularly, S qualitatively outperforms the most commonly used criterion to define communities, Newman and Girvan's modularity (Q). Applying S maximization to real networks often provides natural, well-supported partitions, but also sometimes counterintuitive solutions that expose the limitations of our previous knowledge. These results indicate that it is possible to define an effective global criterion for community structure and open new routes for the understanding of complex networks. PMID:21909420

  8. Burning fire-prone Mediterranean shrublands: immediate changes in soil microbial community structure and ecosystem functions.

    PubMed

    Goberna, M; García, C; Insam, H; Hernández, M T; Verdú, M

    2012-07-01

    Wildfires subject soil microbes to extreme temperatures and modify their physical and chemical habitat. This might immediately alter their community structure and ecosystem functions. We burned a fire-prone shrubland under controlled conditions to investigate (1) the fire-induced changes in the community structure of soil archaea, bacteria and fungi by analysing 16S or 18S rRNA gene amplicons separated through denaturing gradient gel electrophoresis; (2) the physical and chemical variables determining the immediate shifts in the microbial community structure; and (3) the microbial drivers of the change in ecosystem functions related to biogeochemical cycling. Prokaryotes and eukaryotes were structured by the local environment in pre-fire soils. Fire caused a significant shift in the microbial community structure, biomass C, respiration and soil hydrolases. One-day changes in bacterial and fungal community structure correlated to the rise in total organic C and NO(3)(-)-N caused by the combustion of plant residues. In the following week, bacterial communities shifted further forced by desiccation and increasing concentrations of macronutrients. Shifts in archaeal community structure were unrelated to any of the 18 environmental variables measured. Fire-induced changes in the community structure of bacteria, rather than archaea or fungi, were correlated to the enhanced microbial biomass, CO(2) production and hydrolysis of C and P organics. This is the first report on the combined effects of fire on the three biological domains in soils. We concluded that immediately after fire the biogeochemical cycling in Mediterranean shrublands becomes less conservative through the increased microbial biomass, activity and changes in the bacterial community structure.

  9. Shifts in the microbial community composition of Gulf Coast beaches following beach oiling.

    PubMed

    Newton, Ryan J; Huse, Susan M; Morrison, Hilary G; Peake, Colin S; Sogin, Mitchell L; McLellan, Sandra L

    2013-01-01

    Microorganisms associated with coastal sands serve as a natural biofilter, providing essential nutrient recycling in nearshore environments and acting to maintain coastal ecosystem health. Anthropogenic stressors often impact these ecosystems, but little is known about whether these disturbances can be identified through microbial community change. The blowout of the Macondo Prospect reservoir on April 20, 2010, which released oil hydrocarbons into the Gulf of Mexico, presented an opportunity to examine whether microbial community composition might provide a sensitive measure of ecosystem disturbance. Samples were collected on four occasions, beginning in mid-June, during initial beach oiling, until mid-November from surface sand and surf zone waters at seven beaches stretching from Bay St. Louis, MS to St. George Island, FL USA. Oil hydrocarbon measurements and NOAA shoreline assessments indicated little to no impact on the two most eastern beaches (controls). Sequence comparisons of bacterial ribosomal RNA gene hypervariable regions isolated from beach sands located to the east and west of Mobile Bay in Alabama demonstrated that regional drivers account for markedly different bacterial communities. Individual beaches had unique community signatures that persisted over time and exhibited spatial relationships, where community similarity decreased as horizontal distance between samples increased from one to hundreds of meters. In contrast, sequence analyses detected larger temporal and less spatial variation among the water samples. Superimposed upon these beach community distance and time relationships, was increased variability in bacterial community composition from oil hydrocarbon contaminated sands. The increased variability was observed among the core, resident, and transient community members, indicating the occurrence of community-wide impacts rather than solely an overprinting of oil hydrocarbon-degrading bacteria onto otherwise relatively stable sand

  10. Shifts in the Microbial Community Composition of Gulf Coast Beaches Following Beach Oiling

    PubMed Central

    Newton, Ryan J.; Huse, Susan M.; Morrison, Hilary G.; Peake, Colin S.; Sogin, Mitchell L.; McLellan, Sandra L.

    2013-01-01

    Microorganisms associated with coastal sands serve as a natural biofilter, providing essential nutrient recycling in nearshore environments and acting to maintain coastal ecosystem health. Anthropogenic stressors often impact these ecosystems, but little is known about whether these disturbances can be identified through microbial community change. The blowout of the Macondo Prospect reservoir on April 20, 2010, which released oil hydrocarbons into the Gulf of Mexico, presented an opportunity to examine whether microbial community composition might provide a sensitive measure of ecosystem disturbance. Samples were collected on four occasions, beginning in mid-June, during initial beach oiling, until mid-November from surface sand and surf zone waters at seven beaches stretching from Bay St. Louis, MS to St. George Island, FL USA. Oil hydrocarbon measurements and NOAA shoreline assessments indicated little to no impact on the two most eastern beaches (controls). Sequence comparisons of bacterial ribosomal RNA gene hypervariable regions isolated from beach sands located to the east and west of Mobile Bay in Alabama demonstrated that regional drivers account for markedly different bacterial communities. Individual beaches had unique community signatures that persisted over time and exhibited spatial relationships, where community similarity decreased as horizontal distance between samples increased from one to hundreds of meters. In contrast, sequence analyses detected larger temporal and less spatial variation among the water samples. Superimposed upon these beach community distance and time relationships, was increased variability in bacterial community composition from oil hydrocarbon contaminated sands. The increased variability was observed among the core, resident, and transient community members, indicating the occurrence of community-wide impacts rather than solely an overprinting of oil hydrocarbon-degrading bacteria onto otherwise relatively stable sand

  11. Urbanization drives community shifts towards thermophilic and dispersive species at local and landscape scales.

    PubMed

    Piano, Elena; De Wolf, Katrien; Bona, Francesca; Bonte, Dries; Bowler, Diana E; Isaia, Marco; Lens, Luc; Merckx, Thomas; Mertens, Daan; van Kerckvoorde, Marc; De Meester, Luc; Hendrickx, Frederik

    2017-07-01

    The increasing conversion of agricultural and natural areas to human-dominated urban landscapes is predicted to lead to a major decline in biodiversity worldwide. Two conditions that typically differ between urban environments and the surrounding landscape are increased temperature, and high patch isolation and habitat turnover rates. However, the extent and spatial scale at which these altered conditions shape biotic communities through selection and/or filtering on species traits are currently poorly understood. We sampled carabid beetles at 81 sites in Belgium using a hierarchically nested sampling design wherein three local-scale (200 × 200 m) urbanization levels were repeatedly sampled across three landscape-scale (3 × 3 km) urbanization levels. First, we showed that communities sampled in the most urbanized locations and landscapes displayed a distinct species composition at both local and landscape scale. Second, we related community means of species-specific thermal preferences and dispersal capacity (based on European distribution and wing morphology, respectively) to the urbanization gradients. We showed that urban communities consisted on average of species with a preference for higher temperatures and with better dispersal capacities compared to rural communities. These shifts were caused by an increased number of species tolerating higher temperatures, a decreased richness of species with low thermal preference, and an almost complete depletion of species with very low-dispersal capacity in the most urbanized localities. Effects of urbanization were most clearly detected at the local scale, although more subtle effects could also be found at the scale of entire landscapes. Our results demonstrate that urbanization may fundamentally and consistently alter species composition by exerting a strong filtering effect on species dispersal characteristics and favouring replacement by warm-dwelling species. © 2017 John Wiley & Sons Ltd.

  12. Spatial shifts in microbial population structure within poultry litter associated with physicochemical properties.

    PubMed

    Lovanh, N; Cook, K L; Rothrock, M J; Miles, D M; Sistani, K

    2007-09-01

    Microbial populations within poultry litter have been largely ignored with the exception of potential human or livestock pathogens. A better understanding of the community structure and identity of the microbial populations within poultry litter could aid in the development of management practices that would reduce populations responsible for toxic air emissions and pathogen incidence. In this study, poultry litter air and physical properties were correlated to shifts in microbial community structure as analyzed by principal component analysis (PCA) and measured by denaturing gradient gel electrophoresis (DGGE). Litter samples were taken in a 36-point grid pattern at 5 m across and 12 m down a 146 m x 12.8 m chicken house. At each sample point, physical parameters such as litter moisture, pH, air and litter temperature, and relative humidity were recorded, and samples were taken for molecular analysis. The DGGE analysis showed that the banding pattern of samples from the back and water/feeder areas of poultry house were distinct from those of samples from other areas. There were distinct clusters of banding patterns corresponding to the front, middle front, middle back, back, and waterer/feeder areas. The PCA analysis showed similar cluster patterns, but with more distinct separation of the front and midhouse samples. The PCA analysis also showed that moisture content and litter temperature (accounting for 51.5 and 31.5% of the separation of samples, respectively) play a major role in spatial diversity of microbial community in the poultry house. Based on analysis of DGGE fingerprints and cloned DGGE band sequences, there appear to be differences in the types of microorganisms over the length of the house, which correspond to differences in the physical properties of the litter.

  13. Community structure revealed by phase locking.

    PubMed

    Zhou, Ming-Yang; Zhuo, Zhao; Cai, Shi-min; Fu, Zhongqian

    2014-09-01

    Community structure can naturally emerge in paths to synchronization, and scratching it from the paths is a tough issue that accounts for the diverse dynamics of synchronization. In this paper, with assumption that the synchronization on complex networks is made up of local and collective processes, we proposed a scheme to lock the local synchronization (phase locking) at a stable state, meanwhile, suppress the collective synchronization based on Kuramoto model. Through this scheme, the network dynamics only contains the local synchronization, which suggests that the nodes in the same community synchronize together and these synchronization clusters well reveal the community structure of network. Furthermore, by analyzing the paths to synchronization, the relations or overlaps among different communities are also obtained. Thus, the community detection based on the scheme is performed on five real networks and the observed community structures are much more apparent than modularity-based fast algorithm. Our results not only provide a deep insight to understand the synchronization dynamics on complex network but also enlarge the research scope of community detection.

  14. Warming and Elevated CO2 Interact to Drive Rapid Shifts in Marine Community Production.

    PubMed

    Sorte, Cascade J B; Bracken, Matthew E S

    2015-01-01

    Predicting the outcome of future climate change requires an understanding of how alterations in multiple environmental factors manifest in natural communities and affect ecosystem functioning. We conducted an in situ, fully factorial field manipulation of CO2 and temperature on a rocky shoreline in southeastern Alaska, USA. Warming strongly impacted functioning of tide pool systems within one month, with the rate of net community production (NCP) more than doubling in warmed pools under ambient CO2 levels relative to initial NCP values. However, in pools with added CO2, NCP was unaffected by warming. Productivity responses paralleled changes in the carbon-to-nitrogen ratio of a red alga, the most abundant primary producer species in the system, highlighting the direct link between physiology and ecosystem functioning. These observed changes in algal physiology and community productivity in response to our manipulations indicate the potential for natural systems to shift rapidly in response to changing climatic conditions and for multiple environmental factors to act antagonistically.

  15. Evidence of community structure in biomedical research grant collaborations.

    PubMed

    Nagarajan, Radhakrishnan; Kalinka, Alex T; Hogan, William R

    2013-02-01

    Recent studies have clearly demonstrated a shift towards collaborative research and team science approaches across a spectrum of disciplines. Such collaborative efforts have also been acknowledged and nurtured by popular extramurally funded programs including the Clinical Translational Science Award (CTSA) conferred by the National Institutes of Health. Since its inception, the number of CTSA awardees has steadily increased to 60 institutes across 30 states. One of the objectives of CTSA is to accelerate translation of research from bench to bedside to community and train a new genre of researchers under the translational research umbrella. Feasibility of such a translation implicitly demands multi-disciplinary collaboration and mentoring. Networks have proven to be convenient abstractions for studying research collaborations. The present study is a part of the CTSA baseline study and investigates existence of possible community-structure in Biomedical Research Grant Collaboration (BRGC) networks across data sets retrieved from the internally developed grants management system, the Automated Research Information Administrator (ARIA) at the University of Arkansas for Medical Sciences (UAMS). Fastgreedy and link-community community-structure detection algorithms were used to investigate the presence of non-overlapping and overlapping community-structure and their variation across years 2006 and 2009. A surrogate testing approach in conjunction with appropriate discriminant statistics, namely: the modularity index and the maximum partition density is proposed to investigate whether the community-structure of the BRGC networks were different from those generated by certain types of random graphs. Non-overlapping as well as overlapping community-structure detection algorithms indicated the presence of community-structure in the BRGC network. Subsequent, surrogate testing revealed that random graph models considered in the present study may not necessarily be appropriate

  16. Spectral shifts and structures of phenol...Ar(n) clusters.

    PubMed

    Armentano, Antonio; Cerný, Jiří; Riese, Mikko; Taherkhani, Mehran; Ben Yezzar, Med; Müller-Dethlefs, Klaus

    2011-04-07

    A laser spectroscopic investigation of phenol...Ar(n) (n = 1-6) clusters in the first electronically excited state (S(1)) and the cationic ground state (D(0)) is reported. Resonance enhanced two-photon ionisation (R2PI) spectra have been recorded for the investigation of the S(1) state. The origins of S(1)← S(0) (S(1)0(0)) transition of phenol...Ar(n) (n = 1, 2,4-6) are all red shifted compared to the S(1)0(0) state of the monomer by 33 cm(-1), 67 cm(-1), 10 cm(-1), 20 cm(-1), 44 cm(-1), respectively. However, the origin of the phenolAr(3) cluster is blue shifted by 25 cm(-1). For the investigation of the ionic ground state photoionization efficiency (PIE) and mass-analyzed-threshold ionization (MATI) spectroscopy have been applied. The spectra of phenol...Ar(3) and phenol...Ar(4) yield values for the ionization energy (IE) of 68,077 ± 15 cm(-1) and 67,948 ± 15 cm(-1). With the combination of theoretical methods and R2PI, PIE and MATI spectroscopy, the major species present have been positively identified.

  17. Shifts in methanogenic community composition and methane fluxes along the degradation of discontinuous permafrost

    PubMed Central

    Liebner, Susanne; Ganzert, Lars; Kiss, Andrea; Yang, Sizhong; Wagner, Dirk; Svenning, Mette M.

    2015-01-01

    The response of methanogens to thawing permafrost is an important factor for the global greenhouse gas budget. We tracked methanogenic community structure, activity, and abundance along the degradation of sub-Arctic palsa peatland permafrost. We observed the development of pronounced methane production, release, and abundance of functional (mcrA) methanogenic gene numbers following the transitions from permafrost (palsa) to thaw pond structures. This was associated with the establishment of a methanogenic community consisting both of hydrogenotrophic (Methanobacterium, Methanocellales), and potential acetoclastic (Methanosarcina) members and their activity. While peat bog development was not reflected in significant changes of mcrA copy numbers, potential methane production, and rates of methane release decreased. This was primarily linked to a decline of potential acetoclastic in favor of hydrogenotrophic methanogens. Although palsa peatland succession offers similarities with typical transitions from fen to bog ecosystems, the observed dynamics in methane fluxes and methanogenic communities are primarily attributed to changes within the dominant Bryophyta and Cyperaceae taxa rather than to changes in peat moss and sedge coverage, pH and nutrient regime. Overall, the palsa peatland methanogenic community was characterized by a few dominant operational taxonomic units (OTUs). These OTUs seem to be indicative for methanogenic species that thrive in terrestrial organic rich environments. In summary, our study shows that after an initial stage of high methane emissions following permafrost thaw, methane fluxes, and methanogenic communities establish that are typical for northern peat bogs. PMID:26029170

  18. Shifts in methanogenic community composition and methane fluxes along the degradation of discontinuous permafrost.

    PubMed

    Liebner, Susanne; Ganzert, Lars; Kiss, Andrea; Yang, Sizhong; Wagner, Dirk; Svenning, Mette M

    2015-01-01

    The response of methanogens to thawing permafrost is an important factor for the global greenhouse gas budget. We tracked methanogenic community structure, activity, and abundance along the degradation of sub-Arctic palsa peatland permafrost. We observed the development of pronounced methane production, release, and abundance of functional (mcrA) methanogenic gene numbers following the transitions from permafrost (palsa) to thaw pond structures. This was associated with the establishment of a methanogenic community consisting both of hydrogenotrophic (Methanobacterium, Methanocellales), and potential acetoclastic (Methanosarcina) members and their activity. While peat bog development was not reflected in significant changes of mcrA copy numbers, potential methane production, and rates of methane release decreased. This was primarily linked to a decline of potential acetoclastic in favor of hydrogenotrophic methanogens. Although palsa peatland succession offers similarities with typical transitions from fen to bog ecosystems, the observed dynamics in methane fluxes and methanogenic communities are primarily attributed to changes within the dominant Bryophyta and Cyperaceae taxa rather than to changes in peat moss and sedge coverage, pH and nutrient regime. Overall, the palsa peatland methanogenic community was characterized by a few dominant operational taxonomic units (OTUs). These OTUs seem to be indicative for methanogenic species that thrive in terrestrial organic rich environments. In summary, our study shows that after an initial stage of high methane emissions following permafrost thaw, methane fluxes, and methanogenic communities establish that are typical for northern peat bogs.

  19. Shifts of functional gene representation in wheat rhizosphere microbial communities under elevated ozone

    PubMed Central

    Li, Xinyu; Deng, Ye; Li, Qi; Lu, Caiyan; Wang, Jingjing; Zhang, Huiwen; Zhu, Jianguo; Zhou, Jizhong; He, Zhili

    2013-01-01

    Although the influence of ozone (O3) on plants has been well studied in agroecosystems, little is known about the effect of elevated O3 (eO3) on soil microbial functional communities. Here, we used a comprehensive functional gene array (GeoChip 3.0) to investigate the functional composition, and structure of rhizosphere microbial communities of Yannong 19 (O3-sensitive) and Yangmai 16 (O3-relatively sensitive) wheat (Triticum aestivum L.) cultivars under eO3. Compared with ambient O3 (aO3), eO3 led to an increase in soil pH and total carbon (C) percentages in grain and straw of wheat plants, and reduced grain weight and soil dissolved organic carbon (DOC). Based on GeoChip hybridization signal intensities, although the overall functional structure of rhizosphere microbial communities did not significantly change by eO3 or cultivars, the results showed that the abundance of specific functional genes involved in C fixation and degradation, nitrogen (N) fixation, and sulfite reduction did significantly (P<0.05) alter in response to eO3 and/or wheat cultivars. Also, Yannong 19 appeared to harbor microbial functional communities in the rhizosphere more sensitive in response to eO3 than Yangmai 16. Additionally, canonical correspondence analysis suggested that the functional structure of microbial community involved in C cycling was largely shaped by soil and plant properties including pH, DOC, microbial biomass C, C/N ratio and grain weight. This study provides new insight into our understanding of the influence of eO3 and wheat cultivars on soil microbial communities. PMID:23151639

  20. Diurnal cycling of rhizosphere bacterial communities is associated with shifts in carbon metabolism

    DOE PAGES

    Staley, Christopher; Ferrieri, Abigail P.; Tfaily, Malak M.; ...

    2017-06-24

    The circadian clock regulates plant metabolic functions and is an important component in plant health and productivity. Rhizosphere bacteria play critical roles in plant growth, health, and development and are shaped primarily by soil communities. Using Illumina next-generation sequencing and high-resolution mass spectrometry, we characterized bacterial communities of wild-type (Col-0) Arabidopsis thaliana and an acyclic line (OX34) ectopically expressing the circadian clock-associated cca1 transcription factor, relative to a soil control, to determine how cycling dynamics affected the microbial community. Microbial communities associated with Brachypodium distachyon (BD21) were also evaluated.Significantly different bacterial community structures (P = 0.031) were observed in themore » rhizosphere of wild-type plants between light and dark cycle samples. Furthermore, 13% of the community showed cycling, with abundances of several families, including Burkholderiaceae, Rhodospirillaceae, Planctomycetaceae, and Gaiellaceae, exhibiting fluctuation in abundances relative to the light cycle. However, limited-to-no cycling was observed in the acyclic CCAox34 line or in soil controls. Significant cycling was also observed, to a lesser extent, in Brachypodium. Functional gene inference revealed that genes involved in carbohydrate metabolism were likely more abundant in near-dawn, dark samples. Additionally, the composition of organic matter in the rhizosphere showed a significant variation between dark and light cycles.The results of this study suggest that the rhizosphere bacterial community is regulated, to some extent, by the circadian clock and is likely influenced by, and exerts influences, on plant metabolism and productivity. The timing of bacterial cycling in relation to that of Arabidopsis further suggests that diurnal dynamics influence plant-microbe carbon metabolism and exchange. Equally important, our results suggest that previous studies done without

  1. Network repair based on community structure

    NASA Astrophysics Data System (ADS)

    Wang, Tianyu; Zhang, Jun; Sun, Xiaoqian; Wandelt, Sebastian

    2017-06-01

    Real-world complex systems are often fragile under disruptions. Accordingly, research on network repair has been studied intensively. Recently proposed efficient strategies for network disruption, based on collective influence, call for more research on efficient network repair strategies. Existing strategies are often designed to repair networks with local information only. However, the absence of global information impedes the creation of efficient repairs. Motivated by this limitation, we propose a concept of community-level repair, which leverages the community structure of the network during the repair process. Moreover, we devise a general framework of network repair, with in total six instances. Evaluations on real-world and random networks show the effectiveness and efficiency of the community-level repair approaches, compared to local and random repairs. Our study contributes to a better understanding of repair processes, and reveals that exploitation of the community structure improves the repair process on a disrupted network significantly.

  2. Shifting the Starspot Paradigm through Imaging Magnetic Structures and Evolution

    NASA Astrophysics Data System (ADS)

    Roettenbacher, Rachael M.

    2016-08-01

    Magnetism is present in stars across all masses and evolutionary states. For cool stars with a convective outer envelope, stellar magnetic fields are generated through complex interactions between the convective layer and radiative core due to rotation. Magnetism in cool stars fuels stellar activity, in particular as starspots. Using starspots as a proxy, this work concentrates on imaging stellar magnetism. With state-of-the-art observations and imaging techniques, I investigate shifting the spot paradigm of localized starspots blemishing an otherwise bright surface (analogous to the solar photosphere) to a surface hosting a widespread network of magnetically-suppressed convection. This network is capable of affecting measurements of fundamental stellar parameters, such as radius and temperature, leading to inaccurate mass and age estimates. To accomplish this shift, I use precision Kepler data and a light-curve inversion algorithm for studies of stellar differential rotation and starspot evolution. Additionally, with long-baseline interferometric data collected with the Michigan Infrared Combiner (MIRC) at Georgia State University's Center for High Angular Resolution Astronomy (CHARA) Array, I target the bright, spotted, giant primary stars of close binary (RS CVn) systems. For these stars, I combine interferometric detections with radial velocity data to measure orbital and stellar parameters, which are used in concert with long-term photometric light curves to observe ellipsoidal variations, measure gravity darkening, and isolate the starspot signatures. In direct imaging using the interferometric data, I observe a spotted RS CVn star through an entire rotation period to detect canonical starspots, a polar starspot, and globally-suppressed convection. The regions of magnetically-suppressed convection cover a large fraction of the surface, potentially impacting estimates of stellar parameters. The combination of these efforts provides a start to a new era of

  3. Shifting abortion care from a hospital to a community sexual and reproductive health care setting.

    PubMed

    Cameron, Sharon T; Glasier, Anna; Johnstone, Anne

    2016-04-01

    Community sexual and reproductive health (SRH) services are well placed to deliver abortion assessment services and early medical abortion (EMA), but comparative data on safety and acceptability from both settings are important for future service planning. Retrospective review of computerised records of 1342 women undergoing outpatient EMA (≤9 weeks) in a community SRH or hospital department of gynaecology in the same city, and a self-completed, anonymous survey of 303 women requesting abortion at both sites. Primary outcome was safety in terms of re-attendance rates for a complication related to EMA. Secondary outcomes were telephone contact with each site for an EMA-related concern and satisfaction with information about abortion (defined as score out of 10) received at each site. There was no difference in re-attendance rates to either service for a complication following outpatient EMA (2.7%). A higher proportion of women undergoing EMA at the SRH site made telephone contact compared to women at the hospital site (18.8% vs 10.8%; p=0.033). Women rated both settings highly in terms of information received before abortion (9.2 and 9.6 out of 10) at the hospital and SRH sites, respectively. This study suggests that provision of outpatient EMA in a community SRH setting is as safe as that delivered from a hospital setting, and that women are similarly satisfied with the information they receive about abortion from each setting. More abortion assessment and outpatient EMA services in Great Britain could shift from hospital to community SRH settings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2

    PubMed Central

    Drigo, Barbara; Pijl, Agata S.; Duyts, Henk; Kielak, Anna M.; Gamper, Hannes A.; Houtekamer, Marco J.; Boschker, Henricus T. S.; Bodelier, Paul L. E.; Whiteley, Andrew S.; van Veen, Johannes A.; Kowalchuk, George A.

    2010-01-01

    Rising atmospheric CO2 levels are predicted to have major consequences on carbon cycling and the functioning of terrestrial ecosystems. Increased photosynthetic activity is expected, especially for C-3 plants, thereby influencing vegetation dynamics; however, little is known about the path of fixed carbon into soil-borne communities and resulting feedbacks on ecosystem function. Here, we examine how arbuscular mycorrhizal fungi (AMF) act as a major conduit in the transfer of carbon between plants and soil and how elevated atmospheric CO2 modulates the belowground translocation pathway of plant-fixed carbon. Shifts in active AMF species under elevated atmospheric CO2 conditions are coupled to changes within active rhizosphere bacterial and fungal communities. Thus, as opposed to simply increasing the activity of soil-borne microbes through enhanced rhizodeposition, elevated atmospheric CO2 clearly evokes the emergence of distinct opportunistic plant-associated microbial communities. Analyses involving RNA-based stable isotope probing, neutral/phosphate lipid fatty acids stable isotope probing, community fingerprinting, and real-time PCR allowed us to trace plant-fixed carbon to the affected soil-borne microorganisms. Based on our data, we present a conceptual model in which plant-assimilated carbon is rapidly transferred to AMF, followed by a slower release from AMF to the bacterial and fungal populations well-adapted to the prevailing (myco-)rhizosphere conditions. This model provides a general framework for reappraising carbon-flow paths in soils, facilitating predictions of future interactions between rising atmospheric CO2 concentrations and terrestrial ecosystems. PMID:20534474

  5. Effects of transient temperature conditions on the divergence of activated sludge bacterial community structure and function.

    PubMed

    Nadarajah, Nalina; Allen, D Grant; Fulthorpe, Roberta R

    2007-06-01

    The effect of temperature fluctuations on bacterial community structure and function in lab-scale sequencing batch reactors treating bleached kraft mill effluent was investigated. An increase in temperature from 30 to 45 degrees C caused shifts in both bacterial community structure and function. Triplicate reactors were highly similar for 40 days following startup. After the temperature shift, their community structure and function started to diverge from each other and from the control. A multi-response permutation procedure confirmed that the variability in community structure between transient and control reactors were greater than that among the triplicate transient reactors. The fact that these disturbances manifest themselves in different ways in apparently identical reactors suggests a high degree of variability between replicate systems.

  6. Bacterioplankton community shifts associated with epipelagic and mesopelagic waters in the Southern Ocean

    PubMed Central

    Yu, Zheng; Yang, Jun; Liu, Lemian; Zhang, Wenjing; Amalfitano, Stefano

    2015-01-01

    The Southern Ocean is among the least explored marine environments on Earth, and still little is known about regional and vertical variability in the diversity of Antarctic marine prokaryotes. In this study, the bacterioplankton community in both epipelagic and mesopelagic waters was assessed at two adjacent stations by high-throughput sequencing and quantitative PCR. Water temperature was significantly higher in the superficial photic zone, while higher salinity and dissolved oxygen were recorded in the deeper water layers. The highest abundance of the bacterioplankton was found at a depth of 75 m, corresponding to the deep chlorophyll maximum layer. Both Alphaproteobacteria and Gammaproteobacteria were the most abundant taxa throughout the water column, while more sequences affiliated to Cyanobacteria and unclassified bacteria were identified from surface and the deepest waters, respectively. Temperature was the most significant environmental variable affecting the bacterial community structure. The bacterial community composition displayed significant differences at the epipelagic layers between two stations, whereas those in the mesopelagic waters were more similar to each other. Our results indicated that the epipelagic bacterioplankton might be dominated by short-term environmental variable conditions, whereas the mesopelagic communities appeared to be structured by longer water-mass residence time and relative stable environmental factors. PMID:26256889

  7. Shifting brain asymmetry: the link between meditation and structural lateralization.

    PubMed

    Kurth, Florian; MacKenzie-Graham, Allan; Toga, Arthur W; Luders, Eileen

    2015-01-01

    Previous studies have revealed an increased fractional anisotropy and greater thickness in the anterior parts of the corpus callosum in meditation practitioners compared with control subjects. Altered callosal features may be associated with an altered inter-hemispheric integration and the degree of brain asymmetry may also be shifted in meditation practitioners. Therefore, we investigated differences in gray matter asymmetry as well as correlations between gray matter asymmetry and years of meditation practice in 50 long-term meditators and 50 controls. We detected a decreased rightward asymmetry in the precuneus in meditators compared with controls. In addition, we observed that a stronger leftward asymmetry near the posterior intraparietal sulcus was positively associated with the number of meditation practice years. In a further exploratory analysis, we observed that a stronger rightward asymmetry in the pregenual cingulate cortex was negatively associated with the number of practice years. The group difference within the precuneus, as well as the positive correlations with meditation years in the pregenual cingulate cortex, suggests an adaptation of the default mode network in meditators. The positive correlation between meditation practice years and asymmetry near the posterior intraparietal sulcus may suggest that meditation is accompanied by changes in attention processing.

  8. A robust algorithm for optimizing protein structures with NMR chemical shifts.

    PubMed

    Berjanskii, Mark; Arndt, David; Liang, Yongjie; Wishart, David S

    2015-11-01

    Over the past decade, a number of methods have been developed to determine the approximate structure of proteins using minimal NMR experimental information such as chemical shifts alone, sparse NOEs alone or a combination of comparative modeling data and chemical shifts. However, there have been relatively few methods that allow these approximate models to be substantively refined or improved using the available NMR chemical shift data. Here, we present a novel method, called Chemical Shift driven Genetic Algorithm for biased Molecular Dynamics (CS-GAMDy), for the robust optimization of protein structures using experimental NMR chemical shifts. The method incorporates knowledge-based scoring functions and structural information derived from NMR chemical shifts via a unique combination of multi-objective MD biasing, a genetic algorithm, and the widely used XPLOR molecular modelling language. Using this approach, we demonstrate that CS-GAMDy is able to refine and/or fold models that are as much as 10 Å (RMSD) away from the correct structure using only NMR chemical shift data. CS-GAMDy is also able to refine of a wide range of approximate or mildly erroneous protein structures to more closely match the known/correct structure and the known/correct chemical shifts. We believe CS-GAMDy will allow protein models generated by sparse restraint or chemical-shift-only methods to achieve sufficiently high quality to be considered fully refined and "PDB worthy". The CS-GAMDy algorithm is explained in detail and its performance is compared over a range of refinement scenarios with several commonly used protein structure refinement protocols. The program has been designed to be easily installed and easily used and is available at http://www.gamdy.ca.

  9. Chronic exposure to triclosan sustains microbial community shifts and alters antibiotic resistance gene levels in anaerobic digesters.

    PubMed

    Carey, Daniel E; Zitomer, Daniel H; Kappell, Anthony D; Choi, Melinda J; Hristova, Krassimira R; McNamara, Patrick J

    2016-08-10

    Triclosan, an antimicrobial chemical found in consumer personal care products, has been shown to stimulate antibiotic resistance in pathogenic bacteria. Although many studies focus on antibiotic resistance pertinent to medical scenarios, resistance developed in natural and engineered environments is less studied and has become an emerging concern for human health. In this study, the impacts of chronic triclosan (TCS) exposure on antibiotic resistance genes (ARGs) and microbial community structure were assessed in lab-scale anaerobic digesters. TCS concentrations from below detection to 2500 mg kg(-1) dry solids were amended into anaerobic digesters over 110 days and acclimated for >3 solid retention time values. Four steady state TCS concentrations were chosen (30-2500 mg kg(-1)). Relative abundance of mexB, a gene coding for a component of a multidrug efflux pump, was significantly higher in all TCS-amended digesters (30 mg kg(-1) or higher) relative to the control. TCS selected for bacteria carrying tet(L) and against those carrying erm(F) at concentrations which inhibited digester function; the pH decrease associated with digester failure was suspected to cause this selection. Little to no impact of TCS was observed on intI1 relative abundance. Microbial communities were also surveyed by high-throughput 16S rRNA gene sequencing. Compared to the control digesters, significant shifts in community structure towards clades containing commensal and pathogenic bacteria were observed in digesters containing TCS. Based on these results, TCS should be included in studies and risk assessments that attempt to elucidate relationships between chemical stressors (e.g. antibiotics), antibiotic resistance genes, and public health.

  10. Release from limitation: Exploring phytoplankton nutrient limitation and community shifts in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Weber, S.; D'Souza, N.; Subramaniam, A.; Juhl, A. R.; Montoya, J. P.

    2016-02-01

    The offshore surface waters of the Northern Gulf of Mexico are predominantly oligotrophic, though nutrients are supplied episodically by the offshore extension of the Mississippi River Plume as well as upwelling events associated with loop-current eddies. The many natural oil/gas seeps in the Northern Gulf can also enhance nutrient availability by promoting vertical mixing and the movement of water and nutrients across the thermocline and into the surface mixed layer. We carried out a series of microcosm experiments to explore nutrient limitation of native phytoplankton communities across a range of offshore habitats in the Northern Gulf of Mexico during a cruise in 2012. In brief, we amended surface seawater with nitrate, phosphate, and silicate at Redfield ratios in a factorial design experiment. We used a combination of flow cytometery, Aquatic Laser Fluorescence measurements, and nutrient measurements to quantify shifts in phytoplankton community abundance and composition, phytoplankton physiological state, and nutrient consumption over the course of a multi-day experiment. Biomass measurements showed co-limitation of phytoplankton by nitrate + phosphate, with clear responses from diatoms in our silicate amendment treatments. Time course analyses of pigment fluorescence reflected differential responses by different phytoplankton taxa, including cyanobacteria, cryptophytes, and diatoms.

  11. Seasonally distinct taxonomic and functional shifts in macroinvertebrate communities following dam removal

    PubMed Central

    Manning, David W.P.

    2017-01-01

    Dam removal is an increasingly popular restoration tool, but our understanding of ecological responses to dam removal over time is still in the early stages. We quantified seasonal benthic macroinvertebrate density, taxonomic composition, and functional traits for three years after lowhead dam removal in three reaches of the Olentangy River (Ohio, USA): two upstream of former dam (one restored, one unrestored), and one downstream of former dam. Macroinvertebrate community density, generic richness, and Shannon–Wiener diversity decreased between ∼9 and ∼15 months after dam removal; all three variables consistently increased thereafter. These threshold responses were dependent on reach location: density and richness increased ∼15 months after removal in upstream reaches versus ∼19 months downstream of the former dam. Initial macroinvertebrate density declines were likely related to seasonality or life-history characteristics, but density increased up to 2.27× from year to year in three out of four seasons (late autumn, early spring, summer) across all reaches. Macroinvertebrate community composition was similar among the three reaches, but differed seasonally based on non-metric multidimensional scaling (NMDS) and analysis of similarity (ANOSIM). Seasonal differences among communities tended to decrease after dam removal. We detected community-wide shifts in functional traits such as multivoltinism, depositional habitat use, burrowing, and collector-gatherer feeding mode. We observed that these traits were expressed most strongly with Chironomidae, which was the most abundant family. Our results suggest that seasonal environmental conditions can play a role in the response and recovery of macroinvertebrate communities—often used to monitor ecosystem condition—following dam removal. In particular, macroinvertebrate density and diversity can show recovery after dam removal, especially in seasons when macroinvertebrate density is typically lowest, with

  12. Plant community structure in disturbed and undisturbed forested wetlands

    SciTech Connect

    Firth, P.L.; Hooker, K.L.; Normandeau Southeast, Aiken, SC )

    1989-01-01

    This study documented the floodplain plant communities at three disturbed and three undisturbed sites during a two year period. The study took place at the Savannah River Plant in the South Carolina coastal plain. The disturbed sites were stressed by heated effluents, flooding, and siltation. Taxa richness differed little between the six sites, but the undisturbed sites had relatively more tree and vine taxa while the disturbed sites had relatively more shrub and herb taxa. Community similarity comparison indicated that disturbance continued to impact and change plant assemblages during this study. Herbaceous cover and dominant herb taxa changed between years at all sites, primarily in response to soil saturation and the timing, extent and duration of inundation. The disturbed sites had communities of dense, small wetland successional trees. The undisturbed sites had either cypress-red maple or bottomland hardwood tree communities. Large numbers of trees died at the disturbed sites during this study (up to >27% net loss). The greatest losses were experienced by wax myrtle (Myrica), willow (Salix), and alder (Alnus). With the plant community structure rapidly shifting at the disturbed sites, it is very likely that the beneficial functions of the floodplain wetlands in the Steel Creek corridor were adversely impacted. 18 refs., 4 figs., 12 tabs.

  13. Shifts in Nitrification Kinetics and Microbial Community during Bioaugmentation of Activated Sludge with Nitrifiers Enriched on Sludge Reject Water

    PubMed Central

    Yu, Lifang; Peng, Dangcong; Pan, Ruiling

    2012-01-01

    This study used two laboratory-scale sequencing batch reactors (SBRs) to evaluate the shifts in nitrification kinetics and microbial communities of an activated sludge sewage treatment system (main stream) during bioaugmentation with nitrifiers cultivated on real sludge reject water (side stream). Although bioaugmentation exerted a strong influence on the microbial community and the nitrification kinetics in the main stream, there was 58% of maximum ammonia uptake rate (AUR) and 80% of maximum nitrite uptake rate (NUR) loss of the seed source after bioaugmentation. In addition, nitrite accumulation occurred during bioaugmentation due to the unequal and asynchronous increase of the AUR (from 2.88 to 13.36 mg N/L·h) and NUR (from 0.76 to 4.34 mg N/L·h). FISH results showed that ammonia oxidizing bacteria (AOB) was inclined to be washed out with effluent in contrast to nitrite oxidizing bacteria (NOB), and Nitrosococcus mobilis lineage was the dominant AOB, while the dominant NOB in the main stream gradually transferred from Nitrospira to Nitrobacter. Nitrospina and Nitrococcus which existed in the seed source could not be detected in the main stream. It can be inferred that nitrite accumulation occurred due to the mismatch of NOB structure but washed out with effluent. PMID:23091354

  14. The Emergence of Community Structure in Metacommunities

    NASA Astrophysics Data System (ADS)

    Rikvold, Per Arne

    2011-10-01

    The role of space in determining species coexistence and community structure is well established. However, previous studies mainly focus on simple competition and predation systems, and the role of mutualistic interspecies interactions is not well understood. Here we use a spatially explicit metacommunity model, in which new species enter by a mutation process, to study the effect of fitness-dependent dispersal on the structure of communities with interactions comprising mutualism, competition, and exploitation [1,2]. We find that the diversity and the structure of the interaction network undergo a nonequilibrium phase transition with increasing dispersal rate. Low/ dispersion rate favors spontaneous emergence of many dissimilar, strongly mutualistic and species- poor local communities. Due to the local dissimilarities, the global diversity is high. High/ dispersion rate promotes local biodiversity and supports similar, species-rich local communities with a wide range of interactions. The strong similarity between neighboring local communities leads to reduced global diversity.[4pt] [1] E. Filotas, M. Grant, L. Parrott, P.A. Rikvold, J. Theor. Biol. 266, 419 (2010).[0pt] [2] E. Filotas, M. Grant, L. Parrott, P.A. Rikvold, Ecol. Modell. 221, 885 (2010).

  15. Assessing the accuracy of protein structures by quantum mechanical computations of 13C(alpha) chemical shifts.

    PubMed

    Vila, Jorge A; Scheraga, Harold A

    2009-10-20

    Two major techniques have been used to determine the three-dimensional structures of proteins: X-ray diffraction and NMR spectroscopy. In particular, the validation of NMR-derived protein structures is one of the most challenging problems in NMR spectroscopy. Therefore, researchers have proposed a plethora of methods to determine the accuracy and reliability of protein structures. Despite these proposals, there is a growing need for more sophisticated, physics-based structure validation methods. This approach will enable us to (a) characterize the "quality" of the NMR-derived ensemble as a whole by a single parameter, (b) unambiguously identify flaws in the sequence at a residue level, and (c) provide precise information, such as sets of backbone and side-chain torsional angles, that we can use to detect local flaws. Rather than reviewing all of the existing validation methods, this Account describes the contributions of our research group toward a solution of the long-standing problem of both global and local structure validation of NMR-derived protein structures. We emphasize a recently introduced physics-based methodology that makes use of observed and computed (13)C(alpha) chemical shifts (at the density functional theory (DFT) level of theory) for an accurate validation of protein structures in solution and in crystals. By assessing the ability of computed (13)C(alpha) chemical shifts to reproduce observed (13)C(alpha) chemical shifts of a single structure or ensemble of structures in solution and in crystals, we accomplish a global validation by using the conformationally averaged root-mean-square deviation, ca-rmsd, as a scoring function. In addition, the method enables us to provide local validation by identifying a set of individual amino acid conformations for which the computed and observed (13)C(alpha) chemical shifts do not agree within a certain error range and may represent a nonreliable fold of the protein model. Although it is computationally

  16. Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field

    PubMed Central

    Nielsen, Jakob T.; Eghbalnia, Hamid R.; Nielsen, Niels Chr.

    2011-01-01

    The exquisite sensitivity of chemical shifts as reporters of structural information, and the ability to measure them routinely and accurately, gives great import to formulations that elucidate the structure-chemical-shift relationship. Here we present a new and highly accurate, precise, and robust formulation for the prediction of NMR chemical shifts from protein structures. Our approach, shAIC (shift prediction guided by Akaikes Information Criterion), capitalizes on mathematical ideas and an information-theoretic principle, to represent the functional form of the relationship between structure and chemical shift as a parsimonious sum of smooth analytical potentials which optimally takes into account short-, medium-, and long-range parameters in a nuclei-specific manner to capture potential chemical shift perturbations caused by distant nuclei. shAIC outperforms the state-of-the-art methods that use analytical formulations. Moreover, for structures derived by NMR or structures with novel folds, shAIC delivers better overall results; even when it is compared to sophisticated machine learning approaches. shAIC provides for a computationally lightweight implementation that is unimpeded by molecular size, making it an ideal for use as a force field. PMID:22293396

  17. Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field.

    PubMed

    Nielsen, Jakob T; Eghbalnia, Hamid R; Nielsen, Niels Chr

    2012-01-01

    The exquisite sensitivity of chemical shifts as reporters of structural information, and the ability to measure them routinely and accurately, gives great import to formulations that elucidate the structure-chemical-shift relationship. Here we present a new and highly accurate, precise, and robust formulation for the prediction of NMR chemical shifts from protein structures. Our approach, shAIC (shift prediction guided by Akaikes Information Criterion), capitalizes on mathematical ideas and an information-theoretic principle, to represent the functional form of the relationship between structure and chemical shift as a parsimonious sum of smooth analytical potentials which optimally takes into account short-, medium-, and long-range parameters in a nuclei-specific manner to capture potential chemical shift perturbations caused by distant nuclei. shAIC outperforms the state-of-the-art methods that use analytical formulations. Moreover, for structures derived by NMR or structures with novel folds, shAIC delivers better overall results; even when it is compared to sophisticated machine learning approaches. shAIC provides for a computationally lightweight implementation that is unimpeded by molecular size, making it an ideal for use as a force field.

  18. Jellyfish Modulate Bacterial Dynamic and Community Structure

    PubMed Central

    Tinta, Tinkara; Kogovšek, Tjaša; Malej, Alenka; Turk, Valentina

    2012-01-01

    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom - forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish - enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to ‘jellyfish - associated’ and ‘free - living’ bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into

  19. Jellyfish modulate bacterial dynamic and community structure.

    PubMed

    Tinta, Tinkara; Kogovšek, Tjaša; Malej, Alenka; Turk, Valentina

    2012-01-01

    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom-forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish-enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to 'jellyfish-associated' and 'free-living' bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into possible changes in

  20. School, Community Leadership, and Election Structure

    ERIC Educational Resources Information Center

    Allen, Ann

    2008-01-01

    This article examines how the political structure of school elections contributes to leadership perspectives related to school-community engagement. Interview data from school superintendents, school board presidents, and city mayors across four cities and two election types were analyzed to determine if differences in school election structure…

  1. Emergence of structured communities through evolutionary dynamics.

    PubMed

    Shtilerman, Elad; Kessler, David A; Shnerb, Nadav M

    2015-10-21

    Species-rich communities, in which many competing species coexist in a single trophic level, are quite frequent in nature, but pose a formidable theoretical challenge. In particular, it is known that complex competitive systems become unstable and unfeasible when the number of species is large. Recently, many studies have attributed the stability of natural communities to the structure of the interspecific interaction network, yet the nature of such structures and the underlying mechanisms responsible for them remain open questions. Here we introduce an evolutionary model, based on the generic Lotka-Volterra competitive framework, from which a stable, structured, diverse community emerges spontaneously. The modular structure of the competition matrix reflects the phylogeny of the community, in agreement with the hierarchial taxonomic classification. Closely related species tend to have stronger niche overlap and weaker fitness differences, as opposed to pairs of species from different modules. The competitive-relatedness hypothesis and the idea of emergent neutrality are discussed in the context of this evolutionary model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Shifting cardiovascular care to nurses results in structured chronic care.

    PubMed

    Nouwens, Elvira; van Lieshout, Jan; van den Hombergh, Pieter; Laurant, Miranda; Wensing, Michel

    2014-07-01

    To explore nurse involvement in cardiovascular risk management (CVRM) in primary care and how this involvement was associated with the degree of structured chronic illness care. A cross-sectional observational study in 7 European countries. Five aspects of nurse involvement in CVRM and 35 specific components of structured chronic illness care were documented in 202 primary care practices in Austria, Belgium, Germany, the Netherlands, Slovenia, Spain, and Switzerland. An overall measure for chronic care management, range 0 to 5, was constructed, derived from elements of the Chronic Care Model (CCM). Random coefficient regression modeling was used to explore associations. A majority of practices involved nurses for organization of CVRM in administrative tasks (82.2 %), risk factor monitoring (78.5%) and patient education (57.1%). Fewer practices involved nurses in defining protocol and the organization for CVRM (45%) or diagnosis and treatment (34.6%). With an increasing number of tasks handled by nurses, overall median adoption of CCM increased from 2.7 (95% CI, 1.5-3.6) to 4.2 (95% CI, 3.8-4.1). When the number of nurse tasks increased by 1, the adoption of CCM increased by 0.13 (P <.05; 95% CI, 0.03-0.22). Some practices with low nurse involvement had high adoption of CCM, while variation of adoption of CCM across practices reduced substantially with an increasing level of nurse involvement. Nurses were involved in the delivery of CVRM in varying degrees. Higher involvement of nurses was associated with higher degree of structured chronic illness care, with less variation.

  3. Shifting the Starspot Paradigm: Imaging Global Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Roettenbacher, Rachael M.; Monnier, John D.

    2016-01-01

    Stellar magnetism exists in stars across the HR diagram and fuels stellar activity (e.g. flares and starspots). This magnetism affects measurements of fundamental stellar parameters, such as radius and temperature, leading to inaccurate mass and age estimates. In order to better determine stellar parameters, we aim to understand how magnetically-suppressed convection presents as cool regions across the stellar surface. In the standard "spot paradigm" of localized starspots blemishing an otherwise featureless surface, we use precision Kepler data and light curve inversion to study stellar differential rotation and starspot evolution. Contrastingly, by imaging interferometric data collected with the Michigan Infrared Combiner (MIRC) at GSU's Center for High Angular Resolution Astronomy (CHARA) Array, we detect large-scale magnetic structures across the surface of ζ Andromedae. These global regions of suppressed convection cover a large fraction of the surface, likely changing the atmospheric structure of the photosphere and impacting stellar parameter estimates. The large-scale features are at best ambiguous to interpret via established techniques that rely on rotational modulation of spots (e.g. light curve inversion and Doppler imaging). We seek to identify a class of targets where the "spot paradigm" breaks down and gives new insights into a range of phenomena such as long-term changes in flux for active stars, anomalous proper motion of spots derived from precision photometry, and the nature of the stellar dynamo of stars with large convective envelopes.

  4. Functional and structural response of the methanogenic microbial community in rice field soil to temperature change.

    PubMed

    Conrad, Ralf; Klose, Melanie; Noll, Matthias

    2009-07-01

    The microbial community in anoxic rice field soil produces CH(4) over a wide temperature range up to 55°C. However, at temperatures higher than about 40°C, the methanogenic path changes from CH(4) production by hydrogenotrophic plus acetoclastic methanogenesis to exclusively hydrogenotrophic methanogenesis and simultaneously, the methanogenic community consisting of Methanosarcinaceae, Methanoseataceae, Methanomicrobiales, Methanobacteriales and Rice Cluster I (RC-1) changes to almost complete dominance of RC-1. We studied changes in structure and function of the methanogenic community with temperature to see whether microbial members of the community were lost or their function impaired by exposure to high temperature. We characterized the function of the community by the path of CH(4) production measuring δ(13)C in CH(4) and CO(2) and calculating the apparent fractionation factor (α(app)) and the structure of the community by analysis of the terminal restriction fragment length polymorphism (T-RFLP) of the microbial 16S rRNA genes. Shift of the temperature from 45°C to 35°C resulted in a corresponding shift of function and structure, especially when some 35°C soil was added to the 45°C soil. The bacterial community (T-RFLP patterns), which was much more diverse than the archaeal community, changed in a similar manner upon temperature shift. Incubation of a mixture of 35°C and 50°C pre-incubated methanogenic rice field soil at different temperatures resulted in functionally and structurally well-defined communities. Although function changed from a mixture of acetoclastic and hydrogenotrophic methanogenesis to exclusively hydrogenotrophic methanogenesis over a rather narrow temperature range of 42-46°C, each of these temperatures also resulted in only one characteristic function and structure. Our study showed that temperature conditions defined structure and function of the methanogenic microbial community.

  5. Structure determination of noncanonical RNA motifs guided by 1H NMR chemical shifts

    PubMed Central

    Sripakdeevong, Parin; Cevec, Mirko; Chang, Andrew T.; Erat, Michèle C.; Ziegeler, Melanie; Zhao, Qin; Fox, George E.; Gao, Xiaolian; Kennedy, Scott D.; Kierzek, Ryszard; Nikonowicz, Edward P.; Schwalbe, Harald; Sigel, Roland K. O.; Turner, Douglas H.; Das, Rhiju

    2014-01-01

    Structured non-coding RNAs underline fundamental cellular processes, but determining their 3D structures remains challenging. We demonstrate herein that integrating NMR 1H chemical shift data with Rosetta de novo modeling can consistently return high-resolution RNA structures. On a benchmark set of 23 noncanonical RNA motifs, including 11 blind targets, Chemical-Shift-ROSETTA for RNA (CS-ROSETTA-RNA) recovered the experimental structures with high accuracy (0.6 to 2.0 Å all-heavy-atom rmsd) in 18 cases. PMID:24584194

  6. Phylogenetic structure in tropical hummingbird communities

    PubMed Central

    Graham, Catherine H.; Parra, Juan L.; Rahbek, Carsten; McGuire, Jimmy A.

    2009-01-01

    How biotic interactions, current and historical environment, and biogeographic barriers determine community structure is a fundamental question in ecology and evolution, especially in diverse tropical regions. To evaluate patterns of local and regional diversity, we quantified the phylogenetic composition of 189 hummingbird communities in Ecuador. We assessed how species and phylogenetic composition changed along environmental gradients and across biogeographic barriers. We show that humid, low-elevation communities are phylogenetically overdispersed (coexistence of distant relatives), a pattern that is consistent with the idea that competition influences the local composition of hummingbirds. At higher elevations communities are phylogenetically clustered (coexistence of close relatives), consistent with the expectation of environmental filtering, which may result from the challenge of sustaining an expensive means of locomotion at high elevations. We found that communities in the lowlands on opposite sides of the Andes tend to be phylogenetically similar despite their large differences in species composition, a pattern implicating the Andes as an important dispersal barrier. In contrast, along the steep environmental gradient between the lowlands and the Andes we found evidence that species turnover is comprised of relatively distantly related species. The integration of local and regional patterns of diversity across environmental gradients and biogeographic barriers provides insight into the potential underlying mechanisms that have shaped community composition and phylogenetic diversity in one of the most species-rich, complex regions of the world. PMID:19805042

  7. Phylogenetic structure in tropical hummingbird communities.

    PubMed

    Graham, Catherine H; Parra, Juan L; Rahbek, Carsten; McGuire, Jimmy A

    2009-11-17

    How biotic interactions, current and historical environment, and biogeographic barriers determine community structure is a fundamental question in ecology and evolution, especially in diverse tropical regions. To evaluate patterns of local and regional diversity, we quantified the phylogenetic composition of 189 hummingbird communities in Ecuador. We assessed how species and phylogenetic composition changed along environmental gradients and across biogeographic barriers. We show that humid, low-elevation communities are phylogenetically overdispersed (coexistence of distant relatives), a pattern that is consistent with the idea that competition influences the local composition of hummingbirds. At higher elevations communities are phylogenetically clustered (coexistence of close relatives), consistent with the expectation of environmental filtering, which may result from the challenge of sustaining an expensive means of locomotion at high elevations. We found that communities in the lowlands on opposite sides of the Andes tend to be phylogenetically similar despite their large differences in species composition, a pattern implicating the Andes as an important dispersal barrier. In contrast, along the steep environmental gradient between the lowlands and the Andes we found evidence that species turnover is comprised of relatively distantly related species. The integration of local and regional patterns of diversity across environmental gradients and biogeographic barriers provides insight into the potential underlying mechanisms that have shaped community composition and phylogenetic diversity in one of the most species-rich, complex regions of the world.

  8. The microbial community shifts of subgingival plaque in patients with generalized aggressive periodontitis following non-surgical periodontal therapy: a pilot study.

    PubMed

    Han, Jing; Wang, Peng; Ge, Shaohua

    2017-02-07

    The object of this study is to characterize the bacterial community of subgingival plaque of two subjects with generalized aggressive periodontitis (GAgP) pre- and post-treatment. We picked two patients with GAgP and used high-throughput 16S rDNA sequencing. V4 hypervariable region was picked for PCR amplification of subgingival samples. Then, the PCR products were sequenced through Illumina MiSeq platform. One month after therapy, both the clinical features and periodontal parameters improved obviously. Moreover, the composition and structure of subgingival bacterial community changed after initial periodontal therapy. Also, the composition of the subgingival microbiota was highly individualized among different patients. Bacteroidetes, Spirochaetes and Fusobacteria were related to pathogenicity of GAgP while Actinobacteria and Proteobacteria seemed associated with clinical symptoms resolution. In this study, we found the subgingival bacterial community was high in species richness but dominated by a few species or phylotypes, with significant shifts of microbiota that occurred after treatment. This study demonstrated the shift of the subgingival bacterial community before and after treatment by high-throughput 16S rDNA sequencing, and provided a concise method for analysis of microbial community for periodontal diseases.

  9. The microbial community shifts of subgingival plaque in patients with generalized aggressive periodontitis following non-surgical periodontal therapy: a pilot study

    PubMed Central

    Han, Jing; Wang, Peng; Ge, Shaohua

    2017-01-01

    The object of this study is to characterize the bacterial community of subgingival plaque of two subjects with generalized aggressive periodontitis (GAgP) pre- and post-treatment. We picked two patients with GAgP and used high-throughput 16S rDNA sequencing. V4 hypervariable region was picked for PCR amplification of subgingival samples. Then, the PCR products were sequenced through Illumina MiSeq platform. One month after therapy, both the clinical features and periodontal parameters improved obviously. Moreover, the composition and structure of subgingival bacterial community changed after initial periodontal therapy. Also, the composition of the subgingival microbiota was highly individualized among different patients. Bacteroidetes, Spirochaetes and Fusobacteria were related to pathogenicity of GAgP while Actinobacteria and Proteobacteria seemed associated with clinical symptoms resolution. In this study, we found the subgingival bacterial community was high in species richness but dominated by a few species or phylotypes, with significant shifts of microbiota that occurred after treatment. This study demonstrated the shift of the subgingival bacterial community before and after treatment by high-throughput 16S rDNA sequencing, and provided a concise method for analysis of microbial community for periodontal diseases. PMID:27732961

  10. Information transfer in community structured multiplex networks

    NASA Astrophysics Data System (ADS)

    Solé Ribalta, Albert; Granell, Clara; Gómez, Sergio; Arenas, Alex

    2015-08-01

    The study of complex networks that account for different types of interactions has become a subject of interest in the last few years, specially because its representational power in the description of users interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.). The mathematical description of these interacting networks has been coined under the name of multilayer networks, where each layer accounts for a type of interaction. It has been shown that diffusive processes on top of these networks present a phenomenology that cannot be explained by the naive superposition of single layer diffusive phenomena but require the whole structure of interconnected layers. Nevertheless, the description of diffusive phenomena on multilayer networks has obviated the fact that social networks have strong mesoscopic structure represented by different communities of individuals driven by common interests, or any other social aspect. In this work, we study the transfer of information in multilayer networks with community structure. The final goal is to understand and quantify, if the existence of well-defined community structure at the level of individual layers, together with the multilayer structure of the whole network, enhances or deteriorates the diffusion of packets of information.

  11. Structural shifts in the employment of foreign workers in Austria.

    PubMed

    Biffl, G

    1985-03-01

    The full economic importance of immigration becomes clear only when one examines the concentration of immigrant workers in certain industries and occupations, and this is done in the case of Austria to show the degree of segmentation of the labor market between indigenous and foreign labor. In the course of the 1960s the employment of foreign labor gained importance in Austria. As a consequence, bilateral agreements with the major recruiting countries were made, e.g., with Spain in 1962 and 1969, with Turkey in 1964, and with Yugoslavia in 1966. The reason for the increasing demand for foreign labor was the short supply of indigenous labor due to increasing participation rates and strong economic growth. The demand-pull for foreign labor gained momentum with the onset of the economic boom in 1970, so that by the end of 1973 the number of foreign workers had doubled in comparison to 1970. The 226,800 foreign workers accounted for 8.7% of total employment. The 1974-75 recession and the weak economic development ever since resulted in a decreasing demand for labor. At the same time, the supply of indigenous labor increased as a consequence of a demographic effect and because of increasing participation rates of women. From 1981 to the present, foreign employment decreased again due to the unusually long period of economic stagnation. During 1983, 145,300 foreign workers were engaged, i.e., 5.3% of total employment. The structure for foreign employment now differs greatly from that in the 1960s. The share of women in foreign employment has increased steadily from some 20% in the early 1960s to 31% in 1973 and 40% in 1983 -- a value comparable to the Austrian female share in employment. The reduction of foreign employment since 1973 affected, above all, Yugoslav men. the share of Yugoslavs in foreign employment decreased from 196,300 or 79% in 1973 to 92,200 or 61.7% in 1983. With the duration of foreign employment rising, the disribution of foreign labor over economic

  12. Rural community development in China and the industrial shift of the rural population: summary of an international symposium.

    PubMed

    Shao, X

    1991-01-01

    As a summary of an international symposium on rural community development in China, commentary on China's rural reform, the industrial development of the rural population, and urbanization of the rural population and rural population control is provided. The successful reform that has occurred since the Party's 3rd Plenary session of the 11th Central Committee has been the implementation of the household joint production contract responsibility system. Farmers are enthusiastic about their right to land management. Recent focus on the declines and fluctuations in agricultural output has raised many questions. Suggestions have been made to raise agricultural prices and increase investment. Public ownership should remain with household management. The security of longterm ownership of land by individuals is not available, hence individuals are unwilling to make longterm investment. Another opinion was that the stagnation in production was temporary and a course of development; the cause was population pressure. Suggested future development after reforms should involve development of the village social structure. Communities already have a stable social system of blood ties and an administrative system organized by the party, government, and the economy. Communities with these characteristics could invest in the large-scale farming equipment which smaller households cannot afford, and take responsibility for land allocation and management and financial transactions. The role of the community would be a difficult one in balancing income distribution and expanding community benefits. The 2nd major influence on rural development has been growth in rural nonindustrial production in the small town enterprise. The urban policies of household registration and employment limit growth to rural enterprises which may use backward production technology and produce second-rate products. Eventually, rural industry will become both complementary and supplementary to the national

  13. Protein Structure Determination by Assembling Super-Secondary Structure Motifs Using Pseudocontact Shifts.

    PubMed

    Pilla, Kala Bharath; Otting, Gottfried; Huber, Thomas

    2017-03-07

    Computational and nuclear magnetic resonance hybrid approaches provide efficient tools for 3D structure determination of small proteins, but currently available algorithms struggle to perform with larger proteins. Here we demonstrate a new computational algorithm that assembles the 3D structure of a protein from its constituent super-secondary structural motifs (Smotifs) with the help of pseudocontact shift (PCS) restraints for backbone amide protons, where the PCSs are produced from different metal centers. The algorithm, DINGO-PCS (3D assembly of Individual Smotifs to Near-native Geometry as Orchestrated by PCSs), employs the PCSs to recognize, orient, and assemble the constituent Smotifs of the target protein without any other experimental data or computational force fields. Using a universal Smotif database, the DINGO-PCS algorithm exhaustively enumerates any given Smotif. We benchmarked the program against ten different protein targets ranging from 100 to 220 residues with different topologies. For nine of these targets, the method was able to identify near-native Smotifs.

  14. Invasive toads shift predator-prey densities in animal communities by removing top predators.

    PubMed

    Doody, J Sean; Soanes, Rebekah; Castellano, Christina M; Rhind, David; Green, Brian; McHenry, Colin R; Clulow, Simon

    2015-09-01

    Although invasive species can have substantial impacts on animal communities, cases of invasive species facilitating native species by removing their predators have rarely been demonstrated across vertebrate trophic linkages. The predictable spread of the invasive cane toad (Rhinella marina), however, offered a unique opportunity to quantify cascading effects. In northern Australia, three species of predatory monitor lizards suffered severe population declines due to toad-induced lethal toxic ingestion (yellow-spotted monitor (Varanus panoptes), Mertens' water monitor (V. mertensi), Mitchell's water monitor (V. mitchelli). We, thus, predicted subsequent increases in the abundance and recruitment of prey species due to the reduction of those predators. Toad-induced population-level declines in the water monitor species approached 50% over a five-year period spanning the toad invasion, apparently causing fledging success of the Crimson Finch (Neochmia.phaeton) to increase from 55% to 81%. The consensus of our original and published long-term data is that invasive cane toads are causing predators to lose a foothold on top-down regulation of their prey, triggering shifts in the relative densities of predator and prey in the Australian tropical savannah ecosystem.

  15. Linking Microbial Community Structure to Function in Representative Simulated Systems

    PubMed Central

    Marcus, Ian M.; Wilder, Hailey A.; Quazi, Shanin J.

    2013-01-01

    Pathogenic bacteria are generally studied as a single strain under ideal growing conditions, although these conditions are not the norm in the environments in which pathogens typically proliferate. In this investigation, a representative microbial community along with Escherichia coli O157:H7, a model pathogen, was studied in three environments in which such a pathogen could be found: a human colon, a septic tank, and groundwater. Each of these systems was built in the lab in order to retain the physical/chemical and microbial complexity of the environments while maintaining control of the feed into the models. The microbial community in the colon was found to have a high percentage of bacteriodetes and firmicutes, while the septic tank and groundwater systems were composed mostly of proteobacteria. The introduction of E. coli O157:H7 into the simulated systems elicited a shift in the structures and phenotypic cell characteristics of the microbial communities. The fate and transport of the microbial community with E. coli O157:H7 were found to be significantly different from those of E. coli O157:H7 studied as a single isolate, suggesting that the behavior of the organism in the environment was different from that previously conceived. The findings in this study clearly suggest that to gain insight into the fate of pathogens, cells should be grown and analyzed under conditions simulating those of the environment in which the pathogens are present. PMID:23396331

  16. Modularity and community structure in networks

    PubMed Central

    Newman, M. E. J.

    2006-01-01

    Many networks of interest in the sciences, including social networks, computer networks, and metabolic and regulatory networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure is one of the outstanding issues in the study of networked systems. One highly effective approach is the optimization of the quality function known as “modularity” over the possible divisions of a network. Here I show that the modularity can be expressed in terms of the eigenvectors of a characteristic matrix for the network, which I call the modularity matrix, and that this expression leads to a spectral algorithm for community detection that returns results of demonstrably higher quality than competing methods in shorter running times. I illustrate the method with applications to several published network data sets. PMID:16723398

  17. Identifying community structure in complex networks

    NASA Astrophysics Data System (ADS)

    Shao, Chenxi; Duan, Yubing

    2015-07-01

    A wide variety of applications could be formulated to resolve the problem of finding all communities from a given network, ranging from social and biological network analysis to web mining and searching. In this study, we propose the concept of virtual attractive strength between each pair of node in networks, and then give the definition of community structure based on the proposed attractive strength. Furthermore, we present a community detection method by moving vertices to the clusters that produce the largest attractive strengths to them until the division of network reaches unchanged. Experimental results on synthetic and real networks indicate that the proposed approach has favorite effectiveness and fast convergence speed, which provides an efficient method for exploring and analyzing complex systems.

  18. Primer Sets Developed for Functional Genes Reveal Shifts in Functionality of Fungal Community in Soils.

    PubMed

    Hannula, S Emilia; van Veen, Johannes A

    2016-01-01

    Phylogenetic diversity of soil microbes is a hot topic at the moment. However, the molecular tools for the assessment of functional diversity in the fungal community are less developed than tools based on genes encoding the ribosomal operon. Here 20 sets of primers targeting genes involved mainly in carbon cycling were designed and/or validated and the functioning of soil fungal communities along a chronosequence of land abandonment from agriculture was evaluated using them. We hypothesized that changes in fungal community structure during secondary succession would lead to difference in the types of genes present in soils and that these changes would be directional. We expected an increase in genes involved in degradation of recalcitrant organic matter in time since agriculture. Out of the investigated genes, the richness of the genes related to carbon cycling was significantly higher in fields abandoned for longer time. The composition of six of the genes analyzed revealed significant differences between fields abandoned for shorter and longer time. However, all genes revealed significant variance over the fields studied, and this could be related to other parameters than the time since agriculture such as pH, organic matter, and the amount of available nitrogen. Contrary to our initial hypothesis, the genes significantly different between fields were not related to the decomposition of more recalcitrant matter but rather involved in degradation of cellulose and hemicellulose.

  19. Shifts in bacterial community composition associated with increased carbon cycling in a mosaic of phytoplankton blooms.

    PubMed

    Landa, Marine; Blain, Stéphane; Christaki, Urania; Monchy, Sébastien; Obernosterer, Ingrid

    2016-01-01

    Marine microbes have a pivotal role in the marine biogeochemical cycle of carbon, because they regulate the turnover of dissolved organic matter (DOM), one of the largest carbon reservoirs on Earth. Microbial communities and DOM are both highly diverse components of the ocean system, yet the role of microbial diversity for carbon processing remains thus far poorly understood. We report here results from an exploration of a mosaic of phytoplankton blooms induced by large-scale natural iron fertilization in the Southern Ocean. We show that in this unique ecosystem where concentrations of DOM are lowest in the global ocean, a patchwork of blooms is associated with diverse and distinct bacterial communities. By using on-board continuous cultures, we identify preferences in the degradation of DOM of different reactivity for taxa associated with contrasting blooms. We used the spatial and temporal variability provided by this natural laboratory to demonstrate that the magnitude of bacterial production is linked to the extent of compositional changes. Our results suggest that partitioning of the DOM resource could be a mechanism that structures bacterial communities with a positive feedback on carbon cycling. Our study, focused on bacterial carbon processing, highlights the potential role of diversity as a driving force for the cycling of biogeochemical elements.

  20. Primer Sets Developed for Functional Genes Reveal Shifts in Functionality of Fungal Community in Soils

    PubMed Central

    Hannula, S. Emilia; van Veen, Johannes A.

    2016-01-01

    Phylogenetic diversity of soil microbes is a hot topic at the moment. However, the molecular tools for the assessment of functional diversity in the fungal community are less developed than tools based on genes encoding the ribosomal operon. Here 20 sets of primers targeting genes involved mainly in carbon cycling were designed and/or validated and the functioning of soil fungal communities along a chronosequence of land abandonment from agriculture was evaluated using them. We hypothesized that changes in fungal community structure during secondary succession would lead to difference in the types of genes present in soils and that these changes would be directional. We expected an increase in genes involved in degradation of recalcitrant organic matter in time since agriculture. Out of the investigated genes, the richness of the genes related to carbon cycling was significantly higher in fields abandoned for longer time. The composition of six of the genes analyzed revealed significant differences between fields abandoned for shorter and longer time. However, all genes revealed significant variance over the fields studied, and this could be related to other parameters than the time since agriculture such as pH, organic matter, and the amount of available nitrogen. Contrary to our initial hypothesis, the genes significantly different between fields were not related to the decomposition of more recalcitrant matter but rather involved in degradation of cellulose and hemicellulose. PMID:27965632

  1. Device-structure dependence of shift in SQUID characteristics by flux trapping

    NASA Astrophysics Data System (ADS)

    Nishino, Toshikazu; Takeda, Eriko; Takagi, Kazumasa

    1994-02-01

    Shifts in voltage-flux characteristics of a SQUID by flux trapping have been measured to study effectiveness of guard ring structure on shielding of magnetic field. The measurements are made under controlled magnetic field. Magnitude of the shift depends on the device structure. It is found that there exists a threshold field for the flux trapping, and the field is reduced by introducing the guard-ring in the SQUID. Comparing to the SQUID without the structure, the SQUID with it needs higher-grade shielding to prevent the flux trapping during cooling down.

  2. Isotope shifts and hyperfine structure in polonium isotopes by atomic-beam laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Kowalewska, D.; Bekk, K.; Göring, S.; Hanser, A.; Kälber, W.; Meisel, G.; Rebel, H.

    1991-08-01

    Laser-induced fluorescence spectroscopy in a collimated atomic beam has been applied to determine isotope shifts and the hyperfine structure of an isotopic chain of the radioactive element polonium (200Po, 202Po, 204-210Po). The relative isotope shifts show a striking similarity with results for other elements in the vicinity of Pb, even reproducing details of the odd-even staggering.

  3. Evolutionary changes in symbiont community structure in ticks.

    PubMed

    Duron, Olivier; Binetruy, Florian; Noël, Valérie; Cremaschi, Julie; McCoy, Karen D; Arnathau, Céline; Plantard, Olivier; Goolsby, John; Pérez de León, Adalberto A; Heylen, Dieter J A; Van Oosten, A Raoul; Gottlieb, Yuval; Baneth, Gad; Guglielmone, Alberto A; Estrada-Peña, Agustin; Opara, Maxwell N; Zenner, Lionel; Vavre, Fabrice; Chevillon, Christine

    2017-03-09

    Ecological specialization to restricted diet niches is driven by obligate, and often maternally inherited, symbionts in many arthropod lineages. These heritable symbionts typically form evolutionarily stable associations with arthropods that can last for millions of years. Ticks were recently found to harbour such an obligate symbiont, Coxiella-LE, that synthesizes B vitamins and cofactors not obtained in sufficient quantities from blood diet. In this study, the examination of 81 tick species shows that some Coxiella-LE symbioses are evolutionarily stable with an ancient acquisition followed by codiversification as observed in ticks belonging to the Rhipicephalus genus. However, many other Coxiella-LE symbioses are characterized by low evolutionary stability with frequent host shifts and extinction events. Further examination revealed the presence of nine other genera of maternally inherited bacteria in ticks. Although these nine symbionts were primarily thought to be facultative, their distribution among tick species rather suggests that at least four may have independently replaced Coxiella-LE and likely represent alternative obligate symbionts. Phylogenetic evidence otherwise indicates that cocladogenesis is globally rare in these symbioses as most originate via horizontal transfer of an existing symbiont between unrelated tick species. As a result, the structure of these symbiont communities is not fixed and stable across the tick phylogeny. Most importantly, the symbiont communities commonly reach high levels of diversity with up to six unrelated maternally inherited bacteria coexisting within host species. We further conjecture that interactions among coexisting symbionts are pivotal drivers of community structure both among and within tick species.

  4. A cheating limit for structured communities

    SciTech Connect

    Perelson, Alan S; Gerrish, Philip J

    2008-01-01

    The constructive creativity of natural selection originates from its paradoxical ability to foster cooperation through competition. Cooperating communities ranging from complex societies to somatic tissue are constantly under attack, however, by non-cooperating mutants or transformants, called 'cheaters'. Structure in these communities promotes the formation of cooperating clusters whose competitive superiority can alone be sufficient to thwart outgrowths of cheaters and thereby maintain cooperation. But we find that when cheaters appear too frequently -- exceeding a threshold mutation or transformation rate -- their scattered outgrowths infiltrate and break up cooperating clusters, resulting in a cascading loss of community integrity, a switch to net positive selection for cheaters, and ultimately in the loss of cooperation. We find that this threshold mutation rate is directly proportional to the fitness support received from each cooperating neighbor minus the individual fitness benefit of cheating. When mutation rate also evolves, this threshold is crossed spontaneously after thousands of generations, at which point cheaters rapidly invade. In a structured community, cooperation can persist only if the mutation rate remains below a critical value.

  5. The Structure of Executive Functions in Children: A Closer Examination of Inhibition, Shifting, and Updating

    ERIC Educational Resources Information Center

    van der Ven, Sanne H. G.; Kroesbergen, Evelyn H.; Boom, Jan; Leseman, Paul P. M.

    2013-01-01

    An increasing number of studies has investigated the latent factor structure of executive functions. Some studies found a three-factor structure of inhibition, shifting, and updating, but others could not replicate this finding. We assumed that the task choices and scoring methods might be responsible for these contradictory findings. Therefore,…

  6. Protein Structure Validation and Refinement Using Amide Proton Chemical Shifts Derived from Quantum Mechanics

    PubMed Central

    Christensen, Anders S.; Linnet, Troels E.; Borg, Mikael; Boomsma, Wouter; Lindorff-Larsen, Kresten; Hamelryck, Thomas; Jensen, Jan H.

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift-based structural refinements, starting from high-resolution X-ray structures of Protein G, ubiquitin, and SMN Tudor Domain, result in average chemical shifts, hydrogen bond geometries, and trans-hydrogen bond (h3JNC') spin-spin coupling constants that are in excellent agreement with experiment. We show that the structural sensitivity of the QM-based amide proton chemical shift predictions is needed to obtain this agreement. The ProCS method thus offers a powerful new tool for refining the structures of hydrogen bonding networks to high accuracy with many potential applications such as protein flexibility in ligand binding. PMID:24391900

  7. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics.

    PubMed

    Christensen, Anders S; Linnet, Troels E; Borg, Mikael; Boomsma, Wouter; Lindorff-Larsen, Kresten; Hamelryck, Thomas; Jensen, Jan H

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts--sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift-based structural refinements, starting from high-resolution X-ray structures of Protein G, ubiquitin, and SMN Tudor Domain, result in average chemical shifts, hydrogen bond geometries, and trans-hydrogen bond ((h3)J(NC')) spin-spin coupling constants that are in excellent agreement with experiment. We show that the structural sensitivity of the QM-based amide proton chemical shift predictions is needed to obtain this agreement. The ProCS method thus offers a powerful new tool for refining the structures of hydrogen bonding networks to high accuracy with many potential applications such as protein flexibility in ligand binding.

  8. Bacterial community shift and hydrocarbon transformation during bioremediation of short-term petroleum-contaminated soil.

    PubMed

    Wu, Manli; Ye, Xiqiong; Chen, Kaili; Li, Wei; Yuan, Jing; Jiang, Xin

    2017-04-01

    A laboratory study was conducted to evaluate the impact of bioaugmentation plus biostimulation (BR, added both nutrients and bacterial consortia), and natural attenuation (NA) on hydrocarbon degradation efficiency and microflora characterization during remediation of a freshly contaminated soil. After 112 days of remediation, the initial level of total petroleum hydrocarbon (TPH) (61,000 mg/kg soil) was reduced by 4.5% and 5.0% in the NA and BR treatments, respectively. Bioremediation did not significantly enhance TPH biodegradation compared to natural attenuation. The degradation of the aliphatic fraction was the most active with the degradation rate of 30.3 and 28.7 mg/kg/day by the NA and BR treatments, respectively. Soil microbial activities and counts in soil were generally greater for bioremediation than for natural attenuation. MiSeq sequencing indicated that the diversity and structure of microbial communities were affected greatly by bioremediation. In response to bioremediation treatment, Promicromonospora, Pseudomonas, Microcella, Mycobacterium, Alkanibacter, and Altererythrobacter became dominant genera in the soil. The result indicated that combining bioaugmentation with biostimulation did not improve TPH degradation, but soil microbial activities and structure of microbial communities are sensitive to bioremediation in short-term and heavily oil-contaminated soil.

  9. Collective prediction based on community structure

    NASA Astrophysics Data System (ADS)

    Jiang, Yasong; Li, Taisong; Zhang, Yan; Yan, Yonghong

    2017-01-01

    Collective prediction algorithms have been used to improve performances when network structures are involved in prediction tasks. The training dataset of such tasks often contain information of content, links and labels, while the testing dataset have only content and link information. Conventional collective prediction algorithms conduct predictions based on the content of a node and the information of its direct neighbors with a base classifier. However, the information of some direct neighbor nodes may be not consistent with the target one. In addition, the information of indirect neighbors can be helpful when that of direct neighbors is scant. In this paper, instead of using information of direct neighbors, we propose to apply community structures in networks to prediction tasks. A community detection method is aggregated into the collective prediction process to improve prediction performance. Experimental results show that the proposed algorithm outperforms a number of standard prediction algorithms specially under conditions that labeled training dataset are limited.

  10. Citrus huanglongbing shapes the structure of bacterial community associated with citrus roots

    USDA-ARS?s Scientific Manuscript database

    To examine the effect of pathogen on the diversity and structure of plant associated bacterial community, we carried out a molecular based analysis using citrus and huanglongbing as host-disease model. 16S rDNA clone library analysis of the citrus roots revealed shifts in the microbial diversity in ...

  11. Multifractal analysis of neutral community spatial structure.

    PubMed

    Yakimov, Basil N; Iudin, Dmitry I; Solntsev, Leonid A; Gelashvili, David B

    2014-02-21

    The spatial structure of neutral communities has nontrivial properties, which are described traditionally by the Species-area relationship (SAR) and the Species Abundance Distribution, (SAD). Fractal analysis is an alternative way to describe community structure, the final product of which - a multifractal spectrum - combines information both on the scaling parameters of species richness (similar to SAR), and about species' relative abundances (similar to SAD). We conducted a multifractal analysis of community spatial structure in a neutral lattice-based model. In a realistic range of dispersal distances, moments of the species abundance distribution form a family of curves of the same shape, which are reduced to a single universal curve through a scaling collapse procedure. Trivial scaling is observed on small and large scales, which reflects homogeneity of species distribution at small scales and a limiting log-series distribution at large scales. Multifractal spectra for different speciation rates and dispersal kernels are obtained for the intermediate region of scaling. Analysis of spectra reveals that the key model parameters determine not only the species richness and its scaling, but also of species dominance and rarity. We discovered a phenomenon of negative dimensions in the multifractal spectrum. Negative dimensions have no direct interpretation from a purely physical point of view, but have biological meaning because they reflect the negative relationship between the number of singletons and the area. © 2013 Elsevier Ltd. All rights reserved.

  12. Taxonomies of networks from community structure

    PubMed Central

    Reid, Stephen; Porter, Mason A.; Mucha, Peter J.; Fricker, Mark D.; Jones, Nick S.

    2014-01-01

    The study of networks has become a substantial interdisciplinary endeavor that encompasses myriad disciplines in the natural, social, and information sciences. Here we introduce a framework for constructing taxonomies of networks based on their structural similarities. These networks can arise from any of numerous sources: they can be empirical or synthetic, they can arise from multiple realizations of a single process (either empirical or synthetic), they can represent entirely different systems in different disciplines, etc. Because mesoscopic properties of networks are hypothesized to be important for network function, we base our comparisons on summaries of network community structures. Although we use a specific method for uncovering network communities, much of the introduced framework is independent of that choice. After introducing the framework, we apply it to construct a taxonomy for 746 networks and demonstrate that our approach usefully identifies similar networks. We also construct taxonomies within individual categories of networks, and we thereby expose nontrivial structure. For example, we create taxonomies for similarity networks constructed from both political voting data and financial data. We also construct network taxonomies to compare the social structures of 100 Facebook networks and the growth structures produced by different types of fungi. PMID:23030977

  13. Taxonomies of networks from community structure

    NASA Astrophysics Data System (ADS)

    Onnela, Jukka-Pekka; Fenn, Daniel J.; Reid, Stephen; Porter, Mason A.; Mucha, Peter J.; Fricker, Mark D.; Jones, Nick S.

    2012-09-01

    The study of networks has become a substantial interdisciplinary endeavor that encompasses myriad disciplines in the natural, social, and information sciences. Here we introduce a framework for constructing taxonomies of networks based on their structural similarities. These networks can arise from any of numerous sources: They can be empirical or synthetic, they can arise from multiple realizations of a single process (either empirical or synthetic), they can represent entirely different systems in different disciplines, etc. Because mesoscopic properties of networks are hypothesized to be important for network function, we base our comparisons on summaries of network community structures. Although we use a specific method for uncovering network communities, much of the introduced framework is independent of that choice. After introducing the framework, we apply it to construct a taxonomy for 746 networks and demonstrate that our approach usefully identifies similar networks. We also construct taxonomies within individual categories of networks, and we thereby expose nontrivial structure. For example, we create taxonomies for similarity networks constructed from both political voting data and financial data. We also construct network taxonomies to compare the social structures of 100 Facebook networks and the growth structures produced by different types of fungi.

  14. Modeling proteins using a super-secondary structure library and NMR chemical shift information.

    PubMed

    Menon, Vilas; Vallat, Brinda K; Dybas, Joseph M; Fiser, Andras

    2013-06-04

    A remaining challenge in protein modeling is to predict structures for sequences with no sequence similarity to any experimentally solved structure. Based on earlier observations, the library of protein backbone supersecondary structure motifs (Smotifs) saturated about a decade ago. Therefore, it should be possible to build any structure from a combination of existing Smotifs with the help of limited experimental data that are sufficient to relate the backbone conformations of Smotifs between target proteins and known structures. Here, we present a hybrid modeling algorithm that relies on an exhaustive Smotif library and on nuclear magnetic resonance chemical shift patterns without any input of primary sequence information. In a test of 102 proteins, the algorithm delivered 90 homology-model-quality models, among them 24 high-quality ones, and a topologically correct solution for almost all cases. The current approach opens a venue to address the modeling of larger protein structures for which chemical shifts are available.

  15. Evolutionary link community structure discovery in dynamic weighted networks

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Liu, Caihong; Wang, Jiajia; Wang, Xiang; Zhou, Bin; Zou, Peng

    2017-01-01

    Traditional community detection methods are often restricted in static network analysis. In fact, most of networks in real world obviously show dynamic characteristics with time passing. In this paper, we design a link community structure discovery algorithm in dynamic weighted networks, which can not only reveal the evolutionary link community structure, but also detect overlapping communities by mapping link communities to node communities. Meanwhile, our algorithm can also get the hierarchical structure of link communities by tuning a parameter. The proposed algorithm is based on weighted edge fitness and weighted partition density so as to determine whether to add a link to a community and whether to merge two communities to form a new link community. Experiments on both synthetic and real world networks demonstrate the proposed algorithm can detect evolutionary link community structure in dynamic weighted networks effectively.

  16. Phase shifts and the stability of macroalgal communities on Caribbean coral reefs

    NASA Astrophysics Data System (ADS)

    Mumby, Peter J.

    2009-09-01

    Caribbean coral reefs are widely thought to exhibit two alternate stable states with one being dominated by coral and the other by macroalgae. However, the observation of linear empirical relationships among grazing, algal cover and coral recruitment has led the existence of alternate stable states to be questioned; are reefs simply exhibiting a continuous phase shift in response to grazing or are the alternate states robust to certain changes in grazing? Here, a model of a Caribbean forereef is used to reconcile the existence of two stable community states with common empirical observations. Coral-depauperate and coral-dominated reef states are predicted to be stable on equilibrial time scales of decades to centuries and their emergence depends on the presence or absence of a bottleneck in coral recruitment, which is determined by threshold levels of grazing intensity and other process variables. Under certain physical and biological conditions, corals can be persistently depleted even while increases in grazing reduce macroalgal cover and enhance coral recruitment; only once levels of recruitment becomes sufficient to overwhelm the population bottleneck will the coral-dominated state begin to emerge. Therefore, modest increases in grazing will not necessarily allow coral populations to recover, whereas large increases, such as those associated with recovery of the urchin Diadema antillarum, are likely to exceed threshold levels of grazing intensity and set a trajectory of coral recovery. The postulated existence of alternate stable states is consistent with field observations of linear relationships between grazing, algal cover and coral recruitment when coral cover is low and algal exclusion when coral cover is high. The term ‘macroalgal dominated’ is potentially misleading because the coral-depauperate state can be associated with various levels of macroalgal cover. The term ‘coral depauperate’ is preferable to ‘macroalgal dominated’ when describing

  17. Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information

    PubMed Central

    Fritzsching, K. J.; Yang, Y.; Schmidt-Rohr, K.

    2013-01-01

    We introduce a Python-based program that utilizes the large database of 13C and 15N chemical shifts in the Biological Magnetic Resonance Bank to rapidly predict the amino acid type and secondary structure from correlated chemical shifts. The program, called PACSYlite Unified Query (PLUQ), is designed to help assign peaks obtained from 2D 13C–13C, 15N–13C, or 3D 15N–13C–13C magic-angle-spinning correlation spectra. We show secondary-structure specific 2D 13C–13C correlation maps of all twenty amino acids, constructed from a chemical shift database of 262,209 residues. The maps reveal interesting conformation-dependent chemical shift distributions and facilitate searching of correlation peaks during amino-acid type assignment. Based on these correlations, PLUQ outputs the most likely amino acid types and the associated secondary structures from inputs of experimental chemical shifts. We test the assignment accuracy using four high-quality protein structures. Based on only the Cα and Cβ chemical shifts, the highest-ranked PLUQ assignments were 40–60 % correct in both the amino-acid type and the secondary structure. For three input chemical shifts (CO–Cα–Cβ or N–Cα–Cβ), the first-ranked assignments were correct for 60 % of the residues, while within the top three predictions, the correct assignments were found for 80 % of the residues. PLUQ and the chemical shift maps are expected to be useful at the first stage of sequential assignment, for combination with automated sequential assignment programs, and for highly disordered proteins for which secondary structure analysis is the main goal of structure determination. PMID:23625364

  18. Trophic and size structure of West Indian bird communities.

    PubMed

    Faaborg, J

    1982-03-01

    Much discussion has occurred in recent years on whether observed patterns of structure in island bird communities are the result of competitive interactions among species or independent rates of colonization and extinction. Here two patterns of structure are presented for birds on 12 West Indian islands. Each of four major foraging guilds shows a distinct species-area pattern on the islands and saturation of species within habitats on larger islands. Frugivores have the steepest species-area curve and highest species numbers at saturation while nectarivores are lowest in both values. Coexisting guild members in saturated habitats are generally of different sizes, with weight differences by a factor of 2 common. On smaller islands, small guild members are absent and size differences among coexisting guild members may increase. In many cases, birds have apparently shifted size to conform to the structural patterns. The consistency of the patterns and variation within component species is highly compatible to explanations invoking competition and complements previously described population and community characteristics of West Indian birds.

  19. Thalassiosira spp. community composition shifts in response to chemical and physical forcing in the northeast Pacific Ocean

    PubMed Central

    Chappell, P. Dreux; Whitney, LeAnn P.; Haddock, Traci L.; Menden-Deuer, Susanne; Roy, Eric G.; Wells, Mark L.; Jenkins, Bethany D.

    2013-01-01

    Diatoms are genetically diverse unicellular photosynthetic eukaryotes that are key primary producers in the ocean. Many of the over 100 extant diatom species in the cosmopolitan genus Thalassiosira are difficult to distinguish in mixed populations using light microscopy. Here, we examine shifts in Thalassiosira spp. composition along a coastal to open ocean transect that encountered a 3-month-old Haida eddy in the northeast Pacific Ocean. To quantify shifts in Thalassiosira species composition, we developed a targeted automated ribosomal intergenic spacer analysis (ARISA) method to identify Thalassiosira spp. in environmental samples. As many specific fragment lengths are indicative of individual Thalassiosira spp., the ARISA method is a useful screening tool to identify changes in the relative abundance and distribution of specific species. The method also enabled us to assess changes in Thalassiosira community composition in response to chemical and physical forcing. Thalassiosira spp. community composition in the core of a 3-month-old Haida eddy remained largely (>80%) similar over a 2-week period, despite moving 24 km southwestward. Shifts in Thalassiosira species correlated with changes in dissolved iron (Fe) and temperature throughout the sampling period. Simultaneously tracking community composition and relative abundance of Thalassiosira species within the physical and chemical context they occurred allowed us to identify quantitative linkages between environmental conditions and community response. PMID:24065961

  20. Deep Ion Torrent sequencing identifies soil fungal community shifts after frequent prescribed fires in a southeastern US forest ecosystem.

    PubMed

    Brown, Shawn P; Callaham, Mac A; Oliver, Alena K; Jumpponen, Ari

    2013-12-01

    Prescribed burning is a common management tool to control fuel loads, ground vegetation, and facilitate desirable game species. We evaluated soil fungal community responses to long-term prescribed fire treatments in a loblolly pine forest on the Piedmont of Georgia and utilized deep Internal Transcribed Spacer Region 1 (ITS1) amplicon sequencing afforded by the recent Ion Torrent Personal Genome Machine (PGM). These deep sequence data (19,000 + reads per sample after subsampling) indicate that frequent fires (3-year fire interval) shift soil fungus communities, whereas infrequent fires (6-year fire interval) permit system resetting to a state similar to that without prescribed fire. Furthermore, in nonmetric multidimensional scaling analyses, primarily ectomycorrhizal taxa were correlated with axes associated with long fire intervals, whereas soil saprobes tended to be correlated with the frequent fire recurrence. We conclude that (1) multiplexed Ion Torrent PGM analyses allow deep cost effective sequencing of fungal communities but may suffer from short read lengths and inconsistent sequence quality adjacent to the sequencing adaptor; (2) frequent prescribed fires elicit a shift in soil fungal communities; and (3) such shifts do not occur when fire intervals are longer. Our results emphasize the general responsiveness of these forests to management, and the importance of fire return intervals in meeting management objectives. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. From lithotroph- to organotroph-dominant: directional shift of microbial community in sulphidic tailings during phytostabilization

    PubMed Central

    Li, Xiaofang; Bond, Philip L.; Van Nostrand, Joy D.; Zhou, Jizhong; Huang, Longbin

    2015-01-01

    Engineering microbial diversity to enhance soil functions may improve the success of direct revegetation in sulphidic mine tailings. Therefore, it is essential to explore how remediation and initial plant establishment can alter microbial communities, and, which edaphic factors control these changes under field conditions. A long-term revegetation trial was established at a Pb-Zn-Cu tailings impoundment in northwest Queensland. The control and amended and/or revegetated treatments were sampled from the 3-year-old trial. In total, 24 samples were examined using pyrosequencing of 16S rRNA genes and various chemical properties. The results showed that the microbial diversity was positively controlled by soil soluble Si and negatively controlled by soluble S, total Fe and total As, implying that pyrite weathering posed a substantial stress on microbial development in the tailings. All treatments were dominated by typical extremophiles and lithotrophs, typically Truepera, Thiobacillus, Rubrobacter; significant increases in microbial diversity, biomass and frequency of organotrophic genera (typically Nocardioides and Altererythrobacter) were detected in the revegetated and amended treatment. We concluded that appropriate phytostabilization options have the potential to drive the microbial diversity and community structure in the tailings toward those of natural soils, however, inherent environmental stressors may limit such changes. PMID:26268667

  2. From lithotroph- to organotroph-dominant: directional shift of microbial community in sulphidic tailings during phytostabilization

    NASA Astrophysics Data System (ADS)

    Li, Xiaofang; Bond, Philip L.; van Nostrand, Joy D.; Zhou, Jizhong; Huang, Longbin

    2015-08-01

    Engineering microbial diversity to enhance soil functions may improve the success of direct revegetation in sulphidic mine tailings. Therefore, it is essential to explore how remediation and initial plant establishment can alter microbial communities, and, which edaphic factors control these changes under field conditions. A long-term revegetation trial was established at a Pb-Zn-Cu tailings impoundment in northwest Queensland. The control and amended and/or revegetated treatments were sampled from the 3-year-old trial. In total, 24 samples were examined using pyrosequencing of 16S rRNA genes and various chemical properties. The results showed that the microbial diversity was positively controlled by soil soluble Si and negatively controlled by soluble S, total Fe and total As, implying that pyrite weathering posed a substantial stress on microbial development in the tailings. All treatments were dominated by typical extremophiles and lithotrophs, typically Truepera, Thiobacillus, Rubrobacter; significant increases in microbial diversity, biomass and frequency of organotrophic genera (typically Nocardioides and Altererythrobacter) were detected in the revegetated and amended treatment. We concluded that appropriate phytostabilization options have the potential to drive the microbial diversity and community structure in the tailings toward those of natural soils, however, inherent environmental stressors may limit such changes.

  3. Peatland succession induces a shift in the community composition of Sphagnum-associated active methanotrophs.

    PubMed

    Putkinen, Anuliina; Larmola, Tuula; Tuomivirta, Tero; Siljanen, Henri M P; Bodrossy, Levente; Tuittila, Eeva-Stiina; Fritze, Hannu

    2014-06-01

    Sphagnum-associated methanotrophs (SAM) are an important sink for the methane (CH4) formed in boreal peatlands. We aimed to reveal how peatland succession, which entails a directional change in several environmental variables, affects SAM and their activity. Based on the pmoA microarray results, SAM community structure changes when a peatland develops from a minerotrophic fen to an ombrotrophic bog. Methanotroph subtypes Ia, Ib, and II showed slightly contrasting patterns during succession, suggesting differences in their ecological niche adaptation. Although the direct DNA-based analysis revealed a high diversity of type Ib and II methanotrophs throughout the studied peatland chronosequence, stable isotope probing (SIP) of the pmoA gene indicated they were active mainly during the later stages of succession. In contrast, type Ia methanotrophs showed active CH4 consumption in all analyzed samples. SIP-derived (13)C-labeled 16S rRNA gene clone libraries revealed a high diversity of SAM in every succession stage including some putative Methylocella/Methyloferula methanotrophs that are not detectable with the pmoA-based approach. In addition, a high diversity of 16S rRNA gene sequences likely representing cross-labeled nonmethanotrophs was discovered, including a significant proportion of Verrucomicrobia-related sequences. These results help to predict the effects of changing environmental conditions on SAM communities and activity.

  4. Resources alter the structure and increase stochasticity in bromeliad microfauna communities.

    PubMed

    Petermann, Jana S; Kratina, Pavel; Marino, Nicholas A C; MacDonald, A Andrew M; Srivastava, Diane S

    2015-01-01

    Although stochastic and deterministic processes have been found to jointly shape structure of natural communities, the relative importance of both forces may vary across different environmental conditions and across levels of biological organization. We tested the effects of abiotic environmental conditions, altered trophic interactions and dispersal limitation on the structure of aquatic microfauna communities in Costa Rican tank bromeliads. Our approach combined natural gradients in environmental conditions with experimental manipulations of bottom-up interactions (resources), top-down interactions (predators) and dispersal at two spatial scales in the field. We found that resource addition strongly increased the abundance and reduced the richness of microfauna communities. Community composition shifted in a predictable way towards assemblages dominated by flagellates and ciliates but with lower abundance and richness of algae and amoebae. While all functional groups responded strongly and predictably to resource addition, similarity among communities at the species level decreased, suggesting a role of stochasticity in species-level assembly processes. Dispersal limitation did not affect the communities. Since our design excluded potential priority effects we can attribute the differences in community similarity to increased demographic stochasticity of resource-enriched communities related to erratic changes in population sizes of some species. In contrast to resources, predators and environmental conditions had negligible effects on community structure. Our results demonstrate that bromeliad microfauna communities are strongly controlled by bottom-up forces. They further suggest that the relative importance of stochasticity may change with productivity and with the organizational level at which communities are examined.

  5. Resources Alter the Structure and Increase Stochasticity in Bromeliad Microfauna Communities

    PubMed Central

    Petermann, Jana S.; Kratina, Pavel; Marino, Nicholas A. C.; MacDonald, A. Andrew M.; Srivastava, Diane S.

    2015-01-01

    Although stochastic and deterministic processes have been found to jointly shape structure of natural communities, the relative importance of both forces may vary across different environmental conditions and across levels of biological organization. We tested the effects of abiotic environmental conditions, altered trophic interactions and dispersal limitation on the structure of aquatic microfauna communities in Costa Rican tank bromeliads. Our approach combined natural gradients in environmental conditions with experimental manipulations of bottom-up interactions (resources), top-down interactions (predators) and dispersal at two spatial scales in the field. We found that resource addition strongly increased the abundance and reduced the richness of microfauna communities. Community composition shifted in a predictable way towards assemblages dominated by flagellates and ciliates but with lower abundance and richness of algae and amoebae. While all functional groups responded strongly and predictably to resource addition, similarity among communities at the species level decreased, suggesting a role of stochasticity in species-level assembly processes. Dispersal limitation did not affect the communities. Since our design excluded potential priority effects we can attribute the differences in community similarity to increased demographic stochasticity of resource-enriched communities related to erratic changes in population sizes of some species. In contrast to resources, predators and environmental conditions had negligible effects on community structure. Our results demonstrate that bromeliad microfauna communities are strongly controlled by bottom-up forces. They further suggest that the relative importance of stochasticity may change with productivity and with the organizational level at which communities are examined. PMID:25775464

  6. Epidemic spreading on complex networks with community structures

    PubMed Central

    Stegehuis, Clara; van der Hofstad, Remco; van Leeuwaarden, Johan S. H.

    2016-01-01

    Many real-world networks display a community structure. We study two random graph models that create a network with similar community structure as a given network. One model preserves the exact community structure of the original network, while the other model only preserves the set of communities and the vertex degrees. These models show that community structure is an important determinant of the behavior of percolation processes on networks, such as information diffusion or virus spreading: the community structure can both enforce as well as inhibit diffusion processes. Our models further show that it is the mesoscopic set of communities that matters. The exact internal structures of communities barely influence the behavior of percolation processes across networks. This insensitivity is likely due to the relative denseness of the communities. PMID:27440176

  7. Epidemic spreading on complex networks with community structures

    NASA Astrophysics Data System (ADS)

    Stegehuis, Clara; van der Hofstad, Remco; van Leeuwaarden, Johan S. H.

    2016-07-01

    Many real-world networks display a community structure. We study two random graph models that create a network with similar community structure as a given network. One model preserves the exact community structure of the original network, while the other model only preserves the set of communities and the vertex degrees. These models show that community structure is an important determinant of the behavior of percolation processes on networks, such as information diffusion or virus spreading: the community structure can both enforce as well as inhibit diffusion processes. Our models further show that it is the mesoscopic set of communities that matters. The exact internal structures of communities barely influence the behavior of percolation processes across networks. This insensitivity is likely due to the relative denseness of the communities.

  8. Microbial community shifts on an anammox reactor after a temperature shock using 454-pyrosequencing analysis.

    PubMed

    Isanta, Eduardo; Bezerra, Tercia; Fernández, Isaac; Suárez-Ojeda, María Eugenia; Pérez, Julio; Carrera, Julián

    2015-04-01

    To explore the changes in the microbial community structure during the recovery process of an anammox reactor after a temperature shock, the 454-pyrosequencing technique was used. The temperature shock reduced the nitrogen removal rate up to 92% compared to that just before the temperature shock, and it took 70 days to recover a similar nitrogen removal rate to that before the temperature shock (ca. 0.30 g N L(-1) d(-1)). Pyrosequencing results indicated that microbial diversity in the reactor decreased as the reactor progressively recovered from the temperature shock. Anammox bacteria were accounted as 6%, 35% and 46% of total sequence reads in samples taken 13, 45 and 166 days after the temperature shock. These results were in agreement with N-removal performance results and anammox activity measured in the reactor during the recovery process. An anammox specific primer was used to precisely determine the anammox species in the biomass samples.

  9. Prediction algorithm for amino acid types with their secondary structure in proteins (PLATON) using chemical shifts.

    PubMed

    Labudde, D; Leitner, D; Krüger, M; Oschkinat, H

    2003-01-01

    The algorithm PLATON is able to assign sets of chemical shifts derived from a single residue to amino acid types with its secondary structure (amino acid species). A subsequent ranking procedure using optionally two different penalty functions yields predictions for possible amino acid species for the given set of chemical shifts. This was demonstrated in the case of the alpha-spectrin SH3 domain and applied to 9 further protein data sets taken from the BioMagRes database. A database consisting of reference chemical shift patterns (reference CSPs) was generated from assigned chemical shifts of proteins with known 3D-structure. This reference CSP database is used in our approach for extracting distributions of amino acid types with their most likely secondary structure elements (namely alpha-helix, beta-sheet, and coil) for single amino acids by comparison with query CSPs. Results obtained for the 10 investigated proteins indicates that the percentage of correct amino acid species in the first three positions in the ranking list, ranges from 71.4% to 93.2% for the more favorable penalty function. Where only the top result of the ranking list for these 10 proteins is considered, 36.5% to 83.1% of the amino acid species are correctly predicted. The main advantage of our approach, over other methods that rely on average chemical shift values is the ability to increase database content by incorporating newly derived CSPs, and therefore to improve PLATON's performance over time.

  10. Protein Structural Information Derived from NMR Chemical Shift with the Neural Network Program TALOS-N

    PubMed Central

    Shen, Yang; Bax, Ad

    2015-01-01

    Summary Chemical shifts are obtained at the first stage of any protein structural study by NMR spectroscopy. Chemical shifts are known to be impacted by a wide range of structural factors and the artificial neural network based TALOS-N program has been trained to extract backbone and sidechain torsion angles from 1H, 15N and 13C shifts. The program is quite robust, and typically yields backbone torsion angles for more than 90% of the residues, and sidechain χ1 rotamer information for about half of these, in addition to reliably predicting secondary structure. The use of TALOS-N is illustrated for the protein DinI, and torsion angles obtained by TALOS-N analysis from the measured chemical shifts of its backbone and 13Cβ nuclei are compared to those seen in a prior, experimentally determined structure. The program is also particularly useful for generating torsion angle restraints, which then can be used during standard NMR protein structure calculations. PMID:25502373

  11. Quantum chemical 13Cα chemical shift calculations for protein NMR structure determination, refinement, and validation

    PubMed Central

    Vila, Jorge A.; Aramini, James M.; Rossi, Paolo; Kuzin, Alexandre; Su, Min; Seetharaman, Jayaraman; Xiao, Rong; Tong, Liang; Montelione, Gaetano T.; Scheraga, Harold A.

    2008-01-01

    A recently determined set of 20 NMR-derived conformations of a 48-residue all-α-helical protein, (PDB ID code 2JVD), is validated here by comparing the observed 13Cα chemical shifts with those computed at the density functional level of theory. In addition, a recently introduced physics-based method, aimed at determining protein structures by using NOE-derived distance constraints together with observed and computed 13Cα chemical shifts, was applied to determine a new set of 10 conformations, (Set-bt), as a blind test for the same protein. A cross-validation of these two sets of conformations in terms of the agreement between computed and observed 13Cα chemical shifts, several stereochemical quality factors, and some NMR quality assessment scores reveals the good quality of both sets of structures. We also carried out an analysis of the agreement between the observed and computed 13Cα chemical shifts for a slightly longer construct of the protein solved by x-ray crystallography at 2.0-Å resolution (PDB ID code 3BHP) with an identical amino acid residue sequence to the 2JVD structure for the first 46 residues. Our results reveal that both of the NMR-derived sets, namely 2JVD and Set-bt, are somewhat better representations of the observed 13Cα chemical shifts in solution than the 3BHP crystal structure. In addition, the 13Cα-based validation analysis appears to be more sensitive to subtle structural differences across the three sets of structures than any other NMR quality-assessment scores used here, and, although it is computationally intensive, this analysis has potential value as a standard procedure to determine, refine, and validate protein structures. PMID:18787110

  12. The Shifting Sands of Health Care Delivery: Curriculum Revision and Integration of Community Health Nursing.

    ERIC Educational Resources Information Center

    Conger, Cynthia O'Neill; Baldwin, Joan H.; Abegglen, JoAnn; Callister, Lynn C.

    1999-01-01

    Brigham Young University's nursing curriculum was revised to reflect the community-driven nature of primary health care. Curricular threads of inquiry, practice, stewardship, spirituality, and service are the framework for integrating community health nursing practice. (SK)

  13. The Shifting Sands of Health Care Delivery: Curriculum Revision and Integration of Community Health Nursing.

    ERIC Educational Resources Information Center

    Conger, Cynthia O'Neill; Baldwin, Joan H.; Abegglen, JoAnn; Callister, Lynn C.

    1999-01-01

    Brigham Young University's nursing curriculum was revised to reflect the community-driven nature of primary health care. Curricular threads of inquiry, practice, stewardship, spirituality, and service are the framework for integrating community health nursing practice. (SK)

  14. Monitoring the refinement of crystal structures with (15)N solid-state NMR shift tensor data.

    PubMed

    Kalakewich, Keyton; Iuliucci, Robbie; Mueller, Karl T; Eloranta, Harriet; Harper, James K

    2015-11-21

    The (15)N chemical shift tensor is shown to be extremely sensitive to lattice structure and a powerful metric for monitoring density functional theory refinements of crystal structures. These refinements include lattice effects and are applied here to five crystal structures. All structures improve based on a better agreement between experimental and calculated (15)N tensors, with an average improvement of 47.0 ppm. Structural improvement is further indicated by a decrease in forces on the atoms by 2-3 orders of magnitude and a greater similarity in atom positions to neutron diffraction structures. These refinements change bond lengths by more than the diffraction errors including adjustments to X-Y and X-H bonds (X, Y = C, N, and O) of 0.028 ± 0.002 Å and 0.144 ± 0.036 Å, respectively. The acquisition of (15)N tensors at natural abundance is challenging and this limitation is overcome by improved (1)H decoupling in the FIREMAT method. This decoupling dramatically narrows linewidths, improves signal-to-noise by up to 317%, and significantly improves the accuracy of measured tensors. A total of 39 tensors are measured with shifts distributed over a range of more than 400 ppm. Overall, experimental (15)N tensors are at least 5 times more sensitive to crystal structure than (13)C tensors due to nitrogen's greater polarizability and larger range of chemical shifts.

  15. Use of 13Cα Chemical-Shifts in Protein Structure Determination

    PubMed Central

    Vila, Jorge A.; Ripoll, Daniel R.; Scheraga, Harold A.

    2008-01-01

    A physics-based method, aimed at determining protein structures by using NOE-derived distances together with observed and computed 13C chemical shifts, is proposed. The approach makes use of 13Cα chemical shifts, computed at the density functional level of theory, to obtain torsional constraints for all backbone and side-chain torsional angles without making a priori use of the occupancy of any region of the Ramachandran map by the amino acid residues. The torsional constraints are not fixed but are changed dynamically in each step of the procedure, following an iterative self-consistent approach intended to identify a set of conformations for which the computed 13Cα chemical shifts match the experimental ones. A test is carried out on a 76-amino acid all-α-helical protein, namely the B. Subtilis acyl carrier protein. It is shown that, starting from randomly generated conformations, the final protein models are more accurate than an existing NMR-derived structure model of this protein, in terms of both the agreement between predicted and observed 13Cα chemical shifts and some stereochemical quality indicators, and of similar accuracy as one of the protein models solved at a high level of resolution. The results provide evidence that this methodology can be used not only for structure determination but also for additional protein structure refinement of NMR-derived models deposited in the Protein Data Bank. PMID:17516673

  16. Automated assignment of NMR chemical shifts based on a known structure and 4D spectra.

    PubMed

    Trautwein, Matthias; Fredriksson, Kai; Möller, Heiko M; Exner, Thomas E

    2016-08-01

    Apart from their central role during 3D structure determination of proteins the backbone chemical shift assignment is the basis for a number of applications, like chemical shift perturbation mapping and studies on the dynamics of proteins. This assignment is not a trivial task even if a 3D protein structure is known and needs almost as much effort as the assignment for structure prediction if performed manually. We present here a new algorithm based solely on 4D [(1)H,(15)N]-HSQC-NOESY-[(1)H,(15)N]-HSQC spectra which is able to assign a large percentage of chemical shifts (73-82 %) unambiguously, demonstrated with proteins up to a size of 250 residues. For the remaining residues, a small number of possible assignments is filtered out. This is done by comparing distances in the 3D structure to restraints obtained from the peak volumes in the 4D spectrum. Using dead-end elimination, assignments are removed in which at least one of the restraints is violated. Including additional information from chemical shift predictions, a complete unambiguous assignment was obtained for Ubiquitin and 95 % of the residues were correctly assigned in the 251 residue-long N-terminal domain of enzyme I. The program including source code is available at https://github.com/thomasexner/4Dassign .

  17. Community-oriented support and research structures

    NASA Astrophysics Data System (ADS)

    Attig, Norbert; Eickermann, Thomas; Gibbon, Paul; Lippert, Thomas

    2009-07-01

    Coordinated by the Partnership for Advanced Computing in Europe (PRACE) Europe is restructuring and strengthening its high-performance computing infrastructure with the aim to create a model HPC ecosystem. At the tip of the pyramid, up to six centres are envisaged that will operate systems of the highest performance class. The HPC Research Infrastructure (HPC-RI) will comprise European, national and regional centres. Science communities are integral partners, strong links will include Grid and Cloud users. The HPC-RI strives at providing scientists all over Europe, on the one hand, with unlimited and independent access to state-of-the-art computer resources in all performance classes and, on the other hand, with a world-class pan-European competence and support network. While the hardware-oriented buildup of the infrastructure is making progress, high-quality user support and software development in the upcoming era of unprecedented parallelism and exascale on the horizon have become the imminent challenges. This has been clearly recognized by the European Commission, who will issue calls for proposals to fund petascale software development in summer 2009. Although traditional support structures are well established in Europe's major supercomputing centres, it is questionable if these structures are able to meet the challenges of the future: in general, support structures are based on cross-disciplinary computer science and mathematics teams; disciplinary computational science support usually is given in an ad-hoc, project-oriented manner. In this paper, we describe our approach to establish a suitable support structure-Simulation Laboratories (SL). SLs are currently being established at the Jülich Supercomputing Centre of the Forschungszentrum Jülich (FZJ) and at the Steinbuch Centre for Computing (SCC) of the Karlsruhe Institute for Technology (KIT) in Germany. While SLs are community-oriented, i.e. each SL focusses on a specific community, they are structured

  18. Pyrosequencing reveals shifts in the bacterial epimural community relative to dietary concentrate amount in goats.

    PubMed

    Wetzels, S U; Mann, E; Metzler-Zebeli, B U; Wagner, M; Klevenhusen, F; Zebeli, Q; Schmitz-Esser, S

    2015-08-01

    Ecological balance in the rumen is highly sensitive to concentrate-rich diets. Yet the effects of these feeding practices on the caprine bacterial epimural microbiome (CBEM), a microbial community with putative important physiological functions in the rumen, are largely unexplored. This study aimed to investigate the effect of dietary concentrate amount on ruminal CBEM. Seventeen growing goats were fed diets with 0 [n=5; 6.2MJ of metabolizable energy (ME)/d], 30 (n=6; 7.3MJ of /d), or 60% (n=6; 10.2MJ of ME/d) concentrate for 6 wk. Two hours after their last feeding, goats were euthanized and tissue samples of the ventral rumen wall were collected, washed in phosphate-buffered saline to detach loosely attached bacteria, and stored at -20°C for further processing. Genomic DNA was isolated from thawed rumen mucosa samples and used for Roche/454 Life Science (Branford, CT) 16S rRNA gene amplicon pyrosequencing yielding 122,458 reads. Pyrosequencing data were clustered into 1,879 operational taxonomic units (OTU; 0.03 distance level). Pyrosequencing revealed Proteobacteria, Bacteroidetes, Firmicutes, and Spirochaetes as the most abundant phyla (97.7%). Compared with the 30% group, both the 60 and 0% concentrate groups harbored significantly more Firmicutes and SR1, respectively. On an OTU level, a Bergeriella-related OTU was most abundant in the CBEM, followed by 2 Campylobacter OTU, which responded differently to diets: 1 OTU was significantly increased whereas the other significantly decreased with highest concentrate amount in the diet. At the genus level, the 0% concentrate group harbored increased Kingella-like sequences compared with the other feeding groups. Furthermore, the 0% concentrate group tended to have more Bergeriella than the 30 and 60% concentrate groups. The genus Bergeriella was significantly decreased in the 60% feeding group compared with the other diets. In conclusion, this is the first report of CBEM using deep-sequencing methods on the genus

  19. Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization

    PubMed Central

    Sharon, Itai; Morowitz, Michael J.; Thomas, Brian C.; Costello, Elizabeth K.; Relman, David A.; Banfield, Jillian F.

    2013-01-01

    The gastrointestinal microbiome undergoes shifts in species and strain abundances, yet dynamics involving closely related microorganisms remain largely unknown because most methods cannot resolve them. We developed new metagenomic methods and utilized them to track species and strain level variations in microbial communities in 11 fecal samples collected from a premature infant during the first month of life. Ninety six percent of the sequencing reads were assembled into scaffolds of >500 bp in length that could be assigned to organisms at the strain level. Six essentially complete (∼99%) and two near-complete genomes were assembled for bacteria that comprised as little as 1% of the community, as well as nine partial genomes of bacteria representing as little as 0.05%. In addition, three viral genomes were assembled and assigned to their hosts. The relative abundance of three Staphylococcus epidermidis strains, as well as three phages that infect them, changed dramatically over time. Genes possibly related to these shifts include those for resistance to antibiotics, heavy metals, and phage. At the species level, we observed the decline of an early-colonizing Propionibacterium acnes strain similar to SK137 and the proliferation of novel Propionibacterium and Peptoniphilus species late in colonization. The Propionibacterium species differed in their ability to metabolize carbon compounds such as inositol and sialic acid, indicating that shifts in species composition likely impact the metabolic potential of the community. These results highlight the benefit of reconstructing complete genomes from metagenomic data and demonstrate methods for achieving this goal. PMID:22936250

  20. Shifts in the meso- and bathypelagic archaea communities composition during recovery and short-term handling of decompressed deep-sea samples.

    PubMed

    La Cono, Violetta; Smedile, Francesco; La Spada, Gina; Arcadi, Erika; Genovese, Maria; Ruggeri, Gioacchino; Genovese, Lucrezia; Giuliano, Laura; Yakimov, Michail M

    2015-06-01

    Dark ocean microbial communities are actively involved in chemoautotrophic and anaplerotic fixation of bicarbonate. Thus, aphotic pelagic realm of the ocean might represent a significant sink of CO2 and source of primary production. However, the estimated metabolic activities in the dark ocean are fraught with uncertainties. Typically, deep-sea samples are recovered to the sea surface for downstream processing on deck. Shifts in ambient settings, associated with such treatments, can likely change the metabolic activity and community structure of deep-sea adapted autochthonous microbial populations. To estimate influence of recovery and short-term handling of deep-sea samples, we monitored the succession of bathypelagic microbial community during its 3 days long on deck incubation. We demonstrated that at the end of exposition, the deep-sea archaeal population decreased threefold, whereas the bacterial fraction doubled in size. As revealed by phylogenetic analyses of amoA gene transcripts, dominance of the active ammonium-oxidizing bathypelagic Thaumarchaeota groups shifted over time very fast. These findings demonstrated the simultaneous existence of various 'deep-sea ecotypes', differentially reacting to the sampling and downstream handling. Our study supports the hypothesis that metabolically active members of meso- and bathypelagic Thaumarchaeota possess the habitat-specific distribution, metabolic complexity and genetic divergence at subpopulation level.

  1. Methods of measuring frequency shifts in the interference structure of the sound field in oceanic waveguides

    NASA Astrophysics Data System (ADS)

    Kuz'kin, V. M.; Pereselkov, S. A.

    2010-07-01

    The efficiency of the correlation method is considered as applied to measuring frequency shifts of maxima in the interference structure of the sound speed under the influence of distortions of the sound-speed profile. The method is based on tracing the position of the maximum of the cross-correlation function corresponding to the spectrum of the transmitted signal in the frequency domain. The distortion is modeled by seasonal variations of the hydrological environment. The noise immunity of the method is analyzed. The correlation method is compared with other known methods of tracing frequency shifts of the interference maxima.

  2. Parents' Reasons for Community Language Schools: Insight from a High-Shift, Non-Visible, Middle-Class Community

    ERIC Educational Resources Information Center

    Nordstrom, Janica

    2016-01-01

    In the past decade, there has been increased scholarly interest in the purpose and functions of community language schools, also known as heritage, supplementary or complementary schools. In particular, previous studies have focused on schools operating in minority communities deriving from Asian and Eastern-European countries, showing that…

  3. Seasonal shifts in predator body size diversity and trophic interactions in size-structured predator-prey systems.

    PubMed

    Rudolf, Volker H W

    2012-05-01

    1. Theory suggests that the relationship between predator diversity and prey suppression should depend on variation in predator traits such as body size, which strongly influences the type and strength of species interactions. Prey species often face a range of different sized predators, and the composition of body sizes of predators can vary between communities and within communities across seasons. 2. Here, I test how variation in size structure of predator communities influences prey survival using seasonal changes in the size structure of a cannibalistic population as a model system. Laboratory and field experiments showed that although the per-capita consumption rates increased at higher predator-prey size ratios, mortality rates did not consistently increase with average size of cannibalistic predators. Instead, prey mortality peaked at the highest level of predator body size diversity. 3. Furthermore, observed prey mortality was significantly higher than predictions from the null model that assumed no indirect interactions between predator size classes, indicating that different sized predators were not substitutable but had more than additive effects. Higher predator body size diversity therefore increased prey mortality, despite the increased potential for behavioural interference and predation among predators demonstrated in additional laboratory experiments. 4. Thus, seasonal changes in the distribution of predator body sizes altered the strength of prey suppression not only through changes in mean predator size but also through changes in the size distribution of predators. In general, this indicates that variation (i.e. diversity) within a single trait, body size, can influence the strength of trophic interactions and emphasizes the importance of seasonal shifts in size structure of natural food webs for community dynamics.

  4. On norms of operators generated by shift transformations arising in signal and image processing on meshes supplied with semigroup structures

    NASA Astrophysics Data System (ADS)

    Gumerov, R. N.

    2016-11-01

    Shift transformations and linear operators generated by shifts have a number of applications in signal and image processing. This note is concerned with a problem which has arisen in studying properties of real-world signals and images defined on meshes. For processing we suggest to introduce in domains of signals and images different semigroup structures. Semigroup operations give us opportunities to introduce shift transformations of signals and images. We study norms of polynomial filters generated by shift operators.

  5. Typology of State-Level Community College Governance Structures

    ERIC Educational Resources Information Center

    Fletcher, Jeffrey A.; Friedel, Janice Nahra

    2017-01-01

    Despite having a well-documented history about community colleges across the United States, relatively few discussions have covered state-level governance structures. To understand the typology of state community college governance structures, it must first be recognized that community college governance is characterized as a complex web of…

  6. Typology of State-Level Community College Governance Structures

    ERIC Educational Resources Information Center

    Fletcher, Jeffrey A.; Friedel, Janice Nahra

    2017-01-01

    Despite having a well-documented history about community colleges across the United States, relatively few discussions have covered state-level governance structures. To understand the typology of state community college governance structures, it must first be recognized that community college governance is characterized as a complex web of…

  7. Virioplankton community structure in Tunisian solar salterns.

    PubMed

    Boujelben, Ines; Yarza, Pablo; Almansa, Cristina; Villamor, Judith; Maalej, Sami; Antón, Josefa; Santos, Fernando

    2012-10-01

    The microbial community inhabiting Sfax solar salterns on the east coast of Tunisia has been studied by means of different molecular and culture-dependent tools that have unveiled the presence of novel microbial groups as well as a community structure different from that of other coastal hypersaline environments. We have focused on the study of the viral assemblages of these salterns and their changes along the salinity gradient and over time. Viruses from three ponds (C4, M1, and TS) encompassing salinities from moderately hypersaline to saturated (around 14, 19, and 35%, respectively) were sampled in May and October 2009 and analyzed by transmission electron microscopy (TEM) and pulsed-field gel electrophoresis (PFGE). Additionally, for all three October samples and the May TS sample, viral metagenomic DNA was cloned in fosmids, end sequenced, and analyzed. Viral concentration, as well as virus-to-cell ratios, increased along the salinity gradient, with around 10(10) virus-like particles (VLPs)/ml in close-to-saturation ponds, which represents the highest viral concentration reported so far for aquatic systems. Four distinct morphologies could be observed with TEM (spherical, tailed, spindled, and filamentous) but with various proportions in the different samples. Metagenomic analyses indicated that every pond harbored a distinct viral assemblage whose G+C content could be roughly correlated with that of the active part of the microbial community that may have constituted the putative hosts. As previously reported for hypersaline metaviromes, most sequences did not have matches in the databases, although some were conserved among the Sfax metaviromes. BLASTx, BLASTp, and dinucleotide frequency analyses indicated that (i) factors additional to salinity could be structuring viral communities and (ii) every metavirome had unique gene contents and dinucleotide frequencies. Comparison with hypersaline metaviromes available in the databases indicated that the viral

  8. Isotope shift and hyperfine structure in the atomic spectrum of hafnium by laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Zimmermann, D.; Baumann, P.; Kuszner, D.; Werner, A.

    1994-08-01

    The isotope shift and the hyperfine structure of 14 spectral lines of Hf i were investigated using high-resolution laser spectroscopy of a well-collimated beam of Hf atoms. The hyperfine splitting constants A and B of the electronic states 5G5,...,5G2,5F3 of the excited configuration 5d26s6p and of some electronic states of 5d6s26p were obtained for the two stable odd isotopes 177Hf and 179Hf. From these data one-electron hyperfine splitting parameters could be deduced, e.g., a6s=3.08(15) GHz for the magnetic dipole part in the case of 177Hf. Our accurate experimental values of the isotope shifts between the stable Hf isotopes 174, 176-180 allow a reliable separation of the effect of the specific mass shift and of the field shift for all observed spectral lines. Using the field shift of the 545.29-nm line, which corresponds to an almost pure 5d26s2-5d26s6p transition, the change in mean-square nuclear charge radius between 178Hf and 180Hf was determined to be δ=0.098(13) fm2. Values of δ for the Hf isotopes 174, 176, 177, and 179 referred to 178Hf are also available from the present work.

  9. Community Attachment and Satisfaction: The Role of a Community's Social Network Structure

    ERIC Educational Resources Information Center

    Crowe, Jessica

    2010-01-01

    This paper links the micro and macro levels of analysis by examining how different aspects of community sentiment are affected by one's personal ties to the community compared with the organizational network structure of the community. Using data collected from residents of six communities in Washington State, network analysis combined with…

  10. Community Attachment and Satisfaction: The Role of a Community's Social Network Structure

    ERIC Educational Resources Information Center

    Crowe, Jessica

    2010-01-01

    This paper links the micro and macro levels of analysis by examining how different aspects of community sentiment are affected by one's personal ties to the community compared with the organizational network structure of the community. Using data collected from residents of six communities in Washington State, network analysis combined with…

  11. Centralized Drinking Water Treatment Operations Shape Bacterial and Fungal Community Structure.

    PubMed

    Ma, Xiao; Vikram, Amit; Casson, Leonard; Bibby, Kyle

    2017-07-05

    Drinking water microbial communities impact opportunistic pathogen colonization and corrosion of water distribution systems, and centralized drinking water treatment represents a potential control for microbial community structure in finished drinking water. In this article, we examine bacterial and fungal abundance and diversity, as well as the microbial community taxonomic structure following each unit operation in a conventional surface water treatment plant. Treatment operations drove the microbial composition more strongly than sampling time. Both bacterial and fungal abundance and diversity decreased following sedimentation and filtration; however, only bacterial abundance and diversity was significantly impacted by free chlorine disinfection. Similarly, each treatment step was found to shift bacterial and fungal community beta-diversity, with the exception of disinfection on the fungal community structure. We observed the enrichment of bacterial and fungal taxa commonly found in drinking water distribution systems through the treatment process, for example, Sphingomonas following filtration and Leptospirillium and Penicillium following disinfection. Study results suggest that centralized drinking water treatment processes shape the final drinking water microbial community via selection of community members and that the bacterial community is primarily driven by disinfection while the eukaryotic community is primarily controlled by physical treatment processes.

  12. Core level shifts in Cu-Pd alloys as a function of bulk composition and structure

    NASA Astrophysics Data System (ADS)

    Boes, Jacob R.; Kondratyuk, Peter; Yin, Chunrong; Miller, James B.; Gellman, Andrew J.; Kitchin, John R.

    2015-10-01

    CuPd alloys are important materials in hydrogen purification, where they are used as dense Pd-based separation membranes. Cu is added to impart sulfur tolerance and improved mechanical properties. At intermediate compositions and T < 873 K, a BCC alloy (B2) phase occurs, which has superior separation characteristics to those of the FCC phases that form at high Cu and high Pd compositions. Identifying the composition and temperature window where the B2 phase forms is a critical need to enable the design of improved alloys. A composition spread alloy film of Cu and Pd was synthesized. The film was characterized by electron back scatter diffraction and X-ray photoelectron spectroscopy, providing the core level shifts as a function of bulk composition and bulk structure. An anomalous deviation in the Cu core level shift was observed in the composition range 0.33 < xPd < 0.55 over which the B2 phase occurs. Density functional theory calculations were used to simulate core level shifts in the FCC and B2 alloy structures. They suggest that the anomalous deviation in core level shift is due to formation of the ordered B2 phase in this composition range.

  13. Shifts in the potential distribution of Sky Island plant communities in response to climate change

    Treesearch

    John A. Kupfer; Jeff Balmat; Jacqueline L. Smith

    2005-01-01

    To examine potential responses of sky island ecosystem pattern to projected climate changes, we used topographic and climatic data to develop a predictive model of plant community distribution in Saguaro National Park East, AZ. Increasing temperatures led to an upslope movement of communities and increased the area of desert scrub at the expense of montane conifer...

  14. Developing a Comprehensive Learning Community Program: Navigating Change through Shifting Institutional Priorities

    ERIC Educational Resources Information Center

    Workman, Jamie L.; Redington, Lyn

    2016-01-01

    This is the third of a three-part series which will share information about how a mid-size, comprehensive university has worked to a learning community program, including a residential curriculum. This article focuses on how those working with Learning Communities navigate program development during changing institutional priorities.

  15. Community Structure in Online Collegiate Social Networks

    NASA Astrophysics Data System (ADS)

    Traud, Amanda; Kelsic, Eric; Mucha, Peter; Porter, Mason

    2009-03-01

    Online social networking sites have become increasingly popular with college students. The networks we studied are defined through ``friendships'' indicated by Facebook users from UNC, Oklahoma, Caltech, Georgetown, and Princeton. We apply the tools of network science to study the Facebook networks from these five different universities at a single point in time. We investigate each single-institution network's community structure, which we obtain through partitioning the graph using an eigenvector method. We use both graphical and quantitative tools, including pair-counting methods, which we interpret through statistical analysis and permutation tests to measure the correlations between the network communities and a set of characteristics given by each user (residence, class year, major, and high school). We also analyze the single gender subsets of these networks, and the impact of missing demographical data. Our study allows us to compare the online social networks for the five schools as well as infer differences in offline social interactions. At the schools studied, we were able to define which characteristics of the Facebook users correlate best with friendships.

  16. Bipartite Community Structure of eQTLs.

    PubMed

    Platig, John; Castaldi, Peter J; DeMeo, Dawn; Quackenbush, John

    2016-09-01

    Genome Wide Association Studies (GWAS) and expression quantitative trait locus (eQTL) analyses have identified genetic associations with a wide range of human phenotypes. However, many of these variants have weak effects and understanding their combined effect remains a challenge. One hypothesis is that multiple SNPs interact in complex networks to influence functional processes that ultimately lead to complex phenotypes, including disease states. Here we present CONDOR, a method that represents both cis- and trans-acting SNPs and the genes with which they are associated as a bipartite graph and then uses the modular structure of that graph to place SNPs into a functional context. In applying CONDOR to eQTLs in chronic obstructive pulmonary disease (COPD), we found the global network "hub" SNPs were devoid of disease associations through GWAS. However, the network was organized into 52 communities of SNPs and genes, many of which were enriched for genes in specific functional classes. We identified local hubs within each community ("core SNPs") and these were enriched for GWAS SNPs for COPD and many other diseases. These results speak to our intuition: rather than single SNPs influencing single genes, we see groups of SNPs associated with the expression of families of functionally related genes and that disease SNPs are associated with the perturbation of those functions. These methods are not limited in their application to COPD and can be used in the analysis of a wide variety of disease processes and other phenotypic traits.

  17. Bipartite Community Structure of eQTLs

    PubMed Central

    Platig, John; DeMeo, Dawn; Quackenbush, John

    2016-01-01

    Genome Wide Association Studies (GWAS) and expression quantitative trait locus (eQTL) analyses have identified genetic associations with a wide range of human phenotypes. However, many of these variants have weak effects and understanding their combined effect remains a challenge. One hypothesis is that multiple SNPs interact in complex networks to influence functional processes that ultimately lead to complex phenotypes, including disease states. Here we present CONDOR, a method that represents both cis- and trans-acting SNPs and the genes with which they are associated as a bipartite graph and then uses the modular structure of that graph to place SNPs into a functional context. In applying CONDOR to eQTLs in chronic obstructive pulmonary disease (COPD), we found the global network “hub” SNPs were devoid of disease associations through GWAS. However, the network was organized into 52 communities of SNPs and genes, many of which were enriched for genes in specific functional classes. We identified local hubs within each community (“core SNPs”) and these were enriched for GWAS SNPs for COPD and many other diseases. These results speak to our intuition: rather than single SNPs influencing single genes, we see groups of SNPs associated with the expression of families of functionally related genes and that disease SNPs are associated with the perturbation of those functions. These methods are not limited in their application to COPD and can be used in the analysis of a wide variety of disease processes and other phenotypic traits. PMID:27618581

  18. Lamb shifts and hyperfine structure in 6Li+ and 7Li+: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Riis, E.; Sinclair, A. G.; Poulsen, O.; Drake, G. W. F.; Rowley, W. R. C.; Levick, A. P.

    1994-01-01

    High-precision laser-resonance measurements accurate to +/-0.5 MHz or better are reported for transitions among the 1s2s 3S1-1s2p 3PJ hyperfine manifolds for each of J=0, 1, and 2 in both 6Li+ and 7Li+. A detailed analysis of hyperfine structure is performed for both the S and P states, using newly calculated values for the magnetic dipole and electric quadrupole coupling constants, and the hyperfine shifts subtracted from the measurements. The resulting transition frequencies are then analyzed on three different levels. First, the isotope shifts in the fine-structure splittings are calculated from the relativistic reduced mass and recoil terms in the Breit interaction, and compared with experiment at the +/-0.5-MHz level of accuracy. This comparison is particularly significant because J-independent theoretical uncertainties reduce through cancellation to the +/-0.01-MHz level. Second, the isotope shifts in the full transition frequencies are used to deduce the difference in rms nuclear radii. The result is Rrms(6Li)-Rrms(7Li)=0.15+/-0.01 fm, in agreement with nuclear scattering data, but with substantially improved accuracy. Third, high-precision calculations of the low-order non-QED contributions to the transition frequencies are subtracted from the measurements to obtain the residual QED shifts. The isotope-averaged and spin-averaged effective shift for 7Li+ is 37 429.40+/-0.39 MHz, with an additional uncertainty of +/-1.5 MHz due to finite nuclear size corrections. The accuracy of 11 parts per million is the best two-electron Lamb shift measurement in the literature, and is comparable to the accuracies achieved in hydrogen. Theoretical contributions to the two-electron Lamb shift are discussed, including terms of order (αZ)4 recently obtained by Chen, Cheng, and Johnson [Phys. Rev. A 47, 3692 (1993)], and the results used to extract a QED shift for the 2 3S1 state. The result of 30 254+/-12 MHz is shown to be in good accord with theory (30 250+/-30 MHz) when

  19. Stochastic graph Voronoi tessellation reveals community structure

    NASA Astrophysics Data System (ADS)

    Lázár, Zsolt I.; Papp, István; Varga, Levente; Járai-Szabó, Ferenc; Deritei, Dávid; Ercsey-Ravasz, Mária

    2017-02-01

    Given a network, the statistical ensemble of its graph-Voronoi diagrams with randomly chosen cell centers exhibits properties convertible into information on the network's large scale structures. We define a node-pair level measure called Voronoi cohesion which describes the probability for sharing the same Voronoi cell, when randomly choosing g centers in the network. This measure provides information based on the global context (the network in its entirety), a type of information that is not carried by other similarity measures. We explore the mathematical background of this phenomenon and several of its potential applications. A special focus is laid on the possibilities and limitations pertaining to the exploitation of the phenomenon for community detection purposes.

  20. Bacterial community structure in secondary wastewater treatment

    SciTech Connect

    Lin, K.T.J.

    1984-01-01

    Practically all process problems encountered in activated sludge treatment, such as bulking, sludge rising, septic sludge, foaming, dispersed growth, deflocculation, and pinpoint floc, are caused by poor separation of sludge in the secondary sedimentation tank. This occurs when the microorganisms fail to produce floc which settle well and results in an increase in effluent suspended solids and biochemical oxygen demand. In the past, attempts at control and prevention of such failures have been almost entirely empirical. In order to better understand these flocculation problems, a study of the community structure of the bacteria as in activated sludge has been conducted. In addition to activated sludge, samples from a trickling filter and a rotating biological contactor (RBC) also were examined for comparison.

  1. The relationship between microbial community structure and functional stability, tested experimentally in an upland pasture soil.

    PubMed

    Griffiths, B S; Kuan, H L; Ritz, K; Glover, L A; McCaig, A E; Fenwick, C

    2004-01-01

    Soil collected from an upland pasture was manipulated experimentally in ways shown previously to alter microbial community structure. One set of soil was subjected to chloroform fumigation for 0, 0.5, 2, or 24 h and the other was sterilised by gamma-irradiation and inoculated with a 10(-2), 10(-4), 10(-6), or 10(-8) dilution of a soil suspension prepared from unsterilized soil. Following incubation for 8 months, to allow for the stabilization of microbial biomass and activity, the resulting microbial community structure (determined by PCR-DGGE of bacterial specific amplification products of total soil DNA) was assessed. In addition, the functional stability (defined here as the resistance and resilience of short-term decomposition of plant residues to a transient heat or a persistent copper perturbation) was determined. Changes in the active bacterial population following perturbation (determined by RT-PCR-DGGE of total soil RNA) were also monitored. The manipulations resulted in distinct shifts in microbial community structure as shown by PCR-DGGE profiles, but no significant decreases in the number of bands. These shifts in microbial community structure were associated with a reduction in functional stability. The clear correlation between altered microbial community structure and functional stability observed in this upland pasture soil was not evident when the same protocols were applied to soils in other studies. RT-PCR-DGGE profiles only detected a shift in the active bacterial population following heat, but not copper, perturbation. We conclude that the functional stability of decomposition is related to specific components of the microbial community.

  2. The network of collaboration among rappers and its community structure

    NASA Astrophysics Data System (ADS)

    Smith, Reginald D.

    2006-02-01

    The social network formed by the collaboration between rappers is studied using standard statistical techniques for analysing complex networks. In addition, the community structure of the rap music community is analysed using a new method that uses weighted edges to determine which connections are most important and revealing among all the communities. The results of this method as well as possible reasons for the structure of the rap music community are discussed.

  3. Factors affecting the use of 13Cα chemical shifts to determine, refine, and validate protein structures

    PubMed Central

    Vila, Jorge A.; Scheraga, Harold A.

    2008-01-01

    Interest centers here on the analysis of two different, but related, phenomena that affect side-chain conformations and consequently 13Cα chemical shifts and their applications to determine, refine, and validate protein structures. The first is whether 13Cα chemical shifts, computed at the DFT level of approximation with charged residues is a better approximation of observed 13Cα chemical shifts than those computed with neutral residues for proteins in solution. Accurate computation of 13Cα chemical shifts requires a proper representation of the charges, which might not take on integral values. For this analysis, the charges for 139 conformations of the protein ubiquitin were determined by explicit consideration of protein binding equilibria, at a given pH, that is, by exploring the 2ξ possible ionization states of the whole molecule, with ξ being the number of ionizable groups. The results of this analysis, as revealed by the shielding/deshield-ing of the 13Cα nucleus, indicated that: (i) there is a significant difference in the computed 13Cα chemical shifts, between basic and acidic groups, as a function of the degree of charge of the side chain; (ii) this difference is attributed to the distance between the ionizable groups and the 13Cα nucleus, which is shorter for the acidic Asp and Glu groups as compared with that for the basic Lys and Arg groups; and (iii) the use of neutral, rather than charged, basic and acidic groups is a better approximation of the observed 13Cα chemical shifts of a protein in solution. The second is how side-chain flexibility influences computed 13Cα chemical shifts in an additional set of ubiquitin conformations, in which the side chains are generated from an NMR-derived structure with the backbone conformation assumed to be fixed. The 13Cα chemical shift of a given amino acid residue in a protein is determined, mainly, by its own backbone and side-chain torsional angles, independent of the neighboring residues; the

  4. Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure.

    PubMed

    Chriki, Ronen; Yanai, Avner; Shappir, Joseph; Levy, Uriel

    2013-05-06

    We propose an ultrathin solar cell architecture design which incorporates two periodic layers of metallic and dielectric gratings. Both layers couple the incident light to photonic and plasmonic modes, thus increasing absorption within the cell. The relative position between the two gratings is examined, and is shown to have significant impact on absorption. A lateral shift between the two layers introduces structural asymmetry, and enables coupling of the incident field to optically dark photonic modes. Furthermore, the lateral shift influences mode interactions. Current density enhancement is calculated under AM1.5 G solar illumination, and is found to reach a value of 1.86. The structure proposed is optimized and compared to solar cells with a single layer of metallic or dielectric nanostructures.

  5. PACSY, a relational database management system for protein structure and chemical shift analysis.

    PubMed

    Lee, Woonghee; Yu, Wookyung; Kim, Suhkmann; Chang, Iksoo; Lee, Weontae; Markley, John L

    2012-10-01

    PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.edu.

  6. Linking pollution induced community tolerance (PICT) and microbial community structure in chronically metal polluted estuarine sediments.

    PubMed

    Ogilvie, Lesley A; Grant, Alistair

    2008-03-01

    We tested the ability of pollution induced community tolerance (PICT) to detect the effects of chronic metal pollution on estuarine sediment microbial communities, along a gradient spanning two orders of magnitude in metal concentrations. In tandem, we investigated the associated microbial community structure using terminal restriction fragment length polymorphism (T-RFLP). Tolerance of microbes to Cu, measured as IC50 (inhibitory concentration 50%), was strongly correlated with pore water Cu concentration (r(2)=0.842). No strong correlation existed for other metals tested, highlighting the ability of PICT to identify the pollutant causing a toxic effect. There was no correlation between microbial community structure and community tolerance to metals tested, but analysis of community structure did provide some information on reasons for observed PICT response. PICT methodology used here provided a greater strength and consistency of association with pollutant concentration compared to microbial community structure and can be recommended as a sensitive indicator of metal pollution on estuarine sediment microbial communities.

  7. Pyrosequencing reveals the microbial communities in the Red Sea sponge Carteriospongia foliascens and their impressive shifts in abnormal tissues.

    PubMed

    Gao, Zhao-Ming; Wang, Yong; Lee, On On; Tian, Ren-Mao; Wong, Yue Him; Bougouffa, Salim; Batang, Zenon; Al-Suwailem, Abdulaziz; Lafi, Feras F; Bajic, Vladimir B; Qian, Pei-Yuan

    2014-10-01

    Abnormality and disease in sponges have been widely reported, yet how sponge-associated microbes respond correspondingly remains inconclusive. Here, individuals of the sponge Carteriospongia foliascens under abnormal status were collected from the Rabigh Bay along the Red Sea coast. Microbial communities in both healthy and abnormal sponge tissues and adjacent seawater were compared to check the influences of these abnormalities on sponge-associated microbes. In healthy tissues, we revealed low microbial diversity with less than 100 operational taxonomic units (OTUs) per sample. Cyanobacteria, affiliated mainly with the sponge-specific species "Candidatus Synechococcus spongiarum," were the dominant bacteria, followed by Bacteroidetes and Proteobacteria. Intraspecies dynamics of microbial communities in healthy tissues were observed among sponge individuals, and potential anoxygenic phototrophic bacteria were found. In comparison with healthy tissues and the adjacent seawater, abnormal tissues showed dramatic increase in microbial diversity and decrease in the abundance of sponge-specific microbial clusters. The dominated cyanobacterial species Candidatus Synechococcus spongiarum decreased and shifted to unspecific cyanobacterial clades. OTUs that showed high similarity to sequences derived from diseased corals, such as Leptolyngbya sp., were found to be abundant in abnormal tissues. Heterotrophic Planctomycetes were also specifically enriched in abnormal tissues. Overall, we revealed the microbial communities of the cyanobacteria-rich sponge, C. foliascens, and their impressive shifts under abnormality.

  8. A Hierarchical Model for Language Maintenance and Language Shift: Focus on the Malaysian Chinese Community

    ERIC Educational Resources Information Center

    Wang, Xiaomei; Chong, Siew Ling

    2011-01-01

    Social factors involved in language maintenance and language shift (LMLS) have been the focus of LMLS studies. Previous studies provide fundamental support for the theoretical development of this research branch. However, there is no discussion regarding the hierarchical order of these social factors, i.e. the degree of importance of various…

  9. MCDHF calculations of isotope shifts of even-parity fine-structure levels in neutral osmium

    NASA Astrophysics Data System (ADS)

    Palmeri, P.; Quinet, P.; Bouazza, S.

    2016-12-01

    Ab initio multiconfiguration Dirac-Hartree-Fock (MCDHF) calculations have been carried out in order to determine the isotope shifts of all the fine-structure levels belonging to the even-parity configurations (5d+6s)8 in neutral osmium, Os I. The theoretical predictions have been compared to laser spectroscopy measurements available in the literature showing a good agreement between theory and experiment.

  10. Hyperfine structure and isotope shifts of transitions in neutral and singly ionized ytterbium

    NASA Technical Reports Server (NTRS)

    Berends, R. W.; Maleki, L.

    1992-01-01

    The present experimental investigation of the hyperfine structure and isotopic shifts of transitions in neutral and singly-ionized Yb, which constitute a system of some interest to microwave-frequency standards, used counterpropagating pump and probe laser beams directed through a hollow-cathode discharge lamp. The results obtained are in agreement with previous measurements except in the case of the Yb-173(+) 6 2P0 sub 3/2 state, which is more accurately determined.

  11. Forest protected areas governance in Zimbabwe: Shift needed away from a long history of local community exclusion.

    PubMed

    Mutekwa, V T; Gambiza, J

    2017-08-01

    In this literature review based paper we explored the concept of exclusion of local communities from accessing resources in forest protected areas (FPAs) in Zimbabwe. We discussed the colonial and post-colonial forms, causes and mechanisms of exclusion and their social, economic and ecological outcomes. We examined the range of powers embodied in and exercised through various mechanisms, processes and social relations and their impact on local communities' access to FPA resources and associated benefits along the historical trajectory of forest governance in Zimbabwe. Results showed that the forms and extent of exclusion changed over time in tandem with the shifting political and economic landscape. During the colonial period, it was total exclusion whereby people were evicted from forest land as well as being denied access to basic resources for their livelihoods. Local communities' access to low value FPA resources improved during the post-colonial period but access to high value resources like commercial timber as well as sharing income benefits derived from FPA commercial activities remained a pipe dream. Regulation, legitimation, force and markets constituted the mixture of the power elements that FPA governing authorities used to exclude local communities. These powers remained intact despite attempts at collaborative governance in the 1990s. However, from the year 2000, local communities expressed their dissatisfaction with the centralised exclusionary governance system by invading the FPAs rendering them ungovernable. There is therefore a need for policy reform within the FPA sector to improve the current dire situation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Community shift of biofilms developed in a full-scale drinking water distribution system switching from different water sources.

    PubMed

    Li, Weiying; Wang, Feng; Zhang, Junpeng; Qiao, Yu; Xu, Chen; Liu, Yao; Qian, Lin; Li, Wenming; Dong, Bingzhi

    2016-02-15

    The bacterial community of biofilms in drinking water distribution systems (DWDS) with various water sources has been rarely reported. In this research, biofilms were sampled at three points (A, B, and C) during the river water source phase (phase I), the interim period (phase II) and the reservoir water source phase (phase III), and the biofilm community was determined using the 454-pyrosequencing method. Results showed that microbial diversity declined in phase II but increased in phase III. The primary phylum was Proteobacteria during three phases, while the dominant class at points A and B was Betaproteobacteria (>49%) during all phases, but that changed to Holophagae in phase II (62.7%) and Actinobacteria in phase III (35.6%) for point C, which was closely related to its water quality. More remarkable community shift was found at the genus level. In addition, analysis results showed that water quality could significantly affect microbial diversity together, while the nutrient composition (e.g. C/N ration) of the water environment might determine the microbial community. Furthermore, Mycobacterium spp. and Pseudomonas spp. were detected in the biofilm, which should give rise to attention. This study revealed that water source switching produced substantial impact on the biofilm community. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. L2-Proficiency-Dependent Laterality Shift in Structural Connectivity of Brain Language Pathways.

    PubMed

    Xiang, Huadong; van Leeuwen, Tessa Marije; Dediu, Dan; Roberts, Leah; Norris, David G; Hagoort, Peter

    2015-08-01

    Diffusion tensor imaging (DTI) and a longitudinal language learning approach were applied to investigate the relationship between the achieved second language (L2) proficiency during L2 learning and the reorganization of structural connectivity between core language areas. Language proficiency tests and DTI scans were obtained from German students before and after they completed an intensive 6-week course of the Dutch language. In the initial learning stage, with increasing L2 proficiency, the hemispheric dominance of the Brodmann area (BA) 6-temporal pathway (mainly along the arcuate fasciculus) shifted from the left to the right hemisphere. With further increased proficiency, however, lateralization dominance was again found in the left BA6-temporal pathway. This result is consistent with reports in the literature that imply a stronger involvement of the right hemisphere in L2 processing especially for less proficient L2 speakers. This is the first time that an L2 proficiency-dependent laterality shift in the structural connectivity of language pathways during L2 acquisition has been observed to shift from left to right and back to left hemisphere dominance with increasing L2 proficiency. The authors additionally find that changes in fractional anisotropy values after the course are related to the time elapsed between the two scans. The results suggest that structural connectivity in (at least part of) the perisylvian language network may be subject to fast dynamic changes following language learning.

  14. Long-Term Regional Shifts in Plant Community Composition Are Largely Explained by Local Deer Impact Experiments

    PubMed Central

    Frerker, Katie; Sabo, Autumn; Waller, Donald

    2014-01-01

    The fact that herbivores and predators exert top-down effects to alter community composition and dynamics at lower trophic levels is no longer controversial, yet we still lack evidence of the full nature, extent, and longer-term effects of these impacts. Here, we use results from a set of replicated experiments on the local impacts of white-tailed deer to evaluate the extent to which such impacts could account for half-century shifts in forest plant communities across the upper Midwest, USA. We measured species' responses to deer at four sites using 10–20 year-old deer exclosures. Among common species, eight were more abundant outside the exclosures, seven were commoner inside, and 16 had similar abundances in- and outside. Deer herbivory greatly increased the abundance of ferns and graminoids and doubled the abundance of exotic plants. In contrast, deer greatly reduced tree regeneration, shrub cover (100–200 fold in two species), plant height, plant reproduction, and the abundance of forbs. None of 36 focal species increased in reproduction or grew taller in the presence of deer, contrary to expectations. We compared these results to data on 50-year regional shifts in species abundances across 62 sites. The effects of herbivory by white-tailed deer accurately account for many of the long-term regional shifts observed in species' abundances (R2 = 0.41). These results support the conjecture that deer impacts have driven many of the regional shifts in forest understory cover and composition observed in recent decades. Our ability to link results from shorter-term, local experiments to regional long-term studies of ecological change strengthens the inferences we can draw from both approaches. PMID:25551827

  15. Long-term regional shifts in plant community composition are largely explained by local deer impact experiments.

    PubMed

    Frerker, Katie; Sabo, Autumn; Waller, Donald

    2014-01-01

    The fact that herbivores and predators exert top-down effects to alter community composition and dynamics at lower trophic levels is no longer controversial, yet we still lack evidence of the full nature, extent, and longer-term effects of these impacts. Here, we use results from a set of replicated experiments on the local impacts of white-tailed deer to evaluate the extent to which such impacts could account for half-century shifts in forest plant communities across the upper Midwest, USA. We measured species' responses to deer at four sites using 10-20 year-old deer exclosures. Among common species, eight were more abundant outside the exclosures, seven were commoner inside, and 16 had similar abundances in- and outside. Deer herbivory greatly increased the abundance of ferns and graminoids and doubled the abundance of exotic plants. In contrast, deer greatly reduced tree regeneration, shrub cover (100-200 fold in two species), plant height, plant reproduction, and the abundance of forbs. None of 36 focal species increased in reproduction or grew taller in the presence of deer, contrary to expectations. We compared these results to data on 50-year regional shifts in species abundances across 62 sites. The effects of herbivory by white-tailed deer accurately account for many of the long-term regional shifts observed in species' abundances (R2 = 0.41). These results support the conjecture that deer impacts have driven many of the regional shifts in forest understory cover and composition observed in recent decades. Our ability to link results from shorter-term, local experiments to regional long-term studies of ecological change strengthens the inferences we can draw from both approaches.

  16. Greenhouse gas emission response to global change may be limited by vegetation community shifts

    EPA Science Inventory

    Coastal marshes experience a confluence of global changes including climate change, sea level rise, exotic species invasion, and eutrophication. These changes are likely to exert new abiotic stressors and affect interspecific interactions that influence vegetation community stru...

  17. Compositional shifts in bacterial communities associated with the coral Palythoa caribaeorum due to anthropogenic effects.

    PubMed

    Paulino, Gustavo Vasconcelos Bastos; Broetto, Leonardo; Pylro, Victor Satler; Landell, Melissa Fontes

    2017-01-30

    Corals harbor abundant and diverse prokaryotic communities that may be strongly influenced by human activities, which in turn compromise the normal functioning of coral species and predispose them to opportunistic infections. In this study, we investigated the effect of sewage dumping on the bacterial communities associated with the soft coral Palythoa caribaeorum at two sites in the Brazilian coast. We observed a dominance of bacterial species classified as human pathogens at sites exposed to untreated sewage discharge. The microbial diversity of undisturbed sites was more homogeneous and diverse and showed greater abundance. In addition, bacterial communities differed substantially between the exposed and undisturbed areas. The microbial community associated with the samples collected from the exposed sites revealed the anthropogenic effect caused by organic matter from untreated sewage dumping, with an abundance of pathogenic bacterial species.

  18. Greenhouse gas emission response to global change may be limited by vegetation community shifts

    EPA Science Inventory

    Coastal marshes experience a confluence of global changes including climate change, sea level rise, exotic species invasion, and eutrophication. These changes are likely to exert new abiotic stressors and affect interspecific interactions that influence vegetation community stru...

  19. Ultrasonic array imaging of multilayer structures using full matrix capture and extended phase shift migration

    NASA Astrophysics Data System (ADS)

    Wu, Haiteng; Chen, Jian; Yang, Keji; Hu, Xuxiao

    2016-04-01

    Multilayer structures have been widely used in industrial fields, and non-destructive evaluation of these structures is of great importance to assure their quality and performance. Recently, ultrasonic array imaging using full matrix capture, e.g. the total focusing method (TFM), has been shown to increase sensitivity to small defects and improve imaging resolution in homogeneous media. However, it cannot be applied to multilayer structures directly, due to the sound velocity variation in different layers and because refraction occurs at layer interfaces, which gives rise to difficulties in determining the propagation path and time. To overcome these problems, an extended phase shift migration (EPSM) is proposed for the full matrix imaging of multilayer structures in this paper. Based on the theory of phase shift migration for monostatic pulse-echo imaging, full matrix imaging using EPSM is derived by extrapolating the wavefields in both transmission and reception, and extended to the multilayer case. The performance of the proposed algorithm is evaluated by full matrix imaging of a two-layer structure with side-drilled holes conducted both in the simulation and the experiment. The results verify that the proposed algorithm is capable of full matrix imaging of a layered structure with a high resolution and signal-to-noise ratio. For comparison, full matrix imaging using the TFM with root-mean-squared velocity is also performed, and the results demonstrate that the proposed algorithm is superior to the TFM in improving both the image quality and resolution.

  20. Shifting fungal endophyte communities colonize Bouteloua gracilis: effect of host tissue and geographical distribution.

    PubMed

    Herrera, José; Khidir, Hana H; Eudy, Douglas M; Porras-Alfaro, Andrea; Natvig, Donald O; Sinsabaugh, Robert L

    2010-01-01

    Communities of root-associated fungi (RAF) commonly have been studied under the auspices of arbuscular mycorrhizal fungi (AMF) or ectomycorrhizal fungi. However many studies now indicate that other groups of endophytic RAF, including dark septate endophytes (DSE) are more abundant in some plants and environments. The common forage grass, Bouteloua gracilis, was used as a model to examine whether RAF also colonize different organs within the same plant and to compare RAF communities from sites across North America, spanning the latitudinal range of B. gracilis (from Canada to Mexico). We compared the RAF communities of organs within individual plants at one site and within plant roots among six sites. With the possible exception of one group related to genus Paraphaeosphaeria there was little evidence that RAF colonized vertically beyond the crowns. Furthermore, although there was some variation in the constitution of rare members of the RAF communities, several taxonomically related groups dominated the RAF community at all sites. These dominant taxa included members in the Pleosporales (related to the DSE, Paraphaeosphaeria spp.), Agaricales (related to Moniliophthora spp., or Campanella spp.) and Hypocreales (related to Fusarium spp.). AMF were notable by their near absence. Similar phylotypes from the dominant groups clustered around adjacent sites so that similarity of the RAF communities was negatively correlated to site inter-distance and the RAF communities appeared to group by country. These results increase the possibility that at least some of these common and widely distributed core members of the RAF community form important, intimate and long lasting relationships with grasses.

  1. Biodegradation of antibiotic ciprofloxacin: pathways, influential factors, and bacterial community structure.

    PubMed

    Liao, Xiaobin; Li, Bingxin; Zou, Rusen; Dai, Yu; Xie, Shuguang; Yuan, Baoling

    2016-04-01

    Antibiotic ciprofloxacin is ubiquitous in the environment. However, little is known about ciprofloxacin dissipation by microbial community. The present study investigated the biodegradation potential of ciprofloxacin by mixed culture and the influential factors and depicted the structure of ciprofloxacin-degrading microbial community. Both the original microbiota from drinking water biofilter and the microbiota previously acclimated to high levels of ciprofloxacin could utilize ciprofloxacin as sole carbon and nitrogen sources, while the acclimated microbiota had a much stronger removal capacity. Temperature rise and the presence of carbon or nitrogen sources favored ciprofloxacin biodegradation. Many novel biotransformation products were identified, and four different metabolic pathways for ciprofloxacin were proposed. Bacterial community structure illustrated a profound shift with ciprofloxacin biodegradation. The ciprofloxacin-degrading bacterial community was mainly composed of classes Gammaproteobacteria, Bacteroidia, and Betaproteobacteria. Microorganisms from genera Pseudoxanthomonas, Stenotrophomonas, Phenylobacterium, and Leucobacter might have links with the dissipation of ciprofloxacin. This work can provide some new insights towards ciprofloxacin biodegradation.

  2. Microbial community and nitrogen cycling shift with snowmelt in high-elevation barren soils of Mount Rainier National Park

    NASA Astrophysics Data System (ADS)

    Simpson, A.; Zabowski, D.

    2015-12-01

    Climate change and nutrient deposition have the potential to accelerate soil formation in high-elevation sediments recently exposed by glacier or snow melt. This process has implications not only for ecosystem formation on Earth but for the formation of Earth-like ecosystems on other planets and icy moons. Research into microbial communities shifting from subnival to mesotrophic conditions has mainly focused on changes on respiration and biomass, and is generally limited to one or two well-studied geographical locations. In particular, more information is needed on microbial shifts in snow-covered volcanic sediments, which may prove the closest analog to the most 'habitable' non-terrestrial environments for Earth microorganisms. We sampled in volcanic soil and sediment along gradients of elevation and snowmelt - dry soil, moist soil next to snowpack, and soil underneath snowpack - at the Muir Snowfields at Mount Rainier National Park, in order to investigate changes in carbon and nitrogen compounds, microbial diversity and gene expression. Initial results show a decrease in available ammonium and increase in microbial biomass carbon in exposed sediment with increasing soil moisture, and a sharp decrease in microbial C:N ratios after snowmelt and drying. Available/labile organic carbon and organic nitrogen decrease strongly with elevation, while microbial biomass carbon and nitrogen and mineral nitrogen compounds show no change with elevation. Though gene expression data is needed for confirmation, we hypothesize that these snowfields receive strong wind-borne deposits of carbon and nitrogen but that chemoautotrophic communities under semi-permanent snowpack do not shift to more mesotrophic communities until after exposed sediment has already begun to desiccate, limiting soil formation.

  3. Task-shifting impact of introducing a pilot community health worker cadre into Zambia’s public sector health workforce

    PubMed Central

    Keller, Brett; McCarthy, Elizabeth; Bradford Vosburg, Kathryn; Musonda, Mutinta; Mwila, Jere; van den Broek, Jan Willem

    2017-01-01

    Background The Zambia Ministry of Health (MOH) recruited and trained a new cadre of Community Health Assistants (CHAs) as part of its National Community Health Strategy. The inaugural class of 307 CHAs completed one year of training in July 2012 and deployed to their communities. Methods The impact of the CHA program on the volume and type of health services provided at health posts and their respective referral health centers was measured with a non-randomized difference-in-differences design. Monthly health service provision data was collected for 12 months before and after CHA deployment at 8 health posts along with 8 referral health centers. The analysis controlled for seasonality, changes in non-CHA staffing, and periodic regional child health campaigns, and used facility-level fixed effects. Results Deploying two CHAs to a health post did not lead to a statistically-discernible increase in services at the intervention facilities. Health services provided at referral health centers increased by 697.9 services per month (95% CI: 131.4 to 1,264.3, p = .016), and combined services (at health posts and referral health centers) increased by 848.6 services per month (95% CI: 178.2 to 1,519.1, p = .013). Conclusion In this pilot, the addition of CHAs in rural areas increased health service provision at referral health facilities and at facilities overall, shifting the burden of basic health services away from more highly trained health workers. Shifting tasks to lesser-trained, less-expensive cadres like the CHAs, policymakers can rapidly improve access to care with constrained budgets. Evaluations measuring the direct impact of lower level cadres without accounting for task-shifting may underestimate their contribution to the health workforce. PMID:28767719

  4. Shifts in diversity and function of lake bacterial communities upon glacier retreat

    PubMed Central

    Peter, Hannes; Sommaruga, Ruben

    2016-01-01

    Global climate change is causing a wastage of glaciers and threatening biodiversity in glacier-fed ecosystems. The high turbidity typically found in those ecosystems, which is caused by inorganic particles and result of the erosive activity of glaciers is a key environmental factor influencing temperature and light availability, as well as other factors in the water column. Once these lakes loose hydrological connectivity to glaciers and turn clear, the accompanying environmental changes could represent a potential bottleneck for the established local diversity with yet unknown functional consequences. Here, we study three lakes situated along a turbidity gradient as well as one clear unconnected lake and evaluate seasonal changes in their bacterial community composition and diversity. Further, we assess potential consequences for community functioning. Glacier runoff represented a diverse source community for the lakes and several taxa were able to colonize downstream turbid habitats, although they were not found in the clear lake. Operational taxonomic unit-based alpha diversity and phylogenetic diversity decreased along the turbidity gradient, but metabolic functional diversity was negatively related to turbidity. No evidence for multifunctional redundancy, which may allow communities to maintain functioning upon alterations in diversity, was found. Our study gives a first view on how glacier-fed lake bacterial communities are affected by the melting of glaciers and indicates that diversity and community composition significantly change when hydrological connectivity to the glacier is lost and lakes turn clear. PMID:26771929

  5. Shifts in diversity and function of lake bacterial communities upon glacier retreat.

    PubMed

    Peter, Hannes; Sommaruga, Ruben

    2016-07-01

    Global climate change is causing a wastage of glaciers and threatening biodiversity in glacier-fed ecosystems. The high turbidity typically found in those ecosystems, which is caused by inorganic particles and result of the erosive activity of glaciers is a key environmental factor influencing temperature and light availability, as well as other factors in the water column. Once these lakes loose hydrological connectivity to glaciers and turn clear, the accompanying environmental changes could represent a potential bottleneck for the established local diversity with yet unknown functional consequences. Here, we study three lakes situated along a turbidity gradient as well as one clear unconnected lake and evaluate seasonal changes in their bacterial community composition and diversity. Further, we assess potential consequences for community functioning. Glacier runoff represented a diverse source community for the lakes and several taxa were able to colonize downstream turbid habitats, although they were not found in the clear lake. Operational taxonomic unit-based alpha diversity and phylogenetic diversity decreased along the turbidity gradient, but metabolic functional diversity was negatively related to turbidity. No evidence for multifunctional redundancy, which may allow communities to maintain functioning upon alterations in diversity, was found. Our study gives a first view on how glacier-fed lake bacterial communities are affected by the melting of glaciers and indicates that diversity and community composition significantly change when hydrological connectivity to the glacier is lost and lakes turn clear.

  6. Seasonal changes in the assembly mechanisms structuring tropical fish communities.

    PubMed

    Fitzgerald, Daniel B; Winemiller, Kirk O; Sabaj Pérez, Mark H; Sousa, Leandro M

    2017-01-01

    Despite growing interest in trait-based approaches to community assembly, little attention has been given to seasonal variation in trait distribution patterns. Mobile animals can rapidly mediate influences of environmental factors and species interactions through dispersal, suggesting that the relative importance of different assembly mechanisms can vary over short time scales. This study analyzes seasonal changes in functional trait distributions of tropical fishes in the Xingu River, a major tributary of the Amazon with large predictable temporal variation in hydrologic conditions and species density. Comparison of observed functional diversity revealed that species within wet-season assemblages were more functionally similar than those in dry-season assemblages. Further, species within wet-season assemblages were more similar than random expectations based on null model predictions. Higher functional richness within dry season communities is consistent with increased niche complementarity during the period when fish densities are highest and biotic interactions should be stronger; however, null model tests suggest that stochastic factors or a combination of assembly mechanisms influence dry-season assemblages. These results demonstrate that the relative influence of community assembly mechanisms can vary seasonally in response to changing abiotic conditions, and suggest that studies attempting to infer a single dominant mechanism from functional patterns may overlook important aspects of the assembly process. During the prolonged flood pulse of the wet season, expanded habitat and lower densities of aquatic organisms likely reduce the influence of competition and predation. This temporal shift in the influence of different assembly mechanisms, rather than any single mechanism, may play a large role in maintaining the structure and diversity of tropical rivers and perhaps other dynamic and biodiverse systems.

  7. Bacterial community structure is indicative of chemical inputs in the Upper Mississippi River

    PubMed Central

    Staley, Christopher; Gould, Trevor J.; Wang, Ping; Phillips, Jane; Cotner, James B.; Sadowsky, Michael J.

    2014-01-01

    Local and regional associations between bacterial communities and nutrient and chemical concentrations were assessed in the Upper Mississippi River in Minnesota to determine if community structure was associated with discrete types of chemical inputs associated with different land cover. Bacterial communities were characterized by Illumina sequencing of the V6 region of 16S rDNA and compared to >40 chemical and nutrient concentrations. Local bacterial community structure was shaped primarily by associations among bacterial orders. However, order abundances were correlated regionally with nutrient and chemical concentrations, and were also related to major land coverage types. Total organic carbon and total dissolved solids were among the primary abiotic factors associated with local community composition and co-varied with land cover. Escherichia coli concentration was poorly related to community composition or nutrient concentrations. Abundances of 14 bacterial orders were related to land coverage type, and seven showed significant differences in abundance (P ≤ 0.046) between forested or anthropogenically-impacted sites. This study identifies specific bacterial orders that were associated with chemicals and nutrients derived from specific land cover types and may be useful in assessing water quality. Results of this study reveal the need to investigate community dynamics at both the local and regional scales and to identify shifts in taxonomic community structure that may be useful in determining sources of pollution in the Upper Mississippi River. PMID:25339945

  8. Linking symbiont community structures in a model arbuscular mycorrhizal system.

    PubMed

    Meadow, James F; Zabinski, Catherine A

    2012-05-01

    • The influence of plant communities on symbiotic arbuscular mycorrhizal fungal (AMF) communities is difficult to study in situ as both symbionts are strongly influenced by some of the same soil and environmental conditions, and thus we have a poor understanding of the potential links in community composition and structure between host and fungal communities. • AMF were characterized in colonized roots of thermal soil Mimulus guttatus in both isolated plants supporting AMF for only a few months of the growing season and plants growing in mixed plant communities composed of annual and perennial hosts. Cluster and discriminant analysis were used to compare competing models based on either communities or soil conditions. • Mimulus guttatus in adjacent contrasting plant community situations harbored distinct AMF communities with few fungal taxa occurring in both community types. Isolated plants harbored communities of fewer fungal taxa with lower diversity than plants in mixed communities. Host community type was more indicative than pH of AMF community structure. • Our results support an inherent relationship between host plant and AMF community structures, although pH-based models were also statistically supported. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  9. Bacterial community shift is induced by dynamic environmental parameters in a changing coastal ecosystem (northern Adriatic, northeastern Mediterranean Sea)--a 2-year time-series study.

    PubMed

    Tinta, T; Vojvoda, J; Mozetič, P; Talaber, I; Vodopivec, M; Malfatti, F; Turk, V

    2015-10-01

    The potential link between the microbial dynamics and the environmental parameters was investigated in a semi-enclosed and highly dynamic coastal system (Gulf of Trieste, northern Adriatic Sea, NE Mediterranean Sea). Our comprehensive 2-year time-series study showed that despite the shallowness of this area, there was a significant difference between the surface and the bottom bacterial community structure. The bottom bacterial community was more diverse than the surface one and influenced by sediment re-suspension. The surface seawater temperature had a profound effect on bacterial productivity, while the bacterial community structure was more affected by freshwater-borne nutrients and phytoplankton blooms. Phytoplankton blooms caused an increase of Gammaproteobacteria (Alteromonadaceae, SAR86 and Vibrionaceae) and shift in dominance from SAR11 to Rhodobacteraceae taxon at the surface. Our results propose the importance of the water mass movements as drivers of freshwater-borne nutrients and of allochthonous microbial taxa. This study emphasizes the prediction power based on association networks analyses that are fed with long-term measurements of microbial and environmental parameters. These interaction maps offer valuable insights into the response of marine ecosystem to climate- and anthropogenic-driven stressors. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Community structure detection based on the neighbor node degree information

    NASA Astrophysics Data System (ADS)

    Tang, Li-Ying; Li, Sheng-Nan; Lin, Jian-Hong; Guo, Qiang; Liu, Jian-Guo

    2016-11-01

    Community structure detection is of great significance for better understanding the network topology property. By taking into account the neighbor degree information of the topological network as the link weight, we present an improved Nonnegative Matrix Factorization (NMF) method for detecting community structure. The results for empirical networks show that the largest improved ratio of the Normalized Mutual Information value could reach 63.21%. Meanwhile, for synthetic networks, the highest Normalized Mutual Information value could closely reach 1, which suggests that the improved method with the optimal λ can detect the community structure more accurately. This work is helpful for understanding the interplay between the link weight and the community structure detection.

  11. Exploring community structure in biological networks with random graphs

    PubMed Central

    2014-01-01

    Background Community structure is ubiquitous in biological networks. There has been an increased interest in unraveling the community structure of biological systems as it may provide important insights into a system’s functional components and the impact of local structures on dynamics at a global scale. Choosing an appropriate community detection algorithm to identify the community structure in an empirical network can be difficult, however, as the many algorithms available are based on a variety of cost functions and are difficult to validate. Even when community structure is identified in an empirical system, disentangling the effect of community structure from other network properties such as clustering coefficient and assortativity can be a challenge. Results Here, we develop a generative model to produce undirected, simple, connected graphs with a specified degrees and pattern of communities, while maintaining a graph structure that is as random as possible. Additionally, we demonstrate two important applications of our model: (a) to generate networks that can be used to benchmark existing and new algorithms for detecting communities in biological networks; and (b) to generate null models to serve as random controls when investigating the impact of complex network features beyond the byproduct of degree and modularity in empirical biological networks. Conclusion Our model allows for the systematic study of the presence of community structure and its impact on network function and dynamics. This process is a crucial step in unraveling the functional consequences of the structural properties of biological systems and uncovering the mechanisms that drive these systems. PMID:24965130

  12. Shifts of tundra bacterial and archaeal communities along a permafrost thaw gradient in Alaska.

    PubMed

    Deng, Jie; Gu, Yunfu; Zhang, Jin; Xue, Kai; Qin, Yujia; Yuan, Mengting; Yin, Huaqun; He, Zhili; Wu, Liyou; Schuur, Edward A G; Tiedje, James M; Zhou, Jizhong

    2015-01-01

    Understanding the response of permafrost microbial communities to climate warming is crucial for evaluating ecosystem feedbacks to global change. This study investigated soil bacterial and archaeal communities by Illumina MiSeq sequencing of 16S rRNA gene amplicons across a permafrost thaw gradient at different depths in Alaska with thaw progression for over three decades. Over 4.6 million passing 16S rRNA gene sequences were obtained from a total of 97 samples, corresponding to 61 known classes and 470 genera. Soil depth and the associated soil physical-chemical properties had predominant impacts on the diversity and composition of the microbial communities. Both richness and evenness of the microbial communities decreased with soil depth. Acidobacteria, Verrucomicrobia, Alpha- and Gamma-Proteobacteria dominated the microbial communities in the upper horizon, whereas abundances of Bacteroidetes, Delta-Proteobacteria and Firmicutes increased towards deeper soils. Effects of thaw progression were absent in microbial communities in the near-surface organic soil, probably due to greater temperature variation. Thaw progression decreased the abundances of the majority of the associated taxa in the lower organic soil, but increased the abundances of those in the mineral soil, including groups potentially involved in recalcitrant C degradation (Actinomycetales, Chitinophaga, etc.). The changes in microbial communities may be related to altered soil C sources by thaw progression. Collectively, this study revealed different impacts of thaw in the organic and mineral horizons and suggests the importance of studying both the upper and deeper soils while evaluating microbial responses to permafrost thaw.

  13. Elevated Air Humidity Changes Soil Bacterial Community Structure in the Silver Birch Stand

    PubMed Central

    Truu, Marika; Ostonen, Ivika; Preem, Jens-Konrad; Lõhmus, Krista; Nõlvak, Hiie; Ligi, Teele; Rosenvald, Katrin; Parts, Kaarin; Kupper, Priit; Truu, Jaak

    2017-01-01

    Soil microbes play a fundamental role in forest ecosystems and respond rapidly to changes in the environment. Simultaneously with the temperature increase the climate change scenarios also predict an intensified hydrological cycle for the Baltic Sea runoff region. The aim of this study was to assess the effect of elevated air humidity on the top soil microbial community structure of a silver birch (Betula pendula Roth.) stand by using a free air humidity manipulation facility (FAHM). The bacterial community structures of bulk soil and birch rhizosphere were analyzed using high-throughput sequencing of bacteria-specific16S rRNA gene fragments and quantification of denitrification related genes. The increased air humidity altered both bulk soil and rhizosphere bacterial community structures, and changes in the bacterial communities initiated by elevated air humidity were related to modified soil abiotic and biotic variables. Network analysis revealed that variation in soil bacterial community structural units is explained by altered abiotic conditions such as increased pH value in bulk soil, while in rhizosphere the change in absorptive root morphology had a higher effect. Among root morphological traits, the absorptive root diameter was strongest related to the bacterial community structure. The changes in bacterial community structures under elevated air humidity are associated with shifts in C, N, and P turnover as well as mineral weathering processes in soil. Increased air humidity decreased the nir and nosZ gene abundance in the rhizosphere bacterial community. The potential contribution of the denitrification to the N2O emission was not affected by the elevated air humidity in birch stand soil. In addition, the study revealed a strong link between the bacterial community structure, abundance of denitrification related genes, and birch absorptive root morphology in the ecosystem system adaptation to elevated air humidity. PMID:28421053

  14. Determination of secondary structure populations in disordered states of proteins using nuclear magnetic resonance chemical shifts.

    PubMed

    Camilloni, Carlo; De Simone, Alfonso; Vranken, Wim F; Vendruscolo, Michele

    2012-03-20

    One of the major open challenges in structural biology is to achieve effective descriptions of disordered states of proteins. This problem is difficult because these states are conformationally highly heterogeneous and cannot be represented as single structures, and therefore it is necessary to characterize their conformational properties in terms of probability distributions. Here we show that it is possible to obtain highly quantitative information about particularly important types of probability distributions, the populations of secondary structure elements (α-helix, β-strand, random coil, and polyproline II), by using the information provided by backbone chemical shifts. The application of this approach to mammalian prions indicates that for these proteins a key role in molecular recognition is played by disordered regions characterized by highly conserved polyproline II populations. We also determine the secondary structure populations of a range of other disordered proteins that are medically relevant, including p53, α-synuclein, and the Aβ peptide, as well as an oligomeric form of αB-crystallin. Because chemical shifts are the nuclear magnetic resonance parameters that can be measured under the widest variety of conditions, our approach can be used to obtain detailed information about secondary structure populations for a vast range of different protein states.

  15. Water structure-forming capabilities are temperature shifted for different models.

    PubMed

    Shevchuk, Roman; Prada-Gracia, Diego; Rao, Francesco

    2012-06-28

    A large number of water models exist for molecular simulations. They differ in the ability to reproduce specific features of real water instead of others, like the correct temperature for the density maximum or the diffusion coefficient. Past analysis mostly concentrated on ensemble quantities, while few data were reported on the different microscopic behavior. Here, we compare seven widely used classical water models (SPC, SPC/E, TIP3P, TIP4P, TIP4P-Ew, TIP4P/2005, and TIP5P) in terms of their local structure-forming capabilities through hydrogen bonds for temperatures ranging from 210 to 350 K by the introduction of a set of order parameters taking into account the configuration of up to the second solvation shell. We found that all models share the same structural pattern up to a temperature shift. When this shift is applied, all models overlap onto a master curve. Interestingly, increased stabilization of fully coordinated structures extending to at least two solvation shells is found for models that are able to reproduce the correct position of the density maximum. Our results provide a self-consistent atomic-level structural comparison protocol, which can be of help in elucidating the influence of different water models on protein structure and dynamics.

  16. Surprise maximization reveals the community structure of complex networks

    PubMed Central

    Aldecoa, Rodrigo; Marín, Ignacio

    2013-01-01

    How to determine the community structure of complex networks is an open question. It is critical to establish the best strategies for community detection in networks of unknown structure. Here, using standard synthetic benchmarks, we show that none of the algorithms hitherto developed for community structure characterization perform optimally. Significantly, evaluating the results according to their modularity, the most popular measure of the quality of a partition, systematically provides mistaken solutions. However, a novel quality function, called Surprise, can be used to elucidate which is the optimal division into communities. Consequently, we show that the best strategy to find the community structure of all the networks examined involves choosing among the solutions provided by multiple algorithms the one with the highest Surprise value. We conclude that Surprise maximization precisely reveals the community structure of complex networks. PMID:23320141

  17. Shift Equivalence of Measures and the Intrinsic Structure of Shocks in the Asymmetric Simple Exclusion Process

    NASA Astrophysics Data System (ADS)

    Derrida, B.; Goldstein, S.; Lebowitz, J. L.; Speer, E. R.

    1998-11-01

    We investigate properties of non-translation-invariant measures, describing particle systems on $\\bbz$, which are asymptotic to different translation invariant measures on the left and on the right. Often the structure of the transition region can only be observed from a point of view which is random---in particular, configuration dependent. Two such measures will be called shift equivalent if they differ only by the choice of such a viewpoint. We introduce certain quantities, called translation sums, which, under some auxiliary conditions, characterize the equivalence classes. Our prime example is the asymmetric simple exclusion process, for which the measures in question describe the microscopic structure of shocks. In this case we compute explicitly the translation sums and find that shocks generated in different ways---in particular, via initial conditions in an infinite system or by boundary conditions in a finite system---are described by shift equivalent measures. We show also that when the shock in the infinite system is observed from the location of a second class particle, treating this particle either as a first class particle or as an empty site leads to shift equivalent shock measures.

  18. Isotope shifts and hyperfine structure of the Fe I 372-nm resonance line

    SciTech Connect

    Krins, S.; Huet, N.; Bastin, T.; Oppel, S.; Zanthier, J. von

    2009-12-15

    We report measurements of the isotope shifts of the 3d{sup 6}4s{sup 2} a {sup 5}D{sub 4}-3d{sup 6}4s4p z {sup 5}F{sub 5}{sup o} Fe I resonance line at 372 nm between all four stable isotopes {sup 54}Fe, {sup 56}Fe, {sup 57}Fe, and {sup 58}Fe, as well as the complete hyperfine structure of that line for {sup 57}Fe, the only stable isotope having a nonzero nuclear spin. The field and specific mass shift coefficients of the transition have been derived from the data, as well as the experimental value for the hyperfine structure magnetic dipole coupling constant A of the excited state of the transition in {sup 57}Fe: A(3d{sup 6}4s4p z {sup 5}F{sub 5}{sup o})=81.69(86) MHz. The measurements were carried out by means of high-resolution Doppler-free laser saturated absorption spectroscopy in a Fe-Ar hollow cathode discharge cell using both natural and enriched iron samples. The measured isotope shifts and hyperfine constants are reported with uncertainties at the percent level.

  19. Regime, phase and paradigm shifts: making community ecology the basic science for fisheries

    PubMed Central

    Mangel, Marc; Levin, Phillip S.

    2005-01-01

    Modern fishery science, which began in 1957 with Beverton and Holt, is ca. 50 years old. At its inception, fishery science was limited by a nineteenth century mechanistic worldview and by computational technology; thus, the relatively simple equations of population ecology became the fundamental ecological science underlying fisheries. The time has come for this to change and for community ecology to become the fundamental ecological science underlying fisheries. This point will be illustrated with two examples. First, when viewed from a community perspective, excess production must be considered in the context of biomass left for predators. We argue that this is a better measure of the effects of fisheries than spawning biomass per recruit. Second, we shall analyse a simple, but still multi-species, model for fishery management that considers the alternatives of harvest regulations, inshore marine protected areas and offshore marine protected areas. Population or community perspectives lead to very different predictions about the efficacy of reserves. PMID:15713590

  20. Growing networks of overlapping communities with internal structure

    NASA Astrophysics Data System (ADS)

    Young, Jean-Gabriel; Hébert-Dufresne, Laurent; Allard, Antoine; Dubé, Louis J.

    2016-08-01

    We introduce an intuitive model that describes both the emergence of community structure and the evolution of the internal structure of communities in growing social networks. The model comprises two complementary mechanisms: One mechanism accounts for the evolution of the internal link structure of a single community, and the second mechanism coordinates the growth of multiple overlapping communities. The first mechanism is based on the assumption that each node establishes links with its neighbors and introduces new nodes to the community at different rates. We demonstrate that this simple mechanism gives rise to an effective maximal degree within communities. This observation is related to the anthropological theory known as Dunbar's number, i.e., the empirical observation of a maximal number of ties which an average individual can sustain within its social groups. The second mechanism is based on a recently proposed generalization of preferential attachment to community structure, appropriately called structural preferential attachment (SPA). The combination of these two mechanisms into a single model (SPA+) allows us to reproduce a number of the global statistics of real networks: The distribution of community sizes, of node memberships, and of degrees. The SPA+ model also predicts (a) three qualitative regimes for the degree distribution within overlapping communities and (b) strong correlations between the number of communities to which a node belongs and its number of connections within each community. We present empirical evidence that support our findings in real complex networks.

  1. Educational Inequality by Race in Brazil, 1982–2007: Structural Changes and Shifts in Racial Classification

    PubMed Central

    Marteleto, Leticia J.

    2013-01-01

    Despite overwhelming improvements in educational levels and opportunity during the past three decades, educational disadvantages associated with race still persist in Brazil. Using the nationally representative Pesquisa Nacional de Amostra por Domicílio (PNAD) data from 1982 and 1987 to 2007, this study investigates educational inequalities between white, pardo (mixed-race), and black Brazilians over the 25-year period. Although the educational advantage of whites persisted during this period, I find that the significance of race as it relates to education changed. By 2007, those identified as blacks and pardos became more similar in their schooling levels, whereas in the past, blacks had greater disadvantages. I test two possible explanations for this shift: structural changes and shifts in racial classification. I find evidence for both. I discuss the findings in light of the recent race-based affirmative action policies being implemented in Brazilian universities. PMID:22259031

  2. Educational inequality by race in Brazil, 1982-2007: structural changes and shifts in racial classification.

    PubMed

    Marteleto, Leticia J

    2012-02-01

    Despite overwhelming improvements in educational levels and opportunity during the past three decades, educational disadvantages associated with race still persist in Brazil. Using the nationally representative Pesquisa Nacional de Amostra por Domicílio (PNAD) data from 1982 and 1987 to 2007, this study investigates educational inequalities between white, pardo (mixed-race), and black Brazilians over the 25-year period. Although the educational advantage of whites persisted during this period, I find that the significance of race as it relates to education changed. By 2007, those identified as blacks and pardos became more similar in their schooling levels, whereas in the past, blacks had greater disadvantages. I test two possible explanations for this shift: structural changes and shifts in racial classification. I find evidence for both. I discuss the findings in light of the recent race-based affirmative action policies being implemented in Brazilian universities.

  3. Community shifts of actively growing lake bacteria after N-acetyl-glucosamine addition: improving the BrdU-FACS method.

    PubMed

    Tada, Yuya; Grossart, Hans-Peter

    2014-02-01

    In aquatic environments, community dynamics of bacteria, especially actively growing bacteria (AGB), are tightly linked with dissolved organic matter (DOM) quantity and quality. We analyzed the community dynamics of DNA-synthesizing and accordingly AGB by linking an improved bromodeoxyuridine immunocytochemistry approach with fluorescence-activated cell sorting (BrdU-FACS). FACS-sorted cells of even oligotrophic ecosystems in winter were characterized by 16S rRNA gene analysis. In incubation experiments, we examined community shifts of AGB in response to the addition of N-acetyl-glucosamine (NAG), one of the most abundant aminosugars in aquatic systems. Our improved BrdU-FACS analysis revealed that AGB winter communities of oligotrophic Lake Stechlin (northeastern Germany) substantially differ from those of total bacteria and consist of Alpha-, Beta-, Gamma-, Deltaproteobacteria, Actinobacteria, Candidatus OP10 and Chloroflexi. AGB populations with different BrdU-fluorescence intensities and cell sizes represented different phylotypes suggesting that single-cell growth potential varies at the taxon level. NAG incubation experiments demonstrated that a variety of widespread taxa related to Alpha-, Beta-, Gammaproteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Planctomycetes, Spirochaetes, Verrucomicrobia and Chloroflexi actively grow in the presence of NAG. The BrdU-FACS approach enables detailed phylogenetic studies of AGB and, thus, to identify those phylotypes which are potential key players in aquatic DOM cycling.

  4. Pinning controllability of complex networks with community structure.

    PubMed

    Miao, Qingying; Tang, Yang; Kurths, Jürgen; Fang, Jian-an; Wong, W K

    2013-09-01

    In this paper, we study the controllability of networks with different numbers of communities and various strengths of community structure. By means of simulations, we show that the degree descending pinning scheme performs best among several considered pinning schemes under a small number of pinned nodes, while the degree ascending pinning scheme is becoming more powerful by increasing the number of pinned nodes. It is found that increasing the number of communities or reducing the strength of community structure is beneficial for the enhancement of the controllability. Moreover, it is revealed that the pinning scheme with evenly distributed pinned nodes among communities outperforms other kinds of considered pinning schemes.

  5. Influence of community structure on the synchronization of power network

    NASA Astrophysics Data System (ADS)

    Yang, Li-Xin; Jiang, Jun; Liu, Xiao-Jun

    2016-12-01

    This paper studies the synchronizability of power network with community structure. Second-order Kuramoto-like oscillators with dissimilar natural frequencies are used as a coarse-scale model for an electrical power network that contains generators and consumers. The impact of community structure on frequency synchronization of power network is investigated, focusing on the parameters such as community strength, community number and connection strategy between communities. Numerical simulations show that increasing the community strength above a certain critical threshold or adding new communities to the network will be beneficial for the synchronization. Of course, connecting high-degree nodes among communities will be a best strategy to enhance synchronization. Furthermore, it is observed that the synchronizability of the network is significantly influenced by adding new links with different characteristics.

  6. The Community Structure of the Global Corporate Network

    PubMed Central

    Vitali, Stefania; Battiston, Stefano

    2014-01-01

    We investigate the community structure of the global ownership network of transnational corporations. We find a pronounced organization in communities that cannot be explained by randomness. Despite the global character of this network, communities reflect first of all the geographical location of firms, while the industrial sector plays only a marginal role. We also analyze the meta-network in which the nodes are the communities and the links are obtained by aggregating the links among firms belonging to pairs of communities. We analyze the network centrality of the top 50 communities and we provide a quantitative assessment of the financial sector role in connecting the global economy. PMID:25126722

  7. The community structure of the global corporate network.

    PubMed

    Vitali, Stefania; Battiston, Stefano

    2014-01-01

    We investigate the community structure of the global ownership network of transnational corporations. We find a pronounced organization in communities that cannot be explained by randomness. Despite the global character of this network, communities reflect first of all the geographical location of firms, while the industrial sector plays only a marginal role. We also analyze the meta-network in which the nodes are the communities and the links are obtained by aggregating the links among firms belonging to pairs of communities. We analyze the network centrality of the top 50 communities and we provide a quantitative assessment of the financial sector role in connecting the global economy.

  8. A new dynamic null model for phylogenetic community structure.

    PubMed

    Pigot, Alex L; Etienne, Rampal S

    2015-02-01

    Phylogenies are increasingly applied to identify the mechanisms structuring ecological communities but progress has been hindered by a reliance on statistical null models that ignore the historical process of community assembly. Here, we address this, and develop a dynamic null model of assembly by allopatric speciation, colonisation and local extinction. Incorporating these processes fundamentally alters the structure of communities expected due to chance, with speciation leading to phylogenetic overdispersion compared to a classical statistical null model assuming equal probabilities of community membership. Applying this method to bird and primate communities in South America we show that patterns of phylogenetic overdispersion - often attributed to negative biotic interactions - are instead consistent with a species neutral model of allopatric speciation, colonisation and local extinction. Our findings provide a new null expectation for phylogenetic community patterns and highlight the importance of explicitly accounting for the dynamic history of assembly when testing the mechanisms governing community structure.

  9. Enhancing community detection by using local structural information

    NASA Astrophysics Data System (ADS)

    Xiang, Ju; Hu, Ke; Zhang, Yan; Bao, Mei-Hua; Tang, Liang; Tang, Yan-Ni; Gao, Yuan-Yuan; Li, Jian-Ming; Chen, Benyan; Hu, Jing-Bo

    2016-03-01

    Many real-world networks, such as gene networks, protein-protein interaction networks and metabolic networks, exhibit community structures, meaning the existence of groups of densely connected vertices in the networks. Many local similarity measures in the networks are closely related to the concept of the community structures, and may have a positive effect on community detection in the networks. Here, various local similarity measures are used to extract local structural information, which is then applied to community detection in the networks by using the edge-reweighting strategy. The effect of the local similarity measures on community detection is carefully investigated and compared in various networks. The experimental results show that the local similarity measures are crucial for the improvement of community detection methods, while the positive effect of the local similarity measures is closely related to the networks under study and applied community detection methods.

  10. Shifting the Role: School-District Superintendents' Experiences as They Build a Learning Community

    ERIC Educational Resources Information Center

    Dickson, John; Mitchell, Coral

    2014-01-01

    This paper presents the findings of a qualitative action-research study that explored how one group of district-level school superintendents conceptualized their role as they built their own learning community. Data analysis yielded four elements that supported the participants' efforts: (a) using a process as an entry point, (b) aligning various…

  11. Runoff and erosional response to a drought-induced shift in a desert grassland community composition

    USDA-ARS?s Scientific Manuscript database

    This study investigates how drought-induced change in semiarid grassland community composition affected runoff and sediment yield in a small 1.8 ha watershed in southeast Arizona, USA. Three distinct periods in ecosystem composition and associated runoff and sediment yield were identified according ...

  12. Temporal shifts in cyanobacterial communities at different sites on the Nakdong River in Korea.

    PubMed

    Hur, Moonsuk; Lee, Injung; Tak, Bo-Mi; Lee, Hae Jin; Yu, Jae Jeong; Cheon, Se Uk; Kim, Bong-Soo

    2013-12-01

    The studies of cyanobacterial blooms resulting from eutrophication or climate change and investigation of changes in the cyanobacterial community in freshwater environments are critical for the management of drinking water. Therefore, we investigated the cyanobacterial communities at 6 sites along the Nakdong River in South Korea from May 2012 to October 2012 by using high-throughput sequencing techniques and studied their relationship with various geochemical factors at sampling sites. Diverse genera (total of 175 genera) were detected within the cyanobacteria, and changes in their compositions were analyzed. The genus Prochlorococcus predominated in the May samples, especially in those obtained from the upstream part of the river, whereas the relative abundance of Microcystis and Anabaena increased with increase in water temperature. The relationship between the cyanobacterial community and environmental factors was analyzed by canonical correlation analysis, and the correlation between harmful cyanobacteria and chemical factors was analyzed by nonmetric multidimensional scaling ordination. Various environmental factors such as dissolved oxygen, pH, electric conductivity, temperature were found to affect the cyanobacterial communities in the river. The results of this study could help in the management of freshwater environments and in maintenance of drinking water quality.

  13. Shifting Boundaries: The Challenge of Assessing MTech Community-Based-Visual Arts Research Projects

    ERIC Educational Resources Information Center

    Berman, K.

    2011-01-01

    This article aims to interrogate possible assessment problems arising from a community-based-research mode of research and consider some of the assessment approaches that generate scepticism among some examiners, and endorsement from others. The article explores specific challenges in supervising, accommodating and evaluating diverse candidates…

  14. Shifting Community-Based Participatory Infrastructure from Education/Outreach to Research: Challenges and Solutions.

    PubMed

    Partridge, Edward E; Hardy, Claudia M; Baskin, Monica L; Fouad, Mona; Willis, Lillie; James, Garrett; Wynn, Theresa

    2015-01-01

    For 10 years, the Deep South Network for Cancer Control (DSNCC) focused on training and deploying community health advisors (CHAs) to promote cancer screening and healthy lifestyle through education/outreach activities. In 2009, the request for application (RFA) for renewal of the DSNCC required a controlled research intervention. Converting from education/outreach to research proved more problematic than expected. The objective of this article was to describe the challenges and solutions during this conversion and to describe the importance of education/outreach to community infrastructure. This is a qualitative assessment of the challenges and solutions encountered in conducting a controlled weight loss trial in a community setting in which education/outreach had been the priority. The DSNCC provides a model for overcoming the unique challenges of converting a longstanding education/outreach program into a controlled research program. Although multiple challenges were encountered in conducting a community-based participatory research (CBPR) controlled trial, solutions were developed and the trial continues as proposed.

  15. Going Lean: Impending Money Woes Force Tough Choices, Forecast Fundamental Shift in Community College Funding

    ERIC Educational Resources Information Center

    Joch, Alan

    2011-01-01

    The numbers were already bad, and they keep getting worse, for the Dallas County Community College District (DCCCD). Given the weak economy, administrators planned for a 5 percent reduction in state funding in the 2010-11 academic year. The actual reduction ballooned to more than 7.5 percent, an additional $13 million that DCCCD would be forced to…

  16. Going Lean: Impending Money Woes Force Tough Choices, Forecast Fundamental Shift in Community College Funding

    ERIC Educational Resources Information Center

    Joch, Alan

    2011-01-01

    The numbers were already bad, and they keep getting worse, for the Dallas County Community College District (DCCCD). Given the weak economy, administrators planned for a 5 percent reduction in state funding in the 2010-11 academic year. The actual reduction ballooned to more than 7.5 percent, an additional $13 million that DCCCD would be forced to…

  17. In-feed administered sub-therapeutic chlortetracycline alters community composition and structure but not the abundance of community resistance determinants in the fecal flora of the rat.

    PubMed

    Brooks, S P J; Kheradpir, E; McAllister, M; Kwan, J; Burgher-McLellan, K; Kalmokoff, M

    2009-08-01

    The impact of continuous sub-therapeutic chlortetracycline on community structure, composition and abundance of tetracycline resistance genes in the rat fecal community was investigated. Rats were fed a standard diet containing chlortetracycline at 15 microg g(-1) diet for 28 days, followed by 30 microg g(-1) diet to completion of the study on day-56. These levels are similar to those administered to swine during the grow-out phase. Sub-therapeutic chlortetracycline affected the fecal community as determined through change in the cultivable anaerobic community and through molecular-based analyses including denaturing gradient gel electrophoresis profiles of the variable 2-3 region community 16S rRNA genes over time and through comparative sequence analysis of 16S rRNA gene community libraries. Significant decreases in fecal phylotype diversity occurred in response to sub-therapeutic chlortetracycline, although total bacterial output remained constant over the entire feeding trial. Chlortetracycline at 15 microg g(-1) diet resulted in significant change in community composition, but only modest change to the fecal community structure in terms of the distribution of individual phylotypes among the major fecal lineages. Chlortetracycline at 30 microg g(-1) diet significantly altered the distribution of phylotypes among the major fecal lineages shifting the overall community such that Gram-negative phylotypes aligning within the phylum Bacteroidetes became the dominant lineage (>60% of total community). While chlortetracycline impacted both fecal community structure and composition, there was no significant effect on the abundance of community tetracycline resistance genes [tet(Q), tet(W), tet(O)] or on the emergence of a new putative tetracycline resistance gene identified within the fecal community. While sub-therapeutic chlortetracycline provides sufficient selective pressure to significantly alter the fecal community, the primary outcome appears to be the

  18. Associational Structure and Community Development: A Comparative Study of Two Communities

    ERIC Educational Resources Information Center

    Dasgupta, Satadal

    1974-01-01

    The two communities compared tended to support the proposition that communities following an integrative style of development are characterized by coordinative structures including associational, while the contrary is true for communities following the autonomous style. Available from: Editorial and Business Offices, Piazza Cavalieri di Malta, 2,…

  19. Similarity between community structures of different online social networks and its impact on underlying community detection

    NASA Astrophysics Data System (ADS)

    Fan, W.; Yeung, K. H.

    2015-03-01

    As social networking services are popular, many people may register in more than one online social network. In this paper we study a set of users who have accounts of three online social networks: namely Foursquare, Facebook and Twitter. Community structure of this set of users may be reflected in these three online social networks. Therefore, high correlation between these reflections and the underlying community structure may be observed. In this work, community structures are detected in all three online social networks. Also, we investigate the similarity level of community structures across different networks. It is found that they show strong correlation with each other. The similarity between different networks may be helpful to find a community structure close to the underlying one. To verify this, we propose a method to increase the weights of some connections in networks. With this method, new networks are generated to assist community detection. By doing this, value of modularity can be improved and the new community structure match network's natural structure better. In this paper we also show that the detected community structures of online social networks are correlated with users' locations which are identified on Foursquare. This information may also be useful for underlying community detection.

  20. Metabolic and structural response of hyporheic microbial communities to variations in supply of dissolved organic matter

    USGS Publications Warehouse

    Findlay, S.E.G.; Sinsabaugh, R. L.; Sobczak, W.V.; Hoostal, M.

    2003-01-01

    Hyporheic sediment bacterial communities were exposed to dissolved organic matter (DOM) from a variety of sources to assess the interdependence of bacterial metabolism and community composition. Experiments ranged from small-scale core perfusions with defined compounds (glucose, bovine serum albumin) to mesocosms receiving natural leaf leachate or water from different streams. Response variables included bacterial production, oxygen consumption, extracellular enzyme activity, and community similarity as manifest by changes in banding patterns of randomly amplified polymorphic DNA (RAPD). All DOM manipulations generated responses in at least one metabolic variable. Additions of both labile and recalcitrant materials increased either oxygen consumption, production, or both depending on background DOM. Enzyme activities were affected by both types of carbon addition with largest effects from the labile mixture. Cluster analysis of RAPD data showed strong divergence of communities exposed to labile versus recalcitrant DOM. Additions of leaf leachate to mesocosms representing hyporheic flow-paths caused increases in oxygen consumption and some enzyme activities with weaker effects on production. Community structure yeas strongly affected; samples from the leachate-amended mesocosms clustered separately from the control samples. In mesocosms receiving water from streams ranging in DOC (0.5-4.5 mg L-1), there were significant differences in bacterial growth, oxygen consumption, and enzyme activities. RAPD analysis showed strongest clustering of samples by stream type with more subtle effects of position along the flowpaths. Responses in community metabolism were always accompanied by shifts in community composition, suggesting carbon supply affects both functional and structural attributes of hyporheic bacterial communities.

  1. Effects of a synthetic oil on zooplankton community structure

    SciTech Connect

    Hook, L.A.

    1988-01-01

    This study assessed the effects of a coal-derived oil on the structure of zooplankton communities of laboratory pond microcosms and outdoor experimental ponds. Several measures of community structure and multivariate statistical techniques were used to reveal changes in the patterns of zooplankton community structure caused by the perturbation. From these results the basic ecological mechanisms responsible for maintenance of zooplankton community structure were inferred. The comparison of the field, laboratory microcosm, and laboratory bioassay results for the effects of oil provided an empirical basis for predicting pollutant effects on aquatic ecosystems. The responses of the microcosm and pond zooplankton communities to oil treatment were quite similar. Changes in cladoceran densities were the most sensitive indicators of stress in the zooplankton communities. Copepods were slightly less sensitive, and rotifers were least sensitive to oil treatment.

  2. Spectra of random graphs with community structure and arbitrary degrees.

    PubMed

    Zhang, Xiao; Nadakuditi, Raj Rao; Newman, M E J

    2014-04-01

    Using methods from random matrix theory researchers have recently calculated the full spectra of random networks with arbitrary degrees and with community structure. Both reveal interesting spectral features, including deviations from the Wigner semicircle distribution and phase transitions in the spectra of community structured networks. In this paper we generalize both calculations, giving a prescription for calculating the spectrum of a network with both community structure and an arbitrary degree distribution. In general the spectrum has two parts, a continuous spectral band, which can depart strongly from the classic semicircle form, and a set of outlying eigenvalues that indicate the presence of communities.

  3. Anthropogenic shift of planktonic food web structure in a coastal lagoon by freshwater flow regulation

    NASA Astrophysics Data System (ADS)

    Hemraj, Deevesh A.; Hossain, A.; Ye, Qifeng; Qin, Jian G.; Leterme, Sophie C.

    2017-03-01

    Anthropogenic modification of aquatic systems has diverse impacts on food web interactions and ecosystem states. To reverse the adverse effects of modified freshwater flow, adequate management of discharge is required, especially due to higher water requirements and abstractions for human use. Here, we look at the effects of anthropogenically controlled freshwater flow regimes on the planktonic food web of a Ramsar listed coastal lagoon that is under recovery from degradation. Our results show shifts in water quality and plankton community interactions associated to changes in water flow. These shifts in food web interactions represent modifications in habitat complexity and water quality. At high flow, phytoplankton-zooplankton interactions dominate the food web. Conversely, at low flow, bacteria, viruses and nano/picoplankton interactions are more dominant, with a substantial switch of the food web towards heterotrophy. This switch can be associated with excess organic matter loading, decomposition of dead organisms, and synergistic and antagonistic interactions. We suggest that a lower variability in flow amplitude could be beneficial for the long-term sustaining of water quality and food web interactions, while improving the ecosystem health of systems facing similar stresses as the Coorong.

  4. Anthropogenic shift of planktonic food web structure in a coastal lagoon by freshwater flow regulation

    PubMed Central

    Hemraj, Deevesh A.; Hossain, A.; Ye, Qifeng; Qin, Jian G.; Leterme, Sophie C.

    2017-01-01

    Anthropogenic modification of aquatic systems has diverse impacts on food web interactions and ecosystem states. To reverse the adverse effects of modified freshwater flow, adequate management of discharge is required, especially due to higher water requirements and abstractions for human use. Here, we look at the effects of anthropogenically controlled freshwater flow regimes on the planktonic food web of a Ramsar listed coastal lagoon that is under recovery from degradation. Our results show shifts in water quality and plankton community interactions associated to changes in water flow. These shifts in food web interactions represent modifications in habitat complexity and water quality. At high flow, phytoplankton-zooplankton interactions dominate the food web. Conversely, at low flow, bacteria, viruses and nano/picoplankton interactions are more dominant, with a substantial switch of the food web towards heterotrophy. This switch can be associated with excess organic matter loading, decomposition of dead organisms, and synergistic and antagonistic interactions. We suggest that a lower variability in flow amplitude could be beneficial for the long-term sustaining of water quality and food web interactions, while improving the ecosystem health of systems facing similar stresses as the Coorong. PMID:28327643

  5. Anthropogenic shift of planktonic food web structure in a coastal lagoon by freshwater flow regulation.

    PubMed

    Hemraj, Deevesh A; Hossain, A; Ye, Qifeng; Qin, Jian G; Leterme, Sophie C

    2017-03-22

    Anthropogenic modification of aquatic systems has diverse impacts on food web interactions and ecosystem states. To reverse the adverse effects of modified freshwater flow, adequate management of discharge is required, especially due to higher water requirements and abstractions for human use. Here, we look at the effects of anthropogenically controlled freshwater flow regimes on the planktonic food web of a Ramsar listed coastal lagoon that is under recovery from degradation. Our results show shifts in water quality and plankton community interactions associated to changes in water flow. These shifts in food web interactions represent modifications in habitat complexity and water quality. At high flow, phytoplankton-zooplankton interactions dominate the food web. Conversely, at low flow, bacteria, viruses and nano/picoplankton interactions are more dominant, with a substantial switch of the food web towards heterotrophy. This switch can be associated with excess organic matter loading, decomposition of dead organisms, and synergistic and antagonistic interactions. We suggest that a lower variability in flow amplitude could be beneficial for the long-term sustaining of water quality and food web interactions, while improving the ecosystem health of systems facing similar stresses as the Coorong.

  6. Community Structural Instability, Anomie, Imitation and Adolescent Suicidal Behavior

    ERIC Educational Resources Information Center

    Thorlindsson, Thorolfur; Bernburg, Jon Gunnar

    2009-01-01

    The current study examines the contextual effects of community structural characteristics, as well as the mediating role of key social mechanisms, on youth suicidal behavior in Iceland. We argue that the contextual influence of community structural instability on youth suicidal behavior should be mediated by weak attachment to social norms and…

  7. Community Structural Instability, Anomie, Imitation and Adolescent Suicidal Behavior

    ERIC Educational Resources Information Center

    Thorlindsson, Thorolfur; Bernburg, Jon Gunnar

    2009-01-01

    The current study examines the contextual effects of community structural characteristics, as well as the mediating role of key social mechanisms, on youth suicidal behavior in Iceland. We argue that the contextual influence of community structural instability on youth suicidal behavior should be mediated by weak attachment to social norms and…

  8. Investigating Effects of Invasive Species on Plant Community Structure

    ERIC Educational Resources Information Center

    Franklin, Wilfred

    2008-01-01

    In this article, the author presents a field study project that explores factors influencing forest community structure and lifts the veil off of "plant blindness." This ecological study consists of three laboratories: (1) preliminary field trip to the study site; (2) plant survey; and (3) analyzing plant community structure with descriptive…

  9. Investigating Effects of Invasive Species on Plant Community Structure

    ERIC Educational Resources Information Center

    Franklin, Wilfred

    2008-01-01

    In this article, the author presents a field study project that explores factors influencing forest community structure and lifts the veil off of "plant blindness." This ecological study consists of three laboratories: (1) preliminary field trip to the study site; (2) plant survey; and (3) analyzing plant community structure with descriptive…

  10. Nitrogen Deposition Reduces Decomposition Rates Through Shifts in Microbial Community Composition and Function

    NASA Astrophysics Data System (ADS)

    Waldrop, M.; Zak, D.; Sinsabaugh, R.

    2002-12-01

    Atmospheric nitrogen (N) deposition may alter soil biological activity in northern hardwood forests by repressing phenol oxidase enzyme activity and altering microbial community composition, thereby slowing decomposition and increasing the export of phenolic compounds. We tested this hypothesis by adding 13C-labelled cellobiose, vanillin, and catechol to control and N fertilized soils (30 and 80 kg ha-1) collected from three forests; two dominated by Acer Saccharum and one dominated by Quercus Alba and Quercus Velutina. While N deposition increased total microbial respiration, it decreased soil oxidative enzyme activities, resulting in slower degradation rates of all compounds, and larger DOC pools. This effect was larger in the oak forest, where fungi dominate C-cycling processes. DNA and 13C-phospolipid analyses showed that N addition altered the fungal community and reduced the activity of fungal and bacterial populations in soil, potentially explaining reduced soil enzyme activities and incomplete decomposition.

  11. Structural responses of benthic macroinvertebrate communities from different stream orders to zinc

    SciTech Connect

    Kiffney, P.M.; Clements, W.H. . Dept. of Fishery and Wildlife Biology)

    1994-03-01

    It is well established that benthic invertebrate community structure and function shift in a predictable fashion along longitudinal stream gradients as a result of variation in environmental conditions. The authors research is concerned with experimentally testing whether this shift in community structure influences the response of benthic macroinvertebrates to heavy metals. Using artificial streams, they compared effects of Zn on natural assemblages of benthic macroinvertebrates communities collected from Little Beaver Creek (LBC; a third-order stream) and the Big South Fork of the Cache la Poudre, Colorado, catchment. Organisms collected from LBC and SFP were exposed to 0 or 130 [mu]g/L Zn in indoor experimental streams for 7 d. In general, similar taxa were found at both sites, but densities were generally higher at SFP than at LBC. They observed significant effects at the community and population level as a result of Zn, stream order, and the interaction between Zn and stream order. Specifically, mayflies from both sides were sensitive to Zn, but the magnitude of the response varied between sites. The results indicate that benthic macroinvertebrate communities from different stream order may vary in sensitivity to Zn.

  12. Measurement of wavefront structure from large aperture optical components by phase shifting interferometry

    SciTech Connect

    Wolfe, C.R.; Lawson, J.K.; Kellam, M.; Maney, R.T.; Demiris, A.

    1995-05-12

    This paper discusses the results of high spatial resolution measurement of the transmitted or reflected wavefront of optical components using phase shifting interferometry with a wavelength of 6328 {angstrom}. The optical components studied range in size from approximately 50 mm {times} 100 mm to 400 mm {times} 750 mm. Wavefront data, in the form of 3-D phase maps, have been obtained for three regimes of scale length: ``micro roughness``, ``mid-spatial scale``, and ``optical figure/curvature.`` Repetitive wavefront structure has been observed with scale lengths from 10 mm to 100 mm. The amplitude of this structure is typically {lambda}/100 to {lambda}/20. Previously unobserved structure has been detected in optical materials and on the surfaces of components. We are using this data to assist in optimizing laser system design, to qualify optical components and fabrication processes under study in our component development program.

  13. Upward cascading effects of nutrients: shifts in a benthic microalgal community and a negative herbivore response.

    PubMed

    Armitage, Anna R; Fong, Peggy

    2004-05-01

    We evaluated the effects of nutrient addition on interactions between the benthic microalgal community and a dominant herbivorous gastropod, Cerithidea californica (California horn snail), on tidal flats in Mugu Lagoon, southern California, USA. We crossed snail and nutrient (N and P) addition treatments in enclosures on two tidal flats varying from 71 to 92% sand content in a temporally replicated experiment (summer 2000, fall 2000, spring 2001). Diatom biomass increased slightly (approximately 30%) in response to nutrient treatments but was not affected by snails. Blooms of cyanobacteria (up to 200%) and purple sulfur bacteria (up to 400%) occurred in response to nutrient enrichment, particularly in the sandier site, but only cyanobacterial biomass decreased in response to snail grazing. Snail mortality was 2-5 times higher in response to nutrient addition, especially in the sandier site, corresponding to a relative increase in cyanobacterial biomass. Nutrient-related snail mortality occurred only in the spring and summer, when the snails were most actively feeding on the microalgal community. Inactive snails in the fall showed no response to nutrient-induced cyanobacterial growths. This study demonstrated strongly negative upward cascading effects of nutrient enrichment through the food chain. The strength of this upward cascade was closely linked to sediment type and microalgal community composition. Copyright 2004 Springer-Verlag

  14. Bulk and Rhizosphere Soil Bacterial Communities Studied by Denaturing Gradient Gel Electrophoresis: Plant-Dependent Enrichment and Seasonal Shifts Revealed

    PubMed Central

    Smalla, K.; Wieland, G.; Buchner, A.; Zock, A.; Parzy, J.; Kaiser, S.; Roskot, N.; Heuer, H.; Berg, G.

    2001-01-01

    The bacterial rhizosphere communities of three host plants of the pathogenic fungus Verticillium dahliae, field-grown strawberry (Fragaria ananassa Duch.), oilseed rape (Brassica napus L.), and potato (Solanum tuberosum L.), were analyzed. We aimed to determine the degree to which the rhizosphere effect is plant dependent and whether this effect would be increased by growing the same crops in two consecutive years. Rhizosphere or soil samples were taken five times over the vegetation periods. To allow a cultivation-independent analysis, total community DNA was extracted from the microbial pellet recovered from root or soil samples. 16S rDNA fragments amplified by PCR from soil or rhizosphere bacterium DNA were analyzed by denaturing gradient gel electrophoresis (DGGE). The DGGE fingerprints showed plant-dependent shifts in the relative abundance of bacterial populations in the rhizosphere which became more pronounced in the second year. DGGE patterns of oilseed rape and potato rhizosphere communities were more similar to each other than to the strawberry patterns. In both years seasonal shifts in the abundance and composition of the bacterial rhizosphere populations were observed. Independent of the plant species, the patterns of the first sampling times for both years were characterized by the absence of some of the bands which became dominant at the following sampling times. Bacillus megaterium and Arthrobacter sp. were found as predominant populations in bulk soils. Sequencing of dominant bands excised from the rhizosphere patterns revealed that 6 out of 10 bands resembled gram-positive bacteria. Nocardia populations were identified as strawberry-specific bands. PMID:11571180

  15. Electrically controlled Goos-Hänchen shift of a light beam reflected from the metal-insulator-semiconductor structure.

    PubMed

    Luo, Changyou; Guo, Jun; Wang, Qingkai; Xiang, Yuanjiang; Wen, Shuangchun

    2013-05-06

    We proposed a scheme to manipulate the Goos-Hänchen shift of a light beam reflected from the depletion-type device via external voltage bias. It is shown that the lateral shift of the reflected probe beam can be easily controlled by adjusting the reverse voltage bias and the incidence angle. Using this scheme, the lateral shift can be tuned from negative to positive, without changing the original structure of the depletion-type device. Numerical calculations further indicate that the influence of structure parameters and light wavelength can be reduced via readjustment of the reverse bias. The proposed structure has the potential application for the integrated electronic devices.

  16. Hyperfine structure and isotope-shift investigations of atomic nitrogen by saturation spectroscopy

    NASA Astrophysics Data System (ADS)

    Cangiano, P.; de Angelis, M.; Gianfrani, L.; Pesce, G.; Sasso, A.

    1994-08-01

    In this work we report a Doppler-free investigation of atomic nitrogen. As a laser source we used a narrow-band semiconductor diode laser emitting in the near infrared. Atomic nitrogen was produced by dissociating N2 molecules in a radio-frequency discharge sustained by helium as a buffer gas. Hyperfine structures and isotope shifts of the transitions 3p 4P1/2-5/2-3s 4Po1/2-5/2 were investigated for the two stable isotopes 14N and 15N by using absorption-saturated laser spectroscopy.

  17. Litter chemistry, community shift, and non-additive effects drive litter decomposition changes following invasion by a generalist pathogen

    Treesearch

    Richard C. Cobb; David M. Rizzo

    2016-01-01

    Forest pathogens have strong potential to shape ecosystem function by altering litterfall, microclimate, and changing community structure. We quantified changes in litter decomposition from a set of distinct diseases caused by Phytophthora ramorum, an exotic generalist pathogen. Phytophthora ramorum causes leaf blight and...

  18. Seasonal variations in the community structure of actively growing bacteria in neritic waters of Hiroshima Bay, western Japan.

    PubMed

    Taniguchi, Akito; Tada, Yuya; Hamasaki, Koji

    2011-01-01

    Using bromodeoxyuridine (BrdU) magnetic beads immunocapture and a PCR-denaturing gradient gel electrophoresis (DGGE) technique (BUMP-DGGE), we determined seasonal variations in the community structures of actively growing bacteria in the neritic waters of Hiroshima Bay, western Japan. The community structures of actively growing bacteria were separated into two clusters, corresponding to the timing of phytoplankton blooms in the autumn-winter and spring-summer seasons. The trigger for changes in bacterial community structure was related to organic matter supply from phytoplankton blooms. We identified 23 phylotypes of actively growing bacteria, belonging to Alphaproteobacteria (Roseobacter group, 9 phylotypes), Gammaproteobacteria (2 phylotypes), Bacteroidetes (8 phylotypes), and Actinobacteria (4 phylotypes). The Roseobacter group and Bacteroidetes were dominant in actively growing bacterial communities every month, and together accounted for more than 70% of the total DGGE bands. We revealed that community structures of actively growing bacteria shifted markedly in the wake of phytoplankton blooms in the neritic waters of Hiroshima Bay.

  19. The structure and evolution of plankton communities

    NASA Astrophysics Data System (ADS)

    Longhurst, Alan R.

    New understanding of the circulation of ancient oceans is not yet matched by progress in our understanding of their pelagic ecology, though it was the planktonic ecosystems that generated our offshore oil and gas reserves. Can we assume that present-day models of ecosystem function are also valid for ancient seas? This question is addressed by a study of over 4000 plankton samples to derive a comprehensive, global description of zooplankton community structure in modern oceans: this shows that copepods form only 50% of the biomass of all plankton, ranging from 70% in polar to 35% in tropical seas. Comparable figures are derived from 14 other taxonomic categories of zooplankton. For trophic groupings, the data indicate globally: geletinous predators - 14%; gelatinous herbivores - 4%; raptorial predators - 33%; macrofiltering herbivores - 20%; macrofiltering omnivores - 25%; and detritivores - 3%. A simple, idealized model for the modern pelagic ecosystem is derived from these percentages which indicates that metazooplankton are not the most important consumers of pico- and nano-plankton production which itself probably constitutes 90% of primary production in warm oceans. This model is then compared with candidate life-forms available in Palaeozoic and Mesozoic oceans to determine to what extent it is also valid for ancient ecosystems: it is concluded that it is probably unnecessary to postulate models fundamentally differing from it in order to accommodate the life-forms, both protozoic and metazoic, known to have populated ancient seas. Remarkably few life-forms have existed which cannot be paralleled in the modern ocean, which contains remarkably few life-forms which cannot be paralleled in the Palaeozoic ocean. As a first assumption, then, it is reasonable to assume that energy pathways were similar in ancient oceans to those we study today.

  20. Task-shifting and prioritization: a situational analysis examining the role and experiences of community health workers in Malawi.

    PubMed

    Smith, Sarah; Deveridge, Amber; Berman, Joshua; Negin, Joel; Mwambene, Nwaka; Chingaipe, Elizabeth; Puchalski Ritchie, Lisa M; Martiniuk, Alexandra

    2014-05-02

    As low- and middle-income countries face continued shortages of human resources for health and the double burden of infectious and chronic diseases, there is renewed international interest in the potential for community health workers to assume a growing role in strengthening health systems. A growing list of tasks, some of them complex, is being shifted to community health workers' job descriptions. Health Surveillance Assistants (HSAs) - as the community health worker cadre in Malawi is known - play a vital role in providing essential health services and connecting the community with the formal health care sector. The objective of this study was to understand the performed versus documented roles of the HSAs, to examine how tasks were prioritized, and to understand HSAs' perspectives on their roles and responsibilities. A situational analysis of the HSA cadre and its contribution to the delivery of health services in Zomba district, Malawi was conducted. Focus groups and interviews were conducted with 70 HSAs. Observations of three HSAs performing duties and work diaries from five HSAs were collected. Lastly, six policy-maker and seven HSA supervisor interviews and a document review were used to further understand the cadre's role and to triangulate collected data. HSAs performed a variety of tasks in addition to those outlined in the job description resulting in issues of overloading, specialization and competing demands existing in the context of task-shifting and prioritization. Not all HSAs were resistant to the expansion of their role despite role confusion and HSAs feeling they lacked adequate training, remuneration and supervision. HSAs also said that increasing workload was making completing their primary duties challenging. Considerations for policy-makers include the division of roles of HSAs in prevention versus curative care; community versus centre-based activities; and the potential specialization of HSAs. This study provides insights into HSAs

  1. Task Shifting Provision of Contraceptive Implants to Community Health Extension Workers: Results of Operations Research in Northern Nigeria.

    PubMed

    Charyeva, Zulfiya; Oguntunde, Olugbenga; Orobaton, Nosa; Otolorin, Emmanuel; Inuwa, Fatima; Alalade, Olubisi; Abegunde, Dele; Danladi, Saba'atu

    2015-09-01

    Contraceptive use remains low in Nigeria, with only 11% of women reporting use of any modern method. Access to long-acting reversible contraceptives (LARCs) is constrained by a severe shortage of human resources. To assess feasibility of task shifting provision of implants, we trained community health extension workers (CHEWs) to insert and remove contraceptive implants in rural communities of Bauchi and Sokoto states in northern Nigeria. We conducted 2- to 3-week training sessions for 166 selected CHEWs from 82 facilities in Sokoto state (September 2013) and 84 health facilities in Bauchi state (December 2013). To assess feasibility of the task shifting approach, we conducted operations research using a pretest-posttest design using multiple sources of information, including surveys with 151 trained CHEWs (9% were lost to follow-up) and with 150 family planning clients; facility observations using supply checklists (N = 149); direct obs