Macdonald, Tara A; Burd, Brenda J; van Roodselaar, Albert
2012-01-01
Size distributions of biotic assemblages are important modifiers of productivity and function in marine sediments. We investigated the distribution of proportional organic biomass among logarithmic size classes (2(-6)J to 2(16)J) in the soft-bottom macrofaunal communities of the Strait of Georgia, Salish Sea on the west coast of Canada. The study examines how size structure is influenced by 3 fundamental habitat descriptors: depth, sediment percent fines, and organic flux (modified by quality). These habitat variables are uncorrelated in this hydrographically diverse area, thus we examine their effects in combination and separately. Cluster analyses and cumulative biomass size spectra reveal clear and significant responses to each separate habitat variable. When combined, habitat factors result in three distinct assemblages: (1) communities with a high proportion of biomass in small organisms, typical of shallow areas (<10 m) with coarse sediments (<10% fines) and low accumulation of organic material (<3.0 gC/m(2)/yr/δ(15)N); (2) communities with high proportion of biomass in the largest organisms found in the Strait, typical of deep, fine sediments with high modified organic flux (>3 g C/m(2)/yr/δ(15)N) from the Fraser River; and (3) communities with biomass dominated by moderately large organisms, but lacking the smallest and largest size classes, typical of deep, fine sediments experiencing low modified organic flux (<3.0 gC/m(2)/yr/δ(15)N). The remaining assemblages had intermediate habitat types and size structures. Sediment percent fines and flux appear to elicit threshold responses in size structure, whereas depth has the most linear influence on community size structure. The ecological implications of size structure in the Strait of Georgia relative to environmental conditions, secondary production and sediment bioturbation are discussed.
Macdonald, Tara A.; Burd, Brenda J.; van Roodselaar, Albert
2012-01-01
Size distributions of biotic assemblages are important modifiers of productivity and function in marine sediments. We investigated the distribution of proportional organic biomass among logarithmic size classes (2−6J to 216J) in the soft-bottom macrofaunal communities of the Strait of Georgia, Salish Sea on the west coast of Canada. The study examines how size structure is influenced by 3 fundamental habitat descriptors: depth, sediment percent fines, and organic flux (modified by quality). These habitat variables are uncorrelated in this hydrographically diverse area, thus we examine their effects in combination and separately. Cluster analyses and cumulative biomass size spectra reveal clear and significant responses to each separate habitat variable. When combined, habitat factors result in three distinct assemblages: (1) communities with a high proportion of biomass in small organisms, typical of shallow areas (<10 m) with coarse sediments (<10% fines) and low accumulation of organic material (<3.0 gC/m2/yr/δ15N); (2) communities with high proportion of biomass in the largest organisms found in the Strait, typical of deep, fine sediments with high modified organic flux (>3 g C/m2/yr/δ15N) from the Fraser River; and (3) communities with biomass dominated by moderately large organisms, but lacking the smallest and largest size classes, typical of deep, fine sediments experiencing low modified organic flux (<3.0 gC/m2/yr/δ15N). The remaining assemblages had intermediate habitat types and size structures. Sediment percent fines and flux appear to elicit threshold responses in size structure, whereas depth has the most linear influence on community size structure. The ecological implications of size structure in the Strait of Georgia relative to environmental conditions, secondary production and sediment bioturbation are discussed. PMID:22911694
Feedbacks between community assembly and habitat selection shape variation in local colonization
Kraus, J.M.; Vonesh, J.R.
2010-01-01
1. Non-consumptive effects of predators are increasingly recognized as important drivers of community assembly and structure. Specifically, habitat selection responses to top predators during colonization and oviposition can lead to large differences in aquatic community structure, composition and diversity. 2. These differences among communities due to predators may develop as communities assemble, potentially altering the relative quality of predator vs. predator-free habitats through time. If so, community assembly would be expected to modify the subsequent behavioural responses of colonists to habitats containing top predators. Here, we test this hypothesis by manipulating community assembly and the presence of fish in experimental ponds and measuring their independent and combined effects on patterns of colonization by insects and amphibians. 3. Assembly modified habitat selection of dytscid beetles and hylid frogs by decreasing or even reversing avoidance of pools containing blue-spotted sunfish (Enneacanthus gloriosus). However, not all habitat selection responses to fish depended on assembly history. Hydrophilid beetles and mosquitoes avoided fish while chironomids were attracted to fish pools, regardless of assembly history. 4. Our results show that community assembly causes taxa-dependent feedbacks that can modify avoidance of habitats containing a top predator. Thus, non-consumptive effects of a top predator on community structure change as communities assemble and effects of competitors and other predators combine with the direct effects of top predators to shape colonization. 5. This work reinforces the importance of habitat selection for community assembly in aquatic systems, while illustrating the range of factors that may influence colonization rates and resulting community structure. Directly manipulating communities both during colonization and post-colonization is critical for elucidating how sequential processes interact to shape communities.
Cisneros, Laura M; Fagan, Matthew E; Willig, Michael R
2016-01-01
Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities have been implemented to determine the relative importance of particular environmental (or niche-based) mechanisms. Nonetheless, few studies have integrated these quantitative approaches to comprehensively assess the relative importance of particular structuring processes. We employed a novel variation partitioning approach to evaluate the relative importance of particular spatial and environmental drivers of taxonomic, functional, and phylogenetic aspects of bat communities in a human-modified landscape in Costa Rica. Specifically, we estimated the amount of variation in species composition (taxonomic structure) and in two aspects of functional and phylogenetic structure (i.e., composition and dispersion) along a forest loss and fragmentation gradient that are uniquely explained by landscape characteristics (i.e., environment) or space to assess the importance of competing mechanisms. The unique effects of space on taxonomic, functional and phylogenetic structure were consistently small. In contrast, landscape characteristics (i.e., environment) played an appreciable role in structuring bat communities. Spatially-structured landscape characteristics explained 84% of the variation in functional or phylogenetic dispersion, and the unique effects of landscape characteristics significantly explained 14% of the variation in species composition. Furthermore, variation in bat community structure was primarily due to differences in dispersion of species within functional or phylogenetic space along the gradient, rather than due to differences in functional or phylogenetic composition. Variation among bat communities was related to environmental mechanisms, especially niche-based (i.e., environmental) processes, rather than spatial mechanisms. High variation in functional or phylogenetic dispersion, as opposed to functional or phylogenetic composition, suggests that loss or gain of niche space is driving the progressive loss or gain of species with particular traits from communities along the human-modified gradient. Thus, environmental characteristics associated with landscape structure influence functional or phylogenetic aspects of bat communities by effectively altering the ways in which species partition niche space.
Fagan, Matthew E.; Willig, Michael R.
2016-01-01
Background Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities have been implemented to determine the relative importance of particular environmental (or niche-based) mechanisms. Nonetheless, few studies have integrated these quantitative approaches to comprehensively assess the relative importance of particular structuring processes. Methods We employed a novel variation partitioning approach to evaluate the relative importance of particular spatial and environmental drivers of taxonomic, functional, and phylogenetic aspects of bat communities in a human-modified landscape in Costa Rica. Specifically, we estimated the amount of variation in species composition (taxonomic structure) and in two aspects of functional and phylogenetic structure (i.e., composition and dispersion) along a forest loss and fragmentation gradient that are uniquely explained by landscape characteristics (i.e., environment) or space to assess the importance of competing mechanisms. Results The unique effects of space on taxonomic, functional and phylogenetic structure were consistently small. In contrast, landscape characteristics (i.e., environment) played an appreciable role in structuring bat communities. Spatially-structured landscape characteristics explained 84% of the variation in functional or phylogenetic dispersion, and the unique effects of landscape characteristics significantly explained 14% of the variation in species composition. Furthermore, variation in bat community structure was primarily due to differences in dispersion of species within functional or phylogenetic space along the gradient, rather than due to differences in functional or phylogenetic composition. Discussion Variation among bat communities was related to environmental mechanisms, especially niche-based (i.e., environmental) processes, rather than spatial mechanisms. High variation in functional or phylogenetic dispersion, as opposed to functional or phylogenetic composition, suggests that loss or gain of niche space is driving the progressive loss or gain of species with particular traits from communities along the human-modified gradient. Thus, environmental characteristics associated with landscape structure influence functional or phylogenetic aspects of bat communities by effectively altering the ways in which species partition niche space. PMID:27761338
Engelmoer, Daniel J P; Rozen, Daniel E
2009-11-01
Disturbance is thought to be a major factor influencing patterns of biodiversity. In addition, disturbance can modify community composition if there are species specific trade-offs between fitness and disturbance tolerance. Here, we examine the role of disturbance on the evolution of coexisting biofilm-forming morphotypes of Pseudomonas fluorescens maintained in spatially structured laboratory microcosms. We identified four heritably stable ecotypes that varied significantly in their competitiveness under different disturbance treatments. Furthermore, we identified significant trade-offs in competitiveness across disturbance treatments for three of four of these ecotypes. These trade-offs modified dominance relationships between strains and thus altered community composition, with a peak of ecotype diversity occurring at intermediate disturbance frequencies.
Sun, Lianpeng; Chen, Jianfan; Wei, Xiange; Guo, Wuzhen; Lin, Meishan; Yu, Xiaoyu
2016-05-01
To further reveal the mechanism of sludge reduction in the oxic-settling-anaerobic (OSA) process, the polymerase chain reaction - denaturing gradient gel electrophoresis protocol was used to study the possible difference in the microbial communities between a sequencing batch reactor (SBR)-OSA process and its modified process, by analyzing the change in the diversity of the microbial communities in each reactor of both systems. The results indicated that the structure of the microbial communities in aerobic reactors of the 2 processes was very different, but the predominant microbial populations in anaerobic reactors were similar. The predominant microbial population in the aerobic reactor of the SBR-OSA belonged to Burkholderia cepacia, class Betaproteobacteria, while those of the modified process belonged to the classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. These 3 types of microbes had a cryptic growth characteristic, which was the main cause of a greater sludge reduction efficiency achieved by the modified process.
Hur, Moonsuk; Kim, Yongho; Song, Hae-Ryong; Kim, Jong Min; Choi, Young Im; Yi, Hana
2011-01-01
The application of transgenic plants to clean up environmental pollution caused by the wastes of heavy metal mining is a promising method for removing metal pollutants from soils. However, the effect of using genetically modified organisms for phytoremediation is a poorly researched topic in terms of microbial community structures, despite the important role of microorganisms in the health of soil. In this study, a comparative analysis of the bacterial and archaeal communities found in the rhizosphere of genetically modified (GM) versus wild-type (WT) poplar was conducted on trees at different growth stages (i.e., the rhizospheres of 1.5-, 2.5-, and 3-year-old poplars) that were cultivated on contaminated soils together with nonplanted control soil. Based on the results of DNA pyrosequencing, poplar type and growth stages were associated with directional changes in the structure of the microbial community. The rate of change was faster in GM poplars than in WT poplars, but the microbial communities were identical in the 3-year-old poplars. This phenomenon may arise because of a higher rate and greater extent of metal accumulation in GM poplars than in naturally occurring plants, which resulted in greater changes in soil environments and hence the microbial habitat. PMID:21890678
Cotta, Simone Raposo; Dias, Armando Cavalcante Franco; Marriel, Ivanildo Evódio; Andreote, Fernando Dini; Seldin, Lucy; van Elsas, Jan Dirk
2014-10-01
The composition of the rhizosphere microbiome is a result of interactions between plant roots, soil, and environmental conditions. The impact of genetic variation in plant species on the composition of the root-associated microbiota remains poorly understood. This study assessed the abundances and structures of nitrogen-transforming (ammonia-oxidizing) archaea and bacteria as well as nitrogen-fixing bacteria driven by genetic modification of their maize host plants. The data show that significant changes in the abundances (revealed by quantitative PCR) of ammonia-oxidizing bacterial and archaeal communities occurred as a result of the maize host being genetically modified. In contrast, the structures of the total communities (determined by PCR-denaturing gradient gel electrophoresis) were mainly driven by factors such as soil type and season and not by plant genotype. Thus, the abundances of ammonia-oxidizing bacterial and archaeal communities but not structures of those communities were revealed to be responsive to changes in maize genotype, allowing the suggestion that community abundances should be explored as candidate bioindicators for monitoring the possible impacts of cultivation of genetically modified plants. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Säde, Elina; Penttinen, Katri; Björkroth, Johanna; Hultman, Jenni
2017-04-01
Understanding the factors influencing meat bacterial communities is important as these communities are largely responsible for meat spoilage. The composition and structure of a bacterial community on a high-O 2 modified-atmosphere packaged beef product were examined after packaging, on the use-by date and two days after, to determine whether the communities at each stage were similar to those in samples taken from different production lots. Furthermore, we examined whether the taxa associated with product spoilage were distributed across production lots. Results from 16S rRNA amplicon sequencing showed that while the early samples harbored distinct bacterial communities, after 8-12 days storage at 6 °C the communities were similar to those in samples from different lots, comprising mainly of common meat spoilage bacteria Carnobacterium spp., Brochothrix spp., Leuconostoc spp. and Lactococcus spp. Interestingly, abundant operational taxonomic units associated with product spoilage were shared between the production lots, suggesting that the bacteria enable to spoil the product were constant contaminants in the production chain. A characteristic succession pattern and the distribution of common spoilage bacteria between lots suggest that both the packaging type and the initial community structure influenced the development of the spoilage bacterial community. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evolutionary method for finding communities in bipartite networks.
Zhan, Weihua; Zhang, Zhongzhi; Guan, Jihong; Zhou, Shuigeng
2011-06-01
An important step in unveiling the relation between network structure and dynamics defined on networks is to detect communities, and numerous methods have been developed separately to identify community structure in different classes of networks, such as unipartite networks, bipartite networks, and directed networks. Here, we show that the finding of communities in such networks can be unified in a general framework-detection of community structure in bipartite networks. Moreover, we propose an evolutionary method for efficiently identifying communities in bipartite networks. To this end, we show that both unipartite and directed networks can be represented as bipartite networks, and their modularity is completely consistent with that for bipartite networks, the detection of modular structure on which can be reformulated as modularity maximization. To optimize the bipartite modularity, we develop a modified adaptive genetic algorithm (MAGA), which is shown to be especially efficient for community structure detection. The high efficiency of the MAGA is based on the following three improvements we make. First, we introduce a different measure for the informativeness of a locus instead of the standard deviation, which can exactly determine which loci mutate. This measure is the bias between the distribution of a locus over the current population and the uniform distribution of the locus, i.e., the Kullback-Leibler divergence between them. Second, we develop a reassignment technique for differentiating the informative state a locus has attained from the random state in the initial phase. Third, we present a modified mutation rule which by incorporating related operations can guarantee the convergence of the MAGA to the global optimum and can speed up the convergence process. Experimental results show that the MAGA outperforms existing methods in terms of modularity for both bipartite and unipartite networks.
Tidal Energy: The benthic effects of an operational tidal stream turbine.
O'Carroll, J P J; Kennedy, R M; Creech, A; Savidge, G
2017-08-01
The effect of modified flow on epifaunal boulder reef communities adjacent to the SeaGen, the world's first grid-compliant tidal stream turbine, were assessed. The wake of the SeaGen was modelled and the outputs were used in conjunction with positional and substrate descriptor variables, to relate variation in epifaunal community structure to the modified physical environment. An Artificial Neural Network (ANN) and Generalised Linear Model (GLM) were used to make predictions on the distribution of Ecological Status (ES) of epifaunal communities in relation to the turbulent wake of the SeaGen. ES was assigned using the High Energy Hard Substrate (HEHS) index. ES was largely High throughout the survey area and it was not possible to make predictions on the spatial distribution of ES using an ANN or GLM. Spatial pattern in epifaunal community structure was detected when the study area was partitioned into three treatment areas: area D1; within one rotor diameter (16 m) of the centre of SeaGen, area D2; between one and three rotor diameters, and area D3; outside of three rotor diameters. Area D1 was found to be significantly more variable than D2 and D3 in terms of epifaunal community structure, bare rock distributions and ES. Copyright © 2017 Elsevier Ltd. All rights reserved.
1. Sublethal effects of predation can affect both population and community structure. Despite this, little is known about how the frequency of injury varies in relation to habitat, aquatic community characteristics or between trophically similar, coexisting taxa. 2. In a tidal ...
Abdul Khaiyom, Jamilah Hanum; Mukhtar, Firdaus; Ibrahim, Normala; Mohd Sidik, Sherina; Oei, Tian Po Sumantri
2016-12-01
The Catastrophic Cognitions Questionnaire-Modified (CCQ-M) is a common instrument for measuring catastrophic thoughts. In some countries, however, CCQ-M still poses concerns following the lack of appropriate validation among their populations. The current study aimed to examine the factor structure of the CCQ-M, the reliability, and the validity in community samples in Malaysia. The Malay version of CCQ-M and additional measures assessing the symptoms and cognitions relevant to anxiety disorders were completed by 682 university students and general community. Exploratory factor analysis revealed a two-factor structure accounting for 62.2% of the total variance. Confirmatory factor analysis confirmed the two-factor model by deleting four items. The Cronbach's alpha coefficients for the total and the two subscales were .94, .90, and .92, respectively. Test-retest reliability analysis was conducted on 82 university students in the interval period of 14 days, and the result was r = .58. Evidence supported the concurrent, convergent, and discriminant validity. In conclusion, the 17-item CCQ-M-Malaysia is a valid and reliable instrument for assessing catastrophic cognitions among Malaysian populations. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Liu, Qing-Song; Li, Yun-He; Chen, Xiu-Ping; Peng, Yu-Fa
2014-08-01
Semiochemicals released by plants or insects play an important role in the communication among plants, phytophagous insects and their natural enemies. They thus form a chemical information network which regulates intra- and inter-specific behaviors and sustains the composition and structure of plant and insect communities. The application of insect-resistant genetically modified (IRGM) crops may affect the chemical communication within and among the tritrophic levels, and thus cause disturbances to the biotic community structure and the stability of the farmland ecosystem. This has raised concerns about the environmental safety of IRGM crops and triggered research worldwide. In the current article we provided a brief summary of the chemical communication among plants, herbivores and natural enemies; analyzed the potential of IRGM crops to affect the chemical communication between plants and arthropods and the related mechanisms; and discussed the current research progress and the future prospects in this field. We hope that this will promote the research in this field by Chinese scientists and increase our understanding of the potential effects of growing of IRGM crops on the arthropod community structure.
Assessing ecosystem restoration alternatives in eastern deciduous forests: the view from belowground
Ralph E.J. Boerner; Adam T. Coates; Daniel A. Yaussy; Thomas A. Waldrop
2008-01-01
Both structural and functional approaches to restoration of eastern deciduous forests are becoming more common as recognition of the altered state of these ecosystems grows. In our study, structural restoration involves mechanically modifying the woody plant assemblage to a species composition, density, and community structure specified by the restoration goals....
Changes in the Pincate Reserve ecosystems: Invasion of non-native plants
Denise Z. Avila-Jimenez
2005-01-01
Over the years, humans have modified the Sonoran Desert by introducing invasive plants that prosper in disturbed and non-disturbed habitats. These invaders modify the dynamics and structure of populations and the composition of communities, which in turn can result in radical changes in wildlife habitat. The natural landscape of the Sonoran Desert is characterized by...
Grant Proposal Development a la FLC (Faculty Learning Community) Mode
ERIC Educational Resources Information Center
Frantz, Pollyanne S.
2013-01-01
Although the Faculty Learning Community is not a new structure or initiative in the higher education arena, adapting this model for faculty development focused on grant proposal writing is relatively new. This article describes how the concept developed by Milt Cox of Miami University has been successfully modified and implemented twice on the…
Kong, Hyun Gi; Kim, Nam Hee; Lee, Seung Yeup; Lee, Seon-Woo
2016-04-01
Pseudomonas fluorescens pc78 is an effective biocontrol agent for soil-borne fungal diseases. We previously constructed a P43-gfp tagged biocontrol bacteria P. fluorescens pc78-48 to investigate bacterial traits in natural ecosystem and the environmental risk of genetically modified biocontrol bacteria in tomato rhizosphere. Fluctuation of culturable bacteria profile, microbial community structure, and potential horizontal gene transfer was investigated over time after the bacteria treatment to the tomato rhizosphere. Tagged gene transfer to other organisms such as tomato plants and bacteria cultured on various media was examined by polymerase chain reaction, using gene specific primers. Transfer of chromosomally integrated P43-gfp from pc78 to other organisms was not apparent. Population and colony types of culturable bacteria were not significantly affected by the introduction of P. fluorescens pc78 or pc78-48 into tomato rhizosphere. Additionally, terminal restriction fragment length polymorphism profiles were investigated to estimate the influence on the microbial community structure in tomato rhizosphere between non-treated and pc78-48-treated samples. Interestingly, rhizosphere soil treated with strain pc78-48 exhibited a significantly different bacterial community structure compared to that of non-treated rhizosphere soil. Our results suggest that biocontrol bacteria treatment influences microbial community in tomato rhizosphere, while the chromosomally modified biocontrol bacteria may not pose any specific environmental risk in terms of gene transfer.
Community structure from spectral properties in complex networks
NASA Astrophysics Data System (ADS)
Servedio, V. D. P.; Colaiori, F.; Capocci, A.; Caldarelli, G.
2005-06-01
We analyze the spectral properties of complex networks focusing on their relation to the community structure, and develop an algorithm based on correlations among components of different eigenvectors. The algorithm applies to general weighted networks, and, in a suitably modified version, to the case of directed networks. Our method allows to correctly detect communities in sharply partitioned graphs, however it is useful to the analysis of more complex networks, without a well defined cluster structure, as social and information networks. As an example, we test the algorithm on a large scale data-set from a psychological experiment of free word association, where it proves to be successful both in clustering words, and in uncovering mental association patterns.
Escobedo, Víctor M.; Rios, Rodrigo S.; Salgado-Luarte, Cristian; Stotz, Gisela C.
2017-01-01
Abstract Background and Aims Disturbance often drives plant invasion and may modify community assembly. However, little is known about how these modifications of community patterns occur in terms of taxonomic, functional and phylogenetic structure. This study evaluated in an arid shrubland the influence of disturbance by an endemic rodent on community functional divergence and phylogenetic structure as well as on plant invasion. It was expected that disturbance would operate as a habitat filter favouring exotic species with short life cycles. Methods Sixteen plots were sampled along a disturbance gradient caused by the endemic fossorial rodent Spalacopus cyanus, measuring community parameters and estimating functional divergence for life history traits (functional dispersion index) and the relative contribution to functional divergence of exotic and native species. The phylogenetic signal (Pagel’s lambda) and phylogenetic community structure (mean phylogenetic distance and mean nearest taxon phylogenetic distance) were also estimated. The use of a continuous approach to the disturbance gradient allowed the identification of non-linear relationships between disturbance and community parameters. Key Results The relationship between disturbance and both species richness and abundance was positive for exotic species and negative for native species. Disturbance modified community composition, and exotic species were associated with more disturbed sites. Disturbance increased trait convergence, which resulted in phylogenetic clustering because traits showed a significant phylogenetic signal. The relative contribution of exotic species to functional divergence increased, while that of natives decreased, with disturbance. Exotic and native species were not phylogenetically distinct. Conclusions Disturbance by rodents in this arid shrubland constitutes a habitat filter over phylogeny-dependent life history traits, leading to phylogenetic clustering, and drives invasion by favouring species with short life cycles. Results can be explained by high phenotypic and phylogenetic resemblance between exotic and native species. The use of continuous gradients when studying the effects of disturbance on community assembly is advocated. PMID:28087661
Fire modifies the phylogenetic structure of soil bacterial co-occurrence networks.
Pérez-Valera, Eduardo; Goberna, Marta; Faust, Karoline; Raes, Jeroen; García, Carlos; Verdú, Miguel
2017-01-01
Fire alters ecosystems by changing the composition and community structure of soil microbes. The phylogenetic structure of a community provides clues about its main assembling mechanisms. While environmental filtering tends to reduce the community phylogenetic diversity by selecting for functionally (and hence phylogenetically) similar species, processes like competitive exclusion by limiting similarity tend to increase it by preventing the coexistence of functionally (and phylogenetically) similar species. We used co-occurrence networks to detect co-presence (bacteria that co-occur) or exclusion (bacteria that do not co-occur) links indicative of the ecological interactions structuring the community. We propose that inspecting the phylogenetic structure of co-presence or exclusion links allows to detect the main processes simultaneously assembling the community. We monitored a soil bacterial community after an experimental fire and found that fire altered its composition, richness and phylogenetic diversity. Both co-presence and exclusion links were more phylogenetically related than expected by chance. We interpret such a phylogenetic clustering in co-presence links as a result of environmental filtering, while that in exclusion links reflects competitive exclusion by limiting similarity. This suggests that environmental filtering and limiting similarity operate simultaneously to assemble soil bacterial communities, widening the traditional view that only environmental filtering structures bacterial communities. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Goberna, M; García, C; Insam, H; Hernández, M T; Verdú, M
2012-07-01
Wildfires subject soil microbes to extreme temperatures and modify their physical and chemical habitat. This might immediately alter their community structure and ecosystem functions. We burned a fire-prone shrubland under controlled conditions to investigate (1) the fire-induced changes in the community structure of soil archaea, bacteria and fungi by analysing 16S or 18S rRNA gene amplicons separated through denaturing gradient gel electrophoresis; (2) the physical and chemical variables determining the immediate shifts in the microbial community structure; and (3) the microbial drivers of the change in ecosystem functions related to biogeochemical cycling. Prokaryotes and eukaryotes were structured by the local environment in pre-fire soils. Fire caused a significant shift in the microbial community structure, biomass C, respiration and soil hydrolases. One-day changes in bacterial and fungal community structure correlated to the rise in total organic C and NO(3)(-)-N caused by the combustion of plant residues. In the following week, bacterial communities shifted further forced by desiccation and increasing concentrations of macronutrients. Shifts in archaeal community structure were unrelated to any of the 18 environmental variables measured. Fire-induced changes in the community structure of bacteria, rather than archaea or fungi, were correlated to the enhanced microbial biomass, CO(2) production and hydrolysis of C and P organics. This is the first report on the combined effects of fire on the three biological domains in soils. We concluded that immediately after fire the biogeochemical cycling in Mediterranean shrublands becomes less conservative through the increased microbial biomass, activity and changes in the bacterial community structure.
A framework for solving ill-structured community problems
NASA Astrophysics Data System (ADS)
Keller, William Cotesworth
A multifaceted protocol for solving ill-structured community problems has been developed. It embodies the lessons learned from the past by refining and extending features of previous models from the systems thinkers, and the fields of behavioral decision making and creative problem solving. The protocol also embraces additional features needed to address the unique aspects of community decision situations. The essential elements of the protocol are participants from the community, a problem-solving process, a systems picture, a facilitator, a modified Delphi method of communications, and technical expertise. This interdisciplinary framework has been tested by a quasi experiment with a real world community problem (the high cost of electrical power on Long Island, NY). Results indicate the protocol can enable members of the community to understand a complicated, ill-structured problem and guide them to action to solve the issue. However, the framework takes time (over one year in the test case) and will be inappropriate for crises where quick action is needed.
Mallon, C A; Le Roux, X; van Doorn, G S; Dini-Andreote, F; Poly, F; Salles, J F
2018-03-01
Although many environments like soils are constantly subjected to invasion by alien microbes, invaders usually fail to succeed, succumbing to the robust diversity often found in nature. So far, only successful invasions have been explored, and it remains unknown to what extent an unsuccessful invasion can impact resident communities. Here we hypothesized that unsuccessful invasions can cause impacts to soil functioning by decreasing the diversity and niche breadth of resident bacterial communities, which could cause shifts to community composition and niche structure-an effect that is likely exacerbated when diversity is compromised. To examine this question, diversity gradients of soil microbial communities were subjected to invasion by the frequent, yet oft-unsuccessful soil invader, Escherichia coli, and evaluated for changes to diversity, bacterial community composition, niche breadth, and niche structure. Contrary to expectations, diversity and niche breadth increased across treatments upon invasion. Community composition and niche structure were also altered, with shifts of niche structure revealing an escape by the resident community away from the invader's resources. Importantly, the extent of the escape varied in response to the community's diversity, where less diverse communities experienced larger shifts. Thus, although transient and unsuccessful, the invader competed for resources with resident species and caused tangible impacts that modified both the diversity and functioning of resident communities, which can likely generate a legacy effect that influences future invasion attempts.
Escobedo, Víctor M; Rios, Rodrigo S; Salgado-Luarte, Cristian; Stotz, Gisela C; Gianoli, Ernesto
2017-03-01
Disturbance often drives plant invasion and may modify community assembly. However, little is known about how these modifications of community patterns occur in terms of taxonomic, functional and phylogenetic structure. This study evaluated in an arid shrubland the influence of disturbance by an endemic rodent on community functional divergence and phylogenetic structure as well as on plant invasion. It was expected that disturbance would operate as a habitat filter favouring exotic species with short life cycles. Sixteen plots were sampled along a disturbance gradient caused by the endemic fossorial rodent Spalacopus cyanus , measuring community parameters and estimating functional divergence for life history traits (functional dispersion index) and the relative contribution to functional divergence of exotic and native species. The phylogenetic signal (Pagel's lambda) and phylogenetic community structure (mean phylogenetic distance and mean nearest taxon phylogenetic distance) were also estimated. The use of a continuous approach to the disturbance gradient allowed the identification of non-linear relationships between disturbance and community parameters. The relationship between disturbance and both species richness and abundance was positive for exotic species and negative for native species. Disturbance modified community composition, and exotic species were associated with more disturbed sites. Disturbance increased trait convergence, which resulted in phylogenetic clustering because traits showed a significant phylogenetic signal. The relative contribution of exotic species to functional divergence increased, while that of natives decreased, with disturbance. Exotic and native species were not phylogenetically distinct. Disturbance by rodents in this arid shrubland constitutes a habitat filter over phylogeny-dependent life history traits, leading to phylogenetic clustering, and drives invasion by favouring species with short life cycles. Results can be explained by high phenotypic and phylogenetic resemblance between exotic and native species. The use of continuous gradients when studying the effects of disturbance on community assembly is advocated. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Chutuape, Kate S.; Muyeed, Adaline Z.; Willard, Nancy; Greenberg, Lauren; Ellen, Jonathan M.
2015-01-01
Opportunities to control risk factors that contribute to HIV transmission and acquisition extend far beyond individuals and include addressing social and structural determinants of HIV risk, such as inadequate housing, poor access to healthcare and economic insecurity. The infrastructure within communities, including the policies and practices that guide institutions and organizations, should be considered crucial targets for change. This paper examines the extent to which 13 community coalitions across the U.S. and Puerto Rico were able to achieve “structural change” objectives (i.e., new or modified practices or policies) as an intermediate step toward the long-term goal of reducing HIV risk among adolescents and young adults (12-24 years old). The study resulted in the completion of 245 objectives with 70% categorized as structural in nature. Coalitions targeted social services, education and government as primary community sectors to adopt structural changes. A median of 12 key actors and six new key actors contributed to accomplishing structural changes. Structural change objectives required a median of seven months to complete. The structural changes achieved offer new ideas for community health educators and practitioners seeking to bolster their HIV prevention agenda. PMID:25632407
Elevated Air Humidity Changes Soil Bacterial Community Structure in the Silver Birch Stand.
Truu, Marika; Ostonen, Ivika; Preem, Jens-Konrad; Lõhmus, Krista; Nõlvak, Hiie; Ligi, Teele; Rosenvald, Katrin; Parts, Kaarin; Kupper, Priit; Truu, Jaak
2017-01-01
Soil microbes play a fundamental role in forest ecosystems and respond rapidly to changes in the environment. Simultaneously with the temperature increase the climate change scenarios also predict an intensified hydrological cycle for the Baltic Sea runoff region. The aim of this study was to assess the effect of elevated air humidity on the top soil microbial community structure of a silver birch ( Betula pendula Roth.) stand by using a free air humidity manipulation facility (FAHM). The bacterial community structures of bulk soil and birch rhizosphere were analyzed using high-throughput sequencing of bacteria-specific16S rRNA gene fragments and quantification of denitrification related genes. The increased air humidity altered both bulk soil and rhizosphere bacterial community structures, and changes in the bacterial communities initiated by elevated air humidity were related to modified soil abiotic and biotic variables. Network analysis revealed that variation in soil bacterial community structural units is explained by altered abiotic conditions such as increased pH value in bulk soil, while in rhizosphere the change in absorptive root morphology had a higher effect. Among root morphological traits, the absorptive root diameter was strongest related to the bacterial community structure. The changes in bacterial community structures under elevated air humidity are associated with shifts in C, N, and P turnover as well as mineral weathering processes in soil. Increased air humidity decreased the nir and nosZ gene abundance in the rhizosphere bacterial community. The potential contribution of the denitrification to the N 2 O emission was not affected by the elevated air humidity in birch stand soil. In addition, the study revealed a strong link between the bacterial community structure, abundance of denitrification related genes, and birch absorptive root morphology in the ecosystem system adaptation to elevated air humidity.
Elevated Air Humidity Changes Soil Bacterial Community Structure in the Silver Birch Stand
Truu, Marika; Ostonen, Ivika; Preem, Jens-Konrad; Lõhmus, Krista; Nõlvak, Hiie; Ligi, Teele; Rosenvald, Katrin; Parts, Kaarin; Kupper, Priit; Truu, Jaak
2017-01-01
Soil microbes play a fundamental role in forest ecosystems and respond rapidly to changes in the environment. Simultaneously with the temperature increase the climate change scenarios also predict an intensified hydrological cycle for the Baltic Sea runoff region. The aim of this study was to assess the effect of elevated air humidity on the top soil microbial community structure of a silver birch (Betula pendula Roth.) stand by using a free air humidity manipulation facility (FAHM). The bacterial community structures of bulk soil and birch rhizosphere were analyzed using high-throughput sequencing of bacteria-specific16S rRNA gene fragments and quantification of denitrification related genes. The increased air humidity altered both bulk soil and rhizosphere bacterial community structures, and changes in the bacterial communities initiated by elevated air humidity were related to modified soil abiotic and biotic variables. Network analysis revealed that variation in soil bacterial community structural units is explained by altered abiotic conditions such as increased pH value in bulk soil, while in rhizosphere the change in absorptive root morphology had a higher effect. Among root morphological traits, the absorptive root diameter was strongest related to the bacterial community structure. The changes in bacterial community structures under elevated air humidity are associated with shifts in C, N, and P turnover as well as mineral weathering processes in soil. Increased air humidity decreased the nir and nosZ gene abundance in the rhizosphere bacterial community. The potential contribution of the denitrification to the N2O emission was not affected by the elevated air humidity in birch stand soil. In addition, the study revealed a strong link between the bacterial community structure, abundance of denitrification related genes, and birch absorptive root morphology in the ecosystem system adaptation to elevated air humidity. PMID:28421053
Global and local disturbances interact to modify seagrass palatability.
Jiménez-Ramos, Rocío; Egea, Luis G; Ortega, María J; Hernández, Ignacio; Vergara, Juan J; Brun, Fernando G
2017-01-01
Global change, such as warming and ocean acidification, and local anthropogenic disturbances, such as eutrophication, can have profound impacts on marine organisms. However, we are far from being able to predict the outcome of multiple interacting disturbances on seagrass communities. Herbivores are key in determining plant community structure and the transfer of energy up the food web. Global and local disturbances may alter the ecological role of herbivory by modifying leaf palatability (i.e. leaf traits) and consequently, the feeding patterns of herbivores. This study evaluates the main and interactive effects of factors related to global change (i.e. elevated temperature, lower pH levels and associated ocean acidification) and local disturbance (i.e. eutrophication through ammonium enrichment) on a broad spectrum of leaf traits using the temperate seagrass Cymodocea nodosa, including structural, nutritional, biomechanical and chemical traits. The effect of these traits on the consumption rates of the generalist herbivore Paracentrotus lividus (purple sea urchin) is evaluated. The three disturbances of warming, low pH level and eutrophication, alone and in combination, increased the consumption rate of seagrass by modifying all leaf traits. Leaf nutritional quality, measured as nitrogen content, was positively correlated to consumption rate. In contrast, a negative correlation was found between feeding decisions by sea urchins and structural, biomechanical and chemical leaf traits. In addition, a notable accomplishment of this work is the identification of phenolic compounds not previously reported for C. nodosa. Our results suggest that global and local disturbances may trigger a major shift in the herbivory of seagrass communities, with important implications for the resilience of seagrass ecosystems.
NASA Astrophysics Data System (ADS)
Assigbetsé, K.; Ciss, I.; Bakhoum, N.; Dieng, L.
2012-04-01
Inoculation of legume plants with symbiotic microorganisms is widely used to improve their development and productivity. The objective of this study was to investigate the effect of inoculation of Acacia senegal mature trees with rhizobium (Sinorhizobium) and arbuscular mycorrhizal fungus (G. mosseae, G. fasciculatum, G. intraradices) either singly or in combination, on soil properties, activity and the genetic structure of soil microbial communities. The experiment set up in Southern Senegal consisted of 4 randomized blocks of A. senegal mature trees with 4 treatments including inoculated trees with Rhizobium (R), mycorrhizal fungus (M) and with Rhizobium+mycorhizal fungus (RM) and non-inoculated control (CON). Soil were sampled 2 years after the inoculation. Soil pH, C and N and available P contents were measured. The microbial abundance and activity were measured in terms of microbial biomass C (MBC) and basal soil respiration. The community structure of the total bacterial, diazotrophic and denitrifying communities was assessed by denaturing gradient gel electrophoresis of 16S rDNA, nifH and nirK genes respectively. Inoculations with symbiont under field conditions have increased soil pH. The C and N contents were enhanced in the dual-inoculated treatments (RM). The mycorrhized treatment have displayed the lowest available P contents while RM and R treatments exhibited higher contents rates. The microbial biomass C rates were higher in treatments co-inoculated with AM fungi and Rhizobium than in those inoculated singly with AM fungi or Rhizobium strains. The basal soil respiration were positively correlated to MBC, and the highest rates were found in the co-inoculated treatments. Fingerprints of 16S rDNA gene exhibited similar patterns between inoculated treatments and the control showing that the inoculation of mature trees have not impacted the total bacterial community structure. In contrast, the inoculated treatments have displayed individually different diazotrophic and denitrifying communities fingerprints, indicating that the inoculation with microsymbionts have modified the genetic structure of the two functional communities in soil. Further, the diazotrophic community richness was reduced over the control indicating the impact of the addition of symbionts on the free-living N2-fixing bacterial (nifH) diversity. This study shows that inoculation of A. senegal mature trees with rhizobium and arbuscular mycorrhizal fungus has enhanced soil biofunctioning and modified the genetic structure of microbial community involved in N-cycling. Combined inoculation of AM fungi and Rhizobium have improved these effects on chemical characteristics, microbial community abundance and activity demonstrating synergism between the two microsymbionts.
Pham, Hoang Nam; Michalet, Serge; Bodillis, Josselin; Nguyen, Tien Dat; Nguyen, Thi Kieu Oanh; Le, Thi Phuong Quynh; Haddad, Mohamed; Nazaret, Sylvie; Dijoux-Franca, Marie-Geneviève
2017-07-01
Plants adapt to metal stress by modifying their metabolism including the production of secondary metabolites in plant tissues. Such changes may impact the diversity and functions of plant associated microbial communities. Our study aimed to evaluate the influence of metals on the secondary metabolism of plants and the indirect impact on rhizosphere bacterial communities. We then compared the secondary metabolites of the hyperaccumulator Pteris vittata L. collected from a contaminated mining site to a non-contaminated site in Vietnam and identified the discriminant metabolites. Our data showed a significant increase in chlorogenic acid derivatives and A-type procyanidin in plant roots at the contaminated site. We hypothesized that the intensive production of these compounds could be part of the antioxidant defense mechanism in response to metals. In parallel, the structure and diversity of bulk soil and rhizosphere communities was studied using high-throughput sequencing. The results showed strong differences in bacterial composition, characterized by the dominance of Proteobacteria and Nitrospira in the contaminated bulk soil, and the enrichment of some potential human pathogens, i.e., Acinetobacter, Mycobacterium, and Cupriavidus in P. vittata's rhizosphere at the mining site. Overall, metal pollution modified the production of P. vittata secondary metabolites and altered the diversity and structure of bacterial communities. Further investigations are needed to understand whether the plant recruits specific bacteria to adapt to metal stress.
Smedbol, Élise; Gomes, Marcelo Pedrosa; Paquet, Serge; Labrecque, Michel; Lepage, Laurent; Lucotte, Marc; Juneau, Philippe
2018-02-01
Residual glyphosate from glyphosate based herbicides (GBH) are ubiquitously detected in streams draining agricultural fields, and may affect phytoplankton communities present in these ecosystems. Here, the effects of the exposure (96 h) of a phytoplankton community collected in an agricultural stream to various glyphosate concentrations (1, 5, 10, 50, 100, 500 and 1000 μg l -1 ) of Factor 540 ® GBH were investigated. The lowest GBH concentration of 1 μg l -1 reduced chlorophyll a and carotenoid contents. Low glyphosate concentrations, such as 5 and 10 μg l -1 , promoted changes in the community's structure and reduced the diversity of the main algal species. At glyphosate concentrations ranging from 50 to 1000 μg l -1 , the phytoplankton community's composition was modified and new main species appeared. The highest glyphosate concentrations (500 and 1000 μg l -1 ) affected the shikimate content, the lipid peroxidation and the activity of antioxidant enzymes (superoxide dismutase, catalase and ascorbate peroxidase). These results indicate that GBH can modify structural and functional properties of freshwater phytoplankton communities living in streams located in agricultural areas at glyphosate concentrations much inferior to the 800 μg l -1 threshold set by the Canadian guidelines for the protection of aquatic life. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Growing evidence indicates that host-associated microbiota modify the toxicokinetics and/or toxicodynamics of environmental chemicals; however, current risk assessment methods do not consider interactions between microbiota and chemical toxicity. We previously reported that micro...
A novel community detection method in bipartite networks
NASA Astrophysics Data System (ADS)
Zhou, Cangqi; Feng, Liang; Zhao, Qianchuan
2018-02-01
Community structure is a common and important feature in many complex networks, including bipartite networks, which are used as a standard model for many empirical networks comprised of two types of nodes. In this paper, we propose a two-stage method for detecting community structure in bipartite networks. Firstly, we extend the widely-used Louvain algorithm to bipartite networks. The effectiveness and efficiency of the Louvain algorithm have been proved by many applications. However, there lacks a Louvain-like algorithm specially modified for bipartite networks. Based on bipartite modularity, a measure that extends unipartite modularity and that quantifies the strength of partitions in bipartite networks, we fill the gap by developing the Bi-Louvain algorithm that iteratively groups the nodes in each part by turns. This algorithm in bipartite networks often produces a balanced network structure with equal numbers of two types of nodes. Secondly, for the balanced network yielded by the first algorithm, we use an agglomerative clustering method to further cluster the network. We demonstrate that the calculation of the gain of modularity of each aggregation, and the operation of joining two communities can be compactly calculated by matrix operations for all pairs of communities simultaneously. At last, a complete hierarchical community structure is unfolded. We apply our method to two benchmark data sets and a large-scale data set from an e-commerce company, showing that it effectively identifies community structure in bipartite networks.
Differences in Intertidal Microbial Assemblages on Urban Structures and Natural Rocky Reef
Tan, Elisa L.-Y.; Mayer-Pinto, Mariana; Johnston, Emma L.; Dafforn, Katherine A.
2015-01-01
Global seascapes are increasingly modified to support high levels of human activity in the coastal zone. Modifications include the addition of defense structures and boating infrastructure, such as seawalls and marinas that replace natural habitats. Artificial structures support different macrofaunal communities to those found on natural rocky shores; however, little is known about differences in microbial community structure or function in urban seascapes. Understanding how artificial constructions in marine environments influence microbial communities is important as these assemblages contribute to many basic ecological processes. In this study, the bacterial communities of intertidal biofilms were compared between artificial structures (seawalls) and natural habitats (rocky shores) within Sydney Harbour. Plots were cleared on each type of habitat at eight locations. After 3 weeks the newly formed biofilm was sampled and the 16S rRNA gene sequenced using the Illumina Miseq platform. To account for differences in orientation and substrate material between seawalls and rocky shores that might have influenced our survey, we also deployed recruitment blocks next to the habitats at all locations for 3 weeks and then sampled and sequenced their microbial communities. Intertidal bacterial community structure sampled from plots differed between seawalls and rocky shores, but when substrate material, age and orientation were kept constant (with recruitment blocks) then bacterial communities were similar in composition and structure among habitats. This suggests that changes in bacterial communities on seawalls are not related to environmental differences between locations, but may be related to other intrinsic factors that differ between the habitats such as orientation, complexity, or predation. This is one of the first comparisons of intertidal microbial communities on natural and artificial surfaces and illustrates substantial ecological differences with potential consequences for biofilm function and the recruitment of macrofauna. PMID:26635747
Idaho rural family physician workforce study: the Community Apgar Questionnaire.
Schmitz, D F; Baker, E; Nukui, A; Epperly, T
2011-01-01
Community factors of varied importance help determine the success of achieving and maintaining a physician workforce. The purpose of this study was to develop an evaluation instrument (Community Apgar Questioinnaire) useful to rural Idaho communities' in their assessment of the assets and capabilities related to physician recruitment and retention. A quantitative scoring interview instrument was developed based on a literature review, site visits and discussions with rural physicians and hospital administrators. A total of 11 rural Idaho communities differing in geography and other known variables were selected, some identified historically to have more success in recruitment and retention (α communities) and some historically noted to have more challenges (β comunities). In each community, the administrator of the hospital and the physician with recruiting responsibilities participated individually in a structured interview. A total of 11 physicians and 11 CEOs participated in the study. Differences were found across and within classes of factors associated with success in physician recruitment and retention where alpha communities scored higher on Community Apgar Questionnaire metrics. Some differences were noted by respondent class. Cumulative mean Community Apgar scores are higher in communities that have historically better track records in recruitment and retention. The Community Apgar Questionnaire seems to discriminate between communities with differing assets and capabilities, based on historical community-specific workforce trends. This assessment may allow for identification of both modifiable and non-modifiable factors and also may suggest which factors are most important for a community with limited available resources to address.
Factor Structure of the Internet Addiction Test in Online Gamers and Poker Players.
Khazaal, Yasser; Achab, Sophia; Billieux, Joel; Thorens, Gabriel; Zullino, Daniele; Dufour, Magali; Rothen, Stéphane
2015-01-01
The Internet Addiction Test (IAT) is the most widely used questionnaire to screen for problematic Internet use. Nevertheless, its factorial structure is still debated, which complicates comparisons among existing studies. Most previous studies were performed with students or community samples despite the probability of there being more problematic Internet use among users of specific applications, such as online gaming or gambling. To assess the factorial structure of a modified version of the IAT that addresses specific applications, such as video games and online poker. Two adult samples-one sample of Internet gamers (n=920) and one sample of online poker players (n=214)-were recruited and completed an online version of the modified IAT. Both samples were split into two subsamples. Two principal component analyses (PCAs) followed by two confirmatory factor analyses (CFAs) were run separately. The results of principal component analysis indicated that a one-factor model fit the data well across both samples. In consideration of the weakness of some IAT items, a 17-item modified version of the IAT was proposed. This study assessed, for the first time, the factorial structure of a modified version of an Internet-administered IAT on a sample of Internet gamers and a sample of online poker players. The scale seems appropriate for the assessment of such online behaviors. Further studies on the modified 17-item IAT version are needed.
Fabian, Jenny; Zlatanović, Sanja; Mutz, Michael; Grossart, Hans-Peter; van Geldern, Robert; Ulrich, Andreas; Gleixner, Gerd; Premke, Katrin
2018-01-01
In aquatic ecosystems, light availability can significantly influence microbial turnover of terrestrial organic matter through associated metabolic interactions between phototrophic and heterotrophic communities. However, particularly in streams, microbial functions vary significantly with the structure of the streambed, that is the distribution and spatial arrangement of sediment grains in the streambed. It is therefore essential to elucidate how environmental factors synergistically define the microbial turnover of terrestrial organic matter in order to better understand the ecological role of photo-heterotrophic interactions in stream ecosystem processes. In outdoor experimental streams, we examined how the structure of streambeds modifies the influence of light availability on microbial turnover of leaf carbon (C). Furthermore, we investigated whether the studied relationships of microbial leaf C turnover to environmental conditions are affected by flow intermittency commonly occurring in streams. We applied leaves enriched with a 13C-stable isotope tracer and combined quantitative and isotope analyses. We thereby elucidated whether treatment induced changes in C turnover were associated with altered use of leaf C within the microbial food web. Moreover, isotope analyses were combined with measurements of microbial community composition to determine whether changes in community function were associated with a change in community composition. In this study, we present evidence, that environmental factors interactively determine how phototrophs and heterotrophs contribute to leaf C turnover. Light availability promoted the utilization of leaf C within the microbial food web, which was likely associated with a promoted availability of highly bioavailable metabolites of phototrophic origin. However, our results additionally confirm that the structure of the streambed modifies light-related changes in microbial C turnover. From our observations, we conclude that the streambed structure influences the strength of photo-heterotrophic interactions by defining the spatial availability of algal metabolites in the streambed and the composition of microbial communities. Collectively, our multifactorial approach provides valuable insights into environmental controls on the functioning of stream ecosystems.
Effects of field-grown genetically modified Zoysia grass on bacterial community structure.
Lee, Yong-Eok; Yang, Sang-Hwan; Bae, Tae-Woong; Kang, Hong-Gyu; Lim, Pyung-Ok; Lee, Hyo-Yeon
2011-04-01
Herbicide-tolerant Zoysia grass has been previously developed through Agrobacterium-mediated transformation. We investigated the effects of genetically modified (GM) Zoysia grass and the associated herbicide application on bacterial community structure by using culture-independent approaches. To assess the possible horizontal gene transfer (HGT) of transgenic DNA to soil microorganisms, total soil DNAs were amplified by PCR with two primer sets for the bar and hpt genes, which were introduced into the GM Zoysia grass by a callus-type transformation. The transgenic genes were not detected from the total genomic DNAs extracted from 1.5 g of each rhizosphere soils of GM and non-GM Zoysia grasses. The structures and diversities of the bacterial communities in rhizosphere soils of GM and non-GM Zoysia grasses were investigated by constructing 16S rDNA clone libraries. Classifier, provided in the RDP II, assigned 100 clones in the 16S rRNA gene sequences library into 11 bacterial phyla. The most abundant phyla in both clone libraries were Acidobacteria and Proteobacteria. The bacterial diversity of the GM clone library was lower than that of the non- GM library. The former contained four phyla, whereas the latter had seven phyla. Phylogenetic trees were constructed to confirm these results. Phylogenetic analyses of the two clone libraries revealed considerable difference from each other. The significance of difference between clone libraries was examined with LIBSHUFF statistics. LIBSHUFF analysis revealed that the two clone libraries differed significantly (P〈0.025), suggesting alterations in the composition of the microbial community associated with GM Zoysia grass.
Morin, Soizic; Pesce, Stéphane; Kim-Tiam, Sandra; Libert, Xavier; Coquery, Marina; Mazzella, Nicolas
2012-07-01
The responses of aquatic organisms to chronic exposure to environmental concentrations of toxicants, often found in mixtures, are poorly documented. Here passive sampler extracts were used in experimental contamination of laboratory channels, to investigate their effects on natural biofilm communities. A realistic mixture of pesticides extracted from Polar Organic Chemical Integrative Samplers was used to expose biofilms in laboratory channels to total pesticide concentrations averaging 0.5 ± 0.1 μg l⁻¹. The level of exposure was representative of field conditions in terms of relative proportions of the substances but the exposure concentration was not maintained (decreasing concentrations between contamination occasions). The impact on the structural as well as the functional characteristics of the autotrophic and heterotrophic components was determined, using biofilm grown in uncontaminated conditions (reference site) and in sites exposed to pesticides (contaminated site). The exposure imposed did not significantly modify the structure or functions of reference biofilms, nor did it modify tolerance as measured by mixture EC₅₀ (EC₅₀ mix). In contrast, the communities from the more contaminated downstream section lost tolerance following decreased dose exposure, but community composition remained fairly stable. Overall, these results indicate that low levels of contamination did not lead to strong changes in community structure, and 14-day changes in tolerance seemed to depend mainly on physiological adaptation, suggesting that other environmental factors or longer-lasting processes prevailed. This study reports the first attempt to use passive sampler extracts as a realistic composite contaminant for experimental exposure of biofilms, with promising perspectives in further ecotoxicology studies.
Klabi, Rim; Bell, Terrence H; Hamel, Chantal; Iwaasa, Alan; Schellenberg, Mike; Raies, Aly; St-Arnaud, Marc
2015-01-01
Adding inorganic P- and N-fixing legumes to semi-arid grasslands can increase forage yield, but soil nutrient concentrations and plant cover may also interact to modify soil fungal populations, impacting short- and long-term forage production. We tested the effect of plant assemblage (seven native grasses, seven native grasses + the domesticated N-fixing legume Medicago sativa, seven native grasses + the native N-fixing legume Dalea purpurea or the introduced grass Bromus biebersteinii + M. sativa) and soil P concentration (addition of 0 or 200 P2O5 kg ha(-1) at sowing) on the diversity and community structure of arbuscular mycorrhizal (AM) fungi and total fungi over two consecutive years, using 454-pyrosequencing of 18S rDNA and ITS amplicons. Treatment effects were stronger in the wet year (2008) than the dry year (2009). The presence of an N-fixing legume with native grasses generally increased AM fungal diversity, while the interaction between soil P concentration and plant assemblage modified total fungal community structure in 2008. Excluding interannual variations, which are likely driven by moisture and plant productivity, AM fungal communities in semi-arid grasslands appear to be primarily affected by plant assemblage composition, while the composition of other fungi is more closely linked to soil P. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Aphid-parasitoid community structure on genetically modified wheat.
von Burg, Simone; van Veen, Frank J F; Álvarez-Alfageme, Fernando; Romeis, Jörg
2011-06-23
Since the introduction of genetically modified (GM) plants, one of the main concerns has been their potential effect on non-target insects. Many studies have looked at GM plant effects on single non-target herbivore species or on simple herbivore-natural enemy food chains. Agro-ecosystems, however, are characterized by numerous insect species which are involved in complex interactions, forming food webs. In this study, we looked at transgenic disease-resistant wheat (Triticum aestivum) and its effect on aphid-parasitoid food webs. We hypothesized that the GM of the wheat lines directly or indirectly affect aphids and that these effects cascade up to change the structure of the associated food webs. Over 2 years, we studied different experimental wheat lines under semi-field conditions. We constructed quantitative food webs to compare their properties on GM lines with the properties on corresponding non-transgenic controls. We found significant effects of the different wheat lines on insect community structure up to the fourth trophic level. However, the observed effects were inconsistent between study years and the variation between wheat varieties was as big as between GM plants and their controls. This suggests that the impact of our powdery mildew-resistant GM wheat plants on food web structure may be negligible and potential ecological effects on non-target insects limited.
USDA-ARS?s Scientific Manuscript database
Colonial, burrowing herbivores can serve as ecosystem engineers in grassland and shrubland ecosystems by creating belowground refugia, modifying vegetation structure and composition, serving as prey, and generating landscape heterogeneity. They can also serve a keystone species role by affecting the...
Ronald E. Masters; Christopher W. Wilson; Douglas S. Cram; George A. Bukenhofer; Robert L. Lochmiller
2002-01-01
Shortleaf pine-bluestem (Pinus echinata Mill.- Andropogon spp.) restoration for red-cockaded woodpeckers (Picoides borealis) has been underway for more than 2 decades on the Ouachita National Forest, Arkansas. Restoration efforts consist of modifying stand structure to basal areas similar to presettlement times...
Inbreeding and matrimonial structure in a Pyrenean community (Ansó, Huesca, Spain), 1712-1982.
Valls, A
1985-03-01
Using data from parish records from 1712 to 1982 in a Spanish Pyrenean village, Ansó, the effects of the raw nuptiality, the types of consanguineous marriages and the rate and evolution of inbreeding on the mating structure have been studied. This structure has been modified in the course of time mostly through the secular variations in the frequency of consanguineous marriages. Recent inbreeding decrease in Ansó is related to the population diminution and cultural changes associated with isolate breakdown.
Phytoplankton community structure is influenced by seabird guano enrichment in the Southern Ocean
NASA Astrophysics Data System (ADS)
Shatova, O. A.; Wing, S. R.; Hoffmann, L. J.; Wing, L. C.; Gault-Ringold, M.
2017-05-01
Phytoplankton biomass, productivity and community structure are strongly influenced by differences in nutrient concentrations among oceanographic water masses. Changes in community composition, particularly in the distribution of cell sizes, can result in dramatic changes in the energetics of pelagic food webs and ecosystem function in terms of biogeochemical cycling and carbon sequestration. Here we examine responses of natural phytoplankton communities from four major water masses in the Southern Ocean to enrichment from seabird guano, a concentrated source of bioactive metals (Mn, Fe, Co, Ni, Cu, Zn) and macronutrients (N, P), in a series of incubation experiments. Phytoplankton communities from sub-tropical water, modified sub-tropical water from the Snares Island wake, sub-Antarctic water and Antarctic water from the Ross Sea, each showed dramatic changes in community structure following additions of seabird guano. We observed particularly high growth of prymnesiophytes in response to the guano-derived nutrients within sub-Antarctic and sub-tropical frontal zones, resulting in communities dominated by larger cell sizes than in control incubations. Community changes within treatments enriched with guano were distinct, and in most cases more extensive, than those observed for treatments with additions of macronutrients (N, P) or iron (Fe) alone. These results provide the first empirical evidence that seabird guano enrichment can drive significant changes in the structure and composition of natural phytoplankton communities. Our findings have important implications for understanding the consequences of accumulation of bioactive metals and macronutrients within food webs and the role of seabirds as nutrient vectors within the Southern Ocean ecosystem.
Modifying Photovoice for community-based participatory Indigenous research.
Castleden, Heather; Garvin, Theresa
2008-03-01
Scientific research occurs within a set of socio-political conditions, and in Canada research involving Indigenous communities has a historical association with colonialism. Consequently, Indigenous peoples have been justifiably sceptical and reluctant to become the subjects of academic research. Community-Based Participatory Research (CBPR) is an attempt to develop culturally relevant research models that address issues of injustice, inequality, and exploitation. The work reported here evaluates the use of Photovoice, a CBPR method that uses participant-employed photography and dialogue to create social change, which was employed in a research partnership with a First Nation in Western Canada. Content analysis of semi-structured interviews (n=45) evaluated participants' perspectives of the Photovoice process as part of a larger study on health and environment issues. The analysis revealed that Photovoice effectively balanced power, created a sense of ownership, fostered trust, built capacity, and responded to cultural preferences. The authors discuss the necessity of modifying Photovoice, by building in an iterative process, as being key to the methodological success of the project.
McDermott, Máirtín S; Beard, Emma; Brose, Leonie S; West, Robert; McEwen, Andy
2013-07-01
Behavioral support improves smokers' chances of quitting, but quit rates are typically lower for smokers supported by "community practitioners" for whom smoking cessation is a small part of their job than for those supported by "specialist practitioners" for whom it is the main role. This article examined the factors that might contribute to this. A total of 573 specialist practitioners and 466 community practitioners completed a 42-item online survey that covered demographic and employment information, current practices, levels of training, and 4-week CO-verified quit rates. Responses were compared for community and specialist practitioners. Mediation analysis was undertaken to assess how far "structural" and "modifiable" variables account for the difference in quit rates. Specialist practitioners reported higher 4-week CO-verified quit rates than community practitioners (63.6% versus 50.4%, p < .001). Practitioners also differed significantly in employment variables, evidence-based practices, and levels of training. Six "modifiable" variables (proportion of clients using an "abrupt" quit model, duration of first session, always advising on medications, number of days training received, number of sessions observed when starting work, and number of sessions having been observed in practice and received feedback) mediated the association between practitioners' role and quit rates over and above the "structural" variables, explaining 14.3%-35.7% of the variance in the total effect. "Specialist" practitioners in the English stop-smoking services report higher success rates than "community" practitioners and this is at least in part attributable to more extensive training and supervision and greater adherence to evidence-based practice including advising on medication usage and promoting abrupt rather than gradual quitting.
Factor Structure of the Internet Addiction Test in Online Gamers and Poker Players
Achab, Sophia; Billieux, Joel; Thorens, Gabriel; Zullino, Daniele; Dufour, Magali; Rothen, Stéphane
2015-01-01
Background The Internet Addiction Test (IAT) is the most widely used questionnaire to screen for problematic Internet use. Nevertheless, its factorial structure is still debated, which complicates comparisons among existing studies. Most previous studies were performed with students or community samples despite the probability of there being more problematic Internet use among users of specific applications, such as online gaming or gambling. Objective To assess the factorial structure of a modified version of the IAT that addresses specific applications, such as video games and online poker. Methods Two adult samples—one sample of Internet gamers (n=920) and one sample of online poker players (n=214)—were recruited and completed an online version of the modified IAT. Both samples were split into two subsamples. Two principal component analyses (PCAs) followed by two confirmatory factor analyses (CFAs) were run separately. Results The results of principal component analysis indicated that a one-factor model fit the data well across both samples. In consideration of the weakness of some IAT items, a 17-item modified version of the IAT was proposed. Conclusions This study assessed, for the first time, the factorial structure of a modified version of an Internet-administered IAT on a sample of Internet gamers and a sample of online poker players. The scale seems appropriate for the assessment of such online behaviors. Further studies on the modified 17-item IAT version are needed. PMID:26543917
Cébron, Aurélie; Beguiristain, Thierry; Bongoua-Devisme, Jeanne; Denonfoux, Jérémie; Faure, Pierre; Lorgeoux, Catherine; Ouvrard, Stéphanie; Parisot, Nicolas; Peyret, Pierre; Leyval, Corinne
2015-09-01
The high organic pollutant concentration of aged polycyclic aromatic hydrocarbon (PAH)-contaminated wasteland soils is highly recalcitrant to biodegradation due to its very low bioavailability. In such soils, the microbial community is well adapted to the pollution, but the microbial activity is limited by nutrient availability. Management strategies could be applied to modify the soil microbial functioning as well as the PAH contamination through various amendment types. The impact of amendment with clay minerals (montmorillonite), wood sawdust and organic matter plant roots on microbial community structure was investigated on two aged PAH-contaminated soils both in laboratory and 1-year on-site pot experiments. Total PAH content (sum of 16 PAHs of the US-EPA list) and polar polycyclic aromatic compounds (pPAC) were monitored as well as the available PAH fraction using the Tenax method. The bacterial and fungal community structures were monitored using fingerprinting thermal gradient gel electrophoresis (TTGE) method. The abundance of bacteria (16S rRNA genes), fungi (18S rRNA genes) and PAH degraders (PAH-ring hydroxylating dioxygenase and catechol dioxygenase genes) was followed through qPCR assays. Although the treatments did not modify the total and available PAH content, the microbial community density, structure and the PAH degradation potential changed when fresh organic matter was provided as sawdust and under rhizosphere influence, while the clay mineral only increased the percentage of catechol-1,2-dioxygenase genes. The abundance of bacteria and fungi and the percentage of fungi relative to bacteria were enhanced in soil samples supplemented with wood sawdust and in the plant rhizospheric soils. Two distinct fungal populations developed in the two soils supplemented with sawdust, i.e. fungi related to Chaetomium and Neurospora genera and Brachyconidiellopsis and Pseudallescheria genera, in H and NM soils respectively. Wood sawdust amendment favoured the development of PAH-degrading bacteria holding Gram-negative PAH-ring hydroxylating dioxygenase, catechol-1,2-dioxygenase and catechol-2,3-dioxygenase genes. Regarding the total community structure, bacteria closely related to Thiobacillus (β-Proteobacteria) and Steroidobacter (γ-Proteobacteria) genera were favoured by wood sawdust amendment. In both soils, plant rhizospheres induced the development of fungi belonging to Ascomycota and related to Alternaria and Fusarium genera. Bacteria closely related to Luteolibacter (Verrucomicrobia) and Microbacterium (Actinobacteria) were favoured in alfalfa and ryegrass rhizosphere.
Rodríguez-Caballero, G; Caravaca, F; Fernández-González, A J; Alguacil, M M; Fernández-López, M; Roldán, A
2017-04-15
The main goal of this study was to assess the effect of the inoculation of four autochthonous shrub species with the arbuscular mycorrhizal (AM) fungus Rhizophagus intraradices on the rhizosphere bacterial community and to ascertain whether such an effect is dependent on the host plant species. Additionally, analysis of rhizosphere soil chemical and biochemical properties was performed to find relationships between them and the rhizosphere bacterial communities. Non-metric multidimensional scaling analysis and subsequent permutational multivariate analysis of variance revealed differences in bacterial community composition and structure between non-inoculated and inoculated rhizospheres. Moreover, an influence of the plant species was observed. Different bacterial groups were found to be indicator taxonomic groups of non-inoculated and inoculated rhizospheres, Gemmatimonadetes and Anaerolineaceae, respectively, being the most notable indicators. As shown by distance based redundancy analysis, the shifts in bacterial community composition and structure mediated by the inoculation with the AM fungus were mainly related to changes in plant nutrients and growth parameters, such as the shoot phosphorus content. Our findings suggest that the AM fungal inoculum was able to modify the rhizosphere bacterial community assemblage while improving the host plant performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Climate change's impact on key ecosystem services and the human well-being they support in the US
USDA-ARS?s Scientific Manuscript database
Climate change alters the structure and functions of ecological systems and as a result can modify their provision of ecosystem services. Some American communities have already experienced economic hardship due to spatial shifts in fish biomass caused by warming ocean waters. Documented reductions i...
Asvat, Yasmin; Malcarne, Vanessa L.; Sadler, Georgia R.; Jacobsen, Paul B.
2014-01-01
Objectives This study examined the psychometric properties of the Multidimensional Fatigue Symptom Inventory-Short Form (MFSI-SF) in a community-based sample of African Americans. Design. A sample of 340 African Americans (116 men, 224 women) ranging in age from 18–81 years were recruited from the community (e.g., churches, health fairs, beauty salons). Participants completed a brief demographic survey, the MFSI-SF and the Positive and Negative Affect Schedule. Results The structural validity of the MFSI-SF for a community-based sample of African Americans was not supported. The five dimensions of fatigue (General, Emotional, Physical, Mental, Vigor) found for Whites in prior research were not found for African Americans in this study. Instead, fatigue, while multidimensional for African Americans, was best represented by a unique four-four profile in which general and emotional fatigue are collapsed into a single dimension and physical fatigue, mental fatigue, and vigor are relatively distinct. Hence, in the absence of modifications, the MFSI-SF cannot be considered to be structurally invariant across ethnic groups. A modified four-factor version of the MFSI-SF exhibited excellent internal consistency reliability and evidence supports its convergent validity. Using the modified four-factor version, gender and age were not meaningfully associated with MFSI-SF scores. Conclusion Future research should further examine whether modifications to the MFSI-SF would, as the findings suggest, improve its validity as a measure of multidimensional fatigue in African Americans. PMID:24527980
Remigi, P.; Faye, A.; Kane, A.; Deruaz, M.; Thioulouse, J.; Cissoko, M.; Prin, Y.; Galiana, A.; Dreyfus, B.; Duponnois, R.
2008-01-01
The response of microbial functional diversity as well as its resistance to stress or disturbances caused by the introduction of an exotic tree species, Acacia holosericea, ectomycorrhized or not with Pisolithus albus, was examined. The results show that this ectomycorrhizal fungus promotes drastically the growth of this fast-growing tree species in field conditions after 7 years of plantation. Compared to the crop soil surrounding the A. holosericea plantation, this exotic tree species, associated or not with the ectomycorrhizal symbiont, induced strong modifications in soil microbial functionalities (assessed by measuring the patterns of in situ catabolic potential of microbial communities) and reduced soil resistance in response to increasing stress or disturbance (salinity, temperature, and freeze-thaw and wet-dry cycles). In addition, A. holosericea strongly modified the structure of arbuscular mycorrhizal fungus communities. These results show clearly that exotic plants may be responsible for important changes in soil microbiota affecting the structure and functions of microbial communities. PMID:18203858
[Identification of community leaders].
Chevalier, S; Dedobbeleer, N; Tremblay, M
1995-01-01
Although many methods of measuring leadership have been developed in sociological studies, there are few articles on the feasibility of these methods. The goal of this study was to verify the feasibility of the "modified positional-reputational approach" developed by Nix. The study was conducted in a small community located north of Montreal. Nix's questionnaire was translated, adapted and administered to 49 key informants. Two hundred and fourteen leaders were selected. Three types of leaders were identified: the legitimizers, the effectors and the activists. Through a sociometric analysis, we established links between the different leaders and we described the power structure of the community. Despite a few shortcomings, Nix's approach was found extremely useful.
Kanaya, Gen; Uehara, Tadayasu; Kikuchi, Eisuke
2016-08-15
An annual field survey and in situ recolonization experiment revealed the effects of sedimentary sulfide (H2S) on macrozoobenthos in a eutrophic brackish lagoon. Species diversity was much lower throughout the year in muddy opportunist-dominant sulfidic areas. Mass mortality occurred during warmer months under elevated H2S levels. An enclosure experiment demonstrated that sedimentary H2S modified community composition, size structure, and colonization depth of macrozoobenthos. Species-specific responses to each sediment type (sand, sulfidic mud, and mud with H2S removed) resulted in changes in the established community structure. Dominant polychaetes (Hediste spp., Pseudopolydora spp., and Capitella teleta) occurred predominantly in a thin surface layer in the presence of H2S. On the other hand, organic-rich mud facilitated settlement of polychaete larvae if it does not contain H2S. These results demonstrate that sediment characteristics, including H2S level and organic content, were key structuring factors for the macrozoobenthic assemblage in organically polluted estuarine sediments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Influence of a breakwater on nearby rocky intertidal community structure.
Martins, Gustavo M; Amaral, André F; Wallenstein, Francisco M; Neto, Ana I
2009-01-01
It is widely recognised that coastal-defence structures generally affect the structure of the assemblages they support, yet their impact on adjacent systems has been largely ignored. Breakwaters modify the nearby physical environment (e.g. wave action) suggesting a local impact on biological parameters. In the present study, an ACI (After-Control-Impact) design was used to test the general hypothesis that the artificial sheltering of an exposed coast has a strong effect on the structure and functioning of adjacent systems. The effects of a reduction in hydrodynamics were clear for a number of taxa and included the replacement of barnacles, limpets and frondose algae by an increasing cover of ephemeral algae. These effects were evident both at early and late successional stages. Results suggest that the artificial sheltering of naturally exposed coasts can have a strong impact promoting a shift from consumer- to producer-dominated communities, which has important ecological and energetic consequences for the ecosystem.
Ramos-Morales, Eva; de la Fuente, Gabriel; Nash, Robert J; Braganca, Radek; Duval, Stephane; Bouillon, Marc E; Lahmann, Martina; Newbold, C Jamie
2017-01-01
The antiprotozoal effect of saponins is transitory, as when saponins are deglycosylated to sapogenins by rumen microorganisms they become inactive. We hypothesised that the combination of saponins with glycosidase-inhibiting iminosugars might potentially increase the effectiveness of saponins over time by preventing their deglycosylation in the rumen. Alternatively, modifying the structure of the saponins by substituting the sugar moiety with other small polar residues might maintain their activity as the sugar substitute would not be enzymatically cleaved. The aim of this in vitro study was to evaluate the acute antiprotozoal effect and the stability of this effect over a 24 h incubation period using ivy saponins, a stevia extract rich in iminosugars, ivy saponins with stevia extract, and a chemically modified ivy saponin, hederagenin bis-succinate (HBS). The effects on fermentation parameters and rumen bacterial communities were also studied. Ivy saponins with stevia and HBS had a greater antiprotozoal effect than ivy saponins, and this effect was maintained after 24 h of incubation (P<0.001). The combination of ivy and stevia extracts was more effective in shifting the fermentation pattern towards higher propionate (+39%) and lower butyrate (-32%) and lower ammonia concentration (-64%) than the extracts incubated separately. HBS caused a decrease in butyrate (-45%) and an increase in propionate (+43%) molar proportions. However, the decrease in ammonia concentration (-42%) observed in the presence of HBS was less than that caused by ivy saponins, either alone or with stevia. Whereas HBS and stevia impacted on bacterial population in terms of community structure, only HBS had an effect in terms of biodiversity (P<0.05). It was concluded that ivy saponins with stevia and the modified saponin HBS had a strong antiprotozoal effect, although they differed in their effects on fermentation parameters and bacteria communities. Ivy saponins combined with an iminosugar-rich stevia extract and/or HBS should be evaluated to determine their antiprotozoal effect in vivo.
de la Fuente, Gabriel; Nash, Robert J.; Braganca, Radek; Duval, Stephane; Bouillon, Marc E.; Lahmann, Martina; Newbold, C. Jamie
2017-01-01
The antiprotozoal effect of saponins is transitory, as when saponins are deglycosylated to sapogenins by rumen microorganisms they become inactive. We hypothesised that the combination of saponins with glycosidase-inhibiting iminosugars might potentially increase the effectiveness of saponins over time by preventing their deglycosylation in the rumen. Alternatively, modifying the structure of the saponins by substituting the sugar moiety with other small polar residues might maintain their activity as the sugar substitute would not be enzymatically cleaved. The aim of this in vitro study was to evaluate the acute antiprotozoal effect and the stability of this effect over a 24 h incubation period using ivy saponins, a stevia extract rich in iminosugars, ivy saponins with stevia extract, and a chemically modified ivy saponin, hederagenin bis-succinate (HBS). The effects on fermentation parameters and rumen bacterial communities were also studied. Ivy saponins with stevia and HBS had a greater antiprotozoal effect than ivy saponins, and this effect was maintained after 24 h of incubation (P<0.001). The combination of ivy and stevia extracts was more effective in shifting the fermentation pattern towards higher propionate (+39%) and lower butyrate (-32%) and lower ammonia concentration (-64%) than the extracts incubated separately. HBS caused a decrease in butyrate (-45%) and an increase in propionate (+43%) molar proportions. However, the decrease in ammonia concentration (-42%) observed in the presence of HBS was less than that caused by ivy saponins, either alone or with stevia. Whereas HBS and stevia impacted on bacterial population in terms of community structure, only HBS had an effect in terms of biodiversity (P<0.05). It was concluded that ivy saponins with stevia and the modified saponin HBS had a strong antiprotozoal effect, although they differed in their effects on fermentation parameters and bacteria communities. Ivy saponins combined with an iminosugar-rich stevia extract and/or HBS should be evaluated to determine their antiprotozoal effect in vivo. PMID:28886130
Schloesser, J.T.; Paukert, Craig P.; Doyle, W.J.; Hill, T.; Steffensen, K.D.; Travnichek, Vincent H.
2012-01-01
Large rivers throughout the world have been modified by using dike structures to divert water flows to deepwater habitats to maintain navigation channels. These modifications have been implicated in the decline in habitat diversity and native fishes. However, dike structures have been modified in the Missouri River USA to increase habitat diversity to aid in the recovery of native fishes. We compared species occupancy and fish community composition at natural sandbars and at notched and un-notched rock dikes along the lower Missouri River to determine if notching dikes increases species diversity or occupancy of native fishes. Fish were collected using gill nets, trammel nets, otter trawls, and mini fyke nets throughout the lower 1212 river km of the Missouri River USA from 2003 to 2006. Few differences in species richness and diversity were evident among engineered dike structures and natural sandbars. Notching a dike structure had no effect on proportional abundance of fluvial dependents, fluvial specialists, and macrohabitat generalists. Occupancy at notched dikes increased for two species but did not differ for 17 other species (81%). Our results suggest that dike structures may provide suitable habitats for fluvial species compared with channel sand bars, but dike notching did not increase abundance or occupancy of most Missouri River fishes. Published in 2011 by John Wiley & Sons, Ltd.
Matsumoto, Shoko; Yamaoka, Kazue; Inoue, Machiko; Muto, Shinsuke
2014-01-01
Study Objectives: We examined the association between social factors and sleep difficulties among the victims remaining at home in the Ishinomaki area after the Great East Japan Earthquake and Tsunami and identified potentially modifiable factors that may mitigate vulnerability to sleep difficulties during future traumatic events or disasters. Design: A cross-sectional household survey was conducted from October 2011 to March 2012 (6-12 mo after the disaster) in the Ishinomaki area, Japan. Univariate and multivariate logistic regression models were used to examine associations between social factors and sleep difficulties. Participants: We obtained data on 4,176 household members who remained in their homes after the earthquake and tsunami. Interventions: N/A. Results: Sleep difficulties were prevalent in 15.0% of the respondents (9.2% male, 20.2% female). Two potentially modifiable factors (lack of pleasure in life and lack of interaction with/visiting neighbors) and three nonmodifiable or hardly modifiable factors (sex, source of income, and number of household members) were associated with sleep difficulties. Nonmodifiable or hardly modifiable consequences caused directly by the disaster (severity of house damage, change in family structure, and change in working status) were not significantly associated with sleep difficulties. Conclusions: Our data suggest that the lack of pleasure in life and relatively strong networks in the neighborhood, which are potentially modifiable, might have stronger associations with sleep difficulties than do nonmodifiable or hardly modifiable consequences of the disaster (e.g., house damage, change in family structure, and change in work status). Citation: Matsumoto S; Yamaoka K; Inoue M; Muto S. Social ties may play a critical role in mitigating sleep difficulties in disaster-affected communities: a cross-sectional study in the Ishinomaki area, Japan. SLEEP 2014;37(1):137-145. PMID:24470703
Lithium modified zeolite synthesis for conversion of biodiesel-derived glycerol to polyglycerol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayoub, Muhammad, E-mail: muhammad.ayoub@petronas.com.my; Abdullah, Ahmad Zuhairi, E-mail: chzuhairi@usm.my; Inayat, Abrar, E-mail: abrar.inayat@petronas.com.my
Basic zeolite has received significant attention in the catalysis community. These zeolites modified with alkaline are the potential replacement for existing zeolite catalysts due to its unique features with added advantages. The present paper covers the preparation of lithium modified zeolite Y (Li-ZeY) and its activity for solvent free conversion of biodiesel-derived glycerol to polyglycerol via etherification process. The modified zeolite was well characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Nitrogen Adsorption. The SEM images showed that there was no change in morphology of modified zeolite structure after lithium modification. XRD patterns showed that the structure ofmore » zeolite was sustained after lithium modification. The surface properties of parent and modified zeolite was also observed N{sub 2} adsortion-desorption technique and found some changes in surface area and pore size. In addition, the basic strength of prepared materials was measured by Hammet indicators and found that basic strength of Li-ZeY was highly improved. This modified zeolite was found highly thermal stable and active heterogamous basic catalyst for conversion of solvent free glycerol to polyglycerol. This reaction was conducted at different temperatures and 260 °C was found most active temperature for this process for reaction time from 6 to 12 h over this basic catalyst in the absence of solvent.« less
Narr, Anja; Nawaz, Ali; Wick, Lukas Y.; Harms, Hauke; Chatzinotas, Antonis
2017-01-01
Environmental surveys on soil viruses are still rare and mostly anecdotal, i. e., they mostly report on viruses at one location or for only a few sampling dates. Detailed time-series analysis with multiple samples can reveal the spatio-temporal dynamics of viral communities and provide important input as to how viruses interact with their potential hosts and the environment. Such surveys, however, require fast, easy-to-apply and reliable methods. In the present study we surveyed monthly across 13 months the abundance of virus-like particles (VLP) and the structure of the viral communities in soils along a land use transect (i.e., forest, pasture, and cropland). We evaluated 32 procedures to extract VLP from soil using different buffers and mechanical methods. The most efficient extraction was achieved with 1× saline magnesium buffer in combination with 20 min vortexing. For community structure analysis we developed an optimized fingerprinting approach (fluorescent RAPD-PCR; fRAPD) by combining RAPD-PCR with fluorescently labeled primers in order to size the obtained fragments on a capillary sequencing machine. With the concomitantly collected data of soil specific factors and weather data, we were able to find correlations of viral abundance and community structure with environmental variables and sampling site. More specifically, we found that soil specific factors such as pH and total nitrogen content played a significant role in shaping both soil viral abundance and community structure. The fRAPD analysis revealed high temporal changes and clustered the viral communities according to sampling sites. In particular we observed that temperature and rainfall shaped soil viral communities in non-forest sites. In summary our findings suggest that sampling site was a key factor for shaping the abundance and community structure of soil viruses, and when site vegetation was reduced, temperature and rainfall were also important factors. PMID:29067022
Rusch, Adrien; Birkhofer, Klaus; Bommarco, Riccardo; Smith, Henrik G; Ekbom, Barbara
2014-07-01
Agricultural intensification is recognised as a major driver of biodiversity loss in human-modified landscapes. Several agro-environmental measures at different spatial scales have been suggested to mitigate the negative impact of intensification on biodiversity and ecosystem services. The effect of these measures on the functional structure of service-providing communities remains, however, largely unexplored. Using two distinct landscape designs, we examined how the management options of organic farming at the field scale and crop diversification at the landscape level affect the taxonomic and functional structure of generalist predator communities and how these effects vary along a landscape complexity gradient. Organic farming as well as landscapes with longer and more diversified crop rotations enhanced the activity-density of spiders and rove beetles, but not the species richness or evenness. Our results indicate that the two management options affected the functional composition of communities, as they primarily enhanced the activity-density of functionally similar species. The two management options increased the functional similarity between spider species in regards to hunting mode and habitat preference. Organic farming enhanced the functional similarity of rove beetles. Management options at field and landscape levels were generally more important predictors of community structure when compared to landscape complexity. Our study highlights the importance of considering the functional composition of generalist predators in order to understand how agro-environmental measures at various scales shape community assemblages and ecosystem functioning in agricultural landscapes.
Azcón, Rosario; Medina, Almudena; Roldán, Antonio; Biró, Borbála; Vivas, Astrid
2009-04-01
In this study, we analyzed the impact of treatments such as Aspergillus niger-treated sugar beet waste (SB), PO4(3-) fertilization and autochthonous inoculants [arbuscular mycorrhizal (AM) fungi and Bacillus cereus], on the bacterial community structure in a soils contaminated with heavy metals as well as, the effectiveness on plant growth (Trifolium repens). The inoculation with AM fungi in SB amended soil, increased plant growth similarly to PO4(3-) addition, and both treatments matched in P acquisition but bacterial biodiversity estimated by denaturing gradient gel electrophoresis of amplified 16S rDNA sequences, was more stimulated by the presence of the AM fungus than by PO4(3-) fertilization. The SB amendment plus AM inoculation increased the microbial diversity by 233% and also changed (by 215%) the structure of the bacterial community. The microbial inoculants and amendment used favoured plant growth and the phytoextraction process and concomitantly modified bacterial community in the rhizosphere; thus they can be used for remediation. Therefore, the understanding of such microbial ecological aspects is important for phytoremediation and the recovery of contaminated soils.
Flooding and forest succession in a modified stretch along the Upper Mississippi River
Yin, Yao
1998-01-01
This research examines the effect of a rare flood on floodplain forest regeneration in a 102-km stretch of the Mississippi River beginning 21 km above the mouth of the Ohio River. The river has been restricted by levees and navigation structures and subjected to sediment dredging to maintain a stable navigation channel. Because the bank erosion–accretion process has been slowed or eliminated, cottonwood (Populus spp.) and willow (Salix spp.) communities regenerate poorly in the modified river environment. An unusually large flood in 1993 destroyed the entire ground vegetation layer, killing 77.2% of the saplings and 32.2% of the trees. The flood created an alternative mechanism for cottonwood and willow to regenerate under canopy openings, enabling the community type composition of the present-day forest to be sustained for the next 50 years. Over time, however, the forest will likely exhibit considerable compositional fluctuation.
Ziff, Mauri A; Harper, Gary W; Chutuape, Kate S; Deeds, Bethany Griffin; Futterman, Donna; Francisco, Vincent T; Muenz, Larry R; Ellen, Jonathan M
2006-05-01
Despite the considerable resources that have been dedicated to HIV prevention interventions and services over the past decade, HIV incidence among young people in the United States remains alarmingly high. One reason is that the majority of prevention efforts continue to focus solely on modifying individual behavior, even though public health research strongly suggests that changes to a community's structural elements, such as their programs, practices, and laws or policies, may result in more effective and sustainable outcomes. Connect to Protect is a multi-city community mobilization intervention that focuses on altering or creating community structural elements in ways that will ultimately reduce youth HIV incidence and prevalence. The project, which spans 6 years, is sponsored by the Adolescent Medicine Trials Network for HIV/AIDS Interventions at multiple urban clinical research sites. This paper provides an overview of the study's three phases and describes key factors in setting a firm foundation for the initiation and execution of this type of undertaking. Connect to Protect's community mobilization approach to achieving structural change represents a relatively new and broad direction in HIV prevention research. To optimize opportunities for its success, time and resources must be initially placed into laying the groundwork. This includes activities such as building a strong overarching study infrastructure to ensure protocol tasks can be met across sites; tapping into local site and community expertise and knowledge; forming collaborative relationships between sites and community organizations and members; and fostering community input on and support for changes at a structural level. Failing to take steps such as these may lead to insurmountable implementation problems for an intervention of this kind.
Zhang, Shihua; Huang, Zhijia; Lu, Shujian; Zheng, Jun; Zhang, Xinxi
2017-11-01
A modified anaerobic/anoxic/oxic (mA2/O) process based on utilizing the internal carbon source and adding polypropylene carriers was operated for 90d to investigate the nutrients removal performance and bacterial community. This system exhibited a stable and efficient performance, particularly, in removing the NH 4 + -N and total phosphorus. The results of high-throughput sequencing showed that the 13 dominant genera containing Pseudomonas, Comamonas, Arcobacter, Nitrobacteria, Nitrosospira, Nitrosomonas, Bacteroides, Flavobacterium, Rhizobium, Acinetobacter, Zoogloea, Rhodocyclus and Moraxella were shared by five zones, inferring that they were the essential players in treating low C/N (below 5.0) municipal wastewater around 10°C. The average abundance of Nitrosospira (4.21%) was higher than that of Nitrosomonas (2.93%), suggested that Nitrosospira performed well under low temperature for nitrification. Additionally, both known Rhodocyclus-related PAOs and GAOs Competibacter were not detected possibly due to low temperature. Redundancy analysis (RDA) indicated that DO played more important roles in regulating bacterial community composition than HRT. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dorigo, Ursula; Bourrain, Xavier; Bérard, Annette; Leboulanger, Christophe
2004-01-05
A study was undertaken to investigate the environmental impact of herbicides on natural communities of freshwater periphyton and phytoplankton in the river Ozanne and in related nearby water reservoirs, including both pristine and pesticide- (atrazine and isoproturon) contaminated stations. The microalgal toxicity of both herbicides was investigated by short-term studies, using the in vivo fluorescence pattern to perform dose-effect experiments. The taxonomic composition of the communities sampled was assessed by microscopy and by HPLC pigment analysis. The EC50 (periphyton) or EC125 (phytoplankton) values, calculated using in vivo fluorescence endpoints, increased with the herbicide concentration found in the water. In contrast, the structure of the algal communities (periphyton) inhabiting the contaminated stations seemed to be permanently affected when compared to the reference community. A 'memory effect' could be detected, both in herbicide sensitivity and in the structure of periphytic communities that persisted even when peak contaminations had disappeared. This study shows that the response of algal communities is likely to reflect past selection pressures, and suggests that the function and structure of a community could both be modified by the persistent or repeated presence of microcontaminants in natural environments. We could use short-term ecotoxicological tests on freshwater microalgae to assess the effects of past temporary contaminations by agricultural pesticides, and combining this with diversity indices could make it possible to assess the ecotoxicological risk of herbicide contamination even when a complete chemical analysis of the contamination is not feasible.
Yan, Yong-Wei; Zou, Bin; Zhu, Ting; Hozzein, Wael N.
2017-01-01
RNA-seq-based SSU (small subunit) rRNA (ribosomal RNA) analysis has provided a better understanding of potentially active microbial community within environments. However, for RNA-seq library construction, high quantities of purified RNA are typically required. We propose a modified RNA-seq method for SSU rRNA-based microbial community analysis that depends on the direct ligation of a 5’ adaptor to RNA before reverse-transcription. The method requires only a low-input quantity of RNA (10–100 ng) and does not require a DNA removal step. The method was initially tested on three mock communities synthesized with enriched SSU rRNA of archaeal, bacterial and fungal isolates at different ratios, and was subsequently used for environmental samples of high or low biomass. For high-biomass salt-marsh sediments, enriched SSU rRNA and total nucleic acid-derived RNA-seq datasets revealed highly consistent community compositions for all of the SSU rRNA sequences, and as much as 46.4%-59.5% of 16S rRNA sequences were suitable for OTU (operational taxonomic unit)-based community and diversity analyses with complete coverage of V1-V2 regions. OTU-based community structures for the two datasets were also highly consistent with those determined by all of the 16S rRNA reads. For low-biomass samples, total nucleic acid-derived RNA-seq datasets were analyzed, and highly active bacterial taxa were also identified by the OTU-based method, notably including members of the previously underestimated genus Nitrospira and phylum Acidobacteria in tap water, members of the phylum Actinobacteria on a shower curtain, and members of the phylum Cyanobacteria on leaf surfaces. More than half of the bacterial 16S rRNA sequences covered the complete region of primer 8F, and non-coverage rates as high as 38.7% were obtained for phylum-unclassified sequences, providing many opportunities to identify novel bacterial taxa. This modified RNA-seq method will provide a better snapshot of diverse microbial communities, most notably by OTU-based analysis, even communities with low-biomass samples. PMID:29016661
Living in the branches: population dynamics and ecological processes in dendritic networks
Grant, E.H.C.; Lowe, W.H.; Fagan, W.F.
2007-01-01
Spatial structure regulates and modifies processes at several levels of ecological organization (e.g. individual/genetic, population and community) and is thus a key component of complex systems, where knowledge at a small scale can be insufficient for understanding system behaviour at a larger scale. Recent syntheses outline potential applications of network theory to ecological systems, but do not address the implications of physical structure for network dynamics. There is a specific need to examine how dendritic habitat structure, such as that found in stream, hedgerow and cave networks, influences ecological processes. Although dendritic networks are one type of ecological network, they are distinguished by two fundamental characteristics: (1) both the branches and the nodes serve as habitat, and (2) the specific spatial arrangement and hierarchical organization of these elements interacts with a species' movement behaviour to alter patterns of population distribution and abundance, and community interactions. Here, we summarize existing theory relating to ecological dynamics in dendritic networks, review empirical studies examining the population- and community-level consequences of these networks, and suggest future research integrating spatial pattern and processes in dendritic systems.
Organisms as cooperative ecosystem engineers in intertidal flats
NASA Astrophysics Data System (ADS)
Passarelli, Claire; Olivier, Frédéric; Paterson, David M.; Meziane, Tarik; Hubas, Cédric
2014-09-01
The importance of facilitative interactions and organismal ecosystem engineering for establishing the structure of communities is increasingly being recognised for many different ecosystems. For example, soft-bottom tidal flats host a wide range of ecosystem engineers, probably because the harsh physico-chemical environmental conditions render these species of particular importance for community structure and function. These environments are therefore interesting when focusing on how ecosystem engineers interact and the consequences of these interactions on community dynamics. In this review, we initially detail the influence on benthic systems of two kinds of ecosystem engineers that are particularly common in tidal flats. Firstly, we examine species providing biogenic structures, which are often the only source of habitat complexity in these environments. Secondly, we focus on species whose activities alter sediment stability, which is a crucial feature structuring the dynamics of communities in tidal flats. The impacts of these engineers on both environment and communities were assessed but in addition the interaction between ecosystem engineers was examined. Habitat cascades occur when one engineer favours the development of another, which in turn creates or modifies and improves habitat for other species. Non-hierarchical interactions have often been shown to display non-additive effects, so that the effects of the association cannot be predicted from the effects of individual organisms. Here we propose the term of “cooperative ecosystem engineering” when two species interact in a way which enhances habitat suitability as a result of a combined engineering effect. Finally, we conclude by describing the potential threats for ecosystem engineers in intertidal areas, potential effects on their interactions and their influence on communities and ecosystem function.
Philpott, Timothy J; Barker, Jason S; Prescott, Cindy E; Grayston, Sue J
2018-02-01
Fine root litter is the principal source of carbon stored in forest soils and a dominant source of carbon for fungal decomposers. Differences in decomposer capacity between fungal species may be important determinants of fine-root decomposition rates. Variable-retention harvesting (VRH) provides refuge for ectomycorrhizal fungi, but its influence on fine-root decomposers is unknown, as are the effects of functional shifts in these fungal communities on carbon cycling. We compared fungal communities decomposing fine roots (in litter bags) under VRH, clear-cut, and uncut stands at two sites (6 and 13 years postharvest) and two decay stages (43 days and 1 year after burial) in Douglas fir forests in coastal British Columbia, Canada. Fungal species and guilds were identified from decomposed fine roots using high-throughput sequencing. Variable retention had short-term effects on β-diversity; harvest treatment modified the fungal community composition at the 6-year-postharvest site, but not at the 13-year-postharvest site. Ericoid and ectomycorrhizal guilds were not more abundant under VRH, but stand age significantly structured species composition. Guild composition varied by decay stage, with ruderal species later replaced by saprotrophs and ectomycorrhizae. Ectomycorrhizal abundance on decomposing fine roots may partially explain why fine roots typically decompose more slowly than surface litter. Our results indicate that stand age structures fine-root decomposers but that decay stage is more important in structuring the fungal community than shifts caused by harvesting. The rapid postharvest recovery of fungal communities decomposing fine roots suggests resiliency within this community, at least in these young regenerating stands in coastal British Columbia. IMPORTANCE Globally, fine roots are a dominant source of carbon in forest soils, yet the fungi that decompose this material and that drive the sequestration or respiration of this carbon remain largely uncharacterized. Fungi vary in their capacity to decompose plant litter, suggesting that fungal community composition is an important determinant of decomposition rates. Variable-retention harvesting is a forestry practice that modifies fungal communities by providing refuge for ectomycorrhizal fungi. We evaluated the effects of variable retention and clear-cut harvesting on fungal communities decomposing fine roots at two sites (6 and 13 years postharvest), at two decay stages (43 days and 1 year), and in uncut stands in temperate rainforests. Harvesting impacts on fungal community composition were detected only after 6 years after harvest. We suggest that fungal community composition may be an important factor that reduces fine-root decomposition rates relative to those of above-ground plant litter, which has important consequences for forest carbon cycling. Copyright © 2018 American Society for Microbiology.
Peinetti, H.R.; Baker, B.W.; Coughenour, M.B.
2009-01-01
Beaver-willow (Castor-Salix) communities are a unique and vital component of healthy wetlands throughout the Holarctic region. Beaver selectively forage willow to provide fresh food, stored winter food, and construction material. The effects of this complex foraging behavior on the structure and function of willow communities is poorly understood. Simulation modeling may help ecologists understand these complex interactions. In this study, a modified version of the SAVANNA ecosystem model was developed to better understand how beaver foraging affects the structure and function of a willow community in a simulated riparian ecosystem in Rocky Mountain National Park, Colorado (RMNP). The model represents willow in terms of plant and stem dynamics and beaver foraging in terms of the quantity and quality of stems cut to meet the energetic and life history requirements of beaver. Given a site where all stems were equally available, the model suggested a simulated beaver family of 2 adults, 2 yearlings, and 2 kits required a minimum of 4 ha of willow (containing about10 stems m-2) to persist in a steady-state condition. Beaver created a willow community where the annual net primary productivity (ANPP) was 2 times higher and plant architecture was more diverse than the willow community without beaver. Beaver foraging created a plant architecture dominated by medium size willow plants, which likely explains how beaver can increase ANPP. Long-term simulations suggested that woody biomass stabilized at similar values even though availability differed greatly at initial condition. Simulations also suggested that willow ANPP increased across a range of beaver densities until beaver became food limited. Thus, selective foraging by beaver increased productivity, decreased biomass, and increased structural heterogeneity in a simulated willow community.
Martinez, Alexander S.; Faist, Akasha M.
2016-01-01
Background Understanding patterns of biodiversity is a longstanding challenge in ecology. Similar to other biotic groups, arthropod community structure can be shaped by deterministic and stochastic processes, with limited understanding of what moderates the relative influence of these processes. Disturbances have been noted to alter the relative influence of deterministic and stochastic processes on community assembly in various study systems, implicating ecological disturbances as a potential moderator of these forces. Methods Using a disturbance gradient along a 5-year chronosequence of insect-induced tree mortality in a subalpine forest of the southern Rocky Mountains, Colorado, USA, we examined changes in community structure and relative influences of deterministic and stochastic processes in the assembly of aboveground (surface and litter-active species) and belowground (species active in organic and mineral soil layers) arthropod communities. Arthropods were sampled for all years of the chronosequence via pitfall traps (aboveground community) and modified Winkler funnels (belowground community) and sorted to morphospecies. Community structure of both communities were assessed via comparisons of morphospecies abundance, diversity, and composition. Assembly processes were inferred from a mixture of linear models and matrix correlations testing for community associations with environmental properties, and from null-deviation models comparing observed vs. expected levels of species turnover (Beta diversity) among samples. Results Tree mortality altered community structure in both aboveground and belowground arthropod communities, but null models suggested that aboveground communities experienced greater relative influences of deterministic processes, while the relative influence of stochastic processes increased for belowground communities. Additionally, Mantel tests and linear regression models revealed significant associations between the aboveground arthropod communities and vegetation and soil properties, but no significant association among belowground arthropod communities and environmental factors. Discussion Our results suggest context-dependent influences of stochastic and deterministic community assembly processes across different fractions of a spatially co-occurring ground-dwelling arthropod community following disturbance. This variation in assembly may be linked to contrasting ecological strategies and dispersal rates within above- and below-ground communities. Our findings add to a growing body of evidence indicating concurrent influences of stochastic and deterministic processes in community assembly, and highlight the need to consider potential variation across different fractions of biotic communities when testing community ecology theory and considering conservation strategies. PMID:27761333
Defining Disturbance for Microbial Ecology.
Plante, Craig J
2017-08-01
Disturbance can profoundly modify the structure of natural communities. However, microbial ecologists' concept of "disturbance" has often deviated from conventional practice. Definitions (or implicit usage) have frequently included climate change and other forms of chronic environmental stress, which contradict the macrobiologist's notion of disturbance as a discrete event that removes biomass. Physical constraints and disparate biological characteristics were compared to ask whether disturbances fundamentally differ in microbial and macroorganismal communities. A definition of "disturbance" for microbial ecologists is proposed that distinguishes from "stress" and other competing terms, and that is in accord with definitions accepted by plant and animal ecologists.
A Stigmergy Collaboration Approach in the Open Source Software Developer Community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Xiaohui; Pullum, Laura L; Treadwell, Jim N
2009-01-01
The communication model of some self-organized online communities is significantly different from the traditional social network based community. It is problematic to use social network analysis to analyze the collaboration structure and emergent behaviors in these communities because these communities lack peer-to-peer connections. Stigmergy theory provides an explanation of the collaboration model of these communities. In this research, we present a stigmergy approach for building an agent-based simulation to simulate the collaboration model in the open source software (OSS) developer community. We used a group of actors who collaborate on OSS projects through forums as our frame of reference andmore » investigated how the choices actors make in contributing their work on the projects determines the global status of the whole OSS project. In our simulation, the forum posts serve as the digital pheromone and the modified Pierre-Paul Grasse pheromone model is used for computing the developer agents behavior selection probability.« less
Corgié, S. C.; Beguiristain, T.; Leyval, C.
2004-01-01
Rhizodegradation of organic pollutants, such as polycyclic aromatic hydrocarbons, is based on the effect of root-produced compounds, known as exudates. These exudates constitute an important and constant carbon source that selects microbial populations in the plant rhizosphere, modifying global as well as specific microbial activities. We conducted an experiment in two-compartment devices to show the selection of bacterial communities by root exudates and phenanthrene as a function of distance to roots. Using direct DNA extraction, PCR amplification, and thermal gradient gel electrophoresis screening, bacterial population profiles were analyzed in parallel to bacterial counts and quantification of phenanthrene biodegradation in three layers (0 to 3, 3 to 6, and 6 to 9 mm from root mat) of unplanted-polluted (phenanthrene), planted-polluted, and planted-unpolluted treatments. Bacterial community differed as a function of the distance to roots, in both the presence and the absence of phenanthrene. In the planted and polluted treatment, biodegradation rates showed a strong gradient with higher values near the roots. In the nonplanted treatment, bacterial communities were comparable in the three layers and phenanthrene biodegradation was high. Surprisingly, no biodegradation was detected in the section of planted polluted treatment farthest from the roots, where the bacterial community structure was similar to those of the nonplanted treatment. We conclude that root exudates and phenanthrene induce modifications of bacterial communities in polluted environments and spatially modify the activity of degrading bacteria. PMID:15184156
77 FR 73394 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-10
... and modified elevations, and communities affected for Mercer County, Pennsylvania (All Jurisdictions... determinations of Base (1% annual-chance) Flood Elevations (BFEs) and modified BFEs for communities participating... not be construed to mean that the community must change any existing ordinances that are more...
78 FR 22222 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-15
... of referenced elevations, effective and modified elevations, and communities affected for Mercer...) and modified BFEs for communities participating in the National Flood Insurance Program (NFIP), in... CFR 60.3, are minimum requirements. They should not be construed to mean that the community must...
Martínez, Neis J; García, Héctor; Pulido, Luz A; Ospino, Deibi; Harváez, Juan C
2009-01-01
The community structure of dung beetles in the middle and lower river basin of the Gaira river, Sierra Nevada de Santa Marta, Colombia, is described. Four sites were selected along an altitudinal gradient of 50-940 m for sampling from June to October, 2004. Dung beetles were captured using modified pitfall traps and manual recollections. We captured 7,872 individuals belonging to 29 species, distributed in 15 genera and five tribes of Scarabaeinae. Canthon and Onthophagus were the most diverse genera, each represented by six species. The sampled sites shared the following species: Onthophagus acuminatus Harold, O. clypeatus Blanchard, O. marginicollis Harold. Bocatoma was the most diverse site with 23 species; whereas Port Mosquito presented the highest abundance, with 3,262 individuals. Seven species represented 89% of all captures: Canthidium sp., Dichotomius sp., Uroxys sp. 1, Uroxys sp. 2, O. marginicollis, O. clypeatus and O. acuminatus. Of the 29 captured species, 17 belonged to the functional group of diggers and 10 were ball-rollers. We did not observe significant among-site differences in community structure. Abiotic factors such as altitude, temperature and humidity cannot explain observed variation in community structure across sites, indicating other variables such as vegetation cover, density of the vegetation and soil type may play a role in the community structure of these insects.
A Practical Approach to Modified Condition/Decision Coverage
NASA Technical Reports Server (NTRS)
Hayhurst, Kelly J.; Veerhusem, Dan S.
2001-01-01
Testing of software intended for safety-critical applications in commercial transport aircraft must achieve modified condition/decision coverage (MC/DC) of the software structure. This requirement causes anxiety for many within the aviation software community. Results of a survey of the aviation software industry indicate that many developers believe that meeting the MC/DC requirement is difficult, and the cost is exorbitant. Some of the difficulties stem, no doubt, from the scant information available on the subject. This paper provides a practical 5-step approach for assessing MC/DC for aviation software products, and an analysis of some types of errors expected to be caught when MC/DC is achieved1.
van Wyk, Deidré A B; Adeleke, Rasheed; Rhode, Owen H J; Bezuidenhout, Carlos C; Mienie, Charlotte
2017-09-01
Insecticidal proteins expressed by genetically modified Bt maize may alter the enzymatic and microbial communities associated with rhizosphere soil. This study investigated the structure and enzymatic activity of rhizosphere soil microbial communities associated with field grown Bt and non-Bt maize. Rhizosphere soil samples were collected from Bt and non-Bt fields under dryland and irrigated conditions. Samples were subjected to chemical tests, enzyme analyses, and next generation sequencing. Results showed that nitrate and phosphorus concentrations were significantly higher in non-Bt maize dryland soils, while organic carbon was significantly higher in non-Bt maize irrigated field soil. Acid phosphatase and β-glucosidase activities were significantly reduced in soils under Bt maize cultivation. The species diversity differed between fields and Bt and non-Bt maize soils. Results revealed that Actinobacteria, Proteobacteria, and Acidobacteria were the dominant phyla present in these soils. Redundancy analyses indicated that some chemical properties and enzyme activities could explain differences in bacterial community structures. Variances existed in microbial community structures between Bt and non-Bt maize fields. There were also differences between the chemical and biochemical properties of rhizosphere soils under Bt and non-Bt maize cultivation. These differences could be related to agricultural practices and cultivar type. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shi, X. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Thornton, P. E. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Ricciuto, D. M. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Mao, J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Sebestyen, S. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Griffiths, N. A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Bisht, G. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
2016-09-01
Here we provide model code, inputs, outputs and evaluation datasets for a new configuration of the Community Land Model (CLM) for SPRUCE, which includes a fully prognostic water table calculation for SPRUCE. Our structural and process changes to CLM focus on modifications needed to represent the hydrologic cycle of bogs environment with perched water tables, as well as distinct hydrologic dynamics and vegetation communities of the raised hummock and sunken hollow microtopography characteristic of SPRUCE and other peatland bogs. The modified model was parameterized and independently evaluated against observations from an ombrotrophic raised-dome bog in northern Minnesota (S1-Bog), the site for the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE).
Cappelletti, Martina; Perazzolli, Michele; Antonielli, Livio; Nesler, Andrea; Torboli, Esmeralda; Bianchedi, Pier L.; Pindo, Massimo; Puopolo, Gerardo; Pertot, Ilaria
2016-01-01
Protein derivatives and carbohydrates can stimulate plant growth, increase stress tolerance, and activate plant defense mechanisms. However, these molecules can also act as a nutritional substrate for microbial communities living on the plant phyllosphere and possibly affect their biocontrol activity against pathogens. We investigated the mechanisms of action of a protein derivative (nutrient broth, NB) against grapevine downy mildew, specifically focusing on the effects of foliar treatments on plant defense stimulation and on the composition and biocontrol features of the phyllosphere microbial populations. NB reduced downy mildew symptoms and induced the expression of defense-related genes in greenhouse- and in vitro-grown plants, indicating the activation of grapevine resistance mechanisms. Furthermore, NB increased the number of culturable phyllosphere bacteria and altered the composition of bacterial and fungal populations on leaves of greenhouse-grown plants. Although, NB-induced changes on microbial populations were affected by the structure of indigenous communities originally residing on grapevine leaves, degrees of disease reduction and defense gene modulation were consistent among the experiments. Thus, modifications in the structure of phyllosphere populations caused by NB application could partially contribute to downy mildew control by competition for space or other biocontrol strategies. Particularly, changes in the abundance of phyllosphere microorganisms may provide a contribution to resistance induction, partially affecting the hormone-mediated signaling pathways involved. Modifying phyllosphere populations by increasing natural biocontrol agents with the application of selected nutritional factors can open new opportunities in terms of sustainable plant protection strategies. PMID:27486468
NASA Astrophysics Data System (ADS)
Sanaullah, Muhammad; Baumann, Karen; Chabbi, Abad; Dignac, Marie-France; Maron, Pierre-Alain; Kuzyakov, Yakov; Rumpel, Cornelia
2014-05-01
Soil organic matter turnover depends on substrate quality and microbial activity in soil but little is known about how addition of freshly added organic material modifies the diversity of soil microbial communities with in a soil profile. We took advantage of a decomposition experiment, which was carried out at different soil depths under field conditions and sampled litterbags with 13C-labelled wheat roots, incubated in subsoil horizons at 30, 60 and 90 cm depth for up to 36 months. The effect of root litter addition on microbial community structure, diversity and activity was studied by determining total microbial biomass, PLFA signatures, molecular tools (DNA genotyping and pyrosequencing of 16S and 18S rDNAs) and extracellular enzyme activities. Automated ribosomal intergenic spacer analysis (ARISA) was also carried out to determine the differences in microbial community structure. We found that with the addition of root litter, total microbial biomass as well as microbial community composition and structure changed at different soil depths and change was significantly higher at top 30cm soil layer. Moreover, in the topsoil, population of both gram-positive and gram-negative bacteria increased with root litter addition over time, while subsoil horizons were relatively dominated by fungal community. Extra-cellular enzyme activities confirmed relatively higher fungal community at subsoil horizons compared with surface soil layer with bacteria dominant microbial population. Bacterial-ARISA profiling illustrated that the addition of root litter enhanced the abundance of Actinobacteria and Proteobacteria, at all three soil depths. These bacteria correspond to copiotrophic attributes, which can preferentially consume of labile soil organic C pools. While disappearance of oligotrophic Acidobacteria confirmed the shifting of microbial communities due to the addition of readily available substrate. We concluded that root litter mixing altered microbial community development which was soil horizon specific and its effects on soil microbial activity may impact on nutrient cycling.
Wang, Xiaojuan; Pan, Hongjia; Gu, Jie; Qian, Xun; Gao, Hua; Qin, Qingjun
2016-12-01
In this study, the effects of different concentrations of oxytetracycline (OTC) on biogas production, archaeal community structure, and the levels of tetracycline resistance genes (TRGs) were investigated in the anaerobic co-digestion products of pig manure and wheat straw. PCR denaturing gradient gel electrophoresis analysis and real-time quantitative polymerase chain reaction (RT-qPCR) (PCR) were used to detect the archaeal community structure and the levels of four TRGs: tet(M), tet(Q), tet(W), and tet(C). The results showed that anaerobic co-digestion with OTC at concentrations of 60, 100, and 140 mg/kg (dry weight of pig manure) reduced the cumulative biogas production levels by 9.9%, 10.4%, and 14.1%, respectively, compared with that produced by the control, which lacked the antibiotic. The addition of OTC substantially modified the structure of the archaeal community. Two orders were identified by phylogenetic analysis, that is, Pseudomonadales and Methanomicrobiales, and the methanogen present during anaerobic co-digestion with OTC may have been resistant to OTC. The abundances of tet(Q) and tet(W) genes increased as the OTC concentration increased, whereas the abundances of tet(M) and tet(C) genes decreased as the OTC concentration increased.
An experimental analysis of granivory in a desert ecosystem: Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, J.H.
1987-03-01
Controlled, replicated experiments are revealing the network of interactions that determine structure, dynamics, and energy transfer in a desert community that is functionally interconnected by the consumption of seeds (granivory). This community includes seed-eating rodents, ants, and birds, seed-producing annual and perennial plants, and other kinds of organisms that interact with these. The experiments entail removal of important species or functional groups of granivores or plants and supplementation of seed resources. The results demonstrate a large number of direct and indirect interactions that have important effects on the abundance of species and functional groups, the structure of the community, andmore » the dynamics of energy flow. The results suggest that networks of interaction are structured with sufficient overlap in resource requirements and interconnections through indirect pathways that community- and ecosystem-level processes, such as energy flow, are relatively insensitive to major perturbations in the abundance of particular species or functional groups. This preliminary finding has important implications for understanding the response of ecosystems to natural and human-caused perturbations, for the management of agricultural and other human-modified ecosystems, and for the design of perturbation-resistant networks for acquisition and distribution of human resources such energy and information. 44 refs.« less
Ishaq, Suzanne L; Johnson, Stephen P; Miller, Zach J; Lehnhoff, Erik A; Olivo, Sarah; Yeoman, Carl J; Menalled, Fabian D
2017-02-01
Farming practices affect the soil microbial community, which in turn impacts crop growth and crop-weed interactions. This study assessed the modification of soil bacterial community structure by organic or conventional cropping systems, weed species identity [Amaranthus retroflexus L. (redroot pigweed) or Avena fatua L. (wild oat)], and living or sterilized inoculum. Soil from eight paired USDA-certified organic and conventional farms in north-central Montana was used as living or autoclave-sterilized inoculant into steam-pasteurized potting soil, planted with Am. retroflexus or Av. fatua and grown for two consecutive 8-week periods to condition soil nutrients and biota. Subsequently, the V3-V4 regions of the microbial 16S rRNA gene were sequenced by Illumina MiSeq. Treatments clustered significantly, with living or sterilized inoculum being the strongest delineating factor, followed by organic or conventional cropping system, then individual farm. Living inoculum-treated soil had greater species richness and was more diverse than sterile inoculum-treated soil (observed OTUs, Chao, inverse Simpson, Shannon, P < 0.001) and had more discriminant taxa delineating groups (linear discriminant analysis). Living inoculum soil contained more Chloroflexi and Acidobacteria, while the sterile inoculum soil had more Bacteroidetes, Firmicutes, Gemmatimonadetes, and Verrucomicrobia. Organically farmed inoculum-treated soil had greater species richness, more diversity (observed OTUs, Chao, Shannon, P < 0.05), and more discriminant taxa than conventionally farmed inoculum-treated soil. Cyanobacteria were higher in pots growing Am. retroflexus, regardless of inoculum type, for three of the four organic farms. Results highlight the potential of cropping systems and species identity to modify soil bacterial communities, subsequently modifying plant growth and crop-weed competition.
Tree Leaf Bacterial Community Structure and Diversity Differ along a Gradient of Urban Intensity
Messier, Christian; Kembel, Steven W.
2017-01-01
ABSTRACT Tree leaf-associated microbiota have been studied in natural ecosystems but less so in urban settings, where anthropogenic pressures on trees could impact microbial communities and modify their interaction with their hosts. Additionally, trees act as vectors spreading bacterial cells in the air in urban environments due to the density of microbial cells on aerial plant surfaces. Characterizing tree leaf bacterial communities along an urban gradient is thus key to understand the impact of anthropogenic pressures on urban tree-bacterium interactions and on the overall urban microbiome. In this study, we aimed (i) to characterize phyllosphere bacterial communities of seven tree species in urban environments and (ii) to describe the changes in tree phyllosphere bacterial community structure and diversity along a gradient of increasing urban intensity and at two degrees of tree isolation. Our results indicate that, as anthropogenic pressures increase, urban leaf bacterial communities show a reduction in the abundance of the dominant class in the natural plant microbiome, the Alphaproteobacteria. Our work in the urban environment here reveals that the structures of leaf bacterial communities differ along the gradient of urban intensity. The diversity of phyllosphere microbial communities increases at higher urban intensity, also displaying a greater number and variety of associated indicator taxa than the low and medium urban gradient sites. In conclusion, we find that urban environments influence tree bacterial community composition, and our results suggest that feedback between human activity and plant microbiomes could shape urban microbiomes. IMPORTANCE In natural forests, tree leaf surfaces host diverse bacterial communities whose structure and composition are primarily driven by host species identity. Tree leaf bacterial diversity has also been shown to influence tree community productivity, a key function of terrestrial ecosystems. However, most urban microbiome studies have focused on the built environment, improving our understanding of indoor microbial communities but leaving much to be understood, especially in the nonbuilt microbiome. Here, we provide the first multiple-species comparison of tree phyllosphere bacterial structures and diversity along a gradient of urban intensity. We demonstrate that urban trees possess characteristic bacterial communities that differ from those seen with trees in nonurban environments, with microbial community structure on trees influenced by host species identity but also by the gradient of urban intensity and by the degree of isolation from other trees. Our results suggest that feedback between human activity and plant microbiomes could shape urban microbiomes. PMID:29238751
Tree Leaf Bacterial Community Structure and Diversity Differ along a Gradient of Urban Intensity.
Laforest-Lapointe, Isabelle; Messier, Christian; Kembel, Steven W
2017-01-01
Tree leaf-associated microbiota have been studied in natural ecosystems but less so in urban settings, where anthropogenic pressures on trees could impact microbial communities and modify their interaction with their hosts. Additionally, trees act as vectors spreading bacterial cells in the air in urban environments due to the density of microbial cells on aerial plant surfaces. Characterizing tree leaf bacterial communities along an urban gradient is thus key to understand the impact of anthropogenic pressures on urban tree-bacterium interactions and on the overall urban microbiome. In this study, we aimed (i) to characterize phyllosphere bacterial communities of seven tree species in urban environments and (ii) to describe the changes in tree phyllosphere bacterial community structure and diversity along a gradient of increasing urban intensity and at two degrees of tree isolation. Our results indicate that, as anthropogenic pressures increase, urban leaf bacterial communities show a reduction in the abundance of the dominant class in the natural plant microbiome, the Alphaproteobacteria . Our work in the urban environment here reveals that the structures of leaf bacterial communities differ along the gradient of urban intensity. The diversity of phyllosphere microbial communities increases at higher urban intensity, also displaying a greater number and variety of associated indicator taxa than the low and medium urban gradient sites. In conclusion, we find that urban environments influence tree bacterial community composition, and our results suggest that feedback between human activity and plant microbiomes could shape urban microbiomes. IMPORTANCE In natural forests, tree leaf surfaces host diverse bacterial communities whose structure and composition are primarily driven by host species identity. Tree leaf bacterial diversity has also been shown to influence tree community productivity, a key function of terrestrial ecosystems. However, most urban microbiome studies have focused on the built environment, improving our understanding of indoor microbial communities but leaving much to be understood, especially in the nonbuilt microbiome. Here, we provide the first multiple-species comparison of tree phyllosphere bacterial structures and diversity along a gradient of urban intensity. We demonstrate that urban trees possess characteristic bacterial communities that differ from those seen with trees in nonurban environments, with microbial community structure on trees influenced by host species identity but also by the gradient of urban intensity and by the degree of isolation from other trees. Our results suggest that feedback between human activity and plant microbiomes could shape urban microbiomes.
Breeding bird responses to three silvicultural treatments in the Oregon Coast Range
Chambers, C.L.; McComb, W.C.; Tappeiner, J. C.
1999-01-01
Silvicultural alternatives to clear-cutting have been suggested to promote development, retention, or creation of late-successional features such as large trees, multilayered canopies, snags, and logs. We assessed bird response to three silvicultural alternatives to clear-cutting that retained structural features found in old Douglas-fir (Pseudotsuga menziesii) forests and that imitated natural disturbance regimes more closely than did traditional clear-cutting: (1) small-patch group selection treatment representing a low-intensity disturbance; (2) two-story treatment, representing a moderate to high-intensity disturbance; and (3) modified clear-cut treatment, representing a high-intensity disturbance. We counted diurnal breeding birds 1 yr prior to and 2 yr after harvest to estimate effects of the silvicultural treatments on bird communities compared with uncut controls. The small-patch group selection treatment was most similar in species composition to control stands. The two-story treatment was more similar to the modified clear-cut treatment. Ten bird species remained abundant following the small-patch group selection treatment. They declined in abundance in modified clearcuts and two-story stands. These species included four neotropical migratory species and five species with restricted geographic ranges and habitat associations. Nine species increased in response to moderate and/or high-intensity disturbances. This group included a larger proportion of species that were habitat generalists. Silvicultural treatments imitating low-intensity disturbances were most effective in retaining bird communities associated with mature forest; high-intensity disturbances such as the two-story and modified clear-cut treatments greatly altered bird community composition. Bird responses to the silvicultural treatments that we studied indicate that a variety of stand types is needed to meet needs of all species.
Making Sense of Voluntary Participation: A Theoretical Synthesis
ERIC Educational Resources Information Center
Ryan, Vernon D.; Agnitsch, Kerry A.; Zhao, Lijun; Mullick, Rehan
2005-01-01
This paper examines the influence of community attachment on voluntary citizen participation in rural community improvement projects. We do so by modifying the original systemic model of community attachment (Kasarda and Janowitz 1974) and combining it with tenets of rational choice and social embeddedness theories. The modified model is then…
Effects of the herbicide glyphosate on avian community structure in the Oregon coast range
Morrison, M.L.; Meslow, E.C.
1984-01-01
A study was conducted on vegetative changes induced by the herbicide glyphosate, and the resultant habitat use of birds nesting on two clearcuts in western Oregon. About 23 percent of total plant cover was initially damaged by aerial application of glyphosate. Most measures of vegetation on the treated site decreased relative to the untreated site 1 year after glyphosate application. By 2 years post-spray, vegetation on the treated site had recovered to near pre-spray status. No difference in density of the bird community was evident between treated and untreated sites during all years of study although individual species densities were modified. Several bird species decreased their use of shrub cover, and increased their use of deciduous trees 1 year after treatment. By 2 years post-spray, many species had returned to pre-spray use of most measured habitat components. Results indicated that application of glyphosate can modify the density and habitat use of birds.
Modifiable Risk Factors for Attempted Suicide in Australian Clinical and Community Samples
ERIC Educational Resources Information Center
Carter, Gregory L.; Page, Andrew; Clover, Kerrie; Taylor, Richard
2007-01-01
Modifiable risk factors for suicide attempt require identification in clinical and community samples. The aim of this study was to determine if similar social and psychiatric factors are associated with suicide attempts in community and clinical settings and whether the magnitude of effect is greater in clinical populations. Two case-control…
NASA Technical Reports Server (NTRS)
Sherwood, Brent
2006-01-01
This paper develops a conceptual model, adapted from the way research and development non-profits and universities tend to be organized, that could help amplify the reach and effectiveness of the international space architecture community. The model accommodates current activities and published positions, and increases involvement by allocating accountability for necessary professional and administrative activities. It coordinates messaging and other outreach functions to improve brand management. It increases sustainability by balancing volunteer workload. And it provides an open-ended structure that can be modified gracefully as needs, focus, and context evolve. Over the past 20 years, Space Architecture has attained some early signs of legitimacy as a discipline: an active, global community of practicing and publishing professionals; university degree programs; a draft undergraduate curriculum; and formal committee establishment within multiple professional organizations. However, the nascent field has few outlets for expression in built architecture, which exacerbates other challenges the field is experiencing in adolescence: obtaining recognition and inclusion as a unique contributor by the established aerospace profession; organizing and managing outreach by volunteers; striking a balance between setting admittance or performance credentials and attaining a critical mass of members; and knowing what to do, beyond sharing common interests, to actually increase the market demand for space architecture. This paper develops a conceptual model, adapted from the way research-anddevelopment non-profits and universities tend to be organized, that could help amplify the reach and effectiveness of the international space architecture community. The model accommodates current activities and published positions, and increases involvement by allocating accountability for necessary professional and administrative activities. It coordinates messaging and other outreach functions to improve brand management. It increases sustainability by balancing volunteer workload. And it provides an open-ended structure that can be modified gracefully as needs, focus, and context evolve. This organizational model is offered up for consideration, debate, and toughening by the space architecture community at large.
Grazers structure the bacterial and algal diversity of aquatic metacommunities.
Birtel, Julia; Matthews, Blake
2016-12-01
Consumers can have strong effects on the biotic and abiotic dynamics of spatially-structured ecosystems. In metacommunities, dispersing consumers can alter local assembly dynamics either directly through trophic interactions or indirectly by modifying local environmental conditions. In aquatic systems, very little is known about how key grazers, such as Daphnia, structure the microbial diversity of metacommunities and influence bacterial-mediated ecosystem functions. In an outdoor mesocosm experiment with replicate metacommunities (two 300 L mesocosms), we tested how the presence and absence of Daphnia and the initial density of the microbial community (manipulated via dilution) influenced the diversity and community structure of algae and bacteria, and several ecosystem properties (e.g., pH, dissolved substances) and functions (e.g., enzyme activity, respiration). We found that Daphnia strongly affected the local and regional diversity of both phytoplankton and bacteria, the taxonomic composition of bacterial communities, the biomass of algae, and ecosystem metabolism (i.e., respiration). Diluting the microbial inoculum (0.2-5 μm size fraction) to the metacommunities increased local phytoplankton diversity, decreased bacteria beta-diversity, and changed the relative abundance of bacterial classes. Changes in the rank abundance of different bacterial groups exhibited phylogenetic signal, implying that closely related bacteria species might share similar responses to the presence of Daphnia. © 2016 by the Ecological Society of America.
Charles G. Johnson; Rodrick R. Clausnitzer; Peter J. Mehringer; Chadwick D. Oliver
1994-01-01
Paleo-vegetation studies have shown that vegetation has changed in composition and extent in the intermountain Pacific Northwest over the past 20,000 years. Today, both natural and human-induced disturbances have long-term influence on the structure and composition of eastside vegetation. Disturbance may enhance landscape diversity, therefore, the scale of modifying...
Competitive outcomes between wood-decaying fungi are altered in burnt wood.
Edman, Mattias; Eriksson, Anna-Maria
2016-06-01
Fire is an important disturbance agent in boreal forests where it creates a wide variety of charred and other types of heat-modified dead wood substrates, yet how these substrates affect fungal community structure and development within wood is poorly understood. We allowed six species of wood-decaying basidiomycetes to compete in pairs in wood-discs that were experimentally burnt before fungal inoculation. The outcomes of interactions in burnt wood differed from those in unburnt control wood for two species:Antrodia sinuosanever lost on burnt wood and won over its competitor in 67% of the trials compared to 40% losses and 20% wins on unburnt wood. In contrast, Ischnoderma benzoinumwon all interactions on unburnt wood compared to 33% on burnt wood. However, the responses differed depending on the identity of the competing species, suggesting an interaction between competitor and substrate type. The observed shift in competitive balance between fungal species probably results from chemical changes in burnt wood, but the underlying mechanism needs further investigation. Nevertheless, the results indicate that forest fires indirectly structure fungal communities by modifying dead wood, and highlight the importance of fire-affected dead wood substrates in boreal forests. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Ellis, Christopher J; Yahr, Rebecca; Belinchón, Rocío; Coppins, Brian J
2014-07-01
The biodiversity response to climate change is a major focus in conservation research and policy. Predictive models that are used to project the impact of climate change scenarios - such as bioclimatic envelope models - are widely applied and have come under severe scrutiny. Criticisms of such models have focussed on at least two problems. First, there is an assumption that climate is the primary driver of observed species distributions ('climatic equilibrium'), when other biogeographical controls are often reliably established. Second, a species' sensitivity to macroclimate may become less relevant when impacts are down-scaled to a local level, incorporating a modifying effect of species interactions structuring communities. This article examines the role of different drivers (climate, pollution and landscape habitat structure) in explaining spatial community variation for a widely applied bioindicator group: lichen epiphytes. To provide an analysis free of 'legacy effects' (e.g. formerly higher pollution loads), the study focused on hazel stems as a relatively short-lived and recently colonized substratum. For communities during the present day, climate is shown to interact with stem size/age as the most likely explanation of community composition, thus coupling a macroclimatic and community-scale effect. The position of present-day communities was projected into ordination space for eight sites in England and compared to the position of historical epiphyte communities from the same sites, reconstructed using preserved hazel wattles dating mainly to the 16th Century. This comparison of community structure for the late- to post-Mediaeval period, with the post-Industrial period, demonstrated a consistent shift among independent sites towards warmer and drier conditions, concurrent with the end of the Little Ice Age. Long-term temporal sensitivity of epiphyte communities to climate variation thus complements spatial community patterns. If more widely applied, preserved lichen epiphytes have potential to generate new baseline conditions of environment and biodiversity for preindustrial lowland Europe. © 2014 John Wiley & Sons Ltd.
Marked Succession of Cyanobacterial Communities Following Glacier Retreat in the High Arctic.
Pessi, Igor S; Pushkareva, Ekaterina; Lara, Yannick; Borderie, Fabien; Wilmotte, Annick; Elster, Josef
2018-05-23
Cyanobacteria are important colonizers of recently deglaciated proglacial soil but an in-depth investigation of cyanobacterial succession following glacier retreat has not yet been carried out. Here, we report on the successional trajectories of cyanobacterial communities in biological soil crusts (BSCs) along a 100-year deglaciation gradient in three glacier forefields in central Svalbard, High Arctic. Distance from the glacier terminus was used as a proxy for soil age (years since deglaciation), and cyanobacterial abundance and community composition were evaluated by epifluorescence microscopy and pyrosequencing of partial 16S rRNA gene sequences, respectively. Succession was characterized by a decrease in phylotype richness and a marked shift in community structure, resulting in a clear separation between early (10-20 years since deglaciation), mid (30-50 years), and late (80-100 years) communities. Changes in cyanobacterial community structure were mainly connected with soil age and associated shifts in soil chemical composition (mainly moisture, SOC, SMN, K, and Na concentrations). Phylotypes associated with early communities were related either to potentially novel lineages (< 97.5% similar to sequences currently available in GenBank) or lineages predominantly restricted to polar and alpine biotopes, suggesting that the initial colonization of proglacial soil is accomplished by cyanobacteria transported from nearby glacial environments. Late communities, on the other hand, included more widely distributed genotypes, which appear to establish only after the microenvironment has been modified by the pioneering taxa.
NASA Astrophysics Data System (ADS)
McKinnon, Duncan Paul
This research is a synthesis of archaeogeophysical and archaeohistorical data collected from the Battle Mound site (3LA1). Using these data, this research seeks to understand how the site is organized in terms of architectural variability and how differential use areas, such as domestic or community space, can be compared to ethnographic and archaeological data concerning Caddo community structure and landscape use. The research is formulated around three research questions related to spatial organization and settlement patterning, intrasite behavioral practices, and Caddo culture history. Results show that an examination at multiple scales of resolution can inform about the spatial organization and settlement patterning of Caddo communities and how these underlying principles that define space have endured or been modified over time. It also proposes a new intrasite model that can be productively tested with geophysical methods and the mapping of the distribution of features within large village areas.
Phosphoethanolamine cellulose: A naturally produced chemically modified cellulose.
Thongsomboon, Wiriya; Serra, Diego O; Possling, Alexandra; Hadjineophytou, Chris; Hengge, Regine; Cegelski, Lynette
2018-01-19
Cellulose is a major contributor to the chemical and mechanical properties of plants and assumes structural roles in bacterial communities termed biofilms. We find that Escherichia coli produces chemically modified cellulose that is required for extracellular matrix assembly and biofilm architecture. Solid-state nuclear magnetic resonance spectroscopy of the intact and insoluble material elucidates the zwitterionic phosphoethanolamine modification that had evaded detection by conventional methods. Installation of the phosphoethanolamine group requires BcsG, a proposed phosphoethanolamine transferase, with biofilm-promoting cyclic diguanylate monophosphate input through a BcsE-BcsF-BcsG transmembrane signaling pathway. The bcsEFG operon is present in many bacteria, including Salmonella species, that also produce the modified cellulose. The discovery of phosphoethanolamine cellulose and the genetic and molecular basis for its production offers opportunities to modulate its production in bacteria and inspires efforts to biosynthetically engineer alternatively modified cellulosic materials. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Pilger, Tyler J; Gido, Keith B; Propst, David L; Whitney, James E; Turner, Thomas F
2017-05-01
Dendritic ecological network (DEN) architecture can be a strong predictor of spatial genetic patterns in theoretical and simulation studies. Yet, interspecific differences in dispersal capabilities and distribution within the network may equally affect species' genetic structuring. We characterized patterns of genetic variation from up to ten microsatellite loci for nine numerically dominant members of the upper Gila River fish community, New Mexico, USA. Using comparative landscape genetics, we evaluated the role of network architecture for structuring populations within species (pairwise F ST ) while explicitly accounting for intraspecific demographic influences on effective population size (N e ). Five species exhibited patterns of connectivity and/or genetic diversity gradients that were predicted by network structure. These species were generally considered to be small-bodied or habitat specialists. Spatial variation of N e was a strong predictor of pairwise F ST for two species, suggesting patterns of connectivity may also be influenced by genetic drift independent of network properties. Finally, two study species exhibited genetic patterns that were unexplained by network properties and appeared to be related to nonequilibrium processes. Properties of DENs shape community-wide genetic structure but effects are modified by intrinsic traits and nonequilibrium processes. Further theoretical development of the DEN framework should account for such cases. © 2017 John Wiley & Sons Ltd.
Duc, Caroline; Nentwig, Wolfgang; Lindfeld, Andreas
2011-01-01
The cultivation of genetically modified (GM) plants has raised several environmental concerns. One of these concerns regards non-target soil fauna organisms, which play an important role in the decomposition of organic matter and hence are largely exposed to GM plant residues. Soil fauna may be directly affected by transgene products or indirectly by pleiotropic effects such as a modified plant metabolism. Thus, ecosystem services and functioning might be affected negatively. In a litterbag experiment in the field we analysed the decomposition process and the soil fauna community involved. Therefore, we used four experimental GM wheat varieties, two with a race-specific antifungal resistance against powdery mildew (Pm3b) and two with an unspecific antifungal resistance based on the expression of chitinase and glucanase. We compared them with two non-GM isolines and six conventional cereal varieties. To elucidate the mechanisms that cause differences in plant decomposition, structural plant components (i.e. C∶N ratio, lignin, cellulose, hemicellulose) were examined and soil properties, temperature and precipitation were monitored. The most frequent taxa extracted from decaying plant material were mites (Cryptostigmata, Gamasina and Uropodina), springtails (Isotomidae), annelids (Enchytraeidae) and Diptera (Cecidomyiidae larvae). Despite a single significant transgenic/month interaction for Cecidomyiidae larvae, which is probably random, we detected no impact of the GM wheat on the soil fauna community. However, soil fauna differences among conventional cereal varieties were more pronounced than between GM and non-GM wheat. While leaf residue decomposition in GM and non-GM wheat was similar, differences among conventional cereals were evident. Furthermore, sampling date and location were found to greatly influence soil fauna community and decomposition processes. The results give no indication of ecologically relevant adverse effects of antifungal GM wheat on the composition and the activity of the soil fauna community.
Duc, Caroline; Nentwig, Wolfgang; Lindfeld, Andreas
2011-01-01
The cultivation of genetically modified (GM) plants has raised several environmental concerns. One of these concerns regards non-target soil fauna organisms, which play an important role in the decomposition of organic matter and hence are largely exposed to GM plant residues. Soil fauna may be directly affected by transgene products or indirectly by pleiotropic effects such as a modified plant metabolism. Thus, ecosystem services and functioning might be affected negatively. In a litterbag experiment in the field we analysed the decomposition process and the soil fauna community involved. Therefore, we used four experimental GM wheat varieties, two with a race-specific antifungal resistance against powdery mildew (Pm3b) and two with an unspecific antifungal resistance based on the expression of chitinase and glucanase. We compared them with two non-GM isolines and six conventional cereal varieties. To elucidate the mechanisms that cause differences in plant decomposition, structural plant components (i.e. C∶N ratio, lignin, cellulose, hemicellulose) were examined and soil properties, temperature and precipitation were monitored. The most frequent taxa extracted from decaying plant material were mites (Cryptostigmata, Gamasina and Uropodina), springtails (Isotomidae), annelids (Enchytraeidae) and Diptera (Cecidomyiidae larvae). Despite a single significant transgenic/month interaction for Cecidomyiidae larvae, which is probably random, we detected no impact of the GM wheat on the soil fauna community. However, soil fauna differences among conventional cereal varieties were more pronounced than between GM and non-GM wheat. While leaf residue decomposition in GM and non-GM wheat was similar, differences among conventional cereals were evident. Furthermore, sampling date and location were found to greatly influence soil fauna community and decomposition processes. The results give no indication of ecologically relevant adverse effects of antifungal GM wheat on the composition and the activity of the soil fauna community. PMID:22043279
Longitudinal distribution of Chironomidae (Diptera) downstream from a dam in a neotropical river.
Pinha, G D; Aviz, D; Lopes Filho, D R; Petsch, D K; Marchese, M R; Takeda, A M
2013-08-01
The damming of a river causes dangerous consequences on structure of the environment downstream of the dam, modifying the sediment composition, which impose major adjustments in longitudinal distribution of benthic community. The construction of Engenheiro Sérgio Motta Dam in the Upper Paraná River has caused impacts on the aquatic communities, which are not yet fully known. This work aimed to provide more information about the effects of this impoundment on the structure of Chironomidae larvae assemblage. The analysis of data of physical and chemical variables in relation to biological data of 8 longitudinal sections in the Upper Paraná River showed that composition of Chironomidae larvae of stations near Engenheiro Sérgio Motta Dam differed of the other stations (farther of the Dam). The predominance of coarse sediments at stations upstream and finer sediments further downstream affected the choice of habitat by different morphotypes of Chironomidae and it caused a change in the structure of this assemblage in the longitudinal stretch.
Beloqui, Ana; Nechitaylo, Taras Y.; López-Cortés, Nieves; Ghazi, Azam; Guazzaroni, María-Eugenia; Polaina, Julio; Strittmatter, Axel W.; Reva, Oleg; Waliczek, Agnes; Yakimov, Michail M.; Golyshina, Olga V.; Ferrer, Manuel; Golyshin, Peter N.
2010-01-01
The guts and casts of earthworms contain microbial assemblages that process large amounts of organic polymeric substrates from plant litter and soil; however, the enzymatic potential of these microbial communities remains largely unexplored. In the present work, we retrieved carbohydrate-modifying enzymes through the activity screening of metagenomic fosmid libraries from cellulose-depleting microbial communities established with the fresh casts of two earthworm species, Aporrectodea caliginosa and Lumbricus terrestris, as inocula. Eight glycosyl hydrolases (GHs) from the A. caliginosa-derived community were multidomain endo-β-glucanases, β-glucosidases, β-cellobiohydrolases, β-galactosidase, and β-xylosidases of known GH families. In contrast, two GHs derived from the L. terrestris microbiome had no similarity to any known GHs and represented two novel families of β-galactosidases/α-arabinopyranosidases. Members of these families were annotated in public databases as conserved hypothetical proteins, with one being structurally related to isomerases/dehydratases. This study provides insight into their biochemistry, domain structures, and active-site architecture. The two communities were similar in bacterial composition but significantly different with regard to their eukaryotic inhabitants. Further sequence analysis of fosmids and plasmids bearing the GH-encoding genes, along with oligonucleotide usage pattern analysis, suggested that those apparently originated from Gammaproteobacteria (pseudomonads and Cellvibrio-like organisms), Betaproteobacteria (Comamonadaceae), and Alphaproteobacteria (Rhizobiales). PMID:20622123
Long, Xi-En; Chen, Chengrong; Xu, Zhihong; He, Ji-Zheng
2014-02-01
Fire shapes global biome distribution and promotes the terrestrial biogeochemical cycles. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) play a vital role in the biogeochemical cycling of nitrogen (N). However, behaviors of AOB and AOA under long-term prescribed burning remain unclear. This study was to examine how fire affected the abundances and communities of soil AOB and AOA. A long-term repeated forest fire experiment with three burning treatments (never burnt, B0; biennially burnt, B2; and quadrennially burnt, B4) was used in this study. The abundances and community structure of soil AOB and AOA were determined using quantitative PCR, restriction fragment length polymorphism and clone library. More frequent fires (B2) increased the abundance of bacterium amoA gene, but tended to decrease archaeal amoA genes. Fire also modified the composition of AOA and AOB communities. Canonical correspondence analysis showed soil pH and dissolved organic C (DOC) strongly affected AOB genotypes, while nitrate-N and DOC shaped the AOA distribution. The increased abundance of bacterium amoA gene by fires may imply an important role of AOB in nitrification in fire-affected soils. The fire-induced shift in the community composition of AOB and AOA demonstrates that fire can disturb nutrient cycles. © 2013.
NASA Astrophysics Data System (ADS)
Toda, R.; Moteki, M.; Ono, A.; Horimoto, N.; Tanaka, Y.; Ishimaru, T.
2010-08-01
The structure of the pelagic cnidarian community in Lützow-Holm Bay in the Indian sector of East Antarctica was investigated in January 2005 and 2006. Zooplankton samples from six discrete depths (surface to 2000 m) obtained using an RMT-8 yielded 4666 individuals of 31 species of cnidarian. Cnidarian abundance and carbon biomass were far greater in 2005 than in 2006. The biomass of macrozooplankton was large in the upper 200 m in 2005, but concentrated at 200-500 m in 2006, except for Euphausiacea. The most dominant species was Diphyes antarctica, followed by Dimophyes arctica and Muggiaea bargmannae. Four species had never been collected from East Antarctica; of these, Solmissus incisa was a first record in the Southern Ocean. Cluster analysis revealed the following three major communities: the epipelagic (0-200 m), in summer surface, winter, and upper modified circumpolar deep waters (MCDW); the upper mesopelagic (200-500 m), in upper MCDW; and the lower meso- and bathypelagic (500-2000 m), in lower MCDW. The epipelagic and lower meso- and bathypelagic communities are likely reduced in abundance/biomass when primary production is low, due to bottom-up control, while the upper mesopelagic community remains stable.
Moura E Silva, M S G; Graciano, T S; Losekann, M E; Luiz, A J B
2016-05-17
Biomonitoring is a cheap and effective tool for evaluation of water quality, and infer on the balance of aquatic ecosystems. The benthic macroinvertebrates are bioindicators sensitive to environmental changes, and can assist in detecting and preventing impacts such as organic enrichment and imbalance in the food chain. We compared the structure of benthic communities on artificial substrate samplers located in places near and far from net cages for production of Nile tilapia (Oreochromis niloticus). Samplers were manufactured with nylon net, using substrates such as crushed stone, gravel, loofah and cattail leaves. Samples were collected after 30 days of colonization, rinsed and then the specimens were identified and quantified. The following metrics were calculated: richness of Operational Taxonomic Units, Margalef richness, abundance of individuals, Shannon index and evenness index. The macrobenthic community structure was strongly modified according to the proximity of the net cages. Metrics showed significant differences (p < 0.05) between near and distant sites, for both periods (dry and rainy seasons). The position of the samplers significantly affected the structure of macroinvertebrate community, as near sites showed higher values for the community metrics, such as richness and diversity. Near sites presented a larger number of individuals, observed both in the dry and rainy seasons, with a predominance of Chironomidae (Diptera) in the dry season and Tubificidae (Oligochaeta) in the rainy season.
Matsumoto, Shoko; Yamaoka, Kazue; Inoue, Machiko; Muto, Shinsuke
2014-01-01
We examined the association between social factors and sleep difficulties among the victims remaining at home in the Ishinomaki area after the Great East Japan Earthquake and Tsunami and identified potentially modifiable factors that may mitigate vulnerability to sleep difficulties during future traumatic events or disasters. A cross-sectional household survey was conducted from October 2011 to March 2012 (6-12 mo after the disaster) in the Ishinomaki area, Japan. Univariate and multivariate logistic regression models were used to examine associations between social factors and sleep difficulties. We obtained data on 4,176 household members who remained in their homes after the earthquake and tsunami. N/A. Sleep difficulties were prevalent in 15.0% of the respondents (9.2% male, 20.2% female). Two potentially modifiable factors (lack of pleasure in life and lack of interaction with/visiting neighbors) and three nonmodifiable or hardly modifiable factors (sex, source of income, and number of household members) were associated with sleep difficulties. Nonmodifiable or hardly modifiable consequences caused directly by the disaster (severity of house damage, change in family structure, and change in working status) were not significantly associated with sleep difficulties. Our data suggest that the lack of pleasure in life and relatively strong networks in the neighborhood, which are potentially modifiable, might have stronger associations with sleep difficulties than do nonmodifiable or hardly modifiable consequences of the disaster (e.g., house damage, change in family structure, and change in work status).
Complementary Microorganisms in Highly Corrosive Biofilms from an Offshore Oil Production Facility.
Vigneron, Adrien; Alsop, Eric B; Chambers, Brian; Lomans, Bartholomeus P; Head, Ian M; Tsesmetzis, Nicolas
2016-04-01
Offshore oil production facilities are frequently victims of internal piping corrosion, potentially leading to human and environmental risks and significant economic losses. Microbially influenced corrosion (MIC) is believed to be an important factor in this major problem for the petroleum industry. However, knowledge of the microbial communities and metabolic processes leading to corrosion is still limited. Therefore, the microbial communities from three anaerobic biofilms recovered from the inside of a steel pipe exhibiting high corrosion rates, iron oxide deposits, and substantial amounts of sulfur, which are characteristic of MIC, were analyzed in detail. Bacterial and archaeal community structures were investigated by automated ribosomal intergenic spacer analysis, multigenic (16S rRNA and functional genes) high-throughput Illumina MiSeq sequencing, and quantitative PCR analysis. The microbial community analysis indicated that bacteria, particularly Desulfovibrio species, dominated the biofilm microbial communities. However, other bacteria, such as Pelobacter, Pseudomonas, and Geotoga, as well as various methanogenic archaea, previously detected in oil facilities were also detected. The microbial taxa and functional genes identified suggested that the biofilm communities harbored the potential for a number of different but complementary metabolic processes and that MIC in oil facilities likely involves a range of microbial metabolisms such as sulfate, iron, and elemental sulfur reduction. Furthermore, extreme corrosion leading to leakage and exposure of the biofilms to the external environment modify the microbial community structure by promoting the growth of aerobic hydrocarbon-degrading organisms. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Effects of seawater acidification on a coral reef meiofauna community
NASA Astrophysics Data System (ADS)
Sarmento, V. C.; Souza, T. P.; Esteves, A. M.; Santos, P. J. P.
2015-09-01
Despite the increasing risk that ocean acidification will modify benthic communities, great uncertainty remains about how this impact will affect the lower trophic levels, such as members of the meiofauna. A mesocosm experiment was conducted to investigate the effects of water acidification on a phytal meiofauna community from a coral reef. Community samples collected from the coral reef subtidal zone (Recife de Fora Municipal Marine Park, Porto Seguro, Bahia, Brazil), using artificial substrate units, were exposed to a control pH (ambient seawater) and to three levels of seawater acidification (pH reductions of 0.3, 0.6, and 0.9 units below ambient) and collected after 15 and 30 d. After 30 d of exposure, major changes in the structure of the meiofauna community were observed in response to reduced pH. The major meiofauna groups showed divergent responses to acidification. Harpacticoida and Polychaeta densities did not show significant differences due to pH. Nematoda, Ostracoda, Turbellaria, and Tardigrada exhibited their highest densities in low-pH treatments (especially at the pH reduction of 0.6 units, pH 7.5), while harpacticoid nauplii were strongly negatively affected by low pH. This community-based mesocosm study supports previous suggestions that ocean acidification induces important changes in the structure of marine benthic communities. Considering the importance of meiofauna in the food web of coral reef ecosystems, the results presented here demonstrate that the trophic functioning of coral reefs is seriously threatened by ocean acidification.
Complementary Microorganisms in Highly Corrosive Biofilms from an Offshore Oil Production Facility
Alsop, Eric B.; Chambers, Brian; Lomans, Bartholomeus P.; Head, Ian M.; Tsesmetzis, Nicolas
2016-01-01
Offshore oil production facilities are frequently victims of internal piping corrosion, potentially leading to human and environmental risks and significant economic losses. Microbially influenced corrosion (MIC) is believed to be an important factor in this major problem for the petroleum industry. However, knowledge of the microbial communities and metabolic processes leading to corrosion is still limited. Therefore, the microbial communities from three anaerobic biofilms recovered from the inside of a steel pipe exhibiting high corrosion rates, iron oxide deposits, and substantial amounts of sulfur, which are characteristic of MIC, were analyzed in detail. Bacterial and archaeal community structures were investigated by automated ribosomal intergenic spacer analysis, multigenic (16S rRNA and functional genes) high-throughput Illumina MiSeq sequencing, and quantitative PCR analysis. The microbial community analysis indicated that bacteria, particularly Desulfovibrio species, dominated the biofilm microbial communities. However, other bacteria, such as Pelobacter, Pseudomonas, and Geotoga, as well as various methanogenic archaea, previously detected in oil facilities were also detected. The microbial taxa and functional genes identified suggested that the biofilm communities harbored the potential for a number of different but complementary metabolic processes and that MIC in oil facilities likely involves a range of microbial metabolisms such as sulfate, iron, and elemental sulfur reduction. Furthermore, extreme corrosion leading to leakage and exposure of the biofilms to the external environment modify the microbial community structure by promoting the growth of aerobic hydrocarbon-degrading organisms. PMID:26896143
Våge, Selina; Pree, Bernadette; Thingstad, T Frede
2016-11-01
For more than 25 years, virus-to-bacteria ratios (VBR) have been measured and interpreted as indicators of the importance of viruses in aquatic ecosystems, yet a generally accepted theory for understanding mechanisms controlling VBR is still lacking. Assuming that the denominator (total bacterial abundance) is primarily predator controlled, while viral lysis compensates for host growth rates exceeding this grazing loss, the numerator (viral abundance) reflects activity differences between prokaryotic hosts. VBR is then a ratio between mechanisms generating structure within the bacterial community and interactions between different plankton functional types controlling bacterial community size. We here show how these arguments can be formalized by combining a recently published model for co-evolutionary host-virus interactions, with a previously published "minimum" model for the microbial food web. The result is a framework where viral lysis links bacterial diversity to microbial food web structure and function, creating relationships between different levels of organization that are strongly modified by organism-level properties such as cost of resistance. © 2016 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Pree, Bernadette; Thingstad, T. Frede
2016-01-01
Summary For more than 25 years, virus‐to‐bacteria ratios (VBR) have been measured and interpreted as indicators of the importance of viruses in aquatic ecosystems, yet a generally accepted theory for understanding mechanisms controlling VBR is still lacking. Assuming that the denominator (total bacterial abundance) is primarily predator controlled, while viral lysis compensates for host growth rates exceeding this grazing loss, the numerator (viral abundance) reflects activity differences between prokaryotic hosts. VBR is then a ratio between mechanisms generating structure within the bacterial community and interactions between different plankton functional types controlling bacterial community size. We here show how these arguments can be formalized by combining a recently published model for co‐evolutionary host‐virus interactions, with a previously published “minimum” model for the microbial food web. The result is a framework where viral lysis links bacterial diversity to microbial food web structure and function, creating relationships between different levels of organization that are strongly modified by organism‐level properties such as cost of resistance. PMID:27231817
Acharya, Bhavik K; Pathak, Hilor; Mohana, Sarayu; Shouche, Yogesh; Singh, Vasdev; Madamwar, Datta
2011-08-01
Anaerobic digestion, microbial community structure and kinetics were studied in a biphasic continuously fed, upflow anaerobic fixed film reactor treating high strength distillery wastewater. Treatment efficiency of the bioreactor was investigated at different hydraulic retention times (HRT) and organic loading rates (OLR 5-20 kg COD m⁻³ d⁻¹). Applying the modified Stover-Kincannon model to the reactor, the maximum removal rate constant (U(max)) and saturation value constant (K(B)) were found to be 2 kg m⁻³ d⁻¹ and 1.69 kg m⁻³ d⁻¹ respectively. Bacterial community structures of acidogenic and methanogenic reactors were assessed using culture-independent analyses. Sequencing of 16S rRNA genes exhibited a total of 123 distinct operational taxonomic units (OTUs) comprising 49 from acidogenic reactor and 74 (28 of eubacteria and 46 of archaea) from methanogenic reactor. The findings reveal the role of Lactobacillus sp. (Firmicutes) as dominant acid producing organisms in acidogenic reactor and Methanoculleus sp. (Euryarchaeotes) as foremost methanogens in methanogenic reactor. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hirsch, Jennifer S.
2016-01-01
We explore how state and local policies in labor, health, education, language, community and neighborhood environments, deportation, and state-authorized identification can reduce or exacerbate HIV vulnerability among Latino migrants in the United States. We reviewed literature on Latino migrants and HIV risk, on the structural–environmental contexts experienced by Latino migrants, and on the many domains in which policies influence those contexts. To illustrate the pathways through which policies across multiple sectors are relevant to HIV vulnerability, we describe how policies shape 2 mediating domains (a climate of hostility toward Latino migrants and the relative ease or difficulty of access to beneficial institutions) and how those domains influence behavioral risk practices, which increase vulnerability to HIV. This argument demonstrates the utility of considering the policy context as a modifiable element of the meso-level through which structural factors shape vulnerability to HIV. This approach has specific relevance to the consideration of HIV prevention for Latino migrants, and more generally, to structural approaches to HIV prevention. PMID:26985616
Gao, Shuqin; Pan, Xu; Cui, Qingguo; Hu, Yukun; Ye, Xuehua; Dong, Ming
2014-01-01
Plant interactions greatly affect plant community structure. Dryland ecosystems are characterized by low amounts of unpredictable precipitation as well as by often having biological soil crusts (BSCs) on the soil surface. In dryland plant communities, plants interact mostly as they compete for water resources, and the direction and intensity of plant interaction varies as a function of the temporal fluctuation in water availability. Since BSCs influence water redistribution to some extent, a greenhouse experiment was conducted to test the hypothesis that the intensity and direction of plant interactions in a dryland plant community can be modified by BSCs. In the experiment, 14 combinations of four plant species (Artemisia ordosica, Artemisia sphaerocephala, Chloris virgata and Setaria viridis) were subjected to three levels of coverage of BSCs and three levels of water supply. The results show that: 1) BSCs affected plant interaction intensity for the four plant species: a 100% coverage of BSCs significantly reduced the intensity of competition between neighboring plants, while it was highest with a 50% coverage of BSCs in combination with the target species of A. sphaerocephala and C. virgata; 2) effects of the coverage of BSCs on plant interactions were modified by water regime when the target species were C. virgata and S. viridis; 3) plant interactions were species-specific. In conclusion, the percent coverage of BSCs affected plant interactions, and the effects were species-specific and could be modified by water regimes. Further studies should focus on effects of the coverage of BSCs on plant-soil hydrological processes. PMID:24498173
Gao, Shuqin; Pan, Xu; Cui, Qingguo; Hu, Yukun; Ye, Xuehua; Dong, Ming
2014-01-01
Plant interactions greatly affect plant community structure. Dryland ecosystems are characterized by low amounts of unpredictable precipitation as well as by often having biological soil crusts (BSCs) on the soil surface. In dryland plant communities, plants interact mostly as they compete for water resources, and the direction and intensity of plant interaction varies as a function of the temporal fluctuation in water availability. Since BSCs influence water redistribution to some extent, a greenhouse experiment was conducted to test the hypothesis that the intensity and direction of plant interactions in a dryland plant community can be modified by BSCs. In the experiment, 14 combinations of four plant species (Artemisia ordosica, Artemisia sphaerocephala, Chloris virgata and Setaria viridis) were subjected to three levels of coverage of BSCs and three levels of water supply. The results show that: 1) BSCs affected plant interaction intensity for the four plant species: a 100% coverage of BSCs significantly reduced the intensity of competition between neighboring plants, while it was highest with a 50% coverage of BSCs in combination with the target species of A. sphaerocephala and C. virgata; 2) effects of the coverage of BSCs on plant interactions were modified by water regime when the target species were C. virgata and S. viridis; 3) plant interactions were species-specific. In conclusion, the percent coverage of BSCs affected plant interactions, and the effects were species-specific and could be modified by water regimes. Further studies should focus on effects of the coverage of BSCs on plant-soil hydrological processes.
NASA Astrophysics Data System (ADS)
Todd, J.; Pumo, D.; Azaele, S.; Muneepeerakul, R.; Miralles-Wilhelm, F. R.; Rinaldo, A.; Rodriguez-Iturbe, I.
2009-12-01
The influence of hydrological dynamics on vegetational biodiversity and structuring of wetland environments is of growing interest as wetlands are modified by human alteration and the increasing threat from climate change. Hydrology has long been considered a driving force in shaping wetland communities as the frequency of inundation along with the duration and depth of flooding are key determinants of wetland structure. We attempt to link hydrological dynamics with vegetational distribution and species richness across Everglades National Park (ENP) using two publicly available datasets. The first, the Everglades Depth Estimation Network (EDEN),is a water-surface model which determines the median daily measure of water level across a 400mX400m grid over seven years of measurement. The second is a vegetation map and classification system at the 1:15,000 scale which categorizes vegetation within the Everglades into 79 community types. From these data, we have studied the probabilistic structure of the frequency, duration, and depth of hydroperiods. Preliminary results indicate that the percentage of time a location is inundated is a principal structuring variable with individual communities responding differently. For example, sawgrass appears to be more of a generalist community as it is found across a wide range of time inundated percentages while spike rush has a more restricted distribution and favors wetter environments disproportionately more than predicted at random. Further, the diversity of vegetation communities (e.g. a measure of biodiversity) found across a hydrologic variable does not necessarily match the distribution function for that variable on the landscape. For instance, the number of communities does not differ across the percentage of time inundated. Different measures of vegetation biodiversity such as the local number of community types are also studied at different spatial scales with some characteristics, like the slope of the semi-logarithmic relation between rank and occupancy, found to be robust to scale changes. The ENP offers an expansive natural environment in which to study how vegetational dynamics and community composition are affected by hydrologic variables from the small scale (at the individual community level) to the large (biodiversity measures at differing spatial scales).
A modified Stillinger-Weber potential for TlBr and its polymorphic extension
Zhou, Xiaowang; Foster, Michael E.; Jones, Reese E.; ...
2015-04-30
TlBr is promising for g- and x- radiation detection, but suffers from rapid performance degradation under the operating external electric fields. To enable molecular dynamics (MD) studies of this degradation, we have developed a Stillinger-Weber type of TlBr interatomic potential. During this process, we have also addressed two problems of wider interests. First, the conventional Stillinger-Weber potential format is only applicable for tetrahedral structures (e.g., diamond-cubic, zinc-blende, or wurtzite). Here we have modified the analytical functions of the Stillinger-Weber potential so that it can now be used for other crystal structures. Second, past modifications of interatomic potentials cannot always bemore » applied by a broad community because any new analytical functions of the potential would require corresponding changes in the molecular dynamics codes. Here we have developed a polymorphic potential model that simultaneously incorporates Stillinger-Weber, Tersoff, embedded-atom method, and any variations (i.e., modified functions) of these potentials. As a result, we have implemented this polymorphic model in MD code LAMMPS, and demonstrated that our TlBr potential enables stable MD simulations under external electric fields.« less
Timing is everything: priority effects alter community invasibility after disturbance.
Symons, Celia C; Arnott, Shelley E
2014-02-01
Theory suggests that communities should be more open to the establishment of regional species following disturbance because disturbance may make more resources available to dispersers. However, after an initial period of high invasibility, growth of the resident community may lead to the monopolization of local resources and decreased probability of successful colonist establishment. During press disturbances (i.e., directional environmental change), it remains unclear what effect regional dispersal will have on local community structure if the establishment of later arriving species is affected by early arriving species (i.e., if priority effects are important). To determine the relationship between time-since-disturbance and invasibility, we conducted a fully factorial field mesocosm experiment that exposed tundra zooplankton communities to two emerging stressors - nutrient and salt addition, and manipulated the arrival timing of regional dispersers. Our results demonstrate that invasibility decreases with increasing time-since-disturbance as abundance (nutrient treatments) or species richness (salt treatments) increases in the resident community. Results suggest that the relative timing of dispersal and environmental change will modify the importance of priority effects in determining species composition after a press disturbance.
Diabetes Prevention Program Community Outreach Perspectives on Lifestyle Training and Translation
Venditti, Elizabeth M.; Kramer, M. Kaye
2013-01-01
The gap between what is known from clinical efficacy research and the systematic community translation of diabetes prevention programs is narrowing. During the past 5 years, numerous randomized and nonrandomized dissemination studies have evaluated the modified delivery of structured Diabetes Prevention Program (DPP) interventions in diverse real-world settings. Programs of sufficient dose and duration, implemented with fidelity, have reported weight losses in the range of 4%–7% with associated improvements in cardiometabolic risk factors at 6 and 12 months from baseline. The current article describes some of the experiences and perspectives of a team of University of Pittsburgh researchers as they have engaged in these efforts. PMID:23498296
Overseas migration and the well-being of those left behind in rural communities of Bangladesh.
Hadi, A
1999-03-01
The role of the economic and social aspects of overseas migration in improving the well-being of household members left behind in rural communities of Bangladesh is examined in the study presented in this article. Sample households were categorized according to three migration perspectives: 1) duration of migration, 2) intensity of migration, and 3) nature of exposure to migration. Findings indicated that there were positive changes standard of living as a result of the inflow of remittances. Migrants who earned money and stayed abroad longer were better able to save money and invest the remittances in less productive sectors than were nonmigrants. The economic well-being of those left behind, as well as the ability of the migrant family worker to send money to their dependents at home depended on the intensity and duration of exposure experienced by the migrant family member. The improvement in well-being was observable for all indicators. Additionally, the diffusion of secular values may have played a role in modifying the health-seeking behavior of migrant household members left behind as they kept in touch with migrant family members. In view of the increasing globalization of economies, governments and private foundations should provide appropriate structures for the spending of remittances and should modify the livelihood and behavior of migrant communities.
Felsmann, Katja; Baudis, Mathias; Gimbel, Katharina; Kayler, Zachary E.; Ellerbrock, Ruth; Bruehlheide, Helge; Bruckhoff, Johannes; Welk, Erik; Puhlmann, Heike; Weiler, Markus; Gessler, Arthur; Ulrich, Andreas
2015-01-01
Soil microbial communities play an important role in forest ecosystem functioning, but how climate change will affect the community composition and consequently bacterial functions is poorly understood. We assessed the effects of reduced precipitation with the aim of simulating realistic future drought conditions for one growing season on the bacterial community and its relation to soil properties and forest management. We manipulated precipitation in beech and conifer forest plots managed at different levels of intensity in three different regions across Germany. The precipitation reduction decreased soil water content across the growing season by between 2 to 8% depending on plot and region. T-RFLP analysis and pyrosequencing of the 16S rRNA gene were used to study the total soil bacterial community and its active members after six months of precipitation reduction. The effect of reduced precipitation on the total bacterial community structure was negligible while significant effects could be observed for the active bacteria. However, the effect was secondary to the stronger influence of specific soil characteristics across the three regions and management selection of overstorey tree species and their respective understorey vegetation. The impact of reduced precipitation differed between the studied plots; however, we could not determine the particular parameters being able to modify the response of the active bacterial community among plots. We conclude that the moderate drought induced by the precipitation manipulation treatment started to affect the active but not the total bacterial community, which points to an adequate resistance of the soil microbial system over one growing season. PMID:25875835
Felsmann, Katja; Baudis, Mathias; Gimbel, Katharina; Kayler, Zachary E; Ellerbrock, Ruth; Bruelheide, Helge; Bruehlheide, Helge; Bruckhoff, Johannes; Welk, Erik; Puhlmann, Heike; Weiler, Markus; Gessler, Arthur; Ulrich, Andreas
2015-01-01
Soil microbial communities play an important role in forest ecosystem functioning, but how climate change will affect the community composition and consequently bacterial functions is poorly understood. We assessed the effects of reduced precipitation with the aim of simulating realistic future drought conditions for one growing season on the bacterial community and its relation to soil properties and forest management. We manipulated precipitation in beech and conifer forest plots managed at different levels of intensity in three different regions across Germany. The precipitation reduction decreased soil water content across the growing season by between 2 to 8% depending on plot and region. T-RFLP analysis and pyrosequencing of the 16S rRNA gene were used to study the total soil bacterial community and its active members after six months of precipitation reduction. The effect of reduced precipitation on the total bacterial community structure was negligible while significant effects could be observed for the active bacteria. However, the effect was secondary to the stronger influence of specific soil characteristics across the three regions and management selection of overstorey tree species and their respective understorey vegetation. The impact of reduced precipitation differed between the studied plots; however, we could not determine the particular parameters being able to modify the response of the active bacterial community among plots. We conclude that the moderate drought induced by the precipitation manipulation treatment started to affect the active but not the total bacterial community, which points to an adequate resistance of the soil microbial system over one growing season.
Chacón-Labella, Julia; de la Cruz, Marcelino; Pescador, David S; Escudero, Adrián
2016-04-01
Evaluating community assembly through the use of functional traits is a promising tool for testing predictions arising from Niche and Coexistence theories. Although interactions among neighboring species and their inter-specific differences are known drivers of coexistence with a strong spatial signal, assessing the role of individual species on the functional structure of the community at different spatial scales remains a challenge. Here, we ask whether individual species exert a measurable effect on the spatial organization of different functional traits in local assemblages. We first propose and compute two functions that describe different aspects of functional trait organization around individual species at multiple scales: individual weighted mean area relationship and individual functional diversity area relationship. Secondly, we develop a conceptual model on the relationship and simultaneous variation of these two metrics, providing five alternative scenarios in response to the ability of some target species to modify its neighbor environment and the possible assembly mechanisms involved. Our results show that some species influence the spatial structure of specific functional traits, but their effects were always restricted to the finest spatial scales. In the basis of our conceptual model, the observed patterns point to two main mechanisms driving the functional structure of the community at the fine scale, "biotic" filtering meditated by individual species and resource partitioning driven by indirect facilitation rather than by competitive mechanisms.
Schulz, Amy; Mentz, Graciela; Johnson-Lawrence, Vicki; Israel, Barbara A; Max, Paul; Zenk, Shannon N; Wineman, Jean; Marans, Robert W
2013-10-01
Physical activity is associated with reduced risk of a number of health outcomes, yet fewer than half of adults in the United States report recommended levels of physical activity. Analyses of structural characteristics of the built environment as correlates of physical activity have yielded mixed results. We examine associations between multiple aspects of urban neighborhood environments and physical activity in order to understand their independent and joint effects, with a focus on the extent to which the condition of the built environment and indicators of the social environment modify associations between structural characteristics and physical activity. We use data from a stratified, multi-stage proportional probability sample of 919 non-Hispanic Black, non-Hispanic White, and Hispanic adults in an urban community, observational data from their residential neighborhoods, and census data to examine independent and joint associations of structural characteristics (e.g., street network connectivity), their condition (e.g., sidewalk condition), and social environments (e.g., territoriality) with physical activity. Our findings suggest that sidewalk condition is associated with physical activity, above and beyond structural characteristics of the built environment. Associations between some structural characteristics of the built environment and physical activity were conditional upon street condition, physical deterioration, and the proportion of parks and playgrounds in good condition. We found modest support for the hypothesis that associations between structural characteristics and physical activity are modified by aspects of the social environment. Results presented here point to the value of and need for understanding and addressing the complexity of factors that contribute to the relationships between the built and social environments and physical activity, and in turn, obesity and co-morbidities. Bringing together urban planners, public health practitioners and policy makers to understand and address aspects of urban environment associated with health outcomes is critical to promoting health and health equity.
Interactive effects of temperature and habitat complexity on freshwater communities.
Scrine, Jennifer; Jochum, Malte; Ólafsson, Jón S; O'Gorman, Eoin J
2017-11-01
Warming can lead to increased growth of plants or algae at the base of the food web, which may increase the overall complexity of habitat available for other organisms. Temperature and habitat complexity have both been shown to alter the structure and functioning of communities, but they may also have interactive effects, for example, if the shade provided by additional habitat negates the positive effect of temperature on understory plant or algal growth. This study explored the interactive effects of these two major environmental factors in a manipulative field experiment, by assessing changes in ecosystem functioning (primary production and decomposition) and community structure in the presence and absence of artificial plants along a natural stream temperature gradient of 5-18°C. There was no effect of temperature or habitat complexity on benthic primary production, but epiphytic production increased with temperature in the more complex habitat. Cellulose decomposition rate increased with temperature, but was unaffected by habitat complexity. Macroinvertebrate communities were less similar to each other as temperature increased, while habitat complexity only altered community composition in the coldest streams. There was also an overall increase in macroinvertebrate abundance, body mass, and biomass in the warmest streams, driven by increasing dominance of snails and blackfly larvae. Presence of habitat complexity, however, dampened the strength of this temperature effect on the abundance of macroinvertebrates in the benthos. The interactive effects that were observed suggest that habitat complexity can modify the effects of temperature on important ecosystem functions and community structure, which may alter energy flow through the food web. Given that warming is likely to increase habitat complexity, particularly at higher latitudes, more studies should investigate these two major environmental factors in combination to improve our ability to predict the impacts of future global change.
40 CFR 372.20 - Process for modifying covered chemicals and facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... chemicals and facilities. 372.20 Section 372.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Reporting Requirements § 372.20 Process for modifying covered chemicals...
Fall, S; Nazaret, S; Chotte, J L; Brauman, A
2004-08-01
The building and foraging activities of termites are known to modify soil characteristics such as the heterogeneity. In tropical savannas the impact of the activity of soil-feeding termites ( Cubitermes niokoloensis) has been shown to affect the properties of the soil at the aggregate level by creating new soil microenvironments (aggregate size fractions) [13]. These changes were investigated in greater depth by looking at the microbial density (AODC) and the genetic structure (automated rRNA intergenic spacer analysis: ARISA) of the communities in the different aggregate size fractions (i.e., coarse sand, fine sand, coarse silt, fine silt, and dispersible clays) separated from compartments (internal and external wall) of three Cubitermes niokoloensis mounds. The bacterial density of the mounds was significantly higher (1.5 to 3 times) than that of the surrounding soil. Within the aggregate size fractions, the termite building activity resulted in a significant increase in bacterial density within the coarser fractions (>20 mum). Multivariate analysis of the ARISA profiles revealed that the bacterial genetic structures of unfractionated soil and soil aggregate size fractions of the three mounds was noticeably different from the savanna soil used as a reference. Moreover, the microbial community associated with the different microenvironments in the three termite mounds revealed three distinct clusters formed by the aggregate size fractions of each mound. Except for the 2-20 mum fraction, these results suggest that the mound microbial genetic structure is more dependent upon microbial pool affiliation (the termite mound) than on the soil location (aggregate size fraction). The causes of the specificity of the microbial community structure of termite mound aggregate size fractions are discussed.
Information dynamics algorithm for detecting communities in networks
NASA Astrophysics Data System (ADS)
Massaro, Emanuele; Bagnoli, Franco; Guazzini, Andrea; Lió, Pietro
2012-11-01
The problem of community detection is relevant in many scientific disciplines, from social science to statistical physics. Given the impact of community detection in many areas, such as psychology and social sciences, we have addressed the issue of modifying existing well performing algorithms by incorporating elements of the domain application fields, i.e. domain-inspired. We have focused on a psychology and social network-inspired approach which may be useful for further strengthening the link between social network studies and mathematics of community detection. Here we introduce a community-detection algorithm derived from the van Dongen's Markov Cluster algorithm (MCL) method [4] by considering networks' nodes as agents capable to take decisions. In this framework we have introduced a memory factor to mimic a typical human behavior such as the oblivion effect. The method is based on information diffusion and it includes a non-linear processing phase. We test our method on two classical community benchmark and on computer generated networks with known community structure. Our approach has three important features: the capacity of detecting overlapping communities, the capability of identifying communities from an individual point of view and the fine tuning the community detectability with respect to prior knowledge of the data. Finally we discuss how to use a Shannon entropy measure for parameter estimation in complex networks.
Social and structural aspects of the overdose risk environment in St. Petersburg, Russia.
Green, Traci C; Grau, Lauretta E; Blinnikova, Ksenia N; Torban, Mikhail; Krupitsky, Evgeny; Ilyuk, Ruslan; Kozlov, Andrei; Heimer, Robert
2009-05-01
While overdose is a common cause of mortality among opioid injectors worldwide, little information exists on opioid overdoses or how context may influence overdose risk in Russia. This study sought to uncover social and structural aspects contributing to fatal overdose risk in St. Petersburg and assess prevention intervention feasibility. Twenty-one key informant interviews were conducted with drug users, treatment providers, toxicologists, police, and ambulance staff. Thematic coding of interview content was conducted to elucidate elements of the overdose risk environment. Several factors within St. Petersburg's environment were identified as shaping illicit drug users' risk behaviours and contributing to conditions of suboptimal response to overdose in the community. Most drug users live and experience overdoses at home, where family and home environment may mediate or moderate risk behaviours. The overdose risk environment is also worsened by inefficient emergency response infrastructure, insufficient cardiopulmonary or naloxone training resources, and the preponderance of abstinence-based treatment approaches to the exclusion of other treatment modalities. However, attitudes of drug users and law enforcement officials generally support overdose prevention intervention feasibility. Modifiable aspects of the risk environment suggest community-based and structural interventions, including overdose response training for drug users and professionals that encompasses naloxone distribution to the users and equipping more ambulances with naloxone. Local social and structural elements influence risk environments for overdose. Interventions at the community and structural levels to prevent and respond to opioid overdoses are needed for and integral to reducing overdose mortality in St. Petersburg.
Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal-polluted soils.
Hassan, Saad El Din; Boon, Eva; St-Arnaud, Marc; Hijri, Mohamed
2011-08-01
We assessed the indigenous arbuscular mycorrhizal fungi (AMF) community structure from the roots and associated soil of Plantago major (plantain) plants growing on sites polluted with trace metals (TM) and on unpolluted sites. Uncontaminated and TM-contaminated sites containing As, Cd, Cu, Pb, Sn and Zn were selected based on a survey of the TM concentration in soils of community gardens in the City of Montréal. Total genomic DNA was extracted directly from these samples. PCR followed by denaturing gradient gel electrophoresis (PCR-DGGE), augmented by cloning and sequencing, as well as direct sequencing techniques, was all used to investigate AMF community structure. We found a decreased diversity of native AMF (assessed by the number of AMF ribotypes) in soils and plant roots harvested from TM-polluted soils compared with unpolluted soils. We also found that community structure was modified by TM contamination. Various species of Glomus, Scutellospora aurigloba and S. calospora were the most abundant ribotypes detected in unpolluted soil; ribotypes of G. etunicatum, G. irregulare/G. intraradices and G. viscosum were found in both polluted and unpolluted soils, while ribotypes of G. mosseae and Glomus spp. (B9 and B13) were dominant in TM-polluted soils. The predominance of G. mosseae in metal-polluted sites suggests the tolerance of this species to TM stress, as well as its potential use for phytoremediation. These data are relevant for our understanding of how AMF microbial communities respond to natural environments that contain a broad variety of toxic inorganic compounds and will substantially expand our knowledge of AMF ecology and biodiversity. © 2011 Blackwell Publishing Ltd.
Zhu, Xiaomin; Chen, Baoliang; Zhu, Lizhong; Xing, Baoshan
2017-08-01
Biochars have attracted tremendous attention due to their effects on soil improvement; they enhance carbon storage, soil fertility and quality, and contaminant (organic and heavy metal) immobilization and transformation. These effects could be achieved by modifying soil microbial habitats and (or) directly influencing microbial metabolisms, which together induce changes in microbial activity and microbial community structures. This review links microbial responses, including microbial activity, community structures and soil enzyme activities, with changes in soil properties caused by biochars. In particular, we summarized possible mechanisms that are involved in the effects that biochar-microbe interactions have on soil carbon sequestration and pollution remediation. Special attention has been paid to biochar effects on the formation and protection of soil aggregates, biochar adsorption of contaminants, biochar-mediated transformation of soil contaminants by microorganisms, and biochar-facilitated electron transfer between microbial cells and contaminants and soil organic matter. Certain reactive organic compounds and heavy metals in biochar may induce toxicity to soil microorganisms. Adsorption and hydrolysis of signaling molecules by biochar interrupts microbial interspecific communications, potentially altering soil microbial community structures. Further research is urged to verify the proposed mechanisms involved in biochar-microbiota interactions for soil remediation and improvement. Copyright © 2017 Elsevier Ltd. All rights reserved.
Keeping the Dogs in the Fight: What Combatant Commanders Need to Know about MWDs
2013-05-20
Manhattan Project that Bombed,” Public Integrity, Last modified August 2011, http://www.publicintegrity.org/2011/03/27/3799/jieddo- manhattan - project -bombed...Carey, Peter. “JIEDDO: The Manhattan Project that Bombed.” Public Integrity. Last modified August 2011. http://www.publicintegrity.org/2011/03/27...3799/jieddo- manhattan - project -bombed. Community Marines. “MCO 5580.2B.” Last modified August 2008. http://community.marines.mil/news
Chen, Yan-Yan; Wong, Gloria H Y; Lum, Terry Y; Lou, Vivian W Q; Ho, Andy H Y; Luo, Hao; Tong, Tracy L W
2016-01-01
Depressive symptoms are common in older people; most previous research on elderly depression focused on individual-level characteristics or neighborhood socioeconomic status. Modifiable neighborhood characteristics of older people dwelling in low-income communities are under-studied. This study aims to identify potentially modifiable social and physical neighborhood characteristics that influence depressive symptoms independent of individual-level characteristics among older Chinese. Data came from a cross-sectional survey conducted in four low-income public rental housing estates in Hong Kong in 2012. We interviewed a total of 400 elderly residents. The structured questionnaire covered demographics, activities of daily living, recent fall history, neighborhood support networks, and perceived proximity by walk to community facilities. Multiple regression was used to test whether inclusion of neighborhood factors in addition to individual characteristics increases model fit in explaining depressive symptoms in elders with low socioeconomic status. At individual level, activities of daily living and income significantly predicted depressive symptoms. Receiving support from friends or neighbors is associated with fewer depressive symptoms. However, participants who received organizational support had a 1.17 points of increase on the 15-item Geriatric Depression Scale (GDS-15). At-ease walkable proximity to medical facilities was positively associated with a better GDS score. Neighborhood support networks and perceived proximity by walk to community facilities contribute significantly to depressive symptoms among low-income elders. Programs and policies that facilitate neighborhood support and commuting or promote facility accessibility may help ameliorate depressive symptoms common among low-income elders.
Hussaini, Aliya; Pulido, Carmen Llanes; Basu, Semonti; Ranjit, Nalini
2018-01-01
Place-based health efforts account for the role of the community environment in shaping decisions and circumstances that affect population well-being. Such efforts, rooted as they are in the theory that health is socially determined, mobilize resources for health promotion that are not typically used, and offer a more informed and robust way of promoting health outcomes within a community. Common criticisms of place-based work include the difficulty of replication, since engagement is so specific to a place, and limited sustainability of the work, in the absence of continued institutional structures, both within the community and supporting structures outside the community, to keep these initiatives resilient. This paper describes a place-based initiative, GO! Austin/VAMOS! Austin (GAVA), which was designed to harness the strengths of place-based work—namely, its specificity to place and community. From the start, the project was designed to balance this specificity with a focus on developing and utilizing a standardized set of evidence-informed implementation and evaluation approaches and tools that were flexible enough to be modified for specific settings. This was accompanied by an emphasis on leadership and capacity building within resident leaders, which provided for informed intervention and demand building capacity, but also for longevity as partners, philanthropic, and otherwise, moved in and out of the work. PMID:29623272
Yang, Wen; Jeelani, Nasreen; Leng, Xin; Cheng, Xiaoli; An, Shuqing
2016-01-01
The role of exotic plants in regulating soil microbial community structure and activity following invasion chronosequence remains unclear. We investigated soil microbial community structure and microbial respiration following Spartina alterniflora invasion in a chronosequence of 6-, 10-, 17-, and 20-year-old by comparing with bare flat in a coastal wetland of China. S. alterniflora invasion significantly increased soil moisture and salinity, the concentrations of soil water-soluble organic carbon and microbial biomass carbon (MBC), the quantities of total and various types of phospholipid fatty acids (PLFAs), the fungal:bacterial PLFAs ratio and cumulative microbial respiration compared with bare flat. The highest MBC, gram-negative bacterial and saturated straight-chain PLFAs were found in 10-year-old S. alterniflora soil, while the greatest total PLFAs, bacterial and gram-positive bacterial PLFAs were found in 10- and 17-year-old S. alterniflora soils. The monounsaturated:branched PLFAs ratio declined, and cumulative microbial respiration on a per-unit-PLFAs increased following S. alterniflora invasion in the chronosequence. Our results suggest that S. alterniflora invasion significantly increased the biomass of soil various microbial groups and microbial respiration compared to bare flat soil by increasing soil available substrate, and modifying soil physiochemical properties. Soil microbial community reached the most enriched condition in the 10-year-old S. alterniflora community. PMID:27241173
Hussaini, Aliya; Pulido, Carmen Llanes; Basu, Semonti; Ranjit, Nalini
2018-01-01
Place-based health efforts account for the role of the community environment in shaping decisions and circumstances that affect population well-being. Such efforts, rooted as they are in the theory that health is socially determined, mobilize resources for health promotion that are not typically used, and offer a more informed and robust way of promoting health outcomes within a community. Common criticisms of place-based work include the difficulty of replication , since engagement is so specific to a place, and limited sustainability of the work, in the absence of continued institutional structures, both within the community and supporting structures outside the community, to keep these initiatives resilient. This paper describes a place-based initiative, GO! Austin/VAMOS! Austin (GAVA), which was designed to harness the strengths of place-based work-namely, its specificity to place and community. From the start, the project was designed to balance this specificity with a focus on developing and utilizing a standardized set of evidence-informed implementation and evaluation approaches and tools that were flexible enough to be modified for specific settings. This was accompanied by an emphasis on leadership and capacity building within resident leaders, which provided for informed intervention and demand building capacity, but also for longevity as partners, philanthropic, and otherwise, moved in and out of the work.
Abubakar, Amina; Kalu, Raphael Birya; Katana, Khamis; Kabunda, Beatrice; Hassan, Amin S; Newton, Charles R; Van de Vijver, Fons
2016-01-01
We set out to adapt the Beck Depression Inventory (BDI)-II in Kenya and examine its factorial structure. In the first phase we carried out in-depth interviews involving 29 adult members of the community to elicit their understanding of depression and identify aspects of the BDI-II that required adaptation. In the second phase, a modified version of BDI-II was administered to 221 adults randomly selected from the community to allow for the evaluation of its psychometric properties. In the third phase of the study we evaluated the discriminative validity of BDI-11 by comparing a randomly chosen community sample (n = 29) with caregivers of adolescents affected by HIV (n = 77). A considerable overlap between the BDI symptoms and those generated in the interviews was observed. Relevant idioms and symptoms such as 'thinking too much' and 'Kuchoka moyo (having a tired heart)' were identified. The administration of the BDI had to be modified to make it suitable for the low literacy levels of our participants. Fit indices for several models (one factorial, two-factor model and a three factor model) were all within acceptable range. Evidence indicated that while multidimensional models could be fitted, the strong correlations between the factors implied that a single factor model may be the best suited solution (alpha [0.89], and a significant correlation with locally identified items [r = 0.51]) confirmed the good psychometric properties of the adapted BDI-II. No evidence was found to support the hypothesis that somatization was more prevalent. Lastly, caregivers of HIV affected adolescents had significantly higher scores compared to adults randomly selected from the community F(1, 121) = 23.31, p < .001 indicating the discriminative validity of the adapted BDI = II. With an adapted administration procedure, the BDI-II provides an adequate measure of depressive symptoms which can be used alongside other measures for proper diagnosis in a low literacy population.
77 FR 33158 - Plumas National Forest, California, Sugarloaf Hazardous Fuels Reduction Project
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-05
... to the economic stability of rural communities through: fuels treatments; group selections (GS); area... (DFPZs), modify fire behavior, promote forest and watershed health, while contributing to the economic stability of rural communities in Plumas County, CA. Fire behavior needs to be modified in selected forest...
NASA Astrophysics Data System (ADS)
Jiménez-Ramos, Rocío; Brun, Fernando G.; Egea, Luis G.; Vergara, Juan J.
2018-05-01
Interactions between the palatability and abundance of different food sources may influence herbivory patterns in seagrass-dominated communities. In addition, intra-specific differences in nutrient and structural quality of leaves may also alter seagrass palatability and generate different rates of consumption within these communities. We offered two temperate seagrasses species, (Cymodocea nodosa and Zostera noltei) from two different locations to look at intraspecific differences, and two other macrophytes, both of which occur at the same location as seagrasses but represent the extremes of palatability, to a generalist herbivore Paracentrotus lividus (purple sea urchin). Using feeding assays, we compared the consumption rates in individual (single plant species) and combined diets at different food availabilities. Intra-specific differences between seagrass species growing at different locations (inner and outer bay) were indeed found to significantly modify the consumption rate for one species. Structural traits such as carbon content were linked to the low consumption found in Cymodocea nodosa from the inner bay location. In addition, we found that the co-occurrence of different macrophyte species can result in preferential consumption of the more palatable macrophyte with high nutritional content and low structural defence over seagrasses, especially when P. lividus has an abundant food supply. Overall, our findings suggest that intra- and inter-specific differences in seagrass traits and the relative abundance of other macrophytes may explain the variability in patterns of herbivory found within seagrass communities.
Kim, Lavane; Pagaling, Eulyn; Zuo, Yi Y.
2014-01-01
The impact of substratum surface property change on biofilm community structure was investigated using laboratory biological aerated filter (BAF) reactors and molecular microbial community analysis. Two substratum surfaces that differed in surface properties were created via surface coating and used to develop biofilms in test (modified surface) and control (original surface) BAF reactors. Microbial community analysis by 16S rRNA gene-based PCR-denaturing gradient gel electrophoresis (DGGE) showed that the surface property change consistently resulted in distinct profiles of microbial populations during replicate reactor start-ups. Pyrosequencing of the bar-coded 16S rRNA gene amplicons surveyed more than 90% of the microbial diversity in the microbial communities and identified 72 unique bacterial species within 19 bacterial orders. Among the 19 orders of bacteria detected, Burkholderiales and Rhodocyclales of the Betaproteobacteria class were numerically dominant and accounted for 90.5 to 97.4% of the sequence reads, and their relative abundances in the test and control BAF reactors were different in consistent patterns during the two reactor start-ups. Three of the five dominant bacterial species also showed consistent relative abundance changes between the test and control BAF reactors. The different biofilm microbial communities led to different treatment efficiencies, with consistently higher total organic carbon (TOC) removal in the test reactor than in the control reactor. Further understanding of how surface properties affect biofilm microbial communities and functional performance would enable the rational design of new generations of substrata for the improvement of biofilm-based biological treatment processes. PMID:24141134
Romão-Dumaresq, Aline Silva; Dourado, Manuella Nóbrega; Fávaro, Léia Cecilia de Lima; Mendes, Rodrigo; Ferreira, Anderson; Araújo, Welington Luiz
2016-01-01
Plant-associated fungi are considered a vast source for biotechnological processes whose potential has been poorly explored. The interactions and diversity of sugarcane, one of the most important crops in Brazil, have been rarely studied, mainly concerning fungal communities and their interactions with transgenic plants. Taking this into consideration, the purpose of this study was, based on culture dependent strategy, to determine the structure and diversity of the fungal community (root endophytes and rhizosphere) associated with two varieties of sugarcane, a non-genetically modified (SP80-1842) variety and its genetically modified counterpart (IMI-1, expressing imazapyr herbicide resistance). For this, the sugarcane varieties were evaluated in three sampling times (3, 10 and 17 months after planting) under two crop management (weeding and herbicide treatments). In addition, a strain of Trichoderma virens, an endophyte isolated from sugarcane with great potential as a biological control, growth promotion and enzyme production agent, was selected for the fungal-plant interaction assays. The results of the isolation, characterization and evaluation of fungal community changes showed that the sugarcane fungal community is composed of at least 35 different genera, mostly in the phylum Ascomycota. Many genera are observed at very low frequencies among a few most abundant genera, some of which were isolated from specific plant sites (e.g., the roots or the rhizosphere). An assessment of the possible effects upon the fungal community showed that the plant growth stage was the only factor that significantly affected the community’s structure. Moreover, if transgenic effects are present, they may be minor compared to other natural sources of variation. The results of interaction studies using the Green fluorescent protein (GFP)-expressing T. virens strain T.v.223 revealed that this fungus did not promote any phenotypic changes in the host plant and was found mostly in the roots where it formed a dense mycelial cover and was able to penetrate the intercellular spaces of the root epidermis upper layers. The ability of T. virens to colonize plant roots suggests a potential for protecting plant health, inhibiting pathogens or inducing systemic resistance. PMID:27415014
Mixed cropping regimes promote the soil fungal community under zero tillage.
Silvestro, L B; Biganzoli, F; Stenglein, S A; Forjan, H; Manso, L; Moreno, M V
2018-07-01
Fungi of yield soils represent a significant portion of the microbial biomass and reflect sensitivity to changes in the ecosystem. Our hypothesis was that crops included in cropping regimes under the zero tillage system modify the structure of the soil fungi community. Conventional and molecular techniques provide complementary information for the analysis of diversity of fungal species and successful information to accept our hypothesis. The composition of the fungal community varied according to different crops included in the cropping regimes. However, we detected other factors as sources of variation among them, season and sampling depth. The mixed cropping regimes including perennial pastures and one crop per year promote fungal diversity and species with potential benefit to soil and crop. The winter season and 0-5 cm depth gave the largest evenness and fungal diversity. Trichoderma aureoviride and Rhizopus stolonifer could be used for monitoring changes in soil under zero tillage.
A Spatially Continuous Model of Carbohydrate Digestion and Transport Processes in the Colon
Moorthy, Arun S.; Brooks, Stephen P. J.; Kalmokoff, Martin; Eberl, Hermann J.
2015-01-01
A spatially continuous mathematical model of transport processes, anaerobic digestion and microbial complexity as would be expected in the human colon is presented. The model is a system of first-order partial differential equations with context determined number of dependent variables, and stiff, non-linear source terms. Numerical simulation of the model is used to elucidate information about the colon-microbiota complex. It is found that the composition of materials on outflow of the model does not well-describe the composition of material in other model locations, and inferences using outflow data varies according to model reactor representation. Additionally, increased microbial complexity allows the total microbial community to withstand major system perturbations in diet and community structure. However, distribution of strains and functional groups within the microbial community can be modified depending on perturbation length and microbial kinetic parameters. Preliminary model extensions and potential investigative opportunities using the computational model are discussed. PMID:26680208
Salovey, Peter; Williams-Piehota, Pamela; Mowad, Linda; Moret, Marta Elisa; Edlund, Denielle; Andersen, Judith
2009-01-01
This article describes the establishment of two community technology centers affiliated with Head Start early childhood education programs focused especially on Latino and African American parents of children enrolled in Head Start. A 6-hour course concerned with computer and cancer literacy was presented to 120 parents and other community residents who earned a free, refurbished, Internet-ready computer after completing the program. Focus groups provided the basis for designing the structure and content of the course and modifying it during the project period. An outcomes-based assessment comparing program participants with 70 nonparticipants at baseline, immediately after the course ended, and 3 months later suggested that the program increased knowledge about computers and their use, knowledge about cancer and its prevention, and computer use including health information-seeking via the Internet. The creation of community computer technology centers requires the availability of secure space, capacity of a community partner to oversee project implementation, and resources of this partner to ensure sustainability beyond core funding.
Costa, Angela M; Mergulhão, Filipe J; Briandet, Romain; Azevedo, Nuno F
2017-09-01
Multispecies biofilms represent the dominant mode of life for the vast majority of microorganisms. Bacterial spatial localization in such biostructures governs ecological interactions between different populations and triggers the overall community functions. Here, we discuss the pros and cons of fluorescence-based techniques used to decipher bacterial species patterns in biofilms at single cell level, including fluorescence in situ hybridization and the use of genetically modified bacteria that express fluorescent proteins, reporting the significant improvements of those techniques. The development of tools for spatial and temporal study of multispecies biofilms will allow live imaging and spatial localization of cells in naturally occurring biofilms coupled with metabolic information, increasing insight of microbial community and the relation between its structure and functions.
Beech cupules as keystone structures for soil fauna.
Melguizo-Ruiz, Nereida; Jiménez-Navarro, Gerardo; Moya-Laraño, Jordi
2016-01-01
Facilitative or positive interactions are ubiquitous in nature and play a fundamental role in the configuration of ecological communities. In particular, habitat modification and niche construction, in which one organism locally modifies abiotic conditions and favours other organisms by buffering the effects of adverse environmental factors, are among the most relevant facilitative interactions. In line with this, 'keystone structures', which provide resources, refuge, or advantageous services decisive for other species, may allow the coexistence of various species and thus considerably contribute to diversity maintenance. Beech cupules are woody husks harbouring beech fruits that remain in the forest soil for relatively long periods of time. In this study, we explored the potential role of these cupules in the distribution and maintenance of the soil fauna inhabiting the leaf litter layer. We experimentally manipulated cupule availability and soil moisture in the field to determine if such structures are limiting and can provide moist shelter to soil animals during drought periods, contributing to minimize desiccation risks. We measured invertebrate abundances inside relative to outside the cupules, total abundances in the leaf litter and animal body sizes, in both dry and wet experimental plots. We found that these structures are preferentially used by the most abundant groups of smaller soil animals-springtails, mites and enchytraeids-during droughts. Moreover, beech cupules can be limiting, as an increase in use was found with higher cupule densities, and are important resources for many small soil invertebrates, driving the spatial structure of the soil community and promoting higher densities in the leaf litter, probably through an increase in habitat heterogeneity. We propose that fruit woody structures should be considered 'keystone structures' that contribute to soil community maintenance. Therefore, beech trees may indirectly facilitate soil fauna activities through their decaying fruit husks, hence acting as ecosystem engineers.
ERIC Educational Resources Information Center
Sullivan, Christopher J.; Sacks, Stanley; McKendrick, Karen; Banks, Steven; Sacks, Joann Y.; Stommel, Joseph
2007-01-01
This paper examines outcomes 12 months post-prison release for offenders with co-occurring disorders (n = 185) randomly assigned to either a mental health control treatment (C) or a modified therapeutic community (E). Significant between-group differences were not found for mental health measures, although improvements were observed for each…
Hickman, Ronald L; Clochesy, John M; Hetland, Breanna; Alaamri, Marym
2017-04-01
There are limited reliable and valid measures of the patient- provider interaction among adults with hypertension. Therefore, the purpose of this report is to describe the construct validity and reliability of the Questionnaire on the Quality of Physician-Patient Interaction (QQPPI), in community-dwelling adults with hypertension. A convenience sample of 109 participants with hypertension was recruited and administered the QQPPI at baseline and 8 weeks later. The exploratory factor analysis established a 12-item, 2-factor structure for the QQPPI was valid in this sample. The modified QQPPI proved to have sufficient internal consistency and test- retest reliability. The modified QQPPI is a valid and reliable measure of the provider-patient interaction, a construct posited to impact self-management, in adults with hypertension.
Allen, Craig R.; Angeler, David G.; Moulton, Michael P.; Holling, Crawford S.
2015-01-01
Community saturation can help to explain why biological invasions fail. However, previous research has documented inconsistent relationships between failed invasions (i.e., an invasive species colonizes but goes extinct) and the number of species present in the invaded community. We use data from bird communities of the Hawaiian island of Oahu, which supports a community of 38 successfully established introduced birds and where 37 species were introduced but went extinct (failed invasions). We develop a modified approach to evaluate the effects of community saturation on invasion failure. Our method accounts (1) for the number of species present (NSP) when the species goes extinct rather than during its introduction; and (2) scaling patterns in bird body mass distributions that accounts for the hierarchical organization of ecosystems and the fact that interaction strength amongst species varies with scale. We found that when using NSP at the time of extinction, NSP was higher for failed introductions as compared to successful introductions, supporting the idea that increasing species richness and putative community saturation mediate invasion resistance. Accounting for scale-specific patterns in body size distributions further improved the relationship between NSP and introduction failure. Results show that a better understanding of invasion outcomes can be obtained when scale-specific community structure is accounted for in the analysis.
García-Ruiz, María J; Maza-Márquez, Paula; González-López, Jesús; Osorio, Francisco
2018-02-01
Three Canon bench-scale bioreactors with a volume of 2 L operating in parallel were configured as submerged biofilters. In the present study we investigated the effects of a high ammonium concentration (320 mgNH 4 + · L -1 ) and different concentrations of organic matter (0, 100 and 400 mgCOD·L -1 ) on the nitrogen removal capacity and the bacterial community structure. After 60 days, the Canon biofilters operated properly under concentrations of 0 and 100 mgCOD·L -1 of organic matter, with nitrogen removal efficiencies up to 85%. However, a higher concentration of organic matter (400 mgCOD·L -1 ) produced a partial inhibition of nitrogen removal (68.1% efficiency). The addition of higher concentrations of organic matter a modified the bacterial community structure in the Canon biofilter, increasing the proliferation of heterotrophic bacteria related to the genera of Thauera, Longilinea, Ornatilinea, Thermomarinilinea, unclassified Chlorobiales and Denitratisoma. However, heterotrophic bacteria co-exist with Nitrosomonas and Candidatus Scalindua. Thus, our study confirms the co-existence of different microbial activities (AOB, Anammox and denitrification) and the adaptation of a fixed-biofilm system to different concentrations of organic matter. Copyright © 2017 Elsevier Ltd. All rights reserved.
Resilience of Alaska's Boreal Forest to Climatic Change
NASA Technical Reports Server (NTRS)
Chapin, F. S., III; McGuire, A. D.; Ruess, R. W.; Hollingsworth, T. N.; Mack, M. C.; Johnstone, J. F.; Kasischke, E. S.; Euskirchen, E. S.; Jones, J. B.; Jorgenson, M. T.;
2010-01-01
This paper assesses the resilience of Alaska s boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters traveling on river ice. These changes have modified key structural features, feedbacks, and interactions in the boreal forest, including reduced effects of upland permafrost on regional hydrology, expansion of boreal forest into tundra, and amplification of climate warming because of reduced albedo (shorter winter season) and carbon release from wildfires. Other temperature-sensitive processes for which no trends have been detected include composition of plant and microbial communities, long-term landscape-scale change in carbon stocks, stream discharge, mammalian population dynamics, and river access and subsistence opportunities for rural indigenous communities. Projections of continued warming suggest that Alaska s boreal forest will undergo significant functional and structural changes within the next few decades that are unprecedented in the last 6000 years. The impact of these social ecological changes will depend in part on the extent of landscape reorganization between uplands and lowlands and on policies regulating subsistence opportunities for rural communities.
Approach to assess consequences of hypoxia disturbance events for benthic ecosystem functioning
NASA Astrophysics Data System (ADS)
Gogina, Mayya; Darr, Alexander; Zettler, Michael L.
2014-01-01
Our study challenges the functional approach for its usefulness in assessing the consequences of hypoxia disturbance events on macrofaunal communities in the south-western Baltic Sea. Time series for two decades of observations from two monitoring stations, one in the Fehmarnbelt (exposed to aperiodic hypoxia), and another in the Darss Rise (normoxic conditions) is used. Our results designate differences of functional structure of benthic fauna communities between sites based on biological traits that characterise species role in modifying the environment, behavioural strategies, morphology and life history, thus suggesting differences in functioning. Hypoxic years reveal sharp increase of the role of sedentary species, suspension filter feeders, epibenthic structures, globulose form, medium/large size of individuals, preponderance of species with long lifespan (caused for instance by remaining ocean quahog). The link of functional and species diversity to the stagnation periods is proposed for the Darss station that exhibit continuous changes and low temporal variability of traits distribution. Before the major inflow in 1993 the increased role of small size organisms, containing calcium carbonate, filter feeders and grazers, higher presence of semi-pelagic species is observed. The hypoxic events and water renewal processes impact the communities not only in respect to species composition but also functionally.
Resilience of Alaska’s boreal forest to climatic change
Chapin, F.S.; McGuire, A. David; Ruess, Roger W.; Hollingsworth, Teresa N.; Mack, M.C.; Johnstone, J.F.; Kasischke, E.S.; Euskirchen, E.S.; Jones, J.B.; Jorgenson, M.T.; Kielland, K.; Kofinas, G.; Turetsky, M.R.; Yarie, J.; Lloyd, A.H.; Taylor, D.L.
2010-01-01
This paper assesses the resilience of Alaska’s boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters traveling on river ice. These changes have modified key structural features, feedbacks, and interactions in the boreal forest, including reduced effects of upland permafrost on regional hydrology, expansion of boreal forest into tundra, and amplification of climate warming because of reduced albedo (shorter winter season) and carbon release from wildfires. Other temperature-sensitive processes for which no trends have been detected include composition of plant and microbial communities, long-term landscape-scale change in carbon stocks, stream discharge, mammalian population dynamics, and river access and subsistence opportunities for rural indigenous communities. Projections of continued warming suggest that Alaska’s boreal forest will undergo significant functional and structural changes within the next few decades that are unprecedented in the last 6000 years. The impact of these social–ecological changes will depend in part on the extent of landscape reorganization between uplands and lowlands and on policies regulating subsistence opportunities for rural communities.
NASA Astrophysics Data System (ADS)
Lagaria, A.; Mandalakis, M.; Mara, P.; Frangoulis, C.; Karatsolis, B.-Th.; Pitta, P.; Triantaphyllou, M.; Tsiola, A.; Psarra, S.
2017-10-01
The structure of phytoplankton community in the salinity-stratified Northeastern Aegean frontal area adjacent to the Dardanelles Straits was investigated on a seasonal basis (autumn, spring and summer) and in relation to circulating water masses: the modified Black Sea Water (BSW) and the Levantine Water (LW). By employing High Performance Liquid Chromatography (HPLC) for the analysis of phytoplankton pigments in conjunction with conventional cell counting methodologies (i.e. inverted light microscopy, flow cytometry) and primary production measurements, a comprehensive qualitative and quantitative characterization of phytoplankton community composition and its activity was conducted. Chlorophyll-a normalized production and estimated growth rates presented the highest values within the 'fresh' BSW mass during summer, though generally growth rates were low (<0.4 d-1) at all seasons. The spatiotemporal variation of BSW outflow was found to greatly affect the relative contribution of pico-, nano- and micro-phytoplankton to total phytoplankton biomass and production. Large cell organisms, and in particular diatoms, were closely associated with the surface BSW masses outflowing from the Straits. Our results showed that all phytoplankton size components were significant over time and space suggesting a rather multivorous food web functioning of the system.
Baudoin, Ezékiel; Lerner, Anat; Mirza, M Sajjad; El Zemrany, Hamdy; Prigent-Combaret, Claire; Jurkevich, Edouard; Spaepen, Stijn; Vanderleyden, Jos; Nazaret, Sylvie; Okon, Yaacov; Moënne-Loccoz, Yvan
2010-04-01
The phytostimulatory properties of Azospirillum inoculants, which entail production of the phytohormone indole-3-acetic acid (IAA), can be enhanced by genetic means. However, it is not known whether this could affect their interactions with indigenous soil microbes. Here, wheat seeds were inoculated with the wild-type strain Azospirillum brasilense Sp245 or one of three genetically modified (GM) derivatives and grown for one month. The GM derivatives contained a plasmid vector harboring the indole-3-pyruvate/phenylpyruvate decarboxylase gene ipdC (IAA production) controlled either by the constitutive promoter PnptII or the root exudate-responsive promoter PsbpA, or by an empty vector (GM control). All inoculants displayed equal rhizosphere population densities. Only inoculation with either ipdC construct increased shoot biomass compared with the non-inoculated control. At one month after inoculation, automated ribosomal intergenic spacer analysis (ARISA) revealed that the effect of the PsbpA construct on bacterial community structure differed from that of the GM control, which was confirmed by 16S rDNA-based denaturing gradient gel electrophoresis (DGGE). The fungal community was sensitive to inoculation with the PsbpA construct and especially the GM control, based on ARISA data. Overall, fungal and bacterial communities displayed distinct responses to inoculation of GM A. brasilense phytostimulators, whose effects could differ from those of the wild-type.
Quiroz Saavedra, Rodrigo; Brunson, Liesette; Bigras, Nathalie
2017-06-01
This paper presents an in-depth case study of the dynamic processes of mutual adjustment that occurred between two professional teams participating in a multicomponent community-based intervention (CBI). Drawing on the concept of social regularities, we focus on patterns of social interaction within and across the two microsystems involved in delivering the intervention. Two research strategies, narrative analysis and structural network analysis, were used to reveal the social regularities linking the two microsystems. Results document strategies and actions undertaken by the professionals responsible for the intervention to modify intersetting social regularities to deal with a problem situation that arose during the course of one intervention cycle. The results illustrate how key social regularities were modified in order to resolve the problem situation and allow the intervention to continue to function smoothly. We propose that these changes represent a transition to a new state of the ecological intervention system. This transformation appeared to be the result of certain key intervening mechanisms: changing key role relationships, boundary spanning, and synergy. The transformation also appeared to be linked to positive setting-level and individual-level outcomes: confidence of key team members, joint planning, decision-making and intervention activities, and the achievement of desired intervention objectives. © Society for Community Research and Action 2017.
Elephants, fire, and frost can determine community structure and composition in Kalahari Woodlands.
Holdo, Ricardo M
2007-03-01
Fire, elephants, and frost are important disturbance factors in many African savannas, but the relative magnitude of their effects on vegetation and their interactions have not been quantified. Understanding how disturbance shapes savanna structure and composition is critical for predicting changes in tree cover and for formulating management and conservation policy. A simulation model was used to investigate how the disturbance regime determines vegetation structure and composition in a mixed Kalahari sand woodland savanna in western Zimbabwe. The model consisted of submodels for tree growth, tree damage caused by disturbance, mortality, and recruitment that were parameterized from field data collected over a two-year period. The model predicts that, under the current disturbance regime, tree basal area in the study area will decline by two-thirds over the next two decades and become dominated by species unpalatable to elephants. Changes in the disturbance regime are predicted to greatly modify vegetation structure and community composition. Elephants are the primary drivers of woodland change in this community at present-day population densities, and their impacts are exacerbated by the effects of fire and frost. Frost, in particular, does not play an important role when acting independently but appears to be a key secondary factor in the presence of elephants and/or fire. Unlike fire and frost, which cannot suppress the woodland phase on their own in this ecosystem, elephants can independently drive the vegetation to the scrub phase. The results suggest that elephant and fire management may be critical for the persistence of certain woodland communities within dry-season elephant habitats in the eastern Kalahari, particularly those dominated by Brachystegia spiciformis and other palatable species.
Social and structural aspects of the overdose risk environment in St. Petersburg, Russia
Grau, Lauretta E.; Blinnikova, Ksenia N.; Torban, Mikhail; Krupitsky, Evgeny; Ilyuk, Ruslan; Kozlov, Andrei; Heimer, Robert
2009-01-01
Background While overdose is a common cause of mortality among opioid injectors worldwide, little information exists on opioid overdoses or how context may influence overdose risk in Russia. This study sought to uncover social and structural aspects contributing to fatal overdose risk in St. Petersburg and assess prevention intervention feasibility. Methods Twenty-one key informant interviews were conducted with drug users, treatment providers, toxicologists, police, and ambulance staff. Thematic coding of interview content was conducted to elucidate elements of the overdose risk environment. Results Several factors within St. Petersburg’s environment were identified as shaping illicit drug users’ risk behaviors and contributing to conditions of suboptimal response to overdose in the community. Most drug users live and experience overdoses at home, where family and home environment may mediate or moderate risk behaviors. The overdose risk environment is also worsened by inefficient emergency response infrastructure, insufficient cardiopulmonary or naloxone training resources, and the preponderance of abstinence-based treatment approaches to the exclusion of other treatment modalities. However, attitudes of drug users and law enforcement officials generally support overdose prevention intervention feasibility. Modifiable aspects of the risk environment suggest community-based and structural interventions, including overdose response training for drug users and professionals that encompasses naloxone distribution to the users and equipping more ambulances with naloxone. Conclusion Local social and structural elements influence risk environments for overdose. Interventions at the community and structural levels to prevent and respond to opioid overdoses are needed for and integral to reducing overdose mortality in St. Petersburg. PMID:18774283
NASA Astrophysics Data System (ADS)
Roopnarine, P. D.; Weik, A.; Dineen, A.; Angielczyk, K.
2016-12-01
The Permian-Triassic mass extinction (PTME) is the most severe mass extinction recorded in Earth's history. Effects on the biosphere were complicated and often contradictory, e.g. selective species extinctions and exceptional species survival; prolonged miniaturization of some Early Triassic clades but rapid increases of size in others; and both simplified and complex trophic structures in various E. Triassic ecosystems. Here we present the results of a new generalized model of paleocommunity global stability (number of species capable of persistent coexistence in the absence of external perturbation), suggesting that community dynamics in response to species extinction, and the addition of new species in the aftermath of the PTME, is best understood as a complex outcome of predictable community dynamics and contingent, unpredictable evolutionary pathways. We applied the model to the best known PTME transitional terrestrial ecosystem, the Karoo Basin of South Africa. The model verifies previous claims that global stability scales negatively with increasing species richness and the strength of interspecific interactions. We also show that global stability scales negatively with intrinsic population growth rates. Taxon-rich Permian communities could therefore have persisted only under a restricted range of those parameters. Communities during three phases of the PTME, however, exhibited greater global stability than would be predicted from the pre-PTME communities. Those communities could therefore have maintained relative stabilities under a broader range of parameters, implying that species could have adapted by modifying life history and ecological traits with lesser negative consequences to community stability. The earliest post-PTME community with increased species richness, however, was less stable than would be predicted from pre-PTME communities. In both the extinction and aftermath communities, nonlinear deviations from the general scaling of stability result from structural features unique to those communities, perhaps limiting our ability to forecast biospheric responses to extreme perturbations.
Chu, Derrick M; Ma, Jun; Prince, Amanda L; Antony, Kathleen M; Seferovic, Maxim D; Aagaard, Kjersti M
2017-03-01
Human microbial communities are characterized by their taxonomic, metagenomic and metabolic diversity, which varies by distinct body sites and influences human physiology. However, when and how microbial communities within each body niche acquire unique taxonomical and functional signatures in early life remains underexplored. We thus sought to determine the taxonomic composition and potential metabolic function of the neonatal and early infant microbiota across multiple body sites and assess the effect of the mode of delivery and its potential confounders or modifiers. A cohort of pregnant women in their early third trimester (n = 81) were prospectively enrolled for longitudinal sampling through 6 weeks after delivery, and a second matched cross-sectional cohort (n = 81) was additionally recruited for sampling once at the time of delivery. Samples across multiple body sites, including stool, oral gingiva, nares, skin and vagina were collected for each maternal-infant dyad. Whole-genome shotgun sequencing and sequencing analysis of the gene encoding the 16S rRNA were performed to interrogate the composition and function of the neonatal and maternal microbiota. We found that the neonatal microbiota and its associated functional pathways were relatively homogeneous across all body sites at delivery, with the notable exception of the neonatal meconium. However, by 6 weeks after delivery, the infant microbiota structure and function had substantially expanded and diversified, with the body site serving as the primary determinant of the composition of the bacterial community and its functional capacity. Although minor variations in the neonatal (immediately at birth) microbiota community structure were associated with the cesarean mode of delivery in some body sites (oral gingiva, nares and skin; R 2 = 0.038), this was not true for neonatal stool (meconium; Mann-Whitney P > 0.05), and there was no observable difference in community function regardless of delivery mode. For infants at 6 weeks of age, the microbiota structure and function had expanded and diversified with demonstrable body site specificity (P < 0.001, R 2 = 0.189) but without discernable differences in community structure or function between infants delivered vaginally or by cesarean surgery (P = 0.057, R 2 = 0.007). We conclude that within the first 6 weeks of life, the infant microbiota undergoes substantial reorganization, which is primarily driven by body site and not by mode of delivery.
Chu, Derrick M.; Ma, Jun; Prince, Amanda L.; Antony, Kathleen M.; Seferovic, Maxim D.; Aagaard, Kjersti M.
2017-01-01
Human microbial communities are characterized by their taxonomic, metagenomic, and metabolic diversity, which varies by distinct body sites and influences human physiology. However, when and how microbial communities within each body niche acquire unique taxonomical and functional signatures in early life remains underexplored. We thus sought to assess the taxonomic composition and potential metabolic function of the neonatal and early infant microbiota across multiple body sites, and assess the impact of mode of delivery and its potential confounders or modifiers. A cohort of pregnant women in their early 3rd trimester (n=81) were prospectively enrolled for longitudinal sampling through 6 weeks post-delivery, and a second matched cross-sectional cohort (n=81) was additionally recruited for sampling once at delivery. Samples were collected for each maternal-infant dyad across multiple body sites, including stool, oral gingiva, nares, skin and vagina. 16S rRNA gene sequencing analysis and whole genome shotgun sequencing was performed to interrogate the composition and function of the neonatal and maternal microbiota. We found that the neonatal microbiota and its associated functional pathways were relatively homogenous across all body sites at delivery, with the notable exception of neonatal meconium. However, by 6 weeks, the infant microbiota structure and function had significantly expanded and diversified, with body site serving as the primary determinant of the bacterial community composition and its functional capacity. Although minor variations in the neonatal (immediately at birth) microbiota community structure were associated with Cesarean delivery in some body sites (oral, nares, and skin; R2 = 0.038), this was not true in neonatal stool (meconium, Mann-Whitney p>0.05) and there was no observable difference in community function regardless of delivery mode. By 6 weeks of age, the infant microbiota structure and function had expanded and diversified with demonstrable body site specificity (p<0.001, R2 = 0.189), and no discernable differences in neither community structure nor function by Cesarean delivery were identifiable (p=0.057, R2 = 0.007). We conclude that within the first 6 weeks of life, the infant microbiota undergoes significant reorganization that is primarily driven by body site and not by mode of delivery. PMID:28112736
Valdivia, Abel; Cox, Courtney E.; Silbiger, Nyssa J.; Bruno, John F.
2017-01-01
Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0–10 cm total length) at sixteen reefs along ∼250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations. PMID:28560093
Hackerott, Serena; Valdivia, Abel; Cox, Courtney E; Silbiger, Nyssa J; Bruno, John F
2017-01-01
Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0-10 cm total length) at sixteen reefs along ∼250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations.
Effects of selective logging on bat communities in the southeastern Amazon.
Peters, Sandra L; Malcolm, Jay R; Zimmerman, Barbara L
2006-10-01
Although extensive areas of tropical forest are selectively logged each year, the responses of bat communities to this form of disturbance have rarely been examined. Our objectives were to (1) compare bat abundance, species composition, and feeding guild structure between unlogged and low-intensity selectively logged (1-4 logged stems/ha) sampling grids in the southeastern Amazon and (2) examine correlations between logging-induced changes in bat communities and forest structure. We captured bats in understory and canopy mist nets set in five 1-ha study grids in both logged and unlogged forest. We captured 996 individuals, representing 5 families, 32 genera, and 49 species. Abundances of nectarivorous and frugivorous taxa (Glossophaginae, Lonchophyllinae, Stenodermatinae, and Carolliinae) were higher at logged sites, where canopy openness and understory foliage density were greatest. In contrast, insectivorous and omnivorous species (Emballonuridae, Mormoopidae, Phyllostominae, and Vespertilionidae) were more abundant in unlogged sites, where canopy foliage density and variability in the understory stratum were greatest. Multivariate analyses indicated that understory bat species composition differed strongly between logged and unlogged sites but provided little evidence of logging effects for the canopy fauna. Different responses among feeding guilds and taxonomic groups appeared to be related to foraging and echolocation strategies and to changes in canopy cover and understory foliage densities. Our results suggest that even low-intensity logging modifies habitat structure, leading to changes in bat species composition.
BridgeRank: A novel fast centrality measure based on local structure of the network
NASA Astrophysics Data System (ADS)
Salavati, Chiman; Abdollahpouri, Alireza; Manbari, Zhaleh
2018-04-01
Ranking nodes in complex networks have become an important task in many application domains. In a complex network, influential nodes are those that have the most spreading ability. Thus, identifying influential nodes based on their spreading ability is a fundamental task in different applications such as viral marketing. One of the most important centrality measures to ranking nodes is closeness centrality which is efficient but suffers from high computational complexity O(n3) . This paper tries to improve closeness centrality by utilizing the local structure of nodes and presents a new ranking algorithm, called BridgeRank centrality. The proposed method computes local centrality value for each node. For this purpose, at first, communities are detected and the relationship between communities is completely ignored. Then, by applying a centrality in each community, only one best critical node from each community is extracted. Finally, the nodes are ranked based on computing the sum of the shortest path length of nodes to obtained critical nodes. We have also modified the proposed method by weighting the original BridgeRank and selecting several nodes from each community based on the density of that community. Our method can find the best nodes with high spread ability and low time complexity, which make it applicable to large-scale networks. To evaluate the performance of the proposed method, we use the SIR diffusion model. Finally, experiments on real and artificial networks show that our method is able to identify influential nodes so efficiently, and achieves better performance compared to other recent methods.
Chapman, Eric; Cadillo-Quiroz, Hinsby; Childers, Daniel L.; Turetsky, Merritt R.; Waldrop, Mark P.
2017-01-01
Climate change is modifying global biogeochemical cycles. Microbial communities play an integral role in soil biogeochemical cycles; knowledge about microbial composition helps provide a mechanistic understanding of these ecosystem-level phenomena. Next generation sequencing approaches were used to investigate changes in microbial functional groups during ecosystem development, in response to climate change, in northern boreal wetlands. A gradient of wetlands that developed following permafrost degradation was used to characterize changes in the soil microbial communities that mediate C cycling: a bog representing an “undisturbed” system with intact permafrost, and a younger bog and an older bog that formed following the disturbance of permafrost thaw. Reference 16S rRNA databases and several diversity indices were used to assess structural differences among these communities, to assess relationships between soil microbial community composition and various environmental variables including redox potential and pH. Rates of potential CO2 and CH4 gas production were quantified to correlate sequence data with gas flux. The abundance of organic C degraders was highest in the youngest bog, suggesting higher rates of microbial processes, including potential CH4 production. In addition, alpha diversity was also highest in the youngest bog, which seemed to be related to a more neutral pH and a lower redox potential. These results could potentially be driven by increased niche differentiation in anaerobic soils. These results suggest that ecosystem structure, which was largely driven by changes in edaphic and plant community characteristics between the “undisturbed” permafrost bog and the two bogs formed following permafrost thaw, strongly influenced microbial function.
Ma, Wenjun; Zeng, Weilin; Zhou, Maigeng; Wang, Lijun; Rutherford, Shannon; Lin, Hualiang; Liu, Tao; Zhang, Yonghui; Xiao, Jianpeng; Zhang, Yewu; Wang, Xiaofeng; Gu, Xin; Chu, Cordia
2015-02-01
Many studies have reported increased mortality risk associated with heat waves. However, few have assessed the health impacts at a nation scale in a developing country. This study examines the mortality effects of heat waves in China and explores whether the effects are modified by individual-level and community-level characteristics. Daily mortality and meteorological variables from 66 Chinese communities were collected for the period 2006-2011. Heat waves were defined as ≥2 consecutive days with mean temperature ≥95th percentile of the year-round community-specific distribution. The community-specific mortality effects of heat waves were first estimated using a Distributed Lag Non-linear Model (DLNM), adjusting for potential confounders. To investigate effect modification by individual characteristics (age, gender, cause of death, education level or place of death), separate DLNM models were further fitted. Potential effect modification by community characteristics was examined using a meta-regression analysis. A total of 5.0% (95% confidence intervals (CI): 2.9%-7.2%) excess deaths were associated with heat waves in 66 Chinese communities, with the highest excess deaths in north China (6.0%, 95% CI: 1%-11.3%), followed by east China (5.2%, 95% CI: 0.4%-10.2%) and south China (4.5%, 95% CI: 1.4%-7.6%). Our results indicate that individual characteristics significantly modified heat waves effects in China, with greater effects on cardiovascular mortality, cerebrovascular mortality, respiratory mortality, the elderly, females, the population dying outside of a hospital and those with a higher education attainment. Heat wave mortality effects were also more pronounced for those living in urban cities or densely populated communities. Heat waves significantly increased mortality risk in China with apparent spatial heterogeneity, which was modified by some individual-level and community-level factors. Our findings suggest adaptation plans that target vulnerable populations in susceptible communities during heat wave events should be developed to reduce health risks. Copyright © 2014 Elsevier Ltd. All rights reserved.
Flues, Sebastian; Bass, David; Bonkowski, Michael
2017-08-01
Preferential food selection in protists is well documented, but we still lack basic understanding on how protist predation modifies the taxonomic and functional composition of bacterial communities. We conducted feeding trials using leaf-associated cercomonad Cercozoa by incubating them on a standardized, diverse bacterial community washed from plant leaves. We used a shotgun metagenomics approach to investigate the taxonomic and functional changes of the bacterial community after five days protist predation on bacteria. Predation-induced shifts in bacterial community composition could be linked to phenotypic protist traits. Protist reproduction rate, morphological plasticity and cell speed were most important in determining bacterial community composition. Analyses of co-occurrence patterns showed less complex correlations between bacterial taxa in the protist-grazed treatments with a higher proportion of positive correlations than in non-grazed controls, suggesting that predation reduced the influence of strong competitors. Protist predation influenced 14 metabolic core functions including membrane transport from which type VI secretion systems were in particular upregulated. In view of the functional importance of bacterial communities in the phyllosphere and rhizosphere of plants, a more detailed understanding of predator-prey interactions, changes in microbial composition and function, and subsequent repercussions on plant performance are clearly required. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Allocating Fair Share Costs in a Rural Community: A Home-Grown Approach
DOT National Transportation Integrated Search
1999-01-01
Smaller communities, like their larger cousins, must modify their transportation : networks to suit changes in demand. However, unlike larger communities, smaller : communities may lack the ability to pay for these improvements, either through : deve...
Lee, Guna; Yang, Sook Ja; Chee, Yeon Kyung
2016-06-18
Since the worldwide incidence of metabolic syndrome (Mets) has rapidly increased, healthy behaviors such as weight control, engaging in physical activity, and healthy diet have been crucial in the management of Mets. The purpose of this study was to examine healthy behaviors practice and factors that affect the practice in relation to Mets on the basis of a modified Information-Motivation-Behavioral skills model (IMB) with psychological distress, which is a well-known factor affecting healthy behaviors among individuals with Mets. Study participants were 267 community dwelling adults (M age: 54.0 ± 8.1 years) with Mets who were attending public health centers located in Seoul, South Korea. A structured questionnaire was administered in the areas of information, motivation, behavioral skills, and practice of Mets healthy behaviors and levels of psychological distress from May 2014 to September 2014. Structural equation modeling was used to test the modified IMB model. The modified IMB model had a good fit with the data, indicating that motivation and behavioral skills directly influenced the practice of Mets healthy behaviors, whereas information and psychological distress directly influenced motivation and influenced the practice of healthy behaviors through behavioral skills. These components of the modified IMB model explained 29.8 % of the variance in healthy behaviors for Mets. Findings suggested that strengthening motivation and behavioral skills for healthy behaviors can directly enhance healthy behavior practice. Providing information about Mets related healthy behaviors and strategies for psychological distress management can be used as the first line evidence based intervention to systemically enhance motivation and behavioral skills among individuals with Mets.
76 FR 50918 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-17
...Base (1% annual-chance) Flood Elevations (BFEs) and modified BFEs are made final for the communities listed below. The BFEs and modified BFEs are the basis for the floodplain management measures that each community is required either to adopt or to show evidence of being already in effect in order to qualify or remain qualified for participation in the National Flood Insurance Program (NFIP).
Ernst, Kacey C; Haenchen, Steven; Dickinson, Katherine; Doyle, Michael S; Walker, Kathleen; Monaghan, Andrew J; Hayden, Mary H
2015-02-01
After a dengue outbreak in Key West, Florida, during 2009-2010, authorities, considered conducting the first US release of male Aedes aegypti mosquitoes genetically modified to prevent reproduction. Despite outreach and media attention, only half of the community was aware of the proposal; half of those were supportive. Novel public health strategies require community engagement.
ERIC Educational Resources Information Center
Toh, Teck-Hock; Tan, Vivian Wee-Yen; Lau, Peter Sie-Teck; Kiyu, Andrew
2018-01-01
This study determined the accuracy of "Modified Checklist for Autism in Toddlers" ("M-CHAT") in detecting toddlers with autism spectrum disorder (ASD) and other developmental disorders (DD) in community mother and child health clinics. We analysed 19,297 eligible toddlers (15-36 months) who had "M-CHAT" performed in…
76 FR 56262 - Community Advantage Pilot Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-12
... SMALL BUSINESS ADMINISTRATION [Docket No. SBA 2011-0003] Community Advantage Pilot Program AGENCY: U.S. Small Business Administration (SBA). ACTION: Notice of change to Community Advantage Pilot... Community Advantage Pilot Program. In that notice, SBA modified or waived as appropriate certain regulations...
Impact of oil on bacterial community structure in bioturbated sediments.
Stauffert, Magalie; Cravo-Laureau, Cristiana; Jézéquel, Ronan; Barantal, Sandra; Cuny, Philippe; Gilbert, Franck; Cagnon, Christine; Militon, Cécile; Amouroux, David; Mahdaoui, Fatima; Bouyssiere, Brice; Stora, Georges; Merlin, François-Xavier; Duran, Robert
2013-01-01
Oil spills threaten coastlines where biological processes supply essential ecosystem services. Therefore, it is crucial to understand how oil influences the microbial communities in sediments that play key roles in ecosystem functioning. Ecosystems such as sediments are characterized by intensive bioturbation due to burrowing macrofauna that may modify the microbial metabolisms. It is thus essential to consider the bioturbation when determining the impact of oil on microbial communities. In this study, an experimental laboratory device maintaining pristine collected mudflat sediments in microcosms closer to true environmental conditions--with tidal cycles and natural seawater--was used to simulate an oil spill under bioturbation conditions. Different conditions were applied to the microcosms including an addition of: standardized oil (Blend Arabian Light crude oil, 25.6 mg.g⁻¹ wet sediment), the common burrowing organism Hediste (Nereis) diversicolor and both the oil and H. diversicolor. The addition of H. diversicolor and its associated bioturbation did not affect the removal of petroleum hydrocarbons. After 270 days, 60% of hydrocarbons had been removed in all microcosms irrespective of the H. diversicolor addition. However, 16S-rRNA gene and 16S-cDNA T-RFLP and RT-PCR-amplicon libraries analysis showed an effect of the condition on the bacterial community structure, composition, and dynamics, supported by PerMANOVA analysis. The 16S-cDNA libraries from microcosms where H. diversicolor was added (oiled and un-oiled) showed a marked dominance of sequences related to Gammaproteobacteria. However, in the oiled-library sequences associated to Deltaproteobacteria and Bacteroidetes were also highly represented. The 16S-cDNA libraries from oiled-microcosms (with and without H. diversicolor addition) revealed two distinct microbial communities characterized by different phylotypes associated to known hydrocarbonoclastic bacteria and dominated by Gammaproteobacteria and Deltaproteobacteria. In the oiled-microcosms, the addition of H. diversicolor reduced the phylotype-richness, sequences associated to Actinobacteria, Firmicutes and Plantomycetes were not detected. These observations highlight the influence of the bioturbation on the bacterial community structure without affecting the biodegradation capacities.
The σ law of evolutionary dynamics in community-structured population.
Tang, Changbing; Li, Xiang; Cao, Lang; Zhan, Jingyuan
2012-08-07
Evolutionary game dynamics in finite populations provide a new framework to understand the selection of traits with frequency-dependent fitness. Recently, a simple but fundamental law of evolutionary dynamics, which we call σ law, describes how to determine the selection between two competing strategies: in most evolutionary processes with two strategies, A and B, strategy A is favored over B in weak selection if and only if σR+S>T+σP. This relationship holds for a wide variety of structured populations with mutation rate and weak selection under certain assumptions. In this paper, we propose a model of games based on a community-structured population and revisit this law under the Moran process. By calculating the average payoffs of A and B individuals with the method of effective sojourn time, we find that σ features not only the structured population characteristics, but also the reaction rate between individuals. That is to say, an interaction between two individuals are not uniform, and we can take σ as a reaction rate between any two individuals with the same strategy. We verify this viewpoint by the modified replicator equation with non-uniform interaction rates in a simplified version of the prisoner's dilemma game (PDG). Copyright © 2012 Elsevier Ltd. All rights reserved.
Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís
2015-01-01
Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators’ extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a ‘mesopredator release’, affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to ‘mesopredator release’, and also to ‘prey release’ despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem’s structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers’ extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore ecosystem structure and function. PMID:25714337
A guide to structural factors for advanced composites used on spacecraft
NASA Technical Reports Server (NTRS)
Vanwagenen, Robert
1989-01-01
The use of composite materials in spacecraft systems is constantly increasing. Although the areas of composite design and fabrication are maturing, they remain distinct from the same activities performed using conventional materials and processes. This has led to some confusion regarding the precise meaning of the term 'factor of safety' as it applies to these structures. In addition, composite engineering introduces terms such as 'knock-down factors' to further modify material properties for design purposes. This guide is intended to clarify these terms as well as their use in the design of composite structures for spacecraft. It is particularly intended to be used by the engineering community not involved in the day-to-day composites design process. An attempt is also made to explain the wide range of factors of safety encountered in composite designs as well as their relationship to the 1.4 factor of safety conventionally applied to metallic structures.
School and community relations in North America: Creative tensions
NASA Astrophysics Data System (ADS)
Loughran, E.; Reed, H. B.
1980-09-01
School and community relations in North America reflect creative tensions between the conserving forces of schooling and the changing forces of community. During crisis periods community development needs may modify the school's focus on individual learner growth, but generally schools use the community to extend and enrich the traditional modes. School and community interactions are chiefly characterized by such settings as community schools, community education, adult education, home and school (PTA) associations, work-study programs, curriculum-community resource programs. Recent social forces are creating heightened tensions: cultural pluralism, reduced resources, Third World influences, international conflicts, personal alienation, population concerns, energy problems, community power issues. These forces are gradually shifting school and community concepts towards ones of education and community. Education goes well beyond schooling, including all agencies having an organized influence on community development: libraries, voluntary groups, unions, business, human service agencies, government units, as well as schools. This shift requires research to develop nonformal concepts and practices, along with formal pedagogy, to increase the positive impacts of educational networks on community, as well as individual, development. These new directions have not yet significantly modified the traditional meaning of school and community relations.
Mangan, Scott A; Herre, Edward A; Bever, James D
2010-09-01
A growing body of evidence obtained largely from temperate grassland studies suggests that feedbacks occurring between plants and their associated soil biota are important to plant community assemblage. However, few studies have examined the importance of soil organisms in driving plant-soil feedbacks in forested systems. In a tropical forest in central Panama, we examined whether interactions between tree seedlings and their associated arbuscular mycorrhizal fungi (AMF) lead to plant-soil feedback. Specifically, do tropical seedlings modify their own AMF communities in a manner that either favors or inhibits the next cohort of conspecific seedlings (i.e., positive or negative feedback, respectively)? Seedlings of two shade-tolerant tree species (Eugenia nesiotica, Virola surinamensis) and two pioneer tree species (Luehea seemannii, Apeiba aspera) were grown in pots containing identical AMF communities composed of equal amounts of inoculum of six co-occurring AMF species. The different AMF-host combinations were all exposed to two light levels. Under low light (2% PAR), only two of the six AMF species sporulated, and we found that host identity did not influence composition of AMF spore communities. However, relative abundances of three of the four AMF species that produced spores were influenced by host identity when grown under high light (20% PAR). Furthermore, spores of one of the AMF species, Glomus geosporum, were common in soils of Luehea and Eugenia but absent in soils of Apeiba and Virola. We then conducted a reciprocal experiment to test whether AMF communities previously modified by Luehea and Apeiba differentially affected the growth of conspecific and heterospecific seedlings. Luehea seedling growth did not differ between soils containing AMF communities modified by Luehea and Apeiba. However, Apeiba seedlings were significantly larger when grown with Apeiba-modified AMF communities, as compared to Apeiba seedlings grown with Luehea-modifed AMF communities. Our experiments suggest that interactions between tropical trees and their associated AMF are species-specific and that these interactions may shape both tree and AMF communities through plant-soil feedback.
Macroclimatic change expected to transform coastal wetland ecosystems this century
Gabler, Christopher A.; Osland, Michael J.; Grace, James B.; Stagg, Camille L.; Day, Richard H.; Hartley, Stephen B.; Enwright, Nicholas M.; From, Andrew; McCoy, Meagan L.; McLeod, Jennie L.
2017-01-01
Coastal wetlands, existing at the interface between land and sea, are highly vulnerable to climate change. Macroclimate (for example, temperature and precipitation regimes) greatly influences coastal wetland ecosystem structure and function. However, research on climate change impacts in coastal wetlands has concentrated primarily on sea-level rise and largely ignored macroclimatic drivers, despite their power to transform plant community structure and modify ecosystem goods and services. Here, we model wetland plant community structure based on macroclimate using field data collected across broad temperature and precipitation gradients along the northern Gulf of Mexico coast. Our analyses quantify strongly nonlinear temperature thresholds regulating the potential for marsh-to-mangrove conversion. We also identify precipitation thresholds for dominance by various functional groups, including succulent plants and unvegetated mudflats. Macroclimate-driven shifts in foundation plant species abundance will have large effects on certain ecosystem goods and services. Based on current and projected climatic conditions, we project that transformative ecological changes are probable throughout the region this century, even under conservative climate scenarios. Coastal wetland ecosystems are functionally similar worldwide, so changes in this region are indicative of potential future changes in climatically similar regions globally.
NASA Technical Reports Server (NTRS)
Schmalzer, Paul A.; Hinkle, C. Ross
1987-01-01
Invasive exotic plants can displace native flora and modify community and ecosystem structure and function. Ammophila arenaria, Corpobrotus edulis, Cortaderia jubata, and Gasoul crystallinum are invasive plants present on Vandenberg Air Force Base, California, designated for study by the Environmental Task Force because of the perceived threat they represent to the native flora. Each plant's native habitat, how they came to be at Vandenberg, their propagation, and how they can be controlled is discussed.
George, Siân; Daniels, Katy; Fioratou, Evridiki
2018-04-03
Minority vulnerable communities, such as the European Roma, often face numerous barriers to accessing healthcare services, resulting in negative health outcomes. Both these barriers and outcomes have been reported extensively in the literature. However, reports on barriers faced by European non-Roma native communities are limited. The "Health Care Access Barriers" (HCAB) model identifies pertinent financial, structural and cognitive barriers that can be measured and potentially modified. The present study thus aims to explore the barriers to accessing healthcare for a vulnerable population of mixed ethnicity from a charity community centre in Romania, as perceived by the centre's family users and staff members, and assess whether these reflect the barriers identified from the HCAB model. Eleven community members whose children attend the centre and seven staff members working at the centre participated in face-to-face semi-structured interviews, exploring personal experiences and views on accessing healthcare. The interviews were transcribed and analysed using an initial deductive and secondary inductive approach to identify HCAB themes and other emerging themes and subthemes. Identified themes from both groups aligned with HCAB's themes of financial, structural and cognitive barriers and emergent subthemes important to the specific population were identified. Specifically, financial barriers related mostly to health insurance and bribery issues, structural barriers related mostly to service availability and accessibility, and cognitive barriers related mostly to healthcare professionals' attitudes and discrimination and the vulnerable population's lack of education and health literacy. A unique theme of psychological barriers emerged from both groups with associated subthemes of mistrust, hopelessness, fear and anxiety of this vulnerable population. The current study highlights healthcare access barriers to a vulnerable non-Roma native population involved with a charity community centre in Romania. The "Healthcare Access Barriers for Vulnerable Populations" (HABVP) model is proposed as an adaption to the existing HCAB model to account for the unique perceived barriers to healthcare for this population. Recommendations for future resolution of these identified barriers are proposed.
Pyrosequencing analysis of the bacterial community in drinking water wells.
Navarro-Noya, Yendi E; Suárez-Arriaga, Mayra C; Rojas-Valdes, Aketzally; Montoya-Ciriaco, Nina M; Gómez-Acata, Selene; Fernández-Luqueño, Fabián; Dendooven, Luc
2013-07-01
Wells used for drinking water often have a large biomass and a high bacterial diversity. Current technologies are not always able to reduce the bacterial population, and the threat of pathogen proliferation in drinking water sources is omnipresent. The environmental conditions that shape the microbial communities in drinking water sources have to be elucidated, so that pathogen proliferation can be foreseen. In this work, the bacterial community in nine water wells of a groundwater aquifer in Northern Mexico were characterized and correlated to environmental characteristics that might control them. Although a large variation was observed between the water samples, temperature and iron concentration were the characteristics that affected the bacterial community structure and composition in groundwater wells. Small increases in the concentration of iron in water modified the bacterial communities and promoted the growth of the iron-oxidizing bacteria Acidovorax. The abundance of the genera Flavobacterium and Duganella was correlated positively with temperature and the Acidobacteria Gp4 and Gp1, and the genus Acidovorax with iron concentrations in the well water. Large percentages of Flavobacterium and Pseudomonas bacteria were found, and this is of special concern as bacteria belonging to both genera are often biofilm developers, where pathogens survival increases.
Haenchen, Steven; Dickinson, Katherine; Doyle, Michael S.; Walker, Kathleen; Monaghan, Andrew J.; Hayden, Mary H.
2015-01-01
After a dengue outbreak in Key West, Florida, during 2009–2010, authorities, considered conducting the first US release of male Aedes aegypti mosquitoes genetically modified to prevent reproduction. Despite outreach and media attention, only half of the community was aware of the proposal; half of those were supportive. Novel public health strategies require community engagement. PMID:25625795
Juthani-Mehta, Manisha; De Rekeneire, Nathalie; Allore, Heather; Chen, Shu; O’Leary, John R.; Bauer, Douglas C.; Harris, Tamara B.; Newman, Anne B.; Yende, Sachin; Weyant, Robert J.; Kritchevsky, Stephen; Quagliarello, Vincent
2013-01-01
Background Pneumonia requiring hospitalization remains a major public health problem among community-dwelling older adults. Impaired oral hygiene is a modifiable risk factor for healthcare-associated pneumonia, but its role in community-acquired pneumonia is unclear. Objectives To identify novel modifiable risk factors, focusing on oral hygiene, for pneumonia requiring hospitalization among community-dwelling older adults. Design Prospective observational cohort study Setting Memphis, Tennessee and Pittsburgh, Pennsylvania Participants Of 3075 well-functioning community-dwelling adults aged 70–79 years enrolled in the Health, Aging, and Body Composition Study from 1997–1998, 1441 had complete data, dental exam within six months of baseline, and were eligible for this study. Measurements The primary outcome was pneumonia requiring hospitalization through 2008. Results Of 1441 participants, 193 were hospitalized for pneumonia. In a multivariable model, male gender (HR 2.07, 95%CI 1.51–2.83), white race (HR 1.44, 95%CI 1.03–2.01), history of pneumonia (HR 3.09, 95%CI 1.86–5.14), pack-years of smoking (HR 1.006, 95%CI 1.001–1.011), and percent predicted FEV1 (moderate vs. mild/normal lung function [HR 1.78, 95%CI 1.28–2.48], severe vs. mild/normal lung function [HR 2.90, 95%CI 1.51–5.57]) were non-modifiable risk factors for pneumonia. Incident mobility limitation (HR 1.77, 95%CI 1.32–2.38) and higher mean oral plaque score (HR 1.29, 95%CI 1.02–1.64) were modifiable risk factors for pneumonia. Average Attributable Fractions revealed that 11.5% of pneumonias were attributed to incident mobility limitation and 10.3% to mean oral plaque score ≥1. Conclusion Incident mobility limitation and higher mean oral plaque score were two modifiable risk factors attributable for 22% of pneumonias requiring hospitalization. These data suggest innovative opportunities for pneumonia prevention among community-dwelling older adults. PMID:23772872
A Coupled Community-Level Assessment of Social and Physical Vulnerability to Hurricane Disasters
NASA Astrophysics Data System (ADS)
Kim, J. H.; Sutley, E. J.; Chowdhury, A. G.; Hamideh, S.
2017-12-01
A significant portion of the U.S. building inventory exists in hurricane- and flood-prone regions. The accompanying storm surge and rising water levels often result in the inundation of residential homes, particularly those occupied by low income households and forcing displacement. In order to mitigate potential damages, a popular design technique is to elevate the structure using piers or piles to above the base flood elevation. This is observed for single-family and multi-family homes, including manufactured homes and post-disaster temporary housing, albeit at lower elevations. Although this design alleviates potential flood damage, it affects the wind-structure interaction by subjecting the structure to higher wind speeds due to its increased height and also having a path for the wind to pass underneath the structure potentially creating new vulnerabilities to wind loading. The current ASCE 7 Standard (2016) does not include a methodology for addressing the modified aerodynamics and estimating wind loads for elevated structures, and thus the potential vulnerability during high wind events is unaccounted for in design. Using experimentally measured wind pressures on elevated and non-elevated residential building models, tax data, and census data, a coupled vulnerability assessment is performed at the community-level. Galveston, Texas is selected as the case study community. Using the coupled assessment model, a hindcast of 2008 Hurricane Ike is used for predicting physical damage and household dislocation. The predicted results are compared with the actual outcomes of the 2008 hurricane disaster. Recommendations are made (1) for code adoption based on the experimentally measured wind loads, and (2) for mitigation actions and policies that would could decrease population dislocation and promote recovery.
Kyougoku, Makoto
2016-01-01
Background. Achievement motive is defined as the intention to achieve one’s goals. Achievement motive is assumed to promote clients to choices and actions toward their valuable goal, so it is an important consideration in rehabilitation. Purpose. The purpose of this study is to demonstrate the structural relationship among achievement motive on purpose in life, social participation, and role expectation of community-dwelling elderly people. Methods. Participants were community-dwelling elderly people in day-service centers. A total of 281 participants (male: 127, female: 154) answered the self-administered questionnaire in cross-sectional research. The questionnaire was comprised of demographic data and scales that evaluated achievement motive, social participation, purpose in life, and role expectation. We studied the structural relationship established by our hypothesized model via a structural equation modeling approach. Results. We checked the standardized path coefficients and the modification indices; the modified model’s statistics were a good fit: CFI = 0.984, TLI = 0.983, RMSEA = 0.050, 90% CI [0.044–0.055]. Achievement motive had a significantly direct effect on purpose in life (direct effect = 0.445, p value < 0.001), a significantly indirect effect on purpose in life via social participation or role expectation (indirect effect = 0.170, p value < 0.001) and a total effect on purpose in life (total effect = 0.615). Discussion. This result suggests that enhancing the intention to achieve one’s goals enables participants to feel a spirit of challenge with a purpose and a sense of fulfillment in their daily lives. PMID:26835188
Sano, Nobuyuki; Kyougoku, Makoto
2016-01-01
Background. Achievement motive is defined as the intention to achieve one's goals. Achievement motive is assumed to promote clients to choices and actions toward their valuable goal, so it is an important consideration in rehabilitation. Purpose. The purpose of this study is to demonstrate the structural relationship among achievement motive on purpose in life, social participation, and role expectation of community-dwelling elderly people. Methods. Participants were community-dwelling elderly people in day-service centers. A total of 281 participants (male: 127, female: 154) answered the self-administered questionnaire in cross-sectional research. The questionnaire was comprised of demographic data and scales that evaluated achievement motive, social participation, purpose in life, and role expectation. We studied the structural relationship established by our hypothesized model via a structural equation modeling approach. Results. We checked the standardized path coefficients and the modification indices; the modified model's statistics were a good fit: CFI = 0.984, TLI = 0.983, RMSEA = 0.050, 90% CI [0.044-0.055]. Achievement motive had a significantly direct effect on purpose in life (direct effect = 0.445, p value < 0.001), a significantly indirect effect on purpose in life via social participation or role expectation (indirect effect = 0.170, p value < 0.001) and a total effect on purpose in life (total effect = 0.615). Discussion. This result suggests that enhancing the intention to achieve one's goals enables participants to feel a spirit of challenge with a purpose and a sense of fulfillment in their daily lives.
Abubakar, Amina; Kalu, Raphael Birya; Katana, Khamis; Kabunda, Beatrice; Hassan, Amin S.; Newton, Charles R.; Van de Vijver, Fons
2016-01-01
Objective We set out to adapt the Beck Depression Inventory (BDI)-II in Kenya and examine its factorial structure. Methods In the first phase we carried out in-depth interviews involving 29 adult members of the community to elicit their understanding of depression and identify aspects of the BDI-II that required adaptation. In the second phase, a modified version of BDI-II was administered to 221 adults randomly selected from the community to allow for the evaluation of its psychometric properties. In the third phase of the study we evaluated the discriminative validity of BDI-11 by comparing a randomly chosen community sample (n = 29) with caregivers of adolescents affected by HIV (n = 77). Results A considerable overlap between the BDI symptoms and those generated in the interviews was observed. Relevant idioms and symptoms such as ‘thinking too much’ and ‘Kuchoka moyo (having a tired heart)’ were identified. The administration of the BDI had to be modified to make it suitable for the low literacy levels of our participants. Fit indices for several models (one factorial, two-factor model and a three factor model) were all within acceptable range. Evidence indicated that while multidimensional models could be fitted, the strong correlations between the factors implied that a single factor model may be the best suited solution (alpha [0.89], and a significant correlation with locally identified items [r = 0.51]) confirmed the good psychometric properties of the adapted BDI-II. No evidence was found to support the hypothesis that somatization was more prevalent. Lastly, caregivers of HIV affected adolescents had significantly higher scores compared to adults randomly selected from the community F(1, 121) = 23.31, p < .001 indicating the discriminative validity of the adapted BDI = II. Conclusions With an adapted administration procedure, the BDI-II provides an adequate measure of depressive symptoms which can be used alongside other measures for proper diagnosis in a low literacy population. PMID:27258530
LaRowe, Tara L; Wubben, Deborah P; Cronin, Kate A; Vannatter, SuAnne M; Adams, Alexandra K
2007-10-01
We designed an obesity prevention intervention for American Indian families called Healthy Children, Strong Families using a participatory approach involving three Wisconsin tribes. Healthy Children, Strong Families promotes healthy eating and physical activity for preschool children and their caregivers while respecting each community's cultural and structural framework. Academic researchers, tribal wellness staff, and American Indian community mentors participated in development of the Healthy Children, Strong Families educational curriculum. The curriculum is based on social cognitive and family systems theories as well as on community eating and activity patterns with adaptation to American Indian cultural values. The curricular materials, which were delivered through a home-based mentoring model, have been successfully received and are being modified so that they can be tailored to individual family needs. The curriculum can serve as a nutrition and physical activity model for health educators that can be adapted for other American Indian preschool children and their families or as a model for development of a culturally specific curriculum.
Experience matters: prior exposure to plant toxins enhances diversity of gut microbes in herbivores.
Kohl, Kevin D; Dearing, M D
2012-09-01
For decades, ecologists have hypothesised that exposure to plant secondary compounds (PSCs) modifies herbivore-associated microbial community composition. This notion has not been critically evaluated in wild mammalian herbivores on evolutionary timescales. We investigated responses of the microbial communities of two woodrat species (Neotoma bryanti and N. lepida). For each species, we compared experienced populations that independently converged to feed on the same toxic plant (creosote bush, Larrea tridentata) to naïve populations with no exposure to creosote toxins. The addition of dietary PSCs significantly altered gut microbial community structure, and the response was dependent on previous experience. Microbial diversity and relative abundances of several dominant phyla increased in experienced woodrats in response to PSCs; however, opposite effects were observed in naïve woodrats. These differential responses were convergent in experienced populations of both species. We hypothesise that adaptation of the foregut microbiota to creosote PSCs in experienced woodrats drives this differential response. © 2012 Blackwell Publishing Ltd/CNRS.
Bustos-Segura, Carlos; Poelman, Erik H; Reichelt, Michael; Gershenzon, Jonathan; Gols, Rieta
2017-01-01
Intraspecific plant diversity can modify the properties of associated arthropod communities and plant fitness. However, it is not well understood which plant traits determine these ecological effects. We explored the effect of intraspecific chemical diversity among neighbouring plants on the associated invertebrate community and plant traits. In a common garden experiment, intraspecific diversity among neighbouring plants was manipulated using three plant populations of wild cabbage that differ in foliar glucosinolates. Plants were larger, harboured more herbivores, but were less damaged when plant diversity was increased. Glucosinolate concentration differentially correlated with generalist and specialist herbivore abundance. Glucosinolate composition correlated with plant damage, while in polycultures, variation in glucosinolate concentrations among neighbouring plants correlated positively with herbivore diversity and negatively with plant damage levels. The results suggest that intraspecific variation in secondary chemistry among neighbouring plants is important in determining the structure of the associated insect community and positively affects plant performance. © 2016 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Ashley D. Keiser; Jennifer D. Knoepp; Mark A. Bradford
2013-01-01
Background and aims Climate change alters regional plant species distributions, creating new combinations of litter species and soil communities. Biogeographic patterns in microbial communities relate to dissimilarity in microbial community function, meaning novel litters to communities may decompose differently than predicted from their chemical composition. Therefore...
Belanche, Alejandro; Pinloche, Eric; Preskett, David; Newbold, C Jamie
2016-01-01
This study investigates the effects of supplementing a control diet (CON) with chitosan (CHI) or ivy fruit saponins (IVY) as natural feed additives. Both additives had similar abilities to decrease rumen methanogenesis (-42% and -40%, respectively) using different mechanisms: due to its antimicrobial and nutritional properties CHI promoted a shift in the fermentation pattern towards propionate production which explained about two thirds of the decrease in methanogenesis. This shift was achieved by a simplification of the structure in the bacterial community and a substitution of fibrolytic (Firmicutes and Fibrobacteres) by amylolytic bacteria (Bacteroidetes and Proteobacteria) which led to greater amylase activity, lactate and microbial protein yield with no detrimental effect on feed digestibility. Contrarily, IVY had negligible nutritional properties promoting minor changes in the fermentation pattern and on the bacterial community. Instead, IVY modified the structure of the methanogen community and decreased its diversity. This specific antimicrobial effect of IVY against methanogens was considered its main antimethanogenic mechanism. IVY had however a negative impact on microbial protein synthesis. Therefore, CHI and IVY should be further investigated in vivo to determine the optimum doses which maintain low methanogenesis but prevent negative effects on the rumen fermentation and animal metabolism. © FEMS 2015.
Belanche, Alejandro; Pinloche, Eric; Preskett, David; Newbold, C. Jamie
2015-01-01
This study investigates the effects of supplementing a control diet (CON) with chitosan (CHI) or ivy fruit saponins (IVY) as natural feed additives. Both additives had similar abilities to decrease rumen methanogenesis (–42% and –40%, respectively) using different mechanisms: due to its antimicrobial and nutritional properties CHI promoted a shift in the fermentation pattern towards propionate production which explained about two thirds of the decrease in methanogenesis. This shift was achieved by a simplification of the structure in the bacterial community and a substitution of fibrolytic (Firmicutes and Fibrobacteres) by amylolytic bacteria (Bacteroidetes and Proteobacteria) which led to greater amylase activity, lactate and microbial protein yield with no detrimental effect on feed digestibility. Contrarily, IVY had negligible nutritional properties promoting minor changes in the fermentation pattern and on the bacterial community. Instead, IVY modified the structure of the methanogen community and decreased its diversity. This specific antimicrobial effect of IVY against methanogens was considered its main antimethanogenic mechanism. IVY had however a negative impact on microbial protein synthesis. Therefore, CHI and IVY should be further investigated in vivo to determine the optimum doses which maintain low methanogenesis but prevent negative effects on the rumen fermentation and animal metabolism. PMID:26676056
Application of active controls technology to the NASA Jet Star airplane
NASA Technical Reports Server (NTRS)
Lange, R. H.; Cahill, J. F.; Campion, M. C.; Bradley, E. S.; Macwilkinson, D. G.; Phillips, J. W.
1975-01-01
The feasibility was studied of modifying a Jet Star airplane into a demonstrator of benefits to be achieved from incorporating active control concepts in the preliminary design of transport type aircraft. Substantial benefits are shown in terms of fuel economy and community noise by virtue of reduction in induced drag through use of a high aspect ratio wing which is made possible by a gust alleviation system. An intermediate configuration was defined which helps to isolate the benefits produced by active controls technology from those due to other configuration variables. Also, an alternate configuration which incorporated composite structures, but not active controls technology, was defined in order to compare the benefits of composite structures with those of active controls technology.
Vegetation moderates impacts of tourism usage on bird communities along roads and hiking trails.
Wolf, Isabelle D; Hagenloh, Gerald; Croft, David B
2013-11-15
Bird communities inhabiting ecosystems adjacent to recreational tracks may be adversely affected by disturbance from passing tourism traffic, vehicle-related mortality, habitat alteration and modified biotic relationships such as the increase of strong competitors. This study investigated the effects of tourist usage of roads vs. hiking trails on bird communities in gorges of the Flinders Ranges, a popular South Australian tourist destination in the arid-lands. High tourist usage along roads decreased the individual abundance and species richness of birds relative to low usage trails. The decrease in species richness, though less pronounced, also occurred at high-usage sites along trails. Changes in the species response to recreational disturbance/impacts varied depending on the ecology of the species. Bigger, more competitive birds with a generalist diet were overrepresented at high-usage sites along roads and trails. Species using microhabitats in lower vegetation layers were more sensitive. However, structural and floristic complexity of vegetation was a more important factor influencing bird abundance than tourist usage. Sites with a better developed shrub and tree layer sustained higher species abundance and richer communities. Importantly, vegetation qualities moderated the negative effect of high usage on the individual abundance of birds along roads, to the extent that such an effect was absent at sites with the best developed shrub and tree layer. To protect avifauna along recreational tracks in arid-lands gorges, we recommend the closure of some gorges or sections for vehicle or any access. Further, open space particularly for camping needs to be minimized as it creates areas of high tourist usage with modified habitat that provides birds with little buffer from disturbance. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fuentes, Laura; Duguy, Beatriz; Nadal-Sala, Daniel
2018-01-01
Since the 1970s, fire regimes have been modified in the Northern Mediterranean region due to profound landscape changes mostly driven by socioeconomic factors, such as rural abandonment and large-scale plantations. Both fuel accumulation and the increasing vegetation spatial continuity, combined with the expansion of the wildland-urban interface, have enhanced fire risk and the occurrence of large wildfires. This situation will likely worsen under the projected aridity increase resulting from climate change. Higher fire recurrences, in particular, are expected to cause changes in vegetation composition or structure and affect ecosystems' resilience to fire, which may lead to further land degradation. Prescribed burning is a common fuel reduction technique used for fire prevention, but for conservation and restoration purposes as well. It is still poorly accepted in the Mediterranean region since constrained by critical knowledge gaps about, in particular, its effects on the ecosystems (soil, vegetation). We studied the short-term (10months) effects on the understory vegetation of a spring prescribed burning conducted in a Pinushalepensis forest in Mediterranean climate (Northeastern Spain). Our results show that the understory plant community recovered after the burning without short term significant changes in either species richness, diversity, or floristic composition. Most vegetation structural characteristics were modified though. The burning strongly reduced shrub height, shrub and herbaceous percentage covers, and aerial shrub phytomass; especially its living fine fraction, thus resulting in a less flammable community. The treatment proved to be particularly effective for the short term control of Ulexparviflorus, a highly flammable seeder species. Moreover, the strong reduction of seeder shrubs frequency in relation to resprouters' likely promoted the resilience to fire of this plant community. From a fuel-oriented perspective, the burning caused a strong reduction of spatial continuity and surface fuel loads, leading to a less fire-prone fuel complex. Copyright © 2017 Elsevier B.V. All rights reserved.
Bacterial Associates Modify Growth Dynamics of the Dinoflagellate Gymnodinium catenatum
Bolch, Christopher J. S.; Bejoy, Thaila A.; Green, David H.
2017-01-01
Marine phytoplankton cells grow in close association with a complex microbial associate community known to affect the growth, behavior, and physiology of the algal host. The relative scale and importance these effects compared to other major factors governing algal cell growth remain unclear. Using algal-bacteria co-culture models based on the toxic dinoflagellate Gymnodinium catenatum, we tested the hypothesis that associate bacteria exert an independent effect on host algal cell growth. Batch co-cultures of G. catenatum were grown under identical environmental conditions with simplified bacterial communities composed of one-, two-, or three-bacterial associates. Modification of the associate community membership and complexity induced up to four-fold changes in dinoflagellate growth rate, equivalent to the effect of a 5°C change in temperature or an almost six-fold change in light intensity (20–115 moles photons PAR m-2 s-1). Almost three-fold changes in both stationary phase cell concentration and death rate were also observed. Co-culture with Roseobacter sp. DG874 reduced dinoflagellate exponential growth rate and led to a more rapid death rate compared with mixed associate community controls or co-culture with either Marinobacter sp. DG879, Alcanivorax sp. DG881. In contrast, associate bacteria concentration was positively correlated with dinoflagellate cell concentration during the exponential growth phase, indicating growth was limited by supply of dinoflagellate-derived carbon. Bacterial growth increased rapidly at the onset of declining and stationary phases due to either increasing availability of algal-derived carbon induced by nutrient stress and autolysis, or at mid-log phase in Roseobacter co-cultures potentially due to the onset of bacterial-mediated cell lysis. Co-cultures with the three bacterial associates resulted in dinoflagellate and bacterial growth dynamics very similar to more complex mixed bacterial community controls, suggesting that three-way co-cultures are sufficient to model interaction and growth dynamics of more complex communities. This study demonstrates that algal associate bacteria independently modify the growth of the host cell under non-limiting growth conditions and supports the concept that algal–bacterial interactions are an important structuring mechanism in phytoplankton communities. PMID:28469613
NASA Astrophysics Data System (ADS)
Ansari, Kapuli Gani Mohamed Thameemul; Lyla, Somasundharanair; Khan, Syed Ajmal; Bhadury, Punyasloke
2017-09-01
Depth and latitudinal patterns of nematode functional attributes were investigated from 35 stations of Bay of Bengal (BoB) continental shelf. We aim to address whether depth and latitudinal variations can modify nematode community structure and their functional attributes (trophic diversity, size and biomass spectra). Global trend of depth and latitudinal related variations have also been noticed from BoB shelf in terms of nematode abundance and species richness, albeit heterogeneity patterns were encountered in functional attributes. Index of trophic diversity values revealed higher trophic diversity across the BoB shelf and suggested variety of food resource availability. However, downstream analysis of trophic status showed depth and latitude specific patterns but not reflected in terms of size and biomass spectrum. The peaks at different positions clearly visualized heterogeneity in distribution patterns for both size and biomass spectrum and also there was evidence of availability of diversified food resources. Nematode biomass spectra (NBS) constructed for nematode communities showed shift in peak biomass values towards lower to moderate size classes particularly in shallower depth but did not get reflected in latitudes. However, Chennai and Parangipettai transects demonstrated shift in peak biomass values towards higher biomass classes explaining the representation of higher nematode abundance. Our findings concluded that depth and latitudes are physical variables; they may not directly affect nematode community structure and functional attributes but they might influence the other factors such as food availability, sediment deposition and settlement rate. Our observations suggest that the local factors (seasonal character) of phytodetrital food flux can be very important for shaping the nematode community structure and success of nematode functional heterogeneity patterns across the Bay of Bengal shelf.
NASA Astrophysics Data System (ADS)
Denda, Anneke; Stefanowitsch, Benjamin; Christiansen, Bernd
2017-12-01
Specific mechanisms, driving trophic interactions within the pelagic community may be highly variable in different seamount systems. This study investigated the trophic structure of zooplankton and micronekton above and around Ampère and Senghor, two shallow seamounts in the subtropical and tropical Eastern Atlantic, and over the adjacent abyssal plains. For the identification of food sources and trophic positions stable isotope ratios (δ13C and δ15N) were used. δ13C ranged from -24.7‰ to -15.0‰ and δ15N covered a total range of 0.9-15.9‰. Based on epipelagic particulate organic matter, zooplankton and micronekton usually occupied the 1st-3rd trophic level, including herbivorous, omnivorous and carnivorous taxa. δ13C and δ15N values were generally lower in zooplankton and micronekton of the subtropical waters as compared to the tropical region, due to the differing nutrient availability and phytoplankton communities. Correlations between δ13C and δ15N values of particulate organic matter, zooplankton, micronekton and benthopelagic fishes suggest a linear food chain based on a single energy source from primary production for Ampère Seamount, but no evidence was found for an autochthonus seamount production as compared to the open ocean reference site. Between Senghor Seamount and the open ocean δ13C signatures indicate that hydrodynamic effects at seamounts may modify the energy supply at times, but evidence for a seamount effect on the trophic structure of the pelagic communities was weak, which supports the assumption that seamount communities rely to a large extent on advected food sources.
Hinds, Jermaine; Wang, Koon-Hui; Marahatta, Sharadchandra P.; Meyer, Susan L. F.; Hooks, Cerruti R. R.
2013-01-01
Field experiments were conducted in Maryland to investigate the influence of sunn hemp cover cropping in conjunction with organic and synthetic fertilizers on the nematode community in a zucchini cropping system. Two field treatments, zucchini planted into a sunn hemp living and surface mulch (SH) and zucchini planted into bare-ground (BG) were established during three field seasons from 2009 to 2011. In 2009, although SH slightly increased nematode richness compared with BG by the first harvest (P < 0.10), it reduced nematode diversity and enrichment indices (P < 0.01 and P < 0.10, respectively) and increased the channel index (P < 0.01) compared to BG at the final harvest. This suggests a negative impact of SH on nematode community structure. The experiment was modified in 2010 and 2011 where the SH and BG main plots were further split into two subplots to investigate the added influence of an organic vs. synthetic fertilizer. In 2010, when used as a living and surface mulch in a no-till system, SH increased bacterivorous, fungivorous, and total nematodes (P < 0.05) by the final zucchini harvest, but fertilizer type did not influence nematode community structure. In 2011, when incorporated into the soil before zucchini planting, SH increased the abundance of bacterivorous and fungivorous nematodes early in the cropping season. SH increased species richness also at the end of the season (P < 0.05). Fertilizer application did not appear to influence nematodes early in the season. However, in late season, organic fertilizers increased enrichment and structure indices and decreased channel index by the end of the zucchini cropping cycle. PMID:24379485
Romdhane, Sana; Devers-Lamrani, Marion; Barthelmebs, Lise; Calvayrac, Christophe; Bertrand, Cédric; Cooper, Jean-François; Dayan, Franck E; Martin-Laurent, Fabrice
2016-01-01
The ecotoxicological impact of leptospermone, a β-triketone bioherbicide, on the bacterial community of two arable soils was investigated. Soil microcosms were exposed to 0 × (control), 1 × or 10 × recommended dose of leptospermone. The β-triketone was moderately adsorbed to both soils (i.e.,: K fa ~ 1.2 and K oc ~ 140 mL g(-1)). Its dissipation was lower in sterilized than in unsterilized soils suggesting that it was mainly influenced by biotic factors. Within 45 days, leptospermone disappeared almost entirely from one of the two soils (i.e., DT50 < 10 days), while 25% remained in the other. The composition of the microbial community assessed by qPCR targeting 11 microbial groups was found to be significantly modified in soil microcosms exposed to leptospermone. Pyrosequencing of 16S rRNA gene amplicons showed a shift in the bacterial community structure and a significant impact of leptospermone on the diversity of the soil bacterial community. Changes in the composition, and in the α- and β-diversity of microbial community were transient in the soil able to fully dissipate the leptospermone, but were persistent in the soil where β-triketone remained. To conclude the bacterial community of the two soils was sensitive to leptospermone and its resilience was observed only when leptospermone was fully dissipated.
Romdhane, Sana; Devers-Lamrani, Marion; Barthelmebs, Lise; Calvayrac, Christophe; Bertrand, Cédric; Cooper, Jean-François; Dayan, Franck E.; Martin-Laurent, Fabrice
2016-01-01
The ecotoxicological impact of leptospermone, a β-triketone bioherbicide, on the bacterial community of two arable soils was investigated. Soil microcosms were exposed to 0 × (control), 1 × or 10 × recommended dose of leptospermone. The β-triketone was moderately adsorbed to both soils (i.e.,: Kfa ~ 1.2 and Koc ~ 140 mL g−1). Its dissipation was lower in sterilized than in unsterilized soils suggesting that it was mainly influenced by biotic factors. Within 45 days, leptospermone disappeared almost entirely from one of the two soils (i.e., DT50 < 10 days), while 25% remained in the other. The composition of the microbial community assessed by qPCR targeting 11 microbial groups was found to be significantly modified in soil microcosms exposed to leptospermone. Pyrosequencing of 16S rRNA gene amplicons showed a shift in the bacterial community structure and a significant impact of leptospermone on the diversity of the soil bacterial community. Changes in the composition, and in the α- and β-diversity of microbial community were transient in the soil able to fully dissipate the leptospermone, but were persistent in the soil where β-triketone remained. To conclude the bacterial community of the two soils was sensitive to leptospermone and its resilience was observed only when leptospermone was fully dissipated. PMID:27252691
Bayesian calibration of the Community Land Model using surrogates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi
2014-02-01
We present results from the Bayesian calibration of hydrological parameters of the Community Land Model (CLM), which is often used in climate simulations and Earth system models. A statistical inverse problem is formulated for three hydrological parameters, conditional on observations of latent heat surface fluxes over 48 months. Our calibration method uses polynomial and Gaussian process surrogates of the CLM, and solves the parameter estimation problem using a Markov chain Monte Carlo sampler. Posterior probability densities for the parameters are developed for two sites with different soil and vegetation covers. Our method also allows us to examine the structural errormore » in CLM under two error models. We find that surrogate models can be created for CLM in most cases. The posterior distributions are more predictive than the default parameter values in CLM. Climatologically averaging the observations does not modify the parameters' distributions significantly. The structural error model reveals a correlation time-scale which can be used to identify the physical process that could be contributing to it. While the calibrated CLM has a higher predictive skill, the calibration is under-dispersive.« less
Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair
Agarwal, Rachit; García, Andrés J.
2015-01-01
Bone tissue has a remarkable ability to regenerate and heal itself. However, large bone defects and complex fractures still present a significant challenge to the medical community. Current treatments center on metal implants for structural and mechanical support and auto- or allo-grafts to substitute long bone defects. Metal implants are associated with several complications such as implant loosening and infections. Bone grafts suffer from donor site morbidity, reduced bioactivity, and risk of pathogen transmission. Surgical implants can be modified to provide vital biological cues, growth factors and cells in order to improve osseointegration and repair of bone defects. Here we review strategies and technologies to engineer metal surfaces to promote osseointegration with the host tissue. We also discuss strategies for modifying implants for cell adhesion and bone growth via integrin signaling and growth factor and cytokine delivery for bone defect repair. PMID:25861724
Modifying a Risk Assessment Instrument for Youthful Offenders.
Shapiro, Cheri J; Malone, Patrick S; Gavazzi, Stephen M
2018-02-01
High rates of incarceration in the United States are compounded by high rates of recidivism and prison return. One solution is more accurate identification of individual prisoner risks and needs to promote offender rehabilitation and successful community re-entry; this is particularly important for youthful offenders who developmentally are in late adolescence or early adulthood, and who struggle to reengage in education and/or employment after release. Thus, this study examined the feasibility of administration and initial psychometric properties of a risk and needs assessment instrument originally created for a juvenile justice population (the Global Risk Assessment Device or GRAD) with 895 male youthful offenders in one adult correctional system. Initial feasibility of implementation within the correctional system was demonstrated; confirmatory factor analyses support the invariance of the modified GRAD factor structure across age and race. Future studies are needed to examine the predictive validity and the sensitivity of the instrument.
NASA Astrophysics Data System (ADS)
Brooks, P. D.; Swetnam, T. L.; Barnard, H. R.; Singha, K.; Harpold, A.; Litvak, M. E.
2017-12-01
Spatial patterns in vegetation long have been used to scale both landsurface-atmosphere exchanges of water and carbon as well as to infer subsurface structure. These pursuits typical proceed in isolation and rarely do inferences gained from one community propagate to related efforts in another. Perhaps more importantly, vegetation often is treated as an emergent property of landscape-climate interactions rather than an active modifier of both critical zone structure and energy fluxes. We posit that vegetation structure and activity are under utilized as a tool towards understanding landscape evolution and present examples that begin to disentangle the role of vegetation as both an emergent property and an active control on critical zone structure and function. As climate change, population growth, and land use changes threaten water resources worldwide, the need for the new insights vegetation can provide becomes not just a basic science priority, but a pressing applied science question with clear societal importance. This presentation will provide an overview of recent efforts to address the dual role of vegetation in both modifying and reflecting critical zone structure in the western North American forests. For example, interactions between topography and stand scale vegetation structure influence both solar radiation and turbulence altering landscape scale partitioning of evaporation vs transpiration with major impacts of surface water supply. Similarly, interactions between topographic shading, lateral redistribution of plant available water, and subsurface storage create a mosaic of drought resistance and resilience across complex terrain. These complex interactions between geophysical and vegetation components of critical zone structure result in predictable patterns in catchment scale hydrologic partitioning within individual watersheds while simultaneously suggesting testable hypotheses for why catchments under similar climate regimes respond so differently to drought stress.
Cognitive function in the community setting: the neighbourhood as a source of 'cognitive reserve'?
Clarke, Philippa J; Ailshire, Jennifer A; House, James S; Morenoff, Jeffrey D; King, Katherine; Melendez, Robert; Langa, Kenneth M
2012-08-01
Existing research has found a positive association between cognitive function and residence in a socioeconomically advantaged neighbourhood. Yet, the mechanisms underlying this relationship have not been empirically investigated. To test the hypothesis that neighbourhood socioeconomic structure is related to cognitive function partly through the availability of neighbourhood physical and social resources (eg, recreational facilities, community centres and libraries), which promote cognitively beneficial activities such as exercise and social integration. Using data from a representative survey of community-dwelling adults in the city of Chicago (N=949 adults aged 50 and over), cognitive function was assessed with a modified version of the Telephone Interview for Cognitive Status instrument. Neighbourhood socioeconomic structure was derived from US census indicators. Systematic social observation was used to directly document the presence of neighbourhood resources on the blocks surrounding each respondent's residence. Using multilevel linear regression, residence in an affluent neighbourhood had a net positive effect on cognitive function after adjusting for individual risk factors. For white respondents, the effects of neighbourhood affluence operated in part through a greater density of institutional resources (eg, community centres) that promote cognitively beneficial activities such as physical activity. Stable residence in an elderly neighbourhood was associated with higher cognitive function (potentially due to greater opportunities for social interaction with peers), but long term exposure to such neighbourhoods was negatively related to cognition. Neighbourhood resources have the potential to promote 'cognitive reserve' for adults who are ageing in place in an urban setting.
Francescato, Donata; Pezzuti, Lina; Mebane, Minou; Tomai, Manuela; Benedetti, Maura; Moro, Annalisa
2017-10-01
The broad purpose of this research is to identify the key modifiable variables most related to elders' life satisfaction and empowerment in order to improve the efficacy of interventions projects. Our study aims to integrate the theoretical perspectives of personality and community psychology focusing both on dispositional characteristics and relational well-being of elders, investigating triads, composed by an elder, a paid caregiver and the most involved relative. This study explores the impact of (1) some socio-demographic characteristics of elders, (2) some modifiable dispositional variables of elders and (3) elders' relational well-being on elders' empowerment and life satisfaction. The study involved 429 people in 143 triads. Semi-structured interviews with elders, paid caregiver and close relatives were used to construct a new pilot measure of elders' relational well-being. Life Satisfaction, Empowerment, Loneliness, Positivity, Humor and Emotions self-efficacy scales were also administered. Hierarchical multiple regressions were performed. Elders' positivity, relational well-being of elders and living alone were significantly related to empowerment. Elders' relational well-being and positivity significantly contributed to life satisfaction. Interventions to increase empowerment and life satisfaction should focus primarily on augmenting positivity and relational well-being integrating the theoretical premises of both personality and community psychology.
Modified Moral Distress Scale (MDS-11): Validation Study Among Italian Nurses.
Badolamenti, Sondra; Fida, Roberto; Biagioli, Valentina; Caruso, Rosario; Zaghini, Francesco; Sili, Alessandro; Rea, Teresa
2017-01-01
Moral distress (MD) has significant implications on individual and organizational health. However there is a lack of an instrument to assess it among Italian nurses. The main aim of this study was to validate a brief instrument to assess MD, developed from the Corley's Moral Distress Scale (MDS). The modified MDS scale was subjected to content and cultural validity. The scale was administered to 347 nurses. Psychometric analysis were performed to assess construct validity. The scale consists of 11 items, investigating MD in nursing practice in different clinical settings. The dimensionality of the scale was investigated through exploratory factor analysis (EFA), which showed a two-dimensional structure labeled futility and potential damage. The futility refers to feelings of powerlessness and ineffectiveness in some clinical situations; the potential damage dimension captures feelings of powerlessness when nurses are forced to tolerate or perform perceived abusive clinical proceedings. Nurses who experienced higher MD, were more lilely to experience burnout. The modified MDS showed good psychometric properties, and it is valid and reliable for assessing moral distress among Italian nurses. Hence, the modified MDS allows to monitor the distress experienced by nurses and it is an important contribution to the scientific community and all those dealing with well-being of health workers.
Are Protected Areas Required to Maintain Functional Diversity in Human-Modified Landscapes?
Cottee-Jones, H. Eden W.; Matthews, Thomas J.; Bregman, Tom P.; Barua, Maan; Tamuly, Jatin; Whittaker, Robert J.
2015-01-01
The conversion of forest to agriculture across the world’s tropics, and the limited space for protected areas, has increased the need to identify effective conservation strategies in human-modified landscapes. Isolated trees are believed to conserve elements of ecological structure, providing micro-sites for conservation in matrix landscapes, and facilitating seed dispersal and forest restoration. Here we investigate the role of isolated Ficus trees, which are of critical importance to tropical forest ecosystems, in conserving frugivore composition and function in a human-modified landscape in Assam, India. We surveyed the frugivorous birds feeding at 122 isolated Ficus trees, 33 fruit trees, and 31 other large trees across a range of 32 km from the nearest intact forest. We found that Ficus trees attracted richer and more abundant assemblages of frugivores than the other tree categories. However, incidence function estimates revealed that forest specialist species decreased dramatically within the first kilometre of the forest edge. Despite this, species richness and functional diversity remained consistent across the human-modified landscape, as habitat generalists replaced forest-dependent frugivores, and accounted for most of the ecological function found in Ficus trees near the forest edge. We recommend that isolated Ficus trees are awarded greater conservation status, and suggest that their conservation can support ecologically functional networks of frugivorous bird communities. PMID:25946032
Structural landscape of base pairs containing post-transcriptional modifications in RNA
Seelam, Preethi P.; Sharma, Purshotam
2017-01-01
Base pairs involving post-transcriptionally modified nucleobases are believed to play important roles in a wide variety of functional RNAs. Here we present our attempts toward understanding the structural and functional role of naturally occurring modified base pairs using a combination of X-ray crystal structure database analysis, sequence analysis, and advanced quantum chemical methods. Our bioinformatics analysis reveals that despite their presence in all major secondary structural elements, modified base pairs are most prevalent in tRNA crystal structures and most commonly involve guanine or uridine modifications. Further, analysis of tRNA sequences reveals additional examples of modified base pairs at structurally conserved tRNA regions and highlights the conservation patterns of these base pairs in three domains of life. Comparison of structures and binding energies of modified base pairs with their unmodified counterparts, using quantum chemical methods, allowed us to classify the base modifications in terms of the nature of their electronic structure effects on base-pairing. Analysis of specific structural contexts of modified base pairs in RNA crystal structures revealed several interesting scenarios, including those at the tRNA:rRNA interface, antibiotic-binding sites on the ribosome, and the three-way junctions within tRNA. These scenarios, when analyzed in the context of available experimental data, allowed us to correlate the occurrence and strength of modified base pairs with their specific functional roles. Overall, our study highlights the structural importance of modified base pairs in RNA and points toward the need for greater appreciation of the role of modified bases and their interactions, in the context of many biological processes involving RNA. PMID:28341704
Bakhoum, Niokhor; Ndoye, Fatou; Kane, Aboubacry; Assigbetse, Komi; Fall, Dioumacor; Sylla, Samba Ndao; Noba, Kandioura; Diouf, Diégane
2012-07-01
Rhizobial inoculation has a positive impact on plants growth; however, there is little information about its effect on soil microbial communities and their activity in the rhizosphere. It was therefore necessary to test the effect of inoculation of Acacia senegal (L.) Willd. seedlings with selected rhizobia on plant growth, structure and diversity of soil bacterial communities and soil functioning in relation to plant provenance and soil origin. In order to carry out this experiment, three A. senegal seeds provenance from Kenya, Niger, and Senegal were inoculated with selected rhizobial strains. They have been further grown during 4 months in greenhouse conditions in two non-disinfected soils, Dahra and Goudiry coming respectively from arid and semi-arid areas. The principal component analysis (ACP) showed an inoculation effect on plant growth, rhizospheric bacterial diversity and soil functioning. However, the performances of the rhizobial strains varied in relation to the seed provenance and the soil origin. The selected rhizobial strains, the A. senegal provenance and the soil origin have modified the structure and the diversity of soil bacterial communities as measured by principal component analysis/denaturing gradient gel electrophoresis analyses. It is interesting to note that bacterial communities of Dahra soil were highly structured according to A. senegal provenance, whereas they were structured in relation to rhizobial inoculation in Goudiry soil. Besides, the impact of inoculation on soil microbial activities measured by fluorescein diacetate analyses varied in relation to plant provenance and soil origin. Nevertheless, total microbial activity was about two times higher in Goudiry, arid soil than in Dahra, semi-arid soil. Our results suggest that the rhizobial inoculation is a suitable tool for improving plants growth and soil fertility. Yet, the impact is dependent on inoculants, plant provenance and soil origin. It will, therefore, be crucial to identify the appropriate rhizobial strains and plant provenance or species in relation to the soil type.
Witham, Miles D.; Donnan, Peter T.; Vadiveloo, Thenmalar; Sniehotta, Falko F.; Crombie, Iain K.; Feng, Zhiqiang; McMurdo, Marion E. T.
2014-01-01
Background Weather is a potentially important determinant of physical activity. Little work has been done examining the relationship between weather and physical activity, and potential modifiers of any relationship in older people. We therefore examined the relationship between weather and physical activity in a cohort of older community-dwelling people. Methods We analysed prospectively collected cross-sectional activity data from community-dwelling people aged 65 and over in the Physical Activity Cohort Scotland. We correlated seven day triaxial accelerometry data with daily weather data (temperature, day length, sunshine, snow, rain), and a series of potential effect modifiers were tested in mixed models: environmental variables (urban vs rural dwelling, percentage of green space), psychological variables (anxiety, depression, perceived behavioural control), social variables (number of close contacts) and health status measured using the SF-36 questionnaire. Results 547 participants, mean age 78.5 years, were included in this analysis. Higher minimum daily temperature and longer day length were associated with higher activity levels; these associations remained robust to adjustment for other significant associates of activity: age, perceived behavioural control, number of social contacts and physical function. Of the potential effect modifier variables, only urban vs rural dwelling and the SF-36 measure of social functioning enhanced the association between day length and activity; no variable modified the association between minimum temperature and activity. Conclusions In older community dwelling people, minimum temperature and day length were associated with objectively measured activity. There was little evidence for moderation of these associations through potentially modifiable health, environmental, social or psychological variables. PMID:24497925
Witham, Miles D; Donnan, Peter T; Vadiveloo, Thenmalar; Sniehotta, Falko F; Crombie, Iain K; Feng, Zhiqiang; McMurdo, Marion E T
2014-01-01
Weather is a potentially important determinant of physical activity. Little work has been done examining the relationship between weather and physical activity, and potential modifiers of any relationship in older people. We therefore examined the relationship between weather and physical activity in a cohort of older community-dwelling people. We analysed prospectively collected cross-sectional activity data from community-dwelling people aged 65 and over in the Physical Activity Cohort Scotland. We correlated seven day triaxial accelerometry data with daily weather data (temperature, day length, sunshine, snow, rain), and a series of potential effect modifiers were tested in mixed models: environmental variables (urban vs rural dwelling, percentage of green space), psychological variables (anxiety, depression, perceived behavioural control), social variables (number of close contacts) and health status measured using the SF-36 questionnaire. 547 participants, mean age 78.5 years, were included in this analysis. Higher minimum daily temperature and longer day length were associated with higher activity levels; these associations remained robust to adjustment for other significant associates of activity: age, perceived behavioural control, number of social contacts and physical function. Of the potential effect modifier variables, only urban vs rural dwelling and the SF-36 measure of social functioning enhanced the association between day length and activity; no variable modified the association between minimum temperature and activity. In older community dwelling people, minimum temperature and day length were associated with objectively measured activity. There was little evidence for moderation of these associations through potentially modifiable health, environmental, social or psychological variables.
Visi, David K; D'Souza, Nandika; Ayre, Brian G; Webber Iii, Charles L; Allen, Michael S
2013-05-01
The microbial communities associated with kenaf (Hibiscus cannabinus) plant fibers during retting were determined in an effort to identify possible means of accelerating this process for industrial scale-up. Microbial communities were identified by semiconductor sequencing of 16S rRNA gene amplicons from DNA harvested from plant-surface associated samples and analyzed using an Ion Torrent PGM. The communities were sampled after 96 h from each of three different conditions, including amendments with pond water, sterilized pond water, or with a mixture of pectinolytic bacterial isolates. Additionally, plants from two different sources and having different pretreatment conditions were compared. We report that the best retting communities are dominated by members of the order Clostridiales. These bacteria appear to be naturally associated with the plant material, although slight variations between source materials were found. Additionally, heavy inoculations of pectinolytic bacteria established themselves and in addition their presence facilitated the rapid dominance of the original plant-associated Clostridiales. These data suggest that members of the order Clostridiales dominate the community and are most closely associated with efficient and effective retting. The results further suggest that establishment of the community structure is first driven by the switch to anaerobic conditions, and subsequently by possible competition for nitrogen. These findings reveal important bacterial groups involved in fiber retting, and suggest mechanisms for the manipulation of the community and retting efficiency by modifying nutrient availability.
Ramond, J-B; Welz, P J; Tuffin, M I; Burton, S G; Cowan, D A
2013-07-01
To assess the impact of winery wastewater (WW) on biological sand filter (BSF) bacterial community structures, and to evaluate whether BSFs can constitute alternative and valuable treatment- processes to remediate WW. During 112 days, WW was used to contaminate a BSF mesocosm (length 173 cm/width 106 cm/depth 30 cm). The effect of WW on bacterial communities of four BSF microenvironments (surface/deep, inlet/outlet) was investigated using terminal-restriction fragment length polymorphism (T-RFLP). BSF achieved high Na (95·1%), complete Cl and almost complete chemical oxygen demand (COD) (98·0%) and phenolic (99·2%) removals. T-RFLP analysis combined with anosim revealed that WW significantly modified the surface and deep BSF bacterial communities. BSF provided high COD, phenolic and salt removals throughout the experiment. WW-selected bacterial communities were thus able to tolerate and/or degrade WW, suggesting that community composition does not alter BSF performances. However, biomass increased significantly in the WW-impacted surface sediments, which could later lead to system clogging and should thus be monitored. BSFs constitute alternatives to constructed wetlands to treat agri effluents such as WW. To our knowledge, this study is the first unravelling the responses of BSF bacterial communities to contamination and suggests that WW-selected BSF communities maintained high removal performances. Journal of Applied Microbiology © 2013 The Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Basińska, Anna M.; Gąbka, Maciej; Reczuga, Monika; Łuców, Dominika; Stróżecki, Marcin; Samson, Mateusz; Józefczyk, Damian; Chojnicki, Bogdan; Urbaniak, Marek; Leśny, Jacek; Olejnik, Janusz; Gilbert, Daniel; Silvennoinen, Hanna; Juszczak, Radosław; Lamentowicz, Mariusz
2017-04-01
In the last decade researchers are intensively testing the consequences of different climate change scenarios. Due to high biodiversity, huge amount of stored carbon and their sensitivity to environmental changes, peatlands became important for the temperature increase and drought experiments. Analyses showed that mosses, vascular plants and microbial communities were affected by warming or drought, but still not all effects are clear. Studying the response of microbial groups and indicators (e.g. mixotrophic species of testate amoeba) to warming in combination with decrease of precipitation will allow to better understand the future environmental changes. To recognize the inflow of organic matter and the carbon fixing processes in disturbed environment, we need to analyse the structure and biomass of main groups living in peatlands and the response of those groups to disturbances. The Polish - Norway "WETMAN" project was designed to recognize biotic and abiotic components of ecosystem response to active warming and decrease of precipitation. In this study we present the response of microbial communities and chosen testate amoeba species (TA) to different treatments: warming, warming and decreased precipitation and only decreased precipitation, in relation to control plots. The microbial biomass of upper and lower Sphagnum segments were analysed separately. Particular microbial groups were positively correlated with manipulations e. g. microalgae and rotifers, and other were negatively affected by combination of drought and warming e.g. cyanobacteria and testate amoeba. The structure of community was modified by manipulations, and differed in the case of upper and lower segment of Sphagnum. RDA analyses showed that different factors were crucial for the biomass of microbial groups in upper (conductivity, temperature and phosphorus) and lower (nitrates and sodium) segment. Considering higher taxonomic resolution we found that at the beginning of the experiment TA community was characterised by higher abundance of mixotrophic species (Hyalosphenia papilio, Archerella flavum, Heleopera sphagni) in all plots, after half year of warming and decreased precipitation we found significant decrease of mixotrophic species biomass. Redundancy analysis showed that TA species distribution (in first year of manipulation) was significantly affected by the treatment type and upper and lower Sphagnum segment. The combination of warming and decreased precipitation led to significant testate amoeba biomass decrease (especially of mixotrophic dominant Hyalosphenia papilio). For less abundant species like Nebela tincta we found an increase of biomass in all treatments, compared to control plots. Changes in microbial communities structure, caused by the combination of drought and warming can influence peatland functioning. For instance, reduction of microbial primary production and intensified consumption may modify physicochemical water parameters as well as carbon dynamics. Project financed by the Polish-Norwegian Research Programme operated by the National Centre for Research and Development under the Norwegian Financial Mechanism (No. Pol-Nor/203258/31/2013, WETMAN). Anna M. Basinska acknowledges support from Franche-Comté regional council and Université Bourgogne Franche-Comté.
Parent-child communication processes: preventing children's health-risk behavior.
Riesch, Susan K; Anderson, Lori S; Krueger, Heather A
2006-01-01
Review individual, family, and environmental factors that predict health-risk behavior among children and to propose parent-child communication processes as a mechanism to mediate them. Improving parent-child communication processes may: reduce individual risk factors, such as poor academic achievement or self-esteem; modify parenting practices such as providing regulation and structure and acting as models of health behavior; and facilitate discussion about factors that lead to involvement in health-risk behaviors. Assessment strategies to identify youth at risk for health-risk behavior are recommended and community-based strategies to improve communication among parents and children need development.
Dassou, Anicet Gbèblonoudo; Carval, Dominique; Dépigny, Sylvain; Fansi, Gabriel; Tixier, Philippe
2016-12-01
The data presented in this article are related to the research article entitled "Ant abundance and Cosmopolites sordidus damage in plantain fields as affected by intercropping" (A.G. Dassou, D. Carval, S. Dépigny, G.H Fansi, P. Tixier, 2015) [1]. This article describes how associated crops maize (Zea mays), cocoyam (Xanthosoma sagittifolium) and bottle gourd (Lagenaria siceraria) intercropped in the plantain fields in Cameroun modify ant community structure and damages of banana weevil Cosmopolites sordidus. The field data set is made publicly available to enable critical or extended analyzes.
Influence of Thunderstorms on the Structure of the Ionosphere using Composite Analysis
NASA Astrophysics Data System (ADS)
Nava, O.; Sutherland, E.
2017-12-01
It is well known in the amateur (ham) radio community that thunderstorms have a significant influence on local and long-distance high-frequency (HF) communications. This study aims to characterize the structure of the ionosphere in response to strong convective activity and cloud electrification. Superposed Epoch Analysis is applied to surface weather observations and ionosonde data at Eglin Air Force Base, Florida from August 2014 to July 2017. Preliminary results indicate that thunderstorms significantly modify the structure of the ionosphere, generating statistically different measurements of several key parameters (e.g., foEs, hmF2, ITEC) compared to clear-sky observations. Seasonal and diurnal influences between the thunderstorm and clear sky cases are also explored. Accurate characterization of the ionosphere in response to thunderstorms has important implications for the effective use of HF communications in civilian and military operations, to include emergency services, aviation, amateur radio, and over-the-horizon radar.
Towards a Flexible Language Lab for Community Colleges.
ERIC Educational Resources Information Center
Conway, Diana
1992-01-01
Suggestions are offered for ways to modify a typical community college language laboratory to serve diverse student needs. The discussion is based on experiences of Anchorage Community College, which modeled its lab on a learning resources center rather than a traditional lab. (LB)
NASA Astrophysics Data System (ADS)
Aguilera, Victor; Escribano, Ruben; Herrera, Liliana
2009-08-01
Autotrophic and heterotrophic nanoplankton and microplankton vary widely in quantity and composition in coastal upwelling zones, causing a highly heterogeneous distribution of food resources for higher trophic levels. Here, we assessed daily changes in size-fractioned biomass and community structure of nanoplankton and microplankton at two upwelling sites off northern Chile, Mejillones (23°S) and Chipana (21°S), during summer 2006, winter 2006 and summer 2007 as related to changes in oceanographic conditions upon upwelling variation. We found highly-significant changes in quantity and community structure (species diversity and richness) of both nanoplankton and microplankton fractions after 3-5 days of observations. These changes were coupled to an intermittent upwelling regime reflected in the alongshore component of the wind. After a few days the whole community was modified in terms of species and size structure. Over-imposing this variability, during winter 2006 there was a strong perturbation of remote origin that substantially impacted temperature, oxygenation and stratification of the water column. This "abnormal" warming event altered the upwelling regime, but its impact on abundance and composition of the nanoplankton and microplankton fractions was uncertain. Over the short-time scale however, we found a strong coupling between daily changes in the alongshore component of wind and nanoplankton and microplankton abundances and their structure. All these findings indicate that despite the high biological productivity of this upwelling region, high frequency variation induced by wind forcing may be a major regulator of food resources (quantity and quality) for primary consumers, such as zooplankton, fish larvae and benthic organisms in the near-shore area. This high frequency variation may also impose a key constrain for prey-predator encounter rates and survival of short-lived zooplankton and invertebrate and fish larvae in the upwelling zone.
De Smet, Bart; Fournier, Jérôme; De Troch, Marleen; Vincx, Magda; Vanaverbeke, Jan
2015-01-01
The potential of ecosystem engineers to modify the structure and dynamics of food webs has recently been hypothesised from a conceptual point of view. Empirical data on the integration of ecosystem engineers and food webs is however largely lacking. This paper investigates the hypothesised link based on a field sampling approach of intertidal biogenic aggregations created by the ecosystem engineer Lanice conchilega (Polychaeta, Terebellidae). The aggregations are known to have a considerable impact on the physical and biogeochemical characteristics of their environment and subsequently on the abundance and biomass of primary food sources and the macrofaunal (i.e. the macro-, hyper- and epibenthos) community. Therefore, we hypothesise that L. conchilega aggregations affect the structure, stability and isotopic niche of the consumer assemblage of a soft-bottom intertidal food web. Primary food sources and the bentho-pelagic consumer assemblage of a L. conchilega aggregation and a control area were sampled on two soft-bottom intertidal areas along the French coast and analysed for their stable isotopes. Despite the structural impacts of the ecosystem engineer on the associated macrofaunal community, the presence of L. conchilega aggregations only has a minor effect on the food web structure of soft-bottom intertidal areas. The isotopic niche width of the consumer communities of the L. conchilega aggregations and control areas are highly similar, implying that consumer taxa do not shift their diet when feeding in a L. conchilega aggregation. Besides, species packing and hence trophic redundancy were not affected, pointing to an unaltered stability of the food web in the presence of L. conchilega. PMID:26496349
Kogan, Steven M; Lei, Man-Kit; Grange, Christina R; Simons, Ronald L; Brody, Gene H; Gibbons, Frederick X; Chen, Yi-Fu
2013-06-01
Accumulating evidence suggests that African American men and women experience unique challenges in developing and maintaining stable, satisfying romantic relationships. Extant studies have linked relationship quality among African American couples to contemporaneous risk factors such as economic hardship and racial discrimination. Little research, however, has examined the contextual and intrapersonal processes in late childhood and adolescence that influence romantic relationship health among African American adults. We investigated competence-promoting parenting practices and exposure to community-related stressors in late childhood, and negative relational schemas in adolescence, as predictors of young adult romantic relationship health. Participants were 318 African American young adults (59.4% female) who had provided data at four time points from ages 10-22 years. Structural equation modeling indicated that exposure to community-related stressors and low levels of competence-promoting parenting contributed to negative relational schemas, which were proximal predictors of young adult relationship health. Relational schemas mediated the associations of competence-promoting parenting practices and exposure to community stressors in late childhood with romantic relationship health during young adulthood. Results suggest that enhancing caregiving practices, limiting youths' exposure to community stressors, and modifying relational schemas are important processes to be targeted for interventions designed to enhance African American adults' romantic relationships.
Kogan, Steven M.; Lei, Man-Kit; Grange, Christina R.; Simons, Ronald L.; Brody, Gene H.; Gibbons, Frederick X.; Chen, Yifu
2013-01-01
Accumulating evidence suggests that African American men and women experience unique challenges in developing and maintaining stable, satisfying romantic relationships. Extant studies have linked relationship quality among African American couples to contemporaneous risk factors such as economic hardship and racial discrimination. Little research, however, has examined the contextual and intrapersonal processes in late childhood and adolescence that influence romantic relationship health among African American adults. We investigated competence-promoting parenting practices and exposure to community-related stressors in late childhood, and negative relational schemas in adolescence, as predictors of young adult romantic relationship health. Participants were 318 African American young adults (59.4% female) who had provided data at four time points from ages 10–22 years. Structural equation modeling indicated that exposure to community-related stressors and low levels of competence-promoting parenting contributed to negative relational schemas, which were proximal predictors of young adult relationship health. Relational schemas mediated the associations of competence-promoting parenting practices and exposure to community stressors in late childhood with romantic relationship health during young adulthood. Results suggest that enhancing caregiving practices, limiting youths’ exposure to community stressors, and modifying relational schemas are important processes to be targeted for interventions designed to enhance African American adults’ romantic relationships. PMID:23494451
How low can you go? Impacts of a low-flow disturbance on aquatic insect communities.
Walters, Annika W; Post, David M
2011-01-01
The natural hydrology of streams and rivers is being extensively modified by human activities. Water diversion, dam construction, and climate change have the potential to increase the frequency and intensity of low-flow events. Flow is a dominant force structuring stream aquatic insect communities, but the impacts of water diversion are poorly understood. Here we report results of an experimental stream flow diversion designed to test how aquatic insect communities respond to a low-flow disturbance. We diverted 40% to 80% of the water in three replicate streams for three summers, leading to summer flow exceedance probabilities of up to 99.9%. Shifts in habitat availability appeared to be a major driver of aquatic insect community responses. Responses also varied by habitat type: total insect density decreased in riffle habitats, but there was no change in pool habitats. Overall, the total biomass of aquatic insects decreased sharply with lowered flow. Collector-filterers, collector-gatherers, and scrapers were especially susceptible, while predatory insects were more resistant. Despite extremely low flow levels, there was no shift in aquatic insect family richness. The experimental water withdrawal did not increase water temperature or decrease water quality, and some wetted habitat was always maintained, which likely prevented more severe impacts on aquatic insect communities.
Community Psychology and the Capabilities Approach
2016-01-01
What makes for a good life? The capabilities approach to this question has much to offer community psychology, particularly with respect to marginalized groups. Capabilities are freedoms to engage in valued social activities and roles—what people can do and be given both their capacities, and environmental opportunities and constraints. Economist Amartya Sen’s focus on freedoms and agency resonates with psychological calls for empowerment, and philosopher Martha Nussbaum’s specification of requirements for a life that is fully human provides an important guide for social programs. Community psychology’s focus on mediating structures has much to offer the capabilities approach. Parallels between capabilities, as enumerated by Nussbaum, and settings that foster positive youth development, as described in a National Research Council Report (Eccles and Gootman (Eds) in Community programs to promote youth development. National Academy Press, Washington, 2002) suggest extensions of the approach to children. Community psychologists can contribute to theory about ways to create and modify settings to enhance capabilities as well as empowerment and positive youth development. Finally, capabilities are difficult to measure, because they involve freedoms to choose but only choices actually made or enacted can be observed. The variation in activities or goals across members of a setting provides a measure of the capabilities that the setting fosters. PMID:25822113
Community psychology and the capabilities approach.
Shinn, Marybeth
2015-06-01
What makes for a good life? The capabilities approach to this question has much to offer community psychology, particularly with respect to marginalized groups. Capabilities are freedoms to engage in valued social activities and roles-what people can do and be given both their capacities, and environmental opportunities and constraints. Economist Amartya Sen's focus on freedoms and agency resonates with psychological calls for empowerment, and philosopher Martha Nussbaum's specification of requirements for a life that is fully human provides an important guide for social programs. Community psychology's focus on mediating structures has much to offer the capabilities approach. Parallels between capabilities, as enumerated by Nussbaum, and settings that foster positive youth development, as described in a National Research Council Report (Eccles and Gootman (Eds) in Community programs to promote youth development. National Academy Press, Washington, 2002) suggest extensions of the approach to children. Community psychologists can contribute to theory about ways to create and modify settings to enhance capabilities as well as empowerment and positive youth development. Finally, capabilities are difficult to measure, because they involve freedoms to choose but only choices actually made or enacted can be observed. The variation in activities or goals across members of a setting provides a measure of the capabilities that the setting fosters.
Schütz, Kirsten; Nagel, Peter; Vetter, Walter; Kandeler, Ellen; Ruess, Liliane
2009-01-01
Subsurface microorganisms are crucial for contaminant degradation and maintenance of groundwater quality. This study investigates the microbial biomass and community composition [by phospholipid fatty acids (PLFAs)], as well as physical and chemical soil characteristics at woodland flooding sites of an artificial groundwater recharge system used for drinking water production. Vertical soil profiles to c. 4 m at two watered and one nonwatered site were analyzed. The microbial biomass was equal in watered and nonwatered sites, and considerable fractions (25-42%) were located in 40-340 cm depth. The microbial community structure differed significantly between watered and nonwatered sites, predominantly below 100 cm depth. Proportions of the bacterial PLFAs 16:1omega5, 16:1omega7, cy17:0 and 18:1omega9t, and the long-chained PLFAs 22:1omega9 and 24:1omega9 were more prominent at the watered sites, whereas branched, saturated PLFAs (iso/anteiso) dominated at the nonwatered site. PLFA community indices indicated stress response (trans/cis ratio), higher nutrient availability (unsaturation index) and changes in membrane fluidity (iso/anteiso ratio) due to flooding. In conclusion, water recharge processes led to nutrient input and altered environmental conditions, which resulted in a highly active and adapted microbial community residing in the vadose zone that effectively degraded organic compounds.
75 FR 81887 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-29
...Modified Base (1% annual-chance) Flood Elevations (BFEs) are finalized for the communities listed below. These modified BFEs will be used to calculate flood insurance premium rates for new buildings and their contents.
Kelly, J Daniel; Reid, Michael J; Lahiff, Maureen; Tsai, Alexander C; Weiser, Sheri D
2017-08-01
Although HIV stigma has been identified as an important risk factor for HIV transmission risk behaviors, little is known about the contribution of community-level HIV stigma to HIV transmission risk behaviors and self-reported sexually transmitted diseases (STDs) or how gender may modify associations. We pooled data from the 2008 and 2013 Sierra Leone Demographic and Health Surveys. For HIV stigma, we examined HIV stigmatizing attitudes and HIV disclosure concerns at both individual and community levels. Outcomes of HIV transmission risk behaviors were recent condom usage, consistent condom usage, and self-reported STDs. We assessed associations with multivariable logistic regressions. We also analyzed gender as an effect modifier of these associations. Of 34,574 respondents, 24,030 (69.5%) who had heard of HIV were included in this analysis. Community-level HIV stigmatizing attitudes and disclosure concerns were associated with higher odds of self-reported STDs (adjusted odds ratio = 2.07; 95% confidence interval: 1.55 to 2.77; adjusted odds ratio = 2.95; 95% confidence interval: 1.51 to 5.58). Compared with men, community-level HIV stigmatizing attitudes among women were a stronger driver of self-reported STDs (interaction P = 0.07). Gender modified the association between community-level HIV disclosure concerns and both recent and consistent condom usage (interaction P = 0.03 and P = 0.002, respectively). Community-level HIV disclosure concerns among women were observed to be a driver of risky sex and self-reported STDs. This study shows that community-level HIV stigma may be a driver for risky sex and self-reported STDs, particularly among women. Our findings suggest that community-held stigmatizing beliefs and HIV disclosure concerns among women might be important targets for HIV stigma reduction interventions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Minjing; Qian, Wei-jun; Gao, Yuqian
The kinetics of biogeochemical processes in natural and engineered environmental systems are typically described using Monod-type or modified Monod-type models. These models rely on biomass as surrogates for functional enzymes in microbial community that catalyze biogeochemical reactions. A major challenge to apply such models is the difficulty to quantitatively measure functional biomass for constraining and validating the models. On the other hand, omics-based approaches have been increasingly used to characterize microbial community structure, functions, and metabolites. Here we proposed an enzyme-based model that can incorporate omics-data to link microbial community functions with biogeochemical process kinetics. The model treats enzymes asmore » time-variable catalysts for biogeochemical reactions and applies biogeochemical reaction network to incorporate intermediate metabolites. The sequences of genes and proteins from metagenomes, as well as those from the UniProt database, were used for targeted enzyme quantification and to provide insights into the dynamic linkage among functional genes, enzymes, and metabolites that are necessary to be incorporated in the model. The application of the model was demonstrated using denitrification as an example by comparing model-simulated with measured functional enzymes, genes, denitrification substrates and intermediates« less
Ecological-network models link diversity, structure and function in the plankton food-web
NASA Astrophysics Data System (ADS)
D'Alelio, Domenico; Libralato, Simone; Wyatt, Timothy; Ribera D'Alcalà, Maurizio
2016-02-01
A planktonic food-web model including sixty-three functional nodes (representing auto- mixo- and heterotrophs) was developed to integrate most trophic diversity present in the plankton. The model was implemented in two variants - which we named ‘green’ and ‘blue’ - characterized by opposite amounts of phytoplankton biomass and representing, respectively, bloom and non-bloom states of the system. Taxonomically disaggregated food-webs described herein allowed to shed light on how components of the plankton community changed their trophic behavior in the two different conditions, and modified the overall functioning of the plankton food web. The green and blue food-webs showed distinct organizations in terms of trophic roles of the nodes and carbon fluxes between them. Such re-organization stemmed from switches in selective grazing by both metazoan and protozoan consumers. Switches in food-web structure resulted in relatively small differences in the efficiency of material transfer towards higher trophic levels. For instance, from green to blue states, a seven-fold decrease in phytoplankton biomass translated into only a two-fold decrease in potential planktivorous fish biomass. By linking diversity, structure and function in the plankton food-web, we discuss the role of internal mechanisms, relying on species-specific functionalities, in driving the ‘adaptive’ responses of plankton communities to perturbations.
Schauzu, M
2004-09-01
Placing genetically modified (GM) plants and derived products on the European Union's (EU) market has been regulated by a Community Directive since 1990. This directive was complemented by a regulation specific for genetically modified and other novel foods in 1997. Specific labelling requirements have been applicable for GM foods since 1998. The law requires a pre-market safety assessment for which criteria have been elaborated and continuously adapted in accordance with the state of the art by national and international bodies and organisations. Consequently, only genetically modified products that have been demonstrated to be as safe as their conventional counterparts can be commercialized. However, the poor acceptance of genetically modified foods has led to a de facto moratorium since 1998. It is based on the lack of a qualified majority of EU member states necessary for authorization to place genetically modified plants and derived foods on the market. New Community Regulations are intended to end this moratorium by providing a harmonized and transparent safety assessment, a centralised authorization procedure, extended labelling provisions and a traceability system for genetically modified organisms (GMO) and derived food and feed.
Fernández-Sáez, José; Ruiz-Cantero, María Teresa; Guijarro-Garvi, Marta; Rodenas-Calatayud, Carmen; Martí-Sempere, Mónica; Jiménez-Alegre, María Dolores
2016-01-01
Gender equity (GE) is a structural determinant of health inequalities. In this light, our objective is to show the evolution of gender equity in the Spanish autonomous communities since 2006, prior to the enactment of the Equality Act (2007) and the economic crisis (2008), until 2014. Ecological study of gender equity in the 17 Spanish autonomous communities from 2006-2011-2014. We have calculated: 1) modified gender equity index (MGEI) for the autonomous communities (0=equity, ±1=inequity); 2) interregional and temporal convergences in gender equity. The MGEI in the autonomous communities in 2014 has negative values close to 0 (inequity towards women). There is no interregional convergence due to the dispersion increase (2006: 0.1503; 2011: 0.2280; 2014: 0.4964), and no temporal convergence due to the lack of progress of the autonomous communities with poor gender equity. The gender gap in economic activity continues to be unfavourable to women, decreasing in all communities between 2006 and 2011 but increasing in six communities in 2014. The gender gap in education from 2006-2011-2014 has positive values close to 0 (unfavourable to men), while the gender gap in empowerment is unfavourable to women, representing the most significant gender equity disparity. Inter-community dispersion of economic activity and education did not change between 2006 and 2014, while inter-community dispersion of empowerment increased. The level of gender equity achieved in the Spanish autonomous communities in 2006 was lost during the economic crisis, as gender equity disparities between the communities had increased by 2014. Gender inequity continues to be unfavourable to women. Copyright © 2016 SESPAS. Published by Elsevier Espana. All rights reserved.
Fodelianakis, S; Moustakas, A; Papageorgiou, N; Manoli, O; Tsikopoulou, I; Michoud, G; Daffonchio, D; Karakassis, I; Ladoukakis, E D
2017-04-01
Previous studies have shown that the response of bacterial communities to disturbances depends on their environmental history. Historically fluctuating habitats host communities that respond better to disturbance than communities of historically stable habitats. However, the exact ecological mechanism that drives this dependency remains unknown. Here, we experimentally demonstrate that modifications of niche optima and niche breadths of the community members are driving this dependency of bacterial responses to past environmental conditions. First, we develop a novel, simple method to calculate the niche optima and breadths of bacterial taxa regarding single environmental gradients. Then, we test this method on sediment bacterial communities of three habitats, one historically stable and less loaded and two historically more variable and more loaded habitats in terms of historical chlorophyll-α water concentration, that we subject to hypoxia via organic matter addition ex situ. We find that communities containing bacterial taxa differently adapted to hypoxia show different structural and functional responses, depending on the sediment's environmental history. Specifically, in the historically less fluctuating and loaded sediments where we find more taxa poorly adapted to hypoxic conditions, communities change a lot over time and organic matter is not degraded efficiently. The opposite is true for the historically more fluctuating and loaded sediments where we find more taxa well adapted to hypoxia. Based on the community responses observed here, we also propose an alternative calculation of community resistance that takes into account how rapidly the communities respond to disturbances and not just the initial and final states of the community. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Ailey, Sarah H.; Friese, Tanya R.; Nezu, Arthur M.
2016-01-01
Social problem-solving programs have shown success in reducing aggressive/challenging behaviors among individuals with intellectual disabilities in clinical settings, but have not been adapted for health promotion in community settings. We modified a social problem-solving program for the community setting of the group home. Multiple sequential methods were used to seek advice from community members on making materials understandable and on intervention delivery. A committee of group home supervisory staff gave advice on content and delivery. Cognitive interviews with individuals with intellectual disabilities and residential staff provided input on content wording and examples. Piloting the program provided experience with content and delivery. The process provides lessons on partnering with vulnerable populations and community stakeholders to develop health programs. PMID:22753149
Structure and spatial patterns of macrobenthic community in Tai Lake, a large shallow lake, China
Di Li,; Erickson, Richard A.; Song Tang,; Xuwen Li,; Niu, Zhichun; Xia Wang,; Hongling Liu,; Hongxia Yu,
2016-01-01
Tai Lake (Chinese: Taihu), the third-largest freshwater lake in China, suffers from harmful cyanobacteria blooms that are caused by economic development and population growth near the lake. Several studies have focused on phytoplankton in Tai Lake after a drinking water crisis in 2007; however, these studies primarily focused on microcystin bioaccumulation and toxicity to individual species without examining the effects of microcystin on macrobenthic community diversity. In this study, we conducted a survey of the lake to examine the effects of microcystine and other pollutants on marcobenthic community diversity. A totally of forty-nine species of macroinvertebrates were found in Tai Lake. Limnodrilus hoffmeisteri and Corbicula fluminea were the most abundant species. Cluster-analysis and one-way analysis of similarity (ANOSIM) identified three significantly different macrobenthic communities among the sample sites. More specifically, sites in the eastern bays, where aquatic macrophytes were abundant, had the highest diversity of macrobenthic communities, which were dominated by Bellamya aeruginosa, Bellamya purificata, L. hoffmeisteri, and Alocinma longicornis. Sites in Zhushan Bay contained relatively diverse communities, mainly composed of L. hoffmeisteri, C. fluminea, L. claparederanus, R. sinicus, and Cythura sp. Sites in the western region, Meiliang Bay and Wuli Bay had the lowest diversity, mainly composed ofL. hoffmeisteri, C. fluminea, Branchiura sowerbyi, and Rhyacodrilus sinicus. In addition, the relationships between macrobenthic metrics (Shannon–Wiener, Margalef, and Pielou) and environmental variables showed that community structure and spatial patterns of macrobenthos in Tai Lake were significantly influenced by chemical oxygen demand (CODCr), biochemical oxygen demand (BOD5), lead (Pb), and microcystin-LR (L for leucine and R for arginine). Our findings provide critical information that could help managers and policymakers assess and modify ecological restoration practices.
Label-free optical resonant sensors for biochemical applications
NASA Astrophysics Data System (ADS)
Ciminelli, Caterina; Campanella, Clarissa Martina; Dell'Olio, Francesco; Campanella, Carlo Edoardo; Armenise, Mario Nicola
2013-03-01
For a number of years, the scientific community has been paying growing attention to the monitoring and enhancement of public health and the quality of life through the detection of all dangerous agents for the human body, including gases, proteins, virus, and bacterial agents. When these agents are detected through label-free biochemical sensors, the molecules are not modified structurally or functionally by adding fluorescent or radioactive dyes. This work focuses on label-free optical ring resonator-based configurations suited for bio-chemical sensing, highlighting their physical aspects and specific applications. Resonant wavelength shift and the modal splitting occurring when the analyte interacts with microresonant structures are the two major physical aspects analyzed in this paper. Competitive optical platforms proposed in the literature are also illustrated together with their properties and performance.
Royer, Aurélien; Montuire, Sophie; Legendre, Serge; Discamps, Emmanuel; Jeannet, Marcel; Lécuyer, Christophe
2016-01-01
Terrestrial ecosystems have continuously evolved throughout the Late Pleistocene and the Holocene, deeply affected by both progressive environmental and climatic modifications, as well as by abrupt and large climatic changes such as the Heinrich or Dansgaard-Oeschger events. Yet, the impacts of these different events on terrestrial mammalian communities are poorly known, as is the role played by potential refugia on geographical species distributions. This study examines community changes in rodents of southwestern France between 50 and 10 ky BP by integrating 94 dated faunal assemblages coming from 37 archaeological sites. This work reveals that faunal distributions were modified in response to abrupt and brief climatic events, such as Heinrich events, without actually modifying the rodent community on a regional scale. However, the succession of events which operated between the Late Pleistocene and the Holocene gradually led to establishing a new rodent community at the regional scale, with intermediate communities occurring between the Bølling and the Allerød. PMID:26789523
[Cultural conceptions on dengue in urban contexts in Mexico].
Caballero Hoyos, Ramiro; Torres López, Teresa; Chong Villarreal, Francisco; Pineda Lucatero, Alicia; Altuzar González, Marlene; López Coutiño, Berenice
2006-02-01
To explore the conceptual dimensions of dengue in the urban context, aiming at creating hypotheses about community attitudes toward prevention campaigns. An exploratory cross-sectional study was carried out between March and April 2003 comprising 130 people selected by proposition sampling in three municipalities with different dengue prevalences in Mexico. Semi-structured interviews were applied using free lists, pile sorts and triads. Dengue-related terms and groups of conceptual dimensions were investigated. A consensual analysis was performed by factorizing the major components as well as a dimensional analysis with hierarchical clustering and multidimensional scales. The consensual model showed high homogeneity in dengue conceptions (values of 14.5 and 13.5 in the most prevalent contexts, and 5.4 in the least prevalent one). The common dimensions of conceptions were: preventive measures, symptoms, causes and reservoirs of Aedes aegypti (goodness of fit test values: <0.28). In the three contexts studied, a conception of basic prevention based on public actions by health officials predominated while individual and community actions were almost never mentioned. A moral dimension also appeared in the conception based on a notion of hygiene as a differentiating mechanism between the nearby community (clean) and outside people and communities (dirty and sick). The cultural conceptions of dengue do not favor self-managed community involvement in vertical prevention campaigns, and create obstacles to modifying community and individual prevention and control practices.
Nicastro, Andrea; Bishop, Melanie J.
2013-01-01
Among the impacts of coastal settlements to estuaries, nutrient pollution is often singled out as a leading cause of modification to the ecological communities of soft sediments. Through sampling of 48 sites, distributed among 16 estuaries of New South Wales, Australia, we tested the hypotheses that (1) anthropogenic nutrient loads would be a better predictor of macrofaunal communities than estuarine geomorphology or local sediment characteristics; and (2) local environmental context, as determined largely by sediment characteristics, would modify the relationship between nutrient loading and community composition. Contrary to the hypothesis, multivariate multiple regression analyses revealed that sediment grain size was the best predictor of macrofaunal assemblage composition. When samples were stratified according to median grain size, relationships between faunal communities and nitrogen loading and latitude emerged, but only among estuaries with sandier sediments. In these estuaries, capitellid and nereid polychaetes and chironomid larvae were the taxa that showed the strongest correlations with nutrient loading. Overall, this study failed to provide evidence of a differential relationship between diffuse nutrient enrichment and benthic macrofauna across a gradient of 7° of latitude and 4°C temperature. Nevertheless, as human population growth continues to place increasing pressure on southeast Australian estuaries, manipulative field studies examining when and where nutrient loading will lead to significant changes in estuarine community structure are needed. PMID:23799037
Thébault, Aurélie; Frey, Beat; Mitchell, Edward A D; Buttler, Alexandre
2010-08-01
Invasive plant species represent a threat to terrestrial ecosystems, but their effects on the soil biota and the mechanisms involved are not yet well understood. Many invasive species have undergone polyploidisation, leading to the coexistence of various cytotypes in the native range, whereas, in most cases, only one cytotype is present in the introduced range. Since genetic variation within a species can modify soil rhizosphere communities, we studied the effects of different cytotypes and ranges (native diploid, native tetraploid and introduced tetraploid) of Centaurea maculosa and Senecio inaequidens on microbial biomass carbon, rhizosphere total DNA content and bacterial communities of a standard soil in relation to plant functional traits. There was no overall significant difference in microbial biomass between cytotypes. The variation of rhizosphere total DNA content and bacterial community structure according to cytotype was species specific. The rhizosphere DNA content of S. inaequidens decreased with polyploidisation in the native range but did not vary for C. maculosa. In contrast, the bacterial community structure of C. maculosa was affected by polyploidisation and its diversity increased, whereas there was no significant change for S. inaequidens. Traits of S. inaequidens were correlated to the rhizosphere biota. Bacterial diversity and total DNA content were positively correlated with resource allocation to belowground growth and late flowering, whereas microbial biomass carbon was negatively correlated to investment in reproduction. There were no correlations between traits of the cytotypes of C. maculosa and corresponding rhizosphere soil biota. This study shows that polyploidisation may affect rhizosphere bacterial community composition, but that effects vary among plant species. Such changes may contribute to the success of invasive polyploid genotypes in the introduced range.
Reid, Brie; Seu, Rie; Orgle, Jennifer; Roy, Khrist; Pongolani, Catherine; Chileshe, Modesta; Fundira, Dadirai; Stoltzfus, Rebecca
2018-06-04
Malnourished children in low-income contexts usually suffer from environmental enteric dysfunction, which is damage to the intestines caused by chronic exposure to bacterial pathogens from feces hypothesized to contribute to stunting. Many intervention studies are piloting "Baby water, sanitation, and hygiene (WASH)" to help rural farming families reduce infant and young children's (IYC's) exposure to human and free-range livestock feces. One proposed Baby WASH intervention is a play-yard, which consists of a baby-proofed structure (i.e., playpen) that caregivers can place IYC into while doing chores around the household yard. This article describes the pilot development and assessment of a community-built Baby WASH play-yard and a plastic play-yard intervention with 21 caregivers of 6- to 24-month-old IYC in rural Zambia. A modified Trials of Improved Practices approach was used to conduct three visits in each household: an introductory visit during which play-yard use was explained, a second visit consisting of a semi-structured interview and a session of behavioral counseling, and a final visit which included a 2-hour observation of play-yard use. The second and final visits also included 24-hour recalls, and all three visits included spot observations of play-yard use. Reports from caregivers suggest that the community-built play-yard protected IYC from ingesting soil and livestock feces. Barriers to intervention use included caregivers' WASH beliefs and practices, community reactions, and play-yard maintenance. More work is needed to examine the role of women's time use in their home environment, community reactions to the intervention, and the biological efficacy to reduce microbial ingestion.
ERIC Educational Resources Information Center
Wardrip, Peter Samuelson; Gomez, Louis M.; Gomez, Kimberley
2015-01-01
To address teacher isolation in schools, more reform leaders are finding hope in establishing professional communities as a way to promote continuous school improvement. This case study presents one approach for developing teacher professional community: a teacher work circle. Using the characteristics of professional community created by Kruse,…
The Family Therapist's Role in Treating Families in Rural Communities: A General Systems Approach.
ERIC Educational Resources Information Center
Bagarozzi, Dennis A.
1982-01-01
Demonstrates how concepts derived from General Systems Theory can be used to understand and treat families living in impoverished, isolated rural communities in the South. Suggests interventions frequently need to be directed at the community system as a whole if community rules are to be modified for second-order change. (Author)
De Filippis, Francesca; Genovese, Alessandro; Ferranti, Pasquale; Gilbert, Jack A.; Ercolini, Danilo
2016-01-01
Traditional cheeses harbour complex microbial consortia that play an important role in shaping typical sensorial properties. However, the microbial metabolism is considered difficult to control. Microbial community succession and the related gene expression were analysed during ripening of a traditional Italian cheese, identifying parameters that could be modified to accelerate ripening. Afterwards, we modulated ripening conditions and observed consistent changes in microbial community structure and function. We provide concrete evidence of the essential contribution of non-starter lactic acid bacteria in ripening-related activities. An increase in the ripening temperature promoted the expression of genes related to proteolysis, lipolysis and amino acid/lipid catabolism and significantly increases the cheese maturation rate. Moreover, temperature-promoted microbial metabolisms were consistent with the metabolomic profiles of proteins and volatile organic compounds in the cheese. The results clearly indicate how processing-driven microbiome responses can be modulated in order to optimize production efficiency and product quality. PMID:26911915
Printing-assisted surface modifications of patterned ultrafiltration membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wardrip, Nathaniel C.; Dsouza, Melissa; Urgun-Demirtas, Meltem
Understanding and restricting microbial surface attachment will enhance wastewater treatment with membranes. We report a maskless lithographic patterning technique for the generation of patterned polymer coatings on ultrafiltration membranes. Polyethylene glycol, zwitterionic, or negatively charged hydrophilic polymer compositions in parallel- or perpendicular-striped patterns with respect to feed flow were evaluated using wastewater. Membrane fouling was dependent on the orientation and chemical composition of the coatings. Modifications reduced alpha diversity in the attached microbial community (Shannon indices decreased from 2.63 to 1.89) which nevertheless increased with filtration time. Sphingomonas species, which condition membrane surfaces and facilitate cellular adhesion, were depleted inmore » all modified membranes. Microbial community structure was significantly different between control, different patterns, and different chemistries. Lastly, this study broadens the tools for surface modification of membranes with polymer coatings and for understanding and optimization of antifouling surfaces.« less
Printing-assisted surface modifications of patterned ultrafiltration membranes
Wardrip, Nathaniel C.; Dsouza, Melissa; Urgun-Demirtas, Meltem; ...
2016-10-17
Understanding and restricting microbial surface attachment will enhance wastewater treatment with membranes. We report a maskless lithographic patterning technique for the generation of patterned polymer coatings on ultrafiltration membranes. Polyethylene glycol, zwitterionic, or negatively charged hydrophilic polymer compositions in parallel- or perpendicular-striped patterns with respect to feed flow were evaluated using wastewater. Membrane fouling was dependent on the orientation and chemical composition of the coatings. Modifications reduced alpha diversity in the attached microbial community (Shannon indices decreased from 2.63 to 1.89) which nevertheless increased with filtration time. Sphingomonas species, which condition membrane surfaces and facilitate cellular adhesion, were depleted inmore » all modified membranes. Microbial community structure was significantly different between control, different patterns, and different chemistries. Lastly, this study broadens the tools for surface modification of membranes with polymer coatings and for understanding and optimization of antifouling surfaces.« less
Munari, Cristina; Corbau, Corinne; Simeoni, Umberto; Mistri, Michele
2011-08-01
The Adriatic coast of Punta Marina (Ravenna) is protected by 3-km long low crested breakwater structures (LCSs). Through a 3-years long multidisciplinar study, we assessed the impact of such defensive structures on environmental and biological condition. LCSs create pools where conditions are very different from the surrounding nearshore system. Mechanical disturbance by currents and waves varied greatly in intensity and frequency between seaward and landward sides of the structures. Sedimentary budget was positive at the landward side, but it was due to a gain on the seafloor and not on the emerged beach. The budget at seaward was negative. LCSs determine differences in benthic assemblages, alter the seasonal pattern of communities, and modify seasonal fluctuations of animal assemblages. Landward sheltered areas can be seen as "lagoonal island" surrounded by a "sea of marine habitat". Differences in ecological quality status, obtained through M-AMBI, are due to the sum of these factors. Copyright © 2011 Elsevier Ltd. All rights reserved.
Impact of Oil on Bacterial Community Structure in Bioturbated Sediments
Stauffert, Magalie; Cravo-Laureau, Cristiana; Jézéquel, Ronan; Barantal, Sandra; Cuny, Philippe; Gilbert, Franck; Cagnon, Christine; Militon, Cécile; Amouroux, David; Mahdaoui, Fatima; Bouyssiere, Brice; Stora, Georges; Merlin, François-Xavier; Duran, Robert
2013-01-01
Oil spills threaten coastlines where biological processes supply essential ecosystem services. Therefore, it is crucial to understand how oil influences the microbial communities in sediments that play key roles in ecosystem functioning. Ecosystems such as sediments are characterized by intensive bioturbation due to burrowing macrofauna that may modify the microbial metabolisms. It is thus essential to consider the bioturbation when determining the impact of oil on microbial communities. In this study, an experimental laboratory device maintaining pristine collected mudflat sediments in microcosms closer to true environmental conditions – with tidal cycles and natural seawater – was used to simulate an oil spill under bioturbation conditions. Different conditions were applied to the microcosms including an addition of: standardized oil (Blend Arabian Light crude oil, 25.6 mg.g−1 wet sediment), the common burrowing organism Hediste (Nereis) diversicolor and both the oil and H. diversicolor. The addition of H. diversicolor and its associated bioturbation did not affect the removal of petroleum hydrocarbons. After 270 days, 60% of hydrocarbons had been removed in all microcosms irrespective of the H. diversicolor addition. However, 16S-rRNA gene and 16S-cDNA T-RFLP and RT-PCR-amplicon libraries analysis showed an effect of the condition on the bacterial community structure, composition, and dynamics, supported by PerMANOVA analysis. The 16S-cDNA libraries from microcosms where H. diversicolor was added (oiled and un-oiled) showed a marked dominance of sequences related to Gammaproteobacteria. However, in the oiled-library sequences associated to Deltaproteobacteria and Bacteroidetes were also highly represented. The 16S-cDNA libraries from oiled-microcosms (with and without H. diversicolor addition) revealed two distinct microbial communities characterized by different phylotypes associated to known hydrocarbonoclastic bacteria and dominated by Gammaproteobacteria and Deltaproteobacteria. In the oiled-microcosms, the addition of H. diversicolor reduced the phylotype-richness, sequences associated to Actinobacteria, Firmicutes and Plantomycetes were not detected. These observations highlight the influence of the bioturbation on the bacterial community structure without affecting the biodegradation capacities. PMID:23762350
Kulkarni, Prachi; Olson, Nathan D; Paulson, Joseph N; Pop, Mihai; Maddox, Cynthia; Claye, Emma; Rosenberg Goldstein, Rachel E; Sharma, Manan; Gibbs, Shawn G; Mongodin, Emmanuel F; Sapkota, Amy R
2018-10-15
Water recycling continues to expand across the United States, from areas that have access to advanced, potable-level treated reclaimed water, to those having access only to reclaimed water treated at conventional municipal wastewater treatment plants. This expansion makes it important to further characterize the microbial quality of these conventionally-treated water sources. Therefore, we used 16S rRNA gene sequencing to characterize total bacterial communities present in differentially-treated wastewater and reclaimed water (n = 67 samples) from four U.S. wastewater treatment plants and one associated spray irrigation site conducting on-site ultraviolet treatment and open-air storage. The number of observed operational taxonomic units was significantly lower (p < 0.01) in effluent, compared to influent, after conventional treatment. Effluent community structure was influenced more by treatment method than by influent community structure. The abundance of Legionella spp. increased as treatment progressed in one treatment plant that performed chlorination and in another that seasonally chlorinated. Overall, the alpha-diversity of bacterial communities in reclaimed water decreased (p < 0.01) during wastewater treatment and spray irrigation site ultraviolet treatment (p < 0.01), but increased (p < 0.01) after open-air storage at the spray irrigation site. The abundance of Legionella spp. was higher at the sprinkler system pumphouse at the spray irrigation site than in the influent from the treatment plant supplying the site. Legionella pneumophila was detected in conventionally treated effluent samples and in samples collected after ultraviolet treatment at the spray irrigation site, while Legionella feeleii persisted throughout on-site treatment at the spray irrigation site, and, along with Mycobacterium gordonae, was also detected at the sprinkler system pumphouse at the spray irrigation site. These data could inform the development of future treatment technologies and reuse guidelines that address a broader assemblage of the bacterial community of reclaimed water, resulting in reuse practices that may be more protective of public health. Copyright © 2018 Elsevier B.V. All rights reserved.
Hydropower impacts on reservoir fish populations are modified by environmental variation.
Eloranta, Antti P; Finstad, Anders G; Helland, Ingeborg P; Ugedal, Ola; Power, Michael
2018-03-15
Global transition towards renewable energy production has increased the demand for new and more flexible hydropower operations. Before management and stakeholders can make informed choices on potential mitigations, it is essential to understand how the hydropower reservoir ecosystems respond to water level regulation (WLR) impacts that are likely modified by the reservoirs' abiotic and biotic characteristics. Yet, most reservoir studies have been case-specific, which hampers large-scale planning, evaluation and mitigation actions across various reservoir ecosystems. Here, we investigated how the effect of the magnitude, frequency and duration of WLR on fish populations varies along environmental gradients. We used biomass, density, size, condition and maturation of brown trout (Salmo trutta L.) in Norwegian hydropower reservoirs as a measure of ecosystem response, and tested for interacting effects of WLR and lake morphometry, climatic conditions and fish community structure. Our results showed that environmental drivers modified the responses of brown trout populations to different WLR patterns. Specifically, brown trout biomass and density increased with WLR magnitude particularly in large and complex-shaped reservoirs, but the positive relationships were only evident in reservoirs with no other fish species. Moreover, increasing WLR frequency was associated with increased brown trout density but decreased condition of individuals within the populations. WLR duration had no significant impacts on brown trout, and the mean weight and maturation length of brown trout showed no significant response to any WLR metrics. Our study demonstrates that local environmental characteristics and the biotic community strongly modify the hydropower-induced WLR impacts on reservoir fishes and ecosystems, and that there are no one-size-fits-all solutions to mitigate environmental impacts. This knowledge is vital for sustainable planning, management and mitigation of hydropower operations that need to meet the increasing worldwide demand for both renewable energy and ecosystem services delivered by freshwaters. Copyright © 2017 Elsevier B.V. All rights reserved.
Biodegradation of petroleum hydrocarbons in estuarine sediments: metal influence.
Almeida, Raquel; Mucha, Ana P; Teixeira, Catarina; Bordalo, Adriano A; Almeida, C Marisa R
2013-02-01
In this work, the potential effect of metals, such as Cd, Cu and Pb, on the biodegradation of petroleum hydrocarbons in estuarine sediments was investigated under laboratory conditions. Sandy and muddy non-vegetated sediments were collected in the Lima River estuary (NW Portugal) and spiked with crude oil and each of the metals. Spiked sediments were left in the dark under constant shaking for 15 days, after which crude oil biodegradation was evaluated. To estimate microbial abundance, total cell counts were obtained by DAPI staining and microbial community structure was characterized by ARISA. Culturable hydrocarbon degraders were determined using a modified most probable number protocol. Total petroleum hydrocarbons concentrations were analysed by Fourier Transform Infrared Spectroscopy after their extraction by sonication, and metal contents were determined by atomic absorption spectrometry. The results obtained showed that microbial communities had the potential to degrade petroleum hydrocarbons, with a maximum of 32 % degradation obtained for sandy sediments. Both crude oil and metals changed the microbial community structure, being the higher effect observed for Cu. Also, among the studied metals, only Cu displayed measurable deleterious effect on the hydrocarbons degradation process, as shown by a decrease in the hydrocarbon degrading microorganisms abundance and in the hydrocarbon degradation rates. Both degradation potential and metal influence varied with sediment characteristics probably due to differences in contaminant bioavailability, a feature that should be taken into account in developing bioremediation strategies for co-contaminated estuarine sites.
The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice
Turnbaugh, Peter J.; Ridaura, Vanessa K.; Faith, Jeremiah J.; Rey, Federico E.; Knight, Rob; Gordon, Jeffrey I.
2010-01-01
Diet and nutritional status are among the most important, modifiable determinants of human health. The nutritional value of food is influenced in part by a person’s gut microbial community (microbiota) and its component genes (microbiome). Unraveling the interrelationships between diet, the structure and operations of the gut microbiota, and nutrient and energy harvest is confounded by variations in human environmental exposures, microbial ecology and genotype. To help overcome these problems, we created a well-defined, representative animal model of the human gut ecosystem by transplanting fresh or frozen adult human fecal microbial communities into germ-free C57BL/6J mice. Culture-independent, metagenomic analysis of the temporal, spatial and intergenerational patterns of bacterial colonization showed that these humanized mice were stably and heritably colonized, and reproduced much of the bacterial diversity of the donor’s microbiota. Switching from a low-fat, plant polysaccharide-rich diet to a high-fat/high-sugar “Western” diet shifted the structure of the microbiota within a single day, changed the representation of metabolic pathways in the microbiome, and altered microbiome gene expression. Reciprocal transplants involving various combinations of donor and recipient diets revealed that colonization history influences the initial structure of the microbial community, but that these effects can be rapidly altered by diet. Humanized mice fed the Western diet have increased adiposity; this trait is transmissible via microbiota transplantation. Humanized gnotobiotic mice will be useful for conducting proof-of-principle “clinical trials” that test the effects of environmental and genetic factors on the gut microbiota and host physiology. PMID:20368178
Fourie, Nicolaas H.; Wang, Dan; Abey, Sarah K.; Creekmore, Amy L.; Hong, Shuangsong; Martin, Christiana G.; Wiley, John W.
2017-01-01
ABSTRACT Stress is known to perturb the microbiome and exacerbate irritable bowel syndrome (IBS) associated symptoms. Characterizing structural and functional changes in the microbiome is necessary to understand how alterations affect the biomolecular environment of the gut in IBS. Repeated water avoidance (WA) stress was used to induce IBS-like symptoms in rats. The colon-mucosa associated microbiome was characterized in 13 stressed and control animals by 16S sequencing. In silico analysis of the functional domains of microbial communities was done by inferring metagenomic profiles from 16S data. Microbial communities and functional profiles were compared between conditions. WA animals exhibited higher α-diversity and moderate divergence in community structure (β-diversity) compared with controls. Specific clades and taxa were consistently and significantly modified in the WA animals. The WA microbiome was particularly enriched in Proteobacteria and depleted in several beneficial taxa. A decreased capacity in metabolic domains, including energy- and lipid-metabolism, and an increased capacity for fatty acid and sulfur metabolism was inferred for the WA microbiome. The stressed condition favored the proliferation of a greater diversity of microbes that appear to be functionally similar, resulting in a functionally poorer microbiome with implications for epithelial health. Taxa, with known beneficial effects, were found to be depleted, which supports their relevance as therapeutic agents to restore microbial health. Microbial sulfur metabolism may form a key component of visceral nerve sensitization pathways and is therefore of interest as a target metabolic domain in microbial ecological restoration. PMID:28059627
76 FR 35111 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-16
... final for the communities listed below. The BFEs and modified BFEs are the basis for the floodplain management measures that each community is required either to adopt or to show evidence of being already in... BFEs for each community. This date may be obtained by contacting the office where the maps are...
78 FR 20338 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-04
... Insurance Study (FIS) reports have been made final for the communities listed in the table below. The FIRM and FIS report are the basis of the floodplain management measures that a community is required either... showing the new or modified flood hazard information for each community. ADDRESSES: The FIRM, and if...
Introduction to mammals of the South. Chapter 1
Margaret K. Trani; W. Mark Ford; Brian R. Chapman
2007-01-01
The South has an impressive diversity of mammal associations and terrestrial communities. These communities range from montane spruce-fir forests to tropical hardwoods and from coastal dunes to dry prairies. Centuries of settlement and land use change have shaped and modified the mammal communities observed in the South today.
Currie, D R; Isaacs, Leanne R
2005-04-01
Changes to benthic infauna caused by exploratory gas drilling operations in the Minerva field were examined experimentally using a BACI (before, after, control, impact) design. Analysis of 72 x 0.1 m2 Smith-McIntyre grab samples obtained from one pre-drilling and three post-drilling periods yielded a diverse fauna consisting of 196 invertebrate species and 5035 individuals. Changes to benthic community structure were assessed using ANOVA and nonmetric multidimensional scaling (MDS). The abundances of two common species (Apseudes sp. 1 and Prionospio coorilla) decreased significantly at the well-head site immediately after drilling. The size of these reductions in abundance ranged between 71% and 88%, and persisted for less than 4 months after drilling. A third common species (Katlysia sp. 1) increased in abundance 200 m east of the well-head following drilling. Most species occurred at densities too low to be analysed individually and so were pooled at higher taxonomic levels. Changes in the abundance of species aggregated by phylum varied, but significant declines in the most abundant phyla (Crustaceans and Polychaetes) of 45-73% were observed at all sites within a 100 m radius of the well-head following drilling. In most cases these changes became undetectable four months after drilling following species recruitments. MDS ordinations confirm that drilling related changes to benthic community structure are most pronounced at stations located closest to the well-head. Additionally, the ordinations indicate that modified communities persist at the well-head for more than 11 months following exploratory drilling.
Beauregard, M S; Gauthier, M-P; Hamel, C; Zhang, T; Welacky, T; Tan, C S; St-Arnaud, M
2013-02-01
Arbuscular mycorrhizal (AM) fungi are key components of most agricultural ecosystems. Therefore, understanding the impact of agricultural practices on their community structure is essential to improve nutrient mobilization and reduce plant stress in the field. The effects of five different organic or mineral sources of phosphorus (P) for a maize-soybean rotation system on AM fungal diversity in roots and soil were assessed over a 3-year period. Total DNA was extracted from root and soil samples collected at three different plant growth stages. An 18S rRNA gene fragment was amplified and taxa were detected and identified using denaturing gradient gel electrophoresis followed by sequencing. AM fungal biomass was estimated by fatty acid methyl ester analysis. Soil P fertility parameters were also monitored and analyzed for possible changes related with fertilization or growth stages. Seven AM fungal ribotypes were detected. Fertilization significantly modified soil P flux, but had barely any effect on AM fungi community structure or biomass. There was no difference in the AM fungal community between plant growth stages. Specific ribotypes could not be significantly associated to P treatment. Ribotypes were associated with root or soil samples with variable detection frequencies between seasons. AM fungal biomass remained stable throughout the growing seasons. This study demonstrated that roots and soil host distinct AM fungal communities and that these are very temporally stable. The influence of contrasting forms of P fertilizers was not significant over 3 years of crop rotation.
Effects of tidal inundation on benthic macrofauna associated with the eelgrass Zostera muelleri
NASA Astrophysics Data System (ADS)
Nicastro, Andrea; Bishop, Melanie J.
2013-01-01
Processes, such as sea level rise, that alter tidal inundation regimes have the potential to modify the structure of seagrasses and their dense and diverse faunal communities. This study tested the hypothesis that seagrass-dwelling invertebrate communities would vary across a tidal inundation gradient as a result of direct effects of tidal inundation and indirect effects, arising from changes in seagrass morphology across this gradient. First, we conducted mensurative sampling across tidal inundation gradients to assess how above- and below-ground seagrass biomass, and epi- and infaunal invertebrate communities co-varied with depth. Second, we ran a manipulative field experiment, utilising artificial seagrass rhizomes of varying morphologies, to separate out direct effects of tidal inundation on infaunal communities from indirect effects arising from changes in seagrass root morphology. Mensurative sampling revealed that the abundance and taxon richness of seagrass epi- and infauna, and the above- and below-ground biomass of seagrass each increased with depth across a tidal elevation gradient extending from the high intertidal to the shallow subtidal. The manipulative experiment revealed that the relative importance of direct and indirect effects of tidal inundation in determining the distribution and abundance of infauna were taxon-specific. In general, however, the facilitative effects of rhizome structure were more evident at the intertidal compared to the subtidal elevation. Our results indicate that changes to tidal inundation regime will affect seagrass-dwelling macroinvertebrates through a combination of direct and indirect effects. Therefore, future changes in tidal inundation should be taken into account in developing conservation plans for protecting seagrasses and the biodiversity they sustain.
Mesoscopic Effects in an Agent-Based Bargaining Model in Regular Lattices
Poza, David J.; Santos, José I.; Galán, José M.; López-Paredes, Adolfo
2011-01-01
The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The model extends the multiagent bargaining model by Axtell, Epstein and Young [1] modifying the assumption of global interaction. Each agent is endowed with a memory and plays the best reply against the opponent's most frequent demand. We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can lead to new persistent regimes different from those found in previous research. In particular, community structure in the intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the hindering diffusion effect of fluctuating agents at their borders. PMID:21408019
Mesoscopic effects in an agent-based bargaining model in regular lattices.
Poza, David J; Santos, José I; Galán, José M; López-Paredes, Adolfo
2011-03-09
The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The model extends the multiagent bargaining model by Axtell, Epstein and Young modifying the assumption of global interaction. Each agent is endowed with a memory and plays the best reply against the opponent's most frequent demand. We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can lead to new persistent regimes different from those found in previous research. In particular, community structure in the intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the hindering diffusion effect of fluctuating agents at their borders.
Experimental evidence that parasites drive eco-evolutionary feedbacks.
Brunner, Franziska S; Anaya-Rojas, Jaime M; Matthews, Blake; Eizaguirre, Christophe
2017-04-04
Host resistance to parasites is a rapidly evolving trait that can influence how hosts modify ecosystems. Eco-evolutionary feedbacks may develop if the ecosystem effects of host resistance influence selection on subsequent host generations. In a mesocosm experiment, using a recently diverged (<100 generations) pair of lake and stream three-spined sticklebacks, we tested how experimental exposure to a common fish parasite ( Gyrodactylus spp.) affects interactions between hosts and their ecosystems in two environmental conditions (low and high nutrients). In both environments, we found that stream sticklebacks were more resistant to Gyrodactylus and had different gene expression profiles than lake sticklebacks. This differential infection led to contrasting effects of sticklebacks on a broad range of ecosystem properties, including zooplankton community structure and nutrient cycling. These ecosystem modifications affected the survival, body condition, and gene expression profiles of a subsequent fish generation. In particular, lake juvenile fish suffered increased mortality in ecosystems previously modified by lake adults, whereas stream fish showed decreased body condition in stream fish-modified ecosystems. Parasites reinforced selection against lake juveniles in lake fish-modified ecosystems, but only under oligotrophic conditions. Overall, our results highlight the overlapping timescales and the interplay of host-parasite and host-ecosystem interactions. We provide experimental evidence that parasites influence host-mediated effects on ecosystems and, thereby, change the likelihood and strength of eco-evolutionary feedbacks.
Experimental evidence that parasites drive eco-evolutionary feedbacks
Brunner, Franziska S.; Anaya-Rojas, Jaime M.; Matthews, Blake; Eizaguirre, Christophe
2017-01-01
Host resistance to parasites is a rapidly evolving trait that can influence how hosts modify ecosystems. Eco-evolutionary feedbacks may develop if the ecosystem effects of host resistance influence selection on subsequent host generations. In a mesocosm experiment, using a recently diverged (<100 generations) pair of lake and stream three-spined sticklebacks, we tested how experimental exposure to a common fish parasite (Gyrodactylus spp.) affects interactions between hosts and their ecosystems in two environmental conditions (low and high nutrients). In both environments, we found that stream sticklebacks were more resistant to Gyrodactylus and had different gene expression profiles than lake sticklebacks. This differential infection led to contrasting effects of sticklebacks on a broad range of ecosystem properties, including zooplankton community structure and nutrient cycling. These ecosystem modifications affected the survival, body condition, and gene expression profiles of a subsequent fish generation. In particular, lake juvenile fish suffered increased mortality in ecosystems previously modified by lake adults, whereas stream fish showed decreased body condition in stream fish-modified ecosystems. Parasites reinforced selection against lake juveniles in lake fish-modified ecosystems, but only under oligotrophic conditions. Overall, our results highlight the overlapping timescales and the interplay of host–parasite and host–ecosystem interactions. We provide experimental evidence that parasites influence host-mediated effects on ecosystems and, thereby, change the likelihood and strength of eco-evolutionary feedbacks. PMID:28320947
Macrofauna community inside and outside of the Darwin Mounds SAC, NE Atlantic
NASA Astrophysics Data System (ADS)
Serpetti, N.; Gontikaki, E.; Narayanaswamy, B. E.; Witte, U.
2012-11-01
Over the past two decades, growing concerns have been raised regarding the effects of towed fishing gears, such as trawls and dredges, on deep-sea biodiversity and ecosystem functioning. Trawling disturbs the benthic communities both physically and biologically, and can eliminate the most vulnerable organisms and modify habitat structure; chronically disturbed communities are often dominated by opportunistic species. The European Union is under obligation to designate a network of offshore Special Areas of Conservation (SACs) and Marine Protected Areas (MPAs) by the end of 2012 based on the perceived expectation that these networks will help protect marine biodiversity and that within these areas, faunal abundance and diversity will be higher than the surrounding fished areas. The Darwin Mounds, only discovered in 1998, are located in the Rockall Trough, NE Atlantic at a depth of ~ 1000 m. Deep-water trawling regularly took place in the region of the Darwin Mounds; however in 2004 the mounds were designated as the first offshore SAC in UK and the area is now closed to bottom trawling. As part of the HERMIONE programme the influence of human impact on the Oceans was one of the key themes and in June 2011, an investigation of the macrofaunal community structure at comparable sites both inside and outside of the Darwin Mound SAC was undertaken. Macrofaunal communities were found to differ significantly, with the difference mostly driven by changes in the abundance of polychaetes, crustaceans and nematodes whilst no significant differences were seen for the other phyla. Whereas overall macrofaunal abundance was higher outside the SAC compared to within, this pattern varies considerably between phyla. Diversity indices showed no significant differences between protected and unprotected sites. This could indicate that a few years of preservation are not enough time to determine a recovery by the macrofaunal community of cold-water ecosystems and that a continued monitoring over a longer term is necessary to fully understand the impact of fishery closures.
Lawrence, J R; Waiser, M J; Swerhone, G D W; Roy, J; Tumber, V; Paule, A; Hitchcock, A P; Dynes, J J; Korber, D R
2016-05-01
Commercial production of nanoparticles (NP) has created a need for research to support regulation of nanotechnology. In the current study, microbial biofilm communities were developed in rotating annular reactors during continuous exposure to 500 μg L(-1) of each nanomaterial and subjected to multimetric analyses. Scanning transmission X-ray spectromicroscopy (STXM) was used to detect and estimate the presence of the carbon nanomaterials in the biofilm communities. Microscopy observations indicated that the communities were visibly different in appearance with changes in abundance of filamentous cyanobacteria in particular. Microscale analyses indicated that fullerene (C60) did not significantly (p < 0.05) impact algal, cyanobacterial or bacterial biomass. In contrast, MWCNT exposure resulted in a significant decline in algal and bacteria biomass. Interestingly, the presence of SWCNT products increased algal biomass, significantly in the case of SWCNT-COOH (p < 0.05) but had no significant impact on cyanobacterial or bacterial biomass. Thymidine incorporation indicated that bacterial production was significantly reduced (p < 0.05) by all nanomaterials with the exception of fullerene. Biolog assessment of carbon utilization revealed few significant effects with the exception of the utilization of carboxylic acids. PCA and ANOSIM analyses of denaturing gradient gel electrophoresis (DGGE) results indicated that the bacterial communities exposed to fullerene were not different from the control, the MWCNT and SWNT-OH differed from the control but not each other, whereas the SWCNT and SWCNT-COOH both differed from all other treatments and were significantly different from the control (p < 0.05). Fluorescent lectin binding analyses also indicated significant (p < 0.05) changes in the nature and quantities of exopolymer consistent with changes in microbial community structure during exposure to all nanomaterials. Enumeration of protozoan grazers showed declines in communities exposed to fullerene or MWCNT but a trend for increases in all SWCNT exposures. Observations indicated that at 500 μg L(-1), carbon nanomaterials significantly alter aspects of microbial community structure and function supporting the need for further evaluation of their effects in aquatic habitats.
Determining Prevalence of Acute Bilirubin Encephalopathy in Developing Countries
2015-11-11
Demonstrate BIND II Score of >=5, is Valid for Detecting Moderate to Severe ABE in Neonates <14 Days Old.; Demonstrate Community-BIND Instrument, a Modified BIND II, is a Valid and Reliable Tool for Detecting ABE.; Demonstrate That Community-BIND Can be Used for Acquiring Population-based Prevalence of ABE in the Community.
USDA-ARS?s Scientific Manuscript database
OBJECTIVE: Identify unique cultural needs, priorities, program delivery preferences and barriers to achieving a healthy diet and lifestyle in one Native American community. DESIGN: A novel modified nominal group technique (NGT) conducted in four districts and three age groups (Elders, adults and...
ERIC Educational Resources Information Center
What Works Clearinghouse, 2006
2006-01-01
"Caring School Community[TM]" ("CSC") is a modified version of a program formerly known as the "Child Development Project." The program aims to promote core values, prosocial behavior, and a schoolwide feeling of community. The program consists of four elements originally developed for the "Child Development…
Biodiversity of Saline and Brakish Marshes of the Indian River Lagoon: Historic and Current Patterns
NASA Technical Reports Server (NTRS)
Schmalzer, Paul A.
1995-01-01
The Indian River Lagoon (IRL) crosses a zone of climatic transition. Historically, marshes dominated saline and brackish environments in the north of the lagoon, while mangroves became important to the south. Distribution of marsh communities was influenced by hydrology, salinity, soil characteristics, and fire, as well as periodic freezes. Marshes of the IRL have been greatly modified since the 1940s. Despite significant modifications, marsh plant species have not been lost from the region, but community and landscape patterns have been greatly modified and ecosystem processes altered.
NASA Astrophysics Data System (ADS)
Bell, C. W.; Calderon, F.; Pendall, E.; Wallenstein, M. D.
2012-12-01
Plant communities affect the activity and composition of soil microbial communities through alteration of the soil environment during root growth; substrate availability through root exudation; nutrient availability through plant uptake; and moisture regimes through transpiration. As a result, positive feedbacks in soil properties can result from alterations in microbial community composition and function in the rhizosphere zone. At the ecosystem-scale, many properties of soil microbial communities can vary between forest stands dominated by different species, including community composition and stoichiometry. However, the influence of smaller individual plants on grassland soils and microbial communities is less well documented. There is evidence to suggest that some plants can modify their soil environment in a manner that favors their persistence. For example, when Bromus tectorum plants invade, soil microbial communities tend to have higher N mineralization rates (in the rhizosphere zone) relative to native plants. If tight linkages between individual plant species and microbial communities inhabiting the rhizosphere exist, we hypothesized that any differences among plant species specific rhizosphere zones could be observed by shifts in: 1) soil -rhizosphere microbial community structure, 2) enzymatic C:N:P acquisition activities, 3) alterations in the soil C chemistry composition in the rhizosphere, and 4) plant - soil - microbial C:N:P elemental stoichiometry. We selected and grew 4 different C3 grasses species including three species native to the Shortgrass Steppe region (Pascopyrum smithii, Koeleria macrantha, and Vulpia octoflora) and one exotic invasive plant species (B. tectorum) in root-boxes that are designed to allow for easy access to the rhizosphere. The field soil was homogenized using a 4mm sieve and mixed 1:1 with sterile sand and seeded as monocultures (24 replicate root - boxes for each species). Plant and soil samples (along with no - plant control soil samples) were collected on day 28, 78, and 148 (N = 4 /sample period/species). Microbial community structure was quantified using the barcoded pyrosequencing protocols. We measured the potential activity of seven hydrolytic soil enzymes to represent the degradation of C, N, and P-rich substrates. Soil microbial C:N biomass responses to specific plant rhizospheres (MBC and MBN) were measured using the chloroform fumigation extraction method followed by DOC & N analysis. Fourier Transform Infrared Spectroscopy was used to assess differences in plant and soil C chemistry. We found that species specific rhizospheres are characteristic of very different soil chemical, edaphic, and microbial properties. These plant species act as gateways that introduce variability into soil C, N, and P ecosystem functional dynamics directly facilitated by rhizosphere - microbe associations. Our results suggest that nutrient stoichiometry within plant species' rhizospheres is a useful tool for identifying intra-ecosystem functional patterns. By identifying what and how specific species rhizospheres differ among the overall plant community, we can better predict how below-ground microbial community function and subsequent ecosystem processes can be influenced by alterations in plant community shifts based on the rhizosphere effects.
Canessa, Stefano; Parris, Kirsten M.
2013-01-01
Urbanization affects streams by modifying hydrology, increasing pollution and disrupting in-stream and riparian conditions, leading to negative responses by biotic communities. Given the global trend of increasing urbanization, improved understanding of its direct and indirect effects at multiple scales is needed to assist management. The theory of stream ecology suggests that the riverscape and the surrounding landscape are inextricably linked, and watershed-scale processes will also affect in-stream conditions and communities. This is particularly true for species with semi-aquatic life cycles, such as amphibians, which transfer energy between streams and surrounding terrestrial areas. We related measures of urbanization at different scales to frog communities in streams along an urbanization gradient in Melbourne, Australia. We used boosted regression trees to determine the importance of predictors and the shape of species responses. We then used structural equation models to investigate possible indirect effects of watershed imperviousness on in-stream parameters. The proportion of riparian vegetation and road density surrounding the site at the reach scale (500-m radius) had positive and negative effects, respectively, on species richness and on the occurrence of the two most common species in the area ( Crinia signifera and Limnodynastesdumerilii ). Road density and local aquatic vegetation interacted in influencing species richness, suggesting that isolation of a site can prevent colonization, in spite of apparently good local habitat. Attenuated imperviousness at the catchment scale had a negative effect on local aquatic vegetation, indicating possible indirect effects on frog species not revealed by single-level models. Processes at the landscape scale, particularly related to individual ranging distances, can affect frog species directly and indirectly. Catchment imperviousness might not affect adult frogs directly, but by modifying hydrology it can disrupt local vegetation and prove indirectly detrimental. Integrating multiple-scale management actions may help to meet conservation targets for streams in the face of urbanization. PMID:23922963
M Martins, Gustavo; Hipólito, Cláudia; Parreira, Filipe; C L Prestes, Afonso; Dionísio, Maria A; N Azevedo, José M; Neto, Ana I
2016-05-01
In many coastal regions, vegetated habitats (e.g. kelps forests, seagrass beds) play a key role in the structure and functioning of shallow subtidal reef ecosystems, by modifying local environmental conditions and by providing food and habitat for a wide range of organisms. In some regions of the world, however, such idiosyncratic ecosystems are largely absent and are often replaced by less notable ecosystem formers. In the present study, we empirically compared the structure and functioning of two distinct shallow-water habitats present in the Azores: one dominated by smaller frondose brown macroalgae (Dictyotaceae and Halopteris) and one dominated by low-lying turfs. Two replicated areas of each habitat were sampled at two different times of the year, to assess spatial and temporal consistency of results. Habitats dominated by small fronds were significantly (ca. 3 times) more productive (when standardized per algal mass) compared to the turf-dominated habitats, and supported a distinct assemblage (both in terms of composition and abundance) of associated macrofauna. Unlike other well-known and studied vegetated habitats (i.e. kelp forests), however, no effects of habitat were found on the structure of benthonic fish assemblages. Results were spatially and temporally consistent suggesting that, in warmer temperate oceans, habitats dominated by species of smaller frondose brown algae can also play an important role in the structure and functioning of subtidal communities and may, to a certain extent, be considered analogous to other well-known vegetated habitats around the world (i.e. kelp forests, seagrass beds). Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jensen, Aaron C.
Efforts to modify and improve science education in the United States have seen minimal success (Crawford, 2000; Borko & Putman, 1996; Puntambekar, Stylianou & Goldstein, 2007; Lustick, 2011). One important reason for this is the professional development that teachers go through in order to learn about and apply these new ideas is generally of poor quality and structured incorrectly for long-term changes in the classroom (Little, 1993; Fullen, 1996; Porter, 2000; Jeanpierre, Oberhauser, & Freeman, 2005). This grounded theory study explores a science community of practice and how the professional development achieved through participation in that community has effected the instruction of the teachers involved, specifically the incorporation of researched based effective science teaching instructional strategies. This study uses personal reflection papers written by the participants, interviews, and classroom observations to understand the influence that the science community of practice has had on the participants. Results indicate that participation in this science community of practice has significant impact on the teachers involved. Participants gained greater understanding of science content knowledge, incorporated effective science instructional strategies into their classroom, and were able to practice both content knowledge and strategies in a non-threatening environment thus gaining a greater understanding of how to apply them in the classrooms. These findings motivate continued research in the role that communities of practice may play in teacher professional develop and the effectiveness of quality professional development in attaining long-term, sustained improvement in science education.
Naidu, Ramana K.
2018-01-01
Abstract Background: Chronic pain associated with serious illnesses is having a major impact on population health in the United States. Accountability for high quality care for community-dwelling patients with serious illnesses requires selection of metrics that capture the burden of chronic pain whose treatment may be enhanced or complicated by opioid use. Objective: Our aim was to evaluate options for assessing pain in seriously ill community dwelling adults, to discuss the use/abuse of opioids in individuals with chronic pain, and to suggest pain and opioid use metrics that can be considered for screening and evaluation of patient responses and quality care. Design: Structured literature review. Measurements: Evaluation of pain and opioid use assessment metrics and measures for their potential usefulness in the community. Results: Several pain and opioid assessment instruments are available for consideration. Yet, no one pain instrument has been identified as “the best” to assess pain in seriously ill community-dwelling patients. Screening tools exist that are specific to the assessment of risk in opioid management. Opioid screening can assess risk based on substance use history, general risk taking, and reward-seeking behavior. Conclusions: Accountability for high quality care for community-dwelling patients requires selection of metrics that will capture the burden of chronic pain and beneficial use or misuse of opioids. Future research is warranted to identify, modify, or develop instruments that contain important metrics, demonstrate a balance between sensitivity and specificity, and address patient preferences and quality outcomes. PMID:29091525
77 FR 51743 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-27
... modified elevations, and communities affected for the City of Newport News, Virginia. Specifically, it.... The table, entitled ``City of Newport News, Virgina'' addressed the flooding sources Newmarket Creek... Modified City of Newport News, Virginia Virginia City of Newport News.... Newmarket Creek Approximately 0...
Direct and indirect effects of invasive plants on soil chemistry and ecosystem function.
Weidenhamer, Jeffrey D; Callaway, Ragan M
2010-01-01
Invasive plants have a multitude of impacts on plant communities through their direct and indirect effects on soil chemistry and ecosystem function. For example, plants modify the soil environment through root exudates that affect soil structure, and mobilize and/or chelate nutrients. The long-term impact of litter and root exudates can modify soil nutrient pools, and there is evidence that invasive plant species may alter nutrient cycles differently from native species. The effects of plants on ecosystem biogeochemistry may be caused by differences in leaf tissue nutrient stoichiometry or secondary metabolites, although evidence for the importance of allelochemicals in driving these processes is lacking. Some invasive species may gain a competitive advantage through the release of compounds or combinations of compounds that are unique to the invaded community—the “novel weapons hypothesis.” Invasive plants also can exert profound impact on plant communities indirectly through the herbicides used to control them. Glyphosate, the most widely used herbicide in the world, often is used to help control invasive weeds, and generally is considered to have minimal environmental impacts. Most studies show little to no effect of glyphosate and other herbicides on soil microbial communities. However, herbicide applications can reduce or promote rhizobium nodulation and mycorrhiza formation. Herbicide drift can affect the growth of non-target plants, and glyphosate and other herbicides can impact significantly the secondary chemistry of plants at sublethal doses. In summary, the literature indicates that invasive species can alter the biogeochemistry of ecosystems, that secondary metabolites released by invasive species may play important roles in soil chemistry as well as plant-plant and plant-microbe interactions, and that the herbicides used to control invasive species can impact plant chemistry and ecosystems in ways that have yet to be fully explored.
Chen, Mei; Zhang, Xingran; Wang, Zhiwei; Wang, Liang; Wu, Zhichao
2017-09-01
Biofouling remains as a critical issue limiting the widespread applications of membrane bioreactors (MBRs). The use of antibiofouling membranes is an emerging method to tackle this issue. In this study, a polyvinylidene fluoride (PVDF) membrane was modified using a quaternary ammonium compound (QAC) to create an antibiofouling membrane. The membrane was used in an MBR and the performance, mechanisms, and effects on microbial communities of this membrane were compared to a control operated in parallel. Results showed that the membrane exhibited a significantly reduced transmembrane pressure increase rate of 0.29 kPa/d compared with 0.91 kPa/d of the control. Analysis using a confocal laser scanning microscope (CLSM) revealed almost complete lack of living microbes on the antibiofouling membrane in contrast to the control. However, specific oxygen uptake rate and dehydrogenase activity analyses demonstrated no adverse impacts on microbial viability of the bulk activated sludge. Bacterial population analysis using the Illumina Miseq platform added further evidence that the use of antibiofouling membrane did not exert negative influences on richness, diversity and structure of the bacterial community. Effluent quality of the test MBR also exhibited minimal difference from that of the control reactor. The amount of polysaccharides and proteins in the biofouling layer was also significantly reduced. Quartz crystal microbalance with dissipation monitoring suggested that the antibiofouling membrane only allowed organic matter with strong adhesion properties to attach onto the membrane surfaces. These findings highlight the potential of the antibiofouling membrane to be used in MBRs for wastewater treatment and reclamation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reef Fishes at All Trophic Levels Respond Positively to Effective Marine Protected Areas
Soler, German A.; Edgar, Graham J.; Thomson, Russell J.; Kininmonth, Stuart; Campbell, Stuart J.; Dawson, Terence P.; Barrett, Neville S.; Bernard, Anthony T. F.; Galván, David E.; Willis, Trevor J.; Alexander, Timothy J.; Stuart-Smith, Rick D.
2015-01-01
Marine Protected Areas (MPAs) offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores) was significantly greater (by 40% - 200%) in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing. PMID:26461104
Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest.
Schilling, Erik M; Waring, Bonnie G; Schilling, Jonathan S; Powers, Jennifer S
2016-09-01
We investigated how forest composition, litter quality, and rainfall interact to affect leaf litter decomposition across three successional tropical dry forests in Costa Rica. We monitored litter stocks and bulk litter turnover in 18 plots that exhibit substantial variation in soil characteristics, tree community structure, fungal communities (including forests dominated by ecto- or arbuscular mycorrhizal host trees), and forest age. Simultaneously, we decomposed three standard litter substrates over a 6-month period spanning an unusually intense drought. Decay rates of standard substrates depended on the interaction between litter identity and forest type. Decomposition rates were correlated with tree and soil fungal community composition as well as soil fertility, but these relationships differed among litter types. In low fertility soils dominated by ectomycorrhizal oak trees, bulk litter turnover rates were low, regardless of soil moisture. By contrast, in higher fertility soils that supported mostly arbuscular mycorrhizal trees, bulk litter decay rates were strongly dependent on seasonal water availability. Both measures of decomposition increased with forest age, as did the frequency of termite-mediated wood decay. Taken together, our results demonstrate that soils and forest age exert strong control over decomposition dynamics in these tropical dry forests, either directly through effects on microclimate and nutrients, or indirectly by affecting tree and microbial community composition and traits, such as litter quality.
The effects of variable sample biomass on comparative metagenomics.
Chafee, Meghan; Maignien, Loïs; Simmons, Sheri L
2015-07-01
Longitudinal studies that integrate samples with variable biomass are essential to understand microbial community dynamics across space or time. Shotgun metagenomics is widely used to investigate these communities at the functional level, but little is known about the effects of combining low and high biomass samples on downstream analysis. We investigated the interacting effects of DNA input and library amplification by polymerase chain reaction on comparative metagenomic analysis using dilutions of a single complex template from an Arabidopsis thaliana-associated microbial community. We modified the Illumina Nextera kit to generate high-quality large-insert (680 bp) paired-end libraries using a range of 50 pg to 50 ng of input DNA. Using assembly-based metagenomic analysis, we demonstrate that DNA input level has a significant impact on community structure due to overrepresentation of low-GC genomic regions following library amplification. In our system, these differences were largely superseded by variations between biological replicates, but our results advocate verifying the influence of library amplification on a case-by-case basis. Overall, this study provides recommendations for quality filtering and de-replication prior to analysis, as well as a practical framework to address the issue of low biomass or biomass heterogeneity in longitudinal metagenomic surveys. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
Ogbo, Felix Akpojene; Page, Andrew; Idoko, John; Agho, Kingsley E
2018-02-13
Non-exclusive breastfeeding (non-EBF) is a risk factor for many of the 2300 under-five deaths occurring daily in Nigeria - a developing country with approximately 40 million children. This study aimed to quantify and compare the attributable burden of key modifiable risk factors associated with non-EBF in Nigeria to inform strategic policy responses and initiatives. Relative risk and exposure prevalence for selected modifiable risk factors were used to calculate population attributable fractions based on Nigeria Demographic and Health Surveys data for the period (1999-2013). Scenarios based on feasible impact of community-based interventions in reducing exposure prevalence were also considered to calculate comparative potential impact fractions. In Nigeria, an estimated 22.8% (95% Confidence Interval, CI: 9.2-37.0%) of non-EBF was attributable to primary and no maternal education; 24.7% (95% CI: 9.5-39.5%) to middle and poor household wealth, 9.7% (1.7-18.1%) to lower number (1-3) and no antenatal care visits; 18.8% (95% CI: 6.9-30.8%) to home delivery and 16.6% (95% CI: 3.0-31.3%) to delivery assisted by a non-health professional. In combination, more than half of all cases of non-EBF (64.5%; 95% CI: 50.0-76.4%) could be attributed to those modifiable risk factors. Scenarios based on feasible impacts of community-based approaches to improve health service access and human capacity suggest that an avoidable burden of non-EBF practice of approximately 11% (95% CI: -5.4; 24.7) is achievable. Key modifiable risk factors contribute significantly to non-EBF in Nigerian women. Community-based initiatives and appropriate socio-economic government policies that specifically consider those modifiable risk factors could substantially reduce non-EBF practice in Nigeria.
Deer herbivory reduces web-building spider abundance by simplifying forest vegetation structure
Chips, Michael J.; Carson, Walter P.
2016-01-01
Indirect ecological effects are a common feature of ecological systems, arising when one species affects interactions among two or more other species. We examined how browsing by white-tailed deer (Odocoileus virginianus) indirectly affected the abundance and composition of a web-building spider guild through their effects on the structure of the ground and shrub layers of northern hardwood forests. We examined paired plots consisting of deer-free and control plots in the Allegheny Plateau region Pennsylvania and Northern Highlands region of Wisconsin. We recorded the abundance of seven types of webs, each corresponding to a family of web-building spiders. We quantified vegetation structure and habitat suitability for the spiders by computing a web scaffold availability index (WSAI) at 0.5 m and 1.0 m above the ground. At Northern Highlands sites, we recorded prey availability. Spider webs were twice as abundant in deer-free plots compared to control plots, while WSAI was 7–12 times greater in deerfree plots. Prey availability was lower in deer-free plots. With the exception of funnel web-builders, all spider web types were significantly more abundant in deer-free plots. Both deer exclusion and the geographic region of plots were significant predictors of spider community structure. In closed canopy forests with high browsing pressure, the low density of tree saplings and shrubs provides few locations for web-building spiders to anchor webs. Recruitment of these spiders may become coupled with forest disturbance events that increase tree and shrub recruitment. By modifying habitat structure, deer appear to indirectly modify arthropod food web interactions. As deer populations have increased in eastern North America over the past several decades, the effects of deer on web-building spiders may be widespread. PMID:27703868
Emerging Ecosystems Change the Spatial Distribution of Top Carnivores Even in Poorly Populated Areas
Barbar, Facundo; Werenkraut, Victoria; Morales, Juan Manuel; Lambertucci, Sergio Agustín
2015-01-01
Humans affect biological diversity and species distribution patterns by modifying resource availability and generating novel environments where generalist species benefit and specialist species are rare. In particular, cities create local homogenization while roads fragment habitat, although both processes can increase food availability for some species that may be able to take advantage of this new source. We studied space use by birds of prey in relation to human construction, hypothesizing that these birds would be affected even in poorly populated areas. We worked in Northwestern Patagonia, Argentina, which is experiencing a high population growth, but still having very large unpopulated areas. We related the presence of raptors with different sources of human disturbance and found that both the abundance and richness of these birds were positively associated with anthropogenic environments. These results are driven mostly by a strong association between the medium-sized generalist species and these novel environments (mainly roads and cities). This may create an imbalance in intra-guild competitive abilities, modifying the normal structures of top carnivore hierarchies. Indeed, the structure of raptor communities seems to be changing, even in poorly populated areas, with anthropogenic constructions seemingly producing changes in wild areas more promptly than thought, a cause for concern in ecosystems conservation issues. PMID:25799547
Soil ecosystem functioning under climate change: plant species and community effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kardol, Paul; Cregger, Melissa; Campany, Courtney E
2010-01-01
Feedbacks of terrestrial ecosystems to climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the microbial communities that feed on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and water availability. Specifically, we collected soils at the plot level (plant community soils), and beneathmore » dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: 1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activities, and soil nematodes. Multiple climate change factors can interact to shape ecosystems, but in this case, those interactions were largely driven by changes in water availability. 2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning and this impact was not obvious when looking at plant community soils. Climate change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. In sum, these results indicate that accurate assessments of climate change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate change-induced shifts in plant community composition will likely modify or counteract the direct impact of climate change on soil ecosystem functioning, and hence, these indirect effects should be taken into account when predicting how climate change will alter ecosystem functioning.« less
Soil ecosystem functioning under climate change: plant species and community effects.
Kardol, Paul; Cregger, Melissa A; Campany, Courtney E; Classen, Aimee T
2010-03-01
Feedbacks of terrestrial ecosystems to atmospheric and climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the soil communities that depend on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and precipitation in Tennessee (USA). Specifically, we collected soils at the plot level (plant community soils) and beneath dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: (1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activity, and soil nematodes. Multiple climate-change factors can interact to shape ecosystems, but in our study, those interactions were largely driven by changes in water. (2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning, and this impact was not obvious when looking at plant community soils. Climate-change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. These results indicate that accurate assessments of climate-change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate-change-induced shifts in plant community composition will likely modify or counteract the direct impact of atmospheric and climate change on soil ecosystem functioning, and hence, these indirect effects should be taken into account when predicting the manner in which global change will alter ecosystem functioning.
Kaczorowski, Janusz; Chambers, Larry W; Karwalajtys, Tina; Dolovich, Lisa; Farrell, Barbara; McDonough, Beatrice; Sebaldt, Rolf; Levitt, Cheryl; Hogg, William; Thabane, Lehana; Tu, Karen; Goeree, Ron; Paterson, J Michael; Shubair, Mamdouh; Gierman, Tracy; Sullivan, Shannon; Carter, Megan
2008-06-01
High blood pressure is an important and modifiable cardiovascular disease risk factor that remains under-detected and under-treated. Community-level interventions that address high blood pressure and other modifiable risk factors are a promising strategy to improve cardiovascular health in populations. The present study is a community cluster-randomised trial testing the effectiveness of CHAP (Cardiovascular Health Awareness Program) on the cardiovascular health of older adults. Thirty-nine mid-sized communities in Ontario, Canada were stratified by geographic location and size of the population aged >or=65 years and randomly allocated to receive CHAP or no intervention. In CHAP communities, residents aged >or=65 years were invited to attend cardiovascular risk assessment sessions held in pharmacies over 10 weeks in Fall, 2006. Sessions included blood pressure measurement and feedback to family physicians. Trained volunteers delivered the program with support from pharmacists, community nurses and local organisations. The primary outcome measure is the relative change in the mean annual rate of hospital admission for acute myocardial infarction, congestive heart failure and stroke (composite end-point) among residents aged >or=65 years in intervention and control communities, using routinely collected, population-based administrative health data. This paper highlights considerations in design, implementation and evaluation of a large-scale, community-wide cardiovascular health promotion initiative.
The Role of Microbial Community Composition in Controlling Soil Respiration Responses to Temperature
Khachane, Amit; Dungait, Jennifer A. J.; Fraser, Fiona; Hopkins, David W.; Wookey, Philip A.; Singh, Brajesh K.; Freitag, Thomas E.; Hartley, Iain P.; Prosser, James I.
2016-01-01
Rising global temperatures may increase the rates of soil organic matter decomposition by heterotrophic microorganisms, potentially accelerating climate change further by releasing additional carbon dioxide (CO2) to the atmosphere. However, the possibility that microbial community responses to prolonged warming may modify the temperature sensitivity of soil respiration creates large uncertainty in the strength of this positive feedback. Both compensatory responses (decreasing temperature sensitivity of soil respiration in the long-term) and enhancing responses (increasing temperature sensitivity) have been reported, but the mechanisms underlying these responses are poorly understood. In this study, microbial biomass, community structure and the activities of dehydrogenase and β-glucosidase enzymes were determined for 18 soils that had previously demonstrated either no response or varying magnitude of enhancing or compensatory responses of temperature sensitivity of heterotrophic microbial respiration to prolonged cooling. The soil cooling approach, in contrast to warming experiments, discriminates between microbial community responses and the consequences of substrate depletion, by minimising changes in substrate availability. The initial microbial community composition, determined by molecular analysis of soils showing contrasting respiration responses to cooling, provided evidence that the magnitude of enhancing responses was partly related to microbial community composition. There was also evidence that higher relative abundance of saprophytic Basidiomycota may explain the compensatory response observed in one soil, but neither microbial biomass nor enzymatic capacity were significantly affected by cooling. Our findings emphasise the key importance of soil microbial community responses for feedbacks to global change, but also highlight important areas where our understanding remains limited. PMID:27798702
Experimental Climate Change Modifies Degradative Succession in Boreal Peatland Fungal Communities.
Asemaninejad, Asma; Thorn, R Greg; Lindo, Zoë
2017-04-01
Peatlands play an important role in global climate change through sequestration of atmospheric CO 2 . Climate-driven changes in the structure of fungal communities in boreal peatlands that favor saprotrophic fungi can substantially impact carbon dynamics and nutrient cycling in these crucial ecosystems. In a mesocosm study using a full factorial design, 100 intact peat monoliths, complete with living Sphagnum and above-ground vascular vegetation, were subjected to three climate change variables (increased temperature, reduced water table, and elevated CO 2 concentrations). Peat litterbags were placed in mesocosms, and fungal communities in litterbags were monitored over 12 months to assess the impacts of climate change variables on peat-inhabiting fungi. Changes in fungal richness, diversity, and community composition were assessed using Illumina MiSeq sequencing of ribosomal DNA (rDNA). While general fungal richness reduced under warming conditions, Ascomycota exhibited higher diversity under increased temperature treatments over the course of the experiment. Both increased temperature and lowered water table position drove shifts in fungal community composition with a strong positive effect on endophytic and mycorrhizal fungi (including one operational taxonomic unit (OTU) tentatively identified as Barrenia panicia) and different groups of saprotrophs identified as Mortierella, Galerina, and Mycena. These shifts were observed during a predicted degradative succession in the decomposer community as different carbon substrates became available. Since fungi play a central role in peatland communities, increased abundances of saprotrophic fungi under warming conditions, at the expense of reduced fungal richness overall, may increase decomposition rates under future climate scenarios and could potentially aggravate the impacts of climate change.
Auffret, Marc D; Karhu, Kristiina; Khachane, Amit; Dungait, Jennifer A J; Fraser, Fiona; Hopkins, David W; Wookey, Philip A; Singh, Brajesh K; Freitag, Thomas E; Hartley, Iain P; Prosser, James I
2016-01-01
Rising global temperatures may increase the rates of soil organic matter decomposition by heterotrophic microorganisms, potentially accelerating climate change further by releasing additional carbon dioxide (CO2) to the atmosphere. However, the possibility that microbial community responses to prolonged warming may modify the temperature sensitivity of soil respiration creates large uncertainty in the strength of this positive feedback. Both compensatory responses (decreasing temperature sensitivity of soil respiration in the long-term) and enhancing responses (increasing temperature sensitivity) have been reported, but the mechanisms underlying these responses are poorly understood. In this study, microbial biomass, community structure and the activities of dehydrogenase and β-glucosidase enzymes were determined for 18 soils that had previously demonstrated either no response or varying magnitude of enhancing or compensatory responses of temperature sensitivity of heterotrophic microbial respiration to prolonged cooling. The soil cooling approach, in contrast to warming experiments, discriminates between microbial community responses and the consequences of substrate depletion, by minimising changes in substrate availability. The initial microbial community composition, determined by molecular analysis of soils showing contrasting respiration responses to cooling, provided evidence that the magnitude of enhancing responses was partly related to microbial community composition. There was also evidence that higher relative abundance of saprophytic Basidiomycota may explain the compensatory response observed in one soil, but neither microbial biomass nor enzymatic capacity were significantly affected by cooling. Our findings emphasise the key importance of soil microbial community responses for feedbacks to global change, but also highlight important areas where our understanding remains limited.
Gilliland, N J; Chappelka, A H; Muntifering, R B; Ditchkoff, S S
2016-01-01
Forage species common to the southern USA Piedmont region, Lolium arundinacea, Paspalum dilatatum, Cynodon dactylon and Trifolium repens, were established in a model pasture system to test the future climate change scenario of increasing ozone exposure in combination with varying rainfall amounts on community structure and nutritive quality. Forages were exposed to two levels of ozone [ambient (non-filtered; NF) and twice ambient (2×) concentrations] with three levels of precipitation (average or ±20% of average) in modified open-top chambers (OTCs) from June to September 2009. Dry matter (DM) yield did not differ over the growing season between forage types, except in primary growth grasses where DM yield was higher in 2× than NF treatment. Primary growth clover decreased in nutritive quality in 2× ozone because of increased concentrations of neutral detergent fibre (NDF), acid detergent fibre (ADF) and acid detergent lignin (ADL). Re-growth clover exhibited the largest decrease in nutritive quality, whereas grasses were not adversely affected in 2× ozone. Re-growth grasses responded positively to 2× ozone exposure, as indicated in increased relative food value (RFV) and percentage crude protein (CP) than NF-exposed re-growth grasses. Effects of precipitation were not significant over the growing season for primary or re-growth forage, except in primary growth grasses where DM yield was higher in chambers with above average (+20%) precipitation. Total canopy cover was significantly higher over the growing season in chambers receiving above average precipitation, but no significant effects were observed with ozone. Results indicate shifts in plant community structure and functioning related to mammalian herbivore herbivory in future climate change scenarios. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.
Hou, Zhiyuan; Lin, Senlin; Zhang, Donglan
2017-01-01
Objectives We examined the association between structural social capital and public health services use, and explored the modifiable effect of neighbourhood factors on this association among domestic migrants in China. Methods Data were from a 2014 nationally representative cross-sectional sample of domestic migrants aged 15–59 years in China. Survey-weighted logistic regression models were applied to assess the association between structural social capital, measured by participation in social organisations and social activities, and use of public health services. Interaction terms between neighbourhood urban status, neighbourhood composition and social capital were further assessed in the models. Results Migrants who participated in social organisations were more likely to establish health records (OR 1.467, 95% CI 1.201 to 1.793) and receive health education information (OR 1.729, 95% CI 1.484 to 2.016) than those who did not. Participation in social activities was positively associated with establishing health records only in urban communities (OR 1.853, 95% CI 1.060 to 3.239), and it was positively linked to receiving health education information among those living with a higher percentage of local neighbours (OR 1.451, 95% CI 1.044 to 2.017). Conclusions Structural social capital was related to an increased utilisation of local public health services among migrants. The findings of this study provided new evidence for the differential influences of social capital by neighbourhood characteristics in China, which suggested the importance to enhance social capital in rural/suburban communities and communities where the majority of the residents were migrants. PMID:28821507
Hou, Zhiyuan; Lin, Senlin; Zhang, Donglan
2017-08-18
We examined the association between structural social capital and public health services use, and explored the modifiable effect of neighbourhood factors on this association among domestic migrants in China. Data were from a 2014 nationally representative cross-sectional sample of domestic migrants aged 15-59 years in China. Survey-weighted logistic regression models were applied to assess the association between structural social capital, measured by participation in social organisations and social activities, and use of public health services. Interaction terms between neighbourhood urban status, neighbourhood composition and social capital were further assessed in the models. Migrants who participated in social organisations were more likely to establish health records (OR 1.467, 95% CI 1.201 to 1.793) and receive health education information (OR 1.729, 95% CI 1.484 to 2.016) than those who did not. Participation in social activities was positively associated with establishing health records only in urban communities (OR 1.853, 95% CI 1.060 to 3.239), and it was positively linked to receiving health education information among those living with a higher percentage of local neighbours (OR 1.451, 95% CI 1.044 to 2.017). Structural social capital was related to an increased utilisation of local public health services among migrants. The findings of this study provided new evidence for the differential influences of social capital by neighbourhood characteristics in China, which suggested the importance to enhance social capital in rural/suburban communities and communities where the majority of the residents were migrants. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
77 FR 6980 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-10
... feet above ground [caret] Elevation in meters (MSL) Modified Unincorporated Areas of Nowata County... Sea Level, rounded to the nearest 0.1 meter. ADDRESSES Unincorporated Areas of Nowata County Maps are... Communities affected elevation above ground [caret] Elevation in meters (MSL) Modified St. Lucie County...
77 FR 3625 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-25
... feet above ground [caret] Elevation in meters (MSL) Modified City of Baltimore, Maryland Docket No... Sea Level, rounded to the nearest 0.1 meter. ADDRESSES City of Baltimore Maps are available for... Depth in feet Communities affected elevation above ground [caret] Elevation in meters (MSL) Modified...
Boundary Layer Characterization during Perdigão Field Campaign 2017
NASA Astrophysics Data System (ADS)
Leo, L. S.; Salvadore, J. J.; Belo-Pereira, M.; Menke, R.; Gomes, S.; Krishnamurthy, R.; Brown, W. O. J.; Creegan, E.; Klein, P. M.; Wildmann, N.; Oncley, S.; Fernando, J.; Mann, J.
2017-12-01
The depth and structure of the atmospheric boundary layer (ABL) significantly impact the performances of wind farms located in complex terrain environments, since low-level jets and other flow structures in the proximity of hills and mountains determine the weather extremes, such as shear layer instabilities, lee/internal wave breaking, etc. which in turn profoundly modify the turbulence profile at wind turbine relevant heights.A suite of instruments was deployed covering a double-ridge in central Portugal near the town of Perdigão in 2016-2017, and they are used here to characterize the ABL structure over complex terrain during the Intensive Observational Period (IOP, May 1- June 15, 2017) of the research field program dubbed "Perdigão". Firstly, the methodology adopted in this work to estimate the BL height will be discussed; secondly, an overview of the BL depth and characteristics during Perdigão-IOP campaign will be provided, with emphasis on case studies of interest for both the wind-power and boundary-layer communities.
Methods for modifying monofilaments, bundles of monofilaments, and fibrous structural material
Allen, Charles A.; Argyle, Mark D.; Fox, Robert V.; Ginosar, Daniel M.; Janikowski, Stuart K.; Miller, David L.; Propp, W. Alan; Toth, William J.
2002-12-17
The present invention is related to the modifying of substrates such as monofilaments, bundles of monofilaments, and fibrous structural material with a modifying agent. The modifying agent is suspended or dissolved in a supercritical fluid, near-critical fluid, superheated fluid, superheated liquid, or a liquified gas and is deposited by rapidly altering the pressure in a chamber to deposit the modifying material onto the substrate.
Statistical physics of community ecology: a cavity solution to MacArthur’s consumer resource model
NASA Astrophysics Data System (ADS)
Advani, Madhu; Bunin, Guy; Mehta, Pankaj
2018-03-01
A central question in ecology is to understand the ecological processes that shape community structure. Niche-based theories have emphasized the important role played by competition for maintaining species diversity. Many of these insights have been derived using MacArthur’s consumer resource model (MCRM) or its generalizations. Most theoretical work on the MCRM has focused on small ecosystems with a few species and resources. However theoretical insights derived from small ecosystems many not scale up to large ecosystems with many resources and species because large systems with many interacting components often display new emergent behaviors that cannot be understood or deduced from analyzing smaller systems. To address these shortcomings, we develop a statistical physics inspired cavity method to analyze MCRM when both the number of species and the number of resources is large. Unlike previous work in this limit, our theory addresses resource dynamics and resource depletion and demonstrates that species generically and consistently perturb their environments and significantly modify available ecological niches. We show how our cavity approach naturally generalizes niche theory to large ecosystems by accounting for the effect of collective phenomena on species invasion and ecological stability. Our theory suggests that such phenomena are a generic feature of large, natural ecosystems and must be taken into account when analyzing and interpreting community structure. It also highlights the important role that statistical-physics inspired approaches can play in furthering our understanding of ecology.
7 CFR 1942.17 - Community facilities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... economic purposes a single community having a contiguous boundary. (2) Project selection process. The... efficient management and economical service; and/or enlarge, extend, or otherwise modify existing facilities... account for items such as geographic distribution of funds and emergency conditions caused by economic...
7 CFR 1942.17 - Community facilities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... economic purposes a single community having a contiguous boundary. (2) Project selection process. The... efficient management and economical service; and/or enlarge, extend, or otherwise modify existing facilities... account for items such as geographic distribution of funds and emergency conditions caused by economic...
7 CFR 1942.17 - Community facilities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... economic purposes a single community having a contiguous boundary. (2) Project selection process. The... efficient management and economical service; and/or enlarge, extend, or otherwise modify existing facilities... account for items such as geographic distribution of funds and emergency conditions caused by economic...
7 CFR 1942.17 - Community facilities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... economic purposes a single community having a contiguous boundary. (2) Project selection process. The... efficient management and economical service; and/or enlarge, extend, or otherwise modify existing facilities... account for items such as geographic distribution of funds and emergency conditions caused by economic...
Beacon communities' public health initiatives: a case study analysis.
Massoudi, Barbara L; Marcial, Laura H; Haque, Saira; Bailey, Robert; Chester, Kelley; Cunningham, Shellery; Riley, Amanda; Soper, Paula
2014-01-01
The Beacon Communities for Public Health (BCPH) project was launched in 2011 to gain a better understanding of the range of activities currently being conducted in population- and public health by the Beacon Communities. The project highlighted the successes and challenges of these efforts with the aim of sharing this information broadly among the public health community. The Beacon Community Program, designed to showcase technology-enabled, community-based initiatives to improve outcomes, focused on: building and strengthening health information technology (IT) infrastructure and exchange capabilities; translating investments in health IT to measureable improvements in cost, quality, and population health; and, developing innovative approaches to performance measurement, technology, and care delivery. Four multimethod case studies were conducted based on a modified sociotechnical framework to learn more about public health initiative implementation and use in the Beacon Communities. Our methodological approach included using document review and semistructured key informant interviews. NACCHO Model Practice Program criteria were used to select the public health initiatives included in the case studies. Despite differences among the case studies, common barriers and facilitators were found to be present in all areas of the sociotechnical framework application including structure, people, technology, tasks, overarching considerations, and sustainability. Overall, there were many more facilitators (range = 7-14) present for each Beacon compared to barriers (range = 4-6). Four influential promising practices were identified through the work: forging strong and sustainable partnerships; ensuring a good task-technology fit and a flexible and iterative design; fostering technology acceptance; and, providing education and demonstrating value. A common weakness was the lack of a framework or model for the Beacon Communities evaluation work. Sharing a framework or approach to evaluation at the beginning of implementation made the work more effective. Supporting evaluation to inform future implementations is important.
Epidemic spreading on complex networks with community structures
Stegehuis, Clara; van der Hofstad, Remco; van Leeuwaarden, Johan S. H.
2016-01-01
Many real-world networks display a community structure. We study two random graph models that create a network with similar community structure as a given network. One model preserves the exact community structure of the original network, while the other model only preserves the set of communities and the vertex degrees. These models show that community structure is an important determinant of the behavior of percolation processes on networks, such as information diffusion or virus spreading: the community structure can both enforce as well as inhibit diffusion processes. Our models further show that it is the mesoscopic set of communities that matters. The exact internal structures of communities barely influence the behavior of percolation processes across networks. This insensitivity is likely due to the relative denseness of the communities. PMID:27440176
Interactive effects of live coral and structural complexity on the recruitment of reef fishes
NASA Astrophysics Data System (ADS)
Coker, D. J.; Graham, N. A. J.; Pratchett, M. S.
2012-12-01
Corals reefs are subjected to multiple disturbances that modify levels of coral cover and structural complexity of the reef matrix, and in turn influence the structure of associated fish communities. With disturbances predicted to increase, insight into how changes in substrate condition will influence the recruitment of many fishes is essential for understanding the recovery of reef fish populations following biological and physical disturbances. While studies have revealed that both live coral cover and structural complexity are important for many fishes, there is a lack of understanding regarding how a combination of these changes will impact the recruitment of fishes. This study used experimentally constructed patch reefs consisting of six different habitat treatments; three levels of live coral cover (high, medium, low) crossed with two levels of structural complexity (high, low), to test the independent and combined effects of live coral cover and structural complexity on the recruitment and recovery of fish communities. The abundance and species diversity of fishes varied significantly among the six habitat treatments, but differences were not clearly associated with either coral cover or structural complexity and varied through time. More striking, however, was a significant difference in the composition of fish assemblages among treatments, due mostly to disproportionate abundance of coral-dwelling fishes on high coral cover, high complexity reefs. Overall, it appears that coral cover had a more important influence than structural complexity, at least for the contrasting levels of structural complexity achieved on experimental patch reefs. Furthermore, we found that live coral cover is important for the recruitment of some non-coral-dependent fishes. This study confirms that live coral cover is critical for the maintenance of high biodiversity on tropical coral reefs, and that sustained and ongoing declines in coral cover will adversely affect recruitment for many different species of reef fishes.
ERIC Educational Resources Information Center
Morris, Harold J.
In an effort to assess community college teachers' level of acceptance of and willingness to implement administrative directives, a survey instrument and personal data sheet were delivered to 130 public community college teachers in Mississippi. A modified Zones of Indifference instrument was used to assess respondents' attitudes towards 71…
NASA Astrophysics Data System (ADS)
Daud, Shahidah Md; Ramli, Razamin; Kasim, Maznah Mat; Kayat, Kalsom; Razak, Rafidah Abd
2014-12-01
Tourism industry has become the highlighted sector which has amazingly increased the national income level. Despite the tourism industry being one of the highest income generating sectors, Homestay Programme as a Community-Based Tourism (CBT) product in Malaysia does not absorbed much of the incoming wealth. Homestay Programme refers to a programme in a community where a tourist stays together with a host family and experiences the everyday way of life of the family in both direct and indirect manner. There are over 100 Homestay Programme currently being registered with the Ministry of Culture and Tourism Malaysia which mostly are located in rural areas, but only a few excel and enjoying the fruit of the booming industry. Hence, this article seeks to identify the critical success factors for a Community-Based Rural Homestay Programme in Malaysia. A modified pairwise method is utilized to further evaluate the identified success factors in a more meaningful way. The findings will help Homestay Programme function as a community development tool that manages tourism resources. Thus, help the community in improving local economy and creating job opportunities.
Moran, Meghan Bridgid; Chatterjee, Joyee S; Frank, Lauren B; Murphy, Sheila T; Zhao, Nan; Chen, Nancy; Ball-Rokeach, Sandra
2017-08-01
Rates of influenza vaccination among US Hispanics are lower than for non-Hispanic whites, yet little is known about factors affecting vaccination in this population. Additionally, although Hispanics are a diverse population with culturally distinct subgroups, they are often treated as a homogenous population. This study (1) examines how confidence in vaccine safety and influenza vaccine use vary by Hispanic subgroup and (2) identifies individual, cultural and structural correlates of these outcomes. This study analyzed survey data from 1565 Hispanic women who were recruited at clinic- and community-based sites in Los Angeles. Education, healthcare coverage, acculturation, fatalism, and religiosity were predictors of influenza vaccination behavior and predictors varied by subgroup. These findings provide guidance for how influenza vaccine promotion efforts can be developed for Hispanic subgroups. Confidence in the safety of a vaccine is a major predictor of flu vaccination and an important modifiable target for intervention.
Effects of oyster harvest activities on Louisiana reef habitat and resident nekton communities
Beck, Steve; LaPeyre, Megan K.
2015-01-01
Oysters are often cited as “ecosystem engineers” because they modify their environment. Coastal Louisiana contains extensive oyster reef areas that have been harvested for decades, and whether differences in habitat functions exist between those areas and nonharvested reefs is unclear. We compared reef physical structure and resident community metrics between these 2 subtidal reef types. Harvested reefs were more fragmented and had lower densities of live eastern oysters (Crassostrea virginica) and hooked mussels (Ischadium recurvum) than the nonharvested reefs. Stable isotope values (13C and 15N) of dominant nekton species and basal food sources were used to compare food web characteristics. Nonpelagic source contributions and trophic positions of dominant species were slightly elevated at harvested sites. Oyster harvesting appeared to have decreased the number of large oysters and to have increased the percentage of reefs that were nonliving by decreasing water column filtration and benthopelagic coupling. The differences in reef matrix composition, however, had little effect on resident nekton communities. Understanding the thresholds of reef habitat areas, the oyster density or oyster size distribution below which ecosystem services may be compromised, remains key to sustainable management.
Termites Facilitate Methane Oxidation and Shape the Methanotrophic Community
Erens, Hans; Mujinya, Basile Bazirake; Boeckx, Pascal; Baert, Geert; Schneider, Bellinda; Frenzel, Peter; Van Ranst, Eric
2013-01-01
Termite-derived methane contributes 3 to 4% to the total methane budget globally. Termites are not known to harbor methane-oxidizing microorganisms (methanotrophs). However, a considerable fraction of the methane produced can be consumed by methanotrophs that inhabit the mound material, yet the methanotroph ecology in these environments is virtually unknown. The potential for methane oxidation was determined using slurry incubations under conditions with high (12%) and in situ (∼0.004%) methane concentrations through a vertical profile of a termite (Macrotermes falciger) mound and a reference soil. Interestingly, the mound material showed higher methanotrophic activity. The methanotroph community structure was determined by means of a pmoA-based diagnostic microarray. Although the methanotrophs in the mound were derived from populations in the reference soil, it appears that termite activity selected for a distinct community. Applying an indicator species analysis revealed that putative atmospheric methane oxidizers (high-indicator-value probes specific for the JR3 cluster) were indicative of the active nest area, whereas methanotrophs belonging to both type I and type II were indicative of the reference soil. We conclude that termites modify their environment, resulting in higher methane oxidation and selecting and/or enriching for a distinct methanotroph population. PMID:24038691
Termites facilitate methane oxidation and shape the methanotrophic community.
Ho, Adrian; Erens, Hans; Mujinya, Basile Bazirake; Boeckx, Pascal; Baert, Geert; Schneider, Bellinda; Frenzel, Peter; Boon, Nico; Van Ranst, Eric
2013-12-01
Termite-derived methane contributes 3 to 4% to the total methane budget globally. Termites are not known to harbor methane-oxidizing microorganisms (methanotrophs). However, a considerable fraction of the methane produced can be consumed by methanotrophs that inhabit the mound material, yet the methanotroph ecology in these environments is virtually unknown. The potential for methane oxidation was determined using slurry incubations under conditions with high (12%) and in situ (∼0.004%) methane concentrations through a vertical profile of a termite (Macrotermes falciger) mound and a reference soil. Interestingly, the mound material showed higher methanotrophic activity. The methanotroph community structure was determined by means of a pmoA-based diagnostic microarray. Although the methanotrophs in the mound were derived from populations in the reference soil, it appears that termite activity selected for a distinct community. Applying an indicator species analysis revealed that putative atmospheric methane oxidizers (high-indicator-value probes specific for the JR3 cluster) were indicative of the active nest area, whereas methanotrophs belonging to both type I and type II were indicative of the reference soil. We conclude that termites modify their environment, resulting in higher methane oxidation and selecting and/or enriching for a distinct methanotroph population.
Resilience amongst Older Colombians Living in Poverty: an Ecological Approach.
Bennett, Kate M; Reyes-Rodriguez, Maria F; Altamar, Paula; Soulsby, Laura K
2016-12-01
Older Colombians face significant adversities: poverty, violence and displacement. However, there is evidence that Latinos are often resilient. We examine resilience in older Colombians living in poverty using an ecological framework that identifies three levels: individual; community; and societal. In this paper we examine data from 16 semi-structured interviews with older Colombians that explore resilience within the context of poverty. We analyze our data using three stages: (1) modified grounded theory; (2) assignment of resilience status; (3) identification of components of the ecological framework which contribute to resilience in these participants. The most striking feature is that some participants are able to adapt to their situation, demonstrating resilience, whilst others are not. Individual characteristics such as psychological and material resources contribute to resilience. At the community level, family, social support, participation and cohesion promote resilience. Finally, at the societal level, social and welfare services, finance, religion and social policy, are important factors. These different levels of resilience are co-dependent, and we illustrate how this is so. We suggest that older Colombians living in poverty often demonstrate resilience, but that more can be done to enhance their lives. This includes interventions at the individual and community levels alongside changes in social policy.
Cabrera-Pivaral, Carlos Enrique; Ninel Mayari, Centeno Lopez; Arredondo Trueba, Jose Miguel; Gonzalez Perez, Guillermo Julian; Vega Lopez, Maria Guadalupe; Valadez Figueroa, Isabel; Aldrete Rodriguez, Maria Guadalupe
2002-01-01
Modifying knowledge and attitudes through persuasive communication in health via radio has produced encouraging results for public health planners. This study's objective was to measure the effect of an educational strategy on knowledge and attitudes towards nutrition in two marginalized communities in Guadalajara, Mexico. Two communities were randomly selected. In each community a group of individuals was invited to be exposed to radio broadcasts. Using a coded and structured instrument, knowledge and attitudes towards the contents of nutritional education for health were measured before and after the intervention in both groups. Group A (n = 37) was organized and exposed to the dynamics of the radio forum throughout the 4 months during which the project lasted. Group B (n = 33) was not organized, and listened to the radio program according to its own cultural dynamics. Median knowledge and attitudes (KA) for group A was 56.8 in the pre-test and 74.1 in the post-test (W: p = -0.05). In group B the KA results were 53.0 and 59.2, respectively (W: p = -0.05). The results emphasize the advantages of the radio forum as a health communications strategy for human nutrition.
International health electives: thematic results of student and professional interviews.
Petrosoniak, Andrew; McCarthy, Anne; Varpio, Lara
2010-07-01
The purpose of this study was to explore the complexities (including harms and benefits) of international health electives (IHEs) involving medical trainees. This exploration contributes to the ongoing debate about the goals and implications of IHEs for medical trainees. This qualitative study used anonymous, one-to-one, semi-structured interviews. All participants had previous international health experiences. Between September 2007 and March 2008, we interviewed a convenience sample of health care professionals (n=10) and medical trainees (n=10). Using a modified grounded theory methodology, we carried out cycles of data analysis in conjunction with data collection in an iterative and constant comparison process. The study's thematic structure was finalised when theme saturation was achieved. Participants described IHEs in both negative and positive terms. IHEs were described as unsustained short-term contributions that lacked clear educational objectives and failed to address local community needs. Ethical dilemmas were described as IHE challenges. Participants reflected that many IHEs included aspects of medical tourism and the majority of participants described the IHE in negative terms. However, a few participants acknowledged the benefits of the IHE. Specifically, it was seen as an introduction to a career in global health and as a potential foundation for more sustainable projects with positive host community impacts. Finally, despite similar understandings among participants, self-awareness of medical tourism was low. International health electives may include potential harms and benefits for both the trainee and the host community. Educational institutions should encourage and support structured IHEs for trainee participation. We recommend that faculties of medicine and global health educators establish pre-departure training courses for trainees and that IHE opportunities have sufficient structures in place to mitigate the negative effects of medical tourism. We also recommend that trainees be provided with opportunities to conduct self-reflection and critically assess their IHE experiences.
Native bees and plant pollination
Ginsberg, H.S.
2004-01-01
Bees are important pollinators, but evidence suggests that numbers of some species are declining. Decreases have been documented in the honey bee, Apis mellifera (which was introduced to North America), but there are no monitoring programs for the vast majority of native species, so we cannot be sure about the extent of this problem. Recent efforts to develop standardized protocols for bee sampling will help us collect the data needed to assess trends in bee populations. Unfortunately, diversity of bee life cycles and phenologies, and the large number of rare species, make it difficult to assess trends in bee faunas. Changes in bee populations can affect plant reproduction, which can influence plant population density and cover, thus potentially modifying horizontal and vertical structure of a community, microclimate near the ground, patterns of nitrogen deposition, etc. These potential effects of changes in pollination patterns have not been assessed in natural communities. Effects of management actions on bees and other pollinators should be considered in conservation planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Filippis, Francesca; Genovese, Alessandro; Ferranti, Pasquale
Traditional cheeses harbour complex microbial consortia that play an important role in shaping typical sensorial properties. However, the microbial metabolism is considered difficult to control. Microbial community succession and the related gene expression were analysed during ripening of a traditional Italian cheese, identifying parameters that could be modified to accelerate ripening. Afterwards, we modulated ripening conditions and observed consistent changes in microbial community structure and function. We provide concrete evidence of the essential contribution of non-starter lactic acid bacteria in ripening-related activities. An increase in the ripening temperature promoted the expression of genes related to proteolysis, lipolysis and amino acid/lipidmore » catabolism and significantly increases the cheese maturation rate. Moreover, temperature-promoted microbial metabolisms were consistent with the metabolomic profiles of proteins and volatile organic compounds in the cheese. Finally, the results clearly indicate how processing-driven microbiome responses can be modulated in order to optimize production efficiency and product quality.« less
May, T; Koch-Singenstreu, M; Ebling, J; Stantscheff, R; Müller, L; Jacobi, F; Polag, D; Keppler, F; König, H
2015-08-01
A synthetic DNA fragment containing primer binding sites for the quantification of ten different microbial groups was constructed and evaluated as a reliable enumeration standard for quantitative real-time PCR (qPCR) analyses. This approach has been exemplary verified for the quantification of several methanogenic orders and families in a series of samples drawn from a mesophilic biogas plant. Furthermore, the total amounts of bacteria as well as the number of sulfate-reducing and propionic acid bacteria as potential methanogenic interaction partners were successfully determined. The obtained results indicated a highly dynamic microbial community structure which was distinctly affected by the organic loading rate, the substrate selection, and the amount of free volatile fatty acids in the fermenter. Methanosarcinales was the most predominant methanogenic order during the 3 months of observation despite fluctuating process conditions. During all trials, the modified quantification standard indicated a maximum of reproducibility and efficiency, enabling this method to open up a wide range of novel application options.
Comparative analysis of data base management systems
NASA Technical Reports Server (NTRS)
Smith, R.
1983-01-01
A study to determine if the Remote File Inquiry (RFI) system would handle the future requirements of the user community is discussed. RFI is a locally written and locally maintained on-line query/update package. The current and future on-line requirements of the user community were studied. Additional consideration was given to the types of data structuring the users required. The survey indicated the features of greatest benefit were: sort, subtotals, totals, record selection, storage of queries, global updating and the ability to page break. The major deficiencies were: one level of hierarchy, excessive response time, software unreliability, difficult to add, delete and modify records, complicated error messages and the lack of ability to perform interfield comparisons. Missing features users required were: formatted screens, interfield comparions, interfield arithmetic, multiple file access, security and data integrity. The survey team recommended Kennedy Space Center move forward to state-of-the-art software, a Data Base Management System which is thoroughly tested and easy to implement and use.
Park, Sora; Yu, Jaecheul; Byun, Imgyu; Cho, Sunja; Park, Taejoo; Lee, Taeho
2011-08-01
A laboratory-scale Bardenpho process was established to investigate the proper nitrogen loading rate (NLR) when modified spent caustic (MSC) is applied as electron donor and alkalinity source for denitrification. MSC injection induced autotrophic nitrogen removal with sulfur as electron donor and heterotrophic denitrification. The nitrogen removal rate (NRR) did not increase proportionally to NLR. Based on the total nitrogen concentration in the effluent observed in the trials with MSC, the NLR in the influent should not exceed 0.15 kg N/m(3)d in order to satisfy water quality regulations. Microbial communities in the anoxic reactors were characterized by pyrosequencing of 16S rRNA gene sequences amplified by the polymerase chain reaction of DNA extracted from sludge samples. Microbial diversity was lower as MSC dosage was increased, and the injection of MSC caused an increase in SOB belonging to the genus Thiobacillus which is responsible for denitrification using sulfur. Copyright © 2011 Elsevier Ltd. All rights reserved.
De Filippis, Francesca; Genovese, Alessandro; Ferranti, Pasquale; ...
2016-02-25
Traditional cheeses harbour complex microbial consortia that play an important role in shaping typical sensorial properties. However, the microbial metabolism is considered difficult to control. Microbial community succession and the related gene expression were analysed during ripening of a traditional Italian cheese, identifying parameters that could be modified to accelerate ripening. Afterwards, we modulated ripening conditions and observed consistent changes in microbial community structure and function. We provide concrete evidence of the essential contribution of non-starter lactic acid bacteria in ripening-related activities. An increase in the ripening temperature promoted the expression of genes related to proteolysis, lipolysis and amino acid/lipidmore » catabolism and significantly increases the cheese maturation rate. Moreover, temperature-promoted microbial metabolisms were consistent with the metabolomic profiles of proteins and volatile organic compounds in the cheese. Finally, the results clearly indicate how processing-driven microbiome responses can be modulated in order to optimize production efficiency and product quality.« less
20 CFR 641.345 - What are the requirements for modifying the State Plan?
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false What are the requirements for modifying the State Plan? 641.345 Section 641.345 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR PROVISIONS GOVERNING THE SENIOR COMMUNITY SERVICE EMPLOYMENT PROGRAM The State Senior...
2012-04-01
ER D C/ G SL T R -1 2 -1 5 Pavement -Transportation Computer Assisted Structural Engineering (PCASE) Implementation of the Modified...Berggren (ModBerg) Equation for Computing the Frost Penetration Depth within Pavement Structures G eo te ch n ic al a n d S tr u ct u re s La b or at...April 2012 Pavement -Transportation Computer Assisted Structural Engineering (PCASE) Implementation of the Modified Berggren (ModBerg) Equation for
Ethical issues in field trials of genetically modified disease-resistant mosquitoes.
Resnik, David B
2014-04-01
Mosquito-borne diseases take a tremendous toll on human populations, especially in developing nations. In the last decade, scientists have developed mosquitoes that have been genetically modified to prevent transmission of mosquito-borne diseases, and field trials have been conducted. Some mosquitoes have been rendered infertile, some have been equipped with a vaccine they transmit to humans, and some have been designed to resist diseases. This article focuses on ethical issues raised by field trials of disease-resistant, genetically modified mosquitoes. Some of these issues include: protecting the public and the environment from harm, balancing benefits and risks, collaborating with the local community, avoiding exploitation, and safeguarding the rights and welfare of research subjects. One of the most difficult problems involves protecting the welfare of community members who will be impacted by the release of mosquitoes but who are not enrolled in the study as research subjects. To address this concern, field trials should take place only when the targeted disease is a significant public health problem in an isolated area, the benefits of the trial for the community are likely to outweigh the risks, community leaders approve of the trial, and there are measures in place to protect the welfare of un-enrolled community members, such as informing the community about the study and offering free treatment to people who contract mosquito-borne diseases. Since the justification of any field trial depends on a careful examination of the scientific and ethical issues, proposed studies should be evaluated on a case-by-case basis. Published 2012. This article is a US Government work and is in the public domain in the USA.
Griffith, Jocelyn C.; Lee, William G.; Orlovich, David A.
2017-01-01
The cultivation of grasslands can modify both bacterial community structure and impact on nutrient cycling as well as the productivity and diversity of plant communities. In this study, two pristine New Zealand grassland sites dominated by indigenous tall tussocks (Chionochloa pallens or C. teretifolia) were examined to investigate the extent and predictability of variation of the bacterial community. The contribution of free-living bacteria to biological nitrogen fixation is predicted to be ecologically significant in these soils; therefore, the diazotrophic community was also examined. The C. teretifolia site had N-poor and poorly-drained peaty soils, and the C. pallens had N-rich and well-drained fertile soils. These soils also differ in the proportion of organic carbon (C), Olsen phosphorus (P) and soil pH. The nutrient-rich soils showed increased relative abundances of some copiotrophic bacterial taxa (including members of the Proteobacteria, Bacteroidetes and Firmicutes phyla). Other copiotrophs, Actinobacteria and the oliogotrophic Acidobacteria showed increased relative abundance in nutrient-poor soils. Greater diversity based on 16S rRNA gene sequences and the Tax4Fun prediction of enhanced spore formation associated with nutrient-rich soils could indicate increased resilience of the bacterial community. The two sites had distinct diazotrophic communities with higher diversity in C. teretifolia soils that had less available nitrate and ammonium, potentially indicating increased resilience of the diazotroph community at this site. The C. teretifolia soils had more 16S rRNA gene and nifH copies per g soil than the nutrient rich site. However, the proportion of the bacterial community that was diazotrophic was similar in the two soils. We suggest that edaphic and vegetation factors are contributing to major differences in the composition and diversity of total bacterial and diazotrophic communities at these sites. We predict the differences in the communities at the two sites will result in different responses to environmental change. PMID:28658306
Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function.
Burkle, Laura A; Marlin, John C; Knight, Tiffany M
2013-03-29
Using historic data sets, we quantified the degree to which global change over 120 years disrupted plant-pollinator interactions in a temperate forest understory community in Illinois, USA. We found degradation of interaction network structure and function and extirpation of 50% of bee species. Network changes can be attributed to shifts in forb and bee phenologies resulting in temporal mismatches, nonrandom species extinctions, and loss of spatial co-occurrences between extant species in modified landscapes. Quantity and quality of pollination services have declined through time. The historic network showed flexibility in response to disturbance; however, our data suggest that networks will be less resilient to future changes.
Role development of nurses for technology-dependent children attending mainstream schools in Japan.
Shimizu, Fumie; Suzuki, Machiko
2015-04-01
To describe the role development of nurses caring for medical technology-dependent children attending Japanese mainstream schools. Semi-structured interviews with 21 nurses caring for technology-dependent children were conducted and analyzed using the modified grounded theory approach. Nurses developed roles centered on maintaining technology-dependent children's physical health to support children's learning with each other, through building relationships, learning how to interact with children, understanding the children and the school community, and realizing the meaning of supporting technology-dependent children. These findings support nurses to build relationships of mutual trust with teachers and children, and learn on the job in mainstream schools. © 2015, Wiley Periodicals, Inc.
Microbiome engineering: Current applications and its future.
Foo, Jee Loon; Ling, Hua; Lee, Yung Seng; Chang, Matthew Wook
2017-03-01
Microbiomes exist in all ecosystems and are composed of diverse microbial communities. Perturbation to microbiomes brings about undesirable phenotypes in the hosts, resulting in diseases and disorders, and disturbs the balance of the associated ecosystems. Engineering of microbiomes can be used to modify structures of the microbiota and restore ecological balance. Consequently, microbiome engineering has been employed for improving human health and agricultural productivity. The importance and current applications of microbiome engineering, particularly in humans, animals, plants and soil is reviewed. Furthermore, we explore the challenges in engineering microbiome and the future of this field, thus providing perspectives and outlook of microbiome engineering. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Relevance of Higher Plants in Lead Compound Discovery Programs⊥
Kinghorn, A. Douglas; Pan, Li; Fletcher, Joshua N.; Chai, Heebyung
2011-01-01
Along with compounds from terrestrial microorganisms, the constituents of higher plants have provided a substantial number of the natural product-derived drugs used currently in western medicine. Interest in the elucidation of new structures of the secondary metabolite constituents of plants has remained high among the natural products community over the first decade of the 21st century, particularly of species that are used in systems of traditional medicine or are utilized as botanical dietary supplements. In this review, progress made in the senior author’s laboratory in research work on naturally occurring sweeteners and other taste-modifying substances and on potential anticancer agents from tropical plants will be described. PMID:21650152
1998-08-14
A specially equipped Dryden Flight Research Center ER-2 (a modified U-2) takes off from Patrick Air Force Base enroute to a hurricane in the Atlantic. The plane is part of the NASA-led Atmospheric Dynamics and Remote Sensing program that includes other government weather researchers and the university community in a study of Atlantic hurricanes and tropical storms. Soaring above 65,000 feet, the ER-2 will measure the structure of hurricanes and the surrounding atmosphere that steers the storm’s movement. The hurricane study, which lasts through September 1998, is part of NASA’s Earth Science enterprise to better understand the total Earth system and the effects of natural and human-induced changes on the global environment
1998-08-14
The pilot climbs into the cockpit of a high-altitude research plane, a specially equipped Dryden Flight Research Center ER-2 (a modified U-2), at Patrick Air Force Base. Soaring above 65,000 feet, the ER-2 will measure the structure of hurricanes and the surrounding atmosphere that steers the storm’s movement. The plane is part of the NASA-led Atmospheric Dynamics and Remote Sensing program that includes other government weather researchers and the university community in a study of Atlantic hurricanes and tropical storms. The hurricane study, which lasts through September 1998, is part of NASA’s Earth Science enterprise to better understand the total Earth system and the effects of natural and human-induced changes on the global environment
1998-08-14
A specially equipped Dryden Flight Research Center ER-2 (a modified U-2) soars above Patrick Air Force Base enroute to a hurricane in the Atlantic. The plane is part of the NASA-led Atmospheric Dynamics and Remote Sensing program that includes other government weather researchers and the university community in a study of Atlantic hurricanes and tropical storms. Soaring above 65,000 feet, the ER-2 will measure the structure of hurricanes and the surrounding atmosphere that steers the storm’s movement. The hurricane study, which lasts through September 1998, is part of NASA’s Earth Science enterprise to better understand the total Earth system and the effects of natural and human-induced changes on the global environment
Structured copolymers and their use as absorbents, gels and carriers of metal ions
Hedstrand, David M.; Helmer, Bradley J.; Tomalia, Donald A.
1996-01-01
Dense star polymers or dendrimers having a highly branched interior structure capable of associating or chelating with metal ions are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell. The modified dendrimers are useful for dispersing metal ions in a non-aqueous polymer matrix. Also dense star polymers or dendrimers having a highly branched hydrophilic interior structure are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, which modified polymers are useful as gels and surfactants.
Structured copolymers and their use as absorbents, gels and carriers of metal ions
Hedstrand, D.M.; Helmer, B.J.; Tomalia, D.A.
1996-10-01
Dense star polymers or dendrimers having a highly branched interior structure capable of associating or chelating with metal ions are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell. The modified dendrimers are useful for dispersing metal ions in a non-aqueous polymer matrix. Also dense star polymers or dendrimers having a highly branched hydrophilic interior structure are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, which modified polymers are useful as gels and surfactants.
NASA Astrophysics Data System (ADS)
Hardy, Brieuc; Cornelis, Jean-Thomas; Dufey, Joseph E.
2015-04-01
In the last decade, biochar has been increasingly investigated as a soil amendment for long-term soil carbon sequestration while improving soil fertility. On the short term, biochar application to soil generally increases soil respiration as well as microbial biomass and activity and affects significantly the microbial community structure. However, such effects are relatively short-term and tend to vanish over time. In our study, we investigated the long-term impact of charcoal accumulation and land-use on soil biota in temperate haplic Luvisols developed in the loess belt of Wallonia (Belgium). Charcoal-enriched soils were collected in the topsoil of pre-industrial (>150 years old) charcoal kilns in forest (4 sites) and cropland (5 sites). The topsoil of the adjacent charcoal-unaffected soils was sampled in a comparable way. Soils were characterized (pH, total, organic and inorganic C, total N, exchangeable Ca, Mg, K, Na, cation exchange capacity and available P) and natural soil organic matter (SOM) and black carbon (BC) contents were determined by differential scanning calorimetry. After rewetting at pF 2.5, soils were incubated during 140 days at 20 °C. At 70 days of incubation, 10 g of each soil were freeze dried in order to measure total microbial biomass and community structure by PLFA analysis. The PLFA dataset was analyzed by principal component analysis (PCA) while soil parameters were used as supplementary variables. For both agricultural and forest soils, the respiration rate is highly related to the total microbial biomass (R²=0.90). Both soil respiration and microbial biomass greatly depend on the SOM content, which indicates that the BC pool is relatively inert microbiologically. Land-use explains most of the variance in the PLFA dataset, largely governing the first principal component of the ACP. In forest soils, we observe a larger proportion of gram + bacteria, actinomycetes and an increased bacteria:fungi ratio compared to cropland, where gram - bacteria, arbuscular mycorrhizal fungi and 18:2 and 18:3 fungi are more present. BC is quite well represented (R=-0.765) by the third principal component of the PCA, representing 12.2 % of the total variance. It has limited impact on the community structure, particularly in cropland. However, in forest BC is negatively correlated (R=-0.785) with 18:1 fungi. The more pronounced effect of BC on community structure under forest could result from modified trophic conditions at kiln site (e.g. higher pH, lower available P content, …) while cultivation practices attenuated such differences over time in cropland. In conclusion, our survey tends to confirm that the influence of BC on the soil microbiological parameters is governed by indirect effects on trophic conditions. On the other hand, land-use affects dramatically soil microbial community structure.
44 CFR 60.6 - Variances and exceptions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR... risk and will not be modified by the granting of a variance. The community, after examining the... review a community's findings justifying the granting of variances, and if that review indicates a...
44 CFR 60.6 - Variances and exceptions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR... risk and will not be modified by the granting of a variance. The community, after examining the... review a community's findings justifying the granting of variances, and if that review indicates a...
Cultural Leverage: Interventions Using Culture to Narrow Racial Disparities in Health Care
Fisher, Thomas L.; Burnet, Deborah L.; Huang, Elbert S.; Chin, Marshall H.; Cagney, Kathleen A.
2008-01-01
The authors reviewed interventions using cultural leverage to narrow racial disparities in health care. Thirty-eight interventions of three types were identified: interventions that modified the health behaviors of individual patients of color, that increased the access of communities of color to the existing health care system, and that modified the health care system to better serve patients of color and their communities. Individual-level interventions typically tapped community members’ expertise to shape programs. Access interventions largely involved screening programs, incorporating patient navigators and lay educators. Health care interventions focused on the roles of nurses, counselors, and community health workers to deliver culturally tailored health information. These interventions increased patients’ knowledge for self-care, decreased barriers to access, and improved providers’ cultural competence. The delivery of processes of care or intermediate health outcomes was significantly improved in 23 interventions. Interventions using cultural leverage show tremendous promise in reducing health disparities, but more research is needed to understand their health effects in combination with other interventions. PMID:17881628
Design and fabrication of planar structures with graded electromagnetic properties
NASA Astrophysics Data System (ADS)
Good, Brandon Lowell
Successfully integrating electromagnetic properties in planar structures offers numerous benefits to the microwave and optical communities. This work aims at formulating new analytic and optimized design methods, creating new fabrication techniques for achieving those methods, and matching appropriate implementation of methods to fabrication techniques. The analytic method consists of modifying an approach that realizes perfect antireflective properties from graded profiles. This method is shown for all-dielectric and magneto-dielectric grading profiles. The optimized design methods are applied to transformer (discrete) or taper (continuous) designs. From these methods, a subtractive and an additive manufacturing technique were established and are described. The additive method, dry powder dot deposition, enables three dimensional varying electromagnetic properties in a structural composite. Combining the methods and fabrication is shown in two applied methodologies. The first uses dry powder dot deposition to design one dimensionally graded electromagnetic profiles in a planar fiberglass composite. The second method simultaneously applies antireflective properties and adjusts directivity through a slab through the use of subwavelength structures to achieve a flat antireflective lens. The end result of this work is a complete set of methods, formulations, and fabrication techniques to achieve integrated electromagnetic properties in planar structures.
Norman, Janette A.; Christidis, Les
2016-01-01
Bioclimatic models are widely used to investigate the impacts of climate change on species distributions. Range shifts are expected to occur as species track their current climate niche yet the potential for exploitation of new ecological opportunities that may arise as ecosystems and communities remodel is rarely considered. Here we show that grasswrens of the Amytornis textilis-modestus complex responded to new ecological opportunities in Australia’s arid biome through shifts in habitat preference following the development of chenopod shrublands during the late Plio-Pleistocene. We find evidence of spatially explicit responses to climatically driven landscape changes including changes in niche width and patterns of population growth. Conservation of structural and functional aspects of the ancestral niche appear to have facilitated recent habitat shifts, while demographic responses to late Pleistocene climate change provide evidence for the greater resilience of populations inhabiting the recently evolved chenopod shrubland communities. Similar responses could occur under future climate change in species exposed to novel ecological conditions, or those already occupying spatially heterogeneous landscapes. Mechanistic models that consider structural and functional aspects of the niche along with regional hydro-dynamics may be better predictors of future climate responses in Australia’s arid biome than bioclimatic models alone. PMID:26787111
Karwalajtys, Tina; McDonough, Beatrice; Hall, Heather; Guirguis-Younger, Manal; Chambers, Larry W; Kaczorowski, Janusz; Lohfeld, Lynne; Hutchison, Brian
2009-08-01
Volunteers can support the delivery and sustainability of programs promoting chronic disease awareness to improve health at the community level. This paper describes the development of the peer education component of the Cardiovascular Health Awareness Program (CHAP) and assessment of the volunteer peer educator role in a community-wide demonstration project in two mid-sized Ontario communities. A case study approach was used incorporating process learning, a volunteer survey and debriefing discussions with volunteers. A post-program questionnaire was administered to 48 volunteers. Five debriefing discussions were conducted with 27 volunteers using a semi-structured interview guide. Discussions were audio-recorded and transcribed. Analysis used an editing approach to identify themes, taking into account the community-specific context. Volunteers reported an overall positive experience and identified rewarding aspects of their involvement. They felt well prepared but appreciated ongoing training and support and requested more refresher training. Understanding of program objectives increased volunteer satisfaction. Volunteers continued to develop their role during the program; however, organizational and logistical factors sometimes limited skill acquisition and contributions. The prospect of greater involvement in providing tailored health education resources addressing modifiable risk factors was acceptable to most volunteers. Continued refinement of strategies to recruit, train, retain and support volunteers strengthened the peer education component of CHAP. The experience and contributions of volunteers were influenced by the wider context of program delivery. Process evaluation allowed program planners to anticipate challenges, strengthen support for volunteer activities, and expand the peer educator role. This learning can inform similar peer-led health promotion initiatives.
Working from the inside out: a case study of Mackay Safe Community.
Hanson, Dale; Gunning, Colleen; Rose, Judy; McFarlane, Kathryn; Franklin, Richard C
2015-04-01
Mackay Whitsunday Safe Community (MWSC) was established in 2000 in response to high rates of injury observed in the region. MWSC assumed an ecological perspective, incorporating targeted safety promotion campaigns reinforced by supportive environments and policy. By involving the community in finding its own solutions, MWSC attempted to catalyze structural, social, and political changes that empowered the community and, ultimately, individuals within the community, to modify their environment and their behavior to reduce the risk of injury. A community network consisting of 118 members and an external support network of 50 members was established. A social network analysis conducted in 2000 and 2004 indicated that the network doubled its cohesiveness, thereby strengthening its ability to collaborate for mutual benefit. However, while MWSC was rich in social resources, human and financial resources were largely controlled by external agencies. The bridging and linking relationships that connected MWSC to its external support network were the social mechanism MWSC used to access the resources it required to run programs. These boundary-spanning relationships accessed an estimated 6.5 full-time equivalents of human resources and US$750,000 in 2004 that it used to deliver a suite of injury control and safety promotion activities, associated with a 33% reduction in injury deaths over the period 2002 to 2010. MWSC can only be understood in its ecological context. The productivity of MWSC was vulnerable to the changing policy priorities of external sponsoring agents and critically dependent on the advocacy skills of its leaders. © 2015 Society for Public Health Education.
Industrial landfill affects on fish communities at Indiana Dunes National Lakeshore (INDU)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, P.M.; Simon, T.P.
1995-12-31
INDU, an urban park near the third largest metropolitan area in the US, provides access to over two million visitors per year. The Grand Calumet River/Indiana Harbor Ship Canal is the only Area of Concern (AOC) with all 14 designated uses impaired. The Grand Calumet Lagoons are the former mouth of the Grand Calumet River and form part of the western boundary of INDU, adjacent to Gary, IN. An industrial landfill (slag and other industrial waste) forms the westernmost boundary of the lagoon and a dunal pond. A least-impacted lagoon and a pond lying across a dune ridge were comparedmore » to sites adjacent to the landfill. Fish communities censused from twelve sites during the summer of 1994 were analyzed for several community metrics including species richness and composition, trophic structure, and community and individual health. A modified headwater Index of Biotic Integrity (IBI) was utilized to evaluate lacustrine community health. Results include the first record of the Iowa darter (Etheostoma exile) found in northwest Indiana. Examination of the fish community found the least impacted lagoon to contain Erimyzon sucetta, Esox americanus, and Lepomis gulosus. The landfill lagoon lacked these species, with the exception of fewer L. gulosus, while Pimephales notatus was found at all sites in the impacted lake but not at all in the least impacted lagoon. Statistically significant differences in species diversity and IBI can be attributed to landfill proximity. Whole fish analyses of a benthic omnivore (Cyprinus carpio) revealed PAH levels near 1 mg/kg of total PAH in several fish analyzed.« less
The Footprint of Continental-Scale Ocean Currents on the Biogeography of Seaweeds
Wernberg, Thomas; Thomsen, Mads S.; Connell, Sean D.; Russell, Bayden D.; Waters, Jonathan M.; Zuccarello, Giuseppe C.; Kraft, Gerald T.; Sanderson, Craig; West, John A.; Gurgel, Carlos F. D.
2013-01-01
Explaining spatial patterns of biological organisation remains a central challenge for biogeographic studies. In marine systems, large-scale ocean currents can modify broad-scale biological patterns by simultaneously connecting environmental (e.g. temperature, salinity and nutrients) and biological (e.g. amounts and types of dispersed propagules) properties of adjacent and distant regions. For example, steep environmental gradients and highly variable, disrupted flow should lead to heterogeneity in regional communities and high species turnover. In this study, we investigated the possible imprint of the Leeuwin (LC) and East Australia (EAC) Currents on seaweed communities across ~7,000 km of coastline in temperate Australia. These currents flow poleward along the west and east coasts of Australia, respectively, but have markedly different characteristics. We tested the hypothesis that, regional seaweed communities show serial change in the direction of current flow and that, because the LC is characterised by a weaker temperature gradient and more un-interrupted along-shore flow compared to the EAC, then coasts influenced by the LC have less variable seaweed communities and lower species turnover across regions than the EAC. This hypothesis was supported. We suggest that this pattern is likely caused by a combination of seaweed temperature tolerances and current-driven dispersal. In conclusion, our findings support the idea that the characteristics of continental-scale currents can influence regional community organisation, and that the coupling of ocean currents and marine biological structure is a general feature that transcends taxa and spatial scales. PMID:24260352
Determinants of career satisfaction among pediatric hospitalists: a qualitative exploration
Leyenaar, JoAnna K.; Capra, Lisa A.; O'Brien, Emily R.; Leslie, Laurel K.; Mackie, Thomas I.
2014-01-01
Objectives To characterize determinants of career satisfaction among pediatric hospitalists working in diverse practice settings, and to develop a framework to conceptualize factors influencing career satisfaction. Methods Semi-structured interviews were conducted with community and tertiary care hospitalists, using purposeful sampling to attain maximum response diversity. We employed close- and open-ended questions to assess levels of career satisfaction and its determinants. Interviews were conducted by telephone, recorded, and transcribed verbatim. Emergent themes were identified and analyzed using an inductive approach to qualitative analysis. Results A total of 30 interviews were conducted with community and tertiary care hospitalists, representing 20 hospital medicine programs and 7 Northeastern states. Qualitative analysis yielded 657 excerpts which were coded and categorized into four domains and associated determinants of career satisfaction: (i) professional responsibilities; (ii) hospital medicine program administration; (iii) hospital and healthcare systems; and (iv) career development. While community and tertiary care hospitalists reported similar levels of career satisfaction, they expressed variation in perspectives across these four domains. While the role of hospital medicine program administration was consistently emphasized by all hospitalists, community hospitalists prioritized resource availability, work schedule and clinical responsibilities while tertiary care hospitalists prioritized diversity in non-clinical responsibilities and career development. Conclusions We illustrate how hospitalists in different organizational settings prioritize both consistent and unique determinants of career satisfaction. Given associations between physician satisfaction and healthcare quality, efforts to optimize modifiable factors within this framework, at both community and tertiary care hospitals, may have broad impacts. PMID:24976348
Light Limitation within Southern New Zealand Kelp Forest Communities
Desmond, Matthew J.; Pritchard, Daniel W.; Hepburn, Christopher D.
2015-01-01
Light is the fundamental driver of primary productivity in the marine environment. Reduced light availability has the potential to alter the distribution, community composition, and productivity of key benthic primary producers, potentially reducing habitat and energy provision to coastal food webs. We compared the underwater light environment of macroalgal dominated shallow subtidal rocky reef habitats on a coastline modified by human activities with a coastline of forested catchments. Key metrics describing the availability of photosynthetically active radiation (PAR) were determined over 295 days and were related to macroalgal depth distribution, community composition, and standing biomass patterns, which were recorded seasonally. Light attenuation was more than twice as high in shallow subtidal zones along the modified coast. Macroalgal biomass was 2–5 times greater within forested sites, and even in shallow water (2m) a significant difference in biomass was observed. Long-term light dose provided the best explanation for differences in observed biomass between modified and forested coasts, with light availability over the study period differing by 60 and 90 mol photons m−2 at 2 and 10 metres, respectively. Higher biomass on the forested coast was driven by the presence of larger individuals rather than species diversity or density. This study suggests that commonly used metrics such as species diversity and density are not as sensitive as direct measures of biomass when detecting the effects of light limitation within macroalgal communities. PMID:25902185
Wetlands for Wastewater: a Visual Approach to Microbial Dynamics
NASA Astrophysics Data System (ADS)
Joubert, L.; Wolfaardt, G.; Du Plessis, K.
2007-12-01
The complex character of distillery wastewater comprises high concentrations of sugars, lignins, hemicelluloses, dextrans, resins, polyphenols and organic acids which are recalcitrant to biodegradation. Microorganisms play a key role in the production and degradation of organic matter, environmental pollutants, and cycling of nutrients and metals. Due to their short life cycles microbes respond rapidly to external nutrient loading, with major consequences for the stability of biological systems. We evaluated the feasibility of wetlands to treat winery and distillery effluents in experimental systems based on constructed wetlands, including down-scaled on-site distillery wetlands, small-scale controlled greenhouse systems, and bench-scale mesocosms. Chemical, visual and molecular fingerprinting (t-RFLP) techniques were applied to study the dynamics of planktonic and attached (biofilm) communities at various points in wetlands of different size, retention time and geological substrate, and under influence of shock nutrient loadings. Variable- Pressure Scanning Electron Microscopy (VP-SEM) was applied to visualize microbial colonization, morphotype diversity and distribution, and 3D biofilm architecture. Cross-taxon and predator-prey interactions were markedly influenced by organic loading, while the presence of algae affected microbial community composition and biofilm structure. COD removal varied with geological substrate, and was positively correlated with retention time in gravel wetlands. Planktonic and biofilm communities varied markedly in different regions of the wetland and over time, as indicated by whole-community t-RFLP and VP-SEM. An integrative visual approach to community dynamics enhanced data retrieval not afforded by molecular techniques alone. The high microbial diversity along spatial and temporal gradients, and responsiveness to the physico-chemical environment, suggest that microbial communities maintain metabolic function by modifying species composition in response to fluctuations in their environment. It seems apparent that microbial community plasticity may indeed be the distinguishing characteristic of a successful wetland system.
VanDusen, Beth M.; Fegley, Stephen R.; Peterson, Charles H.
2012-01-01
Worldwide declines in shorebird populations, driven largely by habitat loss and degradation, motivate environmental managers to preserve and restore the critical coastal habitats on which these birds depend. Effective habitat management requires an understanding of the factors that determine habitat use and value to shorebirds, extending from individuals to the entire community. While investigating the factors that influenced shorebird foraging distributions among neighboring intertidal sand flats, we built upon species-level understandings of individual-based, small-scale foraging decisions to develop more comprehensive guild- and community-level insights. We found that densities and community composition of foraging shorebirds varied substantially among elevations within some tidal flats and among five flats despite their proximity (all located within a 400-m stretch of natural, unmodified inlet shoreline). Non-dimensional multivariate analyses revealed that the changing composition of the shorebird community among flats and tidal elevations correlated significantly (ρs = 0.56) with the spatial structure of the benthic invertebrate prey community. Sediment grain-sizes affected shorebird community spatial patterns indirectly by influencing benthic macroinvertebrate community compositions. Furthermore, combining sediment and macroinvertebrate information produced a 27% increase in correlation (ρs = 0.71) with shorebird assemblage patterns over the correlation of the bird community with the macroinvertebrate community alone. Beyond its indirect effects acting through prey distributions, granulometry of the flats influenced shorebird foraging directly by modifying prey availability. Our study highlights the importance of habitat heterogeneity, showing that no single patch type was ideal for the entire shorebird community. Generally, shorebird density and diversity were greatest at lower elevations on flats when they became exposed; these areas are at risk from human intervention by inlet sand mining, construction of groins and jetties that divert sediments from flats, and installation of seawalls on inlet shorelines that induce erosion of flats. PMID:23285153
Restoring Wyoming big sagebrush
Cindy R. Lysne
2005-01-01
The widespread occurrence of big sagebrush can be attributed to many adaptive features. Big sagebrush plays an essential role in its communities by providing wildlife habitat, modifying local environmental conditions, and facilitating the reestablishment of native herbs. Currently, however, many sagebrush steppe communities are highly fragmented. As a result, restoring...
Litter accumulation and nutrient content of roadside plant communities in Sichuan Basin, China
USDA-ARS?s Scientific Manuscript database
It is widely recognized that plant community composition strongly influences plant litter, but this relationship is difficult to interpret over heterogeneous conditions typical of modified environments such as roadways. We characterized litter accumulation and nutrient content (i.e., organic C, tota...
78 FR 21272 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-10
... below for the modified BFEs for each community listed. These modified elevations have been published in... [Amended] 0 2. The tables published under the authority of Sec. 67.11 are amended as follows: * Elevation... Austin. upstream of 29th Avenue Southwest (County Highway 28). At the downstream side of +1205 I and M...
Study of Modified School Programs for Migrant Children.
ERIC Educational Resources Information Center
Southwest Educational Development Lab., Austin, TX.
The findings, implications, and recommendations of a Texas migrant education study were presented in this report. Objectives were to determine how educational achievement of migrant students in 6-month programs compares with that of students in 9-month modified programs for migrants and with other students in the community, the effects of…
Leveraging disjoint communities for detecting overlapping community structure
NASA Astrophysics Data System (ADS)
Chakraborty, Tanmoy
2015-05-01
Network communities represent mesoscopic structure for understanding the organization of real-world networks, where nodes often belong to multiple communities and form overlapping community structure in the network. Due to non-triviality in finding the exact boundary of such overlapping communities, this problem has become challenging, and therefore huge effort has been devoted to detect overlapping communities from the network. In this paper, we present PVOC (Permanence based Vertex-replication algorithm for Overlapping Community detection), a two-stage framework to detect overlapping community structure. We build on a novel observation that non-overlapping community structure detected by a standard disjoint community detection algorithm from a network has high resemblance with its actual overlapping community structure, except the overlapping part. Based on this observation, we posit that there is perhaps no need of building yet another overlapping community finding algorithm; but one can efficiently manipulate the output of any existing disjoint community finding algorithm to obtain the required overlapping structure. We propose a new post-processing technique that by combining with any existing disjoint community detection algorithm, can suitably process each vertex using a new vertex-based metric, called permanence, and thereby finds out overlapping candidates with their community memberships. Experimental results on both synthetic and large real-world networks show that PVOC significantly outperforms six state-of-the-art overlapping community detection algorithms in terms of high similarity of the output with the ground-truth structure. Thus our framework not only finds meaningful overlapping communities from the network, but also allows us to put an end to the constant effort of building yet another overlapping community detection algorithm.
Chen, Qi; Wang, Huwen; Wang, Yichen; Wang, Zezhou; Zhao, Daijun; Cai, Yong
2018-02-19
The original information-motivation-behavioral skills (IMB) model has been verified in type 2 diabetes mellitus (T2DM) patients, but the effects of the model on glycemic control remain unclear. The aim of this study was to modify the IMB model to explore the effects of self-management on glycemic control in T2DM patients in Shanghai, China. A cross-sectional study was conducted on participants recruited using a convenience sampling method between June and August 2015 in three tertiary hospitals and four community health service centers; 796 participants meeting the inclusion criteria (age ≥18 years and a diagnosis of T2DM) completed a questionnaire and blood test for glycemic control. Structural equation models were used to test the IMB framework. The modified model demonstrated an acceptable fit of the data. Paths from information to self-management behaviors (β = 0.119, P = 0.001) and HbA1c (β = -0.140, P < 0.001), from motivation to behavioral skills (β = 0.670, P < 0.001), from behavioral skills to self-management behaviors (β = 0.562, P < 0.001), and from self-management behaviors to HbA1c (β = -0.343, P < 0.001) were all significant and in the predicted direction. Information and motivation varied with each other (r = 0.350, P < 0.001). Glycemic control can be incorporated into the IMB model. The utility of the modified model in the study population is validated. Type 2 diabetes mellitus patients with poor control of glucose levels may be a better target population for application of the modified IMB model. © 2018 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.
Lippman, Sheri A.; Chinaglia, Magda; Donini, Angela A.; Diaz, Juan; Reingold, Arthur; Kerrigan, Deanna L.
2012-01-01
Background Sexually transmitted infection (STI)/HIV prevention programs which do not modify social-structural contexts that contribute to risk of STI/HIV may fail to bring about improvements in health, particularly among groups who experience discrimination and exclusion from public life. We conducted a multi-level intervention with sex workers, including improved clinical care and community mobilizing strategies to modify social-structural factors that shape sexual behavior, in order to improve condom use and reduce incident STI. Methods We followed 420 sex workers participating in the Encontros intervention in Corumbá, Brazil from 2003-2005. We estimated the effect of the intervention on incident chlamydia and gonorrhea infections and condom use using generalized estimating equations and inverse probability weighting by comparing those who actively engaged in the intervention activities (exposed) to those who were less engaged (unexposed). We also determined the association of participation on reported social cohesion and participation in networks. Results Exposed participants had significantly higher odds of reporting consistent condom use with regular clients (OR:1.9, 95%CI:1.1-3.3) and non-significantly increased odds with both new clients (OR:1.6, 0.9-2.8) and nonpaying partners (OR:1.5, 0.9-1.5). The odds of an incident STI were non-significantly reduced for exposed participants compared to unexposed (OR:0.46, 0.2-1.3). Participation was significantly associated with increased perceived cohesion and participation in networks. Conclusion This prospective study provides evidence that multi-level interventions with mobilizing strategies to modify aspects of the social environment can improve condom use, reduce STIs, and increase social cohesion and participation in networks among sex workers. PMID:22337108
Lippman, Sheri A; Chinaglia, Magda; Donini, Angela A; Diaz, Juan; Reingold, Arthur; Kerrigan, Deanna L
2012-03-01
Sexually transmitted infection (STI)/HIV prevention programs, which do not modify social structural contexts that contribute to risk of STI/HIV may fail to bring about improvements in health, particularly among groups who experience discrimination and exclusion from public life. We conducted a multilevel intervention with sex workers, including improved clinical care and community-mobilizing strategies to modify social structural factors that shape sexual behavior, to improve condom use and reduce incident STI. We followed 420 sex workers participating in the Encontros intervention in Corumbá, Brazil, between 2003 and 2005. We estimated the effect of the intervention on incident chlamydia and gonorrhea infections and condom use using generalized estimating equations and inverse probability weighting by comparing those who actively engaged in the intervention activities (exposed) with those who were less engaged (unexposed). We also determined the association of participation on reported social cohesion and participation in networks. Exposed participants had significantly higher odds of reporting consistent condom use with regular clients (odds ratio [OR]: 1.9, 95% confidence interval:1.1-3.3) and nonsignificantly increased odds with both new clients (OR: 1.6, 0.9-2.8) and nonpaying partners (OR: 1.5, 0.9-1.5). The odds of an incident STI were nonsignificantly reduced for exposed participants compared with unexposed (OR: 0.46, 0.2-1.3). Participation was significantly associated with increased perceived cohesion and participation in networks. This prospective study provides evidence that multilevel interventions with mobilizing strategies to modify aspects of the social environment can improve condom use, reduce STIs, and increase social cohesion and participation in networks among sex workers.
Viggor, Signe; Juhanson, Jaanis; Jõesaar, Merike; Mitt, Mario; Truu, Jaak; Vedler, Eve; Heinaru, Ain
2013-08-25
The coastal waters of the Baltic Sea are constantly threatened by oil spills, due to the extensive transportation of oil products across the sea. To characterise the hydrocarbon-degrading bacterial community of this marine area, microcosm experiments on diesel fuel, crude oil and shale oil were performed. Analysis of these microcosms, using alkane monooxygenase (alkB) and 16S rRNA marker genes in PCR-DGGE experiments, demonstrated that substrate type and concentration strongly influence species composition and the occurrence of alkB genes in respective oil degrading bacterial communities. Gammaproteobacteria (particularly the genus Pseudomonas) and Alphaproteobacteria were dominant in all microcosms treated with oils. All alkB genes carried by bacterial isolates (40 strains), and 8 of the 11 major DGGE bands from the microcosms, had more than 95% sequence identity with the alkB genes of Pseudomonas fluorescens. However, the closest relatives of the majority of sequences (54 sequences from 79) of the alkB gene library from initially collected seawater DNA were Actinobacteria. alkB gene expression, induced by hexadecane, was recorded in isolated bacterial strains. Thus, complementary culture dependent and independent methods provided a more accurate picture about the complex seawater microbial communities of the Baltic Sea. Copyright © 2013 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Kiani, Keivan
2017-09-01
Large deformation regime of micro-scale slender beam-like structures subjected to axially pointed loads is of high interest to nanotechnologists and applied mechanics community. Herein, size-dependent nonlinear governing equations are derived by employing modified couple stress theory. Under various boundary conditions, analytical relations between axially applied loads and deformations are presented. Additionally, a novel Galerkin-based assumed mode method (AMM) is established to solve the highly nonlinear equations. In some particular cases, the predicted results by the analytical approach are also checked with those of AMM and a reasonably good agreement is reported. Subsequently, the key role of the material length scale on the load-deformation of microbeams is discussed and the deficiencies of the classical elasticity theory in predicting such a crucial mechanical behavior are explained in some detail. The influences of slenderness ratio and thickness of the microbeam on the obtained results are also examined. The present work could be considered as a pivotal step in better realizing the postbuckling behavior of nano-/micro- electro-mechanical systems consist of microbeams.
Cognitive Style Mapping at Mt. Hood Community College.
ERIC Educational Resources Information Center
Keyser, John S.
1980-01-01
Describes Mount Hood Community College's experiences using the Modified Hill Model for Cognitive Style Mapping (CSM). Enumerates the nine dimensions of cognitive style assessed by the model. Discusses the value and limitations of CSM, five major checks on the validity of the model, and Mount Hood faculty's involvement with CSM. (AYC)
ERIC Educational Resources Information Center
Perry, Steven B.
1988-01-01
Describes Kirtland Community College's plans to develop an interactive instructional studio on campus to transmit academic courses, develop six interactive satellite stations, provide in-service teacher training on the use of two-way telecommunications, modify existing courses, and incorporate interactive televideo into the college's instructional…
Managing in a New Era. New Directions for Community Colleges, Number 28.
ERIC Educational Resources Information Center
Lahti, Robert E., Ed.
1979-01-01
Approaches to creative, modified, and new management strategies and practices are offered as justifications for the continued development of effective and responsive community colleges. Judith S. Eaton describes the dangers in isolating academic concerns from management decision processes. Dorothy M. Burns advocates centralization of human…
USDA-ARS?s Scientific Manuscript database
Conservation tillage practices have combined genetically modified glyphosate resistant corn crops along with applications of the herbicide glyphosate. We tested the null hypothesis that the soil process of nitrification and the distribution of archaeal and bacterial nitrifying communities would not ...
ERIC Educational Resources Information Center
Weasmer, Jerie; Woods, Amelia Mays
2010-01-01
Modifying course plans to accommodate diverse learners seems simple in theory. However, when faced with specific applications, many teachers feel lost. In a school community, they need not feel alone. General classroom teachers have several sources of ongoing support available to help them extend their teaching repertoire to meet their students'…
NASA Astrophysics Data System (ADS)
Fan, W.; Yeung, K. H.
2015-03-01
As social networking services are popular, many people may register in more than one online social network. In this paper we study a set of users who have accounts of three online social networks: namely Foursquare, Facebook and Twitter. Community structure of this set of users may be reflected in these three online social networks. Therefore, high correlation between these reflections and the underlying community structure may be observed. In this work, community structures are detected in all three online social networks. Also, we investigate the similarity level of community structures across different networks. It is found that they show strong correlation with each other. The similarity between different networks may be helpful to find a community structure close to the underlying one. To verify this, we propose a method to increase the weights of some connections in networks. With this method, new networks are generated to assist community detection. By doing this, value of modularity can be improved and the new community structure match network's natural structure better. In this paper we also show that the detected community structures of online social networks are correlated with users' locations which are identified on Foursquare. This information may also be useful for underlying community detection.
Zhang, Hao; Zhou, Xing; He, Jian; Wang, Tao; Luo, Xiaohu; Wang, Li; Wang, Ren; Chen, Zhengxing
2017-04-01
Recombinant amylosucrase from Neisseria polysaccharea was utilized to modify native and acid-thinned starches. The molecular structures and physicochemical properties of modified starches were investigated. Acid-thinned starch displayed much lower viscosity after gelatinization than did the native starch. However, the enzyme exhibited similar catalytic efficiency for both forms of starch. The modified starches had higher proportions of long (DP>33) and intermediate chains (DP 13-33), and X-ray diffraction showed a B-type crystalline structure for all modified starches. With increasing reaction time, the relative crystallinity and endothermic enthalpy of the modified starches gradually decreased, whereas the melting peak temperatures and resistant starch contents increased. Slight differences were observed in thermal parameters, relative crystallinity, and branch chain length distribution between the modified native and acid-thinned starches. Moreover, the digestibility of the modified starches was not affected by acid hydrolysis pretreatment, but was affected by the percentage of intermediate and long chains. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wallace, Emma; McDowell, Ronald; Bennett, Kathleen; Fahey, Tom; Smith, Susan M
2016-11-14
Emergency admission is associated with the potential for adverse events in older people and risk prediction models are available to identify those at highest risk of admission. The aim of this study was to externally validate and compare the performance of the Probability of repeated admission (Pra) risk model and a modified version (incorporating a multimorbidity measure) in predicting emergency admission in older community-dwelling people. 15 general practices (GPs) in the Republic of Ireland. n=862, ≥70 years, community-dwelling people prospectively followed up for 2 years (2010-2012). Pra risk model (original and modified) calculated for baseline year where ≥0.5 denoted high risk (patient questionnaire, GP medical record review) of future emergency admission. Emergency admission over 1 year (GP medical record review). descriptive statistics, model discrimination (c-statistic) and calibration (Hosmer-Lemeshow statistic). Of 862 patients, a total of 154 (18%) had ≥1 emergency admission(s) in the follow-up year. 63 patients (7%) were classified as high risk by the original Pra and of these 26 (41%) were admitted. The modified Pra classified 391 (45%) patients as high risk and 103 (26%) were subsequently admitted. Both models demonstrated only poor discrimination (original Pra: c-statistic 0.65 (95% CI 0.61 to 0.70); modified Pra: c-statistic 0.67 (95% CI 0.62 to 0.72)). When categorised according to risk-category model, specificity was highest for the original Pra at cut-point of ≥0.5 denoting high risk (95%), and for the modified Pra at cut-point of ≥0.7 (95%). Both models overestimated the number of admissions across all risk strata. While the original Pra model demonstrated poor discrimination, model specificity was high and a small number of patients identified as high risk. Future validation studies should examine higher cut-points denoting high risk for the modified Pra, which has practical advantages in terms of application in GP. The original Pra tool may have a role in identifying higher-risk community-dwelling older people for inclusion in future trials aiming to reduce emergency admissions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Teaching Competencies for Community Preceptors.
Brink, Darin; Simpson, Deb; Crouse, Byron; Morzinski, Jeffrey; Bower, Douglas; Westra, Ruth
2018-05-01
Although community physicians provide one-fourth of the outpatient training received in medical school, usually there is no formal training of the preceptor. Currently there is no agreed-upon list of teaching competencies for community physician-preceptors. Using a modified Delphi process, the authors aimed to identify core teaching competencies for community preceptors for use in training and evaluation. A medical educator and three faculty members with expertise in faculty development created a list of teaching competencies organized in five domains. These competencies were finalized through a multiround modified Delphi technique with key stakeholder groups including (1) nonphysician medical educators, (2) academic physicians involved in faculty development, (3) community physicians who regularly precept medical students, (4) family medicine residents, (5) third-year medical students in a 9-month-long longitudinal clerkship. Proposed competencies were retained if 70% of the participants ranked it as "very or extremely important." In the first round, 24 competencies were evaluated by 40 physician preceptors participating in a rural faculty development conference. These were refined, and four additional competencies were added by the cohort. Subsequent rounds utilized a survey approach with broader audiences resulting in a final list of 21 competencies in five domains. Five competency domains with 21 teaching competencies can now be used to guide community preceptors' training and evaluation.
Amide and Ester-Functionalized Humic Acid for Fuel Combustion Enhancement
NASA Astrophysics Data System (ADS)
Riggs, Mark
Humic acid is a class of naturally occurring molecules composed of large sheet-like regions of cyclic aromatic hydrocarbon networks with surface and edge functional groups including phenols, carboxylic acids, and epoxides. These naturally occurring molecules are found in brown coal deposits near lignite formations. Humic acid has gained attention from the scientific community as a precursor for graphene. Graphene is a 2-dimensional honeycomb structure of fully unsaturated carbon atoms that has exceptional material properties and inherent aromaticity. Graphene's incredible properties are matched by the difficulty associated with reproducibly manufacturing it on a large scale. This issue has limited the use of graphene for commercial applications. The polar functional groups of humic acid contribute to the hydrophilic nature of the molecule, limiting its miscibility in any alkyl-based solvent. Surfactants containing long alkyl chains can affect the miscibility of the molecule in an organic solvent. Surfactants are often difficult to remove from the system. It is theorized that alkylation of the functional sites of humic acid can affect the hydrophilic nature of the molecule, and effectively enable its dispersion into organic solvents without simultaneous incorporation of surfactants. This dissertation investigated the amidation and esterification of humic acid molecules extracted from leonardite. The resulting change in the modified humic acid dispersibility in organic solvents and its potential usage as a fuel additive were evaluated. Butyl, hexyl, octyl, and decyl amide-modified and ester-modified humic acids were synthesized. These products were characterized to confirm successful chemical reaction through thermogravimetric analysis, Fourier-transform infrared spectroscopy, and scanning electron microscopy. The decyl-modified humic acids remained suspended in kerosene mixtures for longer than 1 week. Other organo-humic acids showed varying degrees of flocculation. The modified humic acid samples were diluted with kerosene to identify the influence on combustion properties. Butyl-modified humic acid samples decreased the molar enthalpy of combustion. Hexyl, octyl, and decyl-modified humic acids improved the combustion values. Decyl amide-modified humic acid showed the largest improvement of these mixtures with a 0.9% increase from the expected molar enthalpy of combustion with a loading percentage of 0.36% in kerosene. Octyl amide-modified and octyl ester-modified humic acid mixtures were prepared in 0.05, 0.1, and 1% loading percentage dilutions to study the effect of modified humic acid loading percent on combustion properties. The 0.1% dilution showed the largest increase of the expected molar enthalpy of combustion by 1.14% and 0.4% for amide-modified HA and ester-modified HA, respectively.
Social participation and drug use in a cohort of Brazilian sex workers.
Leslie, Hannah Hogan; Ahern, Jennifer; Chinaglia, Magda; Kerrigan, Deanna; Lippman, Sheri A
2013-06-01
Structural interventions focused on community mobilisation to engender an enabling social context have reduced sexual risk behaviours among sex workers. Interventions to date have increased social participation and shown an association between participation and safer sex. Social participation could modify risk for other health behaviours, particularly drug use. We assessed social participation and drug use before and after implementation of a clinical, social and structural intervention with sex workers intended to prevent sexually transmitted infections/HIV infection. We followed 420 sex workers participating in the Encontros intervention in Corumbá, Brazil, between 2003 and 2005. We estimated the association of participation in external social groups with drug use at baseline and follow-up using logistic regression and marginal modelling. Follow-up analyses of preintervention/postintervention change in drug use employed inverse probability weighting to account for censoring and were stratified by exposure to the intervention. Social participation showed a protective association with drug use at baseline (1 SD higher level of social participation associated with 3.8% lower prevalence of drug use, 95% CI -0.1 to 8.3). Among individuals exposed to Encontros, higher social participation was associated with an 8.6% lower level of drug use (95% CI 0.1 to 23.3). No significant association was found among the unexposed. A structural intervention that modified sex workers' social environment, specifically participation in external social groups, was associated with reduced drug use. These findings suggest that sexual risk prevention initiatives that enhance social integration among marginalised populations can produce broad health impacts, including reductions in drug use.
Schleuning, Matthias; Farwig, Nina; Peters, Marcell K; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Naumann, Clas M; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J Wolfgang; Böhning-Gaese, Katrin
2011-01-01
Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the functionality of tropical forests can be maintained in moderately disturbed forest fragments. Conservation concepts for tropical forests should thus include not only remaining pristine forests but also functionally viable forest remnants.
Schleuning, Matthias; Farwig, Nina; Peters, Marcell K.; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W.; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H.; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J. Wolfgang; Böhning-Gaese, Katrin
2011-01-01
Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the functionality of tropical forests can be maintained in moderately disturbed forest fragments. Conservation concepts for tropical forests should thus include not only remaining pristine forests but also functionally viable forest remnants. PMID:22114695
Maxwell, Annette E; Bastani, Roshan; Glenn, Beth A; Taylor, Victoria M; Nguyen, Tung T; Stewart, Susan L; Burke, Nancy J; Chen, Moon S
2014-05-01
Hepatitis B infection is 5 to 12 times more common among Asian Americans than in the general US population and is the leading cause of liver disease and liver cancer among Asians. The purpose of this article is to describe the step-by-step approach that we followed in community-based participatory research projects in 4 Asian American groups, conducted from 2006 through 2011 in California and Washington state to develop theoretically based and culturally appropriate interventions to promote hepatitis B testing. We provide examples to illustrate how intervention messages addressing identical theoretical constructs of the Health Behavior Framework were modified to be culturally appropriate for each community. Intervention approaches included mass media in the Vietnamese community, small-group educational sessions at churches in the Korean community, and home visits by lay health workers in the Hmong and Cambodian communities. Use of the Health Behavior Framework allowed a systematic approach to intervention development across populations, resulting in 4 different culturally appropriate interventions that addressed the same set of theoretical constructs. The development of theory-based health promotion interventions for different populations will advance our understanding of which constructs are critical to modify specific health behaviors.
Villodre, Celia; Rebasa, Pere; Estrada, José Luís; Zaragoza, Carmen; Zapater, Pedro; Mena, Luís; Lluís, Félix
2016-11-01
In a previous study, we found that Physiological and Operative Severity Score for the enUmeration of Mortality and Morbidity (POSSUM) overpredicts morbidity risk in emergency gastrointestinal surgery. Our aim was to find a POSSUM equation adjustment. A prospective observational study was performed on 2,361 patients presenting with a community-acquired gastrointestinal surgical emergency. The first 1,000 surgeries constituted the development cohort, the second 1,000 events were the first validation intramural cohort, and the remaining 361 cases belonged to a second validation extramural cohort. (1) A modified POSSUM equation was obtained. (2) Logistic regression was used to yield a statistically significant equation that included age, hemoglobin, white cell count, sodium and operative severity. (3) A chi-square automatic interaction detector decision tree analysis yielded a statistically significant equation with 4 variables, namely cardiac failure, sodium, operative severity, and peritoneal soiling. A modified POSSUM equation and a simplified scoring system (aLicante sUrgical Community Emergencies New Tool for the enUmeration of Morbidities [LUCENTUM]) are described. Both tools significantly improve prediction of surgical morbidity in community-acquired gastrointestinal surgical emergencies. Copyright © 2016 Elsevier Inc. All rights reserved.
Dynamics and control of diseases in networks with community structure.
Salathé, Marcel; Jones, James H
2010-04-08
The dynamics of infectious diseases spread via direct person-to-person transmission (such as influenza, smallpox, HIV/AIDS, etc.) depends on the underlying host contact network. Human contact networks exhibit strong community structure. Understanding how such community structure affects epidemics may provide insights for preventing the spread of disease between communities by changing the structure of the contact network through pharmaceutical or non-pharmaceutical interventions. We use empirical and simulated networks to investigate the spread of disease in networks with community structure. We find that community structure has a major impact on disease dynamics, and we show that in networks with strong community structure, immunization interventions targeted at individuals bridging communities are more effective than those simply targeting highly connected individuals. Because the structure of relevant contact networks is generally not known, and vaccine supply is often limited, there is great need for efficient vaccination algorithms that do not require full knowledge of the network. We developed an algorithm that acts only on locally available network information and is able to quickly identify targets for successful immunization intervention. The algorithm generally outperforms existing algorithms when vaccine supply is limited, particularly in networks with strong community structure. Understanding the spread of infectious diseases and designing optimal control strategies is a major goal of public health. Social networks show marked patterns of community structure, and our results, based on empirical and simulated data, demonstrate that community structure strongly affects disease dynamics. These results have implications for the design of control strategies.
Wagner, Bree; Fitzpatrick, James; Symons, Martyn; Jirikowic, Tracy; Cross, Donna; Latimer, Jane
2017-06-01
Although previous research has demonstrated the benefits of targeting self-regulation in non-Aboriginal children, it is unclear whether such programs would be effective for Aboriginal children attending school in remote communities. Some of these children have been diagnosed with a fetal alcohol spectrum disorder (FASD) impairing their ability to self-regulate. The aim of this article is to describe a three phase formative process to develop and pilot a curriculum version of the Alert Program ® , a promising intervention for improving self-regulation that could be used in remote community schools. This modified version of the program will be subsequently tested in a cluster randomised controlled trial. A mixed methods approach was used. Modifications to the Alert Program ® , its delivery and evaluation were made after community and stakeholder consultation facilitated by a senior Aboriginal community researcher. Changes to lesson plans and program resources were made to reflect the remote community context, classroom environment and the challenging behaviours of children. Standardised study outcome measures were modified by removing several questions that had little relevance to the lives of children in remote communities. Program training for school staff was reduced in length to reduce staff burden. This study identified aspects of the Alert Program ® training, delivery and measures for evaluation that need modification before their use in assessing the efficacy of the Alert Program ® in remote Aboriginal community primary schools. © 2016 Occupational Therapy Australia.
ERIC Educational Resources Information Center
Ruth, Taylor K.; Rumble, Joy N.; Gay, Keegan D.; Rodriguez, Mary T.
2016-01-01
Even though science says genetically modified (GM) foods are safe, many consumers remain skeptical of the technology. Additionally, the scientific community has trouble communicating to the public, causing consumers to make uninformed decisions. The Millennial Generation will have more buying power than any other generation before them, and more…
SCIENCE QUESTIONS:
-Does gene flow occur from genetically modified (GM) crop plants to compatible plants?
-How can it be measured?
-Are there ecological consequences of GM crop gene flow to plant communities?
RESEARCH:
The objectives ...
NASA Astrophysics Data System (ADS)
Drut, Baptiste; Cassagne, Nathalie; Cannavacciuolo, Mario; Brauman, Alain; Le Floch, Gaëtan; Cobo, Jose; Fustec, Joëlle
2017-04-01
Keywords: legumes, earthworms, microorganisms, nitrogen, interactions Both aboveground and belowground biodiversity and their interactions can play an important role in crop productivity. Plant functional diversity, such as legume based intercrops have been shown to improve yields through plant complementarity for nitrogen use (Corre-Hellou et al., 2006). Moreover, plant species or plant genotype may influence the structure of soil microorganism communities through the composition of rhizodeposits in the rhizosphere (Dennis et al., 2010). Belowground diversity can also positively influence plant performance especially related to functional dissimilarity between soil organisms (Eisenhauer, 2012). Earthworms through their burrowing activity influence soil microbial decomposers and nutrient availability and have thus been reported to increase plant growth (Brown, 1995; Brown et al., 2004). We hypothesize that i) plant functional (genetic and/or specific) diversity associated to functional earthworms diversity are key drivers of interactions balance to improve crop performances and ii) the improvement of plant performances can be related to change in the structure of soil microorganism communities due to the diversity of rhizodeposits and the burrowing activity of earthworms. In a first mesocosm experiment, we investigated the effect of a gradient of plant diversity - one cultivar of wheat (Triticum aestivum L.), 3 different wheat cultivars, and 3 different cultivars intercropped with clover (Trifolium hybridum L.) - and the presence of one (endogeic) or two (endogeic and anecic) categories of earthworms on biomass and nitrogen accumulation of wheat. In a second mesocosm experiment, we investigated the influence of three species with different rhizodeposition - wheat, rapeseed (Brassica napus L. ) and faba bean (Vicia faba L.) in pure stand or intercropped - and the presence of endogeic earthworms on microbial activity and nitrogen availability. In the first experiment, biomass and nitrogen accumulation of wheat were improved in the presence of earthworms and clover. No effect of a plant genetic diversity was shown on crop performances. Furthermore, the influence of earthworms on bacterial diversity depended on plant diversity. In the second experiment, the specific composition of plant and earthworm presence modified the physiological profiles of rhizospheric microorganism communities (Microresp®) and nitrification potential. In the presence of faba-bean, microorganism activity was consistently increased and earthworms tended to decrease C:N ratio in the rhizospheric soil. These results confirm the interest of legume based intercrops for the complementarity in nitrogen use thanks to biological fixation. This study showed the influence of earthworms on plant nitrogen acquisition by stimulating microorganism activity and nutrient availability around the roots. We also highlighted a synergistic effect between the presence of legume and endogeic earthworms for higher plant performances. We finally hypothesized that the combined effect of rhizodeposit diversity related to plant specific composition and soil chemical properties modified by earthworm activity drives the structure and activity of microorganism communities. Brown, G.G., 1995. How do earthworms affect microfloral and faunal community diversity? Plant and Soil 170, 209-231. Brown, G.G., Edwards, C.A., Brussaard, L., 2004. How earthworms affect plant growth: burrowing into the mechanisms. Earthworm ecology 2, 13-49. Corre-Hellou, G., Fustec, J., Crozat, Y., 2006. Interspecific competition for soil N and its interaction with N2 fixation, leaf expansion and crop growth in pea-barley intercrops. Plant and Soil 282, 195-208. Dennis, P.G., Miller, A.J., Hirsch, P.R., 2010. Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiology Ecology 72, 313-327. Eisenhauer, N., 2012. Aboveground-belowground interactions as a source of complementarity effects in biodiversity experiments. Plant and Soil 351, 1-22.
Gadelkarim, Johnson J; Ajilore, Olusola; Schonfeld, Dan; Zhan, Liang; Thompson, Paul M; Feusner, Jamie D; Kumar, Anand; Altshuler, Lori L; Leow, Alex D
2014-05-01
In this article, we present path length associated community estimation (PLACE), a comprehensive framework for studying node-level community structure. Instead of the well-known Q modularity metric, PLACE utilizes a novel metric, Ψ(PL), which measures the difference between intercommunity versus intracommunity path lengths. We compared community structures in human healthy brain networks generated using these two metrics and argued that Ψ(PL) may have theoretical advantages. PLACE consists of the following: (1) extracting community structure using top-down hierarchical binary trees, where a branch at each bifurcation denotes a collection of nodes that form a community at that level, (2) constructing and assessing mean group community structure, and (3) detecting node-level changes in community between groups. We applied PLACE and investigated the structural brain networks obtained from a sample of 25 euthymic bipolar I subjects versus 25 gender- and age-matched healthy controls. Results showed community structural differences in posterior default mode network regions, with the bipolar group exhibiting left-right decoupling. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Jiang, Dong; Yu, Han; Yu, Hongbing
2017-01-01
Novel ternary nanocomposites with facet coupled structure were synthesized by using modified g-C3N4, TiO2 nanosheets and nano-ZnO. Nanosheet/nanosheet heterojunction structure was investigated by TEM, XPS and XRD. FT-IR and Nitrogen adsorption were illustrated for chemical/physical structure analyses. Solution of p-Toluenesulfonic acid (p-TSA) was chosen as target pollutant for visible light photodegradation and the excellent removal efficiency was achieved by this structurally modified g-C3N4/TiO2/ZnO hybrid. The visible light absorption improvement and quantum efficiency enhancement, which were testified by UV-vis DRS, PL and p-TSA photodegradation measurements, due to the facet coupled structure and appropriate quantity of modified g-C3N4 in the nanocomposites.
Swashed away? Storm impacts on sandy beach macrofaunal communities
NASA Astrophysics Data System (ADS)
Harris, Linda; Nel, Ronel; Smale, Malcolm; Schoeman, David
2011-09-01
Storms can have a large impact on sandy shores, with powerful waves eroding large volumes of sand off the beach. Resulting damage to the physical environment has been well-studied but the ecological implications of these natural phenomena are less known. Since climate change predictions suggest an increase in storminess in the near future, understanding these ecological implications is vital if sandy shores are to be proactively managed for resilience. Here, we report on an opportunistic experiment that tests the a priori expectation that storms impact beach macrofaunal communities by modifying natural patterns of beach morphodynamics. Two sites at Sardinia Bay, South Africa, were sampled for macrofauna and physical descriptors following standard sampling methods. This sampling took place five times at three- to four-month intervals between April 2008 and August 2009. The second and last sampling events were undertaken after unusually large storms, the first of which was sufficiently large to transform one site from a sandy beach into a mixed shore for the first time in living memory. A range of univariate (linear mixed-effects models) and multivariate (e.g. non-metric multidimensional scaling, PERMANOVA) methods were employed to describe trends in the time series, and to explore the likelihood of possible explanatory mechanisms. Macrofaunal communities at the dune-backed beach (Site 2) withstood the effects of the first storm but were altered significantly by the second storm. In contrast, macrofauna communities at Site 1, where the supralittoral had been anthropogenically modified so that exchange of sediments with the beach was limited, were strongly affected by the first storm and showed little recovery over the study period. In line with predictions from ecological theory, beach morphodynamics was found to be a strong driver of temporal patterns in the macrofaunal community structure, with the storm events also identified as a significant factor, likely because of their direct effects on beach morphodynamics. Our results also support those of other studies suggesting that developed shores are more impacted by storms than are undeveloped shores. Whilst recognising we cannot generalise too far beyond our limited study, our results contribute to the growing body of evidence that interactions between sea-level rise, increasing storminess and the expansion of anthropogenic modifications to the shoreline will place functional beach ecosystems under severe pressure over the forthcoming decades and we therefore encourage further, formal testing of these concepts.
Landscape moderation of biodiversity patterns and processes - eight hypotheses.
Tscharntke, Teja; Tylianakis, Jason M; Rand, Tatyana A; Didham, Raphael K; Fahrig, Lenore; Batáry, Péter; Bengtsson, Janne; Clough, Yann; Crist, Thomas O; Dormann, Carsten F; Ewers, Robert M; Fründ, Jochen; Holt, Robert D; Holzschuh, Andrea; Klein, Alexandra M; Kleijn, David; Kremen, Claire; Landis, Doug A; Laurance, William; Lindenmayer, David; Scherber, Christoph; Sodhi, Navjot; Steffan-Dewenter, Ingolf; Thies, Carsten; van der Putten, Wim H; Westphal, Catrin
2012-08-01
Understanding how landscape characteristics affect biodiversity patterns and ecological processes at local and landscape scales is critical for mitigating effects of global environmental change. In this review, we use knowledge gained from human-modified landscapes to suggest eight hypotheses, which we hope will encourage more systematic research on the role of landscape composition and configuration in determining the structure of ecological communities, ecosystem functioning and services. We organize the eight hypotheses under four overarching themes. Section A: 'landscape moderation of biodiversity patterns' includes (1) the landscape species pool hypothesis-the size of the landscape-wide species pool moderates local (alpha) biodiversity, and (2) the dominance of beta diversity hypothesis-landscape-moderated dissimilarity of local communities determines landscape-wide biodiversity and overrides negative local effects of habitat fragmentation on biodiversity. Section B: 'landscape moderation of population dynamics' includes (3) the cross-habitat spillover hypothesis-landscape-moderated spillover of energy, resources and organisms across habitats, including between managed and natural ecosystems, influences landscape-wide community structure and associated processes and (4) the landscape-moderated concentration and dilution hypothesis-spatial and temporal changes in landscape composition can cause transient concentration or dilution of populations with functional consequences. Section C: 'landscape moderation of functional trait selection' includes (5) the landscape-moderated functional trait selection hypothesis-landscape moderation of species trait selection shapes the functional role and trajectory of community assembly, and (6) the landscape-moderated insurance hypothesis-landscape complexity provides spatial and temporal insurance, i.e. high resilience and stability of ecological processes in changing environments. Section D: 'landscape constraints on conservation management' includes (7) the intermediate landscape-complexity hypothesis-landscape-moderated effectiveness of local conservation management is highest in structurally simple, rather than in cleared (i.e. extremely simplified) or in complex landscapes, and (8) the landscape-moderated biodiversity versus ecosystem service management hypothesis-landscape-moderated biodiversity conservation to optimize functional diversity and related ecosystem services will not protect endangered species. Shifting our research focus from local to landscape-moderated effects on biodiversity will be critical to developing solutions for future biodiversity and ecosystem service management. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.
Labour migration and the single European market: a synthetic and prospective note.
Ardittis, S
1990-12-01
"The present paper is an attempt to analyse and forecast the following major issues relating to migration in Europe after 1992: (i) the evolution and structure of intra-European flows in the forthcoming single European market; (ii) the integration, after 1992, of established immigrant communities, including ethnic minorities and second generation groups; (iii) future immigration from non-EC member states.... The article explains that, in addition to policy-related mutations inherent in the completion of the internal market, other factors (demographic changes and insufficient enrolment of national graduate students in key disciplines) and issues (emergence of atypical groups such as second generation and Eastern European migrants), are due to generate new patterns and modified interests in European labour migration after 1992." excerpt
1998-08-14
This high-altitude research plane, a specially equipped Dryden Flight Research Center ER-2 (a modified U-2), is readied at Patrick Air Force Base for flight into a hurricane in the Atlantic. The plane is part of the NASA-led Atmospheric Dynamics and Remote Sensing program that includes other government weather researchers and the university community in a study of Atlantic hurricanes and tropical storms. The ER-2, soaring above 65,000 feet, will measure the structure of hurricanes and the surrounding atmosphere that steers the storms’ movement. The hurricane study, which lasts through September 1998, is part of NASA’s Earth Science enterprise to better understand the total Earth system and the effects of natural and human-induced changes on the global environment
1998-08-12
This high-altitude research plane, a specially equipped Dryden Flight Research Center ER-2, stops at Patrick Air Force Base long enough for visitors to get a close view. The modified U-2 aircraft, soaring above 65,000 feet, will measure the structure of hurricanes and the surrounding atmosphere that steers the storm’s movement. The plane is part of the NASA-led Atmospheric Dynamics and Remote Sensing program that includes other government weather researchers and the university community in a study of Atlantic hurricanes and tropical storms. The hurricane study, which lasts through September 1998, is part of NASA’s Earth Science enterprise to better understand the total Earth system and the effects of natural and human-induced changes on the global environment
1998-08-14
The pilot of this high-altitude research plane, a specially equipped Dryden Flight Research Center ER-2 (a modified U-2), settles into the cockpit at Patrick Air Force Base before taking off into a hurricane. The plane is part of the NASA-led Atmospheric Dynamics and Remote Sensing program that includes other government weather researchers and the university community in a study of Atlantic hurricanes and tropical storms. Soaring above 65,000 feet, the ER-2 will measure the structure of hurricanes and the surrounding atmosphere that steers the storm’s movement. The hurricane study, which lasts through September 1998, is part of NASA’s Earth Science enterprise to better understand the total Earth system and the effects of natural and human-induced changes on the global environment
A Model to Translate Evidence-Based Interventions Into Community Practice
Christiansen, Ann L.; Peterson, Donna J.; Guse, Clare E.; Maurana, Cheryl A.; Brandenburg, Terry
2012-01-01
There is a tension between 2 alternative approaches to implementing community-based interventions. The evidence-based public health movement emphasizes the scientific basis of prevention by disseminating rigorously evaluated interventions from academic and governmental agencies to local communities. Models used by local health departments to incorporate community input into their planning, such as the community health improvement process (CHIP), emphasize community leadership in identifying health problems and developing and implementing health improvement strategies. Each approach has limitations. Modifying CHIP to formally include consideration of evidence-based interventions in both the planning and evaluation phases leads to an evidence-driven community health improvement process that can serve as a useful framework for uniting the different approaches while emphasizing community ownership, priorities, and wisdom. PMID:22397341
The Seeds to Success Modified Field Test: Findings from the Impact and Implementation Studies
ERIC Educational Resources Information Center
Boller, Kimberly; Del Grosso, Patricia; Blair, Randall; Jolly, Yumiko; Fortson, Ken; Paulsell, Diane; Lundquist, Eric; Hallgren, Kristin; Kovac, Martha
2010-01-01
In 2006, the Bill & Melinda Gates Foundation launched the Early Learning Initiative (ELI) to improve the school readiness of Washington State's children through three main strategies: (1) development of high-quality, community-wide early learning initiatives in two communities; (2) enhancement of statewide systems that support early…
The Caring Community as a Context for Joining Youth Needs and Program Services.
ERIC Educational Resources Information Center
Ianni, Francis A. J.
1996-01-01
Argues that many of the needs youth have are determined by where and how they live. Suggests youth services providers should take a constructivist approach by helping communities and organizations create services that provide and nurture caring attitudes and behaviors. Presents recommendations for modifying cultures and organizing caring…
ERIC Educational Resources Information Center
Cheng, Helen; Dunn, Judy; O'Connor, Thomas G.; Golding, Jean
2006-01-01
Research findings show that there is marked variability in children's response to parental separation, but few studies identify the sources of this variation. This prospective longitudinal study examines the factors modifying children's adjustment to parental separation in a community sample of 5,635 families in England. Children's…
Ethnic/Racial Attitudes and Self-Identification of Black Jamaican and White New England Children.
ERIC Educational Resources Information Center
Cramer, Phebe; Anderson, Gail
2003-01-01
Black and white researchers interviewed black Jamaican and white New England elementary students in urban and rural schools regarding skin color, body size preference, and self-identification, using a modified dolls test. Children from all three communities showed white favoritism and average body size favoritism. Within communities, there were…
Is biotechnology a victim of anti-science bias in scientific journals?
Miller, Henry I; Morandini, Piero; Ammann, Klaus
2008-03-01
Primarily outside the scientific community, misapprehensions and misinformation about recombinant DNA-modified (also known as 'genetically modified', or 'GM') plants have generated significant 'pseudo-controversy' over their safety that has resulted in unscientific and excessive regulation (with attendant inflated development costs) and disappointing progress. But pseudo-controversy and sensational claims have originated within the scientific community as well, and even scholarly journals' treatment of the subject has been at times unscientific, one-sided and irresponsible. These shortcomings have helped to perpetuate 'The Big Lie' - that recombinant DNA technology applied to agriculture and food production is unproven, unsafe, untested, unregulated and unwanted. Those misconceptions, in turn, have given rise to unwarranted opposition and tortuous, distorted public policy.
NASA Astrophysics Data System (ADS)
Mansoor, M.; Salam, I.; Tauqir, A.
2016-08-01
Eutectic Al-Si alloys find their applications in moderate to severe tribological conditions, for example: pistons, casings of high speed pumps and slide sleeves. The higher hardness, so the better tribological properties, are originated by the formation of a silicon rich secondary phase, however, the morphology of the secondary phase drastically influence the toughness of the alloy. Microstructural modifiers are used to control the toughness which modifies the Si rich secondary phase into dispersed spherical structure instead of needle-like network. In the present study, a mixture of chemical fluxes was used to modify the Si phase. The alloy was cast into a sand mold and characterized by scanning electron microscopy, energy dispersive spectroscopy, hardness testing and tensile testing. It was found that the morphology of the Si phase was altered to acicular structure due to the modification process. In comparison, the un-modified alloy contained Si phase in needle-like structure. The effect of modifier was also pronounced on the mechanical properties, where increase of 50% in yield strength, 56% in tensile strength and 200% in elongation occurred. A discernable raise in strain hardening component indicated the improved strain harden ability and formability of the modified alloy.
Yin, Peng; Wang, Yuhua; Li, Yan; Deng, Chunhui; Zhang, Xiangmin; Yang, Pengyuan
2012-09-01
In this study, sandwich-structured graphene/mesoporous silica composites (C8-modified graphene@mSiO(2)) were synthesized by coating mesoporous silica onto hydrophilic graphene nanosheets through a surfactant-mediated cocondensation sol-gel process. The newly prepared C8-modified graphene@mSiO(2) nanocomposites possess unique properties of extended plate-like morphology, good water dispersibility, highly open pore structure, uniform pore size (2.8 nm), high surface area (632 m(2)/g), and C8-modified-interior pore walls. The unique structure of the C8-modified graphene@mSiO(2) composite nanosheets not only provide extended planes with hydrophilic surface that prevents aggregation in solution, but also offer a huge number of C8-modified mesopores with high surface area that can ensure an efficient adsorption of peptides through hydrophobic-hydrophobic interaction between C8-moified pore walls and target molecules. The obtained C8-modified graphene@mSiO(2) materials were utilized for size selectively and specifically enriching peptides in standard peptide mixtures and endogenous peptides in real biological samples (mouse brain tissue). © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Assis, Ananda Brito de; Barreto, Cristine Chaves; Navas, Carlos Arturo
2017-01-01
The cutaneous microbiota of amphibians can be defined as a biological component of protection, since it can be composed of bacteria that produce antimicrobial compounds. Several factors influence skin microbial structure and it is possible that environmental variations are among one of these factors, perhaps through physical-chemical variations in the skin. This community, therefore, is likely modified in habitats in which some ecophysiological parameters are altered, as in fragmented forests. Our research goal was to compare the skin bacterial community of four anuran species of the Atlantic Forest of Brazil in landscapes from two different environments: continuous forest and fragmented forest. The guiding hypotheses were: 1) microbial communities of anuran skin vary among sympatric frog species of the Atlantic forest; 2) the degree to which forested areas are intact affects the cutaneous bacterial community of amphibians. If the external environment influences the skin microbiota, and if such influences affect microorganisms capable of inhibiting the colonization of pathogens, we expect consequences for the protection of host individuals. We compared bacterial communities based on richness and density of colony forming units; investigated the antimicrobial potential of isolated strains; and did the taxonomic identification of isolated morphotypes. We collected 188 individual frogs belonging to the species Proceratophrys boiei, Dendropsophus minutus, Aplastodiscus leucopygius and Phyllomedusa distincta, and isolated 221 bacterial morphotypes. Our results demonstrate variation in the skin microbiota of sympatric amphibians, but only one frog species exhibited differences in the bacterial communities between populations from fragmented and continuous forest. Therefore, the variation we observed is probably derived from both intrinsic aspects of the host amphibian species and extrinsic aspects of the environment occupied by the host. Finally, we detected antimicrobial activity in 27 morphotypes of bacteria isolated from all four amphibian species.
At-hatch administration of probiotic to chickens can introduce beneficial changes in gut microbiota.
Baldwin, Stephen; Hughes, Robert J; Hao Van, Thi Thu; Moore, Robert J; Stanley, Dragana
2018-01-01
Recent advances in culture-free microbiological techniques bring new understanding of the role of intestinal microbiota in heath and performance. Intestinal microbial communities in chickens assume a near-stable state within the week which leaves a very small window for permanent microbiota remodelling. It is the first colonisers that determine the fate of microbial community in humans and birds alike, and after the microbiota has matured there are very small odds for permanent modification as stable community resists change. In this study we inoculated broiler chicks immediately post hatch, with 3 species of Lactobacillus, identified by sequencing of 16S rRNA and pheS genes as L. ingluviei, L. agilis and L. reuteri. The strains were isolated from the gut of healthy chickens as reproducibly persistent Lactobacillus strains among multiple flocks. Birds inoculated with the probiotic mix reached significantly higher weight by 28 days of age. Although each strain was able to colonise when administered alone, administering the probiotic mix at-hatch resulted in colonisation by only L. ingluviei. High initial abundance of L. ingluviei was slowly reducing, however, the effects of at-hatch administration of the Lactobacillus mix on modifying microbiota development and structure remained persistent. There was a tendency of promotion of beneficial and reduction in pathogenic taxa in the probiotic administered group.
Heckmann, Lars-Henrik; Friberg, Nikolai
2005-03-01
Pesticides are constantly being applied to agricultural catchments, but little is known about their impact on aquatic biota during natural exposure. In the present study, the impact of the pyrethroid lambda-cyhalothrin was studied in an in-stream mesocosm setup. Twice during the summer of 2002, the natural macroinvertebrate community was exposed in situ to a 30-min pulse of lambda-cyhalothrin. Pyrethroid doses were released through a modified drip set with nominal concentrations of 0.10, 1.00, and 10.0 microg L(-1) during the first exposure and 0.05, 0.50, and 5.00 microg L(-1) in the second exposure. Before, during, and after exposure, drifting macroinvertebrates were caught in nets. Quantitative benthic samples were taken both before and on two occasions after exposure. Macroinvertebrate drift increased immediately after the pulse exposure, with total drift being significantly higher at all concentrations. Gammarus pulex, various Ephemeroptera, Leuctra sp., and Simuliidae were some of the taxa showing the most pronounced drift response. Structural change in the community was found only at 5.00 and 10.0 microg L(-1), and recovery occurred within approximately two weeks. The present study may be valuable in assessing extrapolations based on laboratory results as well as in evaluating pyrethroid impact on natural freshwater environments.
Transitional states in marine fisheries: adapting to predicted global change
MacNeil, M. Aaron; Graham, Nicholas A. J.; Cinner, Joshua E.; Dulvy, Nicholas K.; Loring, Philip A.; Jennings, Simon; Polunin, Nicholas V. C.; Fisk, Aaron T.; McClanahan, Tim R.
2010-01-01
Global climate change has the potential to substantially alter the production and community structure of marine fisheries and modify the ongoing impacts of fishing. Fish community composition is already changing in some tropical, temperate and polar ecosystems, where local combinations of warming trends and higher environmental variation anticipate the changes likely to occur more widely over coming decades. Using case studies from the Western Indian Ocean, the North Sea and the Bering Sea, we contextualize the direct and indirect effects of climate change on production and biodiversity and, in turn, on the social and economic aspects of marine fisheries. Climate warming is expected to lead to (i) yield and species losses in tropical reef fisheries, driven primarily by habitat loss; (ii) community turnover in temperate fisheries, owing to the arrival and increasing dominance of warm-water species as well as the reduced dominance and departure of cold-water species; and (iii) increased diversity and yield in Arctic fisheries, arising from invasions of southern species and increased primary production resulting from ice-free summer conditions. How societies deal with such changes will depend largely on their capacity to adapt—to plan and implement effective responses to change—a process heavily influenced by social, economic, political and cultural conditions. PMID:20980322
Transitional states in marine fisheries: adapting to predicted global change.
MacNeil, M Aaron; Graham, Nicholas A J; Cinner, Joshua E; Dulvy, Nicholas K; Loring, Philip A; Jennings, Simon; Polunin, Nicholas V C; Fisk, Aaron T; McClanahan, Tim R
2010-11-27
Global climate change has the potential to substantially alter the production and community structure of marine fisheries and modify the ongoing impacts of fishing. Fish community composition is already changing in some tropical, temperate and polar ecosystems, where local combinations of warming trends and higher environmental variation anticipate the changes likely to occur more widely over coming decades. Using case studies from the Western Indian Ocean, the North Sea and the Bering Sea, we contextualize the direct and indirect effects of climate change on production and biodiversity and, in turn, on the social and economic aspects of marine fisheries. Climate warming is expected to lead to (i) yield and species losses in tropical reef fisheries, driven primarily by habitat loss; (ii) community turnover in temperate fisheries, owing to the arrival and increasing dominance of warm-water species as well as the reduced dominance and departure of cold-water species; and (iii) increased diversity and yield in Arctic fisheries, arising from invasions of southern species and increased primary production resulting from ice-free summer conditions. How societies deal with such changes will depend largely on their capacity to adapt--to plan and implement effective responses to change--a process heavily influenced by social, economic, political and cultural conditions.
Davies, Sheryl; Schultz, Ellen; Raven, Maria; Wang, Nancy Ewen; Stocks, Carol L; Delgado, Mucio Kit; McDonald, Kathryn M
2017-10-01
To develop and validate rates of potentially preventable emergency department (ED) visits as indicators of community health. Agency for Healthcare Research and Quality, Healthcare Cost and Utilization Project 2008-2010 State Inpatient Databases and State Emergency Department Databases. Empirical analyses and structured panel reviews. Panels of 14-17 clinicians and end users evaluated a set of ED Prevention Quality Indicators (PQIs) using a Modified Delphi process. Empirical analyses included assessing variation in ED PQI rates across counties and sensitivity of those rates to county-level poverty, uninsurance, and density of primary care physicians (PCPs). ED PQI rates varied widely across U.S. communities. Indicator rates were significantly associated with county-level poverty, median income, Medicaid insurance, and levels of uninsurance. A few indicators were significantly associated with PCP density, with higher rates in areas with greater density. A clinical and an end-user panel separately rated the indicators as having strong face validity for most uses evaluated. The ED PQIs have undergone initial validation as indicators of community health with potential for use in public reporting, population health improvement, and research. © Health Research and Educational Trust.
NASA Astrophysics Data System (ADS)
Zeglin, L. H.; Rainey, F.; Wang, B.; Waythomas, C.; Talbot, S. L.
2013-12-01
Microorganisms are abundant and diverse in soil and their integrated activity drives nutrient cycling on the ecosystem scale. Organic matter (OM) inputs from plant production support microbial heterotrophic life, and soil geochemistry constrains microbial activity and diversity. As vegetation and soil develops over time, these factors change, modifying the controls on microbial heterogeneity. Following a volcanic eruption, ash deposition creates new surfaces where both organismal growth and weathering processes are effectively reset. The trajectory of microbial community development following this disturbance depends on both organic matter accumulation and geochemical constraints. Also, dispersal of microbial cells to the sterile ash surface may determine microbial community succession. The Aleutian Islands (Alaska, USA) are a dynamic volcanic region, with active and dormant volcanoes distributed across the volcanic arc. One of these volcanoes, Kasatochi, erupted violently in August 2008, burying a small lush island in pryoclastic flows and fine ash. Since, plants and birds are beginning to re-establish on developing surfaces, including legacy soils exposed by rapid erosion of pyroclastic deposits, suggesting that recovery of microbial life is also proceeding. However, soil microbial diversity and function has not been examined on Kasatochi Island or across the greater Aleutian region. The project goal is to address these questions: How is soil microbial community structure and function developing following the Kasatochi eruption? What is the relative importance of dispersal, soil OM and geochemistry to microbial community heterogeneity across the Aleutians? Surface mineral soil (20-cm depth) samples were collected from Kasatochi Island in summer 2013, five years after the 2008 eruption, and from eight additional Aleutian islands. On Kasatochi, pryoclastic deposits, exposed legacy soils supporting regrowth of remnant dune wild-rye (Leymus mollis) and mesic meadow plant communities, and soils impacted by recovering seabird rookeries were sampled. On the other islands, soils supporting both Leymus and mesic meadow communities (representative of dominant vegetation types on Kasatochi pre-eruption) were sampled. For each soil category and island combination, three transects of soil cores at 10-cm, 50-cm, 1-m, 5-m and 10-m distance were collected; with distances between sites and islands included (up to >700 km), the range of geographic distance examined covers over 7 orders of magnitude. For all samples, data on fundamental geochemical and OM factors, bacterial and fungal biomass, activity and diversity (via QPCR, extracellular enzyme potential assays and T-RFLP) are being collected. Covariance analysis is being used to evaluate the scale of maximum spatial heterogeneity in microbial structure and function, and ordination and matrix correlation analyses are being used to identify the key environmental covariates with heterogeneity. We hypothesize that heterogeneity at small (cm) scales will reflect predominant geochemical controls, at medium (m) scales will reflect predominant OM (vegetation) controls and at large (km) scales will reflect dispersal-related controls on microbial community structure and function.
Glusman, Gustavo; Rose, Peter W; Prlić, Andreas; Dougherty, Jennifer; Duarte, José M; Hoffman, Andrew S; Barton, Geoffrey J; Bendixen, Emøke; Bergquist, Timothy; Bock, Christian; Brunk, Elizabeth; Buljan, Marija; Burley, Stephen K; Cai, Binghuang; Carter, Hannah; Gao, JianJiong; Godzik, Adam; Heuer, Michael; Hicks, Michael; Hrabe, Thomas; Karchin, Rachel; Leman, Julia Koehler; Lane, Lydie; Masica, David L; Mooney, Sean D; Moult, John; Omenn, Gilbert S; Pearl, Frances; Pejaver, Vikas; Reynolds, Sheila M; Rokem, Ariel; Schwede, Torsten; Song, Sicheng; Tilgner, Hagen; Valasatava, Yana; Zhang, Yang; Deutsch, Eric W
2017-12-18
The translation of personal genomics to precision medicine depends on the accurate interpretation of the multitude of genetic variants observed for each individual. However, even when genetic variants are predicted to modify a protein, their functional implications may be unclear. Many diseases are caused by genetic variants affecting important protein features, such as enzyme active sites or interaction interfaces. The scientific community has catalogued millions of genetic variants in genomic databases and thousands of protein structures in the Protein Data Bank. Mapping mutations onto three-dimensional (3D) structures enables atomic-level analyses of protein positions that may be important for the stability or formation of interactions; these may explain the effect of mutations and in some cases even open a path for targeted drug development. To accelerate progress in the integration of these data types, we held a two-day Gene Variation to 3D (GVto3D) workshop to report on the latest advances and to discuss unmet needs. The overarching goal of the workshop was to address the question: what can be done together as a community to advance the integration of genetic variants and 3D protein structures that could not be done by a single investigator or laboratory? Here we describe the workshop outcomes, review the state of the field, and propose the development of a framework with which to promote progress in this arena. The framework will include a set of standard formats, common ontologies, a common application programming interface to enable interoperation of the resources, and a Tool Registry to make it easy to find and apply the tools to specific analysis problems. Interoperability will enable integration of diverse data sources and tools and collaborative development of variant effect prediction methods.
Horn, Sebastian; Hempel, Stefan; Verbruggen, Erik; Rillig, Matthias C; Caruso, Tancredi
2017-01-01
Arbuscular mycorrhizal fungi (AMF) are crucial to plants and vice versa, but little is known about the factors linking the community structure of the two groups. We investigated the association between AMF and the plant community structure in the nearest neighborhood of Festuca brevipila in a semiarid grassland with steep environmental gradients, using high-throughput sequencing of the Glomeromycotina (former Glomeromycota). We focused on the Passenger, Driver and Habitat hypotheses: (i) plant communities drive AMF (passenger); (ii) AMF communities drive the plants (driver); (iii) the environment shapes both communities causing covariation. The null hypothesis is that the two assemblages are independent and this study offers a spatially explicit novel test of it in the field at multiple, small scales. The AMF community consisted of 71 operational taxonomic units, the plant community of 47 species. Spatial distance and spatial variation in the environment were the main determinants of the AMF community. The structure of the plant community around the focal plant was a poor predictor of AMF communities, also in terms of phylogenetic community structure. Some evidence supports the passenger hypothesis, but the relative roles of the factors structuring the two groups clearly differed, leading to an apparent decoupling of the two assemblages at the relatively small scale of this study. Community phylogenetic structure in AMF suggests an important role of within-assemblage interactions. PMID:28244977
Horn, Sebastian; Hempel, Stefan; Verbruggen, Erik; Rillig, Matthias C; Caruso, Tancredi
2017-06-01
Arbuscular mycorrhizal fungi (AMF) are crucial to plants and vice versa, but little is known about the factors linking the community structure of the two groups. We investigated the association between AMF and the plant community structure in the nearest neighborhood of Festuca brevipila in a semiarid grassland with steep environmental gradients, using high-throughput sequencing of the Glomeromycotina (former Glomeromycota). We focused on the Passenger, Driver and Habitat hypotheses: (i) plant communities drive AMF (passenger); (ii) AMF communities drive the plants (driver); (iii) the environment shapes both communities causing covariation. The null hypothesis is that the two assemblages are independent and this study offers a spatially explicit novel test of it in the field at multiple, small scales. The AMF community consisted of 71 operational taxonomic units, the plant community of 47 species. Spatial distance and spatial variation in the environment were the main determinants of the AMF community. The structure of the plant community around the focal plant was a poor predictor of AMF communities, also in terms of phylogenetic community structure. Some evidence supports the passenger hypothesis, but the relative roles of the factors structuring the two groups clearly differed, leading to an apparent decoupling of the two assemblages at the relatively small scale of this study. Community phylogenetic structure in AMF suggests an important role of within-assemblage interactions.
Pajares, Silvia; Eguiarte, Luis E; Bonilla-Rosso, German; Souza, Valeria
2013-12-01
Understanding the changes of aquatic microbial community composition in response to changes in temperature and ultraviolet irradiation is relevant for predicting biogeochemical modifications in the functioning of natural microbial communities under global climate change scenarios. Herein we investigate shifts in the bacterioplankton composition in response to long-term changes in temperature and UV radiation. For this purpose, 15 mesocosms were seeded with composite aquatic microbial communities from natural pools within the Cuatro Cienegas Basin (Mexican Chihuahuan desert) and were subject to different temperatures and UV conditions. 16S rRNA gene clone libraries were obtained from water samples at the mid-point (4 months) and the end of the experiment (8 months). An increase in bacterial diversity over time was found in the treatment of constant temperature and UV protection, which suggests that stable environments promote the establishment of complex and diverse bacterial community. Drastic changes in the phylogenetic bacterioplankton composition and structure were observed in response to fluctuating temperature and increasing UV radiation and temperature. Fluctuating temperature induced the largest decrease of bacterial richness during the experiment, indicating that frequent temperature changes drive the reduction in abundance of several species, most notably autotrophs. The long-term impact of these environmental stresses reduced diversity and selected for generalist aquatic bacterial populations, such as Porphyrobacter. These changes at the community level occur at an ecological time scale, suggesting that under global warming scenarios cascade effects on the food web are possible if the microbial diversity is modified.
Contextual determinants of health behaviours in an aboriginal community in Canada: pilot project.
Joseph, Pamela; Davis, A Darlene; Miller, Ruby; Hill, Karen; McCarthy, Honey; Banerjee, Ananya; Chow, Clara; Mente, Andrew; Anand, Sonia S
2012-11-07
Rapid change in food intake, physical activity, and tobacco use in recent decades have contributed to the soaring rates of obesity, type 2 diabetes and cardiovascular disease (CVD) in Aboriginal populations living in Canada. The nature and influence of contextual factors on Aboriginal health behaviours are not well characterized. To describe the contextual determinants of health behaviours associated with cardiovascular risk factors on the Six Nations reserve, including the built environment, access and affordability of healthy foods, and the use of tobacco.In this cross-sectional study, 63 adults from the Six Nations Reserve completed the modified Neighbourhood Environment Walkability Scale (NEWS), questionnaire assessing food access and availability, tobacco pricing and availability, and the Environmental Profile of Community Health (EPOCH) tool. The structured environment of Six Nations Reserve scored low for walkability, street connectivity, aesthetics, safety, and access to walking and cycling facilities. All participants purchased groceries off-reserve, although fresh fruits and vegetables were reported to be available and affordable both on and off-reserve. On average $151/week is spent on groceries per family. Ninety percent of individuals report tobacco use is a problem in the community. Tobacco is easily accessible for children and youth, and only three percent of community members would accept increased tobacco taxation as a strategy to reduce tobacco access. The built environment, access and affordability of healthy food and tobacco on the Six Nations Reserve are not perceived favourably. Modification of these contextual factors described here may reduce adverse health behaviours in the community.
Floor-fractured crater models of the Sudbury structure, Canada
NASA Technical Reports Server (NTRS)
Wichman, R. W.; Schultz, P. H.
1992-01-01
The Sudbury structure in Ontario, Canada, is one of the oldest and largest impact structures recognized in the geological record. It is also one of the most extensively deformed and volcanically modified impact structures on Earth. Although few other terrestrial craters are recognized as volcanically modified, numerous impact craters on the Moon have been volcanically and tectonically modified and provide possible analogs for the observed pattern of modification at Sudbury. We correlate the pattern of early deformation at Sudbury to fracture patterns in two alternative lunar analogs and then use these analogs both to estimate the initial size of the Sudbury structure and to model the nature of early crater modification at Sudbury.
Strong influence of regional species pools on continent-wide structuring of local communities.
Lessard, Jean-Philippe; Borregaard, Michael K; Fordyce, James A; Rahbek, Carsten; Weiser, Michael D; Dunn, Robert R; Sanders, Nathan J
2012-01-22
There is a long tradition in ecology of evaluating the relative contribution of the regional species pool and local interactions on the structure of local communities. Similarly, a growing number of studies assess the phylogenetic structure of communities, relative to that in the regional species pool, to examine the interplay between broad-scale evolutionary and fine-scale ecological processes. Finally, a renewed interest in the influence of species source pools on communities has shown that the definition of the source pool influences interpretations of patterns of community structure. We use a continent-wide dataset of local ant communities and implement ecologically explicit source pool definitions to examine the relative importance of regional species pools and local interactions for shaping community structure. Then we assess which factors underlie systematic variation in the structure of communities along climatic gradients. We find that the average phylogenetic relatedness of species in ant communities decreases from tropical to temperate regions, but the strength of this relationship depends on the level of ecological realism in the definition of source pools. We conclude that the evolution of climatic niches influences the phylogenetic structure of regional source pools and that the influence of regional source pools on local community structure is strong.
Old Tools for New Problems: Modifying Master Gardener Training to Improve Food Access in Rural Areas
ERIC Educational Resources Information Center
Randle, Anne
2015-01-01
Extension faces ever-changing problems, which can be addressed by modifying successful tools rather than inventing new ones. The Master Gardener program has proven its effectiveness, but the cost and time commitment can make it inaccessible to rural, low-income communities, where training in home gardening may address issues of food access and…
Modeling the effect of competition on tree diameter growth as applied in STEMS.
Margaret R. Holdaway
1984-01-01
The modifier function used in STEMS (Stand and Tree Evaluation and Modeling System) mathematically represents the effect that the surrounding forest community has on the growth of an individual tree. This paper 1) develops the most recent modifier function, 2) discusses its form, 3) reports the results of the analysis with biological considerations and 4) evaluates the...
Evidence for the functional significance of diazotroph community structure in soil.
Hsu, Shi-Fang; Buckley, Daniel H
2009-01-01
Microbial ecologists continue to seek a greater understanding of the factors that govern the ecological significance of microbial community structure. Changes in community structure have been shown to have functional significance for processes that are mediated by a narrow spectrum of organisms, such as nitrification and denitrification, but in some cases, functional redundancy in the community seems to buffer microbial ecosystem processes. The functional significance of microbial community structure is frequently obscured by environmental variation and is hard to detect in short-term experiments. We examine the functional significance of free-living diazotrophs in a replicated long-term tillage experiment in which extraneous variation is minimized and N-fixation rates can be related to soil characteristics and diazotroph community structure. Soil characteristics were found to be primarily impacted by tillage management, whereas N-fixation rates and diazotroph community structure were impacted by both biomass management practices and interactions between tillage and biomass management. The data suggest that the variation in diazotroph community structure has a greater impact on N-fixation rates than do soil characteristics at the site. N-fixation rates displayed a saturating response to increases in diazotroph community diversity. These results show that the changes in the community structure of free-living diazotrophs in soils can have ecological significance and suggest that this response is related to a change in community diversity.
Salvage logging, ecosystem processes, and biodiversity conservation.
Lindenmayer, D B; Noss, R F
2006-08-01
We summarize the documented and potential impacts of salvage logging--a form of logging that removes trees and other biological material from sites after natural disturbance. Such operations may reduce or eliminate biological legacies, modify rare postdisturbance habitats, influence populations, alter community composition, impair natural vegetation recovery, facilitate the colonization of invasive species, alter soil properties and nutrient levels, increase erosion, modify hydrological regimes and aquatic ecosystems, and alter patterns of landscape heterogeneity These impacts can be assigned to three broad and interrelated effects: (1) altered stand structural complexity; (2) altered ecosystem processes and functions; and (3) altered populations of species and community composition. Some impacts may be different from or additional to the effects of traditional logging that is not preceded by a large natural disturbance because the conditions before, during, and after salvage logging may differ from those that characterize traditional timber harvesting. The potential impacts of salvage logging often have been overlooked, partly because the processes of ecosystem recovery after natural disturbance are still poorly understood and partly because potential cumulative effects of natural and human disturbance have not been well documented. Ecologically informed policies regarding salvage logging are needed prior to major natural disturbances so that when they occur ad hoc and crisis-mode decision making can be avoided. These policies should lead to salvage-exemption zones and limits on the amounts of disturbance-derived biological legacies (e.g., burned trees, logs) that are removed where salvage logging takes place. Finally, we believe new terminology is needed. The word salvage implies that something is being saved or recovered, whereas from an ecological perspective this is rarely the case.
NASA Astrophysics Data System (ADS)
Mashkov, Yu K.; Ruban, A. S.; Rogachev, E. A.; Chemisenko, O. V.
2018-01-01
Conditions of polymer materials usage containing nanoelements as modifiers significantly affect the requirements for their physic-mechanical and tribological properties. However, the mechanisms of nanoparticles effect to the polymers tribotechnical properties have not been studied enough. The article aim is to analyze the results of studying polytetrafluoroethylene modified with cryptocrystalline graphite and silicon dioxide and to determine the effectiveness of the modification methods used and methods for further improving filled PTFE mechanical and tribotechnical properties. The effect of modifiers to PCM supramolecular structure was analyzed with SEM methods. The results of modifying the PCM samples surface by depositing a copper film with ion-vacuum deposition methods and changing the structural-phase composition and tribological characteristics are considered. The findings make possible to characterize the physicochemical processes under frictional interaction in metal polymer tribosystems.
Synthesis and Crystal Structure of 2’-Se-modified guanosine Containing DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salon, J.; Sheng, J; Gan, J
Selenium modification of nucleic acids is of great importance in X-ray crystal structure determination and functional study of nucleic acids. Herein, we describe a convenient synthesis of a new building block, the 2{prime}-SeMe-modified guanosine (G{sub Se}) phosphoramidite, and report the first incorporation of the 2{prime}-Se-G moiety into DNA. The X-ray crystal structure of the 2{prime}-Se-modified octamer DNA (5{prime}-GTG{sub Se}TACAC-3{prime}) was determined at a resolution of 1.20 {angstrom}. We also found that the 2{prime}-Se modification points to the minor groove and that the modified and native structures are virtually identical. Furthermore, we observed that the 2{prime}-Se-G modification can significantly facilitate themore » crystal growth with respect to the corresponding native DNA.« less
NASA Astrophysics Data System (ADS)
Heyns, Elodie; Froneman, William
2010-06-01
The spatial and temporal patterns in the hyperbenthic community structure (>500 μm) in the warm temperate, permanently open Kariega Estuary situated along the south-eastern coastline of South Africa was investigated monthly over a period of twelve months. Data were collected using a modified hyperbenthic sledge at six stations along the length of the estuary. Physico-chemical data indicate the presence of a constant reverse salinity gradient, with highest salinities measured in the upper reaches and lowest at the mouth of the estuary. Strong seasonal patterns in temperature, dissolved oxygen and total chlorophyll- a (chl- a) concentration were evident. Total average hyperbenthic densities ranged between 0.4 and 166 ind.m -3 in the lower net and between 0.2 and 225 ind.m -3 in the upper net. Hyperbenthic biomass values ranged between 0.02 and 11.9 mg.dry weight.m -3 in the lower net and between 0.02 and 17.4 mg.dry weight.m -3 in the upper net. Both the lower and upper nets were numerically dominated by decapods (mainly brachyuran crab zoea) with the exception of June and July 2008 when mysids (mainly Mesopodopsis wooldridgei) dominated, comprising up to 72.4 ± 58.14% of the total abundance in the lower net. A redundancy analysis (RDA) indicated that 99.2% of the variance in the hyperbenthic community structure could be explained by the first two canonical axes. Axis one, which accounted for 96.8% of the total variation detected in the ordination plot was highly correlated with sedimentary organic content and to a lesser extent the chl- a concentration within the Kariega Estuary. The correlations with the second canonical axis (2.4%) were less obvious, however, salinity and seston concentration were weakly correlated with this axis.
Urbanization may limit impacts of an invasive predator on native mammal diversity
Reichert, Brian E.; Sovie, Adia R.; Udell, Brad J.; Hart, Kristen M.; Borkhataria, Rena R.; Bonneau, Mathieu; Reed, Robert; McCleery, Robert A.
2017-01-01
AimOur understanding of the effects of invasive species on faunal diversity is limited in part because invasions often occur in modified landscapes where other drivers of community diversity can exacerbate or reduce the net impacts of an invader. Furthermore, rigorous assessments of the effects of invasive species on native communities that account for variation in sampling, species-specific detection and occurrence of rare species are lacking. Invasive Burmese pythons (Python molurus bivittatus) may be causing declines in medium- to large-sized mammals throughout the Greater Everglades Ecosystem (GEE); however, other factors such as urbanization, habitat changes and drastic alteration in water flow may also be influential in structuring mammal communities. The aim of this study was to gain an understanding of how mammal communities simultaneously facing invasive predators and intensively human-altered landscapes are influenced by these drivers and their interactions.LocationFlorida, USA.MethodsWe used data from trail cameras and scat searches with a hierarchical community model that accounts for undetected species to determine the relative influence of introduced Burmese pythons, urbanization, local hydrology, habitat types and interactive effects between pythons and urbanization on mammal species occurrence, site-level species richness, and turnover.ResultsPython density had significant negative effects on all species except coyotes. Despite these negative effects, occurrence of some generalist species increased significantly near urban areas. At the community level, pythons had the greatest impact on species richness, while turnover was greatest along the urbanization gradient where communities were increasingly similar as distance to urbanization decreased.Main conclusionsWe found evidence for an antagonistic interaction between pythons and urbanization where the impacts of pythons were reduced near urban development. Python-induced changes to mammal communities may be mediated near urban development, but elsewhere in the GEE, pythons are likely causing a fundamental restructuring of the food web, declines in ecosystem function, and creating complex and unpredictable cascading effects.
Gaxiola-Robles, Ramón; Bitzer-Quintero, Oscar Kurt; García-González, Adolfo; Celis-de la Rosa, Alfredo
2009-01-01
To determine if civil status acts as a risk factor in suicide and how it modifies according to gender, age and population size. A retrospective study which analyzes information from the mortality data from the National Institute of Statistics, Geography and Information, from 1998 to 2002. Variables like suicides age, sex, cause of death, federal entity, population size and civil status were registered. Single men showed twofold risk for committing suicide. Women did not show any associated risk for suicide according to civil status. The risk of married men for committing suicide increased gradually with age. Medium-sized communities with less than 19,999 habitants presented the highest risk for habitants to commit suicide. Suicide is associated to gender especially to men who are not married and living in small and medium-sized communities. One explanation could be the lack of integrated behavior as defined by Emile Durkheim, where the physical density of society will determine behavior and ideas. This social structure phenomenon is called the "moral cocoon." This works around the individual being less individualistic and granting him/her the feeling of belonging to a group.
Build back better principles for economic recovery: case study of the Victorian bushfires.
Mannakkara, Sandeeka; Wilkinson, Suzanne
This paper looks at developing build back better (BBB) principles for economic recovery using the 2009 Victorian bushfires in Australia as a case study. The concept behind BBB-based economic recovery is to rejuvenate the economy in disaster-affected communities along with rebuilding to create resilient sustainable communities. A review of the literature identified several principles that can be applied to economic recovery to build back better. Data were collected in 2010 and 2011 by conducting semi- structured interviews with stakeholders who were directly involved in the Victorian bushfires recovery efforts, along with reports and other documentation. The recovery in Victoria displayed the use of BBB-based initiatives for economic recovery. The successes and shortcomings contributed to the creation of a modified list of BBB principles for economic recovery, including: creating an economic strategy based on thorough data collection; providing effective funding through grants and flexible low-interest loans; establishing business advice and mentoring services; providing incentives for businesses; assisting speedy rebuilding of business buildings; providing subsidised employee training and up-skilling programmes; and promoting local businesses through advertising.
Astronomical and atmospheric impacts on deep-sea hydrothermal vent invertebrates
Legendre, Pierre; Matabos, Marjolaine; Mihály, Steve; Lee, Raymond W.; Sarradin, Pierre-Marie; Arango, Claudia P.; Sarrazin, Jozée
2017-01-01
Ocean tides and winter surface storms are among the main factors driving the dynamics and spatial structure of marine coastal species, but the understanding of their impact on deep-sea and hydrothermal vent communities is still limited. Multidisciplinary deep-sea observatories offer an essential tool to study behavioural rhythms and interactions between hydrothermal community dynamics and environmental fluctuations. Here, we investigated whether species associated with a Ridgeia piscesae tubeworm vent assemblage respond to local ocean dynamics. By tracking variations in vent macrofaunal abundance at different temporal scales, we provide the first evidence that tides and winter surface storms influence the distribution patterns of mobile and non-symbiotic hydrothermal species (i.e. pycnogonids Sericosura sp. and Polynoidae polychaetes) at more than 2 km depth. Local ocean dynamics affected the mixing between hydrothermal fluid inputs and surrounding seawater, modifying the environmental conditions in vent habitats. We suggest that hydrothermal species respond to these habitat modifications by adjusting their behaviour to ensure optimal living conditions. This behaviour may reflect a specific adaptation of vent species to their highly variable habitat. PMID:28381618
Comprehensive cellular‐resolution atlas of the adult human brain
Royall, Joshua J.; Sunkin, Susan M.; Ng, Lydia; Facer, Benjamin A.C.; Lesnar, Phil; Guillozet‐Bongaarts, Angie; McMurray, Bergen; Szafer, Aaron; Dolbeare, Tim A.; Stevens, Allison; Tirrell, Lee; Benner, Thomas; Caldejon, Shiella; Dalley, Rachel A.; Dee, Nick; Lau, Christopher; Nyhus, Julie; Reding, Melissa; Riley, Zackery L.; Sandman, David; Shen, Elaine; van der Kouwe, Andre; Varjabedian, Ani; Write, Michelle; Zollei, Lilla; Dang, Chinh; Knowles, James A.; Koch, Christof; Phillips, John W.; Sestan, Nenad; Wohnoutka, Paul; Zielke, H. Ronald; Hohmann, John G.; Jones, Allan R.; Bernard, Amy; Hawrylycz, Michael J.; Hof, Patrick R.; Fischl, Bruce
2016-01-01
ABSTRACT Detailed anatomical understanding of the human brain is essential for unraveling its functional architecture, yet current reference atlases have major limitations such as lack of whole‐brain coverage, relatively low image resolution, and sparse structural annotation. We present the first digital human brain atlas to incorporate neuroimaging, high‐resolution histology, and chemoarchitecture across a complete adult female brain, consisting of magnetic resonance imaging (MRI), diffusion‐weighted imaging (DWI), and 1,356 large‐format cellular resolution (1 µm/pixel) Nissl and immunohistochemistry anatomical plates. The atlas is comprehensively annotated for 862 structures, including 117 white matter tracts and several novel cyto‐ and chemoarchitecturally defined structures, and these annotations were transferred onto the matching MRI dataset. Neocortical delineations were done for sulci, gyri, and modified Brodmann areas to link macroscopic anatomical and microscopic cytoarchitectural parcellations. Correlated neuroimaging and histological structural delineation allowed fine feature identification in MRI data and subsequent structural identification in MRI data from other brains. This interactive online digital atlas is integrated with existing Allen Institute for Brain Science gene expression atlases and is publicly accessible as a resource for the neuroscience community. J. Comp. Neurol. 524:3127–3481, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:27418273
Becker, Cinda
2006-09-18
A Senate hearing last week helped boost not-for-profit hospitals' chances of facing a new standard for reporting community benefits. At stake for hospitals are billions in tax breaks. The standard for exemption hasn't been modified since 1969, and "has not kept up with the substantial unfunded health needs of communities," says Nancy Kane, right, a member of MedPAC.
Chemical and Conformational Diversity of Modified Nucleosides Affects tRNA Structure and Function.
Väre, Ville Y P; Eruysal, Emily R; Narendran, Amithi; Sarachan, Kathryn L; Agris, Paul F
2017-03-16
RNAs are central to all gene expression through the control of protein synthesis. Four major nucleosides, adenosine, guanosine, cytidine and uridine, compose RNAs and provide sequence variation, but are limited in contributions to structural variation as well as distinct chemical properties. The ability of RNAs to play multiple roles in cellular metabolism is made possible by extensive variation in length, conformational dynamics, and the over 100 post-transcriptional modifications. There are several reviews of the biochemical pathways leading to RNA modification, but the physicochemical nature of modified nucleosides and how they facilitate RNA function is of keen interest, particularly with regard to the contributions of modified nucleosides. Transfer RNAs (tRNAs) are the most extensively modified RNAs. The diversity of modifications provide versatility to the chemical and structural environments. The added chemistry, conformation and dynamics of modified nucleosides occurring at the termini of stems in tRNA's cloverleaf secondary structure affect the global three-dimensional conformation, produce unique recognition determinants for macromolecules to recognize tRNAs, and affect the accurate and efficient decoding ability of tRNAs. This review will discuss the impact of specific chemical moieties on the structure, stability, electrochemical properties, and function of tRNAs.
NASA Astrophysics Data System (ADS)
Lokko, Külli; Kotta, Jonne; Orav-Kotta, Helen; Nurkse, Kristiina; Pärnoja, Merli
2018-02-01
The Harris mud crab Rhithropanopeus harrisii recently expanded into much of the Baltic Sea. This invasion is expected to have significant effects on the structure and functioning of benthic ecosystems due to the lack of native crabs. Habitat type potentially modulates the effects as crabs are expected to behave differently in different habitats. In this study we experimentally evaluated the effect of R. harrisii on the species composition and dominance structure of shallow water meiobenthos within common habitat types of the north-eastern Baltic Sea. Among the studied environmental variables R. harrisii had by far the strongest effects on meiobenthos. The effects of R. harrisii varied among different habitats with the crab mostly modifying taxonomic composition and species abundances of meiobenthic communities on unvegetated soft bottom sediments. Our experiment also showed that boulders provided shelter for R. harrisii and thereby reduced their burrowing activity and effects on the adjacent soft bottom meiobenthos.
Social capital and health: civic engagement, community size, and recall of health messages.
Viswanath, Kasisomayajula; Randolph Steele, Whitney; Finnegan, John R
2006-08-01
We explored the effects of community integration and pluralism on recall of cardiovascular disease health information messages. With 1980-1983 data from the Minnesota Heart Health Program, we examined whether ties to community groups were associated with recall of health messages, and whether this relation was modified by size and degree of differentiation of the community. A higher level of civic engagement through ties to community groups was associated with better recall of health messages. Ties to community groups independently contributed to better message recall even after control for gender, education, and other variables. The moderating role of community size was non-significant but intriguing. Community group membership could increase exposure to health messages, providing a critical pathway for social capital to influence health promotion and, thus, public health outcomes.
Encapsulation with structured triglycerides
USDA-ARS?s Scientific Manuscript database
Lipids provide excellent materials to encapsulate bioactive compounds for food and pharmaceutical applications. Lipids are renewable, biodegradable, and easily modified to provide additional chemical functionality. The use of structured lipids that have been modified with photoactive properties are ...
Distributive Effects of Forest Service Attempts to Maintain Community Stability
Steven E. Daniels; William F. Hyde; David N. Wear
1991-01-01
Community stability is an objective of USDA Forest Service timber sales. This paper examines that objective, and the success the Forest Service can have in attaining it, through its intended maintenance of a constant volume timber harvest schedule. We apply a three-factor, two-sector modified general equilibrium model with empirical evidence from the timber-based...
Historical agriculture alters the effects of fire on understory plant beta diversity
W. Brett Mattingly; John L. Orrock; Cathy D. Collins; Lars A. Brudvig; Ellen I. Damschen; Joseph W. Veldman; Joan L. Walker
2015-01-01
Land-use legacies are known to shape the diversity and distribution of plant communities, but we lack an understanding of whether historical land use influences community responses to contemporary disturbances. Because human-modified landscapes often bear a history of multiple land-use activities, this contingency can challenge our understanding of land-use impacts on...
Play Therapy for Bereaved Children: Adapting Strategies to Community, School, and Home Settings
ERIC Educational Resources Information Center
Webb, Nancy Boyd
2011-01-01
Play therapy is a highly adaptable treatment method that can be modified according to children's ages, circumstances, and settings in which counseling occurs. Play therapy may be used in schools, community settings, and homes to help children following the death of a significant other. After reviewing basic developmental factors that affect…
NASA Technical Reports Server (NTRS)
Franklin, R. B.; Garland, J. L.; Bolster, C. H.; Mills, A. L.
2001-01-01
A series of microcosm experiments was performed using serial dilutions of a sewage microbial community to inoculate a set of batch cultures in sterile sewage. After inoculation, the dilution-defined communities were allowed to regrow for several days and a number of community attributes were measured in the regrown assemblages. Based upon a set of numerical simulations, community structure was expected to differ along the dilution gradient; the greatest differences in structure were anticipated between the undiluted-low-dilution communities and the communities regrown from the very dilute (more than 10(-4)) inocula. Furthermore, some differences were expected among the lower-dilution treatments (e.g., between undiluted and 10(-1)) depending upon the evenness of the original community. In general, each of the procedures used to examine the experimental community structures separated the communities into at least two, often three, distinct groups. The groupings were consistent with the simulated dilution of a mixture of organisms with a very uneven distribution. Significant differences in community structure were detected with genetic (amplified fragment length polymorphism and terminal restriction fragment length polymorphism), physiological (community level physiological profiling), and culture-based (colony morphology on R2A agar) measurements. Along with differences in community structure, differences in community size (acridine orange direct counting), composition (ratio of sewage medium counts to R2A counts, monitoring of each colony morphology across the treatments), and metabolic redundancy (i.e., generalist versus specialist) were also observed, suggesting that the differences in structure and diversity of communities maintained in the same environment can be manifested as differences in community organization and function.
Legacy effects of drought on plant-soil feedbacks and plant-plant interactions.
Kaisermann, Aurore; de Vries, Franciska T; Griffiths, Robert I; Bardgett, Richard D
2017-09-01
Interactions between aboveground and belowground biota have the potential to modify ecosystem responses to climate change, yet little is known about how drought influences plant-soil feedbacks with respect to microbial mediation of plant community dynamics. We tested the hypothesis that drought modifies plant-soil feedback with consequences for plant competition. We measured net pairwise plant-soil feedbacks for two grassland plant species grown in monoculture and competition in soils that had or had not been subjected to a previous drought; these were then exposed to a subsequent drought. To investigate the mechanisms involved, we assessed treatment responses of soil microbial communities and nutrient availability. We found that previous drought had a legacy effect on bacterial and fungal community composition that decreased plant growth in conspecific soils and had knock-on effects for plant competitive interactions. Moreover, plant and microbial responses to subsequent drought were dependent on a legacy effect of the previous drought on plant-soil interactions. We show that drought has lasting effects on belowground communities with consequences for plant-soil feedbacks and plant-plant interactions. This suggests that drought, which is predicted to increase in frequency with climate change, may change soil functioning and plant community composition via the modification of plant-soil feedbacks. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Bastani, Roshan; Glenn, Beth A.; Taylor, Victoria M.; Nguyen, Tung T.; Stewart, Susan L.; Burke, Nancy J.; Chen, Moon S.
2014-01-01
Introduction Hepatitis B infection is 5 to 12 times more common among Asian Americans than in the general US population and is the leading cause of liver disease and liver cancer among Asians. The purpose of this article is to describe the step-by-step approach that we followed in community-based participatory research projects in 4 Asian American groups, conducted from 2006 through 2011 in California and Washington state to develop theoretically based and culturally appropriate interventions to promote hepatitis B testing. We provide examples to illustrate how intervention messages addressing identical theoretical constructs of the Health Behavior Framework were modified to be culturally appropriate for each community. Methods Intervention approaches included mass media in the Vietnamese community, small-group educational sessions at churches in the Korean community, and home visits by lay health workers in the Hmong and Cambodian communities. Results Use of the Health Behavior Framework allowed a systematic approach to intervention development across populations, resulting in 4 different culturally appropriate interventions that addressed the same set of theoretical constructs. Conclusions The development of theory-based health promotion interventions for different populations will advance our understanding of which constructs are critical to modify specific health behaviors. PMID:24784908
Cavalheri, Hamanda; Both, Camila; Martins, Marcio
2015-01-01
Both habitat filters and spatial processes can influence community structure. Space alone affects species immigration from the regional species pool, whereas habitat filters affect species distribution and inter-specific interactions. This study aimed to understand how the interplay between environmental and geographical processes influenced the structure of Neotropical snake communities in different habitat types. We selected six studies that sampled snakes in forests, four conducted in savannas and two in grasslands (the latter two are grouped in a non-forest category). We used the net relatedness and nearest taxon indices to assess phylogenetic structure within forest and non-forest areas. We also used the phylogenetic fuzzy-weighting algorithm to characterize phylogenetic structure across communities and the relation of phylogenetic composition patterns to habitat type, structure, and latitude. Finally, we tested for morphological trait convergence and phylogenetic niche conservatism using four forest and four non-forest areas for which morphological data were available. Community phylogenetic composition changed across forest and non-forest areas suggesting that environmental filtering influences community structure. Species traits were affected by habitat type, indicating convergence at the metacommunity level. Tail length, robustness, and number of ventral scales maximized community convergence among forest and non-forest areas. The observed patterns suggested environmental filtering, indicating that less vertically structured habitats represent a strong filter. Despite the fact that phylogenetic structure was not detected individually for each community, we observed a trend towards communities composed by more closely related species in higher latitudes and more overdispersed compositions in lower latitudes. Such pattern suggests that the limited distribution of major snake lineages constrained species distributions. Structure indices for each community were also related to habitat type, showing that communities from non-forest areas tend to be more clustered. Our study showed that both environmental filtering and spatial gradients play important roles in shaping the composition of Neotropical snake communities. PMID:26061038
Cavalheri, Hamanda; Both, Camila; Martins, Marcio
2015-01-01
Both habitat filters and spatial processes can influence community structure. Space alone affects species immigration from the regional species pool, whereas habitat filters affect species distribution and inter-specific interactions. This study aimed to understand how the interplay between environmental and geographical processes influenced the structure of Neotropical snake communities in different habitat types. We selected six studies that sampled snakes in forests, four conducted in savannas and two in grasslands (the latter two are grouped in a non-forest category). We used the net relatedness and nearest taxon indices to assess phylogenetic structure within forest and non-forest areas. We also used the phylogenetic fuzzy-weighting algorithm to characterize phylogenetic structure across communities and the relation of phylogenetic composition patterns to habitat type, structure, and latitude. Finally, we tested for morphological trait convergence and phylogenetic niche conservatism using four forest and four non-forest areas for which morphological data were available. Community phylogenetic composition changed across forest and non-forest areas suggesting that environmental filtering influences community structure. Species traits were affected by habitat type, indicating convergence at the metacommunity level. Tail length, robustness, and number of ventral scales maximized community convergence among forest and non-forest areas. The observed patterns suggested environmental filtering, indicating that less vertically structured habitats represent a strong filter. Despite the fact that phylogenetic structure was not detected individually for each community, we observed a trend towards communities composed by more closely related species in higher latitudes and more overdispersed compositions in lower latitudes. Such pattern suggests that the limited distribution of major snake lineages constrained species distributions. Structure indices for each community were also related to habitat type, showing that communities from non-forest areas tend to be more clustered. Our study showed that both environmental filtering and spatial gradients play important roles in shaping the composition of Neotropical snake communities.
A spectral method to detect community structure based on distance modularity matrix
NASA Astrophysics Data System (ADS)
Yang, Jin-Xuan; Zhang, Xiao-Dong
2017-08-01
There are many community organizations in social and biological networks. How to identify these community structure in complex networks has become a hot issue. In this paper, an algorithm to detect community structure of networks is proposed by using spectra of distance modularity matrix. The proposed algorithm focuses on the distance of vertices within communities, rather than the most weakly connected vertex pairs or number of edges between communities. The experimental results show that our method achieves better effectiveness to identify community structure for a variety of real-world networks and computer generated networks with a little more time-consumption.
Emmett, Edward Anthony; Zhang, Hong; Shofer, Frances Susan; Rodway, Nancy; Desai, Chintan; Freeman, David; Hufford, Mary
2009-02-01
Effectively communicate results from a community exposure study to meet predetermined community priorities, maintaining ethical principles of autonomy, empowerment and justice. The community established principles for the communications and a plan to inform study participants, community and other stakeholders of results and recommendations in a novel sequence: the "Community-First" communication model. The communications resulted in positive actions including company sponsored free bottled water, accepted by 77.6% of eligible households. Over 95% of participants in a follow-up survey had made some change to residential water supplies. Serum perfluorooctanoate levels were reduced. Government agencies acted on the results. The unique communication approach generated workable solutions to the problem investigated, raised community awareness and modified behaviors. Information generated a "free market" of community-level solutions. Each major stakeholder voluntarily adopted a "precautionary principle."
Epidemic spreading on complex networks with overlapping and non-overlapping community structure
NASA Astrophysics Data System (ADS)
Shang, Jiaxing; Liu, Lianchen; Li, Xin; Xie, Feng; Wu, Cheng
2015-02-01
Many real-world networks exhibit community structure where vertices belong to one or more communities. Recent studies show that community structure plays an import role in epidemic spreading. In this paper, we investigate how the extent of overlap among communities affects epidemics. In order to experiment on the characteristic of overlapping communities, we propose a rewiring algorithm that can change the community structure from overlapping to non-overlapping while maintaining the degree distribution of the network. We simulate the Susceptible-Infected-Susceptible (SIS) epidemic process on synthetic scale-free networks and real-world networks by applying our rewiring algorithm. Experiments show that epidemics spread faster on networks with higher level of overlapping communities. Furthermore, overlapping communities' effect interacts with the average degree's effect. Our work further illustrates the important role of overlapping communities in the process of epidemic spreading.
Diel fluctuations in natural organic matter quality in an oligotrophic cave system
NASA Astrophysics Data System (ADS)
Brown, T.; Engel, A. S.; Pfiffner, S. M.
2016-12-01
Transformations of natural organic matter (NOM) and effects of photochemical degradation on dissolved organic matter (DOM) quality in recharge can be readily studied in cave systems with hydrologic connections between the surface and subsurface. Specifically, diel controls on photodegradation, fresh NOM production, and microbial C cycling were examined from recharge to resurgence of an oligotrophic cave stream in Kentucky. We used NOM isolation and spectroscopic analysis to concentrate and characterize DOM, and lipid profiling to evaluate microbial community structure. A hydrophilic fraction of DOM was isolated from bulk waters in the field using diethylaminoethyl (DEAE) weak anion exchange column chromatography, and isolates were characterized with FTIR spectroscopy to identify differences in macromolecular structure between surface and subsurface (downstream) DOM. Lipids from colloidal NOM (retained on 0.2 µm filter) and stream sediments were extracted using a modified Bligh Dyer method, segregated into classes, and converted to fatty acid methyl esters (FAME) for quantification and identification by GC-MS. During a late summer, low flow, 24-hour sampling event, the quality of surface water DOM recharged at night was 40% richer in aliphatic esters, 30% richer in phenols and alkanes, and elevated in polysaccharides compared with DOM recharged during daylight. IR absorptivity in nocturnal DOM isolates was an order of magnitude lower in the cave stream, with recalcitrant DOM interpreted from bands of aliphatic esters, alkanes, and organo-silicates. Phospholipid fatty acid (PLFA) profiles indicated that the abundance of polyunsaturated PLFA associated with algae, fungi, and higher plants decreased along the flowpath. Cave microbes exhibited elevated trans:cis ratios relative to surface communities, and the ratio increased at night. This suggested that downstream microbial communities existed in a state of reduced activity without inputs of photosynthates at night.
Soriano, Christian Albert F; Sarmiento, Winona D; Songco, Francis Justin G; Macindo, John Rey B; Conde, Alita R
2016-01-01
The increasing life expectancy of the population prompts an array of health conditions that impair an older adults' quality of life (QoL). Although demographics and spirituality have been associated with QoL, limited literature elucidated the exact mechanisms of their interactions, especially in a culturally-diverse country like Philippines. Hence, this study determined the relationship among socio-demographics, spirituality, and QoL of Filipino older adults in a community and institutional setting. A predictive-correlational study among 200 randomly-selected community-dwelling and institutionalized older adults was conducted, with a 99% power and a medium effect size. Data were collected using a three-part questionnaire from September to November 2015. The questionnaire was composed of the robotfoto, Spirituality Assessment Scale, and modified Older People's Quality of Life which assessed socio-demographics, spirituality, and QoL. Analysis showed that institutionalization in a nursing home positively and negatively affected spirituality and QoL, generating an acceptable model (χ(2)/df=2.12, RMSEA=0.08, and CFI=0.95). The negative direct effect of institutionalization on social relationship, leisure, & social activities QoL (β=-0.42, p<0.01) also initiates a cascade of indirect negative effects on both spirituality and QoL dimensions. The development of a structural model illustrating the interrelationship of socio-demographics, spirituality, and QoL helps healthcare professionals in predicting facets of spirituality and QoL that can be compromised by living in a nursing home. This understanding provides impetus in evaluating and refining geriatric healthcare programs, policies, and protocols to render individualized, holistic care in a socially-cohesive environment among older adults. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Saulino, H H L; Corbi, J J; Trivinho-Strixino, S
2014-02-01
The fragmentation of lotic systems caused by construction of dams has modified many aquatic communities. The objective of this study was to analyse changes in the aquatic insect community structure by discontinuity of habitat created by dams along the Ribeirão das Anhumas, a sub-basin of the Mogi-Guaçu River (state of São Paulo, Brazil). Entomofauna collection was carried out in 10 segments upstream and downstream of five dams along the longitudinal profile of the stream, with a quick sampling method using a D net (mesh 250 mm) with 2 minutes of sampling effort. The insects were sorted and identified to the lowest possible taxonomic level and analysed by the Shannon diversity index, β diversity, richness estimated by rarefaction curves and relative participation of functional feeding groups. The results showed a slight reduction in diversity in the downstream segments, as well as along the longitudinal profile of the stream. However, there were no significant differences in abundance and richness between the upstream and downstream segments, indicating that the dams did not influence these variables. Differences were observed in the functional feeding groups along the longitudinal profile. Predator and gatherer insects were dominant in all segments analysed. The feeding group of shredders was more abundant in the segment DSIII with the participation of Marilia Müller (Odontoceridae - Trichoptera), although we observed a decrease of shredders and scrapers with the decrease of the canopy cover reducing values of β diversity in the continuum of Ribeirão das Anhumas. This result demonstrated the importance of the conservation of the riparian vegetation in order to maintain the integrity of the stream.
Belando, M D; Marín, A; Aboal, M; García-Fernández, A J; Marín-Guirao, L
2017-01-01
The effects of multiple stressors on marine diatom assemblages are still poorly understood. The interactive effects of metals and nutrients were assessed in two coastal biofilms grown at a reference site and a historically contaminated site. The biofilms were exposed in situ to pulse exposures of metals (Zn and Pb) and nutrients (N and P) individually and in combination to mimic patterns of discharge in the study area. The reference community's structure (composition and abundance of taxa) was modified after metals and/or nutrients exposure, but each stressor acted in different way. Irrespective of the stressors or scenario, the abundance of the dominant species Opephora krumbeinii declined, and it is proposed as sensitive species. Nutrient supply favoured the proliferation of certain species with high nutrient tolerances (Fragilaria famelica, Tabularia ktenoeides), whereas metals promoted the colonisation of metal-tolerant species, e.g., Berkeleya fennica, Opephora marina. Simultaneous exposure induced an amplification of levels of accumulated metals, chlorophyll a and EPS contents and triggered the succession of species towards tolerant species with specific growth. Metals seemed to act as a selective factor of metal-tolerant species, and nutrients favoured the proliferation of those species forming zig-zag colonies (Neosynedra provincialis), mucous tubes (Berkeleya spp.) and motile diatoms (Navicula salinicola, Nitzschia incognita), resulting in biofilms with a more complex architecture. The diatom communities from the historically contaminated site were more resistant to pulse exposure, but metals or nutrients loads induced overproduction of mucilage. We propose that growth forms may complement taxonomic approaches and provide a quick and easy way to detect community changes related to metal and nutrient pollution. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Yong-Feng; Zhang, Fang-Qiu; Gu, Ji-Dong
2014-06-01
Denaturing gradient gel electrophoresis (DGGE) is a powerful technique to reveal the community structures and composition of microorganisms in complex natural environments and samples. However, positive and reproducible polymerase chain reaction (PCR) products, which are difficult to acquire for some specific samples due to low abundance of the target microorganisms, significantly impair the effective applications of DGGE. Thus, nested PCR is often introduced to generate positive PCR products from the complex samples, but one problem is also introduced: The total number of thermocycling in nested PCR is usually unacceptably high, which results in skewed community structures by generation of random or mismatched PCR products on the DGGE gel, and this was demonstrated in this study. Furthermore, nested PCR could not resolve the uneven representative issue with PCR products of complex samples with unequal richness of microbial population. In order to solve the two problems in nested PCR, the general protocol was modified and improved in this study. Firstly, a general PCR procedure was used to amplify the target genes with the PCR primers without any guanine cytosine (GC) clamp, and then, the resultant PCR products were purified and diluted to 0.01 μg ml(-1). Subsequently, the diluted PCR products were utilized as templates to amplify again with the same PCR primers with the GC clamp for 17 cycles, and the products were finally subjected to DGGE analysis. We demonstrated that this is a much more reliable approach to obtain a high quality DGGE profile with high reproducibility. Thus, we recommend the adoption of this improved protocol in analyzing microorganisms of low abundance in complex samples when applying the DGGE fingerprinting technique to avoid biased results.
Lee, Gwenyth O; Surkan, Pamela J; Zelner, Jon; Paredes Olórtegui, Maribel; Peñataro Yori, Pablo; Ambikapathi, Ramya; Caulfield, Laura E; Gilman, Robert H; Kosek, Margaret N
2018-04-01
Food insecurity is a major global public health issue. Social capital has been identified as central to maintaining food security across a wide range of low- and middle-income country contexts, but few studies have examined this relationship through sociocentric network analysis. We investigated relationships between household- and community-level social connectedness, household food security, and household income; and tested the hypothesis that social connectedness modified the relationship between income and food security. A cross-sectional census with an embedded questionnaire to capture social relationships was conducted among eleven peri-urban communities. Community connectedness was related to study outcomes of food security and per-capita income through regression models. Of 1520 households identified, 1383 were interviewed (91.0%) and 1272 (83.9%) provided complete data. Households in the youngest communities had the most total contacts, and the highest proportion of contacts outside of the community. Household income was also associated with more outside-community contacts (0.05 more contacts per standard deviation increase in income, p<0.001).Less food secure households reported more contacts nearby (0.24 increase in household food insecurity access scale (HFIAS) for each additional contact, p<0.001). After adjusting for household-level socioeconomic status, membership in an older, larger, and better-connected community, with a greater proportion of residents engaged in rural livelihood strategies, was associated with greater food security (-0.92 decrease in HFIAS for each one-unit increase in community mean degree, p=0.008). There was no evidence that social connectedness modified the relationship between income and food security such that lower-income households benefited more from community membership than higher-income households. Although households reported networks that spanned rural villages and urban centers, contacts within the community, with whom food was regularly shared, were most important to maintaining food security. Interventions that build within-community connectedness in peri-urban settings may increase food security.
Pectin-modifying enzymes and pectin-derived materials: applications and impacts.
Bonnin, Estelle; Garnier, Catherine; Ralet, Marie-Christine
2014-01-01
Pectins are complex branched polysaccharides present in primary cell walls. As a distinctive feature, they contain high amount of partly methyl-esterified galacturonic acid and low amount of rhamnose and carry arabinose and galactose as major neutral sugars. Due to their structural complexity, they are modifiable by many different enzymes, including hydrolases, lyases, and esterases. Their peculiar structure is the origin of their physicochemical properties. Among others, their remarkable gelling properties make them a key additive for food industries. Pectin-degrading enzymes and -modifying enzymes may be used in a wide variety of applications to modulate pectin properties or produce pectin derivatives and oligosaccharides with functional as well as nutritional interests. This paper reviews the scientific information available on pectin structure, pectin-modifying enzymes, and the use of enzymes to produce pectin with controlled structure or pectin-derived oligosaccharides, with functional or nutritional interesting properties.
High Levels of Sediment Contamination Have Little Influence on Estuarine Beach Fish Communities
McKinley, Andrew C.; Dafforn, Katherine A.; Taylor, Matthew D.; Johnston, Emma L.
2011-01-01
While contaminants are predicted to have measurable impacts on fish assemblages, studies have rarely assessed this potential in the context of natural variability in physico-chemical conditions within and between estuaries. We investigated links between the distribution of sediment contamination (metals and PAHs), physico-chemical variables (pH, salinity, temperature, turbidity) and beach fish assemblages in estuarine environments. Fish communities were sampled using a beach seine within the inner and outer zones of six estuaries that were either heavily modified or relatively unmodified by urbanization and industrial activity. All sampling was replicated over two years with two periods sampled each year. Shannon diversity, biomass and abundance were all significantly higher in the inner zone of estuaries while fish were larger on average in the outer zone. Strong differences in community composition were also detected between the inner and outer zones. Few differences were detected between fish assemblages in heavily modified versus relatively unmodified estuaries despite high concentrations of sediment contaminants in the inner zones of modified estuaries that exceeded recognized sediment quality guidelines. Trends in species distributions, community composition, abundance, Shannon diversity, and average fish weight were strongly correlated to physico-chemical variables and showed a weaker relationship to sediment metal contamination. Sediment PAH concentrations were not significantly related to the fish assemblage. These findings suggest that variation in some physico-chemical factors (salinity, temperature, pH) or variables that co-vary with these factors (e.g., wave activity or grain size) have a much greater influence on this fish assemblage than anthropogenic stressors such as contamination. PMID:22039470
DNA Base Flipping: A General Mechanism for Writing, Reading, and Erasing DNA Modifications
Cheng, Xiaodong
2017-01-01
The modification of DNA bases is a classic hallmark of epigenetics. Four forms of modified cytosine—5-methylcytosine, 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine—have been discovered in eukaryotic DNA. In addition to cytosine carbon-5 modifications, cytosine and adenine methylated in the exocyclic amine—N4-methylcytosine and N6-methyladenine—are other modified DNA bases discovered even earlier. Each modified base can be considered a distinct epigenetic signal with broader biological implications beyond simple chemical changes. Since 1994, crystal structures of proteins and enzymes involved in writing, reading, and erasing modified bases have become available. Here, we present a structural synopsis of writers, readers, and erasers of the modified bases from prokaryotes and eukaryotes. Despite significant differences in structures and functions, they are remarkably similar regarding their engagement in flipping a target base/nucleotide within DNA for specific recognitions and/or reactions. We thus highlight base flipping as a common structural framework broadly applied by distinct classes of proteins and enzymes across phyla for epigenetic regulations of DNA. PMID:27826845
Community Detection Algorithm Combining Stochastic Block Model and Attribute Data Clustering
NASA Astrophysics Data System (ADS)
Kataoka, Shun; Kobayashi, Takuto; Yasuda, Muneki; Tanaka, Kazuyuki
2016-11-01
We propose a new algorithm to detect the community structure in a network that utilizes both the network structure and vertex attribute data. Suppose we have the network structure together with the vertex attribute data, that is, the information assigned to each vertex associated with the community to which it belongs. The problem addressed this paper is the detection of the community structure from the information of both the network structure and the vertex attribute data. Our approach is based on the Bayesian approach that models the posterior probability distribution of the community labels. The detection of the community structure in our method is achieved by using belief propagation and an EM algorithm. We numerically verified the performance of our method using computer-generated networks and real-world networks.
Locating Structural Centers: A Density-Based Clustering Method for Community Detection
Liu, Gongshen; Li, Jianhua; Nees, Jan P.
2017-01-01
Uncovering underlying community structures in complex networks has received considerable attention because of its importance in understanding structural attributes and group characteristics of networks. The algorithmic identification of such structures is a significant challenge. Local expanding methods have proven to be efficient and effective in community detection, but most methods are sensitive to initial seeds and built-in parameters. In this paper, we present a local expansion method by density-based clustering, which aims to uncover the intrinsic network communities by locating the structural centers of communities based on a proposed structural centrality. The structural centrality takes into account local density of nodes and relative distance between nodes. The proposed algorithm expands a community from the structural center to the border with a single local search procedure. The local expanding procedure follows a heuristic strategy as allowing it to find complete community structures. Moreover, it can identify different node roles (cores and outliers) in communities by defining a border region. The experiments involve both on real-world and artificial networks, and give a comparison view to evaluate the proposed method. The result of these experiments shows that the proposed method performs more efficiently with a comparative clustering performance than current state of the art methods. PMID:28046030
A Comparison of Microbial Community Structures by Depth and Season Under Switchgrass
NASA Astrophysics Data System (ADS)
Fansler, S. J.; Smith, J. L.; Bolton, H.; Bailey, V. L.
2008-12-01
As part of a multidisciplinary study of C sequestration in switchgrass production systems, the soil microbial community structure was monitored at 6 different depths (reaching 90 cm) in both spring and autumn. Microbial community structure was assessed using ribosomal intergenic spacer analysis (RISA), and primers were used specific to either bacteria or fungi, generating microbial community fingerprints for each taxonomic group. Diverse microbial communities for both groups were detected throughout the soil profile. It is notable that while community structure clearly changed with depth, there was the deepest soil samples still retained relatively diverse communities. Seasonally, differences are clearly evident within plots at the surface. As the plots were replicated, significant differences in the community fingerprints with depth and season are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhou; Wang, Yingfeng; Yao, Qiuming
2014-01-01
Detailed characterization of posttranslational modifications (PTMs) of proteins in microbial communities remains a significant challenge. Here we directly identify and quantify a broad range of PTMs (hydroxylation, methylation, citrullination, acetylation, phosphorylation, methylthiolation, S-nitrosylation and nitration) in a natural microbial community from an acid mine drainage site. Approximately 29% of the identified proteins of the dominant Leptospirillum group II bacteria are modified, and 43% of modified proteins carry multiple PTM types. Most PTM events, except S-nitrosylations, have low fractional occupancy. Notably, PTM events are detected on Cas proteins involved in antiviral defense, an aspect of Cas biochemistry not considered previously. Further,more » Cas PTM profiles from Leptospirillum group II differ in early versus mature biofilms. PTM patterns are divergent on orthologues of two closely related, but ecologically differentiated, Leptospirillum group II bacteria. Our results highlight the prevalence and dynamics of PTMs of proteins, with potential significance for ecological adaptation and microbial evolution.« less
2014-02-20
spectroscopy was applied to investigate such structures of peptides immobilized on self-assembled monolayers (SAMs). Here cysteine-modified antimicrobial ...modified antimicrobial peptide cecropin P1 (CP1) was chemically immobilized onto SAM with a maleimide terminal group. Two important characteristics...applied to investigate such structures of peptides immobilized on self-assembled monolayers (SAMs). Here cysteine-modified antimicrobial peptide cecropin
Typology of State-Level Community College Governance Structures
ERIC Educational Resources Information Center
Fletcher, Jeffrey A.; Friedel, Janice Nahra
2017-01-01
Despite having a well-documented history about community colleges across the United States, relatively few discussions have covered state-level governance structures. To understand the typology of state community college governance structures, it must first be recognized that community college governance is characterized as a complex web of…
Supramolecular structure of polymer binders and composites: targeted control based on the hierarchy
NASA Astrophysics Data System (ADS)
Matveeva, Larisa; Belentsov, Yuri
2017-10-01
The article discusses the problem of targeted control over properties by modifying the supramolecular structure of polymer binders and composites based on their hierarchy. Control over the structure formation of polymers and introduction of modifying additives should be tailored to the specific hierarchical structural levels. Characteristics of polymer materials are associated with structural defects, which also display a hierarchical pattern. Classification of structural defects in polymers is presented. The primary structural level (nano level) of supramolecular formations is of great importance to the reinforcement and regulation of strength characteristics.
Newcomb, Michael D; Locke, Thomas F; Goodyear, Rodney K
2003-08-01
This study determined how adverse childhood experiences influenced risky sexual behavior in a community sample of Latina adolescents in Los Angeles (N = 904) within a modified ecodevelopmental perspective. Psychosocial, sociocultural, and environmental mediators of the relations between childhood experiences and risky sexual behavior were tested. Many direct and mediated paths were revealed using structural equation modeling. Childhood maltreatment was associated with risk sexual practices, including more partners, less condom use, more frequent intercourse, and less HIV testing. Drug use and general self-efficacy mediated several relationships. Reducing childhood maltreatment reduced HIV risk and improved psychosocial functioning. Many factors tested did not influence HIV risk. Much of what is known about HIV risk among other populations may not apply to young Latina women.
Chado controller: advanced annotation management with a community annotation system.
Guignon, Valentin; Droc, Gaëtan; Alaux, Michael; Baurens, Franc-Christophe; Garsmeur, Olivier; Poiron, Claire; Carver, Tim; Rouard, Mathieu; Bocs, Stéphanie
2012-04-01
We developed a controller that is compliant with the Chado database schema, GBrowse and genome annotation-editing tools such as Artemis and Apollo. It enables the management of public and private data, monitors manual annotation (with controlled vocabularies, structural and functional annotation controls) and stores versions of annotation for all modified features. The Chado controller uses PostgreSQL and Perl. The Chado Controller package is available for download at http://www.gnpannot.org/content/chado-controller and runs on any Unix-like operating system, and documentation is available at http://www.gnpannot.org/content/chado-controller-doc The system can be tested using the GNPAnnot Sandbox at http://www.gnpannot.org/content/gnpannot-sandbox-form valentin.guignon@cirad.fr; stephanie.sidibe-bocs@cirad.fr Supplementary data are available at Bioinformatics online.
August, Gerald J; Winters, Ken C; Realmuto, George M; Tarter, Ralph; Perry, Cheryl; Hektner, Joel M
2004-01-01
This article examines the challenges faced by developers of youth drug abuse prevention programs in transporting scientifically proven or evidence-based programs into natural community practice systems. Models for research on the transfer of prevention technology are described with specific emphasis given to the relationship between efficacy and effectiveness studies. Barriers that impede the successful integration of efficacy methods within effectiveness studies (e.g., client factors, practitioner factors, intervention structure characteristics, and environmental and organizational factors) are discussed. We present a modified model for program development and evaluation that includes a new type of research design, the hybrid efficacy-effectiveness study that addresses program transportability. The utility of the hybrid study is illustrated in the evaluation of the Early Risers "Skills for Success" prevention program.
ERIC Educational Resources Information Center
Fouladi, Rachel T.
2000-01-01
Provides an overview of standard and modified normal theory and asymptotically distribution-free covariance and correlation structure analysis techniques and details Monte Carlo simulation results on Type I and Type II error control. Demonstrates through the simulation that robustness and nonrobustness of structure analysis techniques vary as a…
USDA-ARS?s Scientific Manuscript database
Objectives: To investigate whether baseline social participation modifies the effect of a long-term structured physical activity (PA) program on major mobility disability (MMD). Methods: 1,635 sedentary adults (70-89 years) with physical limitations were randomized to either a structured PA or healt...
The macro-structural variability of the human neocortex.
Kruggel, Frithjof
2018-05-15
The human neocortex shows a considerable individual structural variability. While primary gyri and sulci are found in all normally developed brains and bear clear-cut gross structural descriptions, secondary structures are highly variable and not present in all brains. The blend of common and individual structures poses challenges when comparing structural and functional results from quantitative neuroimaging studies across individuals, and sets limits on the precision of location information much above the spatial resolution of current neuroimaging methods. This work aimed at quantifying structural variability on the neocortex, and at assessing the spatial relationship between regions common to all brains and their individual structural variants. Based on structural MRI data provided as the "900 Subjects Release" of the Human Connectome Project, a data-driven analytic approach was employed here from which the definition of seven cortical "communities" emerged. Apparently, these communities comprise common regions of structural features, while the individual variability is confined within a community. Similarities between the community structure and the state of the brain development at gestation week 32 lead suggest that communities are segregated early. Subdividing the neocortex into communities is suggested as anatomically more meaningful than the traditional lobar structure. Copyright © 2018 Elsevier Inc. All rights reserved.
Amorphous Carbon-Boron Nitride Nanotube Hybrids
NASA Technical Reports Server (NTRS)
Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)
2016-01-01
A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.
ERIC Educational Resources Information Center
Carson, Cynthia J.
2012-01-01
The purpose of this study was to examine if there was a difference between mean measures of preliteracy skills of preschool children who participated in Creating Young Readers, a volunteer based reading program, and a control group who had not. Unpaid community volunteers were trained in a modified dialogic reading technique, focusing on…
Using the Community College to Control College Costs: How Much Cheaper Is It?
ERIC Educational Resources Information Center
Romano, Richard M.; Djajalaksana, Yenni M.
2011-01-01
Data from NCES indicate that it is two to three times more expensive to educate a student at a public four-year college than at a community college. These figures exaggerate the difference between the two when you calculate the costs of the first two years of education for students working on a bachelor's degree. Using modified Integrated…
ERIC Educational Resources Information Center
Prewitt, Sidney A.; And Others
An economic model of the effects of colleges on their communities was developed. The Texas Input-Output Model was modified into a higher education budgetary model. Included were the positive benefits of tax savings and estimates of the net effect on various communities in which state-supported colleges and universities are located. The output…
Social Capital and Health: Civic Engagement, Community Size, and Recall of Health Messages
Viswanath, Kasisomayajula; Randolph Steele, Whitney; Finnegan, John R.
2006-01-01
Objectives. We explored the effects of community integration and pluralism on recall of cardiovascular disease health information messages. Methods. With 1980–1983 data from the Minnesota Heart Health Program, we examined whether ties to community groups were associated with recall of health messages, and whether this relation was modified by size and degree of differentiation of the community. Results. A higher level of civic engagement through ties to community groups was associated with better recall of health messages. Ties to community groups independently contributed to better message recall even after control for gender, education, and other variables. The moderating role of community size was non-significant but intriguing. Conclusions. Community group membership could increase exposure to health messages, providing a critical pathway for social capital to influence health promotion and, thus, public health outcomes. PMID:16809608
The Basics: What's Essential about Theory for Community Development Practice?
ERIC Educational Resources Information Center
Hustedde, Ronald J.; Ganowicz, Jacek
2002-01-01
Relates three classical theories (structural functionalism, conflict theory, symbolic interactionism) to fundamental concerns of community development (structure, power, and shared meaning). Links these theories to Giddens' structuration theory, which connects macro and micro structures and community influence on change through cultural norms.…
Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki
2012-01-01
Supercritical fluid extraction (SFE) was used in the analysis of bacterial respiratory quinone (RQ), bacterial phospholipid fatty acid (PLFA), and archaeal phospholipid ether lipid (PLEL) from anaerobically digested sludge. Bacterial RQ were determined using ultra performance liquid chromatography (UPLC). Determination of bacterial PLFA and archaeal PLEL was simultaneously performed using gas chromatography-mass spectrometry (GC-MS). The effects of pressure, temperature, and modifier concentration on the total amounts of RQ, PLFA, and PLEL were investigated by 23 experiments with five settings chosen for each variable. The optimal extraction conditions that were obtained through a multiple-response optimization included a pressure of 23.6 MPa, temperature of 77.6 °C, and 10.6% (v/v) of methanol as the modifier. Thirty nine components of microbial lipid biomarkers were identified in the anaerobically digested sludge. Overall, the SFE method proved to be more effective, rapid, and quantitative for simultaneously extracting bacterial and archaeal lipid biomarkers, compared to conventional organic solvent extraction. This work shows the potential application of SFE as a routine method for the comprehensive analysis of microbial community structures in environmental assessments using the lipid biomarkers profile. PMID:22489140
UAVSAR - A New Airborne L-Band Radar for Repeat Pass Interferometry
NASA Technical Reports Server (NTRS)
Mace, Thomas H.; Lou, Yunling
2009-01-01
NASA/JPL has developed a new airborne Synthetic Aperture Radar (SAR) which has become available for use by the scientific community in January, 2009. Pod mounted, the UAVSAR was designed to be portable among a variety of aircraft, including unmanned aerial systems (UAS). The instrument operates in the L-Band, has a resolution under 2m from a GPS altitude of 12Km and a swath width of approximately 20Km. UAVSAR currently flies on a modified Gulfstream-III aircraft, operated by NASA s Dryden Flight Research Center at Edwards, California. The G-III platform enables repeat-pass interferometric measurements, by using a modified autopilot and precise kinematic differential GPS to repeatedly fly the aircraft within a specified 10m tube. The antenna is electronically steered along track to assure that the antenna beam can be directed independently, regardless of speed and wind direction. The instrument can be controlled remotely, AS AN OPTION, using the Research Environment for Vehicle Embedded Analysis on Linux (REVEAL). This allows simulation of the telepresence environment necessary for flight on UAS. Potential earth science research and applications include surface deformation, volcano studies, ice sheet dynamics, and vegetation structure.
Delobelle, Peter; Sanders, David; Puoane, Thandi; Freudenberg, Nicholas
2016-04-01
Noncommunicable diseases (NCDs) impose a growing burden on the health, economy, and development of South Africa. According to the World Health Organization, four risk factors, tobacco use, alcohol consumption, unhealthy diets, and physical inactivity, account for a significant proportion of major NCDs. We analyze the role of tobacco, alcohol, and food corporations in promoting NCD risk and unhealthy lifestyles in South Africa and in exacerbating inequities in NCD distribution among populations. Through their business practices such as product design, marketing, retail distribution, and pricing and their business practices such as lobbying, public relations, philanthropy, and sponsored research, national and transnational corporations in South Africa shape the social and physical environments that structure opportunities for NCD risk behavior. Since the election of a democratic government in 1994, the South African government and civil society groups have used regulation, public education, health services, and community mobilization to modify corporate practices that increase NCD risk. By expanding the practice of health education to include activities that seek to modify the practices of corporations as well as individuals, South Africa can reduce the growing burden of NCDs. © 2015 Society for Public Health Education.
Rutten, Gemma; Ensslin, Andreas; Hemp, Andreas; Fischer, Markus
2015-01-01
In most habitats, vegetation provides the main structure of the environment. This complexity can facilitate biodiversity and ecosystem services. Therefore, measures of vegetation structure can serve as indicators in ecosystem management. However, many structural measures are laborious and require expert knowledge. Here, we used consistent and convenient measures to assess vegetation structure over an exceptionally broad elevation gradient of 866-4550 m above sea level at Mount Kilimanjaro, Tanzania. Additionally, we compared (human)-modified habitats, including maize fields, traditionally managed home gardens, grasslands, commercial coffee farms and logged and burned forests with natural habitats along this elevation gradient. We distinguished vertical and horizontal vegetation structure to account for habitat complexity and heterogeneity. Vertical vegetation structure (assessed as number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) displayed a unimodal elevation pattern, peaking at intermediate elevations in montane forests, whereas horizontal structure (assessed as coefficient of variation of number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) was lowest at intermediate altitudes. Overall, vertical structure was consistently lower in modified than in natural habitat types, whereas horizontal structure was inconsistently different in modified than in natural habitat types, depending on the specific structural measure and habitat type. Our study shows how vertical and horizontal vegetation structure can be assessed efficiently in various habitat types in tropical mountain regions, and we suggest to apply this as a tool for informing future biodiversity and ecosystem service studies.
Optimal multi-community network modularity for information diffusion
NASA Astrophysics Data System (ADS)
Wu, Jiaocan; Du, Ruping; Zheng, Yingying; Liu, Dong
2016-02-01
Studies demonstrate that community structure plays an important role in information spreading recently. In this paper, we investigate the impact of multi-community structure on information diffusion with linear threshold model. We utilize extended GN network that contains four communities and analyze dynamic behaviors of information that spreads on it. And we discover the optimal multi-community network modularity for information diffusion based on the social reinforcement. Results show that, within the appropriate range, multi-community structure will facilitate information diffusion instead of hindering it, which accords with the results derived from two-community network.
Tripartite community structure in social bookmarking data
NASA Astrophysics Data System (ADS)
Neubauer, Nicolas; Obermayer, Klaus
2011-12-01
Community detection is a branch of network analysis concerned with identifying strongly connected subnetworks. Social bookmarking sites aggregate datasets of often hundreds of millions of triples (document, user, and tag), which, when interpreted as edges of a graph, give rise to special networks called 3-partite, 3-uniform hypergraphs. We identify challenges and opportunities of generalizing community detection and in particular modularity optimization to these structures. Two methods for community detection are introduced that preserve the hypergraph's special structure to different degrees. Their performance is compared on synthetic datasets, showing the benefits of structure preservation. Furthermore, a tool for interactive exploration of the community detection results is introduced and applied to examples from real datasets. We find additional evidence for the importance of structure preservation and, more generally, demonstrate how tripartite community detection can help understand the structure of social bookmarking data.
Evaluation of anthropogenic influence in probabilistic forecasting of coastal change
NASA Astrophysics Data System (ADS)
Hapke, C. J.; Wilson, K.; Adams, P. N.
2014-12-01
Prediction of large scale coastal behavior is especially challenging in areas of pervasive human activity. Many coastal zones on the Gulf and Atlantic coasts are moderately to highly modified through the use of soft sediment and hard stabilization techniques. These practices have the potential to alter sediment transport and availability, as well as reshape the beach profile, ultimately transforming the natural evolution of the coastal system. We present the results of a series of probabilistic models, designed to predict the observed geomorphic response to high wave events at Fire Island, New York. The island comprises a variety of land use types, including inhabited communities with modified beaches, where beach nourishment and artificial dune construction (scraping) occur, unmodified zones, and protected national seashore. This variation in land use presents an opportunity for comparison of model accuracy across highly modified and rarely modified stretches of coastline. Eight models with basic and expanded structures were developed, resulting in sixteen models, informed with observational data from Fire Island. The basic model type does not include anthropogenic modification. The expanded model includes records of nourishment and scraping, designed to quantify the improved accuracy when anthropogenic activity is represented. Modification was included as frequency of occurrence divided by the time since the most recent event, to distinguish between recent and historic events. All but one model reported improved predictive accuracy from the basic to expanded form. The addition of nourishment and scraping parameters resulted in a maximum reduction in predictive error of 36%. The seven improved models reported an average 23% reduction in error. These results indicate that it is advantageous to incorporate the human forcing into a coastal hazards probability model framework.
Miller, Robin Lin; Reed, Sarah J; Chiaramonte, Danielle; Strzyzykowski, Trevor; Spring, Hannah; Acevedo-Polakovich, Ignacio D; Chutuape, Kate; Cooper-Walker, Bendu; Boyer, Cherrie B; Ellen, Jonathan M
2017-09-01
Connect to Protect (C2P), a 10-year community mobilization effort, pursued the dual aims of creating communities competent to address youth's HIV-related risks and removing structural barriers to youth health. We used Community Coalition Action Theory (CCAT) to examine the perceived contributions and accomplishments of 14 C2P coalitions. We interviewed 318 key informants, including youth and community leaders, to identify the features of coalitions' context and operation that facilitated and undermined their ability to achieve structural change and build communities' capability to manage their local adolescent HIV epidemic effectively. We coded the interviews using an a priori coding scheme informed by CCAT and scholarship on AIDS-competent communities. We found community mobilization efforts like C2P can contribute to addressing the structural factors that promote HIV-risk among youth and to community development. We describe how coalition leadership, collaborative synergy, capacity building, and local community context influence coalitions' ability to successfully implement HIV-related structural change, demonstrating empirical support for many of CCAT's propositions. We discuss implications for how community mobilization efforts might succeed in laying the foundation for an AIDS-competent community. © Society for Community Research and Action 2017.
Effects of drought on forest soil structure and hydrological soil functions
NASA Astrophysics Data System (ADS)
Gimbel, K.; Puhlmann, H.; Weiler, M.
2012-04-01
Climate change is predicted to severely affect precipitation patterns across central Europe. Soil structure is closely linked to the activity of soil microbiota and plant roots, which modify flow pathways along roots, organic matter and water repellence of soils. Through shrinkage and fracturing of soil aggregates, soil structure is also responding to changing climate (in particular drought) conditions. We investigate the possible effects on biogeochemical and hydropedological processes in response to predicted future reduced precipitation, and the interaction of these processes with the biodiversity of the forest understorey and soil biota. The hypotheses of this study are: (i) drought causes a change in soil structure, which affects hydrological soil functions (water infiltration, uptake and redistribution); (ii) changes in rooting patterns and microbial community composition, in response to drought, influence the hydrological soil functions. To test our hypotheses, we built adaptive roofing systems on nine sites in Germany, which allow a flexible reduction of precipitation in order to achieve the long-term minimum precipitation of a site. Here we present first measurements of our repeated measuring/sampling campaign, which will be conducted over a period of three years. The aim of our experiments is to analyze soil pore architecture and related flow and transport behaviour with dye tracer sprinkling experiments, soil column experiments with stable isotope (deuterium, oxygen-18) enriched water, computed tomography at soil monoliths (~70 l) and multi-step outflow experiments with 100 ml soil cores. Finally, we sketch our idea how to relate the observed temporal changes of soil structure and hydrological soil functions to the observed dynamics of hydrometeorological site conditions, soil moisture and desiccation as well as changes in rooting patterns, herb layer and soil microbiotic communities. The results of this study may help to assess future behavior of the plant-soil-water-microbiology-system and may help to adjust models to predict future response to different precipitation patterns as well as help coping with existing and future emerging challenges in forest management.
Steenbergh, Anne K.; Bodelier, Paul L. E.; Slomp, Caroline P.; Laanbroek, Hendrikus J.
2014-01-01
Phosphorus release from sediments can exacerbate the effect of eutrophication in coastal marine ecosystems. The flux of phosphorus from marine sediments to the overlying water is highly dependent on the redox conditions at the sediment-water interface. Bacteria are key players in the biological processes that release or retain phosphorus in marine sediments. To gain more insight in the role of bacteria in phosphorus release from sediments, we assessed the effect of redox conditions on the structure of bacterial communities. To do so, we incubated surface sediments from four sampling sites in the Baltic Sea under oxic and anoxic conditions and analyzed the fingerprints of the bacterial community structures in these incubations and the original sediments. This paper describes the effects of redox conditions, sampling station, and sample type (DNA, RNA, or whole-cell sample) on bacterial community structure in sediments. Redox conditions explained only 5% of the variance in community structure, and bacterial communities from contrasting redox conditions showed considerable overlap. We conclude that benthic bacterial communities cannot be classified as being typical for oxic or anoxic conditions based on community structure fingerprints. Our results suggest that the overall structure of the benthic bacterial community has only a limited impact on benthic phosphate fluxes in the Baltic Sea. PMID:24667801
Steenbergh, Anne K; Bodelier, Paul L E; Slomp, Caroline P; Laanbroek, Hendrikus J
2014-01-01
Phosphorus release from sediments can exacerbate the effect of eutrophication in coastal marine ecosystems. The flux of phosphorus from marine sediments to the overlying water is highly dependent on the redox conditions at the sediment-water interface. Bacteria are key players in the biological processes that release or retain phosphorus in marine sediments. To gain more insight in the role of bacteria in phosphorus release from sediments, we assessed the effect of redox conditions on the structure of bacterial communities. To do so, we incubated surface sediments from four sampling sites in the Baltic Sea under oxic and anoxic conditions and analyzed the fingerprints of the bacterial community structures in these incubations and the original sediments. This paper describes the effects of redox conditions, sampling station, and sample type (DNA, RNA, or whole-cell sample) on bacterial community structure in sediments. Redox conditions explained only 5% of the variance in community structure, and bacterial communities from contrasting redox conditions showed considerable overlap. We conclude that benthic bacterial communities cannot be classified as being typical for oxic or anoxic conditions based on community structure fingerprints. Our results suggest that the overall structure of the benthic bacterial community has only a limited impact on benthic phosphate fluxes in the Baltic Sea.
Beacon Communities’ Public Health Initiatives: A Case Study Analysis
Massoudi, Barbara L.; Marcial, Laura H.; Haque, Saira; Bailey, Robert; Chester, Kelley; Cunningham, Shellery; Riley, Amanda; Soper, Paula
2014-01-01
Introduction: The Beacon Communities for Public Health (BCPH) project was launched in 2011 to gain a better understanding of the range of activities currently being conducted in population- and public health by the Beacon Communities. The project highlighted the successes and challenges of these efforts with the aim of sharing this information broadly among the public health community. Background: The Beacon Community Program, designed to showcase technology-enabled, community-based initiatives to improve outcomes, focused on: building and strengthening health information technology (IT) infrastructure and exchange capabilities; translating investments in health IT to measureable improvements in cost, quality, and population health; and, developing innovative approaches to performance measurement, technology, and care delivery. Methods: Four multimethod case studies were conducted based on a modified sociotechnical framework to learn more about public health initiative implementation and use in the Beacon Communities. Our methodological approach included using document review and semistructured key informant interviews. NACCHO Model Practice Program criteria were used to select the public health initiatives included in the case studies. Findings: Despite differences among the case studies, common barriers and facilitators were found to be present in all areas of the sociotechnical framework application including structure, people, technology, tasks, overarching considerations, and sustainability. Overall, there were many more facilitators (range = 7–14) present for each Beacon compared to barriers (range = 4–6). Discussion: Four influential promising practices were identified through the work: forging strong and sustainable partnerships; ensuring a good task-technology fit and a flexible and iterative design; fostering technology acceptance; and, providing education and demonstrating value. Conclusions: A common weakness was the lack of a framework or model for the Beacon Communities evaluation work. Sharing a framework or approach to evaluation at the beginning of implementation made the work more effective. Supporting evaluation to inform future implementations is important. PMID:25848620
Lefort, Stelly; Aumont, Olivier; Bopp, Laurent; Arsouze, Thomas; Gehlen, Marion; Maury, Olivier
2015-01-01
Temperature, oxygen, and food availability directly affect marine life. Climate models project a global warming of the ocean's surface (~+3 °C), a de-oxygenation of the ocean's interior (~-3%) and a decrease in total marine net primary production (~-8%) under the 'business as usual' climate change scenario (RCP8.5). We estimated the effects of these changes on biological communities using a coupled biogeochemical (PISCES)--ecosystems (APECOSM) model forced by the physical outputs of the last generation of the IPSL-CM Earth System Model. The APECOSM model is a size-structured bio-energetic model that simulates the 3D dynamical distributions of three interactive pelagic communities (epipelagic, mesopelagic, and migratory) under the effects of multiple environmental factors. The PISCES-APECOSM model ran from 1850 to 2100 under historical forcing followed by RCP8.5. Our RCP8.5 simulation highlights significant changes in the spatial distribution, biomass, and maximum body-size of the simulated pelagic communities. Biomass and maximum body-size increase at high latitude over the course of the century, reflecting the capacity of marine organisms to respond to new suitable environment. At low- and midlatitude, biomass and maximum body-size strongly decrease. In those regions, large organisms cannot maintain their high metabolic needs because of limited and declining food availability. This resource reduction enhances the competition and modifies the biomass distribution among and within the three communities: the proportion of small organisms increases in the three communities and the migrant community that initially comprised a higher proportion of small organisms is favored. The greater resilience of small body-size organisms resides in their capacity to fulfill their metabolic needs under reduced energy supply and is further favored by the release of predation pressure due to the decline of large organisms. These results suggest that small body-size organisms might be more resilient to climate change than large ones. © 2014 John Wiley & Sons Ltd.
Puspitasari, Hanni P; Costa, Daniel S J; Aslani, Parisa; Krass, Ines
2016-01-01
Community pharmacists have faced ongoing challenges in the delivery of clinical pharmacy services. Various attitudinal and environmental factors have been found to be associated with the provision of general clinical pharmacy services or services which focus on a specific condition, including cardiovascular disease (CVD). However, the interrelationship and relative influence of explanatory factors has not been investigated. To develop a model illustrating influences on CVD support provision by community pharmacists. Mail surveys were sent to a random sample of 1350 Australian community pharmacies to investigate determinants of CVD support provision. A theoretical model modified from the Theory of Planned Behavior (TPB) was used as a framework for the survey instrument. Structural equation modeling was used to determine how pharmacists' attitudes and environmental factors influence CVD support. A response rate of 15.8% (209/1320) was obtained. The model for CVD support provision by community pharmacists demonstrated good fit: χ(2)/df = 1.403, RMSEA = 0.047 (90% CI = 0.031-0.062), CFI = 0.962, TLI = 0.955 and WRMR = 0.838. Factors found to predict CVD support included: two attitudinal latent factors ("subjective norms of pharmacists' role in CVD support" and "pharmacists' perceived responsibilities in CVD support") and environmental factors i.e. pharmacy infrastructure (documentation and a private area), workload, location; government funded pharmacy practice programs; and pharmacists' involvement with Continuing Professional Development and attendance at CVD courses. Pharmacists' attitudes appeared to be the strongest predictor of CVD support provision. The TPB framework was useful in identifying "subjective norms" and "pharmacists' beliefs" as key constructs of community pharmacists' attitudes. Community pharmacies would be able to provide such an advanced clinical service if they strongly believed that this was an acknowledged part of their scope of practice, had adequate infrastructure and employed sufficient numbers of pharmacists with appropriate and relevant knowledge. Copyright © 2016 Elsevier Inc. All rights reserved.
Sentence Combining: A Sequence for Instruction.
ERIC Educational Resources Information Center
Lawlor, Joseph
1983-01-01
Classifies various syntactic structures normally included in sentence-combining instruction into five categories: coordinates, adverbials, restrictive noun modifiers, noun substitutes, and free modifiers. Within each category, structures are further divided into three levels to provide teachers with guidelines for planning instruction. (RH)
[Adsorption mechanism of furfural onto modified rice husk charcoals].
Deng, Yong; Wang, Xianhua; Li, Yunchao; Shao, Jing'ai; Yang, Haiping; Chen, Hanping
2015-10-01
To evaluate the absorptive characteristics of furfural onto biomass charcoals derived from rice husk pyrolysis, we studied the information of the structure and surface chemistry properties of the rice husk charcoals modified by thermal treatment under nitrogen and carbon dioxide flow and adsorption mechanism of furfural. The modified samples are labeled as RH-N2 and RH-CO2. Fresh rice husk charcoal sample (RH-450) and modified samples were characterized by elemental analysis, nitrogen adsorption-desorption isotherms, Fourier-transform infrared spectroscopy and Boehm titration. The results show that fresh rice husk charcoal obtained at 450 degrees C had a large number of organic groups on its surface and poor pore structure. After the modification under nitrogen and carbon dioxide flow, oxygenic organics in rice husk charcoals decompose further, leading to the reduction of acidic functional groups on charcoals surface, and the increase of the pyrone structures of the basic groups. Meanwhile, pore structure was improved significantly and the surface area was increased, especially for the micropores. This resulted in the increase of π-π dispersion between the surfaces of rice husk charcoals and furfural molecular. With making comprehensive consideration of π-π dispersion and pore structure, the best removal efficiency of furfural was obtained by rice husk charcoal modified under carbon dioxide flow.
Emmett, Edward Anthony; Zhang, Hong; Shofer, Frances Susan; Rodway, Nancy; Desai, Chintan; Freeman, David; Hufford, Mary
2011-01-01
Objectives Effectively communicate results from a community exposure study to meet predetermined community priorities, maintaining ethical principles of autonomy, empowerment and justice. Methods The community established principles for the communications and a plan to inform study participants, community and other stakeholders of results and recommendations in a novel sequence: the “Community-First” communication model. Results The communications resulted in positive actions including company sponsored free bottled water, accepted by 77.6% of eligible households. Over 95% of participants in a follow-up survey had made some change to residential water supplies. Serum PFOA levels were reduced. Government agencies acted on the results. Conclusions The unique communication approach generated workable solutions to the problem investigated, raised community awareness and modified behaviors. Information generated a “free market” of community-level solutions. Each major stakeholder voluntarily adopted a “precautionary principle”. PMID:19209035
Jackson, Matthew A; Bonder, Marc Jan; Kuncheva, Zhana; Zierer, Jonas; Fu, Jingyuan; Kurilshikov, Alexander; Wijmenga, Cisca; Zhernakova, Alexandra; Bell, Jordana T; Spector, Tim D; Steves, Claire J
2018-01-01
Microbes in the gut microbiome form sub-communities based on shared niche specialisations and specific interactions between individual taxa. The inter-microbial relationships that define these communities can be inferred from the co-occurrence of taxa across multiple samples. Here, we present an approach to identify comparable communities within different gut microbiota co-occurrence networks, and demonstrate its use by comparing the gut microbiota community structures of three geographically diverse populations. We combine gut microbiota profiles from 2,764 British, 1,023 Dutch, and 639 Israeli individuals, derive co-occurrence networks between their operational taxonomic units, and detect comparable communities within them. Comparing populations we find that community structure is significantly more similar between datasets than expected by chance. Mapping communities across the datasets, we also show that communities can have similar associations to host phenotypes in different populations. This study shows that the community structure within the gut microbiota is stable across populations, and describes a novel approach that facilitates comparative community-centric microbiome analyses.
Rowland, Bosco; Tindall, Jenny; Wolfenden, Luke; Gillham, Karen; Ramsden, Robyn; Wiggers, John
2015-07-01
Across the world, it has been estimated that approximately 270 million people participate in community football clubs. However, the community sports club setting is associated with high levels of risky alcohol consumption. The study examined if sporting club alcohol management practices are associated with risky consumption of alcohol by club members while at the club, and also whether such consumption is directly and indirectly associated with club member overall hazardous alcohol consumption. Telephone surveys were conducted with a representative from 72 community football clubs in New South Wales, Australia, and 1428 club members. A path and mediation analysis was undertaken to determine the association between 11 club alcohol management practices and member alcohol consumption, at the club and overall hazardous consumption. Three alcohol management practices were associated with an increased probability of risky drinking while at the club: having alcohol promotions; serving intoxicated patrons; and having bar open longer than 4 h. A mediation analyses identified that risky drinking at the club as a result of these three practices was also linked to increase risk in being an overall hazardous drinker. Modifying alcohol management practices in community football clubs has the potential to reduce both risky alcohol consumption by members in this setting and the prevalence of overall hazardous alcohol consumption. Coordinated, multi-strategic interventions are required to support community football clubs to modify their alcohol management practices and hence contribute to reducing the burden of alcohol-related harm in the community. © 2014 Australasian Professional Society on Alcohol and other Drugs.
Afforestation alters community structure of soil fungi.
Carson, Jennifer K; Gleeson, Deirdre B; Clipson, Nicholas; Murphy, Daniel V
2010-07-01
Relatively little is known about the effect of afforestation on soil fungal communities. This study demonstrated that afforestation altered fungal community structure and that changes were correlated to pools of soil C. Pasture at three locations on the same soil type was afforested with Eucalyptus globulus or Pinus pinaster. The structure of fungal communities under the three land uses was measured after 13y using automated ribosomal intergenic spacer analysis (ARISA). Afforestation significantly altered the structure of fungal communities. The effect of location on the structure of fungal communities was limited to pasture soils; although these contained the same plant species, the relative composition of each species varied between locations. Differences in the structure of fungal communities between pasture, E. globulus and P. pinaster were significantly correlated with changes in the amount of total organic C and microbial biomass-C in soil. Afforestation of patches of agricultural land may contribute to conserving soil fungi in agricultural landscapes by supporting fungal communities with different composition to agricultural soils. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Sutton, Nora B; Langenhoff, Alette A M; Lasso, Daniel Hidalgo; van der Zaan, Bas; van Gaans, Pauline; Maphosa, Farai; Smidt, Hauke; Grotenhuis, Tim; Rijnaarts, Huub H M
2014-03-01
To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in two diesel-contaminated soils (peat and fill). Chemical oxidant and soil type affected the microbial community diversity and biodegradation activity; however, this was only observed following treatment with Fenton's reagent and modified Fenton's reagent, and in the biotic control without oxidation. Differences in the highest overall removal efficiencies of 69 % for peat (biotic control) and 59 % for fill (Fenton's reagent) were partially explained by changes in contaminant soil properties upon oxidation. Molecular analysis of 16S rRNA and alkane monooxygenase (alkB) gene abundances indicated that oxidation with Fenton's reagent and modified Fenton's reagent negatively affected microbial abundance. However, regeneration occurred, and final relative alkB abundances were 1-2 orders of magnitude higher in chemically treated microcosms than in the biotic control. 16S rRNA gene fragment fingerprinting with DGGE and prominent band sequencing illuminated microbial community composition and diversity differences between treatments and identified a variety of phylotypes within Alpha-, Beta-, and Gammaproteobacteria. Understanding microbial community dynamics during coupled chemical oxidation and bioremediation is integral to improved biphasic field application.
2012-01-01
Background Characterizing factors which determine susceptibility to air pollution is an important step in understanding the distribution of risk in a population and is critical for setting appropriate policies. We evaluate general and specific measures of community health as modifiers of risk for asthma and congestive heart failure following an episode of acute exposure to wildfire smoke. Methods A population-based study of emergency department visits and daily concentrations of fine particulate matter during a wildfire in North Carolina was performed. Determinants of community health defined by County Health Rankings were evaluated as modifiers of the relative risk. A total of 40 mostly rural counties were included in the study. These rankings measure factors influencing health: health behaviors, access and quality of clinical care, social and economic factors, and physical environment, as well as, the outcomes of health: premature mortality and morbidity. Pollutant concentrations were obtained from a mathematically modeled smoke forecasting system. Estimates of relative risk for emergency department visits were based on Poisson mixed effects regression models applied to daily visit counts. Results For asthma, the strongest association was observed at lag day 0 with excess relative risk of 66%(28,117). For congestive heart failure the excess relative risk was 42%(5,93). The largest difference in risk was observed after stratifying on the basis of Socio-Economic Factors. Difference in risk between bottom and top ranked counties by Socio-Economic Factors was 85% and 124% for asthma and congestive heart failure respectively. Conclusions The results indicate that Socio-Economic Factors should be considered as modifying risk factors in air pollution studies and be evaluated in the assessment of air pollution impacts. PMID:23006928
Rappold, Ana G; Cascio, Wayne E; Kilaru, Vasu J; Stone, Susan L; Neas, Lucas M; Devlin, Robert B; Diaz-Sanchez, David
2012-09-24
Characterizing factors which determine susceptibility to air pollution is an important step in understanding the distribution of risk in a population and is critical for setting appropriate policies. We evaluate general and specific measures of community health as modifiers of risk for asthma and congestive heart failure following an episode of acute exposure to wildfire smoke. A population-based study of emergency department visits and daily concentrations of fine particulate matter during a wildfire in North Carolina was performed. Determinants of community health defined by County Health Rankings were evaluated as modifiers of the relative risk. A total of 40 mostly rural counties were included in the study. These rankings measure factors influencing health: health behaviors, access and quality of clinical care, social and economic factors, and physical environment, as well as, the outcomes of health: premature mortality and morbidity. Pollutant concentrations were obtained from a mathematically modeled smoke forecasting system. Estimates of relative risk for emergency department visits were based on Poisson mixed effects regression models applied to daily visit counts. For asthma, the strongest association was observed at lag day 0 with excess relative risk of 66% (28,117). For congestive heart failure the excess relative risk was 42% (5,93). The largest difference in risk was observed after stratifying on the basis of Socio-Economic Factors. Difference in risk between bottom and top ranked counties by Socio-Economic Factors was 85% and 124% for asthma and congestive heart failure respectively. The results indicate that Socio-Economic Factors should be considered as modifying risk factors in air pollution studies and be evaluated in the assessment of air pollution impacts.
Lexicon-enhanced sentiment analysis framework using rule-based classification scheme.
Asghar, Muhammad Zubair; Khan, Aurangzeb; Ahmad, Shakeel; Qasim, Maria; Khan, Imran Ali
2017-01-01
With the rapid increase in social networks and blogs, the social media services are increasingly being used by online communities to share their views and experiences about a particular product, policy and event. Due to economic importance of these reviews, there is growing trend of writing user reviews to promote a product. Nowadays, users prefer online blogs and review sites to purchase products. Therefore, user reviews are considered as an important source of information in Sentiment Analysis (SA) applications for decision making. In this work, we exploit the wealth of user reviews, available through the online forums, to analyze the semantic orientation of words by categorizing them into +ive and -ive classes to identify and classify emoticons, modifiers, general-purpose and domain-specific words expressed in the public's feedback about the products. However, the un-supervised learning approach employed in previous studies is becoming less efficient due to data sparseness, low accuracy due to non-consideration of emoticons, modifiers, and presence of domain specific words, as they may result in inaccurate classification of users' reviews. Lexicon-enhanced sentiment analysis based on Rule-based classification scheme is an alternative approach for improving sentiment classification of users' reviews in online communities. In addition to the sentiment terms used in general purpose sentiment analysis, we integrate emoticons, modifiers and domain specific terms to analyze the reviews posted in online communities. To test the effectiveness of the proposed method, we considered users reviews in three domains. The results obtained from different experiments demonstrate that the proposed method overcomes limitations of previous methods and the performance of the sentiment analysis is improved after considering emoticons, modifiers, negations, and domain specific terms when compared to baseline methods.
Lim, Hyoun Soo; Hong, Soon Gyu; Kim, Ji Hee; Lee, Joohan; Choi, Taejin; Ahn, Tae Seok; Kim, Ok-Sun
2015-01-01
Given the diminished role of biotic interactions in soils of continental Antarctica, abiotic factors are believed to play a dominant role in structuring of microbial communities. However, many ice-free regions remain unexplored, and it is unclear which environmental gradients are primarily responsible for the variations among bacterial communities. In this study, we investigated the soil bacterial community around Terra Nova Bay of Victoria Land by pyrosequencing and determined which environmental variables govern the bacterial community structure at the local scale. Six bacterial phyla, Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, Cyanobacteria, and Bacteroidetes, were dominant, but their relative abundance varied greatly across locations. Bacterial community structures were affected little by spatial distance, but structured more strongly by site, which was in accordance with the soil physicochemical compositions. At both the phylum and species levels, bacterial community structure was explained primarily by pH and water content, while certain earth elements and trace metals also played important roles in shaping community variation. The higher heterogeneity of the bacterial community structure found at this site indicates how soil bacterial communities have adapted to different compositions of edaphic variables under extreme environmental conditions. Taken together, these findings greatly advance our understanding of the adaption of soil bacterial populations to this harsh environment. PMID:25799273