Science.gov

Sample records for community structure protozoa

  1. Relative diversity and community structure analysis of rumen protozoa according to T-RFLP and microscopic methods.

    PubMed

    Tymensen, Lisa; Barkley, Cindy; McAllister, Tim A

    2012-01-01

    Protozoa are common inhabitants of the rumen where they play roles in host nutrition and methanogenesis. Knowledge of how changes in the composition of protozoa communities affect these processes is limited in part due to a lack of efficient methods for protozoa community analysis. In this study, a terminal-restriction fragment length polymorphism (T-RFLP) assay targeting the 18S rRNA gene was developed for comparative analysis of rumen protozoa communities. Comparison of diversity and structure of protozoa communities from hay-fed versus silage/grain-fed cattle via T-RFLP analysis yielded similar overall results to microscopy analysis. According to both methods, Entodinium spp. were more abundant in the silage/grain-fed cattle and protozoa diversity (as calculated using the Shannon index) was higher for the hay-fed cattle due to greater species evenness. Type B protozoa were more prevalent in the hay-fed cattle, whereas Type A protozoa were more prevalent in the silage/grain-fed cattle. Analysis of similarity (ANOSIM) indicated that the protozoa communities from hay-fed and silage/grain-fed cattle were different, and multivariate analysis indicated that pen mates (i.e., cattle fed the same diet and housed together) tended to have similar protozoa communities types. In summary, we present a T-RFLP method for analyzing rumen protozoa communities which complements traditional microscopy approaches but has the advantage of being amenable to high-throughput.

  2. Structural genomics of pathogenic protozoa: an overview.

    PubMed

    Fan, Erkang; Baker, David; Fields, Stanley; Gelb, Michael H; Buckner, Frederick S; Van Voorhis, Wesley C; Phizicky, Eric; Dumont, Mark; Mehlin, Christopher; Grayhack, Elizabeth; Sullivan, Mark; Verlinde, Christophe; Detitta, George; Meldrum, Deirdre R; Merritt, Ethan A; Earnest, Thomas; Soltis, Michael; Zucker, Frank; Myler, Peter J; Schoenfeld, Lori; Kim, David; Worthey, Liz; Lacount, Doug; Vignali, Marissa; Li, Jizhen; Mondal, Somnath; Massey, Archna; Carroll, Brian; Gulde, Stacey; Luft, Joseph; Desoto, Larry; Holl, Mark; Caruthers, Jonathan; Bosch, Jürgen; Robien, Mark; Arakaki, Tracy; Holmes, Margaret; Le Trong, Isolde; Hol, Wim G J

    2008-01-01

    The Structural Genomics of Pathogenic Protozoa (SGPP) Consortium aimed to determine crystal structures of proteins from trypanosomatid and malaria parasites in a high throughput manner. The pipeline of target selection, protein production, crystallization, and structure determination, is sketched. Special emphasis is given to a number of technology developments including domain prediction, the use of "co-crystallants," and capillary crystallization. "Fragment cocktail crystallography" for medical structural genomics is also described.

  3. Rethinking niche evolution: experiments with natural communities of Protozoa in pitcher plants.

    PubMed

    Miller, Thomas E; Moran, Emma R; terHorst, Casey P

    2014-08-01

    Classic niche theory predicts that competing species will evolve to use different resources and interact less, whereas recent niche-converge ideas predict that species evolve to use similar resources and interact more. Most data supporting niche evolution are based on observations of contemporary niche use, whereas experimental support is quite sparse. We followed the evolution of four species of Protozoa during succession in the water-filled leaves of the pitcher plant, Sarracenia purpurea, and found that evolution in multispecies systems follows a surprising pattern. Over several hundred generations, weak competitors evolved to be stronger, while strong competitors evolved to become weaker, which does not conform to expectations of either niche divergence or convergence. Evolution in this system appears to occur in response to characteristics of a suite of several competitors in the community, rather than pairwise interactions. Ecologists may need to rethink the roles of competition and evolution in structuring communities.

  4. [Lysozyme-antilysozyme interactions in protozoa-bacteria communities (a model Tetrahymena-Escherichia community)].

    PubMed

    Bukharin, O V; Nemtseva, N V

    2001-01-01

    Lysozyme and antilysozyme activities present in a wide range of microorganisms determine the so-called lysozyme-antilysozyme system of hydrobionts, which greatly contribute to the formation of aquatic biocenoses. However, the mechanism of the functioning of this system in natural freshwater communities remains obscure. The experimental investigation of lysozyme-antilysozyme interactions in a model Tetrahymena--Escherichia community showed that the antilysozyme activity of Escherichia coli leads to incomplete phagocytosis, thus enhancing bacterial survival in a mixed culture with infusoria. The selection and reproduction of bacterial cells resistant to grazing by infusoria determine the character of host-parasite interactions and allow bacteria to survive. It was demonstrated that the antilysozyme activity of microorganisms, which is responsible for bacterial persistency in natural biocenoses, is involved in the maintenance of protozoa-bacteria communities in bodies of water.

  5. Abundance, diversity and community composition of free-living protozoa on vegetable sprouts.

    PubMed

    Chavatte, N; Lambrecht, E; Van Damme, I; Sabbe, K; Houf, K

    2016-05-01

    Interactions with free-living protozoa (FLP) have been implicated in the persistence of pathogenic bacteria on food products. In order to assess the potential involvement of FLP in this contamination, detailed knowledge on their occurrence, abundance and diversity on food products is required. In the present study, enrichment and cultivation methods were used to inventory and quantify FLP on eight types of commercial vegetable sprouts (alfalfa, beetroot, cress, green pea, leek, mung bean, red cabbage and rosabi). In parallel, total aerobic bacteria and Escherichia coli counts were performed. The vegetable sprouts harbored diverse communities of FLP, with Tetrahymena (ciliate), Bodo saltans and cercomonads (flagellates), and Acanthamoeba and Vannella (amoebae) as the dominant taxa. Protozoan community composition and abundance significantly differed between the sprout types. Beetroot harbored the most abundant and diverse FLP communities, with many unique species such as Korotnevella sp., Vannella sp., Chilodonella sp., Podophrya sp. and Sphaerophrya sp. In contrast, mung bean sprouts were species-poor and had low FLP numbers. Sampling month and company had no significant influence, suggesting that seasonal and local factors are of minor importance. Likewise, no significant relationship between protozoan community composition and bacterial load was observed.

  6. Ciliated protozoa community of a combined UASB-activated sludge system in southeastern Brazil.

    PubMed

    Siqueira-Castro, Isabel Cristina Vidal; Greinert-Goulart, Juliane Araújo; Rossetto, Renato; Guimarães, José Roberto; Franco, Regina Maura Bueno

    2016-12-01

    The aims of the present study were (1) to evaluate the abundance and taxonomic composition of ciliated protozoa in the activated sludge of a full-scale combined anaerobic-aerobic system operating in a tropical country and (2) to study the relationship between the effluent quality, the physicochemical variables, and the ciliates present in the operating system. The total ciliate fauna of the activated sludge of the Piçarrão Wastewater Treatment Plant (Piçarrão WWTP) was composed of 36 morphospecies belonging to 33 genera. These included 21 species observed in the activated sludge samples on the day of collection and 15 species found in cultures. The activated sludge of the Piçarrão WWTP contained a diversified ciliate community composed mainly of indicator organisms. The most frequently occurring morphospecies were Aspidisca cicada, Vorticella spp., Gastronauta aloisi, Acineria uncinata, and Epistylis plicatilis complex. These results showed that satisfactory operating conditions prevailed at the Piçarrão WWTP. In the combined UASB-activated sludge system, the presence of Aspidisca cicada suggests the occurrence of denitrification in the process while the presence of Acineria uncinata and G. alosi indicates the removal of carbonaceous organic matter.

  7. Effects of a ciliate protozoa predator on microbial communities in pitcher plant (Sarracenia purpurea) leaves.

    PubMed

    Paisie, Taylor K; Miller, Thomas E; Mason, Olivia U

    2014-01-01

    The aquatic communities found within the water filled leaves of the pitcher plant, Sarracenia purpurea, have a simple trophic structure providing an ideal system to study microscale interactions between protozoan predators and their bacterial prey. In this study, replicate communities were maintained with and without the presence of the bactivorous protozoan, Colpoda steinii, to determine the effects of grazing on microbial communities. Changes in microbial (Archaea and Bacteria) community structure were assessed using iTag sequencing of 16S rRNA genes. The microbial communities were similar with and without the protozoan predator, with>1000 species. Of these species, Archaea were negligible, with Bacteria comprising 99.99% of the microbial community. The Proteobacteria and Bacteroidetes were the most dominant phyla. The addition of a protozoan predator did not have a significant effect on microbial evenness nor richness. However, the presence of the protozoan did cause a significant shift in the relative abundances of a number of bacterial species. This suggested that bactivorous protozoan may target specific bacterial species and/or that certain bacterial species have innate mechanisms by which they evade predators. These findings help to elucidate the effect that trophic structure perturbations have on predator prey interactions in microbial systems.

  8. Culturing Protozoa.

    ERIC Educational Resources Information Center

    Stevenson, Paul

    1980-01-01

    Compares various nutrient media, growth conditions, and stock solutions used in culturing protozoa. A hay infusion in Chalkey's solution maintained at a stable temperature is recommended for producing the most dense and diverse cultures. (WB)

  9. Intestinal protozoa.

    PubMed

    Juckett, G

    1996-06-01

    Giardia is the best known cause of protozoal gastrointestinal disease in North America, producing significant but not life-threatening gastrointestinal distress and diarrhea. Although diagnosis of giardiasis may be challenging, treatment is usually successful. Entamoeba histolytica poses a rarer but far more difficult clinical challenge. Dysentery caused by E. histolytica may be the most feared intestinal protozoal infection, although Cryptosporidium parvum, Balantidium coli, Isospora belli, Sarcocystis species and other newly described protozoa also may cause diarrhea in healthy individuals and may result in intractable, life-threatening illness in patients with acquired immunodeficiency syndrome or other immunosuppressive diseases. Certain protozoa once considered relatively unimportant, such as Cryptosporidium, are now recognized as significant causes of morbidity even in the United States, since transmission readily occurs through contaminated water.

  10. Modeling the distribution of ciliate protozoa in the reticulo-rumen using linear programming.

    PubMed

    Hook, S E; Dijkstra, J; Wright, A-D G; McBride, B W; France, J

    2012-01-01

    The flow of ciliate protozoa from the reticulo-rumen is significantly less than expected given the total density of rumen protozoa present. To maintain their numbers in the reticulo-rumen, protozoa can be selectively retained through association with feed particles and the rumen wall. Few mathematical models have been designed to model rumen protozoa in both the free-living and attached phases, and the data used in the models were acquired using classical techniques. It has therefore become necessary to provide an updated model that more accurately represents these microorganisms and incorporates the recent literature on distribution, sequestration, and generation times. This paper represents a novel approach to synthesizing experimental data on rumen microorganisms in a quantitative and structured manner. The development of a linear programming model of rumen protozoa in an approximate steady state will be described and applied to data from healthy ruminants consuming commonly fed diets. In the model, protozoa associated with the liquid phase and protozoa attached to particulate matter or sequestered against the rumen wall are distinguished. Growth, passage, death, and transfer of protozoa between both pools are represented. The results from the model application using the contrasting diets of increased forage content versus increased starch content indicate that the majority of rumen protozoa, 63 to 90%, are found in the attached phase, either attached to feed particles or sequestered on the rumen wall. A slightly greater proportion of protozoa are found in the attached phase in animals fed a hay diet compared with a starch diet. This suggests that experimental protocols that only sample protozoa from the rumen fluid could be significantly underestimating the size of the protozoal population of the rumen. Further data are required on the distribution of ciliate protozoa in the rumen of healthy animals to improve model development, but the model described herein

  11. Three-dimensional structures in the design of therapeutics targeting parasitic protozoa: reflections on the past, present and future.

    PubMed

    Hol, Wim G J

    2015-05-01

    Parasitic protozoa cause a range of diseases which threaten billions of human beings. They are responsible for tremendous mortality and morbidity in the least-developed areas of the world. Presented here is an overview of the evolution over the last three to four decades of structure-guided design of inhibitors, leads and drug candidates aiming at targets from parasitic protozoa. Target selection is a crucial and multi-faceted aspect of structure-guided drug design. The major impact of advances in molecular biology, genome sequencing and high-throughput screening is touched upon. The most advanced crystallographic techniques, including XFEL, have already been applied to structure determinations of drug targets from parasitic protozoa. Even cryo-electron microscopy is contributing to our understanding of the mode of binding of inhibitors to parasite ribosomes. A number of projects have been selected to illustrate how structural information has assisted in arriving at promising compounds that are currently being evaluated by pharmacological, pharmacodynamic and safety tests to assess their suitability as pharmaceutical agents. Structure-guided approaches are also applied to incorporate properties into compounds such that they are less likely to become the victim of resistance mechanisms. A great increase in the number of novel antiparasitic compounds will be needed in the future. These should then be combined into various multi-compound therapeutics to circumvent the diverse resistance mechanisms that render single-compound, or even multi-compound, drugs ineffective. The future should also see (i) an increase in the number of projects with a tight integration of structural biology, medicinal chemistry, parasitology and pharmaceutical sciences; (ii) the education of more `medicinal structural biologists' who are familiar with the properties that compounds need to have for a high probability of success in the later steps of the drug-development process; and (iii) the

  12. Prevalence of intestinal protozoa in communities along the Lake Victoria region of Uganda.

    PubMed

    McElligott, James T; Naaktgeboren, Christiana; Makuma-Massa, Henry; Summer, Andrea P; Deal, Jeffery L

    2013-08-01

    The objective of this study was to assess water-borne parasite point prevalence in communities in close proximity to Lake Victoria in Uganda prior to the implementation of a clean water intervention, and to investigate possible associations of water source and latrine access with protozoan prevalence. Utilizing a rapid antigen test, parasite prevalence for Giardia lamblia and Entamoeba histolytica/dispar was determined from stool samples of individuals living in six Ugandan communities. Stool sample test results were stratified by the independent variables of gender, age, community, water source (improved or lake), and presence of a latrine. The impact of the independent variables on parasite prevalence was investigated with bivariable and multivariable analyses. The prevalence of Giardia (12%) was influenced by age and community of residence. The prevalence of Entamoeba (10%) did not significantly vary by the independent variables. The prevalence of intestinal protozoan parasites is significant in Ugandan communities bordering Lake Victoria. Interventions to continue to improve water sources remain a high priority. Rapid antigen testing is likely to be useful in the monitoring of water-borne parasite prevalence.

  13. Introduction to Pathogenic Protozoa

    DTIC Science & Technology

    2011-06-01

    1 1 Introduction Mary K. Klassen-Fischer and Ronald C. Neafie Introduction Protozoa Protozoa are single-celled eukaryotic animals first dis...phylogeny of protozoa , see Table 1.1. A recent trend is to replace the term “ protozoa ” with “protista.” For these topics we retain “pro- tozoa” and...JUN 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Introduction to Pathogenic Protozoa 5a. CONTRACT

  14. Community structure in networks

    NASA Astrophysics Data System (ADS)

    Newman, Mark

    2004-03-01

    Many networked systems, including physical, biological, social, and technological networks, appear to contain ``communities'' -- groups of nodes within which connections are dense, but between which they are sparser. The ability to find such communities in an automated fashion could be of considerable use. Communities in a web graph for instance might correspond to sets of web sites dealing with related topics, while communities in a biochemical network or an electronic circuit might correspond to functional units of some kind. We present a number of new methods for community discovery, including methods based on ``betweenness'' measures and methods based on modularity optimization. We also give examples of applications of these methods to both computer-generated and real-world network data, and show how our techniques can be used to shed light on the sometimes dauntingly complex structure of networked systems.

  15. Estimating carnivore community structures.

    PubMed

    Jiménez, José; Nuñez-Arjona, Juan Carlos; Rueda, Carmen; González, Luis Mariano; García-Domínguez, Francisco; Muñoz-Igualada, Jaime; López-Bao, José Vicente

    2017-01-25

    Obtaining reliable estimates of the structure of carnivore communities is of paramount importance because of their ecological roles, ecosystem services and impact on biodiversity conservation, but they are still scarce. This information is key for carnivore management: to build support for and acceptance of management decisions and policies it is crucial that those decisions are based on robust and high quality information. Here, we combined camera and live-trapping surveys, as well as telemetry data, with spatially-explicit Bayesian models to show the usefulness of an integrated multi-method and multi-model approach to monitor carnivore community structures. Our methods account for imperfect detection and effectively deal with species with non-recognizable individuals. In our Mediterranean study system, the terrestrial carnivore community was dominated by red foxes (0.410 individuals/km(2)); Egyptian mongooses, feral cats and stone martens were similarly abundant (0.252, 0.249 and 0.240 individuals/km(2), respectively), whereas badgers and common genets were the least common (0.130 and 0.087 individuals/km(2), respectively). The precision of density estimates improved by incorporating multiple covariates, device operation, and accounting for the removal of individuals. The approach presented here has substantial implications for decision-making since it allows, for instance, the evaluation, in a standard and comparable way, of community responses to interventions.

  16. Estimating carnivore community structures

    PubMed Central

    Jiménez, José; Nuñez-Arjona, Juan Carlos; Rueda, Carmen; González, Luis Mariano; García-Domínguez, Francisco; Muñoz-Igualada, Jaime; López-Bao, José Vicente

    2017-01-01

    Obtaining reliable estimates of the structure of carnivore communities is of paramount importance because of their ecological roles, ecosystem services and impact on biodiversity conservation, but they are still scarce. This information is key for carnivore management: to build support for and acceptance of management decisions and policies it is crucial that those decisions are based on robust and high quality information. Here, we combined camera and live-trapping surveys, as well as telemetry data, with spatially-explicit Bayesian models to show the usefulness of an integrated multi-method and multi-model approach to monitor carnivore community structures. Our methods account for imperfect detection and effectively deal with species with non-recognizable individuals. In our Mediterranean study system, the terrestrial carnivore community was dominated by red foxes (0.410 individuals/km2); Egyptian mongooses, feral cats and stone martens were similarly abundant (0.252, 0.249 and 0.240 individuals/km2, respectively), whereas badgers and common genets were the least common (0.130 and 0.087 individuals/km2, respectively). The precision of density estimates improved by incorporating multiple covariates, device operation, and accounting for the removal of individuals. The approach presented here has substantial implications for decision-making since it allows, for instance, the evaluation, in a standard and comparable way, of community responses to interventions. PMID:28120871

  17. Symbiosis and Rumen Protozoa

    ERIC Educational Resources Information Center

    Dillon, Raymond D.

    1970-01-01

    Protozoa inhabiting the rumen of large grazing animals can be used to illustrate symbiotic animal associations. Gives a key to the ciliates most commonly found, several drawings, and a chart relating rumen fauna to the phylogenetic tree of the hosts. (EB)

  18. Preferential Feeding by the Ciliates Chilodonella and Tetrahymena spp. and Effects of These Protozoa on Bacterial Biofilm Structure and Composition▿

    PubMed Central

    Dopheide, Andrew; Lear, Gavin; Stott, Rebecca; Lewis, Gillian

    2011-01-01

    Protozoa are important components of microbial food webs, but protozoan feeding preferences and their effects in the context of bacterial biofilms are not well understood. The feeding interactions of two contrasting ciliates, the free-swimming filter feeder Tetrahymena sp. and the surface-associated predator Chilodonella sp., were investigated using biofilm-forming bacteria genetically modified to express fluorescent proteins. According to microscopy, both ciliates readily consumed cells from both Pseudomonas costantinii and Serratia plymuthica biofilms. When offered a choice between spatially separated biofilms, each ciliate showed a preference for P. costantinii biofilms. Experiments with bacterial cell extracts indicated that both ciliates used dissolved chemical cues to locate biofilms. Chilodonella sp. evidently used bacterial chemical cues as a basis for preferential feeding decisions, but it was unclear whether Tetrahymena sp. did also. Confocal microscopy of live biofilms revealed that Tetrahymena sp. had a major impact on biofilm morphology, forming holes and channels throughout S. plymuthica biofilms and reducing P. costantinii biofilms to isolated, grazing-resistant microcolonies. Grazing by Chilodonella sp. resulted in the development of less-defined trails through S. plymuthica biofilms and caused P. costantinii biofilms to become homogeneous scatterings of cells. It was not clear whether the observed feeding preferences for spatially separated P. costantinii biofilms over S. plymuthica biofilms resulted in selective targeting of P. costantinii cells in mixed biofilms. Grazing of mixed biofilms resulted in the depletion of both types of bacteria, with Tetrahymena sp. having a larger impact than Chilodonella sp., and effects similar to those seen in grazed single-species biofilms. PMID:21602372

  19. [Effects of adding straw carbon source to root knot nematode diseased soil on soil microbial biomass and protozoa abundance].

    PubMed

    Zhang, Si-Hui; Lian, Jian-Hong; Cao, Zhi-Ping; Zhao, Li

    2013-06-01

    A field experiment with successive planting of tomato was conducted to study the effects of adding different amounts of winter wheat straw (2.08 g x kg(-1), 1N; 4.16 g x kg(-1), 2N; and 8.32 g x kg(-1), 4N) to the soil seriously suffered from root knot nematode disease on the soil microbial biomass and protozoa abundance. Adding straw carbon source had significant effects on the contents of soil microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) and the abundance of soil protozoa, which all decreased in the order of 4N > 2N > 1N > CK. The community structure of soil protozoa also changed significantly under straw addition. In the treatments with straw addition, the average proportion of fagellate, amoeba, and ciliates accounted for 36.0%, 59.5%, and 4.5% of the total protozoa, respectively. Under the same adding amounts of wheat straw, there was an increase in the soil MBC and MBN contents, MBC/MBN ratio, and protozoa abundance with increasing cultivation period.

  20. Community structure affects behavior.

    PubMed

    Jaenson, C

    1991-06-01

    AID's prevention efforts can benefit from taking into account 5 main aspects (KEPRA) of community structure identified by anthropologists: 1) kinship patterns, 2) economics, 3) politics, 4) religion, and 5) associations. For example, in Uganda among the Basoga and paternal aunt or senga is responsible for female sex education. Such culturally determined patterns need to be targeted in order to enhance education and effectiveness. Economics can reflect differing systems of family support through sexual means. The example given involves a poor family with a teenager in Thailand who exchanges a water buffalo or basic necessity for this daughter's prostitution. Politics must be considered because every society identifies people who have the power to persuade, influence, exchange resources, coerce, or in some way get people to do what is wanted. Utilizing these resources whether its ministers of health, factory owners, or peers is exemplified in the Monterey, Mexico factor floor supervisor and canteen worker introducing to workers the hows and whys of a new AID's education program. His peer status will command more respect than the director with direct authority. Religious beliefs have explanations for causes of sickness or disease, or provide instruction in sex practices. The example given is of a health workers in Uganda discussing AIDS with rural women by saying that we all know that disease and deaths are caused by spells. "But not AIDS - slim. AIDS is different." Associations can help provide educational, economic, and emotional assistance to the AID's effort or families affected.

  1. Occurrence of organic chlorinated pesticides and their ecological effects on soil protozoa in the agricultural soils of North Western Beijing, China.

    PubMed

    Shi, Yajuan; Lu, Yonglong; Meng, Fanqiao; Guo, Feifan; Zheng, Xiaoqi

    2013-06-01

    The occurrence of ∑HCHs, ∑DDTs, protozoa abundance and their community structure in surface soils of orchards, vegetable lands, and barren lands in northern west outskirts of Beijing were detected in order to investigate the protozoa responses to low dose organic chlorinated Pesticides (OCPs) after long-term field-based exposure. Significant differences in total concentrations of HCHs and DDTs were found among the three general groups ranking in decreasing order of concentration from orchard>vegetable lands >barren lands. Ciliate was the rare group in surface soils of all the sampling groups. The abundance of flagellate, ciliate, and amoebae in vegetable soils were significantly higher than those in orchard soils. The abundance of all the taxa of protozoa was strongly negative correlated with the residue level of ∑HCHs and ∑DDTs (P<0.05) in agricultural soils. However, no negative correlation between the residue levels of OCPs and protozoa abundance was shown in both the orchard and the barren soils. This field study demonstrated a considerable long-term impact of the OCPs residue on the abundance of protozoa in soils, and that the abundance of soil protozoa was much more influenced by land use type in association with different soil properties.

  2. Comparison of fermentation of diets of variable composition and microbial populations in the rumen of sheep and Rusitec fermenters. II. Protozoa population and diversity of bacterial communities.

    PubMed

    Martínez, M E; Ranilla, M J; Tejido, M L; Saro, C; Carro, M D

    2010-08-01

    Four ruminally and duodenally cannulated sheep and 8 Rusitec fermenters were used to determine the effects of dietary characteristics on microbial populations and bacterial diversity. The purpose of the study was to assess how closely fermenters can mimic the differences between diets found in vivo. The 4 experimental diets contained forage to concentrate (F:C) ratios of 70:30 (high forage; HF) or 30:70 (high concentrate; HC) with either alfalfa hay (A) or grass hay (G) as the forage. Total bacterial numbers were greater in the rumen of sheep fed HF diets compared with those fed HC diets, whereas the opposite was found in fermenters. The numbers of cellulolytic bacteria were not affected by F:C ratio in any fermentation system, but cellulolytic numbers were 2.7 and 1.8 times greater in sheep than in fermenters for HF and HC diets, respectively. Neither total bacterial nor cellulolytic numbers were affected by the type of forage in sheep or fermenters. Decreasing F:C ratio increased total protozoa and Entodiniae numbers in sheep by about 29 and 25%, respectively, but it had no effect in fermenters. Isotrichidae and Ophryoscolecinae numbers in sheep were not affected by changing F:C ratio, but both disappeared completely from fermenters fed HC diets. Total protozoa and Entodiniae numbers were greater in sheep fed A diets than in those fed G diets, whereas the opposite was found in fermenters. Results indicate that under the conditions of the present study, protozoa population in Rusitec fermenters was not representative of that in the rumen of sheep fed the same diets. In addition, protozoa numbers in fermenters were 121 and 226 times lower than those in the sheep rumen for HF and HC diets, respectively. The automated ribosomal intergenic spacer analysis of the 16S ribosomal DNA was used to analyze the diversity of liquid- and solid-associated bacteria in both systems. A total of 170 peaks were detected in the automated ribosomal intergenic spacer analysis

  3. Body-size spectra of biofilm-dwelling protozoa and their seasonal shift in coastal ecosystems.

    PubMed

    Zhao, Lu; Xu, Guangjian; Wang, Zheng; Xu, Henglong

    2016-10-01

    Community-based assessment of protozoa is usually performed at a taxon-dependent resolution. As an inherent 'taxon-free' trait, however, body-size spectrum has proved to be a highly informative indicator to summarize the functional structure of a community in both community research and monitoring programs in aquatic ecosystems. To demonstrate the relationships between the taxon-free resolution of protozoan communities and water conditions, the body-size spectra of biofilm-dwelling protozoa and their seasonal shift and environmental drivers were explored based on an annual dataset collected monthly from coastal waters of the Yellow Sea, northern China. Body sizes were calculated in equivalent spherical diameter (ESD). Among a total of 8 body-size ranks, S2 (19-27μm), S3 (28-36μm), S4 (37-50μm) and S5 (53-71μm) were the top four levels in frequency of occurrence, while rank S1 (13-17μm), S2 and S4 were the dominant levels in abundance. These dominants showed a clear seasonal succession: S2/S4 (spring)→S2/S4 (summer)→S4 (autumn)→S2 (winter) in frequency of occurrence; S1 (spring)→S4 (summer)→S2 (autumn)→S1 (winter) in abundance. Bootstrapped average analysis showed a clear seasonal shift in body-size spectra of the protozoa during a 1-year cycle, and the best-matching analysis demonstrated that the temporal variations in frequency of occurrence and abundance were significantly correlated with water temperature, pH, dissolved oxygen (DO), alone or in combination with chemical oxygen demand (COD) and nutrients. Thus, the body-size spectra of biofilm-dwelling protozoa were seasonally shaped and might be used as a time and cost efficient bioindicator of water quality in marine ecosystems.

  4. [Malaria and intestinal protozoa].

    PubMed

    Rojo-Marcos, Gerardo; Cuadros-González, Juan

    2016-03-01

    Malaria is life threatening and requires urgent diagnosis and treatment. Incidence and mortality are being reduced in endemic areas. Clinical features are unspecific so in imported cases it is vital the history of staying in a malarious area. The first line treatments for Plasmodium falciparum are artemisinin combination therapies, chloroquine in most non-falciparum and intravenous artesunate if any severity criteria. Human infections with intestinal protozoa are distributed worldwide with a high global morbid-mortality. They cause diarrhea and sometimes invasive disease, although most are asymptomatic. In our environment populations at higher risk are children, including adopted abroad, immune-suppressed, travelers, immigrants, people in contact with animals or who engage in oral-anal sex. Diagnostic microscopic examination has low sensitivity improving with antigen detection or molecular methods. Antiparasitic resistances are emerging lately.

  5. Photomovements in Ciliated Protozoa

    NASA Astrophysics Data System (ADS)

    Kuhlmann, Hans-Werner

    Ciliates are unicellular, nonphotosynthetic organisms which show a number of light-induced responses. Orientation with respect to the direction of light, phototaxis, has been demonstrated in some species of ciliates. Most of these species bear conspicuous cell organelles such as subpellicular pigment granules, a colored stigma, a watchglass organelle, or a compound crystalline organelle. Several lines of evidence suggest that these kinds of organelles are prerequisites for phototactic orientation of the cells. Photoreceptor molecules presumedly mediating the photobehavior of two species have been identified. The ecological advantage of light-induced responses in ciliated protozoa is still debated. In some cases the organisms may utilize this behavior either to approach their potential prey, to escape their predators, to escape damaging light, or to meet a mating partner. Several species of ciliates display inverse phototactic behavior at different stages of their life cycle.

  6. Immunity in urogenital protozoa.

    PubMed

    Malla, N; Goyal, K; Dhanda, R S; Yadav, M

    2014-09-01

    Innate and adaptive immunity play a significant role in urogenital infections. Innate immunity is provided by the epithelial cells and mucus lining along with acidic pH, which forms a strong physical barrier against the pathogens in female reproductive tract. Cells of innate immune system, antimicrobial peptides, cytokines, chemokines and adaptive immunity in the reproductive tract are evolved during infection, and a pro-inflammatory response is generated to fight against the invading pathogen Trichomonas vaginalis, a primary urogenital protozoa, the etiological agent of human trichomoniasis, a curable sexually transmitted infection. The involvement of the urogenital tract by other protozoal infections such as P. falciparum, Trypanosoma, Leishmania, Toxoplasma, Entamoeba histolytica and Acanthamoeba infection is rarely reported. Trichomonas induce pro-inflammatory and immunosuppressive responses in infected subjects. Multifactorial pathogenic mechanisms including parasite adherence, cysteine proteases, lipophosphoglycan, free radical, cytokine generation and Toll-like receptors appear to interplay with the induction of local and systemic immune responses that ultimately determine the outcome of the infection. However, the involvement of urogenital pathogen-specific immune mechanisms and effect of normal local resident flora on the outcome (symptomatic vs. asymptomatic) of infection are poorly understood. Moreover, immune interactions in trichomoniasis subjects co-infected with bacterial and viral pathogens need to be elucidated.

  7. Selective grazing of methanotrophs by protozoa in a rice field soil.

    PubMed

    Murase, Jun; Frenzel, Peter

    2008-09-01

    Biological methane oxidation is a key process in the methane cycle of wetland ecosystems. The methanotrophic biomass may be grazed by protozoa, thus linking the methane cycle to the soil microbial food web. In the present study, the edibility of different methanotrophs for soil protozoa was compared. The number of methanotroph-feeding protozoa in a rice field soil was estimated by determining the most-probable number (MPN) using methanotrophs as food bacteria; naked amoebae and flagellates were the dominant protozoa. Among ten methanotrophic strains examined as a food source, seven yielded a number of protozoa comparable with the yield with Escherichia coli [10(4) MPN (g soil dry weight)(-1)], and three out of four Methylocystis spp. yielded significantly fewer numbers [10(2)-10(3) MPN (g soil dry weight)(-1)]. The lower edibility of the Methylocystis spp. was not explained either by their growth phase or by harmful effects on protozoa. Incubation of the soil under methane resulted in a higher number of protozoa actively grazing on methanotrophs, especially on the less-edible group. Protozoa isolated from the soil demonstrated a grazing preference on the different methanotrophs consistent with the results of MPN counts. The results indicate that selective grazing by protozoa may be a biological factor affecting the methanotrophic community in a wetland soil.

  8. Effect of progressive inoculation of fauna-free sheep with holotrich protozoa and total-fauna on rumen fermentation, microbial diversity and methane emissions

    PubMed Central

    Belanche, Alejandro; de la Fuente, Gabriel; Newbold, Charles J.

    2014-01-01

    Rumen methanogenesis represents an energy waste for the ruminant and an important source of greenhouse gas; thus, integrated studies are needed to fully understand this process. Eight fauna-free sheep were used to investigate the effect of successive inoculation with holotrich protozoa then with total fauna on rumen methanogenesis. Holotrichs inoculation neither altered rumen fermentation rate nor diet digestibility, but increased concentrations of acetate (+15%), butyrate (+57%), anaerobic fungi (+0.82 log), methanogens (+0.41 log) and methanogenesis (+54%). Further inoculation with total fauna increased rumen concentrations of protozoa (+1.0 log), bacteria (+0.29 log), anaerobic fungi (+0.78 log), VFA (+8%), ammonia and fibre digestibility (+17%) without affecting levels of methanogens or methanogenesis. Rumen methanogens population was fairly stable in terms of structure and diversity, while the bacterial community was highly affected by the treatments. Inoculation with holotrich protozoa increased bacterial diversity. Further inoculation with total fauna lowered bacterial diversity but increased concentrations of certain propionate and lactate-producing bacteria, suggesting that alternative H2 sinks could be relevant. This experiment suggests that holotrich protozoa have a greater impact on rumen methanogenesis than entodiniomorphids. Thus, further research is warranted to understand the effect of holotrich protozoa on methane formation and evaluate their elimination from the rumen as a potential methane mitigation strategy. PMID:25764558

  9. Effect of progressive inoculation of fauna-free sheep with holotrich protozoa and total-fauna on rumen fermentation, microbial diversity and methane emissions.

    PubMed

    Belanche, Alejandro; de la Fuente, Gabriel; Newbold, Charles J

    2015-03-01

    Rumen methanogenesis represents an energy waste for the ruminant and an important source of greenhouse gas; thus, integrated studies are needed to fully understand this process. Eight fauna-free sheep were used to investigate the effect of successive inoculation with holotrich protozoa then with total fauna on rumen methanogenesis. Holotrichs inoculation neither altered rumen fermentation rate nor diet digestibility, but increased concentrations of acetate (+15%), butyrate (+57%), anaerobic fungi (+0.82 log), methanogens (+0.41 log) and methanogenesis (+54%). Further inoculation with total fauna increased rumen concentrations of protozoa (+1.0 log), bacteria (+0.29 log), anaerobic fungi (+0.78 log), VFA (+8%), ammonia and fibre digestibility (+17%) without affecting levels of methanogens or methanogenesis. Rumen methanogens population was fairly stable in terms of structure and diversity, while the bacterial community was highly affected by the treatments. Inoculation with holotrich protozoa increased bacterial diversity. Further inoculation with total fauna lowered bacterial diversity but increased concentrations of certain propionate and lactate-producing bacteria, suggesting that alternative H2 sinks could be relevant. This experiment suggests that holotrich protozoa have a greater impact on rumen methanogenesis than entodiniomorphids. Thus, further research is warranted to understand the effect of holotrich protozoa on methane formation and evaluate their elimination from the rumen as a potential methane mitigation strategy.

  10. Protein trafficking in kinetoplastid protozoa.

    PubMed Central

    Clayton, C; Häusler, T; Blattner, J

    1995-01-01

    The kinetoplastid protozoa infect hosts ranging from invertebrates to plants and mammals, causing diseases of medical and economic importance. They are the earliest-branching organisms in eucaryotic evolution to have either mitochondria or peroxisome-like microbodies. Investigation of their protein trafficking enables us to identify characteristics that have been conserved throughout eucaryotic evolution and also reveals how far variations, or alternative mechanisms, are possible. Protein trafficking in kinetoplastids is in many respects similar to that in higher eucaryotes, including mammals and yeasts. Differences in signal sequence specificities exist, however, for all subcellular locations so far examined in detail--microbodies, mitochondria, and endoplasmic reticulum--with signals being more degenerate, or shorter, than those of their higher eucaryotic counterparts. Some components of the normal array of trafficking mechanisms may be missing in most (if not all) kinetoplastids: examples are clathrin-coated vesicles, recycling receptors, and mannose 6-phosphate-mediated lysosomal targeting. Other aspects and structures are unique to the kinetoplastids or are as yet unexplained. Some of these peculiarities may eventually prove to be weak points that can be used as targets for chemotherapy; others may turn out to be much more widespread than currently suspected. PMID:7565409

  11. The Protozoa, A Kingdom By Default?

    ERIC Educational Resources Information Center

    Blackwell, Will H.; Powell, Martha J.

    2001-01-01

    Changes in the concepts of kingdoms of organisms are substantial and Protozoa is loosely characterized. Presents a case explaining how Protozoa interface with other kingdoms of organisms now recognized. (Contains 55 references.) (ASK)

  12. Leveraging disjoint communities for detecting overlapping community structure

    NASA Astrophysics Data System (ADS)

    Chakraborty, Tanmoy

    2015-05-01

    Network communities represent mesoscopic structure for understanding the organization of real-world networks, where nodes often belong to multiple communities and form overlapping community structure in the network. Due to non-triviality in finding the exact boundary of such overlapping communities, this problem has become challenging, and therefore huge effort has been devoted to detect overlapping communities from the network. In this paper, we present PVOC (Permanence based Vertex-replication algorithm for Overlapping Community detection), a two-stage framework to detect overlapping community structure. We build on a novel observation that non-overlapping community structure detected by a standard disjoint community detection algorithm from a network has high resemblance with its actual overlapping community structure, except the overlapping part. Based on this observation, we posit that there is perhaps no need of building yet another overlapping community finding algorithm; but one can efficiently manipulate the output of any existing disjoint community finding algorithm to obtain the required overlapping structure. We propose a new post-processing technique that by combining with any existing disjoint community detection algorithm, can suitably process each vertex using a new vertex-based metric, called permanence, and thereby finds out overlapping candidates with their community memberships. Experimental results on both synthetic and large real-world networks show that PVOC significantly outperforms six state-of-the-art overlapping community detection algorithms in terms of high similarity of the output with the ground-truth structure. Thus our framework not only finds meaningful overlapping communities from the network, but also allows us to put an end to the constant effort of building yet another overlapping community detection algorithm.

  13. Explore the World Using Protozoa.

    ERIC Educational Resources Information Center

    Anderson, O. Roger, Ed.; Druger, Marvin, Ed.

    This book is a joint publication of the National Science Teachers Association (NSTA) and the Society of Protozoologists and is the result of efforts to find a way in which protozoa research can be used to teach biology. This program puts cutting edge science into the hands of science teachers and enables students to experience a variety of…

  14. Protease activities of rumen protozoa.

    PubMed Central

    Forsberg, C W; Lovelock, L K; Krumholz, L; Buchanan-Smith, J G

    1984-01-01

    Intact, metabolically active rumen protozoa prepared by gravity sedimentation and washing in a mineral solution at 10 to 15 degrees C had comparatively low proteolytic activity on azocasein and low endogenous proteolytic activity. Protozoa washed in 0.1 M potassium phosphate buffer (pH 6.8) at 4 degrees C and stored on ice autolysed when they were warmed to 39 degrees C. They also exhibited low proteolytic activity on azocasein, but they had a high endogenous proteolytic activity with a pH optimum of 5.8. The endogenous proteolytic activity was inhibited by cysteine proteinase inhibitors, for example, iodoacetate (63.1%) and the aspartic proteinase inhibitor, pepstatin (43.9%). Inhibitors specific for serine proteinases and metalloproteinases were without effect. The serine and cysteine proteinase inhibitors of microbial origin, including antipain, chymostatin, and leupeptin, caused up to 67% inhibition of endogenous proteolysis. Hydrolysis of casein by protozoa autolysates was also inhibited by cysteine proteinase inhibitors. Some of the inhibitors decreased endogenous deamination, in particular, phosphoramidon, which had little inhibitory effect on proteolysis. Protozoal and bacterial preparations exhibited low hydrolytic activities on synthetic proteinase and carboxypeptidase substrates, although the protozoa had 10 to 78 times greater hydrolytic activity (per milligram of protein) than bacteria on the synthetic aminopeptidase substrates L-leucine-p-nitroanilide, L-leucine-beta-naphthylamide, and L-leucinamide. The aminopeptidase activity was partially inhibited by bestatin. It was concluded that cysteine proteinases and, to a lesser extent, aspartic proteinases are primarily responsible for proteolysis in autolysates of rumen protozoa. The protozoal autolysates had high aminopeptidase activity; low deaminase activity was observed on endogenous amino acids. PMID:6364968

  15. Discovering Network Structure Beyond Communities

    NASA Astrophysics Data System (ADS)

    Nishikawa, Takashi; Motter, Adilson E.

    2011-11-01

    To understand the formation, evolution, and function of complex systems, it is crucial to understand the internal organization of their interaction networks. Partly due to the impossibility of visualizing large complex networks, resolving network structure remains a challenging problem. Here we overcome this difficulty by combining the visual pattern recognition ability of humans with the high processing speed of computers to develop an exploratory method for discovering groups of nodes characterized by common network properties, including but not limited to communities of densely connected nodes. Without any prior information about the nature of the groups, the method simultaneously identifies the number of groups, the group assignment, and the properties that define these groups. The results of applying our method to real networks suggest the possibility that most group structures lurk undiscovered in the fast-growing inventory of social, biological, and technological networks of scientific interest.

  16. Niche metabolism in parasitic protozoa.

    PubMed

    Ginger, Michael L

    2006-01-29

    Complete or partial genome sequences have recently become available for several medically and evolutionarily important parasitic protozoa. Through the application of bioinformatics complete metabolic repertoires for these parasites can be predicted. For experimentally intractable parasites insight provided by metabolic maps generated in silico has been startling. At its more extreme end, such bioinformatics reckoning facilitated the discovery in some parasites of mitochondria remodelled beyond previous recognition, and the identification of a non-photosynthetic chloroplast relic in malarial parasites. However, for experimentally tractable parasites, mapping of the general metabolic terrain is only a first step in understanding how the parasite modulates its streamlined, yet still often puzzlingly complex, metabolism in order to complete life cycles within host, vector, or environment. This review provides a comparative overview and discussion of metabolic strategies used by several different parasitic protozoa in order to subvert and survive host defences, and illustrates how genomic data contribute to the elucidation of parasite metabolism.

  17. Significant Scales in Community Structure

    PubMed Central

    Traag, V. A.; Krings, G.; Van Dooren, P.

    2013-01-01

    Many complex networks show signs of modular structure, uncovered by community detection. Although many methods succeed in revealing various partitions, it remains difficult to detect at what scale some partition is significant. This problem shows foremost in multi-resolution methods. We here introduce an efficient method for scanning for resolutions in one such method. Additionally, we introduce the notion of “significance” of a partition, based on subgraph probabilities. Significance is independent of the exact method used, so could also be applied in other methods, and can be interpreted as the gain in encoding a graph by making use of a partition. Using significance, we can determine “good” resolution parameters, which we demonstrate on benchmark networks. Moreover, optimizing significance itself also shows excellent performance. We demonstrate our method on voting data from the European Parliament. Our analysis suggests the European Parliament has become increasingly ideologically divided and that nationality plays no role. PMID:24121597

  18. Community detection in networks: Structural communities versus ground truth

    NASA Astrophysics Data System (ADS)

    Hric, Darko; Darst, Richard K.; Fortunato, Santo

    2014-12-01

    Algorithms to find communities in networks rely just on structural information and search for cohesive subsets of nodes. On the other hand, most scholars implicitly or explicitly assume that structural communities represent groups of nodes with similar (nontopological) properties or functions. This hypothesis could not be verified, so far, because of the lack of network datasets with information on the classification of the nodes. We show that traditional community detection methods fail to find the metadata groups in many large networks. Our results show that there is a marked separation between structural communities and metadata groups, in line with recent findings. That means that either our current modeling of community structure has to be substantially modified, or that metadata groups may not be recoverable from topology alone.

  19. Sphingolipids in parasitic protozoa

    PubMed Central

    Zhang, Kai; Bangs, James D.; Beverley, Stephen M.

    2009-01-01

    The surface of most protozoan parasites relies heavily upon lipid-anchored molecules, to form protective barriers and play critical functions required for infectivity. Sphingolipids (SLs) play important roles through their abundance and involvement in membrane microdomain formation, as well as serving as the lipid anchor for many of these molecules, and in some but possibly not all species, as important signaling molecules. Interactions of parasite sphingolipid metabolism with that of the host may potentially contribute to parasite survival and/or host defense. In this chapter we summarize current knowledge of SL structure, synthesis and function in several of the major parasitic protozoan groups. PMID:20919659

  20. Characterizing the Community Structure of Complex Networks

    PubMed Central

    Lancichinetti, Andrea; Kivelä, Mikko; Saramäki, Jari; Fortunato, Santo

    2010-01-01

    Background Community structure is one of the key properties of complex networks and plays a crucial role in their topology and function. While an impressive amount of work has been done on the issue of community detection, very little attention has been so far devoted to the investigation of communities in real networks. Methodology/Principal Findings We present a systematic empirical analysis of the statistical properties of communities in large information, communication, technological, biological, and social networks. We find that the mesoscopic organization of networks of the same category is remarkably similar. This is reflected in several characteristics of community structure, which can be used as “fingerprints” of specific network categories. While community size distributions are always broad, certain categories of networks consist mainly of tree-like communities, while others have denser modules. Average path lengths within communities initially grow logarithmically with community size, but the growth saturates or slows down for communities larger than a characteristic size. This behaviour is related to the presence of hubs within communities, whose roles differ across categories. Also the community embeddedness of nodes, measured in terms of the fraction of links within their communities, has a characteristic distribution for each category. Conclusions/Significance Our findings, verified by the use of two fundamentally different community detection methods, allow for a classification of real networks and pave the way to a realistic modelling of networks' evolution. PMID:20711338

  1. Consensus of population systems with community structures.

    PubMed

    Wang, Jing; Wu, Bin; Wang, Long; Fu, Feng

    2008-11-01

    Multicommunity population systems may reach a consensus state where the fractions of each species in different communities agree on a common value. In this paper, by analyzing the evolutionary dynamics based on an extended replicator equation incorporating community effects, the consensus problem of population systems with n communities is studied. In particular, the simple case of two communities is investigated in detail. In general, for n communities, a sufficient and necessary condition for population systems to reach a consensus of coexistent state is provided. Regarding the population dynamics for the four different types of games, whether the population systems can achieve consensus is determined. The dynamics of community-structured populations shows richer features than nonstructured populations, and some nontrivial phenomena arising from different community-structured population systems are illustrated with concrete numerical examples.

  2. August Weismann embraces the protozoa.

    PubMed

    Churchill, Frederick B

    2010-01-01

    This paper examines the contents and institutional context of August Weismann's long essay on Amphimixis (1891). Therein he presented detailed discussions of his on-going studies of reduction division and parthenogenesis, but more to the point, he included an elaborate examination of Émile Maupas's two major publications in protozoology. To understand the relevance of this part to the other two, the author briefly reviews highpoints in earlier nineteenth century protozoology and concludes that only in the mid-1870s and 1880s did protozoa add an important dimension to heredity theory. Otto Bütschli and then Maupas provided Weismann with a deeper understanding of how conjugation and fertilization were related but not identical processes. This allowed him to integrate the two into a fuller understanding of evolution by natural selection.

  3. Social significance of community structure: Statistical view

    NASA Astrophysics Data System (ADS)

    Li, Hui-Jia; Daniels, Jasmine J.

    2015-01-01

    Community structure analysis is a powerful tool for social networks that can simplify their topological and functional analysis considerably. However, since community detection methods have random factors and real social networks obtained from complex systems always contain error edges, evaluating the significance of a partitioned community structure is an urgent and important question. In this paper, integrating the specific characteristics of real society, we present a framework to analyze the significance of a social community. The dynamics of social interactions are modeled by identifying social leaders and corresponding hierarchical structures. Instead of a direct comparison with the average outcome of a random model, we compute the similarity of a given node with the leader by the number of common neighbors. To determine the membership vector, an efficient community detection algorithm is proposed based on the position of the nodes and their corresponding leaders. Then, using a log-likelihood score, the tightness of the community can be derived. Based on the distribution of community tightness, we establish a connection between p -value theory and network analysis, and then we obtain a significance measure of statistical form . Finally, the framework is applied to both benchmark networks and real social networks. Experimental results show that our work can be used in many fields, such as determining the optimal number of communities, analyzing the social significance of a given community, comparing the performance among various algorithms, etc.

  4. Social significance of community structure: statistical view.

    PubMed

    Li, Hui-Jia; Daniels, Jasmine J

    2015-01-01

    Community structure analysis is a powerful tool for social networks that can simplify their topological and functional analysis considerably. However, since community detection methods have random factors and real social networks obtained from complex systems always contain error edges, evaluating the significance of a partitioned community structure is an urgent and important question. In this paper, integrating the specific characteristics of real society, we present a framework to analyze the significance of a social community. The dynamics of social interactions are modeled by identifying social leaders and corresponding hierarchical structures. Instead of a direct comparison with the average outcome of a random model, we compute the similarity of a given node with the leader by the number of common neighbors. To determine the membership vector, an efficient community detection algorithm is proposed based on the position of the nodes and their corresponding leaders. Then, using a log-likelihood score, the tightness of the community can be derived. Based on the distribution of community tightness, we establish a connection between p-value theory and network analysis, and then we obtain a significance measure of statistical form . Finally, the framework is applied to both benchmark networks and real social networks. Experimental results show that our work can be used in many fields, such as determining the optimal number of communities, analyzing the social significance of a given community, comparing the performance among various algorithms, etc.

  5. Potential role of bacteria packaging by protozoa in the persistence and transmission of pathogenic bacteria

    PubMed Central

    Denoncourt, Alix M.; Paquet, Valérie E.; Charette, Steve J.

    2014-01-01

    Many pathogenic bacteria live in close association with protozoa. These unicellular eukaryotic microorganisms are ubiquitous in various environments. A number of protozoa such as amoebae and ciliates ingest pathogenic bacteria, package them usually in membrane structures, and then release them into the environment. Packaged bacteria are more resistant to various stresses and are more apt to survive than free bacteria. New evidence indicates that protozoa and not bacteria control the packaging process. It is possible that packaging is more common than suspected and may play a major role in the persistence and transmission of pathogenic bacteria. To confirm the role of packaging in the propagation of infections, it is vital that the molecular mechanisms governing the packaging of bacteria by protozoa be identified as well as elements related to the ecology of this process in order to determine whether packaging acts as a Trojan Horse. PMID:24904553

  6. Potential role of bacteria packaging by protozoa in the persistence and transmission of pathogenic bacteria.

    PubMed

    Denoncourt, Alix M; Paquet, Valérie E; Charette, Steve J

    2014-01-01

    Many pathogenic bacteria live in close association with protozoa. These unicellular eukaryotic microorganisms are ubiquitous in various environments. A number of protozoa such as amoebae and ciliates ingest pathogenic bacteria, package them usually in membrane structures, and then release them into the environment. Packaged bacteria are more resistant to various stresses and are more apt to survive than free bacteria. New evidence indicates that protozoa and not bacteria control the packaging process. It is possible that packaging is more common than suspected and may play a major role in the persistence and transmission of pathogenic bacteria. To confirm the role of packaging in the propagation of infections, it is vital that the molecular mechanisms governing the packaging of bacteria by protozoa be identified as well as elements related to the ecology of this process in order to determine whether packaging acts as a Trojan Horse.

  7. Deciphering Network Community Structure by Surprise

    PubMed Central

    Aldecoa, Rodrigo; Marín, Ignacio

    2011-01-01

    The analysis of complex networks permeates all sciences, from biology to sociology. A fundamental, unsolved problem is how to characterize the community structure of a network. Here, using both standard and novel benchmarks, we show that maximization of a simple global parameter, which we call Surprise (S), leads to a very efficient characterization of the community structure of complex synthetic networks. Particularly, S qualitatively outperforms the most commonly used criterion to define communities, Newman and Girvan's modularity (Q). Applying S maximization to real networks often provides natural, well-supported partitions, but also sometimes counterintuitive solutions that expose the limitations of our previous knowledge. These results indicate that it is possible to define an effective global criterion for community structure and open new routes for the understanding of complex networks. PMID:21909420

  8. Community structure revealed by phase locking.

    PubMed

    Zhou, Ming-Yang; Zhuo, Zhao; Cai, Shi-min; Fu, Zhongqian

    2014-09-01

    Community structure can naturally emerge in paths to synchronization, and scratching it from the paths is a tough issue that accounts for the diverse dynamics of synchronization. In this paper, with assumption that the synchronization on complex networks is made up of local and collective processes, we proposed a scheme to lock the local synchronization (phase locking) at a stable state, meanwhile, suppress the collective synchronization based on Kuramoto model. Through this scheme, the network dynamics only contains the local synchronization, which suggests that the nodes in the same community synchronize together and these synchronization clusters well reveal the community structure of network. Furthermore, by analyzing the paths to synchronization, the relations or overlaps among different communities are also obtained. Thus, the community detection based on the scheme is performed on five real networks and the observed community structures are much more apparent than modularity-based fast algorithm. Our results not only provide a deep insight to understand the synchronization dynamics on complex network but also enlarge the research scope of community detection.

  9. Environmental Regulation of Microbial Community Structure

    NASA Technical Reports Server (NTRS)

    Bebout, Leslie; DesMarais, D.; Heyenga, G.; Nelson, F.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Most naturally occurring microbes live in complex microbial communities consisting of thousands of phylotypes of microorganisms living in close proximity. Each of these draws nutrients from the environment and releases metabolic waste products, which may in turn serve as substrates for other microbial groups. Gross environmental changes, such as irradiance level, hydrodynamic flow regime, temperature or water chemistry can directly affect the productivity of some community members, which in turn will affect other dependent microbial populations and rate processes. As a first step towards the development of "standard" natural communities of microorganisms for a variety of potential NASA applications, we are measuring biogeochemical cycling in artificially structured communities of microorganisms, created using natural microbial mat communities as inoculum. The responses of these artificially assembled communities of microorganisms to controlled shifts in ecosystem incubation conditions is being determined. This research requires close linking of environmental monitoring, with community composition in a closed and controlled incubation setting. We are developing new incubation chamber designs to allow for this integrated approach to examine the interplay between environmental conditions, microbial community composition and biogeochemical processes.

  10. Assessing mariculture water quality with the structural and functional characteristics of a ciliate community

    NASA Astrophysics Data System (ADS)

    Li, Jiqiu; Xu, Henglong; Lin, Xiaofeng; Al-Rasheid, Khaled A. S.

    2011-01-01

    Ciliated protozoa play important roles in micro-ecosystems, especially in marine biotopes. However, few studies have been carried out on the periphytic, or aufwuch, forms in mariculture waters so far. In this study, we sampled periphytic ciliate communities in two closed mariculture ponds (ponds CP1 and CP2) and a natural seawater reservoir (pond RP) using a glass slide method to evaluate their colonizing processes and general ecological features, as well as their application as water quality indicators. We analyzed species compositions, structural parameters (species number, richness, diversity, evenness, abundance and d BP) and functional parameters ( G, S eq and T 90%). Pond RP was characterized by higher levels of structural parameters (except for abundance and d BP) and more equal proportion of the major taxonomic groups. The values of S eq were significantly higher in pond RP and similar in both pond CP1 and CP2. It was also demonstrated that environmental factors, including NO2-H, NO3-H, NH3-H, soluble reactive phosphate, temperature and pH, were the first principal factors affecting the communities. Among them, temperature and chemical factors were all significantly and negatively correlated with species number ( P<0.01), richness ( P<0.01), diversity ( P<0.01), and positive correlated with abundance ( P<0.01). Opposite correlations between pH and structural parameters were observed. This study showed that there were significant differences in species composition, structural parameters and functional parameters of the periphytic ciliate communities among the ponds, which were in agreement with the water quality. Results of this study confirmed the periphytic ciliate communities to be useful bioindicators of water quality in intensive mariculture waters.

  11. Blood protozoa of imported birds.

    PubMed

    Manwell, R D; Rossi, G S

    1975-02-01

    Large numbers of birds, until recently, were brought into the United States each year. Countries of origin were varied, and included those of Australasia, Africa, South America, and the Caribbean islands, as well as other places. With them of course come their parasites, some of which may be potential pathogens to domestic avifauna. In part for this reason, a survey was undertaken of blood parasites of birds from pet shops and importers. So far a total of 1234 birds belonging to 186 species has been examined. Several new species and subspecies of avian Plasmodium have been found in the course of this study, including P. octamerium Manwell, 1968 in a Pintail Whydah, Vidua macoura, from Africa; P paranucleophilum Manwell & Sessler, 1971 in a South American tanager, Tachyphonus sp; and P. nucleophilum toucani Manwell & Sessler 1971 in a Swainson's Toucan, Ramphastos s. swainsonii. Plasmodium huffi Muniz, Soares & Battista is undoubtedly a synonym pro parte for the last. Plasmodium tenue Laveran & Maruliaz, long thought to be a synonym of Plasmodium vaughani Novy & MacNeal, was rediscovered and found to be a valid species. Plasmodium nucleophilum, infrequently seen in the New World, occurred in many Asian and African birds, and especially in starlings. Infections with other species of Plasmodium were common. Haemoproteus was the commonest blood parasite; Leucocytozoon was very rare as was Atoxoplasma (Lankesterella). The 2 families of birds best represented were the Fringillidae and the Psittacidae, but no blood parasites were seen in the latter. It is clear that imported birds are often infected with blood protozoa, some of which are unknown from native birds.

  12. Putative bronchopulmonary flagellated protozoa in immunosuppressed patients.

    PubMed

    Kilimcioglu, Ali Ahmet; Havlucu, Yavuz; Girginkardesler, Nogay; Celik, Pınar; Yereli, Kor; Özbilgin, Ahmet

    2014-01-01

    Flagellated protozoa that cause bronchopulmonary symptoms in humans are commonly neglected. These protozoal forms which were presumed to be "flagellated protozoa" have been previously identified in immunosuppressed patients in a number of studies, but have not been certainly classified so far. Since no human cases of bronchopulmonary flagellated protozoa were reported from Turkey, we aimed to investigate these putative protozoa in immunosuppressed patients who are particularly at risk of infectious diseases. Bronchoalveolar lavage fluid samples of 110 immunosuppressed adult patients who were admitted to the Department of Chest Diseases, Hafsa Sultan Hospital of Celal Bayar University, Manisa, Turkey, were examined in terms of parasites by light microscopy. Flagellated protozoal forms were detected in nine (8.2%) of 110 cases. Metronidazole (500 mg b.i.d. for 30 days) was given to all positive cases and a second bronchoscopy was performed at the end of the treatment, which revealed no parasites. In conclusion, immunosuppressed patients with bronchopulmonary symptoms should attentively be examined with regard to flagellated protozoa which can easily be misidentified as epithelial cells.

  13. Molecular Analysis of Microbial Community Structures in Pristine and Contaminated Aquifers: Field and Laboratory Microcosm Experiments

    PubMed Central

    Shi, Y.; Zwolinski, M. D.; Schreiber, M. E.; Bahr, J. M.; Sewell, G. W.; Hickey, W. J.

    1999-01-01

    This study used phylogenetic probes in hybridization analysis to (i) determine in situ microbial community structures in regions of a shallow sand aquifer that were oxygen depleted and fuel contaminated (FC) or aerobic and noncontaminated (NC) and (ii) examine alterations in microbial community structures resulting from exposure to toluene and/or electron acceptor supplementation (nitrate). The latter objective was addressed by using the NC and FC aquifer materials for anaerobic microcosm studies in which phylogenetic probe analysis was complemented by microbial activity assays. Domain probe analysis of the aquifer samples showed that the communities were predominantly Bacteria; Eucarya and Archaea were not detectable. At the phylum and subclass levels, the FC and NC aquifer material had similar relative abundance distributions of 43 to 65% β- and γ-Proteobacteria (B+G), 31 to 35% α-Proteobacteria (ALF), 15 to 18% sulfate-reducing bacteria, and 5 to 10% high G+C gram positive bacteria. Compared to that of the NC region, the community structure of the FC material differed mainly in an increased abundance of B+G relative to that of ALF. The microcosm communities were like those of the field samples in that they were predominantly Bacteria (83 to 101%) and lacked detectable Archaea but differed in that a small fraction (2 to 8%) of Eucarya was detected regardless of the treatment applied. The latter result was hypothesized to reflect enrichment of anaerobic protozoa. Addition of nitrate and/or toluene stimulated microbial activity in the microcosms, but only supplementation of toluene alone significantly altered community structures. For the NC material, the dominant subclass shifted from B+G to ALF, while in the FC microcosms 55 to 65% of the Bacteria community was no longer identifiable by the phylum or subclass probes used. The latter result suggested that toluene exposure fostered the proliferation of phylotype(s) that were otherwise minor constituents of the

  14. School, Community Leadership, and Election Structure

    ERIC Educational Resources Information Center

    Allen, Ann

    2008-01-01

    This article examines how the political structure of school elections contributes to leadership perspectives related to school-community engagement. Interview data from school superintendents, school board presidents, and city mayors across four cities and two election types were analyzed to determine if differences in school election structure…

  15. Diversity of bacteria, archaea and protozoa in a perchlorate treating bioreactor.

    PubMed

    Anupama, V N; Prajeesh, P V G; Anju, S; Priya, P; Krishnakumar, B

    2015-08-01

    A microbial consortium reducing high level of perchlorate was developed and in a fed batch bioreactor using acetate as substrate perchlorate was reduced at 0.25 g/g vss. day. Under stable performance, the microbial community structure of the reactor was analyzed through molecular and phenotypic methods. The diversity of bacteria and archaea were analyzed through whole cell Fluorescence In-Situ Hybridization (FISH) and PCR-Denaturing Gradient Gel Electrophoresis (DGGE), whereas higher trophic community was analyzed phenotypically. FISH analysis revealed the presence of alpha, beta, gamma and delta proteobacteria in the sludge, dominated by beta proteobacteria (68.7%). DGGE analysis of bacteria revealed the presence of a single known perchlorate reducing bacterium-Dechloromonas, nitrate reducers like Thaeura and Azoarcus and a number of other genera so far not reported as perchlorate or nitrate reducing. The archaea community was represented by an acetoclastic methanogen, Methanosaeta harundinacea. We have also observed the presence of an acetate consuming flagellate, Polytomella sp. in significant number in the reactor. Archaea and protozoa community in perchlorate treating bioreactor is reported first time in this study and point out further the significance of non perchlorate reducing but acetate scavenging microbial groups in acetate fed perchlorate treating reactors.

  16. Regulation of Gene Expression in Protozoa Parasites

    PubMed Central

    Gomez, Consuelo; Esther Ramirez, M.; Calixto-Galvez, Mercedes; Medel, Olivia; Rodríguez, Mario A.

    2010-01-01

    Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis. PMID:20204171

  17. Mobility of protozoa through narrow channels.

    PubMed

    Wang, Wei; Shor, Leslie M; LeBoeuf, Eugene J; Wikswo, John P; Kosson, David S

    2005-08-01

    Microbes in the environment are profoundly affected by chemical and physical heterogeneities occurring on a spatial scale of millimeters to micrometers. Physical refuges are critical for maintaining stable bacterial populations in the presence of high predation pressure by protozoa. The effects of microscale heterogeneity, however, are difficult to replicate and observe using conventional experimental techniques. The objective of this research was to investigate the effect of spatial constraints on the mobility of six species of marine protozoa. Microfluidic devices were created with small channels similar in size to pore spaces in soil or sediment systems. Individuals from each species of protozoa tested were able to rapidly discover and move within these channels. The time required for locating the channel entrance from the source well increased with protozoan size and decreased with channel height. Protozoa of every species were able to pass constrictions with dimensions equal to or smaller than the individual's unconstrained cross-sectional area. Channel geometry was also an important factor affecting protozoan mobility. Linear rates of motion for various species of protozoa varied by channel size. In relatively wide channels, typical rates of motion were 300 to 500 microm s(-1) (or about 1 m per hour). As the channel dimensions decreased, however, motilities slowed more than an order of magnitude to 20 microm s(-1). Protozoa were consistently observed to exhibit several strategies for successfully traversing channel reductions. The empirical results and qualitative observations resulting from this research help define the physical limitations on protozoan grazing, a critical process affecting microbes in the environment.

  18. Phylogenetic structure in tropical hummingbird communities.

    PubMed

    Graham, Catherine H; Parra, Juan L; Rahbek, Carsten; McGuire, Jimmy A

    2009-11-17

    How biotic interactions, current and historical environment, and biogeographic barriers determine community structure is a fundamental question in ecology and evolution, especially in diverse tropical regions. To evaluate patterns of local and regional diversity, we quantified the phylogenetic composition of 189 hummingbird communities in Ecuador. We assessed how species and phylogenetic composition changed along environmental gradients and across biogeographic barriers. We show that humid, low-elevation communities are phylogenetically overdispersed (coexistence of distant relatives), a pattern that is consistent with the idea that competition influences the local composition of hummingbirds. At higher elevations communities are phylogenetically clustered (coexistence of close relatives), consistent with the expectation of environmental filtering, which may result from the challenge of sustaining an expensive means of locomotion at high elevations. We found that communities in the lowlands on opposite sides of the Andes tend to be phylogenetically similar despite their large differences in species composition, a pattern implicating the Andes as an important dispersal barrier. In contrast, along the steep environmental gradient between the lowlands and the Andes we found evidence that species turnover is comprised of relatively distantly related species. The integration of local and regional patterns of diversity across environmental gradients and biogeographic barriers provides insight into the potential underlying mechanisms that have shaped community composition and phylogenetic diversity in one of the most species-rich, complex regions of the world.

  19. Phylogenetic structure in tropical hummingbird communities

    PubMed Central

    Graham, Catherine H.; Parra, Juan L.; Rahbek, Carsten; McGuire, Jimmy A.

    2009-01-01

    How biotic interactions, current and historical environment, and biogeographic barriers determine community structure is a fundamental question in ecology and evolution, especially in diverse tropical regions. To evaluate patterns of local and regional diversity, we quantified the phylogenetic composition of 189 hummingbird communities in Ecuador. We assessed how species and phylogenetic composition changed along environmental gradients and across biogeographic barriers. We show that humid, low-elevation communities are phylogenetically overdispersed (coexistence of distant relatives), a pattern that is consistent with the idea that competition influences the local composition of hummingbirds. At higher elevations communities are phylogenetically clustered (coexistence of close relatives), consistent with the expectation of environmental filtering, which may result from the challenge of sustaining an expensive means of locomotion at high elevations. We found that communities in the lowlands on opposite sides of the Andes tend to be phylogenetically similar despite their large differences in species composition, a pattern implicating the Andes as an important dispersal barrier. In contrast, along the steep environmental gradient between the lowlands and the Andes we found evidence that species turnover is comprised of relatively distantly related species. The integration of local and regional patterns of diversity across environmental gradients and biogeographic barriers provides insight into the potential underlying mechanisms that have shaped community composition and phylogenetic diversity in one of the most species-rich, complex regions of the world. PMID:19805042

  20. Information transfer in community structured multiplex networks

    NASA Astrophysics Data System (ADS)

    Solé Ribalta, Albert; Granell, Clara; Gómez, Sergio; Arenas, Alex

    2015-08-01

    The study of complex networks that account for different types of interactions has become a subject of interest in the last few years, specially because its representational power in the description of users interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.). The mathematical description of these interacting networks has been coined under the name of multilayer networks, where each layer accounts for a type of interaction. It has been shown that diffusive processes on top of these networks present a phenomenology that cannot be explained by the naive superposition of single layer diffusive phenomena but require the whole structure of interconnected layers. Nevertheless, the description of diffusive phenomena on multilayer networks has obviated the fact that social networks have strong mesoscopic structure represented by different communities of individuals driven by common interests, or any other social aspect. In this work, we study the transfer of information in multilayer networks with community structure. The final goal is to understand and quantify, if the existence of well-defined community structure at the level of individual layers, together with the multilayer structure of the whole network, enhances or deteriorates the diffusion of packets of information.

  1. Identifying community structure in complex networks

    NASA Astrophysics Data System (ADS)

    Shao, Chenxi; Duan, Yubing

    2015-07-01

    A wide variety of applications could be formulated to resolve the problem of finding all communities from a given network, ranging from social and biological network analysis to web mining and searching. In this study, we propose the concept of virtual attractive strength between each pair of node in networks, and then give the definition of community structure based on the proposed attractive strength. Furthermore, we present a community detection method by moving vertices to the clusters that produce the largest attractive strengths to them until the division of network reaches unchanged. Experimental results on synthetic and real networks indicate that the proposed approach has favorite effectiveness and fast convergence speed, which provides an efficient method for exploring and analyzing complex systems.

  2. Modularity and community structure in networks

    PubMed Central

    Newman, M. E. J.

    2006-01-01

    Many networks of interest in the sciences, including social networks, computer networks, and metabolic and regulatory networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure is one of the outstanding issues in the study of networked systems. One highly effective approach is the optimization of the quality function known as “modularity” over the possible divisions of a network. Here I show that the modularity can be expressed in terms of the eigenvectors of a characteristic matrix for the network, which I call the modularity matrix, and that this expression leads to a spectral algorithm for community detection that returns results of demonstrably higher quality than competing methods in shorter running times. I illustrate the method with applications to several published network data sets. PMID:16723398

  3. A cheating limit for structured communities

    SciTech Connect

    Perelson, Alan S; Gerrish, Philip J

    2008-01-01

    The constructive creativity of natural selection originates from its paradoxical ability to foster cooperation through competition. Cooperating communities ranging from complex societies to somatic tissue are constantly under attack, however, by non-cooperating mutants or transformants, called 'cheaters'. Structure in these communities promotes the formation of cooperating clusters whose competitive superiority can alone be sufficient to thwart outgrowths of cheaters and thereby maintain cooperation. But we find that when cheaters appear too frequently -- exceeding a threshold mutation or transformation rate -- their scattered outgrowths infiltrate and break up cooperating clusters, resulting in a cascading loss of community integrity, a switch to net positive selection for cheaters, and ultimately in the loss of cooperation. We find that this threshold mutation rate is directly proportional to the fitness support received from each cooperating neighbor minus the individual fitness benefit of cheating. When mutation rate also evolves, this threshold is crossed spontaneously after thousands of generations, at which point cheaters rapidly invade. In a structured community, cooperation can persist only if the mutation rate remains below a critical value.

  4. Putative Bronchopulmonary Flagellated Protozoa in Immunosuppressed Patients

    PubMed Central

    Kilimcioglu, Ali Ahmet; Havlucu, Yavuz; Çelik, Pınar; Özbilgin, Ahmet

    2014-01-01

    Flagellated protozoa that cause bronchopulmonary symptoms in humans are commonly neglected. These protozoal forms which were presumed to be “flagellated protozoa” have been previously identified in immunosuppressed patients in a number of studies, but have not been certainly classified so far. Since no human cases of bronchopulmonary flagellated protozoa were reported from Turkey, we aimed to investigate these putative protozoa in immunosuppressed patients who are particularly at risk of infectious diseases. Bronchoalveolar lavage fluid samples of 110 immunosuppressed adult patients who were admitted to the Department of Chest Diseases, Hafsa Sultan Hospital of Celal Bayar University, Manisa, Turkey, were examined in terms of parasites by light microscopy. Flagellated protozoal forms were detected in nine (8.2%) of 110 cases. Metronidazole (500 mg b.i.d. for 30 days) was given to all positive cases and a second bronchoscopy was performed at the end of the treatment, which revealed no parasites. In conclusion, immunosuppressed patients with bronchopulmonary symptoms should attentively be examined with regard to flagellated protozoa which can easily be misidentified as epithelial cells. PMID:24804259

  5. Collective prediction based on community structure

    NASA Astrophysics Data System (ADS)

    Jiang, Yasong; Li, Taisong; Zhang, Yan; Yan, Yonghong

    2017-01-01

    Collective prediction algorithms have been used to improve performances when network structures are involved in prediction tasks. The training dataset of such tasks often contain information of content, links and labels, while the testing dataset have only content and link information. Conventional collective prediction algorithms conduct predictions based on the content of a node and the information of its direct neighbors with a base classifier. However, the information of some direct neighbor nodes may be not consistent with the target one. In addition, the information of indirect neighbors can be helpful when that of direct neighbors is scant. In this paper, instead of using information of direct neighbors, we propose to apply community structures in networks to prediction tasks. A community detection method is aggregated into the collective prediction process to improve prediction performance. Experimental results show that the proposed algorithm outperforms a number of standard prediction algorithms specially under conditions that labeled training dataset are limited.

  6. Taxonomies of networks from community structure

    NASA Astrophysics Data System (ADS)

    Onnela, Jukka-Pekka; Fenn, Daniel J.; Reid, Stephen; Porter, Mason A.; Mucha, Peter J.; Fricker, Mark D.; Jones, Nick S.

    2012-09-01

    The study of networks has become a substantial interdisciplinary endeavor that encompasses myriad disciplines in the natural, social, and information sciences. Here we introduce a framework for constructing taxonomies of networks based on their structural similarities. These networks can arise from any of numerous sources: They can be empirical or synthetic, they can arise from multiple realizations of a single process (either empirical or synthetic), they can represent entirely different systems in different disciplines, etc. Because mesoscopic properties of networks are hypothesized to be important for network function, we base our comparisons on summaries of network community structures. Although we use a specific method for uncovering network communities, much of the introduced framework is independent of that choice. After introducing the framework, we apply it to construct a taxonomy for 746 networks and demonstrate that our approach usefully identifies similar networks. We also construct taxonomies within individual categories of networks, and we thereby expose nontrivial structure. For example, we create taxonomies for similarity networks constructed from both political voting data and financial data. We also construct network taxonomies to compare the social structures of 100 Facebook networks and the growth structures produced by different types of fungi.

  7. Evolutionary link community structure discovery in dynamic weighted networks

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Liu, Caihong; Wang, Jiajia; Wang, Xiang; Zhou, Bin; Zou, Peng

    2017-01-01

    Traditional community detection methods are often restricted in static network analysis. In fact, most of networks in real world obviously show dynamic characteristics with time passing. In this paper, we design a link community structure discovery algorithm in dynamic weighted networks, which can not only reveal the evolutionary link community structure, but also detect overlapping communities by mapping link communities to node communities. Meanwhile, our algorithm can also get the hierarchical structure of link communities by tuning a parameter. The proposed algorithm is based on weighted edge fitness and weighted partition density so as to determine whether to add a link to a community and whether to merge two communities to form a new link community. Experiments on both synthetic and real world networks demonstrate the proposed algorithm can detect evolutionary link community structure in dynamic weighted networks effectively.

  8. Protozoa interaction with aquatic invertebrate: interest for watercourses biomonitoring.

    PubMed

    Palos Ladeiro, M; Bigot, A; Aubert, D; Hohweyer, J; Favennec, L; Villena, I; Geffard, A

    2013-02-01

    Toxoplasma gondii, Cryptosporidium parvum, and Giardia duodenalis are human waterborne protozoa. These worldwide parasites had been detected in various watercourses as recreational, surface, drinking, river, and seawater. As of today, water protozoa detection was based on large water filtration and on sample concentration. Another tool like aquatic invertebrate parasitism could be used for sanitary and environmental biomonitoring. In fact, organisms like filter feeders could already filtrate and concentrate protozoa directly in their tissues in proportion to ambient concentration. So molluscan shellfish can be used as a bioindicator of protozoa contamination level in a site since they were sedentary. Nevertheless, only a few researches had focused on nonspecific parasitism like protozoa infection on aquatic invertebrates. Objectives of this review are twofold: Firstly, an overview of protozoa in worldwide water was presented. Secondly, current knowledge of protozoa parasitism on aquatic invertebrates was detailed and the lack of data of their biological impact was pointed out.

  9. Epidemic spreading on complex networks with community structures

    PubMed Central

    Stegehuis, Clara; van der Hofstad, Remco; van Leeuwaarden, Johan S. H.

    2016-01-01

    Many real-world networks display a community structure. We study two random graph models that create a network with similar community structure as a given network. One model preserves the exact community structure of the original network, while the other model only preserves the set of communities and the vertex degrees. These models show that community structure is an important determinant of the behavior of percolation processes on networks, such as information diffusion or virus spreading: the community structure can both enforce as well as inhibit diffusion processes. Our models further show that it is the mesoscopic set of communities that matters. The exact internal structures of communities barely influence the behavior of percolation processes across networks. This insensitivity is likely due to the relative denseness of the communities. PMID:27440176

  10. Persistence of free-living protozoan communities across rearing cycles in commercial poultry houses.

    PubMed

    Baré, Julie; Houf, Kurt; Verstraete, Tine; Vaerewijck, Mario; Sabbe, Koen

    2011-03-01

    The introduction and survival of zoonotic bacterial pathogens in poultry farming have been linked to bacterial association with free-living protozoa. To date, however, no information is available on the persistence of protozoan communities in these environments across consecutive rearing cycles and how it is affected by farm- and habitat-specific characteristics and management strategies. We therefore investigated the spatial and temporal dynamics of free-living protozoa in three habitats (pipeline, water, and miscellaneous samples) in three commercial poultry houses across three rearing cycles by using the molecular fingerprinting technique denaturing gradient gel electrophoresis (DGGE). Our study provides strong evidence for the long-term (ca. 6-month) persistence of protozoa in broiler houses across consecutive rearing cycles. Various free-living protozoa (flagellates, ciliates, and amoebae), including known vectors of bacterial pathogens, were observed during the down periods in between rearing cycles. In addition, multivariate analysis and variation partitioning showed that the protozoan community structure in the broiler houses showed almost no change across rearing cycles and remained highly habitat and farm specific. Unlike in natural environments, protozoan communities inside broiler houses are therefore not seasonal. Our results imply that currently used biosecurity measures (cleaning and disinfection) applied during the down periods are not effective against many protozoans and therefore cannot prevent potential cross-contamination of bacterial pathogens via free-living protozoa between rearing cycles.

  11. Persistence of Free-Living Protozoan Communities across Rearing Cycles in Commercial Poultry Houses ▿

    PubMed Central

    Baré, Julie; Houf, Kurt; Verstraete, Tine; Vaerewijck, Mario; Sabbe, Koen

    2011-01-01

    The introduction and survival of zoonotic bacterial pathogens in poultry farming have been linked to bacterial association with free-living protozoa. To date, however, no information is available on the persistence of protozoan communities in these environments across consecutive rearing cycles and how it is affected by farm- and habitat-specific characteristics and management strategies. We therefore investigated the spatial and temporal dynamics of free-living protozoa in three habitats (pipeline, water, and miscellaneous samples) in three commercial poultry houses across three rearing cycles by using the molecular fingerprinting technique denaturing gradient gel electrophoresis (DGGE). Our study provides strong evidence for the long-term (ca. 6-month) persistence of protozoa in broiler houses across consecutive rearing cycles. Various free-living protozoa (flagellates, ciliates, and amoebae), including known vectors of bacterial pathogens, were observed during the down periods in between rearing cycles. In addition, multivariate analysis and variation partitioning showed that the protozoan community structure in the broiler houses showed almost no change across rearing cycles and remained highly habitat and farm specific. Unlike in natural environments, protozoan communities inside broiler houses are therefore not seasonal. Our results imply that currently used biosecurity measures (cleaning and disinfection) applied during the down periods are not effective against many protozoans and therefore cannot prevent potential cross-contamination of bacterial pathogens via free-living protozoa between rearing cycles. PMID:21239551

  12. Kingdom protozoa and its 18 phyla.

    PubMed Central

    Cavalier-Smith, T

    1993-01-01

    The demarcation of protist kingdoms is reviewed, a complete revised classification down to the level of subclass is provided for the kingdoms Protozoa, Archezoa, and Chromista, and the phylogenetic basis of the revised classification is outlined. Removal of Archezoa because of their ancestral absence of mitochondria, peroxisomes, and Golgi dictyosomes makes the kingdom Protozoa much more homogeneous: they all either have mitochondria and peroxisomes or have secondarily lost them. Predominantly phagotrophic, Protozoa are distinguished from the mainly photosynthetic kingdom Chromista (Chlorarachniophyta, Cryptista, Heterokonta, and Haptophyta) by the absence of epiciliary retronemes (rigid thrust-reversing tubular ciliary hairs) and by the lack of two additional membranes outside their chloroplast envelopes. The kingdom Protozoa has two subkingdoms: Adictyozoa, without Golgi dictyosomes, containing only the phylum Percolozoa (flagellates and amoeboflagellates); and Dictyozoa, made up of 17 phyla with Golgi dictyosomes. Dictyozoa are divided into two branches: (i) Parabasalia, a single phylum with hydrogenosomes and 70S ribosomes but no mitochondria, Golgi dictyosomes associated with striated roots, and a kinetid of four or five cilia; and (ii) Bikonta (16 unicellular or plasmodial phyla with mitochondria and bikinetids and in which Golgi dictyosomes are not associated with striated ciliary roots), which are divided into two infrakingdoms: Euglenozoa (flagellates with discoid mitochondrial cristae and trans-splicing of miniexons for all nuclear genes) and Neozoa (15 phyla of more advanced protozoa with tubular or flat [usually nondiscoid] mitochondrial cristae and cis-spliced spliceosomal introns). Neozoa are divided into seven parvkingdoms: (i) Ciliomyxa (three predominantly ciliated phyla with tubular mitochondrial cristae but no cortical alveoli, i.e., Opalozoa [flagellates with tubular cristae], Mycetozoa [slime molds], and Choanozoa [choanoflagellates, with

  13. Community-oriented support and research structures

    NASA Astrophysics Data System (ADS)

    Attig, Norbert; Eickermann, Thomas; Gibbon, Paul; Lippert, Thomas

    2009-07-01

    Coordinated by the Partnership for Advanced Computing in Europe (PRACE) Europe is restructuring and strengthening its high-performance computing infrastructure with the aim to create a model HPC ecosystem. At the tip of the pyramid, up to six centres are envisaged that will operate systems of the highest performance class. The HPC Research Infrastructure (HPC-RI) will comprise European, national and regional centres. Science communities are integral partners, strong links will include Grid and Cloud users. The HPC-RI strives at providing scientists all over Europe, on the one hand, with unlimited and independent access to state-of-the-art computer resources in all performance classes and, on the other hand, with a world-class pan-European competence and support network. While the hardware-oriented buildup of the infrastructure is making progress, high-quality user support and software development in the upcoming era of unprecedented parallelism and exascale on the horizon have become the imminent challenges. This has been clearly recognized by the European Commission, who will issue calls for proposals to fund petascale software development in summer 2009. Although traditional support structures are well established in Europe's major supercomputing centres, it is questionable if these structures are able to meet the challenges of the future: in general, support structures are based on cross-disciplinary computer science and mathematics teams; disciplinary computational science support usually is given in an ad-hoc, project-oriented manner. In this paper, we describe our approach to establish a suitable support structure-Simulation Laboratories (SL). SLs are currently being established at the Jülich Supercomputing Centre of the Forschungszentrum Jülich (FZJ) and at the Steinbuch Centre for Computing (SCC) of the Karlsruhe Institute for Technology (KIT) in Germany. While SLs are community-oriented, i.e. each SL focusses on a specific community, they are structured

  14. Understanding drug resistance in human intestinal protozoa.

    PubMed

    El-Taweel, Hend Aly

    2015-05-01

    Infections with intestinal protozoa continue to be a major health problem in many areas of the world. The widespread use of a limited number of therapeutic agents for their management and control raises concerns about development of drug resistance. Generally, the use of any antimicrobial agent should be accompanied by meticulous monitoring of its efficacy and measures to minimize resistance formation. Evidence for the occurrence of drug resistance in different intestinal protozoa comes from case studies and clinical trials, sometimes with a limited number of patients. Large-scale field-based assessment of drug resistance and drug sensitivity testing of clinical isolates are needed. Furthermore, the association of drug resistance with certain geographic isolates or genotypes deserves consideration. Drug resistance has been triggered in vitro and has been linked to modification of pyruvate:ferredoxin oxidoreductase, nitroreductases, antioxidant defense, or cytoskeletal system. Further mechanistic studies will have important implications in the development of second generation therapeutic agents.

  15. Evidence of a dynamic microbial community structure and predation through combined microbiological and stable isotope characterization

    NASA Astrophysics Data System (ADS)

    Druhan, J. L.; Bill, M.; Lim, H. C.; Wu, C.; Conrad, M. E.; Williams, K. H.; DePaolo, D. J.; Brodie, E.

    2014-12-01

    The speciation, reactivity and mobility of carbon in the near surface environment is intimately linked to the prevalence, diversity and dynamics of native microbial populations. We utilize this relationship by introducing 13C-labeled acetate to sediments recovered from a shallow aquifer system to track both the cycling of carbon through multiple redox pathways and the associated spatial and temporal evolution of bacterial communities in response to this nutrient source. Results demonstrate a net loss of sediment organic carbon over the course of the amendment experiment. Furthermore, these data demonstrated a source of isotopically labeled inorganic carbon that was not attributable to primary metabolism by acetate-oxidizing microorganisms. Fluid samples analyzed weekly for microbial composition by pyrosequencing of ribosomal RNA genes showed a transient microbial community structure, with distinct occurrences of Azoarcus, Geobacter and multiple sulfate reducing species over the course of the experiment. In combination with DNA sequencing data, the anomalous carbon cycling process is shown to occur exclusively during the period of predominant Geobacter species growth. Pyrosequencing indicated, and targeted cloning and sequencing confirmed the presence of several bacteriovorous protozoa, including species of the Breviata, Planococcus and Euplotes genera. Cloning and qPCR analysis demonstrated that Euplotes species were most abundant and displayed a growth trajectory that closely followed that of the Geobacter population. These results suggest a previously undocumented secondary turnover of biomass carbon related to protozoan grazing that was not sufficiently prevalent to be observed in bulk concentrations of carbon species in the system, but was clearly identifiable in the partitioning of carbon isotopes. The impact of predator-prey relationships on subsurface microbial community dynamics and therefore the flux of carbon through a system via the microbial biomass

  16. The Role of Ciliate Protozoa in the Rumen.

    PubMed

    Newbold, Charles J; de la Fuente, Gabriel; Belanche, Alejandro; Ramos-Morales, Eva; McEwan, Neil R

    2015-01-01

    First described in 1843, Rumen protozoa with their striking appearance were assumed to be important for the welfare of their host. However, despite contributing up to 50% of the bio-mass in the rumen, the role of protozoa in rumen microbial ecosystem remains unclear. Phylogenetic analysis of 18S rDNA libraries generated from the rumen of cattle, sheep, and goats has revealed an unexpected diversity of ciliated protozoa although variation in gene copy number between species makes it difficult to obtain absolute quantification. Despite repeated attempts it has proven impossible to maintain rumen protozoa in axenic culture. Thus it has been difficult to establish conclusively a role of ciliate protozoa in rumen fiber degradation. The development of techniques to clone and express ciliate genes in λ phage, together with bioinformatic indices to confirm the ciliate origin of the genes has allowed the isolation and characterization of fibrolytic genes from rumen protozoa. Elimination of the ciliate protozoa increases microbial protein supply by up to 30% and reduces methane production by up to 11%. Our recent findings suggest that holotrich protozoa play a disproportionate role in supporting methanogenesis whilst the small Entodinium are responsible for much of the bacterial protein turnover. As yet no method to control protozoa in the rumen that is safe and practically applicable has been developed, however a range of plant extract capable of controlling if not completely eliminating rumen protozoa have been described.

  17. The Role of Ciliate Protozoa in the Rumen

    PubMed Central

    Newbold, Charles J.; de la Fuente, Gabriel; Belanche, Alejandro; Ramos-Morales, Eva; McEwan, Neil R.

    2015-01-01

    First described in 1843, Rumen protozoa with their striking appearance were assumed to be important for the welfare of their host. However, despite contributing up to 50% of the bio-mass in the rumen, the role of protozoa in rumen microbial ecosystem remains unclear. Phylogenetic analysis of 18S rDNA libraries generated from the rumen of cattle, sheep, and goats has revealed an unexpected diversity of ciliated protozoa although variation in gene copy number between species makes it difficult to obtain absolute quantification. Despite repeated attempts it has proven impossible to maintain rumen protozoa in axenic culture. Thus it has been difficult to establish conclusively a role of ciliate protozoa in rumen fiber degradation. The development of techniques to clone and express ciliate genes in λ phage, together with bioinformatic indices to confirm the ciliate origin of the genes has allowed the isolation and characterization of fibrolytic genes from rumen protozoa. Elimination of the ciliate protozoa increases microbial protein supply by up to 30% and reduces methane production by up to 11%. Our recent findings suggest that holotrich protozoa play a disproportionate role in supporting methanogenesis whilst the small Entodinium are responsible for much of the bacterial protein turnover. As yet no method to control protozoa in the rumen that is safe and practically applicable has been developed, however a range of plant extract capable of controlling if not completely eliminating rumen protozoa have been described. PMID:26635774

  18. Pollution tolerant protozoa in polluted wetland.

    PubMed

    Li, Yi-Di; Chen, Ying; Wang, Li; Yao, Lin; Pan, Xu-Ming; Lee, Duu-Jong

    2017-02-16

    This study for the first time confirmed that eight dominating protozoan species, Cryptomonas erosa, Euglena axyuris, Euglena caudate, Euglena gasterosteus, Euglena acus, Vorticella campanula, Vorticella convallaria and Epistylis lacustris, were the pollution tolerant species at chemical oxygen demand 54-104mg/L. These species cannot be used as indicator for clean water quality as commonly believed. The protozoa can be actively participating in the energy transfer chain between nano-planktonic and higher plants in polluted wetlands.

  19. Community Attachment and Satisfaction: The Role of a Community's Social Network Structure

    ERIC Educational Resources Information Center

    Crowe, Jessica

    2010-01-01

    This paper links the micro and macro levels of analysis by examining how different aspects of community sentiment are affected by one's personal ties to the community compared with the organizational network structure of the community. Using data collected from residents of six communities in Washington State, network analysis combined with…

  20. Typology of State-Level Community College Governance Structures

    ERIC Educational Resources Information Center

    Fletcher, Jeffrey A.; Friedel, Janice Nahra

    2017-01-01

    Despite having a well-documented history about community colleges across the United States, relatively few discussions have covered state-level governance structures. To understand the typology of state community college governance structures, it must first be recognized that community college governance is characterized as a complex web of…

  1. Virioplankton community structure in Tunisian solar salterns.

    PubMed

    Boujelben, Ines; Yarza, Pablo; Almansa, Cristina; Villamor, Judith; Maalej, Sami; Antón, Josefa; Santos, Fernando

    2012-10-01

    The microbial community inhabiting Sfax solar salterns on the east coast of Tunisia has been studied by means of different molecular and culture-dependent tools that have unveiled the presence of novel microbial groups as well as a community structure different from that of other coastal hypersaline environments. We have focused on the study of the viral assemblages of these salterns and their changes along the salinity gradient and over time. Viruses from three ponds (C4, M1, and TS) encompassing salinities from moderately hypersaline to saturated (around 14, 19, and 35%, respectively) were sampled in May and October 2009 and analyzed by transmission electron microscopy (TEM) and pulsed-field gel electrophoresis (PFGE). Additionally, for all three October samples and the May TS sample, viral metagenomic DNA was cloned in fosmids, end sequenced, and analyzed. Viral concentration, as well as virus-to-cell ratios, increased along the salinity gradient, with around 10(10) virus-like particles (VLPs)/ml in close-to-saturation ponds, which represents the highest viral concentration reported so far for aquatic systems. Four distinct morphologies could be observed with TEM (spherical, tailed, spindled, and filamentous) but with various proportions in the different samples. Metagenomic analyses indicated that every pond harbored a distinct viral assemblage whose G+C content could be roughly correlated with that of the active part of the microbial community that may have constituted the putative hosts. As previously reported for hypersaline metaviromes, most sequences did not have matches in the databases, although some were conserved among the Sfax metaviromes. BLASTx, BLASTp, and dinucleotide frequency analyses indicated that (i) factors additional to salinity could be structuring viral communities and (ii) every metavirome had unique gene contents and dinucleotide frequencies. Comparison with hypersaline metaviromes available in the databases indicated that the viral

  2. Rumen protozoa in South African sheep with a summary of the worldwide distribution of sheep protozoa.

    PubMed

    Booyse, Dirk; Dehority, Burk A

    2011-07-15

    Protozoa species were identified in rumen contents of four domestic sheep (Ovis aries) from South Africa. All animals were fed a forage diet which consisted of 50% lucerne and 50% teff hay. Ten new host records were identified, bringing the total number of species and forms observed in sheep in South Africa to 30. The occurrence and geographic distribution of ciliate protozoa in both domestic and wild sheep from around the world are summarised. It was found that 15 genera and 131 species occur in domestic sheep globally.

  3. Molecular analysis of microbial community structures in pristine and contaminated aquifers--Field and laboratory microcosm experiments

    USGS Publications Warehouse

    Shi, Y.; Zwolinski, M.D.; Schreiber, M.E.; Bahr, J.M.; Sewell, G.W.; Hickey, W.J.

    1999-01-01

    Molecular Analysis of Microbial Community Structures in Pristine and Contaminated Aquifers: Field and Laboratory Microcosm Experimentsvar callbackToken='531E8ACDB6C8511'; var subCode='asmjournal_sub'; var OAS_sitepage = 'aem.asm.org'; This study used phylogenetic probes in hybridization analysis to (i) determine in situ microbial community structures in regions of a shallow sand aquifer that were oxygen depleted and fuel contaminated (FC) or aerobic and noncontaminated (NC) and (ii) examine alterations in microbial community structures resulting from exposure to toluene and/or electron acceptor supplementation (nitrate). The latter objective was addressed by using the NC and FC aquifer materials for anaerobic microcosm studies in which phylogenetic probe analysis was complemented by microbial activity assays. Domain probe analysis of the aquifer samples showed that the communities were predominantlyBacteria; Eucarya and Archaea were not detectable. At the phylum and subclass levels, the FC and NC aquifer material had similar relative abundance distributions of 43 to 65% β- and γ-Proteobacteria (B+G), 31 to 35% α-Proteobacteria (ALF), 15 to 18% sulfate-reducing bacteria, and 5 to 10% high G+C gram positive bacteria. Compared to that of the NC region, the community structure of the FC material differed mainly in an increased abundance of B+G relative to that of ALF. The microcosm communities were like those of the field samples in that they were predominantly Bacteria (83 to 101%) and lacked detectable Archaea but differed in that a small fraction (2 to 8%) of Eucarya was detected regardless of the treatment applied. The latter result was hypothesized to reflect enrichment of anaerobic protozoa. Addition of nitrate and/or toluene stimulated microbial activity in the microcosms, but only supplementation of toluene alone significantly altered community structures. For the NC material, the dominant subclass shifted from B+G to ALF, while in the FC microcosms 55 to 65

  4. Bipartite Community Structure of eQTLs.

    PubMed

    Platig, John; Castaldi, Peter J; DeMeo, Dawn; Quackenbush, John

    2016-09-01

    Genome Wide Association Studies (GWAS) and expression quantitative trait locus (eQTL) analyses have identified genetic associations with a wide range of human phenotypes. However, many of these variants have weak effects and understanding their combined effect remains a challenge. One hypothesis is that multiple SNPs interact in complex networks to influence functional processes that ultimately lead to complex phenotypes, including disease states. Here we present CONDOR, a method that represents both cis- and trans-acting SNPs and the genes with which they are associated as a bipartite graph and then uses the modular structure of that graph to place SNPs into a functional context. In applying CONDOR to eQTLs in chronic obstructive pulmonary disease (COPD), we found the global network "hub" SNPs were devoid of disease associations through GWAS. However, the network was organized into 52 communities of SNPs and genes, many of which were enriched for genes in specific functional classes. We identified local hubs within each community ("core SNPs") and these were enriched for GWAS SNPs for COPD and many other diseases. These results speak to our intuition: rather than single SNPs influencing single genes, we see groups of SNPs associated with the expression of families of functionally related genes and that disease SNPs are associated with the perturbation of those functions. These methods are not limited in their application to COPD and can be used in the analysis of a wide variety of disease processes and other phenotypic traits.

  5. Bipartite Community Structure of eQTLs

    PubMed Central

    Platig, John; DeMeo, Dawn; Quackenbush, John

    2016-01-01

    Genome Wide Association Studies (GWAS) and expression quantitative trait locus (eQTL) analyses have identified genetic associations with a wide range of human phenotypes. However, many of these variants have weak effects and understanding their combined effect remains a challenge. One hypothesis is that multiple SNPs interact in complex networks to influence functional processes that ultimately lead to complex phenotypes, including disease states. Here we present CONDOR, a method that represents both cis- and trans-acting SNPs and the genes with which they are associated as a bipartite graph and then uses the modular structure of that graph to place SNPs into a functional context. In applying CONDOR to eQTLs in chronic obstructive pulmonary disease (COPD), we found the global network “hub” SNPs were devoid of disease associations through GWAS. However, the network was organized into 52 communities of SNPs and genes, many of which were enriched for genes in specific functional classes. We identified local hubs within each community (“core SNPs”) and these were enriched for GWAS SNPs for COPD and many other diseases. These results speak to our intuition: rather than single SNPs influencing single genes, we see groups of SNPs associated with the expression of families of functionally related genes and that disease SNPs are associated with the perturbation of those functions. These methods are not limited in their application to COPD and can be used in the analysis of a wide variety of disease processes and other phenotypic traits. PMID:27618581

  6. Community Structure in Online Collegiate Social Networks

    NASA Astrophysics Data System (ADS)

    Traud, Amanda; Kelsic, Eric; Mucha, Peter; Porter, Mason

    2009-03-01

    Online social networking sites have become increasingly popular with college students. The networks we studied are defined through ``friendships'' indicated by Facebook users from UNC, Oklahoma, Caltech, Georgetown, and Princeton. We apply the tools of network science to study the Facebook networks from these five different universities at a single point in time. We investigate each single-institution network's community structure, which we obtain through partitioning the graph using an eigenvector method. We use both graphical and quantitative tools, including pair-counting methods, which we interpret through statistical analysis and permutation tests to measure the correlations between the network communities and a set of characteristics given by each user (residence, class year, major, and high school). We also analyze the single gender subsets of these networks, and the impact of missing demographical data. Our study allows us to compare the online social networks for the five schools as well as infer differences in offline social interactions. At the schools studied, we were able to define which characteristics of the Facebook users correlate best with friendships.

  7. The network of collaboration among rappers and its community structure

    NASA Astrophysics Data System (ADS)

    Smith, Reginald D.

    2006-02-01

    The social network formed by the collaboration between rappers is studied using standard statistical techniques for analysing complex networks. In addition, the community structure of the rap music community is analysed using a new method that uses weighted edges to determine which connections are most important and revealing among all the communities. The results of this method as well as possible reasons for the structure of the rap music community are discussed.

  8. Stochastic graph Voronoi tessellation reveals community structure

    NASA Astrophysics Data System (ADS)

    Lázár, Zsolt I.; Papp, István; Varga, Levente; Járai-Szabó, Ferenc; Deritei, Dávid; Ercsey-Ravasz, Mária

    2017-02-01

    Given a network, the statistical ensemble of its graph-Voronoi diagrams with randomly chosen cell centers exhibits properties convertible into information on the network's large scale structures. We define a node-pair level measure called Voronoi cohesion which describes the probability for sharing the same Voronoi cell, when randomly choosing g centers in the network. This measure provides information based on the global context (the network in its entirety), a type of information that is not carried by other similarity measures. We explore the mathematical background of this phenomenon and several of its potential applications. A special focus is laid on the possibilities and limitations pertaining to the exploitation of the phenomenon for community detection purposes.

  9. Rumen protozoa and methanogenesis: not a simple cause-effect relationship.

    PubMed

    Morgavi, Diego P; Martin, Cécile; Jouany, Jean-Pierre; Ranilla, Maria José

    2012-02-01

    Understanding the interactions between hydrogen producers and consumers in the rumen ecosystem is important for ruminant production and methane mitigation. The present study explored the relationships between rumen protozoa, methanogens and fermentation characteristics. A total of six donor sheep harbouring (F, faunated) or not (D, defaunated) protozoa in their rumens (D animals were kept without protozoa for a period of a few months (D - ) or for more than 2 years (D+)) were used in in vitro and in vivo experiments. In vitro the absence of protozoa decreased NH3 and butyrate production and had no effect on methane. In contrast, the liquid-associated bacterial and methanogens fraction of D+ inocula produced more methane than D -  and F inoculum (P < 0·05). In vivo fermentation parameters of donor animals showed the same trend on NH3 and butyrate and showed that D+ animals were high methane emitters, while D -  were the lowest ( - 35 %). The concentration of dissolved dihydrogen measured after feeding followed the opposite trend. Methane emissions did not correlate with the relative abundance of methanogens in the rumen measured by quantitative PCR, but there was a trend for higher methanogens concentration in the solid-associated population of D+ animals compared with D -  animals. In contrast, PCR-denaturing gradient gel electrophoresis profiles of methanogens' methyl coenzyme-M reductase A gene showed a clear clustering in liquid-associated fractions for all three groups of donors but fewer differences in solid-associated fractions. These results show that the absence of protozoa may affect differently the methanogen community and methane emissions in wethers.

  10. A shift from exploitation to interference competition with increasing density affects population and community dynamics.

    PubMed

    Holdridge, Erica M; Cuellar-Gempeler, Catalina; terHorst, Casey P

    2016-08-01

    Intraspecific competition influences population and community dynamics and occurs via two mechanisms. Exploitative competition is an indirect effect that occurs through use of a shared resource and depends on resource availability. Interference competition occurs by obstructing access to a resource and may not depend on resource availability. Our study tested whether the strength of interference competition changes with protozoa population density. We grew experimental microcosms of protozoa and bacteria under different combinations of protozoan density and basal resource availability. We then solved a dynamic predator-prey model for parameters of the functional response using population growth rates measured in our experiment. As population density increased, competition shifted from exploitation to interference, and competition was less dependent on resource levels. Surprisingly, the effect of resources was weakest when competition was the most intense. We found that at low population densities, competition was largely exploitative and resource availability had a large effect on population growth rates, but the effect of resources was much weaker at high densities. This shift in competitive mechanism could have implications for interspecific competition, trophic interactions, community diversity, and natural selection. We also tested whether this shift in the mechanism of competition with protozoa density affected the structure of the bacterial prey community. We found that both resources and protozoa density affected the structure of the bacterial prey community, suggesting that competitive mechanism may also affect trophic interactions.

  11. Ultrastructure of cyst differentiation in parasitic protozoa.

    PubMed

    Chávez-Munguía, Bibiana; Omaña-Molina, Maritza; González-Lázaro, Mónica; González-Robles, Arturo; Cedillo-Rivera, Roberto; Bonilla, Patricia; Martínez-Palomo, Adolfo

    2007-05-01

    Cysts represent a phase in the life cycle of biphasic parasitic protozoa that allow them to survive under adverse environmental conditions. Two events are required for the morphological differentiation from trophozoite to cyst and from cyst to trophozoite: the encystation and excystation processes. In this paper, we present a review of the ultrastructure of the encystation and excystation processes in Entamoeba invadens, Acanthamoeba castellanii, and Giardia lamblia. The comparative electron microscopical observations of these events here reported provide a morphological background to better understand recent advances in the biochemistry and molecular biology of the differentiation phenomena in these microorganisms.

  12. Sheep-urine-induced changes in soil microbial community structure.

    PubMed

    Nunan, Naoise; Singh, Brajesh; Reid, Eileen; Ord, Brian; Papert, Artemis; Squires, Julie; Prosser, Jim I; Wheatley, Ron E; McNicol, Jim; Millard, Peter

    2006-05-01

    Soil microbial communities play an important role in nutrient cycling and nutrient availability, especially in unimproved soils. In grazed pastures, sheep urine causes local changes in nutrient concentration which may be a source of heterogeneity in microbial community structure. In the present study, we investigated the effects of synthetic urine on soil microbial community structure, using physiological (community level physiological profiling, CLPP), biochemical (phospholipid fatty acid analysis, PLFA) and molecular (denaturing gradient gel electrophoresis, DGGE) fingerprinting methods. PLFA data suggested that synthetic urine treatment had no significant effect on total microbial (total PLFA), total bacterial or fungal biomass; however, significant changes in microbial community structure were observed with both PLFA and DGGE data. PLFA data suggested that synthetic urine induced a shift towards communities with higher concentrations of branched fatty acids. DGGE banding patterns derived from control and treated soils differed, due to a higher proportion of DNA sequences migrating only to the upper regions of the gel in synthetic urine-treated samples. The shifts in community structure measured by PLFA and DGGE were significantly correlated with one another, suggesting that both datasets reflected the same changes in microbial communities. Synthetic urine treatment preferentially stimulated the use of rhizosphere-C in sole-carbon-source utilisation profiles. The changes caused by synthetic urine addition accounted for only 10-15% of the total variability in community structure, suggesting that overall microbial community structure was reasonably stable and that changes were confined to a small proportion of the communities.

  13. Exploring community structure in biological networks with random graphs

    PubMed Central

    2014-01-01

    Background Community structure is ubiquitous in biological networks. There has been an increased interest in unraveling the community structure of biological systems as it may provide important insights into a system’s functional components and the impact of local structures on dynamics at a global scale. Choosing an appropriate community detection algorithm to identify the community structure in an empirical network can be difficult, however, as the many algorithms available are based on a variety of cost functions and are difficult to validate. Even when community structure is identified in an empirical system, disentangling the effect of community structure from other network properties such as clustering coefficient and assortativity can be a challenge. Results Here, we develop a generative model to produce undirected, simple, connected graphs with a specified degrees and pattern of communities, while maintaining a graph structure that is as random as possible. Additionally, we demonstrate two important applications of our model: (a) to generate networks that can be used to benchmark existing and new algorithms for detecting communities in biological networks; and (b) to generate null models to serve as random controls when investigating the impact of complex network features beyond the byproduct of degree and modularity in empirical biological networks. Conclusion Our model allows for the systematic study of the presence of community structure and its impact on network function and dynamics. This process is a crucial step in unraveling the functional consequences of the structural properties of biological systems and uncovering the mechanisms that drive these systems. PMID:24965130

  14. Community structure detection based on the neighbor node degree information

    NASA Astrophysics Data System (ADS)

    Tang, Li-Ying; Li, Sheng-Nan; Lin, Jian-Hong; Guo, Qiang; Liu, Jian-Guo

    2016-11-01

    Community structure detection is of great significance for better understanding the network topology property. By taking into account the neighbor degree information of the topological network as the link weight, we present an improved Nonnegative Matrix Factorization (NMF) method for detecting community structure. The results for empirical networks show that the largest improved ratio of the Normalized Mutual Information value could reach 63.21%. Meanwhile, for synthetic networks, the highest Normalized Mutual Information value could closely reach 1, which suggests that the improved method with the optimal λ can detect the community structure more accurately. This work is helpful for understanding the interplay between the link weight and the community structure detection.

  15. Prevalence of Intestinal Protozoa among Saudi Patients with Chronic Renal Failure: A Case-Control Study

    PubMed Central

    Hawash, Yousry A.; Dorgham, Laila Sh.; Amir, El-Amir M.; Sharaf, Osama F.

    2015-01-01

    It has been hypothesized that chronic renal failure (CRF) predisposes patients to infection with intestinal protozoa. We tested this hypothesis with a matched case-control study to determine the prevalence of these protozoa and their diarrhea associated symptoms among 50 patients with CRF (cases) from Taif, western Saudi Arabia. Fifty diarrheal patients without CRF were recruited in the study as controls. Participants were interviewed by a structured questionnaire and stool samples were collected. Samples were thoroughly examined with microscopy and three coproantigens detection kits. Enteric protozoa were detected in 21 cases and 14 controls. Blastocystis spp. were the most predominant parasite (16% in cases versus 8% in controls), followed by Giardia duodenalis (10% in cases versus 12% in controls) and Cryptosporidium spp. (10% in cases versus 6% in controls). Cyclospora cayetanensis was identified in two cases, while Entamoeba histolytica was described in one case and one control. Intestinal parasitism was positively associated with the male gender, urban residence, and travel history. Clinical symptoms of nausea/vomiting and abdominal pain were significantly varied between the parasitized cases and controls (P value ≤ 0.05). Given the results, we recommend screening all diarrheal feces for intestinal protozoa in the study's population, particularly those with CRF. PMID:26491455

  16. Surprise maximization reveals the community structure of complex networks

    PubMed Central

    Aldecoa, Rodrigo; Marín, Ignacio

    2013-01-01

    How to determine the community structure of complex networks is an open question. It is critical to establish the best strategies for community detection in networks of unknown structure. Here, using standard synthetic benchmarks, we show that none of the algorithms hitherto developed for community structure characterization perform optimally. Significantly, evaluating the results according to their modularity, the most popular measure of the quality of a partition, systematically provides mistaken solutions. However, a novel quality function, called Surprise, can be used to elucidate which is the optimal division into communities. Consequently, we show that the best strategy to find the community structure of all the networks examined involves choosing among the solutions provided by multiple algorithms the one with the highest Surprise value. We conclude that Surprise maximization precisely reveals the community structure of complex networks. PMID:23320141

  17. Rumen microbial communities influence metabolic phenotypes in lambs

    PubMed Central

    Morgavi, Diego P.; Rathahao-Paris, Estelle; Popova, Milka; Boccard, Julien; Nielsen, Kristian F.; Boudra, Hamid

    2015-01-01

    The rumen microbiota is an essential part of ruminants shaping their nutrition and health. Despite its importance, it is not fully understood how various groups of rumen microbes affect host-microbe relationships and functions. The aim of the study was to simultaneously explore the rumen microbiota and the metabolic phenotype of lambs for identifying host-microbe associations and potential biomarkers of digestive functions. Twin lambs, separated in two groups after birth were exposed to practices (isolation and gavage with rumen fluid with protozoa or protozoa-depleted) that differentially restricted the acquisition of microbes. Rumen microbiota, fermentation parameters, digestibility and growth were monitored for up to 31 weeks of age. Microbiota assembled in isolation from other ruminants lacked protozoa and had low bacterial and archaeal diversity whereas digestibility was not affected. Exposure to adult sheep microbiota increased bacterial and archaeal diversity independently of protozoa presence. For archaea, Methanomassiliicoccales displaced Methanosphaera. Notwithstanding, protozoa induced differences in functional traits such as digestibility and significantly shaped bacterial community structure, notably Ruminococcaceae and Lachnospiraceae lower up to 6 folds, Prevotellaceae lower by ~40%, and Clostridiaceae and Veillonellaceae higher up to 10 folds compared to microbiota without protozoa. An orthogonal partial least squares-discriminant analysis of urinary metabolome matched differences in microbiota structure. Discriminant metabolites were mainly involved in amino acids and protein metabolic pathways while a negative interaction was observed between methylotrophic methanogens Methanomassiliicoccales and trimethylamine N-oxide. These results stress the influence of gut microbes on animal phenotype and show the potential of metabolomics for monitoring rumen microbial functions. PMID:26528248

  18. Growing networks of overlapping communities with internal structure

    NASA Astrophysics Data System (ADS)

    Young, Jean-Gabriel; Hébert-Dufresne, Laurent; Allard, Antoine; Dubé, Louis J.

    2016-08-01

    We introduce an intuitive model that describes both the emergence of community structure and the evolution of the internal structure of communities in growing social networks. The model comprises two complementary mechanisms: One mechanism accounts for the evolution of the internal link structure of a single community, and the second mechanism coordinates the growth of multiple overlapping communities. The first mechanism is based on the assumption that each node establishes links with its neighbors and introduces new nodes to the community at different rates. We demonstrate that this simple mechanism gives rise to an effective maximal degree within communities. This observation is related to the anthropological theory known as Dunbar's number, i.e., the empirical observation of a maximal number of ties which an average individual can sustain within its social groups. The second mechanism is based on a recently proposed generalization of preferential attachment to community structure, appropriately called structural preferential attachment (SPA). The combination of these two mechanisms into a single model (SPA+) allows us to reproduce a number of the global statistics of real networks: The distribution of community sizes, of node memberships, and of degrees. The SPA+ model also predicts (a) three qualitative regimes for the degree distribution within overlapping communities and (b) strong correlations between the number of communities to which a node belongs and its number of connections within each community. We present empirical evidence that support our findings in real complex networks.

  19. [Protozoa and protozoan infections of humans in Central Europe].

    PubMed

    Walochnik, Julia; Aspöck, Horst

    2014-10-01

    This article is a condensed review of the medically relevant protozoa in Central Europe and the infections and diseases caused by them. Information is given on modes and sources of infection, organs involved in the disease, prevalence, diagnostics, therapy, and prophylaxis. Moreover, travel-associated infections with protozoa are briefly outlined.

  20. Involvement of protozoa in anaerobic wastewater treatment process.

    PubMed

    Priya, M; Haridas, Ajit; Manilal, V B

    2007-12-01

    It is only very rarely recognised in literature that anaerobic reactors may contain protozoa in addition to various bacterial and archeal groups. The role of protozoa in anaerobic degradation was studied in anaerobic continuous stirred tank reactors (CSTR) and batch tests. Anaerobic protozoa, especially the ciliated protozoa, have direct influence on the performance of CSTR at all organic loading rates (1-2g CODl(-1)d(-1)) and retention times (5-10 days). The studies revealed that chemical oxygen demand (COD) removal is strongly correlated to ciliate density in CSTR fed with oleate (suspended COD) and acetate (soluble COD). There was no significant difference in COD removal between reactors fed suspended COD and those fed soluble COD. However, the diversity and number of ciliates is greater in CSTR fed with particulate feed. The mixed liquor suspended solids (MLSS) representing biomass was significantly lower (16-34%) in CSTR with protozoa. In batch tests, increased COD removal and methane production was observed in sludge having ciliates as compared with sludge without protozoa. Methane production increased linearly with number of ciliates (R(2)=0.96) in batch tests with protozoa. Direct utilization of COD by flagellates and ciliates was observed in bacteria-suppressed cultures. The technological importance of these results is that reactors with protozoa-rich sludge can enhance the rate of mineralization of complex wastewater, especially wastewater containing particulate COD.

  1. Associational Structure and Community Development: A Comparative Study of Two Communities

    ERIC Educational Resources Information Center

    Dasgupta, Satadal

    1974-01-01

    The two communities compared tended to support the proposition that communities following an integrative style of development are characterized by coordinative structures including associational, while the contrary is true for communities following the autonomous style. Available from: Editorial and Business Offices, Piazza Cavalieri di Malta, 2,…

  2. Pinning controllability of complex networks with community structure.

    PubMed

    Miao, Qingying; Tang, Yang; Kurths, Jürgen; Fang, Jian-an; Wong, W K

    2013-09-01

    In this paper, we study the controllability of networks with different numbers of communities and various strengths of community structure. By means of simulations, we show that the degree descending pinning scheme performs best among several considered pinning schemes under a small number of pinned nodes, while the degree ascending pinning scheme is becoming more powerful by increasing the number of pinned nodes. It is found that increasing the number of communities or reducing the strength of community structure is beneficial for the enhancement of the controllability. Moreover, it is revealed that the pinning scheme with evenly distributed pinned nodes among communities outperforms other kinds of considered pinning schemes.

  3. Influence of community structure on the synchronization of power network

    NASA Astrophysics Data System (ADS)

    Yang, Li-Xin; Jiang, Jun; Liu, Xiao-Jun

    2016-12-01

    This paper studies the synchronizability of power network with community structure. Second-order Kuramoto-like oscillators with dissimilar natural frequencies are used as a coarse-scale model for an electrical power network that contains generators and consumers. The impact of community structure on frequency synchronization of power network is investigated, focusing on the parameters such as community strength, community number and connection strategy between communities. Numerical simulations show that increasing the community strength above a certain critical threshold or adding new communities to the network will be beneficial for the synchronization. Of course, connecting high-degree nodes among communities will be a best strategy to enhance synchronization. Furthermore, it is observed that the synchronizability of the network is significantly influenced by adding new links with different characteristics.

  4. The Community Structure of the Global Corporate Network

    PubMed Central

    Vitali, Stefania; Battiston, Stefano

    2014-01-01

    We investigate the community structure of the global ownership network of transnational corporations. We find a pronounced organization in communities that cannot be explained by randomness. Despite the global character of this network, communities reflect first of all the geographical location of firms, while the industrial sector plays only a marginal role. We also analyze the meta-network in which the nodes are the communities and the links are obtained by aggregating the links among firms belonging to pairs of communities. We analyze the network centrality of the top 50 communities and we provide a quantitative assessment of the financial sector role in connecting the global economy. PMID:25126722

  5. The community structure of the global corporate network.

    PubMed

    Vitali, Stefania; Battiston, Stefano

    2014-01-01

    We investigate the community structure of the global ownership network of transnational corporations. We find a pronounced organization in communities that cannot be explained by randomness. Despite the global character of this network, communities reflect first of all the geographical location of firms, while the industrial sector plays only a marginal role. We also analyze the meta-network in which the nodes are the communities and the links are obtained by aggregating the links among firms belonging to pairs of communities. We analyze the network centrality of the top 50 communities and we provide a quantitative assessment of the financial sector role in connecting the global economy.

  6. A new dynamic null model for phylogenetic community structure.

    PubMed

    Pigot, Alex L; Etienne, Rampal S

    2015-02-01

    Phylogenies are increasingly applied to identify the mechanisms structuring ecological communities but progress has been hindered by a reliance on statistical null models that ignore the historical process of community assembly. Here, we address this, and develop a dynamic null model of assembly by allopatric speciation, colonisation and local extinction. Incorporating these processes fundamentally alters the structure of communities expected due to chance, with speciation leading to phylogenetic overdispersion compared to a classical statistical null model assuming equal probabilities of community membership. Applying this method to bird and primate communities in South America we show that patterns of phylogenetic overdispersion - often attributed to negative biotic interactions - are instead consistent with a species neutral model of allopatric speciation, colonisation and local extinction. Our findings provide a new null expectation for phylogenetic community patterns and highlight the importance of explicitly accounting for the dynamic history of assembly when testing the mechanisms governing community structure.

  7. Enhancing community detection by using local structural information

    NASA Astrophysics Data System (ADS)

    Xiang, Ju; Hu, Ke; Zhang, Yan; Bao, Mei-Hua; Tang, Liang; Tang, Yan-Ni; Gao, Yuan-Yuan; Li, Jian-Ming; Chen, Benyan; Hu, Jing-Bo

    2016-03-01

    Many real-world networks, such as gene networks, protein-protein interaction networks and metabolic networks, exhibit community structures, meaning the existence of groups of densely connected vertices in the networks. Many local similarity measures in the networks are closely related to the concept of the community structures, and may have a positive effect on community detection in the networks. Here, various local similarity measures are used to extract local structural information, which is then applied to community detection in the networks by using the edge-reweighting strategy. The effect of the local similarity measures on community detection is carefully investigated and compared in various networks. The experimental results show that the local similarity measures are crucial for the improvement of community detection methods, while the positive effect of the local similarity measures is closely related to the networks under study and applied community detection methods.

  8. Similarity between community structures of different online social networks and its impact on underlying community detection

    NASA Astrophysics Data System (ADS)

    Fan, W.; Yeung, K. H.

    2015-03-01

    As social networking services are popular, many people may register in more than one online social network. In this paper we study a set of users who have accounts of three online social networks: namely Foursquare, Facebook and Twitter. Community structure of this set of users may be reflected in these three online social networks. Therefore, high correlation between these reflections and the underlying community structure may be observed. In this work, community structures are detected in all three online social networks. Also, we investigate the similarity level of community structures across different networks. It is found that they show strong correlation with each other. The similarity between different networks may be helpful to find a community structure close to the underlying one. To verify this, we propose a method to increase the weights of some connections in networks. With this method, new networks are generated to assist community detection. By doing this, value of modularity can be improved and the new community structure match network's natural structure better. In this paper we also show that the detected community structures of online social networks are correlated with users' locations which are identified on Foursquare. This information may also be useful for underlying community detection.

  9. Detection of Intestinal Protozoa in the Clinical Laboratory

    PubMed Central

    McHardy, Ian H.; Wu, Max; Shimizu-Cohen, Robyn; Couturier, Marc Roger

    2014-01-01

    Despite recent advances in diagnostic technology, microscopic examination of stool specimens remains central to the diagnosis of most pathogenic intestinal protozoa. Microscopy is, however, labor-intensive and requires a skilled technologist. New, highly sensitive diagnostic methods have been developed for protozoa endemic to developed countries, including Giardia lamblia (syn. G. intestinalis/G. duodenalis) and Cryptosporidium spp., using technologies that, if expanded, could effectively complement or even replace microscopic approaches. To date, the scope of such novel technologies is limited and may not include common protozoa such as Dientamoeba fragilis, Entamoeba histolytica, or Cyclospora cayetanensis. This minireview describes canonical approaches for the detection of pathogenic intestinal protozoa, while highlighting recent developments and FDA-approved tools for clinical diagnosis of common intestinal protozoa. PMID:24197877

  10. Detection of intestinal protozoa in the clinical laboratory.

    PubMed

    McHardy, Ian H; Wu, Max; Shimizu-Cohen, Robyn; Couturier, Marc Roger; Humphries, Romney M

    2014-03-01

    Despite recent advances in diagnostic technology, microscopic examination of stool specimens remains central to the diagnosis of most pathogenic intestinal protozoa. Microscopy is, however, labor-intensive and requires a skilled technologist. New, highly sensitive diagnostic methods have been developed for protozoa endemic to developed countries, including Giardia lamblia (syn. G. intestinalis/G. duodenalis) and Cryptosporidium spp., using technologies that, if expanded, could effectively complement or even replace microscopic approaches. To date, the scope of such novel technologies is limited and may not include common protozoa such as Dientamoeba fragilis, Entamoeba histolytica, or Cyclospora cayetanensis. This minireview describes canonical approaches for the detection of pathogenic intestinal protozoa, while highlighting recent developments and FDA-approved tools for clinical diagnosis of common intestinal protozoa.

  11. Asymptomatic Effluent Protozoa Colonization in Peritoneal Dialysis Patients.

    PubMed

    Simões-Silva, Liliana; Correia, Inês; Barbosa, Joana; Santos-Araujo, Carla; Sousa, Maria João; Pestana, Manuel; Soares-Silva, Isabel; Sampaio-Maia, Benedita

    Currently, chronic kidney disease (CKD) is a global health problem. Considering the impaired immunity of CKD patients, the relevance of infection in peritoneal dialysis (PD), and the increased prevalence of parasites in CKD patients, protozoa colonization was evaluated in PD effluent from CKD patients undergoing PD. Overnight PD effluent was obtained from 49 asymptomatic stable PD patients. Protozoa analysis was performed microscopically by searching cysts and trophozoites in direct wet mount of PD effluent and after staining smears. Protozoa were found in PD effluent of 10.2% of evaluated PD patients, namely Blastocystis hominis, in 2 patients, and Entamoeba sp., Giardia sp., and Endolimax nana in the other 3 patients, respectively. None of these patients presented clinical signs or symptoms of peritonitis at the time of protozoa screening. Our results demonstrate that PD effluent may be susceptible to asymptomatic protozoa colonization. The clinical impact of this finding should be further investigated.

  12. Anaerobic protozoa and their growth in biomethanation systems.

    PubMed

    Priya, M; Haridas, Ajit; Manilal, V B

    2008-04-01

    This study was to investigate growth of protozoa and its influence on biodegradation in anaerobic treatment systems. It was done by specifically controlling and monitoring growth of protozoa versus degradation in continuous stirred anaerobic reactors and batch anaerobic reactors. Occurrence of a diverse protozoa population such as the ciliates, Prorodon, Vorticella, Cyclidium, Spathidium, Loxodes, Metopus were observed in stable anaerobic systems and the flagellates, Rhynchomonas, Naeglaria, Amoeboflagellates, Tetramitus, Trepomonas and Bodo during increased VFA concentration and affected periods of biomethanation. The abundance of ciliates in the anaerobic system had significant correlation with the reduction of MLSS, increased rate of COD removal and higher methane production. The results of this study thus tend to relate increased anaerobic degradation with the abundance of protozoa, mainly ciliates, which indicate their possible involvement in the process. Present study also reveals that performance of anaerobic process can be assessed by monitoring the protozoa population in the system.

  13. Litter quality as driving factor for plant nutrition via grazing of protozoa on soil microorganisms.

    PubMed

    Koller, Robert; Robin, Christophe; Bonkowski, Michael; Ruess, Liliane; Scheu, Stefan

    2013-08-01

    Plant residues provide a major source of nitrogen (N) for plant growth. Litter N mineralization varies with litter carbon-to-nitrogen (C-to-N) ratio and presence of bacterial-feeding fauna. We assessed the effect of amoebae, major bacterial feeders in soil, on mineralization of litter of low (high quality) and high C-to-N ratio (low quality) and evaluated consequences for plant growth. We used stable isotopes to determine plant N uptake from litter and plant C partitioning. Stable isotope probing of phospholipid fatty acids was used to follow incorporation of plant C into microorganisms. Amoebae increased plant N uptake independent of litter quality and thereby the biomass of shoots and roots by 33% and 66%, respectively. Plant allocation of total (13)C to roots in low (42%) exceeded that of high-quality litter treatments (26%). Amoebae increased plant allocation of (13)C to roots by 37%. Microbial community structure and incorporation of (13)C into PLFAs varied significantly with litter quality and in the low-quality litter treatment also with the presence of amoebae. Overall, the results suggest that in particular at low nutrient conditions, root-derived C fosters the mobilization of bacterial N by protozoa, thereby increasing plant growth when microorganisms and plants compete for nutrients.

  14. Effects of a synthetic oil on zooplankton community structure

    SciTech Connect

    Hook, L.A.

    1988-01-01

    This study assessed the effects of a coal-derived oil on the structure of zooplankton communities of laboratory pond microcosms and outdoor experimental ponds. Several measures of community structure and multivariate statistical techniques were used to reveal changes in the patterns of zooplankton community structure caused by the perturbation. From these results the basic ecological mechanisms responsible for maintenance of zooplankton community structure were inferred. The comparison of the field, laboratory microcosm, and laboratory bioassay results for the effects of oil provided an empirical basis for predicting pollutant effects on aquatic ecosystems. The responses of the microcosm and pond zooplankton communities to oil treatment were quite similar. Changes in cladoceran densities were the most sensitive indicators of stress in the zooplankton communities. Copepods were slightly less sensitive, and rotifers were least sensitive to oil treatment.

  15. Investigating Effects of Invasive Species on Plant Community Structure

    ERIC Educational Resources Information Center

    Franklin, Wilfred

    2008-01-01

    In this article, the author presents a field study project that explores factors influencing forest community structure and lifts the veil off of "plant blindness." This ecological study consists of three laboratories: (1) preliminary field trip to the study site; (2) plant survey; and (3) analyzing plant community structure with descriptive…

  16. Community Structural Instability, Anomie, Imitation and Adolescent Suicidal Behavior

    ERIC Educational Resources Information Center

    Thorlindsson, Thorolfur; Bernburg, Jon Gunnar

    2009-01-01

    The current study examines the contextual effects of community structural characteristics, as well as the mediating role of key social mechanisms, on youth suicidal behavior in Iceland. We argue that the contextual influence of community structural instability on youth suicidal behavior should be mediated by weak attachment to social norms and…

  17. Blood protozoa of free-living birds

    USGS Publications Warehouse

    Herman, C.M.; McDiarmid, Archibald

    1969-01-01

    Blood protozoa were first reported from wild birds in 1884. Since then numerous surveys throughout the world have demonstrated their presence in a wide variety of hosts and localities with continuing designations of new species. Taxonomic determinations include parasites in the genera Plasmodium, Haemoproteus, Leucocytozoon, Babesia, Lankesterella and Trypanosoma. Transmission of Plasmodium by mosquitoes was demonstrated with a bird parasite before these insects were proven as vectors of human malaria. All the genera under consideration require an insect vector to complete their life-cycles and susceptible vectors have been demonstrated. Most experimental work on the blood protozoa of birds has been carried on with captive birds. An extensive volume of research has been conducted on Plasmodium because of its close similarity to malaria in man. Field studies that would provide information on the epizootiology of occurrence of these parasites in wild populations have been very limited, mainly confined to single blood film surveys. Such data are inadequate to provide an understanding of true prevalence or incidence or of factual knowledge of their impact on the wild population. Mechanisms for procuring such information are available in some cases and can be developed to fit other situations. Isodiagnosis, inoculation of blood from wild birds into susceptible captive hosts, has revealed a prevalence of over 60 % for Plasmodium in situations where microscope examination of single peripheral blood preparations yielded less than 1 %. Culture of bone marrow collected by biopsy demonstrates high prevalence of trypanosomes even when none are evident from microscopic examination of blood. Often preparations of tissues collected at necropsy reveal Leucocytozoon and Lankesterella when examination of peripheral blood gave no indication of infection. Methods developed by bird ringers provide techniques for obtaining repeat examinations of free-living birds that can yield further

  18. The structure and evolution of plankton communities

    NASA Astrophysics Data System (ADS)

    Longhurst, Alan R.

    New understanding of the circulation of ancient oceans is not yet matched by progress in our understanding of their pelagic ecology, though it was the planktonic ecosystems that generated our offshore oil and gas reserves. Can we assume that present-day models of ecosystem function are also valid for ancient seas? This question is addressed by a study of over 4000 plankton samples to derive a comprehensive, global description of zooplankton community structure in modern oceans: this shows that copepods form only 50% of the biomass of all plankton, ranging from 70% in polar to 35% in tropical seas. Comparable figures are derived from 14 other taxonomic categories of zooplankton. For trophic groupings, the data indicate globally: geletinous predators - 14%; gelatinous herbivores - 4%; raptorial predators - 33%; macrofiltering herbivores - 20%; macrofiltering omnivores - 25%; and detritivores - 3%. A simple, idealized model for the modern pelagic ecosystem is derived from these percentages which indicates that metazooplankton are not the most important consumers of pico- and nano-plankton production which itself probably constitutes 90% of primary production in warm oceans. This model is then compared with candidate life-forms available in Palaeozoic and Mesozoic oceans to determine to what extent it is also valid for ancient ecosystems: it is concluded that it is probably unnecessary to postulate models fundamentally differing from it in order to accommodate the life-forms, both protozoic and metazoic, known to have populated ancient seas. Remarkably few life-forms have existed which cannot be paralleled in the modern ocean, which contains remarkably few life-forms which cannot be paralleled in the Palaeozoic ocean. As a first assumption, then, it is reasonable to assume that energy pathways were similar in ancient oceans to those we study today.

  19. Structure and seasonal dynamics of the protozoan community (heterotrophic flagellates, ciliates, amoeboid protozoa) in the plankton of a large river (River Danube, Hungary).

    PubMed

    Kiss, Aron Keve; Acs, Eva; Kiss, Keve Tihamér; Török, Júlia Katalin

    2009-05-01

    Seasonal dynamics of all major protozoan groups were investigated in the plankton of the River Danube, upstream of Budapest (Hungary), by bi-weekly sampling over a 1-year long period. Sixty-one heterotrophic flagellate, 14 naked amoeba, 50 testate amoeba, 4 heliozoan and 83 ciliate morphospecies were identified. The estimated abundance ranges of major groups throughout the year were as follows: heterotrophic flagellates, 0.27-7.8 x 10(6)ind.l(-1); naked amoebae, max. 3300ind.l(-1); testaceans, max. 1600ind.l(-1); heliozoans, max. 8500ind.l(-1); ciliates, 132-34,000ind.l(-1). In terms of biovolume, heterotrophic flagellates dominated throughout the year (max. 0.58mm(3)l(-1)), and ciliates only exceeded their biovolume in summer (max. 0.76mm(3)l(-1)). Naked amoeba and heliozoan biovolume was about one, and testacean biovolume 1-3, orders of magnitude lower than that of ciliates. In winter, flagellates, mainly chrysomonads, had the highest biomass, whilst ciliates were dominated by peritrichs. In 2005 from April to July a long spring/summer peak occurred for all protozoan groups. Beside chrysomonads typical flagellates were choanoflagellates, bicosoecids and abundant microflagellates (large chrysomonads and Collodictyon). Most abundant ciliates were oligotrichs, while Phascolodon, Urotricha, Vorticella, haptorids, Suctoria, Climacostomum and Stokesia also contributed significantly to biovolume during rapid succession processes. In October and November a second high protozoan peak occurred, with flagellate dominance, and slightly different taxonomic composition.

  20. Community structure of foraminiferal communities within temporal biozones from the western Arctic Ocean

    USGS Publications Warehouse

    Hayek, Lee-Ann C.; Buzas, Martin A.; Osterman, Lisa A.

    2007-01-01

    Community structure is often an overlooked dimension of biodiversity. Knowledge of community structure, the statistical distribution of the relative species abundance vector, makes possible comparisons and contrasts across time, space, and/or environmental conditions. Our results indicate that species of Arctic foraminifera in age-correlated cores from abyssal depths are each best described by log-series distributions. Using this structural information, we were able to determine that structural stability exists for at least 50 ka. The foraminiferal communities in this study show remarkable concordance, distributional similarity and support the neutral theory of biodiversity.

  1. Detecting Community Structure by Using a Constrained Label Propagation Algorithm

    PubMed Central

    Ratnavelu, Kuru

    2016-01-01

    Community structure is considered one of the most interesting features in complex networks. Many real-world complex systems exhibit community structure, where individuals with similar properties form a community. The identification of communities in a network is important for understanding the structure of said network, in a specific perspective. Thus, community detection in complex networks gained immense interest over the last decade. A lot of community detection methods were proposed, and one of them is the label propagation algorithm (LPA). The simplicity and time efficiency of the LPA make it a popular community detection method. However, the LPA suffers from instability detection due to randomness that is induced in the algorithm. The focus of this paper is to improve the stability and accuracy of the LPA, while retaining its simplicity. Our proposed algorithm will first detect the main communities in a network by using the number of mutual neighbouring nodes. Subsequently, nodes are added into communities by using a constrained LPA. Those constraints are then gradually relaxed until all nodes are assigned into groups. In order to refine the quality of the detected communities, nodes in communities can be switched to another community or removed from their current communities at various stages of the algorithm. We evaluated our algorithm on three types of benchmark networks, namely the Lancichinetti-Fortunato-Radicchi (LFR), Relaxed Caveman (RC) and Girvan-Newman (GN) benchmarks. We also apply the present algorithm to some real-world networks of various sizes. The current results show some promising potential, of the proposed algorithm, in terms of detecting communities accurately. Furthermore, our constrained LPA has a robustness and stability that are significantly better than the simple LPA as it is able to yield deterministic results. PMID:27176470

  2. What Community College Students Value: Delineating a Normative Structure for Community College Students

    ERIC Educational Resources Information Center

    Akin, Renea; Park, Toby J.

    2016-01-01

    This manuscript delineates a normative structure for community college students, outlines how this structure varies by student characteristics, and compares this structure to that of a previously established normative structure identified at a 4-year institution. A total of 512 student survey responses on the College Student Behaviors Inventory…

  3. Macro, micro and nano domains in the membrane of parasitic protozoa.

    PubMed

    de Souza, Wanderley

    2007-09-01

    The structural organization of the plasma membrane of eukaryotic cells is briefly revised taking into consideration the organization of proteins and lipids and the concept of microdomains, lipid rafts and detergent resistant membranes. The biochemical data available concerning the presence of microdomains in parasitic protozoa is reviewed and emphasis is given on the identification of special domains recognized by morphological approaches, especially with the use of the freeze-fracture technique.

  4. Virality Prediction and Community Structure in Social Networks

    NASA Astrophysics Data System (ADS)

    Weng, Lilian; Menczer, Filippo; Ahn, Yong-Yeol

    2013-08-01

    How does network structure affect diffusion? Recent studies suggest that the answer depends on the type of contagion. Complex contagions, unlike infectious diseases (simple contagions), are affected by social reinforcement and homophily. Hence, the spread within highly clustered communities is enhanced, while diffusion across communities is hampered. A common hypothesis is that memes and behaviors are complex contagions. We show that, while most memes indeed spread like complex contagions, a few viral memes spread across many communities, like diseases. We demonstrate that the future popularity of a meme can be predicted by quantifying its early spreading pattern in terms of community concentration. The more communities a meme permeates, the more viral it is. We present a practical method to translate data about community structure into predictive knowledge about what information will spread widely. This connection contributes to our understanding in computational social science, social media analytics, and marketing applications.

  5. Community structure in traffic zones based on travel demand

    NASA Astrophysics Data System (ADS)

    Sun, Li; Ling, Ximan; He, Kun; Tan, Qian

    2016-09-01

    Large structure in complex networks can be studied by dividing it into communities or modules. Urban traffic system is one of the most critical infrastructures. It can be abstracted into a complex network composed of tightly connected groups. Here, we analyze community structure in urban traffic zones based on the community detection method in network science. Spectral algorithm using the eigenvectors of matrices is employed. Our empirical results indicate that the traffic communities are variant with the travel demand distribution, since in the morning the majority of the passengers are traveling from home to work and in the evening they are traveling a contrary direction. Meanwhile, the origin-destination pairs with large number of trips play a significant role in urban traffic network's community division. The layout of traffic community in a city also depends on the residents' trajectories.

  6. Virality prediction and community structure in social networks.

    PubMed

    Weng, Lilian; Menczer, Filippo; Ahn, Yong-Yeol

    2013-01-01

    How does network structure affect diffusion? Recent studies suggest that the answer depends on the type of contagion. Complex contagions, unlike infectious diseases (simple contagions), are affected by social reinforcement and homophily. Hence, the spread within highly clustered communities is enhanced, while diffusion across communities is hampered. A common hypothesis is that memes and behaviors are complex contagions. We show that, while most memes indeed spread like complex contagions, a few viral memes spread across many communities, like diseases. We demonstrate that the future popularity of a meme can be predicted by quantifying its early spreading pattern in terms of community concentration. The more communities a meme permeates, the more viral it is. We present a practical method to translate data about community structure into predictive knowledge about what information will spread widely. This connection contributes to our understanding in computational social science, social media analytics, and marketing applications.

  7. Community structural instability, anomie, imitation and adolescent suicidal behavior.

    PubMed

    Thorlindsson, Thorolfur; Bernburg, Jón Gunnar

    2009-04-01

    The current study examines the contextual effects of community structural characteristics, as well as the mediating role of key social mechanisms, on youth suicidal behavior in Iceland. We argue that the contextual influence of community structural instability on youth suicidal behavior should be mediated by weak attachment to social norms and values (anomie), and contact with suicidal others (suggestion-imitation). The data comes from a national survey of 14-16 years old adolescents. Valid questionnaires were obtained from 7018 students (response rate about 87%). The findings show that the community level of residential mobility has a positive, contextual effect on adolescent suicidal behavior. The findings also indicate that the contextual effect of residential mobility is mediated by both anomie and suggestion-imitation. The findings offer the possibility to identify communities that carry a substantial risk for adolescent suicide as well as the mechanisms that mediate the influence of community structural characteristics on adolescent risk behavior.

  8. Soil and plant effects on microbial community structure.

    PubMed

    Buyer, Jeffrey S; Roberts, Daniel P; Russek-Cohen, Estelle

    2002-11-01

    We investigated the effects of two different plant species (corn and soybean) and three different soil types on microbial community structure in the rhizosphere. Our working hypothesis was that the rhizosphere effect would be strongest on fast-growing aerobic heterotrophs, while there would be little or no rhizosphere effect on oligotrophic and other slow-growing microorganisms. Culturable bacteria and fungi had larger population densities in the rhizosphere than in bulk soil. Communities were characterized by soil fatty acid analysis and by substrate utilization assays for bacteria and fungi. Fatty acid analysis revealed a very strong soil effect but little plant effect on the microbial community, indicating that the overall microbial community structure was not affected by the rhizosphere. There was a strong rhizosphere effect detected by the substrate utilization assay for fast-growing aerobic heterotrophic bacterial community structure, with soil controls and rhizosphere samples clearly distinguished from each other. There was a much weaker rhizosphere effect on fungal communities than on bacterial communities as measured by the substrate utilization assays. At this coarse level of community analysis, the rhizosphere microbial community was impacted most by soil effects, and the rhizosphere only affected a small portion of the total bacteria.

  9. Community Structures in Bipartite Networks: A Dual-Projection Approach

    PubMed Central

    Melamed, David

    2014-01-01

    Identifying communities or clusters in networked systems has received much attention across the physical and social sciences. Most of this work focuses on single layer or one-mode networks, including social networks between people or hyperlinks between websites. Multilayer or multi-mode networks, such as affiliation networks linking people to organizations, receive much less attention in this literature. Common strategies for discovering the community structure of multi-mode networks identify the communities of each mode simultaneously. Here I show that this combined approach is ineffective at discovering community structures when there are an unequal number of communities between the modes of a multi-mode network. I propose a dual-projection alternative for detecting communities in multi-mode networks that overcomes this shortcoming. The evaluation of synthetic networks with known community structures reveals that the dual-projection approach outperforms the combined approach when there are a different number of communities in the various modes. At the same time, results show that the dual-projection approach is as effective as the combined strategy when the number of communities is the same between the modes. PMID:24836376

  10. Faculty Scholarship at Community Colleges: Culture, Institutional Structures, and Socialization

    ERIC Educational Resources Information Center

    Morest, Vanessa Smith

    2015-01-01

    This chapter looks at community college faculty engagement in scholarship. Community college faculty spend the majority of their time engaged in teaching, and therefore their scholarship typically focuses on strengthening curriculum and instruction. The paper identifies some of the structural and cultural challenges and supports to scholarship at…

  11. Quantifying and identifying the overlapping community structure in networks

    NASA Astrophysics Data System (ADS)

    Shen, Hua-Wei; Cheng, Xue-Qi; Guo, Jia-Feng

    2009-07-01

    It has been shown that the communities of complex networks often overlap with each other. However, there is no effective method to quantify the overlapping community structure. In this paper, we propose a metric to address this problem. Instead of assuming that one node can only belong to one community, our metric assumes that a maximal clique only belongs to one community. In this way, the overlaps between communities are allowed. To identify the overlapping community structure, we construct a maximal clique network from the original network, and prove that the optimization of our metric on the original network is equivalent to the optimization of Newman's modularity on the maximal clique network. Thus the overlapping community structure can be identified through partitioning the maximal clique network using any modularity optimization method. The effectiveness of our metric is demonstrated by extensive tests on both artificial networks and real world networks with a known community structure. The application to the word association network also reproduces excellent results.

  12. Exploratory Visualization of Graphs Based on Community Structure

    ERIC Educational Resources Information Center

    Liu, Yujie

    2013-01-01

    Communities, also called clusters or modules, are groups of nodes which probably share common properties and/or play similar roles within a graph. They widely exist in real networks such as biological, social, and information networks. Allowing users to interactively browse and explore the community structure, which is essential for understanding…

  13. Microbial community structure and denitrification in a wetland mitigation bank.

    PubMed

    Peralta, Ariane L; Matthews, Jeffrey W; Kent, Angela D

    2010-07-01

    Wetland mitigation is implemented to replace ecosystem functions provided by wetlands; however, restoration efforts frequently fail to establish equivalent levels of ecosystem services. Delivery of microbially mediated ecosystem functions, such as denitrification, is influenced by both the structure and activity of the microbial community. The objective of this study was to compare the relationship between soil and vegetation factors and microbial community structure and function in restored and reference wetlands within a mitigation bank. Microbial community composition was assessed using terminal restriction fragment length polymorphism targeting the 16S rRNA gene (total bacteria) and the nosZ gene (denitrifiers). Comparisons of microbial function were based on potential denitrification rates. Bacterial community structures differed significantly between restored and reference wetlands; denitrifier community assemblages were similar among reference sites but highly variable among restored sites throughout the mitigation bank. Potential denitrification was highest in the reference wetland sites. These data demonstrate that wetland restoration efforts in this mitigation bank have not successfully restored denitrification and that differences in potential denitrification rates may be due to distinct microbial assemblages observed in restored and reference (natural) wetlands. Further, we have identified gradients in soil moisture and soil fertility that were associated with differences in microbial community structure. Microbial function was influenced by bacterial community composition and soil fertility. Identifying soil factors that are primary ecological drivers of soil bacterial communities, especially denitrifying populations, can potentially aid the development of predictive models for restoration of biogeochemical transformations and enhance the success of wetland restoration efforts.

  14. Protozoa and digestive tract parameters of the impala.

    PubMed

    Booyse, Dirk; Dehority, Burk A

    2011-10-12

    Intestinal contents were collected from eight impala at three different localities during the winter hunting season (2005-2009), as well as from another 24 animals from a one-year trial at a game farm called Ditholo (2003-2004). Gas production, protozoa counts and several other physiological parameters were measured from both rumen and caecum or colon contents. Only higher ophryoscolecid and Isotrichidae species of protozoa were counted and identified. Ostracodinium gracile was present in all 32 impala. Eudiplodinium maggii was present in 31 animals and Eudiplodinium impalae and Epidinium (either ecaudatum or caudatum) in 30 animals. Dasytricha ruminantium was present in only 11 of the impala. Concentrations of protozoa were correlated with the season of sample collection and highly correlated with the animals living on the game farm. Gas production (mL/g of wet rumen ingesta) was weakly correlated with protozoa concentration but not with the season of collection.

  15. Exploring Leeuwenhoek's legacy: the abundance and diversity of protozoa.

    PubMed

    Finlay, B J; Esteban, G F

    2001-09-01

    Towards the end of the 17th century, Leeuwenhoek built "magnifying glasses" that enabled him to see and describe protozoa for the first time. Continued exploration of the natural history of protozoa during the past 300 years has progressed far beyond simply documenting morphospecies (global total probably <20,000). We now realize that protozoan 'biodiversity' is multi-faceted (e.g. sibling species, variant genotypes and syntrophic consortia). Realization of their extraordinary abundance has secured for protozoa the position of dominant phagotrophs and regenerators of nutrients within microbial food webs. And studies of protozoa in the natural environment have done much to effect a paradigm shift in our understanding of why specific microbes live where they do and how they got there in the first place. In particular, the hypothesis of ubiquitous dispersal of protozoan species does seem to be supported by the evidence provided by morphospecies, sibling species and even individual genotypes.

  16. Host Niches and Defensive Extended Phenotypes Structure Parasitoid Wasp Communities

    PubMed Central

    Bailey, Richard; Schönrogge, Karsten; Cook, James M.; Melika, George; Csóka, György; Thuróczy, Csaba; Stone, Graham N.

    2009-01-01

    Oak galls are spectacular extended phenotypes of gallwasp genes in host oak tissues and have evolved complex morphologies that serve, in part, to exclude parasitoid natural enemies. Parasitoids and their insect herbivore hosts have coevolved to produce diverse communities comprising about a third of all animal species. The factors structuring these communities, however, remain poorly understood. An emerging theme in community ecology is the need to consider the effects of host traits, shaped by both natural selection and phylogenetic history, on associated communities of natural enemies. Here we examine the impact of host traits and phylogenetic relatedness on 48 ecologically closed and species-rich communities of parasitoids attacking gall-inducing wasps on oaks. Gallwasps induce the development of spectacular and structurally complex galls whose species- and generation-specific morphologies are the extended phenotypes of gallwasp genes. All the associated natural enemies attack their concealed hosts through gall tissues, and several structural gall traits have been shown to enhance defence against parasitoid attack. Here we explore the significance of these and other host traits in predicting variation in parasitoid community structure across gallwasp species. In particular, we test the “Enemy Hypothesis,” which predicts that galls with similar morphology will exclude similar sets of parasitoids and therefore have similar parasitoid communities. Having controlled for phylogenetic patterning in host traits and communities, we found significant correlations between parasitoid community structure and several gall structural traits (toughness, hairiness, stickiness), supporting the Enemy Hypothesis. Parasitoid community structure was also consistently predicted by components of the hosts' spatiotemporal niche, particularly host oak taxonomy and gall location (e.g., leaf versus bud versus seed). The combined explanatory power of structural and spatiotemporal

  17. Artificial neural networks and ecological communities (Book Review: Modelling community structure in freshwater ecosystems)

    USGS Publications Warehouse

    DeAngelis, Donald L.

    2005-01-01

    Review info: Modeling community structure in freshwater ecosystems. Edited by Sovan Lek, Michele Scardi, Piet F.M. Verdonschot, Jean-Pierre Descy, and Young-Seuk Park, 2005. ISBN: 3-540-23940-5, 518 pp.

  18. Edge ratio and community structure in networks

    NASA Astrophysics Data System (ADS)

    Cafieri, Sonia; Hansen, Pierre; Liberti, Leo

    2010-02-01

    A hierarchical divisive algorithm is proposed for identifying communities in complex networks. To that effect, the definition of community in the weak sense of Radicchi [Proc. Natl. Acad. Sci. U.S.A. 101, 2658 (2004)] is extended into a criterion for a bipartition to be optimal: one seeks to maximize the minimum for both classes of the bipartition of the ratio of inner edges to cut edges. A mathematical program is used within a dichotomous search to do this in an optimal way for each bipartition. This includes an exact solution of the problem of detecting indivisible communities. The resulting hierarchical divisive algorithm is compared with exact modularity maximization on both artificial and real world data sets. For two problems of the former kind optimal solutions are found; for five problems of the latter kind the edge ratio algorithm always appears to be competitive. Moreover, it provides additional information in several cases, notably through the use of the dendrogram summarizing the resolution. Finally, both algorithms are compared on reduced versions of the data sets of Girvan and Newman [Proc. Natl. Acad. Sci. U.S.A. 99, 7821 (2002)] and of Lancichinetti [Phys. Rev. E 78, 046110 (2008)]. Results for these instances appear to be comparable.

  19. Covariance, correlation matrix, and the multiscale community structure of networks.

    PubMed

    Shen, Hua-Wei; Cheng, Xue-Qi; Fang, Bin-Xing

    2010-07-01

    Empirical studies show that real world networks often exhibit multiple scales of topological descriptions. However, it is still an open problem how to identify the intrinsic multiple scales of networks. In this paper, we consider detecting the multiscale community structure of network from the perspective of dimension reduction. According to this perspective, a covariance matrix of network is defined to uncover the multiscale community structure through the translation and rotation transformations. It is proved that the covariance matrix is the unbiased version of the well-known modularity matrix. We then point out that the translation and rotation transformations fail to deal with the heterogeneous network, which is very common in nature and society. To address this problem, a correlation matrix is proposed through introducing the rescaling transformation into the covariance matrix. Extensive tests on real world and artificial networks demonstrate that the correlation matrix significantly outperforms the covariance matrix, identically the modularity matrix, as regards identifying the multiscale community structure of network. This work provides a novel perspective to the identification of community structure and thus various dimension reduction methods might be used for the identification of community structure. Through introducing the correlation matrix, we further conclude that the rescaling transformation is crucial to identify the multiscale community structure of network, as well as the translation and rotation transformations.

  20. Natural cysteine protease inhibitors in protozoa: Fifteen years of the chagasin family.

    PubMed

    Costa, Tatiana F R; Lima, Ana Paula C A

    2016-03-01

    Chagasin-type inhibitors comprise natural inhibitors of papain-like cysteine proteases that are distributed among Protist, Bacteria and Archaea. Chagasin was identified in the pathogenic protozoa Trypanosoma cruzi as an approximately 11 kDa protein that is a tight-binding and highly thermostable inhibitor of papain, cysteine cathepsins and endogenous parasite cysteine proteases. It displays an Imunoglobulin-like fold with three exposed loops to one side of the molecule, where amino acid residues present in conserved motifs at the tips of each loop contact target proteases. Differently from cystatins, the loop 2 of chagasin enters the active-site cleft, making direct contact with the catalytic residues, while loops 4 and 6 embrace the enzyme from the sides. Orthologues of chagasin are named Inhibitors of Cysteine Peptidases (ICP), and share conserved overall tri-dimensional structure and mode of binding to proteases. ICPs are tentatively distributed in three families: in family I42 are grouped chagasin-type inhibitors that share conserved residues at the exposed loops; family I71 contains Plasmodium ICPs, which are large proteins having a chagasin-like domain at the C-terminus, with lower similarity to chagasin in the conserved motif at loop 2; family I81 contains Toxoplasma ICP. Recombinant ICPs tested so far can inactivate protozoa cathepsin-like proteases and their mammalian counterparts. Studies on their biological roles were carried out in a few species, mainly using transgenic protozoa, and the conclusions vary. However, in all cases, alterations in the levels of expression of chagasin/ICPs led to substantial changes in one or more steps of parasite biology, with higher incidence in influencing their interaction with the hosts. We will cover most of the findings on chagasin/ICP structural and functional properties and overview the current knowledge on their roles in protozoa.

  1. Growing network model for community with group structure

    NASA Astrophysics Data System (ADS)

    Noh, Jae Dong; Jeong, Hyeong-Chai; Ahn, Yong-Yeol; Jeong, Hawoong

    2005-03-01

    We propose a growing network model for a community with a group structure. The community consists of individual members and groups, gatherings of members. The community grows as a new member is introduced by an existing member at each time step. The new member then creates a new group or joins one of the groups of the introducer. We investigate the emerging community structure analytically and numerically. The group size distribution shows a power-law distribution for a variety of growth rules, while the activity distribution follows an exponential or a power law depending on the details of the growth rule. We also present an analysis of empirical data from online communities the “Groups” in http://www.yahoo.com and the “Cafe” in http://www.daum.net, which show a power-law distribution for a wide range of group sizes.

  2. Functional and phylogenetic structure of island bird communities.

    PubMed

    Si, Xingfeng; Cadotte, Marc W; Zeng, Di; Baselga, Andrés; Zhao, Yuhao; Li, Jiaqi; Wu, Yiru; Wang, Siyu; Ding, Ping

    2017-02-13

    Biodiversity change in anthropogenically transformed habitats is often nonrandom, yet the nature and importance of the different mechanisms shaping community structure are unclear. Here, we extend the classic Theory of Island Biogeography (TIB) to account for nonrandom processes by incorporating species traits and phylogenetic relationships into a study of faunal relaxation following habitat loss and fragmentation. Two possible mechanisms can create nonrandom community patterns on fragment islands. First, small and isolated islands might consist of similar or closely related species because they are environmentally homogeneous or select for certain shared traits, such as dispersal ability. Alternatively, communities on small islands might contain more dissimilar or distantly related species than on large islands because limited space and resource availability result in greater competitive exclusion among species with high niche overlap. Breeding birds were surveyed on 36 islands and two mainland sites annually from 2010 to 2014 in the Thousand Island Lake region, China. We assessed community structure of breeding birds on these subtropical land-bridge islands by integrating species' trait and evolutionary distances. We additionally analysed habitat heterogeneity and variance in size ratios to distinguish biotic and abiotic processes of community assembly. Results showed that functional-phylogenetic diversity increased with island area, and decreased with isolation. Bird communities on the mainland were more diverse and generally less clustered than island bird communities and not different than randomly assembled communities. Bird communities on islands tend to be functionally similar and phylogenetically clustered, especially on small and isolated islands. The nonrandom decline in species diversity and change in bird community structure with island area and isolation, along with the relatively homogeneous habitats on small islands, support the environmental

  3. Rickettsiae, protozoa, and opisthokonta/metazoa.

    PubMed

    Schmutzhard, Erich; Helbok, Raimund

    2014-01-01

    Rhizobiales (formerly named Rickettsiales) cause in rare instances meningitis and meningovasculitis, respectively. In case of history of exposure, infection by Rhizobiales needs to be considered since both diagnosis and therapy may be extremely difficult and pathogen-specific. The same applies to protozoa; in this chapter, Babesia species, free-living amoebae and Entamoeba histolytica infection, including severe meningitis and brain abscess, infection by Trypanosoma species (South American and African trypanosomiasis) are discussed with respect to history, epidemiology, clinical signs, and symptoms as well as differential diagnosis and therapy. Parasitic flatworms and roundworms, potentially able to invade the central nervous system, trematodes (flukes), cestodes (in particular, Cysticercus cellulosae), but also nematodes (in particular, Strongyloides spp. in the immunocompromised) are of worldwide importance. In contrast, filarial worms, Toxocara spp., Trichinella spp., Gnathostoma and Angiostrongylus spp. are seen only in certain geographically confined areas. Even more regionally confined are infestations of the central nervous system by metazoa, in particular, tongue worms (=arthropods) or larvae of flies (=maggots). The aim of this chapter is (1) to alert the neurologist to these infections, and (2) to enable the attending emergency neurologist to take a knowledgeable history, with an emphasis on epidemiology, clinical signs, and symptoms as well as therapeutic management possibilities.

  4. Distributed network management in the flat structured mobile communities

    NASA Astrophysics Data System (ADS)

    Balandina, Elena

    2005-10-01

    Delivering proper management into the flat structured mobile communities is crucial for improving users experience and increase applications diversity in mobile networks. The available P2P applications do application-centric management, but it cannot replace network-wide management, especially when a number of different applications are used simultaneously in the network. The network-wide management is the key element required for a smooth transition from standalone P2P applications to the self-organizing mobile communities that maintain various services with quality and security guaranties. The classical centralized network management solutions are not applicable in the flat structured mobile communities due to the decentralized nature and high mobility of the underlying networks. Also the basic network management tasks have to be revised taking into account specialties of the flat structured mobile communities. The network performance management becomes more dependent on the current nodes' context, which also requires extension of the configuration management functionality. The fault management has to take into account high mobility of the network nodes. The performance and accounting managements are mainly targeted in maintain an efficient and fair access to the resources within the community, however they also allow unbalanced resource use of the nodes that explicitly permit it, e.g. as a voluntary donation to the community or due to the profession (commercial) reasons. The security management must implement the new trust models, which are based on the community feedback, professional authorization, and a mix of both. For fulfilling these and another specialties of the flat structured mobile communities, a new network management solution is demanded. The paper presents a distributed network management solution for flat structured mobile communities. Also the paper points out possible network management roles for the different parties (e.g. operators, service

  5. Local Factors Determine Plant Community Structure on Closely Neighbored Islands

    PubMed Central

    Lu, Jianbo; Jiang, Lin; Yu, Lin; Sun, Que

    2011-01-01

    Despite the recent popularity of the metacommunity concept, ecologists have not evaluated the applicability of different metacommunity frameworks to insular organisms. We surveyed 50 closely spaced islands in the Thousand-Island Lake of China to examine the role of local (environmental) and regional (dispersal) factors in structuring woody plant assemblages (tree and shrub species) on these islands. By partitioning the variation in plant community structure into local and regional causes, we showed that local environmental conditions, specifically island morphometric characteristics, accounted for the majority of the variation in plant community structure among the studied islands. Spatial variables, representing the potential importance of species dispersal, explained little variation. We conclude that one metacommunity framework–species sorting–best characterizes these plant communities. This result reinforces the idea that the traditional approach of emphasizing the local perspective when studying ecological communities continues to hold its value. PMID:21572960

  6. Measuring robustness of community structure in complex networks

    NASA Astrophysics Data System (ADS)

    Li, Hui-Jia; Wang, Hao; Chen, Luonan

    2014-12-01

    The theory of community structure is a powerful tool for real networks, which can simplify their topological and functional analysis considerably. However, since community detection methods have random factors and real social networks derived from complex systems always contain error edges, evaluating the robustness of community structure is an urgent and important task. In this letter, we employ the critical threshold of resolution parameter in Hamiltonian function, γC , to measure the robustness of a network. According to spectral theory, a rigorous proof shows that the index we proposed is inversely proportional to robustness of community structure. Furthermore, by utilizing the co-evolution model, we provides a new efficient method for computing the value of γC . The research can be applied to broad clustering problems in network analysis and data mining due to its solid mathematical basis and experimental effects.

  7. Jellyfish Modulate Bacterial Dynamic and Community Structure

    PubMed Central

    Tinta, Tinkara; Kogovšek, Tjaša; Malej, Alenka; Turk, Valentina

    2012-01-01

    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom - forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish - enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to ‘jellyfish - associated’ and ‘free - living’ bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into

  8. Jellyfish modulate bacterial dynamic and community structure.

    PubMed

    Tinta, Tinkara; Kogovšek, Tjaša; Malej, Alenka; Turk, Valentina

    2012-01-01

    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom-forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish-enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to 'jellyfish-associated' and 'free-living' bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into possible changes in

  9. Environmental control of the microfaunal community structure in tropical bromeliads.

    PubMed

    Kratina, Pavel; Petermann, Jana S; Marino, Nicholas A C; MacDonald, Andrew A M; Srivastava, Diane S

    2017-03-01

    Ecological communities hosted within phytotelmata (plant compartments filled with water) provide an excellent opportunity to test ecological theory and to advance our understanding of how local and global environmental changes affect ecosystems. However, insights from bromeliad phytotelmata communities are currently limited by scarce accounts of microfauna assemblages, even though these assemblages are critical in transferring, recycling, and releasing nutrients in these model ecosystems. Here, we analyzed natural microfaunal communities in leaf compartments of 43 bromeliads to identify the key environmental filters underlying their community structures. We found that microfaunal community richness and abundance were negatively related to canopy openness and vertical height above the ground. These associations were primarily driven by the composition of amoebae and flagellate assemblages and indicate the importance of bottom-up control of microfauna in bromeliads. Taxonomic richness of all functional groups followed a unimodal relationship with water temperature, peaking at 23-25°C and declining below and above this relatively narrow thermal range. This suggests that relatively small changes in water temperature under expected future climate warming may alter taxonomic richness and ecological structure of these communities. Our findings improve the understanding of this unstudied but crucial component of bromeliad ecosystems and reveal important environmental filters that likely contribute to overall bromeliad community structure and function.

  10. Community structure affects trophic ontogeny in a predatory fish.

    PubMed

    Sánchez-Hernández, Javier; Eloranta, Antti P; Finstad, Anders G; Amundsen, Per-Arne

    2017-01-01

    While most studies have focused on the timing and nature of ontogenetic niche shifts, information is scarce about the effects of community structure on trophic ontogeny of top predators. We investigated how community structure affects ontogenetic niche shifts (i.e., relationships between body length, trophic position, and individual dietary specialization) of a predatory fish, brown trout (Salmo trutta). We used stable isotope and stomach content analyses to test how functional characteristics of lake fish community compositions (competition and prey availability) modulate niche shifts in terms of (i) piscivorous behavior, (ii) trophic position, and (iii) individual dietary specialization. Northern Scandinavian freshwater fish communities were used as a study system, including nine subarctic lakes with contrasting fish community configurations: (i) trout-only systems, (ii) two-species systems (brown trout and Arctic charr [Salvelinus alpinus] coexisting), and (iii) three-species systems (brown trout, Arctic charr, and three-spined sticklebacks [Gasterosteus aculeatus] coexisting). We expected that the presence of profitable small prey (stickleback) and mixed competitor-prey fish species (charr) supports early piscivory and high individual dietary specialization among trout in multispecies communities, whereas minor ontogenetic shifts were expected in trout-only systems. From logistic regression models, the presence of a suitable prey fish species (stickleback) emerged as the principal variable determining the size at ontogenetic niche shifts. Generalized additive mixed models indicated that fish community structure shaped ontogenetic niche shifts in trout, with the strongest positive relationships between body length, trophic position, and individual dietary specialization being observed in three-species communities. Our findings revealed that the presence of a small-sized prey fish species (stickleback) rather than a mixed competitor-prey fish species (charr) was

  11. Measuring the significance of community structure in complex networks

    NASA Astrophysics Data System (ADS)

    Hu, Yanqing; Nie, Yuchao; Yang, Hua; Cheng, Jie; Fan, Ying; di, Zengru

    2010-12-01

    Many complex systems can be represented as networks, and separating a network into communities could simplify functional analysis considerably. Many approaches have recently been proposed to detect communities, but a method to determine whether the detected communities are significant is still lacking. In this paper, an index to evaluate the significance of communities in networks is proposed based on perturbation of the network. In contrast to previous approaches, the network is disturbed gradually, and the index is defined by integrating all of the similarities between the community structures before and after perturbation. Moreover, by taking the null model into account, the index eliminates scale effects. Thus, it can evaluate and compare the significance of communities in different networks. The method has been tested in many artificial and real-world networks. The results show that the index is in fact independent of the size of the network and the number of communities. With this approach, clear communities are found to always exist in social networks, but significant communities cannot be found in protein interactions and metabolic networks.

  12. Linking community size structure and ecosystem functioning using metabolic theory.

    PubMed

    Yvon-Durocher, Gabriel; Allen, Andrew P

    2012-11-05

    Understanding how biogeochemical cycles relate to the structure of ecological communities is a central research question in ecology. Here we approach this problem by focusing on body size, which is an easily measured species trait that has a pervasive influence on multiple aspects of community structure and ecosystem functioning. We test the predictions of a model derived from metabolic theory using data on ecosystem metabolism and community size structure. These data were collected as part of an aquatic mesocosm experiment that was designed to simulate future environmental warming. Our analyses demonstrate significant linkages between community size structure and ecosystem functioning, and the effects of warming on these links. Specifically, we show that carbon fluxes were significantly influenced by seasonal variation in temperature, and yielded activation energies remarkably similar to those predicted based on the temperature dependencies of individual-level photosynthesis and respiration. We also show that community size structure significantly influenced fluxes of ecosystem respiration and gross primary production, particularly at the annual time-scale. Assessing size structure and the factors that control it, both empirically and theoretically, therefore promises to aid in understanding links between individual organisms and biogeochemical cycles, and in predicting the responses of key ecosystem functions to future environmental change.

  13. Microbial community structure of a freshwater system receiving wastewater effluent.

    PubMed

    Hladilek, Matthew D; Gaines, Karen F; Novak, James M; Collard, David A; Johnson, Daniel B; Canam, Thomas

    2016-11-01

    Despite our dependency on treatment facilities to condition wastewater for eventual release to the environment, our knowledge regarding the effects of treated water on the local watershed is extremely limited. Responses of lotic systems to the treated wastewater effluent have been traditionally investigated by examining the benthic macroinvertebrate assemblages and community structure; however, these studies do not address the microbial diversity of the water systems. In the present study, planktonic and benthic bacterial community structure were examined at 14 sites (from 60 m upstream to 12,100 m downstream) and at two time points along an aquatic system receiving treated effluent from the Charleston Wastewater Treatment Plant (Charleston, IL). Total bacterial DNA was isolated and 16S rRNA sequences were analyzed using a metagenomics platform. The community structure in planktonic bacterial communities was significantly correlated with dissolved oxygen concentration. Benthic bacterial communities were not correlated with water quality but did have a significant geographic structuring. A local restructuring effect was observed in both planktonic and benthic communities near the treated wastewater effluent, which was characterized by an increase in abundance of sphingobacteria. Sites further downstream from the wastewater facility appeared to be less influenced by the effluent. Overall, the present study demonstrated the utility of targeted high-throughput sequencing as a tool to assess the effects of treated wastewater effluent on a receiving water system, and highlighted the potential for this technology to be used for routine monitoring by wastewater facilities.

  14. Measuring the robustness of network community structure using assortativity

    PubMed Central

    Shizuka, Daizaburo; Farine, Damien R.

    2016-01-01

    The existence of discrete social clusters, or ‘communities’, is a common feature of social networks in human and nonhuman animals. The level of such community structure in networks is typically measured using an index of modularity, Q. While modularity quantifies the degree to which individuals associate within versus between social communities and provides a useful measure of structure in the social network, it assumes that the network has been well sampled. However, animal social network data is typically subject to sampling errors. In particular, the associations among individuals are often not sampled equally, and animal social network studies are often based on a relatively small set of observations. Here, we extend an existing framework for bootstrapping network metrics to provide a method for assessing the robustness of community assignment in social networks using a metric we call community assortativity (rcom). We use simulations to demonstrate that modularity can reliably detect the transition from random to structured associations in networks that differ in size and number of communities, while community assortativity accurately measures the level of confidence based on the detectability of associations. We then demonstrate the use of these metrics using three publicly available data sets of avian social networks. We suggest that by explicitly addressing the known limitations in sampling animal social network, this approach will facilitate more rigorous analyses of population-level structural patterns across social systems. PMID:26949266

  15. The Effects of Structured Transfer Pathways in Community Colleges

    ERIC Educational Resources Information Center

    Baker, Rachel

    2016-01-01

    Most of the students who set out to earn degrees in community colleges never do. Interventions that simplify the complex organizational structures of these schools are promising solutions to this problem. This article is the first to provide rigorous evidence of the effects of structured transfer programs, one such intervention. Leveraging the…

  16. Alternative community structures in a kelp-urchin community: A qualitative modeling approach

    USGS Publications Warehouse

    Montano-Moctezuma, G.; Li, H.W.; Rossignol, P.A.

    2007-01-01

    Shifts in interaction patterns within a community may result from periodic disturbances and climate. The question arises as to the extent and significance of these shifting patterns. Using a novel approach to link qualitative mathematical models and field data, namely using the inverse matrix to identify the community matrix, we reconstructed community networks from kelp forests off the Oregon Coast. We simulated all ecologically plausible interactions among community members, selected the models whose outcomes match field observations, and identified highly frequent links to characterize the community network from a particular site. We tested all possible biologically reasonable community networks through qualitative simulations, selected those that matched patterns observed in the field, and further reduced the set of possibilities by retaining those that were stable. We found that a community can be represented by a set of alternative structures, or scenarios. From 11,943,936 simulated models, 0.23% matched the field observations; moreover, only 0.006%, or 748 models, were highly reliable in their predictions and met conditions for stability. Predator-prey interactions as well as non-predatory relationships were consistently found in most of the 748 models. These highly frequent connections were useful to characterize the community network in the study site. We suggest that alternative networks provide the community with a buffer to disturbance, allowing it to continuously reorganize to adapt to a variable environment. This is possible due to the fluctuating capacities of foraging species to consume alternate resources. This suggestion is sustained by our results, which indicate that none of the models that matched field observations were fully connected. This plasticity may contribute to the persistence of these communities. We propose that qualitative simulations represent a powerful technique to raise new hypotheses concerning community dynamics and to

  17. Community structures and role detection in music networks

    NASA Astrophysics Data System (ADS)

    Teitelbaum, T.; Balenzuela, P.; Cano, P.; Buldú, Javier M.

    2008-12-01

    We analyze the existence of community structures in two different social networks using data obtained from similarity and collaborative features between musical artists. Our analysis reveals some characteristic organizational patterns and provides information about the driving forces behind the growth of the networks. In the similarity network, we find a strong correlation between clusters of artists and musical genres. On the other hand, the collaboration network shows two different kinds of communities: rather small structures related to music bands and geographic zones, and much bigger communities built upon collaborative clusters with a high number of participants related through the period the artists were active. Finally, we detect the leading artists inside their corresponding communities and analyze their roles in the network by looking at a few topological properties of the nodes.

  18. Habitat, topographical, and geographical components structuring shrubsteppe bird communities

    USGS Publications Warehouse

    Knick, S.T.; Rotenberry, J.T.; Leu, M.

    2008-01-01

    Landscapes available to birds to select for breeding locations are arrayed along multiple dimensions. Identifying the primary gradients structuring shrubsteppe bird communities in the western United States is important because widespread habitat loss and alteration are shifting the environmental template on which these birds depend. We integrated field habitat surveys, GIS coverages, and bird counts from 61 Breeding Bird Survey routes located in shrubsteppe habitats across a >800 000 km2 region to determine the gradients of habitat, topography, and geography underlying bird communities. A small set of habitat features dominated the primary environmental gradients in a canonical ordination; the 13 species in the shrubsteppe bird community were closely packed along the first two axes. Using hierarchical variance partitioning, we identified habitat as the most important pure (31% explained variation) or shared component. Topography (9%) and geography (4%) were minor components but each shared a larger contribution with habitat (habitat-topography 21%; habitat-geography 22%) in explaining the organization of the bird community. In a second tier partition of habitat structure, pure composition (% land cover) was more important (45%) than configuration (patch size and edge) (7%); the two components shared 27% of the explained variation in the bird community axes. Local (9%), community (14%), and landscape (10%) levels contributed equally. Adjacent organizational levels had a larger shared contribution (local-community 26%; community-landscape 27%) than more separated local-landscape levels (21%). Extensive conversion of shrubsteppe habitats to agriculture, exotic annual grasslands, or pinyon (Pinus spp.)-juniper (Juniperus spp.) woodlands is occurring along the primary axes of habitat structure. Because the shrubsteppe bird community was organized along short gradients dominated by habitat features, relatively small shifts in their available environment will exert a

  19. Change in Fish Community Structure in the Barents Sea

    PubMed Central

    Aschan, Michaela; Fossheim, Maria; Greenacre, Michael; Primicerio, Raul

    2013-01-01

    Change in oceanographic conditions causes structural alterations in marine fish communities, but this effect may go undetected as most monitoring programs until recently mainly have focused on oceanography and commercial species rather than on whole ecosystems. In this paper, the objective is to describe the spatial and temporal changes in the Barents Sea fish community in the period 1992–2004 while taking into consideration the observed abundance and biodiversity patterns for all 82 observed fish species. We found that the spatial structure of the Barents Sea fish community was determined by abiotic factors such as temperature and depth. The observed species clustered into a deep assemblage, a warm water southern assemblage, both associated with Atlantic water, and a cold water north-eastern assemblage associated with mixed water. The latitude of the cold water NE and warm water S assemblages varied from year to year, but no obvious northward migration was observed over time. In the period 1996–1999 we observed a significant reduction in total fish biomass, abundance, mean fish weight, and a change in community structure including an increase in the pelagic/demersal ratio. This change in community structure is probably due to extremely cold conditions in 1996 impacting on a fish community exposed to historically high fishing rates. After 1999 the fish community variables such as biomass, abundance, mean weight, P/D ratio as well as community composition did not return to levels of the early 90s, although fishing pressure and climatic conditions returned to earlier levels. PMID:23658646

  20. Experimental sulfate amendment alters peatland bacterial community structure.

    PubMed

    Strickman, R J S; Fulthorpe, R R; Coleman Wasik, J K; Engstrom, D R; Mitchell, C P J

    2016-10-01

    As part of a long-term, peatland-scale sulfate addition experiment, the impact of varying sulfate deposition on bacterial community responses was assessed using 16S tag encoded pyrosequencing. In three separate areas of the peatland, sulfate manipulations included an eight year quadrupling of atmospheric sulfate deposition (experimental), a 3-year recovery to background deposition following 5years of elevated deposition (recovery), and a control area. Peat concentrations of methylmercury (MeHg), a bioaccumulative neurotoxin, were measured, the production of which is attributable to a growing list of microorganisms, including many sulfate-reducing Deltaproteobacteria. The total bacterial and Deltaproteobacterial community structures in the experimental treatment differed significantly from those in the control and recovery treatments that were either indistinguishable or very similar to one another. Notably, the relatively rapid return (within three years) of bacterial community structure in the recovery treatment to a state similar to the control, demonstrates significant resilience of the peatland bacterial community to changes in atmospheric sulfate deposition. Changes in MeHg accumulation between sulfate treatments correlated with changes in the Deltaproteobacterial community, suggesting that sulfate may affect MeHg production through changes in the community structure of this group.

  1. Gap formation following climatic events in spatially structured plant communities

    PubMed Central

    Liao, Jinbao; De Boeck, Hans J.; Li, Zhenqing; Nijs, Ivan

    2015-01-01

    Gaps play a crucial role in maintaining species diversity, yet how community structure and composition influence gap formation is still poorly understood. We apply a spatially structured community model to predict how species diversity and intraspecific aggregation shape gap patterns emerging after climatic events, based on species-specific mortality responses. In multispecies communities, average gap size and gap-size diversity increased rapidly with increasing mean mortality once a mortality threshold was exceeded, greatly promoting gap recolonization opportunity. This result was observed at all levels of species richness. Increasing interspecific difference likewise enhanced these metrics, which may promote not only diversity maintenance but also community invasibility, since more diverse niches for both local and exotic species are provided. The richness effects on gap size and gap-size diversity were positive, but only expressed when species were sufficiently different. Surprisingly, while intraspecific clumping strongly promoted gap-size diversity, it hardly influenced average gap size. Species evenness generally reduced gap metrics induced by climatic events, so the typical assumption of maximum evenness in many experiments and models may underestimate community diversity and invasibility. Overall, understanding the factors driving gap formation in spatially structured assemblages can help predict community secondary succession after climatic events. PMID:26114803

  2. Temporary and permanent wetland macroinvertebrate communities: Phylogenetic structure through time

    NASA Astrophysics Data System (ADS)

    Silver, Carly A.; Vamosi, Steven M.; Bayley, Suzanne E.

    2012-02-01

    Water permanence has been previously identified as an important factor affecting macroinvertebrate diversity and abundance in wetlands. Here, we repeatedly sampled the macroinvertebrate communities in 16 permanent and 14 temporary wetlands in Alberta, Canada. Temporary wetlands were predicted to have more closely related taxa and reduced species richness due to the specialized adaptations required to survive in a temporary habitat. We analyzed the species richness (SR) and phylogenetic structure of communities, focusing on three measures of relatedness: Phylogenetic Distance (PD), Net Related Index (NRI) and Nearest Taxon Index (NTI). We also examined the influence of taxonomic scale on resulting phylogenetic structure. Overall, taxa were more diverse and abundant in permanent wetlands. As expected, PD and SR were greatest in permanent wetlands. NTI and NRI metrics suggest permanent wetland communities are primarily structured by biotic interactions, such as competition and predation. Conversely, temporary wetland communities appear to be affected more by environmental filtering, with fewer groups being able to survive and reproduce in the relatively limited time that these environments contain water. Insect and dipteran assemblages differed from the patterns found when examining all taxa together for communities for both permanent and temporary wetlands, tending to become more phylogenetically clustered as the season progressed. Conversely, lophotrochozoan and gastropod assemblages closely matched the patterns observed for full communities in permanent wetlands, suggesting a role for biotic interactions. Given the contrasting patterns observed for permanent and temporary wetlands, macroinvertebrate diversity at the landscape level may be best conserved by maintaining both habitat types.

  3. Graph spectra and the detectability of community structure in networks.

    PubMed

    Nadakuditi, Raj Rao; Newman, M E J

    2012-05-04

    We study networks that display community structure--groups of nodes within which connections are unusually dense. Using methods from random matrix theory, we calculate the spectra of such networks in the limit of large size, and hence demonstrate the presence of a phase transition in matrix methods for community detection, such as the popular modularity maximization method. The transition separates a regime in which such methods successfully detect the community structure from one in which the structure is present but is not detected. By comparing these results with recent analyses of maximum-likelihood methods, we are able to show that spectral modularity maximization is an optimal detection method in the sense that no other method will succeed in the regime where the modularity method fails.

  4. DNA evidence for global dispersal and probable endemicity of protozoa

    PubMed Central

    Bass, David; Richards, Thomas A; Matthai, Lena; Marsh, Victoria; Cavalier-Smith, Thomas

    2007-01-01

    Background It is much debated whether microbes are easily dispersed globally or whether they, like many macro-organisms, have historical biogeographies. The ubiquitous dispersal hypothesis states that microbes are so numerous and so easily dispersed worldwide that all should be globally distributed and found wherever growing conditions suit them. This has been broadly upheld for protists (microbial eukaryotes) by most morphological and some molecular analyses. However, morphology and most previously used evolutionary markers evolve too slowly to test this important hypothesis adequately. Results Here we use a fast-evolving marker (ITS1 rDNA) to map global diversity and distribution of three different clades of cercomonad Protozoa (Eocercomonas and Paracercomonas: phylum Cercozoa) by sequencing multiple environmental gene libraries constructed from 47–80 globally-dispersed samples per group. Even with this enhanced resolution, identical ITS sequences (ITS-types) were retrieved from widely separated sites and on all continents for several genotypes, implying relatively rapid global dispersal. Some identical ITS-types were even recovered from both marine and non-marine samples, habitats that generally harbour significantly different protist communities. Conversely, other ITS-types had either patchy or restricted distributions. Conclusion Our results strongly suggest that geographic dispersal in macro-organisms and microbes is not fundamentally different: some taxa show restricted and/or patchy distributions while others are clearly cosmopolitan. These results are concordant with the 'moderate endemicity model' of microbial biogeography. Rare or continentally endemic microbes may be ecologically significant and potentially of conservational concern. We also demonstrate that strains with identical 18S but different ITS1 rDNA sequences can differ significantly in terms of morphological and important physiological characteristics, providing strong additional support for

  5. Observing and modelling phytoplankton community structure in the North Sea

    NASA Astrophysics Data System (ADS)

    Ford, David A.; van der Molen, Johan; Hyder, Kieran; Bacon, John; Barciela, Rosa; Creach, Veronique; McEwan, Robert; Ruardij, Piet; Forster, Rodney

    2017-03-01

    Phytoplankton form the base of the marine food chain, and knowledge of phytoplankton community structure is fundamental when assessing marine biodiversity. Policy makers and other users require information on marine biodiversity and other aspects of the marine environment for the North Sea, a highly productive European shelf sea. This information must come from a combination of observations and models, but currently the coastal ocean is greatly under-sampled for phytoplankton data, and outputs of phytoplankton community structure from models are therefore not yet frequently validated. This study presents a novel set of in situ observations of phytoplankton community structure for the North Sea using accessory pigment analysis. The observations allow a good understanding of the patterns of surface phytoplankton biomass and community structure in the North Sea for the observed months of August 2010 and 2011. Two physical-biogeochemical ocean models, the biogeochemical components of which are different variants of the widely used European Regional Seas Ecosystem Model (ERSEM), were then validated against these and other observations. Both models were a good match for sea surface temperature observations, and a reasonable match for remotely sensed ocean colour observations. However, the two models displayed very different phytoplankton community structures, with one better matching the in situ observations than the other. Nonetheless, both models shared some similarities with the observations in terms of spatial features and inter-annual variability. An initial comparison of the formulations and parameterizations of the two models suggests that diversity between the parameter settings of model phytoplankton functional types, along with formulations which promote a greater sensitivity to changes in light and nutrients, is key to capturing the observed phytoplankton community structure. These findings will help inform future model development, which should be coupled

  6. Governance and Management Structures for Community Partnerships: Experiences from the Robert Wood Johnson Foundation's Community Partnerships for Older Adults Program

    ERIC Educational Resources Information Center

    Bolda, Elise J.; Saucier, Paul; Maddux, George L.; Wetle, Terrie; Lowe, Jane Isaacs

    2006-01-01

    Purpose: This article describes early efforts of four community partnerships in Boston, El Paso, Houston, and Milwaukee to address governance and management structures in ways that promote the sustainability of innovative community-based long-term care system improvements. The four communities are grantees of the Community Partnerships for Older…

  7. Preliminary study on applicability of microsatellite DNA primers from parasite protozoa Trypanosoma cruzi in free-living protozoa

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Yu, Yuhe; Shen, Yunfen; Miao, Wei; Feng, Weisong

    2004-04-01

    In this paper, we took the lead in studying on specificity of the microsatellite DNA loci and applicability of microsatellite DNA primers in protozoa. In order to study characters of microsatellites in free-living protozoa, eight microsatellite loci primers developed from Trypanosoma cruzi (MCLE01, SCLE10, MCLE08, SCLE11, MCLF10, MCLG10, MCL03, MCL05) were employed to amplify microsatellite in four free-living protozoa, including Bodo designis, Euglena gracilis FACHB848, Paramecium bruzise and Tetrahymena thermophila BF1. In the amplification systems of P. bruzise, four loci (SCLE10, SCLE11, MCLF10, MCL03) were amplified successfully, and four amplification fragments were in proper size. In genome of E. gracilis FACHB848, five of eight primers brought five clear amplification bands. In B. designis, three (No.4, 5 and 7) of eight loci produced clear and sharp products without stutter bands, whereas no bands appeared in T. thermophila BF1. Further, eight 300 500 bp amplification fragments were cloned and sequenced. Nevertheless, all sequenced products did not contain corresponding microsatellite sequence, although Bodo is in the same order and has the nearest phylogenetic relation with Trypanosoma among these four species. Thus, the microsatellite DNA primers can not be applied among order or more far taxa, and the specificity of microsatellite DNA is very high in protozoa. The results of this study will contribute to our understanding of microsatellite DNA in protozoa.

  8. Phylogenetic plant community structure along elevation is lineage specific

    PubMed Central

    Ndiribe, Charlotte; Pellissier, Loïc; Antonelli, Silvia; Dubuis, Anne; Pottier, Julien; Vittoz, Pascal; Guisan, Antoine; Salamin, Nicolas

    2013-01-01

    The trend of closely related taxa to retain similar environmental preferences mediated by inherited traits suggests that several patterns observed at the community scale originate from longer evolutionary processes. While the effects of phylogenetic relatedness have been previously studied within a single genus or family, lineage-specific effects on the ecological processes governing community assembly have rarely been studied for entire communities or flora. Here, we measured how community phylogenetic structure varies across a wide elevation gradient for plant lineages represented by 35 families, using a co-occurrence index and net relatedness index (NRI). We propose a framework that analyses each lineage separately and reveals the trend of ecological assembly at tree nodes. We found prevailing phylogenetic clustering for more ancient nodes and overdispersion in more recent tree nodes. Closely related species may thus rapidly evolve new environmental tolerances to radiate into distinct communities, while older lineages likely retain inherent environmental tolerances to occupy communities in similar environments, either through efficient dispersal mechanisms or the exclusion of older lineages with more divergent environmental tolerances. Our study illustrates the importance of disentangling the patterns of community assembly among lineages to better interpret the ecological role of traits. It also sheds light on studies reporting absence of phylogenetic signal, and opens new perspectives on the analysis of niche and trait conservatism across lineages. PMID:24455126

  9. Seasonal and Successional Influences on Bacterial Community Composition Exceed That of Protozoan Grazing in River Biofilms

    PubMed Central

    Jürgens, Klaus; Weitere, Markus

    2012-01-01

    The effects of protozoa (heterotrophic flagellates and ciliates) on the morphology and community composition of bacterial biofilms were tested under natural background conditions by applying size fractionation in a river bypass system. Confocal laser scanning microscopy (CLSM) was used to monitor the morphological structure of the biofilm, and fingerprinting methods (single-stranded conformation polymorphism [SSCP] and denaturing gradient gel electrophoresis [DGGE]) were utilized to assess changes in bacterial community composition. Season and internal population dynamics had a greater influence on the bacterial biofilm than the presence of protozoa. Within this general framework, bacterial area coverage and microcolony abundance were nevertheless enhanced by the presence of ciliates (but not by the presence of flagellates). We also found that the richness of bacterial operational taxonomic units was much higher in planktonic founder communities than in the ones establishing the biofilm. Within the first 2 h of colonization of an empty substrate by bacteria, the presence of flagellates additionally altered their biofilm community composition. As the biofilms matured, the number of bacterial operational taxonomic units increased when flagellates were present in high abundances. The additional presence of ciliates tended to at first reduce (days 2 to 7) and later increase (days 14 to 29) bacterial operational taxonomic unit richness. Altogether, the response of the bacterial community to protozoan grazing pressure was small compared to that reported in planktonic studies, but our findings contradict the assumption of a general grazing resistance of bacterial biofilms toward protozoa. PMID:22247162

  10. Studies on protozoa in ancient remains - A Review

    PubMed Central

    Frías, Liesbeth; Leles, Daniela; Araújo, Adauto

    2013-01-01

    Paleoparasitological research has made important contributions to the understanding of parasite evolution and ecology. Although parasitic protozoa exhibit a worldwide distribution, recovering these organisms from an archaeological context is still exceptional and relies on the availability and distribution of evidence, the ecology of infectious diseases and adequate detection techniques. Here, we present a review of the findings related to protozoa in ancient remains, with an emphasis on their geographical distribution in the past and the methodologies used for their retrieval. The development of more sensitive detection methods has increased the number of identified parasitic species, promising interesting insights from research in the future. PMID:23440107

  11. Understanding and mitigating tsunami risk for coastal structures and communities

    NASA Astrophysics Data System (ADS)

    Park, Sangki

    Tsunamis have attracted the world's attention over the last decade due to their destructive power and the vast areas they can affect. The 2004 Indian Ocean Tsunami, killed more than 200,000 people, and the 2011 Great Tohoku Japan Earthquake and Tsunami, resulted in 15,000 deaths and an estimated US $300B in damage, are recent examples. An improved understanding of tsunamis and their interactive effects on the built environment will significantly reduce loss of life in tsunamis. In addition, it is important to consider both the effect of the earthquake ground motion and the tsunami it creates for certain coastal regions. A numerical model to predict structural behavior of buildings subjected to successive earthquakes and the tsunamis was developed. Collapse fragilities for structures were obtained by subjecting a structure to a suite of earthquake ground motions. After each motion the numerically damaged structural model was subjected to tsunami wave loading as defined by FEMA P646. This approach was then extended to the community level; a methodology to determine the probability of fatalities for a community as a function of the number of vertical evacuation shelters was computed. Such an approach also considered the location and number of vertical evacuation sites as an optimization problem. Both the single structure cases and the community analyses were presented in terms of fragilities as a function of the earthquake intensity level and evacuation time available. It is envisioned that the approach may be extended to any type of structure as they are typically modeled nonlinearly with strength and stiffness degradation. A logical fragility-based, or performance-based, procedure for vertical evacuation for coastal buildings and for whole communities was developed. A mechanism to obtain a reduction in the collapse risk of structure and more critically maximize the survival rate for a community was a major outcome of this dissertation. The proposed tsunami vertical

  12. Extinction order and altered community structure rapidly disrupt ecosystem functioning.

    PubMed

    Larsen, Trond H; Williams, Neal M; Kremen, Claire

    2005-05-01

    By causing extinctions and altering community structure, anthropogenic disturbances can disrupt processes that maintain ecosystem integrity. However, the relationship between community structure and ecosystem functioning in natural systems is poorly understood. Here we show that habitat loss appeared to disrupt ecosystem functioning by affecting extinction order, species richness and abundance. We studied pollination by bees in a mosaic of agricultural and natural habitats in California and dung burial by dung beetles on recently created islands in Venezuela. We found that large-bodied bee and beetle species tended to be both most extinction-prone and most functionally efficient, contributing to rapid functional loss. Simulations confirmed that extinction order led to greater disruption of function than predicted by random species loss. Total abundance declined with richness and also appeared to contribute to loss of function. We demonstrate conceptually and empirically how the non-random response of communities to disturbance can have unexpectedly large functional consequences.

  13. Unfold Synchronization Community Structure Using Markov and Spectral Signature

    NASA Astrophysics Data System (ADS)

    Li, Ju; Chen, Diyi; Ma, Xiaoyi; Li, Huijia

    2012-12-01

    Synchronization is a powerful basic rule in nature that regulates a large variety of complex processes, and global synchronization phenomena have been extensively studied for modeling and analyzing the dynamic of systems. Distinct from the existing studies, the work presented here explores the notion of local synchronization phenomenon and their intrinsic properties from the dynamics of a stochastic model defined on a complex network. The relationship between the hierarchical community structure of the network and the local synchronization properties of such a stochastic model has been established based on the famous Kuramoto Model. Critical topological information regarding to the community structures of the network can be inferred from their spectral signatures. Utilizing a novel dynamic system, we have developed an efficient two stages model which can efficiently uncover natural communities hidden in networks in a scalable manner. The effectiveness and efficiency of the algorithm have been theoretically analyzed as well as experimentally validated and it overcomes the inefficiency of the existing methods.

  14. Relating methanogen community structure and anaerobic digester function.

    PubMed

    Bocher, B T W; Cherukuri, K; Maki, J S; Johnson, M; Zitomer, D H

    2015-03-01

    Much remains unknown about the relationships between microbial community structure and anaerobic digester function. However, knowledge of links between community structure and function, such as specific methanogenic activity (SMA) and COD removal rate, are valuable to improve anaerobic bioprocesses. In this work, quantitative structure-activity relationships (QSARs) were developed using multiple linear regression (MLR) to predict SMA using methanogen community structure descriptors for 49 cultures. Community descriptors were DGGE demeaned standardized band intensities for amplicons of a methanogen functional gene (mcrA). First, predictive accuracy of MLR QSARs was assessed using cross validation with training (n = 30) and test sets (n = 19) for glucose and propionate SMA data. MLR equations correlating band intensities and SMA demonstrated good predictability for glucose (q(2) = 0.54) and propionate (q(2) = 0.53). Subsequently, data from all 49 cultures were used to develop QSARs to predict SMA values. Higher intensities of two bands were correlated with higher SMA values; high abundance of methanogens associated with these two bands should be encouraged to attain high SMA values. QSARs are helpful tools to identify key microorganisms or to study and improve many bioprocesses. Development of new, more robust QSARs is encouraged for anaerobic digestion or other bioprocesses, including nitrification, nitritation, denitrification, anaerobic ammonium oxidation, and enhanced biological phosphorus removal.

  15. An Investigation of the Normative Structure for Community College Students

    ERIC Educational Resources Information Center

    Akin, Selenia Renea

    2010-01-01

    This exploratory study was designed to determine if a normative structure exists among a community college student body by extending the work of Caboni, Braxton, Deusterhous, Mundy, McClendon, and Lee (2005). The study also sought to determine if the level of espousal for the norms differed across student characteristics. This study analyzed data…

  16. Family Structure, Community Context, and Adolescent Problem Behaviors

    ERIC Educational Resources Information Center

    Hoffman, John P.

    2006-01-01

    A number of models have been proposed to explain the relationship between family structure and adolescent problem behaviors, including several that consider parent-child relations, family income, stress, and residential mobility. However, studies have not explored whether the different types of communities within which families reside affect the…

  17. Changes in Soil Microbial Community Structure with Flooding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flooding disturbs both above- and below-ground ecosystem processes. Although often ignored, changes in below-ground environments are no less important than those that occur above-ground. Shifts in soil microbial community structure are expected when anaerobic conditions develop from flooding. The ...

  18. A framework for solving ill-structured community problems

    NASA Astrophysics Data System (ADS)

    Keller, William Cotesworth

    A multifaceted protocol for solving ill-structured community problems has been developed. It embodies the lessons learned from the past by refining and extending features of previous models from the systems thinkers, and the fields of behavioral decision making and creative problem solving. The protocol also embraces additional features needed to address the unique aspects of community decision situations. The essential elements of the protocol are participants from the community, a problem-solving process, a systems picture, a facilitator, a modified Delphi method of communications, and technical expertise. This interdisciplinary framework has been tested by a quasi experiment with a real world community problem (the high cost of electrical power on Long Island, NY). Results indicate the protocol can enable members of the community to understand a complicated, ill-structured problem and guide them to action to solve the issue. However, the framework takes time (over one year in the test case) and will be inappropriate for crises where quick action is needed.

  19. The microbial community structure of the cotton rat nose.

    PubMed

    Chaves-Moreno, Diego; Plumeier, Iris; Kahl, Silke; Krismer, Bernhard; Peschel, Andreas; Oxley, Andrew P A; Jauregui, Ruy; Pieper, Dietmar H

    2015-12-01

    The cotton rat nose is commonly used as a model for Staphylococcus aureus colonization, as it is both physiologically and anatomically comparable to the human nares and can be easily colonized by this organism. However, while the colonization of the human anterior nares has been extensively studied, the microbial community structure of cotton rat noses has not been reported so far. We describe here the microbial community structure of the cotton rat (Sigmodon hispidus) nose through next-generation sequencing of 16S rRNA gene amplicons covering the V1-V2 region and the analysis of nearly full length 16S rRNA genes of the major phylotypes. Roughly half of the microbial community was composed of two undescribed species of the genus Campylobacter, with phylotypes belonging to the genera Catonella, Acholeplasma, Streptobacillus and Capnocytophaga constituting the predominant community members. Thus, the nasal community of the cotton rat is uniquely composed of several novel bacterial species and may not reflect the complex interactions that occur in human anterior nares. Mammalian airway microbiota may, however, be a rich source of hitherto unknown microbes.

  20. Multilabel user classification using the community structure of online networks.

    PubMed

    Rizos, Georgios; Papadopoulos, Symeon; Kompatsiaris, Yiannis

    2017-01-01

    We study the problem of semi-supervised, multi-label user classification of networked data in the online social platform setting. We propose a framework that combines unsupervised community extraction and supervised, community-based feature weighting before training a classifier. We introduce Approximate Regularized Commute-Time Embedding (ARCTE), an algorithm that projects the users of a social graph onto a latent space, but instead of packing the global structure into a matrix of predefined rank, as many spectral and neural representation learning methods do, it extracts local communities for all users in the graph in order to learn a sparse embedding. To this end, we employ an improvement of personalized PageRank algorithms for searching locally in each user's graph structure. Then, we perform supervised community feature weighting in order to boost the importance of highly predictive communities. We assess our method performance on the problem of user classification by performing an extensive comparative study among various recent methods based on graph embeddings. The comparison shows that ARCTE significantly outperforms the competition in almost all cases, achieving up to 35% relative improvement compared to the second best competing method in terms of F1-score.

  1. Multilabel user classification using the community structure of online networks

    PubMed Central

    Papadopoulos, Symeon; Kompatsiaris, Yiannis

    2017-01-01

    We study the problem of semi-supervised, multi-label user classification of networked data in the online social platform setting. We propose a framework that combines unsupervised community extraction and supervised, community-based feature weighting before training a classifier. We introduce Approximate Regularized Commute-Time Embedding (ARCTE), an algorithm that projects the users of a social graph onto a latent space, but instead of packing the global structure into a matrix of predefined rank, as many spectral and neural representation learning methods do, it extracts local communities for all users in the graph in order to learn a sparse embedding. To this end, we employ an improvement of personalized PageRank algorithms for searching locally in each user’s graph structure. Then, we perform supervised community feature weighting in order to boost the importance of highly predictive communities. We assess our method performance on the problem of user classification by performing an extensive comparative study among various recent methods based on graph embeddings. The comparison shows that ARCTE significantly outperforms the competition in almost all cases, achieving up to 35% relative improvement compared to the second best competing method in terms of F1-score. PMID:28278242

  2. Structure of Benthic Communities along the Taiwan Latitudinal Gradient

    PubMed Central

    De Palmas, Stéphane; Kuo, Chao-Yang; Hsieh, Hernyi Justin; Chen, Chaolun Allen

    2016-01-01

    The distribution and the structure of benthic assemblages vary with latitude. However, few studies have described benthic communities along large latitudinal gradients, and patterns of variation are not fully understood. Taiwan, lying between 21.90°N and 25.30°N, is located at the center of the Philippine-Japan arc and lies at the northern margin of coral reef development. A wide range of habitats is distributed along this latitudinal gradient, from extensive fringing coral reefs at the southern coast to non-reefal communities at the north. In this study, we examined the structure of benthic communities around Taiwan, by comparing its assemblages in four regions, analyzing the effects of the latitudinal gradient, and highlighting regional characteristics. A total of 25 sites, 125 transects, and 2,625 photographs were used to analyze the benthic communities. Scleractinian corals present an obvious gradient of increasing diversity from north to south, whereas macro-algae diversity is higher on the north-eastern coast. At the country scale, Taiwanese coral communities were dominated by turf algae (49%). At the regional scale, we observed an important heterogeneity that may be caused by local disturbances and habitat degradation that smooths out regional differences. In this context, our observations highlight the importance of managing local stressors responsible for reef degradation. Overall, this study provides an important baseline upon which future changes in benthic assemblages around Taiwan can be assessed. PMID:27513665

  3. Oceanographic structure drives the assembly processes of microbial eukaryotic communities.

    PubMed

    Monier, Adam; Comte, Jérôme; Babin, Marcel; Forest, Alexandre; Matsuoka, Atsushi; Lovejoy, Connie

    2015-03-17

    Arctic Ocean microbial eukaryote phytoplankton form subsurface chlorophyll maximum (SCM), where much of the annual summer production occurs. This SCM is particularly persistent in the Western Arctic Ocean, which is strongly salinity stratified. The recent loss of multiyear sea ice and increased particulate-rich river discharge in the Arctic Ocean results in a greater volume of fresher water that may displace nutrient-rich saltier waters to deeper depths and decrease light penetration in areas affected by river discharge. Here, we surveyed microbial eukaryotic assemblages in the surface waters, and within and below the SCM. In most samples, we detected the pronounced SCM that usually occurs at the interface of the upper mixed layer and Pacific Summer Water (PSW). Poorly developed SCM was seen under two conditions, one above PSW and associated with a downwelling eddy, and the second in a region influenced by the Mackenzie River plume. Four phylogenetically distinct communities were identified: surface, pronounced SCM, weak SCM and a deeper community just below the SCM. Distance-decay relationships and phylogenetic structure suggested distinct ecological processes operating within these communities. In the pronounced SCM, picophytoplanktons were prevalent and community assembly was attributed to water mass history. In contrast, environmental filtering impacted the composition of the weak SCM communities, where heterotrophic Picozoa were more numerous. These results imply that displacement of Pacific waters to greater depth and increased terrigenous input may act as a control on SCM development and result in lower net summer primary production with a more heterotroph dominated eukaryotic microbial community.

  4. Changes in soil bacterial community structure with increasing disturbance frequency.

    PubMed

    Kim, Mincheol; Heo, Eunjung; Kang, Hojeong; Adams, Jonathan

    2013-07-01

    Little is known of the responsiveness of soil bacterial community structure to disturbance. In this study, we subjected a soil microcosm to physical disturbance, sterilizing 90 % of the soil volume each time, at a range of frequencies. We analysed the bacterial community structure using 454 pyrosequencing of the 16S rRNA gene. Bacterial diversity was found to decline with the increasing disturbance frequencies. Total bacterial abundance was, however, higher at intermediate and high disturbance frequencies, compared to low and no-disturbance treatments. Changing disturbance frequency also led to changes in community composition, with changes in overall species composition and some groups becoming abundant at the expense of others. Some phylogenetic groups were found to be relatively more disturbance-sensitive or tolerant than others. With increasing disturbance frequency, phylogenetic species variability (an index of community composition) itself became more variable from one sample to another, suggesting a greater role of chance in community composition. Compared to the tightly clustered community of the original undisturbed soil, in all the aged disturbed soils the lists of most abundant operational taxonomic units (OTUs) in each replicate were very different, suggesting a possible role of stochasticity in resource colonization and exploitation in the aged and disturbed soils. For example, colonization may be affected by whichever localized concentrations of bacterial populations happen to survive the last disturbance and be reincorporated in abundance into each pot. Overall, it appears that the soil bacterial community is very sensitive to physical disturbance, losing diversity, and that certain groups have identifiable 'high disturbance' vs. 'low disturbance' niches.

  5. A seed-expanding method based on random walks for community detection in networks with ambiguous community structures

    PubMed Central

    Su, Yansen; Wang, Bangju; Zhang, Xingyi

    2017-01-01

    Community detection has received a great deal of attention, since it could help to reveal the useful information hidden in complex networks. Although most previous modularity-based and local modularity-based community detection algorithms could detect strong communities, they may fail to exactly detect several weak communities. In this work, we define a network with clear or ambiguous community structures based on the types of its communities. A seed-expanding method based on random walks is proposed to detect communities for networks, especially for the networks with ambiguous community structures. We identify local maximum degree nodes, and detect seed communities in a network. Then, the probability of a node belonging to each community is calculated based on the total probability model and random walks, and each community is expanded by repeatedly adding the node which is most likely to belong to it. Finally, we use the community optimization method to ensure that each node is in a community. Experimental results on both computer-generated and real-world networks demonstrate that the quality of the communities detected by the proposed algorithm is superior to the- state-of-the-art algorithms in the networks with ambiguous community structures. PMID:28157183

  6. A seed-expanding method based on random walks for community detection in networks with ambiguous community structures

    NASA Astrophysics Data System (ADS)

    Su, Yansen; Wang, Bangju; Zhang, Xingyi

    2017-02-01

    Community detection has received a great deal of attention, since it could help to reveal the useful information hidden in complex networks. Although most previous modularity-based and local modularity-based community detection algorithms could detect strong communities, they may fail to exactly detect several weak communities. In this work, we define a network with clear or ambiguous community structures based on the types of its communities. A seed-expanding method based on random walks is proposed to detect communities for networks, especially for the networks with ambiguous community structures. We identify local maximum degree nodes, and detect seed communities in a network. Then, the probability of a node belonging to each community is calculated based on the total probability model and random walks, and each community is expanded by repeatedly adding the node which is most likely to belong to it. Finally, we use the community optimization method to ensure that each node is in a community. Experimental results on both computer-generated and real-world networks demonstrate that the quality of the communities detected by the proposed algorithm is superior to the- state-of-the-art algorithms in the networks with ambiguous community structures.

  7. Fishing degrades size structure of coral reef fish communities.

    PubMed

    Robinson, James P W; Williams, Ivor D; Edwards, Andrew M; McPherson, Jana; Yeager, Lauren; Vigliola, Laurent; Brainard, Russell E; Baum, Julia K

    2017-03-01

    Fishing pressure on coral reef ecosystems has been frequently linked to reductions of large fishes and reef fish biomass. Associated impacts on overall community structure are, however, less clear. In size-structured aquatic ecosystems, fishing impacts are commonly quantified using size spectra, which describe the distribution of individual body sizes within a community. We examined the size spectra and biomass of coral reef fish communities at 38 US-affiliated Pacific islands that ranged in human presence from near pristine to human population centers. Size spectra 'steepened' steadily with increasing human population and proximity to market due to a reduction in the relative biomass of large fishes and an increase in the dominance of small fishes. Reef fish biomass was substantially lower on inhabited islands than uninhabited ones, even at inhabited islands with the lowest levels of human presence. We found that on populated islands size spectra exponents decreased (analogous to size spectra steepening) linearly with declining biomass, whereas on uninhabited islands there was no relationship. Size spectra were steeper in regions of low sea surface temperature but were insensitive to variation in other environmental and geomorphic covariates. In contrast, reef fish biomass was highly sensitive to oceanographic conditions, being influenced by both oceanic productivity and sea surface temperature. Our results suggest that community size structure may be a more robust indicator than fish biomass to increasing human presence and that size spectra are reliable indicators of exploitation impacts across regions of different fish community compositions, environmental drivers, and fisheries types. Size-based approaches that link directly to functional properties of fish communities, and are relatively insensitive to abiotic variation across biogeographic regions, offer great potential for developing our understanding of fishing impacts in coral reef ecosystems.

  8. Use of multiple functional traits of protozoa for bioassessment of marine pollution.

    PubMed

    Zhong, Xiaoxiao; Xu, Guangjian; Xu, Henglong

    2017-03-27

    Ecological parameters based on multiply functional traits have many advantages for monitoring programs by reducing "signal to noise" ratios of observed species data. To identify potential indicators for bioassessment of marine pollution in function space, the functional patterns of protozoan communities and relationships with environmental changes were studied in coastal waters of the Yellow Sea during a 1-year period. The results showed that: (1) the spatial variability in functional trait distributions of the protozoa was significantly associated with changes in environmental variables, especially chemical oxygen demand (COD) and nutrients on spatial scale; (2) the functional traits, especially food resources and feeding type, were significantly correlated with COD and nutrients; and (3) the functional diversity indices were generally related to nutrients or COD. Based on the results, we suggest that the functional traits and diversity indices of protozoan communities may be used as more effective indicators for bioassessment of marine pollution.

  9. Climate and species richness predict the phylogenetic structure of African mammal communities.

    PubMed

    Kamilar, Jason M; Beaudrot, Lydia; Reed, Kaye E

    2015-01-01

    We have little knowledge of how climatic variation (and by proxy, habitat variation) influences the phylogenetic structure of tropical communities. Here, we quantified the phylogenetic structure of mammal communities in Africa to investigate how community structure varies with respect to climate and species richness variation across the continent. In addition, we investigated how phylogenetic patterns vary across carnivores, primates, and ungulates. We predicted that climate would differentially affect the structure of communities from different clades due to between-clade biological variation. We examined 203 communities using two metrics, the net relatedness (NRI) and nearest taxon (NTI) indices. We used simultaneous autoregressive models to predict community phylogenetic structure from climate variables and species richness. We found that most individual communities exhibited a phylogenetic structure consistent with a null model, but both climate and species richness significantly predicted variation in community phylogenetic metrics. Using NTI, species rich communities were composed of more distantly related taxa for all mammal communities, as well as for communities of carnivorans or ungulates. Temperature seasonality predicted the phylogenetic structure of mammal, carnivoran, and ungulate communities, and annual rainfall predicted primate community structure. Additional climate variables related to temperature and rainfall also predicted the phylogenetic structure of ungulate communities. We suggest that both past interspecific competition and habitat filtering have shaped variation in tropical mammal communities. The significant effect of climatic factors on community structure has important implications for the diversity of mammal communities given current models of future climate change.

  10. Uncovering Community Structures with Initialized Bayesian Nonnegative Matrix Factorization

    PubMed Central

    Tang, Xianchao; Xu, Tao; Feng, Xia; Yang, Guoqing

    2014-01-01

    Uncovering community structures is important for understanding networks. Currently, several nonnegative matrix factorization algorithms have been proposed for discovering community structure in complex networks. However, these algorithms exhibit some drawbacks, such as unstable results and inefficient running times. In view of the problems, a novel approach that utilizes an initialized Bayesian nonnegative matrix factorization model for determining community membership is proposed. First, based on singular value decomposition, we obtain simple initialized matrix factorizations from approximate decompositions of the complex network’s adjacency matrix. Then, within a few iterations, the final matrix factorizations are achieved by the Bayesian nonnegative matrix factorization method with the initialized matrix factorizations. Thus, the network’s community structure can be determined by judging the classification of nodes with a final matrix factor. Experimental results show that the proposed method is highly accurate and offers competitive performance to that of the state-of-the-art methods even though it is not designed for the purpose of modularity maximization. PMID:25268494

  11. Community-structure Constraints on Distribution of Physicians

    PubMed Central

    Rushing, William A.; Wade, George T.

    1973-01-01

    The distribution of physicians in the United States by county is compared by regression analysis with that of other professional and technical personnel to demonstrate that this is one aspect of a macrosocioeconomic process tending to favor those communities which have more social and economic advantages. Several programs proposing to modify this distribution are discussed, and it is concluded that such efforts, insofar as they fail to focus on the community structure underlying differential distribution, are unlikely to affect existing trends, and that organizational changes in the medical care system based on the establishment of intercommunity networks would have a greater chance of modifying distributional inequities. PMID:4783752

  12. Molecular and chemical dialogues in bacteria-protozoa interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil-dwelling Pseudomonas fluorescens produce lipopeptide surfactants (LPs) with broad-spectrum antimicrobial activities. Recent studies suggested that LPs provide protection to P. fluorescens strain SS101 against grazing by the predatory protozoa Naegleria americana, both in vitro and in rhizospher...

  13. Detection of some intestinal protozoa in commercial fresh juices.

    PubMed

    Mossallam, Shereen F

    2010-04-01

    Fresh fruit juices are popular, but not always safe. For assessing the likelihood of infection with newly emerging intestinal protozoa, commercial fresh orange, lemon, sugar cane, strawberry, and mango juices were screened by wet mounts, Weber's modified trichrome and modified Ziehl-Neelsen stains. Protozoa viability was done by fluorescein-diacetate/propidium-iodide staining, and infectivity was performed in Swiss albino mice. Results showed that 35.43% were contaminated with one or more of Cryptosporidia, Microsporidia, and Cyclospora, as well as Giardia spp. Strawberry was the most contaminated juice (54.28%), while orange was the slightest (22.86%). Cryptosporidia was the highest contaminant (61.29%), and Cyclospora was the least (14.52%). Microsporidia spp. was the most robust contaminant which retained its viability and infectivity in juices in which it was detected. Moderately acidic strawberry and mango juices and alkaline sugar cane juice pose a possible threat, due to harboring the highest viable and infectious protozoa. Regarding highly acidic juices, viability and infectivity decreased in lemon, yet was not still risk free. Orange juice was comparatively safe, as viability dramatically declined, while infectivity was completely abolished. Hence consumers, especially high risk group, are placed at hazard of contracting intestinal protozoa infections, especially through moderately acidic and alkaline juices.

  14. Sheep fed with banana leaf hay reduce ruminal protozoa population.

    PubMed

    Freitas, Cláudio Eduardo Silva; Duarte, Eduardo Robson; Alves, Dorismar David; Martinele, Isabel; D'Agosto, Marta; Cedrola, Franciane; de Moura Freitas, Angélica Alves; Dos Santos Soares, Franklin Delano; Beltran, Makenzi

    2017-04-01

    A ciliate protozoa suppression can reduce methane production increasing the energy efficiency utilization by ruminants. The physicochemical characteristics of rumen fluid and the profile of the rumen protozoa populations were evaluated for sheep fed banana leaf hay in replacement of the Cynodon dactylon cv. vaqueiro hay. A total of 30 male sheep were raised in intensive system during 15 days of adaptation and 63 days of experimental period. The animals were distributed in a completely randomized design that included six replicates of five treatments with replacement levels (0, 25, 50, 75, and 100%) of the grass vaquero for the banana leaf hay. Samples of fluid were collected directly from the rumen with sterile catheters. Color, odor, viscosity, and the methylene blue reduction potential (MBRP) were evaluated and pH estimated using a digital potentiometer. After decimal dilutions, counts of genus protozoa were performed in Sedgewick Rafter chambers. The averages of pH, MBRP, color, odor, and viscosity were not influenced by the inclusion of the banana leaf hay. However, the total number of protozoa and Entodinium spp. population significantly decreased at 75 and 100% inclusions of banana leaf hay as roughage.

  15. Animals of the Sea: Coelenterates, Protozoa, and Sponges.

    ERIC Educational Resources Information Center

    Awkerman, Gary L.

    These three units are designed for use with standard science curricula. These publications, relating to animals of the sea, are: Protozoa, Sponges, and Coelenterates. Included are teacher guides, student activities, and demonstrations designed to impart ocean science understanding to high school students. Objectives to be attained from the unit on…

  16. Alternative mounting media for preservation of some protozoa.

    PubMed

    Criado-Fornelio, A; Heredero-Bermejo, I; Pérez-Serrano, J

    2014-10-01

    Protozoa resistant stages are disintegrated when mounted in toluene-based media. To overcome such problem, three toluene-free mountants were tested on preserve Acanthamoeba spp and gregarines. Two commercial glues based on cyanoacrylate or trimethoxysilane were suitable for preserving both cysts and trophozoites. Hoyer's medium showed good results for mounting gregarine oocysts.

  17. Enteric Protozoa in the Developed World: a Public Health Perspective

    PubMed Central

    Fletcher, Stephanie M.; Stark, Damien; Harkness, John

    2012-01-01

    Summary: Several enteric protozoa cause severe morbidity and mortality in both humans and animals worldwide. In developed settings, enteric protozoa are often ignored as a cause of diarrheal illness due to better hygiene conditions, and as such, very little effort is used toward laboratory diagnosis. Although these protozoa contribute to the high burden of infectious diseases, estimates of their true prevalence are sometimes affected by the lack of sensitive diagnostic techniques to detect them in clinical and environmental specimens. Despite recent advances in the epidemiology, molecular biology, and treatment of protozoan illnesses, gaps in knowledge still exist, requiring further research. There is evidence that climate-related changes will contribute to their burden due to displacement of ecosystems and human and animal populations, increases in atmospheric temperature, flooding and other environmental conditions suitable for transmission, and the need for the reuse of alternative water sources to meet growing population needs. This review discusses the common enteric protozoa from a public health perspective, highlighting their epidemiology, modes of transmission, prevention, and control. It also discusses the potential impact of climate changes on their epidemiology and the issues surrounding waterborne transmission and suggests a multidisciplinary approach to their prevention and control. PMID:22763633

  18. Detection of Protozoa in Surface and Finished Waters

    EPA Science Inventory

    Humans are known to be the host to approximately 1500 infectious agents, out of which 66 are protozoa and 287 are helminths. Therefore, from a global perspective helminths and protozoan parasites account for approximately one fourth of the total infectious diseases of humans. A s...

  19. Impacts of Size Structure on Intraguild Predation in Pond Communities

    NASA Astrophysics Data System (ADS)

    Crumrine, P. W.

    2005-05-01

    Size structure, the degree to which individuals in a population vary in size, can greatly influence the dynamics of intraguild predation (IGP) within ecological communities. I manipulated the degree of size structure within assemblages of IG predators and IG prey to examine impacts on the direction and intensity of IGP in communities of larval dragonflies and larval water beetles. In pond enclosure studies, Pachydiplax longipennis (IG prey) mortality was lower when exposed to size structured assemblages of Anax junius (IG predator) than when exposed to only large A. junius at the same density. Effects of size-structured assemblages of A. junius on shared prey, Ischnura verticalis, were similar to the effects each size class alone at the same density. Separate experiments with Dytiscid water beetle larvae as IG predators and size-structured assemblages of A. junius as IG prey suggest that IG prey size structure plays only a limited role in mediating shared prey survival. These experiments highlight the importance of size structure as a characteristic that may promote the coexistence of predators in IGP systems.

  20. Phylogenetic structure of angiosperm communities during tropical forest succession.

    PubMed

    Letcher, Susan G

    2010-01-07

    The phylogenetic structure of ecological communities can shed light on assembly processes, but the focus of phylogenetic structure research thus far has been on mature ecosystems. Here, I present the first investigation of phylogenetic community structure during succession. In a replicated chronosequence of 30 sites in northeastern Costa Rica, I found strong phylogenetic overdispersion at multiple scales: species present at local sites were a non-random assemblage, more distantly related than chance would predict. Phylogenetic overdispersion was evident when comparing the species present at each site with the regional species pool, the species pool found in each age category to the regional pool or the species present at each site to the pool of species found in sites of that age category. Comparing stem size classes within each age category, I found that during early succession, phylogenetic overdispersion is strongest in small stems. Overdispersion strengthens and spreads into larger size classes as succession proceeds, corroborating an existing model of forest succession. This study is the first evidence that succession leaves a distinct signature in the phylogenetic structure of communities.

  1. Redox Fluctuation Structures Microbial Communities in a Wet Tropical Soil

    PubMed Central

    Pett-Ridge, J.; Firestone, M. K.

    2005-01-01

    Frequent high-amplitude redox fluctuation may be a strong selective force on the phylogenetic and physiological composition of soil bacterial communities and may promote metabolic plasticity or redox tolerance mechanisms. To determine effects of fluctuating oxygen regimens, we incubated tropical soils under four treatments: aerobic, anaerobic, 12-h oxic/anoxic fluctuation, and 4-day oxic/anoxic fluctuation. Changes in soil bacterial community structure and diversity were monitored with terminal restriction fragment length polymorphism (T-RFLP) fingerprints. These profiles were correlated with gross N cycling rates, and a Web-based phylogenetic assignment tool was used to infer putative community composition from multiple fragment patterns. T-RFLP ordinations indicated that bacterial communities from 4-day oxic/anoxic incubations were most similar to field communities, whereas those incubated under consistently aerobic or anaerobic regimens developed distinctly different molecular profiles. Terminal fragments found in field soils persisted either in 4-day fluctuation/aerobic conditions or in anaerobic/12-h treatments but rarely in both. Only 3 of 179 total fragments were ubiquitous in all soils. Soil bacterial communities inferred from in silico phylogenetic assignment appeared to be dominated by Actinobacteria (especially Micrococcus and Streptomycetes), “Bacilli,” “Clostridia,” and Burkholderia and lost significant diversity under consistently or frequently anoxic incubations. Community patterns correlated well with redox-sensitive processes such as nitrification, dissimilatory nitrate reduction to ammonium (DNRA), and denitrification but did not predict patterns of more general functions such as N mineralization and consumption. The results suggest that this soil's indigenous bacteria are highly adapted to fluctuating redox regimens and generally possess physiological tolerance mechanisms which allow them to withstand unfavorable redox periods. PMID

  2. Bacterial Community Structures in Freshwater Polar Environments of Svalbard

    PubMed Central

    Ntougias, Spyridon; Polkowska, Żaneta; Nikolaki, Sofia; Dionyssopoulou, Eva; Stathopoulou, Panagiota; Doudoumis, Vangelis; Ruman, Marek; Kozak, Katarzyna; Namieśnik, Jacek; Tsiamis, George

    2016-01-01

    Two thirds of Svalbard archipelago islands in the High Arctic are permanently covered with glacial ice and snow. Polar bacterial communities in the southern part of Svalbard were characterized using an amplicon sequencing approach. A total of 52,928 pyrosequencing reads were analyzed in order to reveal bacterial community structures in stream and lake surface water samples from the Fuglebekken and Revvatnet basins of southern Svalbard. Depending on the samples examined, bacterial communities at a higher taxonomic level mainly consisted either of Bacteroidetes, Betaproteobacteria, and Microgenomates (OP11) or Planctomycetes, Betaproteobacteria, and Bacteroidetes members, whereas a population of Microgenomates was prominent in 2 samples. At the lower taxonomic level, bacterial communities mostly comprised Microgenomates, Comamonadaceae, Flavobacteriaceae, Legionellales, SM2F11, Parcubacteria (OD1), and TM7 members at different proportions in each sample. The abundance of OTUs shared in common among samples was greater than 70%, with the exception of samples in which the proliferation of Planctomycetaceae, Phycisphaeraceae, and Candidatus Methylacidiphilum spp. lowered their relative abundance. A multi-variable analysis indicated that As, Pb, and Sb were the main environmental factors influencing bacterial profiles. We concluded that the bacterial communities in the polar aquatic ecosystems examined mainly consisted of freshwater and marine microorganisms involved in detritus mineralization, with a high proportion of zooplankton-associated taxa also being identified. PMID:27725345

  3. Technical note: Protozoa-specific antibodies raised in sheep plasma bind to their target protozoa in the rumen.

    PubMed

    Williams, Y J; Rea, S M; Popovski, S; Skillman, L C; Wright, A-D G

    2014-12-01

    Binding of IgG antibodies to Entodinium spp. in the rumen of sheep (Ovis aries) was investigated by adding IgG, purified from plasma, directly into the rumen. Plasma IgG was sourced from sheep that had or had not been immunized with a vaccine containing whole fixed Entodinium spp. cells. Ruminal fluid was sampled approximately 2 h after each antibody dosing. Binding of protozoa by a specific antibody was detected using an indirect fluorescent antibody test. An antibody titer in the ruminal fluid was determined by ELISA, and the concentration of ruminal fluid ammonia-N and ruminal pH were also determined. Entodinium spp. and total protozoa from IgG-infused sheep were enumerated by microscopic counts. Two-hourly additions of IgG maintained a low antibody titer in the rumen for 12 h and the binding of the antibody to the rumen protozoa was demonstrated. Increased ammonia-N concentrations and altered ruminal fluid pH patterns indicated that additional fermentation of protein was occurring in the rumen after addition of IgG. No reduction in numbers of Entodinium spp. was observed (P>0.05). Although binding of antibodies to protozoa has been demonstrated in the rumen, it is unclear how much cell death occurred. On the balance of probability, it would appear that the antibody was degraded or partially degraded, and the impact of this on protozoal populations and the measurement of a specific titer is also unclear.

  4. Community structure of non-coding RNA interaction network.

    PubMed

    Nacher, Jose C

    2013-04-02

    Rapid technological advances have shown that the ratio of non-protein coding genes rises to 98.5% in humans, suggesting that current knowledge on genetic information processing might be largely incomplete. It implies that protein-coding sequences only represent a small fraction of cellular transcriptional information. Here, we examine the community structure of the network defined by functional interactions between non-coding RNAs (ncRNAs) and proteins related bio-macromolecules (PRMs) using a two-fold approach: modularity in bipartite network and k-clique community detection. First, the high modularity scores as well as the distribution of community sizes showing a scaling-law revealed manifestly non-random features. Second, the k-clique sub-graphs and overlaps show that the identified communities of the ncRNA molecules of H. sapiens can potentially be associated with certain functions. These findings highlight the complex modular structure of ncRNA interactions and its possible regulatory roles in the cell.

  5. Analysis of the community structure of abyssal kinetoplastids revealed similar communities at larger spatial scales

    PubMed Central

    Salani, Faezeh Shah; Arndt, Hartmut; Hausmann, Klaus; Nitsche, Frank; Scheckenbach, Frank

    2012-01-01

    Knowledge of the spatial scales of diversity is necessary to evaluate the mechanisms driving biodiversity and biogeography in the vast but poorly understood deep sea. The community structure of kinetoplastids, an important group of microbial eukaryotes belonging to the Euglenozoa, from all abyssal plains of the South Atlantic and two areas of the eastern Mediterranean was studied using partial small subunit ribosomal DNA gene clone libraries. A total of 1364 clones from 10 different regions were retrieved. The analysis revealed statistically not distinguishable communities from both the South-East Atlantic (Angola and Guinea Basin) and the South-West Atlantic (Angola and Brazil Basin) at spatial scales of 1000–3000 km, whereas all other communities were significantly differentiated from one another. It seems likely that multiple processes operate at the same time to shape communities of deep-sea kinetoplastids. Nevertheless, constant and homogenous environmental conditions over large spatial scales at abyssal depths, together with high dispersal capabilities of microbial eukaryotes, maintain best the results of statistically indistinguishable communities at larger spatial scales. PMID:22071346

  6. Statistical learning of temporal community structure in the hippocampus.

    PubMed

    Schapiro, Anna C; Turk-Browne, Nicholas B; Norman, Kenneth A; Botvinick, Matthew M

    2016-01-01

    The hippocampus is involved in the learning and representation of temporal statistics, but little is understood about the kinds of statistics it can uncover. Prior studies have tested various forms of structure that can be learned by tracking the strength of transition probabilities between adjacent items in a sequence. We test whether the hippocampus can learn higher-order structure using sequences that have no variance in transition probability and instead exhibit temporal community structure. We find that the hippocampus is indeed sensitive to this form of structure, as revealed by its representations, activity dynamics, and connectivity with other regions. These findings suggest that the hippocampus is a sophisticated learner of environmental regularities, able to uncover higher-order structure that requires sensitivity to overlapping associations.

  7. The role of protozoa-driven selection in shaping human genetic variability.

    PubMed

    Pozzoli, Uberto; Fumagalli, Matteo; Cagliani, Rachele; Comi, Giacomo P; Bresolin, Nereo; Clerici, Mario; Sironi, Manuela

    2010-03-01

    Protozoa exert a strong selective pressure in humans. The selection signatures left by these pathogens can be exploited to identify genetic modulators of infection susceptibility. We show that protozoa diversity in different geographic locations is a good measure of protozoa-driven selective pressure; protozoa diversity captured selection signatures at known malaria resistance loci and identified several selected single nucleotide polymorphisms in immune and hemolytic anemia genes. A genome-wide search enabled us to identify 5180 variants mapping to 1145 genes that are subjected to protozoa-driven selective pressure. We provide a genome-wide estimate of protozoa-driven selective pressure and identify candidate susceptibility genes for protozoa-borne diseases.

  8. Free-Living Protozoa in Two Unchlorinated Drinking Water Supplies, Identified by Phylogenic Analysis of 18S rRNA Gene Sequences▿ †

    PubMed Central

    Valster, Rinske M.; Wullings, Bart A.; Bakker, Geo; Smidt, Hauke; van der Kooij, Dick

    2009-01-01

    Free-living protozoan communities in water supplies may include hosts for Legionella pneumophila and other undesired bacteria, as well as pathogens. This study aimed at identifying free-living protozoa in two unchlorinated groundwater supplies, using cultivation-independent molecular approaches. For this purpose, samples (<20°C) of treated water, distributed water, and distribution system biofilms were collected from supply A, with a low concentration of natural organic matter (NOM) (<0.5 ppm of C), and from supply B, with a high NOM concentration (7.9 ppm of C). Eukaryotic communities were studied using terminal restriction fragment length polymorphism and clone library analyses of partial 18S rRNA gene fragments and a Hartmannella vermiformis-specific quantitative PCR (qPCR). In both supplies, highly diverse eukaryotic communities were observed, including free-living protozoa, fungi, and metazoa. Sequences of protozoa clustered with Amoebozoa (10 operational taxonomic units [OTUs]), Cercozoa (39 OTUs), Choanozoa (26 OTUs), Ciliophora (29 OTUs), Euglenozoa (13 OTUs), Myzozoa (5 OTUs), and Stramenopiles (5 OTUs). A large variety of protozoa were present in both supplies, but the estimated values for protozoan richness did not differ significantly. H. vermiformis was observed in both supplies but was not a predominant protozoan. One OTU with the highest similarity to Acanthamoeba polyphaga, an opportunistic human pathogen and a host for undesired bacteria, was observed in supply A. The high level of NOM in supply B corresponded with an elevated level of active biomass and with elevated concentrations of H. vermiformis in distributed water. Hence, the application of qPCR may be promising in elucidating the relationship between drinking water quality and the presence of specific protozoa. PMID:19465529

  9. Clustering algorithm for determining community structure in large networks

    NASA Astrophysics Data System (ADS)

    Pujol, Josep M.; Béjar, Javier; Delgado, Jordi

    2006-07-01

    We propose an algorithm to find the community structure in complex networks based on the combination of spectral analysis and modularity optimization. The clustering produced by our algorithm is as accurate as the best algorithms on the literature of modularity optimization; however, the main asset of the algorithm is its efficiency. The best match for our algorithm is Newman’s fast algorithm, which is the reference algorithm for clustering in large networks due to its efficiency. When both algorithms are compared, our algorithm outperforms the fast algorithm both in efficiency and accuracy of the clustering, in terms of modularity. Thus, the results suggest that the proposed algorithm is a good choice to analyze the community structure of medium and large networks in the range of tens and hundreds of thousand vertices.

  10. Finding community structures in complex networks using mixed integer optimisation

    NASA Astrophysics Data System (ADS)

    Xu, G.; Tsoka, S.; Papageorgiou, L. G.

    2007-11-01

    The detection of community structure has been used to reveal the relationships between individual objects and their groupings in networks. This paper presents a mathematical programming approach to identify the optimal community structures in complex networks based on the maximisation of a network modularity metric for partitioning a network into modules. The overall problem is formulated as a mixed integer quadratic programming (MIQP) model, which can then be solved to global optimality using standard optimisation software. The solution procedure is further enhanced by developing special symmetry-breaking constraints to eliminate equivalent solutions. It is shown that additional features such as minimum/maximum module size and balancing among modules can easily be incorporated in the model. The applicability of the proposed optimisation-based approach is demonstrated by four examples. Comparative results with other approaches from the literature show that the proposed methodology has superior performance while global optimum is guaranteed.

  11. A Proposed Participatory Governance Structure for the Division of Continuing Education and Community Services at Bristol Community College.

    ERIC Educational Resources Information Center

    Desmarais, Armand; Wiggins, E. Foster

    In order to design a participatory governance structure of the Division of Continuing Education and Community Services at Bristol Community College (BCC), the authors surveyed 85 randomly selected community colleges throughout the country; 14 institutions responded. Only two institutions, both in Colorado, seemed to have exemplary shared-authority…

  12. Diatom community structure on in-service cruise ship hulls.

    PubMed

    Hunsucker, Kelli Zargiel; Koka, Abhishek; Lund, Geir; Swain, Geoffrey

    2014-10-01

    Diatoms are an important component of marine biofilms found on ship hulls. However, there are only a few published studies that describe the presence and abundance of diatoms on ships, and none that relate to modern ship hull coatings. This study investigated the diatom community structure on two in-service cruise ships with the same cruise cycles, one coated with an antifouling (AF) system (copper self-polishing copolymer) and the other coated with a silicone fouling-release (FR) system. Biofilm samples were collected during dry docking from representative areas of the ship and these provided information on the horizontal and vertical zonation of the hull, and intact and damaged coating and niche areas. Diatoms from the genera Achnanthes, Amphora and Navicula were the most common, regardless of horizontal ship zonation and coating type. Other genera were abundant, but their presence was more dependent on the ship zonation and coating type. Samples collected from damaged areas of the hull coating had a similar community composition to undamaged areas, but with higher diatom abundance. Diatom fouling on the niche areas differed from that of the surrounding ship hull and paralleled previous studies that investigated differences in diatom community structure on static and dynamically exposed coatings; niche areas were similar to static immersion and the hull to dynamic immersion. Additionally, diatom richness was greater on the ship with the FR coating, including the identification of several new genera to the biofouling literature, viz. Lampriscus and Thalassiophysa. These results are the first to describe diatom community composition on in-service ship hulls coated with a FR system. This class of coatings appears to have a larger diatom community compared to copper-based AF systems, with new diatom genera that have the ability to stick to ship hulls and withstand hydrodynamic forces, thus creating the potential for new problematic species in the biofilm.

  13. Making the links between community structure and individual well-being: community quality of life in Riverdale, Toronto, Canada.

    PubMed

    Raphael, D; Renwick, R; Brown, I; Steinmetz, B; Sehdev, H; Phillips, S

    2001-09-01

    An inquiry into community quality of life was carried out within a framework that recognizes the complex relationship between community structures and individual well-being. Through use of focus groups and key informant interviews, community members, service providers, and elected representatives in a Toronto community considered aspects of their community that affected quality of life. Community members identified strengths of access to amenities, caring and concerned people, community agencies, low-cost housing, and public transportation. Service providers and elected representatives recognized diversity, community agencies and resources, and presence of culturally relevant food stores and services as strengths. At one level, findings were consistent with emerging concepts of social capital. At another level, threats to the community were considered in relation to the hypothesized role neo-liberalism plays in weakening the welfare state.

  14. Linking Microbial Community Structure to Function in Representative Simulated Systems

    PubMed Central

    Marcus, Ian M.; Wilder, Hailey A.; Quazi, Shanin J.

    2013-01-01

    Pathogenic bacteria are generally studied as a single strain under ideal growing conditions, although these conditions are not the norm in the environments in which pathogens typically proliferate. In this investigation, a representative microbial community along with Escherichia coli O157:H7, a model pathogen, was studied in three environments in which such a pathogen could be found: a human colon, a septic tank, and groundwater. Each of these systems was built in the lab in order to retain the physical/chemical and microbial complexity of the environments while maintaining control of the feed into the models. The microbial community in the colon was found to have a high percentage of bacteriodetes and firmicutes, while the septic tank and groundwater systems were composed mostly of proteobacteria. The introduction of E. coli O157:H7 into the simulated systems elicited a shift in the structures and phenotypic cell characteristics of the microbial communities. The fate and transport of the microbial community with E. coli O157:H7 were found to be significantly different from those of E. coli O157:H7 studied as a single isolate, suggesting that the behavior of the organism in the environment was different from that previously conceived. The findings in this study clearly suggest that to gain insight into the fate of pathogens, cells should be grown and analyzed under conditions simulating those of the environment in which the pathogens are present. PMID:23396331

  15. Microbial abundance and community structure in a melting alpine snowpack.

    PubMed

    Lazzaro, Anna; Wismer, Andrea; Schneebeli, Martin; Erny, Isolde; Zeyer, Josef

    2015-05-01

    Snowmelt is a crucial period for alpine soil ecosystems, as it is related to inputs of nutrients, particulate matter and microorganisms to the underlying soil. Although snow-inhabiting microbial communities represent an important inoculum for soils, they have thus far received little attention. The distribution and structure of these microorganisms in the snowpack may be linked to the physical properties of the snowpack at snowmelt. Snow samples were taken from snow profiles at four sites (1930-2519 m a.s.l.) in the catchment of the Tiefengletscher, Canton Uri, Switzerland. Microbial (Archaea, Bacteria and Fungi) communities were investigated through T-RFLP profiling of the 16S and 18S rRNA genes, respectively. In parallel, we assessed physical and chemical parameters relevant to the understanding of melting processes. Along the snow profiles, density increased with depth due to compaction, while other physico-chemical parameters, such as temperature and concentrations of DOC and soluble ions, remained in the same range (e.g. <2 mg DOC L(-1), 5-30 μg NH4 (+)-N L(-1)) in all samples at all sites. Along the snow profiles, no major change was observed either in cell abundance or in bacterial and fungal diversity. No Archaea could be detected in the snow. Microbial communities, however, differed significantly between sites. Our results show that meltwater rearranges soluble ions and microbial communities in the snowpack.

  16. Spatial analysis of early successional, temperate forest community structure

    NASA Astrophysics Data System (ADS)

    Walker, R. H.; Williams, C. A.; MacLean, R. G.; Epstein, H. E.; Vanderhoof, M. K.

    2013-12-01

    The global importance of sequestration of carbon by temperate forests makes characterizing the regrowth of these forests post-disturbance both ecologically and economically important. High intensity disturbances, such as logging, result in substantial alteration of community composition post-disturbance, creating the potential for alterations to the cycling of carbon, water, and nutrients in the ecosystem. Because logging pressure in New England continues to increase, understanding how forest ecosystems in this region respond to disturbance is crucial. This study aims to characterize interspecies interactions within New England forests by identifying synchronous and asynchronous colocation of species following a disturbance. To accomplish this, line-intercept surveys of vegetation were conducted in a clearcut forest stand located within the Harvard Forest LTER site. Survey data collected two (2010) and five (2013) years post-clearcut were analyzed using a one-dimensional Ripley's K. From 2010 to 2013, an increase in the number of interspecies relationships was observed, indicating the development of community structure. Additionally, the analysis found an increase in total vegetative cover from 2010 to 2013, and also found the majority of observed interspecies relationships to be asynchronous relationships. Together, these results imply an increase in resource competition that had the potential to drive the increase in community structure. Specifically, an increase in community structure led to the development of three distinct sub-communities: homogenous fern, tree seedling canopy over ground cover, and shrub dominated. This creates a patchy landscape in the early successional forest that allows for high species diversity (Shannon's H = 2.455). Based on the results of the Ripley's K analyses, species demonstrated definite patterns of synchronicity and asynchronicity based on both specific species interactions as well as functional group interactions. These

  17. Securing the Future: Retention Models in Community Colleges--Study of Community College Structures for Student Success (SCCSSS)

    ERIC Educational Resources Information Center

    College Board Advocacy & Policy Center, 2012

    2012-01-01

    The Study of Community College Structures for Student Success (SCCSSS) was launched in 2010 with three goals at its center: (1) To explore a set of promising institutional practices and organizational structures identified through theory and research as having the potential to support community college student success; (2) To present a synthesized…

  18. Evolutionary changes in symbiont community structure in ticks.

    PubMed

    Duron, Olivier; Binetruy, Florian; Noël, Valérie; Cremaschi, Julie; McCoy, Karen D; Arnathau, Céline; Plantard, Olivier; Goolsby, John; Pérez de León, Adalberto A; Heylen, Dieter J A; Van Oosten, A Raoul; Gottlieb, Yuval; Baneth, Gad; Guglielmone, Alberto A; Estrada-Peña, Agustin; Opara, Maxwell N; Zenner, Lionel; Vavre, Fabrice; Chevillon, Christine

    2017-03-09

    Ecological specialization to restricted diet niches is driven by obligate, and often maternally inherited, symbionts in many arthropod lineages. These heritable symbionts typically form evolutionarily stable associations with arthropods that can last for millions of years. Ticks were recently found to harbour such an obligate symbiont, Coxiella-LE, that synthesizes B vitamins and cofactors not obtained in sufficient quantities from blood diet. In this study, the examination of 81 tick species shows that some Coxiella-LE symbioses are evolutionarily stable with an ancient acquisition followed by codiversification as observed in ticks belonging to the Rhipicephalus genus. However, many other Coxiella-LE symbioses are characterized by low evolutionary stability with frequent host shifts and extinction events. Further examination revealed the presence of nine other genera of maternally inherited bacteria in ticks. Although these nine symbionts were primarily thought to be facultative, their distribution among tick species rather suggests that at least four may have independently replaced Coxiella-LE and likely represent alternative obligate symbionts. Phylogenetic evidence otherwise indicates that cocladogenesis is globally rare in these symbioses as most originate via horizontal transfer of an existing symbiont between unrelated tick species. As a result, the structure of these symbiont communities is not fixed and stable across the tick phylogeny. Most importantly, the symbiont communities commonly reach high levels of diversity with up to six unrelated maternally inherited bacteria coexisting within host species. We further conjecture that interactions among coexisting symbionts are pivotal drivers of community structure both among and within tick species.

  19. Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape.

    PubMed

    Zimmerman, Naupaka B; Vitousek, Peter M

    2012-08-07

    We surveyed endophytic fungal communities in leaves of a single tree species (Metrosideros polymorpha) across wide environmental gradients (500-5,500 mm of rain/y; 10-22 °C mean annual temperature) spanning short geographic distances on Mauna Loa Volcano, Hawai'i. Using barcoded amplicon pyrosequencing at 13 sites (10 trees/site; 10 leaves/tree), we found very high levels of diversity within sites (a mean of 551 ± 134 taxonomic units per site). However, among-site diversity contributed even more than did within-site diversity to the overall richness of more than 4,200 taxonomic units observed in M. polymorpha, and this among-site variation in endophyte community composition correlated strongly with temperature and rainfall. These results are consistent with suggestions that foliar endophytic fungi are hyperdiverse. They further suggest that microbial diversity may be even greater than has been assumed and that broad-scale environmental controls such as temperature and rainfall can structure eukaryotic microbial diversity. Appropriately constrained study systems across strong environmental gradients present a useful means to understand the environmental factors that structure the diversity of microbial communities.

  20. A local immunization strategy for networks with overlapping community structure

    NASA Astrophysics Data System (ADS)

    Taghavian, Fatemeh; Salehi, Mostafa; Teimouri, Mehdi

    2017-02-01

    Since full coverage treatment is not feasible due to limited resources, we need to utilize an immunization strategy to effectively distribute the available vaccines. On the other hand, the structure of contact network among people has a significant impact on epidemics of infectious diseases (such as SARS and influenza) in a population. Therefore, network-based immunization strategies aim to reduce the spreading rate by removing the vaccinated nodes from contact network. Such strategies try to identify more important nodes in epidemics spreading over a network. In this paper, we address the effect of overlapping nodes among communities on epidemics spreading. The proposed strategy is an optimized random-walk based selection of these nodes. The whole process is local, i.e. it requires contact network information in the level of nodes. Thus, it is applicable to large-scale and unknown networks in which the global methods usually are unrealizable. Our simulation results on different synthetic and real networks show that the proposed method outperforms the existing local methods in most cases. In particular, for networks with strong community structures, high overlapping membership of nodes or small size communities, the proposed method shows better performance.

  1. The Interplay between Environmental Filtering and Spatial Processes in Structuring Communities: The Case of Neotropical Snake Communities.

    PubMed

    Cavalheri, Hamanda; Both, Camila; Martins, Marcio

    2015-01-01

    Both habitat filters and spatial processes can influence community structure. Space alone affects species immigration from the regional species pool, whereas habitat filters affect species distribution and inter-specific interactions. This study aimed to understand how the interplay between environmental and geographical processes influenced the structure of Neotropical snake communities in different habitat types. We selected six studies that sampled snakes in forests, four conducted in savannas and two in grasslands (the latter two are grouped in a non-forest category). We used the net relatedness and nearest taxon indices to assess phylogenetic structure within forest and non-forest areas. We also used the phylogenetic fuzzy-weighting algorithm to characterize phylogenetic structure across communities and the relation of phylogenetic composition patterns to habitat type, structure, and latitude. Finally, we tested for morphological trait convergence and phylogenetic niche conservatism using four forest and four non-forest areas for which morphological data were available. Community phylogenetic composition changed across forest and non-forest areas suggesting that environmental filtering influences community structure. Species traits were affected by habitat type, indicating convergence at the metacommunity level. Tail length, robustness, and number of ventral scales maximized community convergence among forest and non-forest areas. The observed patterns suggested environmental filtering, indicating that less vertically structured habitats represent a strong filter. Despite the fact that phylogenetic structure was not detected individually for each community, we observed a trend towards communities composed by more closely related species in higher latitudes and more overdispersed compositions in lower latitudes. Such pattern suggests that the limited distribution of major snake lineages constrained species distributions. Structure indices for each community

  2. Characteristics of Factors of Protozoa Blastocystis hominis Persistence.

    PubMed

    Potaturkina-Nesterova, N I; Il'ina, N A; Bugero, N V; Nesterov, A S

    2016-10-01

    Persistence activity manifested in the expression of anti-lysozyme, anti-lactoferrin, and antihistone factors promoting inactivation of natural anti-infection resistance factors in the body was revealed in Blastocystis hominis protozoa. Activities of these factors were ranged. The frequency of these factors in clinical isolates of blastocyst decreased in the following order: anti-lactoferrin activity (84.5±3.7%)→anti-lysozyme activity (64.8±5.7%)→anti-histone activity (48.1±2.3%). In healthy humans, the corresponding parameters were 7.3±1.3, 5.3±0.9, and 3.3±0.4%, respectively (p<0.05). It was shown that the studied activities in highly virulent blastocysts were higher than in groups of medium-, low-, and avirulent protozoa.

  3. Stalked protozoa identification by image analysis and multivariable statistical techniques.

    PubMed

    Amaral, A L; Ginoris, Y P; Nicolau, A; Coelho, M A Z; Ferreira, E C

    2008-06-01

    Protozoa are considered good indicators of the treatment quality in activated sludge systems as they are sensitive to physical, chemical and operational processes. Therefore, it is possible to correlate the predominance of certain species or groups and several operational parameters of the plant. This work presents a semiautomatic image analysis procedure for the recognition of the stalked protozoa species most frequently found in wastewater treatment plants by determining the geometrical, morphological and signature data and subsequent processing by discriminant analysis and neural network techniques. Geometrical descriptors were found to be responsible for the best identification ability and the identification of the crucial Opercularia and Vorticella microstoma microorganisms provided some degree of confidence to establish their presence in wastewater treatment plants.

  4. Optical detection of parasitic protozoa in sol-gel matrices

    NASA Astrophysics Data System (ADS)

    Livage, Jacques; Barreau, J. Y.; Da Costa, J. M.; Desportes, I.

    1994-10-01

    Whole cell parasitic protozoa have been entrapped within sol-gel porous silica matrices. Stationary phase promastigote cells of Leishmania donovani infantum are mixed with a silica sol before gelation occurs. They remain trapped within the growing oxide network and their cellular organization appears to be well preserved. Moreover protozoa retain their antigenic properties in the porous gel. They are still able to detect parasite specific antibodies in serum samples from infected patients via an enzyme linked immunosorbent assay (ELISA). Antigen- antibody associations occurring in the gel are optically detected via the reactions of a peroxidase conjugate with ortho-phenylenediamine leading to the formation of a yellow coloration. A clear-cut difference in optical density is measured between positive and negative sera. Such an entrapment of antigenic species into porous sol-gel matrices avoids the main problems due to non specific binding and could be advantageously used in diagnostic kits.

  5. Matrix composition and community structure analysis of a novel bacterial pyrite leaching community.

    PubMed

    Ziegler, Sibylle; Ackermann, Sonia; Majzlan, Juraj; Gescher, Johannes

    2009-09-01

    Here we describe a novel bacterial community that is embedded in a matrix of carbohydrates and bio/geochemical products of pyrite (FeS(2)) oxidation. This community grows in stalactite-like structures--snottites--on the ceiling of an abandoned pyrite mine at pH values of 2.2-2.6. The aqueous phase in the matrix contains 200 mM of sulfate and total iron concentrations of 60 mM. Micro-X-ray diffraction analysis showed that jarosite [(K,Na,H(3)O)Fe(3)(SO(4))(2)(OH)(6)] is the major mineral embedded in the snottites. X-ray absorption near-edge structure experiments revealed three different sulfur species. The major signal can be ascribed to sulfate, and the other two features may correspond to thiols and sulfoxides. Arabinose was detected as the major sugar component in the extracellular polymeric substance. Via restriction fragment length polymorphism analysis, a community was found that mainly consists of iron oxidizing Leptospirillum and Ferrovum species but also of bacteria that could be involved in dissimilatory sulfate and dissimilatory iron reduction. Each snottite can be regarded as a complex, self-contained consortium of bacterial species fuelled by the decomposition of pyrite.

  6. Climate change effects on soil microarthropod abundance and community structure

    SciTech Connect

    Kardol, Paul; Reynolds, W. Nicholas; Norby, Richard J; Classen, Aimee T

    2011-01-01

    Long-term ecosystem responses to climate change strongly depend on how the soil subsystem and its inhabitants respond to these perturbations. Using open-top chambers, we studied the response of soil microarthropods to single and combined effects of ambient and elevated atmospheric [CO{sub 2}], ambient and elevated temperatures and changes in precipitation in constructed old-fields in Tennessee, USA. Microarthropods were assessed five years after treatments were initiated and samples were collected in both November and June. Across treatments, mites and collembola were the most dominant microarthropod groups collected. We did not detect any treatment effects on microarthropod abundance. In November, but not in June, microarthropod richness, however, was affected by the climate change treatments. In November, total microarthropod richness was lower in dry than in wet treatments, and in ambient temperature treatments, richness was higher under elevated [CO{sub 2}] than under ambient [CO{sub 2}]. Differential responses of individual taxa to the climate change treatments resulted in shifts in community composition. In general, the precipitation and warming treatments explained most of the variation in community composition. Across treatments, we found that collembola abundance and richness were positively related to soil moisture content, and that negative relationships between collembola abundance and richness and soil temperature could be explained by temperature-related shifts in soil moisture content. Our data demonstrate how simultaneously acting climate change factors can affect the structure of soil microarthropod communities in old-field ecosystems. Overall, changes in soil moisture content, either as direct effect of changes in precipitation or as indirect effect of warming or elevated [CO{sub 2}], had a larger impact on microarthropod communities than did the direct effects of the warming and elevated [CO{sub 2}] treatments. Moisture-induced shifts in soil

  7. Benthic infaunal community structuring in an acidified tropical estuarine system

    PubMed Central

    2014-01-01

    Background Recent studies suggest that increasing ocean acidification (OA) should have strong direct and indirect influences on marine invertebrates. While most theory and application for OA is based on relatively physically-stable oceanic ecological systems, less is known about the effects of acidification on nearshore and estuarine systems. Here, we investigated the structuring of a benthic infaunal community in a tropical estuarine system, along a steep salinity and pH gradient, arising largely from acid-sulphate groundwater inflows (Sungai Brunei Estuary, Borneo, July 2011- June 2012). Results Preliminary data indicate that sediment pore-water salinity (range: 8.07 - 29.6 psu) declined towards the mainland in correspondence with the above-sediment estuarine water salinity (range: 3.58 – 31.2 psu), whereas the pore-water pH (range: 6.47- 7.72) was generally lower and less variable than the estuarine water pH (range: 5.78- 8.3), along the estuary. Of the thirty six species (taxa) recorded, the polychaetes Neanthes sp., Onuphis conchylega, Nereididae sp. and the amphipod Corophiidae sp., were numerically dominant. Calcified microcrustaceans (e.g., Cyclopoida sp. and Corophiidae sp.) were abundant at all stations and there was no clear distinction in distribution pattern along the estuarine between calcified and non-calcified groups. Species richness increased seawards, though abundance (density) showed no distinct directional trend. Diversity indices were generally positively correlated (Spearman’s rank correlation) with salinity and pH (p <0.05) and negatively with clay and organic matter, except for evenness values (p >0.05). Three faunistic assemblages were distinguished: (1) nereid-cyclopoid-sabellid, (2) corophiid-capitellid and (3) onuphid- nereid-capitellid. These respectively associated with lower salinity/pH and a muddy bottom, low salinity/pH and a sandy bottom, and high salinity/pH and a sandy bottom. However, CCA suggested that species distribution

  8. Distributional shifts in size structure of phytoplankton community

    NASA Astrophysics Data System (ADS)

    Waga, H.; Hirawake, T.; Fujiwara, A.; Nishino, S.; Kikuchi, T.; Suzuki, K.; Takao, S.

    2015-12-01

    Increased understanding on how marine species shift their distribution is required for effective conservation of fishery resources under climate change. Previous studies have often predicted distributional shifts of fish using satellite derived sea surface temperature (SST). However, SST may not fully represent the changes in species distribution through food web structure and as such this remains an open issue due to lack of ecological perspective on energy transfer process in the earlier studies. One of the most important factors in ecosystem is composition of phytoplankton community, and its size structure determines energy flow efficiency from base to higher trophic levels. To elucidate spatiotemporal variation in phytoplankton size structure, chlorophyll-a size distribution (CSD) algorithm was developed using spectral variance of phytoplankton absorption coefficient through principal component analysis. Slope of CSD (CSD slope) indicates size structure of phytoplankton community where, strong and weak magnitudes of CSD slope indicate smaller and larger phytoplankton structure, respectively. Shifts in CSD slope and SST were derived as the ratio of temporal trend over the 12-year period (2003-2014) to 2-dimensional spatial gradient and the resulting global median velocity of CSD slope and SST were 0.361 and 0.733 km year-1, respectively. In addition, the velocity of CSD slope monotonically increases with increasing latitude, while relatively complex latitudinal pattern for SST emerged. Moreover, angle of shifts suggest that species are required to shift their distribution toward not limited to simple pole-ward migration, and some regions exhibit opposite direction between the velocity of CSD slope and SST. These findings further imply that combined phytoplankton size structure and SST may contribute for more accurate prediction of species distribution shifts relative to existing studies which only considering variations in thermal niches.

  9. Bacterial Community Structure Response to Petroleum Concentration in Groundwater

    NASA Astrophysics Data System (ADS)

    Kitts, C. L.; Wrighton, K. C.; Phillips, W. A.; Cano, R. J.; Lundegard, P. D.

    2004-12-01

    This study characterized the bacterial community present in groundwater samples from the Guadalupe Dunes Restoration Project on the central California coast. The purpose of the study was to determine the changes in bacterial community structure and function in response to variations in the concentration of dissolved phase total petroleum hydrocarbons (TPH) in groundwater plumes at the site. For the purpose of this study groundwater samples were collected at varying distance from TPH source zones in 10 different plumes. All samples were analyzed for ammonia, phosphate, TPH, methane, oxygen, carbon dioxide, nitrate, sulfate, and dissolved iron levels. Chemical analysis revealed that the groundwater chemistry varied between plumes and on a well-to-well basis within a plume. Principle component analyses (PCA) demonstrated that TPH degradation related parameters explained 28% of the variation in the groundwater chemistry. In addition to the physical and chemical analyses, four liters of each groundwater sample were filtered and bacterial DNA was isolated to determine the relationship between groundwater chemistry and bacterial community structure and function. Specific Polymerase Chain Reaction (PCR) primers were used to characterize populations of Eubacteria, and Archaea, as well as function genes for sulfate reducing, methanotrophic, and methanogenic bacteria. Terminal Restriction Fragment (TRF) Length Polymorphisms (or T-RFLP) were used to analyze community structure. Eubacterial and Archaeal groundwater communities were separated into distinct clusters which did not clearly reflect changes in groundwater chemical parameters unless individual plumes were analyzed separately. However, specific Eubacterial and Archaeal TRF peaks did correspond to known petroleum degrading organisms and methanogenic bacteria, respectively. Only one sample produced a positive result for the sulfite reductase gene (dsrAB), indicating that sulfate reduction may not be a dominant process at

  10. The CECAM Electronic Structure Library: community-driven development of software libraries for electronic structure simulations

    NASA Astrophysics Data System (ADS)

    Oliveira, Micael

    The CECAM Electronic Structure Library (ESL) is a community-driven effort to segregate shared pieces of software as libraries that could be contributed and used by the community. Besides allowing to share the burden of developing and maintaining complex pieces of software, these can also become a target for re-coding by software engineers as hardware evolves, ensuring that electronic structure codes remain at the forefront of HPC trends. In a series of workshops hosted at the CECAM HQ in Lausanne, the tools and infrastructure for the project were prepared, and the first contributions were included and made available online (http://esl.cecam.org). In this talk I will present the different aspects and aims of the ESL and how these can be useful for the electronic structure community.

  11. [Effects of colistin sulfate residue on soil microbial community structure].

    PubMed

    Ma, Yi; Peng, Jin-Ju; Chen, Jin-Jun; Fan, Ting-Li; Sun, Yong-Xue

    2014-06-01

    By using fumigation extraction and phospholipid fatty acid (PLFA) methods, the change of characteristics of soil microbial community structure caused by residue of colistin sulfate (CS) was studied. The results showed that the CS (w(cs) > or = 5 mg x kg(-1)) had a significant effect on the microbial biomass carbon (MBC) and it was dose-dependent where MBC decreased with the increase of CS concentration in soil. The MBC in soil decreased by 52. 1% when the CS concentration reached 50 mg x kg(-1). The total PLFA of soil in each CS treatment was significantly decreased during the sampling period compared with the control group and showed a dose-dependent relationship. The soil microbial community structure and diversity in the low CS group (w(cs) = 0.5 mg x kg(-1)) were not significantly different from the control group on 7th and 49th day. However, they were significantly different on 21st and 35th day especially in the high CS group (w(cs) = 50 mg x kg(-1)). It was concluded that CS could change the structure of soil microorganisms and varied with time which might be caused by the chemical conversion and degradation of CS in soil.

  12. Analysis of community structure in networks of correlated data

    SciTech Connect

    Gomez, S.; Jensen, P.; Arenas, A.

    2008-12-25

    We present a reformulation of modularity that allows the analysis of the community structure in networks of correlated data. The new modularity preserves the probabilistic semantics of the original definition even when the network is directed, weighted, signed, and has self-loops. This is the most general condition one can find in the study of any network, in particular those defined from correlated data. We apply our results to a real network of correlated data between stores in the city of Lyon (France).

  13. Changes in the bacterial community structure in stored wormbed leachate.

    PubMed

    Romero-Tepal, Elda M; Contreras-Blancas, Eduardo; Navarro-Noya, Yendi E; Ruíz-Valdiviezo, Víctor M; Luna-Guido, Marco; Gutiérrez-Miceli, Federico A; Dendooven, Luc

    2014-01-01

    Organic wastes, such as cow manure, are often composted with earthworms (vermicomposting) while excess water is drained and collected. This wormbed leachate is nutrient-rich and it has been extensively used to fertilize plants. However, it is derived partially from a not yet finished compost process and could exhibit phytotoxicity or contain potentially hazardous microorganisms. The bacterial community in wormbed leachate derived from vermicomposting of cow manure was studied by pyrosequencing the 16S rRNA gene. The fresh wormbed leachate was rich in Mollicutes, particularly the genus Acholeplasma which contain phytopathogen species. The abundance of the Mollicutes decreased when the leachate was stored, while that of the Rhizobiales and the genus Pseudomonas increased. The bacterial communities changed rapidly in the leachate during storage. The changes in ammonium, nitrate and inorganic carbon content of the wormbed leachate when stored were correlated to changes in the bacterial community structure. It was found that storage of the wormbed leachate might be required before it can be applied to crops as large proportions of potentially plant pathogens were found in the fresh leachate.

  14. Experimental warming effects on the bacterial community structure and diversity

    NASA Astrophysics Data System (ADS)

    Kim, W.; Han, S.; Adams, J.; Son, Y.

    2014-12-01

    The objective of this study is to investigate the responses of soil bacterial community to future temperature increase by conducting open-field warming experiment. We conducted an open-field experimental warming system using infra-red heater in 2011 and regulated the temperature of warmed plots by 3oC higher than that of control plots constantly. The seeds of Pinus densiflora, Abies holophylla, Abies koreana, Betula costata, Quercus variabilis, Fraxinus rhynchophylla, and Zelkova serrata were planted in each 1 m × 1 m plot (n=3) in April, 2012. We collected soil samples from the rhizosphere of 7 tree species. DNA was extracted and PCR-amplified for the bacterial 16S gene targeting V1-V3 region. The paired-end sequencing was performed at Beijing Genome Institute (BGI, Hong Kong, China) using 2× 100 bp Hiseq2000 (Illumina). This study aimed to answer the following prediction/hypothesis: 1) Experimental warming will change the structure of soil bacterial community, 2) There will be distinct 'indicator group' which response to warming treatment relatively more sensitive than other groups. 3) Warming treatment will enhance the microbial activity in terms of soil respiration. 4) The rhizoplane bacterial communities for each of 7 tree species will show different response pattern to warming treatment. Since the sequence data does not arrive before the submission deadline, therefore, we would like to present the results and discussions on December 2014, AGU Fall Meeting.

  15. Impact of Oil on Bacterial Community Structure in Bioturbated Sediments

    PubMed Central

    Stauffert, Magalie; Cravo-Laureau, Cristiana; Jézéquel, Ronan; Barantal, Sandra; Cuny, Philippe; Gilbert, Franck; Cagnon, Christine; Militon, Cécile; Amouroux, David; Mahdaoui, Fatima; Bouyssiere, Brice; Stora, Georges; Merlin, François-Xavier; Duran, Robert

    2013-01-01

    Oil spills threaten coastlines where biological processes supply essential ecosystem services. Therefore, it is crucial to understand how oil influences the microbial communities in sediments that play key roles in ecosystem functioning. Ecosystems such as sediments are characterized by intensive bioturbation due to burrowing macrofauna that may modify the microbial metabolisms. It is thus essential to consider the bioturbation when determining the impact of oil on microbial communities. In this study, an experimental laboratory device maintaining pristine collected mudflat sediments in microcosms closer to true environmental conditions – with tidal cycles and natural seawater – was used to simulate an oil spill under bioturbation conditions. Different conditions were applied to the microcosms including an addition of: standardized oil (Blend Arabian Light crude oil, 25.6 mg.g−1 wet sediment), the common burrowing organism Hediste (Nereis) diversicolor and both the oil and H. diversicolor. The addition of H. diversicolor and its associated bioturbation did not affect the removal of petroleum hydrocarbons. After 270 days, 60% of hydrocarbons had been removed in all microcosms irrespective of the H. diversicolor addition. However, 16S-rRNA gene and 16S-cDNA T-RFLP and RT-PCR-amplicon libraries analysis showed an effect of the condition on the bacterial community structure, composition, and dynamics, supported by PerMANOVA analysis. The 16S-cDNA libraries from microcosms where H. diversicolor was added (oiled and un-oiled) showed a marked dominance of sequences related to Gammaproteobacteria. However, in the oiled-library sequences associated to Deltaproteobacteria and Bacteroidetes were also highly represented. The 16S-cDNA libraries from oiled-microcosms (with and without H. diversicolor addition) revealed two distinct microbial communities characterized by different phylotypes associated to known hydrocarbonoclastic bacteria and dominated by

  16. Impact of transition from microscopy to molecular screening for detection of intestinal protozoa in Dutch patients.

    PubMed

    Svraka-Latifovic, S; Bouter, S; Naus, H; Bakker, L J; Timmerman, C P; Dorigo-Zetsma, J W

    2014-11-01

    Detection of intestinal protozoa by PCR methods has been described as being sensitive and specific, and as improving the diagnostic yield. Here we present the outcome of the transition from microscopy to molecular screening for detection of a select group of intestinal protozoa in faeces in our laboratory. Introduction of molecular screening for intestinal protozoa resulted in higher sensitivity, reduced hands-on-time, reduced time-to-results, leading to improved diagnostic efficiency.

  17. Maps of random walks on complex networks reveal community structure.

    PubMed

    Rosvall, Martin; Bergstrom, Carl T

    2008-01-29

    To comprehend the multipartite organization of large-scale biological and social systems, we introduce an information theoretic approach that reveals community structure in weighted and directed networks. We use the probability flow of random walks on a network as a proxy for information flows in the real system and decompose the network into modules by compressing a description of the probability flow. The result is a map that both simplifies and highlights the regularities in the structure and their relationships. We illustrate the method by making a map of scientific communication as captured in the citation patterns of >6,000 journals. We discover a multicentric organization with fields that vary dramatically in size and degree of integration into the network of science. Along the backbone of the network-including physics, chemistry, molecular biology, and medicine-information flows bidirectionally, but the map reveals a directional pattern of citation from the applied fields to the basic sciences.

  18. Mass media influence spreading in social networks with community structure

    NASA Astrophysics Data System (ADS)

    Candia, Julián; Mazzitello, Karina I.

    2008-07-01

    We study an extension of Axelrod's model for social influence, in which cultural drift is represented as random perturbations, while mass media are introduced by means of an external field. In this scenario, we investigate how the modular structure of social networks affects the propagation of mass media messages across a society. The community structure of social networks is represented by coupled random networks, in which two random graphs are connected by intercommunity links. Considering inhomogeneous mass media fields, we study the conditions for successful message spreading and find a novel phase diagram in the multidimensional parameter space. These findings show that social modularity effects are of paramount importance for designing successful, cost-effective advertising campaigns.

  19. Community structure and elevational diversity patterns of soil Acidobacteria.

    PubMed

    Zhang, Yuguang; Cong, Jing; Lu, Hui; Li, Guangliang; Qu, Yuanyuan; Su, Xiujiang; Zhou, Jizhong; Li, Diqiang

    2014-08-01

    Acidobacteria is one of the most dominant and abundant phyla in soil, and was believed to have a wide range of metabolic and genetic functions. Relatively little is known about its community structure and elevational diversity patterns. We selected four elevation gradients from 1000 to 2800 m with typical vegetation types of the northern slope of Shennongjia Mountain in central China. The vegetation types were evergreen broadleaved forest, deciduous broadleaved forest, coniferous forest and sub-alpine shrubs. We analyzed the soil acidobacterial community composition, elevational patterns and the relationship between Acidobacteria subdivisions and soil enzyme activities by using the 16S rRNA meta-sequencing technique and multivariate statistical analysis. The result found that 19 known subdivisions as well as an unclassified phylotype were presented in these forest sites, and Subdivision 6 has the highest number of detectable operational taxonomic units (OTUs). A significant single peak distribution pattern (P<0.05) between the OTU number and the elevation was observed. The Jaccard and Bray-Curtis index analysis showed that the soil Acidobacteria compositional similarity significantly decreased (P<0.01) with the increase in elevation distance. Mantel test analysis showed the most of the soil Acidobacteria subdivisions had the significant relationship (P<0.01) with different soil enzymes. Therefore, soil Acidobacteria may be involved in different ecosystem functions in global elemental cycles. Partial Mantel tests and CCA analysis showed that soil pH, soil temperature and plant diversity may be the key factors in shaping the soil Acidobacterial community structure.

  20. Microbial Community Structure and Enzyme Activities in Semiarid Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Acosta-Martinez, V. A.; Zobeck, T. M.; Gill, T. E.; Kennedy, A. C.

    2002-12-01

    The effect of agricultural management practices on the microbial community structure and enzyme activities of semiarid soils of different textures in the Southern High Plains of Texas were investigated. The soils (sandy clay loam, fine sandy loam and loam) were under continuous cotton (Gossypium hirsutum L.) or in rotations with peanut (Arachis hypogaea L.), sorghum (Sorghum bicolor L.) or wheat (Triticum aestivum L.), and had different water management (irrigated or dryland) and tillage (conservation or conventional). Microbial community structure was investigated using fatty acid methyl ester (FAME) analysis by gas chromatography and enzyme activities, involved in C, N, P and S cycling of soils, were measured (mg product released per kg soil per h). The activities of b-glucosidase, b-glucosaminidase, alkaline phosphatase, and arylsulfatase were significantly (P<0.05) increased in soils under cotton rotated with sorghum or wheat, and due to conservation tillage in comparison to continuous cotton under conventional tillage. Principal component analysis showed FAME profiles of these soils separated distinctly along PC1 (20 %) and PC2 (13 %) due to their differences in soil texture and management. No significant differences were detected in FAME profiles due to management practices for the same soils in this sampling period. Enzyme activities provide early indications of the benefits in microbial populations and activities and soil organic matter under crop rotations and conservation tillage in comparison to the typical practices in semiarid regions of continuous cotton and conventional tillage.

  1. [Phytoplankton community structure and eutrophication risk assessment of Beijiang River].

    PubMed

    Gou, Ting; Ma, Qian-Li; Xu, Zhen-Cheng; Wang, Li; Li, Jie; Zhao, Xue-Min

    2015-03-01

    To study the distribution of phytoplankton and water quality of Beijiang River, the community structure of phytoplankton was investigated and analyzed in wet and dry seasons. The results showed that a total of 74 species belonging to six phyla, 29 family and 48 genera of phytoplankton were identified, including 58 species of five phyla, 23 family and 41 genera in wet season and 59 species of six phyla, 26 family and 40 genera in dry season. Phytoplankton community structure in Beijiang River was represented by Bacillariophyta, Chlorophyta and Cyanophyta. Bacillariophyta dominanted the phytoplankton, and the dominant species were Aulacoseira granulate, Fragilaria virescens, Surirella biseriata, Nitzschia amphibia, Navicula simplex, Cyclotella meneghiniana, Synedra ulna, Gomphonema angustatum and Cymbella tumida. There was little difference in phytoplankton density between both seasons with the mean values being 3.54 x 10(5) and 4.87 x 10(5) cells L(-1) in dry and wet seasons, respectively. Based on the RDA results, DO, permanganate index, nitrogen and phosphorus were the important environmental factors affecting the distribution of phytoplankton in Beijiang River. The water quality of Beijiang River was classified as oligo-mesotrophic level even if this river was subjected to nitrogen and phosphorus pollution mainly from agricultural non-point source.

  2. Are Gay Communities Dying or Just in Transition? Results from an International Consultation Examining Structural Change in Gay Communities

    PubMed Central

    Simon Rosser, B. R.; West, William; Weinmeyer, Richard

    2008-01-01

    This study sought to identify how urban gay communities are undergoing structural change, reasons for that change, and implications for HIV prevention planning. Key informants (N=29) at the AIDS Impact Conference from 17 cities in 14 countries completed surveys and participated in a facilitated structured dialog about how gay communities are changing. In all cities, the virtual gay community was identified as now larger than the offline physical community. Most cities identified that while the gay population in their cities appeared stable or growing, the gay community appeared in decline. Measures included greater integration of heterosexuals into historically gay-identified neighborhoods and movement of gay persons into suburbs, decreased number of gay bars and clubs, less attendance at gay events, less volunteerism in gay or AIDS organizations and overall identification and visibility as a gay community. Participants attributed structural change to multiple factors including gay neighborhood gentrification, achievement of civil rights, less discrimination, a vibrant virtual community and changes in drug use. Consistent with social assimilation, across cities, gay infrastructure, visibility and community identification appears to be decreasing. HIV prevention planning, interventions, treatment services, and policies need to be re-conceptualized for MSM in post-gay communities. Four recommendations for future HIV prevention and research are detailed. PMID:18484330

  3. Network community structure alterations in adult schizophrenia: identification and localization of alterations

    PubMed Central

    Lerman-Sinkoff, Dov B.; Barch, Deanna M.

    2015-01-01

    A growing body of literature suggests functional connectivity alterations in schizophrenia. While findings have been mixed, evidence points towards a complex pattern of hyper-connectivity and hypo-connectivity. This altered connectivity can be represented and analyzed using the mathematical frameworks provided by graph and information theory to represent functional connectivity data as graphs comprised of nodes and edges linking the nodes. One analytic technique in this framework is the determination and analysis of network community structure, which is the grouping of nodes into linked communities or modules. This data-driven technique finds a best-fit structure such that nodes in a given community have greater connectivity with nodes in their community than with nodes in other communities. These community structure representations have been found to recapitulate known neural-systems in healthy individuals, have been used to identify novel functional systems, and have identified and localized community structure alterations in a childhood onset schizophrenia cohort. In the present study, we sought to determine whether community structure alterations were present in an adult onset schizophrenia cohort while stringently controlling for sources of imaging artifacts. Group level average graphs in healthy controls and individuals with schizophrenia exhibited visually similar network community structures and high amounts of normalized mutual information (NMI). However, testing of individual subject community structures identified small but significant alterations in community structure with alterations being driven by changes in node community membership in the somatosensory, auditory, default mode, salience, and subcortical networks. PMID:26793435

  4. Soil phosphorus depletion and shifts in plant communities change bacterial community structure in a long-term grassland management trial.

    PubMed

    Adair, Karen L; Wratten, Steve; Lear, Gavin

    2013-06-01

    Agricultural systems rely on healthy soils and their sustainability requires understanding the long-term impacts of agricultural practices on soils, including microbial communities. We examined the impact of 17 years of land management on soil bacterial communities in a New Zealand randomized-block pasture trial. Significant variation in bacterial community structure related to mowing and plant biomass removal, while nitrogen fertilizer had no effect. Changes in soil chemistry and legume abundance described 52% of the observed variation in the bacterial community structure. Legumes (Trifolium species) were absent in unmanaged plots but increased in abundance with management intensity; 11% of the variation in soil bacterial community structure was attributed to this shift in the plant community. Olsen P explained 10% of the observed heterogeneity, which is likely due to persistent biomass removal resulting in P limitation; Olsen P was significantly lower in plots with biomass removed (14 mg kg(-1) ± 1.3SE) compared with plots that were not mown, or where biomass was left after mowing (32 mg kg(-1) ± 1.6SE). Our results suggest that removal of plant biomass and associated phosphorus, as well as shifts in the plant community, have greater long-term impacts on soil bacterial community structure than application of nitrogen fertilizers.

  5. Seasonal changes in the assembly mechanisms structuring tropical fish communities.

    PubMed

    Fitzgerald, Daniel B; Winemiller, Kirk O; Sabaj Pérez, Mark H; Sousa, Leandro M

    2017-01-01

    Despite growing interest in trait-based approaches to community assembly, little attention has been given to seasonal variation in trait distribution patterns. Mobile animals can rapidly mediate influences of environmental factors and species interactions through dispersal, suggesting that the relative importance of different assembly mechanisms can vary over short time scales. This study analyzes seasonal changes in functional trait distributions of tropical fishes in the Xingu River, a major tributary of the Amazon with large predictable temporal variation in hydrologic conditions and species density. Comparison of observed functional diversity revealed that species within wet-season assemblages were more functionally similar than those in dry-season assemblages. Further, species within wet-season assemblages were more similar than random expectations based on null model predictions. Higher functional richness within dry season communities is consistent with increased niche complementarity during the period when fish densities are highest and biotic interactions should be stronger; however, null model tests suggest that stochastic factors or a combination of assembly mechanisms influence dry-season assemblages. These results demonstrate that the relative influence of community assembly mechanisms can vary seasonally in response to changing abiotic conditions, and suggest that studies attempting to infer a single dominant mechanism from functional patterns may overlook important aspects of the assembly process. During the prolonged flood pulse of the wet season, expanded habitat and lower densities of aquatic organisms likely reduce the influence of competition and predation. This temporal shift in the influence of different assembly mechanisms, rather than any single mechanism, may play a large role in maintaining the structure and diversity of tropical rivers and perhaps other dynamic and biodiverse systems.

  6. Phytoplankton community structure in the VAHINE mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Leblanc, Karine; Cornet, Véronique; Caffin, Mathieu; Rodier, Martine; Desnues, Anne; Berthelot, Hugo; Turk-Kubo, Kendra; Heliou, Jules

    2016-09-01

    The VAHINE mesocosm experiment was designed to trigger a diazotroph bloom and to follow the subsequent transfer of diazotroph-derived nitrogen (DDN) in the rest of the food web. Three mesocosms (50 m3) located inside the Nouméa lagoon (New Caledonia, southwestern Pacific) were enriched with dissolved inorganic phosphorus (DIP) in order to promote N2 fixation in these low-nutrient, low-chlorophyll (LNLC) waters. Initially, the diazotrophic community was dominated by diatom diazotroph associations (DDAs), mainly by Rhizosolenia/Richelia intracellularis, and by Trichodesmium, which fueled enough DDN to sustain the growth of other diverse diatom species and Synechococcus populations that were well adapted to limiting DIP levels. After DIP fertilization (1 µM) on day 4, an initial lag time of 10 days was necessary for the mesocosm ecosystems to start building up biomass. However, changes in community structure were already observed during this first period, with a significant drop of both Synechococcus and diatom populations, while Prochlorococcus benefited from DIP addition. At the end of this first period, corresponding to when most added DIP was consumed, the diazotroph community changed drastically and became dominated by Cyanothece-like (UCYN-C) populations, which were accompanied by a monospecific bloom of the diatom Cylindrotheca closterium. During the second period, biomass increased sharply together with primary production and N2-fixation fluxes near tripled. Diatom populations, as well as Synechococcus and nanophytoeukaryotes, showed a re-increase towards the end of the experiment, showing efficient transfer of DDN to non-diazotrophic phytoplankton.

  7. Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa.

    PubMed

    Makiuchi, Takashi; Nozaki, Tomoyoshi

    2014-05-01

    The mitochondria have arisen as a consequence of endosymbiosis of an ancestral α-proteobacterium with a methane-producing archae. The main function of the canonical aerobic mitochondria include ATP generation via oxidative phosphorylation, heme and phospholipid synthesis, calcium homeostasis, programmed cell death, and the formation of iron-sulfur clusters. Under oxygen-restricted conditions, the mitochondrion has often undergone remarkable reductive alterations of its content and function, leading to the generation of mitochondrion-related organelles (MROs), such as mitosomes, hydrogenosomes, and mithochondrion-like organelles, which are found in a wide range of anaerobic/microaerophilic eukaryotes that include several medically important parasitic protists such as Entamoeba histolytica, Giardia intestinalis, Trichomonas vaginalis, Cryptosporidium parvum, Blastocystis hominis, and Encephalitozoon cuniculi, as well as free-living protists such as Sawyeria marylandensis, Neocallimastix patriciarum, and Mastigamoeba balamuthi. The transformation from canonical aerobic mitochondria to MROs apparently have occurred in independent lineages, and resulted in the diversity of their components and functions. Due to medical and veterinary importance of the MRO-possessing human- and animal-pathogenic protozoa, their genomic, transcriptomic, proteomic, and biochemical evidence has been accumulated. Detailed analyses of the constituents and functions of the MROs in such anaerobic pathogenic protozoa, which reside oxygen-deprived or oxygen-poor environments such as the mammalian intestine and the genital organs, should illuminate the current evolutionary status of the MROs in these organisms, and give insight to environmental constraints that drive the evolution of eukaryotes and their organelles. In this review, we summarize and discuss the diverse metabolic functions and protein transport systems of the MROs from anaerobic parasitic protozoa.

  8. The community structure of human cellular signaling network.

    PubMed

    Diao, Yuanbo; Li, Menglong; Feng, Zinan; Yin, Jiajian; Pan, Yi

    2007-08-21

    Living cell is highly responsive to specific chemicals in its environment, such as hormones and molecules in food or aromas. The reason is ascribed to the existence of widespread and diverse signal transduction pathways, between which crosstalks usually exist, thus constitute a complex signaling network. Evidently, knowledge of topology characteristic of this network could contribute a lot to the understanding of diverse cellular behaviors and life phenomena thus come into being. In this presentation, signal transduction data is extracted from KEGG to construct a cellular signaling network of Homo sapiens, which has 931 nodes and 6798 links in total. Computing the degree distribution, we find it is not a random network, but a scale-free network following a power-law of P(K) approximately K(-gamma), with gamma approximately equal to 2.2. Among three graph partition algorithms, the Guimera's simulated annealing method is chosen to study the details of topology structure and other properties of this cellular signaling network, as it shows the best performance. To reveal the underlying biological implications, further investigation is conducted on ad hoc community and sketch map of individual community is drawn accordingly. The involved experiment data can be found in the supplementary material.

  9. Predator foraging altitudes reveal the structure of aerial insect communities.

    PubMed

    Helms, Jackson A; Godfrey, Aaron P; Ames, Tayna; Bridge, Eli S

    2016-06-29

    The atmosphere is populated by a diverse array of dispersing insects and their predators. We studied aerial insect communities by tracking the foraging altitudes of an avian insectivore, the Purple Martin (Progne subis). By attaching altitude loggers to nesting Purple Martins and collecting prey delivered to their nestlings, we determined the flight altitudes of ants and other insects. We then tested hypotheses relating ant body size and reproductive ecology to flight altitude. Purple Martins flew up to 1,889 meters above ground, and nestling provisioning trips ranged up to 922 meters. Insect communities were structured by body size such that species of all sizes flew near the ground but only light insects flew to the highest altitudes. Ant maximum flight altitudes decreased by 60% from the lightest to the heaviest species. Winged sexuals of social insects (ants, honey bees, and termites) dominated the Purple Martin diet, making up 88% of prey individuals and 45% of prey biomass. By transferring energy from terrestrial to aerial food webs, mating swarms of social insects play a substantial role in aerial ecosystems. Although we focus on Purple Martins and ants, our combined logger and diet method could be applied to a range of aerial organisms.

  10. Predator foraging altitudes reveal the structure of aerial insect communities

    PubMed Central

    Helms, Jackson A.; Godfrey, Aaron P.; Ames, Tayna; Bridge, Eli S.

    2016-01-01

    The atmosphere is populated by a diverse array of dispersing insects and their predators. We studied aerial insect communities by tracking the foraging altitudes of an avian insectivore, the Purple Martin (Progne subis). By attaching altitude loggers to nesting Purple Martins and collecting prey delivered to their nestlings, we determined the flight altitudes of ants and other insects. We then tested hypotheses relating ant body size and reproductive ecology to flight altitude. Purple Martins flew up to 1,889 meters above ground, and nestling provisioning trips ranged up to 922 meters. Insect communities were structured by body size such that species of all sizes flew near the ground but only light insects flew to the highest altitudes. Ant maximum flight altitudes decreased by 60% from the lightest to the heaviest species. Winged sexuals of social insects (ants, honey bees, and termites) dominated the Purple Martin diet, making up 88% of prey individuals and 45% of prey biomass. By transferring energy from terrestrial to aerial food webs, mating swarms of social insects play a substantial role in aerial ecosystems. Although we focus on Purple Martins and ants, our combined logger and diet method could be applied to a range of aerial organisms. PMID:27352817

  11. Aquifer community structure in dependence of lithostratigraphy in groundwater reservoirs.

    PubMed

    Beyer, Andrea; Rzanny, Michael; Weist, Aileen; Möller, Silke; Burow, Katja; Gutmann, Falko; Neumann, Stefan; Lindner, Julia; Müsse, Steffen; Brangsch, Hanka; Stoiber-Lipp, Jennifer; Lonschinski, Martin; Merten, Dirk; Büchel, Georg; Kothe, Erika

    2015-12-01

    Groundwater microbiology with respect to different host rocks offers new possibilities to describe and map the habitat harboring approximately half of Earths' biomass. The Thuringian Basin (Germany) contains formations of the Permian (Zechstein) and Triassic (Muschelkalk and Buntsandstein) with outcrops and deeper regions at the border and central part. Hydro(geo)chemistry and bacterial community structure of 11 natural springs and 20 groundwater wells were analyzed to define typical patterns for each formation. Widespread were Gammaproteobacteria, while Bacilli were present in all wells. Halotolerant and halophilic taxa were present in Zechstein. The occurrence of specific taxa allowed a clear separation of communities from all three lithostratigraphic groups. These specific taxa could be used to follow fluid movement, e.g., from the underlying Zechstein or from nearby saline reservoirs into Buntsandstein aquifers. Thus, we developed a new tool to identify the lithostratigraphic origin of sources in mixed waters. This was verified with entry of surface water, as species not present in the underground Zechstein environments were isolated from the water samples. Thus, our tool shows a higher resolution as compared to hydrochemistry, which is prone to undergo fast dilution if water mixes with other aquifers. Furthermore, the bacteria well adapted to their respective environment showed geographic clustering allowing to differentiate regional aquifers.

  12. Structure of a cellulose degrading bacterial community during anaerobic digestion.

    PubMed

    O'Sullivan, Cathryn A; Burrell, Paul C; Clarke, William P; Blackall, Linda L

    2005-12-30

    It is widely accepted that cellulose is the rate-limiting substrate in the anaerobic digestion of organic solid wastes and that cellulose solubilisation is largely mediated by surface attached bacteria. However, little is known about the identity or the ecophysiology of cellulolytic microorganisms from landfills and anaerobic digesters. The aim of this study was to investigate an enriched cellulolytic microbial community from an anaerobic batch reactor. Chemical oxygen demand balancing was used to calculate the cellulose solubilisation rate and the degree of cellulose solubilisation. Fluorescence in situ hybridisation (FISH) was used to assess the relative abundance and physical location of three groups of bacteria belonging to the Clostridium lineage of the Firmicutes that have been implicated as the dominant cellulose degraders in this system. Quantitation of the relative abundance using FISH showed that there were changes in the microbial community structure throughout the digestion. However, comparison of these results to the process data reveals that these changes had no impact on the cellulose solubilisation in the reactor. The rate of cellulose solubilisation was approximately stable for much of the digestion despite changes in the cellulolytic population. The solubilisation rate appears to be most strongly affected by the rate of surface area colonisation and the biofilm architecture with the accepted model of first order kinetics due to surface area limitation applying only when the cellulose particles are fully covered with a thin layer of cells.

  13. Source food webs as estimators of community web structure

    NASA Astrophysics Data System (ADS)

    Hawkins, Bradford A.; Martinez, Neo D.; Gilbert, Francis

    Taxonomically restricted "source webs" are commonly used to represent the community food webs of which they are part. This raises a methodological problem if source webs provide biased estimates of food web structure. We use four high quality, extensive food webs containing multiple source species to measure the sensitivity of food web metrics to the number of source species used to generate a web. The total number of species ( S), linkage density ( L/S), directed connectance ( L/S 2) and the fractions of basal ( B), intermediate ( I), and top ( T) species are all sensitive to the number of source species. Further, the pattern of variation for the latter fractions is inconsistent and web dependent, indicating that source webs are inappropriate for characterizing these properties. Linkage densities increase with the numbers of source species in all four cases, with webs based on single or few sources severely underestimating values obtained for the full webs. Connectance shows more constrained decreases with increasing numbers of sources, suggesting that multiple-source webs may provide reasonable estimates of connectance for community webs.

  14. [Oviposition timing and community structure of Ficus curtipes fig wasps].

    PubMed

    Zhang, Feng-Ping; Yang, Da-Rong

    2009-08-01

    Through the behavioral observation of Ficus curtipes fig wasps and the counting of various kinds of flowerets in F. curtipes figs, the oviposition timing and community structure of 12 F. curtipes fig wasp species were studied. Besides the agaonid wasp Eupristina sp., the two non-agaonid wasps Diaziella yangi and Lipothymus sp. could enter into F. curtipes figs and oviposit. The other nine non-agaonid fig wasps ( Walkerella sp., Micranisa sp., Sycophilomorpha sp., Philotrypesis sp., Sycosapter sp., Sycobia sp., Ficomila sp., Ormyrus sp. and Sycophila sp.) oviposited outside the figs. In the fig wasp community, Eupristina sp. was the dominant species, accounting for 62.11% of the total, D. yangi and Lipothymus sp. accounted for 27.19% and 4.71%, respectively, while the other nine non-agaonid fig wasp species only occupied 5.99%. The non-agaonid fig wasps produced their progeny through the reproduction strategies of oviposition timing and diet allocation of female flowerets, so as to sustain the fig-wasp mutualism. The individuals of non-agaonid fig wasp progeny had significant negative correlation with those of agaonid fig wasp progeny, but no correlation with F. curtipes seed production.

  15. [Trypanosomatid (Protozoa, Kinetoplastida) parasites of sloths (Mannmalia, Xenarthra)].

    PubMed

    Rotureau, B

    2006-07-01

    Worldwide famous for their slothfulness, sloths are xenarthran mammals living in the tropical forests of the New World. In these highly biodiverse habitats, sloths are implicated in long-term interactions with many organisms. They are especially involved in the parasitic cycles of various trypanosomatids including human parasites. This review describes the different species of the genera Leishmania, Endotrypanum and Trypanosoma that infect sloths. The improvement of the preventive method efficacy against synanthropozoonotic diseases due to several of these protozoa relies on studies on the ecology and biology of wild reservoir hosts such as sloths.

  16. Intestinal protozoa in wild boars (Sus scrofa) in western Iran.

    PubMed

    Solaymani-Mohammadi, S; Rezaian, M; Hooshyar, H; Mowlavi, G R; Babaei, Z; Anwar, M A

    2004-10-01

    A total of 12 gastrointestinal tracts of wild boars (Sus scrofa) from western Iran (Luristan) were examined for protozoan infection between September 2000 and November 2001. Of 12 boars examined, 67% harbored one or more species of the following protozoa: Balantidium coli (25%), Tritrichomonas suis (25%), Blastocystis sp. (25%), Entamoeba polecki (17%), Entamoeba suis (8%), Iodamoeba butschlii (17%), and Chilomastix mesnili (8%). Four of these protozoan species also are reported in humans, and persons living in rural areas where wild boars are abundant should take precaution to avoid infection.

  17. A novel dynamics combination model reveals the hidden information of community structure

    NASA Astrophysics Data System (ADS)

    Li, Hui-Jia; Li, Huiying; Jia, Chuanliang

    2015-09-01

    The analysis of the dynamic details of community structure is an important question for scientists from many fields. In this paper, we propose a novel Markov-Potts framework to uncover the optimal community structures and their stabilities across multiple timescales. Specifically, we model the Potts dynamics to detect community structure by a Markov process, which has a clear mathematical explanation. Then the local uniform behavior of spin values revealed by our model is shown that can naturally reveal the stability of hierarchical community structure across multiple timescales. To prove the validity, phase transition of stochastic dynamic system is used to indicate that the stability of community structure we proposed is able to describe the significance of community structure based on eigengap theory. Finally, we test our framework on some example networks and find it does not have resolute limitation problem at all. Results have shown the model we proposed is able to uncover hierarchical structure in different scales effectively and efficiently.

  18. Stability in flux: community structure in dynamic networks.

    PubMed

    Bryden, John; Funk, Sebastian; Geard, Nicholas; Bullock, Seth; Jansen, Vincent A A

    2011-07-06

    The structure of many biological, social and technological systems can usefully be described in terms of complex networks. Although often portrayed as fixed in time, such networks are inherently dynamic, as the edges that join nodes are cut and rewired, and nodes themselves update their states. Understanding the structure of these networks requires us to understand the dynamic processes that create, maintain and modify them. Here, we build upon existing models of coevolving networks to characterize how dynamic behaviour at the level of individual nodes generates stable aggregate behaviours. We focus particularly on the dynamics of groups of nodes formed endogenously by nodes that share similar properties (represented as node state) and demonstrate that, under certain conditions, network modularity based on state compares well with network modularity based on topology. We show that if nodes rewire their edges based on fixed node states, the network modularity reaches a stable equilibrium which we quantify analytically. Furthermore, if node state is not fixed, but can be adopted from neighbouring nodes, the distribution of group sizes reaches a dynamic equilibrium, which remains stable even as the composition and identity of the groups change. These results show that dynamic networks can maintain the stable community structure that has been observed in many social and biological systems.

  19. Are gay communities dying or just in transition? Results from an international consultation examining possible structural change in gay communities.

    PubMed

    Simon Rosser, B R; West, William; Weinmeyer, Richard

    2008-05-01

    This study sought to identify how urban gay communities are undergoing structural change, reasons for that change, and implications for HIV prevention planning. Key informants (N=29) at the AIDS Impact Conference from 17 cities in 14 countries completed surveys and participated in a facilitated structured dialog about if gay communities are changing, and if so, how they are changing. In all cities, the virtual gay community was identified as currently larger than the offline physical community. Most cities identified that while the gay population in their cities appeared stable or growing, the gay community appeared in decline. Measures included greater integration of heterosexuals into historically gay-identified neighborhoods and movement of gay persons into suburbs, decreased number of gay bars/clubs, less attendance at gay events, less volunteerism in gay or HIV/AIDS organizations, and the overall declining visibility of gay communities. Participants attributed structural change to multiple factors including gay neighborhood gentrification, achievement of civil rights, less discrimination, a vibrant virtual community, and changes in drug use. Consistent with social assimilation, gay infrastructure, visibility, and community identification appears to be decreasing across cities. HIV prevention planning, interventions, treatment services, and policies need to be re-conceptualized for MSM in the future. Four recommendations for future HIV prevention and research are detailed.

  20. Unraveling the Molecular Mechanisms Underlying the Nasopharyngeal Bacterial Community Structure

    PubMed Central

    de Steenhuijsen Piters, Wouter A. A.

    2016-01-01

    ABSTRACT The upper respiratory tract is colonized by a diverse array of commensal bacteria that harbor potential pathogens, such as Streptococcus pneumoniae. As long as the local microbial ecosystem—also called “microbiome”—is in balance, these potentially pathogenic bacterial residents cause no harm to the host. However, similar to macrobiological ecosystems, when the bacterial community structure gets perturbed, potential pathogens can overtake the niche and cause mild to severe infections. Recent studies using next-generation sequencing show that S. pneumoniae, as well as other potential pathogens, might be kept at bay by certain commensal bacteria, including Corynebacterium and Dolosigranulum spp. Bomar and colleagues are the first to explore a specific biological mechanism contributing to the antagonistic interaction between Corynebacterium accolens and S. pneumoniae in vitro [L. Bomar, S. D. Brugger, B. H. Yost, S. S. Davies, K. P. Lemon, mBio 7(1):e01725-15, 2016, doi:10.1128/mBio.01725-15]. The authors comprehensively show that C. accolens is capable of hydrolyzing host triacylglycerols into free fatty acids, which display antipneumococcal properties, suggesting that these bacteria might contribute to the containment of pneumococcus. This work exemplifies how molecular epidemiological findings can lay the foundation for mechanistic studies to elucidate the host-microbe and microbial interspecies interactions underlying the bacterial community structure. Next, translation of these results to an in vivo setting seems necessary to unveil the magnitude and importance of the observed effect in its natural, polymicrobial setting. PMID:26838716

  1. ORGANIC VS CONVENTIONAL: SOIL NEMATODE COMMUNITY STRUCTURE AND FUNCTION.

    PubMed

    Kapp, C; Storey, S G; Malan, A P

    2014-01-01

    Global increases in human population are creating an ever-greater need for food production. Poor soil management practices have degraded soil to such an extent that rapidly improved management practices is the only way to ensure future food demands. In South Africa, deciduous fruit producers are realising the need for soil health, and for an increased understanding of the benefits of soil ecology, to ensure sustainable fruit production. This depends heavily on improved orchard management. Conventional farming relies on the addition of artificial fertilizers, and the application of chemicals, to prevent or minimise, the effects of the soil stages of pest insects, and of plant-parasitic nematodes. Currently, there is resistance toward conventional farming practices, which, it is believed, diminishes biodiversity within the soil. The study aimed to establish the soil nematode community structure and function in organically, and conventionally, managed deciduous fruit orchards. This was done by determining the abundance, the diversity, and the functionality of the naturally occurring free-living, and plant-parasitic, nematodes in deciduous fruit orchards in the Western Cape province of South Africa. The objective of the study was to form the basis for the use of nematodes as future indicators of soil health in deciduous fruit orchards. Orchards from neighbouring organic, and conventional, apricot farms, and from an organic apple orchard, were studied. All the nematodes were quantified, and identified, to family level. The five nematode-classified trophic groups were found at each site, while 14 families were identified in each orchard, respectively. Herbivores were dominant in all the orchards surveyed. Organic apples had the fewest herbivores and fungivores, with the highest number of carnivores. When comparing organic with conventional apricot orchards, higher numbers of plant-parasitic nematodes were found in the organic apricot orchards. The Maturity Index (MI

  2. Pregnancy and birth in an indigenous Huichol community: from structural violence to structural policy responses.

    PubMed

    Gamlin, Jennie B; Hawkes, Sarah J

    2015-01-01

    Mexico's indigenous regions are characterised by socio-economic marginalisation and poor health outcomes and the Maternal Mortality Rate in indigenous communities continues to be around six times higher than the national rate. Using as a case study the Huichol community of North-Western Mexico we will discuss how institutional health and welfare programmes which aim to address accepted risk factors for maternal health are undermined by a series of structural barriers which put indigenous women especially in harm's way. Semi-structured interviews and observational data were gathered between 2009 and 2011 in highland communities and on coastal tobacco plantations to where a large number of this ethnic group migrate. Many Huichol women birth alone, and to facilitate this process they maintain a low nutritional intake to reduce their infant's growth and seek spiritual guidance during pregnancy from a shaman. These practices are reinforced by feelings of shame and humiliation encountered when using institutional health provision. These are some of the structural barriers to care that need to be addressed. Effective interventions could include addressing the training of health professionals, focusing on educational inequalities and the structural determinants of poverty whilst designing locally specific programmes that encourage acceptance of available health care.

  3. Community structure, population structure and topographical specialisation of Gyrodactylus (monogenea) ectoparasites living on sympatric stickleback species.

    PubMed

    Raeymaekers, Joost A M; Huyse, Tine; Maelfait, Hannelore; Hellemans, Bart; Volckaert, Filip A M

    2008-09-01

    In order to disentangle the contribution of host and parasite biology to host specificity, we compared the structure and population dynamics of the Gyrodactylus (von Nordmann, 1832) flatworm community living on sympatric three-spined Gasterosteus aculeatus L. and nine-spined Pungitius pungitius (L.) stickleback. Between April 2002 and March 2003, a small lowland creek was sampled monthly. Species identity of about 75% of the worms per host was determined with a genetic nuclear marker (ITS1). Each stickleback species hosted a characteristic gill- and fin-parasitic Gyrodactylus: G. arcuatus Bychowsky, 1933 and G. gasterostei Gläser, 1974 respectively infecting the three-spined stickleback, with G. rarus Wegener, 1910 and G. pungitii Malmberg, 1964 infecting the nine-spined stickleback. Host size and seasonal dynamics were strong determinants of parasite abundance. A strong interaction between host and parasite species determined infection levels and affected three levels of parasite organisation: community structure, population structure and topographical specialisation. Community and population structure were shaped by asymmetric cross-infections, resulting in a net transmission of the Gyro-dactylus species typical of the nine-spined stickleback towards the three-spined stickleback. Host density was not a major determinant of parasite exchange. Aggregation and topographical specialisation of the Gyrodactylus species of the three-spined stickleback were more pronounced than that of the nine-spined stickleback.

  4. Guided Pathways to Careers: Four Dimensions of Structure in Community College Career-Technical Programs

    ERIC Educational Resources Information Center

    Van Noy, Michelle; Trimble, Madeline; Jenkins, Davis; Barnett, Elisabeth; Wachen, John

    2016-01-01

    Objective: Some have hypothesized that community college programs are not sufficiently structured to support student success and that students would benefit from more highly structured programs. This study examines the specific ways that structure is expressed in policy and practice at representative community colleges. Method: Using data obtained…

  5. Four Structures for Marketing in the American Public Community College.

    ERIC Educational Resources Information Center

    Bogart, Quentin J.

    Prepared for college officials considering the development of marketing programs, this paper examines the distinctive marketing practices for four geographically separated, public community college districts: Coastline Community College (CCC), California; Metropolitan Community College District (MCCD), Missouri; Triton College (TC), Illinois; and…

  6. Microscopic and Molecular Studies of the Diversity of Free-Living Protozoa in Meat-Cutting Plants▿

    PubMed Central

    Vaerewijck, Mario J. M.; Sabbe, Koen; Baré, Julie; Houf, Kurt

    2008-01-01

    The diversity of free-living protozoa in five meat-cutting plants was determined. Light microscopy after enrichment culturing was combined with sequencing of PCR-amplified, denaturing gradient gel electrophoresis (DGGE)-separated 18S rRNA gene fragments, which was used as a fast screening method. The general results of the survey showed that a protozoan community of amoebae, ciliates, and flagellates was present in all of the plants. Protozoa were detected mainly in floor drains, in standing water on the floor, on soiled bars of cutting tables, on plastic pallets, and in out-of-use hot water knife sanitizers, but they were also detected on surfaces which come into direct contact with meat, such as conveyer belts, working surfaces of cutting tables, and needles of a meat tenderizer. After 7 days of incubation at refrigerator temperature, protozoa were detected in about one-half of the enrichment cultures. Based on microscopic observations, 61 morphospecies were found, and Bodo saltans, Bodo spp., Epistylis spp., Glaucoma scintillans, Petalomonas spp., Prodiscophrya collini, and Vannella sp. were the most frequently encountered identified organisms. Sequencing of DGGE bands resulted in identification of a total of 49 phylotypes, including representatives of the Amoebozoa, Chromalveolata, Excavata, Opisthokonta, and Rhizaria. Sequences of small heterotrophic flagellates were affiliated mainly with the Alveolata (Apicomplexa), Stramenopiles (Chrysophyceae), and Rhizaria (Cercozoa). This survey showed that there is high protozoan species richness in meat-cutting plants and that the species included species related to known hosts of food-borne pathogens. PMID:18641165

  7. Structuring of bacterioplankton communities by specific dissolved organic carbon compounds.

    PubMed

    Gómez-Consarnau, Laura; Lindh, Markus V; Gasol, Josep M; Pinhassi, Jarone

    2012-09-01

    The main role of microorganisms in the cycling of the bulk dissolved organic carbon pool in the ocean is well established. Nevertheless, it remains unclear if particular bacteria preferentially utilize specific carbon compounds and whether such compounds have the potential to shape bacterial community composition. Enrichment experiments in the Mediterranean Sea, Baltic Sea and the North Sea (Skagerrak) showed that different low-molecular-weight organic compounds, with a proven importance for the growth of marine bacteria (e.g. amino acids, glucose, dimethylsulphoniopropionate, acetate or pyruvate), in most cases differentially stimulated bacterial growth. Denaturing gradient gel electrophoresis 'fingerprints' and 16S rRNA gene sequencing revealed that some bacterial phylotypes that became abundant were highly specific to enrichment with specific carbon compounds (e.g. Acinetobacter sp. B1-A3 with acetate or Psychromonas sp. B3-U1 with glucose). In contrast, other phylotypes increased in relative abundance in response to enrichment with several, or all, of the investigated carbon compounds (e.g. Neptuniibacter sp. M2-A4 with acetate, pyruvate and dimethylsulphoniopropionate, and Thalassobacter sp. M3-A3 with pyruvate and amino acids). Furthermore, different carbon compounds triggered the development of unique combinations of dominant phylotypes in several of the experiments. These results suggest that bacteria differ substantially in their abilities to utilize specific carbon compounds, with some bacteria being specialists and others having a more generalist strategy. Thus, changes in the supply or composition of the dissolved organic carbon pool can act as selective forces structuring bacterioplankton communities.

  8. Microzooplankton herbivory and community structure in the Amundsen Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Yang, Eun Jin; Jiang, Yong; Lee, SangHoon

    2016-01-01

    We examined microzooplankton abundance, community structure, and grazing impact on phytoplankton in the Amundsen Sea, Western Antarctica, during the early austral summer from December 2010 to January 2011. Our study area was divided into three regions based on topography, hydrographic properties, and trophic conditions: (1) the Oceanic Zone (OZ), with free sea ice and low phytoplankton biomass dominated by diatoms; (2) the Sea Ice Zone (SIZ), covered by heavy sea ice with colder water, lower salinity, and dominated by diatoms; and (3) the Amundsen Sea Polynya (ASP), with high phytoplankton biomass dominated by Phaeocystis antarctica. Microzooplankton biomass and communities associated with phytoplankton biomass and composition varied among regions. Heterotrophic dinoflagellates (HDF) were the most significant grazers in the ASP and OZ, whereas ciliates co-dominated with HDF in the SIZ. Microzooplankton grazing impact is significant in our study area, particularly in the ASP, and consumed 55.4-107.6% of phytoplankton production (average 77.3%), with grazing impact increasing with prey and grazer biomass. This result implies that a significant proportion of the phytoplankton production is not removed by sinking or other grazers but grazed by microzooplankton. Compared with diatom-based systems, Phaeocystis-based production would be largely remineralized and/or channeled through the microbial food web through microzooplankton grazing. In these waters the major herbivorous fate of phytoplankton is likely mediated by the microzooplankton population. Our study confirms the importance of herbivorous protists in the planktonic ecosystems of high latitudes. In conclusion, microzooplankton herbivory may be a driving force controlling phytoplankton growth in early summer in the Amundsen Sea, particularly in the ASP.

  9. The Effect of Dilution on the Structure of Microbial Communities

    NASA Technical Reports Server (NTRS)

    Mills, Aaron L.

    2000-01-01

    To determine how dilution of microbial communities affects the diversity of the diluted assemblage a series of numerical simulations were conducted that determined the theoretical change in diversity, richness, and evenness of the community with serial dilution. The results of the simulation suggested that the effects are non linear with a high degree of dependence on the initial evenness of the community being diluted. A series of incubation experiments using a range of dilutions of raw sewage as an inoculum into sterile sewage was used for comparison to the simulations. The diluted communities were maintained in batch fed reactors (three day retention time) for nine days. The communities were harvested and examined by conventional plating and by molecular analysis of the whole-community DNA using AFLP and T-RFLP. Additional, CLPP analysis was also applied. The effects on richness predicted by the numerical simulations were confirmed by the analyses used. The diluted communities fell into three groups, a low dilution, intermediate dilution, and high dilution group, which corresponded well with the groupings obtained for community richness in simulation. The grouping demonstrated the non-linear nature of dilution of whole communities. Furthermore, the results implied that the undiluted community consisted of a few dominant types accompanied by a number of rare (low abundance) types as is typical in unevenly distributed communities.

  10. Detecting community structure in complex networks using an interaction optimization process

    NASA Astrophysics Data System (ADS)

    Kim, Paul; Kim, Sangwook

    2017-01-01

    Most complex networks contain community structures. Detecting these community structures is important for understanding and controlling the networks. Most community detection methods use network topology and edge density to identify optimal communities; however, these methods have a high computational complexity and are sensitive to network forms and types. To address these problems, in this paper, we propose an algorithm that uses an interaction optimization process to detect community structures in complex networks. This algorithm efficiently searches the candidates of optimal communities by optimizing the interactions of the members within each community based on the concept of greedy optimization. During this process, each candidate is evaluated using an interaction-based community model. This model quickly and accurately measures the difference between the quantity and quality of intra- and inter-community interactions. We test our algorithm on several benchmark networks with known community structures that include diverse communities detected by other methods. Additionally, after applying our algorithm to several real-world complex networks, we compare our algorithm with other methods. We find that the structure quality and coverage results achieved by our algorithm surpass those of the other methods.

  11. Microbial community structure characteristics associated membrane fouling in A/O-MBR system.

    PubMed

    Gao, Da-Wen; Wen, Zhi-Dan; Li, Bao; Liang, Hong

    2014-02-01

    The study demonstrated the potential relationship between microbial community structure and membrane fouling in an anoxic-oxic membrane bioreactor (A/O-MBR). The results showed that the microbial community structure in biocake was different with aerobic mixture, and the dominant populations were out of sync during the fouling process. Based on microbial community structure and metabolites analysis, the results showed that the succession of microbial community might be the leading factor to the variation of metabolites, and it might be the primary cause of membrane fouling. The rise of Shannon diversity index (H) of the microbial community in A/O-MBR went with the gradually serious membrane fouling. Pareto-Lorenz curve was used to describe the evenness of microbial distribution in A/O-MBR, and the result indicated when community evenness was low, the membrane fouling took place smoothly or slightly, otherwise, high evenness of microbial community would lead to more seriously membrane fouling.

  12. Testing protozoacidal activity of ligand-lytic peptides against termite gut protozoa in vitro (protozoa culture) and in vivo (microinjection into termite hindgut).

    PubMed

    Husseneder, Claudia; Sethi, Amit; Foil, Lane; Delatte, Jennifer

    2010-12-29

    We are developing a novel approach to subterranean termite control that would lead to reduced reliance on the use of chemical pesticides. Subterranean termites are dependent on protozoa in the hindguts of workers to efficiently digest wood. Lytic peptides have been shown to kill a variety of protozoan parasites (Mutwiri et al. 2000) and also protozoa in the gut of the Formosan subterranean termite, Coptotermes formosanus (Husseneder and Collier 2009). Lytic peptides are part of the nonspecific immune system of eukaryotes, and destroy the membranes of microorganisms (Leuschner and Hansel 2004). Most lytic peptides are not likely to harm higher eukaryotes, because they do not affect the electrically neutral cholesterol-containing cell membranes of higher eukaryotes (Javadpour et al. 1996). Lytic peptide action can be targeted to specific cell types by the addition of a ligand. For example, Hansel et al. (2007) reported that lytic peptides conjugated with cancer cell membrane receptor ligands could be used to destroy breast cancer cells, while lytic peptides alone or conjugated with non-specific peptides were not effective. Lytic peptides also have been conjugated to human hormones that bind to receptors on tumor cells for targeted destruction of prostate and testicular cancer cells (Leuschner and Hansel 2004). In this article we present techniques used to demonstrate the protozoacidal activity of a lytic peptide (Hecate) coupled to a heptapeptide ligand that binds to the surface membrane of protozoa from the gut of the Formosan subterranean termite. These techniques include extirpation of the gut from termite workers, anaerobic culture of gut protozoa (Pseudotrichonympha grassii, Holomastigotoides hartmanni,Spirotrichonympha leidyi), microscopic confirmation that the ligand marked with a fluorescent dye binds to the termite gut protozoa and other free-living protozoa but not to bacteria or gut tissue. We also demonstrate that the same ligand coupled to a lytic

  13. Drug Targets and Mechanisms of Resistance in the Anaerobic Protozoa

    PubMed Central

    Upcroft, Peter; Upcroft, Jacqueline A.

    2001-01-01

    The anaerobic protozoa Giardia duodenalis, Trichomonas vaginalis, and Entamoeba histolytica infect up to a billion people each year. G. duodenalis and E. histolytica are primarily pathogens of the intestinal tract, although E. histolytica can form abscesses and invade other organs, where it can be fatal if left untreated. T. vaginalis infection is a sexually transmitted infection causing vaginitis and acute inflammatory disease of the genital mucosa. T. vaginalis has also been reported in the urinary tract, fallopian tubes, and pelvis and can cause pneumonia, bronchitis, and oral lesions. Respiratory infections can be acquired perinatally. T. vaginalis infections have been associated with preterm delivery, low birth weight, and increased mortality as well as predisposing to human immunodeficiency virus infection, AIDS, and cervical cancer. All three organisms lack mitochondria and are susceptible to the nitroimidazole metronidazole because of similar low-redox-potential anaerobic metabolic pathways. Resistance to metronidazole and other drugs has been observed clinically and in the laboratory. Laboratory studies have identified the enzyme that activates metronidazole, pyruvate:ferredoxin oxidoreductase, to its nitroso form and distinct mechanisms of decreasing drug susceptibility that are induced in each organism. Although the nitroimidazoles have been the drug family of choice for treating the anaerobic protozoa, G. duodenalis is less susceptible to other antiparasitic drugs, such as furazolidone, albendazole, and quinacrine. Resistance has been demonstrated for each agent, and the mechanism of resistance has been investigated. Metronidazole resistance in T. vaginalis is well documented, and the principal mechanisms have been defined. Bypass metabolism, such as alternative oxidoreductases, have been discovered in both organisms. Aerobic versus anaerobic resistance in T. vaginalis is discussed. Mechanisms of metronidazole resistance in E. histolytica have recently

  14. The ecology of rubble structures of the South Atlantic Bight: A community profile. [Jetties

    SciTech Connect

    Hay, M.E.; Sutherland, J.P.

    1988-09-01

    This community profile provides an introduction to the ecology of the communities living on and around rubble structures in the South Atlantic Bight (Cape Hatteras to Cape Canaveral). The most prominent rubble structures in the bight are jetties built at the entrances to major harbors. After an initial discussion of the various kinds of rubble structures and physical factors that affect the organisms associated with them, the major portion of the text is devoted to the ecology of rubble structure habitats. Community composition, distribution, seasonality, and the recruitment patterns of the major groups of organisms are described. The major physical and biological factors affecting the organization of intertidal, sunlit subtidal, and shaded subtidal communities are presented and the potential effects of complex interactions in structuring these communities are evaluated. The profile concludes with a general review of the effects of rubble structures on nearshore sediment dynamics and shoreline evolution. 295 refs., 33 figs., 4 tabs.

  15. Spatial variation of phytoplankton community structure in Daya Bay, China.

    PubMed

    Jiang, Zhao-Yu; Wang, You-Shao; Cheng, Hao; Zhang, Jian-Dong; Fei, Jiao

    2015-10-01

    Daya Bay is one of the largest and most important gulfs in the southern coast of China, in the northern part of the South China Sea. The phylogenetic diversity and spatial distribution of phytoplankton from the Daya Bay surface water and the relationship with the in situ water environment were investigated by the clone library of the large subunit of ribulose-1, 5-bisphosphate carboxylase (rbcL) gene. The dominant species of phytoplankton were diatoms and eustigmatophytes, which accounted for 81.9 % of all the clones of the rbcL genes. Prymnesiophytes were widely spread and wide varieties lived in Daya Bay, whereas the quantity was limited. The community structure of phytoplankton was shaped by pH and salinity and the concentration of silicate, phosphorus and nitrite. The phytoplankton biomass was significantly positively affected by phosphorus and nitrite but negatively by salinity and pH. Therefore, the phytoplankton distribution and biomass from Daya Bay were doubly affected by anthropic activities and natural factors.

  16. Prey community structure affects how predators select for Mullerian mimicry.

    PubMed

    Ihalainen, Eira; Rowland, Hannah M; Speed, Michael P; Ruxton, Graeme D; Mappes, Johanna

    2012-06-07

    Müllerian mimicry describes the close resemblance between aposematic prey species; it is thought to be beneficial because sharing a warning signal decreases the mortality caused by sampling by inexperienced predators learning to avoid the signal. It has been hypothesized that selection for mimicry is strongest in multi-species prey communities where predators are more prone to misidentify the prey than in simple communities. In this study, wild great tits (Parus major) foraged from either simple (few prey appearances) or complex (several prey appearances) artificial prey communities where a specific model prey was always present. Owing to slower learning, the model did suffer higher mortality in complex communities when the birds were inexperienced. However, in a subsequent generalization test to potential mimics of the model prey (a continuum of signal accuracy), only birds that had foraged from simple communities selected against inaccurate mimics. Therefore, accurate mimicry is more likely to evolve in simple communities even though predator avoidance learning is slower in complex communities. For mimicry to evolve, prey species must have a common predator; the effective community consists of the predator's diet. In diverse environments, the limited diets of specialist predators could create 'simple community pockets' where accurate mimicry is selected for.

  17. Molecular diagnosis of infectious diarrhea: focus on enteric protozoa.

    PubMed

    Verkerke, Hans P; Sobuz, Shihab U; Petri, William A

    2014-11-01

    Robust detection of enteric protozoa is a critical step toward determining the etiology of diarrhea. Widespread use of conventional microscopy, culturing and antigen detection in both industrial and developing countries is limited by relatively low sensitivity and specificity. Refinements of these conventional approaches that reduce turnaround time and instrumentation have yielded strong alternatives for clinical and research use. However, advances in molecular diagnostics for protozoal, bacterial, viral and helminth infections offer significant advantages in studies seeking to understand pathogenesis, transmission and long-term consequences of infectious diarrhea. Quantitation of enteropathogen burden and highly multiplexed platforms for molecular detection dramatically improve predictive power in emerging models of diarrheal etiology, while eliminating the expense of multiple tests.

  18. Ciliate protozoa of the forestomach of llamas (Lama glama) from locations
    at different altitude in Argentina.

    PubMed

    Cucchi, María Cerón; Marcoppido, Gisela; Dekker, Anna; Fondevila, Manuel; Fuente, Gabriel De La; Morici, Gabriel; Cravero, Silvio

    2016-01-20

    This study describes the diversity and concentration of the protozoal population from the forestomach of llamas in Argentina at three altitudinal locations. Protozoal diversity was studied in samples from eight llamas from Hurlingham (Buenos Aires, 43 m altitude), four from Tilcara (Jujuy, 2465 m altitude) and six llamas from Cieneguillas (Jujuy, 3800 m altitude). The total concentrations of protozoa in the forestomach contents were 7.9, 9.1 and 4.1 cells x 104 ml-1 in Hurlingham, Tilcara and Cieneguillas, respectively (P>0.05). Entodinium spp. represented 97.9, 92.3 and 71.4% of the protozoal community in Hurlingham, Tilcara and Cieneguillas, respectively, and the remaining protozoa belonged to the Eudiplodinium genus. Entodinium spp. were identified as E. caudatum (mostly morphotype dubardi), E. longinucleatum, E. parvum, E. bovis, E. exiguum, E. dubardi, and a minor presence of E. bimastus (in three animals) and E. ovibos (in one animal). In regards to the rest of protozoal species, Eudiplodinium maggii is the first reported host record for the genus in llamas. This species was present in the forestomach of 14 out of 18 llamas tested, and in one case it was the unique protozoal species. The vestibuliferids, Dasytricha and Isotricha were absent from the forestomach of llamas. Similarly, other species such as those from the Caloscolex genus, Diplodinium cameli and Entodinium ovumrajae, commonly found in Old World Camelids, were also absent from llamas.

  19. Clinical and immunological characteristics associated with the presence of protozoa in sputum smears.

    PubMed

    Martínez-Girón, Rafael; van Woerden, Hugo Cornelis

    2013-01-01

    The objective of this study is to assess the relationship between protozoa in spontaneously expectorated sputum samples and a range of clinical and immunological variables. Clinical details including age, gender, smoking status, and use of oral or inhaled steroids were recorded for a cohort of 199 patients whose spontaneously expectorated sputum samples were submitted to a Cytology Laboratory in Spain between January 2005 and December 2006. Slides were scanned for protozoa under light microscopy and scanned for monocytes/small macrophages highlighted by immunocytochemistry (CD68 monoclonal antibody). One hundred ninety-one patients provided adequate sputum samples, of whom 70 had protozoa in their sputum. There was a strong relationship between the presence of protozoa and monocytes/small macrophages identified under light microscopy (P < 0.001). A binary logistic regression model also indicated a relationship between protozoa and both smoking status and steroid use. The diagnoses in those with protozoa included infection (including tuberculosis), chronic obstructive pulmonary disease (COPD), lung fibrosis, asthma, chronic liver disease, immunosuppression, cancer, pancreatic or renal disease, heart failure, and AIDS. The identified association between protozoa and monocytes/small macrophages in sputum suggests an immune response and warrants further investigation to clarify whether or not these organisms have any pathological significance in this wide range of conditions.

  20. Prevalence of protozoa species in drinking and environmental water sources in Sudan.

    PubMed

    Shanan, Salah; Abd, Hadi; Bayoumi, Magdi; Saeed, Amir; Sandström, Gunnar

    2015-01-01

    Protozoa are eukaryotic cells distributed worldwide in nature and are receiving increasing attention as reservoirs and potential vectors for the transmission of pathogenic bacteria. In the environment, on the other hand, many genera of the protozoa are human and animal pathogens. Only limited information is available on these organisms in developing countries and so far no information on their presence is available from Sudan. It is necessary to establish a molecular identification of species of the protozoa from drinking and environmental water. 600 water samples were collected from five states (Gadarif, Khartoum, Kordofan, Juba, and Wad Madani) in Sudan and analysed by polymerase chain reaction (PCR) and sequencing. 57 out of 600 water samples were PCR positive for protozoa. 38 out of the 57 positive samples were identified by sequencing to contain 66 protozoa species including 19 (28.8%) amoebae, 17 (25.7%) Apicomplexa, 25 (37.9%) ciliates, and 5 (7.6%) flagellates. This study utilized molecular methods identified species belonging to all phyla of protozoa and presented a fast and accurate molecular detection and identification of pathogenic as well as free-living protozoa in water uncovering hazards facing public health.

  1. Effects of altered temperature and precipitation on desert protozoa associated with biological soil crusts

    USGS Publications Warehouse

    Darby, B.J.; Housman, D.C.; Zaki, A.M.; Shamout, Y.; Adl, S.M.; Belnap, J.; Neher, D.A.

    2006-01-01

    Biological soil crusts are diverse assemblages of bacteria, cyanobacteria, algae, fungi, lichens, and mosses that cover much of arid land soils. The objective of this study was to quantify protozoa associated with biological soil crusts and test the response of protozoa to increased temperature and precipitation as is predicted by some global climate models. Protozoa were more abundant when associated with cyanobacteria/lichen crusts than with cyanobacteria crusts alone. Amoebae, flagellates, and ciliates originating from the Colorado Plateau desert (cool desert, primarily winter precipitation) declined 50-, 10-, and 100-fold, respectively, when moved in field mesocosms to the Chihuahuan Desert (hot desert, primarily summer rain). However, this was not observed in protozoa collected from the Chihuahuan Desert and moved to the Sonoran desert (hot desert, also summer rain, but warmer than Chihuahuan Desert). Protozoa in culture began to encyst at 37??C. Cysts survived the upper end of daily temperatures (37-55??C), and could be stimulated to excyst if temperatures were reduced to 15??C or lower. Results from this study suggest that cool desert protozoa are influenced negatively by increased summer precipitation during excessive summer temperatures, and that desert protozoa may be adapted to a specific desert's temperature and precipitation regime. ?? 2006 by the International Society of Protistologists.

  2. Structure in Community College Career-Technical Programs: A Qualitative Analysis. CCRC Working Paper No. 50

    ERIC Educational Resources Information Center

    Van Noy, Michelle; Weiss, Madeline Joy; Jenkins, Davis; Barnett, Elisabeth A.; Wachen, John

    2012-01-01

    Using data obtained from interviews and program websites at Washington community and technical colleges, the authors of this study examine the structure of community college career-technical programs in allied health, business and marketing, computer and information studies, and mechanics and repair. A framework for structure with four…

  3. The Effects of Structured Transfer Programs in Community Colleges

    ERIC Educational Resources Information Center

    Baker, Rachel

    2014-01-01

    Many community college students begin with the intention of transferring to a four-year school but relatively few actually do. One hypothesis for the low rates of successful two-to-four year transfers is that academic program choices in community colleges are too numerous and too complex. In this paper, the author will address a longer term…

  4. Influence of rumen protozoa on methane emission in ruminants: a meta-analysis approach.

    PubMed

    Guyader, J; Eugène, M; Nozière, P; Morgavi, D P; Doreau, M; Martin, C

    2014-11-01

    A meta-analysis was conducted to evaluate the effects of protozoa concentration on methane emission from ruminants. A database was built from 59 publications reporting data from 76 in vivo experiments. The experiments included in the database recorded methane production and rumen protozoa concentration measured on the same groups of animals. Quantitative data such as diet chemical composition, rumen fermentation and microbial parameters, and qualitative information such as methane mitigation strategies were also collected. In the database, 31% of the experiments reported a concomitant reduction of both protozoa concentration and methane emission (g/kg dry matter intake). Nearly all of these experiments tested lipids as methane mitigation strategies. By contrast, 21% of the experiments reported a variation in methane emission without changes in protozoa numbers, indicating that methanogenesis is also regulated by other mechanisms not involving protozoa. Experiments that used chemical compounds as an antimethanogenic treatment belonged to this group. The relationship between methane emission and protozoa concentration was studied with a variance-covariance model, with experiment as a fixed effect. The experiments included in the analysis had a within-experiment variation of protozoa concentration higher than 5.3 log10 cells/ml corresponding to the average s.e.m. of the database for this variable. To detect potential interfering factors for the relationship, the influence of several qualitative and quantitative secondary factors was tested. This meta-analysis showed a significant linear relationship between methane emission and protozoa concentration: methane (g/kg dry matter intake)=-30.7+8.14×protozoa (log10 cells/ml) with 28 experiments (91 treatments), residual mean square error=1.94 and adjusted R 2=0.90. The proportion of butyrate in the rumen positively influenced the least square means of this relationship.

  5. The Organization and Structure of Community Education Offerings in Community Colleges

    ERIC Educational Resources Information Center

    Miller, Michael; Grover, Kenda S.; Kacirek, Kit

    2014-01-01

    One of the key services community colleges provide is community education, meaning those programs and activities that are often offered for leisure or self-improvement and not for credit. Programs of this nature are increasingly challenged to be self-financing, whether through user fees or externally funded grants. The current study explored 75…

  6. Resources Alter the Structure and Increase Stochasticity in Bromeliad Microfauna Communities

    PubMed Central

    Petermann, Jana S.; Kratina, Pavel; Marino, Nicholas A. C.; MacDonald, A. Andrew M.; Srivastava, Diane S.

    2015-01-01

    Although stochastic and deterministic processes have been found to jointly shape structure of natural communities, the relative importance of both forces may vary across different environmental conditions and across levels of biological organization. We tested the effects of abiotic environmental conditions, altered trophic interactions and dispersal limitation on the structure of aquatic microfauna communities in Costa Rican tank bromeliads. Our approach combined natural gradients in environmental conditions with experimental manipulations of bottom-up interactions (resources), top-down interactions (predators) and dispersal at two spatial scales in the field. We found that resource addition strongly increased the abundance and reduced the richness of microfauna communities. Community composition shifted in a predictable way towards assemblages dominated by flagellates and ciliates but with lower abundance and richness of algae and amoebae. While all functional groups responded strongly and predictably to resource addition, similarity among communities at the species level decreased, suggesting a role of stochasticity in species-level assembly processes. Dispersal limitation did not affect the communities. Since our design excluded potential priority effects we can attribute the differences in community similarity to increased demographic stochasticity of resource-enriched communities related to erratic changes in population sizes of some species. In contrast to resources, predators and environmental conditions had negligible effects on community structure. Our results demonstrate that bromeliad microfauna communities are strongly controlled by bottom-up forces. They further suggest that the relative importance of stochasticity may change with productivity and with the organizational level at which communities are examined. PMID:25775464

  7. Resources alter the structure and increase stochasticity in bromeliad microfauna communities.

    PubMed

    Petermann, Jana S; Kratina, Pavel; Marino, Nicholas A C; MacDonald, A Andrew M; Srivastava, Diane S

    2015-01-01

    Although stochastic and deterministic processes have been found to jointly shape structure of natural communities, the relative importance of both forces may vary across different environmental conditions and across levels of biological organization. We tested the effects of abiotic environmental conditions, altered trophic interactions and dispersal limitation on the structure of aquatic microfauna communities in Costa Rican tank bromeliads. Our approach combined natural gradients in environmental conditions with experimental manipulations of bottom-up interactions (resources), top-down interactions (predators) and dispersal at two spatial scales in the field. We found that resource addition strongly increased the abundance and reduced the richness of microfauna communities. Community composition shifted in a predictable way towards assemblages dominated by flagellates and ciliates but with lower abundance and richness of algae and amoebae. While all functional groups responded strongly and predictably to resource addition, similarity among communities at the species level decreased, suggesting a role of stochasticity in species-level assembly processes. Dispersal limitation did not affect the communities. Since our design excluded potential priority effects we can attribute the differences in community similarity to increased demographic stochasticity of resource-enriched communities related to erratic changes in population sizes of some species. In contrast to resources, predators and environmental conditions had negligible effects on community structure. Our results demonstrate that bromeliad microfauna communities are strongly controlled by bottom-up forces. They further suggest that the relative importance of stochasticity may change with productivity and with the organizational level at which communities are examined.

  8. Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake

    USGS Publications Warehouse

    Urbach, Ena; Vergin, Kevin L.; Morse, Ariel

    2001-01-01

    The bacterioplankton assemblage in Crater Lake, Oregon (U.S.A.), is different from communities found in other oxygenated lakes, as demonstrated by four small subunit ribosomal ribonucleic acid (SSU rRNA) gene clone libraries and oligonucleotide probe hybridization to RNA from lake water. Populations in the euphotic zone of this deep (589 m), oligotrophic caldera lake are dominated by two phylogenetic clusters of currently uncultivated bacteria: CL120-10, a newly identified cluster in the verrucomicrobiales, and ACK4 actinomycetes, known as a minor constituent of bacterioplankton in other lakes. Deep-water populations at 300 and 500 m are dominated by a different pair of uncultivated taxa: CL500-11, a novel cluster in the green nonsulfur bacteria, and group I marine crenarchaeota. b-Proteobacteria, dominant in most other freshwater environments, are relatively rare in Crater Lake (<=16% of nonchloroplast bacterial rRNA at all depths). Other taxa identified in Crater Lake libraries include a newly identified candidate bacterial division, ABY1, and a newly identified subcluster, CL0-1, within candidate division OP10. Probe analyses confirmed vertical stratification of several microbial groups, similar to patterns observed in open-ocean systems. Additional similarities between Crater Lake and ocean microbial populations include aphotic zone dominance of group I marine crenarchaeota and green nonsulfur bacteria. Comparison of Crater Lake to other lakes studied by rRNA methods suggests that selective factors structuring Crater Lake bacterioplankton populations may include low concentrations of available trace metals and dissolved organic matter, chemistry of infiltrating hydrothermal waters, and irradiation by high levels of ultraviolet light.

  9. Plant community structure in an oligohaline tidal marsh

    USGS Publications Warehouse

    Brewer, J.S.; Grace, J.B.

    1990-01-01

    An oligohaline tidal marsh on the northern shore of Lake Pontchartrain, LA was characterized with respect to the distributions and abundances of plant species over spatial and temporal gradients using Detrended Correspondence Analysis (DCA). In addition, the species distributions were correlated to several physical environmental factors using Detrended Canonical Correspondence Analysis (DCCA). The distributions of species were best correlated with distance from Lake Pontchartrain, and to a lesser extent with elevation and substrate organic matter. They were least correlated with mean soil salinity (referred to here as background salinity). Of the three mid-seasonal dominant species, the perennial grass, Spartina patens, is the most salt tolerant and was found closest to the lake. Further inland the dominant perennial was Sagittaria lancifolia, which has a salt tolerance less than that of Spartina patens. The perennial sedge, Cladium jamaicense, which is the least salt tolerant of the three, was dominant furthest inland. Background salinity levels were generally low (<5 ppt.) and did not explain species distributions. We hypothesize that the distribution of species is regulated by occasional storm-generated salt pulses that generate strong, short-lived salinity gradients as a function of distance from the lake. Biotic interactions likely also play a role in structuring the plant community. The distributions of several annuals depended on the size and life history of the mid-seasonal dominant perennials. Most of the annuals frequently co-occurred with Sagittaria lancifolia, which was the shortest in stature and had the least persistent canopy of the three mid-seasonal dominant perennials.

  10. EFFECTS OF SEDIMENT CONTAMINANTS AND ENVIRONMENTAL GRADIENTS ON MACROBENTHIC COMMUNITY TROPHIC STRUCTURE IN GULF OF MEXICO ESTUARIES

    EPA Science Inventory

    Macrobenthic communities from estuaries throughout the northern Gulf of Mexico were studied to assess the influence of sediment contaminants and natural environmental factors on macrobenthic community trophic structure. Community trophic data were also used to evaluate whether re...

  11. Supraglacial bacterial community structures vary across the Greenland ice sheet.

    PubMed

    Cameron, Karen A; Stibal, Marek; Zarsky, Jakub D; Gözdereliler, Erkin; Schostag, Morten; Jacobsen, Carsten S

    2016-02-01

    The composition and spatial variability of microbial communities that reside within the extensive (>200 000 km(2)) biologically active area encompassing the Greenland ice sheet (GrIS) is hypothesized to be variable. We examined bacterial communities from cryoconite debris and surface ice across the GrIS, using sequence analysis and quantitative PCR of 16S rRNA genes from co-extracted DNA and RNA. Communities were found to differ across the ice sheet, with 82.8% of the total calculated variation attributed to spatial distribution on a scale of tens of kilometers separation. Amplicons related to Sphingobacteriaceae, Pseudanabaenaceae and WPS-2 accounted for the greatest portion of calculated dissimilarities. The bacterial communities of ice and cryoconite were moderately similar (global R = 0.360, P = 0.002) and the sampled surface type (ice versus cryoconite) did not contribute heavily towards community dissimilarities (2.3% of total variability calculated). The majority of dissimilarities found between cryoconite 16S rRNA gene amplicons from DNA and RNA was calculated to be the result of changes in three taxa, Pseudanabaenaceae, Sphingobacteriaceae and WPS-2, which together contributed towards 80.8 ± 12.6% of dissimilarities between samples. Bacterial communities across the GrIS are spatially variable active communities that are likely influenced by localized biological inputs and physicochemical conditions.

  12. Uncovering Overlap Community Structure in Complex Networks Using Particle Competition

    NASA Astrophysics Data System (ADS)

    Breve, Fabricio; Zhao, Liang; Quiles, Marcos

    Identification and classification of overlap nodes in communities is an important topic in data mining. In this paper, a new clustering method to uncover overlap nodes in complex networks is proposed. It is based on particles walking and competing with each other, using random-deterministic movement. The new community detection algorithm can output not only hard labels, but also continuous-valued output (soft labels), which corresponds to the levels of membership from the nodes to each of the communities. Computer simulations were performed with synthetic and real data and good results were achieved.

  13. Light structures phototroph, bacterial and fungal communities at the soil surface.

    PubMed

    Davies, Lawrence O; Schäfer, Hendrik; Marshall, Samantha; Bramke, Irene; Oliver, Robin G; Bending, Gary D

    2013-01-01

    The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0-3 mm) and bulk soil (3-12 mm) using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere.

  14. Light Structures Phototroph, Bacterial and Fungal Communities at the Soil Surface

    PubMed Central

    Davies, Lawrence O.; Schäfer, Hendrik; Marshall, Samantha; Bramke, Irene; Oliver, Robin G.; Bending, Gary D.

    2013-01-01

    The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0–3 mm) and bulk soil (3–12 mm) using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere. PMID:23894406

  15. Protozoa graze on the 2,6-dichlorobenzamide (BAM)-degrading bacterium Aminobacter sp. MSH1 introduced into waterworks sand filters.

    PubMed

    Ellegaard-Jensen, Lea; Albers, Christian N; Aamand, Jens

    2016-10-01

    Groundwater contamination by pesticide residues often leads to the closure of drinking water wells, making the development of new techniques to remediate drinking water resources of considerable interest. Pesticide-degrading bacteria were recently added to a waterworks sand filter in an attempt to remediate pesticide-polluted drinking water. The density of the introduced bacteria, however, decreased rapidly, which was partly attributed to predation by protozoa in the sand filter. This study investigated the effects of indigenous sand filter protozoa on the population density and degradation efficiency of degrader bacteria introduced into sand from a waterworks sand filter. The 2,6-dichlorobenzamide (BAM)-degrading bacterium Aminobacter sp. MSH1 was used as a model organism. The introduction of MSH1 at high cell densities was followed by a >1000-fold increase in the protozoan population size and at the same time a 29 % reduction in Aminobacter cell numbers. The protozoan population in the systems that had MSH1 added at a lower density only increased 50-fold, and a decrease in Aminobacter numbers was not detectable. Furthermore, a reduction in the number of Aminobacter and in BAM degradation efficiency was seen in flow-through sand filter columns inoculated with MSH1 and fed BAM-contaminated water, when comparing sand columns containing the indigenous microbial filter community, i.e. containing protozoa, to columns with sterilised sand. These results suggest that degrader bacteria introduced into waterworks sand filters are adversely affected by grazing from the indigenous protozoa, reducing the size of the degrader population and the sand filter degradation efficiency.

  16. Filtering across Spatial Scales: Phylogeny, Biogeography and Community Structure in Bumble Bees

    PubMed Central

    Harmon-Threatt, Alexandra N.; Ackerly, David D.

    2013-01-01

    Despite the expansion of phylogenetic community analysis to understand community assembly, few studies have used these methods on mobile organisms and it has been suggested the local scales that are typically considered may be too small to represent the community as perceived by organisms with high mobility. Mobility is believed to allow species to mediate competitive interactions quickly and thus highly mobile species may appear randomly assembled in local communities. At larger scales, however, biogeographical processes could cause communities to be either phylogenetically clustered or even. Using phylogenetic community analysis we examined patterns of relatedness and trait similarity in communities of bumble bees (Bombus) across spatial scales comparing: local communities to regional pools, regional communities to continental pools and the continental community to a global species pool. Species composition and data on tongue lengths, a key foraging trait, were used to test patterns of relatedness and trait similarity across scales. Although expected to exhibit limiting similarity, local communities were clustered both phenotypically and phylogenetically. Larger spatial scales were also found to have more phylogenetic clustering but less trait clustering. While patterns of relatedness in mobile species have previously been suggested to exhibit less structure in local communities and to be less clustered than immobile species, we suggest that mobility may actually allow communities to have more similar species that can simply limit direct competition through mobility. PMID:23544141

  17. Locating Structural Centers: A Density-Based Clustering Method for Community Detection

    PubMed Central

    Liu, Gongshen; Li, Jianhua; Nees, Jan P.

    2017-01-01

    Uncovering underlying community structures in complex networks has received considerable attention because of its importance in understanding structural attributes and group characteristics of networks. The algorithmic identification of such structures is a significant challenge. Local expanding methods have proven to be efficient and effective in community detection, but most methods are sensitive to initial seeds and built-in parameters. In this paper, we present a local expansion method by density-based clustering, which aims to uncover the intrinsic network communities by locating the structural centers of communities based on a proposed structural centrality. The structural centrality takes into account local density of nodes and relative distance between nodes. The proposed algorithm expands a community from the structural center to the border with a single local search procedure. The local expanding procedure follows a heuristic strategy as allowing it to find complete community structures. Moreover, it can identify different node roles (cores and outliers) in communities by defining a border region. The experiments involve both on real-world and artificial networks, and give a comparison view to evaluate the proposed method. The result of these experiments shows that the proposed method performs more efficiently with a comparative clustering performance than current state of the art methods. PMID:28046030

  18. Effect of redox conditions on bacterial community structure in Baltic Sea sediments with contrasting phosphorus fluxes.

    PubMed

    Steenbergh, Anne K; Bodelier, Paul L E; Slomp, Caroline P; Laanbroek, Hendrikus J

    2014-01-01

    Phosphorus release from sediments can exacerbate the effect of eutrophication in coastal marine ecosystems. The flux of phosphorus from marine sediments to the overlying water is highly dependent on the redox conditions at the sediment-water interface. Bacteria are key players in the biological processes that release or retain phosphorus in marine sediments. To gain more insight in the role of bacteria in phosphorus release from sediments, we assessed the effect of redox conditions on the structure of bacterial communities. To do so, we incubated surface sediments from four sampling sites in the Baltic Sea under oxic and anoxic conditions and analyzed the fingerprints of the bacterial community structures in these incubations and the original sediments. This paper describes the effects of redox conditions, sampling station, and sample type (DNA, RNA, or whole-cell sample) on bacterial community structure in sediments. Redox conditions explained only 5% of the variance in community structure, and bacterial communities from contrasting redox conditions showed considerable overlap. We conclude that benthic bacterial communities cannot be classified as being typical for oxic or anoxic conditions based on community structure fingerprints. Our results suggest that the overall structure of the benthic bacterial community has only a limited impact on benthic phosphate fluxes in the Baltic Sea.

  19. Structure and function of fish communities in the southern Lake Michigan basin with emphasis on restoration of native fish communities

    USGS Publications Warehouse

    Simon, Thomas P.; Stewart, Paul M.

    1999-01-01

    The southern Lake Michigan basin in northwest Indiana possesses a variety of aquatic habitats including riverine, palustrine, and lacustrine systems. The watershed draining this area is a remnant of glacial Lake Chicago and supports fish communities that are typically low in species richness. Composition of the presettlement Lake Michigan fish community near the Indiana Dunes has been difficult to reconstruct. Existing data indicate that the number of native species in the Lake Michigan watershed, including nearshore Lake Michigan, has declined by 22% since the onset of European settlement. Few remnants of natural fish communities exist, and those occur principally in the ponds of Miller Woods, the Grand Calumet Lagoons, and the Little Calumet River. These communities have maintained a relatively diverse assemblage of fishes despite large-scale anthropogenic disturbances in the area, including channelization, massive river redirection, fragmentation, habitat alteration, exotic species invasions, and the introduction of toxic chemicals. Data that we collected from 1985 to 1996 suggested that the Grand Calumet River has the highest proportion of exotic fish species of any inland wetland in northwest Indiana. Along the Lake Michigan shoreline, another group of exotics (e.g., round goby, alewife, and sea lamprey) have affected the structure of native fish communities, thereby altering lake ecosystem function. Stocking programs contribute to the impairment of native communities. Nonindigenous species have restructured the function of Lake Michigan tributaries, causing disruptions in trophic dynamics, guild structure, and species diversity. Several fish communities have been reduced or eliminated by the alteration and destruction of spawning and nursery areas. Degradation of habitats has caused an increase in numbers and populations of species able to tolerate and flourish when confronted with hydrologic alteration. Fish communities found on public lands in northwest

  20. Effect of Silicate Grain Shape, Structure, and Location on the Biomass and Community Structure of Colonizing Marine Microbiota

    PubMed Central

    Nickels, Janet S.; Bobbie, Ronald J.; Martz, Robert F.; Smith, Glen A.; White, David C.; Richards, Norman L.

    1981-01-01

    Microbiota colonizing silica grains of the same size and water pore space, but with a different microtopography, showed differences in biomass and community structure after 8 weeks of exposure to running seawater. The absence of surface cracks and crevices resulted in a marked diminution of the total microbial biomass measured as lipid phosphate and total extractable palmitic acid. With increasing smoothness of the sand grain surface, examination of the community structure showed a marked decrease in procaryotes and algal microeucaryotes, with a relative increase in microeucaryotic grazers. A comparison of the colonizing sediment incubated in running seawater or at 32 m on the sea floor with a sediment core showed a decreased bacterial biomass with a different community structure and a decreased total microeucaryotic population of both grazers and algae. The quantitative differences in microbial biomass and community structure between the microcosms and the actual benthic population in the core were determined. Images PMID:16345778

  1. Multiplex PCR detection of waterborne intestinal protozoa: microsporidia, Cyclospora, and Cryptosporidium.

    PubMed

    Lee, Seung-Hyun; Joung, Migyo; Yoon, Sejoung; Choi, Kyoungjin; Park, Woo-Yoon; Yu, Jae-Ran

    2010-12-01

    Recently, emerging waterborne protozoa, such as microsporidia, Cyclospora, and Cryptosporidium, have become a challenge to human health worldwide. Rapid, simple, and economical detection methods for these major waterborne protozoa in environmental and clinical samples are necessary to control infection and improve public health. In the present study, we developed a multiplex PCR test that is able to detect all these 3 major waterborne protozoa at the same time. Detection limits of the multiplex PCR method ranged from 10(1) to 10(2) oocysts or spores. The primers for microsporidia or Cryptosporidium used in this study can detect both Enterocytozoon bieneusi and Encephalitozoon intestinalis, or both Cryptosporidium hominis and Cryptosporidium parvum, respectively. Restriction enzyme digestion of PCR products with BsaBI or BsiEI makes it possible to distinguish the 2 species of microsporidia or Cryptosporidium, respectively. This simple, rapid, and cost-effective multiplex PCR method will be useful for detecting outbreaks or sporadic cases of waterborne protozoa infections.

  2. Burning fire-prone Mediterranean shrublands: immediate changes in soil microbial community structure and ecosystem functions.

    PubMed

    Goberna, M; García, C; Insam, H; Hernández, M T; Verdú, M

    2012-07-01

    Wildfires subject soil microbes to extreme temperatures and modify their physical and chemical habitat. This might immediately alter their community structure and ecosystem functions. We burned a fire-prone shrubland under controlled conditions to investigate (1) the fire-induced changes in the community structure of soil archaea, bacteria and fungi by analysing 16S or 18S rRNA gene amplicons separated through denaturing gradient gel electrophoresis; (2) the physical and chemical variables determining the immediate shifts in the microbial community structure; and (3) the microbial drivers of the change in ecosystem functions related to biogeochemical cycling. Prokaryotes and eukaryotes were structured by the local environment in pre-fire soils. Fire caused a significant shift in the microbial community structure, biomass C, respiration and soil hydrolases. One-day changes in bacterial and fungal community structure correlated to the rise in total organic C and NO(3)(-)-N caused by the combustion of plant residues. In the following week, bacterial communities shifted further forced by desiccation and increasing concentrations of macronutrients. Shifts in archaeal community structure were unrelated to any of the 18 environmental variables measured. Fire-induced changes in the community structure of bacteria, rather than archaea or fungi, were correlated to the enhanced microbial biomass, CO(2) production and hydrolysis of C and P organics. This is the first report on the combined effects of fire on the three biological domains in soils. We concluded that immediately after fire the biogeochemical cycling in Mediterranean shrublands becomes less conservative through the increased microbial biomass, activity and changes in the bacterial community structure.

  3. Predictability of helminth parasite host range using information on geography, host traits and parasite community structure.

    PubMed

    Dallas, Tad; Park, Andrew W; Drake, John M

    2017-02-01

    Host-parasite associations are complex interactions dependent on aspects of hosts (e.g. traits, phylogeny or coevolutionary history), parasites (e.g. traits and parasite interactions) and geography (e.g. latitude). Predicting the permissive host set or the subset of the host community that a parasite can infect is a central goal of parasite ecology. Here we develop models that accurately predict the permissive host set of 562 helminth parasites in five different parasite taxonomic groups. We developed predictive models using host traits, host taxonomy, geographic covariates, and parasite community composition, finding that models trained on parasite community variables were more accurate than any other covariate group, even though parasite community covariates only captured a quarter of the variance in parasite community composition. This suggests that it is possible to predict the permissive host set for a given parasite, and that parasite community structure is an important predictor, potentially because parasite communities are interacting non-random assemblages.

  4. THE EFFECTS OF DIFFERENT SAMPLE CONCENTRATIONS ON THE STRUCTURE OF MICROBIAL COMMUNITIES USING PHOSPHOLIPID FATTY ACID ANALYSIS

    EPA Science Inventory

    Phospholipid fatty acid (PLFA) analysis is a powerful tool for determination of microbial community structures in soils and sediments. However, accurate determination of total microbial biomass and structure of the microbial community may be dependent on the concentration of the...

  5. The Structure and Distribution of Benthic Communities on a Shallow Seamount (Cobb Seamount, Northeast Pacific Ocean)

    PubMed Central

    Curtis, Janelle M. R.; Clarke, M. Elizabeth

    2016-01-01

    Partially owing to their isolation and remote distribution, research on seamounts is still in its infancy, with few comprehensive datasets and empirical evidence supporting or refuting prevailing ecological paradigms. As anthropogenic activity in the high seas increases, so does the need for better understanding of seamount ecosystems and factors that influence the distribution of sensitive benthic communities. This study used quantitative community analyses to detail the structure, diversity, and distribution of benthic mega-epifauna communities on Cobb Seamount, a shallow seamount in the Northeast Pacific Ocean. Underwater vehicles were used to visually survey the benthos and seafloor in ~1600 images (~5 m2 in size) between 34 and 1154 m depth. The analyses of 74 taxa from 11 phyla resulted in the identification of nine communities. Each community was typified by taxa considered to provide biological structure and/or be a primary producer. The majority of the community-defining taxa were either cold-water corals, sponges, or algae. Communities were generally distributed as bands encircling the seamount, and depth was consistently shown to be the strongest environmental proxy of the community-structuring processes. The remaining variability in community structure was partially explained by substrate type, rugosity, and slope. The study used environmental metrics, derived from ship-based multibeam bathymetry, to model the distribution of communities on the seamount. This model was successfully applied to map the distribution of communities on a 220 km2 region of Cobb Seamount. The results of the study support the paradigms that seamounts are diversity 'hotspots', that the majority of seamount communities are at risk to disturbance from bottom fishing, and that seamounts are refugia for biota, while refuting the idea that seamounts have high endemism. PMID:27792782

  6. The Structure and Distribution of Benthic Communities on a Shallow Seamount (Cobb Seamount, Northeast Pacific Ocean).

    PubMed

    Du Preez, Cherisse; Curtis, Janelle M R; Clarke, M Elizabeth

    2016-01-01

    Partially owing to their isolation and remote distribution, research on seamounts is still in its infancy, with few comprehensive datasets and empirical evidence supporting or refuting prevailing ecological paradigms. As anthropogenic activity in the high seas increases, so does the need for better understanding of seamount ecosystems and factors that influence the distribution of sensitive benthic communities. This study used quantitative community analyses to detail the structure, diversity, and distribution of benthic mega-epifauna communities on Cobb Seamount, a shallow seamount in the Northeast Pacific Ocean. Underwater vehicles were used to visually survey the benthos and seafloor in ~1600 images (~5 m2 in size) between 34 and 1154 m depth. The analyses of 74 taxa from 11 phyla resulted in the identification of nine communities. Each community was typified by taxa considered to provide biological structure and/or be a primary producer. The majority of the community-defining taxa were either cold-water corals, sponges, or algae. Communities were generally distributed as bands encircling the seamount, and depth was consistently shown to be the strongest environmental proxy of the community-structuring processes. The remaining variability in community structure was partially explained by substrate type, rugosity, and slope. The study used environmental metrics, derived from ship-based multibeam bathymetry, to model the distribution of communities on the seamount. This model was successfully applied to map the distribution of communities on a 220 km2 region of Cobb Seamount. The results of the study support the paradigms that seamounts are diversity 'hotspots', that the majority of seamount communities are at risk to disturbance from bottom fishing, and that seamounts are refugia for biota, while refuting the idea that seamounts have high endemism.

  7. Geochip: A high throughput genomic tool for linking community structure to functions

    SciTech Connect

    Van Nostrand, Joy D.; Liang, Yuting; He, Zhili; Li, Guanghe; Zhou, Jizhong

    2009-01-30

    GeoChip is a comprehensive functional gene array that targets key functional genes involved in the geochemical cycling of N, C, and P, sulfate reduction, metal resistance and reduction, and contaminant degradation. Studies have shown the GeoChip to be a sensitive, specific, and high-throughput tool for microbial community analysis that has the power to link geochemical processes with microbial community structure. However, several challenges remain regarding the development and applications of microarrays for microbial community analysis.

  8. Community structure of mesozooplankton in the western part of the Sea of Okhotsk in summer

    NASA Astrophysics Data System (ADS)

    Itoh, Hiroshi; Nishioka, Jun; Tsuda, Atsushi

    2014-08-01

    We investigated the community structure of mesozooplankton in the western part of the Sea of Okhotsk in late summer, 2006. We recognized four communities belonging to two assemblages. A coastal assemblage dominated by the arctic planktonic snail Limacina helicina consisted of a gulf community characterized by brackish copepods and a continental shelf community characterized by the hydrozoan medusa Aglantha digitale and the arctic copepod Calanus glacialis. The other assemblage, characterized by the oceanic copepod Neocalanus plumchrus, consisted of a continental slope community characterized by a diverse species composition and a basin community characterized by the oceanic copepod N. cristatus. The continental slope community contained species from the coastal waters and was distributed along the course of the East Sakhalin current. This community may have been assembled by the incorporation of coastal water into the oceanic waters by the strong current. Small coastal copepods such as Oithona similis and Pseudocalanus spp. were the main components in all communities in terms of numbers, but larger copepods such as Neocalanus spp. and Metridia okhotensis were important in terms of weight, especially in the continental slope and basin communities. The population structures of the dominant species suggest that overall biological production is maintained by continuous reproduction or growth (or both) of L. helicina and small coastal copepods after the onset of seasonal dormancy of the large oceanic copepods in late summer.

  9. Phylogenetic structure of arbuscular mycorrhizal fungal communities along an elevation gradient.

    PubMed

    Egan, Cameron P; Callaway, Ragan M; Hart, Miranda M; Pither, Jason; Klironomos, John

    2017-04-01

    Despite the importance of arbuscular mycorrhizal (AM) fungi within terrestrial ecosystems, we know little about how natural AM fungal communities are structured. To date, the majority of studies examining AM fungal community diversity have focused on single habitats with similar environmental conditions, with relatively few studies having assessed the diversity of AM fungi over large-scale environmental gradients. In this study, we characterized AM fungal communities in the soil along a high-elevation gradient in the North American Rocky Mountains. We focused on phylogenetic patterns of AM fungal communities to gain insight into how AM fungal communities are naturally assembled. We found that alpine AM fungal communities had lower phylogenetic diversity relative to lower elevation communities, as well as being more heterogeneous in composition than either treeline or subalpine communities. AM fungal communities were phylogenetically clustered at all elevations sampled, suggesting that environmental filtering, either selection by host plants or fungal niches, is the primary ecological process structuring communities along the gradient.

  10. Influence of static habitat attributes on local and regional Rocky intertidal community structure

    USGS Publications Warehouse

    Konar, B.; Iken, K.; Coletti, H.; Monson, Daniel H.; Weitzman, Ben P.

    2016-01-01

    Rocky intertidal communities are structured by local environmental drivers, which can be dynamic, fluctuating on various temporal scales, or static and not greatly varying across years. We examined the role of six static drivers (distance to freshwater, tidewater glacial presence, wave exposure, fetch, beach slope, and substrate composition) on intertidal community structure across the northern Gulf of Alaska. We hypothesized that community structure is less similar at the local scale compared with the regional scale, coinciding with static drivers being less similar on smaller than larger scales. We also hypothesized that static attributes mainly drive local biological community structure. For this, we surveyed five to six sites in each of the six regions in the mid and low intertidal strata. Across regions, static attributes were not consistently different and only small clusters of sites had similar attributes. Additionally, intertidal communities were less similar on the site compared with the region level. These results suggest that these biological communities are not strongly influenced by the local static attributes measured in this study. An alternative explanation is that static attributes among our regions are not different enough to influence the biological communities. This lack of evidence for a strong static driver may be a result of our site selection, which targeted rocky sheltered communities. This suggests that this habitat may be ideal to examine the influence of dynamic drivers. We recommend that future analyses of dynamic attributes may best be performed after analyses have demonstrated that sites do not differ in static attributes.

  11. A Regional ETV Network: Community Needs and System Structure. Technical Report 791.

    ERIC Educational Resources Information Center

    Hershkowitz, Martin

    A systems analysis of a community educational television (ETV) structure and of community needs was made in three counties of Appalachian Maryland to see whether an ETV system could meet integrated needs of public school students, disadvantaged families, educators, health service groups, police and fire departments, and business/industry across…

  12. Soil microbial community structure and functionality during grassland restoration in the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil microbial communities are an indispensable part of restoration programs due to their significant role in ecosystem functioning and sensitivity to disturbance. We evaluated soil microbial community structure using ester-linked fatty acid (EL-FAME) profiling and metabolic functioning, by measurin...

  13. Structured decision making as a framework for linking quantitative decision support to community values

    EPA Science Inventory

    Community-level decisions can have large impacts on production and delivery of ecosystem services, which ultimately affects community well-being. But engaging stakeholders in a process to explore these impacts is a significant challenge. The principles of Structured Decision Ma...

  14. Teaching Interpersonal Skills to Psychiatric Outpatients: Using Structured Learning Therapy in a Community-Based Setting

    ERIC Educational Resources Information Center

    Sprafkin, Robert P.; And Others

    1978-01-01

    The Structured Learning Therapy (SLT), a type of treatment used to assist psychiatric patients to learn skills they need for effective and satisfying living in the community, is described in this article. A description of the community-based treatment facility in which SLT may be utilized and the results of the evaluation studies are also…

  15. Phylogenetic analysis suggests that habitat filtering is structuring marine bacterial communities across the globe.

    PubMed

    Pontarp, Mikael; Canbäck, Björn; Tunlid, Anders; Lundberg, Per

    2012-07-01

    The phylogenetic structure and community composition were analysed in an existing data set of marine bacterioplankton communities to elucidate the evolutionary and ecological processes dictating the assembly. The communities were sampled from coastal waters at nine locations distributed worldwide and were examined through the use of comprehensive clone libraries of 16S ribosomal RNA genes. The analyses show that the local communities are phylogenetically different from each other and that a majority of them are phylogenetically clustered, i.e. the species (operational taxonomic units) were more related to each other than expected by chance. Accordingly, the local communities were assembled non-randomly from the global pool of available bacterioplankton. Further, the phylogenetic structures of the communities were related to the water temperature at the locations. In agreement with similar studies, including both macroorganisms and bacteria, these results suggest that marine bacterial communities are structured by “habitat filtering”, i.e. through non-random colonization and invasion determined by environmental characteristics. Different bacterial types seem to have different ecological niches that dictate their survival in different habitats. Other eco-evolutionary processes that may contribute to the observed phylogenetic patterns are discussed. The results also imply a mapping between phenotype and phylogenetic relatedness which facilitates the use of community phylogenetic structure analysis to infer ecological and evolutionary assembly processes.

  16. The Scope and Design of Structured Group Learning Experiences at Community Colleges

    ERIC Educational Resources Information Center

    Hatch, Deryl K.; Bohlig, E. Michael

    2015-01-01

    This study explores through descriptive analysis the similarities of structured group learning experiences such as first-year seminars, learning communities, orientation, success courses, and accelerated developmental education programs, in terms of their design features and implementation at community colleges. The study takes as its conceptual…

  17. Creating Communities of Professionalism: Addressing Cultural and Structural Barriers

    ERIC Educational Resources Information Center

    Murphy, Joseph

    2015-01-01

    Purpose: The goal of this narrative synthesis is twofold. The purpose of this paper is to understand the barriers and constraints that hinder or prevent the growth of professional community. The author also want to form an empirical understanding of how educators can be successful in meeting these challenges. In both cases, the author wish to grow…

  18. Post fumigation recovery of soil microbial community structure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil fumigants have been extensively used to control target soil-borne pathogens and weeds for the past few decades. It is known that the fumigants with broad biocidal activity can affect both target and non-target soil organisms, but the recovery of soil microbial communities are unknown until rece...

  19. Structure and composition of oligohaline marsh plant communities exposed to salinity pulses

    USGS Publications Warehouse

    Howard, R.J.; Mendelssohn, I.A.

    2000-01-01

    The response of two oligohaline marsh macrophyte communities to pulses of increased salinity was studied over a single growing season in a greenhouse experiment. The plant communities were allowed a recovery period in freshwater following the pulse events. The experimental treatments included: (1) salinity influx rate (rate of salinity increase from 0 to 12 gl-1); (2) duration of exposure to elevated salinity; and (3) water depth. The communities both included Sagittaria lancifolia L.; the codominant species were Eleocharis palustris (L.) Roemer and J.A. Schultes in community 1 and Schoenoplectus americanus (Pers.) Volk. ex Schinz and R. Keller in community 2. Effects of the treatments on sediment chemical characteristics (salinity, pH, redox potential, and sulfide and ammonium concentrations) and plant community attributes (aboveground and belowground biomass, stem density, leaf tissue nutrients, and species richness) were examined. The treatment effects often interacted to influence sediment and plant communities characteristics following recovery in fresh water. Salinity influx rate per se, however, had little effect on the abiotic or biotic response variables; significant influx effects were found when the 0 gl-1 (zero influx) treatment was compared to the 12 gl-1 treatments, regardless of the rate salinity was raised. A salinity level of 12 gl-1 had negative effects on plant community structure and composition; these effects were usually associated with 3 months of salinity exposure. Water depth often interacted with exposure duration, but increased water depth did independently decrease the values of some community response measures. Community 1 was affected more than community 2 in the most extreme salinity treatment (3 months exposure/15-cm water depth). Although species richness in both communities was reduced, structural changes were more dramatic in community 1. Biomass and stem density were reduced in community 1 overall and in both dominant species

  20. Comparison of disinfectants for biofilm, protozoa and Legionella control.

    PubMed

    Loret, J F; Robert, S; Thomas, V; Cooper, A J; McCoy, W F; Lévi, Y

    2005-12-01

    The aim of this study was to compare the efficiency of different disinfectants applicable to Legionella control in domestic water systems. A domestic water supply simulation unit that allowed simulation of real-world conditions was developed for this purpose. The system, consisting of seven identical rigs, was used to compare treatment efficiency under equivalent conditions of system design, materials, hydraulics, water quality, temperature and initial contamination. During the study, each of six loops received continuous application of one of the following disinfectants: chlorine, electro-chlorination, chlorine dioxide, monochloramine, ozone, or copper/silver. The seventh loop was used as a control and remained untreated. Performance evaluation of these disinfectants was based on their ability to reduce not only Legionella, but also protozoa and biofilms, which contribute to the establishment and dissemination of these bacteria in water systems, and their resistance to treatments. Regarding these criteria, chlorine dioxide and chlorine (as bleach or obtained by electro-chlorination) were the most effective treatments in this study. However, in comparison with chlorine, chlorine dioxide showed a longer residual activity in the system, which constituted an advantage in the perspective of an application to extensive pipework systems.

  1. Clinical Significance of Enteric Protozoa in the Immunosuppressed Human Population

    PubMed Central

    Stark, D.; Barratt, J. L. N.; van Hal, S.; Marriott, D.; Harkness, J.; Ellis, J. T.

    2009-01-01

    Summary: Globally, the number of immunosuppressed people increases each year, with the human immunodeficiency virus (HIV) pandemic continuing to spread unabated in many parts of the world. Immunosuppression may also occur in malnourished persons, patients undergoing chemotherapy for malignancy, and those receiving immunosuppressive therapy. Components of the immune system can be functionally or genetically abnormal as a result of acquired (e.g., caused by HIV infection, lymphoma, or high-dose steroids or other immunosuppressive medications) or congenital illnesses, with more than 120 congenital immunodeficiencies described to date that either affect humoral immunity or compromise T-cell function. All individuals affected by immunosuppression are at risk of infection by opportunistic parasites (such as the microsporidia) as well as those more commonly associated with gastrointestinal disease (such as Giardia). The outcome of infection by enteric protozoan parasites is dependent on absolute CD4+ cell counts, with lower counts being associated with more severe disease, more atypical disease, and a greater risk of disseminated disease. This review summarizes our current state of knowledge on the significance of enteric parasitic protozoa as a cause of disease in immunosuppressed persons and also provides guidance on recent advances in diagnosis and therapy for the control of these important parasites. PMID:19822892

  2. Community-analyzer: a platform for visualizing and comparing microbial community structure across microbiomes.

    PubMed

    Kuntal, Bhusan K; Ghosh, Tarini Shankar; Mande, Sharmila S

    2013-10-01

    A key goal in comparative metagenomics is to identify microbial group(s) which are responsible for conferring specific characteristics to a given environment. These characteristics are the result of the inter-microbial interactions between the resident microbial groups. We present a new GUI-based comparative metagenomic analysis application called Community-Analyzer which implements a correlation-based graph layout algorithm that not only facilitates a quick visualization of the differences in the analyzed microbial communities (in terms of their taxonomic composition), but also provides insights into the inherent inter-microbial interactions occurring therein. Notably, this layout algorithm also enables grouping of the metagenomes based on the probable inter-microbial interaction patterns rather than simply comparing abundance values of various taxonomic groups. In addition, the tool implements several interactive GUI-based functionalities that enable users to perform standard comparative analyses across microbiomes. For academic and non-profit users, the Community-Analyzer is currently available for download from: http://metagenomics.atc.tcs.com/Community_Analyzer/.

  3. The effect of temperature on the structure and function of a cellulose-degrading microbial community.

    PubMed

    Lü, Yucai; Li, Ning; Gong, Dachun; Wang, Xiaofen; Cui, Zongjun

    2012-09-01

    The purpose of this study was to investigate the effect of temperature on the structure and straw degradation capability of a microbial community grown from wheat straw compost. Two cellulolytic microbial communities, WDC1 and WDC2, were obtained from compost. The communities had been cultured under 50 and 60 °C by continuous enrichment, respectively. The wheat straw degradation capabilities were 45.69 % (WDC1) and 59.5 % (WDC2). By changing the culture temperatures, two new stable communities were obtained: WDC1-6N (WDC1, cultivated at 60 °C for eight generations) and WDC2-5N (WDC2, cultivated at 50 °C for eight generations). The wheat straw degradation capabilities for the new communities were 59.75 and 52.60 %, respectively. The results showed that compared to 50 °C, the wheat straw degradation capability of the communities cultured at 60 °C was stronger. Sequencing of selected denaturing gradient gel electrophoresis (DGGE) bands and analysis of DGGE profiles indicated that the WDC2 structure was significantly different from the structure of WDC1. This was so even though the two communities were enriched from the same compost. With the change of culture temperature, the community structures underwent significant transitions. Included communities were thermophilic, anaerobic bacteria, and any cellulolytic bacteria (e.g., Clostridium thermocellum) that were active and abundant at conditions under 60 °C. These results have the potential to significantly aid in the enrichment of a cellulose-degrading community from the environment and to enhance the community capability to conduct straw biotransformation.

  4. Effects of community structure on epidemic spread in an adaptive network

    NASA Astrophysics Data System (ADS)

    Tunc, Ilker; Shaw, Leah B.

    2014-08-01

    When an epidemic spreads in a population, individuals may adaptively change the structure of their social contact network to reduce risk of infection. Here we study the spread of an epidemic on an adaptive network with community structure. We model two communities with different average degrees. The disease model is susceptible-infected-susceptible (SIS), and adaptation is rewiring of links between susceptibles and infectives. Locations of rewired links are selected so that the community structure will be preserved if susceptible-infective links are homogeneously distributed. The bifurcation structure is obtained, and a mean field model is developed that accurately predicts the steady-state behavior of the system. In a static network, weakly connected heterogeneous communities can have significantly different infection levels. In contrast, adaptation promotes similar infection levels and alters the network structure so that communities have more similar average degrees. We estimate the time for network restructuring to allow infection incursion from one community to another and show that it is inversely proportional to the number of cross-links between communities. In extremely heterogeneous systems, periodic oscillations in infection level can occur due to repeated infection incursions.

  5. [Power-law species richness accumulation as manifestation of the fractal community structure].

    PubMed

    Gelashvili, D B; Iudin, D I; Rozenberg, G S; Iakimov, N V

    2007-01-01

    Applications of the fractal to describing the species structure of communities are discussed. Fundamental notions of fractal geometry are explained in the first part. The problem of applying the concept of fractal to describe the spatial allocation of particular species and of community as a whole is reviewed in the second part. In the final part, the usage of the selfsimirity principle for analyzing community organization is substantiated, and evidence of the fractal structure of biocenoses is presented according to Whittaker's concept of alpha diversity. It is shown that community is characterized, as a fractal object, by scale invariance, by power function relationship between the number of structural elements of the community (individuals, populations, species) and the scale (sampling effort), and, finally, by fractional value of the power (fractal dimension). Power function is the formula the takes into account the share of rare species, or species represented by a single individual. providing for no saturation of the function f(x). This formula also does not contradict the A.P. Levich's "rule of ecological non-additivity" and, lastly, allows the application of fractal formalism to characterize the species structure of a community. It is concluded that the mathematical image of species richness is a monofractal, i.e., a set characterised by only one parameter, fractal dimension. Thus, the species structure of a community (as well as the pattern of its spatial allocation) displays self-similarity and is a fractal.

  6. Organizational Structures and Perceived Cultures of Community-Charter School in Ohio.

    ERIC Educational Resources Information Center

    Fox, Jeannie L.

    2002-01-01

    Challenges the assumption that bureaucracy is bad for charter schools. Examines perceived autonomy, governance structures, leadership, and perceived culture of community-charter schools in Ohio. (Contains 15 references.) (PKP)

  7. Effects of transient temperature conditions on the divergence of activated sludge bacterial community structure and function.

    PubMed

    Nadarajah, Nalina; Allen, D Grant; Fulthorpe, Roberta R

    2007-06-01

    The effect of temperature fluctuations on bacterial community structure and function in lab-scale sequencing batch reactors treating bleached kraft mill effluent was investigated. An increase in temperature from 30 to 45 degrees C caused shifts in both bacterial community structure and function. Triplicate reactors were highly similar for 40 days following startup. After the temperature shift, their community structure and function started to diverge from each other and from the control. A multi-response permutation procedure confirmed that the variability in community structure between transient and control reactors were greater than that among the triplicate transient reactors. The fact that these disturbances manifest themselves in different ways in apparently identical reactors suggests a high degree of variability between replicate systems.

  8. STRUCTURE AND FUNCTION OF ANTHROPOGENICALLY ALTERED MICROBIAL COMMUNITIES IN COASTAL WATERS. (R825243)

    EPA Science Inventory

    Human-based (anthropogenic) nutrient and other pollutant enrichment of the world's coastal waters is causing unprecedented changes in microbial community structure and function. Symptoms of these changes include accelerating eutrophication, the proliferation of harmful microal...

  9. ENVIRONMENTAL INFLUENCES ON BENTHIC COMMUNITY STRUCTURE IN A GREAT LAKES EMBAYMENT

    EPA Science Inventory

    An Intensified Environmental Monitoring and Assessment Program (EMAP) sampling grid in the St. Louis River estuary of western Lake Superior was used toassess the relationship between surficial sediment characteristics and benthic community structure. Ninety sites within two habit...

  10. Identification of Protozoa in Dairy Lagoon Wastewater that Consume Escherichia coli O157:H7 Preferentially

    PubMed Central

    Ravva, Subbarao V.; Sarreal, Chester Z.; Mandrell, Robert E.

    2010-01-01

    Escherichia coli O157:H7 (EcO157), an agent of life threatening hemolytic-uremic syndrome, resides in ruminants and is released in feces at numbers as high as 10 million cells/gram. EcO157 could survive in manure for as long as 21 months, but we observed a 90% decrease in cells of an outbreak strain of EcO157 within half a day in wastewater from dairy lagoons. Although chemical, environmental and biological factors may be responsible for this decrease, we observed an 11-fold increase in native protozoa when wastewater was re-inoculated with 2×107 cells of EcO157/mL. These protozoa engulfed the green fluorescent protein labeled EcO157 within 2 hours after inoculation, but expelled vacuoles filled with live EcO157 cells within 3 days into surrounding wastewater, whereas other protozoa retained the EcO157-filled vacuoles for 7 days. EcO157 was not detected by confocal microscopy either inside or outside protozoa after 7 days. Mixed cultures of protozoa enriched from wastewater consumed EcO157 preferentially as compared to native aerobic bacteria, but failed to eliminate them when EcO157 cells declined to 104/mL. We isolated three protozoa from mixed cultures and typed them by 18S sequencing as Vorticella microstoma, Platyophyra sp. and Colpoda aspera. While all three protozoa internalized EcO157, only Platyophyra and Colpoda acted as predators. Similar to mixed cultures, these protozoa failed to eliminate EcO157 from PBS containing no other supplemental nutrients or prey. However, spiking PBS with cereal grass medium as nutrients induced predation of EcO157 by Platyophyra sp. after 3 days or enhanced predation by Colpoda after 5 days. Therefore, attempts to enrich protozoa to decrease EcO157 from dairy lagoons, may correspond to an increase in protozoa similar to Vorticella and possibly facilitate transport of bacterial pathogens to food crops grown in proximity. PMID:21187934

  11. Identification of protozoa in dairy lagoon wastewater that consume Escherichia coli O157:H7 preferentially.

    PubMed

    Ravva, Subbarao V; Sarreal, Chester Z; Mandrell, Robert E

    2010-12-20

    Escherichia coli O157:H7 (EcO157), an agent of life threatening hemolytic-uremic syndrome, resides in ruminants and is released in feces at numbers as high as 10 million cells/gram. EcO157 could survive in manure for as long as 21 months, but we observed a 90% decrease in cells of an outbreak strain of EcO157 within half a day in wastewater from dairy lagoons. Although chemical, environmental and biological factors may be responsible for this decrease, we observed an 11-fold increase in native protozoa when wastewater was re-inoculated with 2×10(7) cells of EcO157/mL. These protozoa engulfed the green fluorescent protein labeled EcO157 within 2 hours after inoculation, but expelled vacuoles filled with live EcO157 cells within 3 days into surrounding wastewater, whereas other protozoa retained the EcO157-filled vacuoles for 7 days. EcO157 was not detected by confocal microscopy either inside or outside protozoa after 7 days. Mixed cultures of protozoa enriched from wastewater consumed EcO157 preferentially as compared to native aerobic bacteria, but failed to eliminate them when EcO157 cells declined to 10(4)/mL. We isolated three protozoa from mixed cultures and typed them by 18S sequencing as Vorticella microstoma, Platyophyra sp. and Colpoda aspera. While all three protozoa internalized EcO157, only Platyophyra and Colpoda acted as predators. Similar to mixed cultures, these protozoa failed to eliminate EcO157 from PBS containing no other supplemental nutrients or prey. However, spiking PBS with cereal grass medium as nutrients induced predation of EcO157 by Platyophyra sp. after 3 days or enhanced predation by Colpoda after 5 days. Therefore, attempts to enrich protozoa to decrease EcO157 from dairy lagoons, may correspond to an increase in protozoa similar to Vorticella and possibly facilitate transport of bacterial pathogens to food crops grown in proximity.

  12. Developing Structured-Learning Exercises for a Community Advanced Pharmacy Practice Experience

    PubMed Central

    Thomas, Renee Ahrens

    2006-01-01

    The recent growth in the number of pharmacy schools across the nation has resulted in the need for high-quality community advanced pharmacy practice experience (APPE) sites. A vital part of a student's education, these APPEs should be structured and formalized to provide an environment conducive to student learning. This paper discusses how to use a calendar, structured-learning activities, and scheduled evaluations to develop students' knowledge, skills, and abilities in a community pharmacy setting. PMID:17136164

  13. Predator personality structures prey communities and trophic cascades.

    PubMed

    Start, Denon; Gilbert, Benjamin

    2017-03-01

    Intraspecific variation is central to our understanding of evolution and population ecology, yet its consequences for community ecology are poorly understood. Animal personality - consistent individual differences in suites of behaviours - may be particularly important for trophic dynamics, where predator personality can determine activity rates and patterns of attack. We used mesocosms with aquatic food webs in which the top predator (dragonfly nymphs) varied in activity and subsequent attack rates on zooplankton, and tested the effects of predator personality. We found support for four hypotheses: (1) active predators disproportionately reduce the abundance of prey, (2) active predators select for predator-resistant prey species, (3) active predators strengthen trophic cascades (increase phytoplankton abundance) and (4) active predators are more likely to cannibalise one another, weakening all other trends when at high densities. These results suggest that intraspecific variation in predator personality is an important determinant of prey abundance, community composition and trophic cascades.

  14. Context-Sensitive Detection of Local Community Structure

    DTIC Science & Technology

    2011-04-01

    network of frequent associations among 62 dolphins in a community living off Doubtful Sound, New Zealand [62 vertices, 159 edges] [LSB+03]. • Jazz . A...network of jazz musicians who have performed together ( jazz ). [198 vertices, 2742 edges] [GD03]. • American college football (football). A network of...the discussion below. 0 50 100 150 200 2 4 6 8 degree fr eq ue nc y Fig. 3. Degree distribution for a network of jazz musicians. C. Network Degree

  15. Changes in microbial community structure in the wake of Hurricanes Katrina and Rita

    PubMed Central

    Amaral-Zettler, Linda A.; Rocca, Jennifer D.; LaMontagne, Michael G.; Dennett, Mark R.; Gast, Rebecca J.

    2009-01-01

    Hurricanes have the potential to alter the structures of coastal ecosystems and generate pathogen-laden floodwaters that threaten public health. To examine the impact of hurricanes on urban systems, we compared microbial community structures in samples collected after Hurricane Katrina and before and after Hurricane Rita. We extracted environmental DNA and sequenced small-subunit ribosomal RNA (SSU rRNA) gene clone libraries to survey microbial communities in floodwater, water and sediment samples collected from Lake Charles, Lake Pontchartrain, the 17th Street and Industrial Canals in New Orleans and raw sewage. Correspondence Analysis showed that microbial communities associated with sediments formed one cluster while communities associated with lake and Industrial Canal water formed a second. Communities associated with water from the 17th Street Canal and floodwaters collected in New Orleans showed similarity to communities in raw sewage and contained a number of sequences associated with possible pathogenic microbes. This suggests that a distinct microbial community developed in floodwaters following Hurricane Katrina and that microbial community structures as a whole might be sensitive indicators of ecosystem health and serve as “sentinels” of water quality in the environment. PMID:19174873

  16. Structure and stability of the midsummer fish communities in Chequamegon Bay, Lake Superior, 1973-1996

    USGS Publications Warehouse

    Hoff, M.H.; Bronte, C.R.

    1999-01-01

    We analyzed the structure and stability of the summer fish communities of Chequamegon Bay, Lake Superior, during 1973-1996 from data collected with bottom trawls at 39 stations. Fifty-three taxa were collected during the study, but we found that relative abundances for 20 taxa described most of the internal variability of the data for all taxa. Abundance data for the 20 species showed that two communities existed in the bay; one inhabited shallow water (3.0 m) whereas the other inhabited deeper water (>3.0 m). No temporal patterns of change were found in the structure of the shallow-water community, whose variation was best described by abundances of 12 taxa. The deepwater community, whose variation was best described by eight taxa, underwent three periods ofstability; 1973-1978, 1979-1988, and 1989-1996. We conclude that the shallow-water community was stable throughout the 24 years studied. Dynamics of the deepwater community were greatly affected by changes in stocking rates of lake troutSalvelinus namaycush and splake (hybrid of brook trout Salvelinus fontinalis × lake trout) and by rehabilitation of populations of lake herring Coregonus artedi and lake whitefish Coregonus clupeaformis. Information on the existence, structure, stability, and habitats of fish communities in the bay will be useful for assessing changes in those communities that result from further changes in the bay or lake ecosystems.

  17. Genetic variation in plant morphology contributes to the species-level structure of grassland communities.

    PubMed

    Whitlock, Raj; Grime, J Phil; Burke, Terry

    2010-05-01

    It is becoming apparent that genetic diversity can influence the species diversity and structure of ecological communities. Here, we investigated the intraspecific trait variation responsible for this relationship. We grew 10 genotypes of the sedge Carex caryophyllea, as monocultures, under standardized conditions and measured traits related to morphology, growth, and life history. The same genotypes had been prominent in determining the structure of multispecies experimental communities, equivalent in species diversity, in which the genetic diversity of the constituent plant species had been varied in parallel. The trait measurements revealed substantial phenotypic variation among Carex genotypes, related predominantly to differences in physical size and to the spatial deployment of above- and belowground tissue. Genotypes successful in experimental communities were larger in size and tended to adopt a "guerrilla" clonal growth strategy. In general, multivariate trait summaries of genotype size (and to a lesser extent, variation along a linear discriminant axis) predicted genotype and species abundance in experimental communities. However, one genotype exhibited a large disparity in this respect. The performance of this genotype lay closer to prediction when it was growing with a highly competitive grass genotype. The strength of the relationship between genotype size and performance within communities decreased with decreasing community genetic diversity. These results indicate that intraspecific trait measurements are useful for predicting and understanding community structure. They also imply that competitive interactions between the genotypes of different species play an increased role in determining phenotype in genetically impoverished communities.

  18. Changes in microbial community structure in the wake of Hurricanes Katrina and Rita.

    PubMed

    Amaral-Zettler, Linda A; Rocca, Jennifer D; Lamontagne, Michael G; Dennett, Mark R; Gast, Rebecca J

    2008-12-15

    Hurricanes have the potential to alter the structures of coastal ecosystems and generate pathogen-laden floodwaters thatthreaten public health. To examine the impact of hurricanes on urban systems, we compared microbial community structures in samples collected after Hurricane Katrina and before and after Hurricane Rita. We extracted environmental DNA and sequenced small-subunit rRNA (SSU rRNA) gene clone libraries to survey microbial communities in floodwater, water, and sediment samples collected from Lake Charles, Lake Pontchartrain, the 17th Street and Industrial Canals in New Orleans, and raw sewage. Correspondence analysis showed that microbial communities associated with sediments formed one cluster while communities associated with lake and Industrial Canal water formed a second. Communities associated with water from the 17th Street Canal and floodwaters collected in New Orleans showed similarity to communities in raw sewage and contained a number of sequences associated with possible pathogenic microbes. This suggests that a distinct microbial community developed in floodwaters following Hurricane Katrina and that microbial community structures as a whole might be sensitive indicators of ecosystem health and serve as "sentinels" of water quality in the environment.

  19. Bacterial community structure is indicative of chemical inputs in the Upper Mississippi River

    PubMed Central

    Staley, Christopher; Gould, Trevor J.; Wang, Ping; Phillips, Jane; Cotner, James B.; Sadowsky, Michael J.

    2014-01-01

    Local and regional associations between bacterial communities and nutrient and chemical concentrations were assessed in the Upper Mississippi River in Minnesota to determine if community structure was associated with discrete types of chemical inputs associated with different land cover. Bacterial communities were characterized by Illumina sequencing of the V6 region of 16S rDNA and compared to >40 chemical and nutrient concentrations. Local bacterial community structure was shaped primarily by associations among bacterial orders. However, order abundances were correlated regionally with nutrient and chemical concentrations, and were also related to major land coverage types. Total organic carbon and total dissolved solids were among the primary abiotic factors associated with local community composition and co-varied with land cover. Escherichia coli concentration was poorly related to community composition or nutrient concentrations. Abundances of 14 bacterial orders were related to land coverage type, and seven showed significant differences in abundance (P ≤ 0.046) between forested or anthropogenically-impacted sites. This study identifies specific bacterial orders that were associated with chemicals and nutrients derived from specific land cover types and may be useful in assessing water quality. Results of this study reveal the need to investigate community dynamics at both the local and regional scales and to identify shifts in taxonomic community structure that may be useful in determining sources of pollution in the Upper Mississippi River. PMID:25339945

  20. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska.

    PubMed

    Kim, Hye Min; Jung, Ji Young; Yergeau, Etienne; Hwang, Chung Yeon; Hinzman, Larry; Nam, Sungjin; Hong, Soon Gyu; Kim, Ok-Sun; Chun, Jongsik; Lee, Yoo Kyung

    2014-08-01

    The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0-10 cm to 10-20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen (NH4+ and NO3-). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska.

  1. Using a two-phase evolutionary framework to select multiple network spreaders based on community structure

    NASA Astrophysics Data System (ADS)

    Fu, Yu-Hsiang; Huang, Chung-Yuan; Sun, Chuen-Tsai

    2016-11-01

    Using network community structures to identify multiple influential spreaders is an appropriate method for analyzing the dissemination of information, ideas and infectious diseases. For example, data on spreaders selected from groups of customers who make similar purchases may be used to advertise products and to optimize limited resource allocation. Other examples include community detection approaches aimed at identifying structures and groups in social or complex networks. However, determining the number of communities in a network remains a challenge. In this paper we describe our proposal for a two-phase evolutionary framework (TPEF) for determining community numbers and maximizing community modularity. Lancichinetti-Fortunato-Radicchi benchmark networks were used to test our proposed method and to analyze execution time, community structure quality, convergence, and the network spreading effect. Results indicate that our proposed TPEF generates satisfactory levels of community quality and convergence. They also suggest a need for an index, mechanism or sampling technique to determine whether a community detection approach should be used for selecting multiple network spreaders.

  2. Functional traits explain phytoplankton community structure and seasonal dynamics in a marine ecosystem.

    PubMed

    Edwards, Kyle F; Litchman, Elena; Klausmeier, Christopher A

    2013-01-01

    A fundamental yet elusive goal of ecology is to predict the structure of communities from the environmental conditions they experience. Trait-based approaches to terrestrial plant communities have shown that functional traits can help reveal the mechanisms underlying community assembly, but such approaches have not been tested on the microbes that dominate ecosystem processes in the ocean. Here, we test whether functional traits can explain community responses to seasonal environmental fluctuation, using a time series of the phytoplankton of the English Channel. We show that interspecific variation in response to major limiting resources, light and nitrate, can be well-predicted by lab-measured traits characterising light utilisation, nitrate utilisation and maximum growth rate. As these relationships were predicted a priori, using independently measured traits, our results show that functional traits provide a strong mechanistic foundation for understanding the structure and dynamics of ecological communities.

  3. Quantitative Comparison of Abundance Structures of Generalized Communities: From B-Cell Receptor Repertoires to Microbiomes

    PubMed Central

    Saeedghalati, Mohammadkarim; Farahpour, Farnoush; Lange, Anja; Westendorf, Astrid M.; Seifert, Marc; Küppers, Ralf

    2017-01-01

    The community, the assemblage of organisms co-existing in a given space and time, has the potential to become one of the unifying concepts of biology, especially with the advent of high-throughput sequencing experiments that reveal genetic diversity exhaustively. In this spirit we show that a tool from community ecology, the Rank Abundance Distribution (RAD), can be turned by the new MaxRank normalization method into a generic, expressive descriptor for quantitative comparison of communities in many areas of biology. To illustrate the versatility of the method, we analyze RADs from various generalized communities, i.e. assemblages of genetically diverse cells or organisms, including human B cells, gut microbiomes under antibiotic treatment and of different ages and countries of origin, and other human and environmental microbial communities. We show that normalized RADs enable novel quantitative approaches that help to understand structures and dynamics of complex generalized communities. PMID:28114391

  4. [Dependence of the structure of component parasite communities on host age].

    PubMed

    Dorovskikh, G N; Stepanov, V G

    2008-01-01

    Dependence of the structure of component parasite communities on host age is studied by the example of parasite communities in minnow and grayling from the North Dvina and Pechora rivers basins. Parasite communities from immature host groups are revealed to be different from those in mature fishes by lesser number of parasite individuals and biomass, number of groups discriminated by the ratio of biomasses, and frequently by lesser number of species. Indices of diversity describing parasite communities from hosts of different ages are nearly always the same in the area examined. This observation needs in verification because values of the indices characterizing parasite communities from fishes of different ages are not equal in the parasite communities from grayling of different age from the Pinega river and minnow from the Chovju river (Dorovskikh, 2002).

  5. The impacts of triclosan on anaerobic community structures, function, and antimicrobial resistance.

    PubMed

    McNamara, Patrick J; LaPara, Timothy M; Novak, Paige J

    2014-07-01

    Triclosan is a widespread antimicrobial agent that accumulates in anaerobic digesters used to treat the residual solids generated at municipal wastewater treatment plants; there is very little information, however, about how triclosan impacts microbial communities in anaerobic digesters. We investigated how triclosan impacts the community structure, function and antimicrobial resistance genes in lab-scale anaerobic digesters. Previously exposed (to triclosan) communities were amended with 5, 50, and 500 mg/kg of triclosan, corresponding to the median, 95th percentile, and 4-fold higher than maximum triclosan concentration that has been detected in U.S. biosolids. Triclosan amendment caused all of the Bacteria and Archaea communities to structurally diverge from that of the control cultures (based on ARISA). At the end of the experiment, all triclosan-amended Archaea communities had diverged from the control communities, regardless of the triclosan concentration added. In contrast, over time the Bacteria communities that were amended with lower concentrations of triclosan (5 mg/kg and 50 mg/kg) initially diverged and then reconverged with the control community structure. Methane production at 500 mg/kg was nearly half the methane production in control cultures. At 50 mg/kg, a large variability in methane production was observed, suggesting that 50 mg/kg may be a tipping point where function begins to fail in some communities. When previously unexposed communities were exposed to 500 mg triclosan/kg, function was maintained, but the abundance of a gene encoding for triclosan resistance (mexB) increased. This research suggests that triclosan could inhibit methane production in anaerobic digesters if concentrations were to increase and may also select for resistant Bacteria. In both cases, microbial community composition and exposure history alter the influence of triclosan.

  6. Analysis of Structural and Physiological Profiles To Assess the Effects of Cu on Biofilm Microbial Communities

    PubMed Central

    Massieux, B.; Boivin, M. E. Y.; van den Ende, F. P.; Langenskiöld, J.; Marvan, P.; Barranguet, C.; Admiraal, W.; Laanbroek, H. J.; Zwart, G.

    2004-01-01

    We investigated the effects of copper on the structure and physiology of freshwater biofilm microbial communities. For this purpose, biofilms that were grown during 4 weeks in a shallow, slightly polluted ditch were exposed, in aquaria in our laboratory, to a range of copper concentrations (0, 1, 3, and 10 μM). Denaturing gradient gel electrophoresis (DGGE) revealed changes in the bacterial community in all aquaria. The extent of change was related to the concentration of copper applied, indicating that copper directly or indirectly caused the effects. Concomitantly with these changes in structure, changes in the metabolic potential of the heterotrophic bacterial community were apparent from changes in substrate use profiles as assessed on Biolog plates. The structure of the phototrophic community also changed during the experiment, as observed by microscopic analysis in combination with DGGE analysis of eukaryotic microorganisms and cyanobacteria. However, the extent of community change, as observed by DGGE, was not significantly greater in the copper treatments than in the control. Yet microscopic analysis showed a development toward a greater proportion of cyanobacteria in the treatments with the highest copper concentrations. Furthermore, copper did affect the physiology of the phototrophic community, as evidenced by the fact that a decrease in photosynthetic capacity was detected in the treatment with the highest copper concentration. Therefore, we conclude that copper affected the physiology of the biofilm and had an effect on the structure of the communities composing this biofilm. PMID:15294780

  7. Stream invertebrate communities of Mongolia: current structure and expected changes due to climate change

    PubMed Central

    2012-01-01

    Background Mongolia’s riverine landscape is divided into three watersheds, differing in extent of permafrost, amount of precipitation and in hydrological connectivity between sub-drainages. In order to assess the vulnerability of macroinvertebrate communities to ongoing climate change, we consider the taxonomic and functional structures of stream communities in two major watersheds: The Central Asian Internal Watershed (CAIW) and the Arctic Ocean Watershed (AOW), together covering 86.1% of Mongolia’s surface area. We assess the consequences of the hydrological connectivity between sub-drainages on the nestedness and distinctness of the stream communities. And accordingly, we discuss the expected biotic changes to occur in each watershed as a consequence of climate change. Results Gamma and beta diversities were higher in the CAIW than the AOW. High community nestedness was also found in the CAIW along with a higher heterogeneity of macroinvertebrate assemblage structure. Assemblages characteristic of cold headwater streams in the CAIW, were typical of the drainages of the Altai Mountain range. Macroinvertebrate guilds of the CAIW streams exhibited traits reflecting a high stability and low resilience capacity for eutrophication. In contrast, the community of the AOW had lower nestedness and a combination of traits reflecting higher stability and a better resilience capacity to disturbances. Conclusion Higher distinctness of stream communities is due to lower connectivity between the drainages. This was the case of the stream macroinvertebrate communities of the two major Mongolian watersheds, where connectivity of streams between sub-drainages is an important element structuring their communities. Considering differences in the communities’ guild structure, hydrological connectivity and different magnitudes of upcoming impacts of climate change between the two watersheds, respective stream communities will be affected differently. The hitherto different

  8. Accumulation of reserve carbohydrate by rumen protozoa and bacteria in competition for glucose.

    PubMed

    Denton, Bethany L; Diese, Leanne E; Firkins, Jeffrey L; Hackmann, Timothy J

    2015-03-01

    The aim of this study was to determine if rumen protozoa could form large amounts of reserve carbohydrate compared to the amounts formed by bacteria when competing for glucose in batch cultures. We separated large protozoa and small bacteria from rumen fluid by filtration and centrifugation, recombined equal protein masses of each group into one mixture, and subsequently harvested (reseparated) these groups at intervals after glucose dosing. This method allowed us to monitor reserve carbohydrate accumulation of protozoa and bacteria individually. When mixtures were dosed with a moderate concentration of glucose (4.62 or 5 mM) (n = 2 each), protozoa accumulated large amounts of reserve carbohydrate; 58.7% (standard error of the mean [SEM], 2.2%) glucose carbon was recovered from protozoal reserve carbohydrate at time of peak reserve carbohydrate concentrations. Only 1.7% (SEM, 2.2%) was recovered in bacterial reserve carbohydrate, which was less than that for protozoa (P < 0.001). When provided a high concentration of glucose (20 mM) (n = 4 each), 24.1% (SEM, 2.2%) of glucose carbon was recovered from protozoal reserve carbohydrate, which was still higher (P = 0.001) than the 5.0% (SEM, 2.2%) glucose carbon recovered from bacterial reserve carbohydrate. Our novel competition experiments directly demonstrate that mixed protozoa can sequester sugar away from bacteria by accumulating reserve carbohydrate, giving protozoa a competitive advantage and stabilizing fermentation in the rumen. Similar experiments could be used to investigate the importance of starch sequestration.

  9. Effect of nylon bag and protozoa on in vitro corn starch disappearance.

    PubMed

    van Zwieten, J T; van Vuuren, A M; Dijkstra, J

    2008-03-01

    An in vitro experiment was carried out to study whether the presence of protozoa in nylon bags can explain the underestimation of the in situ degradation of slowly degradable starch. Corn of a high (flint) and a low (dent) vitreousness variety was ground over a 3-mm screen, weighed in nylon bags with a pore size of 37 microm, and washed in cold water. Samples of washed cornstarch were incubated in 40-mL tubes with faunated and defaunated ruminal fluid. An additional amount of washed corn, in nylon bags, was inserted in each incubation tube. Incubations were carried out for 0, 2, 4, 6, 12, and 24 h, and starch residue in tube and nylon bag was determined. In general, starch disappearance from the nylon bag was less than from the tube, and was less with faunated than defaunated rumen fluid, but corn variety did not affect starch disappearance. When no protozoa were present, the disappearance of starch from the bags was higher after 6 and 12 h incubation compared with presence of protozoa. However, in the tubes, there was no difference in starch disappearance due to presence or absence of protozoa. Estimated lag time was higher in presence (4.6 h) then absence (3.6 h) of protozoa. It was concluded that the effect of presence or absence of protozoa on starch disappearance differs within or outside nylon bags. The reduced disappearance rate of starch inside the nylon bags in the presence of protozoa helps to explain the underestimation of starch degradation based on the in sacco procedure when compared with in vivo data upon incubation of slowly degradable starch sources.

  10. Structures of Microbial Communities in Alpine Soils: Seasonal and Elevational Effects

    PubMed Central

    Lazzaro, Anna; Hilfiker, Daniela; Zeyer, Josef

    2015-01-01

    Microbial communities in alpine environments are exposed to several environmental factors related to elevation and local site conditions and to extreme seasonal variations. However, little is known on the combined impact of such factors on microbial community structure. We assessed the effects of seasonal variations on soil fungal and bacterial communities along an elevational gradient (from alpine meadows to a glacier forefield, 1930–2519 m a.s.l.) over 14 months. Samples were taken during all four seasons, even under the winter snowpack and at snowmelt. Microbial community structures and abundances were investigated using Terminal Restriction Fragment Length Polymorphism (T-RFLP) and quantitative PCR (qPCR) of the 16S and 18S rRNA genes. Illumina sequencing was performed to identify key bacterial groups in selected samples. We found that the soil properties varied significantly with the seasons and along the elevational gradient. For example, concentrations of soluble nutrients (e.g., NH4+-N, SO42−-S, PO43−-P) significantly increased in October but decreased drastically under the winter snowpack. At all times, the alpine meadows showed higher soluble nutrient concentrations than the glacier forefield. Microbial community structures at the different sites were strongly affected by seasonal variations. Under winter snowpack, bacterial communities were dominated by ubiquitous groups (i.e., beta-Proteobacteria, which made up to 25.7% of the total reads in the glacier forefield). In the snow-free seasons, other groups (i.e., Cyanobacteria) became more abundant (from 1% under winter snow in the glacier forefield samples to 8.1% in summer). In summary, elevation had a significant effect on soil properties, whereas season influenced soil properties as well as microbial community structure. Vegetation had a minor impact on microbial communities. At every elevation analyzed, bacterial, and fungal community structures exhibited a pronounced annual cycle. PMID:26635785

  11. Structures of Microbial Communities in Alpine Soils: Seasonal and Elevational Effects.

    PubMed

    Lazzaro, Anna; Hilfiker, Daniela; Zeyer, Josef

    2015-01-01

    Microbial communities in alpine environments are exposed to several environmental factors related to elevation and local site conditions and to extreme seasonal variations. However, little is known on the combined impact of such factors on microbial community structure. We assessed the effects of seasonal variations on soil fungal and bacterial communities along an elevational gradient (from alpine meadows to a glacier forefield, 1930-2519 m a.s.l.) over 14 months. Samples were taken during all four seasons, even under the winter snowpack and at snowmelt. Microbial community structures and abundances were investigated using Terminal Restriction Fragment Length Polymorphism (T-RFLP) and quantitative PCR (qPCR) of the 16S and 18S rRNA genes. Illumina sequencing was performed to identify key bacterial groups in selected samples. We found that the soil properties varied significantly with the seasons and along the elevational gradient. For example, concentrations of soluble nutrients (e.g., [Formula: see text], [Formula: see text], [Formula: see text]) significantly increased in October but decreased drastically under the winter snowpack. At all times, the alpine meadows showed higher soluble nutrient concentrations than the glacier forefield. Microbial community structures at the different sites were strongly affected by seasonal variations. Under winter snowpack, bacterial communities were dominated by ubiquitous groups (i.e., beta-Proteobacteria, which made up to 25.7% of the total reads in the glacier forefield). In the snow-free seasons, other groups (i.e., Cyanobacteria) became more abundant (from 1% under winter snow in the glacier forefield samples to 8.1% in summer). In summary, elevation had a significant effect on soil properties, whereas season influenced soil properties as well as microbial community structure. Vegetation had a minor impact on microbial communities. At every elevation analyzed, bacterial, and fungal community structures exhibited a

  12. The type of carbohydrates specifically selects microbial community structures and fermentation patterns.

    PubMed

    Chatellard, Lucile; Trably, Eric; Carrère, Hélène

    2016-12-01

    The impact on dark fermentation of seven carbohydrates as model substrates of lignocellulosic fractions (glucose, cellobiose, microcrystalline cellulose, arabinose, xylose, xylan and wheat straw) was investigated. Metabolic patterns and bacterial communities were characterized at the end of batch tests inoculated with manure digestate. It was found that hydrogen production was linked to the sugar type (pentose or hexose) and the degree of polymerisation. Hexoses produced less hydrogen, with a specific selection of lactate-producing bacterial community structures. Maximal hydrogen production was five times higher on pentose-based substrates, with specific bacterial community structures producing acetate and butyrate as main metabolites. Low hydrogen amounts accumulated from complex sugars (cellulose, xylan and wheat straw). A relatively high proportion of the reads was affiliated to Ruminococcaceae suggesting an efficient hydrolytic activity. Knowing that the bacterial community structure is very specific to a particular substrate offers new possibilities to design more efficient H2-producing biological systems.

  13. Cyanobacterial Community Structure In Lithifying Mats of A Yellowstone Hotspring-Implications for Precambrian Stromatolite Biocomplexity

    NASA Technical Reports Server (NTRS)

    Lau, Evan; Nash, C. Z.; Vogler, D. R.; Cullings, K.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Denaturing Gradient Gel Electrophoresis (DGGE) of partial 16S rRNA gene sequences was used to investigate the molecular biodiversity of cyanobacterial communities inhabiting various lithified morpho-structures in two hotsprings of Yellowstone National Park. These morpho-structures - flat-topped columns, columnar cones, and ridged cones - resemble ancient stromatolites, which are possibly biogenic in origin. The top, middle and bottom sections of these lithified morpho-structures, as well as surrounding non-lithified mats were analyzed to determine the vertical and spatial distribution of cyanobacterial communities. Results from DGGE indicate that the cyanobacterial community composition of lithified morpho-structures (flat-topped columns, columnar cones, and ridged cones) were largely similar in vertical distribution as well as among the morpho-structures being studied. Preliminary results indicate that the cyanobacterial communities in these lithified morpho-structures were significantly different from communities in surrounding non-lithified mats. These results provide additional support to the theory that certain Phormidium/Leptolyngbya species are involved in the morphogenesis of lithifying morpho-structures in hotsprings and may have played a role in the formation of ancient stromatolites.

  14. Direct and indirect influence of parental bedrock on streambed microbial community structure in forested streams.

    PubMed

    Mosher, Jennifer J; Findlay, Robert H

    2011-11-01

    A correlative study was performed to determine if variation in streambed microbial community structure in low-order forested streams can be directly or indirectly linked to the chemical nature of the parental bedrock of the environments through which the streams flow. Total microbial and photosynthetic biomass (phospholipid phosphate [PLP] and chlorophyll a), community structure (phospholipid fatty acid analysis), and physical and chemical parameters were measured in six streams, three located in sandstone and three in limestone regions of the Bankhead National Forest in northern Alabama. Although stream water flowing through the two different bedrock types differed significantly in chemical composition, there were no significant differences in total microbial and photosynthetic biomass in the sediments. In contrast, sedimentary microbial community structure differed between the bedrock types and was significantly correlated with stream water ion concentrations. A pattern of seasonal variation in microbial community structure was also observed. Further statistical analysis indicated dissolved organic matter (DOM) quality, which was previously shown to be influenced by geological variation, correlated with variation in bacterial community structure. These results indicate that the geology of underlying bedrock influences benthic microbial communities directly via changes in water chemistry and also indirectly via stream water DOM quality.

  15. Determinants of community structure of zooplankton in heavily polluted river ecosystems.

    PubMed

    Xiong, Wei; Li, Jie; Chen, Yiyong; Shan, Baoqing; Wang, Weimin; Zhan, Aibin

    2016-02-25

    River ecosystems are among the most affected habitats globally by human activities, such as the release of chemical pollutants. However, it remains largely unknown how and to what extent many communities such as zooplankton are affected by these environmental stressors in river ecosystems. Here, we aim to determine major factors responsible for shaping community structure of zooplankton in heavily polluted river ecosystems. Specially, we use rotifers in the Haihe River Basin (HRB) in North China as a case study to test the hypothesis that species sorting (i.e. species are "filtered" by environmental factors and occur at environmental suitable sites) plays a key role in determining community structure at the basin level. Based on an analysis of 94 sites across the plain region of HRB, we found evidence that both local and regional factors could affect rotifer community structure. Interestingly, further analyses indicated that local factors played a more important role in determining community structure. Thus, our results support the species sorting hypothesis in highly polluted rivers, suggesting that local environmental constraints, such as environmental pollution caused by human activities, can be stronger than dispersal limitation caused by regional factors to shape local community structure of zooplankton at the basin level.

  16. Determinants of community structure of zooplankton in heavily polluted river ecosystems

    PubMed Central

    Xiong, Wei; Li, Jie; Chen, Yiyong; Shan, Baoqing; Wang, Weimin; Zhan, Aibin

    2016-01-01

    River ecosystems are among the most affected habitats globally by human activities, such as the release of chemical pollutants. However, it remains largely unknown how and to what extent many communities such as zooplankton are affected by these environmental stressors in river ecosystems. Here, we aim to determine major factors responsible for shaping community structure of zooplankton in heavily polluted river ecosystems. Specially, we use rotifers in the Haihe River Basin (HRB) in North China as a case study to test the hypothesis that species sorting (i.e. species are “filtered” by environmental factors and occur at environmental suitable sites) plays a key role in determining community structure at the basin level. Based on an analysis of 94 sites across the plain region of HRB, we found evidence that both local and regional factors could affect rotifer community structure. Interestingly, further analyses indicated that local factors played a more important role in determining community structure. Thus, our results support the species sorting hypothesis in highly polluted rivers, suggesting that local environmental constraints, such as environmental pollution caused by human activities, can be stronger than dispersal limitation caused by regional factors to shape local community structure of zooplankton at the basin level. PMID:26912391

  17. Multiplexed Recombinase Polymerase Amplification Assay To Detect Intestinal Protozoa.

    PubMed

    Crannell, Zachary; Castellanos-Gonzalez, Alejandro; Nair, Gayatri; Mejia, Rojelio; White, A Clinton; Richards-Kortum, Rebecca

    2016-02-02

    This work describes a proof-of-concept multiplex recombinase polymerase amplification (RPA) assay with lateral flow readout that is capable of simultaneously detecting and differentiating DNA from any of the diarrhea-causing protozoa Giardia, Cryptosporidium, and Entamoeba. Together, these parasites contribute significantly to the global burden of diarrheal illness. Differential diagnosis of these parasites is traditionally accomplished via stool microscopy. However, microscopy is insensitive and can miss up to half of all cases. DNA-based diagnostics such as polymerase chain reaction (PCR) are far more sensitive; however, they rely on expensive thermal cycling equipment, limiting their availability to centralized reference laboratories. Isothermal DNA amplification platforms, such as the RPA platform used in this study, alleviate the need for thermal cycling equipment and have the potential to broaden access to more sensitive diagnostics. Until now, multiplex RPA assays have not been developed that are capable of simultaneously detecting and differentiating infections caused by different pathogens. We developed a multiplex RPA assay to detect the presence of DNA from Giardia, Cryptosporidium, and Entamoeba. The multiplex assay was characterized using synthetic DNA, where the limits-of-detection were calculated to be 403, 425, and 368 gene copies per reaction of the synthetic Giardia, Cryptosporidium, and Entamoeba targets, respectively (roughly 1.5 orders of magnitude higher than for the same targets in a singleplex RPA assay). The multiplex assay was also characterized using DNA extracted from live parasites spiked into stool samples where the limits-of-detection were calculated to be 444, 6, and 9 parasites per reaction for Giardia, Cryptosporidium, and Entamoeba parasites, respectively. This proof-of-concept assay may be reconfigured to detect a wide variety of targets by re-designing the primer and probe sequences.

  18. Plant-like proteins in protozoa, metazoa and fungi imply universal plastid endosymbiosis.

    PubMed

    Yuan, Shu; Guo, Jian-Hua; Du, Jun-Bo; Lin, Hong-Hui

    2010-01-01

    In recent years, plant-like proteins in protozoa, metazoa and fungi have been identified. Analysis of them suggests that for millions of years universal plastid endosymbiosis and gene transfer occurred in ancestors of metazoa/fungi, and some transferred fragments have been reserved till now even in modern mammals. Most eukaryotes once contained plastids in the ancient era, and some of them lost plastids later. Functions of homologues in cyanobacterial genomes and eukaryotic genomes are in consensus, and are most involved in organic compound metabolism. With emergence of organelles and subcellular structures in the eukaryotic cell, the locations of these proteins diversified. Furthermore, some novel functions were adopted, especially in vertebrates. Analysis also implies that plastids acquired through a mechanism of secondary endosymbiosis may be preserved even until the multicellular era in simple animals. Phylogenetic trees of some proteins suggest that in ancient times the common ancestor of photosynthetic protist Euglena and parasite Trypanosoma once engulfed a green alga, and then it lost the plastid, but recently some euglenids engulfed algae again. Plastid endosymbiosis is a more general process than we originally thought, and may happen more than one time in one species.

  19. Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree.

    PubMed

    Cavalier-Smith, Thomas

    2010-06-23

    I discuss eukaryotic deep phylogeny and reclassify the basal eukaryotic kingdom Protozoa and derived kingdom Chromista in the light of multigene trees. I transfer the formerly protozoan Heliozoa and infrakingdoms Alveolata and Rhizaria into Chromista, which is sister to kingdom Plantae and arguably originated by synergistic double internal enslavement of green algal and red algal cells. I establish new subkingdoms (Harosa; Hacrobia) for the expanded Chromista. The protozoan phylum Euglenozoa differs immensely from other eukaryotes in its nuclear genome organization (trans-spliced multicistronic transcripts), mitochondrial DNA organization, cytochrome c-type biogenesis, cell structure and arguably primitive mitochondrial protein-import and nuclear DNA prereplication machineries. The bacteria-like absence of mitochondrial outer-membrane channel Tom40 and DNA replication origin-recognition complexes from trypanosomatid Euglenozoa roots the eukaryotic tree between Euglenozoa and all other eukaryotes (neokaryotes), or within Euglenozoa. Given their unique properties, I segregate Euglenozoa from infrakingdom Excavata (now comprising only phyla Percolozoa, Loukozoa, Metamonada), grouping infrakingdoms Euglenozoa and Excavata as the ancestral protozoan subkingdom Eozoa. I place phylum Apusozoa within the derived protozoan subkingdom Sarcomastigota. Clarifying early eukaryote evolution requires intensive study of properties distinguishing Euglenozoa from neokaryotes and Eozoa from neozoa (eukaryotes except Eozoa; ancestrally defined by haem lyase).

  20. Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree

    PubMed Central

    Cavalier-Smith, Thomas

    2010-01-01

    I discuss eukaryotic deep phylogeny and reclassify the basal eukaryotic kingdom Protozoa and derived kingdom Chromista in the light of multigene trees. I transfer the formerly protozoan Heliozoa and infrakingdoms Alveolata and Rhizaria into Chromista, which is sister to kingdom Plantae and arguably originated by synergistic double internal enslavement of green algal and red algal cells. I establish new subkingdoms (Harosa; Hacrobia) for the expanded Chromista. The protozoan phylum Euglenozoa differs immensely from other eukaryotes in its nuclear genome organization (trans-spliced multicistronic transcripts), mitochondrial DNA organization, cytochrome c-type biogenesis, cell structure and arguably primitive mitochondrial protein-import and nuclear DNA prereplication machineries. The bacteria-like absence of mitochondrial outer-membrane channel Tom40 and DNA replication origin-recognition complexes from trypanosomatid Euglenozoa roots the eukaryotic tree between Euglenozoa and all other eukaryotes (neokaryotes), or within Euglenozoa. Given their unique properties, I segregate Euglenozoa from infrakingdom Excavata (now comprising only phyla Percolozoa, Loukozoa, Metamonada), grouping infrakingdoms Euglenozoa and Excavata as the ancestral protozoan subkingdom Eozoa. I place phylum Apusozoa within the derived protozoan subkingdom Sarcomastigota. Clarifying early eukaryote evolution requires intensive study of properties distinguishing Euglenozoa from neokaryotes and Eozoa from neozoa (eukaryotes except Eozoa; ancestrally defined by haem lyase). PMID:20031978

  1. Community.

    ERIC Educational Resources Information Center

    Grauer, Kit, Ed.

    1995-01-01

    Art in context of community is the theme of this newsletter. The theme is introduced in an editorial "Community-Enlarging the Definition" (Kit Grauer). Related articles include: (1) "The Children's Bridge is not Destroyed: Heart in the Middle of the World" (Emil Robert Tanay); (2) "Making Bridges: The Sock Doll…

  2. The structure and functions of bacterial communities in an agrocenosis

    NASA Astrophysics Data System (ADS)

    Dobrovol'skaya, T. G.; Khusnetdinova, K. A.; Manucharova, N. A.; Balabko, P. N.

    2016-01-01

    The most significant factor responsible for the specific taxonomic composition of the bacterial communities in the agrocenosis studied was found to be a part or organ of plants (leaves, flowers, roots, fruits). A stage of plant ontogeny also determines changes of taxa. In the course of the plant growth, eccrisotrophic bacteria are replaced by hydrolytic ones that belong to the group of cellulose-decomposing bacteria. Representatives of the proteobacteria genera that are difficult to identify by phenotypic methods were determined using molecular-biological methods. They were revealed only on oat leaves in the moist period. As the vetch-oat mixture was fertilized with BIOUD-1 (foliar application) in the phyllosphere of both oats and vetch, on all the plant organs, representatives of the Rhodococcus genus as dominants were isolated. This fact was related to the capability of bacteria to decompose the complex aromatic compounds that are ingredients of the fertilizers applied. Another positive effect for plants of the bacterial communities forming in agrocenoses is the presence of bacteria that are antagonists of phytopathogenic bacteria. Thus, in agrocenoses, some interrelationships promoting the growth and reproduction of plants are formed in crop plants and bacteria.

  3. Can microcystins affect zooplankton structure community in tropical eutrophic reservoirs?

    PubMed

    Paes, T A S V; Costa, I A S; Silva, A P C; Eskinazi-Sant'Anna, E M

    2016-06-01

    The aim of our study was to assess whether cyanotoxins (microcystins) can affect the composition of the zooplankton community, leading to domination of microzooplankton forms (protozoans and rotifers). Temporal variations in concentrations of microcystins and zooplankton biomass were analyzed in three eutrophic reservoirs in the semi-arid northeast region of Brazil. The concentration of microcystins in water proved to be correlated with the cyanobacterial biovolume, indicating the contributions from colonial forms such as Microcystis in the production of cyanotoxins. At the community level, the total biomass of zooplankton was not correlated with the concentration of microcystin (r2 = 0.00; P > 0.001), but in a population-level analysis, the biomass of rotifers and cladocerans showed a weak positive correlation. Cyclopoid copepods, which are considered to be relatively inefficient in ingesting cyanobacteria, were negatively correlated (r2 = - 0.01; P > 0.01) with the concentration of cyanotoxins. Surprisingly, the biomass of calanoid copepods was positively correlated with the microcystin concentration (r2 = 0.44; P > 0.001). The results indicate that allelopathic control mechanisms (negative effects of microcystin on zooplankton biomass) do not seem to substantially affect the composition of mesozooplankton, which showed a constant and high biomass compared to the microzooplankton (rotifers). These results may be important to better understand the trophic interactions between zooplankton and cyanobacteria and the potential effects of allelopathic compounds on zooplankton.

  4. Bioluminescence to reveal structure and interaction of coastal planktonic communities

    NASA Astrophysics Data System (ADS)

    Moline, Mark A.; Blackwell, Shelley M.; Case, James F.; Haddock, Steven H. D.; Herren, Christen M.; Orrico, Cristina M.; Terrill, Eric

    2009-02-01

    Ecosystem function will in large part be determined by functional groups present in biological communities. The simplest distinction with respect to functional groups of an ecosystem is the differentiation between primary and secondary producers. A challenge thus far has been to examine these groups simultaneously with sufficient temporal and spatial resolution for observations to be relevant to the scales of change in coastal oceans. This study takes advantage of general differences in the bioluminescence flash kinetics between planktonic dinoflagellates and zooplankton to measure relative abundances of the two groups within the same-time space volume. This novel approach for distinguishing these general classifications using a single sensor is validated using fluorescence data and exclusion experiments. The approach is then applied to data collected from an autonomous underwater vehicle surveying >500 km in Monterey Bay and San Luis Obispo Bay, CA during the summers of 2002-2004. The approach also reveals that identifying trophic interaction between the two planktonic communities may also be possible.

  5. The Network Structure of Human Personality According to the NEO-PI-R: Matching Network Community Structure to Factor Structure

    PubMed Central

    Goekoop, Rutger; Goekoop, Jaap G.; Scholte, H. Steven

    2012-01-01

    Introduction Human personality is described preferentially in terms of factors (dimensions) found using factor analysis. An alternative and highly related method is network analysis, which may have several advantages over factor analytic methods. Aim To directly compare the ability of network community detection (NCD) and principal component factor analysis (PCA) to examine modularity in multidimensional datasets such as the neuroticism-extraversion-openness personality inventory revised (NEO-PI-R). Methods 434 healthy subjects were tested on the NEO-PI-R. PCA was performed to extract factor structures (FS) of the current dataset using both item scores and facet scores. Correlational network graphs were constructed from univariate correlation matrices of interactions between both items and facets. These networks were pruned in a link-by-link fashion while calculating the network community structure (NCS) of each resulting network using the Wakita Tsurumi clustering algorithm. NCSs were matched against FS and networks of best matches were kept for further analysis. Results At facet level, NCS showed a best match (96.2%) with a ‘confirmatory’ 5-FS. At item level, NCS showed a best match (80%) with the standard 5-FS and involved a total of 6 network clusters. Lesser matches were found with ‘confirmatory’ 5-FS and ‘exploratory’ 6-FS of the current dataset. Network analysis did not identify facets as a separate level of organization in between items and clusters. A small-world network structure was found in both item- and facet level networks. Conclusion We present the first optimized network graph of personality traits according to the NEO-PI-R: a ‘Personality Web’. Such a web may represent the possible routes that subjects can take during personality development. NCD outperforms PCA by producing plausible modularity at item level in non-standard datasets, and can identify the key roles of individual items and clusters in the network. PMID:23284713

  6. Metabolic and structural response of hyporheic microbial communities to variations in supply of dissolved organic matter

    USGS Publications Warehouse

    Findlay, S.E.G.; Sinsabaugh, R. L.; Sobczak, W.V.; Hoostal, M.

    2003-01-01

    Hyporheic sediment bacterial communities were exposed to dissolved organic matter (DOM) from a variety of sources to assess the interdependence of bacterial metabolism and community composition. Experiments ranged from small-scale core perfusions with defined compounds (glucose, bovine serum albumin) to mesocosms receiving natural leaf leachate or water from different streams. Response variables included bacterial production, oxygen consumption, extracellular enzyme activity, and community similarity as manifest by changes in banding patterns of randomly amplified polymorphic DNA (RAPD). All DOM manipulations generated responses in at least one metabolic variable. Additions of both labile and recalcitrant materials increased either oxygen consumption, production, or both depending on background DOM. Enzyme activities were affected by both types of carbon addition with largest effects from the labile mixture. Cluster analysis of RAPD data showed strong divergence of communities exposed to labile versus recalcitrant DOM. Additions of leaf leachate to mesocosms representing hyporheic flow-paths caused increases in oxygen consumption and some enzyme activities with weaker effects on production. Community structure yeas strongly affected; samples from the leachate-amended mesocosms clustered separately from the control samples. In mesocosms receiving water from streams ranging in DOC (0.5-4.5 mg L-1), there were significant differences in bacterial growth, oxygen consumption, and enzyme activities. RAPD analysis showed strongest clustering of samples by stream type with more subtle effects of position along the flowpaths. Responses in community metabolism were always accompanied by shifts in community composition, suggesting carbon supply affects both functional and structural attributes of hyporheic bacterial communities.

  7. Changes in Bacterial And Archaeal Community Structure And Functional Diversity Along a Geochemically Variable Soil Profile

    SciTech Connect

    Hansel, C.M.; Fendorf, S.; Jardine, P.M.; Francis, C.A.

    2009-05-18

    Spatial heterogeneity in physical, chemical, and biological properties of soils allows for the proliferation of diverse microbial communities. Factors influencing the structuring of microbial communities, including availability of nutrients and water, pH, and soil texture, can vary considerably with soil depth and within soil aggregates. Here we investigated changes in the microbial and functional communities within soil aggregates obtained along a soil profile spanning the surface, vadose zone, and saturated soil environments. The composition and diversity of microbial communities and specific functional groups involved in key pathways in the geochemical cycling of nitrogen, Fe, and sulfur were characterized using a coupled approach involving cultivation-independent analysis of both 16S rRNA (bacterial and archaeal) and functional genes (amoA and dsrAB) as well as cultivation-based analysis of Fe(III)-reducing organisms. Here we found that the microbial communities and putative ammonia-oxidizing and Fe(III)-reducing communities varied greatly along the soil profile, likely reflecting differences in carbon availability, water content, and pH. In particular, the Crenarchaeota 16S rRNA sequences are largely unique to each horizon, sharing a distribution and diversity similar to those of the putative (amoA-based) ammonia-oxidizing archaeal community. Anaerobic microenvironments within soil aggregates also appear to allow for both anaerobic- and aerobic-based metabolisms, further highlighting the complexity and spatial heterogeneity impacting microbial community structure and metabolic potential within soils.

  8. Comparing Metabolic Functionalities, Community Structures, and Dynamics of Herbicide-Degrading Communities Cultivated with Different Substrate Concentrations

    PubMed Central

    Gözdereliler, Erkin; Boon, Nico; Aamand, Jens; De Roy, Karen; Granitsiotis, Michael S.; Albrechtsen, Hans-Jørgen

    2013-01-01

    Two 4-chloro-2-methylphenoxyacetic acid (MCPA)-degrading enrichment cultures selected from an aquifer on low (0.1 mg liter−1) or high (25 mg liter−1) MCPA concentrations were compared in terms of metabolic activity, community composition, population growth, and single cell physiology. Different community compositions and major shifts in community structure following exposure to different MCPA concentrations were observed using both 16S rRNA gene denaturing gradient gel electrophoresis fingerprinting and pyrosequencing. The communities also differed in their MCPA-mineralizing activities. The enrichments selected on low concentrations mineralized MCPA with shorter lag phases than those selected on high concentrations. Flow cytometry measurements revealed that mineralization led to cell growth. The presence of low-nucleic acid-content bacteria (LNA bacteria) was correlated with mineralization activity in cultures selected on low herbicide concentrations. This suggests that LNA bacteria may play a role in degradation of low herbicide concentrations in aquifers impacted by agriculture. This study shows that subpopulations of herbicide-degrading bacteria that are adapted to different pesticide concentrations can coexist in the same environment and that using a low herbicide concentration enables enrichment of apparently oligotrophic subpopulations. PMID:23124226

  9. Vegetation composition and soil microbial community structural changes along a wetland hydrological gradient

    NASA Astrophysics Data System (ADS)

    Balasooriya, W. K.; Denef, K.; Peters, J.; Verhoest, N. E. C.; Boeckx, P.

    2007-10-01

    Fluctuations in wetland hydrology create an interplay between aerobic and anaerobic conditions, controlling vegetation composition and microbial community structure and activity in wetland soils. In this study, we investigated the vegetation composition and microbial community structural and functional changes along a wetland hydrological gradient. Two different vegetation communities were distinguished along the hydrological gradient; textit{Caricetum gracilis} at the wet depression and textit{Arrhenatherum elatioris} at the drier upper site. Microbial community structural changes were studied by a combined in situ 13CO2 pulse labeling and phospholipid fatty acid (PLFA) based stable isotope probing approach, which identifies the microbial groups actively involved in assimilation of newly photosynthesized, root-derived C in the rhizosphere soils. Gram negative bacterial communities were relatively more abundant in the surface soils of the drier upper site than in the surface soils of the wetter lower site, while the lower site and the deeper soil layers were relatively more inhabited by gram positive bacterial communities. Despite their large abundance, the metabolically active proportion of gram positive bacterial and actinomycetes communities was much smaller at both sites, compared to that of the gram negative bacterial and fungal communities. This suggests much slower assimilation of root-derived C by gram positive and actinomycetes communities than by gram negative bacteria and fungi at both sites. Ground water depth showed a significant effect on the relative abundance of several microbial communities. Relative abundance of gram negative bacteria was significantly decreased with increasing ground water depth while the relative abundance of gram positive bacteria and actinomycetes at the surface layer increased with increasing ground water depth.

  10. Vegetation composition and soil microbial community structural changes along a wetland hydrological gradient

    NASA Astrophysics Data System (ADS)

    Balasooriya, W. K.; Denef, K.; Peters, J.; Verhoest, N. E. C.; Boeckx, P.

    2008-02-01

    Fluctuations in wetland hydrology create an interplay between aerobic and anaerobic conditions, controlling vegetation composition and microbial community structure and activity in wetland soils. In this study, we investigated the vegetation composition and microbial community structural and functional changes along a wetland hydrological gradient. Two different vegetation communities were distinguished along the hydrological gradient; Caricetum gracilis at the wet depression and Arrhenatheretum elatioris at the drier upper site. Microbial community structural changes were studied by a combined in situ 13CO2 pulse labeling and phospholipid fatty acid (PLFA) based stable isotope probing approach, which identifies the microbial groups actively involved in assimilation of newly photosynthesized, root-derived C in the rhizosphere soils. Gram negative bacterial communities were relatively more abundant in the surface soils of the drier upper site than in the surface soils of the wetter lower site, while the lower site and the deeper soil layers were relatively more inhabited by gram positive bacterial communities. Despite their large abundance, the metabolically active proportion of gram positive bacterial and actinomycetes communities was much smaller at both sites, compared to that of the gram negative bacterial and fungal communities. This suggests much slower assimilation of root-derived C by gram positive and actinomycetes communities than by gram negative bacteria and fungi at both sites. Ground water depth showed a significant effect on the relative abundance of several microbial communities. Relative abundance of gram negative bacteria significantly decreased with increasing ground water depth while the relative abundance of gram positive bacteria and actinomycetes at the surface layer increased with increasing ground water depth.

  11. Traveling salesman problems with PageRank Distance on complex networks reveal community structure

    NASA Astrophysics Data System (ADS)

    Jiang, Zhongzhou; Liu, Jing; Wang, Shuai

    2016-12-01

    In this paper, we propose a new algorithm for community detection problems (CDPs) based on traveling salesman problems (TSPs), labeled as TSP-CDA. Since TSPs need to find a tour with minimum cost, cities close to each other are usually clustered in the tour. This inspired us to model CDPs as TSPs by taking each vertex as a city. Then, in the final tour, the vertices in the same community tend to cluster together, and the community structure can be obtained by cutting the tour into a couple of paths. There are two challenges. The first is to define a suitable distance between each pair of vertices which can reflect the probability that they belong to the same community. The second is to design a suitable strategy to cut the final tour into paths which can form communities. In TSP-CDA, we deal with these two challenges by defining a PageRank Distance and an automatic threshold-based cutting strategy. The PageRank Distance is designed with the intrinsic properties of CDPs in mind, and can be calculated efficiently. In the experiments, benchmark networks with 1000-10,000 nodes and varying structures are used to test the performance of TSP-CDA. A comparison is also made between TSP-CDA and two well-established community detection algorithms. The results show that TSP-CDA can find accurate community structure efficiently and outperforms the two existing algorithms.

  12. Spatial variability, structure and composition of crustose algal communities in Diadema africanum barrens

    NASA Astrophysics Data System (ADS)

    Sangil, Carlos; Sansón, Marta; Díaz-Villa, Tania; Hernández, José Carlos; Clemente, Sabrina; Afonso-Carrillo, Julio

    2014-12-01

    Crustose algal communities were studied in Diadema africanum urchin barrens around Tenerife (Canary Islands, NE Atlantic). A hierarchical nested sampling design was used to study patterns of community variability at different spatial scales (sectors, three sides of the island; sites within each sector, 5-10 km apart; stations within each site, 50-100 m apart). Although noncrustose species contributed the most to community richness, cover was dominated by crustose forms, like the coralline algae Hydrolithon farinosum, H. samoënse, H. onkodes, Neogoniolithon orotavicum and N. hirtum, and the phaeophycean Pseudolithoderma adriaticum. The structure of these communities showed high spatial variability, and we found differences in the structure of urchin barrens when compared across different spatial scales. Multivariate analysis showed that variability in community structure was related to the five environmental variables studied (wave exposure, urchin density, substrate roughness, productivity and depth). Wave exposure was the variable that contributed most to community variability, followed by urchin density and substrate roughness. Productivity and depth had limited influence. The effects of these variables differed depending on the spatial scale; wave exposure and productivity were the main variables influencing community changes at the largest scale (between different sectors of the island), while D. africanum density, roughness and depth were the most influential at medium and small scales.

  13. Disturbed subsurface microbial communities follow equivalent trajectories despite different structural starting points

    SciTech Connect

    Handley, Kim M.; Wrighton, Kelly C.; Miller, Christopher S.; Wilkins, Michael J.; Kantor, Rose S.; Thomas, Brian C.; Williams, Kenneth H.; Gilbert, Jack A.; Long, Philip E.; Banfield, Jillian F.

    2015-03-01

    We explored the impact of the starting community composition and structure on ecosystem response to perturbations using organic carbon amendment experiments. Subsurface sediment was partitioned into flow-through columns, and the microbial communities were initially stimulated in situ by addition of acetate as a carbon and electron donor source. This drove community richness and evenness down, and pushed the system into a new biogeochemical state characterized by iron reduction. Reconstructed near-full-length 16S rRNA gene sequence analysis indicated a concomitant enrichment of Desulfuromonadales, Comamonadaceae and Bacteroidetes lineages. After 10 to 12 days, acetate was exchange for lactate in a subset of columns. Following the clear onset of sulfate reduction (35 days after acetate-amendment), acetate was substituted for lactate in additional columns. Acetatestimulated communities differed markedly during each biogeochemical regime and at each lactate-switch. Regardless, however, of when communities were switched to lactate, they followed comparable trajectories with respect to composition and structure, with convergence evident one week after each switch, and marked after one month of lactate amendment. During sulfate reduction all treatments were enriched in Firmicutes and a number of species likely involved in sulfate reduction (notably Desulfobulbus, Desulfosporosinus, Desulfitobacterium and Desulfotomaculum). Lactate treatments were distinguished by substantially lower relative abundances of Desulfotomaculum and Bacteroidetes, and enrichments of Psychrosinus and Clostridiales species. Results imply that the structure of the starting community was not significant in controlling organism selection in community succession.

  14. Development of a quality index to evaluate the structure of macroalgal communities

    NASA Astrophysics Data System (ADS)

    Ar Gall, E.; Le Duff, M.

    2014-02-01

    A quality index Ics (= index of community structure) has been developed as a single numeric descriptor to assess the structural state of macroalgal communities and to evaluate their relative development on rocky shores. Coverage of seaweed species were sampled on the field and treated by taxonomic groups, size classes and structural - functional groups (SFG), giving sub-indices It (= taxonomic index), Is (= stratification index) and Io (= organization index), respectively. Six macroalgal communities corresponding to canopies (belts) distributed vertically on the shore have been investigated for several years in 14 sites of Brittany (France). Communities developing at high topographic levels could be distinguished from those occurring at mid-tide to low levels by Ics values. Communities were globally stable over the sampling period, with few geographical discrepancies. Seasonal or sub-community variations could be tracked by sub-index values. The value of Ics to demonstrate the potential evolution of seaweed communities is discussed by comparison to other quality indices and in the perspective of ecological perturbations.

  15. Complex networks, community structure, and catchment classification in a large-scale river basin

    NASA Astrophysics Data System (ADS)

    Fang, Koren; Sivakumar, Bellie; Woldemeskel, Fitsum M.

    2017-02-01

    This study introduces the concepts of complex networks, especially community structure, to classify catchments in large-scale river basins. The Mississippi River basin (MRB) is considered as a representative large-scale basin, and daily streamflow from a network of 1663 stations are analyzed. Six community structure methods are employed: edge betweenness, greedy algorithm, multilevel modularity optimization, leading eigenvector, label propagation, and walktrap. The influence of correlation threshold (i.e. spatial correlation in flow between stations) on classification (i.e. community formation) is examined. The consistency among the methods in classifying catchments is assessed, using a normalized mutual information (NMI) index. An attempt is also made to explain the community formation in terms of river network/branching and some important catchment/flow properties. The results indicate that the correlation threshold has a notable influence on the number and size of communities identified and that there is a high level of consistency in the performance among the methods (except for the leading eigenvector method at lower thresholds). The results also reveal that only a few communities combine to represent a majority of the catchments, with the 10 largest communities (roughly 4% of the total number of communities) representing almost two-thirds of the catchments. Community formation is found to be influenced not only by geographic proximity but also, more importantly, by the organization of the river network (i.e. main stem and subsequent branching). Some communities are found to exhibit a greater variability in catchment/flow properties within themselves when compared to that of the whole network, thus indicating that such characteristics are unlikely to be a significant influence on community grouping.

  16. In-feed administered sub-therapeutic chlortetracycline alters community composition and structure but not the abundance of community resistance determinants in the fecal flora of the rat.

    PubMed

    Brooks, S P J; Kheradpir, E; McAllister, M; Kwan, J; Burgher-McLellan, K; Kalmokoff, M

    2009-08-01

    The impact of continuous sub-therapeutic chlortetracycline on community structure, composition and abundance of tetracycline resistance genes in the rat fecal community was investigated. Rats were fed a standard diet containing chlortetracycline at 15 microg g(-1) diet for 28 days, followed by 30 microg g(-1) diet to completion of the study on day-56. These levels are similar to those administered to swine during the grow-out phase. Sub-therapeutic chlortetracycline affected the fecal community as determined through change in the cultivable anaerobic community and through molecular-based analyses including denaturing gradient gel electrophoresis profiles of the variable 2-3 region community 16S rRNA genes over time and through comparative sequence analysis of 16S rRNA gene community libraries. Significant decreases in fecal phylotype diversity occurred in response to sub-therapeutic chlortetracycline, although total bacterial output remained constant over the entire feeding trial. Chlortetracycline at 15 microg g(-1) diet resulted in significant change in community composition, but only modest change to the fecal community structure in terms of the distribution of individual phylotypes among the major fecal lineages. Chlortetracycline at 30 microg g(-1) diet significantly altered the distribution of phylotypes among the major fecal lineages shifting the overall community such that Gram-negative phylotypes aligning within the phylum Bacteroidetes became the dominant lineage (>60% of total community). While chlortetracycline impacted both fecal community structure and composition, there was no significant effect on the abundance of community tetracycline resistance genes [tet(Q), tet(W), tet(O)] or on the emergence of a new putative tetracycline resistance gene identified within the fecal community. While sub-therapeutic chlortetracycline provides sufficient selective pressure to significantly alter the fecal community, the primary outcome appears to be the

  17. Relationship between phenol degradation efficiency and microbial community structure in an anaerobic SBR.

    PubMed

    Rosenkranz, F; Cabrol, L; Carballa, M; Donoso-Bravo, A; Cruz, L; Ruiz-Filippi, G; Chamy, R; Lema, J M

    2013-11-01

    Phenol is a common wastewater contaminant from various industrial processes, including petrochemical refineries and chemical compounds production. Due to its toxicity to microbial activity, it can affect the efficiency of biological wastewater treatment processes. In this study, the efficiency of an Anaerobic Sequencing Batch Reactor (ASBR) fed with increasing phenol concentrations (from 120 to 1200 mg L(-1)) was assessed and the relationship between phenol degradation capacity and the microbial community structure was evaluated. Up to a feeding concentration of 800 mg L(-1), the initial degradation rate steadily increased with phenol concentration (up to 180 mg L(-1) d(-1)) and the elimination capacity remained relatively constant around 27 mg phenol removed∙gVSS(-1) d(-1). Operation at higher concentrations (1200 mg L(-1)) resulted in a still efficient but slower process: the elimination capacity and the initial degradation rate decreased to, respectively, 11 mg phenol removed∙gVSS(-1) d(-1) and 154 mg L(-1) d(-1). As revealed by Denaturing Gradient Gel Electrophoresis (DGGE) analysis, the increase of phenol concentration induced level-dependent structural modifications of the community composition which suggest an adaptation process. The increase of phenol concentration from 120 to 800 mg L(-1) had little effect on the community structure, while it involved drastic structural changes when increasing from 800 to 1200 mg L(-1), including a strong community structure shift, suggesting the specialization of the community through the emergence and selection of most adapted phylotypes. The thresholds of structural and functional disturbances were similar, suggesting the correlation of degradation performance and community structure. The Canonical Correspondence Analysis (CCA) confirmed that the ASBR functional performance was essentially driven by specific community traits. Under the highest feeding concentration, the most abundant ribotype probably involved in

  18. Evolution of cooperation in multilevel public goods games with community structures

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Wu, Bin; Ho, Daniel W. C.; Wang, Long

    2011-03-01

    In a community-structured population, public goods games (PGG) occur both within and between communities. Such type of PGG is referred as multilevel public goods games (MPGG). We propose a minimalist evolutionary model of the MPGG and analytically study the evolution of cooperation. We demonstrate that in the case of sufficiently large community size and community number, if the imitation strength within community is weak, i.e., an individual imitates another one in the same community almost randomly, cooperation as well as punishment are more abundant than defection in the long run; if the imitation strength between communities is strong, i.e., the more successful strategy in two individuals from distinct communities is always imitated, cooperation and punishment are also more abundant. However, when both of the two imitation intensities are strong, defection becomes the most abundant strategy in the population. Our model provides insight into the investigation of the large-scale cooperation in public social dilemma among contemporary communities.

  19. Predator community structure and trophic linkage strength to a focal prey.

    PubMed

    Lundgren, Jonathan G; Fergen, Janet K

    2014-08-01

    Predator abundance and community structure can affect the suppression of lower trophic levels, although studies of these interactions under field conditions are relatively few. We investigated how the frequency of consumption (measured using PCR-based gut content analysis) is affected by predator abundance, community diversity and evenness under realistic conditions. Soil arthropod communities in sixteen maize fields were measured (number of predators, diversity [Shannon H] and evenness [J]), and predator guts were searched for DNA of the focal subterranean herbivore, the corn rootworm (Diabrotica virgifera). Predator abundance and diversity were positively correlated with trophic linkage strength (the proportion positive for rootworm DNA), although the latter characteristic was not significantly so. The diversity and evenness of the predator community with chewing mouthparts were strongly correlated with their linkage strength to rootworms, whereas the linkage strength of fluid-feeding predators was unaffected by their community characteristics. Within this community, chewing predators are more affected by the rootworm's hemolymph defence. This research clearly shows that predator abundance and diversity influence the strength of a community's trophic linkage to a focal pest and that these community characteristics may be particularly important for less palatable or protected prey species. We also make the case for conserving diverse and abundant predator communities within agroecosystems as a form of pest management.

  20. Genetic and Ontogenetic Variation in an Endangered Tree Structures Dependent Arthropod and Fungal Communities

    PubMed Central

    Gosney, Benjamin J.; O′Reilly-Wapstra, Julianne M.; Forster, Lynne G.; Barbour, Robert C.; Iason, Glenn R.; Potts, Brad M.

    2014-01-01

    Plant genetic and ontogenetic variation can significantly impact dependent fungal and arthropod communities. However, little is known of the relative importance of these extended genetic and ontogenetic effects within a species. Using a common garden trial, we compared the dependent arthropod and fungal community on 222 progeny from two highly differentiated populations of the endangered heteroblastic tree species, Eucalyptus morrisbyi. We assessed arthropod and fungal communities on both juvenile and adult foliage. The community variation was related to previous levels of marsupial browsing, as well as the variation in the physicochemical properties of leaves using near-infrared spectroscopy. We found highly significant differences in community composition, abundance and diversity parameters between eucalypt source populations in the common garden, and these were comparable to differences between the distinctive juvenile and adult foliage. The physicochemical properties assessed accounted for a significant percentage of the community variation but did not explain fully the community differences between populations and foliage types. Similarly, while differences in population susceptibility to a major marsupial herbivore may result in diffuse genetic effects on the dependent community, this still did not account for the large genetic-based differences in dependent communities between populations. Our results emphasize the importance of maintaining the populations of this rare species as separate management units, as not only are the populations highly genetically structured, this variation may alter the trajectory of biotic colonization of conservation plantings. PMID:25469641

  1. Genetic and ontogenetic variation in an endangered tree structures dependent arthropod and fungal communities.

    PubMed

    Gosney, Benjamin J; O Reilly-Wapstra, Julianne M; Forster, Lynne G; Barbour, Robert C; Iason, Glenn R; Potts, Brad M

    2014-01-01

    Plant genetic and ontogenetic variation can significantly impact dependent fungal and arthropod communities. However, little is known of the relative importance of these extended genetic and ontogenetic effects within a species. Using a common garden trial, we compared the dependent arthropod and fungal community on 222 progeny from two highly differentiated populations of the endangered heteroblastic tree species, Eucalyptus morrisbyi. We assessed arthropod and fungal communities on both juvenile and adult foliage. The community variation was related to previous levels of marsupial browsing, as well as the variation in the physicochemical properties of leaves using near-infrared spectroscopy. We found highly significant differences in community composition, abundance and diversity parameters between eucalypt source populations in the common garden, and these were comparable to differences between the distinctive juvenile and adult foliage. The physicochemical properties assessed accounted for a significant percentage of the community variation but did not explain fully the community differences between populations and foliage types. Similarly, while differences in population susceptibility to a major marsupial herbivore may result in diffuse genetic effects on the dependent community, this still did not account for the large genetic-based differences in dependent communities between populations. Our results emphasize the importance of maintaining the populations of this rare species as separate management units, as not only are the populations highly genetically structured, this variation may alter the trajectory of biotic colonization of conservation plantings.

  2. Investigation of microbial community structure of a shallow lake after one season copper sulfate algaecide treatment.

    PubMed

    Song, Li-Yan; Wang, Yang-Qing

    2015-01-01

    In present work we described, for the first time, the phylogenic structure of the microbial community in a shallow freshwater lake (Hawk Island Lake, located in the Lower Peninsula of the State of Michigan, U.S.A.) after one season (four times during May to August 2007) of CuSO₄ treatment for algae growth control. The microbial community structure was characterized by terminal restriction fragment length polymorphism (TRFLP), clone library and 454 pyrosequencing. The similar structure of water chemistry measured across three sampling sites suggested that the lake was well mixed. The concentration of chlorophyll a (chl-a) and turbidity was low, 3.35 ± 1.62 μg/L and 2.5 ± 1.9 NTU, respectively, implying that photosynthesis was suppressed. TRFLP profiles showed that the lake was dominated by 16 terminal fragments (TFs), accounting for 85.5-92.6% abundance. Analysis of similarity (ANOSIM) showed that the difference in microbial community structure between upper and lower depths of the water column was not significant (P=0.101). These results suggested that the microbial community structure within the lake was similar. Clone library and 454 pyrosequencing indicated that the lake was dominated by freshwater phyla, Proteobacteria, Bacteroides, and Actinobacteria. Moreover, the large number of unclassified bacteria (27.4% of total 2090,454 sequences) suggested a complex microbial community structure in the lake.

  3. Microbes as engines of ecosystem function: When does community structure enhance predictions of ecosystem processes?

    DOE PAGES

    Graham, Emily B.; Knelman, Joseph E.; Schindlbacher, Andreas; ...

    2016-02-24

    In this study, microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: ‘When do we need to understand microbial community structure to accurately predict function?’ We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of processmore » rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.« less

  4. Microbes as engines of ecosystem function: When does community structure enhance predictions of ecosystem processes?

    SciTech Connect

    Graham, Emily B.; Knelman, Joseph E.; Schindlbacher, Andreas; Siciliano, Steven; Breulmann, Marc; Yannarell, Anthony; Beman, J. M.; Abell, Guy; Philippot, Laurent; Prosser, James; Foulquier, Arnaud; Yuste, Jorge C.; Glanville, Helen C.; Jones, Davey L.; Angel, Roey; Salminen, Janne; Newton, Ryan J.; Burgmann, Helmut; Ingram, Lachlan J.; Hamer, Ute; Siljanen, Henri M. P.; Peltoniemi, Krista; Potthast, Karin; Baneras, Lluis; Hartmann, Martin; Banerjee, Samiran; Yu, Ri -Qing; Nogaro, Geraldine; Richter, Andreas; Koranda, Marianne; Castle, Sarah C.; Goberna, Marta; Song, Bongkeun; Chatterjee, Amitava; Nunes, Olga C.; Lopes, Ana R.; Cao, Yiping; Kaisermann, Aurore; Hallin, Sara; Strickland, Michael S.; Garcia-Pausas, Jordi; Barba, Josep; Kang, Hojeong; Isobe, Kazuo; Papaspyrou, Sokratis; Pastorelli, Roberta; Lagomarsino, Alessandra; Lindstrom, Eva S.; Basiliko, Nathan; Nemergut, Diana R.

    2016-02-24

    In this study, microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: ‘When do we need to understand microbial community structure to accurately predict function?’ We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.

  5. Microbes as Engines of Ecosystem Function: When Does Community Structure Enhance Predictions of Ecosystem Processes?

    PubMed Central

    Graham, Emily B.; Knelman, Joseph E.; Schindlbacher, Andreas; Siciliano, Steven; Breulmann, Marc; Yannarell, Anthony; Beman, J. M.; Abell, Guy; Philippot, Laurent; Prosser, James; Foulquier, Arnaud; Yuste, Jorge C.; Glanville, Helen C.; Jones, Davey L.; Angel, Roey; Salminen, Janne; Newton, Ryan J.; Bürgmann, Helmut; Ingram, Lachlan J.; Hamer, Ute; Siljanen, Henri M. P.; Peltoniemi, Krista; Potthast, Karin; Bañeras, Lluís; Hartmann, Martin; Banerjee, Samiran; Yu, Ri-Qing; Nogaro, Geraldine; Richter, Andreas; Koranda, Marianne; Castle, Sarah C.; Goberna, Marta; Song, Bongkeun; Chatterjee, Amitava; Nunes, Olga C.; Lopes, Ana R.; Cao, Yiping; Kaisermann, Aurore; Hallin, Sara; Strickland, Michael S.; Garcia-Pausas, Jordi; Barba, Josep; Kang, Hojeong; Isobe, Kazuo; Papaspyrou, Sokratis; Pastorelli, Roberta; Lagomarsino, Alessandra; Lindström, Eva S.; Basiliko, Nathan; Nemergut, Diana R.

    2016-01-01

    Microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: ‘When do we need to understand microbial community structure to accurately predict function?’ We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology. PMID:26941732

  6. Mineralogy influences structure and diversity of bacterial communities associated with geological substrata in a pristine aquifer.

    PubMed

    Boyd, Eric S; Cummings, David E; Geesey, Gill G

    2007-07-01

    Our understanding of mineralogical influences on subsurface microbial community structure and diversity has been difficult to assess due to difficulties in isolating this variable from others in the subsurface environment. In this study, biofilm coupons were used to isolate specific geological substrata from the surrounding geological matrix during colonization by microorganisms suspended in the surrounding groundwater for an 8-week period. Upon retrieval, the structure and diversity of the microbial community associated with each type of substratum was evaluated using 16S rDNA-based terminal-restriction fragment length polymorphism (T-RFLP). Phylogenetic affiliations of the populations associated with each type of substratum were established based on sequence analysis of near full-length 16S rDNA obtained through construction of a clone library. Hematite, quartz, and saprolite each harbored a community dominated by members of the division Proteobacteria (>67% of community). However, the different substrata selected for different subdivisions of bacteria within the Proteobacteria. After accounting for the influence exerted by substratum type on recovery of DNA from the attached populations, both phylogenetic data and Jaccard and Bray-Curtis similarity indices derived from terminal-restriction fragment (T-RF) profiles suggested a strong mineralogical influence on the structure and composition of the solid phase-associated community. The results suggest that mineralogical heterogeneity influences microbial community structure and diversity in pristine aquifers.

  7. Metabolic and Demographic Feedbacks Shape the Emergent Spatial Structure and Function of Microbial Communities

    PubMed Central

    Estrela, Sylvie; Brown, Sam P.

    2013-01-01

    Microbes are predominantly found in surface-attached and spatially structured polymicrobial communities. Within these communities, microbial cells excrete a wide range of metabolites, setting the stage for interspecific metabolic interactions. The links, however, between metabolic and ecological interactions (functional relationships), and species spatial organization (structural relationships) are still poorly understood. Here, we use an individual-based modelling framework to simulate the growth of a two-species surface-attached community where food (resource) is traded for detoxification (service) and investigate how metabolic constraints of individual species shape the emergent structural and functional relationships of the community. We show that strong metabolic interdependence drives the emergence of mutualism, robust interspecific mixing, and increased community productivity. Specifically, we observed a striking and highly stable emergent lineage branching pattern, generating a persistent lineage mixing that was absent when the metabolic exchange was removed. These emergent community properties are driven by demographic feedbacks, such that aid from neighbouring cells directly enhances focal cell growth, which in turn feeds back to neighbour fecundity. In contrast, weak metabolic interdependence drives conflict (exploitation or competition), and in turn greater interspecific segregation. Together, these results support the idea that species structural and functional relationships represent the net balance of metabolic interdependencies. PMID:24385891

  8. Shifts in bacterial community structure during succession in a glacier foreland of the High Arctic.

    PubMed

    Kim, Mincheol; Jung, Ji Young; Laffly, Dominique; Kwon, Hye Young; Lee, Yoo Kyung

    2017-01-01

    Primary succession after glacier retreat has been widely studied in plant communities, but bacterial succession is still poorly understood. In particular, few studies of microbial succession have been performed in the Arctic. We investigated the shifts in bacterial community structure and soil physicochemical properties along a successional gradient in a 100-year glacier foreland of the High Arctic. Multivariate analyses revealed that time after glacier retreat played a key role in associated bacterial community structure during succession. However, environmental filtering (i.e. pH and soil temperature) also accounted for a different, but substantial, proportion of the bacterial community structure. Using the functional trait-based approach, we found that average rRNA operon (rrn) copy number of bacterial communities is high in earlier successional stages and decreased over time. This suggests that soil bacterial taxa with higher rrn copy number have a selective advantage in early successional stages due to their ability of rapidly responding to nutrient inputs in newly exposed soils after glacier retreat. Taken together, our results demonstrate that both deglaciation time and environmental filters play key roles in structuring bacterial communities and soil bacterial groups with different ecological strategies occur in different stages of succession in this glacier foreland.

  9. Disconnect of microbial structure and function: enzyme activities and bacterial communities in nascent stream corridors

    PubMed Central

    Frossard, Aline; Gerull, Linda; Mutz, Michael; Gessner, Mark O

    2012-01-01

    A fundamental issue in microbial and general ecology is the question to what extent environmental conditions dictate the structure of communities and the linkages with functional properties of ecosystems (that is, ecosystem function). We approached this question by taking advantage of environmental gradients established in soil and sediments of small stream corridors in a recently created, early successional catchment. Specifically, we determined spatial and temporal patterns of bacterial community structure and their linkages with potential microbial enzyme activities along the hydrological flow paths of the catchment. Soil and sediments were sampled in a total of 15 sites on four occasions spread throughout a year. Denaturing gradient gel electrophoresis (DGGE) was used to characterize bacterial communities, and substrate analogs linked to fluorescent molecules served to track 10 different enzymes as specific measures of ecosystem function. Potential enzyme activities varied little among sites, despite contrasting environmental conditions, especially in terms of water availability. Temporal changes, in contrast, were pronounced and remarkably variable among the enzymes tested. This suggests much greater importance of temporal dynamics than spatial heterogeneity in affecting specific ecosystem functions. Most strikingly, bacterial community structure revealed neither temporal nor spatial patterns. The resulting disconnect between bacterial community structure and potential enzyme activities indicates high functional redundancy within microbial communities even in the physically and biologically simplified stream corridors of early successional landscapes. PMID:22030674

  10. Diatom community structure on commercially available ship hull coatings.

    PubMed

    Zargiel, Kelli A; Coogan, Jeffrey S; Swain, Geoffrey W

    2011-10-01

    Diatoms are primary colonizers of both antifouling and fouling-release ship hull coatings. There are few published studies which report on diatom community development on modern ship hull coatings. This study reports diatom communities on eight commercial marine ship hull coatings exposed at three static immersion sites along the east coast of Florida, viz. Daytona, Sebastian, and Miami. The coatings tested were three ablative copper systems (Ameron ABC-3, International BRA-640, and Hempel Olympic 76600), two copper-free biocidal systems (E-Paint SN-1, Sherwin Williams HMF), and three fouling-release (FR) systems (International Intersleek 700, International Intersleek 900, and Hempel Hempasil). One hundred and twenty-seven species comprising 44 genera were identified, including some of the more commonly known foulers, viz. Achnanthes, Amphora, Cocconeis, Entomoneis, Licmophora, Melosira, Navicula, Nitzschia, Synedra, and Toxarium. A significant difference was seen among sites, with the more estuarine site, Sebastian, having lower overall diatom abundance and higher diversity than Daytona and Miami. Copper coatings were primarily fouled by Amphora delicatissima and Entomoneis pseudoduplex. Copper-free coatings were fouled by Cyclophora tenuis, A. delicatissima, Achnanthes manifera, and Amphora bigibba. FR surfaces were typified by C. tenuis, and several species of Amphora. The presence of C. tenuis is new to the biofouling literature, but as new coatings are developed, this diatom may be one of many that prove to be problematic for static immersion. Results show coatings can be significantly influenced by geographical area, highlighting the need to test ship hull coatings in locations similar to where they will be utilized.

  11. Linking geology and microbiology: inactive pockmarks affect sediment microbial community structure.

    PubMed

    Haverkamp, Thomas H A; Hammer, Øyvind; Jakobsen, Kjetill S

    2014-01-01

    Pockmarks are geological features that are found on the bottom of lakes and oceans all over the globe. Some are active, seeping oil or methane, while others are inactive. Active pockmarks are well studied since they harbor specialized microbial communities that proliferate on the seeping compounds. Such communities are not found in inactive pockmarks. Interestingly, inactive pockmarks are known to have different macrofaunal communities compared to the surrounding sediments. It is undetermined what the microbial composition of inactive pockmarks is and if it shows a similar pattern as the macrofauna. The Norwegian Oslofjord contains many inactive pockmarks and they are well suited to study the influence of these geological features on the microbial community in the sediment. Here we present a detailed analysis of the microbial communities found in three inactive pockmarks and two control samples at two core depth intervals. The communities were analyzed using high-throughput amplicon sequencing of the 16S rRNA V3 region. Microbial communities of surface pockmark sediments were indistinguishable from communities found in the surrounding seabed. In contrast, pockmark communities at 40 cm sediment depth had a significantly different community structure from normal sediments at the same depth. Statistical analysis of chemical variables indicated significant differences in the concentrations of total carbon and non-particulate organic carbon between 40 cm pockmarks and reference sample sediments. We discuss these results in comparison with the taxonomic classification of the OTUs identified in our samples. Our results indicate that microbial communities at the sediment surface are affected by the water column, while the deeper (40 cm) sediment communities are affected by local conditions within the sediment.

  12. The Influence of Ecological Isolation on the Structural and Functional Stability of Complex Microbial Communities

    NASA Technical Reports Server (NTRS)

    Franklin, R. B.; Garland, J. L.; Mills, A. L.

    2005-01-01

    To help understand how the behavior of microorganisms and microbial communities in insular space habitats may differ from the behavior of these groups on Earth, long-term incubations (100+ days) were conducting using wastewater bioreactors (batch fed) designed to mimic "closed" and "open" ecological systems. The issue of immigration was considered, and the goal of the research was to determine whether the stability of microbial communities in space is reduced due to their prolonged isolation. Bioreactors were established by inoculating flasks of sterile synthetic wastewater with the microbial community obtained from a local treatment facility; each day, one-third of the medium in the flask was replaced with an equal volume of sterile artificial wastewater. Flasks were divided into two treatments: "closed" and "open" to recruitment of additional microorganisms. "Closed" flasks were maintained as described above, while the medium used to feed the "open" flasks was supplemented daily with a small amount of raw sewage (which provided a continuous source of new potential community members). Significant differences in microbial community structure and function developed in the two sets of communities, and the results suggest that the open community was more stable and better able to adjust to changing environmental conditions. Each community's resistance to environmental (temperature fluctuations) and biological stresses (starvation and invasion by an opportunistic pathogen Pseudomonas aeruginosa) was monitored. Experiments were also conducted to determine whether the effect of isolation changes depending on the microbial communities' initial diversity or composition; communities with a low(er) initial diversity were less stable. Overall, the results indicate that isolation will be an important factor influencing the activity of microbial communities on board spacecraft. A possible way of mitigating these effects would be to include communities with high initial

  13. Dynamic community detection based on network structural perturbation and topological similarity

    NASA Astrophysics Data System (ADS)

    Wang, Peizhuo; Gao, Lin; Ma, Xiaoke

    2017-01-01

    Community detection in dynamic networks has been extensively studied since it sheds light on the structure-function relation of the overall complex systems. Recently, it has been demonstrated that the structural perturbation in static networks is excellent in characterizing the topology. In order to investigate the perturbation structural theory in dynamic networks, we extend the theory by considering the dynamic variation information between networks of consecutive time. Then a novel similarity is proposed by combing structural perturbation and topological features. Finally, we present an evolutionary clustering algorithm to detect dynamic communities under the temporal smoothness framework. Experimental results on both artificial and real dynamic networks demonstrate that the proposed similarity is promising in dynamic community detection since it improves the clustering accuracy compared with state-of-the-art methods, indicating the superiority of the presented similarity measure.

  14. High diversity and distinctive community structure of bacteria on glaciers in China revealed by 454 pyrosequencing.

    PubMed

    Liu, Qing; Zhou, Yu-Guang; Xin, Yu-Hua

    2015-12-01

    The bacterial diversity, community structure and preliminary microbial biogeographic pattern were assessed on glacier surfaces, including three northern glaciers (cold glaciers) and three southern glaciers (temperate glaciers) in China that experienced distinct climatic conditions. Pyrosequencing revealed that bacterial diversities were surprisingly high. With respect to operational taxonomic units (OTUs), Proteobacteria was the most dominant phylum on the glacier surfaces, especially Betaproteobacteria. Significant differences of the bacterial communities were observed between northern and southern glacier surfaces. The rare and abundant populations showed similar clustering patterns to the whole community. The analysis of the culturable bacterial compositions from four glaciers supported this conclusion. Redundancy analysis (RDA) and partial Mantel tests indicated that annual mean temperature, as well as geographical distance, was significantly correlated with the bacterial communities on the glaciers. It was inferred that bacterial communities on northern and southern glacier surfaces experienced different climate, water and nutrient patterns, and consequently evolved different lifestyles.

  15. The impact of herbivore–plant coevolution on plant community structure

    PubMed Central

    Becerra, Judith X.

    2007-01-01

    Coevolutionary theory proposes that the diversity of chemical structures found in plants is, in large part, the result of selection by herbivores. Because herbivores often feed on chemically similar plants, they should impose selective pressures on plants to diverge chemically or bias community assembly toward chemical divergence. Using a coevolved interaction between a group of chrysomelid beetles and their host plants, I tested whether coexisting plants of the Mexican tropical dry forest tend to be chemically more dissimilar than random. Results show that some of the communities are chemically overdispersed and that overdispersion is related to the tightness of the interaction between plants and herbivores and the spatial scale at which communities are measured. As coevolutionary specialization increases and spatial scale decreases, communities tend to be more chemically dissimilar. At fairly local scales and where herbivores have tight, one-to-one interactions with plants, communities have a strong pattern of chemical disparity. PMID:17456606

  16. The community seismic network and quake-catcher network: enabling structural health monitoring through instrumentation by community participants

    NASA Astrophysics Data System (ADS)

    Kohler, Monica D.; Heaton, Thomas H.; Cheng, Ming-Hei

    2013-04-01

    A new type of seismic network is in development that takes advantage of community volunteers to install low-cost accelerometers in houses and buildings. The Community Seismic Network and Quake-Catcher Network are examples of this, in which observational-based structural monitoring is carried out using records from one to tens of stations in a single building. We have deployed about one hundred accelerometers in a number of buildings ranging between five and 23 stories in the Los Angeles region. In addition to a USB-connected device which connects to the host's computer, we have developed a stand-alone sensor-plug-computer device that directly connects to the internet via Ethernet or wifi. In the case of the Community Seismic Network, the sensors report both continuous data and anomalies in local acceleration to a cloud computing service consisting of data centers geographically distributed across the continent. Visualization models of the instrumented buildings' dynamic linear response have been constructed using Google SketchUp and an associated plug-in to matlab with recorded shaking data. When data are available from only one to a very limited number of accelerometers in high rises, the buildings are represented as simple shear beam or prismatic Timoshenko beam models with soil-structure interaction. Small-magnitude earthquake records are used to identify the first set of horizontal vibrational frequencies. These frequencies are then used to compute the response on every floor of the building, constrained by the observed data. These tools are resulting in networking standards that will enable data sharing among entire communities, facility managers, and emergency response groups.

  17. Relative Diversity and Community Structure of Ciliates in Stream Biofilms According to Molecular and Microscopy Methods▿ †

    PubMed Central

    Dopheide, Andrew; Lear, Gavin; Stott, Rebecca; Lewis, Gillian

    2009-01-01

    Ciliates are an important component of aquatic ecosystems, acting as predators of bacteria and protozoa and providing nutrition for organisms at higher trophic levels. Understanding of the diversity and ecological role of ciliates in stream biofilms is limited, however. Ciliate diversity in biofilm samples from four streams subject to different impacts by human activity was assessed using microscopy and terminal restriction fragment length polymorphism (T-RFLP) analysis of 18S rRNA sequences. Analysis of 3′ and 5′ terminal fragments yielded very similar estimates of ciliate diversity. The diversity detected using microscopy was consistently lower than that suggested by T-RFLP analysis, indicating the existence of genetic diversity not apparent by morphological examination. Microscopy and T-RFLP analyses revealed similar relative trends in diversity between different streams, with the lowest level of biofilm-associated ciliate diversity found in samples from the least-impacted stream and the highest diversity in samples from moderately to highly impacted streams. Multivariate analysis provided evidence of significantly different ciliate communities in biofilm samples from different streams and seasons, particularly between a highly degraded urban stream and less impacted streams. Microscopy and T-RFLP data both suggested the existence of widely distributed, resilient biofilm-associated ciliates as well as ciliate taxa restricted to sites with particular environmental conditions, with cosmopolitan taxa being more abundant than those with restricted distributions. Differences between ciliate assemblages were associated with water quality characteristics typical of urban stream degradation and may be related to factors such as nutrient availability and macroinvertebrate communities. Microscopic and molecular techniques were considered to be useful complementary approaches for investigation of biofilm ciliate communities. PMID:19561192

  18. Cross-kingdom interactions matter: fungal-mediated interactions structure an insect community on oak.

    PubMed

    Tack, Ayco J M; Gripenberg, Sofia; Roslin, Tomas

    2012-03-01

    Although phytophagous insects and plant pathogens frequently share the same host plant, interactions among such phylogenetically distant taxa have received limited attention. Here, we place pathogens and insects in the context of a multitrophic-level community. Focusing on the invasive powdery mildew Erysiphe alphitoides and the insect community on oak (Quercus robur), we demonstrate that mildew-insect interactions may be mediated by both the host plant and by natural enemies, and that the trait-specific outcome of individual interactions can range from negative to positive. Moreover, mildew affects resource selection by insects, thereby modifying the distribution of a specialist herbivore at two spatial scales (within and among trees). Finally, a long-term survey suggests that species-specific responses to mildew scale up to generate landscape-level variation in the insect community structure. Overall, our results show that frequently overlooked cross-kingdom interactions may play a major role in structuring terrestrial plant-based communities.

  19. A Novel Top-k Strategy for Influence Maximization in Complex Networks with Community Structure.

    PubMed

    He, Jia-Lin; Fu, Yan; Chen, Duan-Bing

    2015-01-01

    In complex networks, it is of great theoretical and practical significance to identify a set of critical spreaders which help to control the spreading process. Some classic methods are proposed to identify multiple spreaders. However, they sometimes have limitations for the networks with community structure because many chosen spreaders may be clustered in a community. In this paper, we suggest a novel method to identify multiple spreaders from communities in a balanced way. The network is first divided into a great many super nodes and then k spreaders are selected from these super nodes. Experimental results on real and synthetic networks with community structure show that our method outperforms the classic methods for degree centrality, k-core and ClusterRank in most cases.

  20. Biodegradation of antibiotic ciprofloxacin: pathways, influential factors, and bacterial community structure.

    PubMed

    Liao, Xiaobin; Li, Bingxin; Zou, Rusen; Dai, Yu; Xie, Shuguang; Yuan, Baoling

    2016-04-01

    Antibiotic ciprofloxacin is ubiquitous in the environment. However, little is known about ciprofloxacin dissipation by microbial community. The present study investigated the biodegradation potential of ciprofloxacin by mixed culture and the influential factors and depicted the structure of ciprofloxacin-degrading microbial community. Both the original microbiota from drinking water biofilter and the microbiota previously acclimated to high levels of ciprofloxacin could utilize ciprofloxacin as sole carbon and nitrogen sources, while the acclimated microbiota had a much stronger removal capacity. Temperature rise and the presence of carbon or nitrogen sources favored ciprofloxacin biodegradation. Many novel biotransformation products were identified, and four different metabolic pathways for ciprofloxacin were proposed. Bacterial community structure illustrated a profound shift with ciprofloxacin biodegradation. The ciprofloxacin-degrading bacterial community was mainly composed of classes Gammaproteobacteria, Bacteroidia, and Betaproteobacteria. Microorganisms from genera Pseudoxanthomonas, Stenotrophomonas, Phenylobacterium, and Leucobacter might have links with the dissipation of ciprofloxacin. This work can provide some new insights towards ciprofloxacin biodegradation.

  1. Ecosystem-Wide Morphological Structure of Leaf-Litter Ant Communities along a Tropical Latitudinal Gradient

    PubMed Central

    Silva, Rogério R.; Brandão, Carlos Roberto F.

    2014-01-01

    General principles that shape community structure can be described based on a functional trait approach grounded on predictive models; increased attention has been paid to factors accounting for the functional diversity of species assemblages and its association with species richness along environmental gradients. We analyze here the interaction between leaf-litter ant species richness, the local communities' morphological structure and fundamental niche within the context of a northeast-southeast latitudinal gradient in one of the world's most species-rich ecosystems, the Atlantic Forest, representing 2,700 km of tropical rainforest along almost 20o of latitude in eastern Brazil. Our results are consistent with an ecosystem-wide pattern in communities' structure, with relatively high species turnover but functionally analogous leaf-litter ant communities' organization. Our results suggest directional shifts in the morphological space along the environmental gradient from overdispersed to aggregated (from North to South), suggesting that primary productivity and environmental heterogeneity (altitude, temperature and precipitation in the case) determine the distribution of traits and regulate the assembly rules, shaping local leaf-litter ant communities. Contrary to the expected and most common pattern along latitudinal gradients, the Atlantic Forest leaf litter ant communities show an inverse pattern in richness, that is, richer communities in higher than in lower latitudes. The morphological specialization of communities showed more morphologically distinct communities at low latitudes and species redundancy at high latitudes. We claim that an inverse latitudinal gradient in primary productivity and environmental heterogeneity across the Atlantic forest may affect morphological diversity and species richness, enhancing species coexistence mechanisms, and producing thus the observed patterns. We suggest that a functional framework based on flexible enough traits

  2. Assessing the structure and temporal dynamics of seabird communities: the challenge of capturing marine ecosystem complexity.

    PubMed

    Moreno, Rocío; Stowasser, Gabriele; McGill, Rona A R; Bearhop, Stuart; Phillips, Richard A

    2016-01-01

    Understanding interspecific interactions, and the influences of anthropogenic disturbance and environmental change on communities, are key challenges in ecology. Despite the pressing need to understand these fundamental drivers of community structure and dynamics, only 17% of ecological studies conducted over the past three decades have been at the community level. Here, we assess the trophic structure of the procellariiform community breeding at South Georgia, to identify the factors that determine foraging niches and possible temporal changes. We collected conventional diet data from 13 sympatric species between 1974 and 2002, and quantified intra- and inter-guild, and annual variation in diet between and within foraging habits. In addition, we tested the reliability of stable isotope analysis (SIA) of seabird feathers collected over a 13-year period, in relation to those of their potential prey, as a tool to assess community structure when diets are diverse and there is high spatial heterogeneity in environmental baselines. Our results using conventional diet data identified a four-guild community structure, distinguishing species that mainly feed on crustaceans; large fish and squid; a mixture of crustaceans, small fish and squid; or carrion. In total, Antarctic krill Euphausia superba represented 32%, and 14 other species a further 46% of the combined diet of all 13 predators, underlining the reliance of this community on relatively few types of prey. Annual variation in trophic segregation depended on relative prey availability; however, our data did not provide evidence of changes in guild structure associated with a suggested decline in Antarctic krill abundance over the past 40 years. Reflecting the differences in δ(15) N of potential prey (crustaceans vs. squid vs. fish and carrion), analysis of δ(15) N in chick feathers identified a three-guild community structure that was constant over a 13-year period, but lacked the trophic cluster representing

  3. Temporal change in biological community structure in the Fountain Creek basin, Colorado, 2001-2008

    USGS Publications Warehouse

    Zuellig, Robert E.; Bruce, James F.; Stogner, Robert W.

    2010-01-01

    In 2001, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, began a study to better understand the relations between environmental characteristics and biological communities in the Fountain Creek basin in order to aide water-resource management and guide future monitoring activities. To accomplish this task, environmental (streamflow, habitat, and water chemistry) and biological (fish and macroinvertebrate) data were collected annually at 24 sites over a 6- or 8-year period (fish, 2003 to 2008; macroinvertebrates, 2001 to 2008). For this report, these data were first analyzed to determine the presence of temporal change in macroinvertebrate and fish community structure among years using nonparametric multivariate statistics. Where temporal change in the biological communities was found, these data were further analyzed using additional nonparametric multivariate techniques to determine which subset of selected streamflow, habitat, or water-chemistry variables best described site-specific changes in community structure relative to a gradient of urbanization. This study identified significant directional patterns of temporal change in macroinvertebrate and fish community structure at 15 of 24 sites in the Fountain Creek basin. At four of these sites, changes in environmental variables were significantly correlated with the concurrent temporal change identified in macroinvertebrate and fish community structure (Monument Creek above Woodmen Road at Colorado Springs, Colo.; Monument Creek at Bijou Street at Colorado Springs, Colo.; Bear Creek near Colorado Springs, Colo.; Fountain Creek at Security, Colo.). Combinations of environmental variables describing directional temporal change in the biota appeared to be site specific as no single variable dominated the results; however, substrate composition variables (percent substrate composition composed of sand, gravel, or cobble) collectively were present in 80 percent of the environmental

  4. Microbiological functioning, diversity, and structure of bacterial communities in ultramafic soils from a tropical savanna.

    PubMed

    Pessoa-Filho, Marco; Barreto, Cristine Chaves; dos Reis Junior, Fábio Bueno; Fragoso, Rodrigo Rocha; Costa, Flávio Silva; de Carvalho Mendes, Ieda; de Andrade, Leide Rovênia Miranda

    2015-04-01

    Ultramafic soils are characterized by high levels of metals, and have been studied because of their geochemistry and its relation to their biological component. This study evaluated soil microbiological functioning (SMF), richness, diversity, and structure of bacterial communities from two ultramafic soils and from a non-ultramafic soil in the Brazilian Cerrado, a tropical savanna. SMF was represented according to simultaneous analysis of microbial biomass C (MBC) and activities of the enzymes β-glucosidase, acid phosphomonoesterase and arylsulfatase, linked to the C, P and S cycles. Bacterial community diversity and structure were studied by sequencing of 16S rRNA gene clone libraries. MBC and enzyme activities were not affected by high Ni contents. Changes in SMF were more related to the organic matter content of soils (SOM) than to their available Ni. Phylogeny-based methods detected qualitative and quantitative differences in pairwise comparisons of bacterial community structures of the three sites. However, no correlations between community structure differences and SOM or SMF were detected. We believe this work presents benchmark information on SMF, diversity, and structure of bacterial communities for a unique type of environment within the Cerrado biome.

  5. Hierarchical mutual information for the comparison of hierarchical community structures in complex networks

    NASA Astrophysics Data System (ADS)

    Perotti, Juan Ignacio; Tessone, Claudio Juan; Caldarelli, Guido

    2015-12-01

    The quest for a quantitative characterization of community and modular structure of complex networks produced a variety of methods and algorithms to classify different networks. However, it is not clear if such methods provide consistent, robust, and meaningful results when considering hierarchies as a whole. Part of the problem is the lack of a similarity measure for the comparison of hierarchical community structures. In this work we give a contribution by introducing the hierarchical mutual information, which is a generalization of the traditional mutual information and makes it possible to compare hierarchical partitions and hierarchical community structures. The normalized version of the hierarchical mutual information should behave analogously to the traditional normalized mutual information. Here the correct behavior of the hierarchical mutual information is corroborated on an extensive battery of numerical experiments. The experiments are performed on artificial hierarchies and on the hierarchical community structure of artificial and empirical networks. Furthermore, the experiments illustrate some of the practical applications of the hierarchical mutual information, namely the comparison of different community detection methods and the study of the consistency, robustness, and temporal evolution of the hierarchical modular structure of networks.

  6. Soil resources and topography shape local tree community structure in tropical forests.

    PubMed

    Baldeck, Claire A; Harms, Kyle E; Yavitt, Joseph B; John, Robert; Turner, Benjamin L; Valencia, Renato; Navarrete, Hugo; Davies, Stuart J; Chuyong, George B; Kenfack, David; Thomas, Duncan W; Madawala, Sumedha; Gunatilleke, Nimal; Gunatilleke, Savitri; Bunyavejchewin, Sarayudh; Kiratiprayoon, Somboon; Yaacob, Adzmi; Supardi, Mohd N Nur; Dalling, James W

    2013-02-22

    Both habitat filtering and dispersal limitation influence the compositional structure of forest communities, but previous studies examining the relative contributions of these processes with variation partitioning have primarily used topography to represent the influence of the environment. Here, we bring together data on both topography and soil resource variation within eight large (24-50 ha) tropical forest plots, and use variation partitioning to decompose community compositional variation into fractions explained by spatial, soil resource and topographic variables. Both soil resources and topography account for significant and approximately equal variation in tree community composition (9-34% and 5-29%, respectively), and all environmental variables together explain 13-39% of compositional variation within a plot. A large fraction of variation (19-37%) was spatially structured, yet unexplained by the environment, suggesting an important role for dispersal processes and unmeasured environmental variables. For the majority of sites, adding soil resource variables to topography nearly doubled the inferred role of habitat filtering, accounting for variation in compositional structure that would previously have been attributable to dispersal. Our results, illustrated using a new graphical depiction of community structure within these plots, demonstrate the importance of small-scale environmental variation in shaping local community structure in diverse tropical forests around the globe.

  7. A legacy of low-impact logging does not elevate prevalence of potentially pathogenic protozoa in free-ranging gorillas and chimpanzees in the Republic of Congo: logging and parasitism in African apes.

    PubMed

    Gillespie, Thomas R; Morgan, David; Deutsch, J Charlie; Kuhlenschmidt, Mark S; Salzer, Johanna S; Cameron, Kenneth; Reed, Trish; Sanz, Crickette

    2009-12-01

    Many studies have examined the long-term effects of selective logging on the abundance and diversity of free-ranging primates. Logging is known to reduce the abundance of some primate species through associated hunting and the loss of food trees for frugivores; however, the potential role of pathogens in such primate population declines is largely unexplored. Selective logging results in a suite of alterations in host ecology and forest structure that may alter pathogen dynamics in resident wildlife populations. In addition, environmental pollution with human fecal material may present a risk for wildlife infections with zoonotic protozoa, such as Cryptosporidium and Giardia. To better understand this interplay, we compared patterns of infection with these potentially pathogenic protozoa in sympatric western lowland gorillas (Gorilla gorilla gorilla) and chimpanzees (Pan troglodytes troglodytes) in the undisturbed Goualougo Triangle of Nouabalé-Ndoki National Park and the adjacent previously logged Kabo Concession in northern Republic of Congo. No Cryptosporidium infections were detected in any of the apes examined and prevalence of infection with Giardia was low (3.73% overall) and did not differ between logged and undisturbed forest for chimpanzees or gorillas. These results provide a baseline for prevalence of these protozoa in forest-dwelling African apes and suggest that low-intensity logging may not result in long-term elevated prevalence of potentially pathogenic protozoa.

  8. A Legacy of Low-Impact Logging does not Elevate Prevalence of Potentially Pathogenic Protozoa in Free-Ranging Gorillas and Chimpanzees in the Republic of Congo: Logging and Parasitism in African Apes

    PubMed Central

    Morgan, David; Deutsch, J. Charlie; Kuhlenschmidt, Mark S.; Salzer, Johanna S.; Cameron, Kenneth; Reed, Trish; Sanz, Crickette

    2010-01-01

    Many studies have examined the long-term effects of selective logging on the abundance and diversity of free-ranging primates. Logging is known to reduce the abundance of some primate species through associated hunting and the loss of food trees for frugivores; however, the potential role of pathogens in such primate population declines is largely unexplored. Selective logging results in a suite of alterations in host ecology and forest structure that may alter pathogen dynamics in resident wildlife populations. In addition, environmental pollution with human fecal material may present a risk for wildlife infections with zoonotic protozoa, such as Cryptosporidium and Giardia. To better understand this interplay, we compared patterns of infection with these potentially pathogenic protozoa in sympatric western lowland gorillas (Gorilla gorilla gorilla) and chimpanzees (Pan troglodytes troglodytes) in the undisturbed Goualougo Triangle of Nouabalé-Ndoki National Park and the adjacent previously logged Kabo Concession in northern Republic of Congo. No Cryptosporidium infections were detected in any of the apes examined and prevalence of infection with Giardia was low (3.73% overall) and did not differ between logged and undisturbed forest for chimpanzees or gorillas. These results provide a baseline for prevalence of these protozoa in forest-dwelling African apes and suggest that low-intensity logging may not result in long-term elevated prevalence of potentially pathogenic protozoa. PMID:20238141

  9. The Structure of Psychopathology in a Community Sample of Preschoolers

    ERIC Educational Resources Information Center

    Strickland, Jennifer; Keller, Jennifer; Lavigne, John V.; Gouze, Karen; Hopkins, Joyce; LeBailly, Susan

    2011-01-01

    Despite growing interest in the development of alternative diagnostic classification systems for psychopathology in young children, little is known about the adequacy of the DSM symptom structure for describing psychopathology in this population. This paper examines the fit of the DSM-IV emotional (ED) and disruptive behavior disorder (DD) symptom…

  10. Family Structure and Community Context: Evaluating Influences on Adolescent Outcomes

    ERIC Educational Resources Information Center

    Kowaleski-Jones, Lori; Dunifon, Rachel

    2006-01-01

    Using data from the National Longitudinal Survey of Youth merged mother-child file, this article examines the relationship between living in four different family structures on key measures of youth well-being, studied separately by race. The authors also examine whether contextual factors mediate these associations. For Black youth, we find no…

  11. Locating Elementary Teachers' Professional Communities in a Structured Collaboration Environment

    ERIC Educational Resources Information Center

    Chu, Szu Yang

    2016-01-01

    As teacher collaboration becomes an increasingly common goal in school organization, teachers' experiences and perspectives in a Structured Collaboration Environment remain under-examined. This qualitative case study explored how teachers participated in collaborative work, the outcomes of collaboration, and supports and obstacles to productive…

  12. Field-based experimental acidification alters fouling community structure and reduces diversity.

    PubMed

    Brown, Norah E M; Therriault, Thomas W; Harley, Christopher D G

    2016-09-01

    Increasing levels of CO2 in the atmosphere are affecting ocean chemistry, leading to increased acidification (i.e. decreased pH) and reductions in calcium carbonate saturation state. Many species are likely to respond to acidification, but the direction and magnitude of these responses will be based on interspecific and ontogenetic variation in physiology and the relative importance of calcification. Differential responses to ocean acidification (OA) among species will likely result in important changes in community structure and diversity. To characterize the potential impacts of OA on community composition and structure, we examined the response of a marine fouling community to experimental CO2 enrichment in field-deployed flow-through mesocosm systems. Acidification significantly altered the community structure by altering the relative abundance of species and reduced community variability, resulting in more homogenous biofouling communities from one experimental tile to the next both among and within the acidified mesocosms. Mussel (Mytilus trossulus) recruitment was reduced by over 30% in the elevated CO2 treatment compared to the ambient treatment by the end of the experiment. Strong differences in mussel cover (up to 40% lower in acidified conditions) developed over the second half of the 10-week experiment. Acidification did not appear to affect the mussel growth, as average mussel sizes were similar between treatments at the end of the experiment. Hydroid (Obelia dichotoma) cover was significantly reduced in the elevated CO2 treatment after 8 weeks. Conversely, the percentage cover of bryozoan colonies (Mebranipora membranacea) was higher under acidified conditions with differences becoming apparent after 6 weeks. Neither recruitment nor final size of barnacles (Balanus crenatus) was affected by acidification. By the end of the experiment, diversity was 41% lower in the acidified treatment relative to ambient conditions. Overall, our findings support the

  13. Scale-dependence of processes structuring dung beetle metacommunities using functional diversity and community deconstruction approaches.

    PubMed

    Silva, Pedro Giovâni da; Hernández, Malva Isabel Medina

    2015-01-01

    Community structure is driven by mechanisms linked to environmental, spatial and temporal processes, which have been successfully addressed using metacommunity framework. The relative importance of processes shaping community structure can be identified using several different approaches. Two approaches that are increasingly being used are functional diversity and community deconstruction. Functional diversity is measured using various indices that incorporate distinct community attributes. Community deconstruction is a way to disentangle species responses to ecological processes by grouping species with similar traits. We used these two approaches to determine whether they are improvements over traditional measures (e.g., species composition, abundance, biomass) for identification of the main processes driving dung beetle (Scarabaeinae) community structure in a fragmented mainland-island landscape in southern Brazilian Atlantic Forest. We sampled five sites in each of four large forest areas, two on the mainland and two on the island. Sampling was performed in 2012 and 2013. We collected abundance and biomass data from 100 sampling points distributed over 20 sampling sites. We studied environmental, spatial and temporal effects on dung beetle community across three spatial scales, i.e., between sites, between areas and mainland-island. The γ-diversity based on species abundance was mainly attributed to β-diversity as a consequence of the increase in mean α- and β-diversity between areas. Variation partitioning on abundance, biomass and functional diversity showed scale-dependence of processes structuring dung beetle metacommunities. We identified two major groups of responses among 17 functional groups. In general, environmental filters were important at both local and regional scales. Spatial factors were important at the intermediate scale. Our study supports the notion of scale-dependence of environmental, spatial and temporal processes in the distribution

  14. Scale-Dependence of Processes Structuring Dung Beetle Metacommunities Using Functional Diversity and Community Deconstruction Approaches

    PubMed Central

    da Silva, Pedro Giovâni; Hernández, Malva Isabel Medina

    2015-01-01

    Community structure is driven by mechanisms linked to environmental, spatial and temporal processes, which have been successfully addressed using metacommunity framework. The relative importance of processes shaping community structure can be identified using several different approaches. Two approaches that are increasingly being used are functional diversity and community deconstruction. Functional diversity is measured using various indices that incorporate distinct community attributes. Community deconstruction is a way to disentangle species responses to ecological processes by grouping species with similar traits. We used these two approaches to determine whether they are improvements over traditional measures (e.g., species composition, abundance, biomass) for identification of the main processes driving dung beetle (Scarabaeinae) community structure in a fragmented mainland-island landscape in southern Brazilian Atlantic Forest. We sampled five sites in each of four large forest areas, two on the mainland and two on the island. Sampling was performed in 2012 and 2013. We collected abundance and biomass data from 100 sampling points distributed over 20 sampling sites. We studied environmental, spatial and temporal effects on dung beetle community across three spatial scales, i.e., between sites, between areas and mainland-island. The γ-diversity based on species abundance was mainly attributed to β-diversity as a consequence of the increase in mean α- and β-diversity between areas. Variation partitioning on abundance, biomass and functional diversity showed scale-dependence of processes structuring dung beetle metacommunities. We identified two major groups of responses among 17 functional groups. In general, environmental filters were important at both local and regional scales. Spatial factors were important at the intermediate scale. Our study supports the notion of scale-dependence of environmental, spatial and temporal processes in the distribution

  15. Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean.

    PubMed

    Acevedo-Trejos, Esteban; Brandt, Gunnar; Bruggeman, Jorn; Merico, Agostino

    2015-03-09

    The factors regulating phytoplankton community composition play a crucial role in structuring aquatic food webs. However, consensus is still lacking about the mechanisms underlying the observed biogeographical differences in cell size composition of phytoplankton communities. Here we use a trait-based model to disentangle these mechanisms in two contrasting regions of the Atlantic Ocean. In our model, the phytoplankton community can self-assemble based on a trade-off emerging from relationships between cell size and (1) nutrient uptake, (2) zooplankton grazing, and (3) phytoplankton sinking. Grazing 'pushes' the community towards larger cell sizes, whereas nutrient uptake and sinking 'pull' the community towards smaller cell sizes. We find that the stable environmental conditions of the tropics strongly balance these forces leading to persistently small cell sizes and reduced size diversity. In contrast, the seasonality of the temperate region causes the community to regularly reorganize via shifts in species composition and to exhibit, on average, bigger cell sizes and higher size diversity than in the tropics. Our results raise the importance of environmental variability as a key structuring mechanism of plankton communities in the ocean and call for a reassessment of the current understanding of phytoplankton diversity patterns across latitudinal gradients.

  16. Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean

    NASA Astrophysics Data System (ADS)

    Acevedo-Trejos, Esteban; Brandt, Gunnar; Bruggeman, Jorn; Merico, Agostino

    2015-03-01

    The factors regulating phytoplankton community composition play a crucial role in structuring aquatic food webs. However, consensus is still lacking about the mechanisms underlying the observed biogeographical differences in cell size composition of phytoplankton communities. Here we use a trait-based model to disentangle these mechanisms in two contrasting regions of the Atlantic Ocean. In our model, the phytoplankton community can self-assemble based on a trade-off emerging from relationships between cell size and (1) nutrient uptake, (2) zooplankton grazing, and (3) phytoplankton sinking. Grazing `pushes' the community towards larger cell sizes, whereas nutrient uptake and sinking `pull' the community towards smaller cell sizes. We find that the stable environmental conditions of the tropics strongly balance these forces leading to persistently small cell sizes and reduced size diversity. In contrast, the seasonality of the temperate region causes the community to regularly reorganize via shifts in species composition and to exhibit, on average, bigger cell sizes and higher size diversity than in the tropics. Our results raise the importance of environmental variability as a key structuring mechanism of plankton communities in the ocean and call for a reassessment of the current understanding of phytoplankton diversity patterns across latitudinal gradients.

  17. Effects of heavy fuel oil on the bacterial community structure of a pristine microbial mat.

    PubMed

    Bordenave, Sylvain; Goñi-Urriza, María Soledad; Caumette, Pierre; Duran, Robert

    2007-10-01

    The effects of petroleum contamination on the bacterial community of a pristine microbial mat from Salins-de-Giraud (Camargue, France) have been investigated. Mats were maintained as microcosms and contaminated with no. 2 fuel oil from the wreck of the Erika. The evolution of the complex bacterial community was monitored by combining analyses based on 16S rRNA genes and their transcripts. 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) analyses clearly showed the effects of the heavy fuel oil after 60 days of incubation. At the end of the experiment, the initial community structure was recovered, illustrating the resilience of this microbial ecosystem. In addition, the responses of the metabolically active bacterial community were evaluated by T-RFLP and clone library analyses based on 16S rRNA. Immediately after the heavy fuel oil was added to the microcosms, the structure of the active bacterial community was modified, indicating a rapid microbial mat response. Members of the Gammaproteobacteria were initially dominant in the contaminated microcosms. Pseudomonas and Acinetobacter were the main genera representative of this class. After 90 days of incubation, the Gammaproteobacteria were superseded by "Bacilli" and Alphaproteobacteria. This study shows the major changes that occur in the microbial mat community at different time periods following contamination. At the conclusion of the experiment, the RNA approach also demonstrated the resilience of the microbial mat community in resisting environmental stress resulting from oil pollution.

  18. Predicting community structure in snakes on Eastern Nearctic islands using ecological neutral theory and phylogenetic methods.

    PubMed

    Burbrink, Frank T; McKelvy, Alexander D; Pyron, R Alexander; Myers, Edward A

    2015-11-22

    Predicting species presence and richness on islands is important for understanding the origins of communities and how likely it is that species will disperse and resist extinction. The equilibrium theory of island biogeography (ETIB) and, as a simple model of sampling abundances, the unified neutral theory of biodiversity (UNTB), predict that in situations where mainland to island migration is high, species-abundance relationships explain the presence of taxa on islands. Thus, more abundant mainland species should have a higher probability of occurring on adjacent islands. In contrast to UNTB, if certain groups have traits that permit them to disperse to islands better than other taxa, then phylogeny may be more predictive of which taxa will occur on islands. Taking surveys of 54 island snake communities in the Eastern Nearctic along with mainland communities that have abundance data for each species, we use phylogenetic assembly methods and UNTB estimates to predict island communities. Species richness is predicted by island area, whereas turnover from the mainland to island communities is random with respect to phylogeny. Community structure appears to be ecologically neutral and abundance on the mainland is the best predictor of presence on islands. With regard to young and proximate islands, where allopatric or cladogenetic speciation is not a factor, we find that simple neutral models following UNTB and ETIB predict the structure of island communities.

  19. Genetics-based interactions among plants, pathogens, and herbivores define arthropod community structure.

    PubMed

    Busby, Posy E; Lamit, Louis J; Keith, Arthur R; Newcombe, George; Gehring, Catherine A; Whitham, Thomas G; Dirzo, Rodolfo

    2015-07-01

    Plant resistance to pathogens or insect herbivores is common, but its potential for indirectly influencing plant-associated communities is poorly known. Here, we test whether pathogens' indirect effects on arthropod communities and herbivory depend on plant resistance to pathogens and/or herbivores, and address the overarching interacting foundation species hypothesis that genetics-based interactions among a few highly interactive species can structure a much larger community. In a manipulative field experiment using replicated genotypes of two Populus species and their interspecific hybrids, we found that genetic variation in plant resistance to both pathogens and insect herbivores modulated the strength of pathogens' indirect effects on arthropod communities and insect herbivory. First, due in part to the pathogens' differential impacts on leaf biomass among the two Populus species and the hybrids, the pathogen most strongly impacted arthropod community composition, richness, and abundance on the pathogen-susceptible tree species. Second, we found similar patterns comparing pathogen-susceptible and pathogen-resistant genotypes within species. Third, within a plant species, pathogens caused a fivefold greater reduction in herbivory on insect-herbivore-susceptible plant genotypes than on herbivore-resistant genotypes, demonstrating that the pathogen-herbivore interaction is genotype dependent. We conclude that interactions among plants, pathogens, and herbivores can structure multitrophic communities, supporting the interacting foundation species hypothesis. Because these interactions are genetically based, evolutionary changes in genetic resistance could result in ecological changes in associated communities, which may in turn feed back to affect plant fitness.

  20. Structure of marine predator and prey communities along environmental gradients in a glaciated fjord

    USGS Publications Warehouse

    Renner, Martin; Arimitsu, Mayumi L.; Piatt, John F.

    2012-01-01

    Spatial patterns of marine predator communities are influenced to varying degrees by prey distribution and environmental gradients. We examined physical and biological attributes of an estuarine fjord with strong glacier influence to determine the factors that most influence the structure of predator and prey communities. Our results suggest that some species, such as walleye pollock (Theragra chalcogramma), black-legged kittiwake (Rissa tridactyla), and glaucous-winged gull (Larus glaucescens), were widely distributed across environmental gradients, indicating less specialization, whereas species such as capelin (Mallotus villosus), harbor seal (Phoca vitulina), and Kittlitz's murrelet (Brachyramphus brevirostris) appeared to have more specialized habitat requirements related to glacial influence. We found that upper trophic level communities were well correlated with their mid trophic level prey community, but strong physical gradients in photic depth, temperature, and nutrients played an important role in community structure as well. Mid-trophic level forage fish communities were correlated with the physical gradients more closely than upper trophic levels were, and they showed strong affinity to tidewater glaciers. Silica was closely correlated with the distribution of fish communities, the mechanisms of which deserve further study.

  1. Predicting community structure in snakes on Eastern Nearctic islands using ecological neutral theory and phylogenetic methods

    PubMed Central

    Burbrink, Frank T.; McKelvy, Alexander D.; Pyron, R. Alexander; Myers, Edward A.

    2015-01-01

    Predicting species presence and richness on islands is important for understanding the origins of communities and how likely it is that species will disperse and resist extinction. The equilibrium theory of island biogeography (ETIB) and, as a simple model of sampling abundances, the unified neutral theory of biodiversity (UNTB), predict that in situations where mainland to island migration is high, species-abundance relationships explain the presence of taxa on islands. Thus, more abundant mainland species should have a higher probability of occurring on adjacent islands. In contrast to UNTB, if certain groups have traits that permit them to disperse to islands better than other taxa, then phylogeny may be more predictive of which taxa will occur on islands. Taking surveys of 54 island snake communities in the Eastern Nearctic along with mainland communities that have abundance data for each species, we use phylogenetic assembly methods and UNTB estimates to predict island communities. Species richness is predicted by island area, whereas turnover from the mainland to island communities is random with respect to phylogeny. Community structure appears to be ecologically neutral and abundance on the mainland is the best predictor of presence on islands. With regard to young and proximate islands, where allopatric or cladogenetic speciation is not a factor, we find that simple neutral models following UNTB and ETIB predict the structure of island communities. PMID:26609083

  2. Denitrification in a large river: consideration of geomorphic controls on microbial activity and community structure.

    PubMed

    Tatariw, Corianne; Chapman, Elise L; Sponseller, Ryan A; Mortazavi, Behzad; Edmonds, Jennifer W

    2013-10-01

    Ecological theory argues that the controls over ecosystem processes are structured hierarchically, with broader-scale drivers acting as constraints over the interactions and dynamics at nested levels of organization. In river ecosystems, these interactions may arise from broadscale variation in channel form that directly shapes benthic habitat structure and indirectly constrains resource supply and biological activity within individual reaches. To evaluate these interactions, we identified sediment characteristics, water chemistry, and denitrifier community structure as factors influencing benthic denitrification rates in a sixth-order river that flows through two physiographic provinces and the transitional zone between them, each with distinct geomorphological properties. We found that denitrification rates tracked spatial changes in sediment characteristics and varied seasonally with expected trends in stream primary production. Highest rates were observed during the spring and summer seasons in the physiographic province dominated by fine-grained sediments, illustrating how large-scale changes in river structure can constrain the location of denitrification hotspots. In addition, nirS and nirK community structure each responded differently to variation in channel form, possibly due to changes in dissolved oxygen and organic matter supply. This shift in denitrifier community structure coincident with higher rates of N removal via denitrification suggests that microbial community structure may influence biogeochemical processes.

  3. [Host age and structure of the component communities of parasites in river minnow Phoxinus phoxinus (L.)].

    PubMed

    Dorovskikh, G N; Stepanov, V G

    2007-01-01

    Species composition and structure of the communities of fish parasites in river minnow Phoxinus phoxinus (L.) from the Pechora river were investigated in two of the Pechora-Ilychsky Biosphere Nature Reserve, Komi Republic. The component communities of the parasites in river minnow are shown to have a one-year cycle including the states of development, completion, and destruction. Communities in the state of development are characterized by a low variety of species, low values of Shannon index, often high values of domination index, presence of only two groups of parasites in the structure described by variational curved of the conditional biomasses of species, deviation of the conditional biomasses of species from the linear regression, and sum of errors of the regression equations lower a threshold value. The communities consist of young individual parasites and their larval stages. Completed community is characterized by the following properties. There are three groups of parasites, differing in allometric index, in the structure, discerned by the ratio of conditional biomasses of the species included. Conditional biomasses of species in ecologically safe reservoirs lie on the segments of straight lines. Species variety reaches its maximum. Species are presented mainly by mature specimens and larval stages of the parasites using fish as intermediate host. Community in the state of destruction shows low values of domination index and relatively small variety pf species. Such community is consist of one or two groups of species, which are represented by mature, oviparous, and dying individuals. There are larval stages of parasites using fish as intermediate hosts. Dominant species or species groups, as well as values of indexes describing the component communities of parasites, can be different in mature river minnow from different geographical regions. However, the number of groups of parasites, formed by the ratio of conditional biomasses, remains constant, and

  4. Friendship Concept and Community Network Structure among Elementary School and University Students

    PubMed Central

    Hernández-Hernández, Ana María; Viga-de Alva, Dolores; Huerta-Quintanilla, Rodrigo; Canto-Lugo, Efrain; Laviada-Molina, Hugo; Molina-Segui, Fernanda

    2016-01-01

    We use complex network theory to study the differences between the friendship concepts in elementary school and university students. Four friendship networks were identified from surveys. Three of these networks are from elementary schools; two are located in the rural area of Yucatán and the other is in the urban area of Mérida, Yucatán. We analyzed the structure and the communities of these friendship networks and found significant differences among those at the elementary schools compared with those at the university. In elementary schools, the students make friends mainly in the same classroom, but there are also links among different classrooms because of the presence of siblings and relatives in the schools. These kinds of links (sibling-friend or relative-friend) are called, in this work, “mixed links”. The classification of the communities is based on their similarity with the classroom composition. If the community is composed principally of students in different classrooms, the community is classified as heterogeneous. These kinds of communities appear in the elementary school friendship networks mainly because of the presence of relatives and siblings. Once the links between siblings and relatives are removed, the communities resembled the classroom composition. On the other hand, the university students are more selective in choosing friends and therefore, even when they have friends in the same classroom, those communities are quite different to the classroom composition. Also, in the university network, we found heterogeneous communities even when the presence of sibling and relatives is negligible. These differences made up a topological structure quite different at different academic levels. We also found differences in the network characteristics. Once these differences are understood, the topological structure of the friendship network and the communities shaped in an elementary school could be predicted if we know the total number of

  5. Bacterial Community Structure in the Hyperarid Core of the Atacama Desert, Chile▿

    PubMed Central

    Drees, Kevin P.; Neilson, Julia W.; Betancourt, Julio L.; Quade, Jay; Henderson, David A.; Pryor, Barry M.; Maier, Raina M.

    2006-01-01

    Soils from the hyperarid Atacama Desert of northern Chile were sampled along an east-west elevational transect (23.75 to 24.70°S) through the driest sector to compare the relative structure of bacterial communities. Analysis of denaturing gradient gel electrophoresis (DGGE) profiles from each of the samples revealed that microbial communities from the extreme hyperarid core of the desert clustered separately from all of the remaining communities. Bands sequenced from DGGE profiles of two samples taken at a 22-month interval from this core region revealed the presence of similar populations dominated by bacteria from the Gemmatimonadetes and Planctomycetes phyla. PMID:17028238

  6. Friendship Concept and Community Network Structure among Elementary School and University Students.

    PubMed

    Hernández-Hernández, Ana María; Viga-de Alva, Dolores; Huerta-Quintanilla, Rodrigo; Canto-Lugo, Efrain; Laviada-Molina, Hugo; Molina-Segui, Fernanda

    2016-01-01

    We use complex network theory to study the differences between the friendship concepts in elementary school and university students. Four friendship networks were identified from surveys. Three of these networks are from elementary schools; two are located in the rural area of Yucatán and the other is in the urban area of Mérida, Yucatán. We analyzed the structure and the communities of these friendship networks and found significant differences among those at the elementary schools compared with those at the university. In elementary schools, the students make friends mainly in the same classroom, but there are also links among different classrooms because of the presence of siblings and relatives in the schools. These kinds of links (sibling-friend or relative-friend) are called, in this work, "mixed links". The classification of the communities is based on their similarity with the classroom composition. If the community is composed principally of students in different classrooms, the community is classified as heterogeneous. These kinds of communities appear in the elementary school friendship networks mainly because of the presence of relatives and siblings. Once the links between siblings and relatives are removed, the communities resembled the classroom composition. On the other hand, the university students are more selective in choosing friends and therefore, even when they have friends in the same classroom, those communities are quite different to the classroom composition. Also, in the university network, we found heterogeneous communities even when the presence of sibling and relatives is negligible. These differences made up a topological structure quite different at different academic levels. We also found differences in the network characteristics. Once these differences are understood, the topological structure of the friendship network and the communities shaped in an elementary school could be predicted if we know the total number of students

  7. Bacterial community structure in the hyperarid core of the Atacama Desert, Chile

    USGS Publications Warehouse

    Drees, Kevin P.; Neilson, Julia W.; Betancourt, Julio L.; Quade, Jay; Henderson, David A.; Pryor, Barry M.; Maier, Raina M.

    2006-01-01

    Soils from the hyperarid Atacama Desert of northern Chile were sampled along an east-west elevational transect (23.75 to 24.70 degrees S) through the driest sector to compare the relative structure of bacterial communities. Analysis of denaturing gradient gel electrophoresis (DGGE) profiles from each of the samples revealed that microbial communities from the extreme hyperarid core of the desert clustered separately from all of the remaining communities. Bands sequenced from DGGE profiles of two samples taken at a 22-month interval from this core region revealed the presence of similar populations dominated by bacteria from the Gemmatimonadetes and Planctomycetes phyla.

  8. Structuring Community Care using Multi-Agent Systems

    NASA Astrophysics Data System (ADS)

    Beer, Martin D.

    Community care is a complex operation that requires the interaction of large numbers of dedicated individuals, managed by an equally wide range of organisations. They are also by their nature highly mobile and flexible, moving between clients in whatever order person receiving care is that they receive what they expect regularly, reliably and when they expect to receive it. Current systems are heavily provider focused on providing the scheduled care with as high apparent cost effectiveness as possible. Unfortunately, the lack of focus on the client often leads to inflexibility with expensive services being provided when they are not needed, large scale duplication of effort or inadequate flexibility to change the care regime to meet changing circumstances. Add to this the problems associated with the lack of integration of emergency and routing care and the extensive support given by friends and family and many opportunities exist to improve both the levels of support and the efficiency of care. The move towards Individual Care Plans requires much closer monitoring to ensure that the care specified for each individual is actually delivered and when linked with smart home technology in conjunction with appropriate sensors allows a much richer range of services to be offered which can be customised to meet the needs of each individual, giving them the assurance to continue to live independently.

  9. Geographic variation in plant community structure of salt marshes: species, functional and phylogenetic perspectives.

    PubMed

    Guo, Hongyu; Chamberlain, Scott A; Elhaik, Eran; Jalli, Inder; Lynes, Alana-Rose; Marczak, Laurie; Sabath, Niv; Vargas, Amy; Więski, Kazimierz; Zelig, Emily M; Pennings, Steven C

    2015-01-01

    In general, community similarity is thought to decay with distance; however, this view may be complicated by the relative roles of different ecological processes at different geographical scales, and by the compositional perspective (e.g. species, functional group and phylogenetic lineage) used. Coastal salt marshes are widely distributed worldwide, but no studies have explicitly examined variation in salt marsh plant community composition across geographical scales, and from species, functional and phylogenetic perspectives. Based on studies in other ecosystems, we hypothesized that, in coastal salt marshes, community turnover would be more rapid at local versus larger geographical scales; and that community turnover patterns would diverge among compositional perspectives, with a greater distance decay at the species level than at the functional or phylogenetic levels. We tested these hypotheses in salt marshes of two regions: The southern Atlantic and Gulf Coasts of the United States. We examined the characteristics of plant community composition at each salt marsh site, how community similarity decayed with distance within individual salt marshes versus among sites in each region, and how community similarity differed among regions, using species, functional and phylogenetic perspectives. We found that results from the three compositional perspectives generally showed similar patterns: there was strong variation in community composition within individual salt marsh sites across elevation; in contrast, community similarity decayed with distance four to five orders of magnitude more slowly across sites within each region. Overall, community dissimilarity of salt marshes was lowest on the southern Atlantic Coast, intermediate on the Gulf Coast, and highest between the two regions. Our results indicated that local gradients are relatively more important than regional processes in structuring coastal salt marsh communities. Our results also suggested that in

  10. Geographic Variation in Plant Community Structure of Salt Marshes: Species, Functional and Phylogenetic Perspectives

    PubMed Central

    Guo, Hongyu; Chamberlain, Scott A.; Elhaik, Eran; Jalli, Inder; Lynes, Alana-Rose; Marczak, Laurie; Sabath, Niv; Vargas, Amy; Więski, Kazimierz; Zelig, Emily M.; Pennings, Steven C.

    2015-01-01

    In general, community similarity is thought to decay with distance; however, this view may be complicated by the relative roles of different ecological processes at different geographical scales, and by the compositional perspective (e.g. species, functional group and phylogenetic lineage) used. Coastal salt marshes are widely distributed worldwide, but no studies have explicitly examined variation in salt marsh plant community composition across geographical scales, and from species, functional and phylogenetic perspectives. Based on studies in other ecosystems, we hypothesized that, in coastal salt marshes, community turnover would be more rapid at local versus larger geographical scales; and that community turnover patterns would diverge among compositional perspectives, with a greater distance decay at the species level than at the functional or phylogenetic levels. We tested these hypotheses in salt marshes of two regions: The southern Atlantic and Gulf Coasts of the United States. We examined the characteristics of plant community composition at each salt marsh site, how community similarity decayed with distance within individual salt marshes versus among sites in each region, and how community similarity differed among regions, using species, functional and phylogenetic perspectives. We found that results from the three compositional perspectives generally showed similar patterns: there was strong variation in community composition within individual salt marsh sites across elevation; in contrast, community similarity decayed with distance four to five orders of magnitude more slowly across sites within each region. Overall, community dissimilarity of salt marshes was lowest on the southern Atlantic Coast, intermediate on the Gulf Coast, and highest between the two regions. Our results indicated that local gradients are relatively more important than regional processes in structuring coastal salt marsh communities. Our results also suggested that in

  11. Bacterial Diversity and Community Structure in Two Bornean Nepenthes Species with Differences in Nitrogen Acquisition Strategies.

    PubMed

    Sickel, Wiebke; Grafe, T Ulmar; Meuche, Ivonne; Steffan-Dewenter, Ingolf; Keller, Alexander

    2016-05-01

    Carnivorous plants of the genus Nepenthes have been studied for over a century, but surprisingly little is known about associations with microorganisms. The two species Nepenthes rafflesiana and Nepenthes hemsleyana differ in their pitcher-mediated nutrient sources, sequestering nitrogen from arthropod prey and arthropods as well as bat faeces, respectively. We expected bacterial communities living in the pitchers to resemble this diet difference. Samples were taken from different parts of the pitchers (leaf, peristome, inside, outside, digestive fluid) of both species. Bacterial communities were determined using culture-independent high-throughput amplicon sequencing. Bacterial richness and community structure were similar in leaves, peristomes, inside and outside walls of both plant species. Regarding digestive fluids, bacterial richness was higher in N. hemsleyana than in N. rafflesiana. Additionally, digestive fluid communities were highly variable in structure, with strain-specific differences in community composition between replicates. Acidophilic taxa were mostly of low abundance, except the genus Acidocella, which strikingly reached extremely high levels in two N. rafflesiana fluids. In N. hemsleyana fluid, some taxa classified as vertebrate gut symbionts as well as saprophytes were enriched compared to N. rafflesiana, with saprophytes constituting potential competitors for nutrients. The high variation in community structure might be caused by a number of biotic and abiotic factors. Nitrogen-fixing bacteria were present in both study species, which might provide essential nutrients to the plant at times of low prey capture and/or rare encounters with bats.

  12. Co-acclimation of bacterial communities under stresses of hydrocarbons with different structures

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Wang, Bin; Dong, Wenwen; Hu, Xiaoke

    2016-10-01

    Crude oil is a complex mixture of hydrocarbons with different structures; its components vary in bioavailability and toxicity. It is important to understand how bacterial communities response to different hydrocarbons and their co-acclimation in the process of degradation. In this study, microcosms with the addition of structurally different hydrocarbons were setup to investigate the successions of bacterial communities and the interactions between different bacterial taxa. Hydrocarbons were effectively degraded in all microcosms after 40 days. High-throughput sequencing offered a great quantity of data for analyzing successions of bacterial communities. The results indicated that the bacterial communities responded dramatically different to various hydrocarbons. KEGG database and PICRUSt were applied to predict functions of individual bacterial taxa and networks were constructed to analyze co-acclimations between functional bacterial groups. Almost all functional genes catalyzing degradation of different hydrocarbons were predicted in bacterial communities. Most of bacterial taxa were believed to conduct biodegradation processes via interactions with each other. This study addressed a few investigated area of bacterial community responses to structurally different organic pollutants and their co-acclimation and interactions in the process of biodegradation. The study could provide useful information to guide the bioremediation of crude oil pollution.

  13. Active bacterial community structure along vertical redox gradients in Baltic Sea sediment

    SciTech Connect

    Jansson, Janet; Edlund, Anna; Hardeman, Fredrik; Jansson, Janet K.; Sjoling, Sara

    2008-05-15

    Community structures of active bacterial populations were investigated along a vertical redox profile in coastal Baltic Sea sediments by terminal-restriction fragment length polymorphism (T-RFLP) and clone library analysis. According to correspondence analysis of T-RFLP results and sequencing of cloned 16S rRNA genes, the microbial community structures at three redox depths (179 mV, -64 mV and -337 mV) differed significantly. The bacterial communities in the community DNA differed from those in bromodeoxyuridine (BrdU)-labeled DNA, indicating that the growing members of the community that incorporated BrdU were not necessarily the most dominant members. The structures of the actively growing bacterial communities were most strongly correlated to organic carbon followed by total nitrogen and redox potentials. Bacterial identification by sequencing of 16S rRNA genes from clones of BrdU-labeled DNA and DNA from reverse transcription PCR (rt-PCR) showed that bacterial taxa involved in nitrogen and sulfur cycling were metabolically active along the redox profiles. Several sequences had low similarities to previously detected sequences indicating that novel lineages of bacteria are present in Baltic Sea sediments. Also, a high number of different 16S rRNA gene sequences representing different phyla were detected at all sampling depths.

  14. Co-acclimation of bacterial communities under stresses of hydrocarbons with different structures

    PubMed Central

    Wang, Hui; Wang, Bin; Dong, Wenwen; Hu, Xiaoke

    2016-01-01

    Crude oil is a complex mixture of hydrocarbons with different structures; its components vary in bioavailability and toxicity. It is important to understand how bacterial communities response to different hydrocarbons and their co-acclimation in the process of degradation. In this study, microcosms with the addition of structurally different hydrocarbons were setup to investigate the successions of bacterial communities and the interactions between different bacterial taxa. Hydrocarbons were effectively degraded in all microcosms after 40 days. High-throughput sequencing offered a great quantity of data for analyzing successions of bacterial communities. The results indicated that the bacterial communities responded dramatically different to various hydrocarbons. KEGG database and PICRUSt were applied to predict functions of individual bacterial taxa and networks were constructed to analyze co-acclimations between functional bacterial groups. Almost all functional genes catalyzing degradation of different hydrocarbons were predicted in bacterial communities. Most of bacterial taxa were believed to conduct biodegradation processes via interactions with each other. This study addressed a few investigated area of bacterial community responses to structurally different organic pollutants and their co-acclimation and interactions in the process of biodegradation. The study could provide useful information to guide the bioremediation of crude oil pollution. PMID:27698451

  15. The effect of bacteria on diatom community structure--the 'antibiotics' approach.

    PubMed

    D'Costa, Priya M; Anil, Arga Chandrashekar

    2011-04-01

    To investigate the effect of bacteria on diatoms at the community level, sediment samples from an intertidal tropical environment were treated with penicillin (a β-lactam antibiotic that can affect diatoms only through bacteria). Streptomycin (an aminoglycoside) and chloramphenicol, antibiotics that can potentially affect protein synthesis in diatom organelles and photosynthesis, were also used for comparison. The changes in diatom community structure and the resistant and tolerant bacterial fractions were analyzed through microscopy, culture techniques and denaturing gradient gel electrophoresis. The reduction in bacterial abundance when treated with penicillin resulted in suppression of Amphora coffeaeformis, a dominant diatom in the study area. The bacterial community preferred the 'tolerance' strategy over 'resistance' in response to treatment with penicillin; these changes in bacterial dynamics were probably linked to concurrent changes in diatom community structure. The observations with penicillin differed from those with streptomycin that did not seem to significantly affect diatoms, and chloramphenicol, which consistently inhibited diatoms. Overall, the results of this study highlight the significance of bacteria in structuring benthic diatom communities and call for the inclusion of the 'antibiotics' approach in studies addressing diatom-bacterial interactions at the community level.

  16. Strong coupling of plant and fungal community structure across western Amazonian rainforests.

    PubMed

    Peay, Kabir G; Baraloto, Christopher; Fine, Paul V A

    2013-09-01

    The Amazon basin harbors a diverse ecological community that has a critical role in the maintenance of the biosphere. Although plant and animal communities have received much attention, basic information is lacking for fungal or prokaryotic communities. This is despite the fact that recent ecological studies have suggested a prominent role for interactions with soil fungi in structuring the diversity and abundance of tropical rainforest trees. In this study, we characterize soil fungal communities across three major tropical forest types in the western Amazon basin (terra firme, seasonally flooded and white sand) using 454 pyrosequencing. Using these data, we examine the relationship between fungal diversity and tree species richness, and between fungal community composition and tree species composition, soil environment and spatial proximity. We find that the fungal community in these ecosystems is diverse, with high degrees of spatial variability related to forest type. We also find strong correlations between α- and β-diversity of soil fungi and trees. Both fungal and plant community β-diversity were also correlated with differences in environmental conditions. The correlation between plant and fungal richness was stronger in fungal lineages known for biotrophic strategies (for example, pathogens, mycorrhizas) compared with a lineage known primarily for saprotrophy (yeasts), suggesting that this coupling is, at least in part, due to direct plant-fungal interactions. These data provide a much-needed look at an understudied dimension of the biota in an important ecosystem and supports the hypothesis that fungal communities are involved in the regulation of tropical tree diversity.

  17. Different substrates and starter inocula govern microbial community structures in biogas reactors.

    PubMed

    Satpathy, Preseela; Steinigeweg, Sven; Cypionka, Heribert; Engelen, Bert

    2016-01-01

    The influence of different starter inocula on the microbial communities in biogas batch reactors fed with fresh maize and maize silage as substrates was investigated. Molecular biological analysis by Denaturing Gradient Gel Electrophoresis (DGGE) of 16S rRNA gene fragments showed that each inoculum bore specific microbial communities with varying predominant phylotypes. Both, bacterial and archaeal DGGE profiles displayed three distinct communities that developed depending on the type of inoculum. Although maize and silage are similar substrates, different communities dominated the lactate-rich silage compared to lactate-free fresh maize. Cluster analysis of DGGE gels showed the communities of the same substrates to be stable with their respective inoculum. Bacteria-specific DGGE analysis revealed a rich diversity with Firmicutes being predominant. The other abundant phylotypes were Bacteroidetes and Synergistetes. Archaea-specific DGGE analysis displayed less diverse community structures, identifying members of the Methanosarcinales as the dominant methanogens present in all the three biogas digesters. In general, the source of inoculum played a significant role in shaping microbial communities. Adaptability of the inoculum to the substrates fed also influenced community compositions which further impacted the rates of biogas production.

  18. Comparison digestibility and protozoa population of Khuzestan water buffalo and Holstein cow.

    PubMed

    Jabari, Safora; Eslami, Moosa; Chaji, Morteza; Mohammadabadi, Tahereh; Bojarpour, Mohammad

    2014-01-01

    The major aim of this study was to compare the morphology and activity of rumen protozoa of Khuzestan water buffalo and Holstein cow using in vitro digestibility and gas production parameters of steam treated sugarcane pith. Rumen fluid obtained from two buffalo and cow steers fed the same diet, 30:70 concentrate: forage. To separate rumen protozoa, antibiotic solution and fungicides were added to rumen fluid. The results of present experiment indicated that the neutral detergent fiber (NDF; 7.8 vs. 1.69%) and acid detergent fiber (ADF; 6.24 vs. 3.24%) digestibility of steam treated sugarcane pith by rumen protozoal population of Khuzestan buffalo was higher than those of cow (p < 0.05). Also, digestibility of dry matter, NDF and ADF by whole buffalo micro-organisms was more than those in cow (p < 0.05). The results indicated that the potential of gas production of sugarcane pith by rumen protozoa in water buffalo was more than that of cow (p < 0.05). Total rumen ciliate protozoa numbers in water buffalo were significantly higher than those of cow (3.68 × 10(5) vs. 2.18 × 10(5) mL(-1) of rumen content) (p < 0.05). The number of Diplodinium in buffalo was more than that of cow (41.27 vs. 35.7% of total rumen protozoa, respectively). Percentage of Entodinium, Epidinium, Ophryoscolex and Isotricha in cow was more than those of buffalo. Therefore, in the same diet, protozoa and total rumen micro-organisms of Khuzestan water buffalo have higher digestion activity compared to Holstein cow.

  19. Comparison digestibility and protozoa population of Khuzestan water buffalo and Holstein cow

    PubMed Central

    Jabari, Safora; Eslami, Moosa; Chaji, Morteza; Mohammadabadi, Tahereh; Bojarpour, Mohammad

    2014-01-01

    The major aim of this study was to compare the morphology and activity of rumen protozoa of Khuzestan water buffalo and Holstein cow using in vitro digestibility and gas production parameters of steam treated sugarcane pith. Rumen fluid obtained from two buffalo and cow steers fed the same diet, 30:70 concentrate: forage. To separate rumen protozoa, antibiotic solution and fungicides were added to rumen fluid. The results of present experiment indicated that the neutral detergent fiber (NDF; 7.8 vs. 1.69%) and acid detergent fiber (ADF; 6.24 vs. 3.24%) digestibility of steam treated sugarcane pith by rumen protozoal population of Khuzestan buffalo was higher than those of cow (p < 0.05). Also, digestibility of dry matter, NDF and ADF by whole buffalo micro-organisms was more than those in cow (p < 0.05). The results indicated that the potential of gas production of sugarcane pith by rumen protozoa in water buffalo was more than that of cow (p < 0.05). Total rumen ciliate protozoa numbers in water buffalo were significantly higher than those of cow (3.68 × 105 vs. 2.18 × 105 mL-1 of rumen content) (p < 0.05). The number of Diplodinium in buffalo was more than that of cow (41.27 vs. 35.7% of total rumen protozoa, respectively). Percentage of Entodinium, Epidinium, Ophryoscolex and Isotricha in cow was more than those of buffalo. Therefore, in the same diet, protozoa and total rumen micro-organisms of Khuzestan water buffalo have higher digestion activity compared to Holstein cow. PMID:25610581

  20. Microbial Community Functional Structures in Wastewater Treatment Plants as Characterized by GeoChip

    PubMed Central

    Wang, Xiaohui; Xia, Yu; Wen, Xianghua; Yang, Yunfeng; Zhou, Jizhong

    2014-01-01

    Background Biological WWTPs must be functionally stable to continuously and steadily remove contaminants which rely upon the activity of complex microbial communities. However, knowledge is still lacking in regard to microbial community functional structures and their linkages to environmental variables. Aims To investigate microbial community functional structures of activated sludge in wastewater treatment plants (WWTPs) and to understand the effects of environmental factors on their structure. Methods 12 activated sludge samples were collected from four WWTPs in Beijing. A comprehensive functional gene array named GeoChip 4.2 was used to determine the microbial functional genes involved in a variety of biogeochemical processes such as carbon, nitrogen, phosphorous and sulfur cycles, metal resistance, antibiotic resistance and organic contaminant degradation. Results High similarities of the microbial community functional structures were found among activated sludge samples from the four WWTPs, as shown by both diversity indices and the overlapped genes. For individual gene category, such as egl, amyA, lip, nirS, nirK, nosZ, ureC, ppx, ppk, aprA, dsrA, sox and benAB, there were a number of microorganisms shared by all 12 samples. Canonical correspondence analysis (CCA) showed that the microbial functional patterns were highly correlated with water temperature, dissolved oxygen (DO), ammonia concentrations and loading rate of chemical oxygen demand (COD). Based on the variance partitioning analyses (VPA), a total of 53% of microbial community variation from GeoChip data can be explained by wastewater characteristics (25%) and operational parameters (23%), respectively. Conclusions This study provided an overall picture of microbial community functional structures of activated sludge in WWTPs and discerned the linkages between microbial communities and environmental variables in WWTPs. PMID:24671164

  1. The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide.

    PubMed

    He, Zhili; Piceno, Yvette; Deng, Ye; Xu, Meiying; Lu, Zhenmei; Desantis, Todd; Andersen, Gary; Hobbie, Sarah E; Reich, Peter B; Zhou, Jizhong

    2012-02-01

    One of the major factors associated with global change is the ever-increasing concentration of atmospheric CO(2). Although the stimulating effects of elevated CO(2) (eCO(2)) on plant growth and primary productivity have been established, its impacts on the diversity and function of soil microbial communities are poorly understood. In this study, phylogenetic microarrays (PhyloChip) were used to comprehensively survey the richness, composition and structure of soil microbial communities in a grassland experiment subjected to two CO(2) conditions (ambient, 368 p.p.m., versus elevated, 560 p.p.m.) for 10 years. The richness based on the detected number of operational taxonomic units (OTUs) significantly decreased under eCO(2). PhyloChip detected 2269 OTUs derived from 45 phyla (including two from Archaea), 55 classes, 99 orders, 164 families and 190 subfamilies. Also, the signal intensity of five phyla (Crenarchaeota, Chloroflexi, OP10, OP9/JS1, Verrucomicrobia) significantly decreased at eCO(2), and such significant effects of eCO(2) on microbial composition were also observed at the class or lower taxonomic levels for most abundant phyla, such as Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Acidobacteria, suggesting a shift in microbial community composition at eCO(2). Additionally, statistical analyses showed that the overall taxonomic structure of soil microbial communities was altered at eCO(2). Mantel tests indicated that such changes in species richness, composition and structure of soil microbial communities were closely correlated with soil and plant properties. This study provides insights into our understanding of shifts in the richness, composition and structure of soil microbial communities under eCO(2) and environmental factors shaping the microbial community structure.

  2. Comparisons of Salmonella conjugation and virulence gene hyperexpression mediated by rumen protozoa from domestic and exotic ruminants.

    PubMed

    Brewer, Matt T; Xiong, Nalee; Dier, Jeffery D; Anderson, Kristi L; Rasmussen, Mark A; Franklin, Sharon K; Carlson, Steve A

    2011-08-05

    Recent studies have identified a phenomenon in which ciliated protozoa engulf Salmonella and the intra-protozoal environment hyperactivates virulence gene expression and provides a venue for conjugal transfer of antibiotic resistance plasmids. The former observation is relegated to Salmonella bearing the SGI1 multiresistance integron while the latter phenomenon appears to be a more generalized event for recipient Salmonella. Our previous studies have assessed virulence gene hyperexpression only with protozoa from the bovine rumen while conjugal transfer has been demonstrated in rumen protozoa from cattle and goats. The present study examined virulence gene hyperexpression for Salmonella exposed to rumen protozoa obtained from cattle, sheep, goats, or two African ruminants (giraffe and bongo). Conjugal transfer was also assessed in these protozoa using Salmonella as the recipient. Virulence gene hyperexpression was only observed following exposure to the rumen protozoa from cattle and sheep while elevated virulence was also observed in these animals. Conjugal transfer events were, however, observed in all protozoa evaluated. It therefore appears that the protozoa-based hypervirulence is not universal to all ruminants while conjugal transfer is more ubiquitous.

  3. Not plants or animals: a brief history of the origin of Kingdoms Protozoa, Protista and Protoctista.

    PubMed

    Scamardella, J M

    1999-12-01

    In the wake of Darwin's evolutionary ideas, mid-nineteenth century naturalists realized the shortcomings of the long established two-kingdom system of organismal classification. Placement in a natural scheme of Protozoa, Protophyta, Phytozoa and Bacteria, microorganisms that exhibited plant-like and animal-like characteristics but obviously differed in organization from larger plants and animals, challenged traditional classification. The attempts of naturalists to classify these organisms outside the constraints of the plant and animal kingdoms led to concepts of additional kingdoms (Protozoa, Protista, Protoctista, etc.) to accommodate the nature of these organisms as not true plants or animals.

  4. Microbial Community Structure of Subglacial Lake Whillans, West Antarctica.

    PubMed

    Achberger, Amanda M; Christner, Brent C; Michaud, Alexander B; Priscu, John C; Skidmore, Mark L; Vick-Majors, Trista J

    2016-01-01

    Subglacial Lake Whillans (SLW) is located beneath ∼800 m of ice on the Whillans Ice Stream in West Antarctica and was sampled in January of 2013, providing the first opportunity to directly examine water and sediments from an Antarctic subglacial lake. To minimize the introduction of surface contaminants to SLW during its exploration, an access borehole was created using a microbiologically clean hot water drill designed to reduce the number and viability of microorganisms in the drilling water. Analysis of 16S rRNA genes (rDNA) amplified from samples of the drilling and borehole water allowed an evaluation of the efficacy of this approach and enabled a confident assessment of the SLW ecosystem inhabitants. Based on an analysis of 16S rDNA and rRNA (i.e., reverse-transcribed rRNA molecules) data, the SLW community was found to be bacterially dominated and compositionally distinct from the assemblages identified in the drill system. The abundance of bacteria (e.g., Candidatus Nitrotoga, Sideroxydans, Thiobacillus, and Albidiferax) and archaea (Candidatus Nitrosoarchaeum) related to chemolithoautotrophs was consistent with the oxidation of reduced iron, sulfur, and nitrogen compounds having important roles as pathways for primary production in this permanently dark ecosystem. Further, the prevalence of Methylobacter in surficial lake sediments combined with the detection of methanogenic taxa in the deepest sediment horizons analyzed (34-36 cm) supported the hypothesis that methane cycling occurs beneath the West Antarctic Ice Sheet. Large ratios of rRNA to rDNA were observed for several operational taxonomic units abundant in the water column and sediments (e.g., Albidiferax, Methylobacter, Candidatus Nitrotoga, Sideroxydans, and Smithella), suggesting a potentially active role for these taxa in the SLW ecosystem. Our findings are consistent with chemosynthetic microorganisms serving as the ecological foundation in this dark subsurface environment, providing new

  5. Microbial Community Structure of Subglacial Lake Whillans, West Antarctica

    PubMed Central

    Achberger, Amanda M.; Christner, Brent C.; Michaud, Alexander B.; Priscu, John C.; Skidmore, Mark L.; Vick-Majors, Trista J.; Adkins, W.

    2016-01-01

    Subglacial Lake Whillans (SLW) is located beneath ∼800 m of ice on the Whillans Ice Stream in West Antarctica and was sampled in January of 2013, providing the first opportunity to directly examine water and sediments from an Antarctic subglacial lake. To minimize the introduction of surface contaminants to SLW during its exploration, an access borehole was created using a microbiologically clean hot water drill designed to reduce the number and viability of microorganisms in the drilling water. Analysis of 16S rRNA genes (rDNA) amplified from samples of the drilling and borehole water allowed an evaluation of the efficacy of this approach and enabled a confident assessment of the SLW ecosystem inhabitants. Based on an analysis of 16S rDNA and rRNA (i.e., reverse-transcribed rRNA molecules) data, the SLW community was found to be bacterially dominated and compositionally distinct from the assemblages identified in the drill system. The abundance of bacteria (e.g., Candidatus Nitrotoga, Sideroxydans, Thiobacillus, and Albidiferax) and archaea (Candidatus Nitrosoarchaeum) related to chemolithoautotrophs was consistent with the oxidation of reduced iron, sulfur, and nitrogen compounds having important roles as pathways for primary production in this permanently dark ecosystem. Further, the prevalence of Methylobacter in surficial lake sediments combined with the detection of methanogenic taxa in the deepest sediment horizons analyzed (34–36 cm) supported the hypothesis that methane cycling occurs beneath the West Antarctic Ice Sheet. Large ratios of rRNA to rDNA were observed for several operational taxonomic units abundant in the water column and sediments (e.g., Albidiferax, Methylobacter, Candidatus Nitrotoga, Sideroxydans, and Smithella), suggesting a potentially active role for these taxa in the SLW ecosystem. Our findings are consistent with chemosynthetic microorganisms serving as the ecological foundation in this dark subsurface environment, providing new

  6. Structural changes in soil communities after triclopyr application in soils invaded by Acacia dealbata Link.

    PubMed

    Souza-Alonso, Pablo; Guisande, Alejandra; González, Luís

    2015-01-01

    Triclopyr is a commonly used herbicide in the control of woody plants and can exhibit toxic effects to soil microorganisms. However, the impact on soils invaded by plant exotics has not yet been addressed. Here, we present the results of an 18-month field study conducted to evaluate the impact of triclopyr on the structure of fungal and bacterial communities in soils invaded by Acacia dealbata Link, through the use of denature gradient gel electrophoresis. After triclopyr application, analyses of bacterial fingerprints suggested a change in the structure of the soil bacterial community, whereas the structure of the soil fungal community remained unaltered. Bacterial density and F:B ratio values changed across the year but were not altered due to herbicide spraying. On the contrary, fungal diversity was increased in plots sprayed with triclopyr 5 months after the first application. Richness and diversity (H') of both bacteria and fungi were not modified after triclopyr application.

  7. Variations of phytoplankton community structure related to water quality trends in a tropical karstic coastal zone.

    PubMed

    Alvarez-Góngora, Cynthia; Herrera-Silveira, Jorge A

    2006-01-01

    Phytoplankton community structure in coastal areas is a result of various environmental factors such as nutrients, light, grazing, temperature, and salinity. The Yucatan Peninsula is a karstic tropical region that is strongly influenced by submerged groundwater discharge (SGD) into the coastal zone. Phytoplankton community structure and its relationship with regional and local water quality variables were studied in four ports of the northwestern Yucatan Peninsula. Water quality was strongly related to SGD, and variations in phytoplankton community structure were related to local nutrient loading and hydrographic conditions, turbulence, and human impacts. Our study provides an ecological baseline for the Yucatan Peninsula and serves as a basis for establishing monitoring programs to predict changes at sites with high hydrological variation and in developing an early alert system for harmful toxic algal blooms.

  8. An experimental model for the spatial structuring and selection of bacterial communities.

    PubMed

    Thomas, Torsten; Kindinger, Ilona; Yu, Dan; Esvaran, Meera; Blackall, Linda; Forehead, Hugh; Johnson, Craig R; Manefield, Mike

    2011-11-01

    Community-level selection is an important concept in evolutionary biology and has been predicted to arise in systems that are spatially structured. Here we develop an experimental model for spatially-structured bacterial communities based on coaggregating strains and test their relative fitness under a defined selection pressure. As selection we apply protozoan grazing in a defined, continuous culturing system. We demonstrate that a slow-growing bacterial strain Blastomonas natatoria 2.1, which forms coaggregates with Micrococcus luteus, can outcompete a fast-growing, closely related strain Blastomonas natatoria 2.8 under conditions of protozoan grazing. The competitive benefit provided by spatial structuring has implications for the evolution of natural bacterial communities in the environment.

  9. Surveying traffic congestion based on the concept of community structure of complex networks

    NASA Astrophysics Data System (ADS)

    Ma, Lili; Zhang, Zhanli; Li, Meng

    2016-07-01

    In this paper, taking the traffic of Beijing city as an instance, we study city traffic states, especially traffic congestion, based on the concept of network community structure. Concretely, using the floating car data (FCD) information of vehicles gained from the intelligent transport system (ITS) of the city, we construct a new traffic network model which is with floating cars as network nodes and time-varying. It shows that this traffic network has Gaussian degree distributions at different time points. Furthermore, compared with free traffic situations, our simulations show that the traffic network generally has more obvious community structures with larger values of network fitness for congested traffic situations, and through the GPSspg web page, we show that all of our results are consistent with the reality. Then, it indicates that network community structure should be an available way for investigating city traffic congestion problems.

  10. Benthic community responses to macroalgae invasions in seagrass beds: Diversity, isotopic niche and food web structure at community level

    NASA Astrophysics Data System (ADS)

    Deudero, S.; Box, A.; Vázquez-Luis, M.; Arroyo, N. L.

    2014-04-01

    Trophic paths between species are a useful tool for analysing the impact of species invasions of a biotic community. Species invasions produce changes at trophic level and diversity shifts by replacing native species with species of similar ecological niche. This study focused on the effects of macroalgal invasions on seagrass ecosystems. We conducted two - year bimonthly sampling of a pristine Posidonia oceanica seagrass meadow and dead matte colonized by three Caulerpa species bimonthly. The largest changes in faunal composition were found in meadows colonized by Caulerpa prolifera, where major differences in infaunal taxonomic distinctness were apparent. On the other hand, the infaunal community was quite similar between the two invasive Caulerpa species (Caulerpa taxifolia and Caulerpa racemosa). The isotopic niche based on the main trophic guilds established using stable isotope signatures at community level resulted in a highly compacted and 15N-enriched C. prolifera food web structure, indicating high overlap of food source utilization among faunal components, which is typical of degraded systems. Conversely, the P. oceanica ecosystem presented the most complex food web, while the influence of the 2 invasive species were similar. An attempt to reconstruct the food web at each vegetated habitat revealed high trophic linkages among the different trophic levels with a continuous transition among them by the various trophic guilds suggesting an adaptation response of the different organisms to the new habitat forming species.

  11. Genetic structure of Triatoma infestans populations in rural communities of Santiago del Estero, northern Argentina.

    PubMed

    Marcet, P L; Mora, M S; Cutrera, A P; Jones, L; Gürtler, R E; Kitron, U; Dotson, E M

    2008-12-01

    To gain an understanding of the genetic structure and dispersal dynamics of Triatoma infestans populations, we analyzed the multilocus genotype of 10 microsatellite loci for 352 T. infestans collected in 21 houses of 11 rural communities in October 2002. Genetic structure was analyzed at the community and house compound levels. Analysis revealed that vector control actions affected the genetic structure of T. infestans populations. Bug populations from communities under sustained vector control (core area) were highly structured and genetic differentiation between neighboring house compounds was significant. In contrast, bug populations from communities with sporadic vector control actions were more homogeneous and lacked defined genetic clusters. Genetic differentiation between population pairs did not fit a model of isolation by distance at the microgeographical level. Evidence consistent with flight or walking bug dispersal was detected within and among communities, dispersal was more female-biased in the core area and results suggested that houses received immigrants from more than one source. Putative sources and mechanisms of re-infestation are described. These data may be use to design improved vector control strategies.

  12. Characterizing changes in soil bacterial community structure in response to short-term warming.

    PubMed

    Xiong, Jinbo; Sun, Huaibo; Peng, Fei; Zhang, Huayong; Xue, Xian; Gibbons, Sean M; Gilbert, Jack A; Chu, Haiyan

    2014-08-01

    High altitude alpine meadows are experiencing considerably greater than average increases in soil surface temperature, potentially as a result of ongoing climate change. The effects of warming on plant productivity and soil edaphic variables have been established previously, but the influence of warming on soil microbial community structure has not been well characterized. Here, the impact of 15 months of soil warming (both +1 and +2 °C) on bacterial community structure was examined in a field experiment on a Tibetan plateau alpine meadow using bar-coded pyrosequencing. Warming significantly changed (P < 0.05) the structure of the soil bacterial community, but the alpha diversity was not dramatically affected. Changes in the abundance of the Actinobacteria and Alphaproteobacteria were found to contribute the most to differences between ambient (AT) and artificially warmed conditions. A variance partitioning analysis (VPA) showed that warming directly explained 7.15% variation in bacterial community structure, while warming-induced changes in soil edaphic and plant phenotypic properties indirectly accounted for 28.3% and 20.6% of the community variance, respectively. Interestingly, certain taxa showed an inconsistent response to the two warming treatments, for example Deltaproteobacteria showed a decreased relative abundance at +1 °C, but a return to AT control relative abundance at +2 °C. This suggests complex microbial dynamics that could result from conditional dependencies between bacterial taxa.

  13. Influence of Tree Species Composition and Community Structure on Carbon Density in a Subtropical Forest

    PubMed Central

    Hu, Yanqiu; Su, Zhiyao; Li, Wenbin; Li, Jingpeng; Ke, Xiandong

    2015-01-01

    We assessed the impact of species composition and stand structure on the spatial variation of forest carbon density using data collected from a 4-ha plot in a subtropical forest in southern China. We found that 1) forest biomass carbon density significantly differed among communities, reflecting a significant effect of community structure and species composition on carbon accumulation; 2) soil organic carbon density increased whereas stand biomass carbon density decreased across communities, indicating that different mechanisms might account for the accumulation of stand biomass carbon and soil organic carbon in the subtropical forest; and 3) a small number of tree individuals of the medium- and large-diameter class contributed predominantly to biomass carbon accumulation in the community, whereas a large number of seedlings and saplings were responsible for a small proportion of the total forest carbon stock. These findings demonstrate that both biomass carbon and soil carbon density in the subtropical forest are sensitive to species composition and community structure, and that heterogeneity in species composition and stand structure should be taken into account to ensure accurate forest carbon accounting. PMID:26317523

  14. GENETIC STRUCTURE OF TRIATOMA INFESTANS POPULATIONS IN RURAL COMMUNITIES OF SANTIAGO DEL ESTERO, NORTHERN ARGENTINA

    PubMed Central

    Marcet, PL; Mora, MS; Cutrera, AP; Jones, L; Gürtler, RE; Kitron, U; Dotson, EM

    2008-01-01

    To gain an understanding of the genetic structure and dispersal dynamics of T. infestans populations, we analyzed the multilocus genotype of 10 microsatellite loci for 352 T. infestans collected in 21 houses of 11 rural communities in October 2002. Genetic structure was analyzed at the community and house compound levels. Analysis revealed that vector control actions affected the genetic structure of T. infestans populations. Bug populations from communities under sustained vector control (core area) were highly structured and genetic differentiation between neighboring house compounds was significant. In contrast, bug populations from communities with sporadic vector control actions were more homogeneous and lacked defined genetic clusters. Genetic differentiation between population pairs did not fit a model of isolation by distance at the microgeographical level. Evidence consistent with flight or walking bug dispersal was detected within and among communities, dispersal was more female-biased in the core area and results suggested that houses received immigrants from more than one source. Putative sources and mechanisms of re-infestation are described. These data may be use to design improved vector control strategies PMID:18773972

  15. The relationship between community structural characteristics, the context of crack use, and HIV risk behaviors in San Salvador, El Salvador.

    PubMed

    Dickson-Gomez, Julia; McAuliffe, Timothy; Rivas de Mendoza, Lorena; Glasman, Laura; Gaborit, Mauricio

    2012-02-01

    This paper explores community structural factors in different low-income communities in the San Salvador, El Salvador, that account for differences in the social context in which crack is used and HIV risk behaviors among crack users. Results suggest that both more distal (type of low-income community, level of violent crime, and poverty) and proximate structural factors (type of site where drugs are used, and whether drugs are used within or outside of community of residence) influence HIV risk behaviors among drug users. Additionally, our results suggest that community structural factors influence the historical and geographic variation in drug use sites.

  16. Evolution of community structure in the world trade web

    NASA Astrophysics Data System (ADS)

    Tzekina, I.; Danthi, K.; Rockmore, D. N.

    2008-06-01

    In this note we study the bilateral merchandise trade flows between 186 countries over the 1948 2005 period using data from the International Monetary Fund. We use the network visualization package Pajek to identify network structure and behavior across thresholds and over time. In particular, we focus on the evolution of trade “islands” in a world trade network in which countries are linked with directed edges weighted according to the fraction of total dollars sent from one country to another. We find mixed evidence for globalization.

  17. Correcting the record of structural publications requires joint effort of the community and journal editors.

    PubMed

    Rupp, Bernhard; Wlodawer, Alexander; Minor, Wladek; Helliwell, John R; Jaskolski, Mariusz

    2016-12-01

    Seriously flawed and even fictional models of biomolecular crystal structures, although rare, still persist in the record of structural repositories and databases. The ensuing problems of database contamination and persistence of