Science.gov

Sample records for compact blue-green lasers

  1. Compact Blue-Green Lasers: Summaries of papers presented at the topical meeting. Volume 6: Technical digest series

    NASA Astrophysics Data System (ADS)

    Quinn, Jarus W.

    1992-02-01

    Summaries of papers presented at the Compact Blue-Green Lasers Topical Meeting held in Santa Fe, New Mexico on February 20-21, 1992 are presented. Topics covered are blue-green laser applications, IR pumped visible lasers, blue-green diode emitters, materials, frequency conversion in bulk devices, gas lasers, and frequency conversion in guided-wave devices.

  2. Development of compact blue-green lasers for projection display based on Novalux extended-cavity surface-emitting laser technology

    NASA Astrophysics Data System (ADS)

    Shchegrov, Andrei V.; Watson, Jason P.; Lee, Dicky; Umbrasas, Arvydas; Hallstein, Sascha; Carey, Glen P.; Hitchens, William R.; Scholz, Ken; Cantos, Brad D.; Niven, Greg; Jansen, Michael; Pelaprat, Jean-Michel; Mooradian, Aram

    2005-03-01

    Compact and efficient blue-green lasers have been receiving increasing interest in the last few years due to their applications in various industries: bio-instrumentation, reprographics, microscopy, etc. We report on the latest developments in frequency-doubled, compact blue-green lasers, based on Novalux extended-cavity surface emitting laser (NECSEL) technology. This discussion will touch upon using NECSEL technology to go beyond a 5-20 milliwatt cw laser design for instrumentation applications and obtain a compact design that is scalable to higher power levels in an array-based architecture. Such a blue-green laser array platform can address the needs of laser light sources in the projection display consumer electronics markets, particularly in rear-projection televisions.

  3. Blue-green upconversion laser

    DOEpatents

    Nguyen, D.C.; Faulkner, G.E.

    1990-08-14

    A blue-green laser (450--550 nm) uses a host crystal doped with Tm[sup 3+]. The Tm[sup 3+] is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP. 3 figs.

  4. Blue-green upconversion laser

    SciTech Connect

    Nguyen, Dinh C.; Faulkner, George E.

    1990-01-01

    A blue-green laser (450-550 nm) uses a host crystal doped with Tm.sup.3+. The Tm.sup.+ is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP.

  5. Compact Blue-Green Lasers: Summaries of Papers Presented at the Topical Meeting Held in Sante Fe, New Mexico on 20-21 February 1992. Volume 6. Technical Digest Series

    DTIC Science & Technology

    1992-02-21

    AD-A255 001 COMPACT BLUE -GREEN LASERS L- | This document has enldD. I =.. AUG 12 1992 Sponsored by fl :’ Air Force Office of Scientific Research A...20-21,1992 ERIES VOLUME 6 SANTA FE, NEW MEXICO 92 8 7 10F4 BRA20-22466 IVOUESNTEINEWIMEXIC Compact Blue -Green Lasers Summaries ofpapers presented at...the Compact Blue -Green Lasers Topical Meeting February 20-21, 1992 Santa Fe, New Mexico 1992 Technical Digest Series IC QUALITY INSPECTED 8 Volume 6

  6. Blue-Green Lasers and Electrodeless Flashlamps

    DTIC Science & Technology

    1983-08-01

    very helpful. W. Krupke of the Lawrence Livermore Laboratory contributed useful discussions on high power solid-state lasers . Financial support was...Blue-Green Lasers and Electrodeless Flashlamps F. W. Perkins CIAM * Accesion For7 DTIC TAB [] Urnannouriced lI Justification By...combining the technology of moderate pressure electrodeless discharge lamps with the efficiency of a resonantly pumped solid-state laser to achieve an

  7. Blue, green, orange, and red upconversion laser

    DOEpatents

    Xie, P.; Gosnell, T.R.

    1998-09-08

    A laser is disclosed for outputting visible light at the wavelengths of blue, green, orange and red light. This is accomplished through the doping of a substrate, such as an optical fiber or waveguide, with Pr{sup 3+} ions and Yb{sup 3+} ions. A light pump such as a diode laser is used to excite these ions into energy states which will produce lasing at the desired wavelengths. Tuning elements such as prisms and gratings can be employed to select desired wavelengths for output. 11 figs.

  8. Blue, green, orange, and red upconversion laser

    DOEpatents

    Xie, Ping; Gosnell, Timothy R.

    1998-01-01

    A laser for outputting visible light at the wavelengths of blue, green, orange and red light. This is accomplished through the doping of a substrate, such as an optical fiber or waveguide, with Pr.sup.3+ ions and Yb.sup.3+ ions. A light pump such as a diode laser is used to excite these ions into energy states which will produce lasing at the desired wavelengths. Tuning elements such as prisms and gratings can be employed to select desired wavelengths for output.

  9. Intense excitation source of blue-green laser

    NASA Astrophysics Data System (ADS)

    Han, K. S.

    1985-10-01

    An intense and efficient excitation source for blue-green lasers useful for the space-based satellite laser applications, underwater strategic communication, and measurement of ocean bottom profile is being developed. The source in use, hypocycloidal pinch plasma (HCP), and a newly designed dense-plasma focus (DPF) can produce intense UV photons (200 to 300 nm) which match the absorption spectra of both near UV and blue green dye lasers (300 to 400 nm). During the current project period, the successful enhancement of blue-green laser output of both Coumarin 503 and LD490 dye through the spectral conversion of the HCP pumping light has been achieved with a converter dye BBQ. The factor of enhancement in the blue-green laser output energy of both Coumarin 503 and LD490 is almost 73%. This enhancement will definitely be helpful in achieving the direct high power blue-green laser (> 1 MW) with the existing blue green dye laser. On the other hand the dense-plasma focus (DPF) with new optical coupling has been designed and constructed. For the optimization of the DPF device as the UV pumping light source, the velocity of current sheath and the formation of plasma focus have been measured as function of argon or argon-deuterium fill gas pressure. Finally, the blue-green dye laser (LD490) has been pumped with the DPF device for preliminary tests. Experimental results with the DPF device show that the velocity of the current sheath follows the inverse relation of sq st. of pressure as expected. The blue-green dye (LD490) laser output exceeded 3.1 m at the best cavity tuning of laser system. This corresponds to 3J/1 cu cm laser energy extraction.

  10. Blue-green diode-pumped solid state laser system for transcutaneous bilirubinometry in neonatal jaundice

    NASA Astrophysics Data System (ADS)

    Hamza, Mostafa; El-Ahl, Mohammad H. S.; Hamza, Ahmad M.

    2001-01-01

    The authors introduce the design of a blue-green diode- pumped solid-state laser system for transcutaneous measurement of serum bilirubin level in jaundiced new born infant. The system follows the principles of optical bilirubinometry. The choice of wavelengths provides correction for the presence of hemoglobin. The new design is more compact and less expensive.

  11. Intense excitation source of blue-green laser

    NASA Astrophysics Data System (ADS)

    Han, Kwang S.

    1986-10-01

    An intense and efficient source for blue green laser useful for the space-based satellite laser applications, underwater strategic communication, and measurement of ocean bottom profile is being developed. The source in use, the hypocycloidal pinch plasma (HCP), and the dense plasma focus (DPF) can produce intense uv photons (200 to 400nm) which match the absorption spectra of both near UV and blue green dye lasers (300 to 400nm). As a result of optimization of the DPF light at 355nm, the blue green dye (LD490) laser output exceeding 4mJ was obtained at the best cavity tunning of the laser system. With the HCP pumped system a significant enhancement of the blue green laser outputs with dye LD490 and coumarin 503 has been achieved through the spectrum conversion of the pumping light by mixing a converter dye BBQ. The maximum increase of laser output with the dye mixture of LD490+BBQ and coumarin 503+BBQ was greater than 80%. In addition, the untunned near UV lasers were also obtained. The near UV laser output energy of P-terphenyl dye was 0.5mJ at lambda sub C=337nm with the bandwidth of 3n m for the pulse duration of 0.2us. Another near UV laser output energy obtained with BBQ dye was 25 mJ at lambda sub C=383nm with the bandwidth of 3nm for the pulse duration of 0.2us. Another near UV laser output energy obtained with BBQ dye was 25 mJ at lambda sub C=383nm with the bandwidth of 3nm for the pulse duration of 0.2microsec.

  12. Hard-core flashlamp for blue-green laser excitation

    SciTech Connect

    Han, K.S.; Lee, J.K.; Lee, J.H. )

    1988-10-01

    A hard-core flashlamp (HCF) which has a coaxial geometry and an array of inverse pinches was evaluated for blue-green laser excitation. The short pulses ({lt}0.5{mu}s) surface discharges were produced across the core insulator of teflon and alumina. The spectral irradiance of the HCF depends on argon fill gas pressure and the core insulating material. The maximum radiative output of the HCF lies in the region of 340--400 nm (the absorption band of LD 490). An LD490 dye laser pumped by a HCF prototype device had an output of 0.9mJ with a pulse width of 0.5{mu}{ital s} (FWHM).

  13. Raman-Shifted XeCl Laser Development for a Spaceborne Blue-Green Source.

    DTIC Science & Technology

    1982-02-01

    RAMAN-SHIFTED XeCI LASER DEVELOPMENT FOR A SPACEBORNE BLUE-GREEN SOURCE E. A. Stappaerts, M. J. Plummer, W. H. Long, Jr., S. J. Brosnan, H. Komine, and J...TITLE (and S.britJ S. TYPE OF REPORT 6 PEPIOD COVEPED Raman-Shifted XeCl Laser Development for a Technical Report Spaceborne Blue-Green Source: Interim...0.7% cm𔃻 312 nm I0 A 50 ns/DIV. FIGURE 5.3-1 MEASURED GAIN AND LOSS IN XeC1 87 81-34 AD-A133 078 RAMAN-SHIFED XEC LASER DEVELOPMENT FOR A

  14. Turnable Blue-Green LIDAR Transmitter Demonstration: Injection Laser Technology

    DTIC Science & Technology

    1990-08-30

    and transverse operation of the pump , achieved by seeding the pump laser by injection of a lower-power, high quality beam, was used by SU/UH to get to...Comparison of the UV excimer pump and dye laser temporal pulses. The dye laser pulse duration is - 12 ns (FWHM) ......... 2-15 g 11 Illustration of the ASE...the existing UTRC laser using I the m = 1 grating reflection (Fig. 5). A 100 mJ pump pulse at 308 nm was used to pump Coumarin 102. Each wavelength m

  15. Airborne bathymetric charting using pulsed blue-green lasers

    NASA Technical Reports Server (NTRS)

    Kim, H. H.

    1977-01-01

    Laboratory and airborne experiments have proven the feasibility and demonstrated the techniques of an airborne pulsed laser system for rapidly mapping coastal water bathymetry. Water depths of 10 plus or minus 0.25 m were recorded in waters having an effective attenuation coefficient of 0.175 m. A 2-MW peak power Nd:YAG pulsed laser was flown at an altitude of 600 m. An advanced system, incorporating a mirror scanner, a high pulsed rate laser, and a good signal processor, could survey coastal zones at the rate of several square miles per hour.

  16. Airborne bathymetric charting using pulsed blue-green lasers.

    PubMed

    Kim, H H

    1977-01-01

    Laboratory and airborne experiments have proven the feasibility and demonstrated the techniques of an airborne pulsed laser system for rapidly mapping coastal water bathymetry. Water depths of 10 +/- 0.25 m were recorded in waters having an effective attenuation coefficient of 0.175 m(-1). A2-MW peak power Nd:YAG pulsed laser was flown at an altitude of 600 m. An advanced system, incorporating a mirror scanner, a high pulsed rate laser, and a good signal processor, could survey coastal zones at the rate of several square miles per hour.

  17. Electron-Beam-Sustained Blue/Green Laser Pump.

    DTIC Science & Technology

    1980-02-01

    PAOG(9M3 DAW& EaE., ) ) fick 20 \\XeCl(B) formation processes are examined for conditions typical of a discharge excited laser using HC1 as the chlorine... diffuse XeCl discharges having properties compatible with Navy requirements. The initial phase of the present program delt primarily with techniques... titanium foil 1.5 cm x 50 cm in cross-section located 0.64 cm behind the discharge cathode screen. A diagram of the discharge chamber is shown in Fig. 2-2

  18. Advanced Solid-State Lasers/Compact Blue-Green Lasers. 1993 Technical Digest Series. Volume 2. Organization of the 1993 Photonics Science Topical Meetings held in New Orleans, Louisiana on 1 - 4 February 1993

    DTIC Science & Technology

    1993-02-04

    transverse diode - has been accomplished and lasing has been 3-;am cw laser operation In Er3*-doped pumped , Tm, Ho:YAG laser which produces...without expensive optics and complicated adjusting. We present a novel transverse pump design for diode pumped Nd:YAG lasers using a parabolic...Ho:YAG resonator which utilizes direct transverse pumping of the Tm using high-power, quasi-CW, 785 nm laser diode arrays. Each array is

  19. Microscopic defect induced slow-mode degradation in II VI based blue green laser diodes

    NASA Astrophysics Data System (ADS)

    Adachi, Masahiro; Min Aung, Zaw; Minami, Kouichirou; Koizumi, Keiichi; Watanabe, Masashi; Kawamoto, Seiji; Yamaguchi, Tsutomu; Kasada, Hirofumi; Abe, Tomoki; Ando, Koshi; Nakano, Kazushi; Ishibashi, Akira; Itoh, Satoshi

    2000-06-01

    We have studied the microdefect induced degradation mode in long-lifetime blue-green laser diodes (LDs) and light emitting diodes (LEDs) based on II-VI wide bandgap semiconductors. Microscopic deep defect centers in the LDs and LEDs are detected using mainly DLTS technique, coupled with ICTS methods. It is evidenced that a slow-mode degradation, commonly observed in dislocation-free LD devices, is caused by the generation and enhancement of microscopic deep centers during the device aging process. One possible degradation mechanism with a "carrier removal effect" is presented.

  20. Red krypton and blue-green argon laser diabetic panretinal photocoagulation.

    PubMed

    Blankenship, G W; Gerke, E; Batlle, J F

    1989-01-01

    Eyes with three or four diabetic retinopathy risk factors received laser panretinal photocoagulation with random selection of either blue-green argon (42 eyes) or red krypton (40 eyes) laser to determine if one laser was superior to the other. After 6 months, visual acuity preservation or improvement was obtained in 33 (79%) argon- and 34 (84%) krypton-treated eyes. Peripheral IV-4e visual field constriction of 7% occurred with argon and 10% with krypton. Vitreous hemorrhaging after treatment occurred in 1 argon- and in 6 krypton-treated eyes. Complete disc neovascular regression was obtained in 27 (67%) of 40 argon- and 19 (56%) of 34 krypton-treated eyes, with partial regression occurring in 8 (20%) argon- and 8 (24%) krypton-treated eyes. The two treatments produced essentially equal results.

  1. Development of a UV laser-induced fluorescence lidar for monitoring blue-green algae in Lake Suwa.

    PubMed

    Saito, Yasunori; Takano, Kengo; Kobayashi, Fumitoshi; Kobayashi, Kazuki; Park, Ho-Dong

    2014-10-20

    We developed a UV (355 nm) laser-induced fluorescence (LIF) lidar for monitoring the real-time status of blue-green algae. Since the fluorescence spectrum of blue-green algae excited by 355 nm showed the specific fluorescence at 650 nm, the lidar was designed to be able to detect the 650 nm fluorescence as a surveillance method for the algae. The usefulness was confirmed by observation at Lake Suwa over four years (2005-2008). The detection limit of the LIF lidar was 16.65 mg/L for the blue-green algae, which is the range of concentrations in the safe level set by the World Health Organization.

  2. Survey of colour contrast sensitivity in non-ophthalmic users of blue-green wavelength argon lasers.

    PubMed Central

    Allen, L E; Luff, A J; Canning, C R

    1995-01-01

    BACKGROUND--Previous studies have shown that ophthalmologists using blue-green argon laser may suffer subtle defects in their colour vision. A reduction in colour contrast sensitivity in the tritan colour confusion axis, an early manifestation of blue cone photoreceptor injury by the high energy photons of the laser, has been demonstrated and has prompted a reappraisal of laser safety in ophthalmology. Argon laser is also frequently used in scientific research, often at higher power output and for longer periods than is used in clinical practice. The scientists operating these lasers are at risk of developing similar phototoxic retinal injury. METHODS--The colour contrast sensitivity of 18 scientists who regularly use short wavelength argon laser was investigated. RESULTS--Eye protection was infrequently used and individuals had been subjected to between 580 and 7200 hours of cumulative laser exposure during the course of their research. CONCLUSION--The use of blue-green argon laser by the scientists investigated was not associated with a significant reduction in colour contrast sensitivity. Images PMID:7742277

  3. Investigation of oxide and fluoride hosts for blue-green lasers

    NASA Astrophysics Data System (ADS)

    Belt, R. F.; Uhrin, R.; Niemczyk, E.

    1985-08-01

    Mixed crystals of the perovskite type structure of the system La A1(1-x) Sc(x) O3 were examined over the compositions of x=0.15-0.30. Single crystals were grown from melts in iridium crucibles using the Czochralski method. Seed crystals of (111) pure La A1 O3 were used. The growth atmosphere was controlled at 99.75% N2 and 0.25% H2. Dopants of Ce(3+) were maintained at 0.01-0.05 atomic per cent. Preliminary work on polycrystalline materials showed that blue-green luminescence at 485 nm was found. The grown crystals had various amounts of Sc incorporated and were usually translucent. At the x=.30 formulation of melt, about 60-75% of Sc is believed to enter the crystal. No direct evidence was found for ordered type structures. The phase data, compositions, crystal quality, luminescence data, and x-ray results are discussed. Several mixed fluorides were examined for possible blue-green emission by doping with rare earths. Among the host compositions was K Mg Y3 F12, a crystal which could be doped with transition elements and rare earths. A sizeable effort provided fairly good single crystal s for future seeds. Several polycrystalline preparations were made with Ce(3+), Pr(3+), Ti(3+), Nd(3+), Cr(3+), and Er(3+).

  4. Red krypton and blue-green argon panretinal laser photocoagulation for proliferative diabetic retinopathy: a laboratory and clinical comparison.

    PubMed Central

    Blankenship, G W

    1986-01-01

    The effects of PRP with red krypton laser are essentially identical to those produced with blue-green argon laser. Burns of the rabbit retina produced with these two different lasers are almost the same. In a prospective and randomized clinical trial of proliferative diabetic retinopathy treatment there was no significant difference between PRP using these two different lasers. The characteristic changes of rabbit fundi 3, 7, and 30 days after PRP with red krypton laser were almost the same as those following blue-green argon laser. Both types of treatment frequently produced small vitreous hemorrhages and exudative retinal detachments, but choroidal thickening occurred more frequently with argon treatment. These changes were transient and had resolved within 30 days of treatment. The microscopic changes consisted of pigment epithelial disruption with pigment migration into the retina, heat coagulation of the photoreceptors, disruption of the outer and inner nuclear layers with atrophy of the nuclei, and temporary swelling of the nerve fiber layer. The untreated retina and choroid between burns was not involved and appeared normal at each period. Thirty days after treatment, the scarring produced by these two types of burns was identical. Seventy-one eyes with proliferative diabetic retinopathy having three or four retinopathy risk factors were treated with panretinal laser photocoagulation, and followed in a prospective study for 6 months. Thirty-six eyes were randomly selected for blue-green argon treatment, and 35 were randomly selected for red krypton treatment. The incidence of undesired side effects during the first 2 weeks following treatment was almost identical between the two groups. However, by 1 month the majority of eyes in both groups had visual acuities equal to or better than the pretreatment acuities and complete regression of NVD. Six months after treatment, the majority of eyes in both groups continued to have visual acuities equal to or better

  5. Study of the blue-green laser scattering from the rough sea surface with foams by the improved two-scale method

    NASA Astrophysics Data System (ADS)

    Li, Xiangzhen; Qi, Xiao; Han, Xiang'e.

    2015-10-01

    The characteristics of laser scattering from sea surface have a great influence on application performance, from submarine communication, laser detection to laser diffusion communication. Foams will appear when the wind speed exceeds a certain value, so the foam can be seen everywhere in the upper layer of the ocean. Aiming at the volume-surface composite model of rough sea surface with foam layer driven by wind, and the similarities and differences of scattering characteristics between blue-green laser and microwave, an improved two-scale method for blue-green laser to calculate the scattering coefficient is presented in this paper. Based on the improved two-scale rough surface scattering theory, MIE theory and VRT( vector radiative transfer ) theory, the relations between the foam coverage of the sea surface and wind speed and air-sea temperature difference are analyzed. Aiming at the Gauss sea surface in blue-green laser, the dependence of back- and bistatie-scattering coefficient on the incident and azimuth angle, the coverage of foams, as well as the wind speed are discussed in detail. The results of numerical simulations are compared and analyzed in this paper. It can be concluded that the foam layer has a considerable effect on the laser scattering with the increase of wind speed, especially for a large incident angle. Theoretical analysis and numerical simulations show that the improved two-scale method is reasonable and efficient.

  6. Tunable cw blue, green, orange and red upconversion fiber lasers at room temperature

    SciTech Connect

    Xie, Ping; Gosnell, T.R.

    1994-10-01

    The authors report tunable cw laser actions at 491-493nm, 517-540nm, 605-622nm and 635-637nm in Pr{sup 3+}/Yb{sup 3+} doped ZBLAN optical fibers. A tunable Ti:Al{sub 2}O{sub 3} laser was used as the pump source to simulate diode laser pumping. With 60 nW launched power, the excitation wavelength of the lasers was in the range of 780nm to 880nm. 300mW Output power has been achieved at 635nm with 760mW launched power at 860nm. With the pump wavelength at 860nm, the authors have also demonstrated stimulated emissions of 45mW at 615 nm with 430mW launched power, 20mW at 520 and 4mW at 493nm with 200mW launched power.

  7. Blue-green algae

    MedlinePlus

    ... conditions, cancer, fatty liver disease, hepatitis C, and arsenic poisoning. Blue-green algae are applied inside the mouth ... people with insulin resistance due to HIV medication. Arsenic poisoning. Early research shows that taking 250 mg of ...

  8. Investigation of Ce(3+) Dopant in Appropriate Hosts for Blue Green Lasers.

    DTIC Science & Technology

    1986-11-25

    v 1.0 Introduction............................................. ..1 2.0 Heat Exchanger Method (HEMr...were made to study the feasibility of Ce 3 +:La(Al,Sc)0 3 crystal growth by the Heat Exchanger Method (HEMr). After initial experiments, Nemphasis was...single crystal form for laser applications. 2 4A, .i ~* b @p 2.0 Heat Exchanger Method (HEM) The Heat Exchanger Method (HEM) is being used for

  9. Present status of InGaN-based UV/blue/green LEDs and laser diodes

    NASA Astrophysics Data System (ADS)

    Nakamura, Shuji

    InGaN quantum well structure light emitting diodes operating with external quantum efficiencies of 7.5% at 371 nm (UV), 11.2% at 468 nm (blue) and 11.6% at green were developed. The blue and green InGaN LEDs with lurninous efficiencies of 5 lm/W and 30 lm/W can be used for fabricating white LEDs with a lumininous efficiency of 30 lm/W which is almost identical to that of conventional incandescent bulb lamps. Epitaxially laterally overgrown GaN on sapphire was used to reduce the number of threading dislocations originating from the interface of the GaN epilayer with the sapphire substrate. The GaN layer above the SiO2 mask area surrounding the window and corresponding to the lateral overgrowth, was nearly free of the threading dislocations. InGaN multi-quantum well structure laser diodes grown on pure GaN substrates, which were fabricated by removing the sapphire substrate, were demonstrated. The laser diodes with an output power of 5 mW exhibited a lifetime of more than 290 hours. The far-field pattern of the laser diodes with a cleaved mirror facet revealed single mode emission without any interference effects.

  10. Selective laser suture lysis with a compact, low-cost, red diode laser.

    PubMed

    Shein, Petr; Cilip, Christopher M; Quinto, Guilherme; Behrens, Ashley; Fried, Nathaniel M

    2008-01-01

    The argon (blue-green) laser is currently used for vaporization of sutures during ophthalmic surgery. However, previous studies have reported more effective laser suture lysis and a lower rate of complications using the krypton (red) laser. Red wavelengths are selectively absorbed by the nylon sutures, but are minimally absorbed by adjacent tissue, and not absorbed by hemoglobin, unlike the argon laser wavelengths. More compact and less expensive red diode lasers have recently become commercially available for surgical applications. This study explores the use of a compact, lowpower, red diode laser for selective laser suture lysis. A 225 mW, 660-nm diode laser was used to vaporize 10-0 nylon sutures in human cornea samples with a single laser pulse, pulse energy of 150 mJ, pulse duration of 100 ms, and spot diameter of 55 mum. The red diode laser may represent an inexpensive, compact, and safer alternative laser for use in laser suture lysis during ophthalmic surgery.

  11. Investigation of oxide and fluoride hosts for blue-green lasers. Final report, 1 October 1982-31 January 1985

    SciTech Connect

    Belt, R.F.; Uhrin, R.; Niemczyk, E.

    1985-08-01

    Mixed crystals of the perovskite type structure of the system LaA1(1-x)Sc(x)O/sub 3/ were examined over the compositions of x=0.15-0.30. Single crystals were grown from melts in iridium crucibles using the Czochralski method. Seed crystals of (111) pure LaA1O/sub 3/ were used. The growth atmosphere was controlled at 99.75% N/sub 2/ and 0.25% H/sub 2/. Dopants of Ce/sup 3 +/ were maintained at 0.01-0.05 at.%. Preliminary work on polycrystalline materials showed that blue-green luminescence at 485 nm was found. The grown crystals had various amounts of Sc incorporated and were usually translucent. At the x=.30 formulation of melt, about 60-75% of Sc is believed to enter the crystal. No direct evidence was found for ordered-type structures. The phase data, compositions, crystal quality, luminescence data, and x-ray results are discussed. Several mixed fluorides were examined for possible blue-green emission by doping with rare earths. Among the host compositions was KMgY/sub 3/F/sub 12/, a crystal that could be doped with transition elements and rare earths. A sizeable effort provided fairly good single crystals for future seeds. Several polycrystalline preparations were made with Ce/sup 3 +/, Pr/sup 3 +/, Ti/sup 3 +/, Nd/sup 3 +/, Cr/sup 3 +/, and Er/sup 3 +/.

  12. Quantum coherent control of blue, green and red emissions from codoped lanthanide ions of Er3+/Tm3+/Yb3+ by two shaped infrared ultrashort laser beams

    NASA Astrophysics Data System (ADS)

    Cheng, Wenjing; Zhang, Shian; Jia, Tianqing; Ma, Jing; Sun, Zhenrong

    2014-01-01

    The enhancement and tunable color emissions from codoped lanthanide ions of Er3+/Tm3+/Yb3+ have been studied extensively in recent decades. In this paper, we present a new scheme for quantum coherent control of two-photon absorption (TPA) and color emission in codoped lanthanide ions of Er3+/Tm3+/Yb3+ by properly phase shaping two infrared ultrashort laser beams at central frequencies of 10 650 cm-1 and 7650 cm-1, respectively. Compared with the results irradiated by transform-limited pulses, the TPA probabilities of the blue, green and red emissions are independently controlled in the ranges 0-13.3, 0-14.5 and 0-1.0, respectively. The effects of the energy states of lanthanide ions and the laser spectral bandwidths on the coherent features are also discussed. The TPA probabilities for the blue and green emissions increase with the laser spectral bandwidths and decrease with the energy bandwidths of the final level states. As the intermediate energy level shifts in the range 10 100-10 500 cm-1, the TPA probabilities for the blue and green emissions change in the ranges 7-15 and 8-17, respectively.

  13. Exploiting the Negative Polarization Properties of Indium Gallium Nitride (InGaN)/Gallium Nitride (GaN) Heterostructures to Achieve Frequency Doubled Blue-green Lasers with Deep UV (250 nm) Emission (Year 2)

    DTIC Science & Technology

    2011-05-01

    Exploiting the Negative Polarization Properties of Indium Gallium Nitride ( InGaN )/Gallium Nitride (GaN) Heterostructures to Achieve Frequency...Polarization Properties of Indium Gallium Nitride ( InGaN )/Gallium Nitride (GaN) Heterostructures to Achieve Frequency Doubled Blue-green Lasers...Exploiting the Negative Polarization Properties of Indium Gallium Nitride ( InGaN )/Gallium Nitride (GaN) Heterostructures to Achieve Frequency Doubled

  14. Super-Compact Laser

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Microcosm, Inc. produced the portable Farfield-2 laser for field applications that require high power pulsed illumination. The compact design was conceived through research at Goddard Space Flight Center on laser instruments for space missions to carry out geoscience studies of Earth. An exclusive license to the key NASA patent for the compact laser design was assigned to Microcosm. The FarField-2 is ideal for field applications, has low power consumption, does not need water cooling or gas supplies, and produces nearly ideal beam quality. The properties of the laser also make it effective over long distances, which is one reason why NASA developed the technology for laser altimeters that can be toted aboard spacecraft. Applications for the FarField-2 include medicine, biology, and materials science and processing, as well as diamond marking, semiconductor line-cutting, chromosome surgery, and fluorescence microscopy.

  15. Blue-Green Solutions in Urban Development

    NASA Astrophysics Data System (ADS)

    Karlsson, Caroline; Kalantari, Zahra

    2017-04-01

    With the ongoing urbanisation and increasing pressure for new housing and infrastructure, the nexus of developing compact, energy-efficient and yet liveable and sustainable cities is urgent to address. In this context, blue-green spaces and related ecosystem services (ES) are critical resources that need to be integrated in policy and planning of urban. Among the ES provided by blue-green spaces, regulating ES such as water retention and purification are particularly important in urban areas, affecting water supply and quality, related cultural ES and biodiversity, as well as cities potential to adapt to climate change. Blue-green infrastructure management is considered a sustainable way to reducing negative effects of urbanisation, such as decreasing flood risks, as well as adapting to climate change for example by controlling increasing flood and drought risks. Blue-green infrastructure management can for example create multifunctional surfaces with valuable environmental and social functions and generally handle greenways and ecological networks as important ecosystem service components, for example for stormwater regulation in a sustainable urban drainage system. The Norrström drainage basin (22,000 km2) is a large demonstrator for Blue-green infrastructure management. Both urbanisation and agriculture are extensive within this basin, which includes the Swedish capital Stockholm and is part of the fertile Swedish belt. Together, the relatively high population density combined with agricultural and industrial activities in this region imply large eutrophication and pollution pressures, not least transferred through storm runoff to both inland surface waters and the coastal waters of the Baltic Sea. The ecosystems of this basin provide highly valued but also threatened services. For example, Lake Mälaren is the single main freshwater supply for the Swedish capital Stockholm, as well as a key nutrient retention system that strongly mitigates waterborne nutrient

  16. Crystal growth, thermal and optical studies on a semiorganic nonlinear optical material for blue-green laser generation.

    PubMed

    Ramajothi, J; Dhanuskodi, S

    2007-12-31

    The semiorganic nonlinear optical material l-histidine bromide (l-HB) has been synthesized in aqueous solution and characterized by FT-IR, FT-Raman and FT-NMR spectroscopic techniques. The single crystals with dimensions 9mm x 4mm x 3mm were grown by slow evaporation techniques. The grown crystals were subjected to single crystal X-ray diffraction to determine the unit cell dimensions. The thermal stability of the grown crystal was analyzed by thermogravimetric (TG), differential thermal (DT) and differential scanning calorimetric (DSC) analyses. The UV-vis transmittance spectrum shows that it has a good optical transmittance in the entire visible region with the lower cutoff wavelength at 220 nm. The SHG conversion efficiency and laser damage threshold were measured using a Nd:YAG laser (1064 nm). The optical birefringence was measured in the visible region as a function of temperature in the range 30-150 degrees C by interference technique.

  17. The energy transfer mechanism of a photoexcited and electroluminescent organic hybrid thin film of blue, green, and red laser dyes

    NASA Astrophysics Data System (ADS)

    Li, Weiling; Zhang, Jing; Zheng, Yanqiong; Chen, Guo; Cai, Miao; Wei, Bin

    2015-04-01

    Though optically pumped lasing has been realized for years, electrically pumped lasing has not yet been achieved in organic semiconductor devices. In order to make a better understanding of the laser mechanisms of the organic materials, we prepared organic thin films consisting of three efficient laser dyes of a blue emitter, 4″,4″'-N,N-diphenylamine-4,4'-diphenyl-1,1'-binaphthyl (BN), a green emitter, 1,4-bis[2-[4-[N,N-di(p-tolyl)amino] phenyl]vinyl]benzene (DSB), and a red emitter, 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidy-l-9-enyl)-4H-pyran (DCJTB) with different doping concentrations for the first time to investigate the cascade energy transfer process. The energy transfer schemes in the co-doped thin films in photoluminescence and electroluminescence have been investigated. The results indicated that the DSB molecules acted as a bridge to deliver energy more effectively from the host (BN) to the guest (DCJTB). Meanwhile, the maximum current efficiency ( C E) and power efficiency ( P E) of the organic light-emitting devices (OLEDs) with the emitting layer of lower doping concentration were 13.5 cd/A and 14.1 lm/W, respectively.

  18. Compact Ho:YLF Laser

    NASA Technical Reports Server (NTRS)

    Hemmati, H.

    1988-01-01

    Longitudinal pumping by laser diodes increases efficiency. Improved holmium:yttrium lithium fluoride laser radiates as much as 56 mW of power at wavelength of 2.1 micrometer. New Ho:YLF laser more compact and efficient than older, more powerful devices of this type. Compact, efficient Ho:YLF laser based on recent successes in use of diode lasers to pump other types of solid-state lasers.

  19. Compact laser amplifier system

    DOEpatents

    Carr, R.B.

    1974-02-26

    A compact laser amplifier system is described in which a plurality of face-pumped annular disks, aligned along a common axis, independently radially amplify a stimulating light pulse. Partially reflective or lasing means, coaxially positioned at the center of each annualar disk, radially deflects a stimulating light directed down the common axis uniformly into each disk for amplification, such that the light is amplified by the disks in a parallel manner. Circumferential reflecting means coaxially disposed around each disk directs amplified light emission, either toward a common point or in a common direction. (Official Gazette)

  20. Neptune Blue-green Atmosphere

    NASA Image and Video Library

    2000-02-16

    Neptune's blue-green atmosphere is shown in greater detail than ever before by the Voyager 2 spacecraft as it rapidly approaches its encounter with the giant planet. This color image, produced from a distance of about 16 million kilometers, shows several complex and puzzling atmospheric features. The Great Dark Spot (GDS) seen at the center is about 13,000 km by 6,600 km in size -- as large along its longer dimension as the Earth. The bright, wispy "cirrus-type" clouds seen hovering in the vicinity of the GDS are higher in altitude than the dark material of unknown origin which defines its boundaries. A thin veil often fills part of the GDS interior, as seen on the image. The bright cloud at the southern (lower) edge of the GDS measures about 1,000 km in its north-south extent. The small, bright cloud below the GDS, dubbed the "scooter," rotates faster than the GDS, gaining about 30 degrees eastward (toward the right) in longitude every rotation. Bright streaks of cloud at the latitude of the GDS, the small clouds overlying it, and a dimly visible dark protrusion at its western end are examples of dynamic weather patterns on Neptune, which can change significantly on time scales of one rotation (about 18 hours). https://photojournal.jpl.nasa.gov/catalog/PIA02245

  1. [A study of the effect of low-intensity laser radiation of the blue, green, and red spectral regions on the healing of experimental skin wounds in rats].

    PubMed

    Machneva, T V; Protopopov, D M; Vladimirov, Iu A; Osipov, A N

    2008-01-01

    The effect of low-intensity laser radiation of the blue (441.2 nm), green (532 nm), and red (632.8 nm) spectral regions on the healing of experimental skin wounds in rats has been studied. The effect of the traditionally applied laser radiation in the red region has been compared with the effect of laser radiation in the other spectral regions, assuming that, upon irradiation of wounds by lasers emitting in the blue and green regions, a similar effect can be achieved at lower doses. The following parameters characterizing the healing of experimental wounds were used: the functional activity of phagocytes of wound exudates, which was determined by luminol-dependent chemiluminescence, and their number; the antioxidant activity of wound exudates; and the rate of healing, which was determined as a change in the wound area. It was shown that irradiation with laser accelerated the healing of wounds in all cases. The exposure to laser radiations in the red (1.5 J/cm), blue, and green (0.75 J/cm2) spectral regions shortened the time of wound healing from 22 to 17 and 19 days, respectively. The functional activity of leukocytes after the exposure increased on day 5 after the infliction of the wound, whereas in the control it decreased. The superoxide dismutase activity increased in all experimental groups by day 5 after the operation. A maximum increase in the superoxide dismutase activity occurred after the exposure to laser radiation in the red region at a dose of 1.5 J/cm and in the blue and green spectral regions at a dose of 0.75 J/cm2.

  2. [Effects of low power laser radiation of blue, green and red ranges on free radical processes in rat blood in endotoxic shock].

    PubMed

    Machneva, T V; Kosmacheva, N V; Vladimirov, Iu A; Osipov, A N

    2013-01-01

    This study was performed to investigate the effects of low power laser radiation in blue (441.2 nm), green (532.5 nm) and red (632.8 nm) wavelength ranges on free radical processes in experimental endotoxic shock in rats. The experimental model was produced by intraperitoneal injection of lipopolysacharide B (25 mg/kg) (LPS). The following parameters were assayed in the study: the chemiluminescent assay (to evaluate the free radical production by blood leukocytes), nitro blue tetrazolium assay (to monitor the superoxide dismutase activity of plasma) and cis-parinaric acid fluorescence (to estimate the intensity of lipid peroxidation in erythrocyte membranes). It was found that the low power laser radiation significantly influenced all investigated processes, in animals both treated and untreated without LPS injection. The most pronounced effects were observed in all groups of animals subjected to the low power laser radiation: at the dose of 0.75 J/cm2 green laser was most effective and at the dose of 1.5 J/cm2 green and red lasers provided maximal effects. The mechanisms of the observed phenomena are discussed.

  3. A compact laser target designator

    NASA Astrophysics Data System (ADS)

    Lee, S. T.; Silver, M.; Barron, A.; Borthwick, A.; Morton, G.; McRae, I.; Coghill, M.; Smith, C.; Scouler, C.; Gardiner, G.; Imlach, N.; McNeill, C.; McSporran, D.; Rodgers, D.; Kerr, D.; Alexander, W.

    2016-05-01

    Lasers intended for application to man-portable and hand-held laser target designators are subject to significant constraints on size, weight, power consumption and cost. These constraints must be met while maintaining adequate performance across a challenging environmental specification. One of the challenges of operating a Nd3+:YAG laser over a broad ambient temperature range is that of diode-pump-tuning. This system is specified to operate over an ambient temperature range of -46°C to +71°C, and the system electrical power consumption requirements preclude active temperature control. As a result the laser must tolerate a 32.8nm pump wavelength range. The optical absorption of Nd3+:YAG varies dramatically over this wavelength range. This paper presents a laser that minimizes the effect of this change on laser output. A folded U-shaped geometry laser resonator is presented, made up of a corner cube at one end and a plane mirror substrate at the other. The action of the corner cube coupled with this configuration of end mirrors results in a resonator that is significantly less sensitive to misalignment of the end mirror and/or the corner cube. This Ushaped resonator is then further folded to fit the laser into a smaller volume. Insensitivity of this compact folded resonator to mirror misalignments was analyzed in Zemax via a Monte-Carlo analysis and the results of this analysis are presented. The resulting laser output energy, pulse duration and beam quality of this athermally pumped, misalignment insensitive folded laser resonator are presented over an ambient temperature range of -46°C to +71°C.

  4. Experimental Study of Resonance Radiation Trapping as a Method of Gain Improvement for Efficient Power Extraction from the XeF Blue-Green Laser Transition.

    DTIC Science & Technology

    1981-09-30

    volume of approximately 6 liters. It was constructed from stainless steel, aluminum, teflon , and kynar (polyvinylidene) and is, therefore, halogen... compatible . The particular geometries of the laser chamber, rail gap switch, and high voltage feedthroughs were so arranged that the nominal PFN...inside the discharge chamber using a quartz fiber bundle of 0. 25 numerical aperture directed across the discharge gap from the side-wall teflon

  5. Blue-Green Laser Diode Research Program.

    DTIC Science & Technology

    1986-10-01

    molecular beam epitaxy", J. Materials Research, 1, 543 (1986). 11. H.E. Ruda , "The Application of Free Carrier Absorption to N-ZnSe Materials...Characterization", submuitted to j. Appi. Phys. 12. H.E. Ruda , J. Appl. Phys. 59, 1220 (1986). 13. H.E. Ruda , J. Appl. Phys. 59, 3516 (1986). 14. R.K. Swank, M. Avan, and J.Z. Devine, J. Appl. Phys. 40, 89 (1969). 55 -Y ~’c.

  6. Space-Based Blue-Green Laser.

    DTIC Science & Technology

    1981-10-01

    E- BEAM //:. O 2.2 A/cm 0 X60 - Cf) 40- 0 0 0 0 I.Ac 2 00 1. 1 A/cm z ": 20- 0.55/cm 2 0L I I I I "" 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4. S J8838 E/N (10...discharge coefficient through orifices in the perforated plate; Api /pc is the incident pressure wave strength and 7 is the ratio of gas specific heats...pulse overpressure, .. - Api /pc = 0.064, Eq. (17) provides the specification of effec- tive upstream muffler transparency aCD= 0.086. The upstream

  7. Freshwater Cyanobacteria (Blue-Green Algae) Toxins: Isolation and Characterization

    DTIC Science & Technology

    1990-05-01

    division Cyanophyta , commonly called blue -green algae cr cyanobacteria . Although cyanobacteria are found in almost any environment ranging from hot...p ecst Available Copy ~’ COPy Ni AD FRESHWATER CYANOBACTERIA ( BLUE -GREEN ALGAE ) TOXINS:’ I ISOLATION AND CHARACTERIZATION < DTIC ANNUAL/FINAL...AA I 78 11. TITLE (In•.ju . ’,curry Ci.si fication) Freshwater Cyanobacteria ( blue -green algae ) Toxins: Isolatior and CharacteriZation 12. PERSONAL

  8. Freshwater Cyanobacteria (Blue-Green Algae) Toxins: Isolation and Characterization

    DTIC Science & Technology

    1989-01-15

    exclusively caused by strains of species that are members of the L division Cyanophyta , commonly called blue -green algae or cyanobacteria . Although...0 0 Lfl (NAD FRESHWATER CYANOBACTERIA ( BLUE -GREEN ALGAE ) TOXINS: ISOLATION AND CHARACTERIZATION ANNCUAL REPORT Wayne W. Carmichael Sarojini Bose...Frederick, Maryland 21701-5012 62770A 6277GA871 AA 378 11 TITLE &who* Secwn~y C11mrfaon) Freshwater Cyanobacteria ( blue -green algae ) Toxins: Isolation

  9. High-Luminosity Blue and Blue-Green Gallium Nitride Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Morkoc, H.; Mohammad, S. N.

    1995-01-01

    Compact and efficient sources of blue light for full color display applications and lighting eluded and tantalized researchers for many years. Semiconductor light sources are attractive owing to their reliability and amenability to mass manufacture. However, large band gaps are required to achieve blue color. A class of compound semiconductors formed by metal nitrides, GaN and its allied compounds AlGaN and InGaN, exhibits properties well suited for not only blue and blue-green emitters, but also for ultraviolet emitters and detectors. What thwarted engineers and scientists from fabricating useful devices from these materials in the past was the poor quality of material and lack of p-type doping. Both of these obstacles have recently been overcome to the point where high-luminosity blue and blue-green light-emitting diodes are now available in the marketplace.

  10. Compact and highly efficient laser pump cavity

    DOEpatents

    Chang, Jim J.; Bass, Isaac L.; Zapata, Luis E.

    1999-01-01

    A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

  11. Compact pulsed laser having improved heat conductance

    NASA Technical Reports Server (NTRS)

    Yang, L. C. (Inventor)

    1977-01-01

    A highly efficient, compact pulsed laser having high energy to weight and volume ratios is provided. The laser utilizes a cavity reflector that operates as a heat sink and is essentially characterized by having a high heat conductivity, by being a good electrical insulator and by being substantially immune to the deleterious effects of ultra-violet radiation. Manual portability is accomplished by eliminating entirely any need for a conventional circulating fluid cooling system.

  12. Compact active mirror laser (CAMIL)

    NASA Astrophysics Data System (ADS)

    Vetrovec, John

    2002-03-01

    This work presents concept and scaling considerations for a solid-state laser with a gain medium disk operating in the active mirror mode. The disk is of composite construction formed by bonding undoped optical medium to the peripheral edges of a gain medium disk. Pump diode arrays are placed around the perimeter of the composite disk and pump light is injected into the undoped edge. With proper choice of lasant doping, diode placement and diode divergence, a uniform laser gain can be achieved across large portions of the disk. To mitigate thermal deformations, the gain medium disk is pressure-clamped to a rigid, cooled substrate. Effective reduction of thermo-optical distortions makes this laser suitable for operation at high-average power.

  13. Compact, high energy gas laser

    DOEpatents

    Rockwood, Stephen D.; Stapleton, Robert E.; Stratton, Thomas F.

    1976-08-03

    An electrically pumped gas laser amplifier unit having a disc-like configuration in which light propagation is radially outward from the axis rather than along the axis. The input optical energy is distributed over a much smaller area than the output optical energy, i.e., the amplified beam, while still preserving the simplicity of parallel electrodes for pumping the laser medium. The system may thus be driven by a comparatively low optical energy input, while at the same time, owing to the large output area, large energies may be extracted while maintaining the energy per unit area below the threshold of gas breakdown.

  14. Compact diode array laser systems

    NASA Astrophysics Data System (ADS)

    Holtz, James Z.; Grove, Robert E.

    1995-04-01

    High pulse energy diode array laser systems have been constructed for therapeutic and diagnostic medical applications. Two systems are described. One system, constructed for therapeutic application in dermatology, uses 45 bars to generate > 10 joules of energy at approximately 800 nm in a 5-millisecond pulse. This system uses simple microlenses and non- imaging condensers to uniformly illuminate areas of 0.1 to 0.4 cm2 at fluences up to 40 joules per cm2. Cooling, power, and control electronics are housed within the control console, and the laser and condensing optics are housed in the handpiece connected to the control console by means of a two-meter umbilical. The complete system, including closed- cycle cooling, weighs under 14 kg and uses < 2 amps at 110 V. A second system, which is being developed as a burn diagnostic, utilizes a 15-bar diode laser array. The array generates over 3 joules of optical energy. The output light is homogenized and projected using microlenses, a non-imaging condenser, and projection optics. With this system an area of approximately 1000 cm2 can be uniformly illuminated at an intensity of one millijoule per square centimeter. The system, including receiving optics, can be battery-powered and packaged into a hand-held unit.

  15. Blood oxyhemoglobin saturation measurements by blue-green spectral shift.

    PubMed

    Denninghoff, Kurt R; Chipman, Russell A; Hillman, Lloyd W

    2007-01-01

    Previous work describing a resilient method for measuring oxyhemoglobin saturation using the blue-green spectral shift was performed using cell free hemoglobin solutions. Hemoglobin solution and whole blood sample spectra measured under similar conditions in a spectrophotometer are used here to begin evaluating the impact of cellular scattering on this method. The blue-green spectral shift with changing oxyhemoglobin saturation was preserved in these blood samples and the blue-green spectral shift was relatively unaffected by physiological changes in blood pH (6.6, 7.1, and 7.4), path length through blood (100 and 200 microm), and blood hematocrit (19 to 48%). The packaging of hemoglobin in red blood cells leads to a decreased apparent path length through hemoglobin, and an overall decrease in scattering loss with increasing wavelength from 450 to 850 nm. The negative slope of the scattering loss in the 476 to 516-nm range leads to a +3.0 nm shift in the oxyhemoglobin saturation calibration line when the blue-green spectral minimum in these blood samples was compared to cell free hemoglobin. Further research is needed to fully evaluate the blue green spectral shift method in cellular systems including in vivo testing.

  16. Proteins expressed in blue-green sharpshooter leafhoppers

    USDA-ARS?s Scientific Manuscript database

    We used a metagenomics approach to identify proteins from the blue-green sharpshooter, Graphocephala atropunctata (Hemiptera: Cicadellidae) which is an important vector of Pierce’s disease of grapes. The 44 proteins are being used as markers to monitor and identify current and exotic introductions o...

  17. [Use of blue-green algae for biogas production].

    PubMed

    Shmandiĭ, B M; Nikiforov, V V; Alferov, V P; Kharlamova, E V; Pronin, V A

    2010-01-01

    Perspectives for nature protection and energy-saving, by using blue-green algae, are discussed. Utilization of their phyto biomass for biogas manufacture will lead to the environmental normalization of the Transdniestria and allow one to have about 19,000,000 m3 of methane only from the water area of only one Kremenchug water basin each vegetative period (70 days).

  18. Compact Fiber Laser for 589nm Laser Guide Star Generation

    NASA Astrophysics Data System (ADS)

    Pennington, D.; Drobshoff, D.; Mitchell, S.; Brown, A.

    Laser guide stars are crucial to the broad use of astronomical adaptive optics, because they facilitate access to a large fraction of possible locations on the sky. Lasers tuned to the 589 nm atomic sodium resonance can create an artificial beacon at altitudes of 95-105 km, thus coming close to reproducing the light path of starlight. The deployment of multiconjugate adaptive optics on large aperture telescopes world-wide will require the use of three to nine sodium laser guide stars in order to achieve uniform correction over the aperture with a high Strehl value. Current estimates place the minimum required laser power at > 10 W per laser for a continuous wave source, though a pulsed format, nominally 6?s in length at ~ 16.7 kHz, is currently preferred as it would enable tracking the laser through the Na layer to mitigate spot elongation. The lasers also need to be compact, efficient, robust and turnkey. We are developing an all-fiber laser system for generating a 589 nm source for laser-guided adaptive optics. Fiber lasers are more compact and insensitive to alignment than their bulk laser counterparts, and the heat-dissipation characteristics of fibers, coupled with the high efficiencies demonstrated and excellent spatial mode characteristics, make them a preferred candidate for many high power applications. Our design is based on sum-frequency mixing an Er/Yb:doped fiber laser operating at 1583 nm with a 938 nm Nd:silica fiber laser in a periodically poled crystal to generate 589 nm. We have demonstrated 14 W at 1583 nm with an Er/Yb:doped fiber laser, based on a Koheras single frequency fiber oscillator amplified in an IPG Photonics fiber amplifier. The Nd:silica fiber laser is a somewhat more novel device, since the Nd3+ ions must operate on the resonance transition (i.e. 4F3/2-4I9/2), while suppressing ASE losses at the more conventional 1088 nm transition. Optimization of the ratio of the fiber core and cladding permits operation of the laser at room

  19. Theoretical study of the AlO blue-green (B2Sigma + - X2Sigma +) band system

    NASA Technical Reports Server (NTRS)

    Partridge, H.; Langhoff, S. R.; Lengsfield, B. H., III; Liu, B.

    1983-01-01

    Two independent, extensive theoretical calculations are reported for the relative band strengths of the AlO (B2Sigma + - X2Sigma +) blue-green system and for the radiative lifetimes of the lowest few vibrational levels of the B2Sigma(+) state. The theoretical lifetimes, which include a small (less than -.5 percent) contribution from bound-bound transitions into the A2Pi state, are in excellent agreement with laser fluorescence studies. The theoretical lifetimes increase monotonically and very slowly with increasing vibrational quantum number. The relative band strengths for the blue-green system derived from the two theoretical calculations are in excellent agreement, but differ systematically from the relative band strengths of Linton and Nicholls (1969). The present results suggest that their self-absorption corrections are not large enough, resulting in relative intensities that are too large, especially for the weak bands with r centroids less than 1.5 A.

  20. Temporal and angular spreading of blue-green pulses in clouds.

    PubMed

    Mooradian, G C; Geller, M

    1982-05-01

    The first blue-green laser propagation measurements through clouds that simulate the geometry of a satellite-to-ground communication link were made. The time history of large diameter (approximately 6-km) pulses illuminating cloud tops was recorded as a function of receiver field of view (FOV). The maximum pulse stretching observed for nanosecond laser pulses was 20 microsec for clouds of 1.5-km thickness. It was shown that the pulses could in general be represented by a linear combination of two modified gamma functions: One, a slowly decaying term, represents the power from the diffusion type of multiple scattering. The other, a much faster decaying term, represents the power from a direct nonscattered portion of the beam or from a lower order of multiple scattering. For very dense clouds, the only component measured was the diffusion type. Data of FOV scans are presented for various values of optical thickness.

  1. Design for a compact CW atom laser

    NASA Astrophysics Data System (ADS)

    Power, Erik; Raithel, Georg

    2011-05-01

    We present a design for a compact continuous-wave atom laser on a chip. A 2D spiral-shaped quadrupole guide is formed by two 0.5 mm × 0.5 mm wires carrying 5 A each embedded in a Si wafer; a 1.5 mm × 0.5 mm wire on the bottom layer carries -10 A, producing a horizontal B-field that pushes the guiding channel center above the chip surface. The center-to-center separation between the top wires is varied from 1.6 mm at the start of the guide to 1 mm at the end, decreasing the guide height from ~ 500 μm to ~ 25 μm above the surface as the atoms travel the 70 cm-long guide. The magnetic gradient of the guiding channel gradually increases from ~ 100 G /cm to ~ 930 G /cm . These features result in continuous surface adsorption evaporative cooling and progressive magnetic compression. Spin flip losses are mitigated by a solenoid sewn around the guide to produce a longitudinal B-field. 87Rb atoms are gravitationally loaded into the guide. A far off-resonant light shift barrier at the end of the guide traps the atoms and allows formation of a BEC. Tuning the barrier height to create a non-zero tunneling rate equal to the loading rate completes the implementation of a CW atom laser. Two options for atom interferometry are implemented on the first-generation chip (matter-wave Fabry-Perot interferometer and guide-based Mach-Zehnder interferometer). Current construction status and challenges will be discussed, along with preliminary results.

  2. The Genus Chlorociboria, Blue-Green Micromycetes in South Korea.

    PubMed

    Liu, Dong; Wang, Huan; Park, Jung Shin; Hur, Jae-Seoun

    2017-06-01

    The species of the genus Chlorociboria Seaver are very common on the forest floor, and can be easily distinguished by small and numerous blue-green fruitbody, especially the blue substrate dyed with xylindein produced by this group. This genus has rather high species diversity in the Southern Hemisphere, while a little attention was paid to this group in East Asia area. During a field survey in South Korea, several Chlorociboria specimens were collected. Based on morphological and phylogenetic analyses, three species of Chlorociboria were reported, including one new record in South Korea and one new record in Jeju Island. The key to the species of Chlorociboria from South Korea is provided.

  3. Compact multichannel imaging laser radar receiver

    NASA Astrophysics Data System (ADS)

    Burns, Hoyt N.; Yun, Steven T.; Keltos, Michael L.; Kimmet, James S.

    1999-05-01

    Direct detection imaging Laser Radar (LADAR) produces 3-dimensional range imagery that can be processed to provide target acquisition and precision aimpoint definition in real time. This paper describes the current status of the Parallel Multichannel Imaging LADAR Receiver (PMR), developed under an SBIR Phase II program by the Air Force Research Laboratory, Munitions Directorate (AFRL/MN). The heart of the PMR is the Multichannel Optical Receiver Photonic Hybrid (MORPH), a high performance 16-channel LADAR receiver card which includes fiber-coupled detectors, pulse discrimination, and range counting circuitry on a 3 X 5 inch circuit card. The MORPH provides high downrange resolution (3 inches), multiple-hit (8 per channel) range and reflectance data for each detector. Silicon (Si) and indium gallium arsenide (InGaAs) pin diode or avalanche photodiode (APD) detectors are supported. The modular PMR uses an array of MORPH circuit cards to form a compact multichannel imaging LADAR receiver with any multiple of 16 channels. A 32-channel system measures 3 X 5 X 1.4 inches and weighs 1 lb. A prototype PMR system is currently undergoing field-testing. This paper focuses on field test results and applications of the PMR technology.

  4. Compact diode laser source for multiphoton biological imaging

    PubMed Central

    Niederriter, Robert D.; Ozbay, Baris N.; Futia, Gregory L.; Gibson, Emily A.; Gopinath, Juliet T.

    2016-01-01

    We demonstrate a compact, pulsed diode laser source suitable for multiphoton microscopy of biological samples. The center wavelength is 976 nm, near the peak of the two-photon cross section of common fluorescent markers such as genetically encoded green and yellow fluorescent proteins. The laser repetition rate is electrically tunable between 66.67 kHz and 10 MHz, with 2.3 ps pulse duration and peak powers >1 kW. The laser components are fiber-coupled and scalable to a compact package. We demonstrate >600 μm depth penetration in brain tissue, limited by laser power. PMID:28101420

  5. Requirement of low oxidation-reduction potential for photosynthesis in a blue-green alga (Phormidium sp.).

    PubMed

    Weller, D; Doemel, W; Brock, T D

    1975-06-20

    Photosynthesis in a Phormidium species which forms dense conical-shaped structures in thermal springs is strongly inhibited by aeration but is stimulated by sulfide and other agents (cysteine, thioglycolate, sulfite) which lower the oxidation-reduction potential. The compact structures which this alga forms in nature may restrict oxygen penetration from the enviroment so that the anaerobic or microaerophilic conditions necessary ofr photosynthesis can develop. The alga may be defective in a regulatory mechanism that controls the reoxidation of reduced pyridine nucleotides formed during photosynthesis. It is suggested that other mat-forming and benthic blue-green algae may also prefer anaerobib conditions for growth and photosynthesis.

  6. Blue-green and green phosphors for lighting applications

    DOEpatents

    Setlur, Anant Achyut; Chandran, Ramachandran Gopi; Henderson, Claire Susan; Nammalwar, Pransanth Kumar; Radkov, Emil

    2012-12-11

    Embodiments of the present techniques provide a related family of phosphors that may be used in lighting systems to generate blue or blue-green light. The phosphors include systems having a general formula of: ((Sr.sub.1-zM.sub.z).sub.1-(x+w)A.sub.wCe.sub.x).sub.3(Al.sub.1-ySi.s- ub.y)O.sub.4+y+3(x-w)F.sub.1-y-3(x-w) (I), wherein 0blue/green light. Further, the phosphors may be used in blends with other phosphors, or in combined lighting systems, to produce white light suitable for illumination.

  7. High-Brightness Diode Lasers for Blue-Green Applications

    DTIC Science & Technology

    1989-01-01

    Lett . 10, 408-410 ( 1985 ). 7. B.Ya. Zel’dovich, V.I. Popovichev, V.V. Ragul’skii, and F.S. Faizullov, Soy. Phys .- JETP 15, 109 (1972...pumped photorefractive mirrors," Appl. Phys . Lett . 46, 909 ( 1985 ). 6. T.Y. Chang and R.W. Hellwarth, "Optical phase conjugation by backscattering in...intersecting light beam," Sov . Phys .- JETP 65, 443-449 I (1987). 19. A.V. Nowak, T.R. Moore, and R.A. Fisher, "Observations of internal beam production in

  8. Blue-Green Laser Diode Research Program. Revision.

    DTIC Science & Technology

    1987-05-01

    previously reported by Williams et. al. [7] which suggested the MBE-grown ZnSe layer examined in cross-section to contain a high concentration of...Park, J. KI imn, and H.A. Her, SPIE Conference, Say Point, rloride, (1967). 6. P.A. Ponce, W. Stutius, and J.G. werther , Thin. Sol. rilms, 104, 1335

  9. Preparation of Mixed Perovskite Oxides for Blue-Green Lasers

    DTIC Science & Technology

    1984-02-01

    higher for oxide or fluoride . 𔃽. A high radiative lifetime and high fluorescent quantum yield for Ce or the rare earth are desirable. 3 + 4...for all of our single crystal -4- preparations are lanthanum oxide (La„0 ), aluminum oxide (Al^O^) , scandium oxide (Sc„0-.) , and cerium oxide (Ce...crystal material is highly important. Ideally, oxides should be grown in O2, fluorides in ?„, and so forth in order to prevent defects such as

  10. Compact and robust laser system for onboard atom interferometry

    NASA Astrophysics Data System (ADS)

    Carraz, O.; Lienhart, F.; Charrière, R.; Cadoret, M.; Zahzam, N.; Bidel, Y.; Bresson, A.

    2009-10-01

    We propose a compact and robust laser system at 780 nm for onboard atomic inertial sensors based on rubidium atom interferometry. The principle of this system consists in doubling the frequency of a telecom fiber bench at 1560 nm. The same laser source is used to achieve a magneto-optical trap, matter-wave interferences, and the atomic detection. An atomic gravimeter has been realized and the laser system has been validated under hyper- and microgravity.

  11. [Epiphase carotenoids of the blue-green alga Anabaena variabilia].

    PubMed

    Pakhlavuni, I K; Vasil'eva, V E; Gusev, M V

    1977-01-01

    Epiphase carotenoids were studied in the cells of the obligate phototrophous blue-green alga Anabaena variabilis. Ten pigment zones were detected by column chromatography on alumina and by TLC on cellulose and Silufol UV-254 plates. TLC in the B layer and paper chromatography did not reveal all pigment zones obtained on a column. The data of TLC on cellulose and on Silufol plates confirmed the purity and individual character of the fractions obtained on a column. These data showed also that the pigments obtained upon the separation of the extract on a column were not the products of its interaction with an active adsorbent. Absorption spectra of the isolated pigments were determined in various solvents, and speculations were made concerning the structure of the carotenoids.

  12. A Compact Reliable Laser Surgery Instrument

    NASA Astrophysics Data System (ADS)

    Zhuang, Dounan; Yu, Guiqiu; Chen, Taolue

    1989-09-01

    Now, more and more hospitals and doctors in the world are getting interested in laser medicine, more and more people are getting understanding on laser surgery operations and physical therapy. Following the cotinuous comprehensive investigation of laser medicine, the clinical applications of laser has been further expanded and per a lot of indications have been found. As is well known, CO2 laser is one of the most famous medical lasers. In recent years, we concentrate our at to it, a new minitype CO2 laser surgery instrument has been built after improving repeately, the improvement depends on the experiences of hundreds of doctors in hundreds of hospitals for curing ten thousands cases. Our new laser surgery instrument has been improved in five-main characters: 1) Expanding the range of adjustable power into 3-10 W; 2) Making the laser output flexible, dose from 0.1--105 W/cm2 for different cures; 3) Expanding its applications into about 50 indications of general surgery, dermatology, otolaryngology, and gynecology. Which have been proven effective or very effective.

  13. Profiling compact toroid plasma density on CTIX with laser deflection

    NASA Astrophysics Data System (ADS)

    Brockington, Samuel Joseph Erwin

    A laser deflectometer measures line-integrated plasma density gradient using laser diodes and amplified point detectors. A laser passing through an optically thin plasma is refracted by an amount proportional to the line-integrated electron density gradient. I have designed, installed, and operated a deflection diagnostic for the Compact Toroid Injection Experiment (CTIX), a plasma rail gun which can create compact toroid (CT) plasmas of controllable density and velocity. The diagnostic design and motivation are discussed, as well as three experiments performed with deflectometry. Thus, my thesis consists of the design of the deflectometer diagnostic, a comparison of its accuracy to interferometer density measurements, and finally a survey of compact toroid density profiles in two dimensions conducted with an array of detectors.

  14. Problems of YAG nanopowders compaction for laser ceramics

    NASA Astrophysics Data System (ADS)

    Bagayev, S. N.; Kaminskii, A. A.; Kopylov, Yu. L.; Kravchenko, V. B.

    2011-03-01

    Slip casting and colloidal slip casting at high pressure of yttrium aluminum garnet powders were investigated. It was found that the presence of residual pores in laser oxide ceramics was determined mainly by big size pores in the compact. The size of pore in compact is critical when it is greater than the mean size of initial particles. It was shown that formation of pores' structure in compact was controlled by appearance of quasi-particles in heavy loaded slurry. Pores concentration is critical for ceramics optical transmittance.

  15. A compact high brilliance diode laser

    NASA Astrophysics Data System (ADS)

    Bammer, F.; Holzinger, B.

    2006-02-01

    We explain some technical details regarding time-multiplexing of laser diodes, a method to improve the beam quality of diode lasers, which is still insufficient for many applications. Several pulsed laser diode beams are guided onto a common optical path to superpose the power of the laser diodes while maintaining the beam parameter product of a single laser diode. Pulsed operation of continuous wave laser diodes with average power equal to the specified cw-power of 4 W was tested for 150 hours without failure. We use a fast digital optical multiplexer built up by a cascade of binary optical switches. For the latter we use a Pockel's cell followed by a polarization filter, which allows addressing of two optical paths. Instead of direct on/off-switching we drive the crystals with a harmonic voltage course to avoid ringing caused by piezo-electricity. Up to now an optical power of 10.5 W was generated, 13 W are expected with some improvements. Furthermore we discuss the use of new 8 W laser diodes and the involved implications on driver technology.

  16. Compact laser through improved heat conductance

    NASA Technical Reports Server (NTRS)

    Yang, L. C.

    1975-01-01

    A 16-joule-pulse laser has been developed in which a boron nitride heat-conductor enclosure is used to remove heat from the elements. Enclosure is smaller and lighter than systems in which cooling fluids are used.

  17. Compact-range coordinate system established using a laser tracker.

    SciTech Connect

    Gallegos, Floyd H.; Bryce, Edwin Anthony

    2006-12-01

    Establishing a Cartesian coordinate reference system for an existing Compact Antenna Range using the parabolic reflector is presented. A SMX (Spatial Metrix Corporation) M/N 4000 laser-based coordinate measuring system established absolute coordinates for the facility. Electric field characteristics with positional movement correction are evaluated. Feed Horn relocation for alignment with the reflector axis is also described. Reference points are established for follow-on non-laser alignments utilizing a theodolite.

  18. Retinal oximeter for the blue-green oximetry technique

    NASA Astrophysics Data System (ADS)

    Denninghoff, Kurt R.; Sieluzycka, Katarzyna B.; Hendryx, Jennifer K.; Ririe, Tyson J.; Deluca, Lawrence; Chipman, Russell A.

    2011-10-01

    Retinal oximetry offers potential for noninvasive assessment of central venous oxyhemoglobin saturation (SO2) via the retinal vessels but requires a calibrated accuracy of +/-3% saturation in order to be clinically useful. Prior oximeter designs have been hampered by poor saturation calibration accuracy. We demonstrate that the blue-green oximetry (BGO) technique can provide accuracy within +/-3% in swine when multiply scattered light from blood within a retinal vessel is isolated. A noninvasive on-axis scanning retinal oximeter (ROx-3) is constructed that generates a multiwavelength image in the range required for BGO. A field stop in the detection pathway is used in conjunction with an anticonfocal bisecting wire to remove specular vessel reflections and isolate multiply backscattered light from the blood column within a retinal vessel. This design is tested on an enucleated swine eye vessel and a retinal vein in a human volunteer with retinal SO2 measurements of ~1 and ~65%, respectively. These saturations, calculated using the calibration line from earlier work, are internally consistent with a standard error of the mean of +/-2% SO2. The absolute measures are well within the expected saturation range for the site (-1 and 63%). This is the first demonstration of noninvasive on-axis BGO retinal oximetry.

  19. Blue-green color categorization in Mandarin-English speakers.

    PubMed

    Wuerger, Sophie; Xiao, Kaida; Mylonas, Dimitris; Huang, Qingmei; Karatzas, Dimosthenis; Hird, Emily; Paramei, Galina

    2012-02-01

    Observers are faster to detect a target among a set of distracters if the targets and distracters come from different color categories. This cross-boundary advantage seems to be limited to the right visual field, which is consistent with the dominance of the left hemisphere for language processing [Gilbert et al., Proc. Natl. Acad. Sci. USA 103, 489 (2006)]. Here we study whether a similar visual field advantage is found in the color identification task in speakers of Mandarin, a language that uses a logographic system. Forty late Mandarin-English bilinguals performed a blue-green color categorization task, in a blocked design, in their first language (L1: Mandarin) or second language (L2: English). Eleven color singletons ranging from blue to green were presented for 160 ms, randomly in the left visual field (LVF) or right visual field (RVF). Color boundary and reaction times (RTs) at the color boundary were estimated in L1 and L2, for both visual fields. We found that the color boundary did not differ between the languages; RTs at the color boundary, however, were on average more than 100 ms shorter in the English compared to the Mandarin sessions, but only when the stimuli were presented in the RVF. The finding may be explained by the script nature of the two languages: Mandarin logographic characters are analyzed visuospatially in the right hemisphere, which conceivably facilitates identification of color presented to the LVF.

  20. Penicillinase (beta-lactamase) formation by blue-green algae.

    PubMed

    Kushner, D J; Breuil, C

    1977-03-01

    Beta-Lactamase (penicillinase) activity was found in a number of strains of blue-green algea. In some cases, this enzyme permitted algae to overcome the inhibitory effects of penicillin. Production and localization of beta-lactamase were studied in a unicellular species, Coccochloris elabens (strain 7003), and in a filamentous, nitrogen-fixing Anabaena species (strain 7120). When cells were grown in a neutral medium with NaNO3 as N source, the pH rose during growth; at a pH of about 10, most of the enzyme was expressed equally well in intact or disrupted cells. If the pH was kept near neutrality during growth by gassing with CO2 in N2 or by growth under conditions of N2 fixation, the enzyme remained cell-bound and cryptic for most of the growth phase, being measurable only after cells were disrupted. The enzymes from strains 7003 and 7120 had greater activity on benzyl penicillin and other penicillins than on cephalosporins. Some differences were observed in the "substrate proliles" of penicillinases from the two strains against different penicillins.

  1. On the heritability of blue-green eggshell coloration.

    PubMed

    Morales, J; Kim, S-Y; Lobato, E; Merino, S; Tomás, G; Martínez-de la Puente, J; Moreno, J

    2010-08-01

    Avian blue-green eggshell coloration has been proposed as a female signal of genetic or phenotypic quality to males. However, little is known about the relative importance of additive genetic and environmental effects as sources of eggshell colour variation in natural populations. Using 5 years of data and animal models, we explored these effects in a free-living population of pied flycatchers. Permanent environmental and year effects were negligible, although year environmental variance (V(Year)) was significant for all but one of the traits. However, we found high-moderate narrow-sense heritabilities for some colour parameters. Within-clutch colour variability showed the highest coefficient of additive genetic variation (i.e. evolvability). Previous evidence suggests that eggshell colour is sexually selected in this species, males enhancing parental effort in clutches with higher colour variability and peak values. Eggshell colour could be driven by good-genes selection in pied flycatchers although further genetic studies should confirm this possibility.

  2. Lysis of Blue-Green Algae by Myxobacter

    PubMed Central

    Shilo, Miriam

    1970-01-01

    Enrichment from local fishponds led to the isolation of a bacterium capable of lysing many species of unicellular and filamentous blue-green algae, as well as certain bacteria. The isolate is an aflagellate, motile rod which moves in a gliding, flexuous manner; the organism is capable of digesting starch and agar, but not cellulose and gelatin. Its deoxyribonucleic acid base pair composition (per cent guanine plus cytosine ∼70) shows a close resemblance to that of the fruiting myxobacteria. Algae in lawns on agar plates were lysed rapidly by the myxobacter, but only limited and slow lysis occurred in liquid media, and no lysis took place when liquid cultures were shaken. No diffusible lytic factors would be demonstrated. Continuous observation of the lytic process under a phase-contrast microscope suggested that a close contact between the polar tip of the myxobacter and the alga is necessary for lysis. The lytic action is limited to the vegetative cells of the algae, whereas heterocysts are not affected. The gas vacuoles of the algal host are the only remnant visible after completion of digestion by the myxobacter. Images PMID:4990764

  3. Phycobilisomes from Blue-Green and Red Algae

    PubMed Central

    Gantt, Elisabeth; Lipschultz, Claudia A.; Grabowski, Joseph; Zimmerman, Burke K.

    1979-01-01

    A general procedure for the isolation of functionally intact phycobilisomes was devised, based on modifications of previously used procedures. It has been successful with numerous species of red and blue-green algae (Anabaena variabilis, Anacystis nidulans, Agmenellum quadruplicatum, Fremyella diplosiphon, Glaucosphaera vacuolata, Griffithsia pacifica, Nemalion multifidum, Nostoc sp., Phormidium persicinum, Porphyridium cruentum, P. sordidum, P. aerugineum, Rhodosorus marinus). Isolation was carried out in 0.75 molar K-phosphate (pH 6.8 to 7.0) at 20 to 23 C on sucrose step gradients. Lower temperature (4 to 10 C) was usually unfavorable resulting in uncoupling of energy transfer and partial dissociation of the phycobilisomes, sometimes with complete loss of allophycocyanin. Intact phycobilisomes were characterized by fluorescence emission peaks of 670 to 675 nanometers at room temperature, and 678 to 685 nanometers at liquid nitrogen temperature. Uncoupling and subsequent dissociation of phycobilisomes, in lowered ionic conditions, varied with the species and the degree of dissociation but occurred preferentially between phycocyanin and allophycocyanin, or between phycocyanin and phycoerythrin. PMID:16660778

  4. Retinal oximeter for the blue-green oximetry technique.

    PubMed

    Denninghoff, Kurt R; Sieluzycka, Katarzyna B; Hendryx, Jennifer K; Ririe, Tyson J; Deluca, Lawrence; Chipman, Russell A

    2011-10-01

    Retinal oximetry offers potential for noninvasive assessment of central venous oxyhemoglobin saturation (SO(2)) via the retinal vessels but requires a calibrated accuracy of ±3% saturation in order to be clinically useful. Prior oximeter designs have been hampered by poor saturation calibration accuracy. We demonstrate that the blue-green oximetry (BGO) technique can provide accuracy within ±3% in swine when multiply scattered light from blood within a retinal vessel is isolated. A noninvasive on-axis scanning retinal oximeter (ROx-3) is constructed that generates a multiwavelength image in the range required for BGO. A field stop in the detection pathway is used in conjunction with an anticonfocal bisecting wire to remove specular vessel reflections and isolate multiply backscattered light from the blood column within a retinal vessel. This design is tested on an enucleated swine eye vessel and a retinal vein in a human volunteer with retinal SO(2) measurements of ∼1 and ∼65%, respectively. These saturations, calculated using the calibration line from earlier work, are internally consistent with a standard error of the mean of ±2% SO(2). The absolute measures are well within the expected saturation range for the site (-1 and 63%). This is the first demonstration of noninvasive on-axis BGO retinal oximetry.

  5. Compact DPSS-laser source for LIBS analysis of steel

    NASA Astrophysics Data System (ADS)

    Tortschanoff, Andreas; Baumgart, Marcus; Kroupa, Gerhard

    2017-06-01

    LIBS-technology holds the potential for on-site real-time measurements of steel products. However for a mobile and robust LIBS measurement system, an adequate small and ruggedized laser source is a key-requirement. In this contribution, we present tests with our novel compact high power laser source, which, initially, was developed for ignition applications. The CTR HiPoLas® laser is a robust diode pumped solid state laser with a passive Q-switch with dimensions of less than 10 cm³. The laser generates 2.5 ns-pulses with 30 mJ at a maximum continuous repetition rate of about 30 Hz. Feasibility of LIBS experiments with the laser source was experimentally verified with steel samples. The results show that the laser with its current optical output parameters is very well suited for LIBS measurements. We believe that the miniaturized laser presented here will enable very compact and robust portable high-performance LIBS systems.

  6. Tunable UV and compact 2- to 12-micron laser development

    NASA Astrophysics Data System (ADS)

    Swim, Cynthia R.; Fox, Jay A.

    1998-07-01

    The Edgewood Research, Development, and Engineering Center (ERDEC) within the Chemical and Biological Defense Command (CBDCOM) is the Army's principal R&D center for chemical and biological defense technology, engineering, and service. ERDEC has been developing tunable 9 - 11 micron CO2 lidar systems for remote sensing of chemical agents for many years. However, due to the extended range requirements for conventional missions such as fixed site defense and reconnaissance, these systems are relatively large. Smaller, even handheld, standoff detection lidar systems would be useful for the individual warfighter or for decontamination efforts, as well as for numerous environmental monitoring applications. Lidar modeling calculations have been performed for such a system at the Night Vision and Electronic Sensors Directorate, (NVESD) the Army's lead laboratory for low energy lasers. The modeling indicates that fewer than 5 mJ of solid-state laser pulse energy would achieve the required detection sensitivity criteria for standoff chemical agent detection at ranges of several kilometers. This result coupled with recent advances in solid-state laser and frequency conversion technologies allow for extremely compact, tunable lasers and lidars to be produced which are suitable for a handheld standoff detection device. ERDEC has therefore begun an effort in development of compact 2 - 12 micron lasers and lidars. Three different approaches are being investigated and will be described. A review of completed efforts in tunable UV laser source development for remote sensing of biological agents via laser induced fluorescence (LIF) will also be presented.

  7. Laser Card For Compact Optical Data Storage Systems

    NASA Astrophysics Data System (ADS)

    Drexler, Jerome

    1982-05-01

    The principal thrust of the optical data storage industry to date has been the 10 billion bit optical disc system. Mass memory has been the primary objective. Another objective that is beginning to demand recognition is compact memory of 1 million to 40 million bits--on a wallet-size, laser recordable card. Drexler Technology has addressed this opportunity and has succeeded in demonstrating laser writing and readback using a 16 mm by 85 mm recording stripe mounted on a card. The write/read apparatus was developed by SRI International. With this unit, 5 micron holes have been recorded using a 10 milliwatt, 830 nanometer semiconductor-diode laser. Data is entered on an Apple II keyboard using the ASCII code. The recorded reflective surface is scanned with the same laser at lower power to generate a reflected bit stream which is converted into alphanumerics and which appear on the monitor. We are pleased to report that the combination of the DREXONTM laser recordable card ("Laser Card"), the semiconductor-diode laser, arrays of large recorded holes, and human interactive data rates are all mutually compatible and point the way forward to economically feasible, compact, data-storage systems.

  8. Compact laser illumination system for endoscopic interventions.

    PubMed

    Blase, Bastian

    2015-08-01

    External cold light sources as well as LEDs are commonly used for abdominal illumination in minimally invasive surgery. Still, both feature certain disadvantages. A new illumination system for endoscopes based on laser diodes is placed in the handle. No external light cables are needed. High conversion and coupling efficiencies and small package size allow for several diodes to be integrated, enabling color mixing and the adjustment of color temperatures. An optical module to collimate and combine the light is described. The heat to be dissipated is stored in a passive latent heat storage based on phase change materials surrounding the optical module. Thereby, operation time is considerably extended, as the handle's temperature is stabilized. To reduce the negative effect of coherent light on optical rough surfaces leading to patterns of spots, several devices for speckle reduction are developed and tested. By combining these components, an assembly of a powerful RGB laser light module for the integration in standard sized endoscopes is formed.

  9. Reflectance and transmittance characteristics of several selected green and blue-green unialgae.

    NASA Technical Reports Server (NTRS)

    Gramms, L. C.; Boyle, W. C.

    1971-01-01

    Obtained reflectance properties of green and blue-green unialgae are evaluated for determining the feasibility of using selected wavelengths in differentiating between green and blue-green algae. The attempt is made to establish selected wavelengths and ratios that would delineate relative concentrations of the algal suspensions. The results should prove helpful in the selection of spectral bands usable in conjunction with multispectrum scanners for qualitative and quantitative studies of algae in bodies of water.

  10. Reflectance and transmittance characteristics of several selected green and blue-green unialgae.

    NASA Technical Reports Server (NTRS)

    Gramms, L. C.; Boyle, W. C.

    1971-01-01

    Obtained reflectance properties of green and blue-green unialgae are evaluated for determining the feasibility of using selected wavelengths in differentiating between green and blue-green algae. The attempt is made to establish selected wavelengths and ratios that would delineate relative concentrations of the algal suspensions. The results should prove helpful in the selection of spectral bands usable in conjunction with multispectrum scanners for qualitative and quantitative studies of algae in bodies of water.

  11. Compact two-beam push-pull free electron laser

    DOEpatents

    Hutton, Andrew

    2009-03-03

    An ultra-compact free electron laser comprising a pair of opposed superconducting cavities that produce identical electron beams moving in opposite directions such that each set of superconducting cavities accelerates one electron beam and decelerates the other electron beam. Such an arrangement, allows the energy used to accelerate one beam to be recovered and used again to accelerate the second beam, thus, each electron beam is decelerated by a different structure than that which accelerated it so that energy exchange rather than recovery is achieved resulting in a more compact and highly efficient apparatus.

  12. Cryptochrome as a sensor of the blue/green ratio of natural radiation in Arabidopsis.

    PubMed

    Sellaro, Romina; Crepy, María; Trupkin, Santiago Ariel; Karayekov, Elizabeth; Buchovsky, Ana Sabrina; Rossi, Constanza; Casal, Jorge José

    2010-09-01

    Green light added to blue light has been proposed to shift cryptochromes from their semireduced active form to the reduced, inactive state. Whether the increased proportion of green light observed under leaf canopies compared to open places reduces cryptochrome-mediated effects remained to be elucidated. Here we report that the length of the hypocotyl of Arabidopsis (Arabidopsis thaliana) seedlings grown under controlled conditions decreased linearly with increasing blue/green ratios of the light within the range of ratios found in natural environments. This effect was stronger under higher irradiances. We developed a model, parameterized on the basis of field experiments including photoreceptor mutants, where hypocotyl growth of seedlings exposed to different natural radiation environments was related to the action and interaction of phytochromes and cryptochromes. Adding the blue/green ratio of the light in the term involving cryptochrome activity improved the goodness of fit of the model, thus supporting a role of the blue/green ratio under natural radiation. The blue/green ratio decreased sharply with increasing shade by green grass leaves to one-half of the values observed in open places. The impact of blue/green ratio on cryptochrome-mediated inhibition of hypocotyl growth was at least as large as that of irradiance. We conclude that cryptochrome is a sensor of blue irradiance and blue/green ratio.

  13. High-power compact laser with segmented longitudinal pumping of coupled laser channels

    SciTech Connect

    Mamonov, D N; Il'ichev, N N; Sirotkin, A A; Pivovarov, P A; Derzhavin, S I; Klimentov, S M; Rebrov, S G

    2015-06-30

    The characteristics of a compact Nd:YAG/Cr:YAG laser with segmented end pumping using a bundle of seven optical fibres are presented. In the regime of optical coupling of thus formed seven laser channels, 3-ns pulses with an energy up to 20 mJ, as well as their trains, are obtained. The used method makes it possible to scale the energy and power of lasers of this type with controlled spatial beam profile. (lasers)

  14. Compact self-contained blood coagulator based on semiconductor laser

    NASA Astrophysics Data System (ADS)

    Svirin, Vaytcheslav N.; Rogatkin, Dmitrii A.; Chernenko, P.

    2001-01-01

    In recent years significant improvement of power and spectral characteristics of semiconductor lasers has taken place. The power of serial single near-IR semiconductor lasers has achieved units of watts, the spectral range has been extended from 0.63 to 1.7...1.8 micrometers . The available level of semiconductor lasers, their small dimensions and weight, together with the characteristics of the modern fiberoptic systems, electronic and microprocessor components as well as small dimensions and weight of modern power supplies allow development of a compact portable self-contained blood coagulator, which is of great importance for use in various emergencies, natural calamities, and in many other areas. The report discusses the problems of designing the coagulator, its technical and user characteristics as well as the possibilities to use such a coagulator in other fields of laser medicine.

  15. Compact Laser-Compton X-ray Source Development

    NASA Astrophysics Data System (ADS)

    Yeh, Po-Chun

    The state-of-the-art X-ray source based on inverse-Compton scattering between a high-brightness, relativistic electron beam produced by an X-band RF accelerator and a high-intensity laser pulse generated by chirped-pulse amplification (CPA) has been carried out by our research team at Lawrence Livermore National Laboratory. This system is called "Compact Laser-Compton X-ray Source". The applications include nuclear resonance fluorescence, medical imaging and therapy, and nuclear waste imaging and assay. One of the key factors in this system is how we know the interaction happened in the vacuum chamber, which is the spectrometer of electron beams. The other key factor is the interaction after the spectrometer, which is the outgoing X-ray. In this thesis, the work in the simulation for the result of the interaction between electrons and the laser, the calibration of spectrometer, and laser focus characterization are discussed.

  16. Compact laser Doppler flowmeter for application in dentistry

    NASA Astrophysics Data System (ADS)

    Fedosov, Ivan V.; Mareew, Gleb O.; Finokhina, Olga A.; Lepilin, Alexander V.; Tuchin, Valery V.

    2005-06-01

    Lightweight handheld laser Doppler instrument is designed for blood flow assessment in soft tissues of oral cavity. Laser light source, fiber optic probe detector and amplifier circuitry are mounted inside the compact hand held probe assembly to minimize noise and to exclude optical fiber motion artifacts. Both the instrument and data processing software are optimized for the using of the standard PC sound interface as the data acquisition device that provides low cost and effective solution for clinical use. The instrument is suitable for quantitative diagnostics of gingivitis and other disorders in dentistry.

  17. Development of compact excimer lasers for remote sensing

    NASA Technical Reports Server (NTRS)

    Laudenslager, J. B.; Mcdermid, I. S.; Pacala, T. J.

    1983-01-01

    The capabilities of excimer lasers for remote sensing applications are illustrated in a discussion of the development of a compact tunable XeCl excimer laser for the detection of atmospheric OH radicals. Following a brief review of the operating principles and advantages of excimer lasers, measurements of the wavelength dependence of the net small signal gain coefficient of a discharge excited XeCl laser are presented which demonstrate the overlap of several absorption lines of the A-X(0,0) transition of OH near 308 nm with the wavelengths of the XeCl laser. A range of continuous narrow bandwidth tunability of from 307.6 to 308.4 nm with only a 30 percent variation in output is reported for an XeCl laser used as a double-pass amplifier for a frequency-doubled dye laser, and measurements demonstrating the detection of laser-induced fluorescence from OH in a methane-oxygen flame are also noted. The design of an oscillator-amplifier excimer system comprising a corona-preionized, transverse-discharge oscillator and amplifier is then presented. Output energies of 12-15 mJ have been achieved in the regions where injection locking was established, with energies of 8-10 mJ elsewhere.

  18. Compact scanning-force microscope using a laser diode

    NASA Astrophysics Data System (ADS)

    Sarid, Dror; Iams, Doug; Weissenberger, Volker; Bell, L. Stephen

    1988-12-01

    The paper describes the operation of a compact scanning-force microscope in which the gradient of force acting on a vibrating tip is monitored by a diode laser and its integrated photodiode. The system does not require reflecting or focusing elements or complicated electronics. Experimental results using this system with magnetic domains on a magnetooptic storage medium attest to the feasibility of this concept.

  19. A compact dual-wavelength fiber laser: some design aspects

    NASA Astrophysics Data System (ADS)

    Ban, Christian; Zadravec, Dusan

    2017-05-01

    High performance in combination with small size, low weight and low power consumption are among the main drivers in modern defense and commercial applications of laser systems. Consequently, designers of such systems strive for innovative solutions in the field of laser technology. Ten years ago Safran Vectronix AG (hereafter Vectronix) pioneered these activities with the fielding of the first fiber laser for hand-held rangefinders. This paper will deal with the latest evolution of an eye-safe fiber laser source which can emit two wavelengths for an extended range of applications. In order to comply with high performance requirements the laser on one side has to produce high enough pulse energy and on the other side - especially due to the ever increasing requirement for compactness - to use so called single-stage amplification in combination with bending insensitive fiber solutions. Also, the ASE (Amplified Spontaneous Emission) has to be reduced as much as possible as this light enters the eye safety equation but does not contribute in terms of range performance. All of this has to meet severe environmental requirements typical for most demanding defense applications. Additionally, the laser in its rangefinding mode has to produce a sequence of high frequency pulses in such a way that no substantial temperature effects would arise and thus impair either the pulse energy or the boresight alignment. Additionally, in this paper, a compact dual-stage dual-wavelength version of the above laser will be described, which has been developed to generate much stronger pulses for very long rangefinding applications.

  20. Comparison of blue-green response between transmission-mode GaAsP- and GaAs-based photocathodes grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Gang-Cheng, Jiao; Zheng-Tang, Liu; Hui, Guo; Yi-Jun, Zhang

    2016-04-01

    In order to develop the photodetector for effective blue-green response, the 18-mm-diameter vacuum image tube combined with the transmission-mode Al0.7Ga0.3As0.9 P 0.1/GaAs0.9 P 0.1 photocathode grown by molecular beam epitaxy is tentatively fabricated. A comparison of photoelectric property, spectral characteristic and performance parameter between the transmission-mode GaAsP-based and blue-extended GaAs-based photocathodes shows that the GaAsP-based photocathode possesses better absorption and higher quantum efficiency in the blue-green waveband, combined with a larger surface electron escape probability. Especially, the quantum efficiency at 532 nm for the GaAsP-based photocathode achieves as high as 59%, nearly twice that for the blue-extended GaAs-based one, which would be more conducive to the underwater range-gated imaging based on laser illumination. Moreover, the simulation results show that the favorable blue-green response can be achieved by optimizing the emission-layer thickness in a range of 0.4 μm-0.6 μm. Project supported by the National Natural Science Foundation of China (Grant No. 61301023) and the Science and Technology on Low-Light-Level Night Vision Laboratory Foundation, China (Grant No. BJ2014001).

  1. Compact laser diode drivers for military rangefinder applications

    NASA Astrophysics Data System (ADS)

    Giorgi, D.; Philippbar, J.

    2010-04-01

    Compact and high current laser diode drivers for pumping solid-state lasers have been developed and tested. Designed to operate from a single DL123 battery or equivalent, the OptiSwitch PLDD-150-1-1 delivers 150 A of peak current for 300 μs to a laser diode bar at a 1 Hz repetition rate. Measuring only 2.1 × 0.75 × 0.78 inches and weighing 15.2 g, the unit is suited for man-portable target designation, rangefinding, illumination, and remote sensing applications. This paper will discuss the design philosophy behind this class of drivers which offer peak currents up to 200 A plus lifetime testing of eight drivers all operating at elevated input voltage and temperature at 4.5 Hz for 10M shots without a single failure or degradation in performance. Lastly, temperature testing down to -40 degC will be discussed.

  2. Compact frequency-quadrupled pulsed 1030nm fiber laser

    NASA Astrophysics Data System (ADS)

    McIntosh, Chris; Goldberg, Lew; Cole, Brian; DiLazaro, Tom; Hays, Alan D.

    2016-03-01

    A compact 1030nm fiber laser for ultraviolet generation at 257.5nm is presented. The laser employs a short length of highly-doped, large core (20μm), coiled polarization-maintaining ytterbium-doped double-clad fiber pumped by a wavelength-stabilized 975nm diode. It is passively Q-switched via a Cr4+:YAG saturable absorber and generates 2.4W at 1030nm in a 110μJ pulse train. Lithium triborate (LBO) and beta-barium borate (BBO) are used to achieve 325mW average power at the fourth harmonic. The laser's small form factor, narrow linewidth and modest power consumption are suitable for use in a man-portable ultraviolet Raman explosives detection system.

  3. Compact intra-cavity frequency doubled line beam green laser by a laser diode array pumped

    NASA Astrophysics Data System (ADS)

    Yan, Boxia; Qi, Yan; Wang, Yanwei

    2016-10-01

    Compact, high power, and low-cost green laser light sources are needed in projection-related applications such as digital cinema, rear-projection television, simulators, and command and control stations. We report a LD array directly pumped intracavity SHG Nd:YVO4/PPMgLN laser without lens or waveguide in this letter. A compact 3.12 W green laser was demonstrated by intra-cavity frequency doubled using a PPMgLN bulk crystal by a 19-emitter LD array pumped(single bar), the conversion efficiency from input LD array was 9.2%. A line-beam output suitable for laser projectors was generated, which has the potential to be scalable to small volumes and low costs for laser projection displays.

  4. Modeling compact high power fiber lasers and vecsels

    NASA Astrophysics Data System (ADS)

    Li, Hongbo

    Compact high power fiber lasers and the vertical-external-cavity surface-emitting lasers (VECSELs) are promising candidates for high power laser sources with diffraction-limited beam quality and are currently the subject of intensive research and development. Here three large mode area fiber lasers, namely, the photonic crystal fiber (PCF) laser, the multicore fiber (MCF) laser, and the multimode interference (MMI) fiber laser, as well as the VECSEL are modeled and designed. For the PCF laser, the effective refractive index and the effective core radius of the PCF are investigated using vectorial approaches and reformulated. Then, the classical step-index fiber theory is extended to PCFs, resulting in a highly efficient vectorial effective-index method for the design and analysis of PCFs. The new approach is employed to analyze the modal properties of the PCF lasers with depressed-index cores and to effectively estimate the number of guided modes for PCFs. The MCF laser, consisting of an active MCF and a passive coreless fiber, is modeled using the vectorial mode expansion method developed in this work. The results illustrate that the mode selection in the MCF laser by the coreless fiber section is determined by the MMI effect, not the Talbot effect. Based on the MMI and self-imaging in multimode fibers, the vectorial mode expansion approach is employed to design the first MMI fiber laser demonstrated experimentally. For the design and modeling of VECSELs, the optical, thermal, and structural properties of common material systems are investigated and the most reliable material models are summarized. The nanoscale heat transport theory is applied for the first time, to the best of my knowledge, to design and model VECSELs. In addition, the most accurate strain compensation approach is selected for VECSELs incorporating strained quantum wells to maintain structural stability. The design principles for the VECSEL subcavity are elaborated and applied to design a 1040nm

  5. Compact atomic clocks and stabilised laser for space applications

    NASA Astrophysics Data System (ADS)

    Mileti, Gaetano; Affolderbach, Christoph; Matthey-de-l'Endroit, Renaud

    2016-07-01

    We present our developments towards next generation compact vapour-cell based atomic frequency standards using a tunable laser diode instead of a traditional discharge lamp. The realisation of two types of Rubidium clocks addressing specific applications is in progress: high performance frequency standards for demanding applications such as satellite navigation, and chip-scale atomic clocks, allowing further miniaturisation of the system. The stabilised laser source constitutes the main technological novelty of these new standards, allowing a more efficient preparation and interrogation of the atoms and hence an improvement of the clock performances. However, before this key component may be employed in a commercial and ultimately in a space-qualified instrument, further studies are necessary to demonstrate their suitability, in particular concerning their reliability and long-term operation. The talk will present our preliminary investigations on this subject. The stabilised laser diode technology developed for our atomic clocks has several other applications on ground and in space. We will conclude our talk by illustrating this for the example of a recently completed ESA project on a 1.6 microns wavelength reference for a future space-borne Lidar. This source is based on a Rubidium vapour cell providing the necessary stability and accuracy, while a second harmonic generator and a compact optical comb generated from an electro-optic modulator allow to transfer these properties from the Rubidium wavelength (780nm) to the desired spectral range.

  6. Compact pulsed high-energy Er:glass laser

    NASA Astrophysics Data System (ADS)

    Wan, Peng; Liu, Jian

    2012-03-01

    Bulk Erbium-doped lasers are widely used for long-distance telemetry and ranging. In some applications such as coherent Doppler radars, laser outputs with a relatively long pulse width, good beam profile and pulse shape are required. High energy Q-switched Er:glass lasers were demonstrated by use of electro-optic (E/O) Q-switching or frustrated total internal reflection (FTIR) Q-switching. However, the output pulse durations in these lasers were fixed to relatively small values and extremely hard to tune. We report here on developing a novel and compact Q-switched Er:Yb co-doped phosphate glass laser at an eye-safe wavelength of 1.5 μm. A rotating mirror was used as a Q-switch. Co-linear pump scheme was used to maintain a good output beam profile. Near-perfect Gaussian temporal shape was obtained in our experiment. By changing motor rotation speed, pulse duration was tunable and up to 240 ns was achieved. In our preliminary experiment, output pulse energies of 44 mJ and 4.5 mJ were obtained in free-running and Q-switched operation modes respectively.

  7. Isolation of plasmid from the blue-green alga Spirulina platensis

    NASA Astrophysics Data System (ADS)

    Qin, Song; Tong, Shun; Zhang, Peijun; Tseng, C. K.

    1993-09-01

    CCC plasmid was isolated from an economically important blue-green alga — Spirulina platensis (1.7×106 dalton from the S6 strain and 1.2×106 dalton from the F3 strain) using a rapid method based on ultrasonic disruption of algal cells and alkaline removal of chromosomal DNA. The difference in the molecular weight of the CCC DNAs from the two strains differing in form suggests that plasmid may be related with the differentiation of algal form. This modified method, which does not use any lysozyme, is a quick and effective method of plasmid isolation, especially for filamentous blue-green algae.

  8. Compact in-line laser radial shear interferometer

    NASA Technical Reports Server (NTRS)

    Shukla, R. P.; Moghbel, M.; Venkateswarlu, P.

    1992-01-01

    A compact in-line radial shearing interferometer using laser as a light source is presented. The interferometer is made out of a cube-type beam splitter so that the two opposite surfaces are generated with different curvatures while the normal to the entrance and exit surfaces are in the same line. The interferometer is simple to make and easy to align. Aberration analysis of the interferometer is also presented. Some applications of the interferometer for testing lenses and infrared optical systems and for accessing the quality of an emerging wave front from the exit slit of a monochromator are suggested.

  9. Nanoscale imaging using a compact laser plasma EUV source

    NASA Astrophysics Data System (ADS)

    Wachulak, Przemyslaw; Bartnik, Andrzej; Fiedorowicz, Henryk; Kostecki, Jerzy; Jarocki, Roman; Szczurek, Miroslaw; Szczurek, Anna; Feigl, Torsten; Pina, Ladislav

    2012-05-01

    High resolution imaging methods and techniques are currently under development. One of them is an extreme ultraviolet (EUV) microscopy, based on Fresnel zone plates. In this paper a compact, high-repetition, laser-plasma EUV source, emitting quasi-monochromatic radiation at 13.8nm wavelength was used in a desktop EUV transmission microscopy with a spatial (half-pitch) resolution of 50nm. EUV microscopy images of objects with various thicknesses and the spatial resolution measurements using the knife-edge test are presented.

  10. Photochemical injury to the foveomacula of the monkey eye following argon blue-green panretinal photocoagulation.

    PubMed Central

    Parver, L M

    2000-01-01

    PURPOSE: Visual loss following panretinal photocoagulation was found in the Diabetic Retinopathy and the Early Treatment Diabetic Retinopathy Studies. This study was designed to test the hypothesis that light scattered in the monkey eye during a procedure designed to mimic a clinical panretinal photocoagulation (PRP) can produce a photochemical injury to the foveomacula. METHODS: Ten eyes of 5 adult cynomologous monkeys underwent a PRP using an argon blue-green laser. Three eyes in 2 monkeys underwent a sham PRP, and an additional eye had a PRP with blue filtered slit-lamp illumination. The animals had baseline fundus photographs and fluorescein angiograms that were repeated 24 hours after the experimental procedure. Forty-eight hours after the experimental procedure, the eyes were removed and processed for light and electron microscopy. RESULTS: There were no observable changes in the macula on fundus photography or fluorescein angiography 24 hours following PRP. Light and electron microscopy demonstrated changes in the retinal pigment epithelium and the outer photoreceptors, which were confined to the foveola. The control eyes showed no apparent effect from the slit lamp illumination used during the PRP. CONCLUSIONS: The presence of histologic evidence of retinal injury in the foveomacula of the monkey eye after a procedure designed to mimic clinical PRP supports the hypothesis that photochemical retinal damage in the foveola may be associated with this procedure. Images FIGURE 1A FIGURE 1B FIGURE 1C FIGURE 1D FIGURE 1E FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 PMID:11190033

  11. Compact Laser-Compton X-ray Source at LLNL

    NASA Astrophysics Data System (ADS)

    Hwang, Yoonwoo; Marsh, Roark; Gibson, David; Anderson, Gerald; Barty, Christopher; Tajima, Toshiki

    2016-10-01

    The scaling of laser-Compton X-ray and gamma-ray sources is dependent upon high-current, low-emittance accelerator operation and implementation of efficient laser-electron interaction architectures. Laser-Compton X-rays have been produced using the unique compact X-band linear accelerator at LLNL operated in a novel multibunch mode, and results agree extremely well with modeling predictions. An Andor X-ray CCD camera and image plates have been calibrated and used to characterize the 30 keV laser-Compton X-ray beam. The X-ray source size and the effect of scintillator blur have been measured. K-edge absorption measurements using thin metallic foils confirm the production of narrow energy spread X-rays and results validate X-ray image simulations. Future plans for medically relevant imaging will be discussed with facility upgrades to enable 250 keV X-ray production. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. Compact 2-J master oscillator power amplifier (MOPA) laser system

    NASA Astrophysics Data System (ADS)

    Morelli, Gregg L.; Honig, John N.

    2000-04-01

    A compact, 2-J Master Oscillator, Power Amplifier (MOPA) laser system was designed and built to support a multiple- fiber injection experiment. The system was built in a breadboard configuration to support a risk-reduction/proof- of-concept effort. A common design approach for MOPA systems is to utilize a single-mode oscillator as the input source to the amplifier. However, to optimize this system for fiber injection, a multi-mode oscillator was chosen. A stable, multi-mode, 1053-nm, Nd:YLF laser oscillator was designed and built. A plano/concave resonator was utilized, with a 4.0-mm diameter Nd:YLF laser rod, pumped in a dual flashlamp, diffuse, close-coupled pump cavity. A lithium niobate (LiNbO3) Q-switch crystal was used in a quarter- wave scheme. This pump cavity design did not use any active cooling and was ideal for low duty cycle applications requiring no more than one shot every 60 seconds. The oscillator output was amplified using a neodymium-doped phosphate glass laser rod in a four-pass configuration. Two Joules of output energy with an output pulsewidth of 12 ns were obtained. The 9.53-mm diameter Nd:Glass amplifier rod was pumped in a dual flashlamp, diffuse, close-coupled pump cavity. Output energy, pulsewidth, far-field beam divergence and intensity profile results will be presented for a Schott LG750 amplifier rod.

  13. Compact 625-channel scannerless imaging laser radar receiver

    NASA Astrophysics Data System (ADS)

    Burns, Hoyt N.; Steiner, Todd D.; Hayden, David R.

    1996-06-01

    In 1995, under a USAF SBIR Phase I program, Burns Engineering Corporation investigated the application of new integrated photonics technologies and hybrid manufacturing processes to the miniaturization of an imaging laser radar receiver which has complete receiving and range counting circuitry for each pixel in a 25-by-25 element avalanche photodiode array. The `parallel multichannel' receiver (PMR) is a compact, robust, and modular laser radar subsystem which can produce high resolution 3D range imagery at 1 kHz frame rates without the use of a scanner. The modular PMR is attractive as a common module solution for a wide variety of high performance, low cost, autonomous laser-guided seeker applications. The system described illustrates one approach to integrating and packaging high-density photonic arrays and associated signal processing electronics to yield a high-performance imaging laser radar receiver using existing technology. Burns Engineering has been selected by the USAF to build a benchtop prototype, proof-of-concept demonstrator in a follow-on, SBIR Phase II program.

  14. Modeling the Role of Zebra Mussels in the Proliferation of Blue-green Algae in Saginaw Bay, Lake Huron

    EPA Science Inventory

    Under model assumptions from Saginaw Bay 1991, selective rejection of blue-green algae by zebra mussels appears to be a necessary factor in the enhancement of blue-green algae production in the presence of zebra mussels. Enhancement also appears to depend on the increased sedime...

  15. Modeling the Role of Zebra Mussels in the Proliferation of Blue-green Algae in Saginaw Bay, Lake Huron

    EPA Science Inventory

    Under model assumptions from Saginaw Bay 1991, selective rejection of blue-green algae by zebra mussels appears to be a necessary factor in the enhancement of blue-green algae production in the presence of zebra mussels. Enhancement also appears to depend on the increased sedime...

  16. The rapid quantitation of the filamentous blue-green alga plectonema boryanum by the luciferase assay for ATP

    NASA Technical Reports Server (NTRS)

    Bush, V. N.

    1974-01-01

    Plectonema boryanum is a filamentous blue green alga. Blue green algae have a procaryotic cellular organization similar to bacteria, but are usually obligate photoautotrophs, obtaining their carbon and energy from photosynthetic mechanism similar to higher plants. This research deals with a comparison of three methods of quantitating filamentous populations: microscopic cell counts, the luciferase assay for ATP and optical density measurements.

  17. Uptake and Retention of Cs137 by a Blue-Green Alga in Continuous Flow and Batch Culture Systems

    SciTech Connect

    Watts, J.R.

    2003-02-18

    Since routine monitoring data show that blue-green algae concentrate radioactivity from water by factors as great as 10,000, this study was initiated to investigate the uptake and retention patterns of specific radionuclides by the dominant genera of blue-green algae in the reactor effluents. Plectonema purpureum was selected for this study.

  18. Compact confocal readout system for three-dimensional memories using a laser-feedback semiconductor laser.

    PubMed

    Nakano, Masaharu; Kawata, Yoshimasa

    2003-08-01

    We present a compact confocal readout system for three-dimensional optical memories that uses the thresholding property of a semiconductor laser for feedback light. The system has higher axial resolution than a conventional confocal system with a pinhole. We demonstrate readout results for data recorded in two recording layers with the developed system.

  19. Analysis of expressed sequence tags from the blue-green sharpshooter, Graphocephala atropunctata

    USDA-ARS?s Scientific Manuscript database

    We used a metagenomic approach and identified and sequenced 6,836 genetic sequences isolated from adult blue-green sharpshooters, BGSS, Graphocephala atropunctata. These results provided over 70% of the mitochondrial genome sequence which is being completed. The BGSS is endemic to southern Californ...

  20. Bioelectricity generation and microcystins removal in a blue-green algae powered microbial fuel cell.

    PubMed

    Yuan, Yong; Chen, Qing; Zhou, Shungui; Zhuang, Li; Hu, Pei

    2011-03-15

    Bioelectricity production from blue-green algae was examined in a single chamber tubular microbial fuel cell (MFC). The blue-green algae powered MFC produced a maximum power density of 11 4 mW/m(2) at a current density of 0.55 mA/m(2). Coupled with the bioenergy generation, high removal efficiencies of chemical oxygen demand (COD) and nitrogen were also achieved in MFCs. Over 78.9% of total chemical oxygen demand (TCOD), 80.0% of soluble chemical oxygen demand (SCOD), 91.0% of total nitrogen (total-N) and 96.8% ammonium-nitrogen (NH(3)-N) were removed under closed circuit conditions in 12 days, which were much more effective than those under open circuit and anaerobic reactor conditions. Most importantly, the MFC showed great ability to remove microcystins released from blue-green algae. Over 90.7% of MC-RR and 91.1% of MC-LR were removed under closed circuit conditions (500Ω). This study showed that the MFC could provide a potential means for electricity production from blue-green algae coupling algae toxins removal.

  1. A compact high brightness laser synchrotron light source for medical applications

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuhisa

    1999-07-01

    The present high-brightness hard X-ray sources have been developed as third generation synchrotron light sources based on large high energy electron storage rings and magnetic undulators. Recently availability of compact terawatt lasers arouses a great interest in the use of lasers as undulators. The laser undulator concept makes it possible to construct an attractive compact synchrotron radiation source which has been proposed as a laser synchrotron light source. This paper proposes a compact laser synchrotron light source for mediacal applications, such as an intravenous coronary angiography and microbeam therapy.

  2. Beam Line Design of Compact Laser Plasma Accelerator

    NASA Astrophysics Data System (ADS)

    Zhu, Jun-Gao; Zhu, Kun; Tao, Li; Geng, Yi-Xing; Lin, Chen; Ma, Wen-Jun; Lu, Hai-Yang; Zhao, Yan-Ying; Lu, Yuan-Rong; Chen, Jia-Er; Yan, Xue-Qing

    2017-05-01

    A compact laser plasma accelerator that is a novel accelerator based on the interaction of ultra-intense laser and plasmas is being built now at Peking University. According to the results of experiments and numerical simulations, a beam line combining the advantages of quadrupole and analyzing magnets is designed to deliver proton beams with energy ranging from 1 to 44 MeV, energy spread within ±5% and {10}6-8 protons per pulse. It turns out that the existence of space charge force of protons can be ignored for the increase of transverse and longitudinal envelopes even in the case of 10 {}9 protons in one pulse. To cope with the challenge to obtain a uniform distribution of protons at the final experiment target in laser acceleration, we manipulate the envelope beam waist in the Y direction to a proper position and obtain a relatively good distribution uniformity of protons with an energy spread of 0±5%. Supported by the National Natural Science Foundation of China under Grant No 11575011, and the National Grand Instrument Project under Grant No 2012YQ030142.

  3. Pulsed laser deposition of compact high adhesion polytetrafluoroethylene thin films

    NASA Astrophysics Data System (ADS)

    Smausz, Tomi; Hopp, Béla; Kresz, Norbert

    2002-08-01

    Polytetrafluoroethylene (PTFE) thin films were prepared from pressed powder pellets via pulsed laser deposition by using ArF (193 nm) excimer laser. The applied laser fluences were in the 1.6-10 J cm-2 range, the substrate temperature was varied between 27°C and 250°C and post-annealing of the films was carried out in air at temperatures between 320°C and 500°C. Films deposited at 250°C substrate temperature were found to be stoichiometric while those prepared at lower temperatures were fluorine deficient. Morphological analyses proved that the film thickness did not significantly depend on the substrate temperature and the post annealing at 500°C resulted in a thickness reduction of approximately 50%. It was demonstrated that the films prepared at 8.2 J cm-2 fluence and annealed at 500°C followed by cooling at 1°C min-1 rate were compact, pinhole-free layers. The adherence of films to the substrates was determined by tensile strength measurements. Tensile strength values up to 2.4 MPa were obtained. These properties are of great significance when PTFE films are fabricated for the purpose of protecting coatings.

  4. Power-Scalable Blue-Green Bessel Beams

    DTIC Science & Technology

    2016-02-23

    Arlington, VA 22203 N00014-11-1-0098 Approved for Public Release; distribution is unlimited See attachment. intermodal nonlinearities, high-power all ...this program was to demonstrate intermodal nonlinearities as a pathway for high- power all -fiber lasers at non-traditional emission wavelengths, and...wavelengths was highly successful, and cascaded emission down to 453 nm was achieved. We showed that a simple double-clad fiber suffices for all these

  5. Laser TV for home theater

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Ho; Mun, Yong-Kweun; Do, Sang-Whoe; Ko, Young-Chul; Kong, Do-Hyun; Choi, Byoung-So; Kim, Jong-Min; Hong, Chang-Wan; Jeon, Duk-Young

    2002-04-01

    The laser TV using blue, green diode-pumped solid state lasers and a red diode laser is developed. The wavelengths of the blue, green and red are 457 nm, 532 nm and 648 nm, and the output powers are 350 mW, 700 mW and 500 mW, respectively. The power levels of lasers are adjusted for white color balance. The polygon mirror and the galvanometer are used for horizontal scanning and vertical scanning, respectively. The image size of 80 inches with high-brightness and VGA resolution (640 X 480 Progressive scanning) is obtained. The acousto-optic modulator (AOM) is fabricated for laser beam modulation, for which the carrier frequency of 350 MHz for XGA resolution is applied. TeO2 crystal, which is cut at Brewster angle, is used as an optical medium and LiNbO3 is attached as a transducer. In order to get a compact size, low cost, low-power consumption and lightweight, a scanning mirror using MEMS technology is fabricated by the size of 1500 micrometers X 1200 micrometers . This scanning mirror can be used as a galvanometric vertical scanner for laser TV.

  6. Compact x-ray lasers in the laboratory

    SciTech Connect

    Barletta, W.A.

    1988-10-03

    Compact x-ray lasers in the laboratory can be produced with ultrahigh gradient rf linacs based on recent advances in linac technology by an SLAC-LLNL-LBL collaboration and on the development of bright, high current electron sources by BNL and LANL. The GeV electron beams generated with such accelerators can be converted to soft x rays in the range of 2--10 nm by passage through short period, high field strength wigglers. Alternatively, the beam can pump a low density dielectric to produce x rays via recombination. Such linear light sources can produce trains of picosecond (or shorter) pulses of extremely high spectral brilliance suitable for flash holography of biological specimens in vivo and for studies of fast chemical reactions. 15 refs., 7 figs., 3 tabs.

  7. Compact laser vibrometer for industrial and medical applications

    NASA Astrophysics Data System (ADS)

    Lewin, Andrew C.

    1998-06-01

    Laser interferometric vibrometers are now well known and accepted as sensitive, accurate, high bandwidth and linear measurement system. For many applications the internal complexity and resultant size of the interferometric sensor head limits the widespread use. This paper describes the performance and principle of operation of a new miniaturized interferometric sensor head which retains the important characteristics of the previously mentioned systems, but embodied in a robust compact housing no larger thana typical torchlight. Velocity resolution in the acoustic range has been found to be up to 50 nanometers/sec in a 10 Hz RBW. The size of this new sensor head allows it to be mounted on balanced microscope assemblies or within machinery, and the waterproof design allows disinfectant cleaning in clinical applications or operation in industrial environments.

  8. Compact Couplers for Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, Benjamin; Lin, M.C.; Schwartz, Brian; Byer, Robert; McGuinness, Christopher; Colby, Eric; England, Robert; Noble, Robert; Spencer, James; /SLAC

    2012-07-02

    Photonic crystal waveguides are promising candidates for laser-driven accelerator structures because of their ability to confine a speed-of-light mode in an all-dielectric structure. Because of the difference between the group velocity of the waveguide mode and the particle bunch velocity, fields must be coupled into the accelerating waveguide at frequent intervals. Therefore efficient, compact couplers are critical to overall accelerator efficiency. We present designs and simulations of high-efficiency coupling to the accelerating mode in a three-dimensional photonic crystal waveguide from a waveguide adjoining it at 90{sup o}. We discuss details of the computation and the resulting transmission. We include some background on the accelerator structure and photonic crystal-based optical acceleration in general.

  9. A compact x-ray free electron laser

    SciTech Connect

    Barletta, W.; Attac, M.; Cline, D.B.; Kolonko, J.; Wang, X.; Bhowmik, A.; Bobbs, B.; Cover, R.A.; Dixon, F.P.; Rakowsky, G.; Gallardo, J.; Pellegrini, C.; Westenskow, G.

    1988-09-09

    We present a design concept and simulation of the performance of a compact x-ray, free electron laser driven by ultra-high gradient rf-linacs. The accelerator design is based on recent advances in high gradient technology by a LLNL/SLAC/LBL collaboration and on the development of bright, high current electron sources by BNL and LANL. The GeV electron beams generated with such accelerators can be concerted to soft x-rays in the range from 2--10 nm by passage through short period, high fields strength wigglers as are being designed at Rocketdyne. Linear light sources of this type can produce trains of picosecond (or shorter) pulses of extremely high spectral brilliance suitable for flash holography of biological specimens in vivo and for studies of fast chemical reactions. 12 refs., 8 figs., 4 tabs.

  10. A compact X-ray free electron laser

    NASA Astrophysics Data System (ADS)

    Barletta, W.; Atac, M.; Cline, D. B.; Kolonko, J.; Wang, X.; Bhowmik, A.; Bobbs, B.; Cover, R. A.; Dixon, F. P.; Rakowsky, G.

    1988-09-01

    A design concept and simulation of the performance of a compact X-ray, free electron laser driven by ultra-high gradient RF-linacs is presented. The accelerator design is based on recent advances in high gradient technology by a LLNL/SLAC/LBL collaboration and on the development of bright, high current electron sources by BNL and LANL. The GeV electron beams generated with such accelerators can be converted to soft X-rays in the range from 2 to 10 nm by passage through short period, high fields strength wigglers as are being designed at Rocketdyne. Linear light sources of this type can produce trains of picosecond (or shorter) pulses of extremely high spectral brilliance suitable for flash holography of biological specimens in vivo and for studies of fast chemical reactions.

  11. Compact X-ray lasers in the laboratory

    NASA Astrophysics Data System (ADS)

    Barletta, William A.

    1988-10-01

    Compact X-ray lasers in the laboratory can be produced with ultrahigh gradient RF linacs based on recent advances in linac technology by an SLAC-LLNL-LBL collaboration and on the development of bright, high current electron sources by BNL and LANL. The GeV electron beams generated with such accelerators can be converted to soft X-rays in the range of 2 to 10 nm by passage through short period, high field strength wigglers. Alternatively, the beam can pump a low density dielectric to produce X-rays via recombination. Such linear light sources can produce trains of picosecond (or shorter) pulses of extremely high spectral brilliance suitable for flash holography of biological specimens in vivo and for studies of fast chemical reactions.

  12. Compact and smart laser diode systems for cancer treatment

    NASA Astrophysics Data System (ADS)

    Svirin, Viatcheslav N.; Sokolov, Victor V.; Solovieva, Tatiana I.

    2003-04-01

    To win the cancer is one of the most important mankind task to be decided in III Millenium. New technology of treatment is to recognize and kill cancer cells with the laser light not by surgery operation, but by soft painless therapy. Even though from the beginning of the 80s of the last century this technology, so-called photodynamic therapy (PDT) has received acceptance in America, Europe and Asia it is still considered in the medical circles to be a new method with the little-known approaches of cancer treatment. Recently the next step was done, and the unique method of PDT combined with laser-induced thermotherapy (LITT) was developed. Compact and smart diode laser apparatus "Modul-GF" for its realization was designed. In this report the concept of this method, experimental materials on clinical trials and ways of optimization of technical decisions and software of apparatus "Modul-GF", including the autotuning of laser power dependently on tissue temperature measured with thermosensors are discussed. The special instruments such as fiber cables and special sensors are described to permit application of "Modul-GF" for the treatment of the tumors of the different localizations, both surface and deeply located with using of the endoscopy method. The examples of the oncological and nononcological pathologies" treatment by the developed method and apparatus in urology, gynecology, gastroenterology, dermatology, cosmetology, bronchology, pulmonology are observed. The results of clinical approval the developed combination of PDT&LITT realized with "Modul-GF" leads to essentially increasing of the treatment effectiveness.

  13. A compact field-portable double-pulse laser system to enhance laser induced breakdown spectroscopy.

    PubMed

    Li, Shuo; Liu, Lei; Yan, Aidong; Huang, Sheng; Huang, Xi; Chen, Rongzhang; Lu, Yongfeng; Chen, Kevin

    2017-02-01

    This paper reports the development of a compact double-pulse laser system to enhance laser induced breakdown spectroscopy (LIBS) for field applications. Pumped by high-power vertical-surface emitting lasers, the laser system that produces 16 ns pulse at 12 mJ/pulse with total weight less than 10 kg is developed. The inter-pulse delay can be adjusted from 0μs with 0.5μs increment. Several LIBS experiments were carried out on NIST standard aluminum alloy samples. Comparing with the single-pulse LIBS, up to 9 times enhancement in atomic emission line was achieved with continuum background emission reduced by 70%. This has led to up to 10 times improvement in the limit of detection. Signal stability was also improved by 128% indicating that a more robust and accurate LIBS measurement can be achieved using a compact double-pulse laser system. This paper presents a viable and field deployable laser tool to dramatically improve the sensitivity and applicability of LIBS for a wide array of applications.

  14. A compact field-portable double-pulse laser system to enhance laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Liu, Lei; Yan, Aidong; Huang, Sheng; Huang, Xi; Chen, Rongzhang; Lu, Yongfeng; Chen, Kevin

    2017-02-01

    This paper reports the development of a compact double-pulse laser system to enhance laser induced breakdown spectroscopy (LIBS) for field applications. Pumped by high-power vertical-surface emitting lasers, the laser system that produces 16 ns pulse at 12 mJ/pulse with total weight less than 10 kg is developed. The inter-pulse delay can be adjusted from 0 μ s with 0.5 μ s increment. Several LIBS experiments were carried out on NIST standard aluminum alloy samples. Comparing with the single-pulse LIBS, up to 9 times enhancement in atomic emission line was achieved with continuum background emission reduced by 70%. This has led to up to 10 times improvement in the limit of detection. Signal stability was also improved by 128% indicating that a more robust and accurate LIBS measurement can be achieved using a compact double-pulse laser system. This paper presents a viable and field deployable laser tool to dramatically improve the sensitivity and applicability of LIBS for a wide array of applications.

  15. Compact High Repetition Rate CO2 TEA Lasers

    NASA Astrophysics Data System (ADS)

    Cohn, David B.; Hasselbeck, Michael P.; Affleck, Wayde H.; Eldridge, Robert E.; Moser, Thomas P.; Sasaki, Gregory R.; Watson, Tom A.; Bailey, Peter J.

    1989-07-01

    CO2 TEA lasers have been extensively developed at Hughes for a number of important military applications, including chemical defense, long range rangefinders, and uplink guidance control of projectiles. The devices are characterized by highly compact geometries using hermetically sealed, closed cycle gas flow with catalysts. Repetition rates are on the order of 200 Hz and output energies range from 100 mJ to to 300 mJ per pulse. Total prototype laser package volume and weight at the higher output energies is on the order of 1.5 ft3 and 40 pounds, respectively, and includes all components, requiring only an external source of 28 VDC. shot lifetimes have been achieved in closed cycle operation with room temperature catalysts for both the normal and 13C1602 isotopes. Wavelength tunability over 60 lines in the R and P branches of the 9.4 and 10.6 μm bands has been shown with emphasis on the 9P(42) line (of interest in chemical defense) where 170 mJ was obtained in multi-mode output. Rapid switching among lines at 10 Hz was achieved and extension in this rate by at least an order of magnitude is in progress.

  16. Compact prisms for polarisation splitting of fibre laser beams

    SciTech Connect

    Davydov, B L; Yagodkin, D I

    2005-11-30

    Simple compact monoprisms for spatial splitting of polarised laser beams with relatively small diameters (no more than 1 mm) are considered. Prisms can be made of optically inactive CaCO{sub 3}, {alpha}-BaB{sub 2}O{sub 4} ({alpha}-BBO), LiIO{sub 3}, LiNbO{sub 3}, YVO{sub 4}, and TiO{sub 2} crystals known in polarisation optics. The exact solution of the Snell equation for the extraordinary wave reflected from a surface arbitrarily tilted to its wave vector is obtained. The analysis of variants of the solution allows the fabrication of prisms with any deviation angles of the extraordinary wave by preserving the propagation direction of the ordinary wave. Three variants of prisms are considered: with minimised dimensions, with the Brewster output of the extraordinary beam, and with the deviation of the extraordinary wave by 90{sup 0}. Calcite prisms with the deviation angles for the extraordinary beam {approx}19{sup 0} and 90{sup 0} are tested experimentally. (control of laser radiation parameters)

  17. The evolution of blue-greens and the origins of chloroplasts

    NASA Technical Reports Server (NTRS)

    Schwartz, R. M.; Dayhoff, M. O.

    1981-01-01

    All of the available molecular data support the theory that the chloroplasts of eukaryote cells were originally free-living blue-greens. Of great interest is what the relationships are between contemporary types of blue-greens and eukaryote chloroplasts and whether the chloroplasts of the various eukaryotes are the result of one or more than one symbiosis. By combining information from phylogenetic trees based on cytochrome c6 and 2Fe-2S ferredoxin sequences, it is shown that the chloroplasts of a number of eukaryote algae as well as the protist Euglena are polyphyletic; the chloroplasts of green algae and the higher plants may be the result of a single symbiosis.

  18. The evolution of blue-greens and the origins of chloroplasts

    NASA Technical Reports Server (NTRS)

    Schwartz, R. M.; Dayhoff, M. O.

    1981-01-01

    All of the available molecular data support the theory that the chloroplasts of eukaryote cells were originally free-living blue-greens. Of great interest is what the relationships are between contemporary types of blue-greens and eukaryote chloroplasts and whether the chloroplasts of the various eukaryotes are the result of one or more than one symbiosis. By combining information from phylogenetic trees based on cytochrome c6 and 2Fe-2S ferredoxin sequences, it is shown that the chloroplasts of a number of eukaryote algae as well as the protist Euglena are polyphyletic; the chloroplasts of green algae and the higher plants may be the result of a single symbiosis.

  19. Growth of Legionella pneumophila in association with blue-green algae (Cyanobacteria)

    SciTech Connect

    Tison, D.L.; Pope, D.H.; Cherry, W.B.; Fliermans, C.B.

    1980-02-01

    Legionella pneumophila (Legionnaires disease bacterium) of serogroup 1 was isolated from an algal-bacterial mat community growing at 45/sup 0/C in a man-made thermal effluent. This isolate was grown in mineral salts medium at 45/sup 0/C in association with the blue-green alga (cyanobacterium) Fischerella sp. over a pH range of 6.9 to 7.6. L. pneumophila was apparently using algal extracellular products as its carbon and energy sources. These observations indicate that the temperature, pH, and nutritional requirements of L. pneumophila are not as stringent as those previously observed when cultured on complex media. This association between L. pneumophila and certain blue-green algae suggests an explanation for the apparent widespread distribution of the bacterium in nature.

  20. A highly efficient, compact Yb:KYW laser for mobile precision systems

    SciTech Connect

    Kuznetsov, S A; Pivtsov, V S

    2014-05-30

    We have developed a promising scheme of a multimodediode-pumped ytterbium laser. The Yb:KYW laser in the cw regime demonstrates record-high differential (40%) and total optical (35%) efficiencies. Mode locking is realised, which allows the scheme to be used for the development of compact laser systems, such as mobile femtosecond precision synthesisers. The peculiarities of the laser operation and ways of further improving its efficiency are discussed. (lasers)

  1. Clinical and pathologic findings of blue-green algae (Microcystis aeruginosa) intoxication in a dog.

    PubMed

    DeVries, S E; Galey, F D; Namikoshi, M; Woo, J C

    1993-07-01

    A healthy dog developed signs of lethargy and vomiting after ingesting water from a tide pool containing blue-green algae. Fulminant hepatic failure occurred, and the dog was euthanized 52 hours later. At necropsy, the liver was large, friable, and discolored a dark red. Histopathology showed hepatocyte dissociation, degeneration, and necrosis. The alga was identified as Microcystis aeruginosa, a known hepatotoxin. The intraperitoneal administration of lyophilized cell material from the bloom caused hepatic necrosis in mice.

  2. Efficient harvesting of wet blue-green microalgal biomass by two-aminoclay [AC]-mixture systems.

    PubMed

    Ji, Hye-Min; Lee, Hyun Uk; Kim, Eui Jin; Seo, Soonjoo; Kim, Bohwa; Lee, Go-Woon; Oh, You-Kwan; Kim, Jun Yeong; Huh, Yun Suk; Song, Hyun A; Lee, Young-Chul

    2016-07-01

    Blue-green microalgal blooms have been caused concerns about environmental problems and human-health dangers. For removal of such cyanobacteria, many mechanical and chemical treatments have been trialled. Among various technologies, the flocculation-based harvesting (precipitation) method can be an alternative if the problem of the low yield of recovered biomass at low concentrations of cyanobacteria is solved. In the present study, it was utilized mixtures of magnesium aminoclay [MgAC] and cerium aminoclay [CeAC] with different particle sizes to harvest cyanobacteria feedstocks with ∼100% efficiency within 1h by ten-fold lower loading of ACs compared with single treatments of [MgAC] or [CeAC]. This success was owed to the compact networks of the different-sized-ACs mixture for efficient bridging between microalgal cells. In order to determine the usage potential of biomass harvested with AC, the mass was heat treated under the reduction condition. This system is expected to be profitably utilizable in adsorbents and catalysts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Innovative fiber-laser architecture-based compact wind lidar

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.; Tracy, Allen; Vetorino, Steve; Higgins, Richard; Sibell, Russ

    2016-03-01

    This paper describes an innovative, compact and eyesafe coherent lidar system developed for use in wind and wake vortex sensing applications. This advanced lidar system is field ruggedized with reduced size, weight, and power consumption (SWaP) configured based on an all-fiber and modular architecture. The all-fiber architecture is developed using a fiber seed laser that is coupled to uniquely configured fiber amplifier modules and associated photonic elements including an integrated 3D scanner. The scanner provides user programmable continuous 360 degree azimuth and 180 degree elevation scan angles. The system architecture eliminates free-space beam alignment issues and allows plug and play operation using graphical user interface software modules. Besides its all fiber architecture, the lidar system also provides pulsewidth agility to aid in improving range resolution. Operating at 1.54 microns and with a PRF of up to 20 KHz, the wind lidar is air cooled with overall dimensions of 30" x 46" x 60" and is designed as a Class 1 system. This lidar is capable of measuring wind velocities greater than 120 +/- 0.2 m/s over ranges greater than 10 km and with a range resolution of less than 15 m. This compact and modular system is anticipated to provide mobility, reliability, and ease of field deployment for wind and wake vortex measurements. The current lidar architecture is amenable for trace gas sensing and as such it is being evolved for airborne and space based platforms. In this paper, the key features of wind lidar instrumentation and its functionality are discussed followed by results of recent wind forecast measurements on a wind farm.

  4. Ultra high brightness laser diode arrays for pumping of compact solid state lasers and direct applications

    NASA Astrophysics Data System (ADS)

    Kohl, Andreas; Fillardet, Thierry; Laugustin, Arnaud; Rabot, Olivier

    2012-10-01

    High Power Laser Diodes (HPLD) are increasingly used in different fields of applications such as Industry, Medicine and Defense. Our significant improvements of performances (especially in power and efficiency) and a reproducible manufacturing process have led to reliable, highly robust components. For defense and security applications these devices are used predominantly for pumping of solid state lasers (ranging, designation, countermeasures, and sensors). Due to the drastically falling price per watt they are more and more replacing flash lamps as pump sources. By collimating the laser beam even with a bar to bar pitch of only 400μm. cutting edge brightness of our stacks.is achieved Due the extremely high brightness and high power density these stacks are an enabling technology for the development of compact highly efficient portable solid state lasers for applications as telemeters and designators on small platforms such as small UAVs and handheld devices. In combination with beam homogenizing optics their compact size and high efficiency makes these devices perfectly suited as illuminators for portable active imaging systems. For gated active imaging systems a very short pulse at high PRF operation is required. For this application we have developed a diode driver board with an efficiency several times higher than that of a standard driver. As a consequence this laser source has very low power consumption and low waste heat dissipation. In combination with its compact size and the integrated beam homogenizing optics it is therefore ideally suited for use in portable gated active imaging systems. The kWatt peak power enables a range of several hundred meters. The devices described in this paper mostly operate at wavelength between 800 nm and 980nm. Results from diodes operating between 1300 nm and 1550 nm are presented as well.

  5. Cryptochrome as a Sensor of the Blue/Green Ratio of Natural Radiation in Arabidopsis1[C][W][OA

    PubMed Central

    Sellaro, Romina; Crepy, María; Trupkin, Santiago Ariel; Karayekov, Elizabeth; Buchovsky, Ana Sabrina; Rossi, Constanza; Casal, Jorge José

    2010-01-01

    Green light added to blue light has been proposed to shift cryptochromes from their semireduced active form to the reduced, inactive state. Whether the increased proportion of green light observed under leaf canopies compared to open places reduces cryptochrome-mediated effects remained to be elucidated. Here we report that the length of the hypocotyl of Arabidopsis (Arabidopsis thaliana) seedlings grown under controlled conditions decreased linearly with increasing blue/green ratios of the light within the range of ratios found in natural environments. This effect was stronger under higher irradiances. We developed a model, parameterized on the basis of field experiments including photoreceptor mutants, where hypocotyl growth of seedlings exposed to different natural radiation environments was related to the action and interaction of phytochromes and cryptochromes. Adding the blue/green ratio of the light in the term involving cryptochrome activity improved the goodness of fit of the model, thus supporting a role of the blue/green ratio under natural radiation. The blue/green ratio decreased sharply with increasing shade by green grass leaves to one-half of the values observed in open places. The impact of blue/green ratio on cryptochrome-mediated inhibition of hypocotyl growth was at least as large as that of irradiance. We conclude that cryptochrome is a sensor of blue irradiance and blue/green ratio. PMID:20668058

  6. Approach to compact terawatt CO{sub 2} laser system for particle acceleration

    SciTech Connect

    Pogorelsky, I.V.; Kimura, W.D.; Fisher, C.H.; Kannari, F.; Kurnit, N.A.

    1994-11-01

    A compact table-top 20-GW 50-ps CO{sub 2} laser system is in operation for strong-field physics studies at the ATF. We propose scaling up of the picosecond CO{sub 2} laser to a terawatt peak power level to meet the requirements of advanced laser accelerators. Computer modeling shows that a relatively compact single-beam picosecond CO{sub 2} laser system with a high-pressure x-ray picosecond amplifier of a 10-cm aperture is potentially scalable to the {approximately}1-TW peak power level.

  7. Compact laser molecular beam epitaxy system using laser heating of substrate for oxide film growth

    NASA Astrophysics Data System (ADS)

    Ohashi, S.; Lippmaa, M.; Nakagawa, N.; Nagasawa, H.; Koinuma, H.; Kawasaki, M.

    1999-01-01

    A high-temperature, oxygen compatible, and compact laser molecular beam epitaxy (laser MBE) system has been developed. The 1.06 μm infrared light from a continuous wave neodymium-doped yttrium aluminum garnet (Nd:YAG) laser was used to achieve a wide range and rapid control of substrate temperature in ultrahigh vacuum and at up to 1 atm oxygen pressure. The maximum usable temperature was limited to 1453 °C by the melting point of the nickel sample holder. To our knowledge, this is the highest temperature reported for pulsed laser deposition of oxide films. The efficient laser heating combined with temperature monitoring by a pyrometer and feedback control of the Nd:YAG laser power by a personal computer made it possible to regulate the substrate temperature accurately and to achieve high sample heating and cooling rates. The oxygen pressure and ablation laser triggering were also controlled by the computer. The accurate growth parameter control was combined with real-time in situ surface structure monitoring by reflection high energy electron diffraction to investigate oxide thin film growth in detail over a wide range of temperatures, oxygen partial pressures, and deposition rates. We have demonstrated the performance of this system by the fabrication of homoepitaxial SrTiO3 films as well as heteroepitaxial Sr2RuO4, and SrRuO3 films on SrTiO3 substrates at temperatures of up to 1300 °C. This temperature was high enough to change the film growth mode from layer by layer to step flow.

  8. Compact beam transport system for free-electron lasers driven by a laser plasma accelerator

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Zhang, Tong; Wang, Dong; Huang, Zhirong

    2017-02-01

    Utilizing laser-driven plasma accelerators (LPAs) as a high-quality electron beam source is a promising approach to significantly downsize the x-ray free-electron laser (XFEL) facility. A multi-GeV LPA beam can be generated in several-centimeter acceleration distance, with a high peak current and a low transverse emittance, which will considerably benefit a compact FEL design. However, the large initial angular divergence and energy spread make it challenging to transport the beam and realize FEL radiation. In this paper, a novel design of beam transport system is proposed to maintain the superior features of the LPA beam and a transverse gradient undulator (TGU) is also adopted as an effective energy spread compensator to generate high-brilliance FEL radiation. Theoretical analysis and numerical simulations are presented based on a demonstration experiment with an electron energy of 380 MeV and a radiation wavelength of 30 nm.

  9. Hepatopathy following consumption of a commercially available blue-green algae dietary supplement in a dog.

    PubMed

    Bautista, Adrienne C; Moore, Caroline E; Lin, Yanping; Cline, Martha G; Benitah, Noemi; Puschner, Birgit

    2015-06-19

    Dietary supplement use in both human and animals to augment overall health continues to increase and represents a potential health risk due to the lack of safety regulations imposed on the manufacturers. Because there are no requirements for demonstrating safety and efficacy prior to marketing, dietary supplements may contain potentially toxic contaminants such as hepatotoxic microcystins produced by several species of blue-green algae. An 11-year-old female spayed 8.95 kg Pug dog was initially presented for poor appetite, lethargy polyuria, polydipsia, and an inability to get comfortable. Markedly increased liver enzyme activities were detected with no corresponding abnormalities evident on abdominal ultrasound. A few days later the liver enzyme activities were persistently increased and the dog was coagulopathic indicating substantial liver dysfunction. The dog was hospitalized for further care consisting of oral S-adenosylmethionine, silybin, vitamin K, and ursodeoxycholic acid, as well as intravenous ampicillin sodium/sulbactam sodium, dolasetron, N-acetylcysteine, metoclopramide, and intravenous fluids. Improvement of the hepatopathy and the dog's clinical status was noted over the next three days. Assessment of the dog's diet revealed the use of a commercially available blue-green algae dietary supplement for three-and-a-half weeks prior to hospitalization. The supplement was submitted for toxicology testing and revealed the presence of hepatotoxic microcystins (MCs), MC-LR and MC-LA. Use of the supplement was discontinued and follow-up evaluation over the next few weeks revealed a complete resolution of the hepatopathy. To the authors' knowledge, this is the first case report of microcystin intoxication in a dog after using a commercially available blue-green algae dietary supplement. Veterinarians should recognize the potential harm that these supplements may cause and know that with intervention, recovery is possible. In addition, more prudent oversight of

  10. Factors influencing dark nitrogen fixation in a blue-green alga.

    PubMed

    Fay, P

    1976-03-01

    Nitrogen-fixing activity declines first rapidly and then more gradually when Anabaenopsis circularis is transferred from light into dark conditions. The rate and duration of dark acetylene reduction (nitrogen fixation) depend upon conditions prevailing during the preceding light period. Factors (such as light intensity, CO2 concentration, and supply of glucose), which in the light affect photosynthesis and the accumulation of reserve carbon, have a profound effect on dark nitrogen fixation. Glucose greatly promotes nitrogen fixation in the light and supports prolonged nitrogenase activity in the dark. The results suggest that heterotrophic nitrogen fixation by blue-green algae in the field may be important both under light and dark conditions.

  11. Langmuir-Blodgett film of phycobilisomes from blue-green alga Spirulina platensis.

    PubMed

    Chen, Chao; Zhang, Yu-Zhong; Chen, Xiu-Lan; Zhou, Bai-Cheng; Gao, Hong-Jun

    2003-10-01

    The phycobilisomes were isolated from blue-green alga Spirulina platensis, and could form monolayer film at air/water interface. The monolayer film of phycobilisomes was transferred to newly cleaved mica, and coated with gold. Scanning tunneling microscope was used to investigate the structure of the Langmuir-Blodgett film of phycobilisomes. It was shown that phycobilisomes in the monolayer arrayed in rows with core attaching on the substrate surface and rods radiating towards the air phase, this phenomenon was similar to the arrangement of phycobilisomes on cytoplasmic surface of thylakoid membrane in vivo. The possible applications of the Langmuir-Blodgett film of phycobilisomes were also discussed.

  12. A compact, rugged, high repetition rate CO2 laser incorporating catalyst

    NASA Technical Reports Server (NTRS)

    Schwarzenberger, P. M.; Matzangou, X.

    1990-01-01

    The principal design features and operating characteristics of a high repetition rate CO2 laser are outlined. The laser is a compact, rugged unit, completely sealed and incorporating an unheated solid catalyst. Stable operation has been successfully demonstrated over a temperature range of -35 C to 65 C.

  13. Compact 180-kV Marx generator triggered in atmospheric air by femtosecond laser filaments

    SciTech Connect

    Arantchouk, L. Larour, J.; Point, G.; Brelet, Y.; Carbonnel, J.; André, Y.-B.; Mysyrowicz, A.; Houard, A.

    2014-03-10

    We developed a compact Marx generator triggered in atmospheric air by a single femtosecond laser beam undergoing filamentation. Voltage pulses of 180 kV could be generated with a subnanosecond jitter. The same laser beam was also used to initiate simultaneously guided discharges up to 21 cm long at the output of the generator.

  14. Compact 180-kV Marx generator triggered in atmospheric air by femtosecond laser filaments

    NASA Astrophysics Data System (ADS)

    Arantchouk, L.; Point, G.; Brelet, Y.; Larour, J.; Carbonnel, J.; André, Y.-B.; Mysyrowicz, A.; Houard, A.

    2014-03-01

    We developed a compact Marx generator triggered in atmospheric air by a single femtosecond laser beam undergoing filamentation. Voltage pulses of 180 kV could be generated with a subnanosecond jitter. The same laser beam was also used to initiate simultaneously guided discharges up to 21 cm long at the output of the generator.

  15. Compact all-fiber ring femtosecond laser with high fundamental repetition rate.

    PubMed

    Wei, Xiaoming; Xu, Shanhui; Huang, Huichang; Peng, Mingying; Yang, Zhongmin

    2012-10-22

    A 165-fs all-fiber ring laser is demonstrated with a fundamental repetition rate of 235 MHz based on a 5.7-cm-long Er(3+)/Yb(3+) codoped phosphate glass fiber and a technique of nonlinear polarization evolution. In order to further enhance the fundamental repetition rate and compact the structure of the all-fiber laser, an optical integrated module is designed. By employing this novel optical module, a much more compact 105-fs mode-locking all-fiber ring laser, operating at a 325 MHz fundamental repetition rate, is realized.

  16. A compact laser head with high-frequency stability for Rb atomic clocks and optical instrumentation

    SciTech Connect

    Affolderbach, Christoph; Mileti, Gaetano

    2005-07-15

    We present a compact and frequency-stabilized laser head based on an extended-cavity diode laser. The laser head occupies a volume of 200 cm{sup 3} and includes frequency stabilization to Doppler-free saturated absorption resonances on the hyperfine components of the {sup 87}Rb D{sub 2} lines at 780 nm, obtained from a simple and compact spectroscopic setup using a 2 cm{sup 3} vapor cell. The measured frequency stability is {<=}2x10{sup -12} over integration times from 1 s to 1 day and shows the potential to reach 2x10{sup -13} over 10{sup 2}-10{sup 5} s. Compact laser sources with these performances are of great interest for applications in gas-cell atomic frequency standards, atomic magnetometers, interferometers and other instruments requiring stable and narrow-band optical sources.

  17. A compact laser system for the cold atom gravimeter

    NASA Astrophysics Data System (ADS)

    Wang, Qiyu; Wang, Zhaoying; Fu, Zhijie; Liu, Weiyong; Lin, Qiang

    2016-01-01

    With the rapid development of the technologies in the field of laser cooling atoms, a portable and stable laser system is urgently required for the wide applications based on the cold atoms. In this paper, we report a modular laser system for a gravimeter based on atom interferometry, which enable us to realize high-precision gravity measurements outside of laboratory. The system is based on two distributed feedback (DFB) laser diodes of 1560 nm, which are used as the master laser and the reference laser respectively. The frequency of the reference laser is locked on a rubidium transition, the master laser is frequency locked on the reference one by the method of beat locking. The master laser is power amplified firstly by the erbium-doped fiber amplifier (EDFA), and then frequency doubled by using a periodically poled lithium niobate (PPLN) crystal to obtain 1 W laser output at 780 nm. The repumping and Raman lasers are generated by adding an electro-optic modulation on the master laser, featuring extremely low phase noise. With this laser system, we obtain a cloud of 87Rb atoms with a temperature of 5 μKin a magneto-optical trapping. And a gravity resolution of 1.0 ×10-8 g within 200 s integration time is reached.

  18. Biochemical Basis of Obligate Autotrophy in Blue-Green Algae and Thiobacilli

    PubMed Central

    Smith, Arnold J.; London, Jack; Stanier, Roger Y.

    1967-01-01

    Differential rates of incorporation of sugars, organic acids, and amino acids during autotrophic growth of several blue-green algae and thiobacilli have been determined. In obligate autotrophs (both blue-green algae and thiobacilli), exogenously furnished organic compounds make a very small contribution to cellular carbon; acetate, the most readily incorporated compound of those studied, contributes about 10% of newly synthesized cellular carbon. In Thiobacillus intermedius, a facultative chemoautotroph, acetate contributes over 40% of newly synthesized cellular carbon, and succinate and glutamate almost 90%. In the obligate autotrophs, carbon from pyruvate, acetate, and glutamate is incorporated into restricted groups of cellular amino acids, and the patterns of incorporation in all five organisms are essentially identical. These patterns suggest that the tricarboxylic acid cycle is blocked at the level of α-ketoglutarate oxidation. Enzymatic analyses confirmed the absence of α-ketoglutarate dehydrogenase in the obligate autotrophs, and also revealed that they lacked reduced nicotinamide adenine dinucleotide oxidase, and had extremely low levels of malic and succinic dehydrogenase. These enzymatic deficiencies were not manifested by the two facultative chemoautotrophs examined. On the basis of the data obtained, an interpretation of obligate autotrophy in both physiological and evolutionary terms has been developed. PMID:4963789

  19. EU Climate-KIC Innovation Blue Green Dream Project: Creation of Educational Experience, Communication and Dissemination

    NASA Astrophysics Data System (ADS)

    Tchiguirinskaia, Ioulia; Gires, Auguste; Vicari, Rosa; Schertzer, Daniel; Maksimovic, Cedo

    2013-04-01

    The combined effects of climate change and increasing urbanization call for a change of paradigm for planning, maintenance and management of new urban developments and retrofitting of existing ones to maximize ecosystem services and increase resilience to the adverse climate change effects. This presentation will discuss synergies of the EU Climate-KIC Innovation Blue Green Dream (BGD) Project in promoting the BGD demonstration and training sites established in participating European countries. The BGD demonstration and training sites show clear benefits when blue and green infrastructures are considered together. These sites present a unique opportunity for community learning and dissemination. Their development and running acts as a hub for engineers, architects, planners and modellers to come together in their design and implementation stage. This process, being captured in a variety of media, creates a corpus of knowledge, anchored in specific examples of different scales, types and dimensions. During the EU Climate-KIC Innovation Blue Green Dream Project, this corpus of knowledge will be used to develop dissemination and training materials whose content will be customised to fit urgent societal needs.

  20. Strong tolerance of blue-green alga Microcystis flos-aquae to very high pressure

    NASA Astrophysics Data System (ADS)

    Ono, F.; Nishihira, N.; Hada, Y.; Mori, Y.; Takarabe, K.; Saigusa, M.; Matsushima, Y.; Yamazaki, D.; Ito, E.

    2015-09-01

    It was shown in our previous reports that a few spores of moss Venturiella could tolerate the very high pressure of 20 GPa for 30 min and germinated a protonema to the length of 30 μm. However, these spores did not grow any further, and disappeared at around 30 days of incubation after seeded. On the other hand, colonies of blue-green alga Microcystis flos-aquae came to appear about 76 days after the moss spores were seeded. Many of these colonies appeared at the places where the moss spores had disappeared. These colonies were formed by the algae that had adhered to the spore cases of the moss and survived after exposure to the very high pressure of 20 GPa. Though the appearance of the colonies of high pressure exposed algae was delayed by about 50 days compared with that of the control group which was not exposed to high pressure, there seems no difference in their shape and color from those of the control group. The pressure tolerance of blue-green alga is found to be enormously strong, and it can survive after exposure to the high pressure which corresponds to the depth of about 550-600 km from the surface of the Earth, just above the lower mantle.

  1. Development of a compact vertical-cavity surface-emitting laser end-pumped actively Q-switched laser for laser-induced breakdown spectroscopy

    SciTech Connect

    Li, Shuo; Chen, Rongzhang; Nelsen, Bryan; Chen, Kevin; Liu, Lei; Huang, Xi; Lu, Yongfeng

    2016-03-15

    This paper reports the development of a compact and portable actively Q-switched Nd:YAG laser and its applications in laser-induced breakdown spectroscopy (LIBS). The laser was end-pumped by a vertical-cavity surface-emitting laser (VCSEL). The cavity lases at a wavelength of 1064 nm and produced pulses of 16 ns with a maximum pulse energy of 12.9 mJ. The laser exhibits a reliable performance in terms of pulse-to-pulse stability and timing jitter. The LIBS experiments were carried out using this laser on NIST standard alloy samples. Shot-to-shot LIBS signal stability, crater profile, time evolution of emission spectra, plasma electron density and temperature, and limits of detection were studied and reported in this paper. The test results demonstrate that the VCSEL-pumped solid-state laser is an effective and compact laser tool for laser remote sensing applications.

  2. Compact, highly efficient ytterbium doped bismuthate glass waveguide laser.

    PubMed

    Mary, R; Beecher, S J; Brown, G; Thomson, R R; Jaque, D; Ohara, S; Kar, A K

    2012-05-15

    Laser slope efficiencies close to the quantum defect limit and in excess of 78% have been obtained from an ultrafast laser inscribed buried channel waveguide fabricated in a ytterbium-doped bismuthate glass. The simultaneous achievement of low propagation losses and preservation of the fluorescence properties of ytterbium ions is the basis of the outstanding laser performance.

  3. Compact diode-side-pumped Nd:YVO4 laser in grazing-incidence configuration

    NASA Astrophysics Data System (ADS)

    Bermudez Gutierrez, J. C.; Damzen, M. J.; Pinto-Robledo, V. J.; Kir'yanov, A. V.; Soto-Bernal, J. J.

    The analysis of compact CW diode-side-pumped grazing-incidence-geometry Nd:YVO4 laser designs is presented. An output power of 5 W (λ=1064 nm) was produced at 17 W of diode pump (conversion efficiency of 30%) in single transverse TEM00 mode operation at high laser beam quality (Mx2 1.05 and My2 1.01). The resonator geometry was analyzed by applying generalized 4×4 matrix modeling of the spatial mode size, including the impact on the laser operation of cavity astigmatism and a thermal lens in the laser slab. The simplicity and compactness of the laser cavities allow their use for technological applications.

  4. Compact high-pulse-energy ultraviolet laser source for ozone lidar measurements.

    PubMed

    Elsayed, Khaled A; DeYoung, Russell J; Petway, Larry B; Edwards, William C; Barnes, James C; Elsayed-Ali, Hani E

    2003-11-20

    An all solid-state Ti:sapphire laser differential absorption lidar transmitter was developed. This all-solid-state laser provides a compact, robust, and highly reliable laser transmitter for potential application in differential absorption lidar measurements of atmospheric ozone. Two compact, high-energy-pulsed, and injection-seeded Ti:sapphire lasers operating at a pulse repetition frequency of 30 Hz and wavelengths of 867 and 900 nm, with M2 of 1.3, have been experimentally demonstrated and their properties compared with model results. The output pulse energy was 115 mJ at 867 nm and 105 mJ at 900 nm, with a slope efficiency of 40% and 32%, respectively. At these energies, the beam quality was good enough so that we were able to achieve 30 mJ of ultraviolet laser output at 289 and 300 nm after frequency tripling with two lithium triborate nonlinear crystals.

  5. The nucleotide sequence of blue-green algae phenylalanine-tRNA and the evolutionary origin of chloroplasts.

    PubMed Central

    Hecker, L I; Barnett, W E; Lin, F K; Furr, T D; Heckman, J E; RajBhandary, U L; Chang, S H

    1982-01-01

    Phenylalanine tRNA from the blue-green alga, Agmenellum quadruplicatum, has been purified to homogeneity. The nucleotide sequence of this tRNA was determined to be: (see tests) Comparisons of the sequence and the modified nucleosides of this tRNA with those of other tRNAPhes thus far sequenced, indicate that this blue green algal tRNAPhe is typically prokaryotic and closely resembles the chloroplast tRNAPhes of higher plants and Euglena. The significance of this observation to the evolutionary origin of chloroplasts is discussed. Images PMID:6817301

  6. The Effects of Ultraviolet Irradiation on a Coccoid Blue-Green Alga: Survival, Photosynthesis, and Photoreactivation 1

    PubMed Central

    Van Baalen, Chase

    1968-01-01

    The effects of UV irradiation (254 mμ) on a coccoid blue-green alga Agmenellum quadruplicatum, Strain PR-6, have been examined in terms of the survival curve and measurement of short time photosynthetic rates. From study of survival evidence has been found for a strong photoreactivation centered near 430 mμ. Measurements of photosynthetic rate suggest that there is a correlation between decay of photosynthesis and survival after UV exposure. The UV induced decay in photosynthetic activity is reversed by the identical photoreactivation conditions that increase the survival level. The photosynthetic data are interpreted as demonstrating a photoreactivation of photosynthesis in blue-green algae. PMID:16656955

  7. CONTROL OF LASER RADIATION PARAMETERS: Compact prisms for polarisation splitting of fibre laser beams

    NASA Astrophysics Data System (ADS)

    Davydov, B. L.; Yagodkin, D. I.

    2005-11-01

    Simple compact monoprisms for spatial splitting of polarised laser beams with relatively small diameters (no more than 1 mm) are considered. Prisms can be made of optically inactive CaCO3, α-BaB2O4 (α-BBO), LiIO3, LiNbO3, YVO4, and TiO2 crystals known in polarisation optics. The exact solution of the Snell equation for the extraordinary wave reflected from a surface arbitrarily tilted to its wave vector is obtained. The analysis of variants of the solution allows the fabrication of prisms with any deviation angles of the extraordinary wave by preserving the propagation direction of the ordinary wave. Three variants of prisms are considered: with minimised dimensions, with the Brewster output of the extraordinary beam, and with the deviation of the extraordinary wave by 90°. Calcite prisms with the deviation angles for the extraordinary beam ~19° and 90° are tested experimentally.

  8. Multifunctional Modular Common Compact Components of Lasers (SYSTEM 2350)

    DTIC Science & Technology

    2007-11-02

    pumping geometry transverse to the cavity axis. In this arrangement the individual laser diode emitters are not required to be coherent with each other...rangefinding, and target profiling, and adding optical augmentation and MILES as required. A diode pumped ND:YAG Laser Engine and switchable OPO wavelength...augmentation and MILES as required. A diode pumped ND:YAG Laser Engine and switchable OPO wavelength conversion satisfied the high end designation requirement

  9. Compact IR laser for calibration of space based sensors

    SciTech Connect

    Kietrick, K.M.; Dezenberg, G.; Hamilton, C.; Vann, J.; LaSala, J.

    1996-04-17

    An Er:YAG laser, operating at 2.94 microns, has been developed for in-theater calibration of space based infrared sensors. The laser is used to illuminate a spaceborne sensor focal plane from a surveyed ground reference point. The known reference point is compared to the laser position reported by the sensor, and boresight corrections are made. The Er:YAG laser is side pumped by a InGaAs diode array and is tuned to an atmospheric microwindow with and intracavity etalon. This technology is being directly applied to meet Army requirements for enhanced deep strike targeting information supplied to theater weapons systems.

  10. Multiphoton microscopy system with a compact fiber-based femtosecond-pulse laser and handheld probe

    PubMed Central

    Liu, Gangjun; Kieu, Khanh; Wise, Frank W.; Chen, Zhongping

    2012-01-01

    We report on the development of a compact multiphoton microscopy (MPM) system that integrates a compact and robust fiber laser with a miniature probe. The all normal dispersion fiber femtosecond laser has a central wavelength of 1.06 μm, pulse width of 125 fs and average power of more than 1 W. A double cladding photonic crystal fiber was used to deliver the excitation beam and to collect the two-photon signal. The hand-held probe included galvanometer-based mirror scanners, relay lenses and a focusing lens. The packaged probe had a diameter of 16 mm. Second harmonic generation (SHG) images and two-photon excited fluorescence (TPEF) images of biological tissues were demonstrated using the system. MPM images of different biological tissues acquired by the compact system which integrates an FBFP laser, an DCPCF and a miniature handheld probe. PMID:20635426

  11. Laser Diagnostic System Validation and Ultra-Compact Combustor Characterization

    DTIC Science & Technology

    2008-03-01

    pump (Ref. 3) ................................................................ 67 Fig. 34. Fuel pump operation – pressure versus constant flow rate...Compact Combustor UV Ultra Violet VAATE Versatile Affordable Advanced Turbine Engines VI Virtual Instrument WPAFB Wright-Patterson Air Force Base... Versatile Affordable Advanced Turbine Engines (VAATE) Initiative Air superiority of the United States military is a direct result of gas turbine engine

  12. Laser remote sensing of an algal bloom in a freshwater reservoir

    NASA Astrophysics Data System (ADS)

    Grishin, M. Ya; Lednev, V. N.; Pershin, S. M.; Bunkin, A. F.; Kobylyanskiy, V. V.; Ermakov, S. A.; Kapustin, I. A.; Molkov, A. A.

    2016-12-01

    Laser remote sensing of an algal bloom in a freshwater reservoir on the Volga River in central Russia was carried out. The compact Raman lidar was installed on a small ship to probe the properties of the surface water layer in different typical regions of Gorky Water Reservoir. Elastic and Raman scattering as well as chlorophyll fluorescence were quantified, mapped and compared with data acquired by a commercial salinity, temperature and depth probe (STD probe) equipped with a blue-green algae sensor. Good correlation between lidar and STD measurements was established.

  13. Fatty Acid Composition of Unicellular Strains of Blue-Green Algae1

    PubMed Central

    Kenyon, C. N.

    1972-01-01

    The fatty acids of 34 strains of unicellular blue-green algae provisionally assigned to the genera Synechococcus, Aphanocapsa, Gloeocapsa, Microcystis, and Chlorogloea by Stanier et al. have been chemically characterized. The strains analyzed can be divided into a series of compositional groups based upon the highest degree of unsaturation of the major cellular fatty acids. Twenty strains fall into the group characterized by one trienoic fatty acid isomer (α-linolenic acid), and seven strains fall into a group characterized by another trienoic acid isomer (γ-linolenic acid). These groups in many cases correlate well with groupings based upon other phenotypic characters of the strains, e.g., deoxyribonucleic acid base composition. The assignment of a strain to a compositional group is not altered when the strain is grown under a variety of different culture conditions. All strains contain glycolipids with the properties of mono- and digalactosyldiglycerides. PMID:4621688

  14. Summary of studies on the blue-green autofluorescence and light transmission of the ocular lens

    NASA Astrophysics Data System (ADS)

    Van Best, Jaap A.; Kuppens, Esmeralda V.

    1996-07-01

    This paper reviews previous work done to demonstrate the clinical relevance of the measurement of blue-green autofluorescence and light transmission of the ocular lens. These can be determined quantitatively with fluorophotometry in a few seconds. Autofluorescence and transmission values are determined in healthy volunteers, in patients with insulin-dependent diabetes mellitus, and in patients with untreated glaucoma or untreated ocular hypertension. The lens autofluorescence of healthy volunteers increased linearly and transmission decreased exponentially with age. Each year of diabetes induced an increase of autofluorescence equal to one extra year of age. Untreated glaucoma or ocular hypertension had no significant effect on lens autofluorescence and transmission. Increased autofluorescence and decreased transmission values in comparison with values of a healthy population are proved to be indicative for an increased risk of developing cataract and the clinical usefulness of these measures is demonstrated. Diabetes is a risk factor for developing cataracts while untreated glaucoma or ocular hypertension is not.

  15. Mössbauer study of cobalt and iron in the cyanobacterium (blue green alga)

    NASA Astrophysics Data System (ADS)

    Ambe, Shizuko

    1990-07-01

    Mössbauer emission and absorption studies have been performed on cobalt and iron in the cyanobacterium (blue-green alga). The Mössbauer spectrum of the cyanobacterium cultivated with57Co is decomposed into two doublets. The parameters of the major doublet are in good agreement with those of cyanocobalamin (vitamin B12) labeled with57Co. The other minor doublet has parameters close to those of Fe(II) coordinated with six nitrogen atoms. These suggest that cobalt is used for the biosynthesis of vitamin B12 or its analogs in the cyanobacterium. The spectra of the cyanobacterium grown with57Fe show that iron is in the high-spin trivalent state and possibly in the form of ferritin, iron storage protein.

  16. Diurnal variation in n(2) fixation and photosynthesis by aquatic blue-green algae.

    PubMed

    Peterson, R B; Friberg, E E; Burris, R H

    1977-01-01

    Rates of (14)CO(2) fixation, O(2) evolution, and N(2) fixation (acetylene reduction) by natural populations of blue-green algae recovered from Lake Mendota were measured at frequent intervals between sunrise and sunset. Photosynthesis and N(2) fixation were depressed during midday when light intensity was greatest. As the light intensity rose, most of the algal population migrated to deeper, light-limited waters where radiation damage would be diminished. As the relative rate of N(2) fixation compared to CO(2) fixation increases with depth, it is suggested that the algae maintain balanced growth by migrating vertically via buoyancy regulation. High concentrations of dissolved O(2) in lake water may inhibit N(2) fixation by enhancing photorespiration. Several factors such as photosynthetic rate, light intensity, dissolved O(2), species composition, and vertical and horizontal migration all affect observed rates of in situ N(2) fixation.

  17. Spirulan from blue-green algae inhibits fibrin and blood clots: its potent antithrombotic effects.

    PubMed

    Choi, Jun-Hui; Kim, Seung; Kim, Sung-Jun

    2015-05-01

    We investigated in vitro and in vivo fibrinolytic and antithrombotic activity of spirulan and analyzed its partial biochemical properties. Spirulan, a sulfated polysaccharide from the blue-green alga Arthrospira platensis, exhibits antithrombotic potency. Spirulan showed a strong fibrin zymogram lysis band corresponding to its molecular mass. It specifically cleaved Aα and Bβ, the major chains of fibrinogen. Spirulan directly decreased the activity of thrombin and factor X activated (FXa), procoagulant proteins. In vitro assays using human fibrin and mouse blood clots showed fibrinolytic and hemolytic activities of spirulan. Spirulan (2 mg/kg) showed antithrombotic effects in the ferric chloride (FeCl3 )-induced carotid arterial thrombus model and collagen and epinephrine-induced pulmonary thromboembolism mouse model. These results may be attributable to the prevention of thrombus formation and partial lysis of thrombus. Therefore, we suggest that spirulan may be a potential antithrombotic agent for thrombosis-related diseases.

  18. Seawater-based methane production from blue-green algae biomass by marine bacteria coculture

    SciTech Connect

    Matsunaga, T.; Izumida, H.

    1984-01-01

    Marine-enriched culture NKM 004 produced methane from various carbohydrates, but methane production was inhibited by sulfate and acetate accumulated in the medium. On the other hand, marine methanogenic bacterium NKM 006 produced methane from acetate and methyltrophic substrates, and methane production was not inhibited by sulfate. The mixture of NKM 004 and NKM 006 continuously produced methane from marine blue-green algae Dermocarpa species NKBG 102B at 54 ..mu..mol/L medium/h for 200 h and the dry weight of the algal biomass was decreased to 25% of the initial weight in the natural seawater. Conversion of algal carbohydrate (glucose equivalent) to methane was 65%. Results indicate that this system is promising for methane production based on seawater and solar energy.

  19. Studies on the proteins of mass-cultivated, blue-green alga (Spirulina platensis)

    SciTech Connect

    Annusuyadevi, M.; Subbulakshmi, G.; Madhair'devi, K.; Venkalaramein, L.V.

    1981-05-01

    The characteristics of the protein of fresh-water, mass-cultured Spirulina platensis have been studied. The solubility of this algal protein in water and various aqueous solvents has been estimated. The total protein content of the blue-green algae was approximately 50-55% of which nearly 9.9% was nonprotein nitrogen. About 80% of the total protein nitrogen can be extracted by three successive extractions with water. Ths isoelectric point of this algal protein is found to be 3.0. The total proteins were characterized physicochemically by standard techniques. In the ultracentrifuge total proteins resolve into two major components with S20w values of 2.6 and 4.7 S. The polyacrylamide gel electrophoretic pattern of the total protein showed seven bands including three prominent ones. The in vitro digestibility of the total protein of fresh algae was found to be 85% when assayed with a pepsin-pancreatin system.

  20. Regulatory effect of hydrogen on nitrogenase activity of the blue-green alga (cyanobacterium) Nostoc muscorum.

    PubMed

    Scherer, S; Kerfin, W; Böger, P

    1980-03-01

    Preincubation of the blue-green alga (cyanobacterium) Nostoc muscorum under an atmosphere of argon plus acetylene in the light led to a greater than fourfold increase of light-induced hydrogen evolution and to a 50% increase of acetylene reduction, as compared to cells that had not been preconditioned. The basic and the increased hydrogen evolution were both due to nitrogenase activity. Furthermore, after preincubation the hydrogen uptake, usually observed with unconditional cells, was abolished. Nostoc preincubated under acetylene evolved hydrogen in the light even in the presence of nitrogen for at least 2 h, with a 15-fold increase as compared to the unconditioned cells. These acetylene effects could be completely abolished by the presence of hydrogen during acetylene preincubation. These findings indicate that the hydrogen concentration in N. muscorum cells plays a role in regulation of nitrogenase activity.

  1. Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis.

    PubMed

    Hayashi, T; Hayashi, K; Maeda, M; Kojima, I

    1996-01-01

    Bioactivity-directed fractionation of a hot H2O extract from a blue-green alga Spirulina platensis led to the isolation of a novel sulfated polysaccharide named calcium spirulan (Ca-SP) as an antiviral principle. This polysaccharide was composed of rhamnose, ribose, mannose, fructose, galactose, xylose, glucose, glucuronic acid, galacturonic acid, sulfate, and calcium. Ca-SP was found to inhibit the replication of several enveloped viruses, including Herpes simplex virus type 1, human cytomegalovirus, measles virus, mumps virus, influenza A virus, and HIV-1. It was revealed that Ca-SP selectively inhibited the penetration of virus into host cells. Retention of molecular conformation by chelation of calcium ion with sulfate groups was suggested to be indispensable to its antiviral effect.

  2. Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms.

    PubMed

    Suganya, K S Uma; Govindaraju, K; Kumar, V Ganesh; Dhas, T Stalin; Karthick, V; Singaravelu, G; Elanchezhiyan, M

    2015-02-01

    Biofunctionalized gold nanoparticles (AuNPs) play an important role in design and development of nanomedicine. Synthesis of AuNPs from biogenic materials is environmentally benign and possesses high bacterial inhibition and bactericidal properties. In the present study, blue green alga Spirulina platensis protein mediated synthesis of AuNPs and its antibacterial activity against Gram positive bacteria is discussed. AuNPs were characterized using Ultraviolet-visible (UV-vis) spectroscopy, Fluorescence spectroscopy, Fourier Transform-Infrared (FTIR) spectroscopy, Raman spectroscopy, High Resolution-Transmission Electron Microscopy (HR-TEM) and Energy Dispersive X-ray analysis (EDAX). Stable, well defined AuNPs of smaller and uniform shape with an average size of ~ 5 nm were obtained. The antibacterial efficacy of protein functionalized AuNPs were tested against Gram positive organisms Bacillus subtilis and Staphylococcus aureus.

  3. Purification and characterization of phycocyanin from the blue-green alga Aphanizomenon flos-aquae.

    PubMed

    Benedetti, Serena; Rinalducci, Sara; Benvenuti, Francesca; Francogli, Sonia; Pagliarani, Silvia; Giorgi, Luca; Micheloni, Mauro; D'Amici, Gian Maria; Zolla, Lello; Canestrari, Franco

    2006-03-20

    Aphanizomenon flos-aquae (AFA) is a blue-green alga and represents a nutrient-dense food source. In this study the presence of phycocyanin (PC), a blue protein belonging to the photosynthetic apparatus, has been demonstrated in AFA. An efficient method for its separation has been set up: PC can be purified by a simple single step chromatographic run using a hydroxyapatite column (ratio A620/A280 of 4.78), allowing its usage for health-enhancing properties while eliminating other aspecific algal components. Proteomic investigation and HPLC analysis of purified AFA phycobilisomes revealed that, contrary to the well-characterized Synechocystis and Spirulina spp., only one type of biliprotein is present in phycobilisomes: phycocyanins with no allo-phycocyanins. Two subunit polypeptides of PC were also separated: the beta subunit containing two bilins as chromophore and the alpha subunit containing only one.

  4. Assessment of blue-green algae in substantially reducing nitrogen fertilizer requirements for biomass fuel crops

    SciTech Connect

    Anderson, D.B.; Molten, P.M.; Metting, B.

    1981-07-01

    Laboratory, mass culture, and field studies are being undertaken in order to assess the potential of using blue-green algae (cyanobacteria) as nitrogen biofertilizers on irrigated ground. Of seven candidate strains, two were chosen for application to replicated field plots sown to field corn and the basis of laboratory-scale soil tray experiments and ease of semi-continuous 8000 l culture. Chosen were Anabaena BM-165, isolated from a local soil and Tolypothrix tenuis, imported from India. Using the acetylene reduction method, Anabaena is estimated from laboratory soil experiments to be able to fix from 30 to 62 kg N/ha/y, and has been mass cultured to a density of 1527 mg dry wt/l. T. tenuis is estimated from laboratory experiments to be able to fix from 27 to 65 kg N/ha/y, and has been mass cultured to a density of 1630 mg dry wt/l.

  5. Compact single mode tunable laser using a digital micromirror device.

    PubMed

    Havermeyer, Frank; Ho, Lawrence; Moser, Christophe

    2011-07-18

    The wavelength tuning properties of a tunable external cavity laser based on multiplexed volume holographic gratings and a commercial micromirror device are reported. The 3x3x3 cm(3) laser exhibits single mode operation in single or multi colors between 776 nm and 783 nm with less than 7.5 MHz linewidth, 37 mW output power, 50 μs rise/fall time constant and a maximum switching rate of 0.66 KHz per wavelength. The unique discrete-wavelength-switching features of this laser are also well suited as a source for continuous wave Terahertz generation and three-dimensional metrology.

  6. Action Spectra for Nitrate and Nitrite Assimilation in Blue-Green Algae 1

    PubMed Central

    Serrano, Aurelio; Losada, Manuel

    1988-01-01

    Action spectra for the assimilation of nitrate and nitrite have been obtained for several blue-green algae (cyanobacteria) with different accessory pigment composition. The action spectra for both nitrate and nitrite utilization by nitrate-grown Anacystis nidulans L-1402-1 cells exhibited a clear peak at about 620 nanometers, corresponding to photosystem II (PSII) C-phycocyanin absorption, the contribution of chlorophyll a (Chl a) being barely detectable. The action spectrum for nitrate reduction by a nitrite reductase mutant of A. nidulans R2 was very similar. All these action spectra resemble the fluorescence excitation spectrum of cell suspensions of the microalgae monitored at 685 nanometers—the fluorescence band of Chl a in PSII. In contrast, the action spectrum for nitrite utilization by nitrogen-starved A. nidulans cells, which are depleted of C-phycocyanin, showed a maximum near 680 nanometers, attributable to Chl a absorption. The action spectrum for nitrite utilization by Calothrix sp. PCC 7601 cells, which contain both C-phycoerythrin and C-phycocyanin as PSII accessory pigments, presented a plateau in the region from 550 to 630 nanometers. In this case, there was also a clear parallelism between the action spectrum and the fluorescence excitation spectrum, which showed two overlapped peaks with maxima at 562 and 633 nanometers. The correlation observed between the action spectra for both nitrate and nitrite assimilation and the light-harvesting pigment content of the blue-green algae studied strongly suggests that phycobiliproteins perform a direct and active role in these photosynthetic processes. PMID:16666041

  7. Operation of an Extremely Compact Capillary Discharge Soft X-Ray Laser

    NASA Astrophysics Data System (ADS)

    Benware, B. R.; Moreno, C. H.; Burd, D. J.; Rocca, J. J.

    1996-11-01

    A major goal in ultrashort wavelength laser research is the development of practical laser sources that can impact applications. Of particular interest is the development of compact "table-top" amplifiers. We have previously reported the first observation of large soft x-ray amplification, at 46.9 nm in the J=0-1 line of Ne-like argon in a plasma column generated by a fast capillary discharge.(J. J. Rocca, V. Shlyaptsev, F. G. Tomasel, O. D. Cortazar, D. Hartshorn, and J. L. A. Chilla, Phys. Rev. Lett. 73), 2192 (1994). Herein we report the successful operation of an extremely compact table-top discharge driven 46.9 nm laser. Measurement of the soft x-ray laser output pulse energy, pulse duration and beam divergence will be reported. Work supported by the National Science Foundation.

  8. Method and system for compact efficient laser architecture

    DOEpatents

    Bayramian, Andrew James; Erlandson, Alvin Charles; Manes, Kenneth Rene; Spaeth, Mary Louis; Caird, John Allyn; Deri, Robert J.

    2015-09-15

    A laser amplifier module having an enclosure includes an input window, a mirror optically coupled to the input window and disposed in a first plane, and a first amplifier head disposed along an optical amplification path adjacent a first end of the enclosure. The laser amplifier module also includes a second amplifier head disposed along the optical amplification path adjacent a second end of the enclosure and a cavity mirror disposed along the optical amplification path.

  9. Extraction of nutraceuticals from Spirulina (blue-green alga): A bioorganic chemistry practice using thin-layer chromatography.

    PubMed

    Herrera Bravo de Laguna, Irma; Toledo Marante, Francisco J; Luna-Freire, Kristerson R; Mioso, Roberto

    2015-01-01

    Spirulina is a blue-green alga (cyanobacteria) with high nutritive value. This work provides an innovative and original approach to the consideration of a bioorganic chemistry practice, using Spirulina for the separation of phytochemicals with nutraceutical characteristics via thin-layer chromatography (TLC) plates. The aim is to bring together current research, theory, and practice, and always in accordance with pedagogical ideas.

  10. Extraction of Nutraceuticals from Spirulina (Blue-Green Alga): A Bioorganic Chemistry Practice Using Thin-layer Chromatography

    ERIC Educational Resources Information Center

    Herrera Bravo de Laguna, Irma; Toledo Marante, Francisco J.; Luna-Freire, Kristerson R.; Mioso, Roberto

    2015-01-01

    Spirulina is a blue-green alga (cyanobacteria) with high nutritive value. This work provides an innovative and original approach to the consideration of a bioorganic chemistry practice, using Spirulina for the separation of phytochemicals with nutraceutical characteristics via thin-layer chromatography (TLC) plates. The aim is to bring together…

  11. TEMPERATURE AND MANGANESE AS DETERMINING FACTORS IN THE PRESENCE OF DIATOM OR BLUE-GREEN ALGAL FLORAS IN STREAMS*

    PubMed Central

    Patrick, Ruth; Crum, Bowman; Coles, John

    1969-01-01

    Diatoms are usually the major component of the algal flora in many streams, although green and blue-green algae may be present. These experiments were designed to determine if high temperature or a shift in the chemical composition of the water might bring about a dominance of blue-green algae and/or green algae rather than a dominance of diatoms in the algal flora. The results of these experiments indicate that an average temperature of 34° to 38°C results in a shift of dominance in the algal flora from diatoms to blue-green algae. Furthermore, a blue-green and green algal flora of species typically found in organically polluted water in favored if the manganese content is a few parts per billion. If the manganese content averaged 0.02-0.043 mg/liter in the natural stream to 0.04-0.28 mg/liter in the recycled water experiment, a diatom flora remained dominant. PMID:16591790

  12. A designer ligand field for blue-green luminescence of organoeuropium(ii) sandwich complexes with cyclononatetraenyl ligands.

    PubMed

    Kawasaki, Kenshiro; Sugiyama, Rion; Tsuji, Takashi; Iwasa, Takeshi; Tsunoyama, Hironori; Mizuhata, Yoshiyuki; Tokitoh, Norihiro; Nakajima, Atsushi

    2017-06-21

    A novel η(9)-coordinated double-decker sandwich complex of divalent europium is synthesized. The complex exhibits blue-green photoluminescence at 516 nm, which is significantly blue-shifted from those of other organoeuropium(ii) sandwich complexes (∼630 nm). The blue-shift was quantitatively explained by the weakened electrostatic field of the expanded 10-π ring.

  13. Deep 16sRNA sequencing of anterior foregut microbiota from the blue-green sharpshooter (Graphocephala atropunctata)

    USDA-ARS?s Scientific Manuscript database

    Graphocephala atropunctata (Signoret) (Hemiptera: Cicadellidae) or the blue-green sharpshooter (BGSS) has been long recognized as the principal native vector of Xylella fastidiosa in coastal, wine-grape growing areas of California. X. fastidiosa is the causative agent of Pierce’s disease of grapevin...

  14. Extraction of Nutraceuticals from Spirulina (Blue-Green Alga): A Bioorganic Chemistry Practice Using Thin-layer Chromatography

    ERIC Educational Resources Information Center

    Herrera Bravo de Laguna, Irma; Toledo Marante, Francisco J.; Luna-Freire, Kristerson R.; Mioso, Roberto

    2015-01-01

    Spirulina is a blue-green alga (cyanobacteria) with high nutritive value. This work provides an innovative and original approach to the consideration of a bioorganic chemistry practice, using Spirulina for the separation of phytochemicals with nutraceutical characteristics via thin-layer chromatography (TLC) plates. The aim is to bring together…

  15. Optimal Charge of a Photocathode Gun for a Compact X-ray Free-Electron Laser

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Yeon; Chae, Moon Sik; Ko, In Soo

    2010-02-01

    For a photocathode gun, the optimal charge per gun pulse is derived to give the theoretically allowed smallest saturation length of the X-ray free-electron laser based on the self amplified spontaneous emission scheme. The derivation is approximate, but the result is practically independent of specific machine design. The objective is to contribute to the study of a compact X-ray free-electron laser.

  16. High (1 GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology

    NASA Astrophysics Data System (ADS)

    Ehlers, A.; Riemann, I.; Martin, S.; Le Harzic, R.; Bartels, A.; Janke, C.; König, K.

    2007-07-01

    Multiphoton tomography of human skin and nanosurgery of human chromosomes have been performed with a 1GHz repetition rate laser by the use of the commercially available femtosecond multiphoton laser tomograph DermaInspect as well as a compact galvoscanning microscope. We performed the autofluorescence tomography up to 100μm in the depth of human skin. Submicron cutting lines and hole drillings have been conducted on labeled human chromosomes.

  17. Compact dual-frequency fiber laser accelerometer with sub-μg resolution

    NASA Astrophysics Data System (ADS)

    Cao, Qian; Jin, Long; Liang, Yizhi; Cheng, Linghao; Guan, Bai-Ou

    2016-06-01

    We demonstrate a compact and high-resolution dual-polarization fiber laser accelerometer. A spring-mass like scheme is constructed by fixing a 10-gram proof mass on the laser cavity to transduce applied vibration into beat-frequency change. The loading is located at the intensity maximum of intracavity light to maximize the optical response. The detection limit reaches 107 ng/Hz1/2 at 200 Hz. The working bandwidth ranges from 60 Hz to 600 Hz.

  18. Compact and efficient CW 473nm blue laser with LBO intracavity frequency doubling

    NASA Astrophysics Data System (ADS)

    Qi, Yan; Wang, Yu; Wang, Yanwei; Zhang, Jing; Yan, Boxia

    2016-10-01

    With diode end pumped Nd:YAG directly and LBO intracavity frequency doubling, a compact, high efficient continuous wave blue laser at 473nm is realized. When the incident pump power reach 6.2W, 630mW maximum output power of blue laser at 473nm is achieved with 15mm long LBO, the optical-to-optical conversion efficiency is as high as 10.2%.

  19. Frequency stability of a tunable diode laser mounted in a compact Stirling cycle cooler

    NASA Technical Reports Server (NTRS)

    Durso, Santo S.; May, R. D.; Tuchscherer, M. A.; Webster, C. R.

    1989-01-01

    A tunable diode laser (TDL) has been operated with a compact lightweight closed-cycle Stirling cooler. The laser linewidth has been measured near 80 K and found to be about half of that when using more massive closed-cycle coolers. Novel applications include balloon-borne and aircraft-adapted instruments, where size, weight, and power requirements place stringent demands on necessary TDL cooling systems.

  20. Frequency stability of a tunable diode laser mounted in a compact Stirling cycle cooler

    NASA Technical Reports Server (NTRS)

    Durso, Santo S.; May, R. D.; Tuchscherer, M. A.; Webster, C. R.

    1989-01-01

    A tunable diode laser (TDL) has been operated with a compact lightweight closed-cycle Stirling cooler. The laser linewidth has been measured near 80 K and found to be about half of that when using more massive closed-cycle coolers. Novel applications include balloon-borne and aircraft-adapted instruments, where size, weight, and power requirements place stringent demands on necessary TDL cooling systems.

  1. Note: A compact external-cavity diode laser, using feedback from an optical fiber.

    PubMed

    Potnis, S; Edge, G J A; Jackson, S; Verma, M; Vutha, A C

    2017-09-01

    We demonstrate a simple and compact external cavity diode laser (ECDL), where light reflected from the tip of an optical fiber provides feedback, and an interference filter provides frequency selection. The ECDL combines ease of construction with robust operation and exhibits a linewidth of 50 kHz.

  2. Note: A compact external-cavity diode laser, using feedback from an optical fiber

    NASA Astrophysics Data System (ADS)

    Potnis, S.; Edge, G. J. A.; Jackson, S.; Verma, M.; Vutha, A. C.

    2017-09-01

    We demonstrate a simple and compact external cavity diode laser (ECDL), where light reflected from the tip of an optical fiber provides feedback, and an interference filter provides frequency selection. The ECDL combines ease of construction with robust operation and exhibits a linewidth of 50 kHz.

  3. Compact laser produced plasma soft x-ray source for contact microscopy experiments

    NASA Astrophysics Data System (ADS)

    Ayele, Mesfin G.; Czwartos, Joanna; Adjei, Daniel; Wachulak, Przemysław; Bartnik, Andrzej; Wegrzynski, Łukasz; Szczurek, Mirosław; Jarocki, Roman; Fiedorowicz, Henryk

    2015-05-01

    The detail characteristics of a compact laser-plasma X-ray source, dedicated for application in soft X-ray contact microscopy is presented in the paper. The source is based on a double-stream gas puff target, irradiated with nanosecond laser pulses from a commercial Nd:YAG laser. The use of the gas puff target makes possible to produce soft X-ray radiation in the "water window" region without target debris production. Details of the characterization measurements and optimization of the source are presented and discussed.

  4. Design studies on compact four mirror laser resonator with mode-locked pulsed laser for 5 μm laser wire

    NASA Astrophysics Data System (ADS)

    Rawankar, Arpit; Urakawa, Junji; Shimizu, Hirotaka; You, Yan; Terunuma, Nobuhiro; Aryshev, Alexander; Honda, Yosuke

    2013-02-01

    A compact prototype four-mirror optical cavity is being constructed at KEK-ATF to measure low-emittance electron beams in the damping ring. Four-mirror-resonators reduce the sensitivity to the misalignment of mirrors in comparison to two mirror-resonators. The aspect ratio is important when constructing a compact resonator with a very small beam waist of less than 5 μm. The total cavity length of a four-mirror resonator is matched according to the pulse repetition of mode-locked laser oscillator. Minimum beam waist is obtained in the sagittal plane using an IR pulsed laser. The advantage of such types of compact four-mirror-resonators is the total scanning time for measurement of the beam profile is much shorter in comparison to a CW laser wire system. By using a pulsed green laser that has been converted to the second harmonics from an IR pulsed laser, a minimum beam waist that has half the beam waist when using an IR laser oscillator can be obtained. Therefore, it is possible to obtain the beam waist of less than 5 μm (σ value) that is required for effective photon-electron collision. We report on the development and performance studies for such types of compact four-mirror laser wire systems.

  5. A compact broadband ion beam focusing device based on laser-driven megagauss thermoelectric magnetic fields

    SciTech Connect

    Albertazzi, B.; D'Humières, E.; Lancia, L.; Antici, P.; Dervieux, V.; Nakatsutsumi, M.; Romagnani, L.; Fuchs, J.; Böcker, J.; Swantusch, M.; Willi, O.; Bonlie, J.; Cauble, B.; Shepherd, R.; Breil, J.; Feugeas, J. L.; Nicolaï, P.; Tikhonchuk, V. T.; Chen, S. N.; Sentoku, Y.; and others

    2015-04-15

    Ultra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g., proton-therapy or fuel recycling) and fundamental (e.g., neutron probing) domains. However, this requires overcoming the beam angular divergence at the source. This has been attempted, either with large-scale conventional setups or with compact plasma techniques that however have the restriction of short (<1 mm) focusing distances or a chromatic behavior. Here, we show that exploiting laser-triggered, long-lasting (>50 ps), thermoelectric multi-megagauss surface magnetic (B)-fields, compact capturing, and focusing of a diverging laser-driven multi-MeV ion beam can be achieved over a wide range of ion energies in the limit of a 5° acceptance angle.

  6. A compact broadband ion beam focusing device based on laser-driven megagauss thermoelectric magnetic fields.

    PubMed

    Albertazzi, B; d'Humières, E; Lancia, L; Dervieux, V; Antici, P; Böcker, J; Bonlie, J; Breil, J; Cauble, B; Chen, S N; Feugeas, J L; Nakatsutsumi, M; Nicolaï, P; Romagnani, L; Shepherd, R; Sentoku, Y; Swantusch, M; Tikhonchuk, V T; Borghesi, M; Willi, O; Pépin, H; Fuchs, J

    2015-04-01

    Ultra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g., proton-therapy or fuel recycling) and fundamental (e.g., neutron probing) domains. However, this requires overcoming the beam angular divergence at the source. This has been attempted, either with large-scale conventional setups or with compact plasma techniques that however have the restriction of short (<1 mm) focusing distances or a chromatic behavior. Here, we show that exploiting laser-triggered, long-lasting (>50 ps), thermoelectric multi-megagauss surface magnetic (B)-fields, compact capturing, and focusing of a diverging laser-driven multi-MeV ion beam can be achieved over a wide range of ion energies in the limit of a 5° acceptance angle.

  7. Dinosaur origin of egg color: oviraptors laid blue-green eggs.

    PubMed

    Wiemann, Jasmina; Yang, Tzu-Ruei; Sander, Philipp N; Schneider, Marion; Engeser, Marianne; Kath-Schorr, Stephanie; Müller, Christa E; Sander, P Martin

    2017-01-01

    reconstruction of blue-green eggs for oviraptors. According to the sexual signaling hypothesis, the reconstructed blue-green eggs support the origin of previously hypothesized avian paternal care in oviraptorid dinosaurs. Preserved dinosaur egg color not only pushes the current limits of the vertebrate molecular and associated soft tissue fossil record, but also provides a perspective on the potential application of this unexplored paleontological resource.

  8. Dinosaur origin of egg color: oviraptors laid blue-green eggs

    PubMed Central

    Yang, Tzu-Ruei; Sander, Philipp N.; Schneider, Marion; Engeser, Marianne; Kath-Schorr, Stephanie; Müller, Christa E.; Sander, P. Martin

    2017-01-01

    reconstruction of blue-green eggs for oviraptors. According to the sexual signaling hypothesis, the reconstructed blue-green eggs support the origin of previously hypothesized avian paternal care in oviraptorid dinosaurs. Preserved dinosaur egg color not only pushes the current limits of the vertebrate molecular and associated soft tissue fossil record, but also provides a perspective on the potential application of this unexplored paleontological resource. PMID:28875070

  9. Green roof and storm water management policies: monitoring experiments on the ENPC Blue Green Wave

    NASA Astrophysics Data System (ADS)

    Versini, Pierre-Antoine; Gires, Auguste; Fitton, George; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2015-04-01

    Currently widespread in new urban projects, green roofs have shown a positive impact on urban runoff at the building/parcel scale. Nevertheless, there is no specific policy promoting their implementation neither in Europe nor in France. Moreover they are not taken into account (and usually considered as an impervious area) in the sizing of a retention basin for instance. An interesting example is located in the heart of the Paris-East Cluster for Science and Technology (Champs-sur-Marne, France). Since 2013 a large (1 ha) wavy-form vegetated roof (called bleu green wave) is implemented. Green roof area and impervious areas are connected to a large retention basin, which has been oversized. The blue green wave represents a pioneering site where an initially amenity (decorative) design project has been transformed into a research oriented one. Several measurement campaigns have been conducted to investigate and better understand the hydrological behaviour of such a structure. Rainfall, humidity, wind velocity, water content and temperature have been particularly studied. The data collected are used for several purposes: (i) characterize the spatio-temporal variability of the green roof response, (ii) calibrate and validate a specific model simulating its hydrological behavior. Based on monitoring and modeling results, green roof performances will be quantified. It will be possible to estimate how they can reduce stormwater runoff and how these performances can vary in space and in time depending on green roof configuration, rainfall event characteristics and antecedent conditions. These quantified impacts will be related to regulation rules established by stormwater managers in order to connect the parcel to the sewer network. In the particular case of the building of a retention basin, the integration of green roof in the sizing of the basin will be studied. This work is funded by the European Blue Green Dream project (http://bgd.org.uk/, funded by Climate

  10. A compact non-differential approach for modeling laser ablation plasma dynamics

    NASA Astrophysics Data System (ADS)

    Irimiciuc, S. A.; Gurlui, S.; Nica, P.; Focsa, C.; Agop, M.

    2017-02-01

    Various differentiable physical models are frequently used to describe the dynamics of laser-produced plasma plumes (e.g., kinetic models, two-fluid models, etc.). Given the complexity of all the phenomena involved in the laser-matter interactions, it is required to introduce the laser ablation plasma dynamic variable dependencies both on the space-time coordinates and on the resolution scales. Therefore, an adequate theoretical approach may be the use of non-differentiable physical models (fractal models). Continuing our previous work on the fractal hydrodynamic model for laser ablation plasma dynamics, we propose here a compact version for the analysis of the spatial and temporal evolution of some plasma dynamic variables, such as velocities, currents, number densities, or temperatures. Moreover, the influence of external factors on the ablation plasma dynamics is considered. The predictions of this model are compared with the experimental data obtained by using a Langmuir probe on an Aluminum laser-produced plasma.

  11. Long pulse compact and high-brightness near 1-kW QCW diode laser stack

    NASA Astrophysics Data System (ADS)

    Wilson, Stewart; Altshuler, Gregory; Erofeev, Andrey; Inochkin, Mikhail; Khloponin, Leonid; Khramov, Valery; Feldchtein, Felix

    2012-03-01

    A custom designed compact, high brightness diode laser array stack was designed and manufactured using proprietary methods that are robust and suitable for low cost manufacturing. The diode laser stack consisted of four 10 mm-wide diode laser bars having lasing wavelength of 970 - 980 nm mounted onto high performance submounts separated by approximately 1mm. Each diode laser bar had a 50% fill factor. The cooling methodology employed used a combined passive and active scheme and not the traditional more expensive and more complicated standard microchannel coolers used for high duty cycle applications. The total combined optical power attained from the diode array stack was close to 1 kW for current levels up to 220 A, limited only by the capability of the power supply. In this paper, we summarize the performance results for this diode laser array and analyze the maximum expected optical performance as a function of operating current and pulse width and junction temperature limit.

  12. Compact, passively Q-switched Nd:YAG laser for the MESSENGER mission to Mercury.

    PubMed

    Krebs, Danny J; Novo-Gradac, Anne-Marie; Li, Steven X; Lindauer, Steven J; Afzal, Robert S; Yu, Anthony W

    2005-03-20

    A compact, passively Q-switched Nd:YAG laser has been developed for the Mercury Laser Altimeter, an instrument on the Mercury Surface, Space Environment, Geochemistry, and Ranging mission to the planet Mercury. The laser achieves 5.4% efficiency with a near-diffraction-limited beam. It passed all space-flight environmental tests at subsystem, instrument, and satellite integration testing and successfully completes a postlaunch aliveness check en route to Mercury. The laser design draws on a heritage of previous laser altimetry missions, specifically the Ice Cloud and Elevation Satellite and the Mars Global Surveyor, but incorporates thermal management features unique to the requirements of an orbit of the planet Mercury.

  13. Assessment of Pr3+:KY3F10 as a Blue-Green Laser

    DTIC Science & Technology

    1980-02-01

    recorded 4 by Porcher and Caro for Eu3*: K YF,0 powder. These data were then successfully analyzed, and phenomenological crystal field parameters, Bk...Theory of ’Crystal Fields. Harry Diamond Lahoratories HIM’-r 7 I-l June 1971,). P. Porcher and P. (aro. , (hem. Phy., . 65 (1761. 819. N. Karayianis...Tenlh Rarc-Eanh Rescarc·h Conference ( 1\\17~). ~27. ’ P. Porcher and P. Cam. J. C hern . Phys .. 115 ( l\\17f>). H9. ’lnlcrnalional Tables, / . Kym

  14. Investigation of Oxide and Fluoride Hosts for Blue-Green Lasers

    DTIC Science & Technology

    1985-08-01

    grown from melts in iridium crucibles using the Czochralski method. Seed crystals of (111) pure La Al O3 were used. The growth atmosphere was...Title Page 1 Czochralski Growth Station 10 2 Drawing of Basic Growth Station 11 3 Crystallized melt obtained by seeding 19 with an iridium wire...4 Initial LaAlO., seeds with iridium holder 20 5 Single crystal of LaAl^ 9SCQ I03 22 6 Single crystal of LaAl^ 7cScn 2r03 <?rown 24 off

  15. Investigation of Discharge Processes in Electrically Excited Blue/Green Lasers.

    DTIC Science & Technology

    1980-07-31

    partial schematic of the UTRC swarm experiment is indicated in Fig. 6. A glass cell was provided with a quartz window and a set of identical planar...g+ HgBr (17.5), Br (34.3), Hg 0) as listed in Ref. 19. 22. Grinberg , R.: Z. Naturforsch. 24a, 1039 (1969). 23. Nygaard, K. J., H. L. Brooks and S

  16. A compact, sub-Hertz linewidth 729 nm laser for a miniaturized 40Ca+ optical clock

    NASA Astrophysics Data System (ADS)

    Shang, Junjuan; Cao, Jian; Cui, Kaifeng; Wang, Shaomao; Zhang, Ping; Yuan, Jinbo; Chao, Sijia; Shu, Hualin; Huang, Xueren

    2017-01-01

    We present a compact, sub-Hertz 729 nm laser for a miniaturized 40Ca+ single-ion optical clock. An external cavity diode laser is frequency-stabilized to a horizontally mounted, vibration-insensitive and high-fineness ultra-low-expansion (ULE) cavity with Pound-Drever-Hall (PDH) method. The laser linewidth is measured to be about 0.9 Hz from a heterodyne beat note with the other 729 nm laser. After removing the linear drift of about 0.1 Hz/s, the fractional frequency instability is less than 2 × 10 - 15 (1 100 s). This compact, ultra-stable laser system with a volume about 0.1 m3 excluding the electronics has been employed into a miniaturized 40Ca+ single-ion optical clock. The clock frequency instability has been measured to be 3.4×10-14/τ1/2 (1 10,000 s) with a 729 nm laser probe pulse time of 20 ms.

  17. Design of a compact 3D laser scanner

    NASA Astrophysics Data System (ADS)

    Geusen, Mark, Jr.; van Amstel, Willem D.; Baumer, Stefan M. B.; Horijon, Jef L.

    1999-08-01

    A design study for a compact 3D scanner, called Coplan, is presented. The Coplan is intended to be used for high speed, in-line coplanarity and shape measurement of electronic components, like Ball Grid Arrays and Surface Mount Devices. The scanner should have a scan length of at least 2 inches and a resolution of 5 micrometers in all 3 dimensions. First an analysis of two different scan schemes is made: a so-called pre-objective scheme using an F-(theta) scan lens and a post- objective scheme using a so-called banana field flattener, consisting of a convex, cylindrical hyperbolic mirror and a concave, cylindrical parabolic mirror. Secondly, an analysis of height resolution requirements for triangulation and confocal depth sensing has been made. It is concluded that for both methods of depth sensing a synchronous scheme with a 50-60 degrees detection angle in cross scan direction is required. It is shown that a post-objective scheme consisting of a banana mirror system combined with triangulation height detection offers the best solution for the optical requirements.

  18. Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser.

    PubMed

    Xu, Jing; Song, Yuhang; Yu, Xiangyu; Lin, Aobo; Kong, Meiwei; Han, Jun; Deng, Ning

    2016-04-18

    We first study the transmission property of red light in water in terms of extinction coefficient and channel bandwidth via Monte Carlo simulation, with an interesting finding that red light outperforms blue-green light in highly turbid water. We further propose and experimentally demonstrate a broadband underwater wireless optical communication system based on a simple and cost-effective TO56 red-light laser diode. We demonstrate a 1.324-Gb/s transmission at a bit error rate (BER) of 2.02 × 10-3 over a 6-m underwater channel, by using 128-QAM OFDM signals and a low-cost 150-MHz positive-intrinsic-negative photodetector, with a record spectral efficiency higher than 7.32 bits/Hz. By using an avalanche photodetector and 32-QAM OFDM signals, we have achieved a record bit rate of 4.883 Gb/s at a BER of 3.20 × 10-3 over a 6-m underwater channel.

  19. Biochemical and spectroscopic characterization of the blue-green photoreceptor in Halobacterium halobium

    SciTech Connect

    Scherrer, P.; McGinnis, K.; Bogomolni, R.A.

    1987-01-01

    Spectroscopic evidence indicates the presence of a second sensory receptor sR-II in Halobacterium halobium, which causes a repellent response to blue-green light. Reactions with hydroxylamine and NaCNBH/sub 3/ and reconstitution of the bleached pigment with retinal show that it is very similar to the other retinylidene pigments bacteriorhodopsin, halorhodopsin, and especially the earlier-discovered phototaxis receptor, sensory rhodopsin, renamed sR-I587. The second sensory receptor, sR-II480, has an absorbance maximum at 480 nm and undergoes a cyclic photoreaction with a half-time of approximately 200 msec. Its predominant photocycle intermediate absorbs maximally near 360 nm. The receptor can be detected spectroscopically in the presence of sR-I587 and quantitated through its transient response to 450-nm excitation. It is selectively bleached by low hydroxylamine concentrations that are insufficient to bleach sR-I587 significantly. Its photochemical and phototactic activities can be restored by addition of retinal. The mobility of the receptor, on NaDodSO4/polyacrylamide gels, was similar or identical to that of sR-I587 and slightly faster than bacteriorhodopsin, yielding an apparent molecular mass of 23-24 kDa.

  20. Effect of Nanohexaconazole on Nitrogen Fixing Blue Green Algae and Bacteria.

    PubMed

    Kumar, Rajesh; Gopal, Madhuban; Pabbi, Sunil; Paul, Sangeeta; Alam, Md Imteyaz; Yadav, Saurabh; Nair, Kishore Kumar; Chauhan, Neetu; Srivastava, Chitra; Gogoi, Robin; Singh, Pradeep Kumar; Goswami, Arunava

    2016-01-01

    Nanohexaconazole is a highly efficient fungicide against Rhizoctonia solani. Nanoparticles are alleged to adversely affect the non-target organisms. In order to evaluate such concern, the present study was carried out to investigate the effect of nanohexaconazole and its commercial formulation on sensitive nitrogen fixing blue green algae (BGA) and bacteria. Various activities of algae and bacteria namely growth, N-fixation, N-assimilation, Indole acetic acid (IAA) production and phosphate solubilization were differently affected in the presence of hexaconazole. Although, there was stimulatory to slightly inhibitory effect on the growth measurable parameters of the organisms studied at the recommended dose of nanohexaconazole, but its higher dose was inhibitory to all these microorganisms. On the other hand, the recommended as well as higher dose of commercial hexaconazole showed much severe inhibition of growth and metabolic activity of these organisms as compared to the nano preparation. The uses of nanohexazconazole instead of hexaconazole as a fungicide will not only help to control various fungal pathogens but also sustain the growth and activity of these beneficial microorganisms for sustaining soil fertility and productivity.

  1. Phycobilisomes from blue-green and red algae: isolation criteria and dissociation characteristics.

    PubMed

    Gantt, E; Lipschultz, C A; Grabowski, J; Zimmerman, B K

    1979-04-01

    A general procedure for the isolation of functionally intact phycobilisomes was devised, based on modifications of previously used procedures. It has been successful with numerous species of red and blue-green algae (Anabaena variabilis, Anacystis nidulans, Agmenellum quadruplicatum, Fremyella diplosiphon, Glaucosphaera vacuolata, Griffithsia pacifica, Nemalion multifidum, Nostoc sp., Phormidium persicinum, Porphyridium cruentum, P. sordidum, P. aerugineum, Rhodosorus marinus). Isolation was carried out in 0.75 molar K-phosphate (pH 6.8 to 7.0) at 20 to 23 C on sucrose step gradients. Lower temperature (4 to 10 C) was usually unfavorable resulting in uncoupling of energy transfer and partial dissociation of the phycobilisomes, sometimes with complete loss of allophycocyanin. Intact phycobilisomes were characterized by fluorescence emission peaks of 670 to 675 nanometers at room temperature, and 678 to 685 nanometers at liquid nitrogen temperature. Uncoupling and subsequent dissociation of phycobilisomes, in lowered ionic conditions, varied with the species and the degree of dissociation but occurred preferentially between phycocyanin and allophycocyanin, or between phycocyanin and phycoerythrin.

  2. Ca2+ Requirement for Aerobic Nitrogen Fixation by Heterocystous Blue-Green Algae 1

    PubMed Central

    Rodríguez, Herminia; Rivas, Joaquín; Guerrero, Miguel G.; Losada, Manuel

    1990-01-01

    The requirement of Ca2+ for growth and nitrogen fixation has been investigated in two strains of heterocystous blue-green algae (Anabaena sp. and Anabaena ATCC 33047). With combined nitrogen (nitrate or ammonium) or with N2 under microaerobic conditions, Ca2+ was not required for growth, at least in concentrations greater than traces. In contrast, Ca2+ was required as a macronutrient for growth and nitrogen fixation with air as the nitrogen source. Addition of Ca2+ to an aerobic culture without Ca2+ promoted, after a lag of several hours, development of nitrogenase activity and cell growth. Provision of air to a microaerobic culture in the absence of Ca2+ promoted a drastic drop in nitrogenase activity, which rapidly recovered its initial level upon restoration of microaerobic conditions. Development of nitrogenase activity in response to either Ca2+ or low oxygen tension was dependent on de novo protein synthesis. The role of Ca2+ seems to be related to protection of nitrogenase from inactivation, by conferring heterocysts resistance to oxygen. PMID:16667401

  3. The hepatoprotective activity of blue green algae in Schistosoma mansoni infected mice.

    PubMed

    Mohamed, Azza H; Osman, Gamalat Y; Salem, Tarek A; Elmalawany, Alshimaa M

    2014-10-01

    This study aims to evaluate the immunomodulatory effects of a natural product, blue green algae (BGA) (100 mg/kg BW), alone or combined with praziquantel PZQ (250 mg/kg BW) on granulomatous inflammation, liver histopathology, some biochemical and immunological parameters in mice infected with Schistosoma mansoni. Results showed that the diameter and number of egg granuloma were significantly reduced after treatment of S. mansoni-infected mice with BGA, PZQ and their combination. The histopathological alterations observed in the liver of S. mansoni-infected mice were remarkably inhibited after BGA treatments. BGA decreased the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) as well as the level of total protein (TP) while the level of albumin was increased. Treatment of infected mice with BGA, PZQ as well as their combination led to significant elevation in the activities of hepatic antioxidant enzymes glutathione peroxidase (GPX) and glutathione-S-transferase (GST) as compared with control group. Combination of BGA and PZQ resulted in significant reduction in the level of intercellular adhesion molecules-1 (ICAM-1), vascular adhesion molecules-1 (VCAM-1) and tumor necrosis factor-alpha (TNF-α) when compared to those of the S. mansoni-infected group. Overall, BGA significantly inhibited the liver damage accompanied with schistosomiasis, exhibited a potent antioxidant and immunoprotective activities. This study suggests that BGA can be considered as promising for development a complementary and/or alternative medicine against schistosomiasis.

  4. The influence of nitrogen on heterocyst production in blue-green algae

    USGS Publications Warehouse

    Ogawa, Roann E.; Carr, John F.

    1969-01-01

    A series of experiments on heterocyst production in Anabaena variabilis provides some strong indirect evidence for the role of heterocysts in nitrogen fixation. Of the algae tested (Anabaena variabilis, A. inaequalis, A. cylindrica, A. flos-aquae, Tolypothrix distorta, Gloeotrichia echinulata, Aphanizomenon flos-aquae, Oscillatoria sp., and Microcystis aeruginosa), only those with heterocysts grew in a nitrate-free medium. Growth in the nitrate-free medium was accompanied by an increase in heterocysts. Heterocyst formation in A. variabilis was evident 24 hr after transfer from a nitrate-containing to a nitrate-free medium. The number of heterocysts was altered by changes in the nitrogen source. Numbers were lowest when NH4-N was used as a nitrogen source and highest when nitrogen (N2-N) was derived from the atmosphere. Heterocyst numbers could also be regulated by controlling the concentration of NO3-N in the medium. Heterocyst production depended on the absence of combined nitrogen and the presence of phosphate. Data are presented on the occurrence of blue-green algae (with heterocysts) in Lake Erie and the environmental conditions apparently necessary for them to become dominant.

  5. Speculations on a possible essential function of the gelatinous sheath of blue-green algae.

    PubMed

    Lange, W

    1976-08-01

    Voluminous and often fluffy sheaths surrounding blue-green algal cells are observed (a) in productive natural waters, (b) in bacteria-containing laboratory cultures growing in inorganic nutrient media with added bacteria-assimilable organic matter, and (c) in axenic cultures in the same inorganic media even without added organic matter. The sheaths of bacteria-associated species in inorganic media without added organic matter are, by comparison, thin, and growth is meager. Repeated observations show that voluminous sheaths and vigorous growth of algal species are associated. It is suggested that formation and retention of a voluminous shealth provide a microenvironment around the algal cell where essential nutrients, present at only submarginal levels in the surrounding water, are concentrated and become readily available to the cell. The increase in nutrient concentration above a critical level, in turn, leads to vigorous algal growth. The voluminous sheath produced by the alga is not attacked by alga-associated bacteria when other assimilable organic matter is available; but in the absence of a more suitalble food, the bacteria feed on the less desirable gelatinous sheath, markedly reducing its thickness and causing meager algal growth.

  6. Oxygen-dependent proton efflux in cyanobacteria (blue-green algae).

    PubMed Central

    Scherer, S; Stürzl, E; Böger, P

    1984-01-01

    The oxygen-dependent proton efflux (in the dark) of intact cells of Anabaena variabilis and four other cyanobacteria (blue-green algae) was investigated. In contrast to bacteria and isolated mitochondria, an H+/e ratio (= protons translocated per electron transported) of only 0.23 to 0.35 and a P/e ratio of 0.8 to 1.5 were observed, indicative of respiratory electron transport being localized essentially on the thylakoids, not on the cytoplasmic membrane. Oxygen-induced acidification of the medium was sensitive to cyanide and the uncoupler carbonyl cyanide m-chlorophenylhydrazone. Inhibitors such as 2,6-dinitrophenol and vanadate exhibited a significant decrease in the H+/e ratio. After the oxygen pulse, electron transport started immediately, but proton efflux lagged 40 to 60 s behind, a period also needed before maximum ATP pool levels were attained. We suggest that proton efflux in A. variabilis is due to a proton-translocating ATP hydrolase (ATP-consuming ATPase) rather than to respiratory electron transport located on the cytoplasmic membrane. PMID:6327614

  7. Nitrogenase activity, amino acid pool patterns and amination in blue-green algae.

    PubMed

    Dharmawardene, M W; Stewart, W D; Stanley, S O

    1972-06-01

    The free amino acid pools in the nitrogen-fixing blue-green algae Anabaena cylindrica, A. flos-aquae and Westiellopsis prolifica contain a variety of amino acids with aspartic acid, glutamic acid and the amide glutamine being present in much higher concentrations than the others. This pattern is characteristic of that found in organisms having glutamine synthetage/glutamate synthetase [glutamine amide-2-oxoglutarate amino transferase (oxido-reductase)] as an important pathway of ammonia incorporation. Under nitrogen-starved conditions the level of acetylene reduction (nitrogen fixation) and the glutamine pool both increase but the free ammonia pool decreases, suggesting that ammonia rather than glutamine regulates nitrogen fixation.Glutamine synthetase has been demonstrated in Anabaena cylindrica using the γ-glutamyl transferase assay and also using a biosynthetic assay in which Pi release from ATP during glutamine synthesis was measured. The enzyme (γ-glutamyl transferase assay) is present in nitrogen-fixing cultures and activity is higher in aerobic than in microaerophilic cultures. Ammonium-grown cultures have lowest levels of all and activity in the presence of nitrate-nitrogen (150 mg nitrogen 1(-1)) is lower than in aerobic cultures growing on elemental nitrogen. Ammonium-nitrogen and nitrate-nitrogen have no effect on glutamine synthetase in vitro. Glutamate synthetase also operates in nitrogen-fixing cultures of Anabaena cylindrica.

  8. Recovery of adenine-nucleotide pools in terrestrial blue-green algae after prolonged drought periods.

    PubMed

    Scherer, Siegfried; Chen, Ting-Wei; Böger, Peter

    1986-03-01

    The response of Nostoc commune and Nostoc flagelliforme (terrestrial blue-green algae), grown in their natural habitat, towards rewetting after prolonged drought periods (2 weeds up to five years) has been investigated. In Nostoc flagelliforme, the energy charge (EC) about 0.18 in dry condition increases rapidly (EC=0.7 after 1 h) and more slowly in a second phase (EC=0.8 after 6 h). The total content of AXP (=ATP+ADP+AMP) apparently increases due to de novo synthesis of adenine nucleotides. ATP-build-up after a drought period is probably provided by oxidative phosphorylation. It has been found to be about the same, regardless of whether the foregoing drought period had been extended over 6 months or 5 years.Dry samples of colony mats of N. commune exhibit very low ATP-, but high ADP-contents. Within 6 h after rewetting, the final level of extractable ATP (60-100 nmol/mg chlorophyll) is recovered.

  9. Blue-green color and composition of Stejneger's beaked whale (Mesoplodon stejnegeri) milk.

    PubMed

    Ullrey, D E; Schwartz, C C; Whetter, P A; Rajeshwar Rao, T; Euber, J R; Cheng, S G; Brunner, J R

    1984-01-01

    Two hundred ml of milk were obtained from a lactating Stejneger's beaked whale stranded at Ninilchik, Alaska on 21 Oct, 1980. Total solids (41%) were similar to values reported for sperm and belukha whales, while fat (17%) was half as great and crude protein (17%) was 2-4 times greater than in milk of these species. Lactose was not detected. Calcium (0.22%) was greater than reported for pigmy sperm whales but less than for blue whales. Phosphorus (0.07%) was less than for any of the above species. Sodium and potassium concentrations were 0.13% and 0.11%, respectively. Values (microgram/g) for other elements analyzed (magnesium, 42; iron, 35; copper, 2.6; zinc, 1.5; manganese, 0.3; selenium, 0.36) have not been reported for whale milk. Based on SDS-gel electropherograms, this whale milk did not contain a whey protein corresponding to cattle milk alpha-lactalbumin. A blue-green pigment in the milk was identified as biliverdin.

  10. Blue-Green solutions for improving water quality in an urbanizing catchment

    NASA Astrophysics Data System (ADS)

    Kalantari, Zahra; Sha, Bo; Ferreira, Carla Sofia; Sjöstedt, Carin

    2017-04-01

    With increasing urban population and expanding urban areas, cities have demonstrated great influences on natural resources and the surrounding environment. Urbanization process is generally accompanied by noticeable land use/cover change, such as turning permeable forest area and agricultural land into impervious landscapes like roads, parking lots, commercial and residential areas, leading to major environmental impacts on both the hydrological processes and water quality of the local catchment. Urban areas usually act as major diffuse pollution sources in a catchment. On the one hand, human activities increase the generation and accumulation of pollutants on urban surface; on the other hand, large impervious urban landscape improves the mobilization and transport of pollutants to receiving water body by increasing surface runoff and hydraulic efficiency. This study focuses on how different urbanization patterns would affect surface water quality, in order to examine whether the heterogeneity of urban areas would be an important factor that influencing surface water quality and what impacts it would induce. Furthermore, using coupled hydrological and water quality models, the effect of different blue green solutions including nature remnants and parks, gardens, small forests, wetlands and ponds; on improving the water quality will be investigated.

  11. Health benefits of blue-green algae: prevention of cardiovascular disease and nonalcoholic fatty liver disease.

    PubMed

    Ku, Chai Siah; Yang, Yue; Park, Youngki; Lee, Jiyoung

    2013-02-01

    Blue-green algae (BGA) are among the most primitive life forms on earth and have been consumed as food or medicine by humans for centuries. BGA contain various bioactive components, such as phycocyanin, carotenoids, γ-linolenic acid, fibers, and plant sterols, which can promote optimal health in humans. Studies have demonstrated that several BGA species or their active components have plasma total cholesterol and triglyceride-lowering properties due to their modulation of intestinal cholesterol absorption and hepatic lipogenic gene expression. BGA can also reduce inflammation by inhibiting the nuclear factor κ B activity, consequently reducing the production of proinflammatory cytokines. Furthermore, BGA inhibit lipid peroxidation and have free radical scavenging activity, which can be beneficial for the protection against oxidative stress. The aforementioned effects of BGA can contribute to the prevention of metabolic and inflammatory diseases. This review provides an overview of the current knowledge of the health-promoting functions of BGA against cardiovascular disease and nonalcoholic fatty liver disease, which are major health threats in the developed countries.

  12. Degradation of tricyclazole: Effect of moisture, soil type, elevated carbon dioxide and Blue Green Algae (BGA).

    PubMed

    Kumar, Naveen; Mukherjee, Irani; Sarkar, Bipasa; Paul, Ranjit Kumar

    2017-01-05

    Pesticide persistence and degradation in soil are influenced by factors like soil characteristics, light, moisture etc. Persistence of tricyclazole was studied under different soil moisture regimes viz., dry, field capacity and submerged in two different soil types viz., Inceptisol and Ultisol from Delhi and Karnataka, respectively. Tricyclazole dissipated faster in submerged (t1/2 160.22-177.05d) followed by field capacity (t1/2 167.17-188.07d) and dry (t1/2 300.91-334.35d) in both the soil types. Half-life of tricyclazole in Delhi field capacity soil amended with Blue Green Algae (BGA), was 150.5d as compared to 167.1d in unamended soil. In Karnataka soil amended with BGA the half-lives were 177.0d compared to 188.0d in unamended soil, indicating that BGA amendment enhanced the rate of dissipation of in both the selected soils. Tricyclazole was found to be stable in water over a pH range of 3-9, the half life in paddy field was 60.20d and 5.47d in paddy soil and paddy water, respectively. Statistical analysis and Duncan's Multiple Range Test (DMRT) revealed significant effect of moisture regime, organic matter and atmospheric CO2 level on dissipation of tricyclazole from soil and pH of water (at 95% confidence level p<0.0001). Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The Efficacy of Blue-Green Infrastructure for Pluvial Flood Prevention under Conditions of Deep Uncertainty

    NASA Astrophysics Data System (ADS)

    Babovic, Filip; Mijic, Ana; Madani, Kaveh

    2017-04-01

    Urban areas around the world are growing in size and importance; however, cities experience elevated risks of pluvial flooding due to the prevalence of impermeable land surfaces within them. Urban planners and engineers encounter a great deal of uncertainty when planning adaptations to these flood risks, due to the interaction of multiple factors such as climate change and land use change. This leads to conditions of deep uncertainty. Blue-Green (BG) solutions utilise natural vegetation and processes to absorb and retain runoff while providing a host of other social, economic and environmental services. When utilised in conjunction with Decision Making under Deep Uncertainty (DMDU) methodologies, BG infrastructure provides a flexible and adaptable method of "no-regret" adaptation; resulting in a practical, economically efficient, and socially acceptable solution for flood risk mitigation. This work presents the methodology for analysing the impact of BG infrastructure in the context of the Adaptation Tipping Points approach to protect against pluvial flood risk in an iterative manner. An economic analysis of the adaptation pathways is also conducted in order to better inform decision-makers on the benefits and costs of the adaptation options presented. The methodology was applied to a case study in the Cranbrook Catchment in the North East of London. Our results show that BG infrastructure performs better under conditions of uncertainty than traditional grey infrastructure.

  14. Health Benefits of Blue-Green Algae: Prevention of Cardiovascular Disease and Nonalcoholic Fatty Liver Disease

    PubMed Central

    Ku, Chai Siah; Yang, Yue; Park, Youngki

    2013-01-01

    Abstract Blue-green algae (BGA) are among the most primitive life forms on earth and have been consumed as food or medicine by humans for centuries. BGA contain various bioactive components, such as phycocyanin, carotenoids, γ-linolenic acid, fibers, and plant sterols, which can promote optimal health in humans. Studies have demonstrated that several BGA species or their active components have plasma total cholesterol and triglyceride-lowering properties due to their modulation of intestinal cholesterol absorption and hepatic lipogenic gene expression. BGA can also reduce inflammation by inhibiting the nuclear factor κ B activity, consequently reducing the production of proinflammatory cytokines. Furthermore, BGA inhibit lipid peroxidation and have free radical scavenging activity, which can be beneficial for the protection against oxidative stress. The aforementioned effects of BGA can contribute to the prevention of metabolic and inflammatory diseases. This review provides an overview of the current knowledge of the health-promoting functions of BGA against cardiovascular disease and nonalcoholic fatty liver disease, which are major health threats in the developed countries. PMID:23402636

  15. Blue--green to near-IR switching electroluminescence from Si-rich silicon oxide/nitride bilayer structures

    NASA Astrophysics Data System (ADS)

    Berencén, Y.; Jambois, O.; Ramírez, J. M.; Rebled, J. M.; Estradé, S.; Peiró, F.; Domínguez, C.; Rodríguez, J. A.; Garrido, B.

    2011-07-01

    Blue--green to near-IR switching electroluminescence (EL) has been achieved in a metal-oxide-semiconductor light emitting device, where the dielectric has been replaced by a Si-rich silicon oxide/nitride bilayer structure. To form Si nanostructures, the layers were implanted with Si ions at high energy, resulting in a Si excess of 19%, and subsequently annealed at 1000°C. Transmission electron microscopy and EL studies allowed ascribing the blue--green emission to the Si nitride related defects and the near-IR band with the emission of the Si-nanoclusters embedded into the SiO2 layer. Charge transport analysis is reported and allows for identifying the origin of this two-wavelength switching effect.

  16. Compact optical system for pulse-to-pulse laser beam quality measurement and applications in laser machining.

    PubMed

    Lambert, Robert W; Cortés-Martínez, Rodolpho; Waddle, Andrew J; Shephard, Jonathan D; Taghizadeh, Mohammad R; Greenaway, Alan H; Hand, Duncan P

    2004-09-10

    Fluctuations in beam quality (M2) have been observed on a pulse-to-pulse basis from an industrial Nd:YAG laser. This was achieved with a compact multiplane imaging method incorporating quadratically distorted diffraction gratings, which enabled simultaneous imaging of nine planes on a single CCD array. With this system, we measured across a range of beam qualities with an associated error (in M2 variation) of the order of 0.7%. Application of the system to fiber-optic beam delivery and laser drilling is demonstrated.

  17. Compact X-ray Free Electron Laser from a Laser-plasma Accelerator using a Transverse Gradient Undulator

    SciTech Connect

    Huang, Zhirong; Ding, Yuantao; Schroeder, Carl B.; /LBL, Berkeley

    2012-09-13

    Compact laser-plasma accelerators can produce high energy electron beams with low emittance, high peak current but a rather large energy spread. The large energy spread hinders the potential applications for coherent FEL radiation generation. In this paper, we discuss a method to compensate the effects of beam energy spread by introducing a transverse field variation into the FEL undulator. Such a transverse gradient undulator together with a properly dispersed beam can greatly reduce the effects of electron energy spread and jitter on FEL performance. We present theoretical analysis and numerical simulations for SASE and seeded extreme ultraviolet and soft x-ray FELs based on laser plasma accelerators.

  18. High-stability compact atomic clock based on isotropic laser cooling

    SciTech Connect

    Esnault, Francois-Xavier; Holleville, David; Rossetto, Nicolas; Guerandel, Stephane; Dimarcq, Noel

    2010-09-15

    We present a compact cold-atom clock configuration where isotropic laser cooling, microwave interrogation, and clock signal detection are successively performed inside a spherical microwave cavity. For ground operation, a typical Ramsey fringe width of 20 Hz has been demonstrated, limited by the atom cloud's free fall in the cavity. The isotropic cooling light's disordered properties provide a large and stable number of cold atoms, leading to a high signal-to-noise ratio limited by atomic shot noise. A relative frequency stability of 2.2x10{sup -13{tau}-1/2} has been achieved, averaged down to 4x10{sup -15} after 5x10{sup 3} s of integration. Development of such a high-performance compact clock is of major relevance for on-board applications, such as satellite-positioning systems. As a cesium clock, it opens the door to a new generation of compact primary standards and timekeeping devices.

  19. Novel, ultra-compact, high-performance, eye-safe laser rangefinder for demanding applications

    NASA Astrophysics Data System (ADS)

    Silver, M.; Lee, S. T.; Borthwick, A.; Morton, G.; McNeill, C.; McSporran, D.; McRae, I.; McKinlay, G.; Jackson, D.; Alexander, W.

    2016-05-01

    Compact eye-safe laser rangefinders (LRFs) are a key technology for future sensors. In addition to reduced size, weight and power (SWaP), compact LRFs are increasingly being required to deliver a higher repetition rate, burst mode capability. Burst mode allows acquisition of telemetry data from fast moving targets or while sensing-on-the-move. We will describe a new, ultra-compact, long-range, eye-safe laser rangefinder that incorporates a novel transmitter that can deliver a burst capability. The transmitter is a diode-pumped, erbium:glass, passively Q-switched, solid-state laser which uses design and packaging techniques adopted from the telecom components sector. The key advantage of this approach is that the transmitter can be engineered to match the physical dimensions of the active laser components and the submillimetre sized laser spot. This makes the transmitter significantly smaller than existing designs, leading to big improvements in thermal management, and allowing higher repetition rates. In addition, the design approach leads to devices that have higher reliability, lower cost, and smaller form-factor, than previously possible. We present results from the laser rangefinder that incorporates the new transmitter. The LRF has dimensions (L x W x H) of 100 x 55 x 34 mm and achieves ranges of up to 15km from a single shot, and over a temperature range of -32°C to +60°C. Due to the transmitter's superior thermal performance, the unit is capable of repetition rates of 1Hz continuous operation and short bursts of up to 4Hz. Short bursts of 10Hz have also been demonstrated from the transmitter in the laboratory.

  20. Compact ultrafast semiconductor disk laser for nonlinear imaging in living organisms

    NASA Astrophysics Data System (ADS)

    Aviles-Espinosa, Rodrigo; Filippidis, G.; Hamilton, Craig; Malcolm, Graeme; Weingarten, Kurt J.; Südmeyer, Thomas; Barbarin, Yohan; Keller, Ursula; Artigas, David; Loza-Alvarez, Pablo

    2011-03-01

    Ultrashort pulsed laser systems (such as Ti:sapphire) have been used in nonlinear microscopy during the last years. However, its implementation is not straight forward as they are maintenance-intensive, bulky and expensive. These limitations have prevented their wide-spread use for nonlinear imaging, especially in "real-life" biomedical applications. In this work we present the suitability of a compact ultrafast semiconductor disk laser source, with a footprint of 140x240x70 mm, to be used for nonlinear microscopy. The modelocking mechanism of the laser is based on a quantumdot semiconductor saturable absorber mirror (SESAM). The laser delivers an average output power of 287 mW with 1.5 ps pulses at 500 MHz, corresponding to a peak power of 0.4 kW. Its center wavelength is 965 nm which is ideally suited for two-photon excitation of the widely used Green Fluorescent Protein (GFP) marker as it virtually matches its twophoton action cross section. We reveal that it is possible to obtain two photon excited fluorescence images of GFP labeled neurons and secondharmonic generation images of pharynx and body wall muscles in living C. elegans nematodes. Our results demonstrate that this compact laser is well suited for long-term time-lapse imaging of living samples as very low powers provide a bright signal. Importantly this non expensive, turn-key, compact laser system could be used as a platform to develop portable nonlinear bio-imaging devices, facilitating its wide-spread adoption in "real-life" applications.

  1. Multiphoton microscopy system with a compact fiber-based femtosecond-pulse laser and handheld probe.

    PubMed

    Liu, Gangjun; Kieu, Khanh; Wise, Frank W; Chen, Zhongping

    2011-01-01

    We report on the development of a compact multiphoton microscopy (MPM) system that integrates a compact and robust fiber laser with a miniature probe. The all normal dispersion fiber femtosecond laser has a central wavelength of 1.06 μm, pulse width of 125 fs and average power of more than 1 W. A double cladding photonic crystal fiber was used to deliver the excitation beam and to collect the two-photon signal. The hand-held probe included galvanometer-based mirror scanners, relay lenses and a focusing lens. The packaged probe had a diameter of 16 mm. Second harmonic generation (SHG) images and two-photon excited fluorescence (TPEF) images of biological tissues were demonstrated using the system.

  2. A compact ultranarrow high-power laser system for experiments with 578 nm ytterbium clock transition

    SciTech Connect

    Cappellini, G.; Lombardi, P.; Mancini, M.; Pagano, G.; Pizzocaro, M.; Fallani, L.; Catani, J.

    2015-07-15

    In this paper, we present the realization of a compact, high-power laser system able to excite the ytterbium clock transition at 578 nm. Starting from an external-cavity laser based on a quantum dot chip at 1156 nm with an intra-cavity electro-optic modulator, we were able to obtain up to 60 mW of visible light at 578 nm via frequency doubling. The laser is locked with a 500 kHz bandwidth to an ultra-low-expansion glass cavity stabilized at its zero coefficient of thermal expansion temperature through an original thermal insulation and correction system. This laser allowed the observation of the clock transition in fermionic {sup 173}Y b with a <50 Hz linewidth over 5 min, limited only by a residual frequency drift of some 0.1 Hz/s.

  3. Experimental demonstration of a compact epithermal neutron source based on a high power laser

    NASA Astrophysics Data System (ADS)

    Mirfayzi, S. R.; Alejo, A.; Ahmed, H.; Raspino, D.; Ansell, S.; Wilson, L. A.; Armstrong, C.; Butler, N. M. H.; Clarke, R. J.; Higginson, A.; Kelleher, J.; Murphy, C. D.; Notley, M.; Rusby, D. R.; Schooneveld, E.; Borghesi, M.; McKenna, P.; Rhodes, N. J.; Neely, D.; Brenner, C. M.; Kar, S.

    2017-07-01

    Epithermal neutrons from pulsed-spallation sources have revolutionised neutron science allowing scientists to acquire new insight into the structure and properties of matter. Here, we demonstrate that laser driven fast (˜MeV) neutrons can be efficiently moderated to epithermal energies with intrinsically short burst durations. In a proof-of-principle experiment using a 100 TW laser, a significant epithermal neutron flux of the order of 105 n/sr/pulse in the energy range of 0.5-300 eV was measured, produced by a compact moderator deployed downstream of the laser-driven fast neutron source. The moderator used in the campaign was specifically designed, by the help of MCNPX simulations, for an efficient and directional moderation of the fast neutron spectrum produced by a laser driven source.

  4. Analysis of the possibility of fabricating compact combustion-driven DF lasers due to fuel preheating

    NASA Astrophysics Data System (ADS)

    Fang, Xiaoting; Yuan, Shengfu; Hua, Weihong

    2016-09-01

    We report a theoretical calculation of the processes proceeding in the combustor of combustion-driven cw DF/HF chemical lasers with different mixtures of fuels preheated to high temperatures. Calculation results demonstrate a great effect of the preheating temperature on the yield of F atoms and strongest deactivator, on the primary dilution ratio ψp and on the estimated specific power. When fuels are preheated to about 1300 K, the specific power is improved by about 74.2%, and the total mass of the fuel is reduced by about 43%, which makes it possible to realise a more compact and efficient design of combustion-driven cw DF/HF chemical lasers at elevated combustor pressures. Fuel preheating can facilitate the development of chemical lasers and high-power lasers based not only on airborne and space-borne platforms, but also on mobile ground-based platforms.

  5. Solderjet bumping technique used to manufacture a compact and robust green solid-state laser

    NASA Astrophysics Data System (ADS)

    Ribes, P.; Burkhardt, T.; Hornaff, M.; Kousar, S.; Burkhardt, D.; Beckert, E.; Gilaberte, M.; Guilhot, D.; Montes, D.; Galan, M.; Ferrando, S.; Laudisio, M.; Belenguer, T.; Ibarmia, S.; Gallego, P.; Rodríguez, J. A.; Eberhardt, R.; Tünnermann, A.

    2015-06-01

    Solder-joining using metallic solder alloys is an alternative to adhesive bonding. Laser-based soldering processes are especially well suited for the joining of optical components made of fragile and brittle materials such as glasses, ceramics and optical crystals due to a localized and minimized input of thermal energy. The Solderjet Bumping technique is used to assemble a miniaturized laser resonator in order to obtain higher robustness, wider thermal conductivity performance, higher vacuum and radiation compatibility, and better heat and long term stability compared with identical glued devices. The resulting assembled compact and robust green diode-pumped solid-state laser is part of the future Raman Laser Spectrometer designed for the Exomars European Space Agency (ESA) space mission 2018.

  6. Compact dual-wavelength thulium-doped fiber laser employing a double-ring filter.

    PubMed

    Fan, Xuliang; Zhou, Wei; Wang, Siming; Liu, Xuan; Wang, Yong; Shen, Deyuan

    2016-04-20

    In this paper, we report on stable dual-wavelength operation of a thulium-doped compact all-fiber laser using a double-ring filter as the wavelength selective element. Simultaneously lasing at 2014.4 and 2018.4 nm has been obtained via tuning the polarization controllers to adjust the relative gain and loss of the laser cavity. The side mode suppression ratios are greater than 52 dB and the output power difference between the two lasing lines is less than 0.08 dB under 2.6 W of incident pump power.

  7. Progress in compact soft x-ray lasers and their applications

    SciTech Connect

    Suckewer, S.; Skinner, C.H.

    1995-01-01

    The ultra-high brightness and short pulse duration of soft x-ray lasers provide unique advantages for novel applications. A crucial factor in the availability of these devices is their scale and cost. Recent breakthroughs in this field has brought closer the advent of table-top devices, suitable for applications to fields such as x-ray microscopy, chemistry, material science, plasma diagnostics, and lithography. In this article we review recent progress in the development of compact (table-top) soft x-ray lasers.

  8. Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range

    SciTech Connect

    Kita, Tomohiro Tang, Rui; Yamada, Hirohito

    2015-03-16

    We present a wavelength-tunable laser diode with a 99-nm-wide wavelength tuning range. It has a compact wavelength-tunable filter with high wavelength selectivity fabricated using silicon photonics technology. The silicon photonic wavelength-tunable filter with wide wavelength tuning range was realized using two ring resonators and an asymmetric Mach-Zehnder interferometer. The wavelength-tunable laser diode fabricated by butt-joining a silicon photonic filter and semiconductor optical amplifier shows stable single-mode operation over a wide wavelength range.

  9. A DFB fiber laser sensor system using a NI-Compact-RIO-based PGC demodulation scheme

    NASA Astrophysics Data System (ADS)

    Wang, Yan; He, Jun; Feng, Lei; Li, Fang; Liu, Yu-liang

    2009-07-01

    An eight-channel distributed feedback fiber laser (DFB FL) sensor system using phase generated carrier (PGC) demodulation scheme is described in this paper. This system employs an unbalanced Michelson interferometer to convert the measurands-induced laser wavelength shifts into the phase shifts. The digital PGC algorithm is realized on the Field Programmable Gate Array (FPGA) module of the commercialized NI-Compact RIO. The influence of the time delay between the interferometric signal and the PGC carrier is then investigated. Finally, the experimental system is setup to validate the analysis above.

  10. Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range

    NASA Astrophysics Data System (ADS)

    Kita, Tomohiro; Tang, Rui; Yamada, Hirohito

    2015-03-01

    We present a wavelength-tunable laser diode with a 99-nm-wide wavelength tuning range. It has a compact wavelength-tunable filter with high wavelength selectivity fabricated using silicon photonics technology. The silicon photonic wavelength-tunable filter with wide wavelength tuning range was realized using two ring resonators and an asymmetric Mach-Zehnder interferometer. The wavelength-tunable laser diode fabricated by butt-joining a silicon photonic filter and semiconductor optical amplifier shows stable single-mode operation over a wide wavelength range.

  11. A compact chaotic laser device with a two-dimensional external cavity structure

    SciTech Connect

    Sunada, Satoshi Adachi, Masaaki; Fukushima, Takehiro; Shinohara, Susumu; Arai, Kenichi; Harayama, Takahisa

    2014-06-16

    We propose a compact chaotic laser device, which consists of a semiconductor laser and a two-dimensional (2D) external cavity for delayed optical feedback. The overall size of the device is within 230 μm × 1 mm. A long time delay sufficient for chaos generation can be achieved with the small area by the multiple reflections at the 2D cavity boundary, and the feedback strength is controlled by the injection current to the external cavity. We experimentally demonstrate that a variety of output properties, including chaotic output, can be selectively generated by controlling the injection current to the external cavity.

  12. Wear properties of compact graphite cast iron with bionic units processed by deep laser cladding WC

    NASA Astrophysics Data System (ADS)

    Zhou, Hong; Zhang, Peng; Sun, Na; Wang, Cheng-tao; Lin, Peng-yu; Ren, Lu-quan

    2010-08-01

    By simulating the cuticles of some soil animals, the wear resistance of compact graphite cast iron (CGI) processed by laser remelting gets a conspicuous improvement. In order to get a further anti-wear enhancement of CGI, a new method of deep laser cladding was used to process bionic units. By preplacing grooves then filling with WC powders and laser cladding, the bionic units had a larger dimension in depth and higher microhardness. Fe powder with different proportions from 30% (wt.) to 60% (wt.) was added into WC before laser processing for a good incorporation with CGI substrate. The improved laser cladding units turned out to induce higher wear resistance in comparison with laser remelting ones. The depth of the layer reached up to 1 mm. The results of dry sliding wear tests indicated that the specimen processed by laser cladding has a remarkable improvement than the ones processed by laser remelting. It should be noted that the wear mass loss was essentially dependent on the increase in WC proportion.

  13. Compact high brightness diode laser emitting 500W from a 100μm fiber

    NASA Astrophysics Data System (ADS)

    Heinemann, Stefan; Fritsche, Haro; Kruschke, Bastian; Schmidt, Torsten; Gries, Wolfgang

    2013-02-01

    High power, high brightness diode lasers are beginning to compete with solid state lasers, i.e. disk and fiber lasers. The core technologies for brightness scaling of diode lasers are optical stacking and dense spectral combining (DSC), as well as improvements of the diode material. Diode lasers have the lowest cost of ownership, highest efficiency and most compact design among all lasers. Multiple Single Emitter (MSE) modules allow highest power and highest brightness diode lasers based on standard broad area diodes. Multiple single emitters, each rated at 12 W, are stacked in the fast axis with a monolithic slow axis collimator (SAC) array. Volume Bragg Gratings (VBG) stabilizes the wavelength and narrow the linewidth to less than 1 nm. Dichroic mirrors are used for dense wavelength multiplexing of 4 channels within 12 nm. Subsequently polarization multiplexing generates 450 W with a beam quality of 4.5 mm*mrad. Fast control electronics and miniaturized switched power supplies enable pulse rise times of less than 10 μs, with pulse widths continuously adjustable from 20 μs to cw. Further power scaling up to multi-kilowatts can be achieved by multiplexing up to 16 channels. The power and brightness of these systems enables the use of direct diode lasers for cutting and welding. The technologies can be transferred to other wavelengths to include 793 nm and 1530 nm. Optimized spectral combining enables further improvements in spectral brightness and power.

  14. Deep tissue photoacoustic computed tomography with a fast and compact laser system

    PubMed Central

    Wang, Depeng; Wang, Yuehang; Wang, Weiran; Luo, Dandan; Chitgupi, Upendra; Geng, Jumin; Zhou, Yang; Wang, Lidai; Lovell, Jonathan F; Xia, Jun

    2016-01-01

    Photoacoustic computed tomography (PACT) holds great promise for biomedical imaging, but wide-spread implementation is impeded by the bulkiness of flash-lamp-pumped laser systems, which typically weigh between 50 - 200 kg, require continuous water cooling, and operate at a low repetition rate. Here, we demonstrate that compact lasers based on emerging diode technologies are well-suited for preclinical and clinical PACT. The diode-pumped laser used in this study had a miniature footprint (13 × 14 × 7 cm3), weighed only 1.6 kg, and outputted up to 80 mJ per pulse at 1064 nm. In vitro, the laser system readily provided over 4 cm PACT depth in chicken breast tissue. In vivo, in addition to high resolution, non-invasive brain imaging in living mice, the system can operate at 50 Hz, which enabled high-speed cross-sectional imaging of murine cardiac and respiratory function. The system also provided high quality, high-frame rate, and non-invasive three-dimensional mapping of arm, palm, and breast vasculature at multi centimeter depths in living human subjects, demonstrating the clinical viability of compact lasers for PACT. PMID:28101405

  15. Lasers '92; Proceedings of the International Conference on Lasers and Applications, 15th, Houston, TX, Dec. 7-10, 1992

    NASA Technical Reports Server (NTRS)

    Wang, Charles P. (Editor)

    1993-01-01

    Papers from the conference are presented, and the topics covered include the following: x-ray lasers, excimer lasers, chemical lasers, high power lasers, blue-green lasers, dye lasers, solid state lasers, semiconductor lasers, gas and discharge lasers, carbon dioxide lasers, ultrafast phenomena, nonlinear optics, quantum optics, dynamic gratings and wave mixing, laser radar, lasers in medicine, optical filters and laser communication, optical techniques and instruments, laser material interaction, and industrial and manufacturing applications.

  16. Lasers '92; Proceedings of the International Conference on Lasers and Applications, 15th, Houston, TX, Dec. 7-10, 1992

    NASA Technical Reports Server (NTRS)

    Wang, Charles P. (Editor)

    1993-01-01

    Papers from the conference are presented, and the topics covered include the following: x-ray lasers, excimer lasers, chemical lasers, high power lasers, blue-green lasers, dye lasers, solid state lasers, semiconductor lasers, gas and discharge lasers, carbon dioxide lasers, ultrafast phenomena, nonlinear optics, quantum optics, dynamic gratings and wave mixing, laser radar, lasers in medicine, optical filters and laser communication, optical techniques and instruments, laser material interaction, and industrial and manufacturing applications.

  17. Compact, High-Power, Low-Cost 295 nm DUV Laser by Harmonic Conversion of High Power VECSELs

    DTIC Science & Technology

    2011-05-10

    REPORT Compact, High-Power, Low-Cost 295 nm DUV Laser by Harmonic Conversion of High Power VECSELs 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: We have...harmonic Conversion, high power, VECSEL Mahmoud Fallahi University of Arizona Sponsored Project Services PO Box 3308 Tucson, AZ 85722 -3308 REPORT...8/98) Prescribed by ANSI Std. Z39.18 - 14-Jun-2010 Compact, High-Power, Low-Cost 295 nm DUV Laser by Harmonic Conversion of High Power VECSELs

  18. ROx3: Retinal oximetry utilizing the blue-green oximetry method

    NASA Astrophysics Data System (ADS)

    Parsons, Jennifer Kathleen Hendryx

    The ROx is a retinal oximeter under development with the purpose of non-invasively and accurately measuring oxygen saturation (SO2) in vivo. It is novel in that it utilizes the blue-green oximetry technique with on-axis illumination. ROx calibration tests were performed by inducing hypoxia in live anesthetized swine and comparing ROx measurements to SO 2 values measured by a CO-Oximeter. Calibration was not achieved to the precision required for clinical use, but limiting factors were identified and improved. The ROx was used in a set of sepsis experiments on live pigs with the intention of tracking retinal SO2 during the development of sepsis. Though conclusions are qualitative due to insufficient calibration of the device, retinal venous SO2 is shown to trend generally with central venous SO2 as sepsis develops. The novel sepsis model developed in these experiments is also described. The method of cecal ligation and perforation with additional soiling of the abdomen consistently produced controllable severe sepsis/septic shock in a matter of hours. In addition, the ROx was used to collect retinal images from a healthy human volunteer. These experiments served as a bench test for several of the additions/modifications made to the ROx. This set of experiments specifically served to illuminate problems with various light paths and image acquisition. The analysis procedure for the ROx is under development, particularly automating the process for consistency, accuracy, and time efficiency. The current stage of automation is explained, including data acquisition processes and the automated vessel fit routine. Suggestions for the next generation of device minimization are also described.

  19. A Blue/Green Water-based Accounting Framework for Assessment of Water Security

    NASA Astrophysics Data System (ADS)

    Rodrigues, D. B.; Gupta, H. V.; Mendiondo, E. M.

    2013-12-01

    A comprehensive assessment of water security can incorporate several water-related concepts, including provisioning and support for freshwater ecosystem services, water footprint, water scarcity, and water vulnerability, while accounting for Blue and Green Water (BW and GW) flows defined in accordance with the hydrological processes involved. Here, we demonstrate how a quantitative analysis of provisioning and demand (in terms of water footprint) for BW and GW ecosystem services can be conducted, so as to provide indicators of water scarcity and vulnerability at the basin level. To illustrate the approach, we use the Soil and Water Assessment Tool (SWAT) to model the hydrology of an agricultural basin (291 sq.km) within the Cantareira water supply system in Brazil. To provide a more comprehensive basis for decision-making, we compute the BW provision using three different hydrological-based methods for specifying monthly Environmental Flow Requirements (EFRs) for 23 year-period. The current BW-Footprint was defined using surface water rights for reference year 2012. Then we analyzed the BW- and GW-Footprints against long-term series of monthly values of freshwater availability. Our results reveal clear spatial and temporal patterns of water scarcity and vulnerability levels within the basin, and help to distinguish between human and natural reasons (drought) for conditions of insecurity. The Blue/Green water-based accounting framework developed here can be benchmarked at a range of spatial scales, thereby improving our understanding of how and where water-related threats to human and aquatic ecosystem security can arise. Future investigation will be necessary to better understand the intra-annual variability of blue water demand and to evaluate the impacts of uncertainties associated with a) the water rights database, b) the effects of climate change projections on blue and green freshwater provision.

  20. Anaerobic and aerobic hydrogen gas formation by the blue-green alga Anabaena cylindrica.

    PubMed

    Daday, A; Platz, R A; Smith, G D

    1977-11-01

    An investigation was made of certain factors involved in the formation of hydrogen gas, both in an anaerobic environment (argon) and in air, by the blue-green alga Anabaena cylindrica. The alga had not been previously adapted under hydrogen gas and hence the hydrogen evolution occurred entirely within the nitrogen-fixing heterocyst cells; organisms grown in a fixed nitrogen source, and which were therefore devoid of heterocysts, did not produce hydrogen under these conditions. Use of the inhibitor dichlorophenyl-dimethyl urea showed that hydrogen formation was directly dependent on photosystem I and only indirectly dependent on photosystem II, consistent with heterocysts being the site of hydrogen formation. The uncouplers carbonyl cyanide chlorophenyl hydrazone and dinitrophenol almost completely inhibited hydrogen formation, indicating that the process occurs almost entirely via the adenosine 5'-triphosphate-dependent nitrogenase. Salicylaldoxime also inhibited hydrogen formation, again illustrating the necessity of photophosphorylation. Whereas hydrogen formation could usually only be observed in anaerobic, dinitrogen-free environments, incubation in the presence of the dinitrogen-fixing inhibitor carbon monoxide plus the hydrogenase inhibitor acetylene resulted in significant formation of hydrogen even in air. Hydrogen formation was studied in batch cultures as a function of age of the cultures and also as a function of culture concentration, in both cases the cultures being harvested in logarithmic growth. Hydrogen evolution (and acetylene-reducing activity) exhibited a distinct maximum with respect to the age of the cultures. Finally, the levels of the protective enzyme, superoxide dismutase, were measured in heterocyst and vegetative cell fractions of the organism; the level was twice as high in heterocyst cells (2.3 units/mg of protein) as in vegetative cells (1.1 units/mg of protein). A simple procedure for isolating heterocyst cells is described.

  1. Blue-Green Algae Inhibit the Development of Atherosclerotic Lesions in Apolipoprotein E Knockout Mice

    PubMed Central

    Ku, Chai Siah; Kim, Bohkyung; Pham, Tho X.; Yang, Yue; Wegner, Casey J.; Park, Young-Ki; Balunas, Marcy

    2015-01-01

    Abstract Hyperlipidemia and inflammation contribute to the development of atherosclerotic lesions. Our objective was to determine antiatherogenic effect of edible blue-green algae (BGA) species, that is, Nostoc commune var. sphaeroides Kützing (NO) and Spirulina platensis (SP), in apolipoprotein E knockout (ApoE−/−) mice, a well-established mouse model of atherosclerosis. Male ApoE−/− mice were fed a high-fat/high-cholesterol (HF/HC, 15% fat and 0.2% cholesterol by wt) control diet or a HF/HC diet supplemented with 5% (w/w) of NO or SP powder for 12 weeks. Plasma total cholesterol (TC) and triglycerides (TG) were measured, and livers were analyzed for histology and gene expression. Morphometric analysis for lesions and immunohistochemical analysis for CD68 were conducted in the aorta and the aortic root. NO supplementation significantly decreased plasma TC and TG, and liver TC, compared to control and SP groups. In the livers of NO-fed mice, less lipid droplets were present with a concomitant decrease in fatty acid synthase protein levels than the other groups. There was a significant increase in hepatic low-density lipoprotein receptor protein levels in SP-supplemented mice than in control and NO groups. Quantification of aortic lesions by en face analysis demonstrated that both NO and SP decreased aortic lesion development to a similar degree compared with control. While lesions in the aortic root were not significantly different between groups, the CD68-stained area in the aortic root was significantly lowered in BGA-fed mice than controls. In conclusion, both NO and SP supplementation decreased the development of atherosclerotic lesions, suggesting that they may be used as a natural product for atheroprotection. PMID:26566121

  2. Assessing potential health risks from microcystin toxins in blue-green algae dietary supplements.

    PubMed Central

    Gilroy, D J; Kauffman, K W; Hall, R A; Huang, X; Chu, F S

    2000-01-01

    The presence of blue-green algae (BGA) toxins in surface waters used for drinking water sources and recreation is receiving increasing attention around the world as a public health concern. However, potential risks from exposure to these toxins in contaminated health food products that contain BGA have been largely ignored. BGA products are commonly consumed in the United States, Canada, and Europe for their putative beneficial effects, including increased energy and elevated mood. Many of these products contain Aphanizomenon flos-aquae, a BGA that is harvested from Upper Klamath Lake (UKL) in southern Oregon, where the growth of a toxic BGA, Microcystis aeruginosa, is a regular occurrence. M. aeruginosa produces compounds called microcystins, which are potent hepatotoxins and probable tumor promoters. Because M. aeruginosa coexists with A. flos-aquae, it can be collected inadvertently during the harvesting process, resulting in microcystin contamination of BGA products. In fall 1996, the Oregon Health Division learned that UKL was experiencing an extensive M. aeruginosa bloom, and an advisory was issued recommending against water contact. The advisory prompted calls from consumers of BGA products, who expressed concern about possible contamination of these products with microcystins. In response, the Oregon Health Division and the Oregon Department of Agriculture established a regulatory limit of 1 microg/g for microcystins in BGA-containing products and tested BGA products for the presence of microcystins. Microcystins were detected in 85 of 87 samples tested, with 63 samples (72%) containing concentrations > 1 microg/g. HPLC and ELISA tentatively identified microcystin-LR, the most toxic microcystin variant, as the predominant congener. Images Figure 1 Figure 2 PMID:10811570

  3. Blue-Green Algae Inhibit the Development of Atherosclerotic Lesions in Apolipoprotein E Knockout Mice.

    PubMed

    Ku, Chai Siah; Kim, Bohkyung; Pham, Tho X; Yang, Yue; Wegner, Casey J; Park, Young-Ki; Balunas, Marcy; Lee, Ji-Young

    2015-12-01

    Hyperlipidemia and inflammation contribute to the development of atherosclerotic lesions. Our objective was to determine antiatherogenic effect of edible blue-green algae (BGA) species, that is, Nostoc commune var. sphaeroides Kützing (NO) and Spirulina platensis (SP), in apolipoprotein E knockout (ApoE(-/-)) mice, a well-established mouse model of atherosclerosis. Male ApoE(-/-) mice were fed a high-fat/high-cholesterol (HF/HC, 15% fat and 0.2% cholesterol by wt) control diet or a HF/HC diet supplemented with 5% (w/w) of NO or SP powder for 12 weeks. Plasma total cholesterol (TC) and triglycerides (TG) were measured, and livers were analyzed for histology and gene expression. Morphometric analysis for lesions and immunohistochemical analysis for CD68 were conducted in the aorta and the aortic root. NO supplementation significantly decreased plasma TC and TG, and liver TC, compared to control and SP groups. In the livers of NO-fed mice, less lipid droplets were present with a concomitant decrease in fatty acid synthase protein levels than the other groups. There was a significant increase in hepatic low-density lipoprotein receptor protein levels in SP-supplemented mice than in control and NO groups. Quantification of aortic lesions by en face analysis demonstrated that both NO and SP decreased aortic lesion development to a similar degree compared with control. While lesions in the aortic root were not significantly different between groups, the CD68-stained area in the aortic root was significantly lowered in BGA-fed mice than controls. In conclusion, both NO and SP supplementation decreased the development of atherosclerotic lesions, suggesting that they may be used as a natural product for atheroprotection.

  4. Phycobiliproteins: A Novel Green Tool from Marine Origin Blue-Green Algae and Red Algae.

    PubMed

    Chandra, Rashmi; Parra, Roberto; Iqbal, Hafiz M N

    2017-01-01

    Marine species are comprising about a half of the whole global biodiversity; the sea offers an enormous resource for novel bioactive compounds. Several of the marine origin species show multifunctional bioactivities and characteristics that are useful for a discovery and/or reinvention of biologically active compounds. For millennia, marine species that includes cyanobacteria (blue-green algae) and red algae have been targeted to explore their enormous potential candidature status along with a wider spectrum of novel applications in bio- and non-bio sectors of the modern world. Among them, cyanobacteria are photosynthetic prokaryotes, phylogenetically a primitive group of Gramnegative prokaryotes, ranging from Arctic to Antarctic regions, capable of carrying out photosynthesis and nitrogen fixation. In the recent decade, a great deal of research attention has been paid on the pronouncement of bio-functional proteins along with novel peptides, vitamins, fine chemicals, renewable fuel and bioactive compounds, e.g., phycobiliproteins from marine species, cyanobacteria and red algae. Interestingly, they are extensively commercialized for natural colorants in food and cosmetics, antimicrobial, antioxidant, anti-inflammatory, neuroprotective, hepatoprotective agents and fluorescent neo-glycoproteins as probes for single particle fluorescence imaging fluorescent applications in clinical and immunological analysis. However, a comprehensive knowledge and technological base for augmenting their commercial utilities are lacking. Therefore, this paper will provide an overview of the phycobiliproteins-based research literature from marine cyanobacteria and red algae. This review is also focused towards analyzing global and commercial activities with application oriented-based research. Towards the end, the information is also given on the potential biotechnological and biomedical applications of phycobiliproteins. Copyright© Bentham Science Publishers; For any queries, please

  5. Hypocholesterolemic effect of Nostoc commune var. sphaeroides Kützing, an edible blue-green alga.

    PubMed

    Rasmussen, Heather E; Blobaum, Kara R; Jesch, Elliot D; Ku, Chai Siah; Park, Young-Ki; Lu, Fan; Carr, Timothy P; Lee, Ji-Young

    2009-10-01

    Intake of an edible blue-green alga Nostoc commune var. sphaeroides Kützing (N. Commune) has been shown to lower plasma total cholesterol concentration, but the mechanisms behind the hypocholesterolemic effect have not been elucidated. To elucidate the mechanisms underlying the cholesterol-lowering effect of N. commune in mice. Male C57BL/6J mice were fed the AIN-93 M diet supplemented with 0 or 5% (wt/wt) dried N. Commune for 4 weeks. Lipid levels in the plasma and liver, intestinal cholesterol absorption and fecal sterol excretion were measured. Expression of hepatic and intestinal genes involved in cholesterol metabolism was evaluated by quantitative realtime PCR. N. commune supplementation significantly reduced total plasma cholesterol and triglyceride concentrations by approximately 20% compared to controls. Intestinal cholesterol absorption was significantly decreased, while fecal neutral sterol output was significantly increased in N. commune-fed mice. mRNA levels of the cholesterol transporters such as Niemann Pick C1 Like 1, scavenger receptor class B type 1, ATP-binding cassette transporters G5 and A1 in small intestine were not significantly different between two groups. Hepatic lipid contents including total cholesterol, triglyceride and free cholesterol in N. commune-fed mice were not significantly altered. However, the expression of cholesterol modulating genes including sterol regulatory element binding protein-2 and 3-hydroxy-3-methylglutaryl coenzyme A reductase were significantly increased in mice fed N. commune. N. commune supplementation exerted a hypocholesterolemic effect in mice, largely in part, by reducing intestinal cholesterol absorption and promoting fecal neutral sterol excretion.

  6. Assessing potential health risks from microcystin toxins in blue-green algae dietary supplements.

    PubMed

    Gilroy, D J; Kauffman, K W; Hall, R A; Huang, X; Chu, F S

    2000-05-01

    The presence of blue-green algae (BGA) toxins in surface waters used for drinking water sources and recreation is receiving increasing attention around the world as a public health concern. However, potential risks from exposure to these toxins in contaminated health food products that contain BGA have been largely ignored. BGA products are commonly consumed in the United States, Canada, and Europe for their putative beneficial effects, including increased energy and elevated mood. Many of these products contain Aphanizomenon flos-aquae, a BGA that is harvested from Upper Klamath Lake (UKL) in southern Oregon, where the growth of a toxic BGA, Microcystis aeruginosa, is a regular occurrence. M. aeruginosa produces compounds called microcystins, which are potent hepatotoxins and probable tumor promoters. Because M. aeruginosa coexists with A. flos-aquae, it can be collected inadvertently during the harvesting process, resulting in microcystin contamination of BGA products. In fall 1996, the Oregon Health Division learned that UKL was experiencing an extensive M. aeruginosa bloom, and an advisory was issued recommending against water contact. The advisory prompted calls from consumers of BGA products, who expressed concern about possible contamination of these products with microcystins. In response, the Oregon Health Division and the Oregon Department of Agriculture established a regulatory limit of 1 microg/g for microcystins in BGA-containing products and tested BGA products for the presence of microcystins. Microcystins were detected in 85 of 87 samples tested, with 63 samples (72%) containing concentrations > 1 microg/g. HPLC and ELISA tentatively identified microcystin-LR, the most toxic microcystin variant, as the predominant congener.

  7. A blue/green water-based accounting framework for assessment of water security

    NASA Astrophysics Data System (ADS)

    Rodrigues, Dulce B. B.; Gupta, Hoshin V.; Mendiondo, Eduardo M.

    2014-09-01

    A comprehensive assessment of water security can incorporate several water-related concepts, while accounting for Blue and Green Water (BW and GW) types defined in accordance with the hydrological processes involved. Here we demonstrate how a quantitative analysis of provision probability and use of BW and GW can be conducted, so as to provide indicators of water scarcity and vulnerability at the basin level. To illustrate the approach, we use the Soil and Water Assessment Tool (SWAT) to model the hydrology of an agricultural basin (291 km2) within the Cantareira Water Supply System in Brazil. To provide a more comprehensive basis for decision making, we analyze the BW and GW-Footprint components against probabilistic levels (50th and 30th percentile) of freshwater availability for human activities, during a 23 year period. Several contrasting situations of BW provision are distinguished, using different hydrological-based methodologies for specifying monthly Environmental Flow Requirements (EFRs), and the risk of natural EFR violation is evaluated by use of a freshwater provision index. Our results reveal clear spatial and temporal patterns of water scarcity and vulnerability levels within the basin. Taking into account conservation targets for the basin, it appears that the more restrictive EFR methods are more appropriate than the method currently employed at the study basin. The blue/green water-based accounting framework developed here provides a useful integration of hydrologic, ecosystem and human needs information on a monthly basis, thereby improving our understanding of how and where water-related threats to human and aquatic ecosystem security can arise.

  8. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    NASA Astrophysics Data System (ADS)

    Pogorelsky, I. V.

    1997-03-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power CO2 laser may be used for prototype LSS demonstration. In a feasible demonstration experiment, 10-GW, 100-ps CO2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 Å) x-rays of 10-ps pulse duration, with a flux of ˜1019photons/sec, will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to the e-beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 1022 photons/sec level, after the ongoing ATF CO2 laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact "table-top" LSS of monochromatic gamma radiation may become feasible.

  9. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    SciTech Connect

    Pogorelsky, I.V.

    1996-11-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power CO{sub 2} laser may be used as prototype LSS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps CO{sub 2} laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 {angstrom}) x-rays of 10-ps pulse duration, with a flux of {approximately} 10{sup 19} photons/sec, will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to the e-beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 10{sup 22} photons/sec level, after the ongoing ATF CO{sub 2} laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact ``table-top`` LSS of monochromatic gamma radiation may become feasible.

  10. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    SciTech Connect

    Pogorelsky, I.V.

    1997-01-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high- brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high- brightness electron beam and the high-power C0{sub 2} laser may be used as prototype LSS brick stones. In a feasible demonstration experiment, 10 GW, 100 ps C0{sub 2} laser beam will be brought to a head-on collision with a 10 ps, 0.5 nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 A) x-rays of 10-ps pulse duration, with a flux of {approximately}10{sup 19} photons/sec, will be produced via linear Compton backscattering. The x-ray spectra is tunable proportionally to the e- beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 10{sup 22} photon/sec level, after the ongoing ATF C0{sub 2} laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact ``table- top`` LSS of monochromatic gamma radiation may become feasible.

  11. Compact high-brightness and high-power diode laser source for materials processing

    NASA Astrophysics Data System (ADS)

    Treusch, Hans-Georg; Harrison, Jim; Morris, Robert; Powers, Jeff J.; Brown, Dennis; Martin, Joey

    2000-03-01

    A compact, reliable semiconductor laser source for materials processing, medical and pumping applications is described. This industrial laser source relies on a combination of technologies that have matured in recent years. In particular, effective means of stacking and imaging monolithic semiconductor laser arrays (a.k.a., bars), together with advances in the design and manufacture of the bars, have enabled the production of robust sources at market-competitive costs. Semiconductor lasers are presently the only lasers known that combine an efficiency of about 50% with compact size and high reliability. Currently the maximum demonstrated output power of a 10-mm-wide semiconductor laser bar exceeds the 260 W level when assembled on an actively cooled heat sink. (The rated power is in the range of 50 to 100 W.) Power levels in the kW range can be reached by stacking such devices. The requirements on the stacking technique and the optic assembly to achieve high brightness are discussed. Optics for beam collimation in fast and slow axis are compared. An example for an optical setup to use in materials processing will be shown. Spot sizes as low as 0.4 mm X 1.2 mm at a numerical aperture of 0.3 and output power of 1 kW are demonstrated. This results in a power density of more than 200 kW/cm2. A setup for further increase in brightness by wavelength and polarization coupling will be outlined. For incoherent coupling of multiple beams into a single core optical fiber, a sophisticated beam-shaping device is needed to homogenize the beam quality of stacked semiconductor lasers.

  12. New class of compact diode pumped sub 10-fs lasers for biomedical applications

    NASA Astrophysics Data System (ADS)

    Le, T.; Müller, A.; Sumpf, B.; Jensen, O. B.; Hansen, A. K.; Andersen, P. E.

    2016-03-01

    Diode-pumping Ti:sapphire lasers promises a new approach to low-cost femtosecond light sources. Thus in recent years much effort has been taken just to overcome the quite low power and low beam qualities of available green diodes to obtain output powers of several hundred milliwatts from a fs-laser. In this work we present an alternative method by deploying frequency-doubled IR diodes with good beam qualities to pump fs-lasers. The revolutionary approach allows choosing any pump wavelengths in the green region and avoids complicated relay optics for the diodes. For the first time we show results of a diode-pumped 10 fs-laser and how a single diode setup can be integrated into a 30 x 30 cm2 fs-laser system generating sub 20 fs laser pulses with output power towards half a Watt. This technology paves the way for a new class of very compact and cost-efficient fs-lasers for life science and industrial applications.

  13. Compact, 17W average power, 100kW peak power, nanosecond fiber laser system

    NASA Astrophysics Data System (ADS)

    Saracco, Matthieu J.; Logan, David; Green, Jared; Balsley, David; Nelson, Mike; Small, Jay; Mettlen, Scott; Lowder, Tyson L.; McComb, Timothy S.; Kutscha, Tim; Burkholder, Gary; Smith, Michael R.; Kliner, Dahv A. V.; Randall, Matthew; Fanning, Geoff; Bell, Jake

    2013-03-01

    We demonstrate a robust, compact, low-cost, pulsed, linearly polarized, 1064 nm, Yb:fiber laser system capable of generating ~100 kW peak power pulses and >17 W average power at repetition rates of 80 - 285 kHz. The system employs a configurable microchip seed laser that provides nanosecond (~1.0 - 1.5 ns) pulse durations. The seed pulses are amplified in an all-fiber, polarization maintaining, large mode area (LMA) fiber amplifier optimized for high peak power operation. The LMA Yb:fiber amplifier enables near diffraction limited beam quality at 100 kW peak power. The seed laser, fiber amplifier, and beam delivery optics are packaged into an air-cooled laser head of 152×330×87 mm3 with pump power provided from a separate air-cooled laser controller. Due to the high peak power, high beam quality, spectral purity, and linearly polarized nature of the output beam, the laser is readily frequency doubled to 532 nm. Average 532 nm powers up to 7 W and peak powers exceeding 40 kW have been demonstrated. Potential for scaling to higher peak and average powers in both the green and infrared (IR) will be discussed. This laser system has been field tested and demonstrated in numerous materials processing applications in both the IR and green, including scribing and marking. We discuss recent results that demonstrate success in processing a diverse array of representative industrial samples.

  14. Compact x-ray free-electron laser from a laser-plasma accelerator using a transverse-gradient undulator.

    PubMed

    Huang, Zhirong; Ding, Yuantao; Schroeder, Carl B

    2012-11-16

    Compact laser-plasma accelerators can produce high energy electron beams with low emittance, high peak current but a rather large energy spread. The large energy spread hinders the potential applications for coherent free-electron laser (FEL) radiation generation. We discuss a method to compensate the effects of beam energy spread by introducing a transverse field variation into the FEL undulator. Such a transverse gradient undulator together with a properly dispersed beam can greatly reduce the effects of electron energy spread and jitter on FEL performance. We present theoretical analysis and numerical simulations for self-amplified spontaneous emission and seeded extreme ultraviolet and soft x-ray FELs based on laser plasma accelerators.

  15. A compact, efficient, and lightweight laser head for CARLO®: integration, performance, and benefits

    NASA Astrophysics Data System (ADS)

    Deibel, Waldemar; Schneider, Adrian; Augello, Marcello; Bruno, Alfredo E.; Juergens, Philipp; Cattin, Philippe

    2015-09-01

    Ever since the first functional lasers were built about 50 years ago, researchers and doctors dream of a medical use for such systems. Today's technology is finally advanced enough to realize these ambitions in a variety of medical fields. There are well-established laser based systems in ophthalmology, dental applications, treatment of kidney stones, and many more. Using lasers presents more than just an alternative to conventional methods for osteotomies. It offers less tissue damage, faster healing times, comparable intervention duration and in consequence improves postoperative treatment of patients. However, there are a few factors that limit routine applications. These technical drawbacks include missing depth control and safe guiding of the laser beam. This paper presents the engineering and integration of a miniaturized laser head for a computer assisted and robot-guided laser osteotome (CARLO®), which can overcome the mentioned drawbacks. The CARLO® device ensures a safe and precise guidance of the laser beam. Such guidance also enables new opportunities and methods, e.g. free geometrical functional cuts, which have the potential to revolutionize bone surgery. The laser head is optimized for beam shaping, target conditioning, working distance, compactness and the integration of all other parts needed, e.g. CCD-cameras for monitoring and referencing, a visible laser for cut simulation, etc. The beam coming out of the laser system is conditioned in shape, energy properties and working distance with an optical arrangement to achieve the desired cutting performance. Here also parameters like optical losses, operating mode, optics materials and long-term stability have are taken into account.

  16. Compact quasi-monoenergetic photon sources from laser-plasma accelerators for nuclear detection and characterization

    NASA Astrophysics Data System (ADS)

    Geddes, Cameron G. R.; Rykovanov, Sergey; Matlis, Nicholas H.; Steinke, Sven; Vay, Jean-Luc; Esarey, Eric H.; Ludewigt, Bernhard; Nakamura, Kei; Quiter, Brian J.; Schroeder, Carl B.; Toth, Csaba; Leemans, Wim P.

    2015-05-01

    Near-monoenergetic photon sources at MeV energies offer improved sensitivity at greatly reduced dose for active interrogation, and new capabilities in treaty verification, nondestructive assay of spent nuclear fuel and emergency response. Thomson (also referred to as Compton) scattering sources are an established method to produce appropriate photon beams. Applications are however restricted by the size of the required high-energy electron linac, scattering (photon production) system, and shielding for disposal of the high energy electron beam. Laser-plasma accelerators (LPAs) produce GeV electron beams in centimeters, using the plasma wave driven by the radiation pressure of an intense laser. Recent LPA experiments are presented which have greatly improved beam quality and efficiency, rendering them appropriate for compact high-quality photon sources based on Thomson scattering. Designs for MeV photon sources utilizing the unique properties of LPAs are presented. It is shown that control of the scattering laser, including plasma guiding, can increase photon production efficiency. This reduces scattering laser size and/or electron beam current requirements to scale compatible with the LPA. Lastly, the plasma structure can decelerate the electron beam after photon production, reducing the size of shielding required for beam disposal. Together, these techniques provide a path to a compact photon source system.

  17. Initial Tests and Accuracy Assesment of a Compact Mobile Laser Scanning System

    NASA Astrophysics Data System (ADS)

    Julge, K.; Ellmann, A.; Vajakas, T.; Kolka, R.

    2016-06-01

    Mobile laser scanning (MLS) is a faster and cost-effective alternative to static laser scanning, even though there is a slight trade-off in accuracy. This contribution describes a compact mobile laser scanning system mounted on a vehicle. The technical parameters of the used system components, i.e. a small LIDAR sensor Velodyne VLP-16 and a dual antenna GNSS/INS system Advanced Navigation Spatial Dual, are reviewed, along with the integration of these components for spatial data acquisition. Calculation principles of 3D coordinates from the real-time data of all the involved sensors are discussed. The field tests were carried out in a controlled environment of a parking lot and at different velocities. Experiments were carried out to test the ability of the GNSS/INS system to cope with difficult conditions, e.g. sudden movements due to cornering or swerving. The accuracy of the resulting MLS point cloud is evaluated with respect to high-accuracy static terrestrial laser scanning data. Problems regarding combining LIDAR, GNSS and INS sensors are outlined, as well as the initial accuracy assessments. Initial tests revealed errors related to insufficient quality of inertial data and a need for the trajectory post-processing calculations. Although this study was carried out while the system was mounted on a car, there is potential for operating the system on an unmanned aerial vehicle, all-terrain vehicle or in a backpack mode due to its relatively compact size.

  18. Compact MEMS mirror based Q-switch module for pulse-on-demand laser range finders

    NASA Astrophysics Data System (ADS)

    Milanović, Veljko; Kasturi, Abhishek; Atwood, Bryan; Su, Yu; Limkrailassiri, Kevin; Nettleton, John E.; Goldberg, Lew; Cole, Brian J.; Hough, Nathaniel

    2015-02-01

    A highly compact and low power consuming Q-switch module was developed based on a fast single-axis MEMS mirror, for use in eye-safe battery-powered laser range finders The module's 1.6mm x 1.6mm mirror has <99% reflectance at 1535nm wavelength and can achieve mechanical angle slew rates of over 500 rad/sec when switching the Er/Yb:Glass lasing cavity from pumping to lasing state. The design targeted higher efficiency, smaller size, and lower cost than the traditional Electro-Optical Q-Switch. Because pulse-on-demand capability is required, resonant mirrors cannot be used to achieve the needed performance. Instead, a fast point-to-point analog single-axis tilt actuator was designed with a custom-coated high reflectance (HR) mirror to withstand the high intra-cavity laser fluence levels. The mirror is bonded on top of the MEMS actuator in final assembly. A compact MEMS controller was further implemented with the capability of autonomous on-demand operation based on user-provided digital trigger. The controller is designed to receive an external 3V power supply and a digital trigger and it consumes ~90mW during the short switching cycle and ~10mW in standby mode. Module prototypes were tested in a laser cavity and demonstrated high quality laser pulses with duration of ~20ns and energy of over 3mJ.

  19. Laser-Wakefield driven compact Compton scattering gamma-ray source

    SciTech Connect

    Albert, F.; Froula, D. H.; Hartemann, F. V.; Joshi, C.

    2010-04-13

    We propose to demonstrate a novel x-ray and gamma-ray light source based on laser-plasma electron acceleration and Compton scattering at the Jupiter Laser Facility at LLNL. This will provide a new versatile and compact light source capability at the laboratory with very broad scientific applications that are of interest to many disciplines. The source’s synchronization with the seed laser system at a femtosecond time scale (i-e, at which chemical reactions occur) will allow scientists to perform pump-probe experiments with x-ray and gamma-ray beams. Across the laboratory, this will be a new tool for nuclear science, high energy density physics, chemistry, biology, or weapons studies.

  20. Simple and compact tunable semiconductor lasers based on novel half-wave coupler

    NASA Astrophysics Data System (ADS)

    He, Jian-Jun; Xiong, Xiaohai; Meng, Jianjun; Wu, Lin; Zhang, Sen; Liao, Xiaolu; Zou, Li

    2015-02-01

    Widely tunable semiconductor lasers based on a novel half-wave coupler are presented. They have been implemented in the form of half-wave coupled V-cavity and ring-FP cavities. By using the novel half-wave coupler, single-mode lasing with high side-mode-suppression-ratio is achieved. Single-electrode controlled wide-band wavelength tuning with Vernier effect is demonstrated. The full-band tuning of 50 channels with 100GHz spacing is realized by further employing temperature induced gain spectrum shift. The laser is packaged into a small-form-factor 9-pin box TOSA, and the electronic driver has been developed for the wavelength tuning and direct modulation. The advantages of compactness, fabrication simplicity, easy wavelength control and direct modulation allow the tunable lasers to be used in low-cost access and datacenter networks, as well as in portable devices for spectroscopic analysis.

  1. Compact resonantly intra-cavity pumped tunable Ho:Sc2SiO5 laser

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-tao; Song, En-zhe; Xie, Wen-qiang

    2017-09-01

    A compact intra-cavity pumped low threshold continuous-wave Ho:Sc2SiO5 laser is reported. The characteristics of output wavelength tuning are investigated by use a intra-cavity briefringent (BF) filter. A wavelength tunable range of 140 nm from 2020 to 2160 nm is achieved. For the free-running mode, the laser slope efficiency is 24.8%, when the output central wavelength is 2110 nm. The laser threshold is about 820 mW of incident pump power. With the BF filter, a maximum output power of 870 mW is obtained at the incident pump power of 5 W, corresponding to a slope efficiency of 20.3%. The characteristics of output wavelength verse the crystal temperature are also investigated.

  2. Compact MEMS external cavity tunable laser with ultra-narrow linewidth for coherent detection.

    PubMed

    Zhang, Di; Zhao, Jianyi; Yang, Qi; Liu, Wen; Fu, Yanfeng; Li, Chao; Luo, Ming; Hu, Shenglei; Hu, Qianggao; Wang, Lei

    2012-08-27

    A compact and ultra-narrow linewidth tunable laser with an external cavity based on a simple single-axis-MEMS mirror is presented in this paper. We discuss the simulation of this tunable laser using a two-step hybrid analysis method to obtain an optimal design of the device. A wide wavelength tuning range about 40 nm in C-band with a narrow linewidth of less than 50 kHz and wavelength accuracy of ± 1 GHz over the entire tuning range can be achieved experimentally. We also conduct several experiments under different conditions to test the tunable laser. This device shows an excellent performance in both single-carrier polarization-multiplexed quadrature phase-shift keying (PM-QPSK) and multi-carrier orthogonal frequency division multiplexing (OFDM) coherent systems.

  3. A compact and high efficiency diode pumped green laser based on MgO doped PPLN

    NASA Astrophysics Data System (ADS)

    Zheng, X. S.; Ji, B.; Jia, F. Q.; Cai, Z. P.; Xu, H. Y.; Xu, C. Q.

    2011-11-01

    In this work, an efficient intra-cavity second harmonic generation of green laser in a periodically poled MgO doped LiNbO3 (MgO:PPLN) bulk crystal using a compact Nd:YVO4 laser as a fundamental laser source is reported. Different length, different working temperature MgO:PPLN crystals are tested and investigated in the SHG experiments. The maximum output power at 532 nm is 6.2 W at the absorbed pump power at 808 nm of 14 W, the optical to optical conversion efficiencies from 808 to 532 nm and 1064 to 532 nm are 43 and 77%, respectively, the instability in 2 hours is less than 5%.

  4. Glycerol-bonded 3C-SiC nanocrystal solid films exhibiting broad and stable violet to blue-green emission.

    PubMed

    Wang, J; Xiong, S J; Wu, X L; Li, T H; Chu, Paul K

    2010-04-14

    We have produced glycerol-bonded 3C-SiC nanocrystal (NC) films, which when excited by photons of different wavelengths, produce strong and tunable violet to blue-green (360-540 nm) emission as a result of the quantum confinement effects rendered by the 3C-SiC NCs. The emission is so intense that the emission spots are visible to the naked eyes. The light emission is very stable and even after storing in air for more than six months, no intensity degradation can be observed. X-ray photoelectron spectroscopy and absorption fine structure measurements indicate that the Si-terminated NC surfaces are completely bonded to glycerol molecules. Calculations of geometry optimization and electron structures based on the density functional theory for 3C-SiC NCs with attached glycerol molecules show that these molecules are bonded on the NCs causing strong surface structural change, while the isolated levels in the conduction band of the bare 3C-SiC NCs are replaced with quasi-continuous bands that provide continuous tunability of the emitted light by changing the frequencies of exciting laser. As an application, we demonstrate the potential of using 3C-SiC NCs to fabricate full-color emitting solid films by incorporating porous silicon.

  5. Compact nanosecond laser system for the ignition of aeronautic combustion engines

    NASA Astrophysics Data System (ADS)

    Amiard-Hudebine, G.; Tison, G.; Freysz, E.

    2016-12-01

    We have studied and developed a compact nanosecond laser system dedicated to the ignition of aeronautic combustion engines. This system is based on a nanosecond microchip laser delivering 6 μJ nanosecond pulses, which are amplified in two successive stages. The first stage is based on an Ytterbium doped fiber amplifier (YDFA) working in a quasi-continuous-wave (QCW) regime. Pumped at 1 kHz repetition rate, it delivers TEM00 and linearly polarized nanosecond pulses centered at 1064 nm with energies up to 350 μJ. These results are in very good agreement with the model we specially designed for a pulsed QCW pump regime. The second amplification stage is based on a compact Nd:YAG double-pass amplifier pumped by a 400 W peak power QCW diode centered at λ = 808 nm and coupled to a 800 μm core multimode fiber. At 10 Hz repetition rate, this system amplifies the pulse delivered by the YDFA up to 11 mJ while preserving its beam profile, polarization ratio, and pulse duration. Finally, we demonstrate that this compact nanosecond system can ignite an experimental combustion chamber.

  6. A compact picosecond pulsed laser source using a fully integrated CMOS driver circuit

    NASA Astrophysics Data System (ADS)

    He, Yuting; Li, Yuhua; Yadid-Pecht, Orly

    2016-03-01

    Picosecond pulsed laser source have applications in areas such as optical communications, biomedical imaging and supercontinuum generation. Direct modulation of a laser diode with ultrashort current pulses offers a compact and efficient approach to generate picosecond laser pulses. A fully integrated complementary metaloxide- semiconductor (CMOS) driver circuit is designed and applied to operate a 4 GHz distributed feedback laser (DFB). The CMOS driver circuit combines sub-circuits including a voltage-controlled ring oscillator, a voltagecontrolled delay line, an exclusive-or (XOR) circuit and a current source circuit. Ultrashort current pulses are generated by the XOR circuit when the delayed square wave is XOR'ed with the original square wave from the on-chip oscillator. Circuit post-layout simulation shows that output current pulses injected into an equivalent circuit load of the laser have a pulse full width at half maximum (FWHM) of 200 ps, a peak current of 80 mA and a repetition rate of 5.8 MHz. This driver circuit is designed in a 0.13 μm CMOS process and taped out on a 0.3 mm2 chip area. This CMOS chip is packaged and interconnected with the laser diode on a printed circuit board (PCB). The optical output waveform from the laser source is captured by a 5 GHz bandwidth photodiode and an 8 GHz bandwidth oscilloscope. Measured results show that the proposed laser source can output light pulses with a pulse FWHM of 151 ps, a peak power of 6.4 mW (55 mA laser peak forward current) and a repetition rate of 5.3 MHz.

  7. Biological imaging with nonlinear photothermal microscopy using a compact supercontinuum fiber laser source.

    PubMed

    He, Jinping; Miyazaki, Jun; Wang, Nan; Tsurui, Hiromichi; Kobayashi, Takayoshi

    2015-04-20

    Nonlinear photothermal microscopy is applied in the imaging of biological tissues stained with chlorophyll and hematoxylin. Experimental results show that this type of organic molecules, which absorb light but transform dominant part of the absorbed energy into heat, may be ideal probes for photothermal imaging without photochemical toxicity. Picosecond pump and probe pulses, with central wavelengths of 488 and 632 nm, respectively, are spectrally filtered from a compact supercontinuum fiber laser source. Based on the light source, a compact and sensitive super-resolution imaging system is constructed. Further more, the imaging system is much less affected by thermal blurring than photothermal microscopes with continuous-wave light sources. The spatial resolution of nonlinear photothermal microscopy is ~ 188 nm. It is ~ 23% higher than commonly utilized linear photothermal microscopy experimentally and ~43% than conventional optical microscopy theoretically. The nonlinear photothermal imaging technology can be used in the evaluation of biological tissues with high-resolution and contrast.

  8. A compact terahertz free-electron laser with two gratings driven by two electron-beams

    NASA Astrophysics Data System (ADS)

    Liu, Weihao; Lu, Yalin; Wang, Lin; Jia, Qika

    2017-02-01

    We proposed and investigated a novel terahertz free-electron laser, which is based on two gratings driven by two electron-beams. Two gratings are symmetrically arranged to form an open-cavity. Two electron-beams generate special Smith-Purcell radiations, respectively, from two gratings. When radiation interferes constructively, operation modes of the open-cavity are excited and then amplified by beam-wave interactions. By means of particle-in-cell simulations, we have shown that, with compact equipments and available electron-beams, this scheme can generate radiation with power and efficiency being higher than those of majority radiation sources in the vicinity region of 1 THz. It can promisingly be developed as a high-power, high-efficiency, and compact terahertz source for practice.

  9. Compact, diode-pumped, solid-state lasers for next generation defence and security sensors

    NASA Astrophysics Data System (ADS)

    Silver, M.; Lee, S. T.; Borthwick, A.; McRae, I.; Jackson, D.; Alexander, W.

    2015-06-01

    Low-cost semiconductor laser diode pump sources have made a dramatic impact in sectors such as advanced manufacturing. They are now disrupting other sectors, such as defence and security (D&S), where Thales UK is a manufacturer of sensor systems for application on land, sea, air and man portable. In this talk, we will first give an overview of the market trends and challenges in the D&S sector. Then we will illustrate how low cost pump diodes are enabling new directions in D&S sensors, by describing two diode pumped, solid- state laser products currently under development at Thales UK. The first is a new generation of Laser Target Designators (LTD) that are used to identify targets for the secure guiding of munitions. Current systems are bulky, expensive and require large battery packs to operate. The advent of low cost diode technology, merged with our novel solid-state laser design, has created a designator that will be the smallest, lowest cost, STANAG compatible laser designator on the market. The LTD delivers greater that 50mJ per pulse up to 20Hz, and has compact dimensions of 125×70×55mm. Secondly, we describe an ultra-compact, eye-safe, solid-state laser rangefinder (LRF) with reduced size, weight and power consumption compared to existing products. The LRF measures 100×55×34mm, weighs 200g, and can range to greater than 10km with a single laser shot and at a reprate of 1Hz. This also leverages off advances in laser pump diodes, but also utilises low cost, high reliability, packaging technology commonly found in the telecoms sector. As is common in the D&S sector, the products are designed to work in extreme environments, such as wide temperature range (-40 to +71°C) and high levels of shock and vibration. These disruptive products enable next- generation laser sensors such as rangefinders, target designators and active illuminated imagers.

  10. Compact fiber-optic flurosensor using high-power continuous-wave violet diode laser

    NASA Astrophysics Data System (ADS)

    Johansson, Ann; Gustafsson, Ulf; Palsson, Sara; Svanberg, Sune

    2003-10-01

    In this work a compact fluorosensor has been built for point-monitoring and imaging applications. The instrument has been applied in fluorescence studies on green vegetation and on malignant tissue. The instrument is based on a violet diode laser, an integrated spectrometer and optical fibers for light delivery and collection of the fluorescence signal. This combination makes the system very compact. The high laser output power allows for coupling of the laser light into a hyperspectral diagnostic imaging instrument, developed and built by Science and Technology International. In point-monitoring mode, the instrument has been tested on superficial skin tumors and when using δ-aminolevulinic acid induced protoporphyrin IX as a tumor sensitizer, good contrast between normal and malignant tissue was achieved, clearly demonstrating its feasibility in cancer diagnostics. In imaging mode, the instrument functioned solely as a light source, coupling the excitation light into the hyperspectral imaging instrument. The set-up was tested by studying chlorophyll fluorescence from vegetation. The fluorescence signal showed a low signal-to-noise ratio mainly because of inefficient light coupling into the imaging instrument.

  11. Compact deep UV laser system at 222.5 nm by single-pass frequency doubling of high-power GaN diode laser emission

    NASA Astrophysics Data System (ADS)

    Ruhnke, Norman; Müller, André; Eppich, Bernd; Güther, Reiner; Maiwald, Martin; Sumpf, Bernd; Erbert, Götz; Tränkle, Günther

    2016-03-01

    Deep ultraviolet (DUV) lasers emitting below 300 nm are of great interest for many applications, for instance in medical diagnostics or for detecting biological agents. Established DUV lasers, e.g. gas lasers or frequency quadrupled solid-state lasers, are relatively bulky and have high power consumptions. A compact and reliable laser diode based system emitting in the DUV could help to address applications in environments where a portable and robust light source with low power consumption is needed. In this work, a compact DUV laser system based on single-pass frequency doubling of highpower GaN diode laser emission is presented. A commercially available high-power GaN laser diode from OSRAM Opto Semiconductors serves as a pump source. The laser diode is spectrally stabilized in an external cavity diode laser (ECDL) setup in Littrow configuration. The ECDL system reaches a maximum optical output power of 700 mW, maintaining narrowband emission below 60 pm (FWHM) at 445 nm over the entire operating range. By direct single pass frequency doubling in a BBO crystal with a length of 7.5 mm a maximum DUV output power of 16 μW at a wavelength of 222.5 nm is generated. The presented concept enables compact and efficient diode laser based light sources emitting in the DUV spectral range that are potentially suitable for in situ applications where a small footprint and low power consumption is essential.

  12. The effect of sulfide on the blue-green algae of hot springs II. Yellowstone National Park.

    PubMed

    Castenholz, R W

    1977-06-01

    In the Mammoth Springs (Yellowstone National Park) waters with near neutral pH and soluble sulfide (H2S, HS(-), S(2-)) of over 1-2 mg/liter (30-60ΜM) are characterized by substrate covers of phototrophic bacteria (Chloroflexus and aChlorobium-like unicell) above 50‡C and by a blue-green alga (Spirulina labyrinthiformis) below this temperature.Synechococcus. Mastigocladus, and other blue-green algae typical of most hot springs of western North America are excluded, apparently by sulfide. The sulfide-adaptedSpirulina photosynthesized at maximum rates at 45‡C and at approximately 300 to 700ΜEin/m(2)/sec of "visible" radiation. Sulfide (0.6-1.2 mM) severely poisoned photosynthesis of nonadapted populations, but those continuously exposed to over 30ΜM tolerated at least 1 mM without inhibition. A normal(14)C-HCO3 photoincorporation rate was sustained with 0.6-1 mM sulfide in the presence of DCMU (7ΜM) or NH2OH (0.2 mM), although both of these photosystem II inhibitors prevented photoincorporation without sulfide. Other sulfur-containing compounds (S2O3 (2-) SO3 (2-), S2O4 (2-) thioglycolic acid cysteine) were unable to relieve DCMU inhibition. The lowering of the photoincorporation rate by preferentially irradiating photosystem I was also relieved by sulfide. The most tenable explanation of these results is that sulfide is used as a photo-reductant of CO2, at least when photosystem II is inhibited. It is suggested that in some blue-green algae photosystem II is poisoned by a low sulfide concentration, thus making these algae sulfidedependent if they are to continue photosynthesizing in a sulfide environment. Presumably a sulfidecytochrome reductase enzyme system must be synthesized for sulfide to be used as a photo-reductant.

  13. A compact tunable polarized X-ray source based on laser-plasma helical undulators.

    PubMed

    Luo, J; Chen, M; Zeng, M; Vieira, J; Yu, L L; Weng, S M; Silva, L O; Jaroszynski, D A; Sheng, Z M; Zhang, J

    2016-07-05

    Laser wakefield accelerators have great potential as the basis for next generation compact radiation sources because of their extremely high accelerating gradients. However, X-ray radiation from such devices still lacks tunability, especially of the intensity and polarization distributions. Here we propose a tunable polarized radiation source based on a helical plasma undulator in a plasma channel guided wakefield accelerator. When a laser pulse is initially incident with a skew angle relative to the channel axis, the laser and accelerated electrons experience collective spiral motions, which leads to elliptically polarized synchrotron-like radiation with flexible tunability on radiation intensity, spectra and polarization. We demonstrate that a radiation source with millimeter size and peak brilliance of 2 × 10(19) photons/s/mm(2)/mrad(2)/0.1% bandwidth can be made with moderate laser and electron beam parameters. This brilliance is comparable with third generation synchrotron radiation facilities running at similar photon energies, suggesting that laser plasma based radiation sources are promising for advanced applications.

  14. A compact tunable polarized X-ray source based on laser-plasma helical undulators

    NASA Astrophysics Data System (ADS)

    Luo, J.; Chen, M.; Zeng, M.; Vieira, J.; Yu, L. L.; Weng, S. M.; Silva, L. O.; Jaroszynski, D. A.; Sheng, Z. M.; Zhang, J.

    2016-07-01

    Laser wakefield accelerators have great potential as the basis for next generation compact radiation sources because of their extremely high accelerating gradients. However, X-ray radiation from such devices still lacks tunability, especially of the intensity and polarization distributions. Here we propose a tunable polarized radiation source based on a helical plasma undulator in a plasma channel guided wakefield accelerator. When a laser pulse is initially incident with a skew angle relative to the channel axis, the laser and accelerated electrons experience collective spiral motions, which leads to elliptically polarized synchrotron-like radiation with flexible tunability on radiation intensity, spectra and polarization. We demonstrate that a radiation source with millimeter size and peak brilliance of 2 × 1019 photons/s/mm2/mrad2/0.1% bandwidth can be made with moderate laser and electron beam parameters. This brilliance is comparable with third generation synchrotron radiation facilities running at similar photon energies, suggesting that laser plasma based radiation sources are promising for advanced applications.

  15. Compact and versatile laser system for polarization-sensitive stimulated Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kerdoncuff, Hugo; Pollard, Mark R.; Westergaard, Philip G.; Petersen, Jan C.; Lassen, Mikael

    2017-03-01

    We demonstrate a compact and versatile laser system for stimulated Raman spectroscopy (SRS). The system is based on a tunable continuous wave (CW) probe laser combined with a home-built semi-monolithic nanosecond pulsed pump Nd:YVO4 laser at 1064 nm. The CW operation of the probe laser offers narrow linewidth, low noise and the advantage that temporal synchronization with the pump is not required. The laser system enables polarization-sensitive stimulated Raman spectroscopy (PS-SRS) with fast high resolution measurement of the depolarization ratio by simultaneous detection of Raman scattered light in orthogonal polarizations, thus providing information about the symmetry of the Raman-active vibrational modes. Measurements of the depolarization ratios of the carbon-hydrogen (CH) stretching modes in two different polymer samples in the spectral range of 2825-3025 cm-1 were performed. Raman spectra are obtained at a sweep rate of 20 nm/s (84 cm-1/s) with a resolution of 0.65 cm-1. A normalization method is introduced for the direct comparison of the simultaneously acquired orthogonal polarized Raman spectra.

  16. A compact tunable polarized X-ray source based on laser-plasma helical undulators

    PubMed Central

    Luo, J.; Chen, M.; Zeng, M.; Vieira, J.; Yu, L. L.; Weng, S. M.; Silva, L. O.; Jaroszynski, D. A.; Sheng, Z. M.; Zhang, J.

    2016-01-01

    Laser wakefield accelerators have great potential as the basis for next generation compact radiation sources because of their extremely high accelerating gradients. However, X-ray radiation from such devices still lacks tunability, especially of the intensity and polarization distributions. Here we propose a tunable polarized radiation source based on a helical plasma undulator in a plasma channel guided wakefield accelerator. When a laser pulse is initially incident with a skew angle relative to the channel axis, the laser and accelerated electrons experience collective spiral motions, which leads to elliptically polarized synchrotron-like radiation with flexible tunability on radiation intensity, spectra and polarization. We demonstrate that a radiation source with millimeter size and peak brilliance of 2 × 1019 photons/s/mm2/mrad2/0.1% bandwidth can be made with moderate laser and electron beam parameters. This brilliance is comparable with third generation synchrotron radiation facilities running at similar photon energies, suggesting that laser plasma based radiation sources are promising for advanced applications. PMID:27377126

  17. Compact spectrometer for precision studies of multimode behavior in an extended-cavity diode laser

    NASA Astrophysics Data System (ADS)

    Roach, Timothy; Golemi, Josian; Krueger, Thomas

    2016-05-01

    We have built a compact, inexpensive, high-precision spectrometer and used it to investigate the tuning behavior of a grating stabilized extended-cavity diode laser (ECDL). A common ECDL design uses a laser chip with an uncoated (partially reflecting) front facet, and the laser output exhibits a complicated pattern of mode hops as the frequency is tuned, in some cases even showing chaotic dynamics. Our grating spectrometer (based on a design by White & Scholten) monitors a span of 4000 GHz (8 nm at 780 nm) with a linewidth of 3 GHz, which with line-splitting gives a precision of 0.02 GHz in determining the frequency of a laser mode. We have studied multimode operation of the ECDL, tracking two or three simultaneous chip cavity modes (spacing ~ 30 GHz) during tuning via current or piezo control of the external cavity. Simultaneous output on adjacent external cavity modes (spacing ~ 5 GHz) is monitored by measuring an increase in the spectral linewidth. Computer-control of the spectrometer (for line-fitting and averaging) and of the ECDL (electronic tuning) allows rapid collection of spectral data sets, which we will use to test mathematical simulation models of the non-linear laser cavity interactions.

  18. Occurrence of metallothionein gene smtA in synechococcus Tx-20 and other blue-green algae

    SciTech Connect

    Robinson, N.J.; Gupta, A.; Huckle, J.W.; Jackson, P.; Whitton, B.A. )

    1990-06-01

    Blue-green algae are often abundant at Zn- and Cd-contaminated sites. In order to understand the mechanisms associated with Zn- and Cd-tolerance, we have isolated a metallothionein gene, designated smtA, in Synechococcus Tx-20 (- Pcc 6301 - Anacystis nidulans), a strain apparently obtained from an unpolluted site. The gene was cloned and sequenced, and its expression investigated in a range of heavy-metal-tolerant strains of the same organism obtained by stepwise adaptation. The polymerase chain reaction was used to probe for the possible presence of the homologous gene in a range of other strains (especially Synechococcus) isolated from sites without and with heavy metal contamination.

  19. Tuning emission in violet, blue, green and red in cubic GaN/InGaN/GaN quantum wells

    NASA Astrophysics Data System (ADS)

    Orozco Hinostroza, I. E.; Avalos-Borja, M.; Compeán García, V. D.; Zamora, C. Cuellar; Rodríguez, A. G.; López Luna, E.; Vidal, M. A.

    2016-02-01

    Light emission in the three primary colors was achieved in cubic GaN/InGaN/GaN heterostructures grown by molecular beam epitaxy on MgO substrates in a single growth process. A heterostructure with four quantum wells with a width of 10 nm was grown; this quantum wells width decrease the segregation effect of In. Photoluminescence emission produced four different emission signals: violet, blue, green-yellow and red. Thus, we were able to tune energy transitions in the visible spectrum modifying the In concentration in cubic InxGa1-xN ternary alloy.

  20. A compact atomic beam based system for Doppler-free laser spectroscopy of strontium atoms

    NASA Astrophysics Data System (ADS)

    Verma, Gunjan; Vishwakarma, Chetan; Dharmadhikari, C. V.; Rapol, Umakant D.

    2017-03-01

    We report the construction of a simple, light weight, and compact atomic beam spectroscopy cell for strontium atoms. The cell is built using glass blowing technique and includes a simple titanium sublimation pump for the active pumping of residual and background gases to maintain ultra-high vacuum. A commercially available and electrically heated dispenser source is used to generate the beam of Sr atoms. We perform spectroscopy on the 5 s2S10 →5 s 5 pP11 transition to obtain a well resolved Doppler free spectroscopic signal for frequency stabilization of the laser source. This design can be easily extended to other alkali and alkaline earth metals.

  1. A compact terahertz burst emission system driven with 1 μm fiber laser

    NASA Astrophysics Data System (ADS)

    Adamonis, Juozas; Rusteika, Nerijus; Danilevičius, Rokas; Krotkus, Arūnas

    2013-04-01

    In this work we propose a compact, easily tunable terahertz burst generation system based on the mixing of two linearly chirped optical pulses in the Michelson interferometer. The use of linearly chirped optical pulses ejected straight from the fiber laser enabled us to avoid bulky external optical pulse stretching schemes. Even for non-compensated third and higher order dispersion that is taking place in the optical fiber terahertz bursts of relatively narrow bandwidth of 55 GHz were registered. The system operation range determined from the power measurements reached 2 THz.

  2. Compact frequency-modulation Q-switched single-frequency fiber laser at 1083 nm

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanfei; Feng, Zhouming; Xu, Shanhui; Mo, Shupei; Yang, Changsheng; Li, Can; Gan, Jiulin; Chen, Dongdan; Yang, Zhongmin

    2015-12-01

    A compact frequency-modulation Q-switched single-frequency fiber laser is demonstrated at 1083 nm. The short linear resonant cavity consists of a 12 mm long homemade Yb3+-doped phosphate fiber and a pair of fiber Bragg gratings (FBGs) in which the Q-switching and the frequency excursion is achieved by a tensile-induced period modulation. Over 375 MHz frequency-tuning range is achieved with a modulation frequency varying from tens to hundreds of kilohertz. The highest peak power of the output pulse reaching 6.93 W at the repetition rate of 10 kHz is obtained.

  3. Compact, Passively Q-Switched Nd:YAG Laser for the MESSENGER Mission to the Planet Mercury

    NASA Technical Reports Server (NTRS)

    Krebs, Danny J.; Novo-Gradac, Anne-Marie; Li, Steven X.; Lindauer, Steven J.; Afzal, Robert S.; Yu, Antony

    2004-01-01

    A compact, passively Q-switched Nd:YAG laser has been developed for the Mercury Laser Altimeter (MLA) instrument which is an instrument on the MESSENGER mission to the planet Mercury. The laser achieves 5.4 percent efficiency with a near diffraction limited beam. It has passed all space flight environmental tests at system, instrument, and satellite integration. The laser design draws on a heritage of previous laser altimetry missions, specifically ISESAT and Mars Global Surveyor; but incorporates thermal management features unique to the requirements of an orbit of the planet Mercury.

  4. Compact, temperature-stable multi-gigahertz passively modelocked semiconductor disk laser

    NASA Astrophysics Data System (ADS)

    Song, Yan-Rong; Guoyu, He-Yang; Zhang, Peng; Tian, Jin-Rong

    2015-08-01

    We present a compact passively mode-locked semiconductor disk laser at 1045 nm. The gain chip without any post processing consists of 16 compressively strained InGaAs symmetrical step quantum wells in the active region. 3-GHz repetition rate, 4.9-ps pulse duration, and 30-mW average output power are obtained with 1.4 W of 808-nm incident pump power. The temperature stability of the laser is demonstrated to have an ideal shift rate of 0.035 nm/K of the lasing wavelength. Project supported by the National Natural Science Foundation of China (Grant No. 61177047) and the Key Project of the National Natural Science Foundation of China (Grant No. 61235010).

  5. Low cost and compact nonlinear (SHG/TPE) laser scanning endoscope for bio-medical application

    NASA Astrophysics Data System (ADS)

    Liu, Jiayun; Lim, Ken Choong; Li, Hao; Seck, Hon Luen; Yu, Xia; Kok, Shaw Wei; Zhang, Ying

    2015-03-01

    Two-photon fluorescence (TPE) and second harmonic generation (SHG) can been used to extract biological information from tissues at the molecular level, which is blind to traditional microscopes. Through these two image contrast mechanisms, a nonlinear laser scanning endoscope (NLSE) is able to image tissue cells and the extra cellular matrix (ECM) through a special fiber and miniaturized scanner without the requirement of poisonous chemical staining. Therefore, NLSE reserves high potential for in-vivo pathological study and disease diagnosis. However, the high cost and bulky size of a NLSE system has become one of the major issues preventing this technology from practical clinical operation. In this paper, we report a fiber laser based multi-modality NLSE system with compact size and low cost, ideal for in-vivo applications in clinical environments. The demonstration of the developed NLSE nonlinear imaging capability on different bio-structures in liver, retina and skin are also presented.

  6. Compact laser plasma EUV source based on a gas puff target for metrology

    NASA Astrophysics Data System (ADS)

    Fiedorowicz, Henryk; Bartnik, Andrzej; Jarocki, Roman; Kostecki, Jerzy; Mikolajczyk, Janusz; Rakowski, Rafal; Szczurek, Miroslaw

    2003-06-01

    In the paper a newly developed compact laser plasma EUV source is presented. The source is based on the double-stream gas puff target approach. The targets are formed by pulsed injection of high-Z gas (xenon) into a hollow stream of low-Z gas (helium) using the valve system composed of two electromagnetic valves and equipped with the double-nozzle setup. The outer stream of gas confines the inner stream improving the gas puff target characteristics (higher density of high-Z gas at longer distance from the nozzle output). It causes efficient absorption of laser energy in a plasma and strong EUV production. The source has been developed in the frame of the EUV sources development project under the MEDEA+ program.

  7. Compact low-cost detector for in vivo assessment of microphytobenthos using laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Utkin, A. B.; Vieira, S.; Marques da Silva, J.; Lavrov, A.; Leite, E.; Cartaxana, P.

    2013-03-01

    The development of a compact low-cost detector for non-destructive assessment of microphytobenthos using laser induced fluorescence was described. The detector was built from a specially modified commercial miniature fiber optic spectrometer (Ocean Optics USB4000). Its usefulness is experimentally verified by the study of diatom-dominated biofilms inhabiting the upper layers of intertidal sediments of the Tagus Estuary, Portugal. It is demonstrated that, operating with a laser emitter producing 30 mJ pulses at the wavelength of 532 nm, the detector is capable to record fluorescence signals with sufficient intensity for the quantitative biomass characterization of the motile epipelic microphytobenthic communities and to monitor their migratory activity. This paves the way for building an entire emitter-detector LIF system for microphytobenthos monitoring, which will enable microalgae communities occupying hardly accessible intertidal flats to be monitored in vivo at affordable cost.

  8. Compact picosecond mode-locked and cavity-dumped Nd:YVO4 laser.

    PubMed

    Wegner, U; Meier, J; Lederer, M J

    2009-12-07

    We report on a diode pumped, semiconductor saturable absorber mirror mode-locked picosecond Nd:YVO(4) oscillator with cavity-dumping. In pure cw-mode-locking this laser produced up to 17W of average power at a pulse repetition rate of 9.7MHz, corresponding to a pulse energy of 1.7microJ. Using an electro-optic cavity dumper, we achieved average powers up to 7.8W at 500kHz and 10W at 1MHz dumping rate. With corresponding pulse energies of 15.6microJ and 10microJ respectively and pulsewidths around 10ps, this laser could become a compact source for materials processing applications, alternative to more complex schemes such as regenerative amplifiers or ultra-long resonator oscillators.

  9. Transport and energy selection of laser generated protons for postacceleration with a compact linac

    NASA Astrophysics Data System (ADS)

    Sinigardi, Stefano; Turchetti, Giorgio; Londrillo, Pasquale; Rossi, Francesco; Giove, Dario; De Martinis, Carlo; Sumini, Marco

    2013-03-01

    Laser accelerated proton beams have a considerable potential for various applications including oncological therapy. However, the most consolidated target normal sheath acceleration regime based on irradiation of solid targets provides an exponential energy spectrum with a significant divergence. The low count number at the cutoff energy seriously limits at present its possible use. One realistic scenario for the near future is offered by hybrid schemes. The use of transport lines for collimation and energy selection has been considered. We present here a scheme based on a high field pulsed solenoid and collimators which allows one to select a beam suitable for injection at 30 MeV into a compact linac in order to double its energy while preserving a significant intensity. The results are based on a fully 3D simulation starting from laser acceleration.

  10. High Efficient, Intense and Compact Pulsed D2O Terahertz Laser Pumped With a TEA CO2 Laser

    NASA Astrophysics Data System (ADS)

    Geng, Lijie; Qu, Yanchen; Zhao, Weijiang; Du, Jun

    2013-12-01

    A high efficient, intense and compact pulsed D2O terahertz laser is presented, which is pumped by a multi-transverse mode TEA CO2 laser. For D2O gas as the active medium, with the cavity length of 120 cm, pulse energy of the THz laser has been investigated as the variation of pump energy and gas pressure. When the pump energy was 1.41 J, the maximum single pulse energy of 6.2 mJ was achieved at the wavelength of 385 μm. Photon conversion efficiency as high as 36.5% was obtained when laser operated at the maximum output energy. As the pump energy was raised from 0.57 to 1.41 J, the optimum pressure was slightly changed from 400 to 700 Pa. The THz pulse consisted of a spike pulse with pulse width of 120 ns and a tail pulse with pulse width of about 170 ns. The peak power of the spike pulse is about 44.3 kW. Comparing with the occurring time and pulse width of pump pulse, 70 ns delay and 10ns broadening were observed in the THz spike pulse.

  11. Fabrication of Diffractive Optical Elements for an Integrated Compact Optical-MEMS Laser Scanner

    SciTech Connect

    WENDT,JOEL R.; KRYGOWSKI,T.W.; VAWTER,GREGORY A.; SPAHN,OLGA B.; SWEATT,WILLIAM C.; WARREN,MIAL E.; REYES,DAVID NMN

    2000-07-13

    The authors describe the microfabrication of a multi-level diffractive optical element (DOE) onto a micro-electromechanical system (MEMS) as a key element in an integrated compact optical-MEMS laser scanner. The DOE is a four-level off-axis microlens fabricated onto a movable polysilicon shuttle. The microlens is patterned by electron beam lithography and etched by reactive ion beam etching. The DOE was fabricated on two generations of MEMS components. The first generation design uses a shuttle suspended on springs and displaced by a linear rack. The second generation design uses a shuttle guided by roller bearings and driven by a single reciprocating gear. Both the linear rack and the reciprocating gear are driven by a microengine assembly. The compact design is based on mounting the MEMS module and a vertical cavity surface emitting laser (VCSEL) onto a fused silica substrate that contains the rest of the optical system. The estimated scan range of the system is {+-}4{degree} with a spot size of 0.5 mm.

  12. Low-emittance thermionic-gun-based injector for a compact free-electron laser

    NASA Astrophysics Data System (ADS)

    Asaka, Takao; Ego, Hiroyasu; Hanaki, Hirohumi; Hara, Toru; Hasegawa, Taichi; Hasegawa, Teruaki; Inagaki, Takahiro; Kobayashi, Toshiaki; Kondo, Chikara; Maesaka, Hirokazu; Matsubara, Shinichi; Matsui, Sakuo; Ohshima, Takashi; Otake, Yuji; Sakurai, Tatsuyuki; Suzuki, Shinsuke; Tajiri, Yasuyuki; Tanaka, Shinichiro; Togawa, Kazuaki; Tanaka, Hitoshi

    2017-08-01

    A low-emittance thermionic-gun-based injector was developed for the x-ray free-electron laser (XFEL) facility known as the SPring-8 angstrom compact free-electron laser (SACLA). The thermionic-gun-based system has the advantages of maintainability, reliability, and stability over a photocathode radio-frequency (rf) gun because of its robust thermionic cathode. The basic performance of the injector prototype was confirmed at the SPring-8 compact self-amplified spontaneous emission source (SCSS) test accelerator, where stable FEL generation in an extreme ultraviolet wavelength range was demonstrated. The essential XFEL innovation is the achievement of a constant beam peak current of 3-4 kA, which is 10 times higher than that generated by the SCSS test accelerator, while maintaining a normalized-slice emittance below 1 mm mrad. Thus, the following five modifications were applied to the SACLA injector: (i) a nonlinear energy chirp correction; (ii) the optimization of the rf acceleration frequency; (iii) rf system stabilization; (iv) nondestructive beam monitoring; and (v) a geomagnetic field correction. The SACLA injector successfully achieved the target beam performance, which shows that a thermionic-gun-based injector is applicable to an XFEL accelerator system. This paper gives an overview of the SACLA injector and describes the physical and technical details, together with the electron beam performance obtained in the beam commissioning.

  13. Toward a compact THz local oscillator based on a quantum-cascade laser

    NASA Astrophysics Data System (ADS)

    Richter, H.; Greiner-Baer, M.; Pavlov, S. G.; Semenov, A. D.; Wienold, M.; Schrottke, L.; Giehler, M.; Hey, R.; Grahn, H. T.; Hübers, H.-W.

    2010-07-01

    Heterodyne spectroscopy of molecular rotational lines and atomic fine-structure lines is a powerful tool in astronomy and planetary research. One example is the OI fine structure line at 4.7 THz. This is a main target for the observation with GREAT, the German Receiver for Astronomy at Terahertz Frequencies, which will be operated on board of SOFIA. We report on the development of a compact, easy-to-use source, which combines a quantum-cascade laser (QCL) with a compact, low-input-power Stirling cooler. This work is part of the local-oscillator development for GREAT/SOFIA. The QCL, which is based on a two-miniband design, has been developed for high output power and low electrical pump power. Efficient carrier injection is achieved by resonant longitudinal optical phonon scattering. The amount of generated heat complies with the cooling capacity of the Stirling cooler. The whole system weighs less than 15 kg including cooler, power supplies etc. The output power is above 1 mW. With an appropriate optical beam shaping, the emission profile of the laser becomes a fundamental Gaussian one. Sub-MHz frequency accuracy can be achieved by locking the emission of the QCL to a molecular resonance.

  14. Compact 50-Hz terawatt Ti:sapphire laser for x-ray and nonlinear optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Cheng, Guangjun; Shan, Fang; Freyer, Abhi; Guo, Ting

    2002-08-01

    We report a high-repetition-rate, compact terawatt Ti:sapphire laser system. The oscillator produces an 82-MHz pulse train consisting of broad-bandwidth pulses of 0.5-nJ/pulse energy and of 9-fs pulse duration. The spectrally shaped, lambda/4 regenerative amplifier supports an 80-nm bandwidth. A single 50-Hz repetition-rate pump laser pumps both the regenerative amplifier and a multiple-pass amplifier. The final output from this laser is a 50-Hz pulse train made from pulses of 53 mJ/pulse energy and of 24-fs pulse duration. For generating ultrafast x-ray pulses, 90% of the energy from the final output of a 28-mm-diameter (1/e2) beam is focused onto an ultrafast x-ray wire target. The energy conversion efficiency from optical (800-nm central wavelength) to x-ray (characteristic lines of Kalpha from Cu at 8 keV) pulses is estimated to be 7 x 10-5. This laser system can also generate a lower-peak-power, dual-pulse output that can excite, simultaneously and coherently, Raman modes within an adjustable bandwidth (up to 700 cm-1) and at a tunable central vibrational frequency. Preliminary results for the generation of dual-pulse output and ultrafast x rays are presented.

  15. Compact 0.7 mJ/11 ns eye-safe erbium laser

    NASA Astrophysics Data System (ADS)

    Vitkin, V. V.; Polyakov, V. M.; Kharitonov, A. A.; Buchenkov, V. A.; Rodionov, A. Yu; Zhilin, A. A.; Dymshits, O. S.; Loiko, P. A.

    2016-12-01

    We report on the development of a compact diode-end-pumped eye-safe (~1.54 µm) passively-cooled Er,Yb:glass laser. The design of this laser is facilitated by the use of a double-pass pumping scheme and a special ZrO2 diffuse reflector for a uniform pump distribution. In the free-running mode, this laser generates 8.2 mJ/3 ms pulses with a slope efficiency of 15%. Passive Q-switching is provided by saturable absorbers made of transparent glass-ceramics containing Co2+:γ-Ga2O3 or Co2+:MgAl2O4 nanocrystals with a spinel structure. In the latter case, 0.7 mJ/10.5 ns pulses are generated corresponding to  >60 kW peak power and good beam quality (M 2  =  1.4). The designed laser is suitable for portable range-finders.

  16. X-ray phase-contrast tomography with a compact laser-driven synchrotron source.

    PubMed

    Eggl, Elena; Schleede, Simone; Bech, Martin; Achterhold, Klaus; Loewen, Roderick; Ruth, Ronald D; Pfeiffer, Franz

    2015-05-05

    Between X-ray tubes and large-scale synchrotron sources, a large gap in performance exists with respect to the monochromaticity and brilliance of the X-ray beam. However, due to their size and cost, large-scale synchrotrons are not available for more routine applications in small and medium-sized academic or industrial laboratories. This gap could be closed by laser-driven compact synchrotron light sources (CLS), which use an infrared (IR) laser cavity in combination with a small electron storage ring. Hard X-rays are produced through the process of inverse Compton scattering upon the intersection of the electron bunch with the focused laser beam. The produced X-ray beam is intrinsically monochromatic and highly collimated. This makes a CLS well-suited for applications of more advanced--and more challenging--X-ray imaging approaches, such as X-ray multimodal tomography. Here we present, to our knowledge, the first results of a first successful demonstration experiment in which a monochromatic X-ray beam from a CLS was used for multimodal, i.e., phase-, dark-field, and attenuation-contrast, X-ray tomography. We show results from a fluid phantom with different liquids and a biomedical application example in the form of a multimodal CT scan of a small animal (mouse, ex vivo). The results highlight particularly that quantitative multimodal CT has become feasible with laser-driven CLS, and that the results outperform more conventional approaches.

  17. High power single-frequency continuously-tunable compact extended-cavity semiconductor laser.

    PubMed

    Laurain, A; Myara, M; Beaudoin, G; Sagnes, I; Garnache, A

    2009-06-08

    We demonstrate high power high efficiency (0:3 W) low noise single frequency operation of a compact extended-cavity surface-emitting-semiconductor-laser exhibiting a continuous tunability over 0:84 THz with high beam quality. We took advantage of thermal lens-based stability to develop a short (< 3 mm) plano-plano external cavity without any intracavity filter. The structure is optically pumped by a 1 W commercial 830 nm multimode diode laser. No heat management was required. We measured a low divergence circular TEM(00) beam at the diffraction limit (M(2) < 1:05) with a linear light polarization (> 37 dB). The side mode suppression ratio is 60 dB. The free running laser linewidth is 850 kHz limited by pump induced thermal fluctuations. Thanks to this high-Q external cavity approach, the frequency noise is low and the dynamics is in the relaxation-oscillation-free regime, exhibiting a low intensity noise, with a cutoff frequency approximately 250 MHz above which the shot noise level is reached. We show that pump properties define the cavity design and laser coherence.

  18. UV by the fourth harmonic generation of compact side-pumped Yb:YAG laser emission

    NASA Astrophysics Data System (ADS)

    Cole, Brian; McIntosh, Chris; Hays, Alan; Dilazaro, Tom; Goldberg, Lew

    2016-03-01

    We present a compact, side pumped passively Q-switched Yb:YAG laser that was operated in a burst mode with pump durations of 2-4 ms at low duty cycles. Intra-pump pulse Q-switched pulse repetition frequencies varied from 5-20 kHz depending on the transmission of the Cr:YAG saturable absorber, which was varied from 70% to 94%. Pump duration, pulse repetition frequency and output coupler reflectivity were optimized to yield maximum Yb:YAG laser average power and laser efficiency, while providing sufficient peak intensity, typically 0.3-1 MW, to enable efficient forth harmonic generation (FHG). Pulse energies and durations were in ranges of 0.3-1.8 mJ and 1.5-7ns, respectively, dependent on the unbleached transmission of the Cr:YAG saturable absorber. We achieved an optical efficiency of greater than 15% for the Yb:YAG laser. Extra-cavity 515 nm second harmonic generation (SHG) was achieved using a 5mm long KTP crystal. The 515 nm light was then frequency doubled by focusing it into a 7mm long BBO crystal, resulting in a 15% conversion efficiency from 1030nm to 257.5 nm, with an average UV power greater than 100 mW.

  19. X-ray phase-contrast tomography with a compact laser-driven synchrotron source

    PubMed Central

    Eggl, Elena; Schleede, Simone; Bech, Martin; Achterhold, Klaus; Loewen, Roderick; Ruth, Ronald D.; Pfeiffer, Franz

    2015-01-01

    Between X-ray tubes and large-scale synchrotron sources, a large gap in performance exists with respect to the monochromaticity and brilliance of the X-ray beam. However, due to their size and cost, large-scale synchrotrons are not available for more routine applications in small and medium-sized academic or industrial laboratories. This gap could be closed by laser-driven compact synchrotron light sources (CLS), which use an infrared (IR) laser cavity in combination with a small electron storage ring. Hard X-rays are produced through the process of inverse Compton scattering upon the intersection of the electron bunch with the focused laser beam. The produced X-ray beam is intrinsically monochromatic and highly collimated. This makes a CLS well-suited for applications of more advanced––and more challenging––X-ray imaging approaches, such as X-ray multimodal tomography. Here we present, to our knowledge, the first results of a first successful demonstration experiment in which a monochromatic X-ray beam from a CLS was used for multimodal, i.e., phase-, dark-field, and attenuation-contrast, X-ray tomography. We show results from a fluid phantom with different liquids and a biomedical application example in the form of a multimodal CT scan of a small animal (mouse, ex vivo). The results highlight particularly that quantitative multimodal CT has become feasible with laser-driven CLS, and that the results outperform more conventional approaches. PMID:25902493

  20. DNA strand breaks induced by soft X-ray pulses from a compact laser plasma source

    NASA Astrophysics Data System (ADS)

    Adjei, Daniel; Wiechec, Anna; Wachulak, Przemyslaw; Ayele, Mesfin Getachew; Lekki, Janusz; Kwiatek, Wojciech M.; Bartnik, Andrzej; Davídková, Marie; Vyšín, Luděk; Juha, Libor; Pina, Ladislav; Fiedorowicz, Henryk

    2016-03-01

    Application of a compact laser plasma source of soft X-rays in radiobiology studies is demonstrated. The source is based on a laser produced plasma as a result of irradiation of a double-stream gas puff target with nanosecond laser pulses from a commercially available Nd:YAG laser. The source allows irradiation of samples with soft X-ray pulses in the "water window" spectral range (wavelength: 2.3-4.4 nm; photon energy: 280-560 eV) in vacuum or a helium atmosphere at very high-dose rates and doses exceeding the kGy level. Single-strand breaks (SSB) and double-strand breaks (DBS) induced in DNA plasmids pBR322 and pUC19 have been measured. The different conformations of the plasmid DNA were separated by agarose gel electrophoresis. An exponential decrease in the supercoiled form with an increase in linear and relaxed forms of the plasmids has been observed as a function of increasing photon fluence. Significant difference between SSB and DSB in case of wet and dry samples was observed that is connected with the production of free radicals in the wet sample by soft X-ray photons and subsequent affecting the plasmid DNA. Therefore, the new source was validated to be useful for radiobiology experiments.

  1. Guidance values for microcystins in water and cyanobacterial supplement products (blue-green algal supplements): a reasonable or misguided approach?

    SciTech Connect

    Dietrich, Daniel; Hoeger, Stefan . E-mail: stefan.hoeger@uni-konstanz.de

    2005-03-15

    This article reviews current scientific knowledge on the toxicity and carcinogenicity of microcystins and compares this to the guidance values proposed for microcystins in water by the World Health Organization, and for blue-green algal food supplements by the Oregon State Department of Health. The basis of the risk assessment underlying these guidance values is viewed as being critical due to overt deficiencies in the data used for its generation: (i) use of one microcystin congener only (microcystin-LR), while the other presently known nearly 80 congeners are largely disregarded, (ii) new knowledge regarding potential neuro and renal toxicity of microcystins in humans and (iii) the inadequacies of assessing realistic microcystin exposures in humans and especially in children via blue-green algal food supplements. In reiterating the state-of-the-art toxicology database on microcystins and in the light of new data on the high degree of toxin contamination of algal food supplements, this review clearly demonstrates the need for improved kinetic data of microcystins in humans and for discussion concerning uncertainty factors, which may result in a lowering of the present guidance values and an increased routine control of water bodies and food supplements for toxin contamination. Similar to the approach taken previously by authorities for dioxin or PCB risk assessment, the use of a toxin equivalent approach to the risk assessment of microcystins is proposed.

  2. Zeta potential measurement on the surface of blue-green algae particles for micro-bubble process.

    PubMed

    Taki, Kazuo; Seki, Tatsuhiro; Mononobe, Sakiyori; Kato, Kohichi

    2008-01-01

    Any kind of blue-green alga produces metabolites of musty substances and toxins. Therefore, it is necessary to remove the blue-green algae, and processing also including nutrient removal is desired for the water quality improvement of eutrophic lakes. The purpose of this study has been to investigate the possibility of a flotation system using a hybrid technique (chemical compounds and electrostatic bridge) applied to raw water containing phytoplankton with high pH of water, and to examine the zeta potential value of phytoplankton surface and the removal efficiency for phytoplankton, ammonia, nitrogen, and phosphoric acid. The results were as follows: firstly, zeta potential of M. aeruginosa particles was observed to achieve charge neutralization on their surface by adhesion of magnesium hydroxide precipitation with increasing pH. Secondly, maximum removal efficiency concerning chlorophyll-a was observed as 84%, and this efficiency was obtained in the condition of pH > 10, and magnesium hydroxide precipitation was observed. Thirdly, in the pH condition that the maximum removal efficiency of chlorophyll-a was obtained, the removal efficiency and the amount of decrease of NH(4)-N and PO(4)-P before and after the change of pH values were observed as 6.7% (0.04 mg-P/L) and 63.6% (0.07 mg-N/L), respectively.

  3. Clinical results of a new high-phototherapeutic-efficiency blue-green lamp for the management of hyperbilirubinemia

    NASA Astrophysics Data System (ADS)

    Donzelli, Gian Paolo; Pratesi, Simone; Agati, Giovanni; Fusi, Franco; Pratesi, Riccardo

    1996-01-01

    We report a preliminary study on the introduction of a new, blue-green fluorescent lamp with high phototherapeutic efficiency in the treatment of neonatal hyperbilirubinemia. The lamp (New Lamp) has an emission spectrum, peaked at 490 nm and about 40 nm wide, that was not previously investigated in clinical trials. Our study demonstrates the significantly greater efficacy of the New Lamp in decreasing the bilirubin serum level, in comparison with the most commonly used blue fluorescent lamp. The rate of decline of bilirubin concentration with the New Lamp was twice that with Philips/BB light. The success of the blue-green PT is mainly due to the combined effects of the (1) increase from blue to green of the quantum yield for lumirubin, that is the bilirubin photoproduct rapidly excreted from the organism; (2) corresponding decrease of the configurational photoisomer, formed with high concentration but not excreted from the organism; (3) filtering effect of the skin, which attenuates more blue than green light. Our results represent the first significant improvement of phototherapy efficiency following the development and introduction of the special-blue lamp by Sisson in 1970. The phototherapy exposure time has now been reduced to less than 1-day in preterm infants, ensuring less stress to the infant and less interference with nursing care.

  4. A new blue, green and red upconversion emission nanophosphor: BaZrO3:Er,Yb.

    PubMed

    Diaz-Torres, L A; Salas, P; Perez-Huerta, J S; Angeles-Chavez, C; De la Rosa, E

    2008-12-01

    Strong Blue, green, and red upconversion emission of Er3+ in nanocrystalline BaZrO3:(Yb3+Er3+) is observed. Powder samples were obtained by a facile hydrothermal process at 100 degrees C. The as synthesized nanocrystallites preserve a stable cubic perovskite phase under subsequent annealing treatment up to 1000 degrees C. No other phase or segregation of other compounds was detected. Crystallites sizes were around 115 nm and well faceted. Under IR excitation in the range between 900 and 1050 nm the Er3+ blue emission was almost not present in single Er3+ doped BaZrO3, whereas it became easily observable when Yb3+ was added as codopant. Besides, both green and red upconversion emission or upconverted signal of Er3+ are enhanced by around three orders of magnitude in comparison with the single Er3+ doped BaZrO3. The strong blue emission presents dependence on both excitation power and excitation wavelength. This is the first time that upconversion emission is observed in BaZrO3. A possible mechanism for the upconversion process that leads to the observed blue, green and red emissions under NIR excitation is suggested based on the experimental results.

  5. A compact, short-pulse laser for near-field, range-gated imaging

    SciTech Connect

    Zutavern, F.J.; Helgeson, W.D.; Loubriel, G.M.; Yates, G.J.; Gallegos, R.A.; McDonald, T.E.

    1996-12-31

    This paper describes a compact laser, which produces high power, wide-angle emission for a near-field, range-gated, imaging system. The optical pulses are produced by a 100 element laser diode array (LDA) which is pulsed with a GaAs, photoconductive semiconductor switch (PCSS). The LDA generates 100 ps long, gain-switched, optical pulses at 904 nm when it is driven with 3 ns, 400 A, electrical pulses from a high gain PCSS. Gain switching is facilitated with this many lasers by using a low impedance circuit to drive an array of lasers, which are connected electrically in series. The total optical energy produced per pulse is 10 microjoules corresponding to a total peak power of 100 kW. The entire laser system, including prime power (a nine volt battery), pulse charging, PCSS, and LDA, is the size of a small, hand-held flashlight. System lifetime, which is presently limited by the high gain PCSS, is an active area of research and development. Present limitations and potential improvements will be discussed. The complete range-gated imaging system is based on complementary technologies: high speed optical gating with intensified charge coupled devices (ICCD) developed at Los Alamos National Laboratory (LANL) and high gain, PCSS-driven LDAs developed at Sandia National Laboratories (SNL). The system is designed for use in highly scattering media such as turbid water or extremely dense fog or smoke. The short optical pulses from the laser and high speed gating of the ICCD are synchronized to eliminate the back-scattered light from outside the depth of the field of view (FOV) which may be as short as a few centimeters. A high speed photodiode can be used to trigger the intensifier gate and set the range-gated FOV precisely on the target. The ICCD and other aspects of the imaging system are discussed in a separate paper.

  6. A four kHz repetition rate compact TEA CO2 laser

    NASA Astrophysics Data System (ADS)

    Zheng, Yijun; Tan, Rongqing

    2013-09-01

    A compact transversely excited atmospheric (TEA) CO2 laser with high repetition-rate was reported. The size of the laser is 380 mm×300 mm×200 mm, and the discharge volume is 12×103 mm3. The laser cavity has a length of 320mm and consists of a totally reflective concave mirror with a radius of curvature of 4 m (Cu metal substrate coated with Au) and a partially reflecting mirror. The ultraviolet preionization makes the discharge even and stable,the output energy can be as high as 28 mJ under the circumstance of free oscillation, and the width of the light pulse is 60ns.To acquire the high wind velocity, a turbocharger is used in the system of the fast-gas flow cycle. When the wind speed is 100m/s, the repetition rate of the transversely excited atmospheric CO2 laser is up to 2 kHz. On this basis, a dual modular structure with two sets of the gas discharge unit is adopted to obtain a higher pulse repetition frequency output. The dual discharge unit composed two sets of electrodes and two sets of turbo fan. Alternate trigger technology is used to make the two sets of discharge module work in turn with repetition frequency of 2 kHz, the discharge interval of two sets of the gas discharge unit can be adjusted continuously from 20 microseconds to 250 microseconds. Under the conditions of maintaining the other parameters constant, the repetition frequency of the laser pulse is up to 4 kHz. The total size of laser with dual modular structure is 380mm×520mm×200mm, and the discharge volume is 24×103 mm3 with the cavity length of 520mm.

  7. Interferometric studies of laser-created plasmas using compact soft x-ray lasers

    SciTech Connect

    Dunn, J; Nilsen, J; Moon, S; Keenan, R; Jankowska, E; Maconi, M C; Hammarsten, E C; Filevich, J; Hunter, J R; Smith, R F; Shlyaptsev, V; Rocca, J J

    2003-12-04

    We summarize results of several successful dense plasma diagnostics experiments realized by combining two different kinds of table-top soft x-ray lasers with an amplitude division interferometer based on diffraction grating beam splitters. In the first set of experiments this robust high throughput diffraction grating interferometer (DGI) was used with a 46.9 nm portable capillary discharge laser to study the dynamics of line focus and point focus laser-created plasmas. The measured electron density profiles, which differ significantly from those expected from a classical expansion, unveil important two-dimensional effects of the dynamics of these plasmas. A second DGI customized to operate in combination with a 14.7 nm Ni-like Pd transient gain laser was used to perform interferometry of line focus laser-created plasmas with picosecond time resolution. These measurements provide valuable new benchmarks for complex hydrodynamic codes and help bring new understanding of the dynamics of dense plasmas. The instrumentation and methodology we describe is scalable to significantly shorter wavelengths, and constitutes a promising scheme for extending interferometry to the study of very dense plasmas such as those investigated for inertial confinement fusion.

  8. Toward the realization of a compact chemical sensor platform using quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Holthoff, Ellen L.; Marcus, Logan S.; Pellegrino, Paul M.

    2015-05-01

    The Army is investigating several spectroscopic techniques (e.g., infrared spectroscopy) that could allow for an adaptable sensor platform. Traditionally, chemical sensing platforms have been hampered by the opposing concerns of increasing sensor capability while maintaining a minimal package size. Current sensors, although reasonably sized, are geared to more classical chemical threats, and the ability to expand their capabilities to a broader range of emerging threats is uncertain. Recently, photoacoustic spectroscopy, employed in a sensor format, has shown enormous potential to address these ever-changing threats, while maintaining a compact sensor design. In order to realize the advantage of photoacoustic sensor miniaturization, light sources of comparable size are required. Recent research has employed quantum cascade lasers (QCLs) in combination with MEMS-scale photoacoustic cell designs. The continuous tuning capability of QCLs over a broad wavelength range in the mid-infrared spectral region greatly expands the number of compounds that can be identified. Results have demonstrated that utilizing a tunable QCL with a MEMS-scale photoacoustic cell produces favorable detection limits (ppb levels) for chemical targets (e.g., dimethyl methyl phosphonate (DMMP), vinyl acetate, 1,4-dioxane). Although our chemical sensing research has benefitted from the broad tuning capabilities of QCLs, the limitations of these sources must be considered. Current commercially available tunable systems are still expensive and obviously geared more toward laboratory operation, not fielding. Although the laser element itself is quite small, the packaging, power supply, and controller remain logistical burdens. Additionally, operational features such as continuous wave (CW) modulation and laser output powers while maintaining wide tunability are not yet ideal for a variety of sensing applications. In this paper, we will discuss our continuing evaluation of QCL technology as it matures

  9. Studies on the hormonal relationships of algae in pure culture : I. The effect of indole-3-acetic acid on the growth of blue-green and green algae.

    PubMed

    Ahmad, M R; Winter, A

    1968-09-01

    Indole-3-acetic acid (IAA) stimulated the growth (increase in dry weight) of the blue-green algae Anacystis nidulans, Chlorogloea fritschii, Phormidium foveolarum, Nostoc muscorum, Anabaena cylindrica, and Tolypothrix tenuis and the green algae Chlorella pyrenoidosa, Ankistrodesmus falcatus and Scenedesmus obliquus growing under as sterile conditions as possible. The optimum concentration varied from species to species; in the blue-green algae it ranged from 10(-5) to 10(-9) M and in the green algae it was 10(-3) M. These results are discussed in the light of present studies in this field.

  10. Compact acceleration of energetic neutral atoms using high intensity laser-solid interaction.

    PubMed

    Dalui, Malay; Trivikram, T Madhu; Colgan, James; Pasley, John; Krishnamurthy, M

    2017-06-20

    Recent advances in high-intensity laser-produced plasmas have demonstrated their potential as compact charge particle accelerators. Unlike conventional accelerators, transient quasi-static charge separation acceleration fields in laser produced plasmas are highly localized and orders of magnitude larger. Manipulating these ion accelerators, to convert the fast ions to neutral atoms with little change in momentum, transform these to a bright source of MeV atoms. The emittance of the neutral atom beam would be similar to that expected for an ion beam. Since intense laser-produced plasmas have been demonstrated to produce high-brightness-low-emittance beams, it is possible to envisage generation of high-flux, low-emittance, high energy neutral atom beams in length scales of less than a millimeter. Here, we show a scheme where more than 80% of the fast ions are reduced to energetic neutral atoms and demonstrate the feasibility of a high energy neutral atom accelerator that could significantly impact applications in neutral atom lithography and diagnostics.

  11. Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms

    PubMed Central

    Aviles-Espinosa, Rodrigo; Filippidis, George; Hamilton, Craig; Malcolm, Graeme; Weingarten, Kurt J.; Südmeyer, Thomas; Barbarin, Yohan; Keller, Ursula; Santos, Susana I.C.O; Artigas, David; Loza-Alvarez, Pablo

    2011-01-01

    We present a portable ultrafast Semiconductor Disk Laser (SDL) (or vertical extended cavity surface emitting laser—VECSELs), to be used for nonlinear microscopy. The SDL is modelocked using a quantum-dot semiconductor saturable absorber mirror (SESAM), delivering an average output power of 287 mW, with 1.5 ps pulses at 500 MHz and a central wavelength of 965 nm. Specifically, despite the fact of having long pulses and high repetition rates, we demonstrate the potential of this laser for Two-Photon Excited Fluorescence (TPEF) imaging of in vivo Caenorhabditis elegans (C. elegans) expressing Green Fluorescent Protein (GFP) in a set of neuronal processes and cell bodies. Efficient TPEF imaging is achieved due to the fact that this wavelength matches the peak of the two-photon action cross section of this widely used fluorescent marker. The SDL extended versatility is shown by presenting Second Harmonic Generation images of pharynx, uterus, body wall muscles and its potential to be used to excite other different commercial dyes. Importantly this non-expensive, turn-key, compact laser system could be used as a platform to develop portable nonlinear bio-imaging devices. PMID:21483599

  12. Evolution of MEMS scanning mirrors for laser projection in compact consumer electronics

    NASA Astrophysics Data System (ADS)

    Tauscher, Jason; Davis, Wyatt O.; Brown, Dean; Ellis, Matt; Ma, Yunfei; Sherwood, Michael E.; Bowman, David; Helsel, Mark P.; Lee, Sung; Coy, John Wyatt

    2010-02-01

    The applicability of MOEMS scanning mirrors towards the creation of "flying spot" scanned laser displays is well established. The extension of this concept towards compact embedded pico-projectors has required an evolution of scanners and packaging to accommodate the needs of the consumer electronics space. This paper describes the progression of the biaxial MOEMS scanning mirrors developed by Microvision over recent years. Various aspects of the individual designs are compared. Early devices used a combination of magnetic quasistatic actuation and resonant electrostatic operation in an evacuated atmosphere to create a projection engine for retinal scanned displays. Subsequent designs realized the elimination of both the high voltage electrostatic drive and the vacuum package, and a simplification of the actuation scheme through proprietary technical advances. Additional advances have doubled the scan angle capability and greatly miniaturized the MOEMS component while not incurring significant increase in power consumption, making it an excellent fit for the consumer pico-projector application. The simplicity of the scanned laser-based pico-projector optical design enables high resolution and a large effective image size in a thin projection engine, all of which become critical both to the viability of the technology and adoption by consumers. Microvision's first scanned laser pico-projector is built around a MOEMS scanning mirror capable of projecting 16:9 aspect ratio, WVGA display within a 6.6 mm high package. Further evolution on this path promises continued improvement in resolution, size, and power.

  13. Compact GaAs-based second-harmonic generation horizontal cavity surface-emitting blue lasers

    NASA Astrophysics Data System (ADS)

    Jurkovic, Michael J.; Du, Qinghong; Jimenez, J. L.; Wang, Wen I.

    1997-05-01

    A low-threshold second-harmonic generation horizontal cavity surface emitting laser (SHG-HCSEL) operating at 0.49 micrometers under electrical pumping is proposed and theoretical design considerations are presented. The strained InGaAs quantum well (QW) laser, implemented on a nearly optimally oriented (311)B-GaAs substrate, incorporates a reduced Al-content, quasi-phase matched (QPM) single guiding GaAs layer (SGL) structure, a novel double-tapered horizontal waveguide with high reflection-coated cleaved facets, and a metallization- free emission window at the center of the device. The horizontal geometry serves to increase the ratio of fundamental power density within the SHG-region to that at the facets, thereby increasing the laser optical power at the onset of catastrophic optical damage (COD) at the facets. Simulations indicate that surface blue emission (on the order of 14 W/cm2 peak, corresponding to 50 (mu) W for a 10 micrometers X 100 micrometers emission window) can be obtained from a compact device, with a moderate taper angle of 3 degree(s), operating well below the COD limit. The model also shows that a SGL thickness of 175 nm corresponds with the second QPM-SHG efficiency peak which coincides with peak optical confinement in the QW. Finally, AlGaAs cladding thickness of 113 nm is found to be the optimum etch condition beneath the SHG emission window.

  14. High repetition pump-and-probe photoemission spectroscopy based on a compact fiber laser system.

    PubMed

    Ishida, Y; Otsu, T; Ozawa, A; Yaji, K; Tani, S; Shin, S; Kobayashi, Y

    2016-12-01

    The paper describes a time-resolved photoemission (TRPES) apparatus equipped with a Yb-doped fiber laser system delivering 1.2-eV pump and 5.9-eV probe pulses at the repetition rate of 95 MHz. Time and energy resolutions are 11.3 meV and ∼310 fs, respectively, the latter is estimated by performing TRPES on a highly oriented pyrolytic graphite (HOPG). The high repetition rate is suited for achieving high signal-to-noise ratio in TRPES spectra, thereby facilitating investigations of ultrafast electronic dynamics in the low pump fluence (p) region. TRPES of polycrystalline bismuth (Bi) at p as low as 30 nJ/mm(2) is demonstrated. The laser source is compact and is docked to an existing TRPES apparatus based on a 250-kHz Ti:sapphire laser system. The 95-MHz system is less prone to space-charge broadening effects compared to the 250-kHz system, which we explicitly show in a systematic probe-power dependency of the Fermi cutoff of polycrystalline gold. We also describe that the TRPES response of an oriented Bi(111)/HOPG sample is useful for fine-tuning the spatial overlap of the pump and probe beams even when p is as low as 30 nJ/mm(2).

  15. Monochromatic computed tomography with a compact laser-driven X-ray source

    PubMed Central

    Achterhold, K.; Bech, M.; Schleede, S.; Potdevin, G.; Ruth, R.; Loewen, R.; Pfeiffer, F.

    2013-01-01

    A laser-driven electron-storage ring can produce nearly monochromatic, tunable X-rays in the keV energy regime by inverse Compton scattering. The small footprint, relative low cost and excellent beam quality provide the prospect for valuable preclinical use in radiography and tomography. The monochromaticity of the beam prevents beam hardening effects that are a serious problem in quantitative determination of absorption coefficients. These values are important e.g. for osteoporosis risk assessment. Here, we report quantitative computed tomography (CT) measurements using a laser-driven compact electron-storage ring X-ray source. The experimental results obtained for quantitative CT measurements on mass absorption coefficients in a phantom sample are compared to results from a rotating anode X-ray tube generator at various peak voltages. The findings confirm that a laser-driven electron-storage ring X-ray source can indeed yield much higher CT image quality, particularly if quantitative aspects of computed tomographic imaging are considered. PMID:23425949

  16. Development of a compact laser-based single photon ionization time-of-flight mass spectrometer

    NASA Astrophysics Data System (ADS)

    Tonokura, Kenichi; Kanno, Nozomu; Yamamoto, Yukio; Yamada, Hiroyuki

    2010-02-01

    We have developed a compact, laser-based, single photon ionization time-of-flight mass spectrometer (SPI-TOF-MS) for on-line monitoring of trace organic species. To obtain the mass spectrum, we use a nearly fragmentation-free SPI technique with 10.5 eV (118 nm) vacuum ultraviolet laser pulses generated by frequency tripling of the third harmonic of an Nd:YAG laser. The instrument can be operated in a linear TOF-MS mode or a reflectron TOF-MS mode in the coaxial design. We designed ion optics to optimize detection sensitivity and mass resolution. For data acquisition, the instrument is controlled using LabVIEW control software. The total power requirement for the vacuum unit, control electronics unit, ion optics, and detection system is approximately 100 W. We achieve a detection limit of parts per billion by volume (ppbv) for on-line trace analysis of several organic compounds. A mass resolution of 800 at about 100 amu is obtained for reflectron TOF-MS mode in a 0.35 m long instrument. The application of on-line monitoring of diesel engine exhaust was demonstrated.

  17. High repetition pump-and-probe photoemission spectroscopy based on a compact fiber laser system

    NASA Astrophysics Data System (ADS)

    Ishida, Y.; Otsu, T.; Ozawa, A.; Yaji, K.; Tani, S.; Shin, S.; Kobayashi, Y.

    2016-12-01

    The paper describes a time-resolved photoemission (TRPES) apparatus equipped with a Yb-doped fiber laser system delivering 1.2-eV pump and 5.9-eV probe pulses at the repetition rate of 95 MHz. Time and energy resolutions are 11.3 meV and ˜310 fs, respectively, the latter is estimated by performing TRPES on a highly oriented pyrolytic graphite (HOPG). The high repetition rate is suited for achieving high signal-to-noise ratio in TRPES spectra, thereby facilitating investigations of ultrafast electronic dynamics in the low pump fluence (p) region. TRPES of polycrystalline bismuth (Bi) at p as low as 30 nJ/mm2 is demonstrated. The laser source is compact and is docked to an existing TRPES apparatus based on a 250-kHz Ti:sapphire laser system. The 95-MHz system is less prone to space-charge broadening effects compared to the 250-kHz system, which we explicitly show in a systematic probe-power dependency of the Fermi cutoff of polycrystalline gold. We also describe that the TRPES response of an oriented Bi(111)/HOPG sample is useful for fine-tuning the spatial overlap of the pump and probe beams even when p is as low as 30 nJ/mm2.

  18. A desktop extreme ultraviolet microscope based on a compact laser-plasma light source

    NASA Astrophysics Data System (ADS)

    Wachulak, P. W.; Torrisi, A.; Bartnik, A.; Węgrzyński, Ł.; Fok, T.; Fiedorowicz, H.

    2017-01-01

    A compact, desktop size microscope, based on laser-plasma source and equipped with reflective condenser and diffractive Fresnel zone plate objective, operating in the extreme ultraviolet (EUV) region at the wavelength of 13.8 nm, was developed. The microscope is capable of capturing magnified images of objects with 95-nm full-pitch spatial resolution (48 nm 25-75% KE) and exposure time as low as a few seconds, combining reasonable acquisition conditions with stand-alone desktop footprint. Such EUV microscope can be regarded as a complementary imaging tool to already existing, well-established ones. Details about the microscope, characterization, resolution estimation and real sample images are presented and discussed.

  19. All-passive phase locking of a compact Er:fiber laser system.

    PubMed

    Krauss, Günther; Fehrenbacher, David; Brida, Daniele; Riek, Claudius; Sell, Alexander; Huber, Rupert; Leitenstorfer, Alfred

    2011-02-15

    A passively phase-locked laser source based on compact femtosecond Er:fiber technology is introduced. The carrier-envelope offset frequency is set to zero via difference frequency generation between a soliton at a wavelength of 2 μm and a dispersive wave at 860 nm generated in the same highly nonlinear fiber. This process results in a broadband output centered at 1.55 μm. Subsequently, the 40 MHz pulse train seeds a second Er:fiber amplifier, which boosts the pulse energy up to 8 nJ at a duration of 125 fs. Excellent phase stability is demonstrated via f-to-2f spectral interferometry.

  20. Design of sub-Angstrom compact free-electron laser source

    NASA Astrophysics Data System (ADS)

    Bonifacio, Rodolfo; Fares, Hesham; Ferrario, Massimo; McNeil, Brian W. J.; Robb, Gordon, R. M.

    2017-01-01

    In this paper, we propose for first time practical parameters to construct a compact sub-Angstrom Free Electron Laser (FEL) based on Compton backscattering. Our recipe is based on using picocoulomb electron bunch, enabling very low emittance and ultracold electron beam. We assume the FEL is operating in a quantum regime of Self Amplified Spontaneous Emission (SASE). The fundamental quantum feature is a significantly narrower spectrum of the emitted radiation relative to classical SASE. The quantum regime of the SASE FEL is reached when the momentum spread of the electron beam is smaller than the photon recoil momentum. Following the formulae describing SASE FEL operation, realistic designs for quantum FEL experiments are proposed. We discuss the practical constraints that influence the experimental parameters. Numerical simulations of power spectra and intensities are presented and attractive radiation characteristics such as high flux, narrow linewidth, and short pulse structure are demonstrated.

  1. Compact two wavelength Brillouin fiber laser sensor with double Brillouin frequency spacing

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Zhang, Mingjiang; Zhang, Jianzhong; Han, Hong; Yi, Xiaogang; Zhang, Jianguo; Wang, Yuncai

    2016-12-01

    A compact two wavelength Brillouin fiber laser (BFL) sensor with double Brillouin frequency spacing is proposed and demonstrated. In the experiment, 20 m polarization maintaining fiber is used as the sensing element and Brillouin gain medium. This short cavity configuration not only guarantees single longitudinal mode operation of two Stokes wavelengths, but also can effectively reduce external perturbations, complexity and noise of BFL in the absence of an erbium-doped fiber amplifier in intra-cavity. In experiment, about 2 MHz/°C sensitivity of beat frequency between the pump and the 2nd-order Stokes wavelength keep in good agreement with the theoretical value. Meanwhile, 0.2 °C temperature stability and  ±0.1 dB power fluctuation are better than the traditional structure. The system is simple and stable, making it convenient for more applications.

  2. A compact and efficient strontium oven for laser-cooling experiments

    NASA Astrophysics Data System (ADS)

    Schioppo, M.; Poli, N.; Prevedelli, M.; Falke, St.; Lisdat, Ch.; Sterr, U.; Tino, G. M.

    2012-10-01

    Here we describe a compact and efficient strontium oven well suited for laser-cooling experiments. Novel design solutions allowed us to produce a collimated strontium atomic beam with a flux of 1.0 × 1013 s-1 cm-2 at the oven temperature of 450 °C, reached with an electrical power consumption of 36 W. The oven is based on a stainless-steel reservoir, filled with 6 g of metallic strontium, electrically heated in a vacuum environment by a tantalum wire threaded through an alumina multi-bore tube. The oven can be hosted in a standard DN40CF cube and has an estimated continuous operation lifetime of 10 years. This oven can be used for other alkali and alkaline earth metals with essentially no modifications.

  3. A compact and efficient strontium oven for laser-cooling experiments.

    PubMed

    Schioppo, M; Poli, N; Prevedelli, M; Falke, St; Lisdat, Ch; Sterr, U; Tino, G M

    2012-10-01

    Here we describe a compact and efficient strontium oven well suited for laser-cooling experiments. Novel design solutions allowed us to produce a collimated strontium atomic beam with a flux of 1.0 × 10(13) s(-1) cm(-2) at the oven temperature of 450 °C, reached with an electrical power consumption of 36 W. The oven is based on a stainless-steel reservoir, filled with 6 g of metallic strontium, electrically heated in a vacuum environment by a tantalum wire threaded through an alumina multi-bore tube. The oven can be hosted in a standard DN40CF cube and has an estimated continuous operation lifetime of 10 years. This oven can be used for other alkali and alkaline earth metals with essentially no modifications.

  4. Status of the Northrop Grumman Compact Infrared Free-Electron Laser

    SciTech Connect

    Lehrman, I.S.; Krishnaswamy, J.; Hartley, R.A.

    1995-12-31

    The Compact Infrared Free Electron Laser (CIRFEL) was built as part of a joint collaboration between the Northrop Grumman Corporation and Princeton University to develop FEL`s for use by researchers in the materials, medical and physical sciences. The CIRFEL was designed to lase in the Mid-IR and Far-IR regimes with picosecond pulses, megawatt level peak powers and an average power of a few watts. The micropulse separation is 7 nsec which allows a number of relaxation phenomenon to be observed. The CIRFEL utilizes an RF photocathode gun to produce high-brightness time synchronized electron bunches. The operational status and experimental results of the CERFEL will be presented.

  5. Toward compact and ultra-intense laser driven soft x-ray lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sebban, Stéphane

    2017-05-01

    We report here recent work on an optical-field ionized (OFI), high-order harmonic-seeded EUV laser. The amplifying medium is a plasma of nickel-like krypton obtained by optical field ionization focusing a 1 J, 30 fs, circularly- polarized, infrared pulse into a krypton-filled gas cell or krypton gas jet. The lasing transition is the 3d94p (J=0) --> 3d94p (J=1) transition of Ni-like krypton ions at 32.8 nm and is pumped by collisions with hot electrons. The polarization of the HH-seeded EUV laser beam was studied using an analyzer composed of three grazing incidence EUV multilayer mirrors able to spin under vacuum. For linear polarization, the Malus law has been recovered while in the case of a circularly-polarized seed, the EUV signal is insensitive to the rotation of the analyzer, bearing testimony to circularly polarized. The gain dynamics was probed by seeding the amplifier with a high-order harmonic pulse at different delays. The gain duration monotonically decreased from 7 ps to an unprecedented shortness of 450 fs FWHM as the amplification peak rose from 150 to 1,200 with an increase of the plasma density from 3 × 1018 cm-3 up to 1.2 × 1020 cm-3. The integrated energy of the EUV laser pulse was also measured, and found to be around 2 μJ. It is to be noted that in the ASE mode, longer amplifiers were achieved (up to 3 cm), yielding EUV outputs up to 14 μJ.

  6. Influence of temperature on Nd:YAG/V:YAG compact laser generation at 1444 nm

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Novák, Jakub; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2010-02-01

    Compact Q-switched diode-pumped laser, emitting radiation at eye-safe wavelength 1444 nm, was studied. This laser was based on composite crystal (diameter 5mm) consisting of 4mm long Nd:YAG active medium diffusion bonded with 1mm long V:YAG saturable absorber (initial transmission @ 1444nm 94 %). The laser resonator mirrors were directly deposited onto the composite crystal surfaces. These mirrors were designed to ensure emission at 1444nm and to prevent parasitic lasing at other Nd3+ transmissions. The pump mirror (R < 10% for pump radiation @ 808 nm, R < 2% @ 1064 nm, R < 15% @ 1330 nm, HR @ 1444 nm) was placed on the Nd3+-doped YAG part. The output coupler with reflectivity 94% for the generated wavelength 1444nm was placed on the V3+-doped part (R < 5% @ 1064 nm, R < 15% @ 1330 nm). Temperature dependence of giant pulse energy and length was studied independently on pumping pulses duty cycle. It was found that for constant duty cycle 1% and for crystal holder temperature rise from 8.2 up to 43.2 °C the pulse width dropped from 31 to 5.1 ns and pulse energy rose from 17 to 57 μJ. This represents a pulse peak power increase from 0.54 up to 11kW. From a mathematical model of passively Q-switched laser it follows that this behaviour can be explained by temperature caused increase of ground-state absorption and ground-state to excited-state absorption ratio (FOM) of V:YAG saturable absorber at wavelength 1444nm in case if FOM ~ 1.

  7. Current and Temperature Dependences of Electroluminescence of InGaN-Based UV/Blue/Green Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Mukai, Takashi; Yamada, Motokazu; Nakamura, Shuji

    1998-11-01

    Current and temperature dependences of the electroluminescence of InGaN UV/blue/green single-quantum-well (SQW)-structure light-emitting diodes (LEDs) were studied. The emission mechanism of InGaN SQW-structure LEDs with emission peak wavelengths longer than 375 nm is dominated by carrier recombination at large localized energy states caused by In composition fluctuation in the InGaN well layer. When the emission peak wavelength becomes shorter than 375 nm, the conventional band-to-band emission mechanism becomes dominant due to poor carrier localization resulting from small In composition fluctuations. In addition, the quantum-confined Stark effect due to the piezoelectric field becomes dominant, which causes a low output power of the UV LEDs.

  8. Toxicity of volcanic-ash leachate to a blue-green alga. Results of a preliminary bioassay experiment

    USGS Publications Warehouse

    McKnight, Diane M.; Feder, G.L.; Stiles, E.A.

    1981-01-01

    To assess the possible effects of volcanic ash from the May 18,1980, eruption of Mt. St. Helens, Washington, on aquatic ecosystems, we conducted a bioassay experiment with a blue-green alga, Anabaena flos-aquae. Results showed that leachate (obtained by leaching 151 g of ash with 130 mL of simulated freshwater) was lethal to Anabaena flos-aquae cultures when diluted as much as 1:100 with culture medium. Cultures exposed to a 1:500 dilution grew, but a toxic effect was indicated by abnormalities in the Anabaena filaments. This study indicates that ash from the Mt. St. Helens volcano could have an effect on aquatic ecosystems in the areas of significant ashfall. Further study is needed to determine the toxic chemical constituents in the ash and also its possible effects on other aquatic organisms.

  9. Electron microscopic studies on experimental poisoning in mice induced by cylindrospermopsin isolated from blue-green alga Umezakia natans.

    PubMed

    Terao, K; Ohmori, S; Igarashi, K; Ohtani, I; Watanabe, M F; Harada, K I; Ito, E; Watanabe, M

    1994-07-01

    The effects of cylindrospermopsin isolated from a blue-green alga Umezakia natans on mice were examined morphologically and biochemically. The main target of the phycotoxin was the liver. The thymus, kidneys and heart were also affected. There were four consecutive phases of the pathological changes in the liver. The initial phase was that of inhibition of the protein synthesis, the second phase of membrane proliferation followed, and then the third phase of fat droplet accumulation and finally the phase of cell death. Using globin synthesis in the rabbit reticulocytes system, it was clearly demonstrated that cylindrospermopsin is a potent inhibitor of the protein synthesis. Protein in microsomes from the mouse livers treated by cylindrospermopsin decreased in amount more significantly than that of phospholipid in microsomes. Furthermore, the amount of total P450 was extensively diminished in the toxin treated with hepatic microsomes.

  10. Fresh water blue green algae from three agro-climatic zones of Uttar Pradesh, India: distribution pattern with seasonal variation.

    PubMed

    Dwivedi, S; Misra, P K; Rai, U N; Tripathi, R D; Suseela, M R; Sinha, S; Baghel, V S; Pal, Amit; Dwivedi, C P

    2005-01-01

    The paper deals with 45 species of 21 genera of fresh water blue green algae (BGA) from three different agro-climatic zones of Uttar Pradesh. Samples were collected from different habitats varying in physico-chemical properties. Out of 45 species, 13 species belonged to order Chroococcales, 31 to order Nostocales, while only 1 species belonged to order Stigonimatales i.e. Fischerella mucicola. The physico-chemical parameters like pH, temperature, dissolved oxygen, electrical conductivity, nitrate, nitrite and rainfall play an important role in the periodicity of BGA. A positive correlation was found between dissolved oxygen (DO) of different ponds and species diversity, except in the case of western region of Uttar Pradesh (Farukhabad and Mahoba districts) where a positive correlation was found in electrical conductivity and total dissolved solids.

  11. Microscopic origin of the fast blue-green luminescence of chemically synthesized non-oxidized silicon quantum dots.

    PubMed

    Dohnalová, Kateřina; Fučíková, Anna; Umesh, Chinnaswamy P; Humpolíčková, Jana; Paulusse, Jos M J; Valenta, Jan; Zuilhof, Han; Hof, Martin; Gregorkiewicz, Tom

    2012-10-22

    The microscopic origin of the bright nanosecond blue-green photoluminescence (PL), frequently reported for synthesized organically terminated Si quantum dots (Si-QDs), has not been fully resolved, hampering potential applications of this interesting material. Here a comprehensive study of the PL from alkyl-terminated Si-QDs of 2-3 nm size, prepared by wet chemical synthesis is reported. Results obtained on the ensemble and those from the single nano-object level are compared, and they provide conclusive evidence that efficient and tunable emission arises due to radiative recombination of electron-hole pairs confined in the Si-QDs. This understanding paves the way towards applications of chemical synthesis for the development of Si-QDs with tunable sizes and bandgaps. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The occurrence and biosynthesis of gamma-linolenic acid in a blue-green alga,Spirulina platensis.

    PubMed

    Nichols, B W; Wood, B J

    1968-01-01

    The acyl-lipid and fatty acid composition of six blue-green algae, namely,Spirulina platensis, Myxosarcina chroococcoides, Chlorogloea fritschii, Anabaena cylindrica, Anabaena flos-aquae, and Mastigocladus laminosus is reported.All contain major proportions of mono-and digalactosyl diglyceride, sulfoquinovosyl diglyceride, and phosphatidyl glycerol, but none possess lecithin, phophatidyl ethanolamine, or phosphatidyl inositol. Trans-3-hexadecenoic acid was absent from all extracts.The analyses provide further evidence that there is no general chemical or physical requirement for any specific fatty acid in photosynthesis. S. platensis is unique among photoautotrophic organisms so far studied, containing major quantities of gamma-linolenic acid (6,9,12-octadecatrienoic acid). This acid is synthesized by the alga by direct desaturation of linoleic acid and is primarily located in the mono- and digalactosyl diglyceride fractions.The possible phylogenetic relationship betweenS. platensis and other plant forms is discussed.

  13. Single-Mode, High Repetition Rate, Compact Ho:YLF Laser for Space-Borne Lidar Applications

    NASA Technical Reports Server (NTRS)

    Bai, Yingxin; Yu, Jirong; Wong, Teh-Hwa; Chen, Songsheng; Petros, Mulugeta; Singh, Upendra N.

    2014-01-01

    A single transverse/longitudinal mode, compact Q-switched Ho:YLF laser has been designed and demonstrated for space-borne lidar applications. The pulse energy is between 34-40 mJ for 100-200 Hz operation. The corresponding peak power is >1 MW.

  14. Identification of anatoxins in blue-green algae food supplements using liquid chromatography-tandem mass spectrometry.

    PubMed

    Draisci, R; Ferretti, E; Palleschi, L; Marchiafava, C

    2001-06-01

    Blue-green algae (cyanobacteria) in tablets and capsules, which are marketed as health food supplements, were investigated for the presence of neurotoxins related to anatoxin-a. These neurotoxins, which are nicotinic agonists, were investigated using isocratic micro-liquid chromatograph-tandem mass spectrometry (micro-LC-MS-MS). The investigated compounds were anatoxin-a and homoanatoxin-a, together with their degradation products, dihydroanatoxin-a, epoxyanatoxin-a, dihydrohomoanatoxin-a and epoxyhomoanatoxin-a which were synthesized from the parent toxins. The analytes were extracted with methanol followed by isocratic chromatography on a micro C18 reversed-phase column using acetonitrile-water, 50:50 (v/v), containing 20 mm acetic acid at 30 microl min(-1). The toxins were ionized in an ionspray (IS) interface operating in the positive ion mode, where the intact protonated molecules, [M + H]+, were generated at m/z 166, m/z 168, m/z 182, m/z 180, m/z 182 and m/z 196, for anatoxin-a, dihydroanatoxin-a, epoxyanatoxin-a, homoanatoxin-a, dihydrohomoanatoxin-a and epoxyhomoanatoxin-a, respectively. These served as precursor ions for collision-induced-dissociation (CID) and diagnostic product ions for these anatoxins were identified to carry out toxin confirmation by selected reaction monitoring (SRM) LC-MS-MS analysis. Dihydrohomoanatoxin-a and a novel isomer of epoxyanatoxin-a were identified in blue-green algae tablets. This finding suggests that a potential human health hazard could be associated with the consumption of these food supplements.

  15. KSbOSiO4 microcrystallites as a source of corrosion of blue-green lead-potassium glass beads of the 19th century

    NASA Astrophysics Data System (ADS)

    Yuryeva, T. V.; Afanasyev, I. B.; Morozova, E. A.; Kadikova, I. F.; Popov, V. S.; Yuryev, V. A.

    2017-01-01

    Presently, deterioration of glass beads is a significant problem in conservation and restoration of beaded exhibits in museums. Glass corrosion affects nearly all kinds of beads but cloudy blue-green ones are more than others subjected to disastrous destruction. However, physical and chemical mechanisms of this phenomenon have not been understood thus far. This article presents results of a study of elemental and phase composition of glass of the blue-green beads of the 19th century obtained from exhibits kept in Russian museums. Using scanning electron microscopy, X-ray microanalysis, and X-ray powder analysis, we have detected and investigated Sb-rich microinclusions in the glass matrix of these beads and found them to be micro crystallites of KSbSiO5. These crystallites were not detected in other kinds of beads which are much less subjected to corrosion than the blue-green ones and deteriorate in a different way. We believe that individual precipitates of KSbSiO5 and especially their clusters play a major role in the blue-green bead deterioration giving rise to slow internal corrosion of the bead glass.

  16. The influence of bubble populations generated under windy conditions on the blue-green light transmission in the upper ocean: An exploratory approach

    NASA Astrophysics Data System (ADS)

    Wang, Chengan; Tan, Jianyu; Lai, Qingzhi

    2016-12-01

    The “blue-green window” in the ocean plays an important role in functions such as communication between vessels, underwater target identification, and remote sensing. In this study, the transmission process of blue-green light in the upper ocean is analyzed numerically using the Monte Carlo method. First, the effect of total number of photons on the numerical results is evaluated, and the most favorable number is chosen to ensure accuracy without excessive costs for calculation. Then, the physical and mathematical models are constructed. The rough sea surface is generated under windy conditions and the transmission signals are measured in the far field. Therefore, it can be conceptualized as a 1D slab with a rough boundary surface. Under windy conditions, these bubbles form layers that are horizontally homogeneous and decay exponentially with depth under the influence of gravity. The effects of bubble populations on the process of blue-green light transmission at different wind speeds, wavelengths, angle of incidence and chlorophyll-a concentrations are studied for both air-incident and water-incident cases. The results of this study indicate that the transmission process of blue-green light is significantly influenced by bubbles under high wind-speed conditions.

  17. Compact scanning soft-x-ray microscope using a laser-produced plasma source and normal-incidence multilayer mirrors.

    PubMed

    Trail, J A; Byer, R L

    1989-06-01

    We have constructed a scanning soft-x-ray microscope that uses a laser-produced plasma as the soft-x-ray source and normal-incidence multilayer-coated mirrors in a Schwarzschild configuration as the focusing optics. The microscope operates at a wavelength of 14 nm, has a spatial resolution of 0.5 microm, and has a soft-x-ray photon flux through the focus of 10(4)-10(5) sec(-1) when operated with only 170 mW of average laser power. The microscope is compact; the complete system, including the laser, fits on a single optical table.

  18. A Novel Compact Electron Spectrometer for Hot Electron Measurement in Pulsed Laser Solid Interaction

    SciTech Connect

    Chen, H; Patel, P; Price, D F; Young, B K; Springer, P T; Berry, R; Booth, R; Bruns, C; Nelson, D

    2002-07-05

    Ultra-intense laser-matter interactions provide a unique source of temporally short, broad spectrum electrons, which may be utilized in many varied applications. One such, which we are pursuing, is as part of a novel diagnostic to trace magnetic field lines in a magnetically-confined fusion device. An essential aspect of this scheme is to have a detailed characterization of the electron angular and energy distribution. To this effect we designed and constructed a compact electron spectrometer that uses permanent magnets for electron energy dispersion and over 100 scintillating fibers coupled to a 1024 x 1024 pixel CCD as the detection system. This spectrometer has electron energy coverage from 10 keV to 2 MeV. We tested the spectrometer on a high intensity (10{sup 17} to 10{sup 21} W/cm{sup 2}) short pulse (< 100 fs) laser, JanUSP, at Lawrence Livermore National laboratory using various solid targets. The details of the spectrometer and the experimental results will be reported.

  19. Robust and compact entanglement generation from diode-laser-pumped four-wave mixing

    SciTech Connect

    Lawrie, B. J.; Yang, Y.; Eaton, M.; Black, A. N.; Pooser, R. C.

    2016-04-11

    Four-wave-mixing processes are now routinely used to demonstrate multi-spatial-mode Einstein- Podolsky-Rosen entanglement and intensity difference squeezing. Recently, diode-laser-pumped four-wave mixing processes have been shown to provide an affordable, compact, and stable source for intensity difference squeezing, but it was unknown if excess phase noise present in power amplifier pump configurations would be an impediment to achieving quadrature entanglement. Here, we demonstrate the operating regimes under which these systems are capable of producing entanglement and under which excess phase noise produced by the amplifier contaminates the output state. We show that Einstein-Podolsky-Rosen entanglement in two mode squeezed states can be generated by a four-wave-mixing source deriving both the pump field and the local oscillators from a tapered-amplifier diode-laser. In conclusion, this robust continuous variable entanglement source is highly scalable and amenable to miniaturization, making it a critical step toward the development of integrated quantum sensors and scalable quantum information processors, such as spatial comb cluster states.

  20. Robust and compact entanglement generation from diode-laser-pumped four-wave mixing

    DOE PAGES

    Lawrie, B. J.; Yang, Y.; Eaton, M.; ...

    2016-04-11

    Four-wave-mixing processes are now routinely used to demonstrate multi-spatial-mode Einstein- Podolsky-Rosen entanglement and intensity difference squeezing. Recently, diode-laser-pumped four-wave mixing processes have been shown to provide an affordable, compact, and stable source for intensity difference squeezing, but it was unknown if excess phase noise present in power amplifier pump configurations would be an impediment to achieving quadrature entanglement. Here, we demonstrate the operating regimes under which these systems are capable of producing entanglement and under which excess phase noise produced by the amplifier contaminates the output state. We show that Einstein-Podolsky-Rosen entanglement in two mode squeezed states can be generatedmore » by a four-wave-mixing source deriving both the pump field and the local oscillators from a tapered-amplifier diode-laser. In conclusion, this robust continuous variable entanglement source is highly scalable and amenable to miniaturization, making it a critical step toward the development of integrated quantum sensors and scalable quantum information processors, such as spatial comb cluster states.« less

  1. Robust and compact entanglement generation from diode-laser-pumped four-wave mixing

    SciTech Connect

    Lawrie, B. J. Pooser, R. C.; Yang, Y.; Eaton, M.; Black, A. N.

    2016-04-11

    Four-wave-mixing processes are now routinely used to demonstrate multi-spatial-mode Einstein-Podolsky-Rosen entanglement and intensity difference squeezing. Diode-laser-pumped four-wave mixing processes have recently been shown to provide an affordable, compact, and stable source for intensity difference squeezing, but it was unknown if excess phase noise present in power amplifier pump configurations would be an impediment to achieving quadrature entanglement. Here, we demonstrate the operating regimes under which these systems are capable of producing entanglement and under which excess phase noise produced by the amplifier contaminates the output state. We show that Einstein-Podolsky-Rosen entanglement in two mode squeezed states can be generated by a four-wave-mixing source deriving both the pump field and the local oscillators from a tapered-amplifier diode-laser. This robust continuous variable entanglement source is highly scalable and amenable to miniaturization, making it a critical step toward the development of integrated quantum sensors and scalable quantum information processors, such as spatial comb cluster states.

  2. Compact double optical feedback external-cavity diode laser system and its frequency stabilization

    NASA Astrophysics Data System (ADS)

    Doi, Kohei; Minabe, Yuta; Sato, Takashi; Maruyama, Takeo; Ohkawa, Masashi; Tsubokawa, Tsuneya

    2007-02-01

    External cavity diode laser (ECDL) systems are presently experiencing a surge in popularity as laser light-sources, in advanced optical communications- and measurement-systems. Because such systems require that their external reflectors be precisely controlled, to eliminate low frequency fluctuations (LFF) in optical output, we conducted experiments with a two-cavity version, which easily eliminated LFFs, as expected. The technique has the added advantage of a narrower oscillation-linewidth than would be achievable, using a single optical feedback. However, the ECDL's oscillation frequency is susceptible to the influences of the drive-current, as well as changes, both in the refractive index, and the overall length of the external reflector that results from fluctuations in atmospheric temperature. We made every effort to maintain the length of the ECDL cavity, while evaluating oscillation-frequency stability. We used a Super-Invar board as the platform for our compact ECDL system to minimize the influence of thermal expansion, because of its low expansion coefficient. We then compared the effect of atmospheric temperature variations between two experimental conditions, with the Super-invar board and without it, and finally took note of the improvement in performance, using the board.

  3. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator

    NASA Astrophysics Data System (ADS)

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles; Vitiello, Miriam S.

    2016-03-01

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology.

  4. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator

    PubMed Central

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles; Vitiello, Miriam S.

    2016-01-01

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology. PMID:26976199

  5. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator.

    PubMed

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H; Davies, A Giles; Vitiello, Miriam S

    2016-03-15

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology.

  6. Compact noise-like pulse fiber laser and its application for supercontinuum generation in highly nonlinear fiber.

    PubMed

    Xia, Handing; Li, Heping; Deng, Guanglei; Li, Jianfeng; Zhang, Shangjian; Liu, Yong

    2015-11-10

    We report on supercontinuum generation in a highly nonlinear fiber (HNLF) pumped by noise-like pulses (NLPs) emitted from a compact fiber ring laser. The compact erbium-doped fiber ring laser is constructed by using an optical integrated component and mode-locked by the nonlinear polarization rotation technique. The laser produces NLPs with a 3-dB spectral bandwidth of 60.2 nm, repetition rate of 9.36 MHz, and pulse energy of 2.8 nJ. Numerical simulations reproduce the generation of NLPs in the experiment. The NLPs are then launched into a 110-m-long HNLF and a supercontinuum with a 20-dB spectral width over 500 nm is obtained. Such a simple and inexpensive supercontinuum-generation system is a potential alternative for various practical applications.

  7. An efficient, compact pulsed D2O terahertz super-radiant laser pumped with a fundamental transverse mode transversely excited atmospheric pressure CO2 laser

    NASA Astrophysics Data System (ADS)

    Geng, Lijie; Ren, Deming; Zhao, Weijiang; Qu, Yanchen; Chen, Huiying; Du, Jun

    2013-02-01

    An efficient, compact pulsed D2O terahertz (THz) super-radiant laser pumped by a TEA (transversely excited atmospheric pressure) CO2 laser is presented. The pulse energy of the THz laser has been discussed as a function of CO2 laser pump energy, D2O gas pressure, and pump absorption. A pulse width of about 110 ns and the maximum pulse energy of about 1.3 mJ have been achieved at 385 μm, with pumping by a 378 mJ fundamental transverse mode TEA CO2 laser, and the photon conversion efficiency of 29% has been achieved. We have also studied the temporal behavior features such as the decay time, the full width at half-maximum, and the pulse broadening of the THz laser pulse compared with the pump pulse and the residual pump pulse at the optimum pressure.

  8. Post-acceleration of laser driven protons with a compact high field linac

    NASA Astrophysics Data System (ADS)

    Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Turchetti, Giorgio; Bolton, Paul R.

    2013-05-01

    We present a start-to-end 3D numerical simulation of a hybrid scheme for the acceleration of protons. The scheme is based on a first stage laser acceleration, followed by a transport line with a solenoid or a multiplet of quadrupoles, and then a post-acceleration section in a compact linac. Our simulations show that from a laser accelerated proton bunch with energy selection at ~ 30MeV, it is possible to obtain a high quality monochromatic beam of 60MeV with intensity at the threshold of interest for medical use. In the present day experiments using solid targets, the TNSA mechanism describes accelerated bunches with an exponential energy spectrum up to a cut-off value typically below ~ 60MeV and wide angular distribution. At the cut-off energy, the number of protons to be collimated and post-accelerated in a hybrid scheme are still too low. We investigate laser-plasma acceleration to improve the quality and number of the injected protons at ~ 30MeV in order to assure efficient post-acceleration in the hybrid scheme. The results are obtained with 3D PIC simulations using a code where optical acceleration with over-dense targets, transport and post-acceleration in a linac can all be investigated in an integrated framework. The high intensity experiments at Nara are taken as a reference benchmarks for our virtual laboratory. If experimentally confirmed, a hybrid scheme could be the core of a medium sized infrastructure for medical research, capable of producing protons for therapy and x-rays for diagnosis, which complements the development of all optical systems.

  9. Compact multichannel receiver using InGaAs APDs for single-pulse eye-safe laser radar imagery

    NASA Astrophysics Data System (ADS)

    Burns, Hoyt N.; Yun, Steven T.; Dinndorf, Kenneth M.; Hayden, David R.

    1997-08-01

    Active imaging laser radars form 3D images which can be processed to provide target identification and precision aimpoint definition in real time. Earlier raster-scanned and pushbroom-scanned 3D imaging laser radar receivers required multiple laser pulses to assemble a complete 3D image frame. Platform/target motion and atmospheric effects caused tearing and jitter in the assembled 3D images, which complicated the subsequent image processing and necessitated the use of stabilized scanning systems. This paper describes the current status of the parallel/multichannel imaging laser radar receiver (PMR) which is being developed under an SBIR Phaser II program by the USAF Wright Laboratories Armament Directorate. The PMR uses an array of multichannel laser radar receivers to form single-pulse, 3D laser radar images, thus eliminating the complex and costly scanning system, and enabling much higher frame rates than were ever before possible. The heart of the PMR is the multichannel optical receiver photonic hybrid (MORPH), a high performance 16-channel laser radar receiver module which uses an array of InGaAs avalanche photodiodes for eyesafe operation. The MORPH provides high downrange resolution, multihit range data for each detector on a compact circuit card. Optical flux is transferred from the receiver focal plane to each MORPH via a fiber optic ribbon cable. An array of MORPHs are plugged into a compact passive backplane, along with a single digital control card (DCC). The DCC, which is the same form factor as the MORPH, synchronizes the MORPHs and transfers the digital range information to the host processor over a standard parallel data interface cable. The system described here illustrates one approach to integrating and packaging high-density photonic arrays and their associated signal processing electronics to yield a compact, low power, scannerless, high performance imaging laser radar receiver, using existing technology.

  10. Compact Tunable Light Source Based on Non-Linear Optics. Topic Number AF94-011. Phase 1.

    DTIC Science & Technology

    1994-02-14

    process monitoring, tunable narrowband blue and green light is highly desirable. The ECDL doubler concept provides convenient tunability with little...increase in complexity. The propose to combine periodically poled waveguide technology with compact new ECDL designs to achieve a tunable blue/green

  11. Friction and wear behaviors of compacted graphite iron with different biomimetic units fabricated by laser cladding

    NASA Astrophysics Data System (ADS)

    Sun, Na; Shan, Hongyu; Zhou, Hong; Chen, Darong; Li, Xiaoyan; Xia, Wen; Ren, Luquan

    2012-07-01

    Mimicking the biological characters on the cuticles of pangolin scales, biomimetic units were fabricated on the surfaces of compacted graphite cast iron (CGI) with different unit materials using laser cladding process. The influences of various unit materials including TiC, WC, B4C and Al2O3 powders on the friction and wear behaviors of CGI were investigated. The wear resistance mechanism of biomimetic specimens was discussed. The results indicated that the wear resistance of biomimetic specimens cladding TiC was the best; the specimens cladding WC or B4C were in the middle; and the specimens cladding Al2O3 was the worst. The sequence of friction coefficient values of biomimetic specimens cladding different ceramic powders from high to low was B4C, TiC, WC and Al2O3. The wear mechanism of untreated specimen was mainly adhesion wear, abrasive wear as well as the oxidation wear, whereas the adhesive wear and abrasive wear was the main wear mechanism of the regions of substrate in biomimetic specimens and slight adhesion, abrasive wear and fatigue wear on the regions of biomimetic units.

  12. Compact compressive arc and beam switchyard for energy recovery linac-driven ultraviolet free electron lasers

    NASA Astrophysics Data System (ADS)

    Akkermans, J. A. G.; Di Mitri, S.; Douglas, D.; Setija, I. D.

    2017-08-01

    High gain free electron lasers (FELs) driven by high repetition rate recirculating accelerators have received considerable attention in the scientific and industrial communities in recent years. Cost-performance optimization of such facilities encourages limiting machine size and complexity, and a compact machine can be realized by combining bending and bunch length compression during the last stage of recirculation, just before lasing. The impact of coherent synchrotron radiation (CSR) on electron beam quality during compression can, however, limit FEL output power. When methods to counteract CSR are implemented, appropriate beam diagnostics become critical to ensure that the target beam parameters are met before lasing, as well as to guarantee reliable, predictable performance and rapid machine setup and recovery. This article describes a beam line for bunch compression and recirculation, and beam switchyard accessing a diagnostic line for EUV lasing at 1 GeV beam energy. The footprint is modest, with 12 m compressive arc diameter and ˜20 m diagnostic line length. The design limits beam quality degradation due to CSR both in the compressor and in the switchyard. Advantages and drawbacks of two switchyard lines providing, respectively, off-line and on-line measurements are discussed. The entire design is scalable to different beam energies and charges.

  13. Development of compact CW-IR laser deposition system for high-throughput growth of organic single crystals.

    PubMed

    Takeyama, Yoko; Maruyama, Shingo; Matsumoto, Yuji

    2011-10-01

    We developed a compact continuous-wave infrared (CW-IR) laser deposition system for the high-throughput growth of organic single crystals. In this system, two CW-IR lasers are used for the sample heating and thermal evaporation of materials. The CW-IR laser heating is simple and allows good control of the deposition rate and growth temperature, in response to the on/off laser switching. Six samples can be loaded simultaneously in a chamber, which allows one-by-one sequential deposition for high-throughput experiments, without breaking the vacuum. Using this setup, we studied the effect of ionic liquids on the growth of C60 crystals in vacuum.

  14. Laser experiments to simulate coronal mass ejection driven magnetospheres and astrophysical plasma winds on compact magnetized stars

    NASA Astrophysics Data System (ADS)

    Horton, W.; Ditmire, T.; Zakharov, Yu. P.

    2010-06-01

    Laboratory experiments using a plasma wind generated by laser-target interaction are proposed to investigate the creation of a shock in front of the magnetosphere and the dynamo mechanism for creating plasma currents and voltages. Preliminary experiments are shown where measurements of the electron density gradients surrounding the obstacles are recorded to infer the plasma winds. The proposed experiments are relevant to understanding the electron acceleration mechanisms taking place in shock-driven magnetic dipole confined plasmas surrounding compact magnetized stars and planets. Exploratory experiments have been published [P. Brady, T. Ditmire, W. Horton, et al., Phys. Plasmas 16, 043112 (2009)] with the one Joule Yoga laser and centimeter sized permanent magnets.

  15. Compact transversely diode-pumped Nd :YAG laser with a self-pumped phase-conjugate multiloop cavity

    NASA Astrophysics Data System (ADS)

    Burkovsky, G. V.; Fedin, A. V.; Pogoda, A. P.; Boreysho, A. S.

    2016-11-01

    A compact high-power repetitively pulsed Nd :YAG laser with transverse diode pumping and a multiloop self-pumped phase-conjugate cavity is presented. The obtained pulse trains have an energy of 2.55 {\\text{J}} with beam quality M2 ≤slant 1.2, a divergence of 0.35 {\\text{mrad}}, and a spatial brightness of 7 × 1014 {\\text{W cm}}-2 {\\text{sr}}-1. The peak power of single-frequency pulses exceeds 21 {\\text{MW}} at a pulse energy of 230 {\\text{mJ}}. The laser bandwidth is 300 {\\text{MHz}}.

  16. Compact and high repetition rate Kerr-lens mode-locked 532 nm Nd:YVO4 laser

    NASA Astrophysics Data System (ADS)

    Li, Zuohan; Peng, Jiying; Yuan, Ruixia; Wang, Tongtong; Yao, Jianquan; Zheng, Yi

    2015-11-01

    A compact and feasible CW Kerr-lens-induced mode-locked 532 nm Nd:YVO4 laser system was experimentally demonstrated for the first time with theoretical analysis. Kerr-lens mode locking with intracavity second harmonic generation provides a promising method to generate a high-repetition-rate picosecond green laser. With an incident pump power of 6 W, the average output power of mode locking was 258 mW at a high repetition rate of 1.1 GHz.

  17. Compact disposal of high-energy electron beams using passive or laser-driven plasma decelerating stage

    SciTech Connect

    Bonatto, A.; Schroeder, C. B.; Vay, J. -L.; Geddes, C. R.; Benedetti, C.; Esarey and, E.; Leemans, W. P.

    2014-07-13

    A plasma decelerating stage is investigated as a compact alternative for the disposal of high-energy beams (beam dumps). This could benefit the design of laser-driven plasma accelerator (LPA) applications that require transportability and or high-repetition-rate operation regimes. Passive and laser-driven (active) plasma-based beam dumps are studied analytically and with particle-in-cell (PIC) simulations in a 1D geometry. Analytical estimates for the beam energy loss are compared to and extended by the PIC simulations, showing that with the proposed schemes a beam can be efficiently decelerated in a centimeter-scale distance.

  18. Compact disposal of high-energy electron beams using passive or laser-driven plasma decelerating stage

    SciTech Connect

    Bonatto, A.; Schroeder, C. B.; Vay, J. -L.; Geddes, C. R.; Benedetti, C.; Esarey and, E.; Leemans, W. P.

    2014-07-13

    A plasma decelerating stage is investigated as a compact alternative for the disposal of high-energy beams (beam dumps). This could benefit the design of laser-driven plasma accelerator (LPA) applications that require transportability and or high-repetition-rate operation regimes. Passive and laser-driven (active) plasma-based beam dumps are studied analytically and with particle-in-cell (PIC) simulations in a 1D geometry. Analytical estimates for the beam energy loss are compared to and extended by the PIC simulations, showing that with the proposed schemes a beam can be efficiently decelerated in a centimeter-scale distance.

  19. Compact optical displacement sensing by detection of microwave signals generated from a monolithic passively mode-locked laser under feedback

    NASA Astrophysics Data System (ADS)

    Simos, Christos; Simos, Hercules; Nikas, Thomas; Syvridis, Dimitris

    2015-05-01

    A monolithic passively mode-locked laser is proposed as a compact optical sensor for displacements and vibrations of a reflecting object. The sensing principle relies on the change of the laser repetition frequency that is induced by optical feedback from the object under measurement. It has been previously observed that, when a semiconductor passively mode locked laser receives a sufficient level of optical feedback from an external reflecting surface it exhibits a repetition frequency that is no more determined by the mode-locking rule of the free-running operation but is imposed by the length of the external cavity. Therefore measurement of the resulting laser repetition frequency under self-injection permits the accurate and straightforward determination of the relative position of the reflecting object. The system has an inherent wireless capability since the repetition rate of the laser can be wirelessly detected by means of a simple antenna which captures the microwave signal generated by the saturable absorber and is emitted through the wiring of the laser. The sensor setup is very simple as it requires few optical components besides the laser itself. Furthermore, the deduction of the relative position of the reflecting object is straightforward and does not require any processing of the detected signal. The proposed sensor has a theoretical sub-wavelength resolution and its performance depends on the RF linewidth of the laser and the resolution of the repetition frequency measurement. Other physical parameters that induce phase changes of the external cavity could also be quantified.

  20. An ultra compact laser diode source for integration in a handheld point-of-care photoacoustic scanner

    NASA Astrophysics Data System (ADS)

    Kohl, A.; Canal, C.; Laugustin, A.; Rabot, O.

    2016-03-01

    Photoacoustics is a novel medical imaging technique with high potential for early detection of different diseases such as skin cancer or rheumatology. It is a hybrid modality with pulsed laser light for excitation of the tissue, and ultrasound as response. One of the hurdles for its introduction into the clinic, or even in clinical pilot studies and larger trials, is the bulkiness and price of existing photoacoustic systems. This presentation describes how recent developments in diode laser technology lead to a compact ultrasound scanner with built-in photoacoustic functionality. This is a key for the introduction of photoacoustic technology in the clinic and future point of care systems. We have developed a diode laser system and driver that deliver pulse energies which up to now were only achievable with Nd:YAG lasers. The efficiency and compactness allows integration in a handheld probe. The paper will highlights the laser technology and its radical integration with a medical ultrasound scanner, leading to a first prototype for clinical pilot studies.

  1. Design and development of a low pumping capacity, compact dc-discharge-excited cw HF chemical laser

    NASA Astrophysics Data System (ADS)

    Theodoropoulos, P.; Tsikrikas, G. N.; Kollia, Z.; Androulakis, J.; Serafetinides, Alexander A.

    1999-05-01

    The design and development of a compact, low cost, subsonic cw HF chemical laser with expected output power of the order of approximately 100 mWatts that requires less than 5 lt/s pumping capacity is presented. A theoretical estimation of the minimum pumping capacity required in order to obtain an output power of 100 mWatts is given. The laser operates with a He/SF6/H2/O2 gas mixture at an overall pressure of 4 - 8 mbar. A dc electric discharge is used for the SF6 dissociation. In order to operate at such low gas flow rates the mixing channel dimensions were reduced down to a cross section of 0.2 cm height by 13 cm width. Hydrogen is transversely injected into the flow through approximately 285 holes of 0.03 cm diameter. This low cost compact laser system is suitable for a wide range of experimental requiring mid-infrared cw laser radiation such as laser-tissue interactions and environmental studies.

  2. Compact and efficient 2μm Tm:YAP lasers with mechanical or passive Q-switching

    NASA Astrophysics Data System (ADS)

    Cole, Brian; Goldberg, Lew

    2017-02-01

    We describe compact and efficient Q-switched diode-pumped, Tm:YAP lasers operating at 1.94μm. Laser CW and Q-switched performance is compared, using both compact mechanical as well as passive Q-switching. For passive Q-switching using a Cr:ZnS saturable absorber (unsaturated transmission of 95%), the laser produced 0.5mJ pulses with an average power of 4.4W and 6.5kW peak power, and had an optical efficiency of 30%. A resonant mirror mechanical Q-switch resulted in a 4 kHz PRF pulse train, with an optical slope efficiency of 52% and an optical-to-optical conversion efficiency of 41%. The laser generated 1.5 mJ, 45 ns FWHM, 33kW peak power pulses, and 6.2W of average output. A second mechanically Q-switched laser operating at 10 kHz PRF produced 1mJ, 35kW peak power pulses, generating 11W average power with an optical efficiency of 46%, and a beam quality of 1.4x diffraction limit.

  3. Design and operational characteristics of a compact relativistic electron beam generator for the excitation of short wavelength lasers

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Murakami, H.; Saito, Y.; Yamagishi, A.; Inaba, H.

    1980-11-01

    A compact and simple high current relativistic electron beam (REB) generator for the excitation of lasers in the short wavelength region has been designed and constructed. The REB generator which includes a Tesla transformer-type high-voltage generator, a water pulse forming line, and a cold cathode electron gun, generates 250 keV, 15 kA, and 15 ns pulsed electron beams.

  4. Extreme ultraviolet tomography using a compact laser-plasma source for 3D reconstruction of low density objects.

    PubMed

    Wachulak, Przemyslaw W; Węgrzyński, Łukasz; Zápražný, Zdenko; Bartnik, Andrzej; Fok, Tomasz; Jarocki, Roman; Kostecki, Jerzy; Szczurek, Miroslaw; Korytár, Dusan; Fiedorowicz, Henryk

    2014-02-01

    A tomographic method for three-dimensional reconstruction of low density objects is presented and discussed. The experiment was performed in the extreme ultraviolet (EUV) spectral region using a desktop system for enhanced optical contrast and employing a compact laser-plasma EUV source, based on a double stream gas puff target. The system allows for volume reconstruction of transient gaseous objects, in this case gas jets, providing additional information for further characterization and optimization. Experimental details and reconstruction results are shown.

  5. Extremely compact capillary discharge-based soft x-ray lasers and their application to dense plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Rocca, Jorge

    2002-11-01

    Several applications, including the diagnostics of dense plasmas, require bright beams of coherent soft x-ray radiation. Recently significant progress has been made in the development of very compact high brightness soft x-ray lasers with excellent spatial coherence based on fast capillary discharges. Fast discharge-driven compressions in capillary channels produce axially uniform plasmas columns of narrow diameter in which saturated laser amplification is produced by collisional electron excitation of Ne-like ions. With laser pulse energies of several hundred μJ, peak spectral brightness of ˜ 2× 10^25 photons/ (s mm ^2 mrad ^2 0.01% bandwidth) and repetition rate of several Hz, the 46.9 nm the table-top Ne-like Ar capillary discharge laser has been successfully used in several applications. In long capillary plasma columns strong refractive anti-guiding and gain guiding act as an intrinsic mode selection mechanism that makes it possible to achieve essentially full spatial coherence. Such soft x-ray laser beams can probe scale-lengths and plasma densities beyond the limits that plasma refraction and absorption impose on optical laser probes, as initially demonstrated at Lawrence Livermore National Lab with a laboratory-size soft x-ray laser pumped by the Nova laser. With similar brightness, but much higher repetition rate and smaller foot print, the Ne-like Ar capillary discharge laser was used in the first table-top soft x-ray laser plasma diagnostics experiments, that include the shadowgraphy of micro-capillary discharges and interferometry of laser-created plasmas. In combination with a Mach-Zehnder interferometer that uses diffraction gratings as beam splitters it was used to study two-dimensional hydrodynamic effects in laser-created plasmas. Interferograms of plasmas generated at relatively low irradiation intensities (1×10^11- 7×10^12 W cm_2) with 13 ns FWHM duration light pulses revealed the unexpected formation of a concave density profile with a

  6. Compact and portable terahertz source based on frequency mixing using dual-frequency solid-state laser

    NASA Astrophysics Data System (ADS)

    Ding, Yujie J.; Zhao, Pu; Li, Da

    2012-03-01

    We review the recent progress made by us on power scaling of terahertz (THz) waves and development of compact and portable THz sources. By reversely stacking GaP plates, we were able to improve the photon conversion efficiency from 25% to 40%, which is the record-high value. As the number of the stacked GaP plates was increased from 4 to 5, the output power was decreased. This is the evidence on back conversion. In order to make our THz source truly compact and portable, we investigated a new route to THz generation by mixing two frequencies generated by a single Nd:YLF solid-state laser. After two Nd:YLF crystals were introduced in the laser cavity, the output power was scaled up to 4.5 μW. Such a configuration exhibits versatile characteristics such as the generation of different THz frequencies by combining two different laser crystals. Our recent investigation of THz generation based on passively Q-switched dual-frequency pulses may help us with further reducing the dimension of our compact and portable THz source.

  7. Characteristics of InGaN-Based UV/Blue/Green/Amber/Red Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Mukai, Takashi; Yamada, Motokazu; ShujiNakamura, ShujiNakamura

    1999-07-01

    Highly efficient light-emitting diodes (LEDs) emitting ultraviolet (UV), blue, green, amber and red light have been obtained through the use of InGaN active layers instead of GaN active layers. Red LEDs with an emission wavelength of 675 nm, whose emission energy was almost equal to the band-gap energy of InN, were fabricated. The dependence of the emission wavelength of the red LED on the current (blue shift) is dominated by both the band-filling effect of the localized energy states and the screening effect of the piezoelectric field. In the red LEDs, a phase separation of the InGaN layer was clearly observed in the emission spectra, in which blue and red emission peaks appeared. In terms of the temperature dependence of the LEDs, InGaN LEDs are superior to the conventional red and amber LEDs due to a large band offset between the active and cladding layers. The localized energy states caused by In composition fluctuation in the InGaN active layer contribute to the high efficiency of the InGaN-based emitting devices, in spite of the large number of threading dislocations and a large effect of the piezoelectric field. The blue and green InGaN-based LEDs had the highest external quantum efficiencies of 18% and 20% at low currents of 0.6 mA and 0.1 mA, respectively.

  8. Metal-enhanced fluorescence of graphene oxide by palladium nanoparticles in the blue-green part of the spectrum

    NASA Astrophysics Data System (ADS)

    Omidvar, A.; RashidianVaziri, M. R.; Jaleh, B.; Partovi Shabestari, N.; Noroozi, M.

    2016-11-01

    Graphene oxide (GO) has a wide fluorescence bandwidth, which makes it a prospective candidate for numerous applications. For many of these applications, the fluorescence yield of GO should be further increased. The sp2-hybridized carbons in GO confine the π-electrons. Radiative recombination of electron-hole pairs in such sp2 clusters is the source of fluorescence in this material. Palladium nanoparticles are good catalysts for sp2 bond formations. We report on the preparation of GO, palladium nanoparticles and their nanocomposites in two different solvents. It is shown that palladium nanoparticles can considerably enhance the intrinsic fluorescence of GO in the blue-green part of the visible light spectrum. Fluorescence enhancement has been attributed to the catalytic role of palladium nanoparticles in increasing the number of sp2 bonds of GO with the molecules of the surrounding media. It is shown that palladium nanoparticles could be the nanoparticle of choice for fluorescence enhancement of GO because of their catalytic role in sp2 bond formation.

  9. Hydrogen peroxide photoproduction by immobilized cells of the blue-green alga Anabaena variabilis: A way to solar energy conversion

    SciTech Connect

    Morales, I.; La Rosa, F.F. de )

    1992-07-01

    A photosystem for hydrogen peroxide photoproduction formed by immobilized cells of the blue-green alga, Anabaena variabilis and the redox mediator methyl viologen is described. Hydrogen peroxide is produced in a redox catalyst cycle in which methyl viologen is reduced by electrons from water obtained by the photosynthetic apparatus of the algae using solar energy, and reoxidized by the introduction of oxygen into the solution. Hydrogen peroxide is produced during methyl viologen re-oxidation in two steps by means of the formation of superoxide. Experimental conditions for maximum photoproduction (catalyst charge, chlorophyll, and agar final concentration for cell immobilization) have been investigated using a continuous photosystem with immobilized A. variabilis as photocatalyst. Under the determined optimum conditions, the photosystem with immobilized A. variabilis is photocatalyst. Under the determined optimum conditions, the photosystem produces hydrogen peroxide at a rate of 100 {mu}moles/mg Chl{center dot}h, maintaining the production for several hours, and with an energy conversion efficiency of about 2%. Taking into account the use of hydrogen peroxide as fuel, this photosystem can be a useful tool in the storage of solar energy.

  10. Quality evaluation of the edible blue-green alga Nostoc flagelliforme using a chlorophyll fluorescence parameter and several biochemical markers.

    PubMed

    Gao, Xiang; Yang, Yiwen; Ai, Yufeng; Luo, Hongyi; Qiu, Baosheng

    2014-01-15

    Nostoc flagelliforme is an edible blue-green alga with herbal and dietary values. Due to the diminishing supply of natural N. flagelliforme and the large investment on the development of its cultivation technology, it is anticipated that artificially cultured N. flagelliforme will soon sustain the market supply. Once this change occurs, the storage-associated quality problem will become the focus of attention for future trade. In this paper, we used a chlorophyll fluorescence parameter, maximum quantum efficiency of Photosystem II (Fv/Fm), and several biomarkers to evaluate the quality of several N. flagelliforme samples. It was found that longer storage times resulted in darker coloured solutions (released pigments) and decreased amounts of chlorophyll a (Chl a) and water-soluble sugars (WSS). Additionally, a higher Fv/Fm value suggests better physiological recovery and quality. In actual application, determination of Fv/Fm would be the first step for evaluating the quality of N. flagelliforme, and the biochemical indexes would serve as good secondary markers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Effects of blue-green algae extracts on the proliferation of human adult stem cells in vitro: a preliminary study.

    PubMed

    Shytle, Douglas R; Tan, Jun; Ehrhart, Jared; Smith, Adam J; Sanberg, Cyndy D; Sanberg, Paul R; Anderson, Jerry; Bickford, Paula C

    2010-01-01

    Adult stem cells are known to have a reduced restorative capacity as we age and are more vulnerable to oxidative stress resulting in a reduced ability of the body to heal itself. We have previously reported that a proprietary nutraceutical formulation, NT-020, promotes proliferation of human hematopoietic stem cells in vitro and protects stem cells from oxidative stress when given chronically to mice in vivo. Because previous reports suggest that the blue green algae, Aphanizomenon flos-aquae (AFA) can modulate immune function in animals, we sought to investigate the effects of AFA on human stem cells in cultures. Two AFA products were used for extraction: AFA whole (AFA-W) and AFA cellular concentrate (AFA-C). Water and ethanol extractions were performed to isolate active compounds for cell culture experiments. For cell proliferation analysis, human bone marrow cells or human CD34+ cells were cultured in 96 well plates and treated for 72 hours with various extracts. An MTT assay was used to estimate cell proliferation. We report here that the addition of an ethanol extract of AFA-cellular concentrate further enhances the stem cell proliferative action of NT-020 when incubated with human adult bone marrow cells or human CD34+ hematopoietic progenitors in culture. Algae extracts alone had only moderate activity in these stem cell proliferation assays. This preliminary study suggests that NT-020 plus the ethanol extract of AFA cellular concentrate may act to promote proliferation of human stem cell populations.

  12. Antioxidant properties of a novel phycocyanin extract from the blue-green alga Aphanizomenon flos-aquae.

    PubMed

    Benedetti, Serena; Benvenuti, Francesca; Pagliarani, Silvia; Francogli, Sonia; Scoglio, Stefano; Canestrari, Franco

    2004-09-24

    Aphanizomenon flos-aquae (AFA) is a fresh water unicellular blue-green alga (cyanophyta) rich in phycocyanin (PC), a photosynthetic pigment with antioxidant and anti-inflammatory properties. The purpose of this study was to evaluate the ability of a novel natural extract from AFA enriched with PC to protect normal human erythrocytes and plasma samples against oxidative damage in vitro. In red blood cells, oxidative hemolysis and lipid peroxidation induced by the aqueous peroxyl radical generator [2,2'-Azobis (2-amidinopropane) dihydrochloride, AAPH] were significantly lowered by the AFA extract in a time- and dose-dependent manner; at the same time, the depletion of cytosolic glutathione was delayed. In plasma samples, the natural extract inhibited the extent of lipid oxidation induced by the pro-oxidant agent cupric chloride (CuCl2); a concomitant increase of plasma resistance to oxidation was observed as evaluated by conjugated diene formation. The involvement of PC in the antioxidant protection of the AFA extract against the oxidative damage was demonstrated by investigating the spectral changes of PC induced by AAPH or CuCl2. The incubation of the extract with the oxidizing agents led to a significant decrease in the absorption of PC at 620 nm accompanied with disappearance of its blue color, thus indicating a rapid oxidation of the protein. In the light of these in vitro results, the potential clinical applications of this natural compound are under investigation.

  13. A facile and effective strategy to synthesize orthorhombic Sr2Al6O11:Eu2+,Dy3+ with blue-green persistent luminescence

    NASA Astrophysics Data System (ADS)

    Han, Juan; Jiang, Ziqiu; Zhang, Wenyan; Hao, Lingyun; Ni, Yaru; Lu, Chunhua; Xu, Zhongzi

    2017-01-01

    Sr2Al6O11:Eu2+,Dy3+ is known as a high efficient material for generating persistent luminescence. Due to its low structural stability, it is a challenge to prepare such orthorhombic material in large scale. In this work, a facile and effective strategy was designed for the preparation of Sr2Al6O11:Eu2+,Dy3+ with high purity by combining the advantages of solid state reaction and chemical vapor deposition method. The prepared Sr2Al6O11:Eu2+,Dy3+ could effectively store the UV light energy and emit blue-green luminescence for 240 min by slow liberation of photo-excited electrons. Its blue-green afterglow was composed of two luminescent emissions which released from the Eu centers located in different crystal fields.

  14. Compact-beam stable-unstable resonator for free-electron laser. Phase 2, Final report

    SciTech Connect

    Paxton, A.H.; White, C.J.; Boyd, T.L.; Schmitt, M.J.; Aldrich, C.H.

    1991-10-01

    A significant problem in the design of high-energy free-electron lasers (FELs) centers on the technique for outcoupling the output beam. FELs with currently achievable output power usually include a conventional stable resonator with output through a partially transmitting mirror which will not work for arbitrarily high average power. An alternate scheme must be found for high-energy FELs. A high- efficiency grating outcoupler is an attractive possibility, but it is difficult to manufacture. Other suggestions include unstable resonators with an intracavity focus and unstable resonators with an intracavity focus and beam rotation. The intensity distribution at the intracavity focus of a negative-branch unstable resonator has side-lobes that would be scraped off by the faces of the wiggler magnets or by the beam tube through the wiggler. The resulting power loss would be significant. Therefore, it is desirable to develop another type of resonator for use with FELs. The resonator that we have developed is the compact-beam stable-unstable ring resonator. It is a stable resonator in one transverse dimension and an unstable resonator with an intracavity focus in the orthogonal transverse dimension. A scraper mirror outcouples the output beam from one side of the mode only. The resonator can be configured so that it has a small beam waist at the center of the wiggler in the stable direction and has an intracavity focus in the unstable direction. The half- width of the central lobe of the focus is approximately the size of the stable beam waist. In the stable direction, the Gaussian amplitude distribution results in a small loss on the wiggler magnets, or on a beam tube that will fit within the wiggler, if one is used. The beam tube can have an elliptical shape to permit the passage of several side lobes in the unstable dimension. A mode of the CBSUR is a product of the mode of a strip stable resonator with a strip compact-beam negative-branch unstable resonator.

  15. Investigation on Toxins and Venoms by Novel MS Techniques. Mass Spectral Investigations on Blue-Green Algal Toxic Peptides and Other Toxins

    DTIC Science & Technology

    1990-08-15

    HPLC column and detection by Thermospray-MS techniques. INTRODUCTION Most of the naturally occurring peptides and proteins are made up of 1-amino...in various hydrolysates of the blue-green algal peptides . The observed sensitivity for most amino acids was in the picomole range. The unknown...with Marfey’s Reagent: Amino acid standards or hydrolysates of peptides (200 pmole - 50 nmole) in aqueous solution (50-100 gl) was treated with 1

  16. Compact, lightweight CO/sub 2/ lasers for SDIO applications. Final report, 30 September 1988-31 March 1989

    SciTech Connect

    Jacob, J.

    1989-04-11

    During the past decade, substantial investments have been made in the development of gas-discharge-pumped CO/sub 2/ lasers for military and civilian applications. The DoD community and SDIO in particular is developing compact, lightweight CO/sub 2/ lasers for airborne and spaced-based radar applications directed toward target ranging, imaging, and discrimination. These CO/sub 2/ laser systems are being developed under the SDIO Lowkater Program, in the Airborne Laser Experiment (ALE) Program by the Army/SDC and in Lincoln Laboratory's space based CO/sub 2/ laser radar research and development program. The three major components of a CO/sub 2/ laser radar are the laser head and flow loop, the pulsed-power system and the optics and beam-control system. In this report, SRL presents a novel self-sustained discharge concept that should result in the stable and efficient extraction of large specific energies (50 J/liter atmosphere) for pulse lengths as long as 100 micro s.

  17. A second conserved GAF domain cysteine is required for the blue/green photoreversibility of cyanobacteriochrome Tlr0924 from Thermosynechococcus elongatus.

    PubMed Central

    Rockwell, Nathan C.; Njuguna, Stephanie Lane; Roberts, Laurel; Castillo, Elenor; Parson, Victoria L.; Dwojak, Sunshine; Lagarias, J. Clark; Spiller, Susan C.

    2008-01-01

    Phytochromes are widely occurring red/far-red photoreceptors that utilize a linear tetrapyrrole (bilin) chromophore covalently bound within a knotted PAS-GAF domain pair. Cyanobacteria also contain more distant relatives of phytochromes that lack this knot, such as the phytochrome-related cyanobacteriochromes implicated to function as blue/green switchable photoreceptors. In this study, we characterize the cyanobacteriochrome Tlr0924 from the thermophilic cyanobacterium Thermosynechococcus elongatus. Full-length Tlr0924 exhibits blue/green photoconversion across a broad range of temperatures, including physiologically relevant temperatures for this organism. Spectroscopic characterization of Tlr0924 demonstrates that its green-absorbing state is in equilibrium with a labile, spectrally distinct blue-absorbing species. The photochemically generated blue-absorbing state is in equilibrium with another species absorbing at longer wavelengths, giving a total of 4 states. Cys499 is essential for this behavior, because mutagenesis of this residue results in red-absorbing mutant biliproteins. Characterization of the C499D mutant protein by absorbance and CD spectroscopy supports the conclusion that its bilin chromophore adopts a similar conformation to the red-light-absorbing Pr form of phytochrome. We propose a model photocycle in which Z/E photoisomerization of the 15/16 bond modulates formation of a reversible thioether linkage between Cys499 and C10 of the chromophore, providing the basis for the blue/green switching of cyanobacteriochromes. PMID:18549244

  18. Consideration of coordinated solar tracking of an array of compact solar-pumped lasers combined with photovoltaic cells for electricity generation

    NASA Astrophysics Data System (ADS)

    Motohiro, Tomoyoshi; Ichiki, Akihisa; Ichikawa, Tadashi; Ito, Hiroshi; Hasegawa, Kazuo; Mizuno, Shintaro; Ito, Tadashi; Kajino, Tsutomu; Takeda, Yasuhiko; Higuchi, Kazuo

    2015-08-01

    A monochromatic laser light with a photon energy just above the band edge of photovoltaic cells can be converted into electricity with minimal thermal loss. To attain efficient conversion of sunlight to laser light, a coordinated solar tracking system for an array of originally designed compact solar-pumped lasers of 50 mm aperture diameter is being constructed. As for the feasibility of this system, a prototype with a holding capacity of 25 compact solar-pumped lasers has been fabricated. The primary requisite of this system is that the angular accuracy of tracking should be below 1 mrad for all 25 compact solar-pumped lasers to sustain their continuous lasing. To realize this, imperative challenges have been elucidated including thermal expansion under sunlight. A prototype fabricated with its main frame made of Super Invar alloy was found to fulfill the requisite by measurement using a three-dimensional coordinate measuring machine.

  19. Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic-wire waveguide micro-ring resonators.

    PubMed

    Chu, Tao; Fujioka, Nobuhide; Ishizaka, Masashige

    2009-08-03

    A wavelength tunable laser with an SOA and external double micro-ring resonator, which is fabricated with silicon photonic-wire waveguides, is demonstrated. To date, it is the first wavelength tunable laser fabricated with silicon photonic technology. The device is ultra compact, and its external resonator footprint is 700 x 450 microm, which is about 1/25 that of conventional tunable lasers fabricated with SiON waveguides. The silicon resonator shows a wide tuning range covering the C or L bands for DWDM optical communication. We obtained a maximum tuning span of 38 nm at a tuning power consumption of 26 mW, which is about 1/8 that of SiON-type resonators.

  20. Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source

    NASA Astrophysics Data System (ADS)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Frydrych, S.; Kroll, F.; Joost, M.; Al-Omari, H.; Blažević, A.; Zielbauer, B.; Hofmann, I.; Bagnoud, V.; Cowan, T. E.; Roth, M.

    2013-10-01

    Laser ion acceleration provides for compact, high-intensity ion sources in the multi-MeV range. Using a pulsed high-field solenoid, for the first time high-intensity laser-accelerated proton bunches could be selected from the continuous exponential spectrum and delivered to large distances, containing more than 109 particles in a narrow energy interval around a central energy of 9.4 MeV and showing ≤30mrad envelope divergence. The bunches of only a few nanoseconds bunch duration were characterized 2.2 m behind the laser-plasma source with respect to arrival time, energy width, and intensity as well as spatial and temporal bunch profile.

  1. Blue-green laser-diode research program. Quarterly progress report No. 3, 1 October-31 December 1986

    SciTech Connect

    Smith, T.L.; Walker, C.T.

    1987-01-01

    During this reporting period, efforts were begun to incorporate Na and N acceptors in ZnSe. Other efforts underway included studies of the efforts of growth rate on unintentionally-doped ZnSe, studies of the effectiveness of present substrate-preparation procedures, studies of gain and dynamics in electron-beam-pumped lasing, Schottky and ohmic contact work, growth of ZnSe on Si using ZnSe/Ge superlattice buffer layers, and x-ray double-crystal rocking-curve comparative studies of the structure of ZnSe/GaAs and ZnSe/Ge. Significant progress was made in all of the above areas.

  2. Gas-source molecular beam epitaxy of MgZnSSe for fabricating blue/green laser diodes

    NASA Astrophysics Data System (ADS)

    Imaizumi, Masayuki; Endoh, Yasuyuki; Suita, Muneyoshi; Sugimoto, Hiroshi; Ohtsuka, Ken-ichi; Isu, Toshiro; Ozeki, Tatsuo

    1996-11-01

    MgZnSSe layers were successfully grown by gas-source molecular beam epitaxy using hydride group VI sources. Employing n-type dopant Ga, Mg xZn 1- xS 0.12Se 0.88 layers (0 ≤ x ≤ 0.12) with electron concentrations in the 10 17 cm -3 range were obtained. The electron mobility was around 200 cm 2/V · s. with an increase in the Mg composition, the Ga donor ionization energy increased markedly. Active nitrogen was doped into the MgZnSSe layers for p-type control. Net acceptor concentrations of the p-Mg xZn 1- xS 0.15Se 0.85 layers were 4.5 × 10 17 cm -3 for x = 0 and 1.8 × 10 17 cm -3 for x = 0.10, which were comparable to the highest values ever reported. ZnCdSeMgZnSSe SCH-SQW LDs have been fabricated. Lasing was observed up to 203 K. The threshold current density was 420 A/cm 2 at 77 K and 1.8 kA/cm 2 at 203 K.

  3. Compact KGd(WO4)2 picosecond pulse-train synchronously pumped broadband Raman laser.

    PubMed

    Gao, Xiao Qiang; Long, Ming Liang; Meng, Chen

    2016-08-20

    We demonstrate an efficient approach to realizing an extra-cavity, synchronously pumped, stimulated Raman cascaded process under low repetition frequency (1 kHz) pump conditions. We also construct a compact KGd(WO4)2 (KGW) crystal picosecond Raman laser that has been configured as the developed method. A pulse-train green laser pumped the corresponding 70 mm long KGW crystal Raman cavity. The pulse train contains six pulses, about 800 ps separated, for every millisecond; thus, it can realize synchronous pumping between pump pulse and the pumped Raman cavity. The investigated system produced a collinear Raman laser output that includes six laser lines covering the 532 to 800 nm spectra. This is the first report on an all-solid-state, high-average-power picosecond collinear multi-wavelength (more than three laser components) laser to our knowledge. This method has never been reported on before in the synchronously pumped stimulated Raman scattering (SRS) realm.

  4. Promotive effect of se on the growth and antioxidation of a blue-green alga Spirulina maxima

    NASA Astrophysics Data System (ADS)

    Zhi-Gang, Zhou; Zhi-Li, Liu

    1998-12-01

    Cultures of a blue-green alga Spirulina maxima (Setch. et Gard.) Geitler with various concentrations of Se in Zarrouk's medium showed that not higher than 40 mg/L Se could promote its growth. The present experiments showed that S. maxima grown under normal conditions, has an oxidant stress defence system for hydrogen peroxide (H2O2) removal, which is the Halliwell-Asada pathway. When 4 to 20 mg/L Se was added to the algal medium, this pathway was replaced by a so-called Sestressed pathway containing GSH peroxidase (GSH-POD). As a result of the occurrence of both higher activity of GSH-POD and lower levels of hydroxyl radical (OH·), the Se-stressed pathway scavenged H2O2 so effectively that the growth of S. maxima was promoted by 4 to 20 mg/L Se. While GSH-POD activity of the alga disappeared at 40 mg/L Se, the recovery of ascorbate peroxidase was observed. The lower levels of ascorbic acid and GSH made the Halliwell-Asada pathway for scavenging H2O2 less effective, while the highest activity of catalase might be responsible in part for the H2O2 removal, causing the level of OH· in S. maxima grown at 40 mg/L Se to be much higher than the OH· level in this alga grown at 4 to 20 mg/L Se, but lower than that in the control. The OH· level changes caused the growth of S. maxima cultured at 40 mg/L Se to increase slightly to close to that of the control.

  5. Aesthetically pleasing conjugated polymer:fullerene blends for blue-green solar cells via roll-to-roll processing.

    PubMed

    Amb, Chad M; Craig, Michael R; Koldemir, Unsal; Subbiah, Jegadesan; Choudhury, Kaushik Roy; Gevorgyan, Suren A; Jørgensen, Mikkel; Krebs, Frederik C; So, Franky; Reynolds, John R

    2012-03-01

    The practical application of organic photovoltaic (OPV) cells requires high throughput printing techniques in order to attain cells with an area large enough to provide useful amounts of power. However, in the laboratory screening of new materials for OPVs, spin-coating is used almost exclusively as a thin-film deposition technique due its convenience. We report on the significant differences between the spin-coating of laboratory solar cells and slot-die coating of a blue-green colored, low bandgap polymer (PGREEN). This is one of the first demonstrations of slot-die-coated polymer solar cells OPVs not utilizing poly(3-hexylthiophene):(6,6)-phenyl-C(61)-butyric acid methyl ester (PCBM) blends as a light absorbing layer. Through synthetic optimization, we show that strict protocols are necessary to yield polymers which achieve consistent photovoltaic behavior. We fabricated spin-coated laboratory scale OPV devices with PGREEN: PCBM blends as active light absorbing layers, and compare performance to slot die-coated individual solar cells, and slot-die-coated solar modules consisting of many cells connected in series. We find that the optimum ratio of polymer to PCBM varies significantly when changing from spin-coating of thinner active layer films to slot-die coating, which requires somewhat thicker films. We also demonstrate the detrimental impacts on power conversion efficiency of high series resistance imparted by large electrodes, illustrating the need for higher conductivity contacts, transparent electrodes, and high mobility active layer materials for large-area solar cell modules.

  6. Inorganic Carbon Accumulation and Photosynthesis in a Blue-green Alga as a Function of External pH 1

    PubMed Central

    Coleman, John R.; Colman, Brian

    1981-01-01

    The blue-green alga Coccochloris peniocystis photosynthesizes optimally over the pH range of 7.0 to 10.0, but the O2-evolution rate is inhibited below pH 7.0 and ceases below pH 5.25. Measurement of the inorganic carbon pool in this alga in the light, using the silicone-fluid filtration technique demonstrated that the rate of accumulation of dissolved inorganic carbon remained relatively constant over a wide pH range. At external dissolved inorganic carbon concentrations of 0.56 to 0.89 millimolar the internal concentration after 30 seconds illumination was greater than 3.5 millimolar over the entire pH range. Intracellular pH measured in the light using [14C]5,5-dimethyloxazolidine-2,4-dione and [14C]methylamine dropped from pH 7.6 at an external pH of 7.0 to pH 6.6 at an external pH of 5.25. Above an external pH of 7.0 the intracellular pH rose gradually to pH 7.9 at an external pH 10.0. Ribulose-1,5-bisphosphate carboxylase activity of cell-free algal extracts exhibited optimal activity at pH 7.5 to 7.8 but was inactive below pH 6.5. It is suggested that the inability of Coccochloris to maintain its intracellular pH when in an acidic environment restricts its photosynthetic capacity by a direct pH effect on the principal CO2 fixing enzyme. PMID:16661792

  7. Recovery of photosynthesis and growth rate in green, blue-green, and diatom algae after exposure to atrazine.

    PubMed

    Brain, Richard A; Arnie, Joshua R; Porch, John R; Hosmer, Alan J

    2012-11-01

    We evaluated the recovery of photosynthesis and growth rate in green (Pseudokirchneriella subcapitata), blue-green (Anabaena flos-aquae), and diatom (Navicula pelliculosa) algae after pulsed exposure to atrazine. Subsequent to a grow-up period of 24 to 72 h to establish requisite cell density for adequate signal strength to measure photosystem II (PSII) quantum yield, algae were exposed to a pulse of atrazine for 48 h followed by a 48-h recovery period in control media. Photosynthesis was measured at 0, 3, 6, 12, 24, and 48 h of the exposure and recovery phases using pulse amplitude modulation fluorometry; growth rate and cell density were also concomitantly measured at these time points. Exposure to atrazine resulted in immediate, but temporary, inhibition of photosynthesis and growth; however, these effects were transient and fully reversible in the tested species of algae. For all three algal species, no statistically significant reductions (p ≤ 0.05) in growth rate or PSII quantum yield were detected at any of the treatment concentrations 48 h after atrazine was removed from the test system. Effects at test levels up to the highest tested exposure levels were consequently determined to be algistatic (reversible). Both biochemically and physiologically, recovery of photosynthesis and growth rate occur immediately, reaching control levels within hours following exposure. Therefore, pulsed exposure profiles of atrazine typically measured in Midwestern U.S. streams are unlikely to result in biologically meaningful changes in primary production given that the effects of atrazine are temporary and fully reversible in species representative of native populations.

  8. Anti-cancer effects of blue-green alga Spirulina platensis, a natural source of bilirubin-like tetrapyrrolic compounds.

    PubMed

    Koníčková, Renata; Vaňková, Kateřina; Vaníková, Jana; Váňová, Kateřina; Muchová, Lucie; Subhanová, Iva; Zadinová, Marie; Zelenka, Jaroslav; Dvořák, Aleš; Kolář, Michal; Strnad, Hynek; Rimpelová, Silvie; Ruml, Tomáš; J Wong, Ronald; Vítek, Libor

    2014-01-01

    Spirulina platensis is a blue-green alga used as a dietary supplement because of its hypocholesterolemic properties. Among other bioactive substances, it is also rich in tetrapyrrolic compounds closely related to bilirubin molecule, a potent antioxidant and anti-proliferative agent. The aim of our study was to evaluate possible anticancer effects of S. platensis and S. platensis-derived tetrapyrroles using an experimental model of pancreatic cancer. The anti-proliferative effects of S. platensis and its tetrapyrrolic components [phycocyanobilin (PCB) and chlorophyllin, a surrogate molecule for chlorophyll A] were tested on several human pancreatic cancer cell lines and xenotransplanted nude mice. The effects of experimental therapeutics on mitochondrial reactive oxygen species (ROS) production and glutathione redox status were also evaluated. Compared to untreated cells, experimental therapeutics significantly decreased proliferation of human pancreatic cancer cell lines in vitro in a dose-dependent manner (from 0.16 g•L-1 [S. platensis], 60 μM [PCB], and 125 μM [chlorophyllin], p<0.05). The anti-proliferative effects of S. platensis were also shown in vivo, where inhibition of pancreatic cancer growth was evidenced since the third day of treatment (p < 0.05). All tested compounds decreased generation of mitochondrial ROS and glutathione redox status (p = 0.0006; 0.016; and 0.006 for S. platensis, PCB, and chlorophyllin, respectively). In conclusion, S. platensis and its tetrapyrrolic components substantially decreased the proliferation of experimental pancreatic cancer. These data support a chemopreventive role of this edible alga. Furthermore, it seems that dietary supplementation with this alga might enhance systemic pool of tetrapyrroles, known to be higher in subjects with Gilbert syndrome.

  9. Life cycle energy and greenhouse gas emissions for an ethanol production process based on blue-green algae.

    PubMed

    Luo, Dexin; Hu, Zushou; Choi, Dong Gu; Thomas, Valerie M; Realff, Matthew J; Chance, Ronald R

    2010-11-15

    Ethanol can be produced via an intracellular photosynthetic process in cyanobacteria (blue-green algae), excreted through the cell walls, collected from closed photobioreactors as a dilute ethanol-in-water solution, and purified to fuel grade ethanol. This sequence forms the basis for a biofuel production process that is currently being examined for its commercial potential. In this paper, we calculate the life cycle energy and greenhouse gas emissions for three different system scenarios for this proposed ethanol production process, using process simulations and thermodynamic calculations. The energy required for ethanol separation increases rapidly for low initial concentrations of ethanol, and, unlike other biofuel systems, there is little waste biomass available to provide process heat and electricity to offset those energy requirements. The ethanol purification process is a major consumer of energy and a significant contributor to the carbon footprint. With a lead scenario based on a natural-gas-fueled combined heat and power system to provide process electricity and extra heat and conservative assumptions around the ethanol separation process, the net life cycle energy consumption, excluding photosynthesis, ranges from 0.55 MJ/MJ(EtOH) down to 0.20 MJ/ MJ(EtOH), and the net life cycle greenhouse gas emissions range from 29.8 g CO₂e/MJ(EtOH) down to 12.3 g CO₂e/MJ(EtOH) for initial ethanol concentrations from 0.5 wt % to 5 wt %. In comparison to gasoline, these predicted values represent 67% and 87% reductions in the carbon footprint for this ethanol fuel on a energy equivalent basis. Energy consumption and greenhouse gas emissions can be further reduced via employment of higher efficiency heat exchangers in ethanol purification and/ or with use of solar thermal for some of the process heat.

  10. Color discrimination in halobacteria: spectroscopic characterization of a second sensory receptor covering the blue-green region of the spectrum.

    PubMed

    Wolff, E K; Bogomolni, R A; Scherrer, P; Hess, B; Stoeckenius, W

    1986-10-01

    Halobacterium halobium is attracted by green and red light and repelled by blue-green and shorter wavelength light. a photochromic, rhodopsin-like protein in the cell membrane, sensory rhodopsin sR587, has been identified as the receptor for the long-wavelength and near-UV stimuli. Discrepancies between the action spectrum for the repellent effect of blue light and the absorption spectrum of sR587 and its photocycle intermediate S373 strongly suggest the existence of an additional photoreceptor for the blue region of the spectrum. Transient light-induced absorbance changes in intact cells and cell membranes show, in addition to sR587, the presence of a second photoactive pigment with maximal absorption near 480 nm. It undergoes a cyclic photoreaction with a half-time of 150 msec. One intermediate state with maximal absorption near 360 nm has been resolved. The spectral properties of the new pigment are consistent with a function as the postulated photoreceptor for the repellent effect of blue light. The phototactic reactions and both pigments are absent when retinal synthesis is blocked; both can be restored by the addition of retinal. These results confirm and extend similar observations by Takahashi et al. [Takahashi, T., Tomioka, H., Kamo, N. & Kobatake, Y. (1985) FEMS Microbiol. Lett. 28, 161-164]. The archaeobacterium H. halobium thus uses two different mechanisms for color discrimination; it uses two rhodopsin-like receptors with different spectral sensitivities and also the photochromicity of at least one of these receptors to distinguish between three regions covering the visible and near-UV spectrum.

  11. Comparative in vitro safety analysis of dyes for chromovitrectomy: indocyanine green, brilliant blue green, bromophenol blue, and infracyanine green.

    PubMed

    Balaiya, Sankarathi; Brar, Vikram S; Murthy, Ravi K; Chalam, Kakarla V

    2011-06-01

    Vital dyes such as infracyanine green (IfCG), brilliant blue green (BBG), and bromophenol blue (BPB) have been used as an alternative to indocyanine green (ICG) during chromovitrectomy. We compared the in vitro toxicity of IfCG, BBG, and BPB with ICG on the retinal pigment epithelial cells and retinal ganglion cells at various concentrations to optimize the safe dose and duration of exposure. Cultured retinal ganglion cells (RGC-5) and human retinal pigment epithelial cells (ARPE-19) were exposed to 2 concentrations (0.25 and 0.5 mg/mL) of ICG, IfCG, BBG, and BPB at various time intervals (1, 5, 15, and 30 minutes). Cell viability was quantified with neutral red assay, and mode of cell death was evaluated with flow cytometry-based Annexin V and propidium iodide staining. Exposure to ICG resulted in 48%-74% reduction in neutral red uptake in both RGC-5 and ARPE-19 cells, after an exposure time of ≥5 minutes compared with control (P < 0.001). Infracyanine green, BBG, and BPB were significantly less toxic on the 2 cell lines at exposure times <15 minutes. (Reduction in cell viability ranged from 6.9% ± 3.3% to 29.3% ± 7.4% when compared with control, P > 0.5.) However, among the newer dyes, BBG caused necrosis in retinal pigment epithelial cells and retinal ganglion cells as the exposure time period increased beyond 5 minutes. Newer vital dyes, IfCG, BBG, and BPB, are significantly less toxic on retinal ganglion cells and retinal pigment epithelial cells' cell lines when compared with ICG. Infracyanine green was least toxic among the three newer dyes studied.

  12. Properties of oxygen-evolving photosystem-II particles from Phormidium laminosum, a thermophilic blue--green alga.

    PubMed Central

    Stewart, A C; Bendall, D S

    1981-01-01

    1. O2-evolving Photosystem-II particles from the thermophilic blue--green alga Phormidium laminosum contained 1 mol of Mn/13--17 mol of chlorophyll a compared with 1 mol of Mn/65--75 mol of chlorophyll a in unfractionated membranes. 2. At least two-thirds of the Mn in the Photosystem-II particles was removed by mild heating and by treatment with Tris or EDTA, with concomitant loss of O2 evolution. However, irreversible inactivation was also caused by washing in buffers without MgCl2, and this inactivation was not accompanied by a corresponding loss of Mn. 3. Bivalent cations (Mg2+ or Ca2+), Cl- or Br- ions and at least 20% (v/v) glycerol were required for maximum stability of O2 evolution. 4. The Photosystem-II particles were enriched in high-potential cytochrome b-559 (1 mol of cytochrome/50--60 mol of chlorophyll a) and in component C-550, and had a photosynthetic-unit size of 40--70 molecules of chlorophyll a. 5. The absorption spectrum at 77 K showed a preponderance of shorter-wavelength forms of chlorophyll a in the Photosystem-II particles, and in the fluorescence emission spectrum at 77 K there were major chlorophyll fluorescence bands at 684 nm and 695 nm, with almost no fluorescence in the far-red region. 6. Analysis of the lipid and protein contents showed that the Photosystem-II particles were not chemically pure (for example, all of the membrane-bound cytochromes and cytochrome c-549 were present), but their high O2-evolution activity and good optical properties make them useful for functional studies on Photosystem-II and O2 evolution. Images Fig. 5. Fig. 6. PMID:6796068

  13. Purification and characterization of cytochrome f-556.5 from the blue-green alga Spirulina platensis.

    PubMed

    Böhme, H; Pelzer, B; Böger, P

    1980-10-03

    The membrane-bound cytochrome f-556.5 from the blue-green alga Spirulina platensis was purified to apparent homogeneity. Most of its properties are comparable to cytochrome f isolated from higher plants and green algae. It is clearly distinguishable from soluble cytochrome c-554, also present in Spirulina, which probably replaces the function of plastocyanin in photosynthetic electron transport. 1. The reduced form of cytochrome f exhibits an asymmetrical alpha-band with a maximum at 556.5 nm, and a pronounced shoulder at 550 nm. The beta-, gamma and delta-bands coincide with those described for Scenedesmus cytochrome f-553, with maxima at 524 (532), 422, 331 and a protein peak at 276 nm. The maximum of ferricytochrome f is at 410.5 nm; there is no indication of a weak 695 nm band, described for soluble c-type cytochromes. The purest preparations had a delta/protein-peak ratio of 0.8; the gamma/alpha ratio was 7.3. Formation of a pyridine hemochromogen with a maximum at 550 nm indicated a c-type cytochrome. The molar extinction coefficient at 556.5 nm is 30200, the differential extinction coefficient 21 500. 2. The molecular weight determined by gel filtration or SDS-polyacrylamide gel electrophoresis is 33 000 and 34 000, respectively. 3. The redox properties differ from those described for other cytochromes f isolated from green algae and higher plants: the midpoint redox potential is significantly more negative (+318 mV, pH 7.0) and from pH 6 to 10 no pH dependence is observed. 4. The isoelectric point was determined at pH 3.95, which is more acidic as compared to other cytochromes f. 5. Comparison of the amino acid composition indicated a distant relationship to higher plant cytochrome f and a closer relationship to cytochrome f from green algae.

  14. Inhibition of enterovirus 71-induced apoptosis by allophycocyanin isolated from a blue-green alga Spirulina platensis.

    PubMed

    Shih, Shin-Ru; Tsai, Kun-Nan; Li, Yi-Shuane; Chueh, Chuang-Chun; Chan, Err-Cheng

    2003-05-01

    Enterovirus 71 infection causes significant morbidity and mortality in children, yet there is no effective treatment. In this study, a protein-bound pigment, allophycocyanin purified from blue-green algae is first reported to exhibit anti-enterovirus 71 activity. Allophycocyanin neutralized the enterovirus 71-induced cytopathic effect in both human rhabdomyosarcoma cells and African green monkey kidney cells. The 50% inhibitory concentration of allophycocyanin for neutralizing the enterovirus 71-induced cytopathic effect was approximately 0.045 +/- 0.012 microM in green monkey kidney cells. The cytotoxic concentrations of allophycocyanin for rhabdomyosarcoma cells and African green monkey kidney cells were 1.653 +/- 0.003 microM and 1.521 +/- 0.012 microM, respectively. A plaque reduction assay showed that the concentrations of allophycocyanin for reducing plaque formation by 50% were approximately 0.056 +/- 0.007 microM and 0.101 +/- 0.032 microM, when allophycocyanin were added at the state of viral adsorption and post-adsorption, respectively. Antiviral activity was more efficient in cultures treated with allophycocyanin before viral infection compared with that in the cultures treated after infection. Allophycocyanin was also able to delay viral RNA synthesis in the infected cells and to abate the apoptotic process in enterovirus 71-infected rhabdomyosarcoma cells with evidence of characteristic DNA fragmentation, decreasing membrane damage and declining cell sub-G1 phase. It is concluded that allophycocyanin possesses antiviral activity and has a potential for development as an anti-enterovirus 71 agent.

  15. Compact 4.7 W, 18.3% wall-plug efficiency green laser based on an electrically pumped VECSEL using intracavity frequency doubling.

    PubMed

    Zhao, Pu; Xu, Bing; van Leeuwen, Robert; Chen, Tong; Watkins, Laurence; Zhou, Delai; Gao, Peng; Xu, Guoyang; Wang, Qing; Ghosh, Chuni

    2014-08-15

    We have demonstrated a compact, 4.7 W green laser based on an electrically pumped vertical external-cavity surface emitting laser through intracavity frequency doubling. The overall wall-plug efficiency (electrical to green) was 18.3%. The power fluctuations were measured to be ±1.4% over a 2 h time period.

  16. Sub-70 nm resolution tabletop microscopy at 13.8 nm using a compact laser-plasma EUV source.

    PubMed

    Wachulak, Przemyslaw W; Bartnik, Andrzej; Fiedorowicz, Henryk

    2010-07-15

    We report the first (to our knowledge) demonstration of a tabletop, extreme UV (EUV) transmission microscope at 13.8 nm wavelength with a spatial (half-pitch) resolution of 69 nm. In the experiment, a compact laser-plasma EUV source based on a gas puff target is applied to illuminate an object. A multilayer ellipsoidal mirror is used to focus quasi-monochromatic EUV radiation onto the object, while a Fresnel zone plate objective forms the image. The experiment and the spatial resolution measurements, based on a knife-edge test, are described. The results might be useful for the realization of a compact high-resolution tabletop imaging systems for actinic defect characterization.

  17. A compact and efficient hyper coherent light source of visible violet laser diode based on Pound-Drever-Hall technique

    NASA Astrophysics Data System (ADS)

    Sasaki, Wakao; Yashiro, Hideyuki; Miura, Yukio; Mizutani, Kouki; Nakajima, Jun

    2007-09-01

    In the present work, we have developed an efficient and well stablized hyper coherent diode laser light source as compact as even portable using commercially available visible 400 nm band laser diodes. The attained coherence of the present system can always be controlled at the best condition indifferent to changes in its settled environmental conditions by applying Pound-Drever-Hall technique in which the frequency of a 160mW type 405nm GaN violet laser diode is locked to a reference Fabry-Perot cavity by negative electrical feedback for the injection current of the laser diode based on FM sideband technique. In addition to this frequency stabilization system, we have also realized a stability evaluation system that can measure the Allan variance of the frequency fluctuations of our frequency stabilized laser source in real-time basis by using simple devices of a portable computer and a digital signal processing unit. As a result, we have accomplished a compact and efficient hyper coherent laser system which can always perform its optimum conditions even if the environmental conditions around the laser are to be dynamically changed when used in a field basis. The attained values of power spectral density (PSD) of FM noise calculated from the error signals of our system under controlled condition were better by about 1~2 orders than typical values of free-running conditions in the fourier frequency domain from 100Hz to 300kHz. The best achieved value of PSD was about 2.56×10 7 [Hz2/Hz] in the fourier frequency domain from 100Hz to 1kHz, while as for the Allan variance as another measure of frequency stability, the achieved value of the minimum square root of Allan variance was 3.46×10 -11 in a 400nm type violet laser diode at integration time of 10 ms, which has been well comparable to the hyper coherent condition for the laser diode light sources.

  18. Polymer optical waveguide composed of europium-aluminum-acrylate composite core for compact optical amplifier and laser

    NASA Astrophysics Data System (ADS)

    Mitani, Marina; Yamashita, Kenichi; Fukui, Toshimi; Ishigure, Takaaki

    2015-02-01

    We successfully fabricate polymer waveguides with Europium-Aluminum (Eu-Al) polymer composite core using the Mosquito method that utilizes a microdispenser for realizing a compact waveguide optical amplifiers and lasers. Rareearth (RE) ions are widely used as the gain medium for fiber lasers and optical fiber amplifiers. However, high concentration doping of rare-earth-ion leads to the concentration quenching resulting in observing less gain in optical amplification. For addressing the concentration quenching problem, a rare-earth metal (RE-M) polymer composite has been proposed by KRI, Inc. to be a waveguide core material. Actually, 10-wt% RE doping into organic polymer materials was already achieved. Hence, realization of compact and high-efficiency waveguide amplifiers and lasers have been anticipated using the RE-M polymer composite. In this paper, a microdispenser is adopted to fabricate a Eu-doped polymer waveguide. Then, it is experimentally confirmed that the low-loss waveguides are fabricated with a high reproducibility. Optical gain is estimated by measuring the amplified spontaneous emission using the variable stripe length method. The fabricated waveguide exhibits an optical gain as high as 7.1 dB/cm at 616-nm wavelength.

  19. Compact high-power red-green-blue laser light source generation from a single lithium tantalate with cascaded domain modulation.

    PubMed

    Xu, P; Zhao, L N; Lv, X J; Lu, J; Yuan, Y; Zhao, G; Zhu, S N

    2009-06-08

    1W quasi-white-light source has been generated from a single lithium tantalate with cascaded domain modulation. The quasi-white-light is combined by proper proportion of the red, green and blue laser light. The red and the blue result from a compact self-sum frequency optical parametric oscillation when pumped by a single green laser. The efficiency of quasi-white-light from the green pump reaches 27%. This compact design can be employed not only as a stable and powerful RGB light source but also an effective blue laser generator.

  20. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing

    DOE PAGES

    Dong, Lei; Tittel, Frank K.; Li, Chunguang; ...

    2016-02-25

    Two compact TDLAS sensor systems based on different structural optical cores were developed. The two optical cores combine two recent developments, gallium antimonide (GaSb)-based ICL and a compact multipass gas cell (MPGC) with the goal to create compact TDLAS based sensors for the mid-IR gas detection with high detection sensitivity and low power consumption. The sensors achieved minimum detection limits of ~5 ppbv and ~8 ppbv, respectively, for CH4 and C2H6 concentration measurements with a 3.7-W power consumption.

  1. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing

    SciTech Connect

    Dong, Lei; Tittel, Frank K.; Li, Chunguang; Sanchez, Nancy P.; Wu, Hongpeng; Zheng, Chuantao; Yu, Yajun; Sampaolo, Angelo; Griffin, Robert J.

    2016-02-25

    Two compact TDLAS sensor systems based on different structural optical cores were developed. The two optical cores combine two recent developments, gallium antimonide (GaSb)-based ICL and a compact multipass gas cell (MPGC) with the goal to create compact TDLAS based sensors for the mid-IR gas detection with high detection sensitivity and low power consumption. The sensors achieved minimum detection limits of ~5 ppbv and ~8 ppbv, respectively, for CH4 and C2H6 concentration measurements with a 3.7-W power consumption.

  2. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing.

    PubMed

    Dong, Lei; Tittel, Frank K; Li, Chunguang; Sanchez, Nancy P; Wu, Hongpeng; Zheng, Chuantao; Yu, Yajun; Sampaolo, Angelo; Griffin, Robert J

    2016-03-21

    Two compact TDLAS sensor systems based on different structural optical cores were developed. The two optical cores combine two recent developments, gallium antimonide (GaSb)-based ICL and a compact multipass gas cell (MPGC) with the goal to create compact TDLAS based sensors for the mid-IR gas detection with high detection sensitivity and low power consumption. The sensors achieved minimum detection limits of ~5 ppbv and ~8 ppbv, respectively, for CH4 and C2H6 concentration measurements with a 3.7-W power consumption.

  3. Method and system for compact, multi-pass pulsed laser amplifier

    DOEpatents

    Erlandson, Alvin Charles

    2014-11-25

    A laser amplifier includes an input aperture operable to receive laser radiation having a first polarization, an output aperture coupled to the input aperture by an optical path, and a polarizer disposed along an optical path. A transmission axis of the polarizer is aligned with the first polarization. The laser amplifier also includes n optical switch disposed along the optical path. The optical switch is operable to pass the laser radiation when operated in a first state and to reflect the laser radiation when operated in a second state. The laser amplifier further includes an optical gain element disposed along the optical path and a polarization rotation device disposed along the optical path.

  4. Compact, High Power, Multi-Spectral Mid-Infrared Semiconductor Laser Package

    DTIC Science & Technology

    2001-10-01

    Pumped (OP) type-II lasers The optically pumped laser devices were tested by pumping with 980 nm diode laser . Figure 29 shows the typical...Choi, and D. A. Coppeta "High-power diode - laser - pumped InAsSb/GaSb and GaInAsSb/GaSb lasers emitting from 3 to 4 µm" Appl. Phys. Lett. 64, 152 (1994...Arias, M. Zandian, R. R. Zucca, and Y.-Z. Liu "High-power diode - pumped mid-infrared semiconductor lasers ," Proc. SPIE 2382, 262

  5. Label-free multi-photon imaging using a compact femtosecond fiber laser mode-locked by carbon nanotube saturable absorber

    PubMed Central

    Kieu, K.; Mehravar, S.; Gowda, R.; Norwood, R. A.; Peyghambarian, N.

    2013-01-01

    We demonstrate label-free multi-photon imaging of biological samples using a compact Er3+-doped femtosecond fiber laser mode-locked by a single-walled carbon nanotube (CNT). These compact and low cost lasers have been developed by various groups but they have not been exploited for multiphoton microscopy. Here, it is shown that various multiphoton imaging modalities (e.g. second harmonic generation (SHG), third harmonic generation (THG), two-photon excitation fluorescence (TPEF), and three-photon excitation fluorescence (3PEF)) can be effectively performed on various biological samples using a compact handheld CNT mode-locked femtosecond fiber laser operating in the telecommunication window near 1560nm. We also show for the first time that chlorophyll fluorescence in plant leaves and diatoms can be observed using 1560nm laser excitation via three-photon absorption. PMID:24156074

  6. Development of highly compact and low power consumption athermal military laser designators

    NASA Astrophysics Data System (ADS)

    Sijan, A.

    2012-10-01

    The utility of military lasers, particularly in the area of laser designation for laser-guided weapons, is well understood. Laser systems based on Nd:YAG have been fielded since the 1980's and over the last three decades have introduced incremental technology steps to improve performance and weight. The most recent technology step has been the introduction of athermal lasers based on laser-diode pumping of Nd:YAG and products are now emerging for use on the battlefield. The technical performance, efficiency, size, weight and power for these lasers, has been key to driving the new production designs. In this paper, we review the development of the laser designs and their introduction since the advent of laser designation. In particular, we compare the relative performance and characteristics over the evolution of fielded laser designators. Moreover, we will review the key building blocks for the design of athermal lasers and describe some critical design issues for engineering and productionisation of a military laser system, including removal of thermal lensing, novel diode-pumping schemes and robustness over the environment. These will be exemplified using results from the development of the SELEX Galileo Type 163 Laser Target Designators. These will cover not only technical performance, power and efficiency, but also thermal management, mass, volume, cost and overall complexity for manufacture.

  7. Multiwatt-power highly-coherent compact single-frequency tunable vertical-external-cavity-surface-emitting-semiconductor-laser.

    PubMed

    Laurain, A; Myara, M; Beaudoin, G; Sagnes, I; Garnache, A

    2010-07-05

    We demonstrate high power (2.1W) low noise single frequency operation of a tunable compact verical-external-cavity surface-emitting- laser exhibiting a high beam quality. We took advantage of thermal lens-based stability to develop a short (3-10 mm) plano-plano external cavity without any intracavity filter. The semiconductor structure emitting at 1microm is optically pumped by a 8W commercial 808 nm multimode diode laser at large incidence angle. For heat management purpose the GaAs-based VECSEL membrane was bonded on a SiC substrate. We measured a low divergence quasi-circular TEM00 beam (M2 = 1.2) close to diffraction limit, with a linear light polarization (>30 dB).We simulated the steady state laser beam of this unstable cavity using Fresnel diffraction. The side mode suppression ratio is > 45 dB. The free running laser linewidth is 37 kHz limited by pump induced thermal fluctuations. Thanks to this high-Q external cavity approach, the frequency noise is low and the dynamics is in the relaxation-oscillation-free regime, exhibiting low intensity noise (< 0.1%), with a cutoff frequency approximately 41MHz above which the shot noise level is reached. The key parameters limiting the laser power and coherence are studied. This design/properties can be extended to other wavelengths.

  8. Compact, robust, and spectrally pure diode-laser system with a filtered output and a tunable copy for absolute referencing

    NASA Astrophysics Data System (ADS)

    Kirilov, E.; Mark, M. J.; Segl, M.; Nägerl, H.-C.

    2015-05-01

    We report on a design of a compact laser system composed of an extended-cavity diode laser with high passive stability and a pre-filter Fabry-Perot cavity. The laser is frequency-stabilized relative to the cavity using a serrodyne technique with a correction bandwidth of ≥6 MHz and a dynamic range of ≥700 MHz. The free-running laser system has a power spectral density (PSD) ≤100 Hz2/Hz centered mainly in the acoustic frequency range. A highly tunable, 0.5-1.3 GHz copy of the spectrally pure output beam is provided, which can be used for further stabilization of the laser system to an ultra-stable reference. We demonstrate a simple one-channel lock to such a reference that brings down the PSD to the sub-Hz level. The tuning, frequency stabilization, and sideband imprinting are achieved by a minimum number of key elements comprising a fibered electro-optic modulator, acousto-optic modulator, and a nonlinear transmission line. The system is easy to operate, scalable, and highly applicable to atomic/molecular experiments demanding high spectral purity, long-term stability, and robustness.

  9. Controllable optical modulation of blue/green up-conversion fluorescence from Tm3+ (Er3+) single-doped glass ceramics upon two-step excitation of two-wavelengths

    PubMed Central

    Chen, Zhi; Kang, Shiliang; Zhang, Hang; Wang, Ting; Lv, Shichao; Chen, Qiuqun; Dong, Guoping; Qiu, Jianrong

    2017-01-01

    Optical modulation is a crucial operation in photonics for network data processing with the aim to overcome information bottleneck in terms of speed, energy consumption, dispersion and cross-talking from conventional electronic interconnection approach. However, due to the weak interactions between photons, a facile physical approach is required to efficiently manipulate photon-photon interactions. Herein, we demonstrate that transparent glass ceramics containing LaF3: Tm3+ (Er3+) nanocrystals can enable fast-slow optical modulation of blue/green up-conversion fluorescence upon two-step excitation of two-wavelengths at telecom windows (0.8–1.8 μm). We show an optical modulation of more than 1500% (800%) of the green (blue) up-conversion fluorescence intensity, and fast response of 280 μs (367 μs) as well as slow response of 5.82 ms (618 μs) in the green (blue) up-conversion fluorescence signal, respectively. The success of manipulating laser at telecom windows for fast-slow optical modulation from rear-earth single-doped glass ceramics may find application in all-optical fiber telecommunication areas. PMID:28368041

  10. Controllable optical modulation of blue/green up-conversion fluorescence from Tm3+ (Er3+) single-doped glass ceramics upon two-step excitation of two-wavelengths

    NASA Astrophysics Data System (ADS)

    Chen, Zhi; Kang, Shiliang; Zhang, Hang; Wang, Ting; Lv, Shichao; Chen, Qiuqun; Dong, Guoping; Qiu, Jianrong

    2017-04-01

    Optical modulation is a crucial operation in photonics for network data processing with the aim to overcome information bottleneck in terms of speed, energy consumption, dispersion and cross-talking from conventional electronic interconnection approach. However, due to the weak interactions between photons, a facile physical approach is required to efficiently manipulate photon-photon interactions. Herein, we demonstrate that transparent glass ceramics containing LaF3: Tm3+ (Er3+) nanocrystals can enable fast-slow optical modulation of blue/green up-conversion fluorescence upon two-step excitation of two-wavelengths at telecom windows (0.8-1.8 μm). We show an optical modulation of more than 1500% (800%) of the green (blue) up-conversion fluorescence intensity, and fast response of 280 μs (367 μs) as well as slow response of 5.82 ms (618 μs) in the green (blue) up-conversion fluorescence signal, respectively. The success of manipulating laser at telecom windows for fast-slow optical modulation from rear-earth single-doped glass ceramics may find application in all-optical fiber telecommunication areas.

  11. Controllable optical modulation of blue/green up-conversion fluorescence from Tm(3+) (Er(3+)) single-doped glass ceramics upon two-step excitation of two-wavelengths.

    PubMed

    Chen, Zhi; Kang, Shiliang; Zhang, Hang; Wang, Ting; Lv, Shichao; Chen, Qiuqun; Dong, Guoping; Qiu, Jianrong

    2017-04-03

    Optical modulation is a crucial operation in photonics for network data processing with the aim to overcome information bottleneck in terms of speed, energy consumption, dispersion and cross-talking from conventional electronic interconnection approach. However, due to the weak interactions between photons, a facile physical approach is required to efficiently manipulate photon-photon interactions. Herein, we demonstrate that transparent glass ceramics containing LaF3: Tm(3+) (Er(3+)) nanocrystals can enable fast-slow optical modulation of blue/green up-conversion fluorescence upon two-step excitation of two-wavelengths at telecom windows (0.8-1.8 μm). We show an optical modulation of more than 1500% (800%) of the green (blue) up-conversion fluorescence intensity, and fast response of 280 μs (367 μs) as well as slow response of 5.82 ms (618 μs) in the green (blue) up-conversion fluorescence signal, respectively. The success of manipulating laser at telecom windows for fast-slow optical modulation from rear-earth single-doped glass ceramics may find application in all-optical fiber telecommunication areas.

  12. Compact Cr:ZnS Channel Waveguide Laser Operating at 2333 nm

    DTIC Science & Technology

    2014-03-24

    Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser ...demonstrated mid-infrared laser operation [2–5]. Chromium laser technology has matured to demonstrate high power, widely tunable, and narrow line- width ...the laser output was measured using a 300 mm monochromator (Gilden Photonics) capable of resolving a minimum line- width of 0.4 nm. The spectrum was

  13. State of the art of compact green lasers for mobile projectors

    NASA Astrophysics Data System (ADS)

    Essaian, Stepan; Khaydarov, John

    2012-11-01

    We report on progress in development of the low-cost, highly efficient miniature diode-pumped solid-state (DPSS) green laser sources for pico-projectors and other consumer electronics applications with wavelength 532 nm. As Spectralus laser has monolithic microchip structure there are other green lasers with various discrete designs. We are reviewing both approaches in this paper.

  14. Compact Mach-Zehnder interferometer based on photonic crystal fiber and its application in switchable multi-wavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, Weiguo; Lou, Shuqin; Wang, Liwen; Li, Honglei; Guo, Tieying; Jian, Shuisheng

    2009-08-01

    The compact Mach-Zehnder interferometer is proposed by splicing a section of photonic crystal fiber (PCF) and two pieces of single mode fiber (SMF) with the air-holes of PCF intentionally collapsed in the vicinity of the splices. The depedence of the fringe spacing on the length of PCF is investigated. Based on the Mach-Zehnder interferometer as wavelength-selective filter, a switchable dual-wavelength fiber ring laser is demonstrated with a homemade erbiumdoped fiber amplifier (EDFA) as the gain medium at room temperature. By adjusting the states of the polarization controller (PC) appropriately, the laser can be switched among the stable single-and dual -wavelength lasing operations by exploiting polarization hole burning (PHB) effect.

  15. Label-free optical-resolution photoacoustic microscopy of superficial microvasculature using a compact visible laser diode excitation

    PubMed Central

    Zeng, Lvming; Piao, Zhonglie; Huang, Shenghai; Jia, Wangcun; Chen, Zhongping

    2015-01-01

    We have developed laser-diode-based optical-resolution photoacoustic microscopy (LD-OR-PAM) of superficial microvasculature which has the desirable properties of being compact, low-cost, and label-free. A 300-mW visible pulsed laser diode was operated at a 405 ± 5 nm wavelength with a pulse energy as low as 52 nJ. By using a 3.6 MHz ultrasound transducer, the system was tested on carbon fibers with a lateral resolution of 0.95 µm and an SNR of 38 dB. The subcutaneous microvasculature on a mouse back was imaged without an exogenous contrast agent which demonstrates the potential of the proposed prototype for skin chromophores. Our eventual goal is to offer a practical and affordable multi-wavelength functional LD-OR-PAM instrument suitable for clinical applications. PMID:26698732

  16. A compact laparoscope type radiation source for the pin-point cancer treatment using a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Kawashima, N.; Muramatsu, H.; Ueda, M.; Yanagimoto, C.; Miyazawa, M.; Kajiwara, E.

    2012-02-01

    Focusing a femto-second laser (1 mJ/pulse repetition 1 kHz) on a special tape, a strong radiation consisting of the electron beam of ~ 200 keV and X-rays of ~ 6.4 keV (5 %) has been generated. It has been verified that the radiation source is sufficient to kill the tumor cells and the DNA laddering structure in the in-vivo test is obtained. More test implanting the tumor under the skin of mouse and irradiating the laser-generated radiation, we have shown the radiation has a clear powerful therapeutic capability. For about 80 % of mice irradiated, their tumor disappeared. For further clinical test use, a compact laparoscope-type unit mounted on an articulated arm has been constructed and it can generate the necessary amount of the radiation dose.

  17. Compact tunable high power picosecond source based on Yb-doped fiber amplification of gain switch laser diode.

    PubMed

    Liu, Hongjun; Gao, Cunxiao; Tao, Jintao; Zhao, Wei; Wang, Yishan

    2008-05-26

    A compact tunable high power picosecond source based on Yb-doped fiber amplification of gain switch laser diode is demonstrated. A multi-stage single mode Yb-doped fiber preamplifier was combined with a single mode double-clad Yb-doped fiber main amplifier to construct the amplification system, which is seeded by a gain switch laser diode. By optimizing preamplifier???s parameters to compensate the seed spectrum gain, a "flat top" broadband spectrum is obtained to realize wavelength tunable output with a self-made tunable filter. The tunable pulses were further amplified to 3.5 W average power 90 ps pulses at 1 MHz repetition rate, and the center wavelength was tunable in the ranges from 1053 nm to 1073 nm with excellent beam quality.

  18. Silicon/III-V laser with super-compact diffraction grating for WDM applications in electronic-photonic integrated circuits.

    PubMed

    Wang, Yadong; Wei, Yongqiang; Huang, Yingyan; Tu, Yongming; Ng, Doris; Lee, Cheewei; Zheng, Yunan; Liu, Boyang; Ho, Seng-Tiong

    2011-01-31

    We have demonstrated a heterogeneously integrated III-V-on-Silicon laser based on an ultra-large-angle super-compact grating (SCG). The SCG enables single-wavelength operation due to its high-spectral-resolution aberration-free design, enabling wavelength division multiplexing (WDM) applications in Electronic-Photonic Integrated Circuits (EPICs). The SCG based Si/III-V laser is realized by fabricating the SCG on silicon-on-insulator (SOI) substrate. Optical gain is provided by electrically pumped heterogeneous integrated III-V material on silicon. Single-wavelength lasing at 1550 nm with an output power of over 2 mW and a lasing threshold of around 150 mA were achieved.

  19. Scheme for a compact cold-atom clock based on diffuse laser cooling in a cylindrical cavity

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Meng, Yanling; Wan, Jinyin; Wang, Xiumei; Wang, Yaning; Xiao, Ling; Cheng, Huadong; Liu, Liang

    2015-12-01

    We present a scheme for a compact rubidium cold-atom clock which performs diffuse light cooling, microwave interrogation, and detection of the clock signal in a cylindrical microwave cavity. The diffuse light is produced by laser light reflection at the inner surface of the microwave cavity. The pattern of the injected laser beams is specially designed to accumulate the majority of the cold atoms in the center of the microwave cavity. Microwave interrogation of the cold atoms in the cavity leads to Ramsey fringes, which have a linewidth of 24.5 Hz with a contrast of 95.6 % when the free evolution time is 20 ms. Recently, a frequency stability of 7.3 ×10-13τ-1 /2 has been achieved. The scheme of this physical package can largely reduce the cold-atom clock complexity and increase clock performance.

  20. Commissioning of a compact laser-based proton beam line for high intensity bunches around 10Â MeV

    NASA Astrophysics Data System (ADS)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Kroll, F.; Blažević, A.; Bagnoud, V.; Roth, M.

    2014-03-01

    We report on the first results of experiments with a new laser-based proton beam line at the GSI accelerator facility in Darmstadt. It delivers high current bunches at proton energies around 9.6 MeV, containing more than 109 particles in less than 10 ns and with tunable energy spread down to 2.7% (ΔE/E0 at FWHM). A target normal sheath acceleration stage serves as a proton source and a pulsed solenoid provides for beam collimation and energy selection. Finally a synchronous radio frequency (rf) field is applied via a rf cavity for energy compression at a synchronous phase of -90 deg. The proton bunch is characterized at the end of the very compact beam line, only 3 m behind the laser matter interaction point, which defines the particle source.

  1. Compact sub-mW mid-infrared DFG laser source using direct-bonded QPM-LN ridge waveguide and laser diodes

    NASA Astrophysics Data System (ADS)

    Tadanaga, Osamu; Nishida, Yoshiki; Yanagawa, Tsutomu; Magari, Katsuaki; Umeki, Takeshi; Asobe, Masaki; Suzuki, Hiroyuki

    2007-02-01

    We report compact sub-mW mid-infrared (IR) laser sources based on difference frequency generation (DFG) in a quasiphase matched (QPM) LiNbO 3 (LN) waveguide directly pumped with two laser diodes (LDs). The mid-IR lasers operate in the cw mode at ambient temperatures, and can be used for the tunable diode laser absorption spectroscopy (TDLAS). To construct the mid-IR laser sources, we employed a fiber-pigtailed wavelength conversion module, which we spliced to a direct-bonded QPM-LN ridge waveguide by using the V-groove connection technique. The modules had high external conversion efficiencies of 10 and 16 %/W for 3.4 and 2.6 μm, respectively. The signal was obtained from a 1.55-μm-band distributed feedback (DFB)-LD, and the pump from a single-mode LD stabilized with a fiber-Bragg-grating (FBG). We used 1.064 and 0.976-μm pump LDs for 3.4 and 2.6-(micron)m generation, respectively. The two LDs and the wavelength converter were assembled with a polarization maintaining fiber, and then packaged in a box. We obtained high outputs of up to 0.20 mW for the 3.4-μm laser source and 0.33 mW for the 2.6-μm laser source, and detected CH 4 and H IIO absorption lines with the 3.4 and 2.6-μm laser light sources, respectively.

  2. Comparative transcriptome analysis provides clues to molecular mechanisms underlying blue-green eggshell color in the Jinding duck (Anas platyrhynchos).

    PubMed

    Wang, Zhepeng; Meng, Guohua; Bai, Yun; Liu, Ruifang; Du, Yu; Su, Lihong

    2017-09-12

    In birds, blue-green eggshell color (BGEC) is caused by biliverdin, a bile pigment derived from the degradation of heme and secreted in the eggshell by the shell gland. Functionally, BGEC might promote the paternal investment of males in the nest and eggs. However, little is known about its formation mechanisms. Jinding ducks (Anas platyrhynchos) are an ideal breed for research into the mechanisms, in which major birds lay BGEC eggs with minor individuals laying white eggs. Using this breed, this study aimed to provide insight into the mechanisms via comparative transcriptome analysis. Blue-shelled ducks (BSD) and white-shelled ducks (WSD) were selected from two populations, forming 4 groups (3 ducks/group): BSD1 and WSD1 from population 1 and BSD2 and WSD2 from population 2. Twelve libraries from shell glands were sequenced using the Illumina RNA-seq platform, generating an average of 41 million clean reads per library, of which 55.9% were mapped to the duck reference genome and assembled into 31,542 transcripts. Expression levels of 11,698 genes were successfully compared between all pairs of 4 groups. Of these, 464 candidate genes were differentially expressed between cross-phenotype groups, but not for between same-phenotype groups. Gene Ontology (GO) annotation showed that 390 candidate genes were annotated with 2234 GO terms. No candidate genes were directly involved in biosynthesis or transport of biliverdin. However, the integral components of membrane, metal ion transport, cholesterol biosynthesis, signal transduction, skeletal system development, and chemotaxis were significantly (P < 0.05) overrepresented by candidate genes. This study identified 464 candidate genes associated with duck BGEC, providing valuable information for a better understanding of the mechanisms underlying this trait. Given the involvement of membrane cholesterol contents, ions and ATP levels in modulating the transport activity of bile pigment transporters, the data suggest a

  3. The photochemical and fluorescence properties of whole cells, spheroplasts and spheroplast particles from the blue-green alga Phormidium luridum.

    PubMed

    Tel-or, E; Malkin, S

    1977-02-07

    The photochemical activities and fluorescence properties of cells, spheroplasts and spheroplast particles from the blue-green alga Phormidium luridum were compared. The photochemical activities were measured in a whole range of wavelengths and expressed as quantum yield spectra (quantum yield vs. wavelength). The following reactions were measured. Photosynthesis (O2 evolution) in whole cells; Hill reaction (O2 evolution) with Fe(CN)63- and NADP as electron acceptors (Photosystem II and photosystem II + Photosystem I reactions); electron transfer from reduced 2,6-dichlorophenolindophenol to diquat (Photosystem I reaction). The fluorescence properties were emission spectra, quantum yield spectra and the induction pattern. On the basis of comparison between the quantum yield spectra and the pigments compositions the relative contribution of each pigment to each photosystem was estimated. In normal cells and spheroplasts it was found that Photosystem I (Photosystem II) contains about 90% (10%) of the chlorophyll a, 90% (10%) of the carotenoids and 15% (85%) of the phycocyanin. In spheroplast particles there is a reorganization of the pigments; they loose a certain fraction (about half) of the phycocyanin but the remaining phycocyanin attaches itself exclusively to Photosystem I (!). This is reflected by the loss of Photosystem II activity, a flat quantum yield vs. wavelength dependence and a loss of the fluorescence induction. The fluorescence quantum yield spectra conform qualitatively to the above conclusion. More quantitative estimation shows that only a fraction (20--40%) of the chlorophyll of Photosystem II is fluorescent. Total emission spectrum and the ratio of variable to constant fluorescence are in agreement with this conclusion. The fluorescence emission spectrum shows characteristic differences between the constant and variable components. The variable fluorescence comes exclusively from chlorophyll a; the constant fluorescence is contributed, in addition

  4. A compact and efficient four-wavelength Q-switched Nd:YAP laser

    NASA Astrophysics Data System (ADS)

    Huang, C. H.; Zhang, G.; Wei, Y.; Zhu, H. Y.; Huang, L. X.

    2010-04-01

    In this paper, a four-wavelength electro-optic (E-O) Q-switched solid-state laser system was presented. This laser system only use one Nd:YAP laser crystal, which irradiates 1079.5 nm and 1341.4 nm fundamental wavelengths. Both of these wavelength lasers and their second harmonic generation (SHG) compose a four-wavelength Nd:YAP Q-switched laser. The Q-switched output energies of 277 mJ for 1079.5 nm and 61 mJ for 539.8 nm and that of 190 mJ for 1341.4 nm and 51 mJ for 670.7 nm wavelengths were achieved. The pulse durations of 1079.5 and 539.8 nm lasers and that of 1341.4 and 670.7 nm lasers are 20 and 40 ns, respectively. Due to this laser system has the larger chance and convenience for selecting the wavelengths and operation modes by moving a stepping motor and controlling the Q-switched devices, it will broaden applications in the fields of laser cosmetology, dermatotis therapy, material processing and laser display etc.

  5. Characterization and optimization of hydrogen production by a salt water blue-green alga Oscillatoria sp. Miami BG 7. II - Use of immobilization for enhancement of hydrogen production

    NASA Technical Reports Server (NTRS)

    Phlips, E. J.; Mitsui, A.

    1986-01-01

    The technique of cellular immobilization was applied to the process of hydrogen photoproduction of nonheterocystous, filamentous marine blue-green alga, Oscillatoria sp. Miami BG 7. Immobilization with agar significantly improved the rate and longevity of hydrogen production, compared to free cell suspensions. Rates of H2 production in excess of 13 microliters H2 mg dry/wt h were observed and hydrogen production was sustained for three weeks. Immobilization also provided some stabilization to environmental variability and was adaptable to outdoor light conditions. In general, immobilization provides significant advantages for the production and maintenance of hydrogen photoproduction for this strain.

  6. Monolithic integration of InGaN segments emitting in the blue, green, and red spectral range in single ordered nanocolumns

    SciTech Connect

    Albert, S.; Bengoechea-Encabo, A.; Sanchez-Garcia, M. A.; Calleja, E.

    2013-05-06

    This work reports on the selective area growth by plasma-assisted molecular beam epitaxy and characterization of InGaN/GaN nanocolumnar heterostructures. The optimization of the In/Ga and total III/V ratios, as well as the growth temperature, provides control on the emission wavelength, either in the blue, green, or red spectral range. An adequate structure tailoring and monolithic integration in a single nanocolumnar heterostructure of three InGaN portions emitting in the red-green-blue colors lead to white light emission.

  7. Characterization and optimization of hydrogen production by a salt water blue-green alga Oscillatoria sp. Miami BG 7. II - Use of immobilization for enhancement of hydrogen production

    NASA Technical Reports Server (NTRS)

    Phlips, E. J.; Mitsui, A.

    1986-01-01

    The technique of cellular immobilization was applied to the process of hydrogen photoproduction of nonheterocystous, filamentous marine blue-green alga, Oscillatoria sp. Miami BG 7. Immobilization with agar significantly improved the rate and longevity of hydrogen production, compared to free cell suspensions. Rates of H2 production in excess of 13 microliters H2 mg dry/wt h were observed and hydrogen production was sustained for three weeks. Immobilization also provided some stabilization to environmental variability and was adaptable to outdoor light conditions. In general, immobilization provides significant advantages for the production and maintenance of hydrogen photoproduction for this strain.

  8. Antiferromagnetic exchange interaction in the two-iron-two-sulphur ferredoxin from the blue-green alga Spirulina maxima studied with a highly sensitive magnetic balance.

    PubMed

    Petersson, L; Cammack, R; Rao, K K

    1980-03-26

    1. A highly sensitive magnetic balance of the Faraday type is described. 2. The magnetic susceptibility of the oxidized and reduced forms of the two-iron-two-sulphur ferredoxin from the blue-green alga Spirulina maxima has been measured over a wide temperature range. 3. The results can be interpreted within a simple model involving antiferromagnetically coupled iron atoms at the active site. The coupling, expressed as --J, is estimated to be 182 +/- 20/cm and 98 +5/-10 /cm for the oxidized and reduced forms, respectively.

  9. Green and ultraviolet pulse generation with a compact, fiber laser, chirped-pulse amplification system for aerosol fluorescence measurements.

    PubMed

    Lou, Janet W; Currie, Marc; Sivaprakasam, Vasanthi; Eversole, Jay D

    2010-10-01

    We use a compact chirped-pulse amplified system to harmonically generate ultrashort pulses for aerosol fluorescence measurements. The seed laser is a compact, all-normal dispersion, mode-locked Yb-doped fiber laser with a 1050 nm center wavelength operating at 41 MHz. Average powers of more than 1.2 W at 525 nm and 350 mW at 262 nm are generated with <500 fs pulse durations. The pulses are time-stretched with high-dispersion fiber, amplified by a high-power, large-mode-area fiber amplifier, and recompressed using a chirped volume holographic Bragg grating. The resulting high-peak-power pulses allow for highly efficient harmonic generation. We also demonstrate for the first time to our knowledge, the use of a mode-locked ultraviolet source to excite individual biological particles and other calibration particles in an inlet air flow as they pass through an optical chamber. The repetition rate is ideal for biofluorescence measurements as it allows faster sampling rates as well as the higher peak powers as compared to previously demonstrated Q-switched systems while maintaining a pulse period that is longer than the typical fluorescence lifetimes. Thus, the fluorescence excitation can be considered to be quasicontinuous and requires no external synchronization and triggering.

  10. Green and ultraviolet pulse generation with a compact, fiber laser, chirped-pulse amplification system for aerosol fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Lou, Janet W.; Currie, Marc; Sivaprakasam, Vasanthi; Eversole, Jay D.

    2010-10-01

    We use a compact chirped-pulse amplified system to harmonically generate ultrashort pulses for aerosol fluorescence measurements. The seed laser is a compact, all-normal dispersion, mode-locked Yb-doped fiber laser with a 1050 nm center wavelength operating at 41 MHz. Average powers of more than 1.2 W at 525 nm and 350 mW at 262 nm are generated with <500 fs pulse durations. The pulses are time-stretched with high-dispersion fiber, amplified by a high-power, large-mode-area fiber amplifier, and recompressed using a chirped volume holographic Bragg grating. The resulting high-peak-power pulses allow for highly efficient harmonic generation. We also demonstrate for the first time to our knowledge, the use of a mode-locked ultraviolet source to excite individual biological particles and other calibration particles in an inlet air flow as they pass through an optical chamber. The repetition rate is ideal for biofluorescence measurements as it allows faster sampling rates as well as the higher peak powers as compared to previously demonstrated Q-switched systems while maintaining a pulse period that is longer than the typical fluorescence lifetimes. Thus, the fluorescence excitation can be considered to be quasicontinuous and requires no external synchronization and triggering.

  11. A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler.

    PubMed

    Richter, H; Greiner-Bär, M; Pavlov, S G; Semenov, A D; Wienold, M; Schrottke, L; Giehler, M; Hey, R; Grahn, H T; Hübers, H-W

    2010-05-10

    We report on the development of a compact, easy-to-use terahertz radiation source, which combines a quantum-cascade laser (QCL) operating at 3.1 THz with a compact, low-input-power Stirling cooler. The QCL, which is based on a two-miniband design, has been developed for high output and low electrical pump power. The amount of generated heat complies with the nominal cooling capacity of the Stirling cooler of 7 W at 65 K with 240 W of electrical input power. Special care has been taken to achieve a good thermal coupling between the QCL and the cold finger of the cooler. The whole system weighs less than 15 kg including the cooler and power supplies. The maximum output power is 8 mW at 3.1 THz. With an appropriate optical beam shaping, the emission profile of the laser is fundamental Gaussian. The applicability of the system is demonstrated by imaging and molecular-spectroscopy experiments.

  12. Compact and efficient Cr:LiSAF laser pumped by one low-cost single-spatial-mode diode

    NASA Astrophysics Data System (ADS)

    Demirbas, Umit; Eggert, Stefan; Leitenstorfer, Alfred

    2012-06-01

    We present a minimal-cost Cr:LiSAF laser that is pumped by one single-spatial-mode diode. The pumping system (diode, diode driver, and the diode holder) has a total cost of about 500 and provided 130 mW of diffraction-limited pump power around 660 nm. The entire Cr:LiSAF laser system has an estimated total material cost below 5k, a footprint of about 20 cm × 35 cm, does not require cooling and can be driven by batteries, making the system ideal for applications that require portability. In continuous wave (cw) laser experiments, we have demonstrated lasing thresholds as low as 2 mW, slope efficiencies as high as 52%, output powers up to 58 mW, and a record tuning range extending from 780 nm to 1110 nm. In cw mode-locked operation, using a 0.5% output coupler, 100-fs pulses with an average power of 38 mW, and with an optical spectrum centered around 865 nm have been obtained at a repetition rate of 235 MHz. With a more compact cavity and using a 0.1% output coupler, 70-fs pulses with an average power of 20 mW have been obtained at a repetition rate of 509 MHz. We believe that this portable, minimal cost Cr:LiSAF laser system might be an attractive source for applications like amplifier seeding that do not require high average output power levels.

  13. Design study of compact Laser-Electron X-ray Generator for material and life sciences applications

    NASA Astrophysics Data System (ADS)

    Bessonov, E. G.; Gorbunkov, M. V.; Kostryukov, P. V.; Maslova, Yu Ya; Tunkin, V. G.; Postnov, A. A.; Mikhailichenko, A. A.; Shvedunov, V. I.; Ishkhanov, B. S.; Vinogradov, A. V.

    2009-07-01

    X-ray generators utilizing Thomson scattering fill in the gap that exists between conventional and synchrotron-based X-ray sources. They are expected to be more intensive than X-ray tubes and more compact, accessible and less expensive than synchrotrons. In this work, two operation modes of Thomson X-ray source (or laser-electron X-ray generator — LEXG) are documented: quasi continuous wave (QCW) and a pulsed one. They are considered for material sciences and medical applications that are currently implemented at Synchrotron Radiation (SR) facilities. The proposed system contains a ~ 50 MeV linac and a picosecond laser with an average power ~ few hundred Watts. The Thomson X-ray source is able to deliver up to 5 × 1011 photons in a millisecond flash and an average flux of 1012-1013 phot/sec. To achieve these parameters with existing optical and accelerator technology, the system must also contain a ring for storage of e-bunches for 103-105 revolutions and an optical circulator for storage of laser pulses for 102 passes. The XAFS spectroscopy, small animal angiography and human noninvasive coronary angiography are considered as possible applications of laser-electron X-ray generator.

  14. Compact, Rugged, and Low-Cost Wavelength-Versatile Burst Laser

    DTIC Science & Technology

    2015-04-20

    Power Amplifier (MOPA) Laser Configuration . . Page 6 2.7 Diode Arrays for the New MOPA Configuration . . . . Page 8 2.8 Q-Switched MO...Page 8 2.9 Power Amplifier (PA) . . . . . . . Page 10 2.10 MOPA Performance . . . . . . . Page 10 2.11 Wavelength Converters...a car battery with inverter or the provided battery pack. Master Oscillator Power Amplifier (MOPA) Laser Configuration Lasers that are used for

  15. LASER PLASMA AND LASER APPLICATIONS: Soft apertures for lasers emitting visible radiation

    NASA Astrophysics Data System (ADS)

    Kolerov, A. N.; Arzumanyan, Sh O.; Chirkina, K. P.; Gritsaĭ, I. I.

    1988-12-01

    It was found that an Al2O3:Ti3+ crystal grown by the Verneuil method can be used in the fabrication of "soft" apertures for lasers emitting in the blue-green range. The experimental results indicated equalization of the intensity of the radiation across the laser beam and also "polychromatic" lasing when apertures made of Al2O3:Ti3+ were placed inside the resonator cavity.

  16. DEVELOPMENT OF NEW MID-INFRARED ULTRAFAST LASER SOURCES FOR COMPACT COHERENT X-RAY SOURCES

    SciTech Connect

    Sterling Backus

    2012-05-14

    In this project, we proposed to develop laser based mid-infrared lasers as a potentially robust and reliable source of ultrafast pulses in the mid-infrared region of the spectrum, and to apply this light source to generating bright, coherent, femtosecond-to-attosecond x-ray beams.

  17. Compact narrow linewidth diode laser modules for precision quantum optics experiments on board of sounding rockets

    NASA Astrophysics Data System (ADS)

    Kohfeldt, Anja; Kürbis, Christian; Luvsandamdin, Erdenetsetseg; Schiemangk, Max; Wicht, Andreas; Peters, Achim; Erbert, Götz; Tränkle, Günther

    2016-04-01

    We have realized a laser platform based on GaAs diode lasers that allows for an operation in mobile exper-imental setups in harsh environments, such as on sounding rockets. The platform comes in two versions: a master-oscillator-power-amplifier and an extended cavity diode laser. Our very robust micro-optical bench has a footprint of 80 x 25 mm2. It strictly omits any movable parts. Master-oscillator-power-amplifier systems based on distributed feedback master oscillators for 767 nm and 780 nm narrow linewidth emission have been implemented by now. A continuous wave optical output power of > 1 W with a power conversion efficiency of > 25% could be achieved. The continuous tuning range of these lasers is on the order of 100 GHz, the linewidth at 10 μs is about 1 MHz. For applications demanding a narrower linewidth we have developed an extended cavity diode laser that achieves a linewidth of 100 kHz at 10 μs. These lasers achieve a continuous spectral tuning range of about 50 GHz and an continuous wave optical power up to 30 mW. The modules have been successfully vibration tested up to 29 gRMS along all three axes and passed 1500 g shocks, again along all 3 axes. Both, master-oscillator-power-amplifiers and extended cavity diode lasers, have been employed in sounding rocket experiments.

  18. Innovative opto-mechanical design of a laser head for compact thin-disk

    NASA Astrophysics Data System (ADS)

    Macúchová, Karolina; Smrž, Martin; Řeháková, Martina; Mocek, Tomáš

    2016-11-01

    We present recent progress in design of innovative versatile laser head for lasers based on thin-disk architecture which are being constructed at the HiLASE centre of the IOP in the Czech Republic. Concept of thin-disk laser technology allows construction of lasers providing excellent beam quality with high average output power and optical efficiency. Our newly designed thin-disk carrier and pump module comes from optical scheme consisting of a parabolic mirror and roof mirrors proposed in 90's. However, mechanical parts and a cooling system were in-house simplified and tailor-made to medium power lasers since no suitable setup was commercially available. Proposed opto-mechanical design is based on stable yet easily adjustable mechanics. The only water nozzle-cooled component is a room-temperature-operated thindisk mounted on a special cooling finger. Cooling of pump optics was replaced by heat conductive transfer from mirrors made of special Al alloy to a massive brass baseplate. Such mirrors are easy to manufacture and very cheap. Presented laser head was manufactured and tested in construction of Er and Yb doped disk lasers. Details of the latest design will be presented.

  19. Measurement capabilities of a compact thermal-type standard of energy unit of pulse laser radiation

    NASA Astrophysics Data System (ADS)

    Skrzeczanowski, Wojciech

    2001-08-01

    New instrument for measurements of laser pulse energy is described. Due to its parameters it can be used as a standard for unit of energy of pulse laser radiation. The instrument consists of a control unit, three sources of laser radiation, two receivers of optical signal, and a laptop. The whole system can be easily transported enabling one to carry out measurements in situ, at customer's, not only in laboratory conditions. This is a very important feature of the instrument because it allows inexpensive calibration and testing of large industrial laser installations and interesting laboratory intercomparisons as well. A method of measurement used in operation of the standard is presented. Main characteristics of the standard are shown. Methods of calculation of uncertainties of measurement during laser energy meters calibration by means of the standard of energy unit of pulse laser radiation are also presented. An alternative measurement option of the standard operating as an energy calibrator for unknown pulse optical radiation source is also available. Some results of testing of laser energy meters at eye-safe wavelength (1.54 micrometer) are presented.

  20. System Responses to Equal Doses of Photosynthetically Usable Radiation of Blue, Green, and Red Light in the Marine Diatom Phaeodactylum tricornutum

    PubMed Central

    Valle, Kristin Collier; Nymark, Marianne; Aamot, Inga; Hancke, Kasper; Winge, Per; Andresen, Kjersti; Johnsen, Geir; Brembu, Tore; Bones, Atle M.

    2014-01-01

    Due to the selective attenuation of solar light and the absorption properties of seawater and seawater constituents, free-floating photosynthetic organisms have to cope with rapid and unpredictable changes in both intensity and spectral quality. We have studied the transcriptional, metabolic and photo-physiological responses to light of different spectral quality in the marine diatom Phaeodactylum tricornutum through time-series studies of cultures exposed to equal doses of photosynthetically usable radiation of blue, green and red light. The experiments showed that short-term differences in gene expression and profiles are mainly light quality-dependent. Transcription of photosynthesis-associated nuclear genes was activated mainly through a light quality-independent mechanism likely to rely on chloroplast-to-nucleus signaling. In contrast, genes encoding proteins important for photoprotection and PSII repair were highly dependent on a blue light receptor-mediated signal. Changes in energy transfer efficiency by light-harvesting pigments were spectrally dependent; furthermore, a declining trend in photosynthetic efficiency was observed in red light. The combined results suggest that diatoms possess a light quality-dependent ability to activate photoprotection and efficient repair of photodamaged PSII. In spite of approximately equal numbers of PSII-absorbed quanta in blue, green and red light, the spectral quality of light is important for diatom responses to ambient light conditions. PMID:25470731

  1. System responses to equal doses of photosynthetically usable radiation of blue, green, and red light in the marine diatom Phaeodactylum tricornutum.

    PubMed

    Valle, Kristin Collier; Nymark, Marianne; Aamot, Inga; Hancke, Kasper; Winge, Per; Andresen, Kjersti; Johnsen, Geir; Brembu, Tore; Bones, Atle M

    2014-01-01

    Due to the selective attenuation of solar light and the absorption properties of seawater and seawater constituents, free-floating photosynthetic organisms have to cope with rapid and unpredictable changes in both intensity and spectral quality. We have studied the transcriptional, metabolic and photo-physiological responses to light of different spectral quality in the marine diatom Phaeodactylum tricornutum through time-series studies of cultures exposed to equal doses of photosynthetically usable radiation of blue, green and red light. The experiments showed that short-term differences in gene expression and profiles are mainly light quality-dependent. Transcription of photosynthesis-associated nuclear genes was activated mainly through a light quality-independent mechanism likely to rely on chloroplast-to-nucleus signaling. In contrast, genes encoding proteins important for photoprotection and PSII repair were highly dependent on a blue light receptor-mediated signal. Changes in energy transfer efficiency by light-harvesting pigments were spectrally dependent; furthermore, a declining trend in photosynthetic efficiency was observed in red light. The combined results suggest that diatoms possess a light quality-dependent ability to activate photoprotection and efficient repair of photodamaged PSII. In spite of approximately equal numbers of PSII-absorbed quanta in blue, green and red light, the spectral quality of light is important for diatom responses to ambient light conditions.

  2. A Photo-Labile Thioether Linkage to Phycoviolobilin Provides the Foundation for the Blue/Green Photocycles in DXCF-Cyanobacteriochromes

    SciTech Connect

    Burgie, E. Sethe; Walker, Joseph M.; George N. Phillips Jr.; Vierstra, Richard D.

    2013-01-08

    The phytochrome superfamily encompasses a diverse collection of photochromic photoreceptors in plants and microorganisms that employ a covalently linked bilin cradled in a cGMP-phosphodiesterase/adenylyl-cyclase/FhlA (GAF) domain to detect light. Whereas most interconvert between red- and far-red-light-absorbing states, cyanobacteria also express variants called cyanobacteriochromes (CBCRs) that modify bilin absorption to collectively perceive the entire visible spectrum. Here, we present two X-ray crystallographic structures of the GAF domain from the blue/green photochromic CBCR PixJ from Thermosynechococcus elongatus. Moreover, these structures confirm the hypothesis that CBCRs variably manipulate the chromophore π-conjugation system through isomerization and a second thioether linkage, in this case involving the bilin C10 carbon and Cys494 within a DXCF sequence characteristic of blue/green CBCRs. Biochemical studies support a mechanism for photoconversion whereby the second linkage ruptures on route to the green-light-absorbing state. All together, theTePixJ(GAF) models illustrate the remarkable structural and photochemical versatility among phytochromes and CBCRs in driving light perception.

  3. Tunable blue-green-emitting wurtzite ZnS:Mg nanosheet-assembled hierarchical spheres for near-UV white LEDs

    PubMed Central

    2014-01-01

    Mg-doped ZnS hierarchical spheres have been synthesized via hydrothermal method using mixed solvents of ethylenediamine and DI water without any surface-active agent. The surface morphology and microstructure studies revealed that the hierarchical spheres were consisted of many well-aligned nanosheets with width 10 nm and length about 50 ~ 100 nm. X-Ray diffraction results show that the ZnS:Mg hierarchical spheres have wurtzite structure with high crystallinity. The absorption edge in the diffuse reflection spectra shifts towards lower wavelength with increasing Mg concentration, indicating an expansion in the bandgap energy that is estimated to be in the range of 3.28 to 3.47 eV. Blue-green photoluminescence with tunable intensity and peak position was observed depending on the Mg content. The Mg2+-activated ZnS phosphor can be good candidates for blue-green components in near-UV white light-emitting diodes. PMID:24418612

  4. Development and Validation of a Liquid Chromatography-Tandem Mass Spectrometry Method for the Quantitation of Microcystins in Blue-Green Algal Dietary Supplements.

    PubMed

    Parker, Christine H; Stutts, Whitney L; DeGrasse, Stacey L

    2015-12-02

    A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the simultaneous detection and quantitation of seven microcystin congeners (1-7) and nodularin-R (8) in blue-green algal dietary supplements. Single-laboratory method validation data were collected in four supplement matrices (capsule, liquid, powder, and tablet) fortified at toxin concentrations from 0.25-2.00 μg/g (ppm). Average recoveries and relative standard deviations (RSD) using matrix-corrected solvent calibration curves were 101% (6% RSD) for all congeners and supplements investigated. Limits of detection (0.006-0.028 μg/g) and quantitation (0.018-0.084 μg/g) were sufficient to confirm the presence of microcystin contamination at the Oregon-mandated guidance concentration of 1.0 μg of microcystin-LReq/g. Quantitated concentrations of microcystin contamination in market-available Aphanizomenon flos-aquae blue-green algal supplements ranged from 0.18-1.87 μg of microcystin-LReq/g for detected congeners microcystin-LR, microcystin-LA, and microcystin-LY (3-5). Microcystin-RR, -YR, -LW, and -LF and nodularin-R (1, 2, and 6-8) were not detected in the supplements examined.

  5. Thickness and annealing effects on thermally evaporated InZnO thin films for gas sensors and blue, green and yellow emissive optical devices

    NASA Astrophysics Data System (ADS)

    Sugumaran, Sathish; Jamlos, Mohd Faizal; Ahmad, Mohd Noor; Bellan, Chandar Shekar; Sivaraj, Manoj

    2016-08-01

    Indium zinc oxide (InZnO) thin films with thicknesses of 100 nm and 200 nm were deposited on glass plate by thermal evaporation technique. Fourier transform infrared spectra showed a strong metal-oxide bond. X-ray diffraction patterns revealed amorphous nature for as-deposited film whereas polycrystalline structure for annealed films. Scanning electron microscope images showed a uniform distribution of spherical shape grains. Grain size was found to be higher for 200 nm film than 100 nm film. The presence of elements (In, Zn and O) was confirmed from energy dispersive X-ray analysis. Photoluminescence study of 200 nm film showed a blue, blue-green and blue-yellow emission whereas 100 nm film showed a broad green and green-yellow emissions. Both 100 nm and 200 nm films showed good oxygen sensitivity from room temperature to 400 °C. The observed optical and sensor results indicated that the prepared InZnO films are highly potential for room temperature gas sensor and blue, green and yellow emissive opto-electronic devices.

  6. Lasers '83. Proceedings of the international conference

    SciTech Connect

    Powell, R.C.

    1985-01-01

    Among the topics discussed are the development history of the semiconductor diode laser, laser material processing, nonlinear spectroscopy, recent advancements in diode lasers, laser-driven particle accelerators, laser applications in the atmospheric sciences, laser-assisted collisions, novel (garnet and alexandrite) solid state laser materials, IR molecular lasers, devices and components for fiber-optic communications, free-electron lasers and masers, and picosecond optical phenomena. Also covered are laser-stimulated materials surface processes, color center laser developments, blue-green and metal vapor lasers, laser chemistry, nonlinear effects, high energy lasers, excimer lasers, laser trapping of ions, optical cavities and propagation, laser isotope separation, laser trapping of atoms, laser applications in biochemistry, tunable coherent short wavelength radiation, laser spectroscopy, picosecond studies of condensed phase molecular systems, and combustion and plasma diagnostics.

  7. FM characteristics and compact modules for coherent semiconductor lasers coupled to an external cavity

    SciTech Connect

    Shin, C.H.; Teshima, M.; Ohtsu, M. ); Imai, T.; Yoshida, J.; Nishide, K. )

    1990-03-01

    FM responses of a semiconductor laser optically coupled off-axis to a confocal Fabry--Perot cavity were measured. It is reported that this cavity acted as a frequency discriminator and as a phase comparator for slow and fast frequency fluctuations, respectively. The crossover between them was determined by a half linewidth of the cavity. Based on these investigations, we made two kinds of coherent semiconductor laser modules. External FP cavities were made by using an optical fiber and a hemispherical micro-lens, respectively. Linewidths of these lasers were less than 25 kHz.

  8. Design of a Compact, Optically Guided, Pinched, Megawatt Class Free-Electron Laser

    DTIC Science & Technology

    2007-06-08

    period May 2004 to May 2006 Prepared by Phillip Sprangle (Principal Investigator) Joseph Pefiano Bahman Hafizi* * Icarus Research, Inc., P.O. Box 30780...L.M. Young and H.P. Freund, J. Directed Energy 1, 171 ( 2004 ). [6] W.B. Colson, A. Todd and G.R. Neil, "A high power free electron laser using a short...Laser PHILUP SPRANGLE JOSEPH PENANO Beam Physics Branch Plasma Physics Division BAHMAN HAFIZI Icarus Research, Inc. Bethesda, Maryland June 8, 2007

  9. A compact and robust diode laser system for atom interferometry on a sounding rocket

    NASA Astrophysics Data System (ADS)

    Schkolnik, V.; Hellmig, O.; Wenzlawski, A.; Grosse, J.; Kohfeldt, A.; Döringshoff, K.; Wicht, A.; Windpassinger, P.; Sengstock, K.; Braxmaier, C.; Krutzik, M.; Peters, A.

    2016-08-01

    We present a diode laser system optimized for laser cooling and atom interferometry with ultra-cold rubidium atoms aboard sounding rockets as an important milestone toward space-borne quantum sensors. Design, assembly and qualification of the system, combing micro-integrated distributed feedback (DFB) diode laser modules and free space optical bench technology, is presented in the context of the MAIUS (Matter-wave Interferometry in Microgravity) mission. This laser system, with a volume of 21 l and total mass of 27 kg, passed all qualification tests for operation on sounding rockets and is currently used in the integrated MAIUS flight system producing Bose-Einstein condensates and performing atom interferometry based on Bragg diffraction. The MAIUS payload is being prepared for launch in fall 2016. We further report on a reference laser system, comprising a rubidium stabilized DFB laser, which was operated successfully on the TEXUS 51 mission in April 2015. The system demonstrated a high level of technological maturity by remaining frequency stabilized throughout the mission including the rocket's boost phase.

  10. Compact 4-kHz XeF laser with a multisectional discharge gap

    SciTech Connect

    Andramanov, A V; Kabaev, S A; Lazhintsev, B V; Nor-Arevyan, V A; Selemir, Victor D

    2005-04-30

    A XeF electric-discharge laser with a pulse repetition rate f of up to 4 kHz is developed. The laser electrode unit is based on plate electrodes with inductive-capacitive discharge stabilisation. He and Ne are used as buffer gases, and NF{sub 3} serves as a fluorine donor. A narrow ({approx}1 mm) discharge is achieved; the specific energy deposition per unit length of the active volume is as high as 2 J m{sup -1}. The maximum energy in a laser pulse is {approx}3 mJ for NF{sub 3}-Xe-He and NF{sub 3}-Xe-Ne mixtures at total pressures of 0.8 and 1.2 atm, respectively, and the maximum lasing efficiency is {approx}0.73%. The maximum gas velocity in the working gap is 19 m s{sup -1}. The laser-pulse energy at a high pulse repetition rate (4 kHz) virtually coincides with that obtained at a low repetition rate. The mean output pulse power at f = 4 kHz reaches 12 W, and the rms deviation of the laser-pulse energy is {approx}2.5%. (lasers)

  11. Properties of the surface of ceramic formed under laser irradiation of Al2O3-TiO2 compacts

    NASA Astrophysics Data System (ADS)

    Márquez Aguilar, P. A.; Vlasova, M.; Escobar Martínez, A.; Tomila, T.; Stetsenko, V.

    2014-04-01

    The phase formation in the laser irradiation area from xAl2O3-yTiO2 compacts and the properties of the surface layer have been investigated by the XRD, IR, and SEM methods. Main phases precipitating from eutectic melt are tialite, corundum, and rutile. A high temperature on the surface of specimens leads to the development of dissociation processes of these compounds and molecules of the gaseous medium. As dissociation products fly apart and pass through different temperature zone, there are formed different metal oxides, metal hydroxides, and thermolysis products. When these different oxides are deposited on the surface of the ceramic, they form layers with different adhesion degrees.

  12. Emphysema diagnosis using X-ray dark-field imaging at a laser-driven compact synchrotron light source

    PubMed Central

    Schleede, Simone; Meinel, Felix G.; Bech, Martin; Herzen, Julia; Achterhold, Klaus; Potdevin, Guillaume; Malecki, Andreas; Adam-Neumair, Silvia; Thieme, Sven F.; Bamberg, Fabian; Nikolaou, Konstantin; Bohla, Alexander; Yildirim, Ali Ö.; Loewen, Roderick; Gifford, Martin; Ruth, Ronald; Eickelberg, Oliver; Reiser, Maximilian; Pfeiffer, Franz

    2012-01-01

    In early stages of various pulmonary diseases, such as emphysema and fibrosis, the change in X-ray attenuation is not detectable with absorption-based radiography. To monitor the morphological changes that the alveoli network undergoes in the progression of these diseases, we propose using the dark-field signal, which is related to small-angle scattering in the sample. Combined with the absorption-based image, the dark-field signal enables better discrimination between healthy and emphysematous lung tissue in a mouse model. All measurements have been performed at 36 keV using a monochromatic laser-driven miniature synchrotron X-ray source (Compact Light Source). In this paper we present grating-based dark-field images of emphysematous vs. healthy lung tissue, where the strong dependence of the dark-field signal on mean alveolar size leads to improved diagnosis of emphysema in lung radiographs. PMID:23074250

  13. Low-cost compact diffuse speckle contrast flowmeter using small laser diode and bare charge-coupled-device

    NASA Astrophysics Data System (ADS)

    Huang, Chong; Seong, Myeongsu; Morgan, Joshua Paul; Mazdeyasna, Siavash; Kim, Jae Gwan; Hastings, Jeffrey Todd; Yu, Guoqiang

    2016-08-01

    We report a low-cost compact diffuse speckle contrast flowmeter (DSCF) consisting of a small laser diode and a bare charge-coupled-device (CCD) chip, which can be used for contact measurements of blood flow variations in relatively deep tissues (up to ˜8 mm). Measurements of large flow variations by the contact DSCF probe are compared to a noncontact CCD-based diffuse speckle contrast spectroscopy and a standard contact diffuse correlation spectroscopy in tissue phantoms and a human forearm. Bland-Altman analysis shows no significant bias with good limits of agreement among these measurements: 96.5%±2.2% (94.4% to 100.0%) in phantom experiments and 92.8% in the forearm test. The relatively lower limit of agreement observed in the in vivo measurements (92.8%) is likely due to heterogeneous reactive responses of blood flow in different regions/volumes of the forearm tissues measured by different probes. The low-cost compact DSCF device holds great potential to be broadly used for continuous and longitudinal monitoring of blood flow alterations in ischemic/hypoxic tissues, which are usually associated with various vascular diseases.

  14. Towards novel compact laser sources for non-invasive diagnostics and treatment

    NASA Astrophysics Data System (ADS)

    Rafailov, Edik U.; Litvinova, Karina S.; Sokolovski, Sergei G.

    2015-08-01

    An important field of application of lasers is biomedical optics. Here, they offer great utility for diagnosis, therapy and surgery. For the development of novel methods of laser-based biomedical diagnostics careful study of light propagation in biological tissues is necessary to enhance our understanding of the optical measurements undertaken, increase research and development capacity and the diagnostic reliability of optical technologies. Ultimately, fulfilling these requirements will increase uptake in clinical applications of laser based diagnostics and therapeutics. To address these challenges informative biomarkers relevant to the biological and physiological function or disease state of the organism must be selected. These indicators are the results of the analysis of tissues and cells, such as blood. For non-invasive diagnostics peripheral blood, cells and tissue can potentially provide comprehensive information on the condition of the human organism. A detailed study of the light scattering and absorption characteristics can quickly detect physiological and morphological changes in the cells due to thermal, chemical, antibiotic treatments, etc [1-5]. The selection of a laser source to study the structure of biological particles also benefits from the fact that gross pathological changes are not induced and diagnostics make effective use of the monochromatic directional coherence properties of laser radiation.

  15. Compact laser accelerators for X-ray phase-contrast imaging.

    PubMed

    Najmudin, Z; Kneip, S; Bloom, M S; Mangles, S P D; Chekhlov, O; Dangor, A E; Döpp, A; Ertel, K; Hawkes, S J; Holloway, J; Hooker, C J; Jiang, J; Lopes, N C; Nakamura, H; Norreys, P A; Rajeev, P P; Russo, C; Streeter, M J V; Symes, D R; Wing, M

    2014-03-06

    Advances in X-ray imaging techniques have been driven by advances in novel X-ray sources. The latest fourth-generation X-ray sources can boast large photon fluxes at unprecedented brightness. However, the large size of these facilities means that these sources are not available for everyday applications. With advances in laser plasma acceleration, electron beams can now be generated at energies comparable to those used in light sources, but in university-sized laboratories. By making use of the strong transverse focusing of plasma accelerators, bright sources of betatron radiation have been produced. Here, we demonstrate phase-contrast imaging of a biological sample for the first time by radiation generated by GeV electron beams produced by a laser accelerator. The work was performed using a greater than 300 TW laser, which allowed the energy of the synchrotron source to be extended to the 10-100 keV range.

  16. Compact 36 kJ electron beam system for laser pumping

    NASA Astrophysics Data System (ADS)

    Schlitt, L. G.

    1981-05-01

    An electron beam machine consisting of six modules is being constructed for the B amplifier of a KrF laser system. Each module consists of a diode, a 5 omega positive charged water dielectric Blumlein pulse forming line, and a five stage Marx generator. Separate 25 cm by 41 cm electron beams are formed in magnetically isolated diodes which when arranged in groups of three produce two nearly continuous 25 cm by 125 cm beams that enter the laser cell from opposite sides. The pulse forming lines operate at 450 keV and Produce 150 ns long pulses. The lines employ electrically triggered annular SF6 output switches. The two concentric transmission lines of each pulse forming line are charged in 1 microsec through symmetric circuits to reduce diode prepulse voltage. The six modules together with the laser cell occupy less than 15 sq m of floor space.

  17. Compact laser accelerators for X-ray phase-contrast imaging

    PubMed Central

    Najmudin, Z.; Kneip, S.; Bloom, M. S.; Mangles, S. P. D.; Chekhlov, O.; Dangor, A. E.; Döpp, A.; Ertel, K.; Hawkes, S. J.; Holloway, J.; Hooker, C. J.; Jiang, J.; Lopes, N. C.; Nakamura, H.; Norreys, P. A.; Rajeev, P. P.; Russo, C.; Streeter, M. J. V.; Symes, D. R.; Wing, M.

    2014-01-01

    Advances in X-ray imaging techniques have been driven by advances in novel X-ray sources. The latest fourth-generation X-ray sources can boast large photon fluxes at unprecedented brightness. However, the large size of these facilities means that these sources are not available for everyday applications. With advances in laser plasma acceleration, electron beams can now be generated at energies comparable to those used in light sources, but in university-sized laboratories. By making use of the strong transverse focusing of plasma accelerators, bright sources of betatron radiation have been produced. Here, we demonstrate phase-contrast imaging of a biological sample for the first time by radiation generated by GeV electron beams produced by a laser accelerator. The work was performed using a greater than 300 TW laser, which allowed the energy of the synchrotron source to be extended to the 10–100 keV range. PMID:24470414

  18. Compact 498-nm light source based on intracavity sum-frequency Nd:GGG laser

    NASA Astrophysics Data System (ADS)

    Wang, A. G.; Li, Y. L.

    2011-08-01

    We report a coherent cyan radiation at 498 nm by intracavity sum-frequency generation of the 937 and 1062 nm laser-lines of the Nd:GGG crystal. With a diode pump power of 18.2 W, the maximum cyan output power of 186 mW is obtained. The beam quality M2 value is 1.22 in the horizontal plane. The output power stability over 30 min is better than 5%. To the best of our knowledge, this is first work on intracavity sum-frequency generation of a diode pumped Nd:GGG laser at 498 nm.

  19. Compact Diode-Side-Pumped Stimulated Raman Laser Based on a KGW:Nd Crystal

    NASA Astrophysics Data System (ADS)

    Bezyazychnaya, T. V.; Bogdanovich, M. V.; Grigor'ev, A. V.; Lantsov, K. I.; Lebiadok, Y. V.; Leptchenkov, K. V.; Ryabtsev, A. G.; Ryabtsev, G. I.; Shpak, P. V.; Schemelev, M. A.

    2015-07-01

    We have studied an all solid-state diode-side-pumped laser which lases in the nominally eye-safe spectral range of ~1.5-1.6 μm. The optical configuration of the laser is based on using a potassium gadolinium tungstate crystal doped with neodymium ions, in which lasing occurs at a wavelength of λ = 1.351 μm and stimulated Raman selfconversion occurs to the first Stokes component (λ = 1.538 μm). The maximum output pulse energy was 17 mJ and 7 mJ for repetition frequencies of respectively 1 Hz and 10 Hz.

  20. Laser ablation synthesis and spectral characterization of ruby nanoparticles

    NASA Astrophysics Data System (ADS)

    Baranov, M. S.; Bardina, A. A.; Savelyev, A. G.; Khramov, V. N.; Khaydukov, E. V.

    2016-04-01

    The laser ablation method was implemented for synthesis of ruby nanoparticles. Nanoparticles were obtained by nanosecond ablation of bulk ruby crystal in 10% ethanol water solution. The nanoparticles enable water colloid stability and exhibit narrow photoluminescent line at 694 nm when pumped at blue-green spectral range. The ruby nanoparticles were characterized by SEM and Z-sizer.

  1. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    NASA Astrophysics Data System (ADS)

    Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.; Li, Zhengyan; Arefiev, Alexey V.; Zhang, Xi; Zgadzaj, Rafal; Henderson, Watson; Khudik, V.; Shvets, G.; Downer, M. C.

    2015-02-01

    We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a0 ˜ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jet exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic "denting" of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75-200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (˜6 × 10-12) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements.

  2. Submarine laser communications

    NASA Astrophysics Data System (ADS)

    McConathy, D. R.

    The Department of the Navy and the Defense Advanced Research Projects Agency (DARPA) are sponsoring a joint study to investigate the use of blue-green laser technology to comunicate with submarines at operating depths. Two approaches are under investigation - one in which the laser itself is space-based, and the other in which the laser is ground-based with its beam redirected to the earth's surface by an orbiting mirror. This paper discusses these two approaches, and presents a brief history of activities which led to the current studies.

  3. Effectiveness of antimicrobial photodynamic therapy using a 660 nm laser and methyline blue dye for inactivating Staphylococcus aureus biofilms in compact and cancellous bones: An in vitro study.

    PubMed

    Rosa, Luciano Pereira; Silva, Francine Cristina da; Nader, Sumaia Alves; Meira, Giselle Andrade; Viana, Magda Souza

    2015-06-01

    New therapeutic modalities such as antimicrobial photodynamic therapy (APDT) has been investigated in order to be a valid alternative to the treatment of infections caused by different microorganisms. This work evaluated the in vitro effectiveness of Antimicrobial Photodynamic Therapy (APDT) using 660 nm laser combined with methylene blue dye to inactivate Staphylococcus aureus (ATCC 25923) biofilms in compact and cancellous bones specimens. Eighty specimens of compact bone and 80 specimens of cancellous bone were contaminated with a standard suspension of S. aureus and incubated for 14 days at 37°C to induce the formation of biofilms. The specimens were then divided into groups (n = 10) according to the established treatment: PS-L- (control--no treatment), PS+L- (only AM for 5 min in the dark), PS-L+90 (only laser irradiation for 90 s), PS-L+180 (only laser irradiation for 180 s), PS-L+300 (only laser irradiation for 300 s), APDT90 (APDT for 90 s), APDT180 (APDT for 180 s), and APDT300 (APDT for 300 s). The findings were statistically analyzed by ANOVA 5%. All of the experimental treatments showed a significant reduction (log 10 CFU/mL) of S. aureus biofilms in compact and cancellous bones specimens compared with the control group, and the APDT group was the most effective. Compact specimens treated with APDT showed the greatest reduction in biofilms compared with cancellous specimens, regardless of length of treatment. APDT with methylene blue dye and a 660 nm laser proved to be effective in inactivating S. aureus biofilms formed in compact and cancellous bone. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A Compact Tandem Two-Step Laser Time-of-Flight Mass Spectrometer for In Situ Analysis of Non-Volatile Organics on Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Getty, Stephanie A.; Brinckerhoff, William B.; Li, Xiang; Elsila, Jamie; Cornish, Timothy; Ecelberger, Scott; Wu, Qinghao; Zare, Richard

    2014-01-01

    Two-step laser desorption mass spectrometry is a well suited technique to the analysis of high priority classes of organics, such as polycyclic aromatic hydrocarbons, present in complex samples. The use of decoupled desorption and ionization laser pulses allows for sensitive and selective detection of structurally intact organic species. We have recently demonstrated the implementation of this advancement in laser mass spectrometry in a compact, flight-compatible instrument that could feasibly be the centerpiece of an analytical science payload as part of a future spaceflight mission to a small body or icy moon.

  5. Compact Laser-Based Sensors for Monitoring and Control of Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Hanson, Ronald K.; Jeffries, Jay B.

    2003-01-01

    Research is reported on the development of sensors for gas turbine combustor applications that measure real-time gas temperature using near-infrared water vapor absorption and concentration in the combustor exhaust of trace quantities of pollutant NO and CO using mid-infrared absorption. Gas temperature is extracted from the relative absorption strength of two near-infrared transitions of water vapor. From a survey of the water vapor absorption spectrum, two overtone transitions near 1800 nm were selected that can be rapidly scanned in wavelength by injection current tuning a single DFB diode laser. From the ratio of the absorbances on these selected transitions, a path-integrated gas temperature can be extracted in near-real time. Demonstration measurements with this new temperature sensor showed that combustor instabilities could be identified in the power spectrum of the temperature versus time record. These results suggest that this strategy is extremely promising for gas turbine combustor control applications. Measurements of the concentration of NO and CO in the combustor exhaust are demonstrated with mid-infrared transitions using thermo-electrically cooled, quantum cascade lasers operating near 5.26 and 4.62 microns respectively. Measurements of NO are performed in an insulated exhaust duct of a C2H4-air flame at temperatures of approximately 600 K. CO measurements are performed above a rich H2-air flame seeded with CO2 and cooled with excess N2 to 1150 K. Using a balanced ratiometric detection technique a sensitivity of 0.36 ppm-m was achieved for NO and 0.21 ppm-m for CO. Comparisons between measured and predicted water-vapor and CO2 interference are discussed. The mid-infrared laser quantum cascade laser technology is in its infancy; however, these measurements demonstrate the potential for pollutant monitoring in exhaust gases with mid-IR laser absorption.

  6. Compact self-Q-switched green upconversion Er:ZBLAN all-fiber laser operating at 543.4  nm.

    PubMed

    Luo, Zhengqian; Ruan, Qiujun; Zhong, Min; Cheng, Yongjie; Yang, Runhua; Xu, Bin; Xu, Huiying; Cai, Zhiping

    2016-05-15

    We report the demonstration of a compact self-Q-switched green upconversion Er3+:ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fiber laser operating at 543.4 nm. The all-fiber green laser simply consists of a 45 cm high-concentration Er3+:ZBLAN fiber, a 976 nm pump source, and a pair of fiber end-facet mirrors. Under the strong excitation of the 976 nm pump laser, green upconversion lasing at 543.4 nm is achieved from the compact Er3+:ZBLAN fiber laser. Interestingly, the green laser exhibits stable self-Q-switching operation. As the 976 nm pump power is increased, the pulse repetition rate linearly increases from 25.9 to 50.8 kHz and the pulse width narrows from 7.2 to 1.95 μs. The Q-switched green laser has a pump threshold of 118 mW and a maximum output power of 6.9 mW with a slope efficiency of 30%. This is, to the best of our knowledge, the shortest-wavelength operation of a self-started or passively Q-switched fiber laser.

  7. Room temperature tunable blue-green luminescence in nanocrystalline (Pb1-xSrx)TiO3 thin film grown on yttrium-doped zirconia substrate

    NASA Astrophysics Data System (ADS)

    Luo, L.; Ren, H. Z.; Tang, X. G.; Ding, C. R.; Wang, H. Z.; Chen, X. M.; Jia, J. K.; Hu, Z. F.

    2008-08-01

    Room temperature tunable blue-green photoluminescence was observed in nanocrystalline (Pb1-xSrx)TiO3 thin film under UV excitation. Its emission energy increases from 2.42 (at x =0.6) to 2.76 eV (at x =0.4), while the band gap decreases from 3.6 to 3.3 eV. Thin films of (Pb1-xSrx)TiO3 were prepared on yttrium-doped zirconia substrate by a simple sol-gel technique with spinning-coating process. Atom force microscope micrographs and crystallographic studies revealed the polycrystalline perovskite-type structure of the thin films. The observed optical properties are attributed to distorted octahedral due to different cation substitutions. The work shows that this kind of wide band gap and low cost nanocrystalline thin films is a very promising material for flat panel display applications and integrated light emission devices.

  8. Observation of gigawatt-class THz pulses from a compact laser-driven particle accelerator.

    PubMed

    Gopal, A; Herzer, S; Schmidt, A; Singh, P; Reinhard, A; Ziegler, W; Brömmel, D; Karmakar, A; Gibbon, P; Dillner, U; May, T; Meyer, H-G; Paulus, G G

    2013-08-16

    We report the observation of subpicosecond terahertz (T-ray) pulses with energies ≥460 μJ from a laser-driven ion accelerator, thus rendering the peak power of the source higher even than that of state-of-the-art synchrotrons. Experiments were performed with intense laser pulses (up to 5×10(19) W/cm(2)) to irradiate thin metal foil targets. Ion spectra measured simultaneously showed a square law dependence of the T-ray yield on particle number. Two-dimensional particle-in-cell simulations show the presence of transient currents at the target rear surface which could be responsible for the strong T-ray emission.

  9. Optimization of the LBNL Laser Wakefield Accelerator as a Compact, Powerful Terahertz Source

    NASA Astrophysics Data System (ADS)

    Plateau, Guillaume; Matlis, Nicholas; van Tilborg, Jeroen; Nakamura, Kei; Geddes, Cameron; Toth, Csaba; Schroeder, Carl; Esarey, Eric; Leemans, Wim

    2007-11-01

    At LBNL, laser wakefield accelerators (LWFA) routinely produce ultrashort electron bunches with energies up to 1 GeV [1]. As femtosecond electron bunches exit the plasma they radiate a strong burst in the terahertz range [2,3] via coherent transition radiation (CTR). Measuring the CTR properties allows non-invasive bunch-length diagnostics [4], a key to continuing rapid advance in LWFA technology. We present measurements demonstrating both the shot-to-shot stability of bunch parameters, and femtosecond synchronization between the bunch, the THz pulse, and the laser beam. In addition we present a technique for enhancing CTR generation from LWFA-produced electron beams, increasing its suitability for applications. [1] W.P. Leemans et al., Nature Physics 2, 696 (2006); [2] W.P. Leemans et al., PRL 91, 074802 (2003); [3] C.B. Schroeder et al., PRE 69, 016501 (2004); [4] J. van Tilborg et al., PRL 96, 014801 (2006)

  10. A novel compact three-dimensional laser-sintered collimator for neutron scattering

    NASA Astrophysics Data System (ADS)

    Ridley, Christopher J.; Manuel, Pascal; Khalyavin, Dmitry; Kirichek, Oleg; Kamenev, Konstantin V.

    2015-09-01

    Improvements in the available flux at neutron sources are making it increasingly feasible to obtain refineable neutron diffraction data from samples smaller than 1 mm3. The signal is typically too weak to introduce any further sample environment in the 30-50 mm diameter surrounding the sample (such as the walls of a pressure cell) due to the high ratio of background to sample signal, such that even longer count times fail to reveal reflections from the sample. Many neutron instruments incorporate collimators to reduce parasitic scattering from the instrument and from any surrounding material and larger pieces of sample environment, such as cryostats. However, conventional collimation is limited in the volume it can focus on due to difficulties in producing tightly spaced neutron-absorbing foils close to the sample and in integrating this into neutron instruments. Here we present the design of a novel compact 3D rapid-prototyped (or "printed") collimator which reduces these limitations and is shown to improve the ratio of signal to background, opening up the feasibility of using additional sample environment for neutron diffraction from small sample volumes. The compactness and ease of customisation of the design allows this concept to be integrated with existing sample environment and with designs that can be tailored to individual detector geometries without the need to alter the setup of the instrument. Results from online testing of a prototype collimator are presented. The proof of concept shows that there are many additional collimator designs which may be manufactured relatively inexpensively, with a broad range of customisation, and geometries otherwise impossible to manufacture by conventional techniques.

  11. A novel compact three-dimensional laser-sintered collimator for neutron scattering

    SciTech Connect

    Ridley, Christopher J.; Manuel, Pascal; Khalyavin, Dmitry; Kirichek, Oleg; Kamenev, Konstantin V.

    2015-09-15

    Improvements in the available flux at neutron sources are making it increasingly feasible to obtain refineable neutron diffraction data from samples smaller than 1 mm{sup 3}. The signal is typically too weak to introduce any further sample environment in the 30–50 mm diameter surrounding the sample (such as the walls of a pressure cell) due to the high ratio of background to sample signal, such that even longer count times fail to reveal reflections from the sample. Many neutron instruments incorporate collimators to reduce parasitic scattering from the instrument and from any surrounding material and larger pieces of sample environment, such as cryostats. However, conventional collimation is limited in the volume it can focus on due to difficulties in producing tightly spaced neutron-absorbing foils close to the sample and in integrating this into neutron instruments. Here we present the design of a novel compact 3D rapid-prototyped (or “printed”) collimator which reduces these limitations and is shown to improve the ratio of signal to background, opening up the feasibility of using additional sample environment for neutron diffraction from small sample volumes. The compactness and ease of customisation of the design allows this concept to be integrated with existing sample environment and with designs that can be tailored to individual detector geometries without the need to alter the setup of the instrument. Results from online testing of a prototype collimator are presented. The proof of concept shows that there are many additional collimator designs which may be manufactured relatively inexpensively, with a broad range of customisation, and geometries otherwise impossible to manufacture by conventional techniques.

  12. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    SciTech Connect

    Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.; Li, Zhengyan; Zgadzaj, Rafal; Henderson, Watson; Downer, M. C.; Arefiev, Alexey V.; Zhang, Xi; Khudik, V.; Shvets, G.

    2015-02-15

    We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a{sub 0} ∼ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jet exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic “denting” of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75–200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (∼6 × 10{sup −12}) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements.

  13. Toward Ultraintense Compact RBS Pump for Recombination 3.4 nm Laser via OFI

    NASA Astrophysics Data System (ADS)

    Suckewer, S.; Ren, J.; Li, S.; Lou, Y.; Morozov, A.; Turnbull, D.; Avitzour, Y.

    In our presentation we overview progress we made in developing a new ultrashort and ultraintensive laser system based on Raman backscattering (RBS) amplifier /compressor from time of 10th XRL Conference in Berlin to present time of 11th XRL Conference in Belfast. One of the main objectives of RBS laser system development is to use it for pumping of recombination X-ray laser in transition to ground state of CVI ions at 3.4 nm. Using elaborate computer code the processes of Optical Field Ionization, electron energy distribution, and recombination were calculated. It was shown that in very earlier stage of recombination, when electron energy distribution is strongly non-Maxwellian, high gain in transition from the first excited level n=2 to ground level m=1 can be generated. Adding large amount of hydrogen gas into initial gas containing carbon atoms (e.g. methane, CH4) the calculated gain has reached values up to 150-200 cm-2 Taking into account this very encouraging result, we have proceed with arrangement of experimental setup. We will present the observation of plasma channels and measurements of electron density distribution required for generation of gain at 3.4 nm.

  14. Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source.

    PubMed

    Wenz, J; Schleede, S; Khrennikov, K; Bech, M; Thibault, P; Heigoldt, M; Pfeiffer, F; Karsch, S

    2015-07-20

    X-ray phase-contrast imaging has recently led to a revolution in resolving power and tissue contrast in biomedical imaging, microscopy and materials science. The necessary high spatial coherence is currently provided by either large-scale synchrotron facilities with limited beamtime access or by microfocus X-ray tubes with rather limited flux. X-rays radiated by relativistic electrons driven by well-controlled high-power lasers offer a promising route to a proliferation of this powerful imaging technology. A laser-driven plasma wave accelerates and wiggles electrons, giving rise to a brilliant keV X-ray emission. This so-called betatron radiation is emitted in a collimated beam with excellent spatial coherence and remarkable spectral stability. Here we present a phase-contrast microtomogram of a biological sample using betatron X-rays. Comprehensive source characterization enables the reconstruction of absolute electron densities. Our results suggest that laser-based X-ray technology offers the potential for filling the large performance gap between synchrotron- and current X-ray tube-based sources.

  15. Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source

    PubMed Central

    Wenz, J.; Schleede, S.; Khrennikov, K.; Bech, M.; Thibault, P.; Heigoldt, M.; Pfeiffer, F.; Karsch, S.

    2015-01-01

    X-ray phase-contrast imaging has recently led to a revolution in resolving power and tissue contrast in biomedical imaging, microscopy and materials science. The necessary high spatial coherence is currently provided by either large-scale synchrotron facilities with limited beamtime access or by microfocus X-ray tubes with rather limited flux. X-rays radiated by relativistic electrons driven by well-controlled high-power lasers offer a promising route to a proliferation of this powerful imaging technology. A laser-driven plasma wave accelerates and wiggles electrons, giving rise to a brilliant keV X-ray emission. This so-called betatron radiation is emitted in a collimated beam with excellent spatial coherence and remarkable spectral stability. Here we present a phase-contrast microtomogram of a biological sample using betatron X-rays. Comprehensive source characterization enables the reconstruction of absolute electron densities. Our results suggest that laser-based X-ray technology offers the potential for filling the large performance gap between synchrotron- and current X-ray tube-based sources. PMID:26189811

  16. Blue-green emitting cationic iridium complexes with 1,3,4-oxadiazole cyclometallating ligands: synthesis, photophysical and electrochemical properties, theoretical investigation and electroluminescent devices.

    PubMed

    Wang, Zhen; He, Lei; Duan, Lian; Yan, Jun; Tang, Ruiren; Pan, Chunyue; Song, Xiangzhi

    2015-09-28

    Two cationic iridium complexes, namely [Ir(dph-oxd)2(bpy)]PF6 (1) and [Ir(dph-oxd)2(pzpy)]PF6 (2), using 2,5-diphenyl-1,3,4-oxadiazole (dph-oxd) as the cyclometallating ligand and 2,2'-bipyridine (bpy) or 2-(1H-pyrazol-1-yl)pyridine (pzpy) as the ancillary ligands, have been synthesized, and their photophysical and electrochemical properties have been comprehensively investigated. In solution, both complexes emit efficient blue-green light. For complex 1, the light emission in a neat film is remarkably red-shifted; in solid state, it gives an intriguing piezochromic phenomenon. Compared with archetype [Ir(ppy)2(bpy)]PF6 (ppy is 2-phenylpyridine), complex 1 shows a largely stabilized HOMO (highest occupied molecular orbital) level, induced by the electron-deficient 1,3,4-oxadiazole (oxd) heterocycle of dph-oxd, which results in an enlarged energy gap and blue-shifted emission. Compared with complex 1, complex 2 shows an enhanced LUMO (lowest unoccupied molecular orbital) level, caused by the electron-rich pzpy ancillary ligand, but they exhibit similar emission energy in solution. For both complexes, theoretical calculations reveal that their blue-green emission in solution arises primarily from the (3)π-π* states centered on dph-oxd; moreover, complex 1 bears close-lying (3)π-π* and (3)CT (charge-transfer) states, underlying its remarkably red-shifted emission in the neat film and unique piezochromic behavior in the solid state. Solid state light emitting electrochemical cells (LECs) based on complexes 1 and 2 give efficient yellow and green-blue light, with peak current efficiencies of 18.3 and 5.2 cd A(-1), respectively. It is demonstrated that oxd-type cyclometallating ligands are promising as an avenue to stabilize the HOMOs and tune emission properties of cationic iridium complexes to a large extent.

  17. Strategic Blue-Green Optical Communications Program Plan. Investment Strategy Toward AN Optical Solution for Satellite-to-Submarine Information Transfer. Technical ADVISOR to the Strategic Blue-Green Optical Communications Program Joint Coordinating Committee

    DTIC Science & Technology

    1979-07-16

    based laser... 6 SUNSUBSATCOM ... 7 4 DETAILED DESCRIPTION OF TASK AREAS... 7 Operational requirements; threat definition and vulnerability analysis...naturally emerge to form the major task areas of the problem: Operational requirements: threat definition and vulnerability analysis System engineering...following definitional statements show. The operational requirements and threat definition task area defines the communica- tions problem at hand. It

  18. Highly efficient blue-green quantum dot light-emitting diodes using stable low-cadmium quaternary-alloy ZnCdSSe/ZnS core/shell nanocrystals.

    PubMed

    Shen, Huaibin; Wang, Sheng; Wang, Hongzhe; Niu, Jinzhong; Qian, Lei; Yang, Yixing; Titov, Alexandre; Hyvonen, Jake; Zheng, Ying; Li, Lin Song

    2013-05-22

    High-quality blue-green emitting ZnxCd(1-x)S(1-y)Se(y)/ZnS core/shell quantum dots (QDs) have been synthesized by a phosphine-free method. The quantum yields of as-synthesized ZnxCd(1-x)S(1-y)Se(y)/ZnS core/shell QDs can reach 50-75% with emissions between 450 and 550 nm. The emissions of such core/shell QDs are not susceptible to ligand loss through the photostability test. Blue-green light-emitting diodes (LEDs) based on the low-cadmium ZnxCd(1-x)S(1-y)Se(y)/ZnS core/shell QDs have been successfully demonstrated. Composite films of poly[9,9-dioctylfluorene-co-N-[4-(3-methylpropyl)]-diphenylamine] (TFB) and ZnO nanoparticle layers were chosen as the hole-transporting and the electron-transporting layers, respectively. Highly bright blue-green QD-based light-emitting devices (QD-LEDs) showing maximum luminance up to 10000 cd/m(2), in particular, the blue QD-LEDs show an unprecedentedly high brightness over 4700 cd/m(2) and peak external quantum efficiency (EQE) of 0.8%, which is the highest value ever reported. These results signify a remarkable progress in QD-LEDs and offer a practicable platform for the realization of QD-based blue-green display and lighting.

  19. Compact silicon-based optrode with integrated laser diode chips, SU-8 waveguides and platinum electrodes for optogenetic applications

    NASA Astrophysics Data System (ADS)

    Schwaerzle, M.; Paul, O.; Ruther, P.

    2017-06-01

    We report on a compact optrode, i.e. a MEMS-based, invasive, bidirectional neural interface allowing to control neural activity using light while neural signals are recorded nearby. The optrode consists of a silicon (Si) base carrying two pairs of bare laser diodes (LDs) emitting at 650 nm and of two 8 mm-long, 250 µm-wide and down to 50 µm-thick shanks extending from the base. Each LD is efficiently coupled to one of four 15 or 20 µm-wide and 13 µm-high SU-8 waveguides (WGs) running in pairs along the shanks. In addition, each shank comprises four 20 µm-diameter platinum electrodes for neural recording near the WG end facets. After encapsulation of the LDs with a Si cover chip blocking stray light and protecting the LDs from the harsh environment to which the probe is destined, the compact base measures only 4  ×  4  ×  0.43 mm3. The time averaged radiant emittance at the WG end facet is 96.9 mW mm-2 for an LD current of 35 mA at a duty cycle of 5%. The absolute electrode impedance at 1 kHz is 1.54  ±  0.06 MΩ. Using infrared thermography, the temperature increase of the probe during LD operation was determined to be about 1 K under neuroscientifically relevant operating conditions.

  20. Compact free-electron laser resonators utilizing electron-transparent mirrors

    NASA Astrophysics Data System (ADS)

    Dipace, Antonio; Doria, Andrea; Gallerano, Gian P.; Kimmitt, Maurice F.; Raimondi, Pantaleone; Renieri, Alberto; Sabia, Elio

    1991-12-01

    The potential advantages and the physical properties of several electron-transparent mirrors (e.g., metal meshes, thin foils, pierced mirrors, and Bragg reflectors) to be used in infrared free-electron laser resonators are reviewed. The conditions under which the effect on the electron beam quality can be kept small are discussed, and experimental results on the angular spread produced by a 2.5-micron-thick metal mesh on a 5 MeV electron beam are presented. The experimental test of a resonator with two different electron transparent output couplers is reported.