Spacecraft Applications of Compact Optical and Mass Spectrometers
NASA Technical Reports Server (NTRS)
Davinic, N. M.; Nagel, D. J.
1995-01-01
Optical spectrometers, and mass spectrometers to a lesser extent, have a long and rich history of use aboard spacecraft. Space mission applications include deep space science spacecraft, earth orbiting satellites, atmospheric probes, and surface landers, rovers, and penetrators. The large size of capable instruments limited their use to large, expensive spacecraft. Because of the novel application of micro-fabrication technologies, compact optical and mass spectrometers are now available. The new compact devices are especially attractive for spacecraft because of their small mass and volume, as well as their low power consumption. Dispersive optical multi-channel analyzers which cover the 0.4-1.1 micrometer wavelength are now commercially available in packages as small as 3 x 6 x 18 mm exclusive of drive and recording electronics. Mass spectrometers as small as 3 x 3 mm, again without electronics, are under development. A variety of compact optical and mass spectrometers are reviewed in this paper. A number of past space applications are described, along with some upcoming opportunities that are likely candidate missions to fly this new class of compact spectrometers.
Measuring Transmission Efficiencies Of Mass Spectrometers
NASA Technical Reports Server (NTRS)
Srivastava, Santosh K.
1989-01-01
Coincidence counts yield absolute efficiencies. System measures mass-dependent transmission efficiencies of mass spectrometers, using coincidence-counting techniques reminiscent of those used for many years in calibration of detectors for subatomic particles. Coincidences between detected ions and electrons producing them counted during operation of mass spectrometer. Under certain assumptions regarding inelastic scattering of electrons, electron/ion-coincidence count is direct measure of transmission efficiency of spectrometer. When fully developed, system compact, portable, and used routinely to calibrate mass spectrometers.
A compact time-of-flight mass spectrometer for ion source characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L., E-mail: l.chen03@gmail.com; Wan, X.; Jin, D. Z.
2015-03-15
A compact time-of-flight mass spectrometer with overall dimension of about 413 × 250 × 414 mm based on orthogonal injection and angle reflection has been developed for ion source characterization. Configuration and principle of the time-of-flight mass spectrometer are introduced in this paper. The mass resolution is optimized to be about 1690 (FWHM), and the ion energy detection range is tested to be between about 3 and 163 eV with the help of electron impact ion source. High mass resolution and compact configuration make this spectrometer useful to provide a valuable diagnostic for ion spectra fundamental research and study themore » mass to charge composition of plasma with wide range of parameters.« less
A compact electron spectrometer for an LWFA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumpkin, A.; Crowell, R.; Li, Y.
2007-01-01
The use of a laser wakefield accelerator (LWFA) beam as a driver for a compact free-electron laser (FEL) has been proposed recently. A project is underway at Argonne National Laboratory (ANL) to operate an LWFA in the bubble regime and to use the quasi-monoenergetic electron beam as a driver for a 3-m-long undulator for generation of sub-ps UV radiation. The Terawatt Ultrafast High Field Facility (TUHFF) in the Chemistry Division provides the 20-TW peak power laser. A compact electron spectrometer whose initial fields of 0.45 T provide energy coverage of 30-200 MeV has been selected to characterize the electron beams.more » The system is based on the Ecole Polytechnique design used for their LWFA and incorporates the 5-cm-long permanent magnet dipole, the LANEX scintillator screen located at the dispersive plane, a Roper Scientific 16-bit MCP-intensified CCD camera, and a Bergoz ICT for complementary charge measurements. Test results on the magnets, the 16-bit camera, and the ICT will be described, and initial electron beam data will be presented as available. Other challenges will also be addressed.« less
The Wavelength-Dispersive Spectrometer and Its Proposed Use in the Analytical Electron Microscope
NASA Technical Reports Server (NTRS)
Goldstein, Joseph I.; Lyman, Charles E.; Williams, David B.
1989-01-01
The Analytical Electron Microscope (AEM) equipped with a wavelength-dispersive spectrometer (WDS) should have the ability to resolve peaks which normally overlap in the spectra from an energy-dispersive spectrometer (EDS). With a WDS it should also be possible to measure lower concentrations of elements in thin foils due to the increased peak-to-background ratio compared with EDS. The WDS will measure X-ray from the light elements (4 less than Z less than 1O) more effectively. This paper addresses the possibility of interfacing a compact WDS with a focussing circle of approximately 4 cm to a modem AEM with a high-brightness (field emission) source of electrons.
Scalable NMR spectroscopy with semiconductor chips
Ha, Dongwan; Paulsen, Jeffrey; Sun, Nan; Song, Yi-Qiao; Ham, Donhee
2014-01-01
State-of-the-art NMR spectrometers using superconducting magnets have enabled, with their ultrafine spectral resolution, the determination of the structure of large molecules such as proteins, which is one of the most profound applications of modern NMR spectroscopy. Many chemical and biotechnological applications, however, involve only small-to-medium size molecules, for which the ultrafine resolution of the bulky, expensive, and high-maintenance NMR spectrometers is not required. For these applications, there is a critical need for portable, affordable, and low-maintenance NMR spectrometers to enable in-field, on-demand, or online applications (e.g., quality control, chemical reaction monitoring) and co-use of NMR with other analytical methods (e.g., chromatography, electrophoresis). As a critical step toward NMR spectrometer miniaturization, small permanent magnets with high field homogeneity have been developed. In contrast, NMR spectrometer electronics capable of modern multidimensional spectroscopy have thus far remained bulky. Complementing the magnet miniaturization, here we integrate the NMR spectrometer electronics into 4-mm2 silicon chips. Furthermore, we perform various multidimensional NMR spectroscopies by operating these spectrometer electronics chips together with a compact permanent magnet. This combination of the spectrometer-electronics-on-a-chip with a permanent magnet represents a useful step toward miniaturization of the overall NMR spectrometer into a portable platform. PMID:25092330
A 4 π dilepton spectrometer: PEPSI
NASA Astrophysics Data System (ADS)
Buda, A.; Bacelar, J. C. S.; Bałanda, A.; van Klinken, J.; Sujkowski, Z.; van der Woude, A.
1993-11-01
A novel positron-electron pair spectroscopy instrument (PEPSI) was designed to measure transitions in the energy region 10-40 MeV. It consists of Nd 2Fe 14B permanent magnets forming a compact 4 π magnetic filter consisting of 12 positron and 20 electron mini-orange-like spectrometers. The response function of PEPSI has been measured with mono-energetic beams of electrons from 5 to 20 MeV. The PEPSI spectrometer was used for measuring the internal pair conversion coefficient ( απ) of the 15.1 MeV M1 transition from a Jπ = 1 + state to the ground state in 12C. Our experimental value of απ = (3.3 ± 0.5) × 10 -3 is in good agreement with theoretical estimates.
A compact E × B filter: A multi-collector cycloidal focusing mass spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blase, Ryan C., E-mail: rblase@swri.edu; Miller, Greg; Brockwell, Tim
2015-10-15
A compact E × B mass spectrometer is presented. The mass spectrometer presented is termed a “perfect focus” mass spectrometer as the resolution of the device is independent of both the initial direction and energy of the ions (spatial and energy independent). The mass spectrometer is small in size (∼10.7 in.{sup 3}) and weight (∼2 kg), making it an attractive candidate for portability when using small, permanent magnets. A multi-collector Faraday cup design allows for the detection of multiple ion beams in discrete collectors simultaneously; providing the opportunity for isotope ratio monitoring. The mass resolution of the device is aroundmore » 400 through narrow collector slits and the sensitivity of the device follows expected theoretical calculations of the ion current produced in the electron impact ion source. Example mass spectra obtained from the cycloidal focusing mass spectrometer are presented as well as information on mass discrimination based on instrumental parameters and isotope ratio monitoring of certain ion signals in separate Faraday cups.« less
Portable Tandem Mass Spectrometer Analyzer
1991-07-01
The planned instrument was to be small enough to be portable in small vehicles and was to be able to use either an atmospheric pressure ion source or a...conventional electron impact/chemical ionization ion source. In order to accomplish these developments an atmospheric pressure ionization source was...developed for a compact, commercially available tandem quadrupole mass spectrometer. This ion source could be readily exchanged with the conventional
Fiber-Coupled Acousto-Optical-Filter Spectrometer
NASA Technical Reports Server (NTRS)
Levin, Kenneth H.; Li, Frank Yanan
1993-01-01
Fiber-coupled acousto-optical-filter spectrometer steps rapidly through commanded sequence of wavelengths. Sample cell located remotely from monochromator and associated electronic circuitry, connected to them with optical fibers. Optical-fiber coupling makes possible to monitor samples in remote, hazardous, or confined locations. Advantages include compactness, speed, and no moving parts. Potential applications include control of chemical processes, medical diagnoses, spectral imaging, and sampling of atmospheres.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxwell, T. J.; Behrens, C.; Ding, Y.
2013-10-28
Modern, high-brightness electron beams such as those from plasma wakefield accelerators and free-electron laser linacs continue the drive to ever-shorter bunch durations. In low-charge operation ( ~ 20 pC ), bunches shorter than 10 fs are reported at the Linac Coherent Light Source (LCLS). Though suffering from a loss of phase information, spectral diagnostics remain appealing as compact, low-cost bunch duration monitors suitable for deployment in beam dynamics studies and operations instrumentation. Progress in middle-infrared (MIR) imaging has led to the development of a single-shot, MIR prism spectrometer to characterize the corresponding LCLS coherent beam radiation power spectrum for few-femtosecondmore » scale bunch length monitoring. In this Letter, we report on the spectrometer installation as well as the temporal reconstruction of 3 to 60 fs-long LCLS electron bunch profiles using single-shot coherent transition radiation spectra.« less
Holden, William M.; Hoidn, Oliver R.; Ditter, Alexander S.; ...
2017-07-27
X-ray emission spectroscopy is emerging as an important complement to x-ray absorption fine structure spectroscopy, providing a characterization of the occupied electronic density of states local to the species of interest. Here, we present details of the design and performance of a compact x-ray emission spectrometer that uses a dispersive refocusing Rowland (DRR) circle geometry to achieve excellent performance for the 2-2.5 keV range, i.e., especially for the K-edge emission from sulfur and phosphorous. The DRR approach allows high energy resolution even for unfocused x-ray sources. This property enables high count rates in laboratory studies, approaching those of insertion-device beamlinesmore » at third-generation synchrotrons, despite use of only a low-powered, conventional x-ray tube. The spectrometer, whose overall scale is set by use of a 10-cm diameter Rowland circle and a new small-pixel complementary metal-oxide-semiconductor x-ray camera, is easily portable to synchrotron or x-ray free electron laser beamlines. Photometrics from measurements at the Advanced Light Source show excellent overall instrumental efficiency. In addition, the compact size of this instrument lends itself to future multiplexing to gain large factors in net collection efficiency or its implementation in controlled gas gloveboxes either in the lab or in an endstation.« less
Automatic Gain Control in Compact Spectrometers.
Protopopov, Vladimir
2016-03-01
An image intensifier installed in the optical path of a compact spectrometer may act not only as a fast gating unit, which is widely used for time-resolved measurements, but also as a variable attenuator-amplifier in a continuous wave mode. This opens the possibility of an automatic gain control, a new feature in spectroscopy. With it, the user is relieved from the necessity to manually adjust signal level at a certain value that it is done automatically by means of an electronic feedback loop. It is even more important that automatic gain control is done without changing exposure time, which is an additional benefit in time-resolved experiments. The concept, algorithm, design considerations, and experimental results are presented. © The Author(s) 2016.
Compact reflective imaging spectrometer utilizing immersed gratings
Chrisp, Michael P [Danville, CA
2006-05-09
A compact imaging spectrometer comprising an entrance slit for directing light, a first mirror that receives said light and reflects said light, an immersive diffraction grating that diffracts said light, a second mirror that focuses said light, and a detector array that receives said focused light. The compact imaging spectrometer can be utilized for remote sensing imaging spectrometers where size and weight are of primary importance.
Upgrade of the compact neutron spectrometer for high flux environments
NASA Astrophysics Data System (ADS)
Osipenko, M.; Bellucci, A.; Ceriale, V.; Corsini, D.; Gariano, G.; Gatti, F.; Girolami, M.; Minutoli, S.; Panza, F.; Pillon, M.; Ripani, M.; Trucchi, D. M.
2018-03-01
In this paper new version of the 6Li-based neutron spectrometer for high flux environments is described. The new spectrometer was built with commercial single crystal Chemical Vapour Deposition diamonds of electronic grade. These crystals feature better charge collection as well as higher radiation hardness. New metal contacts approaching ohmic conditions were deposited on the diamonds suppressing build-up of space charge observed in the previous prototypes. New passive preamplification of the signal at detector side was implemented to improve its resolution. This preamplification is based on the RF transformer not sensitive to high neutron flux. The compact mechanical design allowed to reduce detector size to a tube of 1 cm diameter and 13 cm long. The spectrometer was tested in the thermal column of TRIGA reactor and at the DD neutron generator. The test results indicate an energy resolution of 300 keV (FWHM), reduced to 72 keV (RMS) excluding energy loss, and coincidence timing resolution of 160 ps (FWHM). The measured data are in agreement with Geant4 simulations except for larger energy loss tail presumably related to imperfections of metal contacts and glue expansion.
Towards an Imaging Mid-Infrared Heterodyne Spectrometer
NASA Technical Reports Server (NTRS)
Hewagama, T.; Aslam, S.; Jones, H.; Kostiuk, T.; Villanueva, G.; Roman, P.; Shaw, G. B.; Livengood, T.; Allen, J. E.
2012-01-01
We are developing a concept for a compact, low-mass, low-power, mid-infrared (MIR; 5- 12 microns) imaging heterodyne spectrometer that incorporates fiber optic coupling, Quantum Cascade Laser (QCL) local oscillator, photomixer array, and Radio Frequency Software Defined Readout (RFSDR) for spectral analysis. Planetary Decadal Surveys have highlighted the need for miniaturized, robust, low-mass, and minimal power remote sensing technologies for flight missions. The drive for miniaturization of remote sensing spectroscopy and radiometry techniques has been a continuing process. The advent of MIR fibers, and MEMS techniques for producing waveguides has proven to be an important recent advancement for miniaturization of infrared spectrometers. In conjunction with well-established photonics techniques, the miniaturization of spectrometers is transitioning from classic free space optical systems to waveguide/fiber-based structures for light transport and producing interference effects. By their very nature, these new devices are compact and lightweight. Mercury-Cadmium-Telluride (MCT) and Quantum Well Infrared Photodiodes (QWIP) arrays for heterodyne applications are also being developed. Bulky electronics is another barrier that precluded the extension of heterodyne systems into imaging applications, and our RFSDR will address this aspect.
An Undulator-Based Laser Wakefield Accelerator Electron Beam Diagnostic
NASA Astrophysics Data System (ADS)
Bakeman, Michael S.
Currently particle accelerators such as the Large Hadron Collider use RF cavities with a maximum field gradient of 50-100 MV/m to accelerate particles over long distances. A new type of plasma based accelerator called a Laser Plasma Accelerator (LPA) is being investigated at the LOASIS group at Lawrence Berkeley National Laboratory which can sustain field gradients of 10-100 GV/m. This new type of accelerator offers the potential to create compact high energy accelerators and light sources. In order to investigate the feasibility of producing a compact light source an undulator-based electron beam diagnostic for use on the LOASIS LPA has been built and calibrated. This diagnostic relies on the principal that the spectral analysis of synchrotron radiation from an undulator can reveal properties of the electron beam such as emittance, energy and energy spread. The effects of electron beam energy spread upon the harmonics of undulator produced synchrotron radiation were derived from the equations of motion of the beam and numerically simulated. The diagnostic consists of quadrupole focusing magnets to collimate the electron beam, a 1.5 m long undulator to produce the synchrotron radiation, and a high resolution high gain XUV spectrometer to analyze the radiation. The undulator was aligned and tuned in order to maximize the flux of synchrotron radiation produced. The spectrometer was calibrated at the Advanced Light Source, with the results showing the ability to measure electron beam energy spreads at resolutions as low as 0.1% rms, a major improvement over conventional magnetic spectrometers. Numerical simulations show the ability to measure energy spreads on realistic LPA produced electron beams as well as the improvements in measurements made with the quadrupole magnets. Experimentally the quadrupoles were shown to stabilize and focus the electron beams at specific energies for their insertion into the undulator, with the eventual hope of producing an all optical Free Electron Laser operating in the XUV and soft x-ray regimes.
Compact spectrometer for precision studies of multimode behavior in an extended-cavity diode laser
NASA Astrophysics Data System (ADS)
Roach, Timothy; Golemi, Josian; Krueger, Thomas
2016-05-01
We have built a compact, inexpensive, high-precision spectrometer and used it to investigate the tuning behavior of a grating stabilized extended-cavity diode laser (ECDL). A common ECDL design uses a laser chip with an uncoated (partially reflecting) front facet, and the laser output exhibits a complicated pattern of mode hops as the frequency is tuned, in some cases even showing chaotic dynamics. Our grating spectrometer (based on a design by White & Scholten) monitors a span of 4000 GHz (8 nm at 780 nm) with a linewidth of 3 GHz, which with line-splitting gives a precision of 0.02 GHz in determining the frequency of a laser mode. We have studied multimode operation of the ECDL, tracking two or three simultaneous chip cavity modes (spacing ~ 30 GHz) during tuning via current or piezo control of the external cavity. Simultaneous output on adjacent external cavity modes (spacing ~ 5 GHz) is monitored by measuring an increase in the spectral linewidth. Computer-control of the spectrometer (for line-fitting and averaging) and of the ECDL (electronic tuning) allows rapid collection of spectral data sets, which we will use to test mathematical simulation models of the non-linear laser cavity interactions.
Ultra-Compact, Superconducting Spectrometer-on-a-Chip at Submillimeter Wavelengths
NASA Technical Reports Server (NTRS)
Chattopadhyay, Goutam; Zmuidzinas, Jonas; Bradford, Charles M.; Leduc, Henry G.; Day, Peter K.; Swenson, Loren; Hailey-Dunsheath, Steven; O'Brient, Roger C.; Padin, Stephen; Shirokoff, Erik D.;
2013-01-01
Small size, wide spectral bandwidth, and highly multiplexed detector readout are required to develop powerful multi-beam spectrometers for high-redshift observations. Currently available spectrometers at these frequencies are large and bulky. The grating sizes for these spectrometers are prohibitive. This fundamental size issue is a key limitation for space-based spectrometers for astrophysics applications. A novel, moderate-resolving-power (R-700), ultra-compact spectrograph-on-a-chip for millimeter and submillimeter wavelengths is the solution.
NASA Astrophysics Data System (ADS)
Jones, S.; Paschalidis, N.; Rodriguez, M.; Sittler, E. C., Jr.; Chornay, D. J.; Uribe, P.; Cameron, T.
2017-12-01
A compact Ion and Neutral Mass Spectrometer (INMS) has been developed for GSFC's Dellingr mission, using the 6U CubeSat platform. Dellingr is expected to deploy into ISS orbit in October 2017 to measure the dynamics of the ionosphere-thermosphere-mesosphere and to determine the steady state background atmospheric conditions at this altitude. The INMS makes in situ measurements of ionized and neutral H, He, N, O, N2, O2 densities with M/dM of approximately 10-12 for thermal particles. The INMS is based on particle acceleration, electronically gated time of flight (TOF), electrostatic analyzer, and CEM detectors. The compact instrument has a dual symmetric configuration with ion and neutral sensor heads on opposite sides of the shared electronics. The neutral front-end includes thermionic ionization and ion-blocking grids. The electronics include fast preamplifiers, electric gating, and TOF measurements and processing, C&DH digital electronics for commands, data storage and back-end I/O, and HVPS for detector and sensor biases. The data package includes 400 bins of mass spectra per ion and neutral sensor and key housekeeping and calibration data, in a single time tagged data frame of 14kbits uncompressed. The nominal data sampling is 1 sec corresponding to 7.5km spatial resolution in LEO orbits. This miniaturized instrument occupies a 1.1U volume, weighs only 570g and nominally operates at 1.2W. This presentation will include preliminary flight data of ions and neutrals from the Dellingr mission and outlines improvements incorporated into the design for the Dellingr (Oct 2017), ExoCube2 (Dec 2017) and petitSat (2020) CubeSat missions.
Simon, Ferenc; Murányi, Ferenc
2005-04-01
The design and performance of an electron spin resonance spectrometer operating at 3 and 9 GHz microwave frequencies combined with a 9-T superconducting magnet are described. The probehead contains a compact two-loop, one gap resonator, and is inside the variable temperature insert of the magnet enabling measurements in the 0-9T magnetic field and 1.5-400 K temperature range. The spectrometer allows studies on systems where resonance occurs at fields far above the g approximately 2 paramagnetic condition such as in antiferromagnets. The low quality factor of the resonator allows time resolved experiments such as, e.g., longitudinally detected ESR. We demonstrate the performance of the spectrometer on the NaNiO2 antiferromagnet, the MgB2 superconductor, and the RbC60 conducting alkaline fulleride polymer.
Spectroscopy of Vibrational States in Diatomic Iodine Molecules
NASA Astrophysics Data System (ADS)
Mulholland, Mary; Harrill, Charles H.; Smith, R. Seth
2015-04-01
This project is focused on understanding the vibrational structure of iodine, which is a homonuclear diatomic molecule. A 20 mW, 532 nm cw diode laser was used to selectively excite neutral iodine molecules to a higher energy electronic state. By performing spectroscopy on the transitions from this state to a lower energy electronic state, the data only showed those vibrational bands which connect the two electronic states. Since a number of vibrational levels are populated in the higher energy electronic state, the transitions to all of the allowed vibrational levels in the lower energy electronic state provided sufficient data to determine the vibrational structures of both states. Emission spectra were collected with an Ocean Optics USB4000 Compact CCD Spectrometer. The spectrometer had a range of 500 - 770 nm with a resolution of approximately 0.5 nm and was sensitive enough to resolve the vibrational states in diatomic iodine molecules. The results were compared to a simple harmonic oscillator model.
High-throughput spectrometer designs in a compact form-factor: principles and applications
NASA Astrophysics Data System (ADS)
Norton, S. M.
2013-05-01
Many compact, portable Raman spectrometers have entered the market in the past few years with applications in narcotics and hazardous material identification, as well as verification applications in pharmaceuticals and security screening. Often, the required compact form-factor has forced designers to sacrifice throughput and sensitivity for portability and low-cost. We will show that a volume phase holographic (VPH)-based spectrometer design can achieve superior throughput and thus sensitivity over conventional Czerny-Turner reflective designs. We will look in depth at the factors influencing throughput and sensitivity and illustrate specific VPH-based spectrometer examples that highlight these design principles.
Handheld spectrometers: the state of the art
NASA Astrophysics Data System (ADS)
Crocombe, Richard A.
2013-05-01
"Small" spectrometers fall into three broad classes: small versions of laboratory instruments, providing data, subsequently processed on a PC; dedicated analyzers, providing actionable information to an individual operator; and process analyzers, providing quantitative or semi-quantitative information to a process controller. The emphasis of this paper is on handheld dedicated analyzers. Many spectrometers have historically been large, possible fragile, expensive and complicated to use. The challenge over the last dozen years, as instruments have moved into the field, has been to make spectrometers smaller, affordable, rugged, easy-to-use, but most of all capable of delivering actionable results. Actionable results can dramatically improve the efficiency of a testing process and transform the way business is done. There are several keys to this handheld spectrometer revolution. Consumer electronics has given us powerful mobile platforms, compact batteries, clearly visible displays, new user interfaces, etc., while telecomm has revolutionized miniature optics, sources and detectors. While these technologies enable miniature spectrometers themselves, actionable information has demanded the development of rugged algorithms for material confirmation, unknown identification, mixture analysis and detection of suspicious materials in unknown matrices. These algorithms are far more sophisticated than the `correlation' or `dot-product' methods commonly used in benchtop instruments. Finally, continuing consumer electronics advances now enable many more technologies to be incorporated into handheld spectrometers, including Bluetooth, wireless, WiFi, GPS, cameras and bar code readers, and the continued size shrinkage of spectrometer `engines' leads to the prospect of dual technology or `hyphenated' handheld instruments.
Etalon Array Reconstructive Spectrometry
NASA Astrophysics Data System (ADS)
Huang, Eric; Ma, Qian; Liu, Zhaowei
2017-01-01
Compact spectrometers are crucial in areas where size and weight may need to be minimized. These types of spectrometers often contain no moving parts, which makes for an instrument that can be highly durable. With the recent proliferation in low-cost and high-resolution cameras, camera-based spectrometry methods have the potential to make portable spectrometers small, ubiquitous, and cheap. Here, we demonstrate a novel method for compact spectrometry that uses an array of etalons to perform spectral encoding, and uses a reconstruction algorithm to recover the incident spectrum. This spectrometer has the unique capability for both high resolution and a large working bandwidth without sacrificing sensitivity, and we anticipate that its simplicity makes it an excellent candidate whenever a compact, robust, and flexible spectrometry solution is needed.
Compact terahertz spectrometer based on disordered rough surfaces
NASA Astrophysics Data System (ADS)
Yang, Tao; Jiang, Bing; Ge, Jia-cheng; Zhu, Yong-yuan; Li, Xing-ao; Huang, Wei
2018-01-01
In this paper, a compact spectrometer based on disordered rough surfaces for operation in the terahertz band is presented. The proposed spectrometer consists of three components, which are used for dispersion, modulation and detection respectively. The disordered rough surfaces, which are acted as the dispersion component, are modulated by the modulation component. Different scattering intensities are captured by the detection component with different extent of modulation. With a calibration measurement process, one can reconstruct the spectra of the probe terahertz beam by solving a system of simultaneous linear equations. A Tikhonov regularization approach has been implemented to improve the accuracy of the spectral reconstruction. The reported broadband, compact, high-resolution terahertz spectrometer is well suited for portable terahertz spectroscopy applications.
Compact Highly Sensitive Multi-species Airborne Mid-IR Spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Dirk; Weibring, P.; Walega, J.
2015-02-01
We report on the development and airborne field deployment of a mid-IR laser based spectrometer. The instrument was configured for the simultaneous in-situ detection of formaldehyde (CH2O) and ethane (C2H6). Numerous mechanical, optical, electronic, and software improvements over a previous instrument design resulted in reliable highly sensitive airborne operation with long stability times yielding 90% airborne measurement coverage during the recent air quality study over the Colorado front range, FRAPPÉ 2014. Airborne detection sensitivities of ~ 15 pptv (C2H6) and ~40 pptv (CH2O) were generally obtained for 1 s of averaging for simultaneous detection.
NASA Astrophysics Data System (ADS)
Kenda, A.; Kraft, M.; Tortschanoff, A.; Scherf, Werner; Sandner, T.; Schenk, Harald; Luettjohann, Stephan; Simon, A.
2014-05-01
With a trend towards the use of spectroscopic systems in various fields of science and industry, there is an increasing demand for compact spectrometers. For UV/VIS to the shortwave near-infrared spectral range, compact hand-held polychromator type devices are widely used and have replaced larger conventional instruments in many applications. Still, for longer wavelengths this type of compact spectrometers is lacking suitable and affordable detector arrays. In perennial development Carinthian Tech Research AG together with the Fraunhofer Institute for Photonic Microsystems endeavor to close this gap by developing spectrometer systems based on photonic MEMS. Here, we review on two different spectrometer developments, a scanning grating spectrometer working in the NIR and a FT-spectrometer accessing the mid-IR range up to 14 μm. Both systems are using photonic MEMS devices actuated by in-plane comb drive structures. This principle allows for high mechanical amplitudes at low driving voltages but results in gratings respectively mirrors oscillating harmonically. Both systems feature special MEMS structures as well as aspects in terms of system integration which shall tease out the best possible overall performance on the basis of this technology. However, the advantages of MEMS as enabling technology for high scanning speed, miniaturization, energy efficiency, etc. are pointed out. Whereas the scanning grating spectrometer has already evolved to a product for the point of sale analysis of traditional Chinese medicine products, the purpose of the FT-spectrometer as presented is to demonstrate what is achievable in terms of performance. Current developments topics address MEMS packaging issues towards long term stability, further miniaturization and usability.
Chen, Jianwei; Chen, Wang; Zhang, Guodong; Lin, Hui; Chen, Shih-Chi
2017-05-29
We present the modeling, design and characterization of a compact spectrometer, achieving a resolution better than 1.5 nm throughout the visible spectrum (360-825 nm). The key component in the spectrometer is a custom-printed varied-line-space (VLS) concave blazed grating, where the groove density linearly decreases from the center of the grating (530 g/mm) at a rate of 0.58 nm/mm to the edge (528 g/mm). Parametric models have been established to deterministically link the system performance with the VLS grating design parameters, e.g., groove density, line-space varying rate, and to minimize the system footprint. Simulations have been performed in ZEMAX to confirm the results, indicating a 15% enhancement in system resolution versus common constant line-space (CLS) gratings. Next, the VLS concave blazed grating is fabricated via our vacuum nanoimprinting system, where a polydimethylsiloxane (PDMS) stamp is non-uniformly expanded to form the varied-line-spacing pattern from a planar commercial grating master (600 g/mm) for precision imprinting. The concave blazed grating is measured to have an absolute diffraction efficiency of 43%, higher than typical holographic gratings (~30%) used in the commercial compact spectrometers. The completed compact spectrometer contains only one optical component, i.e., the VLS concave grating, as well as an entrance slit and linear photodetector array, achieving a footprint of 11 × 11 × 3 cm 3 , which makes it the most compact and resolving (1.46 nm) spectrometer of its kind.
Improving spatial and spectral resolution of TCV Thomson scattering
NASA Astrophysics Data System (ADS)
Hawke, J.; Andrebe, Y.; Bertizzolo, R.; Blanchard, P.; Chavan, R.; Decker, J.; Duval, B.; Lavanchy, P.; Llobet, X.; Marlétaz, B.; Marmillod, P.; Pochon, G.; Toussaint, M.
2017-12-01
The recently completed MST2 upgrade to the Thomson scattering (TS) system on TCV (Tokamak à Configuration Variable) at the Swiss Plasma Center aims to provide an enhanced spatial and spectral resolution while maintaining the high level of diagnostic flexibility for the study of TCV plasmas. The MST2 (Medium Sized Tokamak) is a work program within the Eurofusion ITER physics department, aimed at exploiting Europe's medium sized tokamak programs for a better understanding of ITER physics. This upgrade to the TCV Thomson scattering system involved the installation of 40 new compact 5-channel spectrometers and modifications to the diagnostics fiber optic design. The complete redesign of the fiber optic backplane incorporates fewer larger diameter fibers, allowing for a higher resolution in both the core and edge of TCV plasmas along the laser line, with a slight decrease in the signal to noise ratio of Thomson measurements. The 40 new spectrometers added to the system are designed to cover the full range of temperatures expected in TCV, able to measure electron temperatures (Te) with high precision between (6 eV and 20 keV) . The design of these compact spectrometers stems originally from the design utilized in the MAST (Mega Amp Spherical Tokamak) TS system located in Oxfordshire, United Kingdom. This design was implemented on TCV with an overall layout of optical fibers and spectrometers to achieve an overall increase in the spatial resolution, specifically a resolution of approximately 1% of the minor radius within the plasma pedestal region. These spectrometers also enhance the diagnostic spectral resolution, especially within the plasma edge, due to the low Te measurement capabilities. These additional spectrometers allow for a much greater diagnostic flexibility, allowing for quality full Thomson profiles in 75% of TCV plasma configurations.
Spectrometers for compact neutron sources
NASA Astrophysics Data System (ADS)
Voigt, J.; Böhm, S.; Dabruck, J. P.; Rücker, U.; Gutberlet, T.; Brückel, T.
2018-03-01
We discuss the potential for neutron spectrometers at novel accelerator driven compact neutron sources. Such a High Brilliance Source (HBS) relies on low energy nuclear reactions, which enable cryogenic moderators in very close proximity to the target and neutron optics at comparably short distances from the moderator compared to existing sources. While the first effect aims at increasing the phase space density of a moderator, the second allows the extraction of a large phase space volume, which is typically requested for spectrometer applications. We find that competitive spectrometers can be realized if (a) the neutron production rate can be synchronized with the experiment repetition rate and (b) the emission characteristics of the moderator can be matched to the phase space requirements of the experiment. MCNP simulations for protons or deuterons on a Beryllium target with a suitable target/moderator design yield a source brightness, from which we calculate the sample fluxes by phase space considerations for different types of spectrometers. These match closely the figures of todays spectrometers at medium flux sources. Hence we conclude that compact neutron sources might be a viable option for next generation neutron sources.
Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; ...
2014-06-04
A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energymore » uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.« less
NASA Astrophysics Data System (ADS)
Shimizu, Erina; Ali, Safdar; Tsuda, Takashi; Sakaue, Hiroyuki A.; Kato, Daiji; Murakami, Izumi; Hara, Hirohisa; Watanabe, Tetsuya; Nakamura, Nobuyuki
2017-05-01
We report high-resolution density dependent intensity ratio measurements for middle charge states of iron in the extreme ultraviolet (EUV) spectral wavelength range of 160-200 Å. The measurements were performed at the Tokyo EBIT laboratory by employing a flat-field grazing incidence spectrometer installed on a low energy compact electron beam ion trap. The intensity ratios for several line pairs stemming from Fe X, Fe XI and Fe XII were extracted from spectra collected at the electron beam energies of 340 and 400 eV by varying the beam current between 7.5 and 12 mA at each energy. In addition, the effective electron densities were obtained experimentally by imaging the electron beam profile and ion cloud size with a pinhole camera and visible spectrometer, respectively. In this paper, the experimental results are compared with previous data from the literature and with the present calculations performed using a collisional-radiative model. Our experimental results show a rather good agreement with the calculations and previous reported results.
Mini and micro spectrometers pave the way to on-field advanced analytics
NASA Astrophysics Data System (ADS)
Bouyé, Clémentine; Kolb, Hugo; d'Humières, Benoît.
2016-03-01
First introduced in the 1990's, miniature optical spectrometers were compact, portable devices brought on the market by the desire to move from time-consuming lab-based analyses to on-field and in situ measurements. This goal of getting spectroscopy into the hands of non-specialists is driving current technical and application developments, the ultimate goal being, in a far future, the integration of a spectrometer into a smartphone or any other smart device (tablet, watch, …). In this article, we present the results of our study on the evolution of the compact spectrometers market towards widespread industrial use and consumer applications. Presently, the main market of compact spectrometers remains academic labs. However, they have been adopted on some industrial applications such as optical source characterization (mainly laser and LEDs). In a near future, manufacturers of compact spectrometers target the following industrial applications: agriculture crop monitoring, food process control or pharmaceuticals quality control. Next steps will be to get closer to the consumer market with point-of-care applications such as glucose detection for diabetics, for example. To reach these objectives, technological breakthroughs will be necessary. Recent progresses have already allowed the release of micro-spectrometers. They take advantage of new micro-technologies such as MEMS (MicroElectroMechanical Systems), MOEMS (Micro-Opto-Electro-Mechanical Systems), micro-mirrors arrays to reduce cost and size while allowing good performance and high volume manufacturability. Integrated photonics is being investigated for future developments. It will also require new business models and new market approaches. Indeed, spreading spectroscopy to more industrial and consumer applications will require spectrometers manufacturers to get closer to the end-users and develop application-oriented products.
Martin, Bruno; Morand, Alain; Benech, Pierre; Leblond, Gregory; Blaize, Sylvain; Lerondel, Gilles; Royer, Pascal; Kern, Pierre; Le Coarer, Etienne
2009-01-15
A compact static Fourier transform spectrometer for integrated optics is proposed. It is based on a plane leaky loop structure combined with a plane waveguide. The interference pattern produced in the loop structure leaks outside of it and is guided in the plane waveguide to the photodetector array. This configuration allows one to control the shape of the field pattern at the end of the plane waveguide. A large fringe pattern with a high interference fringe contrast is obtained. A two-dimensional model based on an aperiodic Fourier modal method is used to modelize the coupling between the bent and the plane waveguides, completed with the Helmholtz-Kirchhoff propagation. This concept gives access to plan and compact spectrometers requiring only a single low-cost realization process step. The simulation has been done to realize a spectrometer in glass integrated optics (Deltalambda=6.1 nm at 1500 nm).
Zylstra, A B; Gatu Johnson, M; Frenje, J A; Séguin, F H; Rinderknecht, H G; Rosenberg, M J; Sio, H W; Li, C K; Petrasso, R D; McCluskey, M; Mastrosimone, D; Glebov, V Yu; Forrest, C; Stoeckl, C; Sangster, T C
2014-06-01
A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.
NASA Astrophysics Data System (ADS)
Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C.
2014-06-01
A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ˜±10% accuracy, and mean neutron energy to ˜±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ˜±25-40 km/s.
Re-examination of radiofrequency mass spectrometers: Center Director's Discretionary Fund
NASA Technical Reports Server (NTRS)
Carruth, M. R., Jr.
1989-01-01
The three-stage, two-cycle, Bennett mass spectrometers in use in space and ground experiments today are of the same physical configuration as developed by Bennett in 1950. Sine-wave radiofrequency (RF) is also still used. The literature indicates that the electronics and physical manufacturing capabilities of 1950 technology may have limited the use of other improvements at that time. Therefore, a study, experimental and analytical, was undertaken to examine previously rejected RF approaches as well as new ones. The results of this study indicate there are other approaches which use fewer grids and square wave or a combination of square-wave and sine-wave RF. In regard to suppression of harmonics, none performed better than the three-stage, two-cycle, Bennett mass spectrometer. Use of square-wave RF in the Bennett approach can provide a slightly more compact configuration but no increase in throughput.
A compact and versatile tender X-ray single-shot spectrometer for online XFEL diagnostics.
Rehanek, Jens; Milne, Christopher J; Szlachetko, Jakub; Czapla-Masztafiak, Joanna; Schneider, Jörg; Huthwelker, Thomas; Borca, Camelia N; Wetter, Reto; Patthey, Luc; Juranić, Pavle
2018-01-01
One of the remaining challenges for accurate photon diagnostics at X-ray free-electron lasers (FELs) is the shot-to-shot, non-destructive, high-resolution characterization of the FEL pulse spectrum at photon energies between 2 keV and 4 keV, the so-called tender X-ray range. Here, a spectrometer setup is reported, based on the von Hamos geometry and using elastic scattering as a fingerprint of the FEL-generated spectrum. It is capable of pulse-to-pulse measurement of the spectrum with an energy resolution (ΔE/E) of 10 -4 , within a bandwidth of 2%. The Tender X-ray Single-Shot Spectrometer (TXS) will grant to experimental scientists the freedom to measure the spectrum in a single-shot measurement, keeping the transmitted beam undisturbed. It will enable single-shot reconstructions for easier and faster data analysis.
Development of a compact laser-based single photon ionization time-of-flight mass spectrometer
NASA Astrophysics Data System (ADS)
Tonokura, Kenichi; Kanno, Nozomu; Yamamoto, Yukio; Yamada, Hiroyuki
2010-02-01
We have developed a compact, laser-based, single photon ionization time-of-flight mass spectrometer (SPI-TOF-MS) for on-line monitoring of trace organic species. To obtain the mass spectrum, we use a nearly fragmentation-free SPI technique with 10.5 eV (118 nm) vacuum ultraviolet laser pulses generated by frequency tripling of the third harmonic of an Nd:YAG laser. The instrument can be operated in a linear TOF-MS mode or a reflectron TOF-MS mode in the coaxial design. We designed ion optics to optimize detection sensitivity and mass resolution. For data acquisition, the instrument is controlled using LabVIEW control software. The total power requirement for the vacuum unit, control electronics unit, ion optics, and detection system is approximately 100 W. We achieve a detection limit of parts per billion by volume (ppbv) for on-line trace analysis of several organic compounds. A mass resolution of 800 at about 100 amu is obtained for reflectron TOF-MS mode in a 0.35 m long instrument. The application of on-line monitoring of diesel engine exhaust was demonstrated.
Compact Infrared Spectrometers
NASA Technical Reports Server (NTRS)
Mouroulis, Pantazis
2009-01-01
Concentric spectrometer forms are advantageous for constructing a variety of systems spanning the entire visible to infrared range. Spectrometer examples are given, including broadband or high resolution forms. Some issues associated with the Dyson catadioptric type are also discussed.
Compact imaging spectrometer utilizing immersed gratings
Lerner, Scott A.
2005-12-20
A compact imaging spectrometer comprising an entrance slit for directing light, lens means for receiving the light, refracting the light, and focusing the light; an immersed diffraction grating that receives the light from the lens means and defracts the light, the immersed diffraction grating directing the detracted light back to the lens means; and a detector that receives the light from the lens means.
Compact hydrogen/helium isotope mass spectrometer
Funsten, Herbert O.; McComas, David J.; Scime, Earl E.
1996-01-01
The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).
Compact Refractive Imaging Spectrometer Designs Utilizing Immersed Gratings
Lerner, Scott A.; Bennett, Charles L.; Bixler, Jay V.; Kuzmenko, Paul J.; Lewis, Isabella T.
2005-07-26
A compact imaging spectrometer comprising an entrance slit for directing light, a first means for receiving the light and focusing the light, an immersed diffraction grating that receives the light from the first means and defracts the light, a second means for receiving the light from the immersed diffraction grating and focusing the light, and an image plane that receives the light from the second means
Development of 3He LPSDs and read-out system for the SANS spectrometer at CPHS
NASA Astrophysics Data System (ADS)
Huang, T. C.; Gong, H.; Shao, B. B.; Wang, X. W.; Zhang, Y.; Pang, B. B.
2014-01-01
The Compact Pulsed Hadron Source (CPHS) is a 13-MeV proton-linac-driven neutron source under construction in Tsinghua University. Time-of-flight (TOF) small-angle neutron scattering (SANS) spectrometer is one of the first instruments to be built. It is designed to use linear position-sensitive detectors (LPSDs) of 3He gas proportional counters to cover a 1 m×1 m area. Prototypical LPSDs (Φ = 12 mm, L=1 m) have been made and read-out system is developed based on charge division. This work describes the in-house fabrication of the prototypical LPSDs and design of the read-out system including front-end electronics and data acquisition (DAQ) system. Key factors of the front-end electronics are studied and optimized with PSPICE simulation. DAQ system is designed based on VME bus architecture and FPGA Mezzanine Card (FMC) standard with high flexibility and extendibility. Preliminary experiments are carried out and the results are present and discussed.
Compact multichannel MEMS based spectrometer for FBG sensing
NASA Astrophysics Data System (ADS)
Ganziy, D.; Rose, B.; Bang, O.
2017-04-01
We propose a novel type of compact multichannel MEMS based spectrometer, where we replace the linear detector with a Digital Micromirror Device (DMD). The DMD is typically cheaper and has better pixel sampling than an InGaAs detector used in the 1550 nm range, which leads to cost reduction and better performance. Moreover, the DMD is a 2D array, which means that multichannel systems can be implemented without any additional optical components in the spectrometer. This makes the proposed interrogator highly cost-effective. The digital nature of the DMD also provides opportunities for advanced programmable spectroscopy.
Compact and cost-effective multi-channel optical spectrometer for fine FBG sensing in IoT technology
NASA Astrophysics Data System (ADS)
Konishi, Tsuyoshi; Yamasaki, Yu
2018-02-01
Optical fiber sensor networks have attracted much attention in IoT technology and a fiber Bragg grating is one of key sensor devices there because of their advantages in a high affinity for optical fiber networks, compactness, immunity to electromagnetic interference and so on. Nevertheless, its sensitivity is not always satisfactory so as to be usable together with widespread cost-effective multi-channel spectrometers. In this paper, we introduce a new cost-effective approach for a portable multi-channel spectrometer with high spectral resolution and demonstrates some preliminary experimental results for fine FBG sensing.
A compact multichannel spectrometer for Thomson scatteringa)
NASA Astrophysics Data System (ADS)
Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R.
2012-10-01
The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of Te < 100 eV are achieved by a 2971 l/mm VPH grating and measurements Te > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated (˜2 ns) ICCD camera for detection. A Gen III image intensifier provides ˜45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.
A compact multichannel spectrometer for Thomson scattering.
Schoenbeck, N L; Schlossberg, D J; Dowd, A S; Fonck, R J; Winz, G R
2012-10-01
The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T(e) < 100 eV are achieved by a 2971 l∕mm VPH grating and measurements T(e) > 100 eV by a 2072 l∕mm VPH grating. The spectrometer uses a fast-gated (~2 ns) ICCD camera for detection. A Gen III image intensifier provides ~45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.
Latest developments for low-power infrared laser-based trace gas sensors for sensor networks
NASA Astrophysics Data System (ADS)
So, Stephen; Thomazy, David; Wang, Wen; Marchat, Oscar; Wysocki, Gerard
2011-09-01
Academic and industrial researchers require ultra-low power, compact laser based trace-gas sensor systems for the most demanding environmental and space-borne applications. Here the latest results from research projects addressing these applications will be discussed: 1) an ultra-compact CO2 sensor based on a continuous wave quantum cascade laser, 2) an ultra-sensitive Faraday rotation spectrometer for O2 detection, 3) a fully ruggedized compact and low-power laser spectrometer, and 4) a novel non-paraxial nonthin multipass cell. Preliminary tests and projection for performance of future sensors based on this technology is presented.
Compact Reflective Imaging Spectrometer Design Utilizing An Immersed Grating And Anamorphic Mirror
Lerner, Scott A.
2006-01-10
A compact imaging spectrometer comprising an entrance slit, an anamorphic mirror, a grating, and a detector array. The entrance slit directs light to the anamorphic mirror. The anamorphic mirror receives the light and directs the light to the grating. The grating receives the light from the anamorphic mirror and defracts the light back onto the anamorphic mirror. The anamorphic mirror focuses the light onto a detector array.
An overview of optical diagnostics developed for the Lockheed Martin compact fusion reactor
NASA Astrophysics Data System (ADS)
Sommers, Bradley; Raymond, Anthony; Gucker, Sarah; Lockheed Martin Compact Fusion Reactor Team
2017-10-01
The T4B experiment is a linear, encapsulated ring cusp confinement device, designed to develop a physics and technology basis for a follow-on high beta machine as part of the compact fusion reactor program. Toward this end, a collection of non-invasive optical diagnostics have been developed to investigate confinement, neutral beam heating, and source behavior on the T4B device. These diagnostics include: (1) a multipoint Thomson scattering system employing a 532 nm Nd:YAG laser and high throughput spectrometer to measure 1D profiles of electron density and temperature, (2) a dispersion interferometer utilizing a continuous-wave CO2 laser (10.6 μm) to measure time resolved, line-integrated electron density, and (3) a bolometer suite utilizing four AXUV photodiodes with 64 lines of sight to generate 2D reconstructions of total radiative power and soft x-ray emission (via beryllium filters). An overview of design methods, including laser systems, detection schemes, and data analysis techniques is presented as well as results to date.
Micro-Spec: A High Performance Compact Spectrometer for Submillimeter Astronomy
NASA Technical Reports Server (NTRS)
Hsieh, Wen-Ting; Moseley, Harvey; Stevenson, Thomas; Brown, Ari; Patel, Amil; U-Yen, Kongpop; Ehsan, Negar; Caltado, Giuseppe; Wollock, Edward
2012-01-01
We describe the micro-Spec, an extremely compact high performance spectrometer for the submillimeter and millimeter spectral ranges. We have designed a fully integrated submillimeter spectrometer based on superconducting microstrip technology and fabricated its critical elements. Using low loss transmission lines, we can produce a fully integrated high resolution submillimeter spectrometer on a single four inch Si wafer. A resolution of 500 can readily be achieved with standard fabrication tolerance, higher with phase trimming. All functions of the spectrometer are integrated - light is coupled to the micro strip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using a built-in planar filter, and the light is detected using photon counting Microwave Kinetic Inductance Detectors (MKID). We will discus the design principle of the instrument, describe its technical advantages, and report the progress on the development of the instrument.
Mu-Spec: A High Performance Compact Spectrometer for Submillimeter Astronomy
NASA Technical Reports Server (NTRS)
Hsieh, Wen-Ting; Moseley, Harvey; Stevenson, Thomas; Brown, Ari; Patel, Amil; U-yen, Kongpop; Ehsan, Negar; Cataldo, Giuseppe; Wollack, Ed
2012-01-01
We describe the Mu-Spec, an extremely compact high performance spectrometer for the submillimeter and millimeter spectral ranges. We have designed a fully integrated submillimeter spectrometer based on superconducting microstrip technology and fabricated its critical elements. Using low loss transmission lines, we can produce a fully integrated high resolution submillimeter spectrometer on a single four inch Si wafer. A resolution of 500 can readily be achieved with standard fabrication tolerance, higher with phase trimming. All functions of the spectrometer are integrated - light is coupled to the microstrip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using a built-in planar filter, and the light is detected using photon counting Microwave Kinetic Inductance Detectors (MKID). We will discus the design principle of the instrument, describe its technical advantages, and report the progress on the development of the instrument.
A Closer Look at Quality Control
NASA Technical Reports Server (NTRS)
2003-01-01
Spectrometers, which are durable, lightweight, and compact instruments, are a requirement for NASA deep space science missions, especially as NASA strives to conduct these missions with smaller spacecraft. NASA s Jet Propulsion Laboratory (JPL) awarded the Brimrose Corporation of America a Small Business Innovation Research (SBIR) contract to develop a compact, rugged, near-infrared spectrometer for possible future missions. Spectrometers are of particular importance on NASA missions because they help scientists to identify the make-up of a planet s surface and analyze the molecules in the atmosphere. Minerals and molecules emit light of various colors. The light, identified as spectra, is difficult to see, and spectrometers, which are essentially special cameras that collect the separate colors of light in an object, allow scientists to identify the different materials. For example, spectrometers can help scientists determine whether soil was created from lava flows or from meteorites.
Variable filter array spectrometer of VPD PbSe
NASA Astrophysics Data System (ADS)
Linares-Herrero, R.; Vergara, G.; Gutiérrez-Álvarez, R.; Fernández-Montojo, C.; Gómez, L. J.; Villamayor, V.; Baldasano-Ramírez, A.; Montojo, M. T.
2012-06-01
MWIR spectroscopy shows a large potential in the current IR devices market, due to its multiple applications (gas detection, chemical analysis, industrial monitoring, combustion and flame characterization, food packaging etc) and its outstanding performance (good sensitivity, NDT method, velocity of response, among others), opening this technique to very diverse fields of application, such as industrial monitoring and control, agriculture, medicine and environmental monitoring. However, even though a big interest on MWIR spectroscopy technique has been present in the last years, two major barriers have held it back from its widespread use outside the laboratory: the complexity and delicateness of some popular techniques such as Fourier-transform IR (FT-IR) spectrometers, and the lack of affordable specific key elements such a MWIR light sources and low cost (real uncooled) detectors. Recent developments in electrooptical components are helping to overcome these drawbacks. The need for simpler solutions for analytical measurements has prompted the development of better and more affordable uncooled MWIR detectors, electronics and optics. In this paper a new MWIR spectrometry device is presented. Based on linear arrays of different geometries (64, 128 and 256 elements), NIT has developed a MWIR Variable Filter Array Spectrometer (VFAS). This compact device, with no moving parts, based on a rugged and affordable detector, is suitable to be used in applications which demand high sensitivity, good spectral discrimination, reliability and compactness, and where an alternative to the traditional scanning instrument is desired. Some measurements carried out for several industries will be also presented.
Spectra of W19 +-W32 + observed in the EUV region between 15 and 55 Å with an electron-beam ion trap
NASA Astrophysics Data System (ADS)
Sakaue, H. A.; Kato, D.; Yamamoto, N.; Nakamura, N.; Murakami, I.
2015-07-01
We present extreme ultraviolet spectra of highly charged tungsten ions (W19 +-W32 + ) in the wavelength range of 15 -55 Å obtained with a compact electron-beam ion trap (CoBIT) and a grazing-incidence spectrometer at the National Institute for Fusion Science. The electron energy dependence of the spectra was investigated for electron energies from 490 to 1320 eV . Identification of the observed lines was aided by collisional-radiative (CR) modeling of CoBIT plasma. Good quantitative agreement was obtained between the CR-modeling results and the experimental observations. The ion charge dependence of the 6 g -4 f ,5 g -4 f ,5 f -4 d ,5 p -4 d , and 4 f -4 d transition wavelengths were measured.
Extreme ultraviolet spectra of S IX and S X relevant to solar coronal plasmas
NASA Astrophysics Data System (ADS)
Ali, Safdar; Kato, Hiroyuki; Nakamura, Nobuyuki
2017-10-01
We present extreme ultraviolet laboratory spectra of highly charged S IX and S X measured using a compact electron beam ion trap. The data were recorded using a flat-field grazing incidence spectrometer in the wavelength range between 210 and 290 Å. The beam energy was tuned for three different values at 365, 410 and 465 eV while keeping electron beam current constant at 10 mA. By measuring the beam energy dependence, we identified several lines originating from S IX and S X ions with the support of collisional-radiative modeling. We compared them with the present calculations and transitions listed in the NIST data base and found in good agreement.
NASA Astrophysics Data System (ADS)
Leigh, Roland J.; Whyte, C.; Cutter, M. A.; Lobb, D. R.; Monks, P. S.
2017-11-01
Under the first phase of the Centre for Earth Observation Instrumentation (CEOI), a breadboard demonstrator of a novel UV/VIS spectrometer has been developed. Using designs from Surrey Satellite Technology Ltd (SSTL) the demonstrator has been constructed and tested at the University of Leicester's Space Research Centre. This spectrometer provides an exceptionally compact instrument for differential optical absorption spectroscopy (DOAS) applications from LEO, GEO, HAP or ground-based platforms. Measurement of atmo spheric compounds with climate change or air quality implications is a key driver for the ground and space-based Earth Observation communities. Techniques using UV/VIS spectroscopy such as DOAS provide measurements of ozone profiles, aerosol optical depth, certain Volatile Organic Compounds, halogenated species, and key air quality parameters including tropospheric nitrogen dioxide. Compact instruments providing the necessary optical performance and spectral resolution are therefore a key enabling technology. The Compact Air Quality Spectrometer (CompAQS) features a concentric arrangement of a spherical meniscus lens, a concave spherical mirror and a suitable curved diffraction grating. This compact design provides efficiency and performance benefits over traditional concepts, improving the precision and spatial resolution available from space borne instruments with limited weight and size budgets. The breadboard spectrometer currently operating at the University of Leicester offers high throughput with a spectral range from 310 to 450 nm at 0.5nm(UV) to 1.0nm (visible) resolution, suitable for DOAS applications. The concentric design is capable of handling high relative apertures, owing to spherical aberration and coma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called `smile' - the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. In this presentation, the design of the spectrometer is detailed, with results from instrument characterisations undertaken at the University of Leicester, including demonstrations of DOAS fits for key air quality species.
A graphene-based Fabry-Pérot spectrometer in mid-infrared region
Wang, Xiaosai; Chen, Chen; Pan, Liang; Wang, Jicheng
2016-01-01
Mid-infrared spectroscopy is of great importance in many areas and its integration with thin-film technology can economically enrich the functionalities of many existing devices. In this paper we propose a graphene-based ultra-compact spectrometer (several micrometers in size) that is compatible with complementary metal-oxide-semiconductor (CMOS) processing. The proposed structure uses a monolayer graphene as a mid-infrared surface waveguide, whose optical response is spatially modulated using electric fields to form a Fabry-Pérot cavity. By varying the voltage acting on the cavity, we can control the transmitted wavelength of the spectrometer at room temperature. This design has potential applications in the graphene-silicon-based optoelectronic devices as it offers new possibilities for developing new ultra-compact spectrometers and low-cost hyperspectral imaging sensors in mid-infrared region. PMID:27573080
Kantsyrev, V L; Safronova, A S; Williamson, K M; Wilcox, P; Ouart, N D; Yilmaz, M F; Struve, K W; Voronov, D L; Feshchenko, R M; Artyukov, I A; Vinogradov, A V
2008-10-01
New extreme ultraviolet (EUV) spectroscopic diagnostics of relatively low-temperature plasmas based on the application of an EUV spectrometer and fast EUV diodes combined with glass capillary optics is described. An advanced high resolution dispersive element sliced multilayer grating was used in the compact EUV spectrometer. For monitoring of the time history of radiation, filtered fast EUV diodes were used in the same spectral region (>13 nm) as the EUV spectrometer. The radiation from the plasma was captured by using a single inexpensive glass capillary that was transported onto the spectrometer entrance slit and EUV diode. The use of glass capillary optics allowed placement of the spectrometer and diodes behind the thick radiation shield outside the direction of a possible hard x-ray radiation beam and debris from the plasma source. The results of the testing and application of this diagnostic for a compact laser plasma source are presented. Examples of modeling with parameters of plasmas are discussed.
Development of a new linearly variable edge filter (LVEF)-based compact slit-less mini-spectrometer
NASA Astrophysics Data System (ADS)
Mahmoud, Khaled; Park, Seongchong; Lee, Dong-Hoon
2018-02-01
This paper presents the development of a compact charge-coupled detector (CCD) spectrometer. We describe the design, concept and characterization of VNIR linear variable edge filter (LVEF)- based mini-spectrometer. The new instrument has been realized for operation in the 300 nm to 850 nm wavelength range. The instrument consists of a linear variable edge filter in front of CCD array. Low-size, light-weight and low-cost could be achieved using the linearly variable filters with no need to use any moving parts for wavelength selection as in the case of commercial spectrometers available in the market. This overview discusses the main components characteristics, the main concept with the main advantages and limitations reported. Experimental characteristics of the LVEFs are described. The mathematical approach to get the position-dependent slit function of the presented prototype spectrometer and its numerical de-convolution solution for a spectrum reconstruction is described. The performance of our prototype instrument is demonstrated by measuring the spectrum of a reference light source.
NASA Astrophysics Data System (ADS)
Whyte, C.; Leigh, R. J.; Lobb, D.; Williams, T.; Remedios, J. J.; Cutter, M.; Monks, P. S.
2009-12-01
A breadboard demonstrator of a novel UV/VIS grating spectrometer has been developed based upon a concentric arrangement of a spherical meniscus lens, concave spherical mirror and curved diffraction grating suitable for a range of atmospheric remote sensing applications from the ground or space. The spectrometer is compact and provides high optical efficiency and performance benefits over traditional instruments. The concentric design is capable of handling high relative apertures, owing to spherical aberration and comma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called "smile", the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. This form of spectrometer design offers the potential for exceptionally compact instrument for differential optical absorption spectroscopy (DOAS) applications from LEO, GEO, HAP or ground-based platforms. The breadboard demonstrator has been shown to offer high throughput and a stable Gaussian line shape with a spectral range from 300 to 450 nm at 0.5 nm resolution, suitable for a number of typical DOAS applications.
NASA Technical Reports Server (NTRS)
Cageao, R.; Sander, S.; Blavier, J.; Jiang, Y.; Nemtchinov, V.
2000-01-01
A compact, high resolution Fourier-transform spectrometer for atmospheric near ultraviolet spectroscopy has been installed at the Jet Propulsion Laboratory's Table Mountain Facility (34.4N, 117.7 W, elevation 2290m).
Budden, B. S.; Stonehill, L. C.; Warniment, A.; ...
2015-06-10
In this study, a new class of elpasolite scintillators has garnered recent attention due to the ability to perform as simultaneous gamma spectrometers and thermal neutron detectors. Such a dual-mode capability is made possible by pulse-shape discrimination (PSD), whereby the emission waveform profiles of gamma and neutron events are fundamentally unique. To take full advantage of these materials, we have developed the Compact Advanced Readout Electronics for Elpasolites (CAREE). This handheld instrument employs a multi-channel PSD-capable ASIC, custom micro-processor board, front-end electronics, power supplies, and a 2 in. photomultiplier tube for readout of the scintillator. The unit is highly configurablemore » to allow for performance optimization amongst a wide sample of elpasolites which provide PSD in fundamentally different ways. We herein provide an introduction to elpasolites, then describe the motivation for the work, mechanical and electronic design, and preliminary performance results.« less
NASA Astrophysics Data System (ADS)
Budden, B. S.; Stonehill, L. C.; Warniment, A.; Michel, J.; Storms, S.; Dallmann, N.; Coupland, D. D. S.; Stein, P.; Weller, S.; Borges, L.; Proicou, M.; Duran, G.; Kamto, J.
2015-09-01
A new class of elpasolite scintillators has garnered recent attention due to the ability to perform as simultaneous gamma spectrometers and thermal neutron detectors. Such a dual-mode capability is made possible by pulse-shape discrimination (PSD), whereby the emission waveform profiles of gamma and neutron events are fundamentally unique. To take full advantage of these materials, we have developed the Compact Advanced Readout Electronics for Elpasolites (CAREE). This handheld instrument employs a multi-channel PSD-capable ASIC, custom micro-processor board, front-end electronics, power supplies, and a 2 in. photomultiplier tube for readout of the scintillator. The unit is highly configurable to allow for performance optimization amongst a wide sample of elpasolites which provide PSD in fundamentally different ways. We herein provide an introduction to elpasolites, then describe the motivation for the work, mechanical and electronic design, and preliminary performance results.
ERIC Educational Resources Information Center
Randall, David W.; Hayes, Ryan T.; Wong, Peter A.
2013-01-01
A LIBS (laser induced breakdown spectroscopy) spectrometer constructed by the instructor is reported for use in undergraduate analytical chemistry experiments. The modular spectrometer described here is based on commonly available components including a commercial Nd:YAG laser and a compact UV-vis spectrometer. The modular approach provides a…
Inexpensive Raman Spectrometer for Undergraduate and Graduate Experiments and Research
ERIC Educational Resources Information Center
Mohr, Christian; Spencer, Claire L.; Hippler, Michael
2010-01-01
We describe the construction and performance of an inexpensive modular Raman spectrometer that has been assembled in the framework of a fourth-year undergraduate project (costs below $5000). The spectrometer is based on a 4 mW 532 nm green laser pointer and a compact monochromator equipped with glass fiber optical connections, linear detector…
Compact terahertz passive spectrometer with wideband superconductor-insulator-superconductor mixer.
Kikuchi, K; Kohjiro, S; Yamada, T; Shimizu, N; Wakatsuki, A
2012-02-01
We developed a compact terahertz (THz) spectrometer with a superconductor-insulator-superconductor (SIS) mixer, aiming to realize a portable and highly sensitive spectrometer to detect dangerous gases at disaster sites. The receiver cryostat which incorporates the SIS mixer and a small cryocooler except for a helium compressor has a weight of 27 kg and dimensions of 200 mm × 270 mm × 690 mm. In spite of the small cooling capacity of the cryocooler, the SIS mixer is successfully cooled lower than 4 K, and the temperature variation is suppressed for the sensitive measurement. By adopting a frequency sweeping system using photonic local oscillator, we demonstrated a spectroscopic measurement of CH(3)CN gas in 0.2-0.5 THz range.
The Compact Microimaging Spectrometer (CMIS): A New Tool for In-Situ Planetary Science
NASA Technical Reports Server (NTRS)
Armstrong, J. C.; Sellar, R. G.
2004-01-01
In-situ identification of trace minerals, ices, or organics in planetary samples may be difficult with panchromatic microscopic imagery and spot spectroscopy. The panchromatic imagery acquired by a microscopic imager provides morphological information and albedo, but these are generally insufficient for unambiguous identification. The spatially-averaged spectra acquired by a nonimaging ( point- or spot- ) spectrometer may enable identification of the major components but identification of unknown trace components is difficult at best. With our Compact Micro-Imaging Spectrometer (CMIS), however, we acquire spectroscopic data in an imaging format at microscopic scales. The distinct spectra of individual grains, provided by our approach, make detection and identification possible even for trace components in regolith or heterogeneous samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budden, B. S.; Stonehill, L. C.; Warniment, A.
In this study, a new class of elpasolite scintillators has garnered recent attention due to the ability to perform as simultaneous gamma spectrometers and thermal neutron detectors. Such a dual-mode capability is made possible by pulse-shape discrimination (PSD), whereby the emission waveform profiles of gamma and neutron events are fundamentally unique. To take full advantage of these materials, we have developed the Compact Advanced Readout Electronics for Elpasolites (CAREE). This handheld instrument employs a multi-channel PSD-capable ASIC, custom micro-processor board, front-end electronics, power supplies, and a 2 in. photomultiplier tube for readout of the scintillator. The unit is highly configurablemore » to allow for performance optimization amongst a wide sample of elpasolites which provide PSD in fundamentally different ways. We herein provide an introduction to elpasolites, then describe the motivation for the work, mechanical and electronic design, and preliminary performance results.« less
Bennett ion mass spectrometers on the Pioneer Venus Bus and Orbiter
NASA Technical Reports Server (NTRS)
Taylor, H. A., Jr.; Brinton, H. C.; Wagner, T. C. G.; Blackwell, B. H.; Cordier, G. R.
1980-01-01
Identical Bennett radio-frequency ion mass spectrometer instruments on the Pioneer Venus Bus and Orbiter have provided the first in-situ measurements of the detailed composition of the planet's ionosphere. The sensitivity, resolution, and dynamic range are sufficient to provide measurements of the solar-wind-induced bow-shock, the ionopause, and highly structured distributions of up to 16 thermal ion species within the ionosphere. The use of adaptive scan and detection circuits and servo-controlled logic for ion mass and energy analysis permits detection of ion concentrations as low as 5 ions/cu cm and ion flow velocities as large as 9 km/sec for O(+). A variety of commandable modes provides ion sampling rates ranging from 0.1 to 1.6 sec between measurements of a single constituent. A lightweight sensor and electronics housing are features of a compact instrument package.
A novel dual-detector micro-spectrometer
NASA Astrophysics Data System (ADS)
Otto, Thomas; Saupe, Ray; Stock, Volker; Bruch, Reinhard; Gruska, Bernd; Gessner, Thomas
2005-01-01
Infrared analysis is a well-established tool for measuring composition and purity of various materials in industrial-, medical- and environmental applications. Traditional spectrometers, for example Fourier Transform Infrared (FTIR) Instruments are mainly designed for laboratory use and are generally, too large, heavy, costly and delicate to handle for remote applications. With important advances in the miniaturization, ruggedness and cost efficiency we have designed and created a new type of a micromirror spectrometer that can operate in harsh temperature and vibrating environments This device is ideally suited for environmental monitoring, chemical and biological applications as well as detection of biological warfare agents and sensing in important security locations In order to realize such compact, portable and field-deployable spectrometers we have applied MOEMS technology. Thus our novel dual detector micro mirror system is composed of a scanning micro mirror combined with a diffraction grating and other essential optical components in order to miniaturize the basic modular set-up. Especially it periodically disperses polychromatic radiation into its spectral components, which are measured by a combination of a visible (VIS) and near infrared (NIR) single element detector. By means of integrated preamplifiers high-precise measurements over a wide dynamic wavelength range are possible. In addition the spectrometer, including the radiation source, detectors and electronics can be coupled to a minimum-volume liquid or gas-flow cell. Furthermore a SMA connector as a fiber optical input allows easy attachment of fiber based probes. By utilizing rapid prototyping techniques, where all components are directly integrated, the micro mirror spectrometer is manufactured for the 700-1700 nm spectral range. In this work the advanced optical design and integration of the electronic interface will be reviewed. Furthermore we will demonstrate the performance of the system and present characteristic measurement results. Finally advanced packaging issues and test results of the device will be discussed.
Fast Data Acquisition For Mass Spectrometer
NASA Technical Reports Server (NTRS)
Lincoln, K. A.; Bechtel, R. D.
1988-01-01
New equipment has speed and capacity to process time-of-flight data. System relies on fast, compact waveform digitizer with 32-k memory coupled to personal computer. With digitizer, system captures all mass peaks on each 25- to 35-microseconds cycle of spectrometer.
NASA Astrophysics Data System (ADS)
Whyte, C.; Leigh, R. J.; Lobb, D.; Williams, T.; Remedios, J. J.; Cutter, M.; Monks, P. S.
2009-08-01
A breadboard demonstrator of a novel UV/VIS grating spectrometer for atmospheric research has been developed based upon a concentric arrangement of a spherical meniscus lens, concave spherical mirror and curved diffraction grating suitable for a range of remote sensing applications from the ground or space. The spectrometer is compact and provides high optical efficiency and performance benefits over traditional instruments. The concentric design is capable of handling high relative apertures, owing to spherical aberration and coma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called "smile", the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. This form of spectrometer design offers the potential for an exceptionally compact instrument for differential optical absorption spectroscopy (DOAS) applications particularly from space (LEO, GEO orbits) and from HAPs or ground-based platforms. The breadboard demonstrator has been shown to offer high throughput and a stable Gaussian line shape with a spectral range from 300 to 450 nm at better than 0.5 nm resolution, suitable for a number of typical DOAS applications.
Diode-Laser-Based Spectrometer for Sensing Gases
NASA Technical Reports Server (NTRS)
Silver, Joel A.
2005-01-01
A diode-laser-based spectrometer has been developed for measuring concentrations of gases and is intended particularly for use in analyzing and monitoring combustion processes under microgravitational conditions in a drop tower or a spacecraft. This instrument is also well suited for use on Earth in combustion experiments and for such related purposes as fire-safety monitoring and monitoring toxic and flammable gases in industrial settings. Of the gas-sensing spectrometers available prior to the development of this instrument, those that were sensitive enough for measuring the combustion gases of interest were too large, required critical optical alignments, used far too much electrical power, and were insufficiently rugged for use under the severe conditions of spacecraft launch and space flight. In contrast, the present instrument is compact, consumes relatively little power, and is rugged enough to withstand launch vibrations and space flight. In addition, this instrument is characterized by long-term stability, accuracy, and reliability. The diode laser in this spectrometer is operated in a wavelength-modulation mode. Different gases to be measured can be selected by changing modular laser units. The operation of the laser is controlled by customized, low-power electronic circuitry built around a digital signal-processor board. This customized circuitry also performs acquisition and analysis of data, controls communications, and manages errors.
Ultra-Compact Raman Spectrometer for Planetary Explorations
NASA Technical Reports Server (NTRS)
Davis, Derek; Hornef, James; Lucas, John; Elsayed-Ali, Hani; Abedin, M. Nurul
2016-01-01
To develop a compact Raman spectroscopy system with features that will make it suitable for future space missions which require surface landing. Specifically, this system will be appropriate for any mission in which planetary surface samples need to be measured and analyzed.
Compact mass spectrometer for plasma discharge ion analysis
Tuszewski, M.G.
1997-07-22
A mass spectrometer and methods are disclosed for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector. 7 figs.
Compact mass spectrometer for plasma discharge ion analysis
Tuszewski, Michel G.
1997-01-01
A mass spectrometer and methods for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector.
Compact NE213 neutron spectrometer with high energy resolution for fusion applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimbal, A.; Reginatto, M.; Schuhmacher, H.
Neutron spectrometry is a tool for obtaining important information on the fuel ion composition, velocity distribution and temperature of fusion plasmas. A compact NE213 liquid scintillator, fully characterized at Physikalisch-Technische Bundesanstalt, was installed and operated at the Joint European Torus (JET) during two experimental campaigns (C8-2002 and trace tritium experiment-TTE 2003). The results show that this system can operate in a real fusion experiment as a neutron (1.5 MeV
Development of a compact in situ polarized ³He neutron spin filter at Oak Ridge National Laboratory.
Jiang, C Y; Tong, X; Brown, D R; Chi, S; Christianson, A D; Kadron, B J; Robertson, J L; Winn, B L
2014-07-01
We constructed a compact in situ polarized (3)He neutron spin filter based on spin-exchange optical pumping which is capable of continuous pumping of the (3)He gas while the system is in place in the neutron beam on an instrument. The compact size and light weight of the system simplifies its utilization on various neutron instruments. The system has been successfully tested as a neutron polarizer on the triple-axis spectrometer (HB3) and the hybrid spectrometer (HYSPEC) at Oak Ridge National Laboratory. Over 70% (3)He polarization was achieved and maintained during the test experiments. Over 90% neutron polarization and an average of 25% transmission for neutrons of 14.7 meV and 15 meV was also obtained.
Design of a miniature solid state NIR spectrometer
NASA Astrophysics Data System (ADS)
Zhang, Hanyi; Wang, Xiaolu L.; Soos, Jolanta I.; Crisp, Joy A.
1995-06-01
For aerospace applications a miniature, solid-state near infrared (NIR) spectrometer based on an acousto-optic tunable filter (AOTF) has been developed and built at Brimrose Corp. of America. In this spectrometer a light emitting diode (LED) array as light source, a set of optical fibers as the lightwave transmission route, and a miniature AOTF as a tunable filter were adopted. This approach makes the spectrometer very compact, light-weight, rugged and reliable, with low operating power and long lifetime.
Rosenberg, M J; Zylstra, A B; Frenje, J A; Rinderknecht, H G; Johnson, M Gatu; Waugh, C J; Séguin, F H; Sio, H; Sinenian, N; Li, C K; Petrasso, R D; Glebov, V Yu; Hohenberger, M; Stoeckl, C; Sangster, T C; Yeamans, C B; LePape, S; Mackinnon, A J; Bionta, R M; Talison, B; Casey, D T; Landen, O L; Moran, M J; Zacharias, R A; Kilkenny, J D; Nikroo, A
2014-10-01
A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ∼1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in the filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF.
Rosenberg, M. J.; Zylstra, A. B.; Frenje, J. A.; ...
2014-10-10
A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ~1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in themore » filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberg, M. J., E-mail: mrosenbe@mit.edu; Zylstra, A. B.; Frenje, J. A.
2014-10-01
A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ~1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in themore » filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF.« less
QUANTITATIVE DETECTION OF ENVIRONMENTALLY IMPORTANT DYES USING DIODE LASER/FIBER-OPTIC RAMAN
A compact diode laser/fiber-optic Raman spectrometer is used for quantitative detection of environmentally important dyes. This system is based on diode laser excitation at 782 mm, fiber optic probe technology, an imaging spectrometer, and state-of-the-art scientific CCD camera. ...
Thomson scattering diagnostic system design for the Compact Toroidal Hybrid experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Traverso, P. J., E-mail: pjt0002@auburn.edu; Maurer, D. A.; Ennis, D. A.
2014-11-15
A new Thomson scattering system using standard commercially available components has been designed for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH). The beam, generated by a frequency doubled Continuum PL DLS 2 J Nd:YAG laser, is passed vertically through an entrance Brewster window and an aperturing baffle system to minimize the stray laser light that could enter the collection optics. The beam line has been designed with an 8 m propagation distance to the mid-plane of the CTH device with the beam diameter kept less than 3 mm inside the plasma volume. The beam exits the vacuum systemmore » through another Brewster window and enters a beam dump, again to minimize the stray light in the vacuum chamber. Light collection, spectral processing, and signal detection are accomplished with an f/#∼ 1 aspheric lens, a commercially available Holospec f/1.8 spectrometer, and an Andor iStar DH740-18U-C3 image intensified camera. Spectral rejection of stray laser light, if needed, can be performed with the use of an optional interference filter at the spectrometer input. The system has been developed for initial single point measurements of plasmas with core electron temperatures of approximately 20–300 eV and densities of 5 × 10{sup 18} to 5 × 10{sup 19} m{sup −3} dependent upon operational scenario.« less
Experimental Studies of Compact Toroidal Plasma on BCTX
NASA Astrophysics Data System (ADS)
Morse, Edward C.; Coomer, Eric D.; Hartman, Charles W.
1998-11-01
The Berkeley Compact Toroid Experiment (BCTX) is a spheromak-type magnetically confined fusion confinement experiment. The plasma is formed using a Marshall gun and injected into a 70 cm diameter copper flux conserver. The BCTX device has an RF heating sy stem which can deliver twenty megawatts of RF power for 100 μs pulse length. The RF system operates at 450 MHz, and energy is coupled into the plasma by lower hybrid waves. The purpose of the experiment is to assess the energy-confining capability of the spheromak plasma configuration by using the RF power as a heat pulse and determining the decay rate of the plasma temperature following the heat pulse. Electron temperatures up to 150 eV have been measured in BCTX using Thomson scattering. Core dens ities have been measured with the Raman-calibrated Thomson system in the 2 arrow 5 × 10^14 per cc range. Other diagnostics include magnetic probes, a laser interferometer electron density measurement, three UV spectrometers for impurity l ine radiation, and an ion Doppler temperature measurement. Some data will be presented which shows the effects of an axial pinch being present in the device, giving the device a nonzero q at the wall.
NASA Astrophysics Data System (ADS)
de Goeij, B. T. G.; Otter, G. C. J.; van Wakeren, J. M. O.; Veefkind, J. P.; Vlemmix, T.; Ge, X.; Levelt, P. F.; Dirks, B. P. F.; Toet, P. M.; van der Wal, L. F.; Jansen, R.
2017-09-01
In recent years TNO has investigated and developed different innovative opto-mechanical designs to realize advanced spectrometers for space applications in a more compact and cost-effective manner. This offers multiple advantages: a compact instrument can be flown on a much smaller platform or as add-on on a larger platform; a low-cost instrument opens up the possibility to fly multiple instruments in a satellite constellation, improving both global coverage and temporal sampling (e.g. multiple overpasses per day to study diurnal processes); in this way a constellation of low-cost instruments may provide added value to the larger scientific and operational satellite missions (e.g. the Copernicus Sentinel missions); a small, lightweight spectrometer can easily be mounted on a small aircraft or high-altitude UAV (offering high spatial resolution).
Phase II, Compact AMS System for Biological Tracer Detection Final Report CRADA No. TSV-1533-96
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, T. A.; Hamm, R. W.
2017-11-01
The objective of this collaboration between LLNL and AccSys Technology, Inc. of Pleasanton, California was to build and demonstrate a low cost, compact tritium (3H) Accelerator Mass Spectrometer (AMS) system matched to the requirements of biomedical research.
Astigmatism-free Czerny-Turner compact spectrometer with cylindrical mirrors.
Xia, Guo; Wu, Su; Wang, Guodong; Hu, Mingyong; Xing, Jinyu
2017-11-10
A modified optical design for a broadband, high resolution, astigmatism-free Czerny-Turner spectrometer is proposed. Astigmatism is corrected by using cylindrical mirrors over a broad spectral range. The theory and method for astigmatism correction are thoroughly analyzed. The comparison between the modified Czerny-Turner spectrometer and the traditional Czerny-Turner spectrometer is also described in detail. The ray-tracing results show that the RMS spot radius has decreased to 4.2 μm at the central wavelength and 17 μm at the wedge wavelength.
Investigation of Condensed Media in Weak Fields by the Method of Nuclear Magnetic Resonance
NASA Astrophysics Data System (ADS)
Davydov, V. V.; Myazin, N. S.; Dudkin, V. I.; Velichko, E. N.
2018-05-01
A compact design of a rapid-response nuclear magnetic spectrometer for investigation of condensed media in weak fields is reported. As a result of investigation of different condensed media, special features of recording a nuclear magnetic resonance (NMR) signal in a weak magnetic field from a small volume of the medium under study are established. For the first time the NMR absorption spectra of condensed media in a weak field are collected. Based on the results of experimental studies, the potential of using a compact NMR-spectrometer for condensed media monitoring in a rapid response mode is determined.
Using a portable terahertz spectrometer to measure the optical properties of in vivo human skin
NASA Astrophysics Data System (ADS)
Echchgadda, Ibtissam; Grundt, Jessica A.; Tarango, Melissa; Ibey, Bennett L.; Tongue, Thomas; Liang, Min; Xin, Hao; Wilmink, Gerald J.
2013-12-01
Terahertz (THz) time-domain spectroscopy systems permit the measurement of a tissue's hydration level. This feature makes THz spectrometers excellent tools for the noninvasive assessment of skin; however, current systems are large, heavy and not ideal for clinical settings. We previously demonstrated that a portable, compact THz spectrometer permitted measurement of porcine skin optical properties that were comparable to those collected with conventional systems. In order to move toward human use of this system, the goal for this study was to measure the absorption coefficient (μa) and index of refraction (n) of human subjects in vivo. Spectra were collected from 0.1 to 2 THz, and measurements were made from skin at three sites: the palm, ventral and dorsal forearm. Additionally, we used a multiprobe adapter system to measure each subject's skin hydration levels, transepidermal water loss, and melanin concentration. Our results suggest that the measured optical properties varied considerably for skin tissues that exhibited dissimilar hydration levels. These data provide a framework for using compact THz spectrometers for clinical applications.
Microcalorimeters for High Resolution X-Ray Spectroscopy of Laboratory and Astrophysical Plasmas
NASA Technical Reports Server (NTRS)
Silver, E.; Flowers, Bobby J. (Technical Monitor)
2003-01-01
The proposal has three major objectives. The first focuses on advanced neutron-transmutation-doped (NTD)-based microcalorimeter development. Our goal is to develop an array of microcalorimeters with sub- 5 eV energy resolution that can operate with pile-up-free throughput of at least 100 Hz per pixel. The second objective is to establish our microcalorimeter as an essential x-ray diagnostic for laboratory astrophysics studies. We propose to develop a dedicated microcalorimeter spectrometer for the EBIT (electron beam ion trap). This instrument will incorporate the latest detector and cryogenic technology that we have available. The third objective is to investigate innovative ideas related to possible flight opportunities. These include compact, long lived cryo-systems, ultra-low temperature cold stages, low mass and low power electronics, and novel assemblies of thin windows with high x-ray transmission.
Free-form reflective optics for mid-infrared camera and spectrometer on board SPICA
NASA Astrophysics Data System (ADS)
Fujishiro, Naofumi; Kataza, Hirokazu; Wada, Takehiko; Ikeda, Yuji; Sakon, Itsuki; Oyabu, Shinki
2017-11-01
SPICA (Space Infrared Telescope for Cosmology and Astrophysics) is an astronomical mission optimized for mid-and far-infrared astronomy with a cryogenically cooled 3-m class telescope, envisioned for launch in early 2020s. Mid-infrared Camera and Spectrometer (MCS) is a focal plane instrument for SPICA with imaging and spectroscopic observing capabilities in the mid-infrared wavelength range of 5-38μm. MCS consists of two relay optical modules and following four scientific optical modules of WFC (Wide Field Camera; 5'x 5' field of view, f/11.7 and f/4.2 cameras), LRS (Low Resolution Spectrometer; 2'.5 long slits, prism dispersers, f/5.0 and f/1.7 cameras, spectral resolving power R ∼ 50-100), MRS (Mid Resolution Spectrometer; echelles, integral field units by image slicer, f/3.3 and f/1.9 cameras, R ∼ 1100-3000) and HRS (High Resolution Spectrometer; immersed echelles, f/6.0 and f/3.6 cameras, R ∼ 20000-30000). Here, we present optical design and expected optical performance of MCS. Most parts of MCS optics adopt off-axis reflective system for covering the wide wavelength range of 5-38μm without chromatic aberration and minimizing problems due to changes in shapes and refractive indices of materials from room temperature to cryogenic temperature. In order to achieve the high specification requirements of wide field of view, small F-number and large spectral resolving power with compact size, we employed the paraxial and aberration analysis of off-axial optical systems (Araki 2005 [1]) which is a design method using free-form surfaces for compact reflective optics such as head mount displays. As a result, we have successfully designed compact reflective optics for MCS with as-built performance of diffraction-limited image resolution.
Miniature and micro spectrometers market: who is going to catch the value?
NASA Astrophysics Data System (ADS)
Bouyé, Clémentine; d'Humières, Benoît
2017-02-01
The market of miniature and micro spectrometers is evolving fast. The technology is getting ever smaller and cheaper while keeping high performances. The market is attracting new players: spin-offs from major research institutes, large companies outside the classic spectroscopy market, software providers with innovative analytical solutions, … The goal of this involvement is to bring spectroscopy closer to the end-users and provide spectrometers able to operate on-field or in-line. The high potential of compact spectrometers is recognized for a wide variety of applications: chemistry, pharmaceutics, agro-food, agriculture, forensics, healthcare, consumer applications, … But its emergence as a large volume market faces a major bottleneck. Each application implies specific processes and analyses and specific parameters to control, i.e. a specific interpretation of the raw spectra in order to provide information usable by nonphotonic experts. Who is going to pay for that adaptation effort? Are there ways for reducing the adaptation costs, by means of selflearning algorithms and/or flexible and easily adaptable sensors? In other words, who is going to catch the value? In this article, we will investigate the potential of each major industrial application market and provide market data. We will also wonder, what are the strengths and weaknesses of the different players - spectrometer manufacturers, algorithms developers, full-systems providers, … - to catch the value of the compact spectrometer market.
Design and experiment of spectrometer based on scanning micro-grating integrating with angle sensor
NASA Astrophysics Data System (ADS)
Biao, Luo; Wen, Zhi-yu
2014-01-01
A compact, low cost, high speed, non-destructive testing NIR (near infrared) spectrometer optical system based on MOEMS grating device is developed. The MOEMS grating works as the prismatic element and wavelength scanning element in our optical system. The MOEMS grating enables the design of compact grating spectrometers capable of acquiring full spectra using a single detector element. This MOEMS grating is driven by electromagnetic force and integrated with angle sensor which used to monitored deflection angle while the grating working. Comparing with the traditional spectral system, there is a new structure with a single detector and worked at high frequency. With the characteristics of MOEMS grating, the structure of the spectrometer system is proposed. After calculating the parameters of the optical path, ZEMAX optical software is used to simulate the system. According the ZEMAX output file of the 3D model, the prototype is designed by SolidWorks rapidly, fabricated. Designed for a wavelength range between 800 nm and 1500 nm, the spectrometer optical system features a spectral resolution of 16 nm with the volume of 97 mm × 81.7 mm × 81 mm. For the purpose of reduce modulated effect of sinusoidal rotation, spectral intensity of the different wavelength should be compensated by software method in the further. The system satisfies the demand of NIR micro-spectrometer with a single detector.
Two-screen single-shot electron spectrometer for laser wakefield accelerated electron beams.
Soloviev, A A; Starodubtsev, M V; Burdonov, K F; Kostyukov, I Yu; Nerush, E N; Shaykin, A A; Khazanov, E A
2011-04-01
The laser wakefield acceleration electron beams can essentially deviate from the axis of the system, which distinguishes them greatly from beams of conventional accelerators. In case of energy measurements by means of a permanent-magnet electron spectrometer, the deviation angle can affect accuracy, especially for high energies. A two-screen single-shot electron spectrometer that correctly allows for variations of the angle of entry is considered. The spectrometer design enables enhancing accuracy of measuring narrow electron beams significantly as compared to a one-screen spectrometer with analogous magnetic field, size, and angular acceptance. © 2011 American Institute of Physics
Low-cost, compact, cooled photomultiplier assembly for use in magnetic fields up to 1400 Gauss
NASA Technical Reports Server (NTRS)
Patch, R. W.; Tashjian, R. A.; Jentner, T. A.
1975-01-01
Use of vortex tube for cooling and concentric shielding have produced smaller and more compact unit than was previously available. Future uses of device could include installation in gas chromatographs and mass spectrometers. Additional uses would include measurements and controls in magnetohydrodynamic power generators and fusion reactors.
Design of a miniaturized integrated spectrometer for spectral tissue sensing
NASA Astrophysics Data System (ADS)
Belay, Gebirie Yizengaw; Hoving, Willem; Ottevaere, Heidi; van der Put, Arthur; Weltjens, Wim; Thienpont, Hugo
2016-04-01
Minimally-invasive image-guided procedures become increasingly used by physicians to obtain real-time characterization feedback from the tissue at the tip of their interventional device (needle, catheter, endoscopic or laparoscopic probes, etc…) which can significantly improve the outcome of diagnosis and treatment, and ultimately reduce cost of the medical treatment. Spectral tissue sensing using compact photonic probes has the potential to be a valuable tool for screening and diagnostic purposes, e.g. for discriminating between healthy and tumorous tissue. However, this technique requires a low-cost broadband miniature spectrometer so that it is commercially viable for screening at point-of-care locations such as physicians' offices and outpatient centers. Our goal is therefore to develop a miniaturized spectrometer based on diffractive optics that combines the functionalities of a visible/near-infrared (VIS/NIR) and shortwave-infrared (SWIR) spectrometer in one very compact housing. A second goal is that the hardware can be produced in high volume at low cost without expensive time consuming alignment and calibration steps. We have designed a miniaturized spectrometer which operates both in the visible/near-infrared and shortwave-infrared wavelength regions ranging from 400 nm to 1700 nm. The visible/near-infrared part of the spectrometer is designed for wavelengths from 400 nm to 800 nm whereas the shortwave-infrared segment ranges from 850 nm to 1700 nm. The spectrometer has a resolution of 6 nm in the visible/near-infrared wavelength region and 10 nm in the shortwave-infrared. The minimum SNR of the spectrometer for the intended application is about 151 in the VIS/NIR range and 6000 for SWIR. In this paper, the modelling and design, and power budget analysis of the miniaturized spectrometer are presented. Our work opens a door for future affordable micro- spectrometers which can be integrated with smartphones and tablets, and used for point-of-care applications. As next steps in the development, we will manufacture the different optical components and experimentally characterize the spectrometer device in more detail.
HyTES: Thermal Imaging Spectrometer Development
NASA Technical Reports Server (NTRS)
Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Realmuto, Vincent; Lamborn, Andy; Paine, Chris; Mumolo, Jason M.; Eng, Bjorn T.
2011-01-01
The Jet Propulsion Laboratory has developed the Hyperspectral Thermal Emission Spectrometer (HyTES). It is an airborne pushbroom imaging spectrometer based on the Dyson optical configuration. First low altitude test flights are scheduled for later this year. HyTES uses a compact 7.5-12 micrometer m hyperspectral grating spectrometer in combination with a Quantum Well Infrared Photodetector (QWIP) and grating based spectrometer. The Dyson design allows for a very compact and optically fast system (F/1.6). Cooling requirements are minimized due to the single monolithic prism-like grating design. The configuration has the potential to be the optimal science-grade imaging spectroscopy solution for high altitude, lighter-than-air (HAA, LTA) vehicles and unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The QWIP sensor allows for optimum spatial and spectral uniformity and provides adequate responsivity which allows for near 100mK noise equivalent temperature difference (NEDT) operation across the LWIR passband. The QWIP's repeatability and uniformity will be helpful for data integrity since currently an onboard calibrator is not planned. A calibration will be done before and after eight hour flights to gage any inconsistencies. This has been demonstrated with lab testing. Further test results show adequate NEDT, linearity as well as applicable earth science emissivity target results (Silicates, water) measured in direct sunlight.
Mathematical Simulation for Integrated Linear Fresnel Spectrometer Chip
NASA Technical Reports Server (NTRS)
Park, Yeonjoon; Yoon, Hargoon; Lee, Uhn; King, Glen C.; Choi, Sang H.
2012-01-01
A miniaturized solid-state optical spectrometer chip was designed with a linear gradient-gap Fresnel grating which was mounted perpendicularly to a sensor array surface and simulated for its performance and functionality. Unlike common spectrometers which are based on Fraunhoffer diffraction with a regular periodic line grating, the new linear gradient grating Fresnel spectrometer chip can be miniaturized to a much smaller form-factor into the Fresnel regime exceeding the limit of conventional spectrometers. This mathematical calculation shows that building a tiny motionless multi-pixel microspectrometer chip which is smaller than 1 cubic millimter of optical path volume is possible. The new Fresnel spectrometer chip is proportional to the energy scale (hc/lambda), while the conventional spectrometers are proportional to the wavelength scale (lambda). We report the theoretical optical working principle and new data collection algorithm of the new Fresnel spectrometer to build a compact integrated optical chip.
A compact high-resolution 3-D imaging spectrometer for discovering Oases on Mars
Ge, J.; Ren, D.; Lunine, J.I.; Brown, R.H.; Yelle, R.V.; Soderblom, L.A.; ,
2002-01-01
A new design for a very lightweight, very high throughput reflectance sectrometer enabled by two new technologies being developed is presented. These new technologies include integral field unit optics to enable simultaneous imaging and spectroscopy at high spatial resolution with an infrared (IR) array, and silicon grisms to enable compact and high-resolution spectroscopy.
NASA Technical Reports Server (NTRS)
Klingelhoefer, G.; Morris, R. V.; Blumers, M.; Bernhardt, B.; Graff, T.
2011-01-01
For the advanced Moessbauer instrument MIMOS IIA, the new detector technologies and electronic components increase sensitivity and performance significantly. In combination with the high energy resolution of the SDD it is possible to perform X-ray fluorescence analysis simultaneously to Moessbauer spectroscopy. In addition to the Fe-mineralogy, information on the sample's elemental composition will be gathered. The ISRU 2010 field campaign demonstrated that in-situ Moessbauer spectroscopy is an effective tool for both science and feedstock exploration and process monitoring. Engineering tests showed that a compact nickel metal hydride battery provided sufficient power for over 12 hr of continuous operation for the MIMOS instruments.
NASA Astrophysics Data System (ADS)
Papadakis, P.; Cox, D. M.; O'Neill, G. G.; Borge, M. J. G.; Butler, P. A.; Gaffney, L. P.; Greenlees, P. T.; Herzberg, R.-D.; Illana, A.; Joss, D. T.; Konki, J.; Kröll, T.; Ojala, J.; Page, R. D.; Rahkila, P.; Ranttila, K.; Thornhill, J.; Tuunanen, J.; Van Duppen, P.; Warr, N.; Pakarinen, J.
2018-03-01
The electron spectrometer, SPEDE, has been developed and will be employed in conjunction with the Miniball spectrometer at the HIE-ISOLDE facility, CERN. SPEDE allows for direct measurement of internal conversion electrons emitted in-flight, without employing magnetic fields to transport or momentum filter the electrons. Together with the Miniball spectrometer, it enables simultaneous observation of γ rays and conversion electrons in Coulomb excitation experiments using radioactive ion beams.
Lunar Ice Cube: Searching for Lunar Volatiles with a lunar cubesat orbiter
NASA Astrophysics Data System (ADS)
Clark, Pamela E.; Malphrus, Ben; Brown, Kevin; Hurford, Terry; Brambora, Cliff; MacDowall, Robert; Folta, David; Tsay, Michael; Brandon, Carl; Lunar Ice Cube Team
2016-10-01
Lunar Ice Cube, a NASA HEOMD NextSTEP science requirements-driven deep space exploration 6U cubesat, will be deployed, with 12 others, by NASA's EM1 mission. The mission's high priority science application is understanding volatile origin, distribution, and ongoing processes in the inner solar system. JPL's Lunar Flashlight, and Arizona State University's LunaH-Map, also lunar orbiters to be deployed by EM1, will provide complementary observations. Lunar Ice Cube utilizes a versatile GSFC-developed payload: BIRCHES, Broadband InfraRed Compact, High-resolution Exploration Spectrometer, a miniaturized version of OVIRS on OSIRIS-REx. BIRCHES is a compact (1.5U, 2 kg, 20 W including cryocooler) point spectrometer with a compact cryocooled HgCdTe focal plane array for broadband (1 to 4 micron) measurements and Linear Variable Filter enabling 10 nm spectral resolution. The instrument will achieve sufficient SNR to identify water in various forms, mineral bands, and potentially other volatiles seen by LCROSS (e.g., CH4) as well. GSFC is developing compact instrument electronics easily configurable for H1RG family of focal plane arrays. The Lunar Ice Cube team is led by Morehead State University, who will provide build, integrate and test the spacecraft and provide mission operations. Onboard communication will be provided by the X-band JPL Iris Radio and dual X-band patch antennas. Ground communication will be provided by the DSN X-band network, particularly the Morehead State University 21-meter substation. Flight Dynamics support is provided by GSFC. The Busek micropropulsion system in a low energy trajectory will allow the spacecraft to achieve the science orbit less than a year. The high inclination, equatorial periapsis orbit will allow coverage of overlapping swaths once every lunar cycle at up to six different times of day (from dawn to dusk) as the mission progresses during its nominal six month science mapping period. Led by the JPL Science PI, the Lunar Ice Cube mission science team will determine composition and distribution of volatiles in lunar regolith as a function of time of day, latitude, regolith age and composition, and thus enable understanding of current dynamics of lunar volatiles.
Observations of Galactic gamma-radiation with the SMM spectrometer
NASA Technical Reports Server (NTRS)
Share, G. H.; Kinzer, R. L.; Messina, D. C.; Purcell, W. R.; Chupp, E. L.
1986-01-01
Preliminary results from the SMM gamma-ray spectrometer are reported which indicate the detection of a constant source of 0.511-MeV annihilation radiation from the Galaxy. Year-to-year variability appears to be less than 30 percent. The radiation probably comes from a diffuse source and is not associated with the reported compact object at the Galactic center.
Simultaneous Spectral Temporal Adaptive Raman Spectrometer - SSTARS
NASA Technical Reports Server (NTRS)
Blacksberg, Jordana
2010-01-01
Raman spectroscopy is a prime candidate for the next generation of planetary instruments, as it addresses the primary goal of mineralogical analysis, which is structure and composition. However, large fluorescence return from many mineral samples under visible light excitation can render Raman spectra unattainable. Using the described approach, Raman and fluorescence, which occur on different time scales, can be simultaneously obtained from mineral samples using a compact instrument in a planetary environment. This new approach is taken based on the use of time-resolved spectroscopy for removing the fluorescence background from Raman spectra in the laboratory. In the SSTARS instrument, a visible excitation source (a green, pulsed laser) is used to generate Raman and fluorescence signals in a mineral sample. A spectral notch filter eliminates the directly reflected beam. A grating then disperses the signal spectrally, and a streak camera provides temporal resolution. The output of the streak camera is imaged on the CCD (charge-coupled device), and the data are read out electronically. By adjusting the sweep speed of the streak camera, anywhere from picoseconds to milliseconds, it is possible to resolve Raman spectra from numerous fluorescence spectra in the same sample. The key features of SSTARS include a compact streak tube capable of picosecond time resolution for collection of simultaneous spectral and temporal information, adaptive streak tube electronics that can rapidly change from one sweep rate to another over ranges of picoseconds to milliseconds, enabling collection of both Raman and fluorescence signatures versus time and wavelength, and Synchroscan integration that allows for a compact, low-power laser without compromising ultimate sensitivity.
Electron/proton spectrometer certification documentation analyses
NASA Technical Reports Server (NTRS)
Gleeson, P.
1972-01-01
A compilation of analyses generated during the development of the electron-proton spectrometer for the Skylab program is presented. The data documents the analyses required by the electron-proton spectrometer verification plan. The verification plan was generated to satisfy the ancillary hardware requirements of the Apollo Applications program. The certification of the spectrometer requires that various tests, inspections, and analyses be documented, approved, and accepted by reliability and quality control personnel of the spectrometer development program.
Electro-optic Imaging Fourier Transform Spectrometer
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin
2005-01-01
JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-O IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 micron (1000-4000/cm) to allow high-resolution, high-speed hyperspectral imaging applications. One application will be the remote sensing of the measurement of a large number of different atmospheric gases simultaneously in the same airmass. Due to the use of a combination of birefringent phase retarders and multiple achromatic phase switches to achieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventional Fourier transform spectrometer but without any moving parts. In this paper, the principle of operations, system architecture and recent experimental progress will be presented.
Electro-optic Imaging Fourier Transform Spectrometer
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin
2005-01-01
JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-0IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 pm (1000 -4000 cm-') to allow high-resolution, high-speed hyperspectral imaging applications [l-51. One application will be theremote sensing of the measurement of a large number of different atmospheric gases simultaneously in the sameairmass. Due to the use of a combination of birefiingent phase retarders and multiple achromatic phase switches toachieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventionalFourier transform spectrometer but without any moving parts. In this paper, the principle of operations, systemarchitecture and recent experimental progress will be presen.
Results for the response function determination of the Compact Neutron Spectrometer
NASA Astrophysics Data System (ADS)
Gagnon-Moisan, F.; Reginatto, M.; Zimbal, A.
2012-03-01
The Compact Neutron Spectrometer (CNS) is a Joint European Torus (JET) Enhancement Project, designed for fusion diagnostics in different plasma scenarios. The CNS is based on a liquid scintillator (BC501A) which allows good discrimination between neutron and gamma radiation. Neutron spectrometry with a BC501A spectrometer requires the use of a reliable, fully characterized detector. The determination of the response matrix was carried out at the Ion Accelerator Facility (PIAF) of the Physikalisch-Technische Bundesanstalt (PTB). This facility provides several monoenergetic beams (2.5, 8, 10, 12 and 14 MeV) and a white field (Emax ~ 17 MeV), which allows for a full characterization of the spectrometer in the region of interest (from ~ 1.5 MeV to ~ 17 MeV). The energy of the incoming neutrons was determined by the time of flight method (TOF), with time resolution in the order of 1 ns. To check the response matrix, the measured pulse height spectra were unfolded with the code MAXED and the resulting energy distributions were compared with those obtained from TOF. The CNS project required modification of the PTB BC501A spectrometer design, to replace an analog data acquisition system (NIM modules) with a digital system developed by the Ente per le Nuove tecnologie, l'Energia e l'Ambiente (ENEA). Results for the new digital system were evaluated using new software developed specifically for this project.
Cremers, David A; Beddingfield, Alan; Smithwick, Robert; Chinni, Rosemarie C; Jones, C Randy; Beardsley, Burt; Karch, Larry
2012-03-01
The development of field-deployable instruments to monitor radiological, nuclear, and explosive (RNE) threats is of current interest for a number of assessment needs such as the on-site screening of suspect facilities and nuclear forensics. The presence of uranium and plutonium and radiological materials can be determined through monitoring the elemental emission spectrum using relatively low-resolution spectrometers. In addition, uranium compounds, explosives, and chemicals used in nuclear fuel processing (e.g., tributyl-phosphate) can be identified by applying chemometric analysis to the laser-induced breakdown (LIBS) spectrum recorded by these spectrometers. For nuclear forensic applications, however, isotopes of U and Pu and other elements (e.g., H and Li) must also be determined, requiring higher resolution spectrometers given the small magnitude of the isotope shifts for some of these elements (e.g., 25 pm for U and 13 pm for Pu). High-resolution spectrometers will be preferred for several reasons but these must fit into realistic field-based analysis scenarios. To address the need for field instrumentation, we evaluated a previously developed field-deployable hand-held LIBS interrogation probe combined with two relatively new high-resolution spectrometers (λ/Δλ ~75,000 and ~44,000) that have the potential to meet field-based analysis needs. These spectrometers are significantly smaller and lighter in weight than those previously used for isotopic analysis and one unit can provide simultaneous wide spectral coverage and high resolution in a relatively small package. The LIBS interrogation probe was developed initially for use with low resolution compact spectrometers in a person-portable backpack LIBS instrument. Here we present the results of an evaluation of the LIBS probe combined with a high-resolution spectrometer and demonstrate rapid detection of isotopes of uranium and hydrogen and highly enriched samples of (6)Li and (7)Li. © 2012 Society for Applied Spectroscopy
Test report: Shock test of the electron/proton spectrometer structural test unit
NASA Technical Reports Server (NTRS)
Vincent, D. L.
1972-01-01
A shock test of the electron-proton spectrometer structural test unit was conducted. The purpose of the shock test was to verify the structural integrity of the electron-spectrometer design and to obtain data on the shock response of the electronics and electronic housing. The test equipment is described and typical shock response data are provided.
Scintillating Fiber Technology for a High Neutron Spectrometer
NASA Technical Reports Server (NTRS)
Kuznetsov, Evgeny; Adams, James, Jr.; Christl, Mark; Norwood, Joseph; Watts, John
2014-01-01
Develop a compact low-power neutron spectrometer that uniquely identifies neutrons in the mixed radiation field expected on crewed deep-space missions. Secondary neutrons are generated by cosmic rays striking heavy crewed spacecraft as well as lunar and planetary surfaces1,2. It has been shown that secondary neutrons can account for up to 50% if the total dose-equivalent received by the crew.
Wilmink, Gerald J; Ibey, Bennett L; Tongue, Thomas; Schulkin, Brian; Laman, Norman; Peralta, Xomalin G; Roth, Caleb C; Cerna, Cesario Z; Rivest, Benjamin D; Grundt, Jessica E; Roach, William P
2011-04-01
Terahertz spectrometers and imaging systems are currently being evaluated as biomedical tools for skin burn assessment. These systems show promise, but due to their size and weight, they have restricted portability, and are impractical for military and battlefield settings where space is limited. In this study, we developed and tested the performance of a compact, light, and portable THz time-domain spectroscopy (THz-TDS) device. Optical properties were collected with this system from 0.1 to 1.6 THz for water, ethanol, and several ex vivo porcine tissues (muscle, adipose, skin). For all samples tested, we found that the index of refraction (n) decreases with frequency, while the absorption coefficient (μ(a)) increases with frequency. Muscle, adipose, and frozen/thawed skin samples exhibited comparable n values ranging between 2.5 and 2.0, whereas the n values for freshly harvested skin were roughly 40% lower. Additionally, we found that the freshly harvested samples exhibited higher μ(a) values than the frozen/thawed skin samples. Overall, for all liquids and tissues tested, we found that our system measured optical property values that were consistent with those reported in the literature. These results suggest that our compact THz spectrometer performed comparable to its larger counterparts, and therefore may be a useful and practical tool for skin health assessment.
A Dual Source Ion Trap Mass Spectrometer for the Mars Organic Molecule Analyzer of ExoMars 2018
NASA Technical Reports Server (NTRS)
Brickerhoff, William B.; vanAmerom, F. H. W.; Danell, R. M.; Arevalo, R.; Atanassova, M.; Hovmand, L.; Mahaffy, P. R.; Cotter, R. J.
2011-01-01
We present details on the objectives, requirements, design and operational approach of the core mass spectrometer of the Mars Organic Molecule Analyzer (MOMA) investigation on the 2018 ExoMars mission. The MOMA mass spectrometer enables the investigation to fulfill its objective of analyzing the chemical composition of organic compounds in solid samples obtained from the near surface of Mars. Two methods of ionization are realized, associated with different modes of MOMA operation, in a single compact ion trap mass spectrometer. The stringent mass and power constraints of the mission have led to features such as low voltage and low frequency RF operation [1] and pulse counting detection.
Design and fabrication of a 900-1700 nm hyper-spectral imaging spectrometer
NASA Astrophysics Data System (ADS)
Kim, Tae Hyoung; Kong, Hong Jin; Kim, Tae Hoon; Shin, Jae Sung
2010-02-01
This paper presents a 900-1700 nm hyper-spectral imaging spectrometer which offers low distortions, a low F-number, a compact size, an easily-fabricated design and a low cost (is presented in this paper). The starting point for its optical design is discussed according to the geometrical aberration theory and Rowland circle condition. It is shown that these methods are useful in designing a push-broom hyper-spectral imaging spectrometer that has an aperture of f/2.4, modulation transfer functions of less than 0.8 at 25 cycles/mm, and spot sizes less than 10 μm. A prototype of the optimized hyper-spectral imaging spectrometer has been fabricated using a high precision machine and the experimental demonstration with the fabricated hyper-spectral imaging spectrometer is presented.
Tunable light source for use in photoacoustic spectrometers
Bisson, Scott E.; Kulp, Thomas J.; Armstrong, Karla M.
2005-12-13
The present invention provides a photoacoustic spectrometer that is field portable and capable of speciating complex organic molecules in the gas phase. The spectrometer has a tunable light source that has the ability to resolve the fine structure of these molecules over a large wavelength range. The inventive light source includes an optical parametric oscillator (OPO) having combined fine and coarse tuning. By pumping the OPO with the output from a doped-fiber optical amplifier pumped by a diode seed laser, the inventive spectrometer is able to speciate mixtures having parts per billion of organic compounds, with a light source that has a high efficiency and small size, allowing for portability. In an alternative embodiment, the spectrometer is scanned by controlling the laser wavelength, thus resulting in an even more compact and efficient design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Ya; Cultural Relics and Archaeology Institute of Hunan, Changsha 410083; Fu, Xuan
Urgent restoration of the Wugang Ming dynasty city wall brings about the need for a study of the formulation and properties of mortars. In the present paper, mortar samples from the Wugang Ming dynasty city wall were characterized in a combination of sheet polarized light optical microscopy, scanning electron microscopy with X-ray energy dispersive spectrometer, thermogravimetric/differential scanning calorimetry, X-ray powder diffraction, Fourier transform infrared spectroscopy, and inductively coupled plasma emission spectroscopy. Results show that mortars are mainly built up from inorganic calcium carbonate based organic–inorganic hybrid material with a small amount of sticky rice, which plays a crucial role inmore » forming dense and compact microstructure of mortars and effectively hindering penetration of water and air into mortars. Analysis of decayed products shows that the detrimental soluble salts originates from ambient environment. - Highlights: • Mortars used in the Wugang city wall are a calcium carbonate-sticky rice hybrid bonding material. • Carbonation processing is extremely slow due to dense and compact microstructure of mortars. • Decying of mortars results from the appearance of soluble salt from ambient environment.« less
Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO)
NASA Astrophysics Data System (ADS)
Murchie, S.; Arvidson, R.; Bedini, P.; Beisser, K.; Bibring, J.-P.; Bishop, J.; Boldt, J.; Cavender, P.; Choo, T.; Clancy, R. T.; Darlington, E. H.; Des Marais, D.; Espiritu, R.; Fort, D.; Green, R.; Guinness, E.; Hayes, J.; Hash, C.; Heffernan, K.; Hemmler, J.; Heyler, G.; Humm, D.; Hutcheson, J.; Izenberg, N.; Lee, R.; Lees, J.; Lohr, D.; Malaret, E.; Martin, T.; McGovern, J. A.; McGuire, P.; Morris, R.; Mustard, J.; Pelkey, S.; Rhodes, E.; Robinson, M.; Roush, T.; Schaefer, E.; Seagrave, G.; Seelos, F.; Silverglate, P.; Slavney, S.; Smith, M.; Shyong, W.-J.; Strohbehn, K.; Taylor, H.; Thompson, P.; Tossman, B.; Wirzburger, M.; Wolff, M.
2007-05-01
The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is a hyperspectral imager on the Mars Reconnaissance Orbiter (MRO) spacecraft. CRISM consists of three subassemblies, a gimbaled Optical Sensor Unit (OSU), a Data Processing Unit (DPU), and the Gimbal Motor Electronics (GME). CRISM's objectives are (1) to map the entire surface using a subset of bands to characterize crustal mineralogy, (2) to map the mineralogy of key areas at high spectral and spatial resolution, and (3) to measure spatial and seasonal variations in the atmosphere. These objectives are addressed using three major types of observations. In multispectral mapping mode, with the OSU pointed at planet nadir, data are collected at a subset of 72 wavelengths covering key mineralogic absorptions and binned to pixel footprints of 100 or 200 m/pixel. Nearly the entire planet can be mapped in this fashion. In targeted mode the OSU is scanned to remove most along-track motion, and a region of interest is mapped at full spatial and spectral resolution (15-19 m/pixel, 362-3920 nm at 6.55 nm/channel). Ten additional abbreviated, spatially binned images are taken before and after the main image, providing an emission phase function (EPF) of the site for atmospheric study and correction of surface spectra for atmospheric effects. In atmospheric mode, only the EPF is acquired. Global grids of the resulting lower data volume observations are taken repeatedly throughout the Martian year to measure seasonal variations in atmospheric properties. Raw, calibrated, and map-projected data are delivered to the community with a spectral library to aid in interpretation.
The New MAX-DOAS Network in Mexico City for Trace Gas Detection
NASA Astrophysics Data System (ADS)
Arellano, E. J.; Krüger, A.; Rivera, C. I.; Stremme, W.; Friedrich, M. M.; Grutter, M.
2014-12-01
Atmospheric studies in large cities are of great relevance since pollution affects air quality and human health. We have designed and built instruments based on the Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) technique and established a network in strategic sites within the Mexico City metropolitan area. Four instruments are now in operation with the aim to study the variability and spatial distribution of key pollutants, which will bring new insight in the current knowledge of transport patterns, emissions as well as frequency and origin of extraordinary events. The instruments measure UV/visible spectra of the sky at different elevation angles in the 280 nm to 510 nm wavelength region along one axis. Currently, 36 measurements constitute a full scan performed from west until East direction (-90 to +90°). The scanning unit, which is installed outdoors, holds a small telescope and the motor control unit. Light is transmitted via an optical fiber to the main box, which holds a compact USB spectrometer and the main control electronics. The spectrometer is accurately temperature controlled and all the spectra of each scan, together with elevation angle and other parameters, are recorded on a compact PC. Post processing of these data with the QDOAS software results in slant column densities (SCD) of the atmospheric gases. This information is then converted to vertical profiles through a process described in a companion presentation. Preliminary results will be presented for formaldehyde, fitted in the region 324-360 nm. The data obtained is useful for the comparison with satellite data for example OMI.
Advances in compact proton spectrometers for inertial-confinement fusion and plasma nuclear science.
Seguin, F H; Sinenian, N; Rosenberg, M; Zylstra, A; Manuel, M J-E; Sio, H; Waugh, C; Rinderknecht, H G; Johnson, M Gatu; Frenje, J; Li, C K; Petrasso, R; Sangster, T C; Roberts, S
2012-10-01
Compact wedge-range-filter proton spectrometers cover proton energies ∼3-20 MeV. They have been used at the OMEGA laser facility for more than a decade for measuring spectra of primary D(3)He protons in D(3)He implosions, secondary D(3)He protons in DD implosions, and ablator protons in DT implosions; they are now being used also at the National Ignition Facility. The spectra are used to determine proton yields, shell areal density at shock-bang time and compression-bang time, fuel areal density, and implosion symmetry. There have been changes in fabrication and in analysis algorithms, resulting in a wider energy range, better accuracy and precision, and better robustness for survivability with indirect-drive inertial-confinement-fusion experiments.
Adaptive Controller for Compact Fourier Transform Spectrometer with Space Applications
NASA Astrophysics Data System (ADS)
Keymeulen, D.; Yiu, P.; Berisford, D. F.; Hand, K. P.; Carlson, R. W.; Conroy, M.
2014-12-01
Here we present noise mitigation techniques developed as part of an adaptive controller for a very compact Compositional InfraRed Interferometric Spectrometer (CIRIS) implemented on a stand-alone field programmable gate array (FPGA) architecture with emphasis on space applications in high radiation environments such as Europa. CIRIS is a novel take on traditional Fourier Transform Spectrometers (FTS) and replaces linearly moving mirrors (characteristic of Michelson interferometers) with a constant-velocity rotating refractor to variably phase shift and alter the path length of incoming light. The design eschews a monochromatic reference laser typically used for sampling clock generation and instead utilizes constant time-sampling via internally generated clocks. This allows for a compact and robust device, making it ideal for spaceborne measurements in the near-IR to thermal-IR band (2-12 µm) on planetary exploration missions. The instrument's embedded microcontroller is implemented on a VIRTEX-5 FPGA and a PowerPC with the aim of sampling the instrument's detector and optical rotary encoder in order to construct interferograms. Subsequent onboard signal processing provides spectral immunity from the noise effects introduced by the compact design's removal of a reference laser and by the radiation encountered during space flight to destinations such as Europa. A variety of signal processing techniques including resampling, radiation peak removal, Fast Fourier Transform (FFT), spectral feature alignment, dispersion correction and calibration processes are applied to compose the sample spectrum in real-time with signal-to-noise-ratio (SNR) performance comparable to laser-based FTS designs in radiation-free environments. The instrument's FPGA controller is demonstrated with the FTS to characterize its noise mitigation techniques and highlight its suitability for implementation in space systems.
The compact neutron spectrometer at ASDEX Upgrade.
Giacomelli, L; Zimbal, A; Tittelmeier, K; Schuhmacher, H; Tardini, G; Neu, R
2011-12-01
The first neutron spectrometer of ASDEX Upgrade (AUG) was installed in November 2008. It is a compact neutron spectrometer (CNS) based on a BC501A liquid scintillating detector, which can simultaneously measure 2.45-MeV and 14-MeV neutrons emitted from deuterium (D) plasmas and γ radiation. The scintillating detector is coupled to a digital pulse shape discrimination data acquisition (DPSD) system capable of count rates up to 10(6) s(-1). The DPSD system can operate in acquisition and processing mode. With the latter n-γ discrimination is performed off-line based on the two-gate method. The paper describes the tests of the CNS and its installation at AUG. The neutron emission from the D plasma measured during a discharge with high auxiliary heating power was used to validate the CNS performance. The study of the optimal settings for the DPSD data processing to maximize the n-γ discrimination capability of the CNS is reported. The CNS measured both 2.45-MeV and 14-MeV neutrons emitted in AUG D plasmas with a maximum count rate of 5.4 × 10(5) s(-1) (>10 times higher than similar spectrometers previously achieved) with an efficiency of 9.3 × 10(-10) events per AUG neutron.
Electronics for a Spectrometer
2014-01-24
NASA has provided part of the electronics package for an instrument called the Double Focusing Mass Spectrometer, which is part of the Swiss-built Rosetta Orbiter Spectrometer for Ion and Neutral Analysis ROSINA instrument.
Measurement and reduction of low-level radon background in the KATRIN experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fränkle, F. M.
The KArlsruhe TRItium Neutrino (KATRIN) experiment is a next generation, model independent, large scale experiment to determine the mass of the electron anti-neutrino by investigating the kinematics of tritium beta decay with a sensitivity of 200 meV/c{sup 2}. The measurement setup consists of a high luminosity windowless gaseous molecular tritium source (WGTS), a differential and cryogenic pumped electron transport and tritium retention section, a tandem spectrometer section (pre-spectrometer and main spectrometer) for energy analysis, followed by a detector system for counting transmitted beta decay electrons. Measurements performed at the KATRIN pre-spectrometer test setup showed that the decay of radon (Rn)more » atoms in the volume of the KATRIN spectrometers is a major background source. Rn atoms from low-level radon emanation of materials inside the vacuum region of the KATRIN spectrometers are able to penetrate deep into the magnetic flux tube so that the alpha decay of Rn contributes to the background. Of particular importance are electrons emitted in processes accompanying the Rn alpha decay, such as shake-off, internal conversion of excited levels in the Rn daughter atoms and Auger electrons. Lowenergy electrons (< 100 eV) directly contribute to the background in the signal region. High-energy electrons can be stored magnetically inside the volume of the spectrometer and are able to create thousands of secondary electrons via subsequent ionization processes with residual gas molecules. In order to reduce the Rn induced background different active and passive counter measures were developed and tested. This proceeding will give an overview on Rn sources within the KATRIN spectrometer, describes how Rn decays inside the spectrometer produce background events at the detector and presents different counter measures to reduce the Rn induced background.« less
Measurement and reduction of low-level radon background in the KATRIN experiment
NASA Astrophysics Data System (ADS)
Fränkle, F. M.
2013-08-01
The KArlsruhe TRItium Neutrino (KATRIN) experiment is a next generation, model independent, large scale experiment to determine the mass of the electron anti-neutrino by investigating the kinematics of tritium beta decay with a sensitivity of 200 meV/c2. The measurement setup consists of a high luminosity windowless gaseous molecular tritium source (WGTS), a differential and cryogenic pumped electron transport and tritium retention section, a tandem spectrometer section (pre-spectrometer and main spectrometer) for energy analysis, followed by a detector system for counting transmitted beta decay electrons. Measurements performed at the KATRIN pre-spectrometer test setup showed that the decay of radon (Rn) atoms in the volume of the KATRIN spectrometers is a major background source. Rn atoms from low-level radon emanation of materials inside the vacuum region of the KATRIN spectrometers are able to penetrate deep into the magnetic flux tube so that the alpha decay of Rn contributes to the background. Of particular importance are electrons emitted in processes accompanying the Rn alpha decay, such as shake-off, internal conversion of excited levels in the Rn daughter atoms and Auger electrons. Lowenergy electrons (< 100 eV) directly contribute to the background in the signal region. High-energy electrons can be stored magnetically inside the volume of the spectrometer and are able to create thousands of secondary electrons via subsequent ionization processes with residual gas molecules. In order to reduce the Rn induced background different active and passive counter measures were developed and tested. This proceeding will give an overview on Rn sources within the KATRIN spectrometer, describes how Rn decays inside the spectrometer produce background events at the detector and presents different counter measures to reduce the Rn induced background.
Hyperspectral data analysis for estimation of foliar biochemical content along the Oregon transect
NASA Technical Reports Server (NTRS)
Johnson, Lee F.; Peterson, David L.
1991-01-01
The NASA Oregon Transect Ecosystem Research (OTTER) project completed a data acquisition phase. Data were acquired with several airborne imaging spectrometers. Included were the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) aboard the ER-2, the Advanced Solidstate Array Spectrometer (ASAS) aboard the C-130, and the Fluorescence Line Imager (FLI) and Compact Airborne Spectrographic Imager (CASI), both aboard light aircraft. In addition, Spectron visible and near-infrared data were acquired in transects across study areas from a low-altitude ultralight craft. Sunphotometer data were taken approximately coincident with each overflight for atmospheric correction of the aircraft data.
NASA Astrophysics Data System (ADS)
Sun, W. Q.; Shu, J. N.; Zhang, P.; Li, Z.; Li, N. N.; Liang, M.; Yang, B.
2015-06-01
In this study, we report on the development of a compact lamp-based vacuum ultraviolet (VUV) photoionization mass spectrometer (PIMS; hereafter referred to as VUV-PIMS) in our laboratory; it is composed of a radio frequency-powered VUV lamp, a VUV photoionizer, an ion-immigration region, and a reflection time-of-flight mass spectrometer. By utilizing the novel photoionizer consisting of a photoionization cavity and a VUV light baffle, extremely low background noise was obtained. An ultrasensitive detection limit (2σ) of 3 pptv was achieved for benzene after an acquisition time of 10 s. To examine its potential for application in real-time sample monitoring, the developed VUV-PIMS was employed for the continuous measurement of urban air for six days in Beijing, China. Strong signals of trace-level volatile organic compounds such as benzene and its alkylated derivatives were observed in the mass spectra. These initial experimental results reveal that the instrument can be used for the online monitoring of trace-level species in the atmosphere.
A new technique for ground simulation of hypervelocity debris
NASA Astrophysics Data System (ADS)
Roybal, R.; Shively, J.; Stein, C.; Miglionico, C.; Robertson, R.
1995-02-01
A series of hypervelocity damage experiments were preformed on spacecraft materials. These experiments employed a technique which accelerates micro flyer plates simulating space debris traveling at 3 to 8 km/sec. The apparatus used to propel the micro flyer plates was compact and fit well into a space environmental chamber equipped with instrumentation capable of analyzing the vapor ejected from the sample. Mechanical damage to the sample was also characterized using optical and scanning electron microscpopy. Data for this work was obtained from hypervelocity impacts on a polysulfone resin and a graphite polysulfone composite. Polysulfone was selected because it was flown on the Long Duration Exposure Facility (LDEF) which spent several years in low earth orbit (LEO). Chemistry of the vapor produced by the impact was analyzed with a time of flight mass spectrometer, (TOFMS). This represents the first time that ejected vapors from hypervelocity collisions were trapped and analyzed with a mass spectrometer. With this approach we are able to study changes in the vapor chemistry as a function of time after impact, obtain a velocity measurement of the vapor, and estimate a temperature of the surface at time of impact using dynamic gas equations. Samples of the vapor plume may be captured and examined by transmission electron microscopy. Studies were also conducted to determine mechanical damage to a graphite polysulfone composite and a polysulfone resin. Impact craters were examined under optical and scanning electron microscopes. The collision craters in the matrix were typical of those shown in conventional shock experiments. However, the hypervelocity collisions with the graphite polysulfone composite were remarkably different than those with the resin.
High-Resolution Broadband Spectral Interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erskine, D J; Edelstein, J
2002-08-09
We demonstrate solar spectra from a novel interferometric method for compact broadband high-resolution spectroscopy. The spectral interferometer (SI) is a hybrid instrument that uses a spectrometer to externally disperse the output of a fixed-delay interferometer. It also has been called an externally dispersed interferometer (EDI). The interferometer can be used with linear spectrometers for imaging spectroscopy or with echelle spectrometers for very broad-band coverage. EDI's heterodyning technique enhances the spectrometer's response to high spectral-density features, increasing the effective resolution by factors of several while retaining its bandwidth. The method is extremely robust to instrumental insults such as focal spot sizemore » or displacement. The EDI uses no moving parts, such as purely interferometric FTS spectrometers, and can cover a much wider simultaneous bandpass than other internally dispersed interferometers (e.g. HHS or SHS).« less
Material Excavated by a Fresh Impact and Identified as Water Ice
2009-09-24
The Compact Reconnaissance Imaging Spectrometer for Mars, an instrument on NASA Mars Reconnaissance Orbiter, obtained information confirming material excavated by a fresh impact and Identified as water ice.
Compact focusing spectrometer: visible (1 eV) to hard x-rays (200 keV).
Baronova, E O; Stepanenko, A M; Pereira, N R
2014-11-01
A low-cost spectrometer that covers a wide range of photon energies can be useful to teach spectroscopy, and for simple, rapid measurements of the photon spectrum produced by small plasma devices. The spectrometer here achieves its wide range, nominally from 1 eV to 200 keV, with a series of spherically and cylindrically bent gratings or crystals that all have the same shape and the same radius of curvature; they are complemented by matching apertures and diagnostics on the Rowland circle that serves as the circular part of the spectrometer's vacuum vessel. Spectral lines are easily identified with software that finds their positions from the dispersion of each diffractive element and the known energies of the lines.
Spectra of clinical CT scanners using a portable Compton spectrometer.
Duisterwinkel, H A; van Abbema, J K; van Goethem, M J; Kawachimaru, R; Paganini, L; van der Graaf, E R; Brandenburg, S
2015-04-01
Spectral information of the output of x-ray tubes in (dual source) computer tomography (CT) scanners can be used to improve the conversion of CT numbers to proton stopping power and can be used to advantage in CT scanner quality assurance. The purpose of this study is to design, validate, and apply a compact portable Compton spectrometer that was constructed to accurately measure x-ray spectra of CT scanners. In the design of the Compton spectrometer, the shielding materials were carefully chosen and positioned to reduce background by x-ray fluorescence from the materials used. The spectrum of Compton scattered x-rays alters from the original source spectrum due to various physical processes. Reconstruction of the original x-ray spectrum from the Compton scattered spectrum is based on Monte Carlo simulations of the processes involved. This reconstruction is validated by comparing directly and indirectly measured spectra of a mobile x-ray tube. The Compton spectrometer is assessed in a clinical setting by measuring x-ray spectra at various tube voltages of three different medical CT scanner x-ray tubes. The directly and indirectly measured spectra are in good agreement (their ratio being 0.99) thereby validating the reconstruction method. The measured spectra of the medical CT scanners are consistent with theoretical spectra and spectra obtained from the x-ray tube manufacturer. A Compton spectrometer has been successfully designed, constructed, validated, and applied in the measurement of x-ray spectra of CT scanners. These measurements show that our compact Compton spectrometer can be rapidly set-up using the alignment lasers of the CT scanner, thereby enabling its use in commissioning, troubleshooting, and, e.g., annual performance check-ups of CT scanners.
Flat field concave holographic grating with broad spectral region and moderately high resolution.
Wu, Jian Fen; Chen, Yong Yan; Wang, Tai Sheng
2012-02-01
In order to deal with the conflicts between broad spectral region and high resolution in compact spectrometers based on a flat field concave holographic grating and line array CCD, we present a simple and practical method to design a flat field concave holographic grating that is capable of imaging a broad spectral region at a moderately high resolution. First, we discuss the principle of realizing a broad spectral region and moderately high resolution. Second, we provide the practical method to realize our ideas, in which Namioka grating theory, a genetic algorithm, and ZEMAX are used to reach this purpose. Finally, a near-normal-incidence example modeled in ZEMAX is shown to verify our ideas. The results show that our work probably has a general applicability in compact spectrometers with a broad spectral region and moderately high resolution.
NASA Astrophysics Data System (ADS)
Rebai, M.; Giacomelli, L.; Milocco, A.; Nocente, M.; Rigamonti, D.; Tardocchi, M.; Camera, F.; Cazzaniga, C.; Chen, Z. J.; Du, T. F.; Fan, T. S.; Giaz, A.; Hu, Z. M.; Marchi, T.; Peng, X. Y.; Gorini, G.
2016-11-01
A Single-crystal Diamond (SD) detector prototype was installed at Joint European Torus (JET) in 2013 and the achieved results have shown its spectroscopic capability of measuring 2.5 MeV neutrons from deuterium plasmas. This paper presents measurements of the SD response function to monoenergetic neutrons, which is a key point for the development of a neutron spectrometer based on SDs and compares them with Monte Carlo simulations. The analysis procedure allows for a good reconstruction of the experimental results. The good pulse height energy resolution (equivalent FWHM of 80 keV at 2.5 MeV), gain stability, insensitivity to magnetic field, and compact size make SDs attractive as compact neutron spectrometers of high flux deuterium plasmas, such as for instance those needed for the ITER neutron camera.
Le Petit, G; Cagniant, A; Morelle, M; Gross, P; Achim, P; Douysset, G; Taffary, T; Moulin, C
The verification regime of the comprehensive test ban treaty (CTBT) is based on a network of three different waveform technologies together with global monitoring of aerosols and noble gas in order to detect, locate and identify a nuclear weapon explosion down to 1 kt TNT equivalent. In case of a low intensity underground or underwater nuclear explosion, it appears that only radioactive gases, especially the noble gas which are difficult to contain, will allow identification of weak yield nuclear tests. Four radioactive xenon isotopes, 131m Xe, 133m Xe, 133 Xe and 135 Xe, are sufficiently produced in fission reactions and exhibit suitable half-lives and radiation emissions to be detected in atmosphere at low level far away from the release site. Four different monitoring CTBT systems, ARIX, ARSA, SAUNA, and SPALAX™ have been developed in order to sample and to measure them with high sensitivity. The latest developed by the French Atomic Energy Commission (CEA) is likely to be drastically improved in detection sensitivity (especially for the metastable isotopes) through a higher sampling rate, when equipped with a new conversion electron (CE)/X-ray coincidence spectrometer. This new spectrometer is based on two combined detectors, both exhibiting very low radioactive background: a well-type NaI(Tl) detector for photon detection surrounding a gas cell equipped with two large passivated implanted planar silicon chips for electron detection. It is characterized by a low electron energy threshold and a much better energy resolution for the CE than those usually measured with the existing CTBT equipments. Furthermore, the compact geometry of the spectrometer provides high efficiency for X-ray and for CE associated to the decay modes of the four relevant radioxenons. The paper focus on the design of this new spectrometer and presents spectroscopic performances of a prototype based on recent results achieved from both radioactive xenon standards and air sample measurements. Major improvements in detection sensitivity have been reached and quantified, especially for metastable radioactive isotopes 131m Xe and 133m Xe with a gain in minimum detectable activity (about 2 × 10 -3 Bq) relative to current CTBT SPALAX™ system (air sampling frequency normalized to 8 h) of about 70 and 30 respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ota, Masahiro; Ishiguro, Yuki; Nakajima, Yutaro
2016-02-01
This paper reports on a highly-sensitive retarding-type electron spectrometer for a continuous source of electrons, in which the electron collection efficiency is increased by utilizing the magnetic bottle effect. This study demonstrates an application to Penning ionization electron spectroscopy using collisional ionization with metastable He*(2{sup 3}S) atoms. Technical details and performances of the instrument are presented. This spectrometer can be used for studies of functional molecules and assemblies, and exterior electron densities are expected to be selectively observed by the Penning ionization.
Reactor antineutrino detector iDREAM.
NASA Astrophysics Data System (ADS)
Gromov, M. B.; Lukyanchenko, G. A.; Novikova, G. J.; Obinyakov, B. A.; Oralbaev, A. Y.; Skorokhvatov, M. D.; Sukhotin, S. V.; Chepurnov, A. S.; Etenko, A. V.
2017-09-01
Industrial Detector for Reactor Antineutrino Monitoring (iDREAM) is a compact (≈ 3.5m 2) industrial electron antineutrino spectrometer. It is dedicated for remote monitoring of PWR reactor operational modes by neutrino method in real-time. Measurements of antineutrino flux from PWR allow to estimate a fuel mixture in active zone and to check the status of the reactor campaign for non-proliferation purposes. LAB-based gadolinium doped scintillator is exploited as a target. Multizone architecture of the detector with gamma-catcher surrounding fiducial volume and plastic muon veto above and below ensure high efficiency of IBD detection and background suppression. DAQ is based on Flash ADC with PSD discrimination algorithms while digital trigger is programmable and flexible due to FPGA. The prototype detector was started up in 2014. Preliminary works on registration Cerenkov radiation produced by cosmic muons were established with distilled water inside the detector in order to test electronic and slow control systems. Also in parallel a long-term measurements with different scintillator samples were conducted.
Precision determination of electron scattering angle by differential nuclear recoil energy method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liyanage, N.; Saenboonruang, K.
2015-12-01
The accurate determination of the scattered electron angle is crucial to electron scattering experiments, both with open-geometry large-acceptance spectrometers and ones with dipole-type magnetic spectrometers for electron detection. In particular, for small central-angle experiments using dipole-type magnetic spectrometers, in which surveys are used to measure the spectrometer angle with respect to the primary electron beam, the importance of the scattering angle determination is emphasized. However, given the complexities of large experiments and spectrometers, the accuracy of such surveys is limited and insufficient to meet demands of some experiments. In this article, we present a new technique for determination of themore » electron scattering angle based on an accurate measurement of the primary beam energy and the principle of differential nuclear recoil. This technique was used to determine the scattering angle for several experiments carried out at the Experimental Hall A, Jefferson Lab. Results have shown that the new technique greatly improved the accuracy of the angle determination compared to surveys.« less
Precision Determination of Electron Scattering Angle by Differential Nuclear Recoil Energy Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liyanage, Nilanga; Saenboonruang, Kiadtisak
2015-09-01
The accurate determination of the scattered electron angle is crucial to electron scattering experiments, both with open-geometry large-acceptance spectrometers and ones with dipole-type magnetic spectrometers for electron detection. In particular, for small central-angle experiments using dipole-type magnetic spectrometers, in which surveys are used to measure the spectrometer angle with respect to the primary electron beam, the importance of the scattering angle determination is emphasized. However, given the complexities of large experiments and spectrometers, the accuracy of such surveys is limited and insufficient to meet demands of some experiments. In this article, we present a new technique for determination of themore » electron scattering angle based on an accurate measurement of the primary beam energy and the principle of differential nuclear recoil. This technique was used to determine the scattering angle for several experiments carried out at the Experimental Hall A, Jefferson Lab. Results have shown that the new technique greatly improved the accuracy of the angle determination compared to surveys.« less
The Evaluation of the 0.07 and 3 mm Dose Equivalent with a Portable Beta Spectrometer
NASA Astrophysics Data System (ADS)
Hoshi, Katsuya; Yoshida, Tadayoshi; Tsujimura, Norio; Okada, Kazuhiko
Beta spectra of various nuclide species were measured using a commercially available compact spectrometer. The shape of the spectra obtained via the spectrometer was almost similar to that of the theoretical spectra. The beta dose equivalent at any depth was obtained as a product of the measured pulse height spectra and the appropriate conversion coefficients of ICRP Publication 74. The dose rates evaluated from the spectra were comparable with the reference dose rates of standard beta calibration sources. In addition, we were able to determine the dose equivalents with a relative error of indication of 10% without the need for complicated correction.
A real-time data-acquisition and analysis system with distributed UNIX workstations
NASA Astrophysics Data System (ADS)
Yamashita, H.; Miyamoto, K.; Maruyama, K.; Hirosawa, H.; Nakayoshi, K.; Emura, T.; Sumi, Y.
1996-02-01
A compact data-acquisition system using three RISC/UNIX™ workstations (SUN™/SPARCstation™) with real-time capabilities of monitoring and analysis has been developed for the study of photonuclear reactions with the large-acceptance spectrometer TAGX. One workstation acquires data from memory modules in the front-end electronics (CAMAC and TKO) with a maximum speed of 300 Kbytes/s, where data size times instantaneous rate is 1 Kbyte × 300 Hz. Another workstation, which has real-time capability for run monitoring, gets the data with a buffer manager called NOVA. The third workstation analyzes the data and reconstructs the event. In addition to a general hardware and software description, priority settings and run control by shell scripts are described. This system has recently been used successfully in a two month long experiment.
NASA Technical Reports Server (NTRS)
Moseley, H.; Hsieh, W.-T.; Stevenson, T.; Wollack, E.; Brown, A.; Benford, D.; Sadleir; U-Yen, I.; Ehsan, N.; Zmuidzinas, J.;
2011-01-01
We have designed and are testing elements of a fully integrated submillimeter spectrometer based on superconducting microstrip technology. The instrument can offer resolving power R approximately 1500, and its high frequency cutoff is set by the gap of available high performance superconductors. All functions of the spectrometer are integrated - light is coupled to the microstrip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using planar filter, and detected using photon counting MKID detector. This spectrometer promises to revolutionize submillimeter spectroscopy from space. It replaces instruments with the scale of 1m with a spectrometer on a 10 cm Si wafer. The reduction in mass and volume promises a much higher performance system within available resource in a space mission. We will describe the system and the performance of the components that have been fabricated and tested.
Space-qualified submillimeter radiometer
NASA Technical Reports Server (NTRS)
Huguenin, G. R.
1987-01-01
The purpose of this research was to develop a reliable submillimeter wave spectrometer for space-borne high frequency spectral line work. The emphasis was on improving the efficiency of frequency multipliers to limit the system components to rugged, low power consumption solid-state devices. This research has allowed Millitech to develop increased efficiency and performance in Millitech's existing line of submillimeter components and systems. Millitech has fabricated and tested a complete solid-state spectrometer front end for use at 560 GHz (the 1(sub 10) to 1(sub 01) transition of water vapor). The spectrometer was designed with the rigors of flight conditions in mind. The spectrometer uses a phase-locked, solid-state Gunn diode oscillator as the local oscillator, employing a tripler to produce about 3 mW of power at 285 GHz, and a low noise second harmonic waveguide mixer which requires less than 2 mW of LO power. The LO (and the signal) is injected into the mixer by means of a quasioptical diplexer. The measured system noise temperature is 2800 K (DSB) over 400 MHz. The whole spectrometer front end is compact (21 cm by 21 cm by 24 cm), light (7.4 kg), and has a power consumption of less than 8 W. Other topics explored in this work include compact frequency agile phase lock loops, optical filters, and InP Gunn oscillators for low noise applications. As a result of this research, the improvement in the design of multipliers and harmonic mixers will allow their use as the LO power for a variety of satellite-borne receivers operating in the 200 to 600 GHz frequency range.
NASA Technical Reports Server (NTRS)
Chin, G.; Buhl, D.; Florez, J. M.
1981-01-01
A survey of acousto-optic spectrometers for molecular astronomy is presented, noting a technique of combining the acoustic bending of a collimated coherent light beam with a Bragg cell followed by an array of sensitive photodetectors. This acousto-optic spectrometer has a large bandwidth, a large number of channels, high resolution, and is energy efficient. Receiver development has concentrated on high-frequency heterodyne systems for the study of the chemical composition of the interstellar medium. RF spectrometers employing acousto-optic diffraction cells are described. Acousto-optic techniques have been suggested for applications to electronic warfare, electronic countermeasures and electronic support systems. Plans to use integrated optics for the further miniaturization of acousto-optic spectrometers are described. Bulk acousto-optic spectrometers with 300 MHz and 1 GHz bandwidths are being developed for use in the back-end of high-frequency heterodyne receivers for astronomical research.
Combined raman spectrometer/laser-induced breakdown spectrometer design concept
NASA Astrophysics Data System (ADS)
Bazalgette Courrèges-Lacoste, Gregory; Ahlers, Berit; Boslooper, Erik; Rull-Perez, Fernando; Maurice, Sylvestre
2017-11-01
Amongst the different instruments that have been preselected to be on-board the Pasteur payload on ExoMars is the Raman/ Laser Induced Breakdown Spectroscopy (LIBS) instrument. Raman spectroscopy and LIBS will be integrated into a single instrument sharing many hardware commonalities. An international team under the lead of TNO has been gathered to produce a design concept for a combined Raman Spectrometer/ LIBS Elegant Bread-Board (EBB). The instrument is based on a specifically designed extremely compact spectrometer with high resolution over a large wavelength range, suitable for both Raman spectroscopy and LIBS measurements. Low mass, size and resources are the main drivers of the instrument's design concept. The proposed design concept, realization and testing programme for the combined Raman/ LIBS EBB is presented as well as background information on Raman and LIBS.
The Cosmic Ray Electron Excess
NASA Technical Reports Server (NTRS)
Chang, J.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Christl, M.; Ganel, O.; Guzik, T. G.; Isbert, J.; Kim, K. C.; Kuznetsov, E. N.;
2008-01-01
This slide presentation reviews the possible sources for the apparent excess of Cosmic Ray Electrons. The presentation reviews the Advanced Thin Ionization Calorimeter (ATIC) instrument, the various parts, how cosmic ray electrons are measured, and shows graphs that review the results of the ATIC instrument measurement. A review of Cosmic Ray Electrons models is explored, along with the source candidates. Scenarios for the excess are reviewed: Supernova remnants (SNR) Pulsar Wind nebulae, or Microquasars. Each of these has some problem that mitigates the argument. The last possibility discussed is Dark Matter. The Anti-Matter Exploration and Light-nuclei Astrophysics (PAMELA) mission is to search for evidence of annihilations of dark matter particles, to search for anti-nuclei, to test cosmic-ray propagation models, and to measure electron and positron spectra. There are slides explaining the results of Pamela and how to compare these with those of the ATIC experiment. Dark matter annihilation is then reviewed, which represent two types of dark matter: Neutralinos, and kaluza-Kline (KK) particles, which are next explained. The future astrophysical measurements, those from GLAST LAT, the Alpha Magnetic Spectrometer (AMS), and HEPCAT are reviewed, in light of assisting in finding an explanation for the observed excess. Also the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) could help by revealing if there are extra dimensions.
NASA Astrophysics Data System (ADS)
Clark, Pamela E.; Macdowall, Robert J.; Reuter, Dennis; Mauk, Robin
2014-11-01
We are in the process of developing the BIRCH (Broadband IR for Cubesats with High Resolution) Spectrometer for characterization of a range of deep space targets. BIRCH is the first extremely compact Broadband IR spectrometer with high spectral resolution designed to measure water type and component distribution for a science-driven cubesat mission, such as the lunar orbital mission LWaDi (Lunar Water Distribution) designed to determine the systematics of lunar water and volatiles as a function of time of day, latitude, and terrain. The development of cubesat form factor instruments, such as BIRCH, capable of providing high priority science goals identified in the decadal survey is critical to achieve low cost planetary exploration promised by the cubesat paradigm by exploring volatile systems via orbiting or landed packages. On the Moon, as well as Mercury, Mars, and the asteroids, the source, distribution, and role of volatiles is a question of major importance, and has implications for formation processes, including interior structure, differentiation, and the origin of life in the early solar system. The form and distribution of water has implications for human exploration, resource exploitation, and sample curation. Recent lunar missions gave unanticipated evidence for the water from NIR instruments not optimized for finding it. Our instrument includes a compact broadband HgCdTe detector with a linear variable filter and a compact cryocooler (for operation below 140K) attached to a compact optical system with 2 off-axis parabolic mirrors and variable field stop operating below 240K. Its 10 nm or better resolution and longer wavelength upper range (1.3 to 3.7 microns) are necessary to identify and separate features associated with water type (adsorbed, bound, ice) and components. Its 4-sided adjustable iris at the field stop enables a constant spot size (10 x 10 km) regardless of altitude. BIRCH will be able to provide systematic and extensive enough information to understand water’s life cycle, temporal and spatial distribution and interactions as a function of lunar cycles, characteristic features, and regolith composition.
Compact near-IR and mid-IR cavity ring down spectroscopy device
NASA Technical Reports Server (NTRS)
Miller, J. Houston (Inventor)
2011-01-01
This invention relates to a compact cavity ring down spectrometer for detection and measurement of trace species in a sample gas using a tunable solid-state continuous-wave mid-infrared PPLN OPO laser or a tunable low-power solid-state continuous wave near-infrared diode laser with an algorithm for reducing the periodic noise in the voltage decay signal which subjects the data to cluster analysis or by averaging of the interquartile range of the data.
A compact high resolution ion mobility spectrometer for fast trace gas analysis.
Kirk, Ansgar T; Allers, Maria; Cochems, Philipp; Langejuergen, Jens; Zimmermann, Stefan
2013-09-21
Drift tube ion mobility spectrometers (IMS) are widely used for fast trace gas detection in air, but portable compact systems are typically very limited in their resolving power. Decreasing the initial ion packet width improves the resolution, but is generally associated with a reduced signal-to-noise-ratio (SNR) due to the lower number of ions injected into the drift region. In this paper, we present a refined theory of IMS operation which employs a combined approach for the analysis of the ion drift and the subsequent amplification to predict both the resolution and the SNR of the measured ion current peak. This theoretical analysis shows that the SNR is not a function of the initial ion packet width, meaning that compact drift tube IMS with both very high resolution and extremely low limits of detection can be designed. Based on these implications, an optimized combination of a compact drift tube with a length of just 10 cm and a transimpedance amplifier has been constructed with a resolution of 183 measured for the positive reactant ion peak (RIP(+)), which is sufficient to e.g. separate the RIP(+) from the protonated acetone monomer, even though their drift times only differ by a factor of 1.007. Furthermore, the limits of detection (LODs) for acetone are 180 pptv within 1 s of averaging time and 580 pptv within only 100 ms.
A magnetic-bottle multi-electron-ion coincidence spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuda, Akitaka; Hishikawa, Akiyoshi; Department of Chemistry, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602
2011-10-15
A novel multi-electron-ion coincidence spectrometer developed on the basis of a 1.5 m-long magnetic-bottle electron spectrometer is presented. Electrons are guided by an inhomogeneous magnetic field to a detector at the end of the flight tube, while a set of optics is used to extract counterpart ions to the same detector, by a pulsed inhomogeneous electric field. This setup allows ion detection with high mass resolution, without impairing the high collection efficiency for electrons. The performance of the coincidence spectrometer was tested with double ionization of carbon disulfide, CS{sub 2} {yields} CS{sub 2}{sup 2+} + e{sup -} + e{sup -},more » in ultrashort intense laser fields (2.8 x 10{sup 13} W/cm{sup 2}, 280 fs, 1030 nm) to clarify the electron correlation below the rescattering threshold.« less
Imaging Spectrometer Designs Utilizing Immersed Gratings With Accessible Entrance Slit
Chrisp, Michael P.; Lerner, Scott A.
2006-03-21
A compact imaging spectrometer comprises an entrance slit, a catadioptric lens with a mirrored surface, a grating, and a detector array. The entrance slit directs light to the mirrored surface of the catadioptric lens; the mirrored surface reflects the light back through the lens to the grating. The grating receives the light from the catadioptric lens and diffracts the light to the lens away from the mirrored surface. The lens transmits the light and focuses it onto the detector array.
A compact multi-channel fluorescence sensor with ambient light suppression
NASA Astrophysics Data System (ADS)
Egly, Dominik; Geörg, Daniel; Rädle, Matthias; Beuermann, Thomas
2012-03-01
A multi-channel fluorescence sensor has been developed for process monitoring and fluorescence diagnostics. It comprises a fiber-optic set-up with an immersion probe and an intensity-modulated high power ultraviolet light-emitting diode as a light source for fluorescence excitation. By applying an electronic lock-in procedure, fluorescence signals are selectively detectable at ambient light levels of 1000 000 times higher intensity. The sensor was designed to be compact, low cost and easily adaptable to a wide field of application. The set-up was used to simultaneously monitor three important metabolic fluorophores: NAD(P)H, flavins and porphyrins during the cultivation of a baker's yeast. Moreover, the accumulation and degradation kinetics of protoporphyrin IX induced by 5-aminolevulinic acid on the skin could be recorded by the sensor. The detection limit for protoporphyrin IX was determined to be 4 × 10-11 mol L-1. The linear signal amplification of the sensor and time courses of fluorescence signals monitored during yeast fermentations were validated using a commercial CCD spectrometer. The robust and flexible set-up of the fiber-optic measurement system promises easy implementation of this non-invasive analytical tool to fluorescence monitoring and diagnostics in R&D and production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulyuz, Kerim; Stedwell, Corey N.; Wang Da
2011-05-15
We present a laboratory-constructed mass spectrometer optimized for recording infrared multiple photon dissociation (IRMPD) spectra of mass-selected ions using a benchtop tunable infrared optical parametric oscillator/amplifier (OPO/A). The instrument is equipped with two ionization sources, an electrospray ionization source, as well as an electron ionization source for troubleshooting. This hybrid mass spectrometer is composed of a quadrupole mass filter for mass selection, a reduced pressure ({approx}10{sup -5} Torr) quadrupole ion trap (QIT) for OPO irradiation, and a reflectron time-of-flight drift tube for detecting the remaining precursor and photofragment ions. A helium gas pulse is introduced into the QIT to temporarilymore » increase the pressure and hence enhance the trapping efficiency of axially injected ions. After a brief pump-down delay, the compact ion cloud is subjected to the focused output from the continuous wave OPO. In a recent study, we implemented this setup in the study of protonated tryptophan, TrpH{sup +}, as well as collision-induced dissociation products of this protonated amino acid [W. K. Mino, Jr., K. Gulyuz, D. Wang, C. N. Stedwell, and N. C. Polfer, J. Phys. Chem. Lett. 2, 299 (2011)]. Here, we give a more detailed account on the figures of merit of such IRMPD experiments. The appreciable photodissociation yields in these measurements demonstrate that IRMPD spectroscopy of covalently bound ions can be routinely carried out using benchtop OPO setups.« less
NASA Technical Reports Server (NTRS)
Getty, Stephanie; Brickerhoff, William; Cornish, Timothy; Ecelberger, Scott; Floyd, Melissa
2012-01-01
RATIONALE A miniature time-of-flight mass spectrometer has been adapted to demonstrate two-step laser desorption-ionization (LOI) in a compact instrument package for enhanced organics detection. Two-step LDI decouples the desorption and ionization processes, relative to traditional laser ionization-desorption, in order to produce low-fragmentation conditions for complex organic analytes. Tuning UV ionization laser energy allowed control ofthe degree of fragmentation, which may enable better identification of constituent species. METHODS A reflectron time-of-flight mass spectrometer prototype measuring 20 cm in length was adapted to a two-laser configuration, with IR (1064 nm) desorption followed by UV (266 nm) postionization. A relatively low ion extraction voltage of 5 kV was applied at the sample inlet. Instrument capabilities and performance were demonstrated with analysis of a model polycyclic aromatic hydrocarbon, representing a class of compounds important to the fields of Earth and planetary science. RESULTS L2MS analysis of a model PAH standard, pyrene, has been demonstrated, including parent mass identification and the onset o(tunable fragmentation as a function of ionizing laser energy. Mass resolution m/llm = 380 at full width at half-maximum was achieved which is notable for gas-phase ionization of desorbed neutrals in a highly-compact mass analyzer. CONCLUSIONS Achieving two-step laser mass spectrometry (L2MS) in a highly-miniature instrument enables a powerful approach to the detection and characterization of aromatic organics in remote terrestrial and planetary applications. Tunable detection of parent and fragment ions with high mass resolution, diagnostic of molecular structure, is possible on such a compact L2MS instrument. Selectivity of L2MS against low-mass inorganic salt interferences is a key advantage when working with unprocessed, natural samples, and a mechanism for the observed selectivity is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westover, B.; Lawrence Livermore National Laboratory, Livermore, California 94550; Chen, C. D.
2014-03-15
Experiments on the Titan laser (∼150 J, 0.7 ps, 2 × 10{sup 20} W cm{sup −2}) at the Lawrence Livermore National Laboratory were carried out in order to study the properties of fast electrons produced by high-intensity, short pulse laser interacting with matter under conditions relevant to Fast Ignition. Bremsstrahlung x-rays produced by these fast electrons were measured by a set of compact filter-stack based x-ray detectors placed at three angles with respect to the target. The measured bremsstrahlung signal allows a characterization of the fast electron beam spectrum, conversion efficiency of laser energy into fast electron kinetic energy and angular distribution. A Monte Carlo codemore » Integrated Tiger Series was used to model the bremsstrahlung signal and infer a laser to fast electron conversion efficiency of 30%, an electron slope temperature of about 2.2 MeV, and a mean divergence angle of 39°. Simulations were also performed with the hybrid transport code ZUMA which includes fields in the target. In this case, a conversion efficiency of laser energy to fast electron energy of 34% and a slope temperature between 1.5 MeV and 4 MeV depending on the angle between the target normal direction and the measuring spectrometer are found. The observed temperature of the bremsstrahlung spectrum, and therefore the inferred electron spectrum are found to be angle dependent.« less
High-grade, compact spectrometers for Earth observation from SmallSats
NASA Astrophysics Data System (ADS)
van der Wal, L. F.; de Goeij, B. T. G.; Jansen, R.; Oosterling, J. A. J.; Snijders, B.
2016-10-01
The market for nano- and microsatellites is developing rapidly. There is a strong focus on 2D imaging of the Earth's surface, with limited possibilities to obtain spectral information. More demanding applications, such as monitoring trace gases, aerosols or water quality still require advanced imaging instruments, which are large, heavy and expensive. In recent years TNO has investigated and developed different innovative designs to realize advanced spectrometers for space applications in a more compact and cost-effective manner. This offers multiple advantages: a compact instrument can be flown on a much smaller platform (nano- or microsatellite); a low-cost instrument opens up the possibility to fly multiple instruments in a satellite constellation, improving both global coverage and temporal sampling (e.g. to study diurnal processes); a constellation of low-cost instruments may provide added value to the larger scientific and operational satellite missions (e.g. the Copernicus Sentinel missions); and a small, lightweight spectrometer can also be mounted easily on a high-altitude UAV (offering high spatial resolution). Last but not least, a low-cost instrument may allow to break through the `cost spiral': lower cost will allow to take more risk and thus progress more quickly. This may lead to a much faster development cycle than customary for current Earth Observation instruments. To explore the potential of a constellation of low-cost instruments a consortium of Dutch partners was formed, which currently consists of Airbus Defence and Space Netherlands, ISISpace, S and T and TNO. In this paper we will illustrate this new design approach by using the most advanced design of a hyperspectral imaging spectrometer (named `Spectrolite') as an example. We will discuss the different design and manufacturing techniques that were used to realize this compact and low-cost design. Laboratory tests as well as the first preliminary results of airborne measurements with the Spectrolite breadboard will be presented and discussed. The design of Spectrolite offers the flexibility to tune its performance (spectral range, spectral resolution) to a specific application. Thus, based on the same basic system design, Spectrolite offers a range of applications to different clients. To illustrate this, we will present a mission concept to monitor NO2 concentrations over urban areas at high spatial resolution, based on a constellation of small satellites.
Bulk and integrated acousto-optic spectrometers for radio astronomy
NASA Technical Reports Server (NTRS)
Chin, G.; Buhl, D.; Florez, J. M.
1981-01-01
The development of sensitive heterodyne receivers (front end) in the centimeter and millimeter range, and the construction of sensitive RF spectrometers (back end) enable the spectral lines of interstellar molecules to be detected and identified. A technique was developed which combines acoustic bending of a collimated coherent light beam by a Bragg cell followed by detection by a sensitive array of photodetectors (thus forming an RF acousto-optic spectrometer (AOS). An AOS has wide bandwidth, large number of channels, and high resolution, and is compact, lightweight, and energy efficient. The thrust of receiver development is towards high frequency heterodyne systems, particularly in the millimeter, submillimeter, far infrared, and 10 micron spectral ranges.
NASA Astrophysics Data System (ADS)
Lucey, Paul G.; Hinrichs, John L.; Akagi, Jason
2012-06-01
A prototype long wave infrared Fourier transform spectral imaging system using a wedged Fabry-Perot interferometer and a microbolometer array was designed and built. The instrument can be used at both short (cm) and long standoff ranges (infinity focus). Signal to noise ratios are in the several hundred range for 30 C targets. The sensor is compact, fitting in a volume about 12 x12 x 4 inches.
[Micro Hadamard transform near-infrared spectrometer].
Zhang, Zhi-hai; Muo, Xiang-xia; Guo, Yuan-jun; Wang, Wei
2011-07-01
A new type micro Hadamard transform (HT) near-infrared (NIR) spectrometer is proposed in the present paper. It has a MOEMS (Micro-Opto-Electro-Mechanical Systems) blazed grating HT mask. It has merits of compactness, agility of dynamic mask generation and high scan speed. The structure and theory of this spectrometer are analyzed. The 63-order Hadamard-S matrix and mask are designed. The mask is dynamically generated by program of MOEMS blazed gratings. The spectrum is in agreement with that measured by Shimadzu spectrometer in experiments. It has a wavelength range between 900 and 1 700 nm, spectral resolution of 19 nm, single scan time of 2.4 s, SNR of 44.67:1, optical path of 70 mm x 130 mm, and weight under 1 kg. It can meet the requirement of real time detection and portable application.
[Current status and prospects of portable NIR spectrometer].
Yu, Xin-Yang; Lu, Qi-Peng; Gao, Hong-Zhi; Peng, Zhong-Qi
2013-11-01
Near-infrared spectroscopy (NIRS) is a reliable, rapid, and non-destructive analytical method widely applied in as a number of fields such as agriculture, food, chemical and oil industry. In order to suit different applications, near-infrared spectrometers are now varied. Portable near-infrared spectrometers are needed for rapid on-site identification and analysis. Instruments of this kind are rugged, compact and easy to be transported. In this paper, the current states of portable near-infrared spectrometers are reviewed. Portable near-infrared spectrometers are built of different monochromator systems: filter, grating, Fourier-transform methods, acousto-optic tunable filter (AOTF) and a large number of new methods based on micro-electro-mechanical systems (MEMS). The first part focuses on working principles of different monochromator systems. Advantages and disadvantages of different systems are also briefly mentioned. Descriptions of each method are given in turn. Typical spectrometers of each kind are introduced, and some parameters of these instruments are listed. In the next part we discuss sampling adapters, display, power supply and some other parts, which are designed to make the spectrometer more portable and easier to use. In the end, the current states of portable near-infrared spectrometers are summarized. Future trends of development of portable near-infrared spectrometers in China and abroad are discussed.
Development of an ion time-of-flight spectrometer for neutron depth profiling
NASA Astrophysics Data System (ADS)
Cetiner, Mustafa Sacit
Ion time-of-flight spectrometry techniques are investigated for applicability to neutron depth profiling. Time-of-flight techniques are used extensively in a wide range of scientific and technological applications including energy and mass spectroscopy. Neutron depth profiling is a near-surface analysis technique that gives concentration distribution versus depth for certain technologically important light elements. The technique uses thermal or sub-thermal neutrons to initiate (n, p) or (n, alpha) reactions. Concentration versus depth distribution is obtained by the transformation of the energy spectrum into depth distribution by using stopping force tables of the projectiles in the substrate, and by converting the number of counts into concentration using a standard sample of known dose value. Conventionally, neutron depth profiling measurements are based on charged particle spectrometry, which employs semiconductor detectors such as a surface barrier detector (SBD) and the associated electronics. Measurements with semiconductor detectors are affected by a number of broadening mechanisms, which result from the interactions between the projectile ion and the detector material as well as fluctuations in the signal generation process. These are inherent features of the detection mechanism that involve the semiconductor detectors and cannot be avoided. Ion time-of-flight spectrometry offers highly precise measurement capabilities, particularly for slow particles. For high-energy low-mass particles, measurement resolution tends to degrade with all other parameters fixed. The threshold for more precise ion energy measurements with respect to conventional techniques, such as direct energy measurement by a surface barrier detector, is directly related to the design and operating parameters of the device. Time-of-flight spectrometry involves correlated detection of two signals by a coincidence unit. In ion time-of-flight spectroscopy, the ion generates the primary input signal. Without loss of generality, the secondary signal is obtained by the passage of the ion through a thin carbon foil, which produces ion-induced secondary electron emission (IISEE). The time-of-flight spectrometer physically acts as an ion/electron separator. The electrons that enter the active volume of the spectrometer are transported onto the microchannel plate detector to generate the secondary signal. The electron optics can be designed in variety of ways depending on the nature of the measurement and physical requirements. Two ion time-of-flight spectrometer designs are introduced: the parallel electric and magnetic (PEM) field spectrometer and the cross electric and magnetic (CEM) field spectrometer. The CEM field spectrometers have been extensively used in a wide range of applications where precise mass differentiation is required. The PEM field spectrometers have lately found interest in mass spectroscopy applications. The application of the PEM field spectrometer for energy measurements is a novel approach. The PEM field spectrometer used in the measurements employs axial electric and magnetic fields along the nominal direction of the incident ion. The secondary electrons are created by a thin carbon foil on the entrance disk and transported on the microchannel plate that faces the carbon foil. The initial angular distribution of the secondary electrons has virtually no effect on the transport time of the secondary electrons from the surface of the carbon foil to the electron microchannel plate detector. Therefore, the PEM field spectrometer can offer high-resolution energy measurement for relatively lower electric fields. The measurements with the PEM field spectrometer were made with the Tandem linear particle accelerator at the IBM T. J. Watson Research Center at Yorktown Heights, NY. The CEM field spectrometer developed for the thesis employs axial electric field along the nominal direction of the ion, and has perpendicular magnetic field. As the electric field accelerates and then decelerates the emitted secondary electron beam, the magnetic field steers the beam away from the source and focuses it onto the electron microchannel plate detector. The initial momentum distribution of the electron beam is observed to have profound effect on the electron transport time. Hence, the CEM field spectrometer measurements suffer more from spectral broadening at similar operating parameters. The CEM field spectrometer measurements were obtained with a 210Po alpha source at the Penn State Radiation Science and Engineering Center, University Park, PA. Although the PEM field spectrometer suffers less from electron transport time dispersion, the CEM field spectrometer is more suited for application to neutron depth profiling. The multiple small-diameter apertures used in the PEM field configuration considerably reduces the geometric efficiency of the spectrometer. Most of the neutron depth profiling measurements, where isotropic emission of charged particles is observed, have relatively low count rates; hence, high detection efficiency is essential.
Development of a Dielectric-Loaded Accelerator Test Facility Based on an X-Band Magnicon Amplifier
NASA Astrophysics Data System (ADS)
Gold, S. H.; Kinkead, A. K.; Gai, W.; Power, J. G.; Konecny, R.; Jing, C.; Tantawi, S. G.; Nantista, C. D.; Hu, Y.; Du, X.; Tang, C.; Lin, Y.; Bruce, R. W.; Bruce, R. L.; Fliflet, A. W.; Lewis, D.
2006-01-01
The Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), are developing a dielectric-loaded accelerator (DLA) test facility powered by the 11.424-GHz magnicon amplifier that was developed jointly by NRL and Omega-P, Inc. Thus far, DLA structures developed by ANL have been tested at the NRL Magnicon Facility without injected electrons, including tests of alumina and magnesium calcium titanate structures at gradients up to ˜8 MV/m. The next step is to inject electrons in order to build a compact DLA test accelerator. The Accelerator Laboratory of Tsinghua University in Beijing, China has developed a 5-MeV electron injector for the accelerator, and SLAC is developing a means to combine the two magnicon output arms, and to drive the injector and an accelerator section with separate control of the power ratio and relative phase. Also, RWBruce Associates, working with NRL, is developing a means to join ceramic tubes to produce long accelerating sections using a microwave brazing process. The installation and commissioning of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year.
Multi-Point Thomson Scattering Diagnostic for the Helicity Injected Torus
NASA Astrophysics Data System (ADS)
Liptac, J. E.; Smith, R. J.; Hoffman, C. S.; Jarboe, T. R.; Nelson, B. A.; Leblanc, B. P.; Phillips, P.
1999-11-01
The multi-point Thomson scattering system on the Helicity Injected Torus--II can determine electron temperature and density at 11 radial positions at a single time during the plasma discharge. The system includes components on loan from both PPPL and from the University of Texas. The collection optics and Littrow spectrometer from Princeton, and the 1 GW laser and multi-anode microchannel plate detector from Texas have been integrated into a compact structure, creating a mobile and reliable diagnostic. The mobility of the system allows alignment to occur in a room adjacent to the experiment, greatly reducing the disturbance to normal machine operation. The four main parts of the Thomson scattering system, namely, the laser, the beam line, the collection optics, and the mobile structure are presented and discussed.
A flexible, on-line magnetic spectrometer for ultra-intense laser produced fast electron measurement
NASA Astrophysics Data System (ADS)
Ge, Xulei; Yuan, Xiaohui; Yang, Su; Deng, Yanqing; Wei, Wenqing; Fang, Yuan; Gao, Jian; Liu, Feng; Chen, Min; Zhao, Li; Ma, Yanyun; Sheng, Zhengming; Zhang, Jie
2018-04-01
We have developed an on-line magnetic spectrometer to measure energy distributions of fast electrons generated from ultra-intense laser-solid interactions. The spectrometer consists of a sheet of plastic scintillator, a bundle of non-scintillating plastic fibers, and an sCMOS camera recording system. The design advantages include on-line capturing ability, versatility of detection arrangement, and resistance to harsh in-chamber environment. The validity of the instrument was tested experimentally. This spectrometer can be applied to the characterization of fast electron source for understanding fundamental laser-plasma interaction physics and to the optimization of high-repetition-rate laser-driven applications.
Simulation of background from low-level tritium and radon emanation in the KATRIN spectrometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leiber, B.; Collaboration: KATRIN Collaboration
The KArlsruhe TRItium Neutrino (KATRIN) experiment is a large-scale experiment for the model independent determination of the mass of electron anti-neutrinos with a sensitivity of 200 meV/c{sup 2}. It investigates the kinematics of electrons from tritium beta decay close to the endpoint of the energy spectrum at 18.6 keV. To achieve a good signal to background ratio at the endpoint, a low background rate below 10{sup −2} counts per second is required. The KATRIN setup thus consists of a high luminosity windowless gaseous tritium source (WGTS), a magnetic electron transport system with differential and cryogenic pumping for tritium retention, andmore » electro-static retarding spectrometers (pre-spectrometer and main spectrometer) for energy analysis, followed by a segmented detector system for counting transmitted beta-electrons. A major source of background comes from magnetically trapped electrons in the main spectrometer (vacuum vessel: 1240 m{sup 3}, 10{sup −11} mbar) produced by nuclear decays in the magnetic flux tube of the spectrometer. Major contributions are expected from short-lived radon isotopes and tritium. Primary electrons, originating from these decays, can be trapped for hours, until having lost almost all their energy through inelastic scattering on residual gas particles. Depending on the initial energy of the primary electron, up to hundreds of low energetic secondary electrons can be produced. Leaving the spectrometer, these electrons will contribute to the background rate. This contribution describes results from simulations for the various background sources. Decays of {sup 219}Rn, emanating from the main vacuum pump, and tritium from the WGTS that reaches the spectrometers are expected to account for most of the background. As a result of the radon alpha decay, electrons are emitted through various processes, such as shake-off, internal conversion and the Auger deexcitations. The corresponding simulations were done using the KASSIOPEIA framework, which has been developed for the KATRIN experiment for low-energy electron tracking, field calculation and detector simulation. The results of the simulations have been used to optimize the design parameters of the vacuum system with regard to radon emanation and tritium pumping, in order to reach the stringent requirements of the neutrino mass measurement.« less
Miniaturized spectrometer for stand-off chemical detection
NASA Astrophysics Data System (ADS)
Henning, Patrick F.; Chadha, Suneet; Damren, Richard; Rowe, Rebecca C.; Stevenson, Chuck; Curtiss, Lawrence E.; DiGiuseppe, Thomas G.
2002-02-01
Advanced autonomous detection of both chemical warfare agents and toxic industrial chemicals has long been of major military concern and is becoming an increasingly realistic need. Foster-Miller has successfully designed and demonstrated a high spectral throughput monolithic wedge spectrometer capable of providing early, stand-off detection of chemical threats. Recent breakthrough innovations in IR source technologies, high D* multispectral array detectors, and IR waveguide materials has allowed for the development of a robust, miniature, monolithic infrared spectrometer. Foster-Miller recently demonstrated a high resolution spectrometer operating in the 8 to 12 micron region for chemical agent detection. Results will be presented demonstrating the feasibility of adapting the wedge spectrometer to operate as an upward looking ground sensor for stand-off chemical detection. Our miniaturized spectrometer forms the basis for deploying low cost, lightweight sensors which may be used for reconnaissance missions or delivered to remote locations for unattended operation. The ability of perform passive stand-off infrared chemical agent and chemical emissions detection with a low cost, compact device that can operate autonomously in remote environments has broad applications in both the military and commercial marketplace.
NASA Astrophysics Data System (ADS)
Cais, P.; Ravera, L.; Lagrange, D.; Giard, M.; Baudry, A.; Mayvial, J. Y.
1998-11-01
The authors have designed and built a new, wide band, modulable resolution spectrometer, in view of full astronomical qualifying tests, and to prepare future models for the FIRST satellite's heterodyne instrument. The spectrometer, a hybrid digital autocorrelator, offers flexibility in terms of bandwidth (from 170 MHz to 680 MHz) and resolution (from 700 kHz to 3 MHz). This spectrometer required the development of a dedicated analog filter bank, homemade samplers, and the design of full custom GaAs integrated circuits. Laboratory tests have shown excellent agreement with expected performances and observations performed with the IRAM 30-m radiotelescope have qualified its capabilities. Despite the relatively limited number of channels of the current prototype compared to other spectrometers, the main advantages are its stability (inherent to digital technique), and its spectral versatility. Microelectronics advances and rad-tolerance of the spectrometer components are used to prepare a new, compact, and low power consumption autocorrelator in view of a flight model for HIFI, the heterodyne instrument on the ESA cornerstone mission FIRST.
Compact two-beam push-pull free electron laser
Hutton, Andrew [Yorktown, VA
2009-03-03
An ultra-compact free electron laser comprising a pair of opposed superconducting cavities that produce identical electron beams moving in opposite directions such that each set of superconducting cavities accelerates one electron beam and decelerates the other electron beam. Such an arrangement, allows the energy used to accelerate one beam to be recovered and used again to accelerate the second beam, thus, each electron beam is decelerated by a different structure than that which accelerated it so that energy exchange rather than recovery is achieved resulting in a more compact and highly efficient apparatus.
Electron-proton spectrometer design summary
NASA Technical Reports Server (NTRS)
1972-01-01
The electron-proton spectrometer (EPS) will be placed aboard the Skylab in order to provide data from which electron and proton radiation dose can be determined. The EPS has five sensors, each consisting of a shielded silicon detector. These provide four integral electron channels and five integral proton channels from which can be deduced four differential proton increments.
Miniature Incandescent Lamps as Fiber-Optic Light Sources
NASA Technical Reports Server (NTRS)
Tuma, Margaret; Collura, Joe; Helvajian, Henry; Pocha, Michael; Meyer, Glenn; McConaghy, Charles F.; Olsen, Barry L.
2008-01-01
Miniature incandescent lamps of a special type have been invented to satisfy a need for compact, rapid-response, rugged, broadband, power-efficient, fiber-optic-coupled light sources for diverse purposes that could include calibrating spectrometers, interrogating optical sensors, spot illumination, and spot heating.
NASA Technical Reports Server (NTRS)
Staten, Paul W.
2005-01-01
Future missions to Mars will attempt to answer questions about Mars' geological and biological history. The goal of the CMIS project is to design, construct, and test a capable, multi-spectral micro-imaging spectrometer use in such missions. A breadboard instrument has been constructed with a micro-imaging camera and Several multi-wavelength LED illumination rings. Test samples have been chosen for their interest to spectroscopists, geologists and astrobiologists. Preliminary analysis has demonstrated the advantages of isotropic illumination and micro-imaging spectroscopy over spot spectroscopy.
NASA Astrophysics Data System (ADS)
Fujishiro, H.; Takahashi, K.; Naito, T.; Yanagi, Y.; Itoh, Y.; Nakamura, T.
2018-07-01
We have proposed new reinforcement structures using an aluminum alloy ring to the annular REBaCuO bulks applicable to compact and cryogen-free 400 MHz (9.4 T) nuclear magnetic resonance (NMR) spectrometer using a numerical simulation of mechanical stress. The thermal compressive stress, σθcool, which was applied to the annular bulks during cooling due to the difference of thermal expansion coefficient between bulk and aluminum alloy, became fairly enhanced at the surface of the uppermost bulk for the new reinforcement structures, compared to the conventional reinforcement with the same height as the annular bulk, in which the compressive σθcool value was reduced. During field-cooled magnetization (FCM), the electromagnetic hoop stress, σθFCM, became the maximum at the innermost edge of the uppermost ring bulk at intermediate time step. The actual total hoop stress, σθ (= σθcool + σθFCM), due to both cooling and FCM processes was also analyzed and the new ring structures are fairly effective to reduce the σθ value and became lower than the fracture strength of the bulk. The new reinforcement structures have a possibility to avoid the fracture of the bulks and to realize a 400 MHz NMR spectrometer.
Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers
NASA Astrophysics Data System (ADS)
Cassinerio, Marco; Gambetta, Alessio; Coluccelli, Nicola; Laporta, Paolo; Galzerano, Gianluca
2014-06-01
We report on a compact scheme for absolute referencing and coherent averaging for dual-comb based spectrometers, exploiting a single continuous-wave (CW) laser in a transfer oscillator configuration. The same CW laser is used for both absolute calibration of the optical frequency axis and the generation of a correction signal which is used for a real-time jitter compensation in a fully electrical feed-forward scheme. The technique is applied to a near-infrared spectrometer based on a pair of free-running mode-locked Er:fiber lasers, allowing to perform real-time absolute-frequency measurements over an optical bandwidth of more than 25 nm, with coherent interferogram averaging over 1-s acquisition time, leading to a signal-to-noise ratio improvement of 29 dB over the 50 μs single shot acquisition. Using 10-cm single pass cell, a value of 1.9 × 10-4 cm-1 Hz-0.5 noise-equivalent-absorption over 1 s integration time is obtained, which can be further scaled down with a multi-pass or resonant cavity. The adoption of a single CW laser, together with the absence of optical locks, and the full-fiber design makes this spectrometer a robust and compact system to be employed in gas-sensing applications.
Optimal Cooling of High Purity Germanium Spectrometers for Missions to Planets and Moons
NASA Astrophysics Data System (ADS)
Chernenko, A.; Kostenko, V.; Konev, S.; Rybkin, B.; Paschin, A.; Prokopenko, I.
2004-04-01
Gamma-ray spectrometers based on high purity germanium (HPGe) detectors are ultimately sensitive instruments for composition studies of surfaces of planets and moons. However, they require deep cooling well below 120K for the entire duration of space mission, and this challenges the feasibility of such instruments in the era of small and cost-efficient missions. In this paper we summarise our experience in the field of the theoretical and experimental studies of optimal cryogenic cooling of gamma-ray spectrometers based on HPGe detectors in order to find out how efficient, light and compact these instruments could be, provided such technologies like cryogenic heat pipe diodes (HPDs), efficient thermal insulation and efficient miniature cryocoolers are used.
Sun and aureole spectrometer for airborne measurements to derive aerosol optical properties.
Asseng, Hagen; Ruhtz, Thomas; Fischer, Jürgen
2004-04-01
We have designed an airborne spectrometer system for the simultaneous measurement of the direct Sun irradiance and aureole radiance. The instrument is based on diffraction grating spectrometers with linear image sensors. It is robust, lightweight, compact, and reliable, characteristics that are important for airborne applications. The multispectral radiation measurements are used to derive optical properties of tropospheric aerosols. We extract the altitude dependence of the aerosol volume scattering function and of the aerosol optical depth by using flight patterns with descents and ascents ranging from the surface level to the top of the boundary layer. The extinction coefficient and the product of single scattering albedo and phase function of separate layers can be derived from the airborne measurements.
NASA Astrophysics Data System (ADS)
Cheng, Joyce Y.; Fan, Kenneth; Fried, Daniel
2006-02-01
One perceived disadvantage of caries removal using lasers is the loss of the tactile feedback associated with the handpiece. However, alternative methods of acoustic and optical feedback become available with the laser that can be exploited to provide information about the chemical composition of the material ablated, the ablation efficiency and rate, the depth of the incision, and the surface and plume temperature during ablation. Such information can be used to increase the selectivity of ablation, avoid peripheral thermal damage and excessive heat deposition in the tooth, and provide a mechanism of robotic automation. The objective of this study was to test the hypothesis that a compact fiberoptic spectrometer could be used to differentiate between the ablation of sound and carious enamel and dentin and between dental hard tissues and composite. Sound and carious tooth surfaces along with composite restorative materials were scanned with λ=0.355, 2.79 and 9.3 μm laser pulses at irradiation intensities ranging from 0.5-100 J/cm2 and spectra were acquired from λ=250-900-nm using a compact fiber-optic spectrometer. Emission spectra varied markedly with the laser wavelength and pulse duration. Optical feedback was not successful in differentiating between sound and carious enamel and dentin even with the addition of various chromophores to carious lesion areas. However, the spectral feedback was successfully used to differentiate between composites and sound enamel and dentin enabling the selective removal of composite from tooth surfaces using a computer controlled λ=9.3-μm pulsed CO II laser and scanning system.
Research on imaging spectrometer using LC-based tunable filter
NASA Astrophysics Data System (ADS)
Shen, Zhixue; Li, Jianfeng; Huang, Lixian; Luo, Fei; Luo, Yongquan; Zhang, Dayong; Long, Yan
2012-09-01
A liquid crystal tunable filter (LCTF) with large aperture is developed using PDLC liquid crystal. A small scale imaging spectrometer is established based on this tunable filter. This spectrometer can continuously tuning, or random-access selection of any wavelength in the visible and near infrared (VNIR) band synchronized with the imaging processes. Notable characteristics of this spectrometer include the high flexibility control of its operating channels, the image cubes with high spatial resolution and spectral resolution and the strong ability of acclimation to environmental temperature. The image spatial resolution of each tuning channel is almost near the one of the same camera without the LCTF. The spectral resolution is about 20 nm at 550 nm. This spectrometer works normally under 0-50°C with a maximum power consumption of 10 Watts (with exclusion of the storage module). Due to the optimization of the electrode structure and the driving mode of the Liquid Crystal cell, the switch time between adjacent selected channels can be reduced to 20 ms or even shorter. Spectral imaging experiments in laboratory are accomplished to verify the performance of this spectrometer, which indicate that this compact imaging spectrometer works reliably, and functionally. Possible applications of this imaging spectrometer include medical science, protection of historical relics, criminal investigation, disaster monitoring and mineral detection by remote sensing.
Behrens, R; Ambrosi, P
2002-01-01
A few-channel spectrometer for mixed photon, electron and ion radiation fields has been developed. It consists of a front layer of an etched-track detector foil for detecting protons and ions, a stack of PMMA with thermoluminescent detectors at different depths for gaining spectral information about electrons, and a stack of metallic filters with increasing cut-off photon energies, interspersed with thermoluminescent detectors for gaining spectral information about photons. From the reading of the TL detectors the spectral fluence of the electrons (400 keV to 9 MeV) and photons (20 keV to 2 MeV) can be determined by an unfolding procedure. The spectrometer can be used in pulsed radiation fields with extremely high momentary values of the fluence rate. Design and calibration of the spectrometer are described.
Ceccolini, E; Rocchi, F; Mostacci, D; Sumini, M; Tartari, A
2011-08-01
The electron beam emitted from the back of plasma focus devices is being studied as a radiation source for intraoperative radiation therapy applications. A plasma focus device is being developed for this purpose, and there is a need for characterizing its electron beam, particularly, insofar as the energy spectrum is concerned. The instrument used is a magnetic spectrometer. To calibrate this spectrometer, a procedure relying on the energy-range relation in Mylar® has been devised and applied. By measuring the transmission through increasing thicknesses of the material, electron energies could be assessed and compared to the spectrometer readings. Thus, the original calibration of the instrument has been extended to higher energies and also to better accuracy. Methods and results are presented.
Advances in OLED/OPD-based sensors and spectrometer-on-a-chip (Conference Presentation)
NASA Astrophysics Data System (ADS)
Shinar, Joseph; Kaudal, Rajiv; Manna, Eeshita; Fungura, Fadzai; Shinar, Ruth
2016-09-01
We describe ongoing advances toward achieving all-organic optical sensors and a spectrometer on a chip. Two-dimensional combinatorial arrays of microcavity OLEDs (μcOLEDs) with systematically varying optical cavity lengths are fabricated on a single chip by changing the thickness of different organic and/or spacer layers sandwiched between two metal electrodes (one very thin) that form the cavity. The broad spectral range is achieved by utilizing materials that result in white OLEDs (WOLEDs) when fabricated on a standard ITO substrate. The tunable and narrower emissions from the μcOLEDs serve as excitation sources in luminescent sensors and in monitoring light absorption. For each wavelength, the light from the μcOLED is partially absorbed by a sample under study and the light emitted by an electronically excited sample, or the transmitted light is detected by a photodetector (PD). To obtain a compact monitor, an organic PD (OPD) or a perovskite-based PD is integrated with the μcOLED array. We show the potential of encompassing a broader wavelength range by using WOLED materials to fabricate the μcOLEDs. The utility of the all-organic analytical devices is demonstrated by monitoring oxygen, and bioanalytes based on oxygen detection, as well as the absorption spectra of dyes.
Optical Multi-Gas Monitor Technology Demonstration on the International Space Station
NASA Technical Reports Server (NTRS)
Pilgrim, Jeffrey S.; Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Johnson, Michael D.; Mudgett, Paul D.
2014-01-01
The International Space Station (ISS) employs a suite of portable and permanently located gas monitors to insure crew health and safety. These sensors are tasked with functions ranging from fixed mass spectrometer based major constituents analysis to portable electrochemical sensor based combustion product monitoring. An all optical multigas sensor is being developed that can provide the specificity of a mass spectrometer with the portability of an electrochemical cell. The technology, developed under the Small Business Innovation Research program, allows for an architecture that is rugged, compact and low power. A four gas version called the Multi-Gas Monitor was launched to ISS in November 2013 aboard Soyuz and activated in February 2014. The portable instrument is comprised of a major constituents analyzer (water vapor, carbon dioxide, oxygen) and high dynamic range real-time ammonia sensor. All species are sensed inside the same enhanced path length optical cell with a separate vertical cavity surface emitting laser (VCSEL) targeted at each species. The prototype is controlled digitally with a field-programmable gate array/microcontroller architecture. The optical and electronic approaches are designed for scalability and future versions could add three important acid gases and carbon monoxide combustion product gases to the four species already sensed. Results obtained to date from the technology demonstration on ISS are presented and discussed.
Portable Fourier Transform Spectroscopy for Analysis of Surface Contamination and Quality Control
NASA Technical Reports Server (NTRS)
Pugel, Diane
2012-01-01
Progress has been made into adapting and enhancing a commercially available infrared spectrometer for the development of a handheld device for in-field measurements of the chemical composition of various samples of materials. The intent is to duplicate the functionality of a benchtop Fourier transform infrared spectrometer (FTIR) within the compactness of a handheld instrument with significantly improved spectral responsivity. Existing commercial technology, like the deuterated L-alanine triglycine sulfide detectors (DLATGS), is capable of sensitive in-field chemical analysis. This proposed approach compares several subsystem elements of the FTIR inside of the commercial, non-benchtop system to the commercial benchtop systems. These subsystem elements are the detector, the preamplifier and associated electronics of the detector, the interferometer, associated readout parameters, and cooling. This effort will examine these different detector subsystem elements to look for limitations in each. These limitations will be explored collaboratively with the commercial provider, and will be prioritized to meet the deliverable objectives. The tool design will be that of a handheld gun containing the IR filament source and associated optics. It will operate in a point-and-shoot manner, pointing the source and optics at the sample under test and capturing the reflected response of the material in the same handheld gun. Data will be captured via the gun and ported to a laptop.
Hard-X-Ray/Soft-Gamma-Ray Imaging Sensor Assembly for Astronomy
NASA Technical Reports Server (NTRS)
Myers, Richard A.
2008-01-01
An improved sensor assembly has been developed for astronomical imaging at photon energies ranging from 1 to 100 keV. The assembly includes a thallium-doped cesium iodide scintillator divided into pixels and coupled to an array of high-gain avalanche photodiodes (APDs). Optionally, the array of APDs can be operated without the scintillator to detect photons at energies below 15 keV. The array of APDs is connected to compact electronic readout circuitry that includes, among other things, 64 independent channels for detection of photons in various energy ranges, up to a maximum energy of 100 keV, at a count rate up to 3 kHz. The readout signals are digitized and processed by imaging software that performs "on-the-fly" analysis. The sensor assembly has been integrated into an imaging spectrometer, along with a pair of coded apertures (Fresnel zone plates) that are used in conjunction with the pixel layout to implement a shadow-masking technique to obtain relatively high spatial resolution without having to use extremely small pixels. Angular resolutions of about 20 arc-seconds have been measured. Thus, for example, the imaging spectrometer can be used to (1) determine both the energy spectrum of a distant x-ray source and the angular deviation of the source from the nominal line of sight of an x-ray telescope in which the spectrometer is mounted or (2) study the spatial and temporal development of solar flares, repeating - ray bursters, and other phenomena that emit transient radiation in the hard-x-ray/soft- -ray region of the electromagnetic spectrum.
Atmospheric electron-induced x-ray spectrometer development
NASA Technical Reports Server (NTRS)
Wilcox, Jaroslava Z.; Urgiles, Eduardo; Toda, Risaku; Crisp, Joy
2005-01-01
This paper extends the work reported at the IEEE Aerospace conference in 2001 and 2003 where the concept and progress in the development of the so called atmospheric Electron X-ray Spectrometer (AEXS) has been described.
Pathway to future sustainable land imaging: the compact hyperspectral prism spectrometer
NASA Astrophysics Data System (ADS)
Kampe, Thomas U.; Good, William S.
2017-09-01
NASA's Sustainable Land Imaging (SLI) program, managed through the Earth Science Technology Office, aims to develop technologies that will provide future Landsat-like measurements. SLI aims to develop a new generation of smaller, more capable, less costly payloads that meet or exceed current imaging capabilities. One projects funded by this program is Ball's Compact Hyperspectral Prism Spectrometer (CHPS), a visible-to-shortwave imaging spectrometer that provides legacy Landsat data products as well as hyperspectral coverage suitable for a broad range of land science products. CHPS exhibits extremely low straylight and accommodates full aperture, full optical path calibration needed to ensure the high radiometric accuracy demanded by SLI measurement objectives. Low polarization sensitivity in visible to near-infrared bands facilitates coastal water science as first demonstrated by the exceptional performance of the Operational Land Imager. Our goal is to mature CHPS imaging spectrometer technology for infusion into the SLI program. Our effort builds on technology development initiated by Ball IRAD investment and includes laboratory and airborne demonstration, data distribution to science collaborators, and maturation of technology for spaceborne demonstration. CHPS is a three year program with expected exiting technology readiness of TRL-6. The 2013 NRC report Landsat and Beyond: Sustaining and Enhancing the Nations Land Imaging Program recommended that the nation should "maintain a sustained, space-based, land-imaging program, while ensuring the continuity of 42-years of multispectral information." We are confident that CHPS provides a path to achieve this goal while enabling new science measurements and significantly reducing the cost, size, and volume of the VSWIR instrument.
A novel method for single bacteria identification by Raman spectroscopy
NASA Astrophysics Data System (ADS)
Schultz, Emmanuelle; Simon, Anne-Catherine; Strola, Samy Andrea; Perenon, Rémi; Espagnon, Isabelle; Allier, Cédric; Claustre, Patricia; Jary, Dorothée.; Dinten, Jean-Marc
2014-03-01
In this paper we present results on single bacteria rapid identification obtained with a low-cost and compact Raman spectrometer. At present, we demonstrate that a 1 minute procedure, including the localization of single bacterium, is sufficient to acquire comprehensive Raman spectrum in the range of 600 to 3300 cm-1. Localization and detection of single bacteria is performed by means of lensfree imaging over a large field of view of 24 mm2. An excitation source of 532 nm and 30 mW illuminates single bacteria to collect Raman signal into a Tornado Spectral Systems prototype spectrometer (HTVS technology). The acquisition time to record a single bacterium spectrum is as low as 10 s owing to the high light throughput of this spectrometer. The spectra processing features different steps for cosmic spikes removal, background subtraction, and gain normalization to correct the residual inducted fluorescence and substrate fluctuations. This allows obtaining a fine chemical fingerprint analysis. We have recorded a total of 1200 spectra over 7 bacterial species (E. coli, Bacillus species, S. epidermis, M. luteus, S. marcescens). The analysis of this database results in a high classification score of almost 90 %. Hence we can conclude that our setup enables automatic recognition of bacteria species among 7 different species. The speed and the sensitivity (<30 minutes for localization and spectra collection of 30 single bacteria) of our Raman spectrometer pave the way for high-throughput and non-destructive real-time bacteria identification assays. This compact and low-cost technology can benefit biomedical, clinical diagnostic and environmental applications.
Advanced X-ray Imaging Crystal Spectrometer for Magnetic Fusion Tokamak Devices
NASA Astrophysics Data System (ADS)
Lee, S. G.; Bak, J. G.; Bog, M. G.; Nam, U. W.; Moon, M. K.; Cheon, J. K.
2008-03-01
An advanced X-ray imaging crystal spectrometer is currently under development using a segmented position sensitive detector and time-to-digital converter (TDC) based delay-line readout electronics for burning plasma diagnostics. The proposed advanced XICS utilizes an eight-segmented position sensitive multi-wire proportional counter and supporting electronics to increase the spectrometer performance includes the photon count-rate capability and spatial resolution.
The PANDA DIRC detectors at FAIR
NASA Astrophysics Data System (ADS)
Schwarz, C.; Ali, A.; Belias, A.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Kalicy, G.; Krebs, M.; Lehmann, D.; Nerling, F.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwiening, J.; Traxler, M.; Zühlsdorf, M.; Böhm, M.; Britting, A.; Eyrich, W.; Lehmann, A.; Pfaffinger, M.; Uhlig, F.; Düren, M.; Etzelmüller, E.; Föhl, K.; Hayrapetyan, A.; Kreutzfeld, K.; Kröck, B.; Merle, O.; Rieke, J.; Schmidt, M.; Wasem, T.; Achenbach, P.; Cardinali, M.; Hoek, M.; Lauth, W.; Schlimme, S.; Sfienti, C.; Thiel, M.; Allison, L.; Hyde, C.
2017-07-01
The PANDA detector at the international accelerator Facility for Antiproton and Ion Research in Europe (FAIR) addresses fundamental questions of hadron physics. An excellent hadronic particle identification (PID) will be accomplished by two DIRC (Detection of Internally Reflected Cherenkov light) counters in the target spectrometer. The design for the barrel region covering polar angles between 22o to 140o is based on the successful BABAR DIRC with several key improvements, such as fast photon timing and a compact imaging region. The novel Endcap Disc DIRC will cover the smaller forward angles between 5o (10o) to 22o in the vertical (horizontal) direction. Both DIRC counters will use lifetime-enhanced microchannel plate PMTs for photon detection in combination with fast readout electronics. Geant4 simulations and tests with several prototypes at various beam facilities have been used to evaluate the designs and validate the expected PID performance of both PANDA DIRC counters.
A rare gas optics-free absolute photon flux and energy analyzer for solar and planetary observations
NASA Technical Reports Server (NTRS)
Judge, Darrell L.
1994-01-01
We have developed a prototype spectrometer for space applications requiring long term absolute EUV photon flux measurements. In this recently developed spectrometer, the energy spectrum of the incoming photons is transformed directly into an electron energy spectrum by taking advantage of the photoelectric effect in one of several rare gases at low pressures. Using an electron energy spectrometer, followed by an electron multiplier detector, pulses due to individual electrons are counted. The overall efficiency of this process can be made essentially independent of gain drifts in the signal path, and the secular degradation of optical components which is often a problem in other techniques is avoided. A very important feature of this approach is its freedom from the problem of overlapping spectral orders that plagues grating EUV spectrometers. An instrument with these features has not been flown before, but is essential to further advances in our understanding of solar EUV flux dynamics, and the coupled dynamics of terrestrial and planetary atmospheres. The detailed characteristics of this optics-free spectrometer are presented in the publications section.
Design of airborne imaging spectrometer based on curved prism
NASA Astrophysics Data System (ADS)
Nie, Yunfeng; Xiangli, Bin; Zhou, Jinsong; Wei, Xiaoxiao
2011-11-01
A novel moderate-resolution imaging spectrometer spreading from visible wavelength to near infrared wavelength range with a spectral resolution of 10 nm, which combines curved prisms with the Offner configuration, is introduced. Compared to conventional imaging spectrometers based on dispersive prism or diffractive grating, this design possesses characteristics of small size, compact structure, low mass as well as little spectral line curve (smile) and spectral band curve (keystone or frown). Besides, the usage of compound curved prisms with two or more different materials can greatly reduce the nonlinearity inevitably brought by prismatic dispersion. The utilization ratio of light radiation is much higher than imaging spectrometer of the same type based on combination of diffractive grating and concentric optics. In this paper, the Seidel aberration theory of curved prism and the optical principles of Offner configuration are illuminated firstly. Then the optical design layout of the spectrometer is presented, and the performance evaluation of this design, including spot diagram and MTF, is analyzed. To step further, several types of telescope matching this system are provided. This work provides an innovational perspective upon optical system design of airborne spectral imagers; therefore, it can offer theoretic guide for imaging spectrometer of the same kind.
NASA Astrophysics Data System (ADS)
Steber, Amanda; Pate, Brooks
2014-06-01
Advances in chip-level microwave technology in the communications field have led to the possibilities of low cost alternatives for current Fourier transform microwave (FTMW) spectrometers. Many of the large, expensive microwave components in a traditional design can now be replaced by robust, mass market monolithic microwave integrated circuits (MMICs). "Spectrometer on a board" designs are now feasible that offer dramatic cost reduction for microwave spectroscopy. These chip-level components can be paired with miniature computers to produce compact instruments that are operable through USB. A FTMW spectrometer design using the key MMIC components that drive cost reduction will be presented. Two dual channel synthesizers (Valon Technology Model 5008), a digital pattern generator (Byte Paradigm Wav Gen Xpress), and a high-speed digitizer/arbitrary waveform generator combination unit (Tie Pie HS-5 530 XM) form the key components of the spectrometer for operation in the 18-26.5 GHz range. The design performance is illustrated using a spectrometer that is being incorporated into a museum display for astrochemistry. For this instrument a user interface, developed in Python, has been developed and will be shown.
NASA Technical Reports Server (NTRS)
Barrentine, Emily M.; Noroozian, Omid; Brown, Ari D.; Cataldo, Giuseppe; Ehsan, Negar; Hsieh, Wen-Ting; Stevenson, Thomas R.; U-Yen, Kongpop; Wollack, Edward J.; Moseley, S. Harvey
2015-01-01
Micro-Spec is a compact submillimeter (350-700 GHz) spectrometer which uses low loss superconducting niobium microstrip transmission lines and a single-crystal silicon dielectric to integrate all of the components of a grating-analog spectrometer onto a single chip. Here we present details of the fabrication and design of a prototype Micro-Spec spectrometer with resolution, R64, where we use a high-yield single-flip wafer bonding process to realize instrument components on a 0.45 m single-crystal silicon dielectric. We discuss some of the electromagnetic design concerns (such as loss, stray-light, cross-talk, and fabrication tolerances) for each of the spectrometer components and their integration into the instrument as a whole. These components include a slot antenna with a silicon lens for optical coupling, a phase delay transmission line network, parallel plate waveguide interference region, and aluminum microstrip transmission line kinetic inductance detectors with extremely low cross-talk and immunity to stray light. We have demonstrated this prototype spectrometer with design resolution of R64. Given the optical performance of this prototype, we will also discuss the extension of this design to higher resolutions suitable for balloon-flight.
Concepts for compact mid-IR spectroscopy in photochemistry
NASA Astrophysics Data System (ADS)
Cu-Nguyen, Phuong-Ha; Wang, Ziyu; Zappe, Hans
2016-11-01
Mid-infrared (IR) spectroscopy, typically 3 to 5 µm, is often the technology of choice to monitor the interaction between and concentration of molecules during photochemical reactions. However, classical mid-IR spectrometers are bulky, complex and expensive, making them unsuitable for use in the miniaturized microreactors increasingly being employed for chemical synthesis. We present here the concept for an ultra-miniaturized mid-IR spectrometer directly integrated onto a chemical microreactor to monitor the chemical reaction. The spectrometer is based on micro-machined Fabry-Perot resonator filters realized using pairs of Bragg mirrors to achieve a high spectral resolution. The fabrication of the optical filters is outlined and the measurement of transmittance spectra in the mid-IR range show a good agreement with theory and are thus promising candidates for a fully integrated system.
Vallon, Raphäel; Soutadé, Jacques; Vérant, Jean-Luc; Meyers, Jason; Paris, Sébastien; Mohamed, Ajmal
2010-01-01
Since the beginning of the Mars planet exploration, the characterization of carbon dioxide hypersonic flows to simulate a spaceship's Mars atmosphere entry conditions has been an important issue. We have developed a Tunable Diode Laser Absorption Spectrometer with a new room-temperature operating antimony-based distributed feedback laser (DFB) diode laser to characterize the velocity, the temperature and the density of such flows. This instrument has been tested during two measurement campaigns in a free piston tunnel cold hypersonic facility and in a high enthalpy arc jet wind tunnel. These tests also demonstrate the feasibility of mid-infrared fiber optics coupling of the spectrometer to a wind tunnel for integrated or local flow characterization with an optical probe placed in the flow.
Design and Performance of A High Resolution Micro-Spec: An Integrated Sub-Millimeter Spectrometer
NASA Technical Reports Server (NTRS)
Barrentine, Emily M.; Cataldo, Giuseppe; Brown, Ari D.; Ehsan, Negar; Noroozian, Omid; Stevenson, Thomas R.; U-Yen, Kongpop; Wollack, Edward J.; Moseley, S. Harvey
2016-01-01
Micro-Spec is a compact sub-millimeter (approximately 100 GHz--1:1 THz) spectrometer which uses low loss superconducting microstrip transmission lines and a single-crystal silicon dielectric to integrate all of the components of a diffraction grating spectrometer onto a single chip. We have already successfully evaluated the performance of a prototype Micro-Spec, with spectral resolving power, R=64. Here we present our progress towards developing a higher resolution Micro-Spec, which would enable the first science returns in a balloon flight version of this instrument. We describe modifications to the design in scaling from a R=64 to a R=256 instrument, as well as the ultimate performance limits and design concerns when scaling this instrument to higher resolutions.
NASA Astrophysics Data System (ADS)
Hofer, L.; Lasi, D.; Tulej, M.; Wurz, P.; Cabane, M.; Cosica, D.; Gerasimov, M.; Rodinov, D.
2013-09-01
In preparation for the Russian Luna-Glob and Luna-Resurs missions we combined our compact time-offlight mass spectrometer (TOF-MS) with a chemical pre-separation of the species by gas chromatography (GC). Combined measurements with both instruments were successfully performed with the laboratory prototype of the mass spectrometer and a flight-like gas chromatograph. Due to its capability to record mass spectra over the full mass range at once with high sensitivity and a dynamic range of up to 106 within 1s, the TOF-MS system is a valuable extension of the GC analysis. The combined GC-MS complex is able to detect concentrations of volatile species in the sample of about 2·10^-9 by mass.
NASA Astrophysics Data System (ADS)
Siozos, Panagiotis; Philippidis, Aggelos; Anglos, Demetrios
2017-11-01
A novel, portable spectrometer, combining two analytical techniques, laser-induced breakdown spectroscopy (LIBS) and diffuse reflectance spectroscopy, was developed with the aim to provide an enhanced instrumental and methodological approach with regard to the analysis of pigments in objects of cultural heritage. Technical details about the hybrid spectrometer and its operation are presented and examples are given relevant to the analysis of paint materials. Both LIBS and diffuse reflectance spectra in the visible and part of the near infrared, corresponding to several neat mineral pigment samples, were recorded and the complementary information was used to effectively distinguish different types of pigments even if they had similar colour or elemental composition. The spectrometer was also employed in the analysis of different paints on the surface of an ancient pottery sherd demonstrating the capabilities of the proposed hybrid diagnostic approach. Despite its instrumental simplicity and compact size, the spectrometer is capable of supporting analytical campaigns relevant to archaeological, historical or art historical investigations, particularly when quick data acquisition is required in the context of surveys of large numbers of objects and samples.
HYPERSPECTRAL CHANNEL SELECTION FOR WATER QUALITY MONITORING ON THE GREAT MIAMI RIVER, OHIO
During the summer of 1999, spectral data were collected with a hand-held spectroradiometer, a laboratory spectrometer and airborne hyperspectral sensors from the Great Miami River (GMR), Ohio. Approximately 80 km of the GMR were imaged during a flyover with a Compact Airborne Sp...
NASA Astrophysics Data System (ADS)
Crespo López-Urrutia, José R.
2018-06-01
Laboratory studies on highly charged ions (HCI) using electron beam ion traps (EBITs) can cover all charge states and chemical elements found in astrophysical sources. Since their introduction in 1986, a wealth of emission measurements from the optical to the x-ray range has been carried out by different groups. In most of the work, electron-impact excitation was the driving mechanism, and high resolution spectrometers were used for the diagnostic of the emitted radiation. Other recent studies included x-ray emission following charge exchange, a mechanism which is present in many astrophysical environments and can help explain some of the unknown spectral features at 3.55 keV.In the last decade, excitation and photoionization have also been investigated by exposing HCI trapped in an EBIT to intense, monochromatic radiation from free-electron lasers and synchrotron sources. Here, advanced monochromators in powerful undulator beamlines allowed us to work at photon energies from 50 eV to 15 keV while resolving the natural linewidths of x-ray transitions like the Kα complex of Fe up to the highest charge states, and to measure the oscillator strengths of, e. g., the neonlike Fe16+ spectrum. Photoionization studies have been performed for those species as well. Very recently, our novel compact EBIT with an off-axis electron gun allows for simultaneously using the photon beam downstream, enabling exact wavelength determinations referenced to HCI with accurately calculable transitions. We have performed a recalibration of the molecular and atomic oxygen soft x-ray absorption lines in the 500 eV range with an uncertainty estimate of 30 meV. This revealed a 600 meV calibration error that propagated through the literature for decades with the consequence of a 200 km/s misfit of the velocity in interstellar oxygen absorbers. Other possibilities for the compact EBIT are investigations of resonant photorecombination processes with excellent energy resolution. With the miniaturization of EBITs, laboratory astrophysics in the spectral domain of Chandra, XMM-Newton and the future Athena mission will be extremely simplified, enabling atomic and plasma physics studies and much-improved instrumental calibrations.
Joly, Lilian; Maamary, Rabih; Decarpenterie, Thomas; Cousin, Julien; Dumelié, Nicolas; Chauvin, Nicolas; Legain, Dominique; Tzanos, Diane; Durry, Georges
2016-09-29
The concentration of greenhouse gases in the atmosphere plays an important role in the radiative effects in the Earth's climate system. Therefore, it is crucial to increase the number of atmospheric observations in order to quantify the natural sinks and emission sources. We report in this paper the development of a new compact lightweight spectrometer (1.8 kg) called AMULSE based on near infrared laser technology at 2.04 µm coupled to a 6-m open-path multipass cell. The measurements were made using the Wavelength Modulation Spectroscopy (WMS) technique and the spectrometer is hence dedicated to in situ measuring the vertical profiles of the CO₂ at high precision levels (σ Allan = 0.96 ppm in 1 s integration time (1σ)) and with high temporal/spatial resolution (1 Hz/5 m) using meteorological balloons. The instrument is compact, robust, cost-effective, fully autonomous, has low-power consumption, a non-intrusive probe and is plug & play. It was first calibrated and validated in the laboratory and then used for 17 successful flights up to 10 km altitude in the region Champagne-Ardenne, France in 2014. A rate of 100% of instrument recovery was validated due to the pre-localization prediction of the Météo-France based on the flight simulation software.
Joly, Lilian; Maamary, Rabih; Decarpenterie, Thomas; Cousin, Julien; Dumelié, Nicolas; Chauvin, Nicolas; Legain, Dominique; Tzanos, Diane; Durry, Georges
2016-01-01
The concentration of greenhouse gases in the atmosphere plays an important role in the radiative effects in the Earth’s climate system. Therefore, it is crucial to increase the number of atmospheric observations in order to quantify the natural sinks and emission sources. We report in this paper the development of a new compact lightweight spectrometer (1.8 kg) called AMULSE based on near infrared laser technology at 2.04 µm coupled to a 6-m open-path multipass cell. The measurements were made using the Wavelength Modulation Spectroscopy (WMS) technique and the spectrometer is hence dedicated to in situ measuring the vertical profiles of the CO2 at high precision levels (σAllan = 0.96 ppm in 1 s integration time (1σ)) and with high temporal/spatial resolution (1 Hz/5 m) using meteorological balloons. The instrument is compact, robust, cost-effective, fully autonomous, has low-power consumption, a non-intrusive probe and is plug & play. It was first calibrated and validated in the laboratory and then used for 17 successful flights up to 10 km altitude in the region Champagne—Ardenne, France in 2014. A rate of 100% of instrument recovery was validated due to the pre-localization prediction of the Météo—France based on the flight simulation software. PMID:27690046
NASA Astrophysics Data System (ADS)
Chakraborty, Dipayan; Nag, Pamir; Nandi, Dhananjay
2018-02-01
A new time of flight mass spectrometer (TOFMS) has been developed to study the absolute dissociative electron attachment (DEA) cross section using a relative flow technique of a wide variety of molecules in gas phase, ranging from simple diatomic to complex biomolecules. Unlike the Wiley-McLaren type TOFMS, here the total ion collection condition has been achieved without compromising the mass resolution by introducing a field free drift region after the lensing arrangement. The field free interaction region is provided for low energy electron molecule collision studies. The spectrometer can be used to study a wide range of masses (H- ion to few hundreds atomic mass unit). The mass resolution capability of the spectrometer has been checked experimentally by measuring the mass spectra of fragment anions arising from DEA to methanol. Overall performance of the spectrometer has been tested by measuring the absolute DEA cross section of the ground state SO2 molecule, and the results are satisfactory.
NASA Astrophysics Data System (ADS)
Yang, Z.; Li, X.; Li, J.; Long, J. D.; Lan, C. H.; Wang, T.; Dong, P.; He, J. L.
2017-03-01
A large amount of back streaming electrons will bring about a part of current drain on power supply, cause sparking or high-voltage breakdowns, and affect the neutron yield and waveform for a compact sealed-tube pulsed neutron generator. A novel idea which uses a ZnO varistor to provide a constant self-biased voltage to suppress the secondary electrons is introduced. The I-V curve for the ZnO varistor was measured in the experiment. The effects of suppressing the secondary electrons were investigated using a ZnO varistor, linear resistors, and an independent power supply, respectively. The results show that the secondary electrons are suppressed effectively by the compact ZnO varistor, while not increasing the size and the component of the device. It is a promising design for compact sealed-tube neutron generators.
Time-resolved optical spectrometer based on a monolithic array of high-precision TDCs and SPADs
NASA Astrophysics Data System (ADS)
Tamborini, Davide; Markovic, Bojan; Di Sieno, Laura; Contini, Davide; Bassi, Andrea; Tisa, Simone; Tosi, Alberto; Zappa, Franco
2013-12-01
We present a compact time-resolved spectrometer suitable for optical spectroscopy from 400 nm to 1 μm wavelengths. The detector consists of a monolithic array of 16 high-precision Time-to-Digital Converters (TDC) and Single-Photon Avalanche Diodes (SPAD). The instrument has 10 ps resolution and reaches 70 ps (FWHM) timing precision over a 160 ns full-scale range with a Differential Non-Linearity (DNL) better than 1.5 % LSB. The core of the spectrometer is the application-specific integrated chip composed of 16 pixels with 250 μm pitch, containing a 20 μm diameter SPAD and an independent TDC each, fabricated in a 0.35 μm CMOS technology. In front of this array a monochromator is used to focus different wavelengths into different pixels. The spectrometer has been used for fluorescence lifetime spectroscopy: 5 nm spectral resolution over an 80 nm bandwidth is achieved. Lifetime spectroscopy of Nile blue is demonstrated.
Biodiesel sensing using silicon-on-insulator technologies
NASA Astrophysics Data System (ADS)
Casas Bedoya, Alvaro; Ling, Meng Y.; Brouckaert, Joost; Yebo, Nebiyu A.; Van Thourhout, Dries; Baets, Roel G.
2009-05-01
By measuring the transmission of Biodiesel/Diesel mixtures in the near- and far-infrared wavelength ranges, it is possible to predict the blend level with a high accuracy. Conventional photospectrometers are typically large and expensive and have a performance that often exceeds the requirements for most applications. For automotive applications for example, what counts is size, robustness and most important cost. As a result the miniaturization of the spectrometer can be seen as an attractive implementation of a Biodiesel sensor. Using Silicon-on-Insulator (SOI) this spectrometer miniaturization can be achieved. Due to the large refractive index contrast of the SOI material system, photonic devices can be made very compact. Moreover, they can be manufactured on high-quality SOI substrates using waferscale CMOS fabrication tools, making them cheap for the market. In this paper, we show that it is possible to determine Biodiesel blend levels using an SOI spectrometer-on-a-chip. We demonstrate absorption measurements using spiral shaped waveguides and we also present the spectrometer design for on-chip Biodiesel blend level measurements.
Soft X-ray Spectrometer for Characterization of Electron Beam Driven WDM
NASA Astrophysics Data System (ADS)
Ramey, Nicholas; Coleman, Joshua; Perry, John
2017-10-01
A preliminary design study is being performed on a soft X-ray spectrometer to measure K-shell spectra emitted by a warm dense plasma generated by an intense, relativistic electron beam interacting with a thin, low-Z metal foil. A 100-ns-long electron pulse with a beam current of 1.7 kA and energy of 19.8 MeV deposits energy into the thin metal foil heating it to a warm dense plasma. The collisional ionization of the target by the electron beam produces an anisotropic angular distribution of K-shell radiation and a continuum of both scattered electrons and Bremsstrahlung up to the beam energy of 19.8 MeV. A proof-of-principle Bragg-type spectrometer has been built to measure the Ti K- α and K- β lines. The goal of the spectrometer is to measure the temperature and density of this warm dense plasma for the first time with this heating technique. This work was supported by the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396.
Short Pulse Laser Absorption and Energy Partition at Relativistic Laser Intensities
NASA Astrophysics Data System (ADS)
Ping, Yuan
2005-10-01
We present the first absorption measurements at laser intensity between 10^17 to 10^20 W/cm^2 using an intergrating sphere and a suite of diagnostics that measures scale length, hot electrons and laser harmonics. A much-enhanced absorption in the regime of relativestic electron heating was observed. Furthermore, we present measurements on the partitioning of absorbed laser energy into thermal and non-thermal electrons when illuminating solid targets from 10^17 to 10^19 W/cm^2. This was measured using a sub-picosecond x-ray streak camera interfaced to a dual crystal von H'amos crystal spectrograph, a spherical crystal x-ray imaging spectrometer, an electron spectrometer and optical spectrometer. Our data suggests an intensity dependent energy-coupling transition with greater energy portion into non-thermal electrons that rapidly transition to thermal electrons. The details of these experimental results and modeling simulations will be presented.
aCORN Beta Spectrometer and Electrostatic Mirror
NASA Astrophysics Data System (ADS)
Hassan, Md; aCORN Collaboration
2013-10-01
aCORN uses a high efficiency backscatter suppressed beta spectrometer to measure the electron-antineutrino correlation in neutron beta decay. We measure the correlation by counting protons and beta electrons in coincidence with precisely determined electron energy. There are 19 photomultiplier tubes arranged in a hexagonal array coupled to a single phosphor doped polystyrene scintillator. The magnetic field is shaped so that electrons that backscatter without depositing their full energy strike a tulip-shaped array of scintillator paddles and these events are vetoed. The detailed construction, performance and calibration of this beta spectrometer will be presented. I will also present the simulation, construction, and features of our novel electrostatic mirror. This work was supported by the National Science Foundation and the NIST Center for Neutron Research.
Two Meter Flight Path - Time of Flight Positron Annihilation Induced Auger Electron Spectrometer
NASA Astrophysics Data System (ADS)
Mukherjee, S.; Shastry, K.; Maddox, W.; Weiss, A. H.
2008-03-01
Details of the design and construction of a new time of flight positron annihilation induced Auger electron (TOF-PAES) spectrometer are presented. The new spectrometer will be equipped with a 2 meter long ``TOF'' tube that can be biased at a potential different from that of the sample in order to increase or decrease the kinetic energy of the electrons traveling through the tube. The time of flight will be determined from timing signals obtained from the detection of the annihilation gamma (signaling the start of the flight) and detection of the annihilation induced Auger electron at the end of the 2 meter flight path (signaling the end of the flight). The 2 meter long flight path is a factor of two longer than used in previous TOF-PAES systems. The longer flight path can be expected to result in a fractional energy width: delta E/ E that is .5ex1 -.1em/ -.15em.25ex2 as large as the current UTA lab based TOF-PAES spectrometer.
Development of portable CdZnTe spectrometers for remote sensing of signatures from nuclear materials
NASA Astrophysics Data System (ADS)
Burger, Arnold; Groza, Michael; Cui, Yunlong; Roy, Utpal N.; Hillman, Damian; Guo, Mike; Li, Longxia; Wright, Gomez W.; James, Ralph B.
2005-03-01
Room temperature cadmium zinc telluride (CZT) gamma-ray spectrometers are being developed for a number for years for medical, space and national security applications where high sensitivity, low operating power and compactness are indispensable. The technology has matured now to the point where large volume (several cubic centimeters) and high energy resolution (approximately 1% at 660 eV) of gamma photons, are becoming available for their incorporation into portable systems for remote sensing of signatures from nuclear materials. The straightforward approach of utilizing a planar CZT device has been excluded due to the incomplete collection arising from the trapping of holes and causing broadening of spectral lines at energies above 80 keV, to unacceptable levels of performance. Solutions are being pursued by developing devices aimed at processing the signal produced primarily by electrons and practically insensitive to the contribution of holes, and recent progress has been made in the areas of material growth as well as electrode and electronics design. Present materials challenges are in the growth of CZT boules from which large, oriented single crystal pieces can be cut to fabricate such sizable detectors. Since virtually all the detector grade CZT boules consist of several grains, the cost of a large, single crystal section is still high. Co-planar detectors, capacitive Frisch-grid detectors and devices taking advantage of the small pixel effect, are configurations with a range of requirements in crystallinity and defect content and involve variable degrees of complexity in the fabrication, surface passivation and signal processing. These devices have been demonstrated by several research groups and will be discussed in terms of their sensitivity and availability.
NASA Astrophysics Data System (ADS)
Tata, Sheroy; Mondal, Angana; Sarkar, Soubhik; Lad, Amit D.; Krishnamurthy, M.
2017-08-01
Ions of high energy and high charge are accelerated from compact intense laser produced plasmas and are routinely analysed either by time of flight or Thomson parabola spectrometry. At the highest intensities where ion energies can be substantially large, both these techniques have limitations. Strong electromagnetic pulse noise jeopardises the arrival time measurement, and a bright central spot in the Thomson parabola spectrometer affects the signal to noise ratio of ion traces that approach close to the central spot. We present a gated Thomson parabola spectrometer that addresses these issues and provides an elegant method to improvise ion spectrometry. In addition, we demonstrate that this method provides the ability to detect and measure high energy neutral atoms that are invariably present in most intense laser plasma acceleration experiments.
Tata, Sheroy; Mondal, Angana; Sarkar, Soubhik; Lad, Amit D; Krishnamurthy, M
2017-08-01
Ions of high energy and high charge are accelerated from compact intense laser produced plasmas and are routinely analysed either by time of flight or Thomson parabola spectrometry. At the highest intensities where ion energies can be substantially large, both these techniques have limitations. Strong electromagnetic pulse noise jeopardises the arrival time measurement, and a bright central spot in the Thomson parabola spectrometer affects the signal to noise ratio of ion traces that approach close to the central spot. We present a gated Thomson parabola spectrometer that addresses these issues and provides an elegant method to improvise ion spectrometry. In addition, we demonstrate that this method provides the ability to detect and measure high energy neutral atoms that are invariably present in most intense laser plasma acceleration experiments.
Vallon, Raphäel; Soutadé, Jacques; Vérant, Jean-Luc; Meyers, Jason; Paris, Sébastien; Mohamed, Ajmal
2010-01-01
Since the beginning of the Mars planet exploration, the characterization of carbon dioxide hypersonic flows to simulate a spaceship’s Mars atmosphere entry conditions has been an important issue. We have developed a Tunable Diode Laser Absorption Spectrometer with a new room-temperature operating antimony-based distributed feedback laser (DFB) diode laser to characterize the velocity, the temperature and the density of such flows. This instrument has been tested during two measurement campaigns in a free piston tunnel cold hypersonic facility and in a high enthalpy arc jet wind tunnel. These tests also demonstrate the feasibility of mid-infrared fiber optics coupling of the spectrometer to a wind tunnel for integrated or local flow characterization with an optical probe placed in the flow. PMID:22219703
NASA Astrophysics Data System (ADS)
Kawakami, S.; Shiomi, K.; Suto, H.; Kuze, A.; Hillyard, P. W.; Tanaka, T.; Podolske, J. R.; Iraci, L. T.; Albertson, R. T.
2014-12-01
The total columns of carbon dioxide (XCO2) and methane (XCH4) were measured with a compact Fourier transform spectrometer (FTS) at NASA Armstrong Flight Research Center (AFRC) and Railroad Valley, Nevada, USA (RRV) during a vicarious calibration campaign in June 2014. The campaign was performed to estimate changes in the radiometric response of the Thermal and Near Infrared Sensor for carbon Observations Fourier Transform Spectrometer (TANSO-FTS) and the Cloud and Aerosol Imager (TANSO-CAI) aboard Greenhouse gases Observing SATellite (GOSAT). TANSO-FTS measures spectra of radiance scattered by the Earth surface with high- and medium-gain depending on the surface reflectance. At high reflectance areas, such as deserts over north Africa and Australia, TANSO-FTS collects spectra with medium-gain. There was differences on atmospheric pressure and XCO2 retrieved from spectra obtained between high-gain and medium-gain. Because the retrieved products are useful for evaluating the difference of spectral qualities between high- and medium-gain, this work is an attempt to collect validation data for spectra with medium-gain of TANSO-FTS at remote and desert area with a compact and medium-spectral resolution instrument. As a compact FTS, EM27/SUN was used. It was manufactured and newly released on April 1, 2014 by Bruker. It is robust and operable in a high temperature environment. It was housed in a steel box to protect from dust and rain and powered by Solar panels. It can be operated by such a remote and desert area, like a RRV. Over AFRC and RRV, vertical profiles of CO2 and CH4 were measured using the Alpha Jet research aircraft as part of the Alpha Jet Atmospheric eXperiment (AJAX) of ARC, NASA. The values were calibrated to standard gases. To make the results comparable to WMO (World Meteorological Organization) standards, the retrieved XCO2 and XCH4 values are divided by a calibration factor. This values were determined by comparisons with in situ profiles measured by the aircraft. At AFRC it was operated by the side of a ground-based Total Carbon Column Observing Network (TCCON) FTS (Bruker IFS 125HR) and the diurnal variation agreed well . In this presentation, we will show results on XCO2 and XCH4 observations made by a compact FTS at AFRC and RRV and comparison of GOSAT and TCCON FTS.
NASA Astrophysics Data System (ADS)
Hirata, M.; Nagashima, S.; Cho, T.; Kohagura, J.; Yoshida, M.; Ito, H.; Numakura, T.; Minami, R.; Kondoh, T.; Nakashima, Y.; Yatsu, K.; Miyoshi, S.
2003-03-01
For the purpose of end-loss-ion energy analyses in open-field plasmas, a newly developed electrostatic ion-energy spectrometer is proposed on the basis of a "self-collection" principle for secondary-electron emission from a metal collector. The ion-energy spectrometer is designed with multiple grids for analyzing incident ion energies, and a set of parallelly placed metal plates with respect to lines of ambient magnetic forces in an open-ended device. One of the most important characteristic properties of this spectrometer is the use of our proposed principle of a "self-collection" mechanism due to E×B drifts for secondary electrons emitted from the grounded metal-plate collector by the use of no further additional magnetic systems except the ambient open-ended fields B. The proof-of-principle and characterization experiments are carried out by the use of a test-ion-beam line along with an additional use of a Helmholtz coil system for the formation of open magnetic fields similar to those in the GAMMA 10 end region. The applications of the developed ion-energy spectrometer for end-loss-ion diagnostics in the GAMMA 10 plasma experiments are demonstrated under the conditions with simultaneous incidence of energetic electrons produced by electron-cyclotron heatings for end-loss-plugging potential formation, since these electrons have contributed to disturb these ion signals from conventional end-loss-ion detectors.
The aCORN backscatter-suppressed beta spectrometer
Hassan, M. T.; Bateman, F.; Collett, B.; ...
2017-06-16
Backscatter of electrons from a beta detector, with incomplete energy deposition, can lead to undesirable effects in many types of experiments. We present and discuss the design and operation of a backscatter-suppressed beta spectrometer that was developed as part of a program to measure the electron–antineutrino correlation coefficient in neutron beta decay (aCORN). An array of backscatter veto detectors surrounds a plastic scintillator beta energy detector. The spectrometer contains an axial magnetic field gradient, so electrons are efficiently admitted but have a low probability for escaping back through the entrance after backscattering. Lastly, the design, construction, calibration, and performance ofmore » the spectrometer are discussed.« less
Automated enclosure and protection system for compact solar-tracking spectrometers
NASA Astrophysics Data System (ADS)
Heinle, Ludwig; Chen, Jia
2018-04-01
A novel automated enclosure for protecting solar-tracking atmospheric instruments was designed, constructed, and successfully tested under various weather conditions. A complete automated measurement system, consisting of a compact solar-tracking Fourier transform infrared (FTIR) spectrometer (EM27/SUN) and the enclosure, has been deployed in central Munich to monitor greenhouse gases since 2016 and withstood all critical weather conditions, including rain, storms, and snow. It provided ground-based measurements of column-averaged concentrations of CO2, CH4, O2, and H2O throughout this time.The enclosure protects the instrument from harmful environmental influences while allowing open-path measurements in sunny weather. The newly developed and patented cover, a key component of the enclosure, permits unblocked solar measurements while reliably protecting the instrument. This enables dynamic decision regarding taking measurements, and thus increases the number of data samples. This enclosure leads to a fully automated measurement system, which collects data whenever possible without any human interaction. In the long term, the enclosure will provide the foundation for a permanent greenhouse gas monitoring sensor network.
Song, Inwoo; Seon, C R; Hong, Joohwan; An, Y H; Barnsley, R; Guirlet, R; Choe, Wonho
2017-09-01
A compact advanced extreme-ultraviolet (EUV) spectrometer operating in the EUV wavelength range of a few nanometers to measure spatially resolved line emissions from tungsten (W) was developed for studying W transport in fusion plasmas. This system consists of two perpendicularly crossed slits-an entrance aperture and a space-resolved slit-inside a chamber operating as a pinhole, which enables the system to obtain a spatial distribution of line emissions. Moreover, a so-called v-shaped slit was devised to manage the aperture size for measuring the spatial resolution of the system caused by the finite width of the pinhole. A back-illuminated charge-coupled device was used as a detector with 2048 × 512 active pixels, each with dimensions of 13.5 × 13.5 μm 2 . After the alignment and installation on Korea superconducting tokamak advanced research, the preliminary results were obtained during the 2016 campaign. Several well-known carbon atomic lines in the 2-7 nm range originating from intrinsic carbon impurities were observed and used for wavelength calibration. Further, the time behavior of their spatial distributions is presented.
Giacomelli, L; Zimbal, A; Reginatto, M; Tittelmeier, K
2011-01-01
A compact NE213 liquid scintillation neutron spectrometer with a new digital data acquisition (DAQ) system is now in operation at the Physikalisch-Technische Bundesanstalt (PTB). With the DAQ system, developed by ENEA Frascati, neutron spectrometry with high count rates in the order of 5×10(5) s(-1) is possible, roughly an order of magnitude higher than with an analog acquisition system. To validate the DAQ system, a new data analysis code was developed and tests were done using measurements with 14-MeV neutrons made at the PTB accelerator. Additional analysis was carried out to optimize the two-gate method used for neutron and gamma (n-γ) discrimination. The best results were obtained with gates of 35 ns and 80 ns. This indicates that the fast and medium decay time components of the NE213 light emission are the ones that are relevant for n-γ discrimination with the digital acquisition system. This differs from what is normally implemented in the analog pulse shape discrimination modules, namely, the fast and long decay emissions of the scintillating light.
NASA Astrophysics Data System (ADS)
Paschalidis, Nicholas; McNutt, Ralph
One of the most critical challenges of the Pluto Energetic Particle Spectrometer Science Inves-tigation (PEPSSI) was to meet the science requirements with a total mass and power of ¡1.5 kg and ¡2.5 W, respectively. A key, enabling technology to achieve these goals was the exten-sive use of high-performance, low-power, application-specific integrated circuits (ASICs) for the miniaturization of the 12-channel solid state detector (SSD) readout system, the time-of-flight (TOF) system, and the power supply and housekeeping systems. The PEPSSI instrument is a TOF-versus-energy, compact particle spectrometer that provides measurements of ions and electrons from 20keV to 1MeV in a 160 x 12 solid angle field of view divided into six dual-channel sectors. TOF, constant fraction discriminator (CFD), energy, peak detector, and temperature, remote input/output (TRIO, housekeeping) ASICs were all used synergistically in the instrument enabling the high science performance within the resource constraints. The ASICs were space qualified in accord with military specifications (Class S) for total radiation dose and single-event effects (SEEs), and, most importantly, for a 2000-hour life test to increase the reliability for the long duration of the mission. PEPSSI flies on-board the New Horizons NASA spacecraft to measure pick-up ions from the Pluto's outgassing atmosphere. The space-craft was launched 19 Jan 2006 and presently is en route to Pluto, having passed Jupiter in early 2007. Closest approach to Pluto will occur in mid-July 2015. The instrument has already produced excellent measurements in interplanetary space and during the traversal of Jupiter's magnetotail in 2007.
NASA Astrophysics Data System (ADS)
Ozaki, T.; Hata, M.; Matsuo, K.; Kojima, S.; Arikawa, Y.; Fujioka, S.; Sakagami, H.; Sunahara, A.; Nagatomo, H.; Johzaki, T.; Yogo, A.; Morace, A.; Zhang, Z.; Shiraga, H.; Sakata, S.; Nagai, T.; Abe, Y.; Lee, S.; Nakai, M.; Nishimura, H.; Azechi, H.; FIREX Group; GXII-LFEX Group
2016-05-01
Hot electrons which are generated from targets irradiated by a high-intense laser are measured by two electron spectrometers (ESMs). However, total electron energy observed by the ESM is only less than 1%. Hot electrons are confined by self-fields due to the huge current. When an external magnetic field of several hundred Tesla is applied during the laser irradiation on targets, the ESM signals always increase. In the simulation, the same result can be obtained. The reason is that the Alfvén limit can be mitigated due to the external longitudinal magnetic field.
Pocket-size near-infrared spectrometer for narcotic materials identification
NASA Astrophysics Data System (ADS)
Pederson, Christopher G.; Friedrich, Donald M.; Hsiung, Chang; von Gunten, Marc; O'Brien, Nada A.; Ramaker, Henk-Jan; van Sprang, Eric; Dreischor, Menno
2014-05-01
While significant progress has been made towards the miniaturization of Raman, mid-infrared (IR), and near-infrared (NIR) spectrometers for homeland security and law enforcement applications, there remains continued interest in pushing the technology envelope for smaller, lower cost, and easier to use analyzers. In this paper, we report on the use of the MicroNIR Spectrometer, an ultra-compact, handheld near infrared (NIR) spectrometer, the, that weighs less than 60 grams and measures < 50mm in diameter for the classification of 140 different substances most of which are controlled substances (such as cocaine, heroin, oxycodone, diazepam), as well as synthetic cathinones (also known as bath salts), and synthetic cannabinoids. A library of the materials was created from a master MicroNIR spectrometer. A set of 25 unknown samples were then identified with three other MicroNIRs showing: 1) the ability to correctly identify the unknown with a very low rate of misidentification, and 2) the ability to use the same library with multiple instruments. In addition, we have shown that through the use of innovative chemometric algorithms, we were able to identify the individual compounds that make up an unknown mixture based on the spectral library of the individual compounds only. The small size of the spectrometer is enabled through the use of high-performance linear variable filter (LVF) technology.
Compact low-cost detection electronics for optical coherence imaging
Akcay, A. C.; Lee, K. S.; Furenlid, L. R.; Costa, M. A.; Rolland, J. P.
2015-01-01
A compact and low-cost detection electronics scheme for optical coherence imaging is demonstrated. The performance of the designed electronics is analyzed in comparison to a commercial lock-in amplifier of equal bandwidth. Images of a fresh-onion sample are presented for each detection configuration. PMID:26617422
NASA Astrophysics Data System (ADS)
Grahmann, Jan; Merten, André; Ostendorf, Ralf; Fontenot, Michael; Bleh, Daniela; Schenk, Harald; Wagner, Hans-Joachim
2014-03-01
In situ process information in the chemical, pharmaceutical or food industry as well as emission monitoring, sensitive trace detection and biological sensing applications would increasingly rely on MIR-spectroscopic analysis in the 3 μm - 12 μm wavelength range. However, cost effective, portable, low power consuming and fast spectrometers with a wide tuning range are not available so far. To provide these MIR-spectrometer properties, the combination of quantum cascade lasers with a MOEMS scanning grating as wavelength selective element in the external cavity is addressed to provide a very compact and fast tunable laser source for spectroscopic analysis.
On-chip spectroscopy with thermally tuned high-Q photonic crystal cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liapis, Andreas C., E-mail: andreas.liapis@gmail.com; Gao, Boshen; Siddiqui, Mahmudur R.
2016-01-11
Spectroscopic methods are a sensitive way to determine the chemical composition of potentially hazardous materials. Here, we demonstrate that thermally tuned high-Q photonic crystal cavities can be used as a compact high-resolution on-chip spectrometer. We have used such a chip-scale spectrometer to measure the absorption spectra of both acetylene and hydrogen cyanide in the 1550 nm spectral band and show that we can discriminate between the two chemical species even though the two materials have spectral features in the same spectral region. Our results pave the way for the development of chip-size chemical sensors that can detect toxic substances.
Dual waveband compact catadioptric imaging spectrometer
Chrisp, Michael P.
2012-12-25
A catadioptric dual waveband imaging spectrometer that covers the visible through short-wave infrared, and the midwave infrared spectral regions, dispersing the visible through shortwave infrared with a zinc selenide grating and midwave infrared with a sapphire prism. The grating and prism are at the cold stop position, enabling the pupil to be split between them. The spectra for both wavebands are focused onto the relevant sections of a single dual waveband detector. Spatial keystone distortion is controlled to less than one tenth of a pixel over the full wavelength range, facilitating the matching of the spectra in the midwave infrared with the shorter wavelength region.
Gillard, Frédéric; Ferrec, Yann; Guérineau, Nicolas; Rommeluère, Sylvain; Taboury, Jean; Chavel, Pierre
2012-06-01
Stationary Fourier transform spectrometry is an interesting concept for building reliable field or embedded spectroradiometers, especially for the mid- and far- IR. Here, a very compact configuration of a cryogenic stationary Fourier transform IR (FTIR) spectrometer is investigated, where the interferometer is directly integrated in the focal plane array (FPA). We present a theoretical analysis to explain and describe the fringe formation inside the FTIR-FPA structure when illuminated by an extended source positioned at a finite distance from the detection plane. The results are then exploited to propose a simple front lens design compatible with a handheld package.
Quadrupole Ion Mass Spectrometer for Masses of 2 to 50 Da
NASA Technical Reports Server (NTRS)
Helms, William; Griffin, Timothy P.; Ottens, Andrew; Harrison, Willard
2005-01-01
A customized quadrupole ion-trap mass spectrometer (QITMS) has been built to satisfy a need for a compact, rugged instrument for measuring small concentrations of hydrogen, helium, oxygen, and argon in a nitrogen atmosphere. This QITMS can also be used to perform quantitative analyses of other gases within its molecular-mass range, which is 2 to 50 daltons (Da). (More precisely, it can be used to perform quantitative analysis of gases that, when ionized, are characterized by m/Z ratios between 2 and 50, where m is the mass of an ion in daltons and Z is the number of fundamental electric charges on the ion.
GEOScan: A GEOScience Facility From Space
NASA Astrophysics Data System (ADS)
Dyrud, L. P.; Fentzke, J. T.; Anderson, B. J.; Bishop, R. L.; Bust, G. S.; Cahoy, K.; Erlandson, R. E.; Fish, C. S.; Gunter, B. C.; Hall, F. G.; Hilker, T.; Lorentz, S. R.; Mazur, J. E.; Murphy, S. D.; Mustard, J. F.; O'Brien, P. P.; Slagowski, S.; Trenberth, K. E.; Wiscombe, W. J.
2012-12-01
GEOScan is a proposed globally networked orbiting facility that will provide revolutionary, massively dense global geosciences observations. Major scientific research projects are typically conducted using two approaches: community facilities, or investigator led focused missions. GEOScan is a new concept in space science, blending the PI mission and community facility models: it is PI-led, but it carries sensors that are the result of a grass-roots competition, and, uniquely, it preserves open slots for sensors which are purposely not yet decided. The goal is threefold: first, to select sensors that maximize science value for the greatest number of scientific disciplines, second, to target science questions that cannot be answered without simultaneous global space-based measurements, and third to reap the cost advantages of scale manufacturing for space instrumentation. The relatively small size, mass, and power requirements of the GEOScan sensor suite would make it an ideal hosted payload aboard a global constellation of communication satellites, such as Iridium NEXT's 66-satellite constellation or as hosted small-sat payload. Each GEOScan sensor suite consists of 6 instruments: a Radiometer to measure Earth's total outgoing radiation; a GPS Compact Total Electron Content Sensor to image Earth's plasma environment and gravity field; a MicroCam Multispectral Imager to provide the first uniform, instantaneous image of Earth and measure global cloud cover, vegetation, land use, and bright aurora; a Radiation Belt Mapping System (dosimeter) to measure energetic electron and proton distributions; a Compact Earth Observing Spectrometer to measure aerosol-atmospheric composition and vegetation; and MEMS Accelerometers to deduce non-conservative forces aiding gravity and neutral drag studies. These instruments, employed in a constellation, can provide major breakthroughs in Earth and Geospace science, as well as offering a low-cost technology demonstration for operational weather, climate, and land-imaging.
Test report: Electron-proton spectrometer qualification test unit, qualification test
NASA Technical Reports Server (NTRS)
Vincent, D. L.
1972-01-01
Qualification tests of the electron-proton spectrometer test unit are presented. The tests conducted were: (1) functional, (2) thermal/vacuum, (3) electromagnetic interference, (4) acoustic, (5) shock, (6) vibration, and (7) humidity. Results of each type of test are presented in the form of data sheets.
Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaughlin, David J.; Shikhaliev, Polad M.; Matthews, Kenneth L.
2015-09-15
Purpose: The purpose of this work was to adapt a lightweight, permanent magnet electron energy spectrometer for the measurement of energy spectra of therapeutic electron beams. Methods: An irradiation geometry and measurement technique were developed for an approximately 0.54-T, permanent dipole magnet spectrometer to produce suitable latent images on computed radiography (CR) phosphor strips. Dual-pinhole electron collimators created a 0.318-cm diameter, approximately parallel beam incident on the spectrometer and an appropriate dose rate at the image plane (CR strip location). X-ray background in the latent image, reduced by a 7.62-cm thick lead block between the pinhole collimators, was removed usingmore » a fitting technique. Theoretical energy-dependent detector response functions (DRFs) were used in an iterative technique to transform CR strip net mean dose profiles into energy spectra on central axis at the entrance to the spectrometer. These spectra were transformed to spectra at 95-cm source to collimator distance (SCD) by correcting for the energy dependence of electron scatter. The spectrometer was calibrated by comparing peak mean positions in the net mean dose profiles, initially to peak mean energies determined from the practical range of central-axis percent depth-dose (%DD) curves, and then to peak mean energies that accounted for how the collimation modified the energy spectra (recalibration). The utility of the spectrometer was demonstrated by measuring the energy spectra for the seven electron beams (7–20 MeV) of an Elekta Infinity radiotherapy accelerator. Results: Plots of DRF illustrated their dependence on energy and position in the imaging plane. Approximately 15 iterations solved for the energy spectra at the spectrometer entrance from the measured net mean dose profiles. Transforming those spectra into ones at 95-cm SCD increased the low energy tail of the spectra, while correspondingly decreasing the peaks and shifting them to slightly lower energies. Energy calibration plots of peak mean energy versus peak mean position of the net mean dose profiles for each of the seven electron beams followed the shape predicted by the Lorentz force law for a uniform z-component of the magnetic field, validating its being modeled as uniform (0.542 ± 0.027 T). Measured Elekta energy spectra and their peak mean energies correlated with the 0.5-cm (7–13 MeV) and the 1.0-cm (13–20 MeV) R{sub 90} spacings of the %DD curves. The full-width-half-maximum of the energy spectra decreased with decreasing peak mean energy with the exception of the 9-MeV beam, which was anomalously wide. Similarly, R{sub 80–20} decreased linearly with peak mean energy with the exception of the 9 MeV beam. Both were attributed to suboptimal tuning of the high power phase shifter for the recycled radiofrequency power reentering the traveling wave accelerator. Conclusions: The apparatus and analysis techniques of the authors demonstrated that an inexpensive, lightweight, permanent magnet electron energy spectrometer can be used for measuring the electron energy distributions of therapeutic electron beams (6–20 MeV). The primary goal of future work is to develop a real-time spectrometer by incorporating a real-time imager, which has potential applications such as beam matching, ongoing beam tune maintenance, and measuring spectra for input into Monte Carlo beam calculations.« less
Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators.
McLaughlin, David J; Hogstrom, Kenneth R; Carver, Robert L; Gibbons, John P; Shikhaliev, Polad M; Matthews, Kenneth L; Clarke, Taylor; Henderson, Alexander; Liang, Edison P
2015-09-01
The purpose of this work was to adapt a lightweight, permanent magnet electron energy spectrometer for the measurement of energy spectra of therapeutic electron beams. An irradiation geometry and measurement technique were developed for an approximately 0.54-T, permanent dipole magnet spectrometer to produce suitable latent images on computed radiography (CR) phosphor strips. Dual-pinhole electron collimators created a 0.318-cm diameter, approximately parallel beam incident on the spectrometer and an appropriate dose rate at the image plane (CR strip location). X-ray background in the latent image, reduced by a 7.62-cm thick lead block between the pinhole collimators, was removed using a fitting technique. Theoretical energy-dependent detector response functions (DRFs) were used in an iterative technique to transform CR strip net mean dose profiles into energy spectra on central axis at the entrance to the spectrometer. These spectra were transformed to spectra at 95-cm source to collimator distance (SCD) by correcting for the energy dependence of electron scatter. The spectrometer was calibrated by comparing peak mean positions in the net mean dose profiles, initially to peak mean energies determined from the practical range of central-axis percent depth-dose (%DD) curves, and then to peak mean energies that accounted for how the collimation modified the energy spectra (recalibration). The utility of the spectrometer was demonstrated by measuring the energy spectra for the seven electron beams (7-20 MeV) of an Elekta Infinity radiotherapy accelerator. Plots of DRF illustrated their dependence on energy and position in the imaging plane. Approximately 15 iterations solved for the energy spectra at the spectrometer entrance from the measured net mean dose profiles. Transforming those spectra into ones at 95-cm SCD increased the low energy tail of the spectra, while correspondingly decreasing the peaks and shifting them to slightly lower energies. Energy calibration plots of peak mean energy versus peak mean position of the net mean dose profiles for each of the seven electron beams followed the shape predicted by the Lorentz force law for a uniform z-component of the magnetic field, validating its being modeled as uniform (0.542 ± 0.027 T). Measured Elekta energy spectra and their peak mean energies correlated with the 0.5-cm (7-13 MeV) and the 1.0-cm (13-20 MeV) R90 spacings of the %DD curves. The full-width-half-maximum of the energy spectra decreased with decreasing peak mean energy with the exception of the 9-MeV beam, which was anomalously wide. Similarly, R80-20 decreased linearly with peak mean energy with the exception of the 9 MeV beam. Both were attributed to suboptimal tuning of the high power phase shifter for the recycled radiofrequency power reentering the traveling wave accelerator. The apparatus and analysis techniques of the authors demonstrated that an inexpensive, lightweight, permanent magnet electron energy spectrometer can be used for measuring the electron energy distributions of therapeutic electron beams (6-20 MeV). The primary goal of future work is to develop a real-time spectrometer by incorporating a real-time imager, which has potential applications such as beam matching, ongoing beam tune maintenance, and measuring spectra for input into Monte Carlo beam calculations.
Electron source for a mini ion trap mass spectrometer
Dietrich, Daniel D.; Keville, Robert F.
1995-01-01
An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.
NASA Astrophysics Data System (ADS)
Behrens, J.; Ranitzsch, P. C.-O.; Beck, M.; Beglarian, A.; Erhard, M.; Groh, S.; Hannen, V.; Kraus, M.; Ortjohann, H.-W.; Rest, O.; Schlösser, K.; Thümmler, T.; Valerius, K.; Wierman, K.; Wilkerson, J. F.; Winzen, D.; Zacher, M.; Weinheimer, C.
2017-06-01
The KATRIN experiment aims to determine the neutrino mass scale with a sensitivity of 200 {meV/c^2} (90% C. L.) by a precision measurement of the shape of the tritium β -spectrum in the endpoint region. The energy analysis of the decay electrons is achieved by a MAC-E filter spectrometer. To determine the transmission properties of the KATRIN main spectrometer, a mono-energetic and angular-selective electron source has been developed. In preparation for the second commissioning phase of the main spectrometer, a measurement phase was carried out at the KATRIN monitor spectrometer where the device was operated in a MAC-E filter setup for testing. The results of these measurements are compared with simulations using the particle-tracking software "Kassiopeia", which was developed in the KATRIN collaboration over recent years.
Zhou, Qian; Pang, Jinchao; Li, Xinghui; Ni, Kai; Tian, Rui
2015-11-10
In this study, a new flat-field concave grating miniature spectrometer is proposed with improved resolution across a wide spectral band. A mirror is added to a conventional concave grating spectrometer and placed near the existing detector array, allowing a wide spectral band to be divided into two adjacent subspectral bands. One of these bands is directly detected by the detector, and the other is indirectly analyzed by the same detector after being reflected by the mirror. These two subspectral bands share the same entrance slit, concave grating, and detector, which allows for a compact size, while maintaining an improved spectral resolution across the entire spectral band. The positions of the mirror and other parameters of the spectrometer are designed by a computer procedure and the optical design software ZEMAX. Simulation results show that the resolution of this kind of flat-field concave grating miniature spectrometer is better than 1.6 nm across a spectral band of 700 nm. Experiments based on three laser sources reveal that the measured resolutions are comparable to the simulated ones, with a maximum relative error between them of less than 19%.
Atmospheric electron x-ray spectrometer
NASA Technical Reports Server (NTRS)
Feldman, Jason E. (Inventor); George, Thomas (Inventor); Wilcox, Jaroslava Z. (Inventor)
2002-01-01
The present invention comprises an apparatus for performing in-situ elemental analyses of surfaces. The invention comprises an atmospheric electron x-ray spectrometer with an electron column which generates, accelerates, and focuses electrons in a column which is isolated from ambient pressure by a:thin, electron transparent membrane. After passing through the membrane, the electrons impinge on the sample in atmosphere to generate characteristic x-rays. An x-ray detector, shaping amplifier, and multi-channel analyzer are used for x-ray detection and signal analysis. By comparing the resultant data to known x-ray spectral signatures, the elemental composition of the surface can be determined.
The Nab Spectrometer, Precision Field Mapping, and Associated Systematic Effects
NASA Astrophysics Data System (ADS)
Fry, Jason; Nab Collaboration
2017-09-01
The Nab experiment will make precision measurements of a, the e- ν correlation parameter, and b, the Fierz interference term, in neutron beta decay, aiming to deliver an independent determination of the ratio λ =GA /GV to sensitively test CKM unitarity. Nab utilizes a novel, long asymmetric spectrometer to measure the proton TOF and electron energy. We extract a from the slope of the measured TOF distribution for different electron energies. A reliable relation of the measured proton TOF to a requires detailed knowledge of the effective proton pathlength, which in turn imposes further requirements on the precision of the magnetic fields in the Nab spectrometer. The Nab spectrometer, magnetometry, and associated systematics will be discussed.
NASA Technical Reports Server (NTRS)
Getty, Stephanie A.; Brinckerhoff, William B.; Li, Xiang; Elsila, Jamie; Cornish, Timothy; Ecelberger, Scott; Wu, Qinghao; Zare, Richard
2014-01-01
Two-step laser desorption mass spectrometry is a well suited technique to the analysis of high priority classes of organics, such as polycyclic aromatic hydrocarbons, present in complex samples. The use of decoupled desorption and ionization laser pulses allows for sensitive and selective detection of structurally intact organic species. We have recently demonstrated the implementation of this advancement in laser mass spectrometry in a compact, flight-compatible instrument that could feasibly be the centerpiece of an analytical science payload as part of a future spaceflight mission to a small body or icy moon.
Linear electric field mass spectrometry
McComas, David J.; Nordholt, Jane E.
1992-01-01
A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.
Argus: a 16-pixel millimeter-wave spectrometer for the Green Bank Telescope
NASA Astrophysics Data System (ADS)
Sieth, Matthew; Devaraj, Kiruthika; Voll, Patricia; Church, Sarah; Gawande, Rohit; Cleary, Kieran; Readhead, Anthony C. S.; Kangaslahti, Pekka; Samoska, Lorene; Gaier, Todd; Goldsmith, Paul F.; Harris, Andrew I.; Gundersen, Joshua O.; Frayer, David; White, Steve; Egan, Dennis; Reeves, Rodrigo
2014-07-01
We report on the development of Argus, a 16-pixel spectrometer, which will enable fast astronomical imaging over the 85-116 GHz band. Each pixel includes a compact heterodyne receiver module, which integrates two InP MMIC low-noise amplifiers, a coupled-line bandpass filter and a sub-harmonic Schottky diode mixer. The receiver signals are routed to and from the multi-chip MMIC modules with multilayer high frequency printed circuit boards, which includes LO splitters and IF amplifiers. Microstrip lines on flexible circuitry are used to transport signals between temperature stages. The spectrometer frontend is designed to be scalable, so that the array design can be reconfigured for future instruments with hundreds of pixels. Argus is scheduled to be commissioned at the Robert C. Byrd Green Bank Telescope in late 2014. Preliminary data for the first Argus pixels are presented.
Han, Fengtian; Wang, Wei; Zhang, Xiaoyang; Xie, Huikai
2016-10-03
A large piston-displacement electrothermal micromirror with closed-loop control of both piston scan and tilting of the mirror plate is demonstrated for use in a miniature Fourier transform spectrometer. Constant scan velocity in an ultra large piston scan range has been demonstrated by the proposed closed-loop piston control scheme which can be easily implemented without considerably increasing system complexity. The experimental results show that the usable linear scan range generated by the micromirror has been extended up to 505 μm. The measured spectral resolution in a compact spectrometer reaches 20 cm-1, or 0.57 nm at 532 nm wavelength. Compared to other presented systems, this microspectrometer will benefit from the closed-loop thermal actuator approach utilizing both the piston servo and tilt control to provide more consistent spectral response, improved spectral resolution and enhanced robustness to disturbances.
MEMS tunable grating micro-spectrometer
NASA Astrophysics Data System (ADS)
Tormen, Maurizio; Lockhart, R.; Niedermann, P.; Overstolz, T.; Hoogerwerf, A.; Mayor, J.-M.; Pierer, J.; Bosshard, C.; Ischer, R.; Voirin, G.; Stanley, R. P.
2017-11-01
The interest in MEMS based Micro-Spectrometers is increasing due to their potential in terms of flexibility as well as cost, low mass, small volume and power savings. This interest, especially in the Near-Infrared and Mid- Infrared, ranges from planetary exploration missions to astronomy, e.g. the search for extra solar planets, as well as to many other terrestrial fields of application such as, industrial quality and surface control, chemical analysis of soil and water, detection of chemical pollutants, exhausted gas analysis, food quality control, process control in pharmaceuticals, to name a few. A compact MEMS-based Spectrometer for Near- Infrared and Mid-InfraRed operation have been conceived, designed and demonstrated. The design based on tunable MEMS blazed grating, developed in the past at CSEM [1], achieves state of the art results in terms of spectral resolution, operational wavelength range, light throughput, overall dimensions, and power consumption.
NASA Technical Reports Server (NTRS)
Michell, R. G.; Samara, M.; Grubbs, G., II; Ogasawara, K.; Miller, G.; Trevino, J. A.; Webster, J.; Stange, J.
2016-01-01
We present a description of the Acute Precipitating Electron Spectrometer (APES) that was designed and built for the Ground-to-Rocket Electron Electrodynamics Correlative Experiment (GREECE) auroral sounding rocket mission. The purpose was to measure the precipitating electron spectrum with high time resolution, on the order of milliseconds. The trade-off made in order to achieve high time resolution was to limit the aperture to only one look direction. The energy selection was done by using a permanent magnet to separate the incoming electrons, such that the different energies would fall onto different regions of the microchannel plate and therefore be detected by different anodes. A rectangular microchannel plate (MCP) was used (15 mm x 100 mm), and there was a total of 50 discrete anodes under the MCP, each one 15 mm x 1.5 mm, with a 0.5 mm spacing between anodes. The target energy range of APES was 200 eV to 30 keV.
Electron multiplier-ion detector system
Dietz, L.A.
1975-08-01
This patent relates to an improved ion detector for use in mass spectrometers for pulse counting signal ions which may have a positive or a negative charge. The invention combines a novel electron multiplier with a scintillator type of ion detector. It is a high vacuum, high voltage device intended for use in ion microprobe mass spectrometers. (auth)
NASA Technical Reports Server (NTRS)
Judge, Darrell L.
1994-01-01
A prototype spectrometer has been developed for space applications requiring long term absolute EUV photon flux measurements. The energy spectrum of the incoming photons is transformed directly into an electron energy spectrum by taking advantage of the photoelectric effect in one of several rare gases at low pressures. Using an electron energy spectrometer, followed by an electron multiplier detector, pulses due to individual electrons are counted. The overall efficiency of this process can be made essentially independent of gain drifts in the signal path, and the secular degradation of optical components which is often a problem in other techniques is avoided. A very important feature of this approach is its freedom from the problem of overlapping spectral orders that plagues grating EUV spectrometers. An instrument with these features has not been flown before, but is essential to further advances in our understanding of solar EUV flux dynamics, and the coupled dynamics of terrestrial and planetary atmospheres. The detailed characteristics of this optics-free spectrometer are presented in the publications section.
Radon induced background processes in the KATRIN pre-spectrometer
NASA Astrophysics Data System (ADS)
Fränkle, F. M.; Bornschein, L.; Drexlin, G.; Glück, F.; Görhardt, S.; Käfer, W.; Mertens, S.; Wandkowsky, N.; Wolf, J.
2011-10-01
The KArlsruhe TRItium Neutrino (KATRIN) experiment is a next generation, model independent, large scale tritium β-decay experiment to determine the effective electron anti-neutrino mass by investigating the kinematics of tritium β-decay with a sensitivity of 200 meV/c 2 using the MAC-E filter technique. In order to reach this sensitivity, a low background level of 10 -2 counts per second (cps) is required. This paper describes how the decay of radon in a MAC-E filter generates background events, based on measurements performed at the KATRIN pre-spectrometer test setup. Radon (Rn) atoms, which emanate from materials inside the vacuum region of the KATRIN spectrometers, are able to penetrate deep into the magnetic flux tube so that the α-decay of Rn contributes to the background. Of particular importance are electrons emitted in processes accompanying the Rn α-decay, such as shake-off, internal conversion of excited levels in the Rn daughter atoms and Auger electrons. While low-energy electrons (<100 eV) directly contribute to the background in the signal region, higher energy electrons can be stored magnetically inside the volume of the spectrometer. Depending on their initial energy, they are able to create thousands of secondary electrons via subsequent ionization processes with residual gas molecules and, since the detector is not able to distinguish these secondary electrons from the signal electrons, an increased background rate over an extended period of time is generated.
CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) on MRO (Mars Reconnaissance Orbiter)
NASA Astrophysics Data System (ADS)
Murchie, Scott L.; Arvidson, Raymond E.; Bedini, Peter; Beisser, K.; Bibring, Jean-Pierre; Bishop, J.; Boldt, John D.; Choo, Tech H.; Clancy, R. Todd; Darlington, Edward H.; Des Marais, D.; Espiritu, R.; Fasold, Melissa J.; Fort, Dennis; Green, Richard N.; Guinness, E.; Hayes, John R.; Hash, C.; Heffernan, Kevin J.; Hemmler, J.; Heyler, Gene A.; Humm, David C.; Hutchison, J.; Izenberg, Noam R.; Lee, Robert E.; Lees, Jeffrey J.; Lohr, David A.; Malaret, Erick R.; Martin, T.; Morris, Richard V.; Mustard, John F.; Rhodes, Edgar A.; Robinson, Mark S.; Roush, Ted L.; Schaefer, Edward D.; Seagrave, Gordon G.; Silverglate, Peter R.; Slavney, S.; Smith, Mark F.; Strohbehn, Kim; Taylor, Howard W.; Thompson, Patrick L.; Tossman, Barry E.
2004-12-01
CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) is a hyperspectral imager that will be launched on the MRO (Mars Reconnaissance Orbiter) spacecraft in August 2005. MRO"s objectives are to recover climate science originally to have been conducted on the Mars Climate Orbiter (MCO), to identify and characterize sites of possible aqueous activity to which future landed missions may be sent, and to characterize the composition, geology, and stratigraphy of Martian surface deposits. MRO will operate from a sun-synchronous, near-circular (255x320 km altitude), near-polar orbit with a mean local solar time of 3 PM. CRISM"s spectral range spans the ultraviolet (UV) to the mid-wave infrared (MWIR), 383 nm to 3960 nm. The instrument utilizes a Ritchey-Chretien telescope with a 2.12° field-of-view (FOV) to focus light on the entrance slit of a dual spectrometer. Within the spectrometer, light is split by a dichroic into VNIR (visible-near-infrared, 383-1071 nm) and IR (infrared, 988-3960 nm) beams. Each beam is directed into a separate modified Offner spectrometer that focuses a spectrally dispersed image of the slit onto a two dimensional focal plane (FP). The IR FP is a 640 x 480 HgCdTe area array; the VNIR FP is a 640 x 480 silicon photodiode area array. The spectral image is contiguously sampled with a 6.6 nm spectral spacing and an instantaneous field of view of 61.5 μradians. The Optical Sensor Unit (OSU) can be gimbaled to take out along-track smear, allowing long integration times that afford high signal-to-noise ratio (SNR) at high spectral and spatial resolution. The scan motor and encoder are controlled by a separately housed Gimbal Motor Electronics (GME) unit. A Data Processing Unit (DPU) provides power, command and control, and data editing and compression. CRISM acquires three major types of observations of the Martian surface and atmosphere. In Multispectral Mapping Mode, with the gimbal pointed at planet nadir, data are collected at frame rates of 15 or 30 Hz. A commandable subset of wavelengths is saved by the DPU and binned 5:1 or 10:1 cross-track. The combination of frame rates and binning yields pixel footprints of 100 or 200 m. In this mode, nearly the entire planet can be mapped at wavelengths of key mineralogic absorption bands to select regions of interest. In Targeted Mode, the gimbal is scanned over +/-60° from nadir to remove most along-track motion, and a region of interest is mapped at full spatial and spectral resolution. Ten additional abbreviated, pixel-binned observations are taken before and after the main hyperspectral image at longer atmospheric path lengths, providing an emission phase function (EPF) of the site for atmospheric study and correction of surface spectra for atmospheric effects. In Atmospheric Mode, the central observation is eliminated and only the EPF is acquired. Global grids of the resulting lower data volume observation are taken repeatedly throughout the Martian year to measure seasonal variations in atmospheric properties.
Comby, G.
1996-10-01
The Ceramic Electron Multipliers (CEM) is a compact, robust, linear and fast multi-channel electron multiplier. The Multi Layer Ceramic Technique (MLCT) allows to build metallic dynodes inside a compact ceramic block. The activation of the metallic dynodes enhances their secondary electron emission (SEE). The CEM can be used in multi-channel photomultipliers, multi-channel light intensifiers, ion detection, spectroscopy, analysis of time of flight events, particle detection or Cherenkov imaging detectors. (auth)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Rooyen, Isabella Johanna; Demkowicz, Paul Andrew; Riesterer, Jessica Lori
2012-12-01
The electron microscopic examination of selected irradiated TRISO coated particles of the AGR-1 experiment of fuel compact 6-3-2 are presented in this report. Compact 6-3-2 refers to the compact in Capsule 6 at level 3 of Stack 2. The fuel used in capsule 6 compacts, are called the “baseline” fuel as it is fabricated with refined coating process conditions used to fabricate historic German fuel, because of its excellent irradiation performance with UO2 kernels. The AGR-1 fuel is however made of low-enriched uranium oxycarbide (UCO). Kernel diameters are approximately 350 µm with a U-235 enrichment of approximately 19.7%. Compact 6-3-2more » has been irradiated to 11.3% FIMA compact average burn-up with a time average, volume average temperature of 1070.2°C and with a compact average fast fluence of 2.38E21 n/cm« less
Gas Measurement Using Static Fourier Transform Infrared Spectrometers.
Köhler, Michael H; Schardt, Michael; Rauscher, Markus S; Koch, Alexander W
2017-11-13
Online monitoring of gases in industrial processes is an ambitious task due to adverse conditions such as mechanical vibrations and temperature fluctuations. Whereas conventional Fourier transform infrared (FTIR) spectrometers use rather complex optical and mechanical designs to ensure stable operation, static FTIR spectrometers do not require moving parts and thus offer inherent stability at comparatively low costs. Therefore, we present a novel, compact gas measurement system using a static single-mirror Fourier transform spectrometer (sSMFTS). The system works in the mid-infrared range from 650 cm - 1 to 1250 cm - 1 and can be operated with a customized White cell, yielding optical path lengths of up to 120 cm for highly sensitive quantification of gas concentrations. To validate the system, we measure different concentrations of 1,1,1,2-Tetrafluoroethane (R134a) and perform a PLS regression analysis of the acquired infrared spectra. Thereby, the measured absorption spectra show good agreement with reference data. Since the system additionally permits measurement rates of up to 200 Hz and high signal-to-noise ratios, an application in process analysis appears promising.
Gas Measurement Using Static Fourier Transform Infrared Spectrometers
Schardt, Michael; Rauscher, Markus S.; Koch, Alexander W.
2017-01-01
Online monitoring of gases in industrial processes is an ambitious task due to adverse conditions such as mechanical vibrations and temperature fluctuations. Whereas conventional Fourier transform infrared (FTIR) spectrometers use rather complex optical and mechanical designs to ensure stable operation, static FTIR spectrometers do not require moving parts and thus offer inherent stability at comparatively low costs. Therefore, we present a novel, compact gas measurement system using a static single-mirror Fourier transform spectrometer (sSMFTS). The system works in the mid-infrared range from 650 cm−1 to 1250 cm−1 and can be operated with a customized White cell, yielding optical path lengths of up to 120 cm for highly sensitive quantification of gas concentrations. To validate the system, we measure different concentrations of 1,1,1,2-Tetrafluoroethane (R134a) and perform a PLS regression analysis of the acquired infrared spectra. Thereby, the measured absorption spectra show good agreement with reference data. Since the system additionally permits measurement rates of up to 200 Hz and high signal-to-noise ratios, an application in process analysis appears promising. PMID:29137193
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, W.; Chen, Z. Y., E-mail: zychen@hust.edu.cn; Huang, D. W.
An x-ray imaging crystal spectrometer has been developed on joint Texas experimental tokamak for the measurement of electron and ion temperatures from the K{sub α} spectra of helium-like argon and its satellite lines. A two-dimensional multi-wire proportional counter has been applied to detect the spectra. The electron and ion temperatures have been obtained from the Voigt fitting with the spectra of helium-like argon ions. The profiles of electron and ion temperatures show the dependence on electron density in ohmic plasmas.
Balloon Borne Ultraviolet Spectrometer.
1978-12-28
n.c.aaary ond lden lfy by block numb.r) ultraviolet ground support equipment (GSE) spectrometers flight electronics instrumentation balloons \\ solar ...Assembly 4 Fig. 3 Solar Balloon Experiment Ass ’y 7 Fig. 4 Mechanical Interface , UV Spectrometer 8 Fig . 5 Spectrometer Body Assemb ly 10 Fig. 6...Diagram, GSE )bnitor 48 Selector and Battery Charger Fig. 25 Schematic Diagram, GSE Serial to 49 Parallel Data Converter Fig. 26 Schematic Diagram
NASA Astrophysics Data System (ADS)
Silverglate, Peter R.; Fort, Dennis E.
2004-01-01
CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) is a hyperspectral imager that will be launched on the MRO (Mars Reconnaissance Orbiter) in August 2005. The MRO will circle Mars in a polar orbit at a nominal altitude of 325 km. The CRISM spectral range spans the ultraviolet (UV) to the mid-wave infrared (MWIR), 400 nm to 4050 nm. The instrument utilizes a Ritchey-Chretien telescope with a 2.06º field of view (FOV) to focus light on the entrance slit of a dual spectrometer. Within the spectrometer light is split by a dichroic into VNIR (visible-near infrared) (λ <= 1.05 μm) and IR (infrared) (λ >= 1.05 μm) beams. Each beam is directed into a separate modified Offner spectrometer that focuses a spectrally dispersed image of the slit onto a two dimensional focal plane (FP). The IR FP is a 640 x 480 HgCdTe area array; the VNIR FP is a 640 x 480 silicon photodiode area array. The spectral image is contiguously sampled with a 6.55 nm spectral spacing and an instantaneous field of view of 60 μradians. The orbital motion of the MRO pushbroom scans the spectrometer slit across the Martian surface, allowing the planet to be mapped in 558 spectral bands. There are four major mapping modes: A quick initial multi-spectral mapping of a major portion of the Martian surface in 59 selected spectral bands at a spatial resolution of 600 μradians (10:1 binning); an extended multi-spectral mapping of the entire Martian surface in 59 selected spectral bands at a spatial resolution of 300 μradians (5:1 binning); a high resolution Target Mode, performing hyperspectral mapping of selected targets of interest at full spatial and spectral resolution; and an atmospheric Emission Phase Function (EPF) mode for atmospheric study and correction at full spectral resolution at a spatial resolution of 300 μradians (5:1 binning). The instrument is gimbaled to allow scanning over +/-60° for the EPF and Target modes. The scanning also permits orbital motion compensation, enabling longer integration times and consequently higher signal-to-noise ratios for selected areas on the Martian surface in Target Mode.
NASA Astrophysics Data System (ADS)
Silverglate, Peter R.; Fort, Dennis E.
2003-12-01
CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) is a hyperspectral imager that will be launched on the MRO (Mars Reconnaissance Orbiter) in August 2005. The MRO will circle Mars in a polar orbit at a nominal altitude of 325 km. The CRISM spectral range spans the ultraviolet (UV) to the mid-wave infrared (MWIR), 400 nm to 4050 nm. The instrument utilizes a Ritchey-Chretien telescope with a 2.06º field of view (FOV) to focus light on the entrance slit of a dual spectrometer. Within the spectrometer light is split by a dichroic into VNIR (visible-near infrared) (λ <= 1.05 μm) and IR (infrared) (λ >= 1.05 μm) beams. Each beam is directed into a separate modified Offner spectrometer that focuses a spectrally dispersed image of the slit onto a two dimensional focal plane (FP). The IR FP is a 640 x 480 HgCdTe area array; the VNIR FP is a 640 x 480 silicon photodiode area array. The spectral image is contiguously sampled with a 6.55 nm spectral spacing and an instantaneous field of view of 60 μradians. The orbital motion of the MRO pushbroom scans the spectrometer slit across the Martian surface, allowing the planet to be mapped in 558 spectral bands. There are four major mapping modes: A quick initial multi-spectral mapping of a major portion of the Martian surface in 59 selected spectral bands at a spatial resolution of 600 μradians (10:1 binning); an extended multi-spectral mapping of the entire Martian surface in 59 selected spectral bands at a spatial resolution of 300 μradians (5:1 binning); a high resolution Target Mode, performing hyperspectral mapping of selected targets of interest at full spatial and spectral resolution; and an atmospheric Emission Phase Function (EPF) mode for atmospheric study and correction at full spectral resolution at a spatial resolution of 300 μradians (5:1 binning). The instrument is gimbaled to allow scanning over +/-60° for the EPF and Target modes. The scanning also permits orbital motion compensation, enabling longer integration times and consequently higher signal-to-noise ratios for selected areas on the Martian surface in Target Mode.
Boesenberg, Ulrike; Samoylova, Liubov; Roth, Thomas; ...
2017-02-03
A precise spectral characterization of every single pulse is required in many x-ray free-electron laser (XFEL) experiments due to the fluctuating spectral content of self-amplified spontaneous emission (SASE) beams. Bent single-crystal spectrometers can provide sufficient spectral resolution to resolve the SASE spikes while also covering the full SASE bandwidth. To better withstand the high heat load induced by the 4.5 MHz repetition rate of pulses at the forthcoming European XFEL facility, a spectrometer based on single-crystal diamond has been developed. Here, we report a direct comparison of the diamond spectrometer with its Si counterpart in experiments performed at the Linacmore » Coherent Light Source.« less
Push-broom imaging spectrometer based on planar lightwave circuit MZI array
NASA Astrophysics Data System (ADS)
Yang, Minyue; Li, Mingyu; He, Jian-Jun
2017-05-01
We propose a large aperture static imaging spectrometer (LASIS) based on planar lightwave circuit (PLC) MZI array. The imaging spectrometer works in the push-broom mode with the spectrum performed by interferometry. While the satellite/aircraft is orbiting, the same source, seen from the satellite/aircraft, moves across the aperture and enters different MZIs, while adjacent sources enter adjacent MZIs at the same time. The on-chip spectrometer consists of 256 input mode converters, followed by 256 MZIs with linearly increasing optical path delays and a detector array. Multiple chips are stick together to form the 2D image surface and receive light from the imaging lens. Two MZI arrays are proposed, one works in wavelength ranging from 500nm to 900nm with SiON(refractive index 1.6) waveguides and another ranging from 1100nm to 1700nm with SOI platform. To meet the requirements of imaging spectrometer applications, we choose large cross-section ridge waveguide to achieve polarization insensitive, maintain single mode propagation in broad spectrum and increase production tolerance. The SiON on-chip spectrometer has a spectral resolution of 80cm-1 with a footprint of 17×15mm2 and the SOI based on-chip spectrometer has a resolution of 38cm-1 with a size of 22×19mm2. The spectral and space resolution of the imaging spectrometer can be further improved by simply adding more MZIs. The on-chip waveguide MZI array based Fourier transform imaging spectrometer can provide a highly compact solution for remote sensing on unmanned aerial vehicles or satellites with advantages of small size, light weight, no moving parts and large input aperture.
Where was the Iron Synthesized in Cassiopeia A?
NASA Technical Reports Server (NTRS)
Hwang, Una; Laming, J. Martin
2003-01-01
We investigate the properties of Fe-rich knots on the east limb of the Cassiopeia A supernova remnant observed with Chandra/AXAF CCD Imaging Spectrometer (ACIS). Using analysis methods developed in a companion paper, we constrain the ejecta density profile and the Lagrangian mass coordinates of the knots from their fitted ionization age and electron temperature. Fe-rich knots which also have strong emission from Si, S, Ar, and Ca are clustered around mass coordinates q approx. equal to 0.35 - 0.4 in the shocked ejecta of 2 solar masses; this places them 0.7 - 0.8 solar masses out from the center (or 2 - 2.1 solar masses, allowing for the mass of a compact object). We also find an Fe clump that is evidently devoid of line emission from lower mass elements, as would be expected for a region that had undergone alpha-rich freeze out. This clump has a similar mass coordinate to the other Fe knots.
Dai, S.; Ren, D.; Li, S.; Chou, C.
2006-01-01
The authors found an extremely-enriched boehmite and its associated minerals for the first time in the super-thick No. 6 coal seam from the Junger Coalfield in the northeastern Ordos Basin by using technologies including the X-ray diffraction analysis (XRD), scanning electron microscope equipped with an energy dispersive X-ray spectrometer, and optical microscope. The content of boehmite is as high as 13.1%, and the associated minerals are goyazite, zircon, rutile, goethite, galena, clausthalite, and selenio-galena. The heavy minerals assemblage is similar to that in the bauxite of the Benxi Formation from North China. The high boehmite in coal is mainly from weathering crust bauxite of the Benxi Formation from the northeastern coal-accumulation basin. The gibbsite colloidstone solution was removed from bauxite to the peat mire, and boehmite was formed via compaction and dehydration of gibbsite colloidstone solution in the period of peat accumulation and early period of diagenesis.
Metal copper films deposited on cenosphere particles by magnetron sputtering method
NASA Astrophysics Data System (ADS)
Yu, Xiaozheng; Xu, Zheng; Shen, Zhigang
2007-05-01
Metal copper films with thicknesses from several nanometres to several micrometres were deposited on the surface of cenosphere particles by the magnetron sputtering method under different working conditions. An ultrasonic vibrating generator equipped with a conventional magnetron sputtering apparatus was used to prevent the cenosphere substrates from accumulating during film growth. The surface morphology, the chemical composition, the average grain size and the crystallization of cenosphere particles were characterized by field emission scanning electron microscopy (FE-SEM), inductively coupled plasma-atom emission spectrometer, x-ray photoelectron spectroscopy and x-ray diffraction (XRD) analysis, respectively, before and after the plating process. The results indicate that the copper films were successfully deposited on cenosphere particles. It was found from the FE-SEM results that the films were well compacted and highly uniform in thickness. The XRD results show that the copper film coated on cenospheres has a face centred cubic structure and the crystallization of the film sample increases with increasing sputtering power.
A simple photoionization scheme for characterizing electron and ion spectrometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wituschek, A.; Vangerow, J. von; Grzesiak, J.
We present a simple diode laser-based photoionization scheme for generating electrons and ions with well-defined spatial and energetic (≲2 eV) structures. This scheme can easily be implemented in ion or electron imaging spectrometers for the purpose of off-line characterization and calibration. The low laser power ∼1 mW needed from a passively stabilized diode laser and the low flux of potassium atoms in an effusive beam make our scheme a versatile source of ions and electrons for applications in research and education.
The Development of A Chip-Scale Spectrometer for In Situ Characterization of Solar System Surfaces
NASA Astrophysics Data System (ADS)
Chanover, Nancy J.; Voelz, David; Cho, Sang-Yeon; Pelzman, Charles
2017-10-01
We discuss the development of a plasmonic spectrometer for in situ characterization of solar system surface and subsurface environments. The two goals of this project are to (1) quantitatively demonstrate that a plasmonic spectrometer can be used to rapidly acquire high signal-to-noise spectra between 0.5 - 1.0 microns at a spectral resolution suitable for unambiguous detection of spectral features indicative of volatiles and characteristic surface mineralogies, and (2) demonstrate that this class of spectrometer can be used in conjunction with optical fibers to access subsurface materials and vertically map the geochemistry and mineralogy of subsurface layers, thereby demonstrating that a plasmonic spectrometer is feasible in a low-mass, low-power, compact configuration. Our prototype spectrometer is comprised of a broadband lamp/source, a fiber optic system to illuminate the sample surface and collect the reflected light, a mosaic filter element based on plasmon resonance, and a focal plane array (FPA) detector. Our work thus far has been divided into two primary areas: (i) the development of the plasmon filter element and (ii) the construction of a testbed to explore the source, fiber system and focal plane array components of the system. We discuss our preliminary design studies of the plasmonic nanostructure prototypes to optimize the full-width half-maximum of the filter, and our fiber illumination and signal collection system.
The INTEGRAL scatterometer SPI
NASA Technical Reports Server (NTRS)
Mandrou, P.; Vedrenne, G.; Jean, P.; Kandel, B.; vonBallmoos, P.; Albernhe, F.; Lichti, G.; Schoenfelder, V.; Diehl, R.; Georgii, R.;
1997-01-01
The INTErnational Gamma Ray Astrophysics Laboratory (INTEGRAL) mission's onboard spectrometer, the INTEGRAL spectrometer (SPI), is described. The SPI constitutes one of the four main mission instruments. It is optimized for detailed measurements of gamma ray lines and for the mapping of diffuse sources. It combines a coded aperture mask with an array of large volume, high purity germanium detectors. The detectors make precise measurements of the gamma ray energies over the 20 keV to 8 MeV range. The instrument's characteristics are described and the Monte Carlo simulation of its performance is outlined. It will be possible to study gamma ray emission from compact objects or line profiles with a high energy resolution and a high angular resolution.
NASA Technical Reports Server (NTRS)
Holland, P.; Chutjian, A.; Darrach, M.; Orient, O.
2002-01-01
Miniaturized chemical instrumentation is needed for in situ measurements in planetary exploration and other spaceflight applications where factors such as reduction in payload requirements and enhanced robustness are important. In response to this need, we are 'continuing to develop miniaturized GC/MS instrumentation which combines chemical separations by gas chromatography (GC) with mass spectrometry (MS) to provide positive identification of chemical compounds in complex mixtures of gases, such as those found in the International Space Station's cabin atmosphere. Our design approach utilizes micro gas chromatography components coupled with either a miniature quadrupole mass spectrometer array (QMSA) or compact, high-resolution Paul ion trap.
Electron source for a mini ion trap mass spectrometer
Dietrich, D.D.; Keville, R.F.
1995-12-19
An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.
Linear electric field mass spectrometry
McComas, D.J.; Nordholt, J.E.
1992-12-01
A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.
Compact Reconnaissance Imaging Spectrometer Observations of Water Vapor and Carbon Monoxide
NASA Technical Reports Server (NTRS)
Smith, Michael D.; Wolff, Michael J.; Clancy, R. Todd; Murchie, Scott L.
2009-01-01
The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) spacecraft began taking observations in September 2006 and has now collected more than a full Martian year of data. Retrievals performed using the near-infrared spectra obtained by CRISM are used to characterize the seasonal and spatial variation of the column abundance of water vapor and the column-averaged mixing ratio of carbon monoxide. CRISM retrievals show nominal behavior in water vapor during northern hemisphere spring and summer with maximum abundance reaching 50 precipitable micrometers. Water vapor abundance during the southern hemisphere spring and summer appears significantly reduced compared to observations by other instruments taken during previous years. The CRISM retrievals show the seasonally and globally averaged carbon monoxide mixing ratio to be 700 ppm, but with strong seasonal variations at high latitudes. The summertime near-polar carbon monoxide mixing ratio falls to 200 ppm in the south and 400 ppm in the north as carbon dioxide sublimates from the seasonal polar ice caps and dilutes noncondensable species including carbon monoxide. At low latitudes, the carbon monoxide mixing ratio varies in response to the mean seasonal cycle of surface pressure.
Spectral analysis of the Crab Nebula and GRB 160530A with the Compton Spectrometer and Imager
NASA Astrophysics Data System (ADS)
Sleator, Clio; Boggs, Steven E.; Chiu, Jeng-Lun; Kierans, Carolyn; Lowell, Alexander; Tomsick, John; Zoglauer, Andreas; Amman, Mark; Chang, Hsiang-Kuang; Tseng, Chao-Hsiung; Yang, Chien-Ying; Lin, Chih H.; Jean, Pierre; von Ballmoos, Peter
2017-08-01
The Compton Spectrometer and Imager (COSI) is a balloon-borne soft gamma-ray (0.2-5 MeV) telescope designed to study astrophysical sources including gamma-ray bursts and compact objects. As a compact Compton telescope, COSI has inherent sensitivity to polarization. COSI utilizes 12 germanium detectors to provide excellent spectral resolution. On May 17, 2016, COSI was launched from Wanaka, New Zealand and completed a successful 46-day flight on NASA’s new Superpressure balloon. To perform spectral analysis with COSI, we have developed an accurate instrument model as required for the response matrix. With carefully chosen background regions, we are able to fit the background-subtracted spectra in XSPEC. We have developed a model of the atmosphere above COSI based on the NRLMSISE-00 Atmosphere Model to include in our spectral fits. The Crab and GRB 160530A are among the sources detected during the 2016 flight. We present spectral analysis of these two point sources. Our GRB 160530A results are consistent with those from other instruments, confirming COSI’s spectral abilities. Furthermore, we discuss prospects for measuring the Crab polarization with COSI.
NASA Astrophysics Data System (ADS)
Watanabe, Noboru; Hirayama, Tsukasa; Yamada, So; Takahashi, Masahiko
2018-04-01
We report details of an electron-ion coincidence apparatus, which has been developed for molecular-frame electron energy loss spectroscopy studies. The apparatus is mainly composed of a pulsed electron gun, an energy-dispersive electron spectrometer, and an ion momentum imaging spectrometer. Molecular-orientation dependence of the high-energy electron scattering cross section can be examined by conducting measurements of vector correlation between the momenta of the scattered electron and fragment ion. Background due to false coincidences is significantly reduced by introducing a pulsed electron beam and pulsing scheme of ion extraction. The experimental setup has been tested by measuring the inner-shell excitation of N2 at an incident electron energy of 1.5 keV and a scattering angle of 10.2°.
Performance of a short 'magnetic bottle' electron spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mucke, M.; Lischke, T.; Arion, T.
2012-06-15
In this article, a newly constructed electron spectrometer of the magnetic bottle type is described. The instrument is part of an apparatus for measuring the electron spectra of free clusters using synchrotron radiation. Argon and helium outer valence photoelectron spectra have been recorded in order to investigate the characteristic features of the spectrometer. The energy resolution (E/{Delta}E) has been found to be {approx}30. Using electrostatic retardation of the electrons, it can be increased to at least 110. The transmission as a function of kinetic energy is flat, and is not impaired much by retardation with up to 80% of themore » initial kinetic energy. We have measured a detection efficiency of most probably 0.6{sub -0.1}{sup +0.05}, but at least of 0.4. Results from testing the alignment of the magnet, and from trajectory simulations, are also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, S.; Shastry, K.; Anto, C. V.
2016-03-15
We describe a novel spectrometer designed for positron annihilation induced Auger electron spectroscopy employing a time-of-flight spectrometer. The spectrometer’s new configuration enables us to implant monoenergetic positrons with kinetic energies as low as 1.5 eV on the sample while simultaneously allowing for the detection of electrons emitted from the sample surface at kinetic energies ranging from ∼500 eV to 0 eV. The spectrometer’s unique characteristics made it possible to perform (a) first experiments demonstrating the direct transition of a positron from an unbound scattering state to a bound surface state and (b) the first experiments demonstrating that Auger electron spectramore » can be obtained down to 0 eV without the beam induced secondary electron background obscuring the low energy part of the spectra. Data are presented which show alternative means of estimating positron surface state binding energy and background-free Auger spectra.« less
NASA Astrophysics Data System (ADS)
Fairchild, A. J.; Chirayath, V. A.; Gladen, R. W.; Chrysler, M. D.; Koymen, A. R.; Weiss, A. H.
2017-01-01
In this paper, we present results of numerical modelling of the University of Texas at Arlington’s time of flight positron annihilation induced Auger electron spectrometer (UTA TOF-PAES) using SIMION® 8.1 Ion and Electron Optics Simulator. The time of flight (TOF) spectrometer measures the energy of electrons emitted from the surface of a sample as a result of the interaction of low energy positrons with the sample surface. We have used SIMION® 8.1 to calculate the times of flight spectra of electrons leaving the sample surface with energies and angles dispersed according to distribution functions chosen to model the positron induced electron emission process and have thus obtained an estimate of the true electron energy distribution. The simulated TOF distribution was convolved with a Gaussian timing resolution function and compared to the experimental distribution. The broadening observed in the simulated TOF spectra was found to be consistent with that observed in the experimental secondary electron spectra of Cu generated as a result of positrons incident with energy 1.5 eV to 901 eV, when a timing resolution of 2.3 ns was assumed.
NASA Astrophysics Data System (ADS)
Detistov, Pavel; Balabanski, Dimiter L.
2015-04-01
This work work is a part of the performance investigation of the recently constructed Mini-Orange beta spectrometer. The spectrometer has eight different configurations using three different magnet shapes and combination of three, four, and six magnet pieces allowing detection of electrons in wide kinetic energy range. The performance of the device is studied using the GEANT4 simulation tool. Evaluation of the device's basic parameters has been made, paying special attention to the backscattering, for which a study of the dependence of this process on the energy and the angle is made.
NASA Technical Reports Server (NTRS)
Avanov, Levon A.; Gliese, Ulrik; Mariano, Albert; Tucker, Corey; Barrie, Alexander; Chornay, Dennis J.; Pollock, Craig James; Kujawski, Joseph T.; Collinson, Glyn A.; Nguyen, Quang T.;
2011-01-01
The Magnetospheric Multiscale mission (MMS) is designed to study fundamental phenomena in space plasma physics such as a magnetic reconnection. The mission consists of four spacecraft, equipped with identical scientific payloads, allowing for the first measurements of fast dynamics in the critical electron diffusion region where magnetic reconnection occurs and charged particles are demagnetized. The MMS orbit is optimized to ensure the spacecraft spend extended periods of time in locations where reconnection is known to occur: at the dayside magnetopause and in the magnetotail. In order to resolve fine structures of the three dimensional electron distributions in the diffusion region (reconnection site), the Fast Plasma Investigation's (FPI) Dual Electron Spectrometer (DES) is designed to measure three dimensional electron velocity distributions with an extremely high time resolution of 30 ms. In order to achieve this unprecedented sampling rate, four dual spectrometers, each sampling 180 x 45 degree sections of the sky, are installed on each spacecraft. We present results of the comprehensive tests performed on the DES Engineering & Test Unit (ETU). This includes main parameters of the spectrometer such as energy resolution, angular acceptance, and geometric factor along with their variations over the 16 pixels spanning the 180-degree tophat Electro Static Analyzer (ESA) field of view and over the energy of the test beam. A newly developed method for precisely defining the operational space of the instrument is presented as well. This allows optimization of the trade-off between pixel to pixel crosstalk and uniformity of the main spectrometer parameters.
Compact Microwave Fourier Spectrum Analyzer
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry
2009-01-01
A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarcella, Carmelo; Tosi, Alberto, E-mail: alberto.tosi@polimi.it; Villa, Federica
2013-12-15
We developed a single-photon counting multichannel detection system, based on a monolithic linear array of 32 CMOS SPADs (Complementary Metal-Oxide-Semiconductor Single-Photon Avalanche Diodes). All channels achieve a timing resolution of 100 ps (full-width at half maximum) and a photon detection efficiency of 50% at 400 nm. Dark count rate is very low even at room temperature, being about 125 counts/s for 50 μm active area diameter SPADs. Detection performance and microelectronic compactness of this CMOS SPAD array make it the best candidate for ultra-compact time-resolved spectrometers with single-photon sensitivity from 300 nm to 900 nm.
Electronics design of the RPC system for the OPERA muon spectrometer
NASA Astrophysics Data System (ADS)
Acquafredda, R.; Ambrosio, M.; Balsamo, E.; Barichello, G.; Bergnoli, A.; Consiglio, L.; Corradi, G.; dal Corso, F.; Felici, G.; Manea, C.; Masone, V.; Parascandolo, P.; Sorrentino, G.
2004-09-01
The present document describes the front-end electronics of the RPC system that instruments the magnet muon spectrometer of the OPERA experiment. The main task of the OPERA spectrometer is to provide particle tracking information for muon identification and simplify the matching between the Precision Trackers. As no trigger has been foreseen for the experiment, the spectrometer electronics must be self-triggered with single-plane readout capability. Moreover, precision time information must be added within each event frame for off-line reconstruction. The read-out electronics is made of three different stages: the Front-End Boards (FEBs) system, the Controller Boards (CBs) system and the Trigger Boards (TBs) system. The FEB system provides discrimination of the strip incoming signals; a FAST-OR output of the input signals is also available for trigger plane signal generation. FEB signals are acquired by the CB system that provides the zero suppression and manages the communication to the DAQ and Slow Control. A Trigger Board allows to operate in both self-trigger mode (the FEB's FAST-OR signal starts the plane acquisition) or in external-trigger mode (different conditions can be set on the FAST-OR signals generated from different planes).
ATS-6 - Synchronous orbit trapped radiation studies with an electron-proton spectrometer
NASA Technical Reports Server (NTRS)
Walker, R. J.; Swanson, R. L.; Winckler, J. R.; Erickson, K. N.
1975-01-01
The paper discusses the University of Minnesota experiment on ATS-6 designed to study the origin and dynamics of high-energy electrons and protons in the outer radiation belt and in the near-earth plasma sheet. The experiment consists of two nearly identical detector assemblies, each of which is a magnetic spectrometer containing four gold-silicon surface barrier detectors. The instrument provides a clean separation between protons and electrons by the combination of pulse height analysis and magnetic deflection.
NASA Astrophysics Data System (ADS)
Dogan, Mevlut; Ulu, Melike; Gennerakis, Giannis; Zouros, Theo J. M.
2014-04-01
A new hemispherical deflector analyzer (HDA) which is designed for electron energy analysis in atomic collisions has been constructed and tested. Using the crossed beam technique at the electron spectrometer, test measurements were performed for electron beam (200 eV) - Helium atoms interactions. These first experimental results show that the paracentric entries give almost twice as good resolution as that for the conventional entry. Supporting simulations of the entire lens+HDA spectrometer are found in relatively good agreement with experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirschner, J.; Kerherve, G.; Winkler, C.
In this article, a novel time-of-flight spectrometer for two-electron-emission (e,2e/{gamma},2e) correlation spectroscopy from surfaces at low electron energies is presented. The spectrometer consists of electron optics that collect emitted electrons over a solid angle of approximately 1 sr and focus them onto a multichannel plate using a reflection technique. The flight time of an electron with kinetic energy of E{sub kin}{approx_equal}25 eV is around 100 ns. The corresponding time- and energy resolution are typically {approx_equal}1 ns and {approx_equal}0.65 eV, respectively. The first (e,2e) data obtained with the present setup from a LiF film are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Rooyen, Isabella Johanna; Demkowicz, Paul Andrew; Riesterer, Jessica Lori
2012-12-01
The electron microscopic examination of selected irradiated TRISO coated particles of the AGR-1 experiment of fuel compact 6-3-2 are presented in this report. Compact 6-3-2 refers to the compact in Capsule 6 at level 3 of Stack 2. The fuel used in capsule 6 compacts, are called the “baseline” fuel as it is fabricated with refined coating process conditions used to fabricate historic German fuel, because of its excellent irradiation performance with UO 2 kernels. The AGR-1 fuel is however made of low-enriched uranium oxycarbide (UCO). Kernel diameters are approximately 350 µm with a U-235 enrichment of approximately 19.7%. Compactmore » 6-3-2 has been irradiated to 11.3% FIMA compact average burn-up with a time average, volume average temperature of 1070.2°C and with a compact average fast fluence of 2.38E21 n/cm« less
Study of high resolution x-ray spectrometer concepts for NIF experiments
NASA Astrophysics Data System (ADS)
Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Efthimion, P.; Gao, L.; Maddox, J.; Pablant, N. A.; Beiersdorfer, P.; Chen, H.; Coppari, F.; Ma, T.; Nora, R.; Scott, H.; Schneider, M.; Mancini, R.
2015-11-01
Options have been investigated for DIM-insertable (Diagnostic Instrument Manipulator) high resolution (E/ ΔE ~ 3000 - 5000) Bragg crystal x-ray spectrometers for experiments on the NIF. Of interest are time integrated Cu K- and Ta L-edge absorption spectra and time resolved Kr He- β emission from compressed symcaps for inference of electron temperature from dielectronic satellites and electron density from Stark broadening. Cylindrical and conical von Hamos, Johann, and advanced high throughput designs have been studied. Predicted x-ray intensities, spectrometer throughputs, spectral resolution, and spatial focusing properties, as well as lab evaluations of some spectrometer candidates will be presented. Performed under the auspices of the US DOE by PPPL under contract DE-AC02-09CH11466 and by LLNL under contract DE-AC52-07NA27344.
Power Electronics Packaging Reliability | Transportation Research | NREL
interface materials, are a key enabling technology for compact, lightweight, low-cost, and reliable power , reliability, and cost. High-temperature bonded interface materials are an important facilitating technology for compact, lightweight, low-cost, reliable power electronics packaging that fully utilizes the
Compact high-resolution echelle-AOTF NIR spectrometer for atmospheric measurements
NASA Astrophysics Data System (ADS)
Korablev, Oleg I.; Bertaux, Jean-Loup; Vinogradov, Imant I.; Kalinnikov, Yurii K.; Nevejans, D.; Neefs, E.; Le Barbu, T.; Durry, G.
2017-11-01
A new concept of a high-resolution near-IR spectrometer consisting of an echelle grating combined with an acousto-optic tunable filter (AOTF) for separation of diffraction orders, is developed for space-borne studies of planetary atmospheres. A compact design with no moving parts within the mass budget of 3-5 kg allows to reach the resolving power λ/Δλ of 20000-30000. Only a small piece of spectrum in high diffraction orders can be measured at a time, but thanks to flexibility of the AOTF electrical tuning, such pieces of spectrum can be measured randomly and rapidly within the spectral range. This development can be used for accurate measurements of important atmospheric gases, such as CO2 in terrestrial atmosphere, isotopic ratios and minor gases. A spectrometer, based on this principle, SOIR (Solar Occultation InfraRed) is being built for Venus Express (2005) ESA mission. Instruments based on this principle have high potential for the studies of the Earth, in particular for measurements of isotopes of water in the lower atmosphere, either in solar occultation profiling (tangent altitude <10 km), or observing solar glint for integral quantities of the components. Small size of hardware makes them ideal for micro-satellites, which are now agile enough to provide necessary pointing for solar occultation or glint observations. Also, the atmosphere of Mars has never been observed at local scales with such a high spectral resolution. A laboratory prototype consisting of 275-mm echelle spectrometer with Hamamatsu InGaAs 512-pixel linear array and the AOTF has demonstrated λ/Δλ≍30000 in the spectral range of 1-1.7 μm. The next set up, covering the spectral ranges of 1-1.7 μm and 2.3-4.3 μm, and the Venus Express SOIR are briefly discussed.
Lunar and Planetary Science XXXV: Missions and Instruments: Hopes and Hope Fulfilled
NASA Technical Reports Server (NTRS)
2004-01-01
The titles in this section include: 1) Mars Global Surveyor Mars Orbiter Camera in the Extended Mission: The MOC Toolkit; 2) Mars Odyssey THEMIS-VIS Calibration; 3) Early Science Operations and Results from the ESA Mars Express Mission: Focus on Imaging and Spectral Mapping; 4) The Mars Express/NASA Project at JPL; 5) Beagle 2: Mission to Mars - Current Status; 6) The Beagle 2 Microscope; 7) Mars Environmental Chamber for Dynamic Dust Deposition and Statics Analysis; 8) Locating Targets for CRISM Based on Surface Morphology and Interpretation of THEMIS Data; 9) The Phoenix Mission to Mars; 10) First Studies of Possible Landing Sites for the Phoenix Mars Scout Mission Using the BMST; 11) The 2009 Mars Telecommunications Orbiter; 12) The Aurora Exploration Program - The ExoMars Mission; 13) Electron-induced Luminescence and X-Ray Spectrometer (ELXS) System Development; 14) Remote-Raman and Micro-Raman Studies of Solid CO2, CH4, Gas Hydrates and Ice; 15) The Compact Microimaging Spectrometer (CMIS): A New Tool for In-Situ Planetary Science; 16) Preliminary Results of a New Type of Surface Property Measurement Ideal for a Future Mars Rover Mission; 17) Electrodynamic Dust Shield for Solar Panels on Mars; 18) Sensor Web for Spatio-Temporal Monitoring of a Hydrological Environment; 19) Field Testing of an In-Situ Neutron Spectrometer for Planetary Exploration: First Results; 20) A Miniature Solid-State Spectrometer for Space Applications - Field Tests; 21) Application of Laser Induced Breakdown Spectroscopy (LIBS) to Mars Polar Exploration: LIBS Analysis of Water Ice and Water Ice/Soil Mixtures; 22) LIBS Analysis of Geological Samples at Low Pressures: Application to Mars, the Moon, and Asteroids; 23) In-Situ 1-D and 2-D Mapping of Soil Core and Rock Samples Using the LIBS Long Spark; 24) Rocks Analysis at Stand Off Distance by LIBS in Martian Conditions; 25) Evaluation of a Compact Spectrograph/Detection System for a LIBS Instrument for In-Situ and Stand-Off Detection; 26) Analysis of Organic Compounds in Mars Analog Samples; 27) Report of the Organic Contamination Science Steering Group; 28) The Water-Wheel IR (WIR) - A Contact Survey Experiment for Water and Carbonates on Mars; 29) Mid-IR Fiber Optic Probe for In Situ Water Detection and Characterization; 30) Effects of Subsurface Sampling & Processing on Martian Simulant Containing Varying Quantities of Water; 31) The Subsurface Ice Probe (SIPR): A Low-Power Thermal Probe for the Martian Polar Layered Deposits; 32) Deploying Ground Penetrating Radar in Planetary Analog Sites to Evaluate Potential Instrument Capabilities on Future Mars Missions; 33) Evaluation of Rock Powdering Methods to Obtain Fine-grained Samples for CHEMIN, a Combined XRD/XRF Instrument; 34) Novel Sample-handling Approach for XRD Analysis with Minimal Sample Preparation; 35) A New Celestial Navigation Method for Mars Landers; 36) Mars Mineral Spectroscopy Web Site: A Resource for Remote Planetary Spectroscopy.
Compact high-speed MWIR spectrometer applied to monitor CO2 exhaust dynamics from a turbojet engine
NASA Astrophysics Data System (ADS)
Linares-Herrero, R.; Vergara, G.; Gutiérrez Álvarez, R.; Fernández Montojo, C.; Gómez, L. J.; Villamayor, V.; Baldasano Ramírez, A.; Montojo, M. T.; Archilla, V.; Jiménez, A.; Mercader, D.; González, A.; Entero, A.
2013-05-01
Dfgfdg Due to international environmental regulations, aircraft turbojet manufacturers are required to analyze the gases exhausted during engine operation (CO, CO2, NOx, particles, unburned hydrocarbons (aka UHC), among others).Standard procedures, which involve sampling the gases from the exhaust plume and the analysis of the emissions, are usually complex and expensive, making a real need for techniques that allow a more frequent and reliable emissions measurements, and a desire to move from the traditional gas sampling-based methods to real time and non-intrusive gas exhaust analysis, usually spectroscopic. It is expected that the development of more precise and faster optical methods will provide better solutions in terms of performance/cost ratio. In this work the analysis of high-speed infrared emission spectroscopy measurements of plume exhaust are presented. The data was collected during the test trials of commercial engines carried out at Turbojet Testing Center-INTA. The results demonstrate the reliability of the technique for studying and monitoring the dynamics of the exhausted CO2 by the observation of the infrared emission of hot gases. A compact (no moving parts), high-speed, uncooled MWIR spectrometer was used for the data collection. This device is capable to register more than 5000 spectra per second in the infrared band ranging between 3.0 and 4.6 microns. Each spectrum is comprised by 128 spectral subbands with aband width of 60 nm. The spectrometer operated in a passive stand-off mode and the results from the measurements provided information of both the dynamics and the concentration of the CO2 during engine operation.
Inverse time-of-flight spectrometer for beam plasma research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yushkov, Yu. G., E-mail: yuyushkov@gmail.com; Zolotukhin, D. B.; Tyunkov, A. V.
2014-08-15
The paper describes the design and principle of operation of an inverse time-of-flight spectrometer for research in the plasma produced by an electron beam in the forevacuum pressure range (5–20 Pa). In the spectrometer, the deflecting plates as well as the drift tube and the primary ion beam measuring system are at high potential with respect to ground. This provides the possibility to measure the mass-charge constitution of the plasma created by a continuous electron beam with a current of up to 300 mA and electron energy of up to 20 keV at forevacuum pressures in the chamber placed atmore » ground potential. Research results on the mass-charge state of the beam plasma are presented and analyzed.« less
Current instrument status of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
NASA Technical Reports Server (NTRS)
Eastwood, Michael L.; Sarture, Charles M.; Chrien, Thomas G.; Green, Robert O.; Porter, Wallace M.
1991-01-01
An upgraded version of AVIRIS, an airborne imaging spectrometer based on a whiskbroom-type scanner coupled via optical fibers to four dispersive spectrometers, that has been in operation since 1987 is described. Emphasis is placed on specific AVIRIS subsystems including foreoptics, fiber optics, and an in-flight reference source; spectrometers and detector dewars; a scan drive mechanism; a signal chain; digital electronics; a tape recorder; calibration systems; and ground support requirements.
NASA Astrophysics Data System (ADS)
Tang, Yaguo; Shan, Xu; Liu, Zhaohui; Niu, Shanshan; Wang, Enliang; Chen, Xiangjun
2018-03-01
The low count rate of (e, 2e) electron momentum spectroscopy (EMS) has long been a major limitation of its application to the investigation of molecular dynamics. Here we report a new EMS apparatus developed for time-resolved experiments in the nanosecond time scale, in which a double toroidal energy analyzer is utilized to improve the sensitivity of the spectrometer and a nanosecond pulsed electron gun with a repetition rate of 10 kHz is used to obtain an average beam current up to nA. Meanwhile, a picosecond ultraviolet laser with a repetition rate of 5 kHz is introduced to pump the sample target. The time zero is determined by photoionizing the target using a pump laser and monitoring the change of the electron beam current with time delay between the laser pulse and electron pulse, which is influenced by the plasma induced by the photoionization. The performance of the spectrometer is demonstrated by the EMS measurement on argon using a pulsed electron beam, illustrating the potential abilities of the apparatus for investigating the molecular dynamics in excited states when employing the pump-probe scheme.
Cadieux, J. R.; Fugate, G. A.; King, III, G. S.
2015-02-07
Here, an alpha–gamma coincidence spectrometer has been developed for the measurement of selected actinide isotopes in the presence of high beta/gamma fields. The system is based on a PERALS® liquid scintillation counter for beta/alpha discrimination and was successfully tested with both high purity germanium and bismuth germanate, gamma-ray detectors using conventional analog electronics.
Knapp, P F; Ball, C; Austin, K; Hansen, S B; Kernaghan, M D; Lake, P W; Ampleford, D J; McPherson, L A; Sandoval, D; Gard, P; Wu, M; Bourdon, C; Rochau, G A; McBride, R D; Sinars, D B
2017-01-01
We describe the design and function of a new time and space resolved x-ray spectrometer for use in Z-pinch inertial confinement fusion and radiation source development experiments. The spectrometer is designed to measure x-rays in the range of 0.5-1.5 Å (8-25 keV) with a spectral resolution λ/Δλ ∼ 400. The purpose of this spectrometer is to measure the time- and one-dimensional space-dependent electron temperature and density during stagnation. These relatively high photon energies are required to escape the dense plasma created at stagnation and to obtain sensitivity to electron temperatures ≳3 keV. The spectrometer is of the Cauchois type, employing a large 30 × 36 mm 2 , transmissive quartz optic for which a novel solid beryllium holder was designed. The performance of the crystal was verified using offline tests, and the integrated system was tested using experiments on the Z pulsed power accelerator.
CRISM Observations of Water Vapor and Carbon Monoxide
NASA Technical Reports Server (NTRS)
Smith, Michael D.; Wolff, Michael J.; Clancy, R. Todd
2008-01-01
Near-infrared spectra returned by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM, [1]) on-board the Mars Reconnaissance Orbiter (MRO) contain the clear spectral signature of several atmospheric gases including carbon dioxide (CO2), water vapor (H2O), and carbon monoxide (CO). Here we describe the seasonal and spatial mapping of water vapor and carbon dioxide for one full Martian year using CRISM spectra.
NASA Astrophysics Data System (ADS)
Tuyizere, Sarathiel
2016-07-01
Solar transients events such as Coronal Mass Ejections (CMEs) and solar flares represent the cause of various aspects of space weather and can impact the modern man made technological system. Such solar transients are often associated with solar radio bursts (SRBs), particularly of type II and III that , at ground level can be detected by the CALLISTO (Compact Astronomical Low-frequency Low-cost Instrument for Spectroscopy and Transportable Observatories) solar spectrometer. The present study aims at investigating solar flares and associated SRBs impact on the ionospheric total electron content (TEC). SRBs data used are dynamic spectra covering the 2014-2015 period and detected by the CALLISTO instrument that is installed at the university of Rwanda, Kigali. To investigate ionospheric impact, we use TEC data from IGS stations located at almost the same universal time zone, and correlate the observed TEC changes to the corresponding observed solar bursts events. Preliminary observations resulting from this study indicate a slight enhancement in TEC during the burst event days. The observed TEC enhancement on the burst day can be associated to increased UV and X-rays radiations and particle acceleration that are associated with SRBs events. This work is a contribution to more understanding of the geo-space impact of solar transients phenomena for modeling and prediction.
NASA Astrophysics Data System (ADS)
Uwamahoro, Jean
2016-07-01
Solar transients events such as Coronal Mass Ejections (CMEs) and solar flares represent are the cause of various aspects of space weather and can impact the modern man made technological system. Such solar transients are often associated with solar radio bursts (SRBs), particularly of type II and III that , at ground level can be detected by the CALLISTO (Compact Astronomical Low-frequency Low-cost Instrument for Spectroscopy and Transportable Observatories) solar spectrometer. The present study aims at investigating solar flares and associated SRBs impact on the ionospheric total electron content (TEC). SRBs data used are dynamic spectra covering the 2014-2015 period and detected by the CALLISTO instrument that is installed at the university of Rwanda, Kigali. To investigate ionospheric impact, we use TEC data from IGS stations located at almost the same universal time zone, and correlate the observed TEC changes to the corresponding observed solar bursts events. Preliminary observations resulting from this study indicate a slight enhancement in TEC during the burst event days. The observed TEC enhancement on the burst day can be associated to increased UV and X-rays radiations and particle acceleration that are associated with SRBs events. This work is a contribution to more understanding of the geo-space impact of solar transients phenomena for modeling and prediction.
NASA Astrophysics Data System (ADS)
Moreno, Omar; Heavy Photon Search Collaboration
2017-01-01
The Heavy Photon Search (HPS) experiment at Jefferson Lab is searching for a new U(1) vector boson (``heavy photon'',``dark photon'' or A') in the mass range of 20-500 MeV/c2. An A' in this mass range is theoretically favorable and may also mediate dark matter interactions. The A' couples to the ordinary photon through kinetic mixing, which induces their coupling to electric charge. Since heavy photons couple to electrons, they can be produced through a process analogous to bremsstrahlung, subsequently decaying to an e+e- , which can be observed as a narrow resonance above the dominant QED trident background. For suitably small couplings, heavy photons travel detectable distances before decaying, providing a second signature. Using the CEBAF electron beam at Jefferson Lab incident on a thin tungsten target, along with a compact, large acceptance forward spectrometer consisting of a silicon vertex tracker and lead tungstate electromagnetic calorimeter, HPS is accessing unexplored regions in the mass-coupling phase space. The HPS engineering run took place in spring of 2015 using a 1.056 GeV, 50 nA beam and collected 1165 nb-1 (7.29 mC) of data. This talk will present the results of a resonance search for a heavy photon using the engineering run data.
The Origin and Distribution of Heavy Elements in HCG 62
NASA Technical Reports Server (NTRS)
Vrtilek, Jan; Lavoie, Anthony R. (Technical Monitor)
2000-01-01
We present recent data on the compact group HCG 62 taken with AXAF CCD Imaging Spectrometer-S (ACIS-S) on Chandra. The sparseness of groups and their relatively simple dynamical history allow the properties of the Intergalatic Medium (IGM) to be more directly related to galaxy evolution than may be possible in clusters, and their lower gas temperatures produce strong lines from a broader range of elements than is the case in hotter clusters. This observation exploits the high X-ray brightness of HCG 62 to determine accurately the abundances of heavy elements as a function of position in the group, to test whether abundance variations are associated with individual galaxies, and to trace the origin of the enrichment.
Towards optical fibre based Raman spectroscopy for the detection of surgical site infection
NASA Astrophysics Data System (ADS)
Thompson, Alex J.; Koziej, Lukasz; Williams, Huw D.; Elson, Daniel S.; Yang, Guang-Zhong
2016-03-01
Surgical site infections (SSIs) are common post-surgical complications that remain significant clinical problems, as they are associated with substantial mortality and morbidity. As such, there is significant interest in the development of minimally invasive techniques that permit early detection of SSIs. To this end, we are applying a compact, clinically deployable Raman spectrometer coupled to an optical fibre probe to the study of bacteria, with the long term goal of using Raman spectroscopy to detect infection in vivo. Our system comprises a 785 nm laser diode for excitation and a commercial (Ocean Optics, Inc.) Raman spectrometer for detection. Here we discuss the design, optimisation and validation of this system, and describe our first experiences interrogating bacterial cells (Escherichia coli) in vitro.
NASA Astrophysics Data System (ADS)
Fenske, Roger; Näther, Dirk U.; Dennis, Richard B.; Smith, S. Desmond
2010-02-01
Commercial Fluorescence Lifetime Spectrometers have long suffered from the lack of a simple, compact and relatively inexpensive broad spectral band light source that can be flexibly employed for both quasi-steady state and time resolved measurements (using Time Correlated Single Photon Counting [TCSPC]). This paper reports the integration of an optically pumped photonic crystal fibre, supercontinuum source1 (Fianium model SC400PP) as a light source in Fluorescence Lifetime Spectrometers (Edinburgh Instruments FLS920 and Lifespec II), with single photon counting detectors (micro-channel plate photomultiplier and a near-infrared photomultiplier) covering the UV to NIR range. An innovative method of spectral selection of the supercontinuum source involving wedge interference filters is also discussed.
Compact x-ray source and panel
Sampayon, Stephen E [Manteca, CA
2008-02-12
A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.
Large dynamic range terahertz spectrometers based on plasmonic photomixers (Conference Presentation)
NASA Astrophysics Data System (ADS)
Wang, Ning; Javadi, Hamid; Jarrahi, Mona
2017-02-01
Heterodyne terahertz spectrometers are highly in demand for space explorations and astrophysics studies. A conventional heterodyne terahertz spectrometer consists of a terahertz mixer that mixes a received terahertz signal with a local oscillator signal to generate an intermediate frequency signal in the radio frequency (RF) range, where it can be easily processed and detected by RF electronics. Schottky diode mixers, superconductor-insulator-superconductor (SIS) mixers and hot electron bolometer (HEB) mixers are the most commonly used mixers in conventional heterodyne terahertz spectrometers. While conventional heterodyne terahertz spectrometers offer high spectral resolution and high detection sensitivity levels at cryogenic temperatures, their dynamic range and bandwidth are limited by the low radiation power of existing terahertz local oscillators and narrow bandwidth of existing terahertz mixers. To address these limitations, we present a novel approach for heterodyne terahertz spectrometry based on plasmonic photomixing. The presented design replaces terahertz mixer and local oscillator of conventional heterodyne terahertz spectrometers with a plasmonic photomixer pumped by an optical local oscillator. The optical local oscillator consists of two wavelength-tunable continuous-wave optical sources with a terahertz frequency difference. As a result, the spectrometry bandwidth and dynamic range of the presented heterodyne spectrometer is not limited by radiation frequency and power restrictions of conventional terahertz sources. We demonstrate a proof-of-concept terahertz spectrometer with more than 90 dB dynamic range and 1 THz spectrometry bandwidth.
Passive and active plasma deceleration for the compact disposal of electron beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonatto, A., E-mail: abonatto@lbl.gov; CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 700040-020; Schroeder, C. B.
2015-08-15
Plasma-based decelerating schemes are investigated as compact alternatives for the disposal of high-energy beams (beam dumps). Analytical solutions for the energy loss of electron beams propagating in passive and active (laser-driven) schemes are derived. These solutions, along with numerical modeling, are used to investigate the evolution of the electron distribution, including energy chirp and total beam energy. In the active beam dump scheme, a laser-driver allows a more homogeneous beam energy extraction and drastically reduces the energy chirp observed in the passive scheme. These concepts could benefit applications requiring overall compactness, such as transportable light sources, or facilities operating atmore » high beam power.« less
The OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS): Spectral Maps of the Asteroid Bennu
NASA Astrophysics Data System (ADS)
Reuter, D. C.; Simon, A. A.; Hair, J.; Lunsford, A.; Manthripragada, S.; Bly, V.; Bos, B.; Brambora, C.; Caldwell, E.; Casto, G.; Dolch, Z.; Finneran, P.; Jennings, D.; Jhabvala, M.; Matson, E.; McLelland, M.; Roher, W.; Sullivan, T.; Weigle, E.; Wen, Y.; Wilson, D.; Lauretta, D. S.
2018-03-01
The OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) is a point spectrometer covering the spectral range of 0.4 to 4.3 microns (25,000-2300 cm-1). Its primary purpose is to map the surface composition of the asteroid Bennu, the target asteroid of the OSIRIS-REx asteroid sample return mission. The information it returns will help guide the selection of the sample site. It will also provide global context for the sample and high spatial resolution spectra that can be related to spatially unresolved terrestrial observations of asteroids. It is a compact, low-mass (17.8 kg), power efficient (8.8 W average), and robust instrument with the sensitivity needed to detect a 5% spectral absorption feature on a very dark surface (3% reflectance) in the inner solar system (0.89-1.35 AU). It, in combination with the other instruments on the OSIRIS-REx Mission, will provide an unprecedented view of an asteroid's surface.
Mobile phone based mini-spectrometer for rapid screening of skin cancer
NASA Astrophysics Data System (ADS)
Das, Anshuman; Swedish, Tristan; Wahi, Akshat; Moufarrej, Mira; Noland, Marie; Gurry, Thomas; Aranda-Michel, Edgar; Aksel, Deniz; Wagh, Sneha; Sadashivaiah, Vijay; Zhang, Xu; Raskar, Ramesh
2015-06-01
We demonstrate a highly sensitive mobile phone based spectrometer that has potential to detect cancerous skin lesions in a rapid, non-invasive manner. Earlier reports of low cost spectrometers utilize the camera of the mobile phone to image the field after moving through a diffraction grating. These approaches are inherently limited by the closed nature of mobile phone image sensors and built in optical elements. The system presented uses a novel integrated grating and sensor that is compact, accurate and calibrated. Resolutions of about 10 nm can be achieved. Additionally, UV and visible LED excitation sources are built into the device. Data collection and analysis is simplified using the wireless interfaces and logical control on the smart phone. Furthermore, by utilizing an external sensor, the mobile phone camera can be used in conjunction with spectral measurements. We are exploring ways to use this device to measure endogenous fluorescence of skin in order to distinguish cancerous from non-cancerous lesions with a mobile phone based dermatoscope.
Design and simulation of the circuit of SWIR hyper-spectral imaging spectrometer
NASA Astrophysics Data System (ADS)
Ren, Bin; Li, Zi-tian; Meng, Nan
2009-07-01
With the requirement of the SWIR Hyper-spectral Imaging Spectrometer, this article describes a project of SWIR image circuit based on IRFPA detector. First, the structure of the SWIR Hyper-spectral Imaging Spectrometer is introduced in this paper, and then the infrared imaging circuit design is proposed, which is based on MCT SWIR FPA with 500*256 pixels, the detector NEPTURN, in Safradir Company. According to the scheme, several key technologies have been studied in particular, such as driving circuit, time control circuit, high-speed A/D converter, LVDS (Low Voltage Differential Signaling) transmission circuit. At last, An improved two-point Correction Method was chosen to correct the Non-uniformity of image. The simulation results demonstrate that the proposed method can effectively suppress noises and work with low power consumption. The electric system not only has the advantages of simplicity and compactness but also can work stably, providing 500×256 image at the frame frequency of 200 Hz in good quality.
Kudryavtsev, Andrey S; Makas, Alexey L; Troshkov, Mikhail L; Grachev, Mikhail А; Pod'yachev, Sergey P
2014-06-01
A method for fast simultaneous on-site determination of methyl mercaptan and dimethyl sulfide in air was developed. The target compounds were actively collected on silica gel, followed by direct flash thermal desorption, fast separation on a short chromatographic column and detection by means of mass spectrometer with atmospheric pressure chemical ionization. During the sampling of ambient air, water vapor was removed with a Nafion selective membrane. A compact mass spectrometer prototype, which was designed earlier at Trofimuk Institute of Petroleum Geology and Geophysics, was used. The minimization of gas load of the atmospheric pressure ion source allowed reducing the power requirements and size of the vacuum system and increasing its ruggedness. The measurement cycle is about 3 min. Detection limits in a 0.6 L sample are 1 ppb for methyl mercaptan and 0.2 ppb for dimethyl sulfide. Copyright © 2014 Elsevier B.V. All rights reserved.
Self-corrected chip-based dual-comb spectrometer.
Hébert, Nicolas Bourbeau; Genest, Jérôme; Deschênes, Jean-Daniel; Bergeron, Hugo; Chen, George Y; Khurmi, Champak; Lancaster, David G
2017-04-03
We present a dual-comb spectrometer based on two passively mode-locked waveguide lasers integrated in a single Er-doped ZBLAN chip. This original design yields two free-running frequency combs having a high level of mutual stability. We developed in parallel a self-correction algorithm that compensates residual relative fluctuations and yields mode-resolved spectra without the help of any reference laser or control system. Fluctuations are extracted directly from the interferograms using the concept of ambiguity function, which leads to a significant simplification of the instrument that will greatly ease its widespread adoption and commercial deployment. Comparison with a correction algorithm relying on a single-frequency laser indicates discrepancies of only 50 attoseconds on optical timings. The capacities of this instrument are finally demonstrated with the acquisition of a high-resolution molecular spectrum covering 20 nm. This new chip-based multi-laser platform is ideal for the development of high-repetition-rate, compact and fieldable comb spectrometers in the near- and mid-infrared.
Characteristics of DC electric fields at dipolarization fronts
NASA Astrophysics Data System (ADS)
Laakso, Harri; Escoubet, Philippe; Masson, Arnaud
2016-04-01
We investigate the characteristics of DC electric field at dipolarization fronts and BBF's using multi-point Cluster observations. There are plenty of important issues that are considered, such as what kind of DC electric fields exist in such events and what are their spatial scales. One can also recognize if electrons and ions perform ExB drift motions in these events. To investigate this, we take an advantage of five different DC electric field measurements in the plasma sheet available from the EFW double probe experiment, EDI electron drift instrument, CODIF and HIA ion spectrometers, and PEACE electron spectrometer. The calibrated observations of the three spectrometers are used to determine the proton and electron drift velocity and furthermore the DC electric field, assuming that the electron and proton velocity perpendicular to the magnetic field is dominated by the ExB drift motion. Naturally when ions and electrons do not perform a proper drift motion, which can happen in the plasma sheet, the estimated DC electric field from ion and electron motion is not correct. However, surprisingly often the DC electric fields estimated from electron and ion motions are identical suggesting that this field is a real DC electric field around the measurement point. This investigation also helps understand how well different measurements are calibrated.
NASA Technical Reports Server (NTRS)
2004-01-01
This image, taken by an instrument called the microscopic imager on the Mars Exploration Rover Spirit, reveals an imprint left by another instrument, the Moessbauer spectrometer. The imprint is at a location within the rover wheel track named 'Middle of Road.' Both instruments are located on the rover's instrument deployment device, or 'arm.'
Not only was the Moessbauer spectrometer able to gain important mineralogical information about this site, it also aided in the placement of the microscopic imager. On hard rocks, the microscopic imager uses its tiny metal sensor to determine proper placement for best possible focus. However, on the soft martian soil this guide would sink, prohibiting proper placement of the microscopic imager. After the Moessbauer spectrometer's much larger, donut-shaped plate touches the surface, Spirit can correctly calculate where to position the microscopic imager.Scientists find this image particularly interesting because of the compacted nature of the soil that was underneath the Moessbauer spectrometer plate. Also of interest are the embedded, round grains and the fractured appearance of the material disturbed within the hole. The material appears to be slightly cohesive. The field of view in this image, taken on Sol 43 (February 16, 2004), measures approximately 3 centimeters (1.2 inches) across.Solar Imaging UV/EUV Spectrometers Using TVLS Gratings
NASA Astrophysics Data System (ADS)
Thomas, R. J.
2003-05-01
It is a particular challenge to develop a stigmatic spectrograph for UV/EUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both re-imaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-spaced rulings (TULS). A number of solar EUV spectrometers have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets SERTS and EUNIS. More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. We now combine these ideas into a spectrometer concept that puts varied-line space rulings onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of three new solar spectrometers based on this concept are described: SUMI and RAISE, two sounding rocket payloads, and NEXUS, currently being proposed as a Small-Explorer (SMEX) mission.
A simple, low-cost, versatile CCD spectrometer for plasma spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Den Hartog, D. J.; Holly, D. J.
1996-06-01
The authors have constructed a simple, low-cost CCD spectrometer capable of both high resolution ({Delta}{lambda} {le} 0.015 nm) and large bandpass (110 nm with {Delta}{lambda} {approximately}0.3 nm). These two modes of operation provide two broad areas of capability for plasma spectroscopy. The first major application is measurement of emission line broadening; the second is emission line surveys from the ultraviolet to the near infrared. Measurements have been made on a low-temperature plasma produced by a miniature electrostatic plasma source and the high-temperature plasma in the MST Reversed-Field Pinch. The spectrometer is a modified Jarrell-Ash 0.5 m Ebert-Fastie monochromator. Light ismore » coupled into the entrance slit with a fused silica fiber optic bundle. The exposure time (2 ms minimum) is controlled by a fast electromechanical shutter. The exit plane detector is a compact and robust CCD detector developed for amateur astronomy by Santa Barbara Instrument Group. The CCD detector is controlled and read out by a Macintosh{reg_sign} computer. This spectrometer is sophisticated enough to serve well in a research laboratory, yet is simple and inexpensive enough to be affordable for instructional use.« less
NASA Astrophysics Data System (ADS)
Dai, Honglin; Luo, Yongdao
2013-12-01
In recent years, with the development of the Flat-Field Holographic Concave Grating, they are adopted by all kinds of UV spectrometers. By means of single optical surface, the Flat-Field Holographic Concave Grating can implement dispersion and imaging that make the UV spectrometer system design quite compact. However, the calibration of the Flat-Field Holographic Concave Grating is very difficult. Various factors make its imaging quality difficult to be guaranteed. So we have to process the spectrum signal with signal restoration before using it. Guiding by the theory of signals and systems, and after a series of experiments, we found that our UV spectrometer system is a Linear Space- Variant System. It means that we have to measure PSF of every pixel of the system which contains thousands of pixels. Obviously, that's a large amount of calculation .For dealing with this problem, we proposes a novel signal restoration method. This method divides the system into several Linear Space-Invariant subsystems and then makes signal restoration with PSFs. Our experiments turn out that this method is effective and inexpensive.
Technical design and commissioning of the KATRIN large-volume air coil system
NASA Astrophysics Data System (ADS)
Erhard, M.; Behrens, J.; Bauer, S.; Beglarian, A.; Berendes, R.; Drexlin, G.; Glück, F.; Gumbsheimer, R.; Hergenhan, J.; Leiber, B.; Mertens, S.; Osipowicz, A.; Plischke, P.; Reich, J.; Thümmler, T.; Wandkowsky, N.; Weinheimer, C.; Wüstling, S.
2018-02-01
The KATRIN experiment is a next-generation direct neutrino mass experiment with a sensitivity of 0.2 eV (90% C.L.) to the effective mass of the electron neutrino. It measures the tritium β-decay spectrum close to its endpoint with a spectrometer based on the MAC-E filter technique. The β-decay electrons are guided by a magnetic field that operates in the mT range in the central spectrometer volume; it is fine-tuned by a large-volume air coil system surrounding the spectrometer vessel. The purpose of the system is to provide optimal transmission properties for signal electrons and to achieve efficient magnetic shielding against background. In this paper we describe the technical design of the air coil system, including its mechanical and electrical properties. We outline the importance of its versatile operation modes in background investigation and suppression techniques. We compare magnetic field measurements in the inner spectrometer volume during system commissioning with corresponding simulations, which allows to verify the system's functionality in fine-tuning the magnetic field configuration. This is of major importance for a successful neutrino mass measurement at KATRIN.
Soft X-ray spectrometer design for warm dense plasma measurements on DARHT Axis-I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramey, Nicholas Bryan; Perry, John Oliver; Coleman, Joshua Eugene
2017-07-11
A preliminary design study is being performed on a soft X-ray spectrometer to measure K-shell spectra emitted by a warm dense plasma generated on Axis-I of the Dual-Axis Radiographic Hydrodynamic Testing (DARHT) facility at Los Alamos National Laboratory. The 100-ns-long intense, relativistic electron pulse with a beam current of 1.7 kA and energy of 19.8 MeV deposits energy into a thin metal foil heating it to a warm dense plasma. The collisional ionization of the target by the electron beam produces an anisotropic angular distribution of K-shell radiation and a continuum of both scattered electrons and Bremsstrahlung up to themore » beam energy of 19.8 MeV. The principal goal of this project is to characterize these angular distributions to determine the optimal location to deploy the soft X-ray spectrometer. In addition, a proof-of-principle design will be presented. The ultimate goal of the spectrometer is to obtain measurements of the plasma temperature and density to benchmark equation-of-state models of the warm dense matter regime.« less
Absolute Calibration of Image Plate for electrons at energy between 100 keV and 4 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H; Back, N L; Eder, D C
2007-12-10
The authors measured the absolute response of image plate (Fuji BAS SR2040) for electrons at energies between 100 keV to 4 MeV using an electron spectrometer. The electron source was produced from a short pulse laser irradiated on the solid density targets. This paper presents the calibration results of image plate Photon Stimulated Luminescence PSL per electrons at this energy range. The Monte Carlo radiation transport code MCNPX results are also presented for three representative incident angles onto the image plates and corresponding electron energies depositions at these angles. These provide a complete set of tools that allows extraction ofmore » the absolute calibration to other spectrometer setting at this electron energy range.« less
Towards TeV-scale electron-positron collisions: the Compact Linear Collider (CLIC)
NASA Astrophysics Data System (ADS)
Doebert, Steffen; Sicking, Eva
2018-02-01
The Compact Linear Collider (CLIC), a future electron-positron collider at the energy frontier, has the potential to change our understanding of the universe. Proposed to follow the Large Hardron Collider (LHC) programme at CERN, it is conceived for precision measurements as well as for searches for new phenomena.
Performance of a carbon nanotube field emission electron gun
NASA Astrophysics Data System (ADS)
Getty, Stephanie A.; King, Todd T.; Bis, Rachael A.; Jones, Hollis H.; Herrero, Federico; Lynch, Bernard A.; Roman, Patrick; Mahaffy, Paul
2007-04-01
A cold cathode field emission electron gun (e-gun) based on a patterned carbon nanotube (CNT) film has been fabricated for use in a miniaturized reflectron time-of-flight mass spectrometer (RTOF MS), with future applications in other charged particle spectrometers, and performance of the CNT e-gun has been evaluated. A thermionic electron gun has also been fabricated and evaluated in parallel and its performance is used as a benchmark in the evaluation of our CNT e-gun. Implications for future improvements and integration into the RTOF MS are discussed.
Kim, Namje; Han, Sang-Pil; Ko, Hyunsung; Leem, Young Ahn; Ryu, Han-Cheol; Lee, Chul Wook; Lee, Donghun; Jeon, Min Yong; Noh, Sam Kyu; Park, Kyung Hyun
2011-08-01
We demonstrate a tunable continuous-wave (CW) terahertz (THz) homodyne system with a novel detuned dual-mode laser diode (DML) and low-temperature-grown (LTG) InGaAs photomixers. The optical beat source with the detuned DML showed a beat frequency tuning range of 0.26 to over 1.07 THz. Log-spiral antenna integrated LTG InGaAs photomixers are used as THz wave generators and detectors. The CW THz radiation frequency was continuously tuned to over 1 THz. Our results clearly show the feasibility of a compact and fast scanning CW THz spectrometer consisting of a fiber-coupled detuned DML and photomixers operating in the 1.55-μm range.
NASA Astrophysics Data System (ADS)
Campana, R.; Fuschino, F.; Labanti, C.; Marisaldi, M.; Amati, L.; Fiorini, M.; Uslenghi, M.; Baldazzi, G.; Bellutti, P.; Evangelista, Y.; Elmi, I.; Feroci, M.; Ficorella, F.; Frontera, F.; Picciotto, A.; Piemonte, C.; Rachevski, A.; Rashevskaya, I.; Rignanese, L. P.; Vacchi, A.; Zampa, G.; Zampa, N.; Zorzi, N.
2016-07-01
A future compact and modular X and gamma-ray spectrometer (XGS) has been designed and a series of proto- types have been developed and tested. The experiment envisages the use of CsI scintillator bars read out at both ends by single-cell 25 mm2 Silicon Drift Detectors. Digital algorithms are used to discriminate between events absorbed in the Silicon layer (lower energy X rays) and events absorbed in the scintillator crystal (higher energy X rays and -rays). The prototype characterization is shown and the modular design for future experiments with possible astrophysical applications (e.g. for the THESEUS mission proposed for the ESA M5 call) are discussed.
Raman technology for future planetary missions
NASA Astrophysics Data System (ADS)
Thiele, Hans; Hofer, Stefan; Stuffler, Timo; Glier, Markus; Popp, Jürgen; Sqalli, Omar; Wuttig, Andreas; Riesenberg, Rainer
2017-11-01
Scientific experiments on mineral and biological samples with Raman excitation below 300nm show a wealth of scientific information. The fluorescence, which typically decreases signal quality in the visual or near infrared wavelength regime can be avoided with deep ultraviolet excitation. This wavelength regime is therefore regarded as highly attractive for a compact high performance Raman spectrometer for in-situ planetary research. Main objective of the MIRAS II breadboard activity presented here (MIRAS: Mineral Investigation with Raman Spectroscopy) is to evaluate, design and build a compact fiber coupled deep-UV Raman system breadboard. Additionally, the Raman system is combined with an innovative scanning microscope system to allow effective auto-focusing and autonomous orientation on the sample surface for high precise positioning or high resolution Raman mapping.
A compact permanent magnet cyclotrino for accelerator mass spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, A.T.; Clark, D.J.; Kunkel, W.B.
1995-02-01
The authors describe the development of a new instrument for the detection of trace amounts of rare isotopes, a Cyclotron Mass Spectrometer (CMS). A compact low energy cyclotron optimized for high mass resolution has been designed and has been fabricated. The instrument has high sensitivity and is designed to measure carbon-14 at abundances of < 10{sup {minus}12}. A novel feature of the instrument is the use of permanent magnets to energize the iron poles of the cyclotron. The instrument uses axial injection, employing a spiral inflector. The instrument has been assembled and preliminary measurements of the magnetic field show thatmore » it has a uniformity on the order of 2 parts in 10{sup 4}.« less
NASA Astrophysics Data System (ADS)
Avetisov, V. G.; Kosichkin, Yu V.; Malakhova, V. I.; Merkulov, A. V.; Nadezhdinskiĭ, A. I.; Paleĭ, S. L.; Khusnutdinov, A. N.; Yakubovich, S. D.
1989-04-01
A two-beam spectrometer utilizing injection lasers emitting in the near infrared was constructed. The spectrometer utilizes rapid scanning of the laser emission frequency followed by recording with an analog-digital converter. The spectrometer parameters are as follows: a spectral resolution of at least 2 × 10 -3 cm-1, a response time 50 ns, and a detectivity amounting to 0.0003% of the incident power carried by one pulse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Rooyen, I. J.; Lillo, T. M.; Wen, H. M.
Advanced microscopic and microanalysis techniques were developed and applied to study irradiation effects and fission product behavior in selected low-enriched uranium oxide/uranium carbide TRISO-coated particles from fuel compacts in six capsules irradiated to burnups of 11.2 to 19.6% FIMA. Although no TRISO coating failures were detected during the irradiation, the fraction of Ag-110m retained in individual particles often varied considerably within a single compact and at the capsule level. At the capsule level Ag-110m release fractions ranged from 1.2 to 38% and within a single compact, silver release from individual particles often spanned a range that extended from 100% retentionmore » to nearly 100% release. In this paper, selected irradiated particles from Baseline, Variant 1 and Variant 3 type fueled TRISO coated particles were examined using Scanning Electron Microscopy, Atom Probe Tomography; Electron Energy Loss Spectroscopy; Precession Electron Diffraction, Transmission Electron Microscopy, Scanning Transmission Electron Microscopy (STEM), High Resolution Electron Microscopy (HRTEM) examinations and Electron Probe Micro-Analyzer. Particle selection in this study allowed for comparison of the fission product distribution with Ag retention, fuel type and irradiation level. Nano sized Ag-containing features were predominantly identified in SiC grain boundaries and/or triple points in contrast with only two sitings of Ag inside a SiC grain in two different compacts (Baseline and Variant 3 fueled compacts). STEM and HRTEM analysis showed evidence of Ag and Pd co-existence in some cases and it was found that fission product precipitates can consist of multiple or single phases. STEM analysis also showed differences in precipitate compositions between Baseline and Variant 3 fuels. A higher density of fission product precipitate clusters were identified in the SiC layer in particles from the Variant 3 compact compared with the Variant 1 compact. Trend analysis shows precipitates were randomly distributed along the perimeter of the IPyC-SiC interlayer but only weakly associated with kernel protrusion and buffer fractures. There has been no evidence that the general release of silver is related to cracks or significant degradation of the microstructure. The results presented in this paper provide new insights to Ag transport mechanism(s) in intact SiC layer of TRISO coated particles.« less
NASA Technical Reports Server (NTRS)
Goldstein, J. I.; Williams, D. B.
1992-01-01
This paper reviews and discusses future directions in analytical electron microscopy for microchemical analysis using X-ray and Electron Energy Loss Spectroscopy (EELS). The technique of X-ray microanalysis, using the ratio method and k(sub AB) factors, is outlined. The X-ray absorption correction is the major barrier to the objective of obtaining I% accuracy and precision in analysis. Spatial resolution and Minimum Detectability Limits (MDL) are considered with present limitations of spatial resolution in the 2 to 3 microns range and of MDL in the 0.1 to 0.2 wt. % range when a Field Emission Gun (FEG) system is used. Future directions of X-ray analysis include improvement in X-ray spatial resolution to the I to 2 microns range and MDL as low as 0.01 wt. %. With these improvements the detection of single atoms in the analysis volume will be possible. Other future improvements include the use of clean room techniques for thin specimen preparation, quantification available at the I% accuracy and precision level with light element analysis quantification available at better than the 10% accuracy and precision level, the incorporation of a compact wavelength dispersive spectrometer to improve X-ray spectral resolution, light element analysis and MDL, and instrument improvements including source stability, on-line probe current measurements, stage stability, and computerized stage control. The paper reviews the EELS technique, recognizing that it has been slow to develop and still remains firmly in research laboratories rather than in applications laboratories. Consideration of microanalysis with core-loss edges is given along with a discussion of the limitations such as specimen thickness. Spatial resolution and MDL are considered, recognizing that single atom detection is already possible. Plasmon loss analysis is discussed as well as fine structure analysis. New techniques for energy-loss imaging are also summarized. Future directions in the EELS technique will be the development of new spectrometers and improvements in thin specimen preparation. The microanalysis technique needs to be simplified and software developed so that the EELS technique approaches the relative simplicity of the X-ray technique. Finally, one can expect major improvements in EELS imaging as data storage and processing improvements occur.
All-Solid-State 2.45-to-2.78-THz Source
NASA Technical Reports Server (NTRS)
Mehdi, Imran; Chattopadhyay, Goutam; Schlecht, Erich T.; Lin, Robert H.; Sin, Seith; Peralta, Alejandro; Lee, Choonsup; Gill, John J.; Pearson, John C.; Goldsmith, Paul F.;
2011-01-01
Sources in the THz range are required in order for NASA to implement heterodyne instruments in this frequency range. The source that has been demonstrated here will be used for an instrument on the SOFIA platform as well as for upcoming astrophysics missions. There are currently no electronic sources in the 2 3- THz frequency range. An electronically tunable compact source in this frequency range is needed for lab spectroscopy as well as for compact space-deployable heterodyne receivers. This solution for obtaining useful power levels in the 2 3- THz range is based on utilizing power-combined multiplier stages. Utilizing power combining, the input power can be distributed between different multiplier chips and then recombined after the frequency multiplication. A continuous wave (CW) coherent source covering 2.48 2.75 THz, with greater than 10 percent instantaneous and tuning bandwidth, and having l 14 W of output power at room temperature, has been demonstrated. This source is based on a 91.8 101.8-GHz synthesizer followed by a power amplifier and three cascaded frequency triplers. It demonstrates that purely electronic solid-state sources can generate a useful amount of power in a region of the electromagnetic spectrum where lasers (solid-state or gas) were previously the only available coherent sources. The bandwidth, agility, and operability of this THz source has enabled wideband, high-resolution spectroscopic measurements of water, methanol, and carbon monoxide with a resolution and signal-to-noise ratio unmatched by other existing systems, providing new insight in the physics of these molecules. Further - more, the power and optical beam quality are high enough to observe the Lamb-dip effect in water. The source frequency has an absolute accuracy better than 1 part in 1012, and the spectrometer achieves sub-Doppler frequency resolution better than 1 part in 108. The harmonic purity is better than 25 dB. This source can serve as a local oscillator for a variety of heterodyne systems, and can be used as a method for precision control of more powerful but much less frequency-agile quantum mechanical terahertz sources.
Development of an advanced spacecraft tandem mass spectrometer
NASA Astrophysics Data System (ADS)
Drew, Russell C.
1992-03-01
The purpose of this research was to apply current advanced technology in electronics and materials to the development of a miniaturized Tandem Mass Spectrometer that would have the potential for future development into a package suitable for spacecraft use. The mass spectrometer to be used as a basis for the tandem instrument would be a magnetic sector instrument, of Nier-Johnson configuration, as used on the Viking Mars Lander mission. This instrument configuration would then be matched with a suitable second stage MS to provide the benefits of tandem MS operation for rapid identification of unknown organic compounds. This tandem instrument is configured with a newly designed GC system to aid in separation of complex mixtures prior to MS analysis. A number of important results were achieved in the course of this project. Among them were the development of a miniaturized GC subsystem, with a unique desorber-injector, fully temperature feedback controlled oven with powered cooling for rapid reset to ambient conditions, a unique combination inlet system to the MS that provides for both membrane sampling and direct capillary column sample transfer, a compact and ruggedized alignment configuration for the MS, an improved ion source design for increased sensitivity, and a simple, rugged tandem MS configuration that is particularly adaptable to spacecraft use because of its low power and low vacuum pumping requirements. The potential applications of this research include use in manned spacecraft like the space station as a real-time detection and warning device for the presence of potentially harmful trace contaminants of the spacecraft atmosphere, use as an analytical device for evaluating samples collected on the Moon or a planetary surface, or even use in connection with monitoring potentially hazardous conditions that may exist in terrestrial locations such as launch pads, environmental test chambers or other sensitive areas. Commercial development of the technology could lead to a new family of environmental test instruments that would be small and portable, yet would give quick analyses of complex samples.
Development of an advanced spacecraft tandem mass spectrometer
NASA Technical Reports Server (NTRS)
Drew, Russell C.
1992-01-01
The purpose of this research was to apply current advanced technology in electronics and materials to the development of a miniaturized Tandem Mass Spectrometer that would have the potential for future development into a package suitable for spacecraft use. The mass spectrometer to be used as a basis for the tandem instrument would be a magnetic sector instrument, of Nier-Johnson configuration, as used on the Viking Mars Lander mission. This instrument configuration would then be matched with a suitable second stage MS to provide the benefits of tandem MS operation for rapid identification of unknown organic compounds. This tandem instrument is configured with a newly designed GC system to aid in separation of complex mixtures prior to MS analysis. A number of important results were achieved in the course of this project. Among them were the development of a miniaturized GC subsystem, with a unique desorber-injector, fully temperature feedback controlled oven with powered cooling for rapid reset to ambient conditions, a unique combination inlet system to the MS that provides for both membrane sampling and direct capillary column sample transfer, a compact and ruggedized alignment configuration for the MS, an improved ion source design for increased sensitivity, and a simple, rugged tandem MS configuration that is particularly adaptable to spacecraft use because of its low power and low vacuum pumping requirements. The potential applications of this research include use in manned spacecraft like the space station as a real-time detection and warning device for the presence of potentially harmful trace contaminants of the spacecraft atmosphere, use as an analytical device for evaluating samples collected on the Moon or a planetary surface, or even use in connection with monitoring potentially hazardous conditions that may exist in terrestrial locations such as launch pads, environmental test chambers or other sensitive areas. Commercial development of the technology could lead to a new family of environmental test instruments that would be small and portable, yet would give quick analyses of complex samples.
Miniature Raman spectrometer development
NASA Astrophysics Data System (ADS)
Bonvallet, Joseph; Auz, Bryan; Rodriguez, John; Olmstead, Ty
2018-02-01
The development of techniques to rapidly identify samples ranging from, molecule and particle imaging to detection of high explosive materials, has surged in recent years. Due to this growing want, Raman spectroscopy gives a molecular fingerprint, with no sample preparation, and can be done remotely. These systems can be small, compact, lightweight, and with a user interface that allows for easy use and sample identification. Ocean Optics Inc. has developed several systems that would meet all these end user requirements. This talk will describe the development of different Ocean Optics Inc miniature Raman spectrometers. The spectrometer on a phone (SOAP) system was designed using commercial off the shelf (COTS) components, in a rapid product development cycle. The footprint of the system measures 40x40x14 mm (LxWxH) and was coupled directly to the cell phone detector camera optics. However, it gets roughly only 40 cm-1 resolution. The Accuman system is the largest (290x220X100 mm) of the three, but uses our QEPro spectrometer and get 7-11 cm-1 resolution. Finally, the HRS-30 measuring 165x85x40 mm is a combination of the other two systems. This system uses a modified EMBED spectrometer and gets 7-12 cm-1 resolution. Each of these units uses a peak matching algorithm that then correlates the results to the pre-loaded and customizable spectral libraries.
Miniature high-performance infrared spectrometer for space applications
NASA Astrophysics Data System (ADS)
Kruzelecky, Roman V.; Haddad, Emile; Wong, Brian; Lafrance, Denis; Jamroz, Wes; Ghosh, Asoke K.; Zheng, Wanping; Phong, Linh
2004-06-01
Infrared spectroscopy probes the characteristic vibrational and rotational modes of chemical bonds in molecules to provide information about both the chemical composition and the bonding configuration of a sample. The significant advantage of the Infrared spectral technique is that it can be used with minimal consumables to simultaneously detect a large variety of chemical and biochemical species with high chemical specificity. To date, relatively large Fourier Transform (FT-IR) spectrometers employing variations of the Michelson interferometer have been successfully employed in space for various IR spectroscopy applications. However, FT-IR systems are mechanically complex, bulky (> 15 kg), and require considerable processing. This paper discusses the use of advanced integrated optics and smart optical coding techniques to significantly extend the performance of miniature IR spectrometers by several orders of magnitude in sensitivity. This can provide the next-generation of compact, high-performance IR spectrometers with monolithically integrated optical systems for robust optical alignment. The entire module can weigh under 3 kg to minimize the mass penalty for space applications. Miniaturized IR spectrometers are versatile and very convenient for small and micro satellite based missions. They can be dedicated to the monitoring of the CO2 in an Earth Observation mission, to Mars exobiology exploration, as well as to vital life support in manned space system; such as the cabin air quality and the quality of the recycled water supply.
Miniature high-performance infrared spectrometer for space applications
NASA Astrophysics Data System (ADS)
Kruzelecky, Roman V.; Haddad, Emile; Wong, Brian; Lafrance, Denis; Jamroz, Wes; Ghosh, Asoke K.; Zheng, Wanping; Phong, Linh
2017-11-01
Infrared spectroscopy probes the characteristic vibrational and rotational modes of chemical bonds in molecules to provide information about both the chemical composition and the bonding configuration of a sample. The significant advantage of the Infrared spectral technique is that it can be used with minimal consumables to simultaneously detect a large variety of chemical and biochemical species with high chemical specificity. To date, relatively large Fourier Transform (FT-IR) spectrometers employing variations of the Michelson interferometer have been successfully employed in space for various IR spectroscopy applications. However, FT-IR systems are mechanically complex, bulky (> 15 kg), and require considerable processing. This paper discusses the use of advanced integrated optics and smart optical coding techniques to significantly extend the performance of miniature IR spectrometers by several orders of magnitude in sensitivity. This can provide the next generation of compact, high-performance IR spectrometers with monolithically integrated optical systems for robust optical alignment. The entire module can weigh under 3 kg to minimize the mass penalty for space applications. Miniaturized IR spectrometers are versatile and very convenient for small and micro satellite based missions. They can be dedicated to the monitoring of the CO2 in an Earth Observation mission, to Mars exobiology exploration, as well as to vital life support in manned space system; such as the cabin air quality and the quality of the recycled water supply.
NASA Astrophysics Data System (ADS)
Jakobsen, Hans J.; Bildsøe, Henrik; Gan, Zhehong; Brey, William W.
2011-08-01
The acquisition and different appearances observed for wide bandwidth solid-state MAS NMR spectra of low-γ nuclei, using 14N as an illustrative nucleus and employing two different commercial spectrometers (Varian, 14.1 T and Bruker, 19.6 T), have been compared/evaluated and optimized from an experimental NMR and an electronic engineering point of view, to account for the huge differences in these spectra. The large differences in their spectral appearances, employing the recommended/standard experimental set-up for the two different spectrometers, are shown to be associated with quite large differences in the electronic design of the two types of preamplifiers, which are connected to their respective probes through a 50 Ω cable, and are here completely accounted for. This has led to different opportunities for optimum performances in the acquisition of nearly ideal wide bandwidth spectra for low-γ nuclei on the two spectrometers by careful evaluation of the length for the 50 Ω probe-to-preamp cable for the Varian system and appropriate changes to the bandwidth ( Q) of the NMR probe used on the Bruker spectrometer. Earlier, we reported quite distorted spectra obtained with Varian Unity INOVA spectrometers (at 11.4 and 14.1 T) in several exploratory wide bandwidth 14N MAS NMR studies of inorganic nitrates and amino acids. These spectra have now been compared/evaluated with fully analyzed 14N MAS spectra correspondingly acquired at 19.6 T on a Bruker spectrometer. It is shown that our upgraded version of the STARS simulation/iterative-fitting software is capable of providing identical sets for the molecular spectral parameters and corresponding fits to the experimental spectra, which fully agree with the electronic measurements, despite the highly different appearances for the MAS NMR spectra acquired on the Varian and Bruker spectrometers.
NASA Astrophysics Data System (ADS)
Henderson, Alexander Hastings
Lasers have grown more powerful in recent years, opening up new frontiers in physics. From early intensities of less than 1010 W/cm 2, lasers can now achieve intensities over 1021 W/cm 2. Ultraintense laser can become powerful new tools to produce relativistic electrons, positron-electron pairs, and gamma-rays. The pair production efficiency is equal to or greater than that of linear accelerators, the most common method of antimatter generation in the past. The gamma-rays and electrons produced can be highly collimated, making these interactions of interest for beam generation. Monte-Carlo particle transport simulation has long been used in physics for simulating various particle and radiation processes, and is well-suited to simulating both electromagnetic cascades resulting from laser-solid interactions and the response of electron/positron spectrometers and gamma-ray detectors. We have used GEANT4 Monte-Carlo particle transport simulation to design and calibrate charged-particle spectrometers using permanent magnets as well as a Forward Compton Electron Spectrometer to measure gamma-rays of higher energies than have previously been achieved. We have had some success simulating and measuring high positron and gamma-rays yields from laser-solid interactions using gold target at the Texas Petawatt Laser (TPW). While similar spectrometers have been developed in the past, we are to our knowledge the first to successfully use permanent magnet spectrometers to detect positrons originating from laser-solid interactions in this energy range. We believe we are also the first to successfully detect multi-MeV gamma rays using a permanent magnet Forward Compton Electron Spectrometer. Monte-Carlo particle transport simulation has been used by other groups to model positron production from laser-solid ineraction, but at the time that we began we were, as far as we know, the first to have a significant amount of empirical data to work with. We were thus at liberty to estimate the initial conditions, compare simulation results to data, and adjust as needed to obtain a better estimate of the actual initial conditions. We have also developed a new method for measuring the yield and angular distribution of gamma-rays using a two-dimensional dosimeter array. In this work, we examine the experimental and simulation results as well as the physical processes behind them. In addition, the gamma-rays produced by our experiments could be useful for photo-nuclear reactors and homeland security purposes. In our experiments, we measured narrow energy-band positrons and electrons which have potential medical uses.
Design and numerical characterization of a crossover EBIS
NASA Astrophysics Data System (ADS)
Geyer, Sabrina; Langbein, A.; Meusel, Oliver; Kester, Oliver
2015-01-01
For the investigation of highly charged ions, a crossover EBIS (XEBIS) was developed at the University of Frankfurt. In contrast to conventional EBIS/T devices the compression of the electron beam is achieved by electrostatic focusing to a crossover point in the interaction region. This concept allows a compact and simple design. Simulations performed with EGUN show a perveance of 2.1×10-7 A/V3/2 for the realized gun system. In the interaction region the electron beam has a density of around 10 A/cm2 and a minimum radius of 0.15 mm. The XEBIS has a total length of 112 mm with a trap length of 26 mm. It is designed for electron beam energies of up to 6 keV/q. The storage capacity of the trap region is in the order of 1×108 charges. Charge state breeding studies with CBSIM indicate for the noble gases as maximal achievable charge state Ar16+, Kr30+ and Xe35+. Thus ion beam currents of around 2.04 nA assuming 50 Hz repetition rate can be expected. The emittance of the extracted beam is approximated to 8 mm mrad. After completion of the construction phase, the XEBIS will be installed for first performance investigations at a dedicated test bench, equipped with a fast Faraday Cup (FC), a retarding field spectrometer, a luminescence screen and optical diagnostics. Subsequently the XEBIS will serve as source for highly charged ions at different experimental setups.
Baker, Daniel N; Dewey, Ryan M; Lawrence, David J; Goldsten, John O; Peplowski, Patrick N; Korth, Haje; Slavin, James A; Krimigis, Stamatios M; Anderson, Brian J; Ho, George C; McNutt, Ralph L; Raines, Jim M; Schriver, David; Solomon, Sean C
2016-03-01
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury has provided a wealth of new data about energetic particle phenomena. With observations from MESSENGER's Energetic Particle Spectrometer, as well as data arising from energetic electrons recorded by the X-Ray Spectrometer and Gamma-Ray and Neutron Spectrometer (GRNS) instruments, recent work greatly extends our record of the acceleration, transport, and loss of energetic electrons at Mercury. The combined data sets include measurements from a few keV up to several hundred keV in electron kinetic energy and have permitted relatively good spatial and temporal resolution for many events. We focus here on the detailed nature of energetic electron bursts measured by the GRNS system, and we place these events in the context of solar wind and magnetospheric forcing at Mercury. Our examination of data at high temporal resolution (10 ms) during the period March 2013 through October 2014 supports strongly the view that energetic electrons are accelerated in the near-tail region of Mercury's magnetosphere and are subsequently "injected" onto closed magnetic field lines on the planetary nightside. The electrons populate the plasma sheet and drift rapidly eastward toward the dawn and prenoon sectors, at times executing multiple complete drifts around the planet to form "quasi-trapped" populations.
Evidence for Basinwide Mud Volcanism in Acidalia Planitia, Mars
NASA Technical Reports Server (NTRS)
Oehler, Dorothy Z.; Allen, Carlton C.
2010-01-01
High-albedo mounds in Acidalia Planitia occur in enormous numbers. They have been variously interpreted as pseudocraters, cinder cones, tuff cones, pingos, ice disintegration features, or mud volcanoes. Our work uses regional mapping, basin analysis, and new data from the Context Camera (CTX), High Resolution Imaging Science Experiment (HiRISE), and Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) to re-assess the origin and significance of these structures.
2012-09-01
Feasibility (MT Modeling ) a. Continuum of mixture distributions interpolated b. Mixture infeasibilities calculated for each pixel c. Valid detections...Visible/Infrared Imaging Spectrometer BRDF Bidirectional Reflectance Distribution Function CASI Compact Airborne Spectrographic Imager CCD...filtering (MTMF), and was designed by Healey and Slater (1999) to use “a physical model to generate the set of sensor spectra for a target that will be
Design and Analysis of a Hyperspectral Microwave Receiver Subsystem
NASA Technical Reports Server (NTRS)
Blackwell, W.; Galbraith, C.; Hancock, T.; Leslie, R.; Osaretin, I.; Shields, M.; Racette, P.; Hillard, L.
2012-01-01
Hyperspectral microwave (HM) sounding has been proposed to achieve unprecedented performance. HM operation is achieved using multiple banks of RF spectrometers with large aggregate bandwidth. A principal challenge is Size/Weight/Power scaling. Objectives of this work: 1) Demonstrate ultra-compact (100 cm3) 52-channel IF processor (enabler); 2) Demonstrate a hyperspectral microwave receiver subsystem; and 3) Deliver a flight-ready system to validate HM sounding.
Towards establishing compact imaging spectrometer standards
Slonecker, E. Terrence; Allen, David W.; Resmini, Ronald G.
2016-01-01
Remote sensing science is currently undergoing a tremendous expansion in the area of hyperspectral imaging (HSI) technology. Spurred largely by the explosive growth of Unmanned Aerial Vehicles (UAV), sometimes called Unmanned Aircraft Systems (UAS), or drones, HSI capabilities that once required access to one of only a handful of very specialized and expensive sensor systems are now miniaturized and widely available commercially. Small compact imaging spectrometers (CIS) now on the market offer a number of hyperspectral imaging capabilities in terms of spectral range and sampling. The potential uses of HSI/CIS on UAVs/UASs seem limitless. However, the rapid expansion of unmanned aircraft and small hyperspectral sensor capabilities has created a number of questions related to technological, legal, and operational capabilities. Lightweight sensor systems suitable for UAV platforms are being advertised in the trade literature at an ever-expanding rate with no standardization of system performance specifications or terms of reference. To address this issue, both the U.S. Geological Survey and the National Institute of Standards and Technology are eveloping draft standards to meet these issues. This paper presents the outline of a combined USGS/NIST cooperative strategy to develop and test a characterization methodology to meet the needs of a new and expanding UAV/CIS/HSI user community.
Diffractive Optical Elements for Spectral Imaging
NASA Technical Reports Server (NTRS)
Wilson, D.; Maker, P.; Muller, R.; Mourolis, P.; Descour, M.; Volin, C.; Dereniak, E.
2000-01-01
Diffractive optical elements fabricated on flat and non-flat substrates frequently act as dispersive elements in imaging spectrometers. We describe the design and electron-beam fabrication of blazed and computer-generated-hologram gratings for slit and tomographic imaging spectrometer.
Diffractive Optical Elements for Spectral Imaging
NASA Technical Reports Server (NTRS)
Wilson, D.; Maker, P.; Muller, R.; Maker, P.; Mouroulis, P.; Descour, M.; Volin, C.; Dereniak, E.
2000-01-01
Diffractive optical elements fabricated on flat and non-flat substrates frequently act as dispersive elements in imaging spectrometers. We describe the design and electron-beam fabrication of blazed and computer-generated-hologram gratings for slit and tomographic imaging spectrometers.
An Optics Free Spectrometer for the Extreme Ultraviolet
NASA Technical Reports Server (NTRS)
Judge, D. L.; Daybell, M. D.; Hoffman, J. R.; Gruntman, M. A.; Ogawa, H. S.; Samson, J. A. R.
1994-01-01
The optics-free spectrometer is a photon spectrometer. It provides the photon spectrum of a broadband source by converting photons of energy E into electrons of energy E', according to the Einstein relation, E' = E - Ei. E, is the ionization threshold of the gas target of interest (any of the rare gases are suitable) and E is the incoming photon energy. As is evident from the above equation, only a single order spectrum is produced throughout the energy range between the first and second ionization potentials of the rare gas used. Photons with energy above the second ionization potential produce two groups of electrons, but they are readily distinguished from each other. This feature makes this device extremely useful for determining the true spectrum of a continuum source or a many line source. The principle of operation and the laboratory results obtained with a representative configuration of the optics-free spectrometer are presented.
Measurements on the development of cascades in a tungsten-scintillator ionization spectrometer
NASA Technical Reports Server (NTRS)
Cheshire, D. L.; Huggett, R. W.; Johnson, D. P.; Jones, W. V.; Rountree, S. P.; Schmidt, W. K. H.; Kurz, R. J.; Bowen, T.; Delise, D. A.; Krider, E. P.
1975-01-01
The response of a tungsten-scintillator ionization spectrometer to accelerated particle beams has been investigated. Results obtained from exposure of the approx. 1000 g/sq cm apparatus to 5, 10, and 15 GeV/c electrons and pions as well as to 2.1 GeV/nucleon C-12 and O-16 ions are presented. These results include cascade-development curves, fractions of the primary energy measured by the spectrometer, and resolutions of the apparatus for measuring the primary energies. For 15 GeV/c electrons, an average of about 82% of the incident energy is measured by the apparatus with resolution (normal standard deviation) of about 6%. For 15 GeV/c pions, an average of about 65% of the incident energy is measured with resolution of about 18%. The energy resolution improves with increasing energy and with increasing depth of the spectrometer.
Mini ion trap mass spectrometer
Dietrich, Daniel D.; Keville, Robert F.
1995-01-01
An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.
Mini ion trap mass spectrometer
Dietrich, D.D.; Keville, R.F.
1995-09-19
An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.
Compact time- and space-integrating SAR processor: design and development status
NASA Astrophysics Data System (ADS)
Haney, Michael W.; Levy, James J.; Christensen, Marc P.; Michael, Robert R., Jr.; Mock, Michael M.
1994-06-01
Progress toward a flight demonstration of the acousto-optic time- and space- integrating real-time SAR image formation processor program is reported. The concept overcomes the size and power consumption limitations of electronic approaches by using compact, rugged, and low-power analog optical signal processing techniques for the most computationally taxing portions of the SAR imaging problem. Flexibility and performance are maintained by the use of digital electronics for the critical low-complexity filter generation and output image processing functions. The results reported include tests of a laboratory version of the concept, a description of the compact optical design that will be implemented, and an overview of the electronic interface and controller modules of the flight-test system.
High resolution Fouier transform spectrometer Serial No. 091002: Instruction manual
NASA Technical Reports Server (NTRS)
1971-01-01
A description of the spectrometer and procedures for its operation, maintenance, alignments, adjustments, and control functions are presented. The interferometer spectrometer is a modified Model 296 capable of 0.5/cm resolution over the spectral region of 5 to 15 microns configured for operation with the optical head at a temperature of approximately 80 K. Details are given on the optical system and the electronic circuits. The detector used with the optical head is mercury doped germanium kept at a temperature of about 4 K by means of liquid helium. Electronic schematics, and instruction manuals for handling the liquid helium dewars, tape recorder for analog outputs, and playback console are included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karelin, A. V., E-mail: karelin@hotbox.ru; Borisov, S. V.; Voronov, S. A.
2013-06-15
The PAMELA satellite-borne experiment is designed to study cosmic rays over a broad energy range. The apparatus has been in near-Earth cosmic space from June 2006 to the present time. It is equipped with a magnetic spectrometer for determining the sign of the particle charge and rigidity. In solving some problems, however, information from the magnetic spectrometer becomes inaccessible, so that it is necessary to employ a calorimeter to separate the electron and nuclear cosmic-ray components. A procedure for separating these components for particles arriving off the magnetic-spectrometer aperture is considered.
NASA Astrophysics Data System (ADS)
Parker, H. A.; Hedelius, J.; Viatte, C.; Wunch, D.; Wennberg, P. O.; Chen, J.; Wofsy, S.; Jones, T.; Franklin, J.; Dubey, M. K.; Roehl, C. M.; Podolske, J. R.; Hillyard, P. W.; Iraci, L. T.
2015-12-01
Measurement, reporting and verification (MRV) of anthropogenic emissions and natural sources and sinks of carbon dioxide (CO2) and methane (CH4) are crucial to predict climate change and develop transparent accounting policies to contain climate forcing. Remote sensing technologies are monitoring column averaged dry air mole fractions of CO2 and CH4 (XCO2 & XCH4) from ground and space (OCO-2 and GOSAT) with solar spectroscopy enabling direct MRV. However, current ground based coverage is sparse due to the need for large and expensive high-resolution spectrometers that are part of the Total Column Carbon Observing Network (TCCON, Bruker 125HR). This limits our MRV and satellite validation abilities, both regionally and globally. There are striking monitoring gaps in Asia, South America and Africa where the CO2 emissions are growing and there is a large uncertainty in fluxes from land use change, biomass burning and rainforest vulnerability. To fill this gap we evaluate the precision, accuracy and stability of compact, affordable and easy to use low-resolution spectrometers (Bruker EM27/SUN) by comparing with XCO2 and XCH4 retrieved from much larger high-resolution TCCON instruments. As these instruments will be used in a variety of locations, we evaluate their performance by comparing with 2 previous and 4 current United States TCCON sites in different regions up to 2700 km apart. These sites range from polluted to unpolluted, latitudes of 32 to 46°N, and altitudes of 230 to 2241 masl. Comparisons with some of these sites cover multiple years allowing assessment of the EM27/SUN performance not only in various regions, but also over an extended period of time and with different seasonal influences. Results show that our 2 EM27/SUN instruments capture the diurnal variability of the aforementioned constituents very well, but with offsets from TCCON and long-term variability which may be due in part to the extensive movement these spectrometers were subjected to. These off-the-shelf spectrometers should dramatically expand the coverage of regional XCO2 and XCH4 observations, particularly in gap regions. Increased temporal and spacial resolution on global carbon data will lead to more reliable information when considering climate change policy and funding.
Hybrid Interferometric/Dispersive Atomic Spectroscopy For Nuclear Materials Analysis
NASA Astrophysics Data System (ADS)
Morgan, Phyllis K.
Laser-induced breakdown spectroscopy (LIBS) is an optical emission spectroscopy technique that holds promise for detection and rapid analysis of elements relevant for nuclear safeguards and nonproliferation, including the measurement of isotope ratios. One important application of LIBS is the measurement of uranium enrichment (235U/238U), which requires high spectral resolution (e.g., 25 pm for the 424.437 nm U II line). Measuring uranium enrichment is important in nuclear nonproliferation and safeguards because the uranium highly enriched in the 235U isotope can be used to construct nuclear weapons. High-resolution dispersive spectrometers necessary for such measurements are typically bulky and expensive. A hybrid interferometric/dispersive spectrometer prototype, which consists of an inexpensive, compact Fabry-Perot etalon integrated with a low to moderate resolution Czerny-Turner spectrometer, was assembled for making high-resolution measurements of nuclear materials in a laboratory setting. To more fully take advantage of this low-cost, compact hybrid spectrometer, a mathematical reconstruction technique was developed to accurately reconstruct relative line strengths from complex spectral patterns with high resolution. Measurement of the mercury 313.1555/313.1844 nm doublet from a mercury-argon lamp yielded a spectral line intensity ratio of 0.682, which agrees well with an independent measurement by an echelle spectrometer and previously reported values. The hybrid instrument was used in LIBS measurements and achieved the resolution needed for isotopic selectivity of LIBS of uranium in ambient air. The samples used were a natural uranium foil (0.7% of 235U) and a uranium foil highly enriched in 235U to 93%. Both samples were provided by the Penn State University's Breazeale Nuclear Reactor. The enrichment of the uranium foils was verified using a high-purity germanium detector and dedicated software for multi-group spectral analysis. Uranium spectral line widths of ˜10 pm were measured at a center wavelength 424.437 nm, clearly discriminating the natural from the highly enriched uranium at that wavelength. The 424.167 nm isotope shift (˜6 pm), limited by spectral broadening, was only partially resolved but still discernible. This instrument and reconstruction method could enable the design of significantly smaller, portable high-resolution instruments with isotopic specificity, benefiting nuclear safeguards, treaty verification, nuclear forensics, and a variety of other spectroscopic applications.
NASA Astrophysics Data System (ADS)
Earle, Lieko
We have built Z-Spec, a broadband spectrometer for millimeter-wave astrophysics. The instrument's instantaneous bandwidth of 185-305 GHz covers the entire 1 millimeter atmospheric transmission window with a moderate resolving power ( R = n/Dn) of 250-350. The spectrometer employs a novel architecture called WaFIRS (Waveguide Far-Infrared Spectrometer) which confines the light propagation for a curved diffraction grating within a parallel-plate waveguide, resulting in a minimum mechanical envelope. An array of 160 silicon- nitride micromesh bolometers is cooled to 60 mK via an adiabatic demagnetization refrigerator (ADR) backed by a closed-cycle 3 He- 4 He sorption pump refrigerator. Z-Spec's compact design serves as a concept demonstration for a future far-infrared spectrometer aboard a cold telescope in space. Routine observations with Z-Spec from the Caltech Submillimeter Observatory on Mauna Kea have been conducted since April 2006, and the instrument currently achieves good sensitivities that are within a factor of two of the photon background limit set by the atmosphere and telescope. Z-Spec's primary science objectives are to determine the redshifts of faint submillimeter galaxies using the 12 CO rotational ladder, and to conduct systematic line surveys of local galaxies. The millimeter waveband hosts low- to mid- J rotational transitions for several molecular species which trace the dense interstellar gas associated with active star formation. Z-Spec's bandwidth offers a unique advantage over the traditional single-dish heterodyne approach: the spectral lines and the corresponding continua are all observed simultaneously, greatly reducing relative uncertainties in flux calibration and line-to-continuum ratios. The starburst galaxy NGC 253 was observed with Z-Spec in November 2006, for a total integration of 3.49 hours over two nights. NGC 253 is one of the brightest neighbors outside the Local Group of galaxies and its compact nuclear region is a site of prodigious star-formation. Twenty-one transitions in 13 species were detected at greater than 3s, including the well-known density tracers HCO + , HCN, HNC, and three transitions of CS. The results are compared with large-velocity-gradient (LVG) radiative-transfer simulations and the implications for the physical conditions of the gas in the starburst core are discussed.
NASA Astrophysics Data System (ADS)
Dinerstein, Harriet L.; Kaplan, Kyle F.; Jaffe, Daniel T.
2015-08-01
Near-infrared emission lines of vibrationally-excited H2 were first detected in planetary nebulae (PNe) four decades ago. In some environments, e.g. outflows from low-mass young stellar objects, such emission is generally attributed to shock heating. The situation is more complicated for PNe, which host more than one potential agent of excitation. Shocks are indeed present within PNe, due to interactions among expanding layers of different velocities. On the other hand, the UV radiation field of the central star can populate excited vibrational levels of the ground electronic state via an indirect process, initiated by transitions to excited electronic states upon absorption of non-H-ionizing UV photons (the H2 Lyman-Werner bands), followed by radiative decay. When not modified by other processes, this produces a highly distinctive “pure fluorescent” H2 spectrum (Black & van Dishoeck 1987, ApJ, 322, 412). Such emission was first identified in a PN, Hb 12, by Dinerstein et al. 1988 (ApJ, 327, L27). Later surveys (e.g. Hora et al. 1999, ApJS, 124, 195; Likkel & Dinerstein et al. 2006, AJ, 131, 1515) found that some PNe display thermal (collisionally-dominated) spectra, a few are fluorescent, and others show intermediate line ratios. It is not always easy to distinguish whether the latter is due to a superposition of radiative and shock components (Davis et al. 2003, MNRAS, 344, 262), or to thermalization of initially radiatively excited molecules due to high density, a hard radiation field, and/or advective effects (e.g. Henney et al. 2007, ApJ, 671, 137). We present new observations of H2 in PNe obtained with the high-spectral resolution (R = 40,000), broad spectral grasp IGRINS spectrometer (Park & Jaffe et al. 2014, Proc SPIE, 9147). This instrument reveals small-scale structures in position-velocity space that differ in excitation and emergent line ratios. For example, the compact PN M 1-11 contains both a fluorescent shell of H2 and higher-velocity compact “bullets” with thermal H2 spectra. This kind of observation can clarify the physical conditions giving rise to specific H2 spectra in sources too distant to be resolved in detail. We appreciate the support of the IGRINS science team in obtaining these data.
Design and testing of focusing magnets for a compact electron linac
NASA Astrophysics Data System (ADS)
Chen, Qushan; Qin, Bin; Liu, Kaifeng; Liu, Xu; Fu, Qiang; Tan, Ping; Hu, Tongning; Pei, Yuanji
2015-10-01
Solenoid field errors have great influence on electron beam qualities. In this paper, design and testing of high precision solenoids for a compact electron linac is presented. We proposed an efficient and practical method to solve the peak field of the solenoid for relativistic electron beams based on the reduced envelope equation. Beam dynamics involving space charge force were performed to predict the focusing effects. Detailed optimization methods were introduced to achieve an ultra-compact configuration as well as high accuracy, with the help of the POISSON and OPERA packages. Efforts were attempted to restrain system errors in the off-line testing, which showed the short lens and the main solenoid produced a peak field of 0.13 T and 0.21 T respectively. Data analysis involving central and off axes was carried out and demonstrated that the testing results fitted well with the design.
Viewfinder/tracking system for Skylab
NASA Technical Reports Server (NTRS)
Casey, W. L.
1975-01-01
Basic component of system is infrared spectrometer designed for manual target acquisition, pointing and tracking, and data-take initiation. System incorporates three main subsystems which include: (1) viewfinder telescope, (2) control panel and electronics assembly, and (3) IR-spectrometer case assembly.
The effect of the earth's and stray magnetic fields on mobile mass spectrometer systems.
Bell, Ryan J; Davey, Nicholas G; Martinsen, Morten; Short, R Timothy; Gill, Chris G; Krogh, Erik T
2015-02-01
Development of small, field-portable mass spectrometers has enabled a rapid growth of in-field measurements on mobile platforms. In such in-field measurements, unexpected signal variability has been observed by the authors in portable ion traps with internal electron ionization. The orientation of magnetic fields (such as the Earth's) relative to the ionization electron beam trajectory can significantly alter the electron flux into a quadrupole ion trap, resulting in significant changes in the instrumental sensitivity. Instrument simulations and experiments were performed relative to the earth's magnetic field to assess the importance of (1) nonpoint-source electron sources, (2) vertical versus horizontal electron beam orientation, and (3) secondary magnetic fields created by the instrument itself. Electron lens focus effects were explored by additional simulations, and were paralleled by experiments performed with a mass spectrometer mounted on a rotating platform. Additionally, magnetically permeable metals were used to shield (1) the entire instrument from the Earth's magnetic field, and (2) the electron beam from both the Earth's and instrument's magnetic fields. Both simulation and experimental results suggest the predominant influence on directionally dependent signal variability is the result of the summation of two magnetic vectors. As such, the most effective method for reducing this effect is the shielding of the electron beam from both magnetic vectors, thus improving electron beam alignment and removing any directional dependency. The improved ionizing electron beam alignment also allows for significant improvements in overall instrument sensitivity.
Diffractive optical elements on non-flat substrates using electron beam lithography
NASA Technical Reports Server (NTRS)
Maker, Paul D. (Inventor); Muller, Richard E. (Inventor); Wilson, Daniel W. (Inventor)
2002-01-01
The present disclosure describes a technique for creating diffraction gratings on curved surfaces with electron beam lithography. The curved surface can act as an optical element to produce flat and aberration-free images in imaging spectrometers. In addition, the fabrication technique can modify the power structure of the grating orders so that there is more energy in the first order than for a typical grating. The inventors noticed that by using electron-beam lithography techniques, a variety of convex gratings that are well-suited to the requirements of imaging spectrometers can be manufactured.
NASA Astrophysics Data System (ADS)
Ersez, Tunay; Esposto, Fernando; Souza, Nicolas R. de
2017-09-01
The shielding for the neutron high-resolution backscattering spectrometer (EMU) located at the OPAL reactor (ANSTO) was designed using the Monte Carlo code MCNP 5-1.60. The proposed shielding design has produced compact shielding assemblies, such as the neutron pre-monochromator bunker with sliding cylindrical block shields to accommodate a range of neutron take-off angles, and in the experimental area - shielding of neutron focusing guides, choppers, flight tube, backscattering monochromator, and additional shielding elements inside the Scattering Tank. These shielding assemblies meet safety and engineering requirements and cost constraints. The neutron dose rates around the EMU instrument were reduced to < 0.5 µSv/h and the gamma dose rates to a safe working level of ≤ 3 µSv/h.
A system definition study for the Advanced Meteorological Temperature Sounder (AMTS)
NASA Technical Reports Server (NTRS)
1977-01-01
The functional requirements of Exhibit A (11) were used as the baseline for the conceptual design of a fixed grating out of plane multidetector spectrometer for the Space Shuttle application. Because the grating instrument would be large and the 28 element detector array would be difficult to cool radiatively from a free flying spacecraft and because increasing the spectral resolution of the grating instrument would be difficult in an instrument of reasonable size, a parallel study of a Nichelson interferometer spectrometer was undertaken. This type of instrument offers compact size, fewer detectors to cool, and the possibility of increased spectral resolution. The design and performance parameters of both the grating and interferometer approaches are described. The tradeoffs involved in comparing the two systems for sounding applications are discussed.
Towards a portable Raman spectrometer using a concave grating and a time-gated CMOS SPAD.
Li, Zhiyun; Deen, M Jamal
2014-07-28
A low-cost, compact Raman spectrometer suitable for the on-line water monitoring applications is explored. A custom-designed concave grating for wavelength selection was fabricated and tested. The detection of the Raman signal is accomplished with a time-gated single photon avalanche diode (TG-SPAD). A fixed gate window of 3.5ns is designed and applied to the TG-SPAD. The temporal resolution of the SPAD was ~60ps when tested with a 7ps, 532nm solid-state laser. To test the efficiency of the gating in fluorescence signal suppression, different detection windows (3ns-0.25ns) within the 3.5ns gate window are used to measure the Raman spectra of Rhodamine B. Strong Raman peaks are resolved with this low-cost system.
Acousto-optic infrared spectral imager for Pluto fast flyby
NASA Technical Reports Server (NTRS)
Glenar, D. A.; Hillman, J. J.
1993-01-01
Acousto-optic tunable filters (AOTF's) enable the design of compact, two-dimensional imaging spectrometers with high spectral and spatial resolution and with no moving parts. Tellurium dioxide AOTF's operate from about 400 nm to nearly 5 microns, and a single device will tune continuously over one octave by changing the RF acoustic frequency applied to the device. An infrared (1.2-2.5 micron) Acousto-Optic Imaging Spectrometer (AImS) was designed that closely conforms to the surface composition mapping objectives of the Pluto Fast Flyby. It features a 75-cm focal length telescope, infrared AOTF, and 256 x 256 NICMOS-3 focal plane array for acquiring narrowband images with a spectral resolving power (lambda/delta(lambda)) exceeding 250. We summarize the instrument design features and its expected performance at the Pluto-Charon encounter.
NASA Astrophysics Data System (ADS)
Pechousek, J.; Prochazka, R.; Mashlan, M.; Jancik, D.; Frydrych, J.
2009-01-01
The digital proportional-integral-derivative (PID) velocity controller used in the Mössbauer spectrometer implemented in field programmable gate array (FPGA) is based on the National Instruments CompactRIO embedded system and LabVIEW graphical programming tools. The system works as a remote system accessible via the Ethernet. The digital controller operates in real-time conditions, and the maximum sampling frequency is approximately 227 kS s-1. The system was tested with standard sample measurements of α-Fe and α-57Fe2O3 on two different electromechanical velocity transducers. The nonlinearities of the velocity scales in the relative form are better than 0.2%. The replacement of the standard analog PID controller by the new system brings the possibility of optimizing the control process more precisely.
Environmental monitors in the Midcourse Space Experiments (MSX)
NASA Technical Reports Server (NTRS)
Uy, O. M.
1993-01-01
The Midcourse Space Experiment (MSX) is an SDIO sponsored space based sensor experiment with a full complement of optical sensors. Because of the possible deleterious effect of both molecular and particulate contamination on these sensors, a suite of environmental monitoring instruments are also being flown with the spacecraft. These instruments are the Total Pressure Sensor based on the cold-cathode gauge, a quadrupole mass spectrometer, a Bennett-type ion mass spectrometer, a cryogenic quartz crystal microbalance (QCM), four temperature-controlled QCM's, and a Xenon and Krypton Flash Lamp Experiment. These instruments have been fully space-qualified, are compact and low cost, and are possible candidate sensors for near-term planetary and atmospheric monitoring. The philosophy adopted during design and fabrication, calibration and ground testing, and modeling will be discussed .
A compact electron gun for time-resolved electron diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A., E-mail: derek.wann@york.ac.uk
A novel compact time-resolved electron diffractometer has been built with the primary goal of studying the ultrafast molecular dynamics of photoexcited gas-phase molecules. Here, we discuss the design of the electron gun, which is triggered by a Ti:Sapphire laser, before detailing a series of calibration experiments relating to the electron-beam properties. As a further test of the apparatus, initial diffraction patterns have been collected for thin, polycrystalline platinum samples, which have been shown to match theoretical patterns. The data collected demonstrate the focusing effects of the magnetic lens on the electron beam, and how this relates to the spatial resolutionmore » of the diffraction pattern.« less
NASA Astrophysics Data System (ADS)
Schneider, J.; Weimer, S.; Drewnick, F.; Borrmann, S.; Helas, G.; Gwaze, P.; Schmid, O.; Andreae, M. O.; Kirchner, U.
2006-12-01
Various types of combustion-related particles in the size range between 100 and 850 nm were analyzed with an aerosol mass spectrometer and a differential mobility analyzer. The measurements were performed with particles originating from biomass burning, diesel engine exhaust, laboratory combustion of diesel fuel and gasoline, as well as from spark soot generation. Physical and morphological parameters like fractal dimension, effective density, bulk density and dynamic shape factor were derived or at least approximated from the measurements of electrical mobility diameter and vacuum aerodynamic diameter. The relative intensities of the mass peaks in the mass spectra obtained from particles generated by a commercial diesel passenger car, by diesel combustion in a laboratory burner, and by evaporating and re-condensing lubrication oil were found to be very similar. The mass spectra from biomass burning particles show signatures identified as organic compounds like levoglucosan but also others which are yet unidentified. The aerodynamic behavior yielded a fractal dimension (Df) of 2.09 +/- 0.06 for biomass burning particles from the combustion of dry beech sticks, but showed values around three, and hence more compact particle morphologies, for particles from combustion of more natural oak. Scanning electron microscope images confirmed the finding that the beech combustion particles were fractal-like aggregates, while the oak combustion particles displayed a much more compact shape. For particles from laboratory combusted diesel fuel, a Df value of 2.35 was found, for spark soot particles, Df [approximate] 2.10. The aerodynamic properties of fractal-like particles from dry beech wood combustion indicate an aerodynamic shape factor [chi] that increases with electrical mobility diameter, and a bulk density of 1.92 g cm-3. An upper limit of [chi] [approximate] 1.2 was inferred for the shape factor of the more compact particles from oak combustion.
The Jovian Electron and Ion Spectrometer (JEI) for the JUICE mission
NASA Astrophysics Data System (ADS)
Fränz, M.; Bührke, U.; Ferreira, P.; Fischer, H.; Heumüller, P.; Krupp, N.; Kühne, W.; Roussos, E.
2017-09-01
The magnetosphere of Jupiter is apart from the Sun the strongest source of charged particles in the Solar system. The interaction of these particles with the exospheres of the Jovian moons forms one of the most complex plasma laboratories encountered by human space flight. For this reason the plasma analyzer package forms a crucial experiment of the Jupiter Icy Moon Explorer (JUICE). As part of the Plasma Environment Package (PEP) we here describe a combined electron and ion spectrometer which is able to measure the electron and ion distribution functions in the energy range 1 to 50000 eV with high sensitivity and time resolution. This instrument is called the Jovian Electron and Ion Analyzer, JEI.
Positron lifetime spectrometer using a DC positron beam
Xu, Jun; Moxom, Jeremy
2003-10-21
An entrance grid is positioned in the incident beam path of a DC beam positron lifetime spectrometer. The electrical potential difference between the sample and the entrance grid provides simultaneous acceleration of both the primary positrons and the secondary electrons. The result is a reduction in the time spread induced by the energy distribution of the secondary electrons. In addition, the sample, sample holder, entrance grid, and entrance face of the multichannel plate electron detector assembly are made parallel to each other, and are arranged at a tilt angle to the axis of the positron beam to effectively separate the path of the secondary electrons from the path of the incident positrons.
Portable fluorescence meter with reference backscattering channel
NASA Astrophysics Data System (ADS)
Kornilin, Dmitriy V.; Grishanov, Vladimir N.; Zakharov, Valery P.; Burkov, Dmitriy S.
2016-09-01
Methods based on fluorescence and backscattering are intensively used for determination of the advanced glycation end products (AGE) concentration in the biological tissues. There are strong correlation between the AGE concentration and the severity of such diseases like diabetes, coronary heart disease and renal failure. This fact can be used for diagnostic purposes in medical applications. Only few investigations in this area can be useful for development of portable and affordable in vivo AGE meter because the most of them are oriented on using spectrometers. In this study we describe the design and the results of tests on volunteers of portable fluorescence meter based on two photodiodes. One channel of such fluorimeter is used for measurement of the autofluorescence (AF) intensity, another one - for the intensity of elastically scattered radiation, which can be used as a reference. This reference channel is proposed for normalization of the skin autofluorescence signal to the human skin photo type. The fluorimeter, that was developed is relatively compact and does not contain any expensive optical and electronic components. The experimental results prove that proposed tool can be used for the AGE estimation in human skin.
General-purpose readout electronics for white neutron source at China Spallation Neutron Source
NASA Astrophysics Data System (ADS)
Wang, Q.; Cao, P.; Qi, X.; Yu, T.; Ji, X.; Xie, L.; An, Q.
2018-01-01
The under-construction White Neutron Source (WNS) at China Spallation Neutron Source is a facility for accurate measurements of neutron-induced cross section. Seven spectrometers are planned at WNS. As the physical objectives of each spectrometer are different, the requirements for readout electronics are not the same. In order to simplify the development of the readout electronics, this paper presents a general method for detector signal readout. This method has advantages of expansibility and flexibility, which makes it adaptable to most detectors at WNS. In the WNS general-purpose readout electronics, signals from any kinds of detectors are conditioned by a dedicated signal conditioning module corresponding to this detector, and then digitized by a common waveform digitizer with high speed and high precision (1 GSPS at 12-bit) to obtain the full waveform data. The waveform digitizer uses a field programmable gate array chip to process the data stream and trigger information in real time. PXI Express platform is used to support the functionalities of data readout, clock distribution, and trigger information exchange between digitizers and trigger modules. Test results show that the performance of the WNS general-purpose readout electronics can meet the requirements of the WNS spectrometers.
Microelectrode for energy and current control of nanotip field electron emitters
NASA Astrophysics Data System (ADS)
Lüneburg, S.; Müller, M.; Paarmann, A.; Ernstorfer, R.
2013-11-01
Emerging experiments and applications in electron microscopy, holography, and diffraction benefit from miniaturized electron guns for compact experimental setups. We present a highly compact microelectrode integrated field emitter that consists of a tungsten nanotip coated with a few micrometers thick polyimide film followed by a several nanometers thick gold film, both positioned behind the exposed emitter apex by approximately 10-30 μm. The control of the electric field strength at the nanometer scale tip apex allows suppression, extraction, and energy tuning of field-emitted electrons. The performance of the microelectrode is demonstrated experimentally and supported by numerical simulations.
Trimming of silicon ring resonator by electron beam induced compaction and strain.
Schrauwen, J; Van Thourhout, D; Baets, R
2008-03-17
Silicon is becoming the preferable platform for future integrated components, mostly due to the mature and reliable fabrication capabilities of electronics industry. Nevertheless, even the most advanced fabrication technologies suffer from non-uniformity on wafer scale and on chip scale, causing variations in the critical dimensions of fabricated components. This is an important issue since photonic circuits, and especially cavities such as ring resonators, are extremely sensitive to these variations. In this paper we present a way to circumvent these problems by trimming using electron beam induced compaction of oxide in silicon on insulator. Volume compaction of the oxide cladding causes both changes in the refractive index and creates strain in the silicon lattice. We demonstrate a resonance wavelength red shift 4.91 nm in a silicon ring resonator.
Cosmic ray experimental observations
NASA Technical Reports Server (NTRS)
Balasubrahmanyan, V. K.; Mcdonald, F. B.
1974-01-01
The current experimental situation in cosmic ray studies is discussed, with special emphasis on the development of new detector systems. Topics covered are the techniques for particle identification, energy measurements, gas Cerenkov counters, magnet spectrometers, ionization spectrometers, track detectors, nuclear emulsions, multiparameter analysis using arrays of detectors, the Goddard ionization spectrometer, charge spectra, relative abundances, isotope composition, antinuclei in cosmic rays, electrons, the measurement of cosmic ray arrival directions, and the prehistory of cosmic rays.
Inverse photoelectron spectrometer with magnetically focused electron gun
NASA Technical Reports Server (NTRS)
Krainsky, Isay L.
1991-01-01
An inverse photoelectron spectrometer is described which is based on the design of a magnetically focused low energy electron gun. The magnetic lens extends its field over a relatively large segment of the electron trajectory, which could provide a better focusing effect on a high-current-density low-velocity electron beam, providing the magnetic field in the vicinity of the target is reduced sufficiently to preserve the collinearity of the beam. In order to prove the concept, ray tracing is conducted using the Herrmannsfeldt program for solving electron trajectories in electrostatic and magnetostatic focusing systems. The program allows the calculation of the angles of the electron trajectories with the z axis, at the target location. The results of the ray-tracing procedure conducted for this gun are discussed. Some of the advantages of the magnetic focusing are also discussed.
A novel method for resonant inelastic soft X-ray scattering via photoelectron spectroscopy detection
Dakovski, Georgi L.; Lin, Ming-Fu; Damiani, Daniel S.; ...
2017-10-05
A method for measuring resonant inelastic X-ray scattering based on the conversion of X-ray photons into photoelectrons is presented in this paper. The setup is compact, relies on commercially available detectors, and offers significant flexibility. Finally, this method is demonstrated at the Linac Coherent Light Source with ~0.5 eV resolution at the cobalt L 3-edge, with signal rates comparable with traditional grating spectrometers.
A compact OPO/SFG laser for ultraviolet biological sensing
NASA Astrophysics Data System (ADS)
Tiihonen, Mikael; Pasiskevicius, Valdas; Laurell, Fredrik; Jonsson, Per; Lindgren, Mikael
2004-07-01
A compact parametric oscillator (OPO) with intracavity sum-frequency generation (SFG) to generate 293 nm UV laser irradiation, was developed. The OPO/SFG device was pumped by a 100 Hz Nd:YAG laser (1064 nm) of own design, including subsequent second harmonic generation (SHG) in an external periodically poled KTiOPO4 (KTP) crystal. The whole system could be used to deliver more than 30 μJ laser irradiation per pulse (100 Hz) at 293 nm. The UV laser light was introduced in an optical fiber attached to a sample compartment allowing detection of fluorescence emission using a commercial spectrometer. Aqueous samples containing biomolecules (ovalbumin) or bacteria spores (Bacillus subtilis) were excited by the UV-light at 293 nm resulting in strong fluorescence emission in the range 325 - 600 nm.
Compact cross-dispersion device based on a prism and a plane transmission grating
NASA Astrophysics Data System (ADS)
Yang, Qinghua; Wang, Weiqiang
2018-05-01
This paper presents a cross-dispersion prism-grating device using a plane transmission grating attached directly to a prism, which is different from traditional cross-dispersion grating-prism systems that are based on the reflection grating. Unlike conventional direct-vision grism or constant-dispersion grism in which both the prism and grating have the same dispersion direction, for this device the dispersion directions of the prism and grating are different. The analytical expressions for the cross-dispersion of this device are derived in detail and the formulas of the footprint of the dispersed spectra are given. The numerical results and ray-tracing simulations by ZEMAX are shown. The device provides a compact, small-sized and broadband cross-dispersion device used for the medium resolution spectrometer.
The primary cosmic ray electron spectrum from 10 GeV to about 200 GeV
NASA Technical Reports Server (NTRS)
Silverberg, R. F.; Ormes, J. F.; Balasubrahmanyan, V. K.; Ryan, M. J.
1971-01-01
An ionization spectrometer consisting of 10.8 radiation lengths of tungsten and 35 radiation lengths of iron has been used to determine the energy spectrum of cosmic ray electrons above 10 GeV. The spectrometer was calibrated with electrons from 5.4 to 18 GeV and then flown at an altitude of 6 gm-cm/2 for 16 hours. Separation of electron initiated events from proton events was achieved by utilizing starting point distributions, the shower development in tungsten, and the energy deposited in the large thickness of iron absorber. The exponent of the differential energy spectrum of the electrons is -3.1 + or - 0.2 while the exponent of the background is consistent with the proton exponent of -2.7 + or -0.2.
The magnetic toroidal sector: a broad-band electron-positron pair spectrometer
NASA Astrophysics Data System (ADS)
Hagmann, Siegbert; Hillenbrand, Pierre-Michel; Litvinov, Yuri; Spillmann, Uwe
2016-05-01
At the future relativistic storage-ring HESR at FAIR the study of electron-positron pairs from non-nuclear, atomic processes will be one of the goals of the experimental program with kinematically complete experiments focusing on momentum spectroscopy of coincident emission of electrons and positrons from free-free pairs and corresponding recoil ions. The underlying production mechanisms belong to central topics of QED in strong fields. We present first results on the electron-optical properties of a magnetic toroidal sector configuration enabling coincident detection of free-free electron-positron pairs; this spectrometer is suitable for implementation into a storage ring with a supersonic jet target and covering a wide range of lepton emission into the forward hemisphere. The simulation calculations are performed using the OPERA code.
A compact high-resolution X-ray ion mobility spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinecke, T.; Kirk, A. T.; Heptner, A.
For the ionization of gaseous samples, most ion mobility spectrometers employ radioactive ionization sources, e.g., containing {sup 63}Ni or {sup 3}H. Besides legal restrictions, radioactive materials have the disadvantage of a constant radiation with predetermined intensity. In this work, we replaced the {sup 3}H source of our previously described high-resolution ion mobility spectrometer with 75 mm drift tube length with a commercially available X-ray source. It is shown that the current configuration maintains the resolving power of R = 100 which was reported for the original setup containing a {sup 3}H source. The main advantage of an X-ray source ismore » that the intensity of the radiation can be adjusted by varying its operating parameters, i.e., filament current and acceleration voltage. At the expense of reduced resolving power, the sensitivity of the setup can be increased by increasing the activity of the source. Therefore, the performance of the setup can be adjusted to the specific requirements of any application. To investigate the relation between operating parameters of the X-Ray source and the performance of the ion mobility spectrometer, parametric studies of filament current and acceleration voltage are performed and the influence on resolving power, peak height, and noise is analyzed.« less
A single-board NMR spectrometer based on a software defined radio architecture
NASA Astrophysics Data System (ADS)
Tang, Weinan; Wang, Weimin
2011-01-01
A single-board software defined radio (SDR) spectrometer for nuclear magnetic resonance (NMR) is presented. The SDR-based architecture, realized by combining a single field programmable gate array (FPGA) and a digital signal processor (DSP) with peripheral radio frequency (RF) front-end circuits, makes the spectrometer compact and reconfigurable. The DSP, working as a pulse programmer, communicates with a personal computer via a USB interface and controls the FPGA through a parallel port. The FPGA accomplishes digital processing tasks such as a numerically controlled oscillator (NCO), digital down converter (DDC) and gradient waveform generator. The NCO, with agile control of phase, frequency and amplitude, is part of a direct digital synthesizer that is used to generate an RF pulse. The DDC performs quadrature demodulation, multistage low-pass filtering and gain adjustment to produce a bandpass signal (receiver bandwidth from 3.9 kHz to 10 MHz). The gradient waveform generator is capable of outputting shaped gradient pulse waveforms and supports eddy-current compensation. The spectrometer directly acquires an NMR signal up to 30 MHz in the case of baseband sampling and is suitable for low-field (<0.7 T) application. Due to the featured SDR architecture, this prototype has flexible add-on ability and is expected to be suitable for portable NMR systems.
Solar Imaging UV/EUV Spectrometers Using TVLS Gratings
NASA Technical Reports Server (NTRS)
Thomas, Roger J.
2003-01-01
It is a particular challenge to develop a stigmatic spectrograph for UV, EUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both reimaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-spaced rulings (TULS). A number of solar extreme ultraviolet (EUV) spectrometers have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets Solar Extreme ultraviolet Research Telescope and Spectrograph (SERTS) and Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS). More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. We now combine these ideas into a spectrometer concept that puts varied-line space rulings onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of three new solar spectrometers based on this concept are described: SUMI and RAISE, two sounding rocket payloads, and NEXUS, currently being proposed as a Small-Explorer (SMEX) mission.
NASA Astrophysics Data System (ADS)
Wei, Liqing; Xiao, Xizhong; Wang, Yueming; Zhuang, Xiaoqiong; Wang, Jianyu
2017-11-01
Space-borne hyperspectral imagery is an important tool for earth sciences and industrial applications. Higher spatial and spectral resolutions have been sought persistently, although this results in more power, larger volume and weight during a space-borne spectral imager design. For miniaturization of hyperspectral imager and optimization of spectral splitting methods, several methods are compared in this paper. Spectral time delay integration (TDI) method with high transmittance Integrated Stepwise Filter (ISF) is proposed.With the method, an ISF imaging spectrometer with TDI could achieve higher system sensitivity than the traditional prism/grating imaging spectrometer. In addition, the ISF imaging spectrometer performs well in suppressing infrared background radiation produced by instrument. A compact shortwave infrared (SWIR) hyperspectral imager prototype based on HgCdTe covering the spectral range of 2.0-2.5 μm with 6 TDI stages was designed and integrated. To investigate the performance of ISF spectrometer, a method to derive the optimal blocking band curve of the ISF is introduced, along with known error characteristics. To assess spectral performance of the ISF system, a new spectral calibration based on blackbody radiation with temperature scanning is proposed. The results of the imaging experiment showed the merits of ISF. ISF has great application prospects in the field of high sensitivity and high resolution space-borne hyperspectral imagery.
a Highly-Integrated Supersonic-Jet Fourier Transform Microwave Spectrometer
NASA Astrophysics Data System (ADS)
Gou, Qian; Feng, Gang; Grabow, Jens-Uwe
2017-06-01
A highly integrated supersonic-jet Fourier-transform microwave spectrometer of coaxially oriented beam-resonator arrangement (COBRA) type, covering 2-20GHz, has been recently built at Chongqing University, China. Built up almost entirely in an NI PXIe chassis, we take the advantage of the NI PXIe-5451 Dual-channel arbitrary waveform generator and the PXIe-5654 RF signal generator to create a spectrometer with wobbling capacity for fast resonator tuning. Based on the I/Q modulation, associate with PXI control and sequence boards built at the Leibniz Universitat Hannover, the design of the spectrometer is much simpler and very compact. The Fabry-Pérot resonator is semi-confocal with a spherical reflector of 630 mm diameter and a radius of 900 mm curvature and one circulator plate reflector of 630 mm diameter. The vacuum is effectuated by a three-stage mechanical (two-stage rotary vane and roots booster) pump at the fore line of a DN630 ISO-F 20000 L/s oil-diffusion pump. The supersonic-jet expansion is pulsed by a general valve Series 9 solenoid valve which is controlled by a general valve IOTA one driver governed by the experiment-sequence generation. First molecular examples to illustrate the performance of the new setup will include OCS and CF_3CHFCl.
A Field Portable Hyperspectral Goniometer for Coastal Characterization
NASA Technical Reports Server (NTRS)
Bachmann, Charles M.; Gray, Deric; Abelev, Andrei; Philpot, William; Fusina, Robert A.; Musser, Joseph A.; Vermillion, Michael; Doctor, Katarina; White, Maurice; Georgiev, Georgi
2012-01-01
During an airborne multi-sensor remote sensing experiment at the Virginia Coast Reserve (VCR) Long Term Ecological Research (LTER) site in June 2011 (VCR '11), first measurements were taken with the new NRL Goniometer for Outdoor Portable Hyperspectral Earth Reflectance (GOPHER). GOPHER measures the angular distribution of hyperspectral reflectance. GOPHER was constructed for NRL by Spectra Vista Corporation (SVC) and the University of Lethbridge through a capital equipment purchase in 2010. The GOPHER spectrometer is an SVC HR -1024, which measures hyperspectral reflectance over the range from 350 -2500 nm, the visible, near infrared, and short-wave infrared. During measurements, the spectrometer travels along a zenith quarter -arc track that can rotate in azimuth, allowing for measurement of the bi-directional reflectance distribution function (BRDF) over the whole hemisphere. The zenith arc has a radius of approximately 2m, and the spectrometer scan pattern can be programmed on the fly during calibration and validation efforts. The spectrometer and zenith arc assembly can be raised and lowered along a mast to allow for measurement of uneven terrain or vegetation canopies of moderate height. Hydraulics on the chassis allow for leveling of the instrument in the field. At just over 400 lbs, GOPHER is a field portable instrument and can be transformed into a compact trailer assembly for movement over long distances in the field.
Dewey, Ryan M.; Lawrence, David J.; Goldsten, John O.; Peplowski, Patrick N.; Korth, Haje; Slavin, James A.; Krimigis, Stamatios M.; Anderson, Brian J.; Ho, George C.; McNutt, Ralph L.; Raines, Jim M.; Schriver, David; Solomon, Sean C.
2016-01-01
Abstract The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury has provided a wealth of new data about energetic particle phenomena. With observations from MESSENGER's Energetic Particle Spectrometer, as well as data arising from energetic electrons recorded by the X‐Ray Spectrometer and Gamma‐Ray and Neutron Spectrometer (GRNS) instruments, recent work greatly extends our record of the acceleration, transport, and loss of energetic electrons at Mercury. The combined data sets include measurements from a few keV up to several hundred keV in electron kinetic energy and have permitted relatively good spatial and temporal resolution for many events. We focus here on the detailed nature of energetic electron bursts measured by the GRNS system, and we place these events in the context of solar wind and magnetospheric forcing at Mercury. Our examination of data at high temporal resolution (10 ms) during the period March 2013 through October 2014 supports strongly the view that energetic electrons are accelerated in the near‐tail region of Mercury's magnetosphere and are subsequently “injected” onto closed magnetic field lines on the planetary nightside. The electrons populate the plasma sheet and drift rapidly eastward toward the dawn and prenoon sectors, at times executing multiple complete drifts around the planet to form “quasi‐trapped” populations. PMID:27830111
High-Sensitivity Ionization Trace-Species Detector
NASA Technical Reports Server (NTRS)
Bernius, Mark T.; Chutjian, Ara
1990-01-01
Features include high ion-extraction efficiency, compactness, and light weight. Improved version of previous ionization detector features in-line geometry that enables extraction of almost every ion from region of formation. Focusing electrodes arranged and shaped into compact system of space-charge-limited reversal electron optics and ion-extraction optics. Provides controllability of ionizing electron energies, greater efficiency of ionization, and nearly 100 percent ion-collection efficiency.
Inverse compton light source: a compact design proposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deitrick, Kirsten Elizabeth
In the last decade, there has been an increasing demand for a compact Inverse Compton Light Source (ICLS) which is capable of producing high-quality X-rays by colliding an electron beam and a high-quality laser. It is only in recent years when both SRF and laser technology have advanced enough that compact sources can approach the quality found at large installations such as the Advanced Photon Source at Argonne National Laboratory. Previously, X-ray sources were either high flux and brilliance at a large facility or many orders of magnitude lesser when produced by a bremsstrahlung source. A recent compact source wasmore » constructed by Lyncean Technologies using a storage ring to produce the electron beam used to scatter the incident laser beam. By instead using a linear accelerator system for the electron beam, a significant increase in X-ray beam quality is possible, though even subsequent designs also featuring a storage ring offer improvement. Preceding the linear accelerator with an SRF reentrant gun allows for an extremely small transverse emittance, increasing the brilliance of the resulting X-ray source. In order to achieve sufficiently small emittances, optimization was done regarding both the geometry of the gun and the initial electron bunch distribution produced off the cathode. Using double-spoke SRF cavities to comprise the linear accelerator allows for an electron beam of reasonable size to be focused at the interaction point, while preserving the low emittance that was generated by the gun. An aggressive final focusing section following the electron beam's exit from the accelerator produces the small spot size at the interaction point which results in an X-ray beam of high flux and brilliance. Taking all of these advancements together, a world class compact X-ray source has been designed. It is anticipated that this source would far outperform the conventional bremsstrahlung and many other compact ICLSs, while coming closer to performing at the levels found at large facilities than ever before. The design process, including the development between subsequent iterations, is presented here in detail, with the simulation results for this groundbreaking X-ray source.« less
Integration and Evaluation of Microscope Adapter for the Ultra-Compact Imaging Spectrometer
NASA Astrophysics Data System (ADS)
Smith-Dryden, S. D.; Blaney, D. L.; Van Gorp, B.; Mouroulis, P.; Green, R. O.; Sellar, R. G.; Rodriguez, J.; Wilson, D.
2012-12-01
Petrologic, diagenetic, impact and weathering processes often happen at scales that are not observable from orbit. On Earth, one of the most common things that a scientist does when trying to understand detailed geologic history is to create a thin section of the rock and study the mineralogy and texture. Unfortunately, sample preparation and manipulation with advanced instrumentation may be a resource intensive proposition (e.g. time, power, complexity) in-situ. Getting detailed mineralogy and textural information without sample preparation is highly desirable. Visible to short wavelength microimaging spectroscopy has the potential to provide this information without sample preparation. Wavelengths between 500-2600 nm are sensitive to a wide range of minerals including mafic, carbonates, clays, and sulfates. The Ultra-Compact Imaging Spectrometer (UCIS) has been developed as a low mass (<2.0 kg), low power (~5.2 W) Offner spectrometer, ideal for use on Mars rover or other in-situ platforms. The UCIS instrument with its HgCdTe detector provides a spectral resolution of 10 nm with a range of 500-2600 nm, in addition to a 30 degree field of view and a 1.35 mrad instantaneous field of view. (Van Gorp et al. 2011). To explore applications of this technology for microscale investigations, an f/10 microimaging adapter has been designed and integrated to allow imaging of samples. The spatial coverage of the instrument is 2.56 cm with sampling of 67.5 microns (380 spatial pixels). Because the adapter is slow relative to the UCIS detector, strong sample illumination is required. Light from the lamp box was directed through optical fiber bundles, and directed onto the sample at a high angle of incidence to provide dark field imaging. For data collection, a mineral sample is mounted on the microscope adapter and scanned by the detector as it is moved horizontally via actuator. Data from the instrument is stored as a xyz cube end product with one spectral and two spatial dimensions. Measured spectra are then divided out by a white referenced spectrum of a Spectralon® calibration standard to show reflectance. For mineral samples larger than the UCIS field of view, mosaicking may be used from multiple scans. Scans of various rocks and minerals taken with the microscope adapter will be shown and results will be presented. References: Van Gorp et al., Optical design and performance of the Ultra-Compact Imaging Spectrometer, SPIE Optics and Photonics, San Diego, Aug 21-25, 2011. Acknowledgements: This work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration. Work was carried out with JPL Research and Technology Development Funding.
NASA Technical Reports Server (NTRS)
Cataldo, Giuseppe; Hsieh, Wen-Ting; Huang, Wei-Chung; Moseley, S. Harvey; Stevenson, Thomas R.; Wollack, Edward J.
2013-01-01
High-performance, integrated spectrometers operating in the far-infrared and sub-millimeter promise to be powerful tools for the exploration of the epochs of reionization and initial galaxy formation. These devices, using high-efficiency superconducting transmission lines, can achieve the performance of a meter-scale grating spectrometer in an instrument implemented on a four-inch silicon wafer. Such a device, when combined with a cryogenic telescope in space, provides an enabling capability for studies of the early universe. Here, the optical design process for Micro-Spec (mu-Spec) is presented, with particular attention given to its two-dimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the stigmatization and minimization of the light path function in this bounded region, which results in an optimized geometrical configuration. A point design with an efficiency of approx. 90% has been developed for initial demonstration, and can serve as the basis for future instruments. Design variations on this implementation are also discussed, which can lead to lower efficiencies due to diffractive losses in the multimode region.
NASA Technical Reports Server (NTRS)
Briggs, Ryan M.; Frez, Clifford; Borgentun, Carl E.; Bagheri, Mahmood; Forouhar, Siamak; May, Randy D.
2014-01-01
Continuous combustion product monitoring aboard manned spacecraft can prevent chronic exposure to hazardous compounds and also provides early detection of combustion events. As future missions extend beyond low-Earth orbit, analysis of returned environmental samples becomes impractical and safety monitoring should be performed in situ. Here, we describe initial designs of a five-channel tunable laser absorption spectrometer to continuously monitor combustion products with the goal of minimal maintenance and calibration over long-duration missions. The instrument incorporates dedicated laser channels to simultaneously target strong mid-infrared absorption lines of CO, HCl, HCN, HF, and CO2. The availability of low-power-consumption semiconductor lasers operating in the 2 to 5 micron wavelength range affords the flexibility to select absorption lines for each gas with maximum interaction strength and minimal interference from other gases, which enables the design of a compact and mechanically robust spectrometer with low-level sensitivity. In this paper, we focus primarily on absorption line selection based on the availability of low-power single-mode semiconductor laser sources designed specifically for the target wavelength range.
NASA Astrophysics Data System (ADS)
Sutcliffe, G. D.; Frenje, J. A.; Gatu Johnson, M.; Li, C. K.; Parker, C.; Simpson, R.; Sio, H.; Seguin, F. H.; Petrasso, R. D.; Zylstra, A.
2017-10-01
A compact and highly efficient Mini Orange Spectrometer (MOS) is being designed for measurements of energy spectra of protons and alphas in the range of 1-12 MeV in experiments at the OMEGA laser facility and the National Ignition Facility (NIF). The MOS will extend charged-particle spectrometry at these laser facilities to lower energies (<5 MeV) and lower yields (<5×108) than current instrumentation allows. This new spectrometer will enable studies of low-probability stellar nucleosynthesis reactions, including the 3He+3He reaction that is part of the solar proton-proton chain. Its unique capabilities will also be exploited in other basic science experiments, including studies of stopping power in ICF-relevant plasmas, astrophysical shocks and kinetic physics. The MOS design achieves high efficiency by maximizing the solid angle of particle acceptance. The optimization of the MOS design uses simulated magnetic fields and particle tracing. Performance requirements of the MOS system, including desired detection efficiencies and energy resolution, are discussed. This work was supported in part by the U.S. DoE, LLNL, and LLE.
Nitric oxide isotopic analyzer based on a compact dual-modulation Faraday rotation spectrometer.
Zhang, Eric; Huang, Stacey; Ji, Qixing; Silvernagel, Michael; Wang, Yin; Ward, Bess; Sigman, Daniel; Wysocki, Gerard
2015-10-14
We have developed a transportable spectroscopic nitrogen isotopic analyzer. The spectrometer is based on dual-modulation Faraday rotation spectroscopy of nitric oxide isotopologues with near shot-noise limited performance and baseline-free operation. Noise analysis indicates minor isotope ((15)NO) detection sensitivity of 0.36 ppbv·Hz(-1/2), corresponding to noise-equivalent Faraday rotation angle (NEA) of 1.31 × 10(-8) rad·Hz(-1/2) and noise-equivalent absorbance (αL)min of 6.27 × 10(-8) Hz(-1/2). White-noise limited performance at 2.8× the shot-noise limit is observed up to ~1000 s, allowing reliable calibration and sample measurement within the drift-free interval of the spectrometer. Integration with wet-chemistry based on acidic vanadium(III) enables conversion of aqueous nitrate/nitrite samples to gaseous NO for total nitrogen isotope analysis. Isotopic ratiometry is accomplished via time-multiplexed measurements of two NO isotope transitions. For 5 μmol potassium nitrate samples, the instrument consistently yields ratiometric precision below 0.3‰, thus demonstrating potential as an in situ diagnostic tool for environmental nitrogen cycle studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prakash, John; Mishra, Ashok Kumar
2016-01-15
It is possible to measure luminescence quantum yield in a facile way, by designing an optical spectrometer capable of obtaining electronic absorption as well as luminescence spectra, with a setup that uses the same light source and detector for both the spectral measurements. Employment of a single light source and single detector enables use of the same correction factor profile for spectral corrections. A suitable instrumental scaling factor is used for adjusting spectral losses.
ExoCube INMS with Neutral Hydrogen Mode
NASA Astrophysics Data System (ADS)
Jones, S.; Paschalidis, N.; Rodriguez, M.; Sittler, E. C., Jr.; Chornay, D. J.; Cameron, T.; Uribe, P.; Nanan, G.; Noto, J.; Waldrop, L.; Mierkiewicz, E. J.; Gardner, D.; Nossal, S. M.; Puig-Suari, J.; Bellardo, J.
2015-12-01
The ExoCube mission launched on Jan 31 2015 into a polar orbit to acquire global knowledge of in situ densities of neutral and ionized H, He, and O in the upper ionosphere and lower exosphere. The CubeSat platform is used in combination with incoherent scatter radar and optical ground stations distributed throughout the Americas. ExoCube seeks to obtain the first in situ measurement of neutral exospheric hydrogen and will measure in situ atomic oxygen for the first time in decades. The compact Ion and Neutral Mass Spectrometer (INMS) developed by GSFC uses the gated Time of Flight technique for in situ measurements of ions and neutrals (H, He, N, O, N2, O2) with M/dM of approximately 10. The compact sensor has a dual symmetric configuration with ion and neutral sensor heads. Neutral particles are ionized by electron impact using a thermionic emitter. In situ measurements of neutral hydrogen are notoriously difficult as historically the signal has been contaminated by hydrogen outgassing which persists even years after commissioning. In order to obtain neutral atmospheric hydrogen fluxes, either the atmospheric peak and outgassing peak must be well resolved, or the outgassing component subtracted off. The ExoCube INMS employs a separate mode, specifically for measuring neutral Hydrogen. The details of this mode and lessons learned will be presented as well as in flight instrument validation data for the neutral channel and preliminary flight ion spectra. At the time of abstract submission, the ExoCube spacecraft is currently undergoing attitude control maneuvers to orient INMS in the ram direction for science operations.
Recent progress of push-broom infrared hyper-spectral imager in SITP
NASA Astrophysics Data System (ADS)
Wang, Yueming; Hu, Weida; Shu, Rong; Li, Chunlai; Yuan, Liyin; Wang, Jianyu
2017-02-01
In the past decades, hyper-spectral imaging technologies were well developed in SITP, CAS. Many innovations for system design and key parts of hyper-spectral imager were finished. First airborne hyper-spectral imager operating from VNIR to TIR in the world was emerged in SITP. It is well known as OMIS(Operational Modular Imaging Spectrometer). Some new technologies were introduced to improve the performance of hyper-spectral imaging system in these years. A high spatial space-borne hyper-spectral imager aboard Tiangong-1 spacecraft was launched on Sep.29, 2011. Thanks for ground motion compensation and high optical efficiency prismatic spectrometer, a large amount of hyper-spectral imagery with high sensitivity and good quality were acquired in the past years. Some important phenomena were observed. To diminish spectral distortion and expand field of view, new type of prismatic imaging spectrometer based curved prism were proposed by SITP. A prototype of hyper-spectral imager based spherical fused silica prism were manufactured, which can operate from 400nm 2500nm. We also made progress in the development of LWIR hyper-spectral imaging technology. Compact and low F number LWIR imaging spectrometer was designed, manufactured and integrated. The spectrometer operated in a cryogenically-cooled vacuum box for background radiation restraint. The system performed well during flight experiment in an airborne platform. Thanks high sensitivity FPA and high performance optics, spatial resolution and spectral resolution and SNR of system are improved enormously. However, more work should be done for high radiometric accuracy in the future.
An Airborne A-Band Spectrometer for Remote Sensing Of Aerosol and Cloud Optical Properties
NASA Technical Reports Server (NTRS)
Pitts, Michael; Hostetler, Chris; Poole, Lamont; Holden, Carl; Rault, Didier
2000-01-01
Atmospheric remote sensing with the O2 A-band has a relatively long history, but most of these studies were attempting to estimate surface pressure or cloud-top pressure. Recent conceptual studies have demonstrated the potential of spaceborne high spectral resolution O2 A-band spectrometers for retrieval of aerosol and cloud optical properties. The physical rationale of this new approach is that information on the scattering properties of the atmosphere is embedded in the detailed line structure of the O2 A-band reflected radiance spectrum. The key to extracting this information is to measure the radiance spectrum at very high spectral resolution. Instrument performance requirement studies indicate that, in addition to high spectral resolution, the successful retrieval of aerosol and cloud properties from A-band radiance spectra will also require high radiometric accuracy, instrument stability, and high signal-to-noise measurements. To experimentally assess the capabilities of this promising new remote sensing application, the NASA Langley Research Center is developing an airborne high spectral resolution A-band spectrometer. The spectrometer uses a plane holographic grating with a folded Littrow geometry to achieve high spectral resolution (0.5 cm-1) and low stray light in a compact package. This instrument will be flown in a series of field campaigns beginning in 2001 to evaluate the overall feasibility of this new technique. Results from these campaigns should be particularly valuable for future spaceborne applications of A-band spectrometers for aerosol and cloud retrievals.
NASA Astrophysics Data System (ADS)
Cesar, D.; Maxson, J.; Musumeci, P.; Sun, Y.; Harrison, J.; Frigola, P.; O'Shea, F. H.; To, H.; Alesini, D.; Li, R. K.
2016-07-01
We present the results of an experiment where a short focal length (˜1.3 cm ), permanent magnet electron lens is used to image micron-size features (of a metal sample) with a single shot from an ultrahigh brightness picosecond-long 4 MeV electron beam emitted by a radio-frequency photoinjector. Magnification ratios in excess of 30 × were obtained using a triplet of compact, small gap (3.5 mm), Halbach-style permanent magnet quadrupoles with nearly 600 T /m field gradients. These results pave the way towards single-shot time-resolved electron microscopy and open new opportunities in the applications of high brightness electron beams.
Schaefer, R T; MacAskill, J A; Mojarradi, M; Chutjian, A; Darrach, M R; Madzunkov, S M; Shortt, B J
2008-09-01
Reported herein is development of a quadrupole mass spectrometer controller (MSC) with integrated radio frequency (rf) power supply and mass spectrometer drive electronics. Advances have been made in terms of the physical size and power consumption of the MSC, while simultaneously making improvements in frequency stability, total harmonic distortion, and spectral purity. The rf power supply portion of the MSC is based on a series-resonant LC tank, where the capacitive load is the mass spectrometer itself, and the inductor is a solenoid or toroid, with various core materials. The MSC drive electronics is based on a field programmable gate array (FPGA), with serial peripheral interface for analog-to-digital and digital-to-analog converter support, and RS232/RS422 communications interfaces. The MSC offers spectral quality comparable to, or exceeding, that of conventional rf power supplies used in commercially available mass spectrometers; and as well an inherent flexibility, via the FPGA implementation, for a variety of tasks that includes proportional-integral derivative closed-loop feedback and control of rf, rf amplitude, and mass spectrometer sensitivity. Also provided are dc offsets and resonant dipole excitation for mass selective accumulation in applications involving quadrupole ion traps; rf phase locking and phase shifting for external loading of a quadrupole ion trap; and multichannel scaling of acquired mass spectra. The functionality of the MSC is task specific, and is easily modified by simply loading FPGA registers or reprogramming FPGA firmware.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Englbrecht, F; Lindner, F; Bin, J
2016-06-15
Purpose: To measure and simulate well-defined electron spectra using a linear accelerator and a permanent-magnetic wide-angle spectrometer to test the performance of a novel reconstruction algorithm for retrieval of unknown electron-sources, in view of application to diagnostics of laser-driven particle acceleration. Methods: Six electron energies (6, 9, 12, 15, 18 and 21 MeV, 40cm × 40cm field-size) delivered by a Siemens Oncor linear accelerator were recorded using a permanent-magnetic wide-angle electron spectrometer (150mT) with a one dimensional slit (0.2mm × 5cm). Two dimensional maps representing beam-energy and entrance-position along the slit were measured using different scintillating screens, read by anmore » online CMOS detector of high resolution (0.048mm × 0.048mm pixels) and large field of view (5cm × 10cm). Measured energy-slit position maps were compared to forward FLUKA simulations of electron transport through the spectrometer, starting from IAEA phase-spaces of the accelerator. The latter ones were validated against measured depth-dose and lateral profiles in water. Agreement of forward simulation and measurement was quantified in terms of position and shape of the signal distribution on the detector. Results: Measured depth-dose distributions and lateral profiles in the water phantom showed good agreement with forward simulations of IAEA phase-spaces, thus supporting usage of this simulation source in the study. Measured energy-slit position maps and those obtained by forward Monte-Carlo simulations showed satisfactory agreement in shape and position. Conclusion: Well-defined electron beams of known energy and shape will provide an ideal scenario to study the performance of a novel reconstruction algorithm using measured and simulated signal. Future work will increase the stability and convergence of the reconstruction-algorithm for unknown electron sources, towards final application to the electrons which drive the interaction of TW-class laser pulses with nanometer thin target foils to accelerate protons and ions to multi-MeV kinetic energy. Cluster of Excellence of the German Research Foundation (DFG) “Munich-Centre for Advanced Photonics”.« less
Imaging Electron Spectrometer (IES) Electron Preprocessor (EPP) Design
NASA Technical Reports Server (NTRS)
Fennell, J. F.; Osborn, J. V.; Christensen, John L. (Technical Monitor)
2001-01-01
The Aerospace Corporation developed the Electron PreProcessor (EPP) to support the Imaging Electron Spectrometer (IES) that is part of the RAPID experiment on the ESA/NASA CLUSTER mission. The purpose of the EPP is to collect raw data from the IES and perform processing and data compression on it before transferring it to the RAPID microprocessor system for formatting and transmission to the CLUSTER satellite data system. The report provides a short history of the RAPID and CLUSTER programs and describes the EPP design. Four EPP units were fabricated, tested, and delivered for the original CLUSTER program. These were destroyed during a launch failure. Four more EPP units were delivered for the CLUSTER II program. These were successfully launched and are operating nominally on orbit.
Investigation of low-loss spectra and near-edge fine structure of polymers by PEELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heckmann, W.
Transmission electron microscopy has changed from a purely imaging method to an analytical method. This has been facilitated particularly by equipping electron microscopes with energy filters and with parallel electron energy loss spectrometers (PEELS). Because of their relatively high energy resolution (1 to 2 eV) they provide information not only on the elements present but also on the type of bonds between the molecular groups. Polymers are radiation sensitive and the molecular bonds change as the spectrum is being recorded. This can be observed with PEEL spectrometers that are able to record spectra with high sensitivity and in rapid succession.
Investigating electron spin resonance spectroscopy of a spin-½ compound in a home-built spectrometer
NASA Astrophysics Data System (ADS)
Sarkar, Jit; Roy, Subhadip; Singh, Jitendra Kumar; Singh, Sourabh; Chakraborty, Tanmoy; Mitra, Chiranjib
2018-05-01
In this work we report electron spin resonance (ESR) measurements performed on NH4CuPO4.H2O, a Heisenberg spin ½ dimer compound. We carried out the experiments both at room temperature and at 78 K, which are well above the antiferromagnetic ordering temperature of the system where the paramagnetic spins have a dominant role in determining its magnetic behavior. We performed the measurements in a home built custom designed continuous wave electron spin resonance (CW-ESR) spectrometer. By analyzing the experimental data, we were able to quantify the Landé g-factor and the ESR line-width of the sample.
Purohit, S; Joisa, Y S; Raval, J V; Ghosh, J; Tanna, R; Shukla, B K; Bhatt, S B
2014-11-01
Silicon drift detector based X-ray spectrometer diagnostic was developed to study the non-thermal electron for Aditya tokamak plasma. The diagnostic was mounted on a radial mid plane port at the Aditya. The objective of diagnostic includes the estimation of the non-thermal electron temperature for the ohmically heated plasma. Bi-Maxwellian plasma model was adopted for the temperature estimation. Along with that the study of high Z impurity line radiation from the ECR pre-ionization experiments was also aimed. The performance and first experimental results from the new X-ray spectrometer system are presented.
Degradation-Free Spectrometers for Solar EUV Measurements: A Progress Report
NASA Astrophysics Data System (ADS)
Wieman, S. R.; Judge, D. L.; Didkovsky, L. V.
2009-12-01
Solar EUV observations will be made using two new degradation-free EUV spectrometers on a sounding rocket flight scheduled for Summer 2010. The two instruments, a rare gas photoionization-based Optics-Free Spectrometer (OFS) and a Dual Grating Spectrometer (DGS), are filter-free and optics-free. OFS can measure the solar EUV spectrum with a spectral resolution comparable to that of grating-based EUV spectrometers. The DGS is designed to provide solar irradiance at Lyman-alpha and He II to overlap EUV observations from SOHO/SEM and SDO/EVE. Electronic and mechanical designs for the flight prototype instruments and results of tests performed with the instruments in the laboratory are reported. The spectrometers are being developed and demonstrated as part of the Degradation Free Spectrometers (DFS) project under NASA’s Low Cost Access to Space (LCAS) program and are supported by NASA Grant NNX08BA12G.
NASA Astrophysics Data System (ADS)
Fairchild, A.; Chirayath, V.; Gladen, R.; McDonald, A.; Lim, Z.; Chrysler, M.; Koymen, A.; Weiss, A.
Simion 8.1®simulations were used to determine the energy resolution of a 1 meter long Time of Flight Positron annihilation induced Auger Electron Spectrometer (TOF-PAES). The spectrometer consists of: 1. a magnetic gradient section used to parallelize the electrons leaving the sample along the beam axis, 2. an electric field free time of flight tube and 3. a detection section with a set of ExB plates that deflect electrons exiting the TOF tube into a Micro-Channel Plate (MCP). Simulations of the time of flight distribution of electrons emitted according to a known secondary electron emission distribution, for various sample biases, were compared to experimental energy calibration peaks and found to be in excellent agreement. The TOF spectra at the highest sample bias was used to determine the timing resolution function describing the timing spread due to the electronics. Simulations were then performed to calculate the energy resolution at various electron energies in order to deconvolute the combined influence of the magnetic field parallelizer, the timing resolution, and the voltage gradient at the ExB plates. The energy resolution of the 1m TOF-PAES was compared to a newly constructed 3 meter long system. The results were used to optimize the geometry and the potentials of the ExB plates for obtaining the best energy resolution. This work was supported by NSF Grant NSF Grant No. DMR 1508719 and DMR 1338130.
Fast Plasma Investigation for Magnetospheric Multiscale
NASA Technical Reports Server (NTRS)
Pollock, C.; Moore, T.; Coffey, V.; Dorelli J.; Giles, B.; Adrian, M.; Chandler, M.; Duncan, C.; Figueroa-Vinas, A.; Garcia, K.;
2016-01-01
The Fast Plasma Investigation (FPI) was developed for flight on the Magnetospheric Multiscale (MMS) mission to measure the differential directional flux of magnetospheric electrons and ions with unprecedented time resolution to resolve kinetic-scale plasma dynamics. This increased resolution has been accomplished by placing four dual 180-degree top hat spectrometers for electrons and four dual 180-degree top hat spectrometers for ions around the periphery of each of four MMS spacecraft. Using electrostatic field-of-view deflection, the eight spectrometers for each species together provide 4pi-sr-field-of-view with, at worst, 11.25-degree sample spacing. Energy/charge sampling is provided by swept electrostatic energy/charge selection over the range from 10 eVq to 30000 eVq. The eight dual spectrometers on each spacecraft are controlled and interrogated by a single block redundant Instrument Data Processing Unit, which in turn interfaces to the observatory's Instrument Suite Central Instrument Data processor. This paper described the design of FPI, its ground and in-flight calibration, its operational concept, and its data products.
Zastrau, Ulf; Fletcher, Luke B; Förster, Eckhart; Galtier, Eric Ch; Gamboa, Eliseo; Glenzer, Siegfried H; Heimann, Philipp; Marschner, Heike; Nagler, Bob; Schropp, Andreas; Wehrhan, Ortrud; Lee, Hae Ja
2014-09-01
We present a cylindrically curved GaAs x-ray spectrometer with energy resolution ΔE/E = 1.1 × 10(-4) and wave-number resolution of Δk/k = 3 × 10(-3), allowing plasmon scattering at the resolution limits of the Linac Coherent Light Source (LCLS) x-ray free-electron laser. It spans scattering wavenumbers of 3.6 to 5.2/Å in 100 separate bins, with only 0.34% wavenumber blurring. The dispersion of 0.418 eV/13.5 μm agrees with predictions within 1.3%. The reflection homogeneity over the entire wavenumber range was measured and used to normalize the amplitude of scattering spectra. The proposed spectrometer is superior to a mosaic highly annealed pyrolytic graphite spectrometer when the energy resolution needs to be comparable to the LCLS seeded bandwidth of 1 eV and a significant range of wavenumbers must be covered in one exposure.
NASA Astrophysics Data System (ADS)
Pascal, Véronique; Buil, Christian; Cansot, Elodie; Loesel, Jacques; Tauziede, Laurie; Pierangelo, Clémence; Bermudo, François
2017-11-01
Measuring the concentration of greenhouse gases from space is a current challenge. This measurement is achieved via a precise analysis of the signature of chemical gaseous species (CO2, CH4, CO, etc.) in the spectrum of the reflected sunlight. First at all, two families of spectrometers have been studied for the MicroCarb mission. The first family is based on the phenomena of interference between two radiation waves (Michelson Interferometer). The second family is based on the use of dispersive optical components. The second family has been selected for the forthcoming studies in the MicroCarb project. These instruments must have high radiometric and spectral resolutions, in narrow spectral bands, in order to discriminate between absorption lines from various atmospheric chemical species, and to quantify their concentration. This is the case, for example, for the instrument onboard the OCO-2 satellite (NASA/JPL). Our analysis has led us to define a new instrumental concept, based on a dispersive grating spectrometer, with the aim of providing the same accuracy level as the OCO-2, but with a more compact design for accommodation on the Myriade Evolution microsatellite class. This compact design approach will allow us to offer a moderate-cost solution to fulfil mission objectives. Two other studies based on dispersive grating are in progress by CNES prime contractors (ASTRIUM and THALES ALENIA SPACE). A summary of the main specifications of this design will be described, in particular the approach with the so-called "merit function". After a description of such a space instrument, which uses a specific grating component, a preliminary assessment of performances will be presented, including the theoretical calculations and formula. A breadboard implementation of this specific grating has allowed us to show the practicality of this concept and its capabilities. Some results of this breadboard will be described. In addition, an instrument simulator is being developed to validate the performances of this concept. A grating component prototype has been built, and the specifications, together with the expected performances, will be described, in particular the polarisation ratio. Some elements about detectors will be also given regarding their suitability for the mission. This preliminary design is encouraging and shows that such a spectrometer may be compatible with a microsatellite platform (low mass, low power and compact design). Some prospects of improvements will also be considered.
SUPRATHERMAL ELECTRONS IN TITAN’S SUNLIT IONOSPHERE: MODEL–OBSERVATION COMPARISONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigren, E.; Edberg, N. J. T.; Wahlund, J.-E.
2016-08-01
The dayside ionosphere of the Saturnian satellite Titan is generated mainly from photoionization of N{sub 2} and CH{sub 4}. We compare model-derived suprathermal electron intensities with spectra measured by the Cassini Plasma Spectrometer/Electron Spectrometer (CAPS/ELS) in Titan's sunlit ionosphere (altitudes of 970–1250 km) focusing on the T40, T41, T42, and T48 Titan flybys by the Cassini spacecraft. The model accounts only for photoelectrons and associated secondary electrons, with a main input being the impinging solar EUV spectra as measured by the Thermosphere Ionosphere Mesosphere Energy and Dynamics/Solar EUV Experiment and extrapolated to Saturn. Associated electron-impact electron production rates have beenmore » derived from ambient number densities of N{sub 2} and CH{sub 4} (measured by the Ion Neutral Mass Spectrometer/Closed Source Neutral mode) and related energy-dependent electron-impact ionization cross sections. When integrating up to electron energies of 60 eV, covering the bulk of the photoelectrons, the model-based values exceed the observationally based values typically by factors of ∼3 ± 1. This finding is possibly related to current difficulties in accurately reproducing the observed electron number densities in Titan's dayside ionosphere. We compare the utilized dayside CAPS/ELS spectra with ones measured in Titan's nightside ionosphere during the T55–T59 flybys. The investigated nightside locations were associated with higher fluxes of high-energy (>100 eV) electrons than the dayside locations. As expected, for similar neutral number densities, electrons with energies <60 eV give a higher relative contribution to the total electron-impact ionization rates on the dayside (due to the contribution from photoelectrons) than on the nightside.« less
A compact new incoherent Thomson scattering diagnostic for low-temperature plasma studies
NASA Astrophysics Data System (ADS)
Vincent, Benjamin; Tsikata, Sedina; Mazouffre, Stéphane; Minea, Tiberiu; Fils, Jérôme
2018-05-01
Incoherent Thomson scattering (ITS) has a long history of application for the determination of electron density and temperature in dense fusion plasmas, and in recent years, has been increasingly extended to studies in low-temperature plasma environments. In this work, the design and preliminary implementation of a new, sensitive and uniquely compact ITS platform known as Thomson scattering experiments for low temperature ion sources are described. Measurements have been performed on a hollow cathode plasma source, providing access to electron densities as low as 1016 m‑3 and electron temperatures of a few eV and below. This achievement has been made possible by the implementation of a narrow volume Bragg grating notch filter for the attenuation of stray light, a feature which guarantees compactness and reduced transmission losses in comparison to standard ITS platforms.
Active Plasma Lensing for Relativistic Laser-Plasma-Accelerated Electron Beams
van Tilborg, J.; Steinke, S.; Geddes, C. G. R.; ...
2015-10-28
The compact, tunable, radially symmetric focusing of electrons is critical to laser-plasma accelerator (LPA) applications. Experiments are presented demonstrating the use of a discharge-capillary active plasma lens to focus 100-MeV-level LPA beams. The lens can provide tunable field gradients in excess of 3000 T/m, enabling cm-scale focal lengths for GeV-level beam energies and allowing LPA-based electron beams and light sources to maintain their compact footprint. For a range of lens strengths, excellent agreement with simulation was obtained.
NASA Astrophysics Data System (ADS)
Shikanov, A. E.; Vovchenko, E. D.; Kozlovskii, K. I.; Rashchikov, V. I.; Shatokhin, V. L.
2018-04-01
A model for acceleration of deuterons and generation of neutrons in a compact laser-plasma diode with electron isolation using magnetic field generated by a hollow cylindrical permanent magnet is presented. Experimental and computer-simulated neutron yields are compared for the diode structure under study. An accelerating neutron tube with a relatively high neutron generation efficiency can be constructed using suppression of electron conduction with the aid of a magnet placed in the vacuum volume.
Numerical simulation of compact intracloud discharge and generated electromagnetic pulse
NASA Astrophysics Data System (ADS)
Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.
2015-06-01
Using the concept of the relativistic runaway electron avalanche, numerical simulation of compact intracloud discharge as a generator of powerful natural electromagnetic pulses (EMPs) in the HF-UHF range was conducted. We evaluated the numbers of electrons initiating the avalanche, with which the calculated EMP characteristics are consistent with measured ones. The discharge capable of generating EMPs produces runaway electrons in numbers close to those in the source of terrestrial γ-flashes (TGF) registered in the nearest space, which may be an argument for a joint EMP and TGF source.
Compact dewar and electronics for large-format infrared detectors
NASA Astrophysics Data System (ADS)
Manissadjian, A.; Magli, S.; Mallet, E.; Cassaigne, P.
2011-06-01
Infrared systems cameras trend is to require higher performance (thanks to higher resolution) and in parallel higher compactness for easier integration in systems. The latest developments at SOFRADIR / France on HgCdTe (Mercury Cadmium Telluride / MCT) cooled IR staring detectors do show constant improvements regarding detector performances and compactness, by reducing the pixel pitch and optimizing their encapsulation. Among the latest introduced detectors, the 15μm pixel pitch JUPITER HD-TV format (1280×1024) has to deal with challenging specifications regarding dewar compactness, low power consumption and reliability. Initially introduced four years ago in a large dewar with a more than 2kg split Stirling cooler compressor, it is now available in a new versatile compact dewar that is vacuum-maintenance-free over typical 18 years mission profiles, and that can be integrated with the different available Stirling coolers: K548 microcooler for light solution (less than 0.7 kg), K549 or LSF9548 for split cooler and/or higher reliability solution. The IDDCAs are also required with simplified electrical interface enabling to shorten the system development time and to standardize the electronic boards definition with smaller volumes. Sofradir is therefore introducing MEGALINK, the new compact Command & Control Electronics compatible with most of the Sofradir IDDCAs. MEGALINK provides all necessary input biases and clocks to the FPAs, and digitizes and multiplexes the video outputs to provide a 14 bit output signal through a cameralink interface, in a surface smaller than a business card.
Commissioning of the vacuum system of the KATRIN Main Spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arenz, M.; Babutzka, M.; Bahr, M.
The KATRIN experiment will probe the neutrino mass by measuring the β-electron energy spectrum near the endpoint of tritium β-decay. We performed an integral energy analysis by an electro-static spectrometer (``Main Spectrometer''), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m 3, and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the β-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. Furthermore, a system consisting of 6 turbo-molecular pumps andmore » 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300 °C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10 -11 mbar range. We demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.« less
Commissioning of the vacuum system of the KATRIN Main Spectrometer
Arenz, M.; Babutzka, M.; Bahr, M.; ...
2016-04-07
The KATRIN experiment will probe the neutrino mass by measuring the β-electron energy spectrum near the endpoint of tritium β-decay. We performed an integral energy analysis by an electro-static spectrometer (``Main Spectrometer''), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m 3, and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the β-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. Furthermore, a system consisting of 6 turbo-molecular pumps andmore » 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300 °C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10 -11 mbar range. We demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.« less
Aguilar, M; Aisa, D; Alvino, A; Ambrosi, G; Andeen, K; Arruda, L; Attig, N; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bigongiari, G; Bindi, V; Bizzaglia, S; Bizzarri, M; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Borsini, S; Boschini, M J; Bourquin, M; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Cascioli, V; Castellini, G; Cernuda, I; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, H; Cheng, G M; Chen, H S; Cheng, L; Chikanian, A; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Cui, Z; Dai, M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Di Masso, L; Dimiccoli, F; Díaz, C; von Doetinchem, P; Du, W J; Duranti, M; D'Urso, D; Eline, A; Eppling, F J; Eronen, T; Fan, Y Y; Farnesini, L; Feng, J; Fiandrini, E; Fiasson, A; Finch, E; Fisher, P; Galaktionov, Y; Gallucci, G; García, B; García-López, R; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Gillard, W; Giovacchini, F; Goglov, P; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guandalini, C; Guerri, I; Guo, K H; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Hoffman, J; Hsieh, T H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Kossakowski, R; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; Kunz, S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H L; Li, J Q; Li, Q; Li, Q; Li, T X; Li, W; Li, Y; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, H; Lomtadze, T; Lu, M J; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Majka, R; Malinin, A; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Morescalchi, L; Mott, P; Müller, M; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Obermeier, A; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Papi, A; Pedreschi, E; Pensotti, S; Pereira, R; Pilo, F; Piluso, A; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Postaci, E; Putze, A; Quadrani, L; Qi, X M; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Sbarra, C; Schael, S; Schmidt, S M; Schuckardt, D; Schulz von Dratzig, A; Schwering, G; Scolieri, G; Seo, E S; Shan, B S; Shan, Y H; Shi, J Y; Shi, X Y; Shi, Y M; Siedenburg, T; Son, D; Spada, F; Spinella, F; Sun, W; Sun, W H; Tacconi, M; Tang, C P; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vaurynovich, S; Vecchi, M; Velasco, M; Vialle, J P; Wang, L Q; Wang, Q L; Wang, R S; Wang, X; Wang, Z X; Weng, Z L; Whitman, K; Wienkenhöver, J; Wu, H; Xia, X; Xie, M; Xie, S; Xiong, R Q; Xin, G M; Xu, N S; Xu, W; Yan, Q; Yang, J; Yang, M; Ye, Q H; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, J H; Zhang, M T; Zhang, X B; Zhang, Z; Zheng, Z M; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P; Zurbach, C
2014-09-19
Precision measurements by the Alpha Magnetic Spectrometer on the International Space Station of the primary cosmic-ray electron flux in the range 0.5 to 700 GeV and the positron flux in the range 0.5 to 500 GeV are presented. The electron flux and the positron flux each require a description beyond a single power-law spectrum. Both the electron flux and the positron flux change their behavior at ∼30 GeV but the fluxes are significantly different in their magnitude and energy dependence. Between 20 and 200 GeV the positron spectral index is significantly harder than the electron spectral index. The determination of the differing behavior of the spectral indices versus energy is a new observation and provides important information on the origins of cosmic-ray electrons and positrons.
NASA Astrophysics Data System (ADS)
Aguilar, M.; Aisa, D.; Alvino, A.; Ambrosi, G.; Andeen, K.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Battarbee, M.; Battiston, R.; Bazo, J.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bigongiari, G.; Bindi, V.; Bizzaglia, S.; Bizzarri, M.; Boella, G.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Borsini, S.; Boschini, M. J.; Bourquin, M.; Burger, J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Cascioli, V.; Castellini, G.; Cernuda, I.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, H.; Cheng, G. M.; Chen, H. S.; Cheng, L.; Chikanian, A.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Coste, B.; Cui, Z.; Dai, M.; Delgado, C.; Della Torre, S.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Di Masso, L.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Du, W. J.; Duranti, M.; D'Urso, D.; Eline, A.; Eppling, F. J.; Eronen, T.; Fan, Y. Y.; Farnesini, L.; Feng, J.; Fiandrini, E.; Fiasson, A.; Finch, E.; Fisher, P.; Galaktionov, Y.; Gallucci, G.; García, B.; García-López, R.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Gillard, W.; Giovacchini, F.; Goglov, P.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guandalini, C.; Guerri, I.; Guo, K. H.; Habiby, M.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hoffman, J.; Hsieh, T. H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jinchi, H.; Kanishev, K.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Kossakowski, R.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M. S.; Kunz, S.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Li, H. L.; Li, J. Q.; Li, Q.; Li, Q.; Li, T. X.; Li, W.; Li, Y.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, H.; Lomtadze, T.; Lu, M. J.; Lu, Y. S.; Luebelsmeyer, K.; Luo, F.; Luo, J. Z.; Lv, S. S.; Majka, R.; Malinin, A.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mo, D. C.; Morescalchi, L.; Mott, P.; Müller, M.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Nunes, P.; Obermeier, A.; Oliva, A.; Orcinha, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Papi, A.; Pedreschi, E.; Pensotti, S.; Pereira, R.; Pilo, F.; Piluso, A.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Postaci, E.; Putze, A.; Quadrani, L.; Qi, X. M.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rodríguez, I.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Sandweiss, J.; Saouter, P.; Sbarra, C.; Schael, S.; Schmidt, S. M.; Schuckardt, D.; von Dratzig, A. Schulz; Schwering, G.; Scolieri, G.; Seo, E. S.; Shan, B. S.; Shan, Y. H.; Shi, J. Y.; Shi, X. Y.; Shi, Y. M.; Siedenburg, T.; Son, D.; Spada, F.; Spinella, F.; Sun, W.; Sun, W. H.; Tacconi, M.; Tang, C. P.; Tang, X. W.; Tang, Z. C.; Tao, L.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Vannini, C.; Valtonen, E.; Vaurynovich, S.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Wang, L. Q.; Wang, Q. L.; Wang, R. S.; Wang, X.; Wang, Z. X.; Weng, Z. L.; Whitman, K.; Wienkenhöver, J.; Wu, H.; Xia, X.; Xie, M.; Xie, S.; Xiong, R. Q.; Xin, G. M.; Xu, N. S.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Ye, Q. H.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zeissler, S.; Zhang, J. H.; Zhang, M. T.; Zhang, X. B.; Zhang, Z.; Zheng, Z. M.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; Zurbach, C.; AMS Collaboration
2014-09-01
Precision measurements by the Alpha Magnetic Spectrometer on the International Space Station of the primary cosmic-ray electron flux in the range 0.5 to 700 GeV and the positron flux in the range 0.5 to 500 GeV are presented. The electron flux and the positron flux each require a description beyond a single power-law spectrum. Both the electron flux and the positron flux change their behavior at ˜30 GeV but the fluxes are significantly different in their magnitude and energy dependence. Between 20 and 200 GeV the positron spectral index is significantly harder than the electron spectral index. The determination of the differing behavior of the spectral indices versus energy is a new observation and provides important information on the origins of cosmic-ray electrons and positrons.
The OPERA muon spectrometer tracking electronics
NASA Astrophysics Data System (ADS)
Ambrosio, M.; Barichello, G.; Brugnera, R.; Carrara, E.; Consiglio, L.; Corradi, A.; Dal Corso, F.; Dusini, S.; Felici, G.; Garfagnini, A.; Manea, C.; Masone, V.; Paoloni, A.; Paoluzzi, G.; Papalino, G.; Parascandolo, P.; Sorrentino, G.; Spinetti, M.; Stanco, L.; Terranova, F.; Votano, L.
2004-11-01
The document describes the front-end electronics that instrument the spectrometer of the OPERA experiment. The spectrometer is made of two separate modules. Each module consists of 22 RPC planes equipped with horizontal and vertical strips readout for a total amount of about 25,000 digital channels. The front end electronics is self-triggered and has single plane readout capability. It is made of three different stages: the Front End Boards (FEBs) system, the Controller Boards (CBs) system and the Timing Boards (TBs) system. The FEB system provides discrimination of the strip incoming signals; a FAST OR output of the input signals is also available for trigger plane signal generation. FEBs discriminated signals are acquired by the CBs system that manages also the communication to the experiment DAQ and Slow Control interface. A Trigger Board allows to operate in both self-trigger (the FEB FAST OR signal starts the plane acquisition) or external-trigger (different conditions can be set on the OR signals generated from different planes) modes.
A Compact Bulk Acousto-Optic Time Integrating Correlator.
1984-11-01
AD-A156 668 A COMPACT BULK ACOUSTO - OPTIC TIME INTEGRATING 1/1 CORRELATOR(U) ELECTRONICS RESEARCH LAB ADELAIDE (AUSTRALIA) D A FOGG NOV 84 ERL-9323-TR...DEFENCE RESEARCH CENTRE SALISBURY SOUTH AUSTRALIA TECHNICAL REPORT ER L-0323-TR A COMPACT BULK ACOUSTO - OPTIC TIME INTEGRATING CORRELATOR D.A.B. FOGG...LABORATORY TECHNICAL REPORT ERL-0323-TR A COMPACT BULK ACOUSTO - OPTIC TIME INTEGRATING CORRELATOR D.A.B. Fogg SUMMARY This report describes the design and
Microelectrode for energy and current control of nanotip field electron emitters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lüneburg, S.; Müller, M., E-mail: m.mueller@fhi-berlin.mpg.de; Paarmann, A., E-mail: alexander.paarmann@fhi-berlin.mpg.de
2013-11-18
Emerging experiments and applications in electron microscopy, holography, and diffraction benefit from miniaturized electron guns for compact experimental setups. We present a highly compact microelectrode integrated field emitter that consists of a tungsten nanotip coated with a few micrometers thick polyimide film followed by a several nanometers thick gold film, both positioned behind the exposed emitter apex by approximately 10–30 μm. The control of the electric field strength at the nanometer scale tip apex allows suppression, extraction, and energy tuning of field-emitted electrons. The performance of the microelectrode is demonstrated experimentally and supported by numerical simulations.
Variable optical filters for earth-observation imaging minispectrometers
NASA Astrophysics Data System (ADS)
Piegari, A.; Bulir, J.; Krasilnikova, A.; Dami, M.; Harnisch, B.
2017-11-01
Small-dimension, low-mass spectrometers are useful for both Earth observation and planetary missions. A very compact multi-spectral mini-spectrometer that contains no moving parts, can be constructed combining a graded-thickness filter, having a spatially variable narrow-band transmission, to a CCD array detector. The peak wavelength of the transmission filter is moving along one direction of the filter surface, such that each line of a two-dimensional array detector, equipped with this filter, will detect radiation in a different pass band. The spectrum of interest for image spectrometry of the Earth surface is very wide, 400-1000nm. This requirement along with the need of a very small dimension, makes this filter very difficult to manufacture. Preliminary results on metal-dielectric wedge filters, with a gradient of the transmission peak wavelength equal to 60nm/mm, are reported.
NASA Astrophysics Data System (ADS)
Jordan, Inga; Jain, Arohi; Gaumnitz, Thomas; Ma, Jun; Wörner, Hans Jakob
2018-05-01
A compact time-of-flight spectrometer for applications in attosecond spectroscopy in the liquid and gas phases is presented. It allows for altering the collection efficiency by transitioning between field-free and magnetic-bottle operation modes. High energy resolution (ΔE/E = 0.03 for kinetic energies >20 eV) is achieved despite the short flight-tube length through a homogeneous deceleration potential at the beginning of the flight tube. A closing mechanism allows isolating the vacuum system of the flight tube from the interaction region in order to efficiently perform liquid-microjet experiments. The capabilities of the instrument are demonstrated through photoelectron spectra from multiphoton ionization of argon and xenon, as well as photoelectron spectra of liquid and gaseous water generated by an attosecond pulse train.
Atmospheric Electron-Induced X-Ray Spectrometer (AEXS) Development
NASA Technical Reports Server (NTRS)
Wilcox, Jaroslava Z.; Urgiles, Eduardo; Toda, Risaku; George, Thomas; Douglas, Susanne; Crisp, Joy
2005-01-01
This paper describes the progress in the development of the so-called Atmospheric Electron X-ray Spectrometer (AEXS) instrument in our laboratory at JPL. The AEXS is a novel miniature instrument concept based on the excitation of characteristic X-Ray Fluorescence (XRF) and luminescence spectra using a focused electron beam, for non-destructive evaluation of surfaces of samples in situ, in planetary ambient atmosphere. In situ operation is obtained through the use of a thin electron transmissive membrane to isolate the vacuum within the AEXS electron source from the outside ambient atmosphere. By using a focused electron beam, the impinging electrons on samples in the external atmosphere excite XRF spectra from the irradiated spots with high-to-medium spatial resolution. The XRF spectra are analyzed using an energy-dispersive detector to determine surface elemental composition. The use of high- intensity electron beam results in rapid spectrum acquisition (several minutes), and consequently low energy consumption (several tens of Joules) per acquired XRF spectrum in comparison to similar portable instruments.
NASA Astrophysics Data System (ADS)
Surya, Subramanian; Thangamuthu, Rangasamy; Senthil Kumar, Sakkarapalayam Murugesan; Murugadoss, Govindhasamy
2017-02-01
Dye-sensitized solar cells (DSSCs) have gained widespread attention in recent years because of their low production costs, ease of fabrication process and tuneable optical properties, such as colour and transparency. In this work, we explored a strategy wherein nanoparticles of pure TiO2, TiO2sbnd SnO2 nanocomposite, Sn (10%) doped TiO2 and SnO2 synthesized by the simple chemical precipitation method were employed as photoelectrodes to enhance the photovoltaic conversion efficiency of solar cells. The nanoparticles were characterized by different characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM with EDX), transmission electron microscopy (TEM), high resolution electron microscopy (HR-TEM), UV-Visible absorbance (UV-vis), photoluminescence (PL), thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) measurements. Moreover, we also demonstrated the effect of thin compact layer in DSSCs by architecture with various precursor materials of different concentrations. We found that the optimized compact layer material TDIP (titanium diisopropoxide) with a concentration of 0.3 M % is produced the highest efficiency of 2.25% for Sn (10%) doped TiO2 electron transport material (ETM) and 4.38% was achieved for pure TiO2 ETM using SnCl2 compact layer with 0.1 M concentrations.
Compact FEL-driven inverse compton scattering gamma-ray source
Placidi, M.; Di Mitri, Simone; Pellegrini, C.; ...
2017-02-28
Many research and applications areas require photon sources capable of producing gamma-ray beams in the multi-MeV energy range with reasonably high fluxes and compact footprints. Besides industrial, nuclear physics and security applications, a considerable interest comes from the possibility to assess the state of conservation of cultural assets like statues, columns etc., via visualization and analysis techniques using high energy photon beams. Computed Tomography scans, widely adopted in medicine at lower photon energies, presently provide high quality three-dimensional imaging in industry and museums. We explore the feasibility of a compact source of quasi-monochromatic, multi-MeV gamma-rays based on Inverse Compton Scatteringmore » (ICS) from a high intensity ultra-violet (UV) beam generated in a free-electron laser by the electron beam itself. This scheme introduces a stronger relationship between the energy of the scattered photons and that of the electron beam, resulting in a device much more compact than a classic ICS for a given scattered energy. As a result, the same electron beam is used to produce gamma-rays in the 10–20 MeV range and UV radiation in the 10–15 eV range, in a ~4 × 22 m 2 footprint system.« less
Compact FEL-driven inverse compton scattering gamma-ray source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Placidi, M.; Di Mitri, Simone; Pellegrini, C.
Many research and applications areas require photon sources capable of producing gamma-ray beams in the multi-MeV energy range with reasonably high fluxes and compact footprints. Besides industrial, nuclear physics and security applications, a considerable interest comes from the possibility to assess the state of conservation of cultural assets like statues, columns etc., via visualization and analysis techniques using high energy photon beams. Computed Tomography scans, widely adopted in medicine at lower photon energies, presently provide high quality three-dimensional imaging in industry and museums. We explore the feasibility of a compact source of quasi-monochromatic, multi-MeV gamma-rays based on Inverse Compton Scatteringmore » (ICS) from a high intensity ultra-violet (UV) beam generated in a free-electron laser by the electron beam itself. This scheme introduces a stronger relationship between the energy of the scattered photons and that of the electron beam, resulting in a device much more compact than a classic ICS for a given scattered energy. As a result, the same electron beam is used to produce gamma-rays in the 10–20 MeV range and UV radiation in the 10–15 eV range, in a ~4 × 22 m 2 footprint system.« less
Detection of a strongly negative surface potential at Saturn's moon Hyperion.
Nordheim, T A; Jones, G H; Roussos, E; Leisner, J S; Coates, A J; Kurth, W S; Khurana, K K; Krupp, N; Dougherty, M K; Waite, J H
2014-10-28
On 26 September 2005, Cassini conducted its only close targeted flyby of Saturn's small, irregularly shaped moon Hyperion. Approximately 6 min before the closest approach, the electron spectrometer (ELS), part of the Cassini Plasma Spectrometer (CAPS) detected a field-aligned electron population originating from the direction of the moon's surface. Plasma wave activity detected by the Radio and Plasma Wave instrument suggests electron beam activity. A dropout in energetic electrons was observed by both CAPS-ELS and the Magnetospheric Imaging Instrument Low-Energy Magnetospheric Measurement System, indicating that the moon and the spacecraft were magnetically connected when the field-aligned electron population was observed. We show that this constitutes a remote detection of a strongly negative (∼ -200 V) surface potential on Hyperion, consistent with the predicted surface potential in regions near the solar terminator.
Murchie, S.L.; Seelos, F.P.; Hash, C.D.; Humm, D.C.; Malaret, E.; McGovern, J.A.; Choo, T.H.; Seelos, K.D.; Buczkowski, D.L.; Morgan, M.F.; Barnouin-Jha, O. S.; Nair, H.; Taylor, H.W.; Patterson, G.W.; Harvel, C.A.; Mustard, J.F.; Arvidson, R. E.; McGuire, P.; Smith, M.D.; Wolff, M.J.; Titus, T.N.; Bibring, J.-P.; Poulet, F.
2009-01-01
The part of the Compact Reconnaissance Imaging Spectrometer (CRISM) for Mars investigation conducted during the Mars Reconnaissance Orbiter's (MRO's) primary science phase was a comprehensive investigation of past aqueous environments, structure of the planet's crust, past climate, and current meteorology. The measurements to implement this investigation include over 9500 targeted observations of surface features taken at spatial resolutions of better than 40 m/pixel, monitoring of seasonal variations in atmospheric aerosols and trace gases, and acquisition of a 200 m/pixel map covering over 55% of Mars in 72 selected wavelengths under conditions of relatively low atmospheric opacity. Key results from these data include recognition of a diversity of aqueous mineral-containing deposits, discovery of a widespread distribution of phyllosilicates in early to middle Noachian units, the first definitive detection of carbonates in bedrock, new constraints on the sequence of events that formed Hesperian-aged, sulfate-rich layered deposits, characterization of seasonal polar processes, and monitoring of the 2007 global dust event. Here we describe CRISM's science investigations during the Primary Science Phase, the data sets that were collected and their calibration and uncertainties, and how they have been processed and made available to the scientific community. We also describe the ongoing investigation during MRO's extended science phase. Copyright 2009 by the American Geophysical Union.
Ion flow measurements during the rotating kink behavior of the central column in the HIST device
NASA Astrophysics Data System (ADS)
Yamada, S.; Yoshikawa, T.; Hashimoto, S.; Nishioka, T.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.
2007-11-01
Plasma flow is essentially driven in self-organization and magnetic reconnection process of compact spherical torus (ST) and spheromak in the helicity-driven systems. For example, when reversing the external toroidal field of ST, the direction not only of the plasma current but also of the toroidal ion flow is self-reversed during the formation of the flipped ST relaxed states. Mach probe measurement shows that the velocity of the ion flow reversed after the flip increases to about 20 km/s. We have been newly developing an ion Doppler spectrometer (IDS) system using a compact 16 or 64 channel photomultiplier tube (PMT) in order to measure the spatial profile of ion temperature and rotation velocity in the HIST device. The IDS system consists of a light collection system including optical fibers, 1 m-spectrometer and the PMT detector. The optical fibers covered with glass tubes are inserted into the plasma. The glass tubes can be rotated in the poloidal and the toroidal directions. The new IDS system will be applied to observations of ion temperature and plasma rotation in the flipped ST formation and in the MHD control of kinking behaviors of the central column by using the rotating magnetic field (RMF). Preliminary IDS results will be compared to those from Mach probe measurements in space.
NASA Astrophysics Data System (ADS)
Chao, Tien-Hsin; Lu, Thomas T.; Davis, Scott R.; Rommel, Scott D.; Farca, George; Luey, Ben; Martin, Alan; Anderson, Michael H.
2012-04-01
Jet Propulsion Lab and Vescent Photonics Inc. and are jointly developing an innovative ultra-compact (volume < 10 cm3), ultra-low power (<10 -3 Watt-hours per measurement and zero power consumption when not measuring), completely non-mechanical Liquid Crystal Waveguide Fourier Transform Spectrometer (LCWFTS) that will be suitable for a variety of remote-platform, in-situ measurements. These devices are made possible by novel electro-evanescent waveguide architecture, enabling "monolithic chip-scale" Electro Optic-FTS (EO-FTS) sensors. The potential performance of these EO-FTS sensors include: i) a spectral range throughout 0.4-5 μm (25000 - 2000 cm-1), ii) highresolution (Δλ<= 0.1 nm), iii) high-speed (< 1 ms) measurements, and iv) rugged integrated optical construction. This performance potential enables the detection and quantification of a large number of different atmospheric gases simultaneously in the same air mass and the rugged construction will enable deployment on previously inaccessible platforms. The sensor construction is also amenable for analyzing aqueous samples on remote floating or submerged platforms. We have reported [1] a proof-of-principle prototype LCWFTS sensor that has been demonstrated in the near- IR (range of 1450-1600 nm) with a 5 nm resolution. In this paper, we will report the recently built and tested LCWFTS test bed and the demonstration of a real-time gas sensing applications.
Research in particles and fields. [cosmic rays, gamma rays, and cosmic plasma
NASA Technical Reports Server (NTRS)
Stone, E. C.; Buffington, A.; Davis, L., Jr.; Prince, T. A.; Vogt, R. E.
1984-01-01
Research activities in cosmic rays, gamma rays, and astrophysical plasmas are reviewed. Energetic particle and photon detector systems flown on spacecraft and balloons were used to carry out the investigations. Specific instruments mentioned are: the high energy isotope spectrometer telescope, the electron/isotope spectrometer, the heavy isotope spectrometer telescope, and magnetometers. Solar flares, planetary magnetospheres, element abundance, the isotopic composition of low energy cosmic rays, and heavy nuclei are among the topics receiving research attention.
NASA Technical Reports Server (NTRS)
Buffington, A.
1978-01-01
A super-cooled magnetic spectrometer for a cosmic-ray experiment is considered for application in the high energy astronomical observatory which may be used on a space shuttle spacelab mission. New cryostat parameters are reported which are appropriate to shuttle mission weight and mission duration constraints. Since a super-conducting magnetic spectrometer has a magnetic fringe field, methods for shielding sensitive electronic and mechanical components on nearby experiments are described.
GaAs Spectrometer for Electron Spectroscopy at Europa
NASA Astrophysics Data System (ADS)
Lioliou, G.; Barnett, A. M.
2016-12-01
We propose a GaAs based electron spectrometer for a hypothetical future mission orbiting Europa. Previous observations at Europa's South Pole with the Hubble Space Telescope of hydrogen Lyman-α and oxygen OI 130.4 nm emissions were consistent with water vapor plumes [Roth et al., 2014, Science 343, 171]. Future observations and analysis of plumes on Europa could provide information about its subsurface structure and the distribution of liquid water within its icy shells [Rhoden at al. 2015, Icarus 253, 169]. In situ low energy (1keV - 100keV) electron spectroscopy along with UV imaging either in situ or with the Hubble Space Telescope Wide Field Camera 3 or similar would allow verification of the auroral observations being due to electron impact excitation of water vapor plumes. The proposed spectrometer includes a novel GaAs p+-i-n+ photodiode and a custom-made charge-sensitive preamplifier. The use of an early prototype GaAs detector for direct electron spectroscopy has already been demonstrated in ground based applications [Barnett et al., 2012, J. Instrum. 7, P09012]. Based on previous radiation hardness measurements of GaAs, the expected duration of the mission without degradation of the detector performance is estimated to be 4 months. Simulations and laboratory experiments characterising the detection performance of the proposed system are presented.
EXTENDING THE USEFUL LIFE OF OLDER MASS SPECTROMETERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, S.; Cordaro, J.; Holland, M.
2010-06-17
Thermal ionization and gas mass spectrometers are widely used across the Department of Energy (DOE) Complex and contractor laboratories. These instruments support critical missions, where high reliability and low measurement uncertainty are essential. A growing number of these mass spectrometers are significantly older than their original design life. The reality is that manufacturers have declared many of the instrument models obsolete, with direct replacement parts and service no longer available. Some of these obsolete models do not have a next generation, commercially available replacement. Today's budget conscious economy demands for the use of creative funds management. Therefore, the ability tomore » refurbish (or upgrade) these valuable analytical tools and extending their useful life is a cost effective option. The Savannah River Site (SRS) has the proven expertise to breathe new life into older mass spectrometers, at a significant cost savings compared to the purchase and installation of new instruments. A twenty-seven year old Finnigan MAT-261{trademark} Thermal Ionization Mass Spectrometer (TIMS), located at the SRS F/H Area Production Support Laboratory, has been successfully refurbished. Engineers from the Savannah River National Laboratory (SRNL) fabricated and installed the new electronics. These engineers also provide continued instrument maintenance services. With electronic component drawings being DOE Property, other DOE Complex laboratories have the option to extend the life of their aged Mass Spectrometers.« less
The Heidelberg compact electron beam ion traps
NASA Astrophysics Data System (ADS)
Micke, P.; Kühn, S.; Buchauer, L.; Harries, J. R.; Bücking, T. M.; Blaum, K.; Cieluch, A.; Egl, A.; Hollain, D.; Kraemer, S.; Pfeifer, T.; Schmidt, P. O.; Schüssler, R. X.; Schweiger, Ch.; Stöhlker, T.; Sturm, S.; Wolf, R. N.; Bernitt, S.; Crespo López-Urrutia, J. R.
2018-06-01
Electron beam ion traps (EBITs) are ideal tools for both production and study of highly charged ions (HCIs). In order to reduce their construction, maintenance, and operation costs, we have developed a novel, compact, room-temperature design, the Heidelberg Compact EBIT (HC-EBIT). Four already commissioned devices operate at the strongest fields (up to 0.86 T) reported for such EBITs using permanent magnets, run electron beam currents up to 80 mA, and energies up to 10 keV. They demonstrate HCI production, trapping, and extraction of pulsed Ar16+ bunches and continuous 100 pA ion beams of highly charged Xe up to charge state 29+, already with a 4 mA, 2 keV electron beam. Moreover, HC-EBITs offer large solid-angle ports and thus high photon count rates, e.g., in x-ray spectroscopy of dielectronic recombination in HCIs up to Fe24+, achieving an electron-energy resolving power of E/ΔE > 1500 at 5 keV. Besides traditional on-axis electron guns, we have also implemented a novel off-axis gun for laser, synchrotron, and free-electron laser applications, offering clear optical access along the trap axis. We report on its first operation at a synchrotron radiation facility demonstrating the resonant photoexcitation of highly charged oxygen.
Cesar, D; Maxson, J; Musumeci, P; Sun, Y; Harrison, J; Frigola, P; O'Shea, F H; To, H; Alesini, D; Li, R K
2016-07-08
We present the results of an experiment where a short focal length (∼1.3 cm), permanent magnet electron lens is used to image micron-size features (of a metal sample) with a single shot from an ultrahigh brightness picosecond-long 4 MeV electron beam emitted by a radio-frequency photoinjector. Magnification ratios in excess of 30× were obtained using a triplet of compact, small gap (3.5 mm), Halbach-style permanent magnet quadrupoles with nearly 600 T/m field gradients. These results pave the way towards single-shot time-resolved electron microscopy and open new opportunities in the applications of high brightness electron beams.
1966-10-01
S66-09382 (1 Oct. 1966) --- Gemini-12 Experiment MSC-7 Bremsstrahlung Spectrometer-Spectrometer Analyzer processor installed in cabin. Objective of experiment is to determine the gamma and beta flux and energy spectra induced inside the spacecraft by exterior electrons. Photo credit: NASA
NASA Technical Reports Server (NTRS)
Vanous, D. D.
1974-01-01
The development and characteristics of the infrared interferometer spectrometer and radiometer (IRIS) instrument for use with the Mariner/Jupiter/Saturn space probe. The subjects discussed are: (1) the electronic design, (2) the opto-mechanical design, (3) reliability analysis, (4) quality control, and (5) program management.
Special issue on compact x-ray sources
NASA Astrophysics Data System (ADS)
Hooker, Simon; Midorikawa, Katsumi; Rosenzweig, James
2014-04-01
Journal of Physics B: Atomic, Molecular and Optical Physics is delighted to announce a forthcoming special issue on compact x-ray sources, to appear in the winter of 2014, and invites you to submit a paper. The potential for high-brilliance x- and gamma-ray sources driven by advanced, compact accelerators has gained increasing attention in recent years. These novel sources—sometimes dubbed 'fifth generation sources'—will build on the revolutionary advance of the x-ray free-electron laser (FEL). New radiation sources of this type have widespread applications, including in ultra-fast imaging, diagnostic and therapeutic medicine, and studies of matter under extreme conditions. Rapid advances in compact accelerators and in FEL techniques make this an opportune moment to consider the opportunities which could be realized by bringing these two fields together. Further, the successful development of compact radiation sources driven by compact accelerators will be a significant milestone on the road to the development of high-gradient colliders able to operate at the frontiers of particle physics. Thus the time is right to publish a peer-reviewed collection of contributions concerning the state-of-the-art in: advanced and novel acceleration techniques; sophisticated physics at the frontier of FELs; and the underlying and enabling techniques of high brightness electron beam physics. Interdisciplinary research connecting two or more of these fields is also increasingly represented, as exemplified by entirely new concepts such as plasma based electron beam sources, and coherent imaging with fs-class electron beams. We hope that in producing this special edition of Journal of Physics B: Atomic, Molecular and Optical Physics (iopscience.iop.org/0953-4075/) we may help further a challenging mission and ongoing intellectual adventure: the harnessing of newly emergent, compact advanced accelerators to the creation of new, agile light sources with unprecedented capabilities. New schemes for compact accelerators: laser- and beam-driven plasma accelerators; dielectric laser accelerators; THz accelerators. Latest results for compact accelerators. Target design and staging of advanced accelerators. Advanced injection and phase space manipulation techniques. Novel diagnostics: single-shot measurement of sub-fs bunch duration; measurement of ultra-low emittance. Generation and characterization of incoherent radiation: betatron and undulator radiation; Thomson/Compton scattering sources, novel THz sources. Generation and characterization of coherent radiation. Novel FEL simulation techniques. Advances in simulations of novel accelerators: simulations of injection and acceleration processes; simulations of coherent and incoherent radiation sources; start-to-end simulations of fifth generation light sources. Novel undulator schemes. Novel laser drivers for laser-driven accelerators: high-repetition rate laser systems; high wall-plug efficiency systems. Applications of compact accelerators: imaging; radiography; medical applications; electron diffraction and microscopy. Please submit your article by 15 May 2014 (expected web publication: winter 2014); submissions received after this date will be considered for the journal, but may not be included in the special issue.
SpiderSpec: a low-cost compact colorimeter with IoT functionality
NASA Astrophysics Data System (ADS)
Mignani, Anna G.; Mencaglia, Andrea A.; Baldi, Massimo; Ciaccheri, Leonardo
2015-07-01
A miniaturized device for colorimetry is presented that utilizes a LED array for illumination and a compact spectrometer for detection. It can be battery-powered, operated locally as a stand-alone device, or connected via wi-fi to the internet. It has potentials to be remotely operated by means of a tablet or a smartphone. In practice, it consists of a low-cost hardware configuration that is adaptable via software to the user's most varied requests, as a spectroscopic platform appropriate for a variety of applications. The hardware and software modules can be designed with different performances, complexities and costs, with the aim of making the colorimeter a device for Internet-of-Things use. It will be suitable for a selected range of consumer applications, as well as for targeted industrial, environmental, and food applications.
The NSO FTS database program and archive (FTSDBM)
NASA Technical Reports Server (NTRS)
Lytle, D. M.
1992-01-01
Data from the NSO Fourier transform spectrometer is being re-archived from half inch tape onto write-once compact disk. In the process, information about each spectrum and a low resolution copy of each spectrum is being saved into an on-line database. FTSDBM is a simple database management program in the NSO external package for IRAF. A command language allows the FTSDBM user to add entries to the database, delete entries, select subsets from the database based on keyword values including ranges of values, create new database files based on these subsets, make keyword lists, examine low resolution spectra graphically, and make disk number/file number lists. Once the archive is complete, FTSDBM will allow the database to be efficiently searched for data of interest to the user and the compact disk format will allow random access to that data.
A Statitstical Study of Energetic Electron Phase Space Density with RBSP and BD-IES Data
NASA Astrophysics Data System (ADS)
Chen, X.; Zong, Q.; Zhou, X.; Zou, H.; Wang, Y.
2017-12-01
We present a statistical study of energetic electron phase space density (PSD) with combined observations from the Magnetic Electron Ion Spectrometer (MagEIS) instruments onboard the Van Allen Probes and the Image Electron Spectrometer (BD-IES) onboard an inclined geosynchronous orbit satellite. The electron PSD as a function of the adiabatic invariants is derived using one year data (Nov. 2015 to Oct. 2016) of these instruments. The orbits of the satellites cover a wide range of L-shells, allowing for the distribution of electron PSD throughout the radiation belt (L* 1 to 10). A persistent peak of energetic electron ( 30 to 1000 MeV/G) PSD is unambiguously identified at L* 5.5, which may help to understand the role of local acceleration and radial diffusion in the dynamics of energetic electrons. In addition, the electron PSD shows a power-law distribution with the exponent varying from about -2 to -4 depending on L*. The variance of electron PSD during storm and substorm activities indicating by SYMH and AE indices are also discussed.
Dispersion-free continuum two-dimensional electronic spectrometer
Zheng, Haibin; Caram, Justin R.; Dahlberg, Peter D.; Rolczynski, Brian S.; Viswanathan, Subha; Dolzhnikov, Dmitriy S.; Khadivi, Amir; Talapin, Dmitri V.; Engel, Gregory S.
2015-01-01
Electronic dynamics span broad energy scales with ultrafast time constants in the condensed phase. Two-dimensional (2D) electronic spectroscopy permits the study of these dynamics with simultaneous resolution in both frequency and time. In practice, this technique is sensitive to changes in nonlinear dispersion in the laser pulses as time delays are varied during the experiment. We have developed a 2D spectrometer that uses broadband continuum generated in argon as the light source. Using this visible light in phase-sensitive optical experiments presents new challenges in implementation. We demonstrate all-reflective interferometric delays using angled stages. Upon selecting an ~180 nm window of the available bandwidth at ~10 fs compression, we probe the nonlinear response of broadly absorbing CdSe quantum dots and electronic transitions of Chlorophyll a. PMID:24663470
Multi-point Measurements of Relativistic Electrons in the Magnetosphere
NASA Astrophysics Data System (ADS)
Li, X.; Selesnick, R.; Baker, D. N.; Blake, J. B.; Schiller, Q.; Blum, L. W.; Zhao, H.; Jaynes, A. N.; Kanekal, S.
2014-12-01
We take an advantage of five different DC electric field measurements in the plasma sheet available from the EFW double probe experiment, EDI electron drift instrument, CODIF and HIA ion spectrometers, and PEACE electron spectrometer on the four Cluster spacecraft. The calibrated observations of the three spectrometers are used to determine the proton and electron velocity moments. The velocity moments can be used to estimate the proton and electron drift velocity and furthermore the DC electric field, assuming that the electron and proton velocity perpendicular to the magnetic field is dominated by the ExB drift motion. Naturally when ions and electrons do not perform a proper drift motion, which can happen in the plasma sheet, the estimated DC electric field from ion and electron motion is not correct. However, surprisingly often the DC electric fields estimated from electron and ion motions are identical suggesting that this field is a real DC electric field around the measurement point. As the measurement techniques are so different, it is quite plausible that when two different measurements yield the same DC electric field, it is the correct field. All five measurements of the DC electric field are usually not simultaneously available, especially on Cluster 2 where CODIF and HIA are not operational, or on Cluster 4 where EDI is off. In this presentation we investigate DC electric field in various transient plasma sheet events such as dipolarization events and BBF's and how the five measurements agree or disagree. There are plenty of important issues that are considered, e.g., (1) what kind of DC electric fields exist in such events and what are their spatial scales, (2) do electrons and ions perform ExB drift motions in these events, and (3) how well the instruments have been calibrated.
NASA Astrophysics Data System (ADS)
Wei, Hai-Rui; Deng, Fu-Guo
2013-10-01
Constructing compact quantum circuits for universal quantum gates on solid-state systems is crucial for quantum computing. We present some compact quantum circuits for a deterministic solid-state quantum computing, including the cnot, Toffoli, and Fredkin gates on the diamond NV centers confined inside cavities, achieved by some input-output processes of a single photon. Our quantum circuits for these universal quantum gates are simple and economic. Moreover, additional electron qubits are not employed, but only a single-photon medium. These gates have a long coherent time. We discuss the feasibility of these universal solid-state quantum gates, concluding that they are feasible with current technology.
The Backscatter Cloud Probe - a compact low-profile autonomous optical spectrometer
NASA Astrophysics Data System (ADS)
Beswick, K.; Baumgardner, D.; Gallagher, M.; Newton, R.
2013-08-01
A compact (500 cm3), lightweight (500 g), near-field, single particle backscattering optical spectrometer is described that mounts flush with the skin of an aircraft and measures the concentration and optical equivalent diameter of particles from 5 to 75 μm. The Backscatter Cloud Probe (BCP) was designed as a real-time qualitative cloud detector primarily for data quality control of trace gas instruments developed for the climate monitoring instrument packages that are being installed on commercial passenger aircraft as part of the European Union In-Service Aircraft for a Global Observing System (IAGOS) program (http://www.iagos.org/). Subsequent evaluations of the BCP measurements on a number of research aircraft, however, have revealed it capable of delivering quantitative particle data products including size distributions, liquid water content and other information on cloud properties. We demonstrate the instrument's capability for delivering useful long-term climatological information, across a wide range of environmental conditions. The BCP has been evaluated by comparing its measurements with those from other cloud particle spectrometers on research aircraft and several BCPs are currently flying on commercial A340/A330 Airbus passenger airliners. The design and calibration of the BCP is described in this presentation, along with an evaluation of measurements made on the research and commercial aircraft. Comparisons of the BCP with two other cloud spectrometers, the Cloud Droplet Probe (CDP) and the Cloud and Aerosol Spectrometer (CAS), show that the BCP size distributions agree well with those from the other two, given the intrinsic limitations and uncertainties related to the three instruments. Preliminary results from more than 7000 h of airborne measurements by the BCP on two Airbus A-340s operating on routine global traffic routes (one Lufthansa, the other China Airlines) show that more than 340 h of cloud data have been recorded at normal cruise altitudes (> 10 km) and more than 40% of the > 1200 flights were through clouds at some point between takeoff and landing. These data are a valuable contribution to data bases of cloud properties, including sub-visible cirrus, in the upper troposphere and useful for validating satellite retrievals of cloud water and effective radius as well as providing a broader, geographically and climatologically relevant view of cloud microphysical variability useful for improving parameterizations of clouds in climate models. They are also useful for monitoring the vertical climatology of clouds over airports, especially those over mega-cities where pollution emissions may be impacting local and regional climate.
X-ray spectroscopy of high-/Z highly charged ions with the Tokyo EBIT
NASA Astrophysics Data System (ADS)
Nakamura, Nobuyuki; Kato, Daiji; Ohtani, Shunsuke
2003-05-01
We have been using the Tokyo electron beam ion trap to investigate the relativistic and the quantum electrodynamical effects on the atomic structure of few electron heavy ions. In this paper, we present 1s binding energy measurement for hydrogen-like rhodium which was performed as one of such systematic studies. It has been obtained by measuring the X-ray transition energy for radiative recombination into the 1s vacancy of bare rhodium and subtracting the electron beam energy from it. For further investigation, a bent crystal spectrometer for hard X-rays is being developed. The design of the new spectrometer and the preliminary result with it are also presented.
Development of mercuric iodide uncooled x ray detectors and spectrometers
NASA Technical Reports Server (NTRS)
Iwanczyk, Jan S.
1990-01-01
The results obtained in the development of miniature, lowpower, light weight mercuric iodide, HgI2, x ray spectrometers for future space missions are summarized. It was demonstrated that HgI2 detectors can be employed in a high resolution x ray spectrometer, operating in a scanning electron microscope. Also, the development of HgI2 x ray detectors to augment alpha backscattering spectrometers is discussed. These combination instruments allow for the identification of all chemical elements, with the possible exception of hydrogen, and their respective concentrations. Additionally, further investigations of questions regarding radiation damage effects in the HgI2 x ray detectors are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stråhlman, Christian, E-mail: Christian.Strahlman@maxlab.lu.se; Sankari, Rami; Nyholm, Ralf
2016-01-15
We present a newly constructed spectrometer for negative–ion/positive–ion coincidence spectroscopy of gaseous samples. The instrument consists of two time–of–flight ion spectrometers and a magnetic momentum filter for deflection of electrons. The instrument can measure double and triple coincidences between mass–resolved negative and positive ions with high detection efficiency. First results include identification of several negative–ion/positive–ion coincidence channels following inner-shell photoexcitation of sulfur hexafluoride (SF{sub 6})
A micro-scale plasma spectrometer for space and plasma edge applications (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scime, E. E., E-mail: escime@wvu.edu; Keesee, A. M.; Elliott, D.
2016-11-15
A plasma spectrometer design based on advances in lithography and microchip stacking technologies is described. A series of curved plate energy analyzers, with an integrated collimator, is etched into a silicon wafer. Tests of spectrometer elements, the energy analyzer and collimator, were performed with a 5 keV electron beam. The measured collimator transmission and energy selectivity were in good agreement with design targets. A single wafer element could be used as a plasma processing or fusion first wall diagnostic.
A cometary ion mass spectrometer
NASA Technical Reports Server (NTRS)
Shelley, E. G.; Simpson, D. A.
1984-01-01
The development of flight suitable analyzer units for that part of the GIOTTO Ion Mass Spectrometer (IMS) experiment designated the High Energy Range Spectrometer (HERS) is discussed. Topics covered include: design of the total ion-optical system for the HERS analyzer; the preparation of the design of analyzing magnet; the evaluation of microchannel plate detectors and associated two-dimensional anode arrays; and the fabrication and evaluation of two flight-suitable units of the complete ion-optical analyzer system including two-dimensional imaging detectors and associated image encoding electronics.
Miniaturized optical wavelength sensors
NASA Astrophysics Data System (ADS)
Kung, Helen Ling-Ning
Recently semiconductor processing technology has been applied to the miniaturization of optical wavelength sensors. Compact sensors enable new applications such as integrated diode-laser wavelength monitors and frequency lockers, portable chemical and biological detection, and portable and adaptive hyperspectral imaging arrays. Small sensing systems have trade-offs between resolution, operating range, throughput, multiplexing and complexity. We have developed a new wavelength sensing architecture that balances these parameters for applications involving hyperspectral imaging spectrometer arrays. In this thesis we discuss and demonstrate two new wavelength-sensing architectures whose single-pixel designs can easily be extended into spectrometer arrays. The first class of devices is based on sampling a standing wave. These devices are based on measuring the wavelength-dependent period of optical standing waves formed by the interference of forward and reflected waves at a mirror. We fabricated two different devices based on this principle. The first device is a wavelength monitor, which measures the wavelength and power of a monochromatic source. The second device is a spectrometer that can also act as a selective spectral coherence sensor. The spectrometer contains a large displacement piston-motion MEMS mirror and a thin GaAs photodiode flip-chip bonded to a quartz substrate. The performance of this spectrometer is similar to that of a Michelson in resolution, operating range, throughput and multiplexing but with the added advantages of fewer components and one-dimensional architecture. The second class of devices is based on the Talbot self-imaging effect. The Talbot effect occurs when a periodic object is illuminated with a spatially coherent wave. Periodically spaced self-images are formed behind the object. The spacing of the self-images is proportional to wavelength of the incident light. We discuss and demonstrate how this effect can be used for spectroscopy. In the conclusion we compare these two new miniaturized spectrometer architectures to existing miniaturized spectrometers. We believe that the combination of miniaturized wavelength sensors and smart processing should facilitate the development real-time, adaptive and portable sensing systems.
Badali, D. S.; Gengler, R. Y. N.; Miller, R. J. D.
2016-01-01
A compact electron source specifically designed for time-resolved diffraction studies of free-standing thin films and monolayers is presented here. The sensitivity to thin samples is achieved by extending the established technique of ultrafast electron diffraction to the “medium” energy regime (1–10 kV). An extremely compact design, in combination with low bunch charges, allows for high quality diffraction in a lensless geometry. The measured and simulated characteristics of the experimental system reveal sub-picosecond temporal resolution, while demonstrating the ability to produce high quality diffraction patterns from atomically thin samples. PMID:27226978
Calibration of imaging plates to electrons between 40 and 180 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabhi, N., E-mail: nesrine.rabhi@celia.u-bordeaux.fr; Batani, D.; Boutoux, G.
2016-05-15
This paper presents the response calibration of Imaging Plates (IPs) for electrons in the 40-180 MeV range using laser-accelerated electrons at Laboratoire d’Optique Appliquée (LOA), Palaiseau, France. In the calibration process, the energy spectrum and charge of electron beams are measured by an independent system composed of a magnetic spectrometer and a Lanex scintillator screen used as a calibrated reference detector. It is possible to insert IPs of different types or stacks of IPs in this spectrometer in order to detect dispersed electrons simultaneously. The response values are inferred from the signal on the IPs, due to an appropriate chargemore » calibration of the reference detector. The effect of thin layers of tungsten in front and/or behind IPs is studied in detail. GEANT4 simulations are used in order to analyze our measurements.« less
Hypernuclear Spectroscopy with Electron Beam at JLab Hall C
NASA Astrophysics Data System (ADS)
Fujii, Y.; Chiba, A.; Doi, D.; Gogami, T.; Hashimoto, O.; Kanda, H.; Kaneta, M.; Kawama, D.; Maeda, K.; Maruta, T.; Matsumura, A.; Nagao, S.; Nakamura, S. N.; Shichijo, A.; Tamura, H.; Taniya, N.; Yamamoto, T.; Yokota, K.; Kato, S.; Sato, Y.; Takahashi, T.; Noumi, H.; Motoba, T.; Hiyama, E.; Albayrak, I.; Ates, O.; Chen, C.; Christy, M.; Keppel, C.; Kohl, M.; Li, Y.; Liyanage, A.; Tang, L.; Walton, T.; Ye, Z.; Yuan, L.; Zhu, L.; Baturin, P.; Boeglin, W.; Dhamija, S.; Markowitz, P.; Raue, B.; Reinhold, J.; Hungerford, Ed. V.; Ent, R.; Fenker, H.; Gaskell, D.; Horn, T.; Jones, M.; Smith, G.; Vulcan, W.; Wood, S. A.; Johnston, C.; Simicevic, N.; Wells, S.; Samanta, C.; Hu, B.; Shen, J.; Wang, W.; Zhang, X.; Zhang, Y.; Feng, J.; Fu, Y.; Zhou, J.; Zhou, S.; Jiang, Y.; Lu, H.; Yan, X.; Ye, Y.; Gan, L.; Ahmidouch, A.; Danagoulian, S.; Gasparian, A.; Elaasar, M.; Wesselmann, F. R.; Asaturyan, A.; Margaryan, A.; Mkrtchyan, A.; Mkrtchyan, H.; Tadevosyan, V.; Androic, D.; Furic, M.; Petkovic, T.; Seva, T.; Niculescu, G.; Niculescu, I.; López, V. M. Rodríguez; Cisbani, E.; Cusanno, F.; Garibaldi, F.; Uuciuoli, G. M.; de Leo, R.; Maronne, S.
2010-10-01
Hypernuclear spectroscopy with electron beam at JLab Hall C has been studied since 2000. The first experiment, JLab E89-009, demonstrated the possibility of the (e,e'K+) reaction for hypernuclear spectroscopy by achieving an energy resolution of better than 1 MeV (FWHM). The second experiment, JLab E01-011 employed a newly constructed high resolution kaon spectrometer and introduced a vertically tilted electron arm setup to avoid electrons from bremsstrahlung and Moeller scattering. The setup allowed us to have 10 times yield rate and 4 times better signal to accidental ratio with expected energy resolution of 400 keV (FWHM). The third experiment, JLab E05-11B will be performed in 2009 with employing newly constructed high resolution electron spectrometer and a new charge-separation magnet. With the fully customized third generation experimental setup, we can study a variety of targets up to medium-heavy ones such as 52Cr.
Hypernuclear Spectroscopy with Electron Beam at JLab Hall C
NASA Astrophysics Data System (ADS)
Fujii, Y.; Chiba, A.; Doi, D.; Gogami, T.; Hashimoto, O.; Kanda, H.; Kaneta, M.; Kawama, D.; Maeda, K.; Maruta, T.; Matsumura, A.; Nagao, S.; Nakamura, S. N.; Shichijo, A.; Tamura, H.; Taniya, N.; Yamamoto, T.; Yokota, K.; Kato, S.; Sato, Y.; Takahashi, T.; Noumi, H.; Motoba, T.; Hiyama, E.; Albayrak, I.; Ates, O.; Chen, C.; Christy, M.; Keppel, C.; Kohl, M.; Li, Y.; Liyanage, A.; Tang, L.; Walton, T.; Ye, Z.; Yuan, L.; Zhu, L.; Baturin, P.; Boeglin, W.; Dhamija, S.; Markowitz, P.; Raue, B.; Reinhold, J.; Hungerford, Ed. V.; Ent, R.; Fenker, H.; Gaskell, D.; Horn, T.; Jones, M.; Smith, G.; Vulcan, W.; Wood, S. A.; Johnston, C.; Simicevic, N.; Wells, S.; Samanta, C.; Hu, B.; Shen, J.; Wang, W.; Zhang, X.; Zhang, Y.; Feng, J.; Fu, Y.; Zhou, J.; Zhou, S.; Jiang, Y.; Lu, H.; Yan, X.; Ye, Y.; Gan, L.; Ahmidouch, A.; Danagoulian, S.; Gasparian, A.; Elaasar, M.; Wesselmann, F. R.; Asaturyan, A.; Margaryan, A.; Mkrtchyan, A.; Mkrtchyan, H.; Tadevosyan, V.; Androic, D.; Furic, M.; Petkovic, T.; Seva, T.; Niculescu, G.; Niculescu, I.; Rodríguez López, V. M.; Cisbani, E.; Cusanno, F.; Garibaldi, F.; Uuciuoli, G. M.; de Leo, R.; Maronne, S.
Hypernuclear spectroscopy with electron beam at JLab Hall C has been studied since 2000. The first experiment, JLab E89-009, demonstrated the possibility of the (e, e‧ K+) reaction for hypernuclear spectroscopy by achieving an energy resolution of better than 1 MeV (FWHM). The second experiment, JLab E01-011 employed a newly constructed high resolution kaon spectrometer and introduced a vertically tilted electron arm setup to avoid electrons from bremsstrahlung and Moeller scattering. The setup allowed us to have 10 times yield rate and 4 times better signal to accidental ratio with expected energy resolution of 400 keV (FWHM). The third experiment, JLab E05-115 will be performed in 2009 with employing newly constructed high resolution electron spectrometer and a new charge-separation magnet. With the fully customized third generation experimental setup, we can study a variety of targets up to medium-heavy ones such as 52Cr.
NASA Astrophysics Data System (ADS)
Taylor, S. A.; Coates, A. J.; Jones, G. H.; Wellbrock, A.; Fazakerley, A. N.; Desai, R. T.; Caro-Carretero, R.; Michiko, M. W.; Schippers, P.; Waite, J. H.
2018-01-01
The Electron Spectrometer (ELS) of the Cassini Plasma Spectrometer has observed photoelectrons produced in the plume of Enceladus. These photoelectrons are observed during Enceladus encounters in the energetic particle shadow where the spacecraft is largely shielded from penetrating radiation by the moon. We present a complex electron spectrum at Enceladus including evidence of two previously unidentified electron populations at 6-10 eV and 10-16 eV. We estimate that the proportion of "hot" (>15 eV) to "cold" (<15 eV) electrons during the Enceladus flybys is ≈ 0.1-0.5%. We have constructed a model of photoelectron production in the plume and compared it with ELS Enceladus flyby data by scaling and energy shifting according to spacecraft potential. We suggest that the complex structure of the electron spectrum observed can be explained entirely by photoelectron production in the plume ionosphere.
Design of An Improved Miniature Ion Neutral Mass Spectrometer for NASA Applications
NASA Technical Reports Server (NTRS)
Swaminathan, Viji K.; Alig, Roger C.
1997-01-01
The ion optics of NASA's Ion Neutral Mass Spectrometer (INMS) sensor was simulated with three dimensional models of the open source, the quadrupole deflector, the exit lens system and the quadrupole mass analyzer to design more compact models with lower weight. Comparison of calculated transmission with experimental results shows good agreement. Transmission analyses with varying geometrical parameters and voltages throw light on possible ways of reducing the size of the sensor. Trajectories of ions of mass 1-99 amu were simulated to analyze and optimize transmission. Analysis of open source transmission with varying angle of attack shows that the angular acceptance can be considerably increased by programming the voltages on the ion trap/ collimator. Analysis of transmission sensitivity to voltages and misalignments of the quadrupole deflector rods indicate that increased transmission is possible with a geometrically asymmetrical deflector and a deflector can be designed with much lower sensitivities of transmission. Bringing the disks closer together can decrease the size of the quadrupole deflector and also increase transmission. The exit lens system can be redesigned to be smaller by eliminating at least one electrode entirely without loss of transmission. Ceramic materials were investigated to find suitable candidates for use in the construction of lighter weight mass spectrometer. A high-sensitivity, high-resolution portable gas chromatograph mass spectrometer with a mass range of 2-700 amu has been built and will be commercialized in Phase 3.
NASA Astrophysics Data System (ADS)
Qi, Wenke; Jiang, Pan; Lin, Dan; Chi, Xiaoping; Cheng, Min; Du, Yikui; Zhu, Qihe
2018-01-01
A mini time-sliced ion velocity map imaging photofragment translational spectrometer using low voltage acceleration has been constructed. The innovation of this apparatus adopts a relative low voltage (30-150 V) to substitute the traditional high voltage (650-4000 V) to accelerate and focus the fragment ions. The overall length of the flight path is merely 12 cm. There are many advantages for this instrument, such as compact structure, less interference, and easy to operate and control. Low voltage acceleration gives a longer turn-around time to the photofragment ions forming a thicker Newton sphere, which provides sufficient time for slicing. Ion trajectory simulation has been performed for determining the structure dimensions and the operating voltages. The photodissociation and multiphoton ionization of O2 at 224.999 nm is used to calibrate the ion images and examine the overall performance of the new spectrometer. The velocity resolution (Δν/ν) of this spectrometer from O2 photodissociation is about 0.8%, which is better than most previous results using high acceleration voltage. For the case of CF3I dissociation at 277.38 nm, many CF3 vibrational states have been resolved, and the anisotropy parameter has been measured. The application of low voltage acceleration has shown its advantages on the ion velocity map imaging (VMI) apparatus. The miniaturization of the VMI instruments can be realized on the premise of high resolution.
Miniature integrated-optical wavelength analyzer chip
NASA Astrophysics Data System (ADS)
Kunz, R. E.; Dübendorfer, J.
1995-11-01
A novel integrated-optical chip suitable for realizing compact miniature wavelength analyzers with high linear dispersion is presented. The chip performs the complete task of converting the spectrum of an input beam into a corresponding spatial irradiance distribution without the need for an imaging function. We demonstrate the feasibility of this approach experimentally by monitoring the changes in the mode spectrum of a laser diode on varying its case temperature. Comparing the results with simultaneous measurements by a commercial spectrometer yielded a rms wavelength deviation of 0.01 nm.
NASA Astrophysics Data System (ADS)
Pallone, Arthur
Necessity often leads to inspiration. Such was the case when a traditional amplifier quit working during the collection of an alpha particle spectrum. I had a 15 battery-powered audio amplifier in my box of project electronics so I connected it between the preamplifier and the multichannel analyzer. The alpha particle spectrum that appeared on the computer screen matched expectations even without correcting for impedance mismatches. Encouraged by this outcome, I have begun to systematically replace each of the parts in a traditional charged particle spectrometer with audio and video components available through consumer electronics stores with the goal of producing an inexpensive charged particle spectrometer for use in education and research. Hopefully my successes, setbacks, and results to date described in this presentation will inform and inspire others.
A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science
Doriese, W. B.; Abbamonte, P.; Alpert, B. K.; ...
2017-05-01
We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, suchmore » as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy-resolved scattering; accelerator-based spectroscopy of hadronic atoms and particle-induced-emission spectroscopy; laboratory-based time-resolved absorption and emission spectroscopy with a tabletop, broadband source; and laboratory-based metrology of X-ray-emission lines. Here, we discuss the design, construction, and operation of our TES spectrometers and show first-light measurements from the various systems. Finally, because X-ray-TES technology continues to mature, we discuss improvements to array size, energy resolution, and counting speed that we anticipate in our next generation of TES-X-ray spectrometers and beyond.« less
A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doriese, W. B.; Abbamonte, P.; Alpert, B. K.
We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, suchmore » as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy-resolved scattering; accelerator-based spectroscopy of hadronic atoms and particle-induced-emission spectroscopy; laboratory-based time-resolved absorption and emission spectroscopy with a tabletop, broadband source; and laboratory-based metrology of X-ray-emission lines. Here, we discuss the design, construction, and operation of our TES spectrometers and show first-light measurements from the various systems. Finally, because X-ray-TES technology continues to mature, we discuss improvements to array size, energy resolution, and counting speed that we anticipate in our next generation of TES-X-ray spectrometers and beyond.« less
A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science
NASA Astrophysics Data System (ADS)
Doriese, W. B.; Abbamonte, P.; Alpert, B. K.; Bennett, D. A.; Denison, E. V.; Fang, Y.; Fischer, D. A.; Fitzgerald, C. P.; Fowler, J. W.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Jaye, C.; McChesney, J. L.; Miaja-Avila, L.; Morgan, K. M.; Joe, Y. I.; O'Neil, G. C.; Reintsema, C. D.; Rodolakis, F.; Schmidt, D. R.; Tatsuno, H.; Uhlig, J.; Vale, L. R.; Ullom, J. N.; Swetz, D. S.
2017-05-01
We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, such as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy-resolved scattering; accelerator-based spectroscopy of hadronic atoms and particle-induced-emission spectroscopy; laboratory-based time-resolved absorption and emission spectroscopy with a tabletop, broadband source; and laboratory-based metrology of X-ray-emission lines. Here, we discuss the design, construction, and operation of our TES spectrometers and show first-light measurements from the various systems. Finally, because X-ray-TES technology continues to mature, we discuss improvements to array size, energy resolution, and counting speed that we anticipate in our next generation of TES-X-ray spectrometers and beyond.
A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science.
Doriese, W B; Abbamonte, P; Alpert, B K; Bennett, D A; Denison, E V; Fang, Y; Fischer, D A; Fitzgerald, C P; Fowler, J W; Gard, J D; Hays-Wehle, J P; Hilton, G C; Jaye, C; McChesney, J L; Miaja-Avila, L; Morgan, K M; Joe, Y I; O'Neil, G C; Reintsema, C D; Rodolakis, F; Schmidt, D R; Tatsuno, H; Uhlig, J; Vale, L R; Ullom, J N; Swetz, D S
2017-05-01
We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, such as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy-resolved scattering; accelerator-based spectroscopy of hadronic atoms and particle-induced-emission spectroscopy; laboratory-based time-resolved absorption and emission spectroscopy with a tabletop, broadband source; and laboratory-based metrology of X-ray-emission lines. Here, we discuss the design, construction, and operation of our TES spectrometers and show first-light measurements from the various systems. Finally, because X-ray-TES technology continues to mature, we discuss improvements to array size, energy resolution, and counting speed that we anticipate in our next generation of TES-X-ray spectrometers and beyond.
NASA Technical Reports Server (NTRS)
Cataldo, Giuseppe; Moseley, S. H.; Hsieh, W.-T.; Huang, W,-C,; Stevenson, T. R.; Wollak, E. J.
2012-01-01
Micro-Spec (u-Spec) is a high-performance spectrometer working in the 250-700-micrometer wavelength range, whose modules use low-loss superconducting microstrip transmission lines on a single 4-inch-diameter silicon wafer. Creating the required phase delays in transmission lines rather than free space allows such an instrument to have, in principle, the performance of a meter-scale grating spectrometer. Such a dramatic size reduction enables classes of instruments for space that would be impossible with conventional technologies. This technology can dramatically enhance the long-wavelength capability of the space infrared telescope for cosmology and astrophysics SPICA. u-Spec is analogous to a grating spectrometer. The phase retardation generated by the reflection from the grating grooves is instead produced by propagation through a transmission line. The power received by a broadband antenna is progressively divided by binary microstrip power dividers, and the required phase delays are generated by different lengths of microstrip transmission lines. by arranging these outputs along a circular focal surface, the analog of a Rowland spectrometer can he created. The procedure to optimize the Micro-Spec design is based on the stigmatization and minimization of the light path function in a two-dimensional hounded region, which results in an optimized geometry arrangement with three stigmatic points. In addition, in order to optimize the overall efficiency of the instrument, the emitters are directed to the center of the focal surface. The electric field amplitude and phase as well as the power transmitted and absorbed throughout the region are analyzed. Measurements are planned in late summer to validate the designs.
NASA Technical Reports Server (NTRS)
Arkin, C. Richard; Ottens, Andrew K.; Diaz, Jorge A.; Griffin, Timothy P.; Follestein, Duke; Adams, Fredrick; Steinrock, T. (Technical Monitor)
2001-01-01
For Space Shuttle launch safety, there is a need to monitor the concentration of H2, He, O2 and Ar around the launch vehicle. Currently a large mass spectrometry system performs this task, using long transport lines to draw in samples. There is great interest in replacing this stationary system with several miniature, portable, rugged mass spectrometers which act as point sensors which can be placed at the sampling point. Five commercial and two non-commercial analyzers are evaluated. The five commercial systems include the Leybold Inficon XPR-2 linear quadrupole, the Stanford Research (SRS-100) linear quadrupole, the Ferran linear quadrupole array, the ThermoQuest Polaris-Q quadrupole ion trap, and the IonWerks Time-of-Flight (TOF). The non-commercial systems include a compact double focusing sector (CDFMS) developed at the University of Minnesota, and a quadrupole ion trap (UF-IT) developed at the University of Florida. The System Volume is determined by measuring the entire system volume including the mass analyzer, its associated electronics, the associated vacuum system, the high vacuum pump and rough pump. Also measured are any ion gauge controllers or other required equipment. Computers are not included. Scan Time is the time required for one scan to be acquired and the data to be transferred. It is determined by measuring the time required acquiring a known number of scans and dividing by said number of scans. Limit of Detection is determined first by performing a zero-span calibration (using a 10-point data set). Then the limit of detection (LOD) is defined as 3 times the standard deviation of the zero data set. (An LOD of 10 ppm or less is considered acceptable.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumgarten, C.; Barchetti, A.; Einenkel, H.
2011-05-15
A compact electron cyclotron resonance proton source has been developed and installed recently at thePaul Scherrer Institute's high intensity proton accelerator. Operation at the ion source test stand and the accelerator demonstrates a high reliability and stability of the new source. When operated at a 10 - 12 mA net proton current the lifetime of the source exceeds 2000 h. The essential development steps towards the observed performance are described.
Characteristics of DC electric fields in transient plasma sheet events
NASA Astrophysics Data System (ADS)
Laakso, H. E.; Escoubet, C. P.; Masson, A.
2015-12-01
We take an advantage of five different DC electric field measurements in the plasma sheet available from the EFW double probe experiment, EDI electron drift instrument, CODIF and HIA ion spectrometers, and PEACE electron spectrometer on the four Cluster spacecraft. The calibrated observations of the three spectrometers are used to determine the proton and electron velocity moments. The velocity moments can be used to estimate the proton and electron drift velocity and furthermore the DC electric field, assuming that the electron and proton velocity perpendicular to the magnetic field is dominated by the ExB drift motion. Naturally when ions and electrons do not perform a proper drift motion, which can happen in the plasma sheet, the estimated DC electric field from ion and electron motion is not correct. However, surprisingly often the DC electric fields estimated from electron and ion motions are identical suggesting that this field is a real DC electric field around the measurement point. As the measurement techniques are so different, it is quite plausible that when two different measurements yield the same DC electric field, it is the correct field. All five measurements of the DC electric field are usually not simultaneously available, especially on Cluster 2 where CODIF and HIA are not operational, or on Cluster 4 where EDI is off. In this presentation we investigate DC electric field in various transient plasma sheet events such as dipolarization events and BBF's and how the five measurements agree or disagree. There are plenty of important issues that are considered, e.g., (1) what kind of DC electric fields exist in such events and what are their spatial scales, (2) do electrons and ions perform ExB drift motions in these events, and (3) how well the instruments have been calibrated.
A system that couples a gas chromatograph (GC) via a split to a quadrapole mass spectrometer (MS) and, through a combustion interface, to an isotope ratio mass spectrometer (IRMS) allows the simultaneous detection of electron impact mass spectra and stable carbon isotope ratio an...
New search for double electron capture in {sup 106}Cd decay with the TGV-2 spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briançon, Ch.; Brudanin, V. B.; Egorov, V. G.
2015-09-15
A new experiment devoted to searches for double electron capture in {sup 106}Cd decay is being performed at the Modane underground laboratory (4800 mwe) with the 32-detector TGV-2 spectrometer. The limit T{sub 1/2}(2νEC/EC) > 2.0×10{sup 20} yr at a 90%confidence level (C.L.) was obtained from a preliminary analysis of data obtained over 2250 h of measurements with about 23.2 g sample enriched in the isotope {sup 106}Cd to 99.57%. The limits T{sub 1/2}(KL, 2741 keV) > 0.9 × 10{sup 20} yr and T{sub 1/2}(KK, 2718 keV) ≫ 1.4 × 10{sup 20} yr at a 90% C.L. on the neutrinoless decaymore » of {sup 106}Cd were obtained from measurements performed with the Obelix low-background spectrometer from high-purity germanium (HPGe spectrometer) for a sample of mass about 23.2 g enriched in the isotope {sup 106}Cd.« less
NASA Astrophysics Data System (ADS)
Garrett, P. E.; Jigmeddorj, B.; Radich, A. J.; Andreoiu, C.; Ball, G. C.; Bangay, J. C.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Cross, D. S.; Demand, G. A.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Green, K. L.; Hackman, G.; Hadinia, B.; Leach, K. G.; Michetti-Wilson, J.; Orce, J. N.; Rajabali, M. M.; Rand, E. T.; Starosta, K.; Sumithrarachchi, C.; Svensson, C. E.; Triambak, S.; Wang, Z. M.; Williams, S. J.; Wood, J. L.; Wong, J.; Yates, S. W.; Zganjar, E. F.
2016-09-01
The 8π spectrometer, located at TRIUMF-ISAC, was the world's most powerful spectrometer dedicated to β-decay studies until its decommissioning in early 2014 for replacement with the GRIFFIN array. An integral part of the 8π spectrometer was the Pentagonal Array for Conversion Electron Spectroscopy (PACES) consisting of 5 Si(Li) detectors used for charged-particle detection. PACES enabled both γ - e- and e- - e- coincidence measurements, which were crucial for increasing the sensitivity for discrete e- lines in the presence of large backgrounds. Examples from a 124Cs decay experiment, where the data were vital for the expansion of the 124Cs decay scheme, are shown. With suffcient statistics, measurements of conversion coeffcients can be used to extract the E0 components of Jπ → Jπ transitions for J ≠ 0, which is demonstrated for data obtained in 110In→110Cd decay. With knowledge of the shapes of the states involved, as obtained, for example, from the use of Kumar-Cline shape invariants, the mixing of the states can be extracted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palutke, S., E-mail: steffen.palutke@desy.de; Wurth, W.; Deutsches Elekronen Synchrotron
The setup and first results from commissioning of a fast online photon energy spectrometer for the vacuum ultraviolet free electron laser at Hamburg (FLASH) at DESY are presented. With the use of the latest advances in detector development, the presented spectrometer reaches readout frequencies up to 1 MHz. In this paper, we demonstrate the ability to record online photon energy spectra on a shot-to-shot base in the multi-bunch mode of FLASH. Clearly resolved shifts in the mean wavelength over the pulse train as well as shot-to-shot wavelength fluctuations arising from the statistical nature of the photon generating self-amplified spontaneous emissionmore » process have been observed. In addition to an online tool for beam calibration and photon diagnostics, the spectrometer enables the determination and selection of spectral data taken with a transparent experiment up front over the photon energy of every shot. This leads to higher spectral resolutions without the loss of efficiency or photon flux by using single-bunch mode or monochromators.« less
Amsden, Jason J; Herr, Philip J; Landry, David M W; Kim, William; Vyas, Raul; Parker, Charles B; Kirley, Matthew P; Keil, Adam D; Gilchrist, Kristin H; Radauscher, Erich J; Hall, Stephen D; Carlson, James B; Baldasaro, Nicholas; Stokes, David; Di Dona, Shane T; Russell, Zachary E; Grego, Sonia; Edwards, Steven J; Sperline, Roger P; Denton, M Bonner; Stoner, Brian R; Gehm, Michael E; Glass, Jeffrey T
2018-02-01
Despite many potential applications, miniature mass spectrometers have had limited adoption in the field due to the tradeoff between throughput and resolution that limits their performance relative to laboratory instruments. Recently, a solution to this tradeoff has been demonstrated by using spatially coded apertures in magnetic sector mass spectrometers, enabling throughput and signal-to-background improvements of greater than an order of magnitude with no loss of resolution. This paper describes a proof of concept demonstration of a cycloidal coded aperture miniature mass spectrometer (C-CAMMS) demonstrating use of spatially coded apertures in a cycloidal sector mass analyzer for the first time. C-CAMMS also incorporates a miniature carbon nanotube (CNT) field emission electron ionization source and a capacitive transimpedance amplifier (CTIA) ion array detector. Results confirm the cycloidal mass analyzer's compatibility with aperture coding. A >10× increase in throughput was achieved without loss of resolution compared with a single slit instrument. Several areas where additional improvement can be realized are identified. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Amsden, Jason J.; Herr, Philip J.; Landry, David M. W.; Kim, William; Vyas, Raul; Parker, Charles B.; Kirley, Matthew P.; Keil, Adam D.; Gilchrist, Kristin H.; Radauscher, Erich J.; Hall, Stephen D.; Carlson, James B.; Baldasaro, Nicholas; Stokes, David; Di Dona, Shane T.; Russell, Zachary E.; Grego, Sonia; Edwards, Steven J.; Sperline, Roger P.; Denton, M. Bonner; Stoner, Brian R.; Gehm, Michael E.; Glass, Jeffrey T.
2018-02-01
Despite many potential applications, miniature mass spectrometers have had limited adoption in the field due to the tradeoff between throughput and resolution that limits their performance relative to laboratory instruments. Recently, a solution to this tradeoff has been demonstrated by using spatially coded apertures in magnetic sector mass spectrometers, enabling throughput and signal-to-background improvements of greater than an order of magnitude with no loss of resolution. This paper describes a proof of concept demonstration of a cycloidal coded aperture miniature mass spectrometer (C-CAMMS) demonstrating use of spatially coded apertures in a cycloidal sector mass analyzer for the first time. C-CAMMS also incorporates a miniature carbon nanotube (CNT) field emission electron ionization source and a capacitive transimpedance amplifier (CTIA) ion array detector. Results confirm the cycloidal mass analyzer's compatibility with aperture coding. A >10× increase in throughput was achieved without loss of resolution compared with a single slit instrument. Several areas where additional improvement can be realized are identified.
Broadband high resolution X-ray spectral analyzer
Silver, Eric H.; Legros, Mark; Madden, Norm W.; Goulding, Fred; Landis, Don
1998-01-01
A broad bandwidth high resolution x-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces x-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available x-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for x-ray microanalysis or in research applications such as laboratory and astrophysical x-ray and particle spectroscopy.
Broadband high resolution X-ray spectral analyzer
Silver, E.H.; Legros, M.; Madden, N.W.; Goulding, F.; Landis, D.
1998-07-07
A broad bandwidth high resolution X-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces X-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available X-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for X-ray microanalysis or in research applications such as laboratory and astrophysical X-ray and particle spectroscopy. 6 figs.
Hybrid interferometric/dispersive atomic spectroscopy of laser-induced uranium plasma
Morgan, Phyllis K.; Scott, Jill R.; Jovanovic, Igor
2015-12-19
An established optical emission spectroscopy technique, laser-induced breakdown spectroscopy (LIBS), holds promise for detection and rapid analysis of elements relevant for nuclear safeguards, nonproliferation, and nuclear power, including the measurement of isotope ratios. One such important application of LIBS is the measurement of uranium enrichment ( 235U/ 238U), which requires high spectral resolution (e.g., 25 pm for the 424.4 nm U II line). High-resolution dispersive spectrometers necessary for such measurements are typically bulky and expensive. We demonstrate the use of an alternative measurement approach, which is based on an inexpensive and compact Fabry–Perot etalon integrated with a low to moderatemore » resolution Czerny–Turner spectrometer, to achieve the resolution needed for isotope selectivity of LIBS of uranium in ambient air. Furthermore, spectral line widths of ~ 10 pm have been measured at a center wavelength 424.437 nm, clearly discriminating the natural from the highly enriched uranium.« less
Compact Micromachined Bandpass Filters for Infrared Planetary Spectroscopy
NASA Technical Reports Server (NTRS)
Brown, Ari D.; Aslam, Shahid; Chervenak, James A.; Huang, Wei-Chung; Merrell, Willie; Quijada, Manuel
2011-01-01
The thermal instrument strawman payload of the Jupiter Europa Orbiter on the Europa Jupiter Science Mission will map out thermal anomalies, the structure, and atmospheric conditions of Europa and Jupiter within the 7-100 micron spectral range. One key requirement for the payload is that the mass cannot exceed 3.7 kg. Consequently, a new generation of light-weight miniaturized spectrometers needs to be developed. On the path toward developing these spectrometers is development of ancillary miniaturized spectroscopic components. In this paper, we present a strategy for making radiation hard and low mass FIR band pass metal mesh filters. Our strategy involves using MEMS-based fabrication techniques, which will permit the quasi-optical filter structures to be made with micron-scale precision. This will enable us to achieve tight control over both the pass band of the filter and the micromachined silicon support structure architecture, which will facilitate integration of the filters for a variety of applications.
Hunault, Myrtille; Lelong, Gérald; Gauthier, Michel; Gélébart, Frédéric; Ismael, Saindou; Galoisy, Laurence; Bauchau, Fanny; Loisel, Claudine; Calas, Georges
2016-05-01
A new low-cost experimental setup based on two compact dispersive optical spectrometers has been developed to measure optical absorption transmission spectra over the 350-2500 nm energy range. We demonstrate how near-infrared (NIR) data are essential to identify the coloring species in addition to ultraviolet visible data. After calibration with reference glasses, the use of an original sample stage that maintains the window panel in the vertical position enables the comparison of ancient and modern glasses embedded in a panel from the Sainte-Chapelle of Paris, without any sampling. The spectral resolution enables to observe fine resonances arising in the absorption bands of Cr(3+), and the complementary information obtained in the NIR enables to determine the contribution of Fe(2+), a key indicator of glassmaking conditions. © The Author(s) 2016.
Qiao, W; Stephan, D; Hasselbeck, M; Liang, Q; Dekorsy, T
2012-08-27
A compact high-resolution THz time-domain waveguide spectrometer that is operated inside a cryostat is demonstrated. A THz photo-Dember emitter and a ZnTe electro-optic detection crystal are directly attached to a parallel copper-plate waveguide. This allows the THz beam to be excited and detected entirely inside the cryostat, obviating the need for THz-transparent windows or external THz mirrors. Since no external bias for the emitter is required, no electric feed-through into the cryostat is necessary. Using asynchronous optical sampling, high resolution THz spectra are obtained in the frequency range from 0.2 to 2.0 THz. The THz emission from the photo-Dember emitter and the absorption spectrum of 1,2-dicyanobenzene film are measured as a function of temperature. An absorption peak around 750 GHz of 1,2-dicyanobenzene displays a blue shift with increasing temperature.
Plans for the extreme ultraviolet explorer data base
NASA Technical Reports Server (NTRS)
Marshall, Herman L.; Dobson, Carl A.; Malina, Roger F.; Bowyer, Stuart
1988-01-01
The paper presents an approach for storage and fast access to data that will be obtained by the Extreme Ultraviolet Explorer (EUVE), a satellite payload scheduled for launch in 1991. The EUVE telescopes will be operated remotely from the EUVE Science Operation Center (SOC) located at the University of California, Berkeley. The EUVE science payload consists of three scanning telescope carrying out an all-sky survey in the 80-800 A spectral region and a Deep Survey/Spectrometer telescope performing a deep survey in the 80-250 A spectral region. Guest Observers will remotely access the EUVE spectrometer database at the SOC. The EUVE database will consist of about 2 X 10 to the 10th bytes of information in a very compact form, very similar to the raw telemetry data. A history file will be built concurrently giving telescope parameters, command history, attitude summaries, engineering summaries, anomalous events, and ephemeris summaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebai, M., E-mail: marica.rebai@mib.infn.it; Nocente, M.; Rigamonti, D.
2016-11-15
A Single-crystal Diamond (SD) detector prototype was installed at Joint European Torus (JET) in 2013 and the achieved results have shown its spectroscopic capability of measuring 2.5 MeV neutrons from deuterium plasmas. This paper presents measurements of the SD response function to monoenergetic neutrons, which is a key point for the development of a neutron spectrometer based on SDs and compares them with Monte Carlo simulations. The analysis procedure allows for a good reconstruction of the experimental results. The good pulse height energy resolution (equivalent FWHM of 80 keV at 2.5 MeV), gain stability, insensitivity to magnetic field, and compactmore » size make SDs attractive as compact neutron spectrometers of high flux deuterium plasmas, such as for instance those needed for the ITER neutron camera.« less
On the calibration and use of Dual Electron Sensors for NASA's Magnetospheric MultiScale mission
NASA Astrophysics Data System (ADS)
Avanov, L. A.; Gliese, U.; Pollock, C. J.; Barrie, A.; Mariano, A. J.; Tucker, C. J.; Jacques, A. D.; Zeuch, M.; Shields, N.; Christian, K. D.
2013-12-01
The scientific target of NASA's Magnetospheric MultiScale (MMS) mission is to study the fundamentally important phenomenon of magnetic reconnection. Theoretical models of this process predict a small (order of ten kilometers) size for the diffusion region where electrons are demagnetized at the dayside magnetopause. Yet, the region may typically sweep over the spacecraft at relatively high speeds of 50km/s. That is why Fast Plasma Investigation (FPI) instrument suite must have extremely high time resolution for measurements of the 3D particle distribution functions. The Dual Electron Spectrometers (DESs) provide fast (30ms) 3D electron velocity distributions, from 10eV to 30,000 eV, as part of the Fast Plasma Investigation (FPI) on NASA's Magnetospheric MultiScale (MMS) mission. This is accomplished by combining the measurements from eight different spectrometers (packaged in four dual sets) on each MMS spacecraft to produce each full distribution. This approach presents a new and challenging aspect to the calibration and operation of these instruments. The response uniformity among the spectrometer set, the consistency and reliability of their calibration in both sensitivity and their phase space selectivity (energy and angle), and the approach to handling any temporal evolution of these calibrated characteristics all assume enhanced importance in this application. In this paper, we will present brief descriptions of the spectrometers and our approach their ground calibration, trended results of those calibrations, and our plans to detect, track, and respond to any temporal evolution in instrument performance through the life of the mission.
An Analog Computer for Electronic Engineering Education
ERIC Educational Resources Information Center
Fitch, A. L.; Iu, H. H. C.; Lu, D. D. C.
2011-01-01
This paper describes a compact analog computer and proposes its use in electronic engineering teaching laboratories to develop student understanding of applications in analog electronics, electronic components, engineering mathematics, control engineering, safe laboratory and workshop practices, circuit construction, testing, and maintenance. The…
Probing the Milky Way electron density using multi-messenger astronomy
NASA Astrophysics Data System (ADS)
Breivik, Katelyn; Larson, Shane
2015-04-01
Multi-messenger observations of ultra-compact binaries in both gravitational waves and electromagnetic radiation supply highly complementary information, providing new ways of characterizing the internal dynamics of these systems, as well as new probes of the galaxy itself. Electron density models, used in pulsar distance measurements via the electron dispersion measure, are currently not well constrained. Simultaneous radio and gravitational wave observations of pulsars in binaries provide a method of measuring the average electron density along the line of sight to the pulsar, thus giving a new method for constraining current electron density models. We present this method and assess its viability with simulations of the compact binary component of the Milky Way using the public domain binary evolution code, BSE. This work is supported by NASA Award NNX13AM10G.
A vacuum-sealed compact x-ray tube based on focused carbon nanotube field-emission electrons
NASA Astrophysics Data System (ADS)
Jeong, Jin-Woo; Kim, Jae-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho
2013-03-01
We report on a fully vacuum-sealed compact x-ray tube based on focused carbon nanotube (CNT) field-emission electrons for various radiography applications. The specially designed two-step brazing process enabled us to accomplish a good vacuum level for the stable and reliable operation of the x-ray tube without any active vacuum pump. Also, the integrated focusing electrodes in the field-emission electron gun focused electron beams from the CNT emitters onto the anode target effectively, giving a small focal spot of around 0.3 mm with a large current of above 50 mA. The active-current control through the cathode electrode of the x-ray tube led a fast digital modulation of x-ray dose with a low voltage of below 5 V. The fabricated compact x-ray tube showed a stable and reliable operation, indicating good maintenance of a vacuum level of below 5 × 10-6 Torr and the possibility of field-emission x-ray tubes in a stand-alone device without an active pumping system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Namba, S., E-mail: namba@hiroshima-u.ac.jp; Hasegawa, N.; Kishimoto, M.
To characterize the temporal evolution of ultrashort X-ray pulses emitted by laser plasmas using a pump-probe method, a magnetic bottle time-of-flight electron spectrometer is constructed. The design is determined by numerical calculations of a mirror magnetic field and of the electron trajectory in a flight tube. The performance of the spectrometer is characterized by measuring the electron spectra of xenon atoms irradiated with a laser-driven plasma X-ray pulse. In addition, two-color above-threshold ionization (ATI) experiment is conducted for measurement of the X-ray laser pulse duration, in which xenon atoms are simultaneously irradiated with an X-ray laser pump and an IRmore » laser probe. The correlation in the intensity of the sideband spectra of the 4d inner-shell photoelectrons and in the time delay of the two laser pulses yields an X-ray pulse width of 5.7 ps, in good agreement with the value obtained using an X-ray streak camera.« less
A compact high brightness laser synchrotron light source for medical applications
NASA Astrophysics Data System (ADS)
Nakajima, Kazuhisa
1999-07-01
The present high-brightness hard X-ray sources have been developed as third generation synchrotron light sources based on large high energy electron storage rings and magnetic undulators. Recently availability of compact terawatt lasers arouses a great interest in the use of lasers as undulators. The laser undulator concept makes it possible to construct an attractive compact synchrotron radiation source which has been proposed as a laser synchrotron light source. This paper proposes a compact laser synchrotron light source for mediacal applications, such as an intravenous coronary angiography and microbeam therapy.
Novel time-of-flight spectrometer for the analysis of positron annihilation induced Auger electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hugenschmidt, Christoph; Legl, Stefan; Physik-Department E21, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching
2006-10-15
Positron annihilation induced Auger-electron spectroscopy (PAES) has several advantages over conventional Auger-electron spectroscopy such as extremely high surface sensitivity and outstanding signal-to-noise ratio at the Auger-transition energy. In order to benefit from these prominent features a low-energy positron beam of high intensity is required for surface sensitive PAES studies. In addition, an electron energy analyzer is required, which efficiently detects the Auger electrons with acceptable energy resolution. For this reason a novel time-of-flight (TOF) spectrometer has been developed at the intense positron source NEPOMUC that allows PAES studies within short measurement time. This TOF-PAES setup combines a trochoidal filter andmore » a flight tube in a Faraday cage in order to achieve an improved energy resolution of about 1 eV at high electron energies up to E{approx_equal}1000 eV. The electron flight time is the time between the annihilation radiation at the sample and when the electron hits a microchannel plate detector at the end of the flight tube.« less
Novel time-of-flight spectrometer for the analysis of positron annihilation induced Auger electrons
NASA Astrophysics Data System (ADS)
Hugenschmidt, Christoph; Legl, Stefan
2006-10-01
Positron annihilation induced Auger-electron spectroscopy (PAES) has several advantages over conventional Auger-electron spectroscopy such as extremely high surface sensitivity and outstanding signal-to-noise ratio at the Auger-transition energy. In order to benefit from these prominent features a low-energy positron beam of high intensity is required for surface sensitive PAES studies. In addition, an electron energy analyzer is required, which efficiently detects the Auger electrons with acceptable energy resolution. For this reason a novel time-of-flight (TOF) spectrometer has been developed at the intense positron source NEPOMUC that allows PAES studies within short measurement time. This TOF-PAES setup combines a trochoidal filter and a flight tube in a Faraday cage in order to achieve an improved energy resolution of about 1eV at high electron energies up to E ≈1000eV. The electron flight time is the time between the annihilation radiation at the sample and when the electron hits a microchannel plate detector at the end of the flight tube.
SU-D-BRCD-06: Measurement of Elekta Electron Energy Spectra Using a Small Magnetic Spectrometer.
Hogstrom, K; McLaughlin, D; Gibbons, J; Shikhaliev, P; Clarke, T; Henderson, A; Taylor, D; Shagin, P; Liang, E
2012-06-01
To demonstrate how a small magnetic spectrometer can measure the energy spectra of seven electron beams on an Elekta Infinity tuned to match beams on a previously commissioned machine. Energyspectra were determined from measurements of intensity profiles on 6″-long computed radiographic (CR) strips after deflecting a narrow incident beam using a small (28 lbs.), permanent magnetic spectrometer. CR plateexposures (<1cGy) required special beam reduction techniques and bremsstrahlung shielding. Curves of CR intensity (corrected for non- linearity and background) versus position were transformed into energy spectra using the transformation from position (x) on the CR plate to energy (E) based on the Lorentz force law. The effective magnetic field and its effective edge, parameters in the transformation, were obtained by fitting a plot of most probable incident energy (determined from practical range) to the peak position. The calibration curve (E vs. x) fit gave 0.423 Tesla for the effective magnetic field. Most resulting energy spectra were characterized by a single, asymmetric peak with peak position and FWHM increasing monotonically with beam energy. Only the 9-MeV spectrum was atypical, possibly indicating suboptimal beam tuning. These results compared well with energy spectra independently determined by adjusting each spectrum until the EGSnrc Monte Carlo calculated percent depth-dose curve agreed well with the corresponding measured curve. Results indicate that this spectrometer and methodology could be useful for measuring energy spectra of clinical electron beams at isocenter. Future work will (1) remove the small effect of the detector response function (due to pinhole size and incident angular spread) from the energy spectra, (2) extract the energy spectra exiting the accelerator from current results, (3) use the spectrometer to compare energy spectra of matched beams among our clinical sites, and (4) modify the spectrometer to utilize radiochromic film. © 2012 American Association of Physicists in Medicine.
Delta-Doped CCDs as Detector Arrays in Mass Spectrometers
NASA Technical Reports Server (NTRS)
Nikzad, Shouleh; Jones, Todd; Jewell, April; Sinha, Mahadeva
2007-01-01
In a conventional mass spectrometer, charged particles (ions) are dispersed through a magnetic sector onto an MCP at an output (focal) plane. In the MCP, the impinging charged particles excite electron cascades that afford signal gain. Electrons leaving the MCP can be read out by any of a variety of means; most commonly, they are post-accelerated onto a solid-state detector array, wherein the electron pulses are converted to photons, which, in turn, are converted to measurable electric-current pulses by photodetectors. Each step in the conversion from the impinging charged particles to the output 26 NASA Tech Briefs, February 2007 current pulses reduces spatial resolution and increases noise, thereby reducing the overall sensitivity and performance of the mass spectrometer. Hence, it would be preferable to make a direct measurement of the spatial distribution of charged particles impinging on the focal plane. The utility of delta-doped CCDs as detectors of charged particles was reported in two articles in NASA Tech Briefs, Vol. 22, No. 7 (July 1998): "Delta-Doped CCDs as Low-Energy-Particle Detectors" (NPO-20178) on page 48 and "Delta- Doped CCDs for Measuring Energies of Positive Ions" (NPO-20253) on page 50. In the present developmental miniature mass spectrometers, the above mentioned miniaturization and performance advantages contributed by the use of delta-doped CCDs are combined with the advantages afforded by the Mattauch-Herzog design. The Mattauch- Herzog design is a double-focusing spectrometer design involving an electric and a magnetic sector, where the ions of different masses are spatially separated along the focal plane of magnetic sector. A delta-doped CCD at the focal plane measures the signals of all the charged-particle species simultaneously at high sensitivity and high resolution, thereby nearly instantaneously providing a complete, high-quality mass spectrum. The simultaneous nature of the measurement of ions stands in contrast to that of a scanning mass spectrometer, in which abundances of different masses are measured at successive times.
NASA Astrophysics Data System (ADS)
Nemkovski, K.; Ioffe, A.; Su, Y.; Babcock, E.; Schweika, W.; Brückel, Th
2017-06-01
We present the concept and the results of the simulations of a new polarizer for the diffuse neutron scattering spectrometer DNS at MLZ. The concept of the polarizer is based on the idea of a bender made from the stack of the silicon wafers with a double-side supermirror polarizing coating and absorbing spacers in between. Owing to its compact design, such a system provides more free space for the arrangement of other instrument components. To reduce activation of the polarizer in the high intensity neutron beam of the DNS spectrometer we plan to use the Fe/Si supermirrors instead of currently used FeCoV/Ti:N ones. Using the VITESS simulation package we have performed simulations for horizontally focusing polarizing benders with different geometries in the combination with the double-focusing crystal monochromator of DNS. Neutron transmission and polarization efficiency as well as the effects of the focusing for convergent conventional C-benders and S-benders have been analyzed both for wedge-like and plane-parallel convergent geometries of the channels. The results of these simulations and the advantages/disadvantages of the various configurations are discussed.
Nitric Oxide Isotopic Analyzer Based on a Compact Dual-Modulation Faraday Rotation Spectrometer
Zhang, Eric; Huang, Stacey; Ji, Qixing; Silvernagel, Michael; Wang, Yin; Ward, Bess; Sigman, Daniel; Wysocki, Gerard
2015-01-01
We have developed a transportable spectroscopic nitrogen isotopic analyzer. The spectrometer is based on dual-modulation Faraday rotation spectroscopy of nitric oxide isotopologues with near shot-noise limited performance and baseline-free operation. Noise analysis indicates minor isotope (15NO) detection sensitivity of 0.36 ppbv·Hz−1/2, corresponding to noise-equivalent Faraday rotation angle (NEA) of 1.31 × 10−8 rad·Hz−1/2 and noise-equivalent absorbance (αL)min of 6.27 × 10−8 Hz−1/2. White-noise limited performance at 2.8× the shot-noise limit is observed up to ~1000 s, allowing reliable calibration and sample measurement within the drift-free interval of the spectrometer. Integration with wet-chemistry based on acidic vanadium(III) enables conversion of aqueous nitrate/nitrite samples to gaseous NO for total nitrogen isotope analysis. Isotopic ratiometry is accomplished via time-multiplexed measurements of two NO isotope transitions. For 5 μmol potassium nitrate samples, the instrument consistently yields ratiometric precision below 0.3‰, thus demonstrating potential as an in situ diagnostic tool for environmental nitrogen cycle studies. PMID:26473876
Ground based mid-IR heterodyne spectrometer concept for planetary atmospheres observations
NASA Astrophysics Data System (ADS)
Garamov, V.; Benderov, O.; Semenov, V.; Spiridonov, M.; Rodin, A.; Stepanov, B.
2017-09-01
We present a heterodyne spectrometer concept based on distributed feedback (DFB) quantum cascade lasers (QCL) operated in midle infrared region (MIR). The instrument is assumed to be mount on the Russian infrared observatories. The core features of the concept are compact design, utilizing a novel mid-IR fiber optical components and dynamic local oscillator frequency locking using reference molecule absorption line. The instrument characteristics are similar to modern heterodyne devices THIS (Cologne University, Germany) and MILAHI (Tohoku University, Japan) in terms of fundamental parameters, including spectral resolution, spectral coverage in a single observation. At present moment we created laboratory setup including all necessary elements of MIR heterodyne spectrometer. We have studied different components of noises of our system and found optimal value of LO power. The measured signal to noise ratio (SNR) with MCT PD was about 10 times greater than LO's shot noise (theoretical limit of heterodyne technique SNR) and limited by QCL relative intensity noise (RIN). However, applying additional filtering it is possible to reduce this value better than 5 shot noise level, which is typical to TEC cooled MCT PD. Also we demonstrate heterodyne signal measurements using laboratory black body with temperature of 400 oC.
Chen, Huipeng; Li, Mengyuan; Zhang, Yi; Xie, Huikai; Chen, Chang; Peng, Zhangming; Su, Shaohui
2018-02-08
Incorporating linear-scanning micro-electro-mechanical systems (MEMS) micromirrors into Fourier transform spectral acquisition systems can greatly reduce the size of the spectrometer equipment, making portable Fourier transform spectrometers (FTS) possible. How to minimize the tilting of the MEMS mirror plate during its large linear scan is a major problem in this application. In this work, an FTS system has been constructed based on a biaxial MEMS micromirror with a large-piston displacement of 180 μm, and a biaxial H∞ robust controller is designed. Compared with open-loop control and proportional-integral-derivative (PID) closed-loop control, H∞ robust control has good stability and robustness. The experimental results show that the stable scanning displacement reaches 110.9 μm under the H∞ robust control, and the tilting angle of the MEMS mirror plate in that full scanning range falls within ±0.0014°. Without control, the FTS system cannot generate meaningful spectra. In contrast, the FTS yields a clean spectrum with a full width at half maximum (FWHM) spectral linewidth of 96 cm -1 under the H∞ robust control. Moreover, the FTS system can maintain good stability and robustness under various driving conditions.
Using a portable terahertz spectrometer to measure the optical properties of in vivo human skin
NASA Astrophysics Data System (ADS)
Echchgadda, Ibtissam; Grundt, Jessica E.; Tarango, Melissa; Ibey, Bennett L.; Tongue, Thomas; Liang, Min; Xin, Hao; Wilmink, Gerald J.
2013-02-01
Terahertz time-domain spectroscopy (THz-TDS) systems are capable of detecting small differences in water concentration levels in biological tissues. This feature makes THz devices excellent tools for the noninvasive assessment of skin; however, most conventional systems prove too cumbersome for limited-space environments. We previously demonstrated that a portable, compact THz spectrometer permitted measurement of porcine skin optical properties that were comparable to those collected with conventional systems. In order to move toward human use of this system, the goal for this study was to collect the optical properties, specifically the absorption coefficient (μa) and index of refraction (n), of human subjects in vivo. Spectra were collected from 0.1-2 THz, and measurements were made on the palm, ventral (inner) and dorsal (outer) forearm. Prior to each THz measurement, we used a multiprobe adapter system to measure each subject's skin hydration levels, transepidermal waterloss (TEWL), skin color, and degree of melanin pigmentation. Our results suggest that the measured optical properties were wide-ranging, and varied considerably for skin tissues with different hydration and melanin levels. These data provide a novel framework for accurate human tissue measurements using THz spectrometers in limited-space environments.
Toroidal Varied-Line Space (TVLS) Gratings
NASA Technical Reports Server (NTRS)
Thomas, Roger J.; Oegerle, William (Technical Monitor)
2002-01-01
It is a particular challenge to develop a stigmatic spectrograph for XUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both re-imaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-spaced rulings (TULS). A number of solar EUV (Extreme Ultraviolet) spectrometers have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets SERTS and EUNIS. More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. We now combine these ideas into a spectrometer concept that puts varied-line space rulings onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of two solar spectrometers based on this concept are described: SUMI, proposed as a sounding rocket experiment, and NEXUS, proposed for the Solar Dynamics Observatory mission.