Science.gov

Sample records for compact extragalactic radio

  1. The LBA Calibrator Survey of Southern Compact Extragalactic Radio Sources - LCS1

    NASA Technical Reports Server (NTRS)

    Petrov, Leonid; Phillips, Chris; Bertarini, Alessandra; Murphy, Tara; Sadler, Elaine M.

    2011-01-01

    We present a catalogue of accurate positions and correlated flux densities for 410 flat-spectrum, compact extragalactic radio sources previously detected in the Australia Telescope 20 GHz (AT20G) survey. The catalogue spans the declination range [-90deg, -40deg] and was constructed from four 24-h very long baseline interferometry (VLBI) observing sessions with the Australian Long Baseline Array at 8.3 GHz. The VLBI detection rate in these experiments is 97 per cent, the median uncertainty of the source positions is 2.6 mas and the median correlated flux density on projected baselines longer than 1000 km is 0.14 Jy. The goals of this work are (1) to provide a pool of southern sources with positions accurate to a few milliarcsec, which can be used for phase-referencing observations, geodetic VLBI and space navigation; (2) to extend the complete flux-limited sample of compact extragalactic sources to the Southern hemisphere; and (3) to investigate the parsec-scale properties of high-frequency selected sources from the AT20G survey. As a result of this VLBI campaign, the number of compact radio sources south of declination -40deg which have measured VLBI correlated flux densities and positions known to milliarcsec accuracy has increased by a factor of 3.5.

  2. Extragalactic Radio Sources

    ERIC Educational Resources Information Center

    Kellerman, Kenneth I.

    1973-01-01

    Discusses new problems arising from the growing observational data through radio telescope arrays, involving the origin of radio sources, apparent superluminal velocities, conversion of radio sources to relativistic particles, and the nature of compact opaque and extended transparent sources. New physics may be needed to answer these cosmological…

  3. Extragalactic Radio Sources

    ERIC Educational Resources Information Center

    Kellerman, Kenneth I.

    1973-01-01

    Discusses new problems arising from the growing observational data through radio telescope arrays, involving the origin of radio sources, apparent superluminal velocities, conversion of radio sources to relativistic particles, and the nature of compact opaque and extended transparent sources. New physics may be needed to answer these cosmological…

  4. Large scale X-ray and radio structures associated with compact extragalactic sources

    NASA Technical Reports Server (NTRS)

    Biermann, P.; Pauliny-Toth, I. I. K.; Witzel, A.; Fricke, K.; Johnston, K. J.; Kuehr, H.; Strittmatter, P. A.; Urbanik, M.

    1982-01-01

    Knots of X-ray emission have been detected within 20 arcmin of five compact sources initially selected from the MPIfR north polar 5 GHz survey. Two of the knots have also been detected at centimeter wavelengths and probably have nonthermal spectra. They appear to be associated with the compact sources since the probability of serendipitous discovery at the observed flux levels is low. While the apparent association may be due to colocation of the sources in a distant supercluster, it is suggested on the basis of overall alignment, and possible correlations with structures in the respective central sources, that the association may be similar to that found in extended radio sources. The observed emission may thus be due to synchrotron or inverse Compton radiation, the energy being supplied by jets from the central source.

  5. The Extragalactic Radio Background

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Fixsen, D. J.; Levin, S. M.; Limon, M.; Lubin, P. M.; Seiffert, M.; Singal, J.; Villela, T.; Wollack, E.; Wuensche, C. A.

    2011-01-01

    The existence of an isotropic component of the high-latitude radio sky has been recognized for nearly fifty years, but has typically been assumed to be Galactic in origin. We use recent radio observations to test whether the observed high-latitude component could originate within either an extended Galactic halo or a more local "bubble" structure. The lack of significant polarization from the isotropic component, combined with the lack of significant correlation with the Galactic far-infrared emission, rule out an origin within the Galaxy. We conclude that an extragalactic origin is the only viable alternative for the bulk of the isotropic high-latitude emission. The extragalactic component is 2-3 times brighter than local (Galactic) emission towards the Galactic poles and is consistent with a power law in frequency with amplitude T(sub r) = 24.1 plus or minus 2.1 K and spectral index beta = -2.599 plus or minus 0.036 evaluated at reference frequency 310 MHz.

  6. X-Raying the MOJAVE Sample of Compact Extragalactic Radio Jets

    NASA Technical Reports Server (NTRS)

    Kadler, M.; Sato, G.; Tueller, J.; Sambruna, R. M.; Markwardt, C. B.; Giommi, P.; Gehrels, N.

    2007-01-01

    The MOJAVE sample is the first large radio-selected, VLBI-monitored AGN sample for which complete X-ray spectral information is being gathered. We report on the status of Swift survey observations which complement the available archival X-ray data at 0.3-10 keV and in the UV with its XRT and UVOT instruments. Many of these 133 radio-brightest AGN in the northern sky are now being observed for the first time at these energies. These and complementary other multiwavelength observations provide a large statistical sample of radio-selected AGN whose spectral energy distributions we measured from radio to gamma-ray wavelengths, available at the beginning of GLAST operations in 2008. Here, we report the X-ray spectral characteristics of 36 of these previously unobserved MOJAVE sources. In addition, the number of MOJAVE sources detected by the BAT instrument in the hard X-ray band is growing: we report the detection of five new blazars with BAT.

  7. VLBI observations of 416 extragalactic radio sources

    NASA Technical Reports Server (NTRS)

    Morabito, D. D.; Niell, A. E.; Preston, R. A.; Linfield, R. P.; Wehrle, A. E.; Faulkner, J.

    1986-01-01

    The Deep Space Network is establishing a high-accuracy Very Long Base Interferometry (VLBI) celestial reference frame. Presented are the VLBI results of observations of 416 radio sources with declination north of -45 degrees which were conducted at frequencies of 2.3 GHz and 8.4 GHz. At 2.3 GHz 323 of 391 radio sources observed were detected with a fringe spacing of 3 milliarcsec and a detection limit of approximately 0.1 Jy. At 8.4 GHz, 278 of 416 radio sources were detected with a fringe spacing of 1 milliarcsec and a detection limit of approximately 0.1 Jy. This survey was conducted primarily to determine the strength of compact components at 8.4 GHz for radio sources previously detected with VLBI at 2.3 GHz. Compact extragalactic radio sources with strong correlated flux densities at both frequencies are used to form a high-accuracy reference frame.

  8. VLBI observations of 416 extragalactic radio sources

    NASA Technical Reports Server (NTRS)

    Morabito, D. D.; Niell, A. E.; Preston, R. A.; Linfield, R. P.; Wehrle, A. E.; Faulkner, J.

    1986-01-01

    Very long baseline interferometry (VLBI) observations of 416 radio sources with declinations north of -45 deg have been conducted at frequencies of 2.3 and 8.4 GHz. At 2.3 GHz, 323 of 391 radio sources observed were detected with a fringe spacing of 3 milliarcsec and a detection limit of about 0.1 Jy. At 8.4 GHz, 278 of 416 radio sources were detected with a fringe spacing of 1 milliarcsec and a detection limit of about 0.1 Jy. This survey was conducted primarily to determine the strength of compact components at 8.4 GHz for radio sources previously detected with VLBI at 2.3 GHz. Compact extragalactic radio sources with strong correlated flux densities at both frequencies are used to form a high-accuracy reference frame.

  9. Milky Way scattering properties and intrinsic sizes of active galactic nuclei cores probed by very long baseline interferometry surveys of compact extragalactic radio sources

    NASA Astrophysics Data System (ADS)

    Pushkarev, A. B.; Kovalev, Y. Y.

    2015-10-01

    We have measured the angular sizes of radio cores of active galactic nuclei (AGNs) and analysed their sky distributions and frequency dependences to study synchrotron opacity in AGN jets and the strength of angular broadening in the interstellar medium. We have used archival very long baseline interferometry (VLBI) data of more than 3000 compact extragalactic radio sources observed at frequencies, ν, from 2 to 43 GHz to measure the observed angular size of VLBI cores. We have found a significant increase in the angular sizes of the extragalactic sources seen through the Galactic plane (|b| ≲ 10°) at 2, 5 and 8 GHz, about one-third of which show significant scattering. These sources are mainly detected in directions to the Galactic bar, the Cygnus region and a region with galactic longitudes 220° ≲ l ≲ 260° (the Fitzgerald window). The strength of interstellar scattering of the AGNs is found to correlate with the Galactic Hα intensity, free-electron density and Galactic rotation measure. The dependence of scattering strengths on source redshift is insignificant, suggesting that the dominant scattering screens are located in our Galaxy. The observed angular size of Sgr A* is found to be the largest among thousands of AGNs observed over the sky; we discuss possible reasons for this strange result. Excluding extragalactic radio sources with significant scattering, we find that the angular size of opaque cores in AGNs scales typically as ν-1, confirming predictions of a conical synchrotron jet model with equipartition.

  10. A catalog of selected compact radio sources for the construction of an extragalactic radio/optical reference frame (Argue et al. 1984): Documentation for the machine-readable version

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This document describes the machine readable version of the Selected Compact Radio Source Catalog as it is currently being distributed from the international network of astronomical data centers. It is intended to enable users to read and process the computerized catalog. The catalog contains 233 strong, compact extragalactic radio sources having identified optical counterparts. The machine version contains the same data as the published catalog and includes source identifications, equatorial positions at J2000.0 and their mean errors, object classifications, visual magnitudes, redshift, 5-GHz flux densities, and comments.

  11. Populations of extragalactic radio sources

    NASA Astrophysics Data System (ADS)

    Wall, J. V.

    In the late 1950s and early 1960s, radio sky surveys were the center of an intense and public debate -- Big-Bang versus Steady-State cosmology -- the arguments revolving about source counts and statistical interpretations in the face of instrumental complications. The 1965 discovery of the microwave background took the fire from the debate, but left the momentum in place for large-area radio surveys at different frequencies, and for extensive identification/redshift-measurement programs. By the 1970s the data enabled us to start disentangling the different populations of extragalactic radio sources. We could refine our taxonomy, and we could view the possibility of delineating individual cosmic histories and evolutions. We could at least describe a goal to elucidate the birth-life-death cycles of the objects involved 1quasi-stellar objects (QSOs) and radio galaxies: together the 'active galactic nuclei' (AGNs)1 whose unaccountably prodigious energies somehow produce the beautifully aligned radio structures with which we are now familiar. One part of John Bolton's vision was to see how distorted a view of the AGN universe the original long-wavelength surveys provided. One legacy is thus the 'short-wavelength survey' for extragalactic radio sources, which has done so much to balance our picture of the radio sky. And indeed the legacy continues in the form of the immense sky surveys at present under way, complete with their sub-industries of radio-positioning and identification. From these, yet further results are emerging on spatial distribution and the skeleton structure of the universe. It is the purpose of this paper to outline something of this current view of the populations, their differences, similarities and unifying concepts.

  12. Radio outbursts in extragalactic sources

    NASA Astrophysics Data System (ADS)

    Kinzel, Wayne Morris

    Three aspects of the flux density variability of extragalactic radio sources were examined: millimeter wavelength short timescale variability, the spectral evolution of outbursts, and whether the outbursts are periodically spaced. Observations of extragalactic radio sources were conducted using the Five College Radio Astronomy Observatory between January and June 1985 at 88.2 GHz and during June and July 1985 at 40.0 GHz. Many of the sources exhibited significant flux density variations during the observing span. In addition, the most rapid variations observed were comparable with those reported in previous works. Two sources, 0355+50 and OJ287, both exhibited outbursts whose rise and fall timescales were less than a month. An anomalous flux density dropout was observed in 3C446 and was interpreted as an occultation event. Data at five frequencies between 2.7 and 89.6 GHz from the Dent-Balonek monitoring program were used to investigate the spectral evolution of eight outbursts. Outburst profile fitting was used to deconvolve the individual outbursts from one another at each frequency. The fit profiles were used to generate multiple epoch spectra to investigate the evolution of the outbursts. A phase residual minimization method was used to examine four sources for periodic behavior.

  13. Comparison of VLBI radio-core and X-ray flux densities of extragalactic radio sources

    NASA Technical Reports Server (NTRS)

    Bloom, Steven D.; Marscher, Alan P.

    1991-01-01

    The relation between compact radio core and X-ray emission in extragalactic radio sources, suggested by Worral et al. (1987) and Kembhavi et al. (1986), is investigated by comparing the X-ray flux densities observed in 56 extragalactic radio sources with the Einstein Observatory with the compact radio-core flux densities derived from published VLBI maps for these radio sources. It was found that the radio to X-ray spectral index distribution had a small dispersion, whereas the log-log plot of the flux densities showed no correlation. This implies that the basic level of X-ray emission is determined by the radio-core emission, but that the exact value depends on other parameters.

  14. Radio studies of extragalactic supernovae.

    PubMed

    Weiler, K W; Sramek, R A; Panagia, N

    1986-03-14

    Some exploding stars (supernovae) are powerful emitters of centimeter radio radiation. Detailed observations have shown that these supernovae quickly become detectable in the radio range, first at shorter wavelengths (higher frequencies) and later at progressively longer and longer wavelengths (lower frequencies). This part of the phenomenon appears to be well explained by a monotonic decrease in the amount of ionized material surrounding the radio-emitting regions as the shock from the explosion travels outward. The radio emission itself is of a nonthermal, synchrotron origin, as is the case in most bright cosmic radio sources. Once the absorption effects become negligible, the radio intensity declines with time until reaching the detection limit of the telescope. Models suggest that the absorbing material originates in a dense wind of matter lost by the supernova progenitor star, or by its companion if it is in a binary system, in the last stages of evolution before the explosion. The synchrotron radio emission can be generated either externally by the shock wave from the explosion propagating through this same high density stellar wind or internally by a rapidly rotating neutron star, which is the collapsed core of the exploded star. Present results appear to favor the former model for at least the first several years after the supernova explosion, although the latter model remains viable.

  15. Spectroscopy of compact extragalactic X-ray sources. [HEAO observations

    NASA Technical Reports Server (NTRS)

    Holt, S. S.

    1980-01-01

    The X-ray spectra of compact extragalactic sources obtained from the HEAO-1 A-2 experiment and the solid-state spectrometer onboard HEAO-2 (the Einstein Observatory) are reviewed. Seyfert spectra are remarkably consistent with characteristic power-law spectra of energy index alpha = 0.7 + .1 over a dynamic range of almost 100 in both luminosity for the whole sample, and energy for individual members. Radio-quiet quasars have similar spectra, perhaps slightly steeper, for the limited sample available. New solid-state spectrometer results for NGC 4151 yield a consistent picture for the geometry of the broad-line clouds in both these related radio-quiet classes of galactic nuclei. Radio-loud objects, especially BL Lacs, are considerably more variable in spectrum as well as luminosity. Direct synchrotron and synchrotron-self-Compton components are consistent with what we observe from these objects. Finally, the role of spectroscopy in addressing the extent to which compact extragalactic nuclei might contribute to the diffuse X-ray background is discussed.

  16. Planck intermediate results. VII. Statistical properties of infrared and radio extragalactic sources from the Planck Early Release Compact Source Catalogue at frequencies between 100 and 857 GHz

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Argüeso, F.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bethermin, M.; Bhatia, R.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Cabella, P.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, L.-Y.; Christensen, P. R.; Clements, D. L.; Colafrancesco, S.; Colombi, S.; Colombo, L. P. L.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Fosalba, P.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Jaffe, T. R.; Jaffe, A. H.; Jagemann, T.; Jones, W. C.; Juvela, M.; Keihänen, E.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurinsky, N.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leonardi, R.; Lilje, P. B.; López-Caniego, M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Mitra, S.; Miville-Deschènes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sajina, A.; Sandri, M.; Savini, G.; Scott, D.; Smoot, G. F.; Starck, J.-L.; Sudiwala, R.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Türler, M.; Valenziano, L.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2013-02-01

    We make use of the Planck all-sky survey to derive number counts and spectral indices of extragalactic sources - infrared and radio sources - from the Planck Early Release Compact Source Catalogue (ERCSC) at 100 to 857 GHz (3 mm to 350 μm). Three zones (deep, medium and shallow) of approximately homogeneous coverage are used to permit a clean and controlled correction for incompleteness, which was explicitly not done for the ERCSC, as it was aimed at providing lists of sources to be followed up. Our sample, prior to the 80% completeness cut, contains between 217 sources at 100 GHz and 1058 sources at 857 GHz over about 12 800 to 16 550 deg2 (31 to 40% of the sky). After the 80% completeness cut, between 122 and 452 and sources remain, with flux densities above 0.3 and 1.9 Jy at 100 and 857 GHz. The sample so defined can be used for statistical analysis. Using the multi-frequency coverage of the Planck High Frequency Instrument, all the sources have been classified as either dust-dominated (infrared galaxies) or synchrotron-dominated (radio galaxies) on the basis of their spectral energy distributions (SED). Our sample is thus complete, flux-limited and color-selected to differentiate between the two populations. We find an approximately equal number of synchrotron and dusty sources between 217 and 353 GHz; at 353 GHz or higher (or 217 GHz and lower) frequencies, the number is dominated by dusty (synchrotron) sources, as expected. For most of the sources, the spectral indices are also derived. We provide for the first time counts of bright sources from 353 to 857 GHz and the contributions from dusty and synchrotron sources at all HFI frequencies in the key spectral range where these spectra are crossing. The observed counts are in the Euclidean regime. The number counts are compared to previously published data (from earlier Planck results, Herschel, BLAST, SCUBA, LABOCA, SPT, and ACT) and models taking into account both radio or infrared galaxies, and covering a

  17. Extragalactic radio continuum surveys and the transformation of radio astronomy

    NASA Astrophysics Data System (ADS)

    Norris, Ray P.

    2017-10-01

    Next-generation radio surveys are about to transform radio astronomy by discovering and studying tens of millions of previously unknown radio sources. These surveys will provide fresh insights for understanding the evolution of galaxies, measuring the evolution of the cosmic star-formation rate, and rivalling traditional techniques in the measurement of fundamental cosmological parameters. By observing a new volume of observational parameter space, they are also likely to discover unexpected phenomena. This Review traces the evolution of extragalactic radio continuum surveys from the earliest days of radio astronomy to the present, and identifies the challenges that must be overcome to achieve this transformational change.

  18. Extragalactic radio continuum surveys and the transformation of radio astronomy

    NASA Astrophysics Data System (ADS)

    Norris, Ray P.

    2017-09-01

    Next-generation radio surveys are about to transform radio astronomy by discovering and studying tens of millions of previously unknown radio sources. These surveys will provide fresh insights for understanding the evolution of galaxies, measuring the evolution of the cosmic star-formation rate, and rivalling traditional techniques in the measurement of fundamental cosmological parameters. By observing a new volume of observational parameter space, they are also likely to discover unexpected phenomena. This Review traces the evolution of extragalactic radio continuum surveys from the earliest days of radio astronomy to the present, and identifies the challenges that must be overcome to achieve this transformational change.

  19. Radio properties of extragalactic IRAS sources

    NASA Technical Reports Server (NTRS)

    Condon, J. J.; Broderick, J. J.

    1991-01-01

    The present study identifies extragalactic sources from the IRAS Faint Source Catalog by position coincidence with radio sources stronger than 25 mJy and lying north of +5 deg on the Green Bank 4.85 GHz sky maps. Published VLA maps, new 4.86 GHz VLA maps made with 15-arcsec resolution, and accurate optical positions are used to confirm 122 of these candidate identifications. Normal and starburst spiral galaxies were found to comprise about 97 percent of the FIR flux-limited sample. Radio-loud 'monsters' with q less than 2.25 dominate the radio emission from about 2 percent of the FIR source sample, and radio-quiet monsters are responsible for the FIR emission from less than about 1 percent of the FIR sample. All of the radio-identified sources are optically identified, mostly with relatively bright nearby galaxies. No evidence was found for any new populations of high-redshift FIR sources, nonthermal sources with steep FIR/optical spectra, or dust-shrouded sources visible only at FIR and radio wavelengths.

  20. Radio properties of extragalactic IRAS sources

    NASA Technical Reports Server (NTRS)

    Condon, J. J.; Broderick, J. J.

    1991-01-01

    The present study identifies extragalactic sources from the IRAS Faint Source Catalog by position coincidence with radio sources stronger than 25 mJy and lying north of +5 deg on the Green Bank 4.85 GHz sky maps. Published VLA maps, new 4.86 GHz VLA maps made with 15-arcsec resolution, and accurate optical positions are used to confirm 122 of these candidate identifications. Normal and starburst spiral galaxies were found to comprise about 97 percent of the FIR flux-limited sample. Radio-loud 'monsters' with q less than 2.25 dominate the radio emission from about 2 percent of the FIR source sample, and radio-quiet monsters are responsible for the FIR emission from less than about 1 percent of the FIR sample. All of the radio-identified sources are optically identified, mostly with relatively bright nearby galaxies. No evidence was found for any new populations of high-redshift FIR sources, nonthermal sources with steep FIR/optical spectra, or dust-shrouded sources visible only at FIR and radio wavelengths.

  1. The unusual smoothness of the extragalactic unresolved radio background

    SciTech Connect

    Holder, Gilbert P.

    2014-01-01

    If the radio background is coming from cosmological sources, there should be some amount of clustering due to the large scale structure in the universe. Simple models for the expected clustering combined with the recent measurement by ARCADE-2 of the mean extragalactic temperature lead to predicted clustering levels that are substantially above upper limits from searches for anisotropy on arcminute scales using the Australia Telescope Compact Array and the Very Large Array. The rms temperature variations in the cosmic radio background appear to be more than a factor of 10 smaller (in temperature) than the fluctuations in the cosmic infrared background. It is therefore extremely unlikely that this background comes from galaxies, galaxy clusters, or any sources that trace dark matter halos at z ≲ 5, unless typical sources are smooth on arcminute scales, requiring typical sizes of several Mpc.

  2. Fast Radio Bursts from Extragalactic Light Sails

    NASA Astrophysics Data System (ADS)

    Lingam, Manasvi; Loeb, Abraham

    2017-03-01

    We examine the possibility that fast radio bursts (FRBs) originate from the activity of extragalactic civilizations. Our analysis shows that beams used for powering large light sails could yield parameters that are consistent with FRBs. The characteristic diameter of the beam emitter is estimated through a combination of energetic and engineering constraints, and both approaches intriguingly yield a similar result that is on the scale of a large rocky planet. Moreover, the optimal frequency for powering the light sail is shown to be similar to the detected FRB frequencies. These “coincidences” lend some credence to the possibility that FRBs might be artificial in origin. Other relevant quantities, such as the characteristic mass of the light sail, and the angular velocity of the beam, are also derived. By using the FRB occurrence rate, we infer upper bounds on the rate of FRBs from extragalactic civilizations in a typical galaxy. The possibility of detecting fainter signals is briefly discussed, and the wait time for an exceptionally bright FRB event in the Milky Way is estimated.

  3. Planck Early Results. XV. Spectral Energy Distributions and Radio Continuum Spectra of Northern Extragalactic Radio Sources

    NASA Technical Reports Server (NTRS)

    Aatrokoski, J.; Ade, P. A. R.; Aghanim, N.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Amaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; hide

    2011-01-01

    Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources. based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multi frequency data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper. physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shock. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission.

  4. Planck early results. XV. Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources

    DOE PAGES

    Aatrokoski, J.

    2011-12-01

    Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources, based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multifrequency data. The nine Planck frequencies, from 30 to 857GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativisticmore » jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper, physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shock. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission.« less

  5. Radio, millimeter-submillimeter, and infrared spectra of flat-spectrum extragalactic radio sources

    NASA Technical Reports Server (NTRS)

    Bloom, Steven D.; Marscher, Alan P.; Gear, Walter K.; Terasranta, Harri; Valtaoja, Esko; Aller, Hugh D.; Aller, Margo F.

    1994-01-01

    We present radio to submillimeter-wave continuum spectra of 44 bright, compact extragalactic radio sources with flat spectra at centimeter wavelengths ('blazars'). Infrared J, H, and K flux densities are added to the spectra of six of these objects. These spectra are useful in comparisons of x-ray and gamma-ray measurements with the multiwaveband properties of blazars. A number of the objects have been detected as strong, hard gamma-ray sources by the Compton Gamma Ray Observatory (CGRO). The millimeter-wave spectra of the gamma-ray bright blazars we observe are flatter on average than for the sample as a whole.

  6. Variability studies of 3C 371. [extragalactic radio source

    NASA Technical Reports Server (NTRS)

    Worrall, D. M.

    1986-01-01

    The compact extragalactic radio source, 3C 371, was observed with the X-ray detectors of the EXOSAT satellite for 19.5 hours in 2 observing periods separated by 18 days. This resulted in the discovery of X-ray variability of the source on time scales between 8 hours and about 25 minutes and the confirmation of earlier reports of variability on longer time scales. The short time scale variability agrees remarkably well with earlier predictions based on fitting multifrequency data from the source to a relativistically beamed inhomogeneous synchrotron self-Compton (SSC) jet model. This SSC model is frequently applied to BL Lac objects and related sources, such as 3C 371. However, the number of free parameters in model fits tends to be large, and so independent support such as from this work is important. The X-ray spectral results for 3C 371 also may provide qualitative support for the SSC model in that the spectrum probably consists of two components, with the steeper one at low photon energies. In terms of the model, the low-energy spectrum would be dominated by synchrotron emission extending down to radio energies, whereas the higher energy X-rays would be dominated by Compton radiation.

  7. Angular structure of extragalactic radio sources at low frequencies

    NASA Astrophysics Data System (ADS)

    Brazhenko, A. I.; Koshovy, V. V.; Lozynsky, A. R.; Megn, A. V.; Rashkovsky, S. L.; Shepelev, V. A.

    2005-06-01

    The low frequency VLBI of URAN network operated in the decameter range has been designed in Ukraine to study cosmic radio sources. The network consists of five radio telescopes making up of four interferometers with baselines range from 42 to 913 km with UTR-2 radio telescope operated as the main antenna of the interferometers. The angular resolution of the network amount to 1 arcsec at the highest frequency of the range, and its sensitivity is about 20 Jy. Regular observations of galactic and extragalactic radio sources are performed with the network. Some results of studies are presented here.

  8. Extragalactic Peaked-spectrum Radio Sources at Low Frequencies

    NASA Astrophysics Data System (ADS)

    Callingham, J. R.; Ekers, R. D.; Gaensler, B. M.; Line, J. L. B.; Hurley-Walker, N.; Sadler, E. M.; Tingay, S. J.; Hancock, P. J.; Bell, M. E.; Dwarakanath, K. S.; For, B.-Q.; Franzen, T. M. O.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; Lenc, E.; McKinley, B.; Morgan, J.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.

    2017-02-01

    We present a sample of 1483 sources that display spectral peaks between 72 MHz and 1.4 GHz, selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The GLEAM survey is the widest fractional bandwidth all-sky survey to date, ideal for identifying peaked-spectrum sources at low radio frequencies. Our peaked-spectrum sources are the low-frequency analogs of gigahertz-peaked spectrum (GPS) and compact-steep spectrum (CSS) sources, which have been hypothesized to be the precursors to massive radio galaxies. Our sample more than doubles the number of known peaked-spectrum candidates, and 95% of our sample have a newly characterized spectral peak. We highlight that some GPS sources peaking above 5 GHz have had multiple epochs of nuclear activity, and we demonstrate the possibility of identifying high-redshift (z > 2) galaxies via steep optically thin spectral indices and low observed peak frequencies. The distribution of the optically thick spectral indices of our sample is consistent with past GPS/CSS samples but with a large dispersion, suggesting that the spectral peak is a product of an inhomogeneous environment that is individualistic. We find no dependence of observed peak frequency with redshift, consistent with the peaked-spectrum sample comprising both local CSS sources and high-redshift GPS sources. The 5 GHz luminosity distribution lacks the brightest GPS and CSS sources of previous samples, implying that a convolution of source evolution and redshift influences the type of peaked-spectrum sources identified below 1 GHz. Finally, we discuss sources with optically thick spectral indices that exceed the synchrotron self-absorption limit.

  9. Planck early results. XV. Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources

    SciTech Connect

    Aatrokoski, J.

    2011-12-01

    Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources, based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multifrequency data. The nine Planck frequencies, from 30 to 857GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper, physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shock. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission.

  10. The Catalog of Positions of Optically Bright Extragalactic Radio Sources OBRS-1

    NASA Technical Reports Server (NTRS)

    Petrov, L.

    2011-01-01

    It is expected that the European Space Agency mission Gaia will make it possible to determine coordinates in the optical domain of more than 500,000 quasars. In 2006, a radio astrometry project was launched with the overall goal of making comparisons between coordinate systems derived from future space-born astrometry instruments and the coordinate system constructed from analysis of global very long baseline interferometry (VLBI) more robust. Investigation of the rotation, zonal errors, and non-alignment of the radio and optical positions caused by both radio and optical structures is needed to validate both techniques. In order to support these studies, the densification of the list of compact extragalactic objects that are bright in both radio and optical ranges is desirable. A set of 105 objects from the list of 398 compact extragalactic radio sources with decl. > -10deg was observed with the Very Long Baseline Array and European VLBI Network (EVN) with the primary goal of producing images with milliarcsecond resolution. These sources are brighter than 18 mag in the V band, and they were previously detected by the EVN. In this paper, coordinates of observed sources have been derived with milliarcsecond accuracies from analysis of these VLBI observations using an absolute astrometry method. The catalog of positions for 105 target sources is presented. The accuracies of source coordinates are in the range of 0.3.7 mas, with a median of 1.1 mas.

  11. The Catalog of Positions of Optically Bright Extragalactic Radio Sources OBRS-1

    NASA Technical Reports Server (NTRS)

    Petrov, L.

    2011-01-01

    It is expected that the European Space Agency mission Gaia will make it possible to determine coordinates in the optical domain of more than 500,000 quasars. In 2006, a radio astrometry project was launched with the overall goal of making comparisons between coordinate systems derived from future space-born astrometry instruments and the coordinate system constructed from analysis of global very long baseline interferometry (VLBI) more robust. Investigation of the rotation, zonal errors, and non-alignment of the radio and optical positions caused by both radio and optical structures is needed to validate both techniques. In order to support these studies, the densification of the list of compact extragalactic objects that are bright in both radio and optical ranges is desirable. A set of 105 objects from the list of 398 compact extragalactic radio sources with decl. > -10deg was observed with the Very Long Baseline Array and European VLBI Network (EVN) with the primary goal of producing images with milliarcsecond resolution. These sources are brighter than 18 mag in the V band, and they were previously detected by the EVN. In this paper, coordinates of observed sources have been derived with milliarcsecond accuracies from analysis of these VLBI observations using an absolute astrometry method. The catalog of positions for 105 target sources is presented. The accuracies of source coordinates are in the range of 0.3.7 mas, with a median of 1.1 mas.

  12. Simulating peculiar X-shaped extragalactic radio sources

    NASA Astrophysics Data System (ADS)

    Lacatus, D. A.; Paraschiv, A. R.; Tesileanu, O.

    2012-11-01

    Peculiar morphologies have been observed among extragalactic radio sources, which present important sideways features that are yet to be explained. After obtaining the region in the parameter space for which the intended lateral extensions appear, further 2D simulations using PLUTO code were performed. For some selected sets of parameters the effect of resolution on the simulated morphology, and the effect of a toroidal magnetic field on the propagation of the simulated jet in the stratified medium, were considered.

  13. Sco X-1 - A galactic radio source with an extragalactic radio morphology

    NASA Technical Reports Server (NTRS)

    Geldzahler, B. J.; Corey, B. E.; Fomalont, E. B.; Hilldrup, K.

    1981-01-01

    VLA observations of radio emissions at 1465 and 4885 MHz, of Sco X-1 confirm the existence of a colinear triple structure. Evidence that the three components of Sco X-1 are physically associated is presented, including the morphology, spectrum, variability, volume emissivity and magnetic field strength. The possibility of a physical phenomenon occurring in Sco X-1 similar to that occurring in extragalactic radio sources is discussed, and two galactic sources are found having extended emission similar to that in extragalactic objects. The extended structure of Sco X-1 is also observed to be similar to that of the hot spots in luminous extragalactic sources, and a radio source 20 arcmin from Sco X-1 is found to lie nearly along the radio axis formed by the components of Sco X-1.

  14. Sco X-1 - A galactic radio source with an extragalactic radio morphology

    NASA Technical Reports Server (NTRS)

    Geldzahler, B. J.; Corey, B. E.; Fomalont, E. B.; Hilldrup, K.

    1981-01-01

    VLA observations of radio emissions at 1465 and 4885 MHz, of Sco X-1 confirm the existence of a colinear triple structure. Evidence that the three components of Sco X-1 are physically associated is presented, including the morphology, spectrum, variability, volume emissivity and magnetic field strength. The possibility of a physical phenomenon occurring in Sco X-1 similar to that occurring in extragalactic radio sources is discussed, and two galactic sources are found having extended emission similar to that in extragalactic objects. The extended structure of Sco X-1 is also observed to be similar to that of the hot spots in luminous extragalactic sources, and a radio source 20 arcmin from Sco X-1 is found to lie nearly along the radio axis formed by the components of Sco X-1.

  15. Radio spectra of extragalactic sources and the relativistic beaming model

    NASA Astrophysics Data System (ADS)

    Eckart, A.; Hummel, C. A.; Witzel, A.

    1989-07-01

    Multiepoch radio spectra of 308 extragalactic radio sources taken from the 1-Jy catalog (Kuhr et al., 1981) are analyzed, correlating the spectral index, spectral curvature, and degree of variability. These quantities are statistically interdependent, and their distributions can be used to distinguish between galaxies, quasars, optically violent variable sources, and BL Lac objects. These spectral associations are explained using a relativistic beaming model involving a nonvariable steep spectrum component and a core component with an inverted spectrum exhibiting an intrinsic variability of about 30 percent. At 5 GHz, the flux density ratio of the core component (seen at an angle of 90 deg) to the steep-spectrum component is about 0.03 or larger.

  16. 318-MHz variability of complete samples of extragalactic radio sources

    NASA Technical Reports Server (NTRS)

    Dennison, B.; Broderick, J. J.; Ledden, J. E.; Odell, S. L.; Condon, J. J.

    1981-01-01

    It is found by a low-frequency variability survey, involving two- and three-epoch, 318-MHz observations of extragalactic sources in samples complete to 3 Jy at 1400 MHz and 1 Jy at 5000 MHz, that steep-spectrum sources do not seem to vary while all flat-spectrum sources exhibit low-frequency variability greater than 8% over about 5 yr. It is also found that the flat-spectrum sources with inverted spectra show the largest fractional variations, and that there is a correlation between the incidence of low-frequency variability and the determination that a source is an optically violent variable. These statistical properties are consistent with models which invoke radio and optical emission relativistic beaming.

  17. Short-duration radio bursts with apparent extragalactic dispersion

    SciTech Connect

    Saint-Hilaire, P.; Benz, A. O.; Monstein, C.

    2014-11-01

    We present the results of the longest yet undertaken search for apparently extragalactic radio bursts at the Bleien Radio Observatory covering 21,000 hr (898 days). The data were searched for events of less than 50 ms FWHM duration showing a ν{sup –2} drift in the spectrogram characteristic of the delay of radio waves in plasma. We have found five cases suggesting dispersion measures between 350 and 400 cm{sup –3} pc while searching in the range of 75-2000 cm{sup –3} pc. Four of the five events occurred between 10:27 and 11:24 a.m. local civil time. The only exception occurred at night with the full Moon in the beam. It was an event that poorly fits plasma dispersion, but had the characteristics of a solar Type III burst. However, we were not able to confirm that it was a lunar reflection. All events were observed with a log-periodic dipole within 6800 hr, but none with a more directional horn antenna observing the rest of the time. These properties suggest a terrestrial origin of the 'peryton' type reported before. However, the cause of these events remains ambiguous.

  18. Short-duration Radio Bursts with Apparent Extragalactic Dispersion

    NASA Astrophysics Data System (ADS)

    Saint-Hilaire, P.; Benz, A. O.; Monstein, C.

    2014-11-01

    We present the results of the longest yet undertaken search for apparently extragalactic radio bursts at the Bleien Radio Observatory covering 21,000 hr (898 days). The data were searched for events of less than 50 ms FWHM duration showing a ν-2 drift in the spectrogram characteristic of the delay of radio waves in plasma. We have found five cases suggesting dispersion measures between 350 and 400 cm-3 pc while searching in the range of 75-2000 cm-3 pc. Four of the five events occurred between 10:27 and 11:24 a.m. local civil time. The only exception occurred at night with the full Moon in the beam. It was an event that poorly fits plasma dispersion, but had the characteristics of a solar Type III burst. However, we were not able to confirm that it was a lunar reflection. All events were observed with a log-periodic dipole within 6800 hr, but none with a more directional horn antenna observing the rest of the time. These properties suggest a terrestrial origin of the "peryton" type reported before. However, the cause of these events remains ambiguous.

  19. Apparent 'superrelativistic' expansion of the extragalactic radio source 3C 345

    NASA Technical Reports Server (NTRS)

    Wittels, J. J.; Cotton, W. D.; Counselman, C. C., III; Shapiro, I. I.; Hinteregger, H. F.; Knight, C. A.; Rogers, A. E. E.; Whitney, A. R.; Clark, T. A.; Hutton, L. K.

    1976-01-01

    The compact extragalactic radio source 3C 345 was observed by very-long-baseline interferometry (wavelength about 3.8 cm) at 12 epochs distributed over the nearly four-year period from February 1971 to October 1974. For one of these epochs, the multibaseline data were sufficient to allow the brightness distribution to be estimated in a model-independent manner; the resultant distribution was clearly dominated by two components. The remaining sets of data were also represented adequately by two-component models. The angular separation of the two components increased during this period from about 1.00 to 1.30 milliarcsec, corresponding to an apparent average speed of expansion of approximately 2.5 c at a fixed position angle of 105 (plus or minus 5) deg. These results, coupled with the fact that contraction has never been observed, seem difficult to reconcile with the so-called Christmas-tree model of the 'superrelativistic' expansion of extragalactic radio sources.

  20. Extragalactic Optical-Radio Link Research at USNO

    DTIC Science & Technology

    2007-01-01

    20.0 EXTRAGALACTIC OPTICAL-RADIO LINK RESEARCH AT USNO N. ZACHARIAS1, M.I. ZACHARIAS1, D . BOBOLTZ1, A. FEY1, R. GAUME1, G.S. HENNESSY1, K.J...source I t mag z Q SIX 0241+622 C Q 12.2 0.04 18 2 0552+398 C Q 18.0 2.37 96 2 0738+313 D Q 16.1 0.63 61 4 0754+100 D L 15.0 0.66 68 2 0839+187 D Q...16.4 1.27 46 4 0851+202 C L 15.4 0.31 83 2 0912+297 D L 16.4 ? – 1 1656+053 C Q 16.5 0.89 57 3 1830+285 D Q 17.2 0.59 58 3 1937−101 C Q 17.0 3.79 52 3

  1. Binary black holes in nuclei of extragalactic radio sources

    NASA Astrophysics Data System (ADS)

    Roland, J.; Britzen, S.

    If we assume that nuclei of extragalactic radio sources contain a Binary Black Hole system, the 2 black holes can eject VLBI components and in that case 2 families of different VLBI trajectories will be observed. An important consequence of the presence of a Binary Black Hole system is the following: the VLBI core is associated with one black hole and if a VLBI component is ejected by the second black hole, one expects to be able to detect the offset of the origin of the VLBI component ejected by the black hole not associated with the VLBI core. The ejection of VLBI components is perturbed by the precession of the accretion disk and the motion of the black holes around the gravity center of the BBH system. We modeled the ejection of the component taking into account the 2 perturbations and we obtained a method to fit the coordinates of a VLBI component and to deduce the characteristics of the BBH system, i.e. the ratio Tp/Tb where Tp is the precession period of the accretion disk and Tb the orbital period of the BBH system, the mass ratio M1/M2, the radius of the BBH system Rbin. We applied the method to component S1 of 1823+568 and to component C5 of 3C 279 which presents a large offset of the space origin from the VLBI core. We found that 1823+568 contains a BBH system which size is Rbin ≈ 60 mu as and 3C 279 contains a BBH system which size is Rbin ≈ 378 mu as. We were able to deduce the separation of the 2 black holes and the coordinates of the second black hole from the VLBI core, this information will be important to make the link between the radio reference frame system deduced from VLBI observations and the optical reference frame system deduced from GAIA.

  2. Relativistic Beaming and the Intrinsic Properties of Extragalactic Radio Jets

    NASA Astrophysics Data System (ADS)

    Cohen, M. H.; Lister, M. L.; Homan, D. C.; Kadler, M.; Kellermann, K. I.; Kovalev, Y. Y.; Vermeulen, R. C.

    2007-03-01

    Relations between the observed quantities for a beamed radio jet, which are the apparent transverse speed and the apparent luminosity (βapp, L), and the intrinsic quantities, which are the Lorentz factor and the intrinsic luminosity (γ, L0), are investigated. The inversion from measured to intrinsic values is not unique, but approximate limits to γ and L0 can be found using probability arguments. Roughly half the sources in a flux density-limited, beamed sample have a value of γ close to the measured value of βapp. The methods are applied to observations of 119 AGN jets made with the VLBA at 15 GHz during 1994-2002. The results strongly support the common relativistic beam model for an extragalactic radio jet. The (βapp, L) data are closely bounded by a theoretical envelope, an ``aspect'' curve for γ=32 and L0=1025 W Hz-1. This gives limits to the maximum values of γ and L0 in the sample: γmax~32, and L0,max~1026 W Hz-1. No sources with both high values of βapp and low values of L are observed. This is not the result of selection effects due to the observing limits, which are a flux density of S>0.5 Jy and an angular velocity of μ<4 mas yr-1. Many of the fastest quasars have a pattern Lorentz factor, γp, that is close to that of the beam, γb, but some of the slow quasars must have γp<<γb. Three of the 10 galaxies in the sample have a superluminal feature, with speeds up to βapp~6. The others are at most mildly relativistic. The galaxies are not off-axis versions of the powerful quasars, but Cygnus A might be an exception.

  3. Binary black holes in nuclei of extragalactic radio sources

    NASA Astrophysics Data System (ADS)

    Roland, J.; Britzen, S.; Caproni, A.; Fromm, C.; Glück, C.; Zensus, A.

    2013-09-01

    If we assume that nuclei of extragalactic radio sources contain binary black hole systems, the two black holes can eject VLBI components, in which case two families of different VLBI trajectories will be observed. Another important consequence of a binary black hole system is that the VLBI core is associated with one black hole, and if a VLBI component is ejected by the second black hole, one expects to be able to detect the offset of the origin of the VLBI component ejected by the black hole that is not associated with the VLBI core. The ejection of VLBI components is perturbed by the precession of the accretion disk and the motion of the black holes around the center of gravity of the binary black hole system. We modeled the ejection of the component taking into account the two pertubations and present a method to fit the coordinates of a VLBI component and to deduce the characteristics of the binary black hole system. Specifically, this is the ratio Tp/Tb where Tp is the precession period of the accretion disk and Tb is the orbital period of the binary black hole system, the mass ratio M1/M2, and the radius of the binary black hole system Rbin. From the variations of the coordinates as a function of time of the ejected VLBI component, we estimated the inclination angle io and the bulk Lorentz factor γ of the modeled component. We applied the method to component S1 of 1823+568 and to component C5 of 3C 279, which presents a large offset of the space origin from the VLBI core. We found that 1823+568 contains a binary black hole system whose size is Rbin ≈ 60 μas (μas is a microarcsecond) and 3C 279 contains a binary black hole system whose size is Rbin ≈ 420 μas. We calculated the separation of the two black holes and the coordinates of the second black hole from the VLBI core. This information will be important to link the radio reference-frame system obtained from VLBI observations and the optical reference-frame system obtained from Gaia.

  4. The discovery of strong extragalactic polarization using the Parkes Radio Telescope

    NASA Astrophysics Data System (ADS)

    Bracewell, Ronald N.

    2002-12-01

    By the end of 1961, interferometry to arc-minute precision in the East-West direction had resolved the compact source at the centre of Centaurus A into two equal components spaced about 5‧ in right ascension and with measured widths. Were they on the dark bar of the associated extragalactic nebula, NGC 5128, and perhaps indicatios of a toroidal source, or were they in the perpendicular direction and on their way out to feed the extended radio source Centaurus A? The 6‧.7 pencil beam of the Parkes Radio Telescope, employed in an unusual scanning mode, was capable of just separating the peaks and resolving the ambiguity in declination. In 1962 April, I carried out the first observations of linear polarization in Centaurus A using the Parkes antenna, and these were soon followed by other observations made by Brian Cooper and Marcus Price and then by Frank Gardner and John Whiteoak. Because the research papers reporting these pioneering observations were not published in chronological order and the dates of the observations and submission of the manuscripts ware not mentioned in them there has been considerable confusion surrounding the discovery history of Centaurus A polarization at Parkes, and this has been compounded by a misleading contemporary newspaper report, uninformed folklore, and conflicting recollectioms printed 30 years after the event. This paper clarifies the situation by presenting a first-hand account of the original observations and associated publications.

  5. Planck intermediate results. XLV. Radio spectra of northern extragalactic radio sources

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Aller, H. D.; Aller, M. F.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Calabrese, E.; Catalano, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombo, L. P. L.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gruppuso, A.; Gurwell, M. A.; Hansen, F. K.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hobson, M.; Hornstrup, A.; Hovatta, T.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Järvelä, E.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Max-Moerbeck, W.; Meinhold, P. R.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Mingaliev, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Nati, F.; Natoli, P.; Nieppola, E.; Noviello, F.; Novikov, D.; Novikov, I.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Ramakrishnan, V.; Rastorgueva-Foi, E. A.; S Readhead, A. C.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Richards, J. L.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savelainen, M.; Savini, G.; Scott, D.; Sotnikova, Y.; Stolyarov, V.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tammi, J.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tornikoski, M.; Tristram, M.; Tucci, M.; Türler, M.; Valenziano, L.; Valiviita, J.; Valtaoja, E.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wehrle, A. E.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-12-01

    Continuum spectra covering centimetre to submillimetre wavelengths are presented for a northern sample of 104 extragalactic radio sources, mainly active galactic nuclei, based on four-epoch Planck data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous ground-based radio observations between 1.1 and 37 GHz. The single-survey Planck data confirm that the flattest high-frequency radio spectral indices are close to zero, indicating that the original accelerated electron energy spectrum is much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The radio spectra peak at high frequencies and exhibit a variety of shapes. For a small set of low-z sources, we find a spectral upturn at high frequencies, indicating the presence of intrinsic cold dust. Variability can generally be approximated by achromatic variations, while sources with clear signatures of evolving shocks appear to be limited to the strongest outbursts.

  6. Planck intermediate results: XLV. Radio spectra of northern extragalactic radio sources

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Aller, H. D.; ...

    2016-12-12

    Continuum spectra covering centimetre to submillimetre wavelengths are presented in this paper for a northern sample of 104 extragalactic radio sources, mainly active galactic nuclei, based on four-epoch Planck data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous ground-based radio observations between 1.1 and 37 GHz. The single-survey Planck data confirm that the flattest high-frequency radio spectral indices are close to zero, indicating that the original accelerated electron energy spectrum is much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The radio spectra peak at highmore » frequencies and exhibit a variety of shapes. For a small set of low-z sources, we find a spectral upturn at high frequencies, indicating the presence of intrinsic cold dust. Finally, variability can generally be approximated by achromatic variations, while sources with clear signatures of evolving shocks appear to be limited to the strongest outbursts.« less

  7. High-energy gamma radiation from extragalactic radio sources

    NASA Technical Reports Server (NTRS)

    Dermer, C. D.; Schlickeiser, R.; Mastichiadis, A.

    1992-01-01

    We propose that the important relationship between 3C 273 and 3C 279, the first two extragalactic sources detected at over 100 MeV energies, is their superluminal nature. In support of this conjecture, we propose a kinematic focusing mechanism, based on Compton scattering of accretion-disk photons by relativistic nonthermal electrons in the jet, that preferentially emits gamma rays in the superluminal direction.

  8. High-energy gamma radiation from extragalactic radio sources

    NASA Technical Reports Server (NTRS)

    Dermer, C. D.; Schlickeiser, R.; Mastichiadis, A.

    1992-01-01

    We propose that the important relationship between 3C 273 and 3C 279, the first two extragalactic sources detected at over 100 MeV energies, is their superluminal nature. In support of this conjecture, we propose a kinematic focusing mechanism, based on Compton scattering of accretion-disk photons by relativistic nonthermal electrons in the jet, that preferentially emits gamma rays in the superluminal direction.

  9. Deep 610-MHz Giant Metrewave Radio Telescope observations of the Spitzer extragalactic First Look Survey field - III. The radio properties of infrared-faint radio sources

    NASA Astrophysics Data System (ADS)

    Garn, Timothy; Alexander, Paul

    2008-12-01

    Infrared-faint radio sources (IFRSs) are a class of source which are bright at radio frequencies, but do not appear in deep infrared images. We report the detection of 14 IFRSs within the Spitzer extragalactic First Look Survey field, eight of which are detected near to the limiting magnitude of a deep R-band image of the region, at R ~ 24.5. Sensitive Spitzer Space Telescope images are stacked in order to place upper limits on their mid-infrared flux densities, and using recent 610-MHz and 1.4-GHz observations we find that they have spectral indices which vary between α = 0.05 and 1.38, where we define α such that Sν = S0ν-α, and should not be thought of as a single source population. We place constraints on the luminosity and linear size of these sources, and through comparison with well-studied local objects in the Revised Revised Third Cambridge catalogue demonstrate that they can be modelled as being compact (<20 kpc) Fanaroff-Riley type II (FRII) radio galaxies located at high redshift (z ~ 4).

  10. HI absorption in nearby compact radio galaxies

    NASA Astrophysics Data System (ADS)

    Glowacki, M.; Allison, J. R.; Sadler, E. M.; Moss, V. A.; Curran, S. J.; Musaeva, A.; Deng, C.; Parry, R.; Sligo, M. C.

    2017-01-01

    HI absorption studies yield information on both AGN feeding and feedback processes. This AGN activity interacts with the neutral gas in compact radio sources, which are believed to represent the young or recently re-triggered AGN population. We present the results of a survey for HI absorption in a sample of 66 compact radio sources at 0.040 < z < 0.096 with the Australia Telescope Compact Array. In total, we obtained seven detections, five of which are new, with a large range of peak optical depths (3% to 87%). Of the detections, 71% exhibit asymmetric, broad (ΔvFWHM > 100 km s-1) features, indicative of disturbed gas kinematics. Such broad, shallow and offset features are also found within low-excitation radio galaxies which is attributed to disturbed circumnuclear gas, consistent with early-type galaxies typically devoid of a gas-rich disk. Comparing mid-infrared colours of our galaxies with HI detections indicates that narrow and deep absorption features are preferentially found in late-type and high-excitation radio galaxies in our sample. These features are attributed to gas in galactic disks. By combining XMM-Newton archival data with 21-cm data, we find support that absorbed X-ray sources may be good tracers of HI content within the host galaxy. This sample extends previous HI surveys in compact radio galaxies to lower radio luminosities and provides a basis for future work exploring the higher redshift universe.

  11. Catalog of Variability Periods of Extragalactic Radio Sources at Centimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    Ryabov, M. I.; Sukharev, A. L.; Donskykh, H. I.

    2016-09-01

    Purpose: Study of the variability of flux density of extragalactic radio sources (3C 273, 3C 120, 3C 345, 3C 446, 3C 454.3, OJ 287, OT 081, BL Lac, DA 55, CTA 102) according to a long-term (1965–2011) monitoring at 14.5, 8, 4.8 GHz made with a 26-m telescope of the University of Michigan. Making up a catalog of quasi-periods values and their properties, as well as using this latter to predict the flux changes after 2011 at 14.5 GHz. Design/methodology/approach: Using wavelet analysis, bandpass filtering and singular spectrum analysis (Caterpillar-SSA) the information is obtained on the values and properties of quasiperiods of radio flux density change, separately for the longterm and short-term variability components. Using these values, for the first time the forecasting with the two methods – harmonic and autoregressive linear prediction, has been made. Findings: The catalog of quasi-periodic components of flux density variability is compiled for 10 radio sources, forming dynamics of their activity. The variability of extragalactic radio sources is shown to be formed by adding the quasi- periodic components on different time scales. The results of forecasts showed good compliance with real observations from MOJAVE database. Autoregression method is preferred for a short-term forecasting of flux density changes for radio sources with complex processes of variability. Conclusions: Presented values and properties of quasi-periods are designed to build theoretical models of short-term and longterm variabilities of extragalactic radio sources. The ability to predict changes in flux density of extragalactic radio sources using their variability data enables efficient planning of observation programs.

  12. The radio-emission spectra of some extragalactic radio sources in the 11.6-36.8 GHz range

    NASA Astrophysics Data System (ADS)

    Valtaoja, E.; Valtonen, M.; Lekhto, Kh.; Efanov, V. A.; Moiseev, I. G.

    Results are presented of coordinated observations of 20 extragalactic radio sources in the 11.6-3.8 GHz range. The measurements were carried out in 1980-1982 using the RT-22 and RT-14 radio telescopes at the Crimean Astrophysical Observatory and the Radio Laboratory of the Helsinki University of Technology, respectively. Quasi-simultaneous radiation spectra are presented for 12 sources and the magnetic field strength (MFS) is estimated for 0235+16, OH 471, OJ 287, and BL Lac. The MFS turns out to be in the 0.001-0.002 G range.

  13. Host Galaxies of X-Shaped Extragalactic Radio Sources

    NASA Astrophysics Data System (ADS)

    Springmann, Alessondra; Cheung, C. C.

    2007-05-01

    The majority of radiation from galaxies containing active galactic nuclei (AGNs) is emitted not by the stars composing the galaxy, but from an active source at the galactic center, most likely a supermassive black hole. Of particular interest are radio galaxies, the active galaxies emitting much of their radiation at radio wavelengths. Classical double-lobed radio galaxies are characterized by a single pair of "active" radio lobes. A small subset show an additional pair of lower surface brightness 'wings' of emission, thus forming an overall winged or X-shaped appearance. Two competing mechanisms have been proposed to explain the "winged" morphology. One model posits that these are the remnants left over from a relatively recent merger of a binary supermassive black hole system. Others have argued that they result naturally from strong backflow in a radio jet cocoon expanding into an asymmetric medium. We used available Sloan Digital Sky Survey r-band images of 11 X-shaped sources to measure the host galaxy ellipticities. By analyzing the host galaxy shapes, we trace the surrounding gas distribution. The radio morphologies are compared to the host galaxy parameters to analogize between differing model expectations. This work was funded by the Department of Energy's Student Undergraduate Laboratory Internship Program and the Stanford Linear Accelerator Center.

  14. Optical identifications of southern compact radio sources

    NASA Technical Reports Server (NTRS)

    Jauncey, David L.; Savage, Ann; Morabito, David D.; Preston, Robert A.; Nicolson, George C.

    1989-01-01

    Optical identifications are presented for 158 radio sources, mostly from the Southern Hemisphere, based on the coincidence between the position of the optical object and the compact milliarcsecond radio nucleus. Radio positions with an accuracy of typically 0.3 arcsec rms were measured from the observed delay and fringe rate of VLBI observations at 2.29 GHz on an Australia-to-South Africa baseline. Optical identifications and positions were measured from the UK Schmidt Telescope deep IIIa-J Southern Sky Survey plates, where available.

  15. Study of Extragalactic Sources with Extended Radio Emission

    NASA Astrophysics Data System (ADS)

    Jamrozy, M.; Klein, U.; Mack, K.-H.

    Galaxies (and quasars) hosting active galactic nuclei (AGN) are usually powerful radio sources which produce jets and extended radio emitting regions (lobes) of plasma. There is a huge range from less than 100 pc up to few Mpc in linear extent of the radio galaxies (RGs). RGs with sizes over more than one Mpc represent the biggest single objects in the Universe. The most extreme of those is 3C236 which has a projected linear size of 4.2 Mpc (H0 =71 km s-1 Mpc-1, Ω = 1). Another example of a giant radio galaxy (GRG) B0503-286 is shown in Fig. 1. The very large angular sizes (up to several dozens of arcminutes) of GRGs on the sky give an excellent opportunity to study the nature of AGNs and provide important constraints on the evolution of galaxies. Because of their sizes and luminosities GRGs have significant influence on the intergalactic medium (IGM). The total energy delivered into the IGM by the twin jets of a GRG is about 1054 J, which is a significant fraction of the gravitational energy released during the formation of a supermassive black hole in the centre of an AGN's parent galaxy. On the other hand, GRGs possess low equipartition magnetic field strengths and energy densities of their cocoons. This matches the statement of Colgate & Li [1] who affirm that for most radio sources located in a low-density environment only a small fraction of the magnetic energy is dissipated in the form of synchrotron radiation while the bulk of the magnetic energy is deposited in the walls and voids of the Universe. Kronberg et al. [2] suggest that the magnetic energy which originates from AGN outflows and which is stored in the intergalactic magnetic field has a major influence on the evolution of galaxies and visible structure formation on scales of up to ~ 1Mpc.

  16. Local Circumnuclear Magnetar Solution to Extragalactic Fast Radio Bursts

    NASA Astrophysics Data System (ADS)

    Pen, Ue-Li; Connor, Liam

    2015-07-01

    We synthesize the known information about fast radio bursts (FRBs) and radio magnetars, and describe an allowed origin near nuclei of external, but non-cosmological, galaxies. This places them at z\\ll 1, within a few hundred megaparsecs. In this scenario, the high dispersion measure (DM) is dominated by the environment of the FRB, modeled on the known properties of the Milky Way center, whose innermost 100 pc provides 1000 pc cm-3. A radio loud magnetar is known to exist in our galactic center, within ˜2 arcsec of Sgr A*. Based on the polarization, DM, and scattering properties of this known magnetar, we extrapolate its properties to those of Crab-like giant pulses and SGR flares and point out their consistency with observed FRBs. We conclude that galactic center magnetars could be the source of FRBs. This scenario is readily testable with very long baseline interferometry measurements as well as with flux count statistics from large surveys such as CHIME or UTMOST.

  17. Extragalactic radio surveys in the pre-Square Kilometre Array era

    NASA Astrophysics Data System (ADS)

    Simpson, Chris

    2017-07-01

    The era of the Square Kilometre Array is almost upon us, and pathfinder telescopes are already in operation. This brief review summarizes our current knowledge of extragalactic radio sources, accumulated through six decades of continuum surveys at the low-frequency end of the electromagnetic spectrum and the extensive complementary observations at other wavelengths necessary to gain this understanding. The relationships between radio survey data and surveys at other wavelengths are discussed. Some of the outstanding questions are identified and prospects over the next few years are outlined.

  18. Extragalactic radio surveys in the pre-Square Kilometre Array era

    PubMed Central

    2017-01-01

    The era of the Square Kilometre Array is almost upon us, and pathfinder telescopes are already in operation. This brief review summarizes our current knowledge of extragalactic radio sources, accumulated through six decades of continuum surveys at the low-frequency end of the electromagnetic spectrum and the extensive complementary observations at other wavelengths necessary to gain this understanding. The relationships between radio survey data and surveys at other wavelengths are discussed. Some of the outstanding questions are identified and prospects over the next few years are outlined. PMID:28791175

  19. Arcsecond positions for milliarcsecond VLBI nuclei of extragalactic radio sources. III - 74 sources

    NASA Technical Reports Server (NTRS)

    Morabito, D. D.; Preston, R. A.; Linfield, R. P.; Slade, M. A.; Wehrle, A. E.; Faulkner, J.; Jauncey, D. L.

    1985-01-01

    VLBI measurements at 2290 and 8420 MHz on baselines of 10,000 km have been used to determine the positions of the milliarcsecond nuclei in 74 extragalactic radio sources. Estimated accuracies range from 0.1 to 4.3 arcsec in both right ascension and declination with typical accuracies of about 0.3 arcsec. The observed sources are part of an all-sky VLBI catalog of milliarcsecond radio sources. Arcsecond positions have been determined for 819 sources. These positions are presently being used to identify optical counterparts in the southern hemisphere.

  20. Arcsecond Positions for Milliarcsecond VLBI Nuclei of Extragalactic Radio Sources. Part 3: 74 Sources

    NASA Technical Reports Server (NTRS)

    Morabito, D. D.; Preston, R. A.; Linfield, R. P.; Slade, M. A.; Wehrle, A. E.; Faulkner, J.; Jauncey, D. L.

    1985-01-01

    VLBI measurements at 2290 MHz and 8420 MHz on baselines of 10,000 km between Deep Space Network stations have been used to determine the positions of the milliarcsecond nuclei in 74 extragalactic radio sources. Estimated accuracies range from 0.1 sec. to 4, 3 sec. in both right ascension and declination with typical accuracies of approx. 0.3 sec. The observed sources are part of an all-sky VLBI catalog of milliarcsecond radio sources. Arcsecond positions have now been determined for 819 sources. These positions are presently being used to identify optical counterparts in the Southern Hemisphere.

  1. Arcsecond positions for milliarcsecond VLBI nuclei of extragalactic radio sources. II - 207 sources

    NASA Technical Reports Server (NTRS)

    Morabito, D. D.; Preston, R. A.; Slade, M. A.; Jauncey, D. L.; Nicolson, G. D.

    1983-01-01

    Time delay and fringe frequency measurements at 2.29 GHz have been obtained with VLBI on baselines of about 10,000 km, in order to determine the positions of milliarcsec nuclei in 207 extragalactic radio sources. Accuracy ranges are estimated to lie between 0.1 and 1.0 arcsec in both right ascension and declination, with all sources having uncertainties of less than 4 arcsec in both coordinates. These sources constitute part of an all-sky VLBI catalog of milliarcsec radio sources, for 752 of which arcsec positions have thus far been determined.

  2. Extragalactic radio surveys in the pre-Square Kilometre Array era.

    PubMed

    Simpson, Chris

    2017-07-01

    The era of the Square Kilometre Array is almost upon us, and pathfinder telescopes are already in operation. This brief review summarizes our current knowledge of extragalactic radio sources, accumulated through six decades of continuum surveys at the low-frequency end of the electromagnetic spectrum and the extensive complementary observations at other wavelengths necessary to gain this understanding. The relationships between radio survey data and surveys at other wavelengths are discussed. Some of the outstanding questions are identified and prospects over the next few years are outlined.

  3. BROADBAND RADIO POLARIMETRY AND FARADAY ROTATION OF 563 EXTRAGALACTIC RADIO SOURCES

    SciTech Connect

    Anderson, C. S.; Gaensler, B. M.; Feain, I. J.; Franzen, T. M. O.

    2015-12-10

    We present a broadband spectropolarimetric survey of 563 discrete, mostly unresolved radio sources between 1.3 and 2.0 GHz using data taken with the Australia Telescope Compact Array. We have used rotation-measure synthesis to identify Faraday-complex polarized sources, those objects whose frequency-dependent polarization behavior indicates the presence of material possessing complicated magnetoionic structure along the line of sight (LOS). For sources classified as Faraday-complex, we have analyzed a number of their radio and multiwavelength properties to determine whether they differ from Faraday-simple polarized sources (sources for which LOS magnetoionic structures are comparatively simple) in these properties. We use this information to constrain the physical nature of the magnetoionic structures responsible for generating the observed complexity. We detect Faraday complexity in 12% of polarized sources at ∼1′ resolution, but we demonstrate that underlying signal-to-noise limitations mean the true percentage is likely to be significantly higher in the polarized radio source population. We find that the properties of Faraday-complex objects are diverse, but that complexity is most often associated with depolarization of extended radio sources possessing a relatively steep total intensity spectrum. We find an association between Faraday complexity and LOS structure in the Galactic interstellar medium (ISM) and claim that a significant proportion of the Faraday complexity we observe may be generated at interfaces of the ISM associated with ionization fronts near neutral hydrogen structures. Galaxy cluster environments and internally generated Faraday complexity provide possible alternative explanations in some cases.

  4. Broadband Radio Polarimetry and Faraday Rotation of 563 Extragalactic Radio Sources

    NASA Astrophysics Data System (ADS)

    Anderson, C. S.; Gaensler, B. M.; Feain, I. J.; Franzen, T. M. O.

    2015-12-01

    We present a broadband spectropolarimetric survey of 563 discrete, mostly unresolved radio sources between 1.3 and 2.0 GHz using data taken with the Australia Telescope Compact Array. We have used rotation-measure synthesis to identify Faraday-complex polarized sources, those objects whose frequency-dependent polarization behavior indicates the presence of material possessing complicated magnetoionic structure along the line of sight (LOS). For sources classified as Faraday-complex, we have analyzed a number of their radio and multiwavelength properties to determine whether they differ from Faraday-simple polarized sources (sources for which LOS magnetoionic structures are comparatively simple) in these properties. We use this information to constrain the physical nature of the magnetoionic structures responsible for generating the observed complexity. We detect Faraday complexity in 12% of polarized sources at ∼1‧ resolution, but we demonstrate that underlying signal-to-noise limitations mean the true percentage is likely to be significantly higher in the polarized radio source population. We find that the properties of Faraday-complex objects are diverse, but that complexity is most often associated with depolarization of extended radio sources possessing a relatively steep total intensity spectrum. We find an association between Faraday complexity and LOS structure in the Galactic interstellar medium (ISM) and claim that a significant proportion of the Faraday complexity we observe may be generated at interfaces of the ISM associated with ionization fronts near neutral hydrogen structures. Galaxy cluster environments and internally generated Faraday complexity provide possible alternative explanations in some cases.

  5. The fields of reference stars for optical positional observations of astrometric extragalactic radio sources

    NASA Astrophysics Data System (ADS)

    Dement'eva, A. A.; Ryl'Kov, V. P.

    The Pulkovo programme (Pul ERS) and the techniques used to create a catalogue of coordinates and magnitudes for more than 7000 faint stars in 73 small fields around extragalactic radiosources (ERS) are described. Accurate positions of stars in the fields around ERS 2200+420 and ERS 2021+614 are given. The catalogue containing 223 stars is presented. The errors of coordinate reductions in the system of reference stars from the CMC catalogue are found to be 1.5-2.0 times smaller than for those in the system of the PPM catalogue. This programme (Pul ERS) is required for quick identification of the extragalactic radio sources and for obtaining their characteristics from observations with large telescopes and CCD detectors.

  6. Search for correlated radio and optical events in long-term studies of extragalactic sources

    NASA Technical Reports Server (NTRS)

    Pomphrey, R. B.; Smith, A. G.; Leacock, R. J.; Olsson, C. N.; Scott, R. L.; Pollock, J. T.; Edwards, P.; Dent, W. A.

    1976-01-01

    For the first time, long-term records of radio and optical fluxes of a large sample of variable extragalactic sources have been assembled and compared, with linear cross-correlation analysis being used to reinforce the visual comparisons. Only in the case of the BL Lac object OJ 287 is the correlation between radio and optical records strong. In the majority of cases there is no evidence of significant correlation, although nine sources show limited or weak evidence of correlation. The results do not support naive extrapolation of the expanding source model. The general absence of strong correlation between the radio and optical regions has important implications for the energetics of events occurring in such sources.

  7. The contribution of unresolved radio-loud AGN to the extragalactic diffuse gamma-ray background

    NASA Astrophysics Data System (ADS)

    Mücke, A.; Pohl, M.

    2000-02-01

    We present a calculation of the blazar contribution to the extragalactic diffuse γ-ray background (EGRB) in the EGRET energy range. Our model is based on inverse-Compton scattering as the dominant γ-ray production process in the jets of flat spectrum radio quasars (FSRQs) and BL Lac objects, and on the unification scheme of radio-loud AGN. According to this picture, blazars represent the beamed fraction of the Fanaroff-Riley radio galaxies (FR galaxies). The observed logN-logS distribution and redshift distribution of both FSRQs and BL Lacs constrain our model. Depending slightly on the evolutionary behaviour of blazars, we find that unresolved AGN underproduce the intensity of the extragalactic background radiation. With our model only 20-40per cent of the extragalactic background emission can be explained by unresolved blazars if we integrate to a maximum redshift of Zmax=3. For Zmax=5, blazars could account for 40-80per cent of the EGRB. Roughly 70-90per cent of the AGN contribution to the EGRB would result from BL Lacs. While the systematic uncertainties in our estimate for the FSRQ contribution appear small, in the case of BL Lacs our model parameters are not consistent with the results from studies in other wavelength regimes, and therefore may have larger systematic uncertainties. Thus we end up with two possibilities, depending on whether we underpredict or overpredict the BL Lac contribution: either unresolved AGN cannot account for the entire EGRB, or unresolved BL Lacs produce the observed background. We predict a significant flattening of the γ-ray logN-logS function in the next two decades of flux below the EGRET threshold.

  8. Compact radio sources in luminous infrared galaxies

    NASA Astrophysics Data System (ADS)

    Parra, Rodrigo

    2007-08-01

    Radio interferometry is an observational technique of high sensitivity and incomparably high spatial resolution. Moreover, because radio waves can freely propagate through interstellar dust and gas, it allows the study of regions of the universe completely obscured at other wavelengths. This thesis reports the observational and theoretical results of my research during the past four years which are mostly based on interferometric radio data. The COLA sample is an infrared selected sample of active star forming galaxies. We conducted 6 cm VLA and VLBI snapshot observations of the northern half of this sample. The radio emission seen at VLA scales is consistent with being powered by star formation activity because it follows the far infrared to radio correlation. We detect 22% of the sample sources in our VLBI snapshots. Based on luminosity arguments, we argue that these sub-parsec VLBI sources are powered by AGN activity. Furthermore, we find that VLBI detections are preferentially found in sources whose VLA scale structures have the highest peak brightnesses suggesting a strong correlation between compact starburst and AGN activity. This observational result is consistent with the theoretical picture of an Eddington-limited nuclear starburst acting as the last valve in the pipeline transporting the gas from kiloparsec scales onto the accretion disc of a buried AGN. Arp 220 is the archetypical ultra luminous infrared galaxy. For many years this source has been known to harbour a compact (~100 pc) cluster of unresolved 18 cm bright sources believed to be bright core collapse supernovae. Using multiwavelength VLBI observations, we obtained for the first time radio spectra for 18 of these sources. We find that over a half of them have spectra consistent with young supernovae. The rest can be better explained as older supernova remnants interacting with the high density starburst ISM. This finding allowed us to constrain the number of possible scenarios for the Arp 220

  9. Polarization properties of extragalactic radio sources and their contribution to microwave polarization fluctuations

    NASA Astrophysics Data System (ADS)

    Mesa, D.; Baccigalupi, C.; De Zotti, G.; Gregorini, L.; Mack, K.-H.; Vigotti, M.; Klein, U.

    2002-12-01

    We investigate the statistical properties of the polarized emission of extragalactic radio sources and estimate their contribution to the power spectrum of polarization fluctuations in the microwave region. The basic ingredients of our analysis are the NVSS polarization data, the multifrequency study of polarization properties of the B3-VLA sample (Mack et al. \\cite{Mack2002}) which has allowed us to quantify Faraday depolarization effects, and the 15 GHz survey by Taylor et al. (\\cite{Taylor2001}), which has provided strong constraints on the high-frequency spectral indices of sources. The polarization degree of both steep- and flat-spectrum sources at 1.4 GHz is found to be anti-correlated with the flux density. The median polarization degree at 1.4 GHz of both steep- and flat-spectrum sources brighter than S(1.4 GHz)=80 mJy is =~ 2.2%. The data by Mack et al. (\\cite{Mack2002}) indicate a substantial mean Faraday depolarization at 1.4 GHz for steep spectrum sources, while the depolarization is undetermined for most flat/inverted-spectrum sources. Exploiting this complex of information we have estimated the power spectrum of polarization fluctuations due to extragalactic radio sources at microwave frequencies. We confirm that extragalactic sources are expected to be the main contaminant of Cosmic Microwave Background (CMB) polarization maps on small angular scales. At frequencies <30 GHz the amplitude of their power spectrum is expected to be comparable to that of the E-mode of the CMB. At higher frequencies, however, the CMB dominates.

  10. VizieR Online Data Catalog: S-PASS & NVSS bright extragalactic radio sources (Lamee+, 2016)

    NASA Astrophysics Data System (ADS)

    Lamee, M.; Rudnick, L.; Farnes, J. S.; Carretti, E.; Gaensler, B. M.; Haverkorn, M.; Poppi, S.

    2016-11-01

    The S-band Polarization All Sky Survey (S-PASS) is a project to map the southern sky at decl. <-1.0° in total intensity and linear polarization. The observations were conducted with the 64m Parkes Radio Telescope, NSW Australia at 2.3GHz. A description of S-PASS is given in Carretti+ (2013Natur.493...66C) and Carretti (2010ASPC..438..276C). We cross-match the S-PASS data with the 1.4GHz NRAO VLA Sky Survey (NVSS) catalog (Condon+, 1998, VIII/65) and generate a new independent depolarization catalog of bright extragalactic radio sources. We matched our catalog to the Wide-field Infrared Survey Explorer, WISE, catalog, Wright+ (2010AJ....140.1868W), with a search radius of five arcseconds. See section 4.7. (1 data file).

  11. Polarization of extragalactic radio sources: CMB foregrounds and telescope calibration issues

    NASA Astrophysics Data System (ADS)

    Massardi, Marcella; Galluzzi, Vincenzo; Paladino, Rosita; Burigana, Carlo

    2016-03-01

    Radio source observations play important roles in polarimetric cosmological studies. On the one hand, they constitute the main foregrounds for cosmic microwave background (CMB) radiation on scales smaller than 30 arcmin up to 100 GHz, on the other they can be used as targets for validation of products of polarimetric experiments dedicated to cosmology. Furthermore, extragalactic high-redshift sources have been used for cosmic polarization rotation (CPR) investigation. In this paper, we will discuss the support to cosmological studies from ground-based polarimetric observations in the radio and millimetric wavelength bands. Most of the limits to accuracy improvements arise from systematic effects and low calibration quality. We will discuss some details of interferometric calibration procedures and show some of the perspectives that the Atacama large millimeter array (ALMA) could offer for CPR studies.

  12. VizieR Online Data Catalog: Optically Bright extragalactic Radio Sources II (Petrov, 2013)

    NASA Astrophysics Data System (ADS)

    Petrov, L.

    2014-06-01

    The first VLBI (Very Long Baseline Interferometry) observing campaign in 2007 resulted in the detection of 398 targets with the European VLBI Network (EVN; Bourda et al., 2010, cat. J/A+A/520/A113). During the second observing campaign, a subset of 105 sources detected in the previous campaign was observed (Bourda et al., 2011, cat. J/A+A/526/A102). Their positions were derived by Petrov (2011, cat. J/AJ/142/105) and formed the OBRS-1 (Optically Bright extragalactic Radio Sources) catalog. The remaining sources were observed in the third campaign, called OBRS-2. During the OBRS-2 campaign, there were three observing sessions with 10 VLBA (Very Long Baseline Array) stations and 5-6 EVN stations from this list: EFLSBERG, MEDICINA, ONSALA60, YEBES40M, DSS63, HARTRAO, and NOTO. Observations were made on 2010 Mar 23 (session ID gc034a), on 2011 Nov 8 (gc034bcd), and on 2011 Mar 15 (gc034ef). The OBRS-2 catalog presents precise positions of the 295 extragalactic radio sources as well as median correlated flux densities at 8.4 and 2.2GHz at baseline lengths shorter than 900km and at baseline lengths longer than 5000km. (1 data file).

  13. The nature of powerful compact radio galaxies

    NASA Astrophysics Data System (ADS)

    Véron-Cetty, M.-P.; Woltjer, L.; Staveley-Smith, L.; Ekers, R. D.

    2000-10-01

    Three compact powerful radio galaxies, PKS 1353- 341, PKS 1814-637 and PKS 1934-638, have been imaged. The three galaxies seem to be giant ellipticals, the last two being bluer than normal gEs by 0.2-0.3 mag in B-I, which is expected if they are the result of recent merging. HI absorption has been detected in all three objects with very different characteristics. The broad absorption in PKS 1353 -341 probably takes place in a torus or a disk with a radius of at least a few tens of pc. For PKS 1814-637 the principal absorption is less broad and the disk radius more likely a few hundreds of pc. The absorption in PKS 1934-638 is very narrow and is probably due to gas not directly connected to the central engine. Data for a dozen of powerful radio galaxies with H I absorption are reviewed. Such absorption seems to be particularly common at high radio power. Based on observations obtained with the Australia Telescope and the 3.6m and NTT telescopes of ESO La Silla (Chile)

  14. The many facets of extragalactic radio surveys: towards new scientific challenges

    NASA Astrophysics Data System (ADS)

    2015-10-01

    Radio continuum surveys are a powerful tool to detect large number of objects over a wide range of redshifts and obtain information on the intensity, polarization and distribution properties of radio sources across the sky. They are essential to answer to fundamental questions of modern astrophysics. Radio astronomy is in the midst of a transformation. Developments in high-speed digital signal processing and broad-band optical fibre links between antennas have enabled significant upgrades of the existing radio facilities (e-MERLIN, JVLA, ATCA-CABB, eEVN, APERTIF), and are leading to next-generation radio telescopes (LOFAR, MWA, ASKAP, MeerKAT). All these efforts will ultimately lead to the realization of the Square Kilometre Array (SKA), which, owing to advances in sensitivity, field-of-view, frequency range and spectral resolution, will yield transformational science in many astrophysical research fields. The purpose of this meeting is to explore new scientific perspectives offered by modern radio surveys, focusing on synergies allowed by multi-frequency, multi-resolution observations. We will bring together researchers working on wide aspects of the physics and evolution of extra-galactic radio sources, from star-forming galaxies to AGNs and clusters of galaxies, including their role as cosmological probes. The organization of this conference has been inspired by the recent celebration of the 50th anniversary of the Northern Cross Radio Telescope in Medicina (BO), whose pioneering B2 and B3 surveys provided a significant contribution to radio astronomical studies for many decades afterwards. The conference was organized by the Istituto di Radioastronomia (INAF), and was held at the CNR Research Area in Bologna, on 20-23 October 2015. This Conference has received support from the following bodies and funding agencies: National Institute for Astrophysics (INAF), ASTRON, RadioNet3 (through the European Union’s Seventh Framework Programme for research

  15. X-ray, Optical and Radio Observations of the Extragalactic Superbubble N7793-S26

    NASA Astrophysics Data System (ADS)

    Pannuti, Thomas; Schlegel, E. M.; Filipovic, M. D.; Crawford, E.; Payne, J.; Grimes, C. K.

    2012-01-01

    We present a multi-wavelength (X-ray, optical and radio) spatial and spectral analysis of the extragalactic superbubble N7793-S26. Prior observations and analysis of this source had revealed extended emission spanning nearly 400 parsecs at all three wavelength domains: the extended morphology of this object suggests a superbubble classification, prompting the argument that N7793-S26 is actually a microquasar. We investigate the microquasar interpretation of this source based on analysis of its spatial and spectral properties and compare N7793-S26 to another known extragalactic superbubble located in the Local Group Galaxy IC 10. We investigate the scenario that the soft X-ray sources seen at the northern and southern edges of N7793-S26 are actually supernova remnants and that the central hard X-ray source is an X-ray binary serendipitously located to give the appearance of a central engine with two jets. This scenario will be presented and discussed.

  16. ON THE CONNECTION OF THE APPARENT PROPER MOTION AND THE VLBI STRUCTURE OF COMPACT RADIO SOURCES

    SciTech Connect

    Moor, A.; Frey, S.; Lambert, S. B.; Bakos, J. E-mail: frey@sgo.fomi.hu E-mail: oleg.titov@ga.gov.au

    2011-06-15

    Many of the compact extragalactic radio sources that are used as fiducial points to define the celestial reference frame are known to have proper motions detectable with long-term geodetic/astrometric very long baseline interferometry (VLBI) measurements. These changes can be as high as several hundred microarcseconds per year for certain objects. When imaged with VLBI at milliarcsecond (mas) angular resolution, these sources (radio-loud active galactic nuclei) typically show structures dominated by a compact, often unresolved 'core' and a one-sided 'jet'. The positional instability of compact radio sources is believed to be connected with changes in their brightness distribution structure. For the first time, we test this assumption in a statistical sense on a large sample rather than on only individual objects. We investigate a sample of 62 radio sources for which reliable long-term time series of astrometric positions as well as detailed 8 GHz VLBI brightness distribution models are available. We compare the characteristic direction of their extended jet structure and the direction of their apparent proper motion. We present our data and analysis method, and conclude that there is indeed a correlation between the two characteristic directions. However, there are cases where the {approx}1-10 mas scale VLBI jet directions are significantly misaligned with respect to the apparent proper motion direction.

  17. Magnetic Bubble Expansion as an Experimental Model for Extra-Galactic Radio Lobes

    NASA Astrophysics Data System (ADS)

    Lynn, Alan; Zhang, Yue; Hsu, Scott

    2010-11-01

    The Plasma Bubble Expansion Experiment (PBEX) is conducting laboratory experiments to address outstanding nonlinear plasma physics issues related to how magnetic energy and helicity carried by extra-galactic jets interacts with the intergalactic medium to form radio lobe structures. Experiments are being conducted in the 4 meter long, 50 cm diameter HELCAT linear plasma device at UNM. A pulsed magnetized coaxial gun (˜10 kV, ˜100 kA, ˜2 mWb) forms and injects magnetized plasma bubbles perpendicularly into a lower pressure weakly magnetized background plasma formed by a helicon and/or hot cathode source in HELCAT. Ideal MHD simulations show that an MHD shock develops ahead of the bubble as it propagates, and that the bubble develops asymmetries due to the background field [1]. Experimental data from plasma bubble injection into a background plasma, particularly magnetic probe measurements, will be discussed. [4pt] [1] W. Liu et al., Phys. Plasmas 15, 072905 (2008).

  18. JPL 1990-3: A 5-nrad extragalactic source catalog based on combined radio interferometric observations

    NASA Technical Reports Server (NTRS)

    Sovers, O. J.

    1991-01-01

    A combined analysis merges 17,000 Deep Space Network (DSN) Very Long Baseline Interferometric (VLBI) observations with 303,000 observations from the Crustal Dynamics Project (CDP) and the International Radio Interferometric Surveying (IRIS) project. Observations from the Radio Reference Frame Development (RRFD) and Time and Earth Motion Precision Observations (TEMPO) programs through late 1990 form the DSN VLBI data set. The combined analysis yields angular coordinates of extragalactic radio sources with a precision of a few nanoradians, as compared with 5 to 10 nrad precision for coordinates derived in the past solely from DSN data. The improvement in the combined analysis is due to the new Mark III DSN data, as well as to increased statistical strength from the large volume of observations from non-DSN experiments. Such a unified analysis is made possible by recent improvements in parameter estimation software efficiency. The terrestrial reference frame is based on joint VLBI experiments using both DSN and CDP antennas, and on specifying the coordinates of VLBI antennas in a proper geocentric coordinate system by means of Global Positioning System (GPS) collocation of VLBI, LLR, and SLR (Laser Ranging) sites.

  19. JPL 1990-3: A 5-nrad extragalactic source catalog based on combined radio interferometric observations

    NASA Technical Reports Server (NTRS)

    Sovers, O. J.

    1991-01-01

    A combined analysis merges 17,000 Deep Space Network (DSN) Very Long Baseline Interferometric (VLBI) observations with 303,000 observations from the Crustal Dynamics Project (CDP) and the International Radio Interferometric Surveying (IRIS) project. Observations from the Radio Reference Frame Development (RRFD) and Time and Earth Motion Precision Observations (TEMPO) programs through late 1990 form the DSN VLBI data set. The combined analysis yields angular coordinates of extragalactic radio sources with a precision of a few nanoradians, as compared with 5 to 10 nrad precision for coordinates derived in the past solely from DSN data. The improvement in the combined analysis is due to the new Mark III DSN data, as well as to increased statistical strength from the large volume of observations from non-DSN experiments. Such a unified analysis is made possible by recent improvements in parameter estimation software efficiency. The terrestrial reference frame is based on joint VLBI experiments using both DSN and CDP antennas, and on specifying the coordinates of VLBI antennas in a proper geocentric coordinate system by means of Global Positioning System (GPS) collocation of VLBI, LLR, and SLR (Laser Ranging) sites.

  20. A statistical VLBI study of milli-arcsecond cores in extragalactic radio sources

    NASA Technical Reports Server (NTRS)

    Preston, R. A.; Morabito, D. D.; Jauncey, D. L.

    1983-01-01

    VLBI observations at 2.3 GHz with a baseline of approximately 8 x 10 to the 7th wavelengths were performed on a complete sample of 103 sources from the Parkes + or - 4 deg catalog. Compact milli-arcsec cores were found in 35 percent of all sources: in 80 percent of quasars, in 10 percent of galaxies, and in 20 percent of empty field sources. It is shown that for quasars the percentage of the source flux density coming from milli-arcsec cores increased with increasing radio spectral index, radio variability, and optical redness. It is noted that quasars with extended radio structure (not less than approximately 10 arcsec) seem more likely to have a detectable milli-arcsec core than do extended radio galaxies. The absence of a strong correlation between quasar milli-arcsec structure and redshift is found to be evidence for a lack of strong physical evolution in quasars.

  1. Position and morphology of the compact non-thermal radio source at the Galactic Center

    NASA Technical Reports Server (NTRS)

    Marcaide, J. M.; Alberdi, A.; Bartel, N.; Clark, T. A.; Corey, B. E.; Elosegui, P.; Gorenstein, M. V.; Guirado, J. C.; Kardashev, N.; Popov, M.

    1992-01-01

    We have determined with VLBI the position of the compact nonthermal radio source at the Galactic Center, commonly referred to as SgrA*, in the J2000.0 reference frame of extragalactic radio sources. We have also determined the size of SgrA* at 1.3, 3.6, and 13 cm wavelengths and found that the apparent size of the source increases proportionally to the observing wavelength squared, as expected from source size broadening by interstellar scattering and as reported previously by other authors. We have also established an upper limit of about 8 mJy at 3.6 cm wavelength for any ultracompact component. The actual size of the source is less than 15 AU. Fourier analysis of our very sensitive 3.6 cm observations of this source shows no significant variations of correlated flux density on time scales from 12 to 700 s.

  2. Position and morphology of the compact non-thermal radio source at the Galactic Center

    NASA Technical Reports Server (NTRS)

    Marcaide, J. M.; Alberdi, A.; Bartel, N.; Clark, T. A.; Corey, B. E.; Elosegui, P.; Gorenstein, M. V.; Guirado, J. C.; Kardashev, N.; Popov, M.

    1992-01-01

    We have determined with VLBI the position of the compact nonthermal radio source at the Galactic Center, commonly referred to as SgrA*, in the J2000.0 reference frame of extragalactic radio sources. We have also determined the size of SgrA* at 1.3, 3.6, and 13 cm wavelengths and found that the apparent size of the source increases proportionally to the observing wavelength squared, as expected from source size broadening by interstellar scattering and as reported previously by other authors. We have also established an upper limit of about 8 mJy at 3.6 cm wavelength for any ultracompact component. The actual size of the source is less than 15 AU. Fourier analysis of our very sensitive 3.6 cm observations of this source shows no significant variations of correlated flux density on time scales from 12 to 700 s.

  3. Magnetic Field Disorder and Faraday Effects on the Polarization of Extragalactic Radio Sources

    NASA Astrophysics Data System (ADS)

    Lamee, Mehdi; Rudnick, Lawrence; Farnes, Jamie S.; Carretti, Ettore; Gaensler, B. M.; Haverkorn, Marijke; Poppi, Sergio

    2016-09-01

    We present a polarization catalog of 533 extragalactic radio sources that have a 2.3 GHz total intensity above 420 mJy from the S-band Polarization All Sky Survey, S-PASS, with corresponding 1.4 GHz polarization information from the NRAO VLA Sky Survey, NVSS. We studied the selection effects and found that fractional polarization, π, of radio objects at both wavelengths depends on the spectral index, the source magnetic field disorder, the source size, and depolarization. The relationship between depolarization, spectrum, and size shows that depolarization occurs primarily in the source vicinity. The median {π }2.3 of resolved objects in NVSS is approximately two times larger than that of unresolved sources. Sources with little depolarization are ∼2 times more polarized than both highly depolarized and re-polarized sources. This indicates that intrinsic magnetic field disorder is the dominant mechanism responsible for the observed low fractional polarization of radio sources at high frequencies. We predict that number counts from polarization surveys will be similar at 1.4 GHz and at 2.3 GHz, for fixed sensitivity, although ∼10% of all sources may currently be missing because of strong depolarization. Objects with {π }1.4≈ {π }2.3≥slant 4 % typically have simple Faraday structures, so they are most useful for background samples. Almost half of flat-spectrum (α ≥slant -0.5) and ∼25% of steep-spectrum objects are re-polarized. Steep-spectrum, depolarized sources show a weak negative correlation of depolarization with redshift in the range 0 < z < 2.3. Previous non-detections of redshift evolution are likely due the inclusion of re-polarized sources as well.

  4. Compact Radio Sources Apparently Associated with Extended Galactic Sources

    NASA Astrophysics Data System (ADS)

    Trejo, A.; Rodríguez, L. F.

    2010-10-01

    We report VLA radio observations of the 21 cm HI line toward two compact radio sources that could be associated with extended Galactic sources. In the case of the planetary nebula PHR 1735-333 we observed HI absorption against a non-thermal radio source recently discovered in the region, which was proposed to be physically associated with the planetary nebula. However, from the analysis of the HI absorption spectrum, we suggest a larger distance for this non-thermal source. In the case of the supernova remnant candidate SNR G3.8+0.3 we obtained HI absorption spectra towards it and towards a compact radio source located at its center. We conclude that SNR G3.8+0.3 is more distant than the compact radio source and that they are not physically associated.

  5. Study of interstellar molecular clouds using formaldehyde absorption toward extragalactic radio sources

    SciTech Connect

    Araya, E. D.; Andreev, N.; Dieter-Conklin, N.; Goss, W. M.

    2014-04-01

    We present new Very Large Array 6 cm H{sub 2}CO observations toward four extragalactic radio continuum sources (B0212+735, 3C 111, NRAO 150, and BL Lac) to explore the structure of foreground Galactic clouds as revealed by absorption variability. This project adds a new epoch in the monitoring observations of the sources reported by Marscher and collaborators in the mid-1990s. Our new observations confirm the monotonic increase in H{sub 2}CO absorption strength toward NRAO 150. We do not detect significant variability of our 2009 spectra with respect to the 1994 spectra of 3C111, B0212+735, and BL Lac; however, we find significant variability of the 3C111 2009 spectrum with respect to archive observations conducted in 1991 and 1992. Our analysis supports that changes in absorption lines could be caused by chemical and/or geometrical gradients in the foreground clouds and not necessarily by small-scale (∼10 AU) high-density molecular clumps within the clouds.

  6. Double layers and plasma-wave resistivity in extragalactic jets - Cavity formation and radio-wave emission

    NASA Technical Reports Server (NTRS)

    Borovsky, Joseph E.

    1987-01-01

    Current driven electrostatic-wave- and electromagnetic-wave-produced resistivities do not occur in extragalactic jets for estimated values of the carried currents. Strong plasma double layers, however, may exist within self-maintained density cavities. The relativistic double-layer-emitted electron and ion beams drive plasma-wave resistivities in the low- and high-potential plasma adjacent to the double layers. The double-layer-emitted electron beams may also emit polarized radio waves via a collective bremsstrahlung process mediated by electrostatic two-stream instabilities.

  7. Double layers and plasma-wave resistivity in extragalactic jets: Cavity formation and radio-wave emission

    NASA Technical Reports Server (NTRS)

    Borovsky, Joseph E.

    1987-01-01

    For estimated values of the currents carried by extragalactic jets, current-driven electrostatic-wave- and electromagnetic-wave-produced resistivities do not occur. Strong plasma double layers, however, may exist within self-maintained density cavities, the relativistic double-layer-emitted electron, and ion beams driving plasma-wave resistivities in the low- and high-potential plasma adjacent to the double layers. The double-layer-emitted electron beams may also emit polarized radio waves via a collective bremsstrahlung process mediated by electrostatic two-stream instabilities.

  8. Double layers and plasma-wave resistivity in extragalactic jets - Cavity formation and radio-wave emission

    NASA Technical Reports Server (NTRS)

    Borovsky, Joseph E.

    1987-01-01

    Current driven electrostatic-wave- and electromagnetic-wave-produced resistivities do not occur in extragalactic jets for estimated values of the carried currents. Strong plasma double layers, however, may exist within self-maintained density cavities. The relativistic double-layer-emitted electron and ion beams drive plasma-wave resistivities in the low- and high-potential plasma adjacent to the double layers. The double-layer-emitted electron beams may also emit polarized radio waves via a collective bremsstrahlung process mediated by electrostatic two-stream instabilities.

  9. Radio Structures of Compact Quasars with Broad Absorption Lines

    NASA Astrophysics Data System (ADS)

    Kunert-Bajraszewska, Magdalena; Gawroński, Marcin P.

    2010-05-01

    Broad absorption lines (BALs), seen in a small fraction of both the radio-quiet and radio-loud quasar populations, are probably caused by the outflow of gas with high velocities and are part of the accretion process. The presence of BALs is due to a geometrical effect and/or it is connected with the quasar evolution. Using the final release of FIRST survey combined with a catalog of BAL QSOs from SDSS/DR3, we have constructed a new sample of compact radio-loud BAL QSOs, which constitutes the majority of radio-loud BAL QSOs. The main goal of this project is to study the origin of BALs by analysis of the BAL QSOs radio morphology, orientation, and jet evolution using the European VLBI Network (EVN) at 1.6 GHz and the Very Long Baseline Array (VLBA) at 5 and 8.4 GHz.

  10. THE COMPACT RADIO STRUCTURE OF RADIO-LOUD NARROW LINE SEYFERT 1 GALAXIES

    SciTech Connect

    Gu Minfeng; Chen Yongjun

    2010-06-15

    We present the compact radio structure of three radio-loud narrow line Seyfert 1 galaxies from the Very Long Baseline Array archive data at 2.3, 5, and 8.4 GHz. In RXS J16290+4007, the radio structure is mostly unresolved. The combination of compact radio structure, high brightness temperature, and inverted spectrum between simultaneous 2.3 and 8.4 GHz strongly favors jet relativistic beaming. Combined with the very long baseline interferometry data at 1.6 and 8.4 GHz from the literature, we argue that RXS J16333+4718 also may harbor a relativistic jet, with resolved core-jet structure in 5 GHz. B3 1702+457 is clearly resolved with a well-defined jet component. The overall radio steep spectrum indicates that B3 1702+457 is likely a source optically defined as NLS1 with radio definition of compact steep spectrum sources. From these three sources, we found that radio loud NLS1s can be either intrinsically radio loud (e.g., B3 1702+457) or apparently radio loud due to jet beaming effects (e.g., RXS J16290+4007 and RXS J16333+4718).

  11. H I absorption in nearby compact radio galaxies

    NASA Astrophysics Data System (ADS)

    Glowacki, M.; Allison, J. R.; Sadler, E. M.; Moss, V. A.; Curran, S. J.; Musaeva, A.; Deng, C.; Parry, R.; Sligo, M. C.

    2017-05-01

    H I absorption studies yield information on both active galactic nucleus (AGN) feeding and feedback processes. This AGN activity interacts with the neutral gas in compact radio sources, which are believed to represent the young or recently re-triggered AGN population. We present the results of a survey for H I absorption in a sample of 66 compact radio sources at 0.040 < z < 0.096 with the Australia Telescope Compact Array. In total, we obtained seven detections, five of which are new, with a large range of peak optical depths (3-87 per cent). Of the detections, 71 per cent exhibit asymmetric, broad (ΔvFWHM > 100 km s-1) features, indicative of disturbed gas kinematics. Such broad, shallow and offset features are also found within low-excitation radio galaxies which is attributed to disturbed circumnuclear gas, consistent with early-type galaxies typically devoid of a gas-rich disc. Comparing mid-infrared colours of our galaxies with H I detections indicates that narrow and deep absorption features are preferentially found in late-type and high-excitation radio galaxies in our sample. These features are attributed to gas in galactic discs. By combining XMM-Newton archival data with 21-cm data, we find support that absorbed X-ray sources may be good tracers of H I content within the host galaxy. This sample extends previous H I surveys in compact radio galaxies to lower radio luminosities and provides a basis for future work exploring the higher redshift universe.

  12. Search for High Rotation Measures in Extragalactic Radio Sources I. Multi-Channel Observations at 10 GHz

    NASA Astrophysics Data System (ADS)

    Inoue, M.; Tabara, H.; Kato, T.; Aizu, K.

    1995-12-01

    Multi-channel polarimetry has been performed to detect high rotation measure (RM) at 3 cm using the Nobeyama 45-m telescope. The high RM candidates of 96 radio sources were selected to be observed, and RMs of 35 sources were derived from the observations. Since the four channels are set contiguously from 2.84 cm to 3.31 cm, |RM| can be derived uniquely up to 15000 rad m(-2) by this polarimeter. We found that there exist sources with RM of several thousands rad m(-2) . In fact, 5 sources have |RM| > 1000 rad m(-2) . On the other hand, all sources observed are well within this system limits, and therefore we suggest the observed upper limit of |RM| is around 5000 rad m(-2) for extragalactic radio sources, even taken into account the redshift of sources.

  13. Acceleration of Compact Radio Jets on Sub-parsec Scales

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Sung; Lobanov, Andrei P.; Krichbaum, Thomas P.; Zensus, J. Anton

    2016-08-01

    Jets of compact radio sources are highly relativistic and Doppler boosted, making studies of their intrinsic properties difficult. Observed brightness temperatures can be used to study the intrinsic physical properties of relativistic jets, and constrain models of jet formation in the inner jet region. We aim to observationally test such inner jet models. The very long baseline interferometry (VLBI) cores of compact radio sources are optically thick at a given frequency. The distance of the core from the central engine is inversely proportional to the frequency. Under the equipartition condition between the magnetic field energy and particle energy densities, the absolute distance of the VLBI core can be predicted. We compiled the brightness temperatures of VLBI cores at various radio frequencies of 2, 8, 15, and 86 GHz. We derive the brightness temperature on sub-parsec scales in the rest frame of the compact radio sources. We find that the brightness temperature increases with increasing distance from the central engine, indicating that the intrinsic jet speed (the Lorentz factor) increases along the jet. This implies that the jets are accelerated in the (sub-)parsec regions from the central engine.

  14. Precession and Nutation from the Analysis of Positions of Extragalactic Radio Sources

    NASA Technical Reports Server (NTRS)

    Walter, H. G.; Sovers, O. J.

    1995-01-01

    Corrections to the Earth's precession and nutation have been derived from VLBI observations of extragalactic sources carried out by JPL's Deep Space Network between 1978 and 1994. The analysis is based on the source right ascensions and declinations given in annual position catalogues. These catalogues result from adopting specific conventions on precession and a nutation model, using VLBI data.

  15. Precession and Nutation from the Analysis of Positions of Extragalactic Radio Sources

    NASA Technical Reports Server (NTRS)

    Walter, H. G.; Sovers, O. J.

    1995-01-01

    Corrections to the Earth's precession and nutation have been derived from VLBI observations of extragalactic sources carried out by JPL's Deep Space Network between 1978 and 1994. The analysis is based on the source right ascensions and declinations given in annual position catalogues. These catalogues result from adopting specific conventions on precession and a nutation model, using VLBI data.

  16. Compact radio sources in the starburst galaxy M82 and the Sigma-D relation for supernova remnants

    NASA Technical Reports Server (NTRS)

    Huang, Z. P.; Thuan, T. X.; Chevalier, R. A.; Condon, J. J.; Yin, Q. F.

    1994-01-01

    We have obtained an 8.4 GHz Very Large Array (VLA) A-array map of the starburst galaxy M82 with a resolution Full Width at Half Maximum (FWHM) approximately 0.182 sec. About 50 compact radio sources in the central region of M82 were detected with a peak surface brightness approximately greater than 10(exp -17) W/Hz/sq m/sr. Comparison with previous observations shows that most sources are declining in flux. Three previously visible sources have faded into the background of our map (approximately less than 0.2 mJy/beam), while a few sources, including the second and third brightest radio sources in M82, may have increased slightly in flux over the last decade. No new radio supernova was found. The birth rate of the compact radio sources is estimated to be 0.11 + or - 0.05/yr. We attribute the population of such bright, small supernova remnants (SNRs) in M82 to the high pressure in the central region that can truncate the mass loss during a red supergiant phase or allow dense ionized clouds to be present. The compact radio sources obey a Sigma(radio surface brightness) - D(diameter) relation which is remarkably similar to that followed by supernova remnants in the Galaxy and the Magellanic Clouds and by two of the strongest known extragalactic radio supernovae: SN 1986J and SN 1979C. A least-squares fit to the SNR data gives: Sigma(sub 8.4 GHz) (W/Hz/sq m/sr) = 4.4 x 10(exp -16) D(sub pc)(exp -3.5 +/- 0.1) covering seven orders of magnitude in Sigma. Possible selection effects are discussed and a theoretical discussion of the correlation is presented.

  17. Compact radio sources in the starburst galaxy M82 and the Sigma-D relation for supernova remnants

    NASA Technical Reports Server (NTRS)

    Huang, Z. P.; Thuan, T. X.; Chevalier, R. A.; Condon, J. J.; Yin, Q. F.

    1994-01-01

    We have obtained an 8.4 GHz Very Large Array (VLA) A-array map of the starburst galaxy M82 with a resolution Full Width at Half Maximum (FWHM) approximately 0.182 sec. About 50 compact radio sources in the central region of M82 were detected with a peak surface brightness approximately greater than 10(exp -17) W/Hz/sq m/sr. Comparison with previous observations shows that most sources are declining in flux. Three previously visible sources have faded into the background of our map (approximately less than 0.2 mJy/beam), while a few sources, including the second and third brightest radio sources in M82, may have increased slightly in flux over the last decade. No new radio supernova was found. The birth rate of the compact radio sources is estimated to be 0.11 + or - 0.05/yr. We attribute the population of such bright, small supernova remnants (SNRs) in M82 to the high pressure in the central region that can truncate the mass loss during a red supergiant phase or allow dense ionized clouds to be present. The compact radio sources obey a Sigma(radio surface brightness) - D(diameter) relation which is remarkably similar to that followed by supernova remnants in the Galaxy and the Magellanic Clouds and by two of the strongest known extragalactic radio supernovae: SN 1986J and SN 1979C. A least-squares fit to the SNR data gives: Sigma(sub 8.4 GHz) (W/Hz/sq m/sr) = 4.4 x 10(exp -16) D(sub pc)(exp -3.5 +/- 0.1) covering seven orders of magnitude in Sigma. Possible selection effects are discussed and a theoretical discussion of the correlation is presented.

  18. Relativistic blast-wave model for the rapid flux variations of AO 0235+164 and other compact radio sources

    NASA Technical Reports Server (NTRS)

    Marscher, A. P.

    1978-01-01

    A relativistic blast-wave version of a signal-screen model is developed which can adequately explain the details of the flux-density and structural variations of compact extragalactic radio sources. The relativistic motion implied by flux variations is analyzed with respect to the synchrotron spectrum of the BL Lac object AO 0235+164 observed during outbursts, and a signal-screen model for rapidly expanding shells produced by ultrarelativistic blast waves is examined. The approximate observed structure of the blast wave at three stages in its evolution is illustrated, each stage is described, and the model is applied to the flux density outburst in AO 0235+164 observed in late 1975. The results show that a relativistic blast-wave model can in general reproduce the main features of the observed flux variations in compact sources. Some problems with the proposed model are briefly discussed.

  19. The optical, infrared and radio properties of extragalactic sources observed by SDSS, 2mass and first surveys

    SciTech Connect

    Z. Ivezic et al.

    2002-10-08

    We positionally match sources observed by the Sloan Digital Sky Survey (SDSS), the Two Micron All Sky Survey (2MASS), and the Faint Images of the Radio Sky at Twenty-cm (FIRST) survey. Practically all 2MASS sources are matched to an SDSS source within 2 arcsec; {approx} 11% of them are optically resolved galaxies and the rest are dominated by stars. About 1/3 of FIRST sources are matched to an SDSS source within 2 arcsec; {approx} 80% of these are galaxies and the rest are dominated by quasars. Based on these results, we project that by the completion of these surveys the matched samples will include about 10{sup 7} and 10{sup 6} galaxies observed by both SDSS and 2MASS, and about 250,000 galaxies and 50,000 quasars observed by both SDSS and FIRST. Here we present a preliminary analysis of the optical, infrared and radio properties for the extragalactic sources from the matched samples. In particular, we find that the fraction of quasars with stellar colors missed by the SDSS spectroscopic survey is probably not larger than {approx} 10%, and that the optical colors of radio-loud quasars are {approx} 0.05 mag. redder (with 4{sigma} significance) than the colors of radio-quiet quasars.

  20. Looking for prematurely `dying', young, compact radio sources

    NASA Astrophysics Data System (ADS)

    Kunert-Bajraszewska, M.; Marecki, A.; Spencer, R. E.

    We present VLBA 1.6, 5, 8.4 and 15 GHz observations of a new sample of weak, young, compact candidates for radio faders selected from the VLA FIRST survey. We claim that some, or even the majority of young sources, may be short-lived phenomena due to a lack of stable fuelling from the black hole and fade before evolving to large extended objects. (astro-ph/0411719 )

  1. Variability of the Extragalactic Radio Sources 3C 446 and BL Lac in the Centimeter Wavelength Range

    NASA Astrophysics Data System (ADS)

    Sukharev, A. L.

    2015-03-01

    This work presents the results of the analysis of long-term monitoring (over 40 years) changes in radio fluxes of the two extragalactic sources - 3C 446, and BL Lac. Observations at frequencies of 14.5, 8, 4.8 GHz were obtained in the Michigan Radio Astronomy Observatory (UMRAO). With using Fourier filtering were selected O - C (short-periodic), and the trend components of flux variations that were analyzed separately with using the wavelet-analysis method. Each of these components is associated with certain physical processes in the "core-accretion disk-jet" system. Were constructed time-frequency waveletspectra showing the changes of the frequency composition of the investigated data over time. For the trend component values of the main periods of ~ 4-9 years (3C 446) and ~ 8 years (BL Lac), for O - C component - ~ 0.8-3 years (3C 446) and ~ 0.6-4 years (BL Lac) and they appear in the time and structural changes of the jet. On the basis of calculating the global wavelet-spectra in the frequency range identified main phases activity of radio sources. Obtained comparison between the dynamics of jets (Mojave VLBI images), and change the frequency spectral structure of the studied data. With bandpass wavelet filtering, flux components corresponding to the main periods in the spectra, were identified and also found the delay between the observation frequencies in spectral bands of these periods.

  2. Searching for Compact Radio Sources Associated with UCHII Regions

    NASA Astrophysics Data System (ADS)

    Masqué, Josep M.; Rodríguez, Luis F.; Trinidad, Miguel A.; Kurtz, Stan; Dzib, Sergio A.; Rodríguez-Rico, Carlos A.; Loinard, Laurent

    2017-02-01

    Ultra-compact (UC)H ii regions represent a very early stage of massive star formation. The structure and evolution of these regions are not yet fully understood. Interferometric observations showed in recent years that compact sources of uncertain nature are associated with some UCH ii regions. To examine this, we carried out VLA 1.3 cm observations in the A configuration of selected UCH ii regions in order to report additional cases of compact sources embedded in UCH ii regions. With these observations, we find 13 compact sources that are associated with 9 UCH ii regions. Although we cannot establish an unambiguous nature for the newly detected sources, we assess some of their observational properties. According to the results, we can distinguish between two types of compact sources. One type corresponds to sources that are probably deeply embedded in the dense ionized gas of the UCH ii region. These sources are photoevaporated by the exciting star of the region and will last for 104-105 years. They may play a crucial role in the evolution of the UCH ii region as the photoevaporated material could replenish the expanding plasma and might provide a solution to the so-called lifetime problem of these regions. The second type of compact sources is not associated with the densest ionized gas of the region. A few of these sources appear resolved and may be photoevaporating objects such as those of the first type, but with significantly lower mass depletion rates. The remaining sources of this second type appear unresolved, and their properties are varied. We speculate on the similarity between the sources of the second type and those of the Orion population of radio sources.

  3. New method for determining the distances to certain extragalactic radio sources

    NASA Astrophysics Data System (ADS)

    Kovalev, Y. A.

    1980-06-01

    The structural evolution of variable radio sources is examined in the Hedgehog model. It is shown that the time evolution of the angular separation of two components is described by the ellipse equation.

  4. New method for determining the distances to certain extragalactic radio sources

    NASA Technical Reports Server (NTRS)

    Kovalev, Y. A.

    1980-01-01

    The structural evolution of variable radio sources is examined in the Hedgehog model. It is shown that the time evolution of the angular separation of two components is described by the ellipse equation.

  5. Lensing of Fast Radio Bursts as a Probe of Compact Dark Matter.

    PubMed

    Muñoz, Julian B; Kovetz, Ely D; Dai, Liang; Kamionkowski, Marc

    2016-08-26

    The possibility that part of the dark matter is made of massive compact halo objects (MACHOs) remains poorly constrained over a wide range of masses, and especially in the 20-100  M_{⊙} window. We show that strong gravitational lensing of extragalactic fast radio bursts (FRBs) by MACHOs of masses larger than ∼20  M_{⊙} would result in repeated FRBs with an observable time delay. Strong lensing of a FRB by a lens of mass M_{L} induces two images, separated by a typical time delay ∼few×(M_{L}/30  M_{⊙})  msec. Considering the expected FRB detection rate by upcoming experiments, such as canadian hydrogen intensity mapping experiment (CHIME), of 10^{4} FRBs per year, we should observe from tens to hundreds of repeated bursts yearly, if MACHOs in this window make up all the dark matter. A null search for echoes with just 10^{4} FRBs would constrain the fraction f_{DM} of dark matter in MACHOs to f_{DM}≲0.08 for M_{L}≳20  M_{⊙}.

  6. Lensing of Fast Radio Bursts as a Probe of Compact Dark Matter

    NASA Astrophysics Data System (ADS)

    Muñoz, Julian B.; Kovetz, Ely D.; Dai, Liang; Kamionkowski, Marc

    2016-08-01

    The possibility that part of the dark matter is made of massive compact halo objects (MACHOs) remains poorly constrained over a wide range of masses, and especially in the 20 - 100 M⊙ window. We show that strong gravitational lensing of extragalactic fast radio bursts (FRBs) by MACHOs of masses larger than ˜20 M⊙ would result in repeated FRBs with an observable time delay. Strong lensing of a FRB by a lens of mass ML induces two images, separated by a typical time delay ˜few×(ML/30 M⊙) msec . Considering the expected FRB detection rate by upcoming experiments, such as canadian hydrogen intensity mapping experiment (CHIME), of 1 04 FRBs per year, we should observe from tens to hundreds of repeated bursts yearly, if MACHOs in this window make up all the dark matter. A null search for echoes with just 1 04 FRBs would constrain the fraction fDM of dark matter in MACHOs to fDM≲0.08 for ML≳20 M⊙ .

  7. Low Power Compact Radio Galaxies at High Angular Resolution

    SciTech Connect

    Giroletti, Marcello; Giovannini, G.; Taylor, G.B.; /KIPAC, Menlo Park /NRAO, Socorro

    2005-06-30

    We present sub-arcsecond resolution multi-frequency (8 and 22 GHz) VLA images of five low power compact (LPC) radio sources, and phase referenced VLBA images at 1.6 GHz of their nuclear regions. At the VLA resolution we resolve the structure and identify component positions and flux densities. The phase referenced VLBA data at 1.6 GHz reveals flat-spectrum, compact cores (down to a few milliJansky) in four of the five sources. The absolute astrometry provided by the phase referencing allows us to identify the center of activity on the VLA images. Moreover, these data reveal rich structures, including two-sided jets and secondary components. On the basis of the arcsecond scale structures and of the nuclear properties, we rule out the presence of strong relativistic effects in our LPCs, which must be intrinsically small (deprojected linear sizes {approx}< 10 kpc). Fits of continuous injection models reveal break frequencies in the GHz domain, and ages in the range 10{sup 5}-10{sup 7} yrs. In LPCs, the outermost edge may be advancing more slowly than in more powerful sources or could even be stationary; some LPCs might also have ceased their activity. In general, the properties of LPCs can be related to a number of reasons, including, but not limited to: youth, frustration, low kinematic power jets, and short-lived activity in the radio.

  8. Witnessing the Gradual Slowdown of Powerful Extragalactic Jets: The X-Ray-Optical-Radio Connection

    NASA Technical Reports Server (NTRS)

    Georganopoulos, Markos; Kazanas, Demosthenes

    2004-01-01

    A puzzling feature of the Chandra-detected quasar jets is that their X-ray emission decreases faster along the jet than their radio emission, resulting from an outward-increasing radio-to-X-ray ratio. In some sources this behavior is so extreme that the radio emission peak is located clearly downstream of that of the X-rays. This is a rather unanticipated behavior given that the inverse Compton nature of the X-rays and the synchrotron radio emission are attributed to roughly the same electrons of the jet's nonthermal electron distribution. In this letter we show that this morphological behavior can result from the gradual deceleration of a relativistic flow and that the offsets in peak emission at different wavelengths carry the imprint of this deceleration. This notion is consistent with another recent finding, namely, that the jets feeding the terminal hot spots of powerful radio galaxies and quasars are still relativistic with Lorentz factors GAMMA approximately 2-3. The picture of the kinematics of powerful jets emerging from these considerations is that they remain relativistic as they gradually decelerate from kiloparsec scales to the hot spots, where, in a final collision with the intergalactic medium, they slow down rapidly to the subrelativistic velocities of the hot spot advance speed.

  9. Radio and gamma-ray properties of extragalactic jets from the TANAMI sample

    SciTech Connect

    Böck, M.; Kadler, M.; Müller, C.; Tosti, G.; Ojha, R.; Wilms, J.; Bastieri, D.; Burnett, T.; Carpenter, B.; Cavazzuti, E.; Dutka, M.; Blanchard, J.; Edwards, P. G.; Hase, H.; Horiuchi, S.; Jauncey, D. L.; Krauß, F.; Lister, M. L.; Lovell, J. E. J.; Lott, B.; Murphy, D. W.; Phillips, C.; Plötz, C.; Pursimo, T.; Quick, J.; Ros, E.; Taylor, G.; Thompson, D. J.; Tingay, S. J.; Tzioumis, A.; Zensus, J. A.

    2016-05-04

    The TANAMI program has been observing parsec-scale radio jets of southern (declination south of - 30°) γ-ray bright AGN, simultaneously with Fermi/LAT monitoring of their γ-ray emission, via high-resolution radio imaging with Very Long Baseline Interferometry techniques. In this paper, we present the radio and γ-rayproperties of the TANAMI sources based on one year of contemporaneous TANAMI and Fermi/LAT data. A large fraction (72%) of the TANAMI sample can be associated with bright γ-ray sources for this time range. Association rates differ for different optical classes with all BL Lacs, 76% of quasars, and just 17% of galaxies detected by the LAT. Upper limits were established on the γ-ray flux from TANAMI sources not detected by LAT. This analysis led to the identification of three new Fermi sources whose detection was later confirmed. The γ-ray and radio luminosities are related by Lγ ∝ Lr0.89±0.04. The brightness temperatures of the radio cores increase with the average γ-ray luminosity and the presence of brightness temperatures above the inverse Compton limit implies strong Doppler boosting in those sources. The undetected sources have lower γ/radio luminosity ratios and lower contemporaneous brightness temperatures. Finally, unless the Fermi/LAT-undetected blazars are much γ-ray-fainter than the Fermi/LAT-detected sources, their γ-ray luminosity should not be significantly lower than the upper limits calculated here.

  10. Radio and gamma-ray properties of extragalactic jets from the TANAMI sample

    DOE PAGES

    Böck, M.; Kadler, M.; Müller, C.; ...

    2016-05-04

    The TANAMI program has been observing parsec-scale radio jets of southern (declination south of - 30°) γ-ray bright AGN, simultaneously with Fermi/LAT monitoring of their γ-ray emission, via high-resolution radio imaging with Very Long Baseline Interferometry techniques. In this paper, we present the radio and γ-rayproperties of the TANAMI sources based on one year of contemporaneous TANAMI and Fermi/LAT data. A large fraction (72%) of the TANAMI sample can be associated with bright γ-ray sources for this time range. Association rates differ for different optical classes with all BL Lacs, 76% of quasars, and just 17% of galaxies detected bymore » the LAT. Upper limits were established on the γ-ray flux from TANAMI sources not detected by LAT. This analysis led to the identification of three new Fermi sources whose detection was later confirmed. The γ-ray and radio luminosities are related by Lγ ∝ Lr0.89±0.04. The brightness temperatures of the radio cores increase with the average γ-ray luminosity and the presence of brightness temperatures above the inverse Compton limit implies strong Doppler boosting in those sources. The undetected sources have lower γ/radio luminosity ratios and lower contemporaneous brightness temperatures. Finally, unless the Fermi/LAT-undetected blazars are much γ-ray-fainter than the Fermi/LAT-detected sources, their γ-ray luminosity should not be significantly lower than the upper limits calculated here.« less

  11. Hunting for Orphaned Central Compact Objects among Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Luo, J.; Ng, C.-Y.; Ho, W. C. G.; Bogdanov, S.; Kaspi, V. M.; He, C.

    2015-08-01

    Central compact objects (CCOs) are a handful of young neutron stars found at the center of supernova remnants (SNRs). They show high thermal X-ray luminosities but no radio emission. Spin-down rate measurements of three CCOs with X-ray pulsations indicate surface dipole fields much weaker than those of typical young pulsars. To investigate if CCOs and known radio pulsars are objects at different evolutionary stages, we carried out a census of all weak-field (\\lt {10}11 G) isolated radio pulsars in the Galactic plane to search for CCO-like X-ray emission. None of the 12 candidates are detected at X-ray energies, with luminosity limits of {10}32-{10}34 erg s-1. We consider a scenario in which the weak surface fields of CCOs are due to a rapid accretion of supernova materials and show that as the buried field diffuses back to the surface, a CCO descendant is expected to leave the P-\\dot{P} parameter space of our candidates at a young age of a few ×10 kyr. Hence, the candidates are likely to just be old ordinary pulsars in this case. We suggest that further searches for orphaned CCOs, which are aged CCOs with parent SNRs that have dissipated, should include pulsars with stronger magnetic fields.

  12. Global VLBI Observations of Weak Extragalactic Radio Sources: Imaging Candidates to Align the VLBI and Gaia Frames

    NASA Technical Reports Server (NTRS)

    Bourda, Geraldine; Collioud, Arnaud; Charlot, Patrick; Porcas, Richard; Garrington, Simon

    2010-01-01

    The space astrometry mission Gaia will construct a dense optical QSO-based celestial reference frame. For consistency between optical and radio positions, it will be important to align the Gaia and VLBI frames (International Celestial Reference Frame) with the highest accuracy. In this respect, it is found that only 10% of the ICRF sources are suitable to establish this link (70 sources), either because most of the ICRF sources are not bright enough at optical wavelengths or because they show extended radio emission which precludes reaching the highest astrometric accuracy. In order to improve the situation, we initiated a multi-step VLBI observational project, dedicated to finding additional suitable radio sources for aligning the two frames. The sample consists of about 450 optically-bright radio sources, typically 20 times weaker than the ICRF sources, which have been selected by cross-correlating optical and radio catalogs. The initial observations, aimed at checking whether these sources are detectable with VLBI, and conducted with the European VLBI Network (EVN) in 2007, showed an excellent 90% detection rate. This paper reports on global VLBI observations carried out in March 2008 to image 105 from the 398 previously detected sources. All sources were successfully imaged, revealing compact VLBI structure for about half of them, which is very promising for the future.

  13. X-ray spectra of a complete sample of extragalactic core-dominated radio sources

    NASA Technical Reports Server (NTRS)

    Brunner, H.; Lamer, G.; Worrall, D. M.; Staubert, R.

    1994-01-01

    We present ROSAT soft X-ray spectra for the members of a complete sample of 13 core-dominated, flat radio spectrum sources. The sample comprises all radio sources from a flux-limited radio catalog (S(sub 5GHz) greater than 1 Jy; Kuehr et al. 1981) which are north of delta = 70 deg, at galactic latitudes b greater than 10 deg, and have a flat radio spectrum between 1.4 and 5 GHz (alpha(sub r) less than 0.5; f approximately nu(sup -alpha)). The sources have already undergone much study at radio and optical wavelengths and are classified in broad terms as quasars (8 sources) and BL Lac objects (5 sources). We find mean X-ray power-law energy indices of alpha(sub x) = 0.59 +/- 0.19 for the quasars and 1.36 +/- 0.27 for the BL Lac objects (68% confidence range for two parameters of interest as determined by a maximum likelihood method), supporting earlier Einstein Observatory results for heterogeneous samples of sources (Worrall & Wilkes 1990). A non-zero dispersion on alpha(sub x) is found for both the quasars and the BL Lac objects. When we incorporate published radio, mm, and optical measurements and compare the X-ray and broad-band spectral indices alpha(sub x), alpha(sub rx), alpha(sub mm,x), and alpha(sub ox), the most obvious difference between the quasar and BL Lac subsamples lies within the X-ray band. We have fitted the multi-wavelength data to inhomogeneous synchotron-self-Compton models and find that, for the BL Lac objects with steep X-ray spectra, synchotron emission can account for the radio to soft X-ray measurements, whereas the BL Lac objects with hard X-ray spectra and the quasars require significant Compton emission to model the spectral flattening indicated by alpha(sub x) less than alpha(sub ox).

  14. X-ray spectra of a complete sample of extragalactic core-dominated radio sources

    NASA Technical Reports Server (NTRS)

    Brunner, H.; Lamer, G.; Worrall, D. M.; Staubert, R.

    1994-01-01

    We present ROSAT soft X-ray spectra for the members of a complete sample of 13 core-dominated, flat radio spectrum sources. The sample comprises all radio sources from a flux-limited radio catalog (S(sub 5GHz) greater than 1 Jy; Kuehr et al. 1981) which are north of delta = 70 deg, at galactic latitudes b greater than 10 deg, and have a flat radio spectrum between 1.4 and 5 GHz (alpha(sub r) less than 0.5; f approximately nu(sup -alpha)). The sources have already undergone much study at radio and optical wavelengths and are classified in broad terms as quasars (8 sources) and BL Lac objects (5 sources). We find mean X-ray power-law energy indices of alpha(sub x) = 0.59 +/- 0.19 for the quasars and 1.36 +/- 0.27 for the BL Lac objects (68% confidence range for two parameters of interest as determined by a maximum likelihood method), supporting earlier Einstein Observatory results for heterogeneous samples of sources (Worrall & Wilkes 1990). A non-zero dispersion on alpha(sub x) is found for both the quasars and the BL Lac objects. When we incorporate published radio, mm, and optical measurements and compare the X-ray and broad-band spectral indices alpha(sub x), alpha(sub rx), alpha(sub mm,x), and alpha(sub ox), the most obvious difference between the quasar and BL Lac subsamples lies within the X-ray band. We have fitted the multi-wavelength data to inhomogeneous synchotron-self-Compton models and find that, for the BL Lac objects with steep X-ray spectra, synchotron emission can account for the radio to soft X-ray measurements, whereas the BL Lac objects with hard X-ray spectra and the quasars require significant Compton emission to model the spectral flattening indicated by alpha(sub x) less than alpha(sub ox).

  15. The Gamma-Ray Properties of Radio-Selected Extragalactic Jets

    DTIC Science & Technology

    2010-06-01

    2 CRESST/NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 3 Universities Space Research Association, ·10211 Wincopin Circle, Suite 500...Columbia, MD 21044, USA 4 Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, 1-06123 Perugia, Italy 5 Dipartimento di Fisica , Universita degli...described in Sect. 2 . For our anal- ysis we use data obtained during the first year of Fermi operations. 17 The combined analysis of radio and

  16. THE CATALOG OF POSITIONS OF OPTICALLY BRIGHT EXTRAGALACTIC RADIO SOURCES OBRS-2

    SciTech Connect

    Petrov, L.

    2013-07-01

    Future space-borne astrometry missions, such as Gaia, will be able to determine the optical positions of hundreds of quasars with submilliarcsecond accuracies comparable to those achieved in radio by very long baseline interferometry (VLBI). Comparisons of coordinate systems from space-borne missions and VLBI will be very important, first for investigations of possible systematic errors and second for investigations of possible shifts between centroids of radio and optical emissions in active galactic nuclei. In order to make such a comparison more robust, a program for densification of the grid of radio sources detectable with both VLBI and Gaia was launched in 2006. Program sources are 398 quasars with declinations > - 10 Degree-Sign that are brighter than 18 mag at the V band. The first two observing campaigns were run in 2007-2008. In the third campaign, a set of 291 objects from that list was observed with the VLBA+EVN in 2010-2011 with the primary goal of producing their images with milliarcsecond resolution. In this paper, following the method of absolute astrometry, coordinates of observed sources have been derived with milliarcsecond accuracies from analysis of these observations. The catalog of positions of 295 target sources, estimates of their correlated flux densities at 2.2 and 8.4 GHz, and their images are presented. The accuracies of source coordinates are in a range of 2-200 mas, with a median of 3.2 mas.

  17. Compton Observatory observations of clusters of galaxies and extragalactic radio sources

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This task involved the investigation of the emission of clusters of galaxies, particularly those which contain extended radio emission, in the gamma-ray region of the spectrum. Observations were made of several clusters using the Compton Observatory EGRET instrument. For each cluster a measured flux or upper limit on the gamma-ray flux was obtained. In only one case, Abell 2199, was there a significant measured flux. This source is spatially confused with a know blazar in the field of view. The observation is consistent with all emissions being from the blazar.

  18. Compact Superconducting Radio-frequency Accelerators and Innovative RF Systems

    SciTech Connect

    Kephart, Robert; Chattopadhyay, Swaapan; Milton, Stephen

    2015-04-10

    We will present several new technical and design breakthroughs that enable the creation of a new class of compact linear electron accelerators for industrial purposes. Use of Superconducting Radio-Frequency (SRF) cavities allow accelerators less than 1.5 M in length to create electron beams beyond 10 MeV and with average beam powers measured in 10’s of KW. These machines can have the capability to vary the output energy dynamically to produce brehmstrahlung x-rays of varying spectral coverage for applications such as rapid scanning of moving cargo for security purposes. Such compact accelerators will also be cost effective for many existing and new industrial applications. Examples include radiation crosslinking of plastics and rubbers, creation of pure materials with surface properties radically altered from the bulk, modification of bulk or surface optical properties of materials, sterilization of medical instruments animal solid or liquid waste, and destruction of organic compounds in industrial waste water effluents. Small enough to be located on a mobile platform, such accelerators will enable new remediation methods for chemical and biological spills and/or in-situ crosslinking of materials. We will describe one current design under development at Fermilab including plans for prototype and value-engineering to reduce costs. We will also describe development of new nano-structured field-emitter arrays as sources of electrons, new methods for fabricating and cooling superconducting RF cavities, and a new novel RF power source based on magnetrons with full phase and amplitude control.

  19. The NSF Undergraduate ALFALFA Team: Partnering with Arecibo Observatory to Offer Undergraduate and Faculty Extragalactic Radio Astronomy Research Opportunities

    NASA Astrophysics Data System (ADS)

    Ribaudo, Joseph; Koopmann, Rebecca A.; Haynes, Martha P.; Balonek, Thomas J.; Cannon, John M.; Coble, Kimberly A.; Craig, David W.; Denn, Grant R.; Durbala, Adriana; Finn, Rose; Hallenbeck, Gregory L.; Hoffman, G. Lyle; Lebron, Mayra E.; Miller, Brendan P.; Crone-Odekon, Mary; O'Donoghue, Aileen A.; Olowin, Ronald Paul; Pantoja, Carmen; Pisano, Daniel J.; Rosenberg, Jessica L.; Troischt, Parker; Venkatesan, Aparna; Wilcots, Eric M.; ALFALFA Team

    2017-01-01

    The NSF-sponsored Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team (UAT) is a consortium of 20 institutions across the US and Puerto Rico, founded to promote undergraduate research and faculty development within the extragalactic ALFALFA HI blind survey project and follow-up programs. The objective of the UAT is to provide opportunities for its members to develop expertise in the technical aspects of observational radio spectroscopy, its associated data analysis, and the motivating science. Partnering with Arecibo Observatory, the UAT has worked with more than 280 undergraduates and 26 faculty to date, offering 8 workshops onsite at Arecibo (148 undergraduates), observing runs at Arecibo (69 undergraduates), remote observing runs on campus, undergraduate research projects based on Arecibo science (120 academic year and 185 summer projects), and presentation of results at national meetings such as the AAS (at AAS229: Ball et al., Collova et al., Davis et al., Miazzo et al., Ruvolo et al, Singer et al., Cannon et al., Craig et al., Koopmann et al., O'Donoghue et al.). 40% of the students and 45% of the faculty participants have been women and members of underrepresented groups. More than 90% of student alumni are attending graduate school and/or pursuing a career in STEM. 42% of those pursuing graduate degrees in Physics or Astronomy are women.In this presentation, we summarize the UAT program and the current research efforts of UAT members based on Arecibo science, including multiwavelength followup observations of ALFALFA sources, the UAT Collaborative Groups Project, the Survey of HI in Extremely Low-mass Dwarfs (SHIELD), and the Arecibo Pisces-Perseus Supercluster Survey (APPSS). This work has been supported by NSF grants AST-0724918/0902211, AST-075267/0903394, AST-0725380, AST-121105, and AST-1637339.

  20. Morphology of high-luminosity compact radio sources.

    PubMed Central

    Zensus, J A; Krichbaum, T P; Lobanov, A P

    1995-01-01

    High-dynamic range imaging and monitoring with very-long-baseline interferometry reveal a rich morphology of luminous flat-spectrum radio sources. One-sided core-jet structures abound, and superluminal motion is frequently measured. In a few cases, both distinct moving features and diffuse underlying jet emission can be detected. Superluminal motion seen in such sources is typically complex, on curved trajectories or ridge lines, and with variable component velocities, including stationary features. The curved trajectories seen can be modeled by helical motion within the underlying jet flow. The very-long-baseline interferometry properties of the superluminal features in the jet of 3C 345 and other similar sources can be explained by models invoking the emission from shocks, at least within the vicinity of the compact core. Inverse-Compton calculations, constrained by x-ray observations, yield realistic estimates for the physical conditions in the parsec-scale jet. There is evidence for a transition region in this source beyond which other factors (e.g., plasma interactions and nonsynchrotron radiation processes) may become prominent. Multifrequency and polarization imaging (especially at high frequencies) are emerging as critical tools in testing model predictions. PMID:11607595

  1. Morphology of high-luminosity compact radio sources.

    PubMed

    Zensus, J A; Krichbaum, T P; Lobanov, A P

    1995-12-05

    High-dynamic range imaging and monitoring with very-long-baseline interferometry reveal a rich morphology of luminous flat-spectrum radio sources. One-sided core-jet structures abound, and superluminal motion is frequently measured. In a few cases, both distinct moving features and diffuse underlying jet emission can be detected. Superluminal motion seen in such sources is typically complex, on curved trajectories or ridge lines, and with variable component velocities, including stationary features. The curved trajectories seen can be modeled by helical motion within the underlying jet flow. The very-long-baseline interferometry properties of the superluminal features in the jet of 3C 345 and other similar sources can be explained by models invoking the emission from shocks, at least within the vicinity of the compact core. Inverse-Compton calculations, constrained by x-ray observations, yield realistic estimates for the physical conditions in the parsec-scale jet. There is evidence for a transition region in this source beyond which other factors (e.g., plasma interactions and nonsynchrotron radiation processes) may become prominent. Multifrequency and polarization imaging (especially at high frequencies) are emerging as critical tools in testing model predictions.

  2. Radio Counterparts of Compact Binary Mergers Detectable in Gravitational Waves: A Simulation for an Optimized Survey

    NASA Astrophysics Data System (ADS)

    Hotokezaka, K.; Nissanke, S.; Hallinan, G.; Lazio, T. J. W.; Nakar, E.; Piran, T.

    2016-11-01

    Mergers of binary neutron stars and black hole-neutron star binaries produce gravitational-wave (GW) emission and outflows with significant kinetic energies. These outflows result in radio emissions through synchrotron radiation. We explore the detectability of these synchrotron-generated radio signals by follow-up observations of GW merger events lacking a detection of electromagnetic counterparts in other wavelengths. We model radio light curves arising from (i) sub-relativistic merger ejecta and (ii) ultra-relativistic jets. The former produce radio remnants on timescales of a few years and the latter produce γ-ray bursts in the direction of the jet and orphan-radio afterglows extending over wider angles on timescales of weeks. Based on the derived light curves, we suggest an optimized survey at 1.4 GHz with five epochs separated by a logarithmic time interval. We estimate the detectability of the radio counterparts of simulated GW-merger events to be detected by advanced LIGO and Virgo by current and future radio facilities. The detectable distances for these GW merger events could be as high as 1 Gpc. Around 20%-60% of the long-lasting radio remnants will be detectable in the case of the moderate kinetic energy of 3\\cdot {10}50 erg and a circum-merger density of 0.1 {{cm}}-3 or larger, while 5%-20% of the orphan-radio afterglows with kinetic energy of 1048 erg will be detectable. The detection likelihood increases if one focuses on the well-localizable GW events. We discuss the background noise due to radio fluxes of host galaxies and false positives arising from extragalactic radio transients and variable active galactic nuclei, and we show that the quiet radio transient sky is of great advantage when searching for the radio counterparts.

  3. The compact radio structure of radio-loud NLS1 galaxies and the relationship to CSS sources

    NASA Astrophysics Data System (ADS)

    Gu, M.; Chen, Y.; Komossa, S.; Yuan, W.; Shen, Z.

    2016-02-01

    Narrow-line Seyfert 1 galaxies are thought to be young AGNs with relatively small black hole masses and high accretion rates. Radio-loud narrow-line Seyfert 1 galaxies (RLNLS1s) are very special, because some of them show blazar-like characteristics, while others resemble compact steep-spectrum sources. Relativistic jets were shown to exist in a few RLNLS1s based on VLBI observations and confirmed by the gamma-ray flaring of some of them. These properties may possibly be contrary to typical radio-loud AGNs, in light of the low black-hole masses, and high accretion rates. We present the compact radio structure of fourteen RLNLS1 galaxies from Very Long Baseline Array observations at 5 GHz in 2013. Although all these sources are very radio-loud with {R > 100}, their jet properties are diverse, in terms of their milli-arcsecond (mas) scale (pc scale) morphology and their overall radio spectral shape. The core brightness temperatures of our sources are significantly lower than those of blazars, therefore, the beaming effect is generally not significant in our sources, compared to blazars. This implies that the bulk jet speed may likely be low in our sources. The relationship between RLNLS1s and compact steep-spectrum sources, and the implications on jet formation are discussed based on the pc-scale jet properties.

  4. On the nature of bright compact radio sources at z > 4.5

    NASA Astrophysics Data System (ADS)

    Coppejans, Rocco; Frey, Sándor; Cseh, Dávid; Müller, Cornelia; Paragi, Zsolt; Falcke, Heino; Gabányi, Krisztina É.; Gurvits, Leonid I.; An, Tao; Titov, Oleg

    2016-12-01

    High-redshift radio-loud quasars are used to, among other things, test the predictions of cosmological models, set constraints on black hole growth in the early Universe and understand galaxy evolution. Prior to this paper, 20 extragalactic radio sources at redshifts above 4.5 have been imaged with very long baseline interferometry (VLBI). Here, we report on observations of an additional ten z > 4.5 sources at 1.7 and 5 GHz with the European VLBI Network, thereby increasing the number of imaged sources by 50 per cent. Combining our newly observed sources with those from the literature, we create a substantial sample of 30 z > 4.5 VLBI sources, allowing us to study the nature of these objects. Using spectral indices, variability and brightness temperatures, we conclude that of the 27 sources with sufficient information to classify, the radio emission from one source is from star formation, 13 are flat-spectrum radio quasars and 13 are steep-spectrum sources. We also argue that the steep-spectrum sources are off-axis (unbeamed) radio sources with rest-frame self-absorption peaks at or below GHz frequencies and that these sources can be classified as gigahertz peaked-spectrum and megahertz peaked-spectrum sources.

  5. Radiative excitation of molecules near powerful compact radio sources

    NASA Technical Reports Server (NTRS)

    Maloney, Philip R.; Begelman, Mitchell C.; Rees, Martin J.

    1994-01-01

    In a recent paper, Barvainis & Antonucci searched for and failed to detect CO J = 1 goes to 0 absorption from the obscuring torus in the nearby powerful radio galaxy Cygnus A. We show that a plausible explanation for the lack of absorption (assuming that the ionization parameter within the torus is low enough for the gas to be molecular) is that radiative excitation of the CO molecules by the nonthermal radio continuum increases the excitation temperature of the lower rotational levels substantially, reducing the optical depths. The excitation temperature may approach the brightness temperature of the radio source at high enough flux-to-density ratios. Heating of the gas by the nonthermal excitation may also be important. We discuss the region of parameter space in which this excitation mechanism will be important and the implications for observations of obscuring tori.

  6. Possible production of high-energy gamma rays from proton acceleration in the extragalactic radio source markarian 501

    PubMed

    Mannheim

    1998-01-30

    The active galaxy Markarian 501 was discovered with air-Cerenkov telescopes at photon energies of 10 tera-electron volts. Such high energies may indicate that the gamma rays from Markarian 501 are due to the acceleration of protons rather than electrons. Furthermore, the observed absence of gamma ray attenuation due to electron-positron pair production in collisions with cosmic infrared photons implies a limit of 2 to 4 nanowatts per square meter per steradian for the energy flux of an extragalactic infrared radiation background at a wavelength of 25 micrometers. This limit provides important clues about the epoch of galaxy formation.

  7. Periodic changes in the compact radio structure of SS 433

    NASA Technical Reports Server (NTRS)

    Niell, A. E.; Preston, R. A.; Lockhart, T. G.

    1981-01-01

    VLBI observations of SS 433 at 2.3 GHz made on 12 days between 1979 May and 1980 August yield the following results: (a) the position angle of the radio 'jet' of angular size of about 0.1 arcsec varies approximately sinusoidally about a mean value of 100.2 + or - 1.7 deg with an amplitude of 19.3 + or - 3.4 deg for a period fixed at 163.6 days. This resolves the ambiguity in the two angles of the optical model of Abell and Margon and assigns the inclination of the axis of the precession cone to the 79 deg value; (b) the position angle of the radio structure on this scale lags that of the optical model by 17.4 + or - 1.6 days; and (c) at least some of the radio emitting material appears to propagate away from the core in blobs. Using the rate of change of angular separation of the blobs from the core obtained from measurements on four different days, and assuming that the radio emission is traveling at the speed derived for the optical jets from the kinematic model, a distance to SS 433 of 5.1 + or - 0.5 kpc is obtained.

  8. Bubbles and braided jets in galaxies with compact radio nuclei

    NASA Astrophysics Data System (ADS)

    Ford, Holland C.; Dahari, Oved; Jacoby, George H.; Crane, Patrick C.; Ciardullo, Robin

    1986-12-01

    Narrow-band H-alpha CCD images showing ionized gas in organized kiloparsec-scale structures in three galaxies with low-level active nuclei are presented. The edge-on spiral NGC 3079 contains an apparent loop structure which corresponds to previously reported nonthermal radio emission along the minor axis. The optical emission probably results from interaction between the ejected plasma and the ISM in the disk and halo. The S0 galaxy NGC 3998 exhibits an S-shaped structure centered on the nucleus, with no other evidence for spiral structure. In the spiral galaxy NGC 4258, the presence of continuum-free emission-line arms which coincide with the nonthermal radio arms is confirmed. The morphology of the arms suggests the presence of two double-sided jets which braid or wrap around one another and which bifurcate on both sides. It is concluded that the optical and radio emission in NGC 3079 and in NGC 4258 are related, and it is suggested that both are powered by a plasma which flows from the active nucleus and dissipates kinetic energy in the surrounding ISM.

  9. Bubbles and braided jets in galaxies with compact radio nuclei

    NASA Technical Reports Server (NTRS)

    Ford, Holland C.; Dahari, Oved; Jacoby, George H.; Crane, Patrick C.; Ciardullo, Robin

    1986-01-01

    Narrow-band H-alpha CCD images showing ionized gas in organized kiloparsec-scale structures in three galaxies with low-level active nuclei are presented. The edge-on spiral NGC 3079 contains an apparent loop structure which corresponds to previously reported nonthermal radio emission along the minor axis. The optical emission probably results from interaction between the ejected plasma and the ISM in the disk and halo. The S0 galaxy NGC 3998 exhibits an S-shaped structure centered on the nucleus, with no other evidence for spiral structure. In the spiral galaxy NGC 4258, the presence of continuum-free emission-line arms which coincide with the nonthermal radio arms is confirmed. The morphology of the arms suggests the presence of two double-sided jets which braid or wrap around one another and which bifurcate on both sides. It is concluded that the optical and radio emission in NGC 3079 and in NGC 4258 are related, and it is suggested that both are powered by a plasma which flows from the active nucleus and dissipates kinetic energy in the surrounding ISM.

  10. First Detections of Compact AGN-triggered Radio Cores in RQ AGNs in the ECDFS

    NASA Astrophysics Data System (ADS)

    Prandoni, I.; Maini, A.; Norris, R. P.; Giovannini, G.; Spitler, L. R.

    2016-08-01

    The mechanism triggering the radio emission in Radio-Quiet (RQ) Active Galactic Nuclei (AGN), found to be a relevant component of the faint radio population in deep fields, is hotly debated. Most RQ AGNs are unresolved or barely resolved at a few arcsec scale, comparable to the host galaxy size. RQ AGNs have also been found to share many properties with Star Forming Galaxies (SFG). They have similar radio luminosities and similar optical- /infrared-to-radio flux ratios. Their radio luminosity functions show similar evolutionary trends, and their host galaxies have similar colours, optical morphologies and stellar masses. For all these reasons it was concluded that the radio emission in such RQ AGNs is mainly triggered by star formation (SF). However in the local Universe (z<0.5) it is well known that both AGN and SF processes can contribute to the total radio emission in RQ AGNs (see e.g., Seyfert 2 galaxies), and there is growing evidence that composite SF/AGN systems are common at mid to high redshift (z>1-2). We used the Australian Long Baseline Array to observe a number of RQ AGNs in the Extended Chandra Deep Field South (ECDFS), and we detected compact, high-surface-brightness radio cores in some of them. Our pilot study shows that at least some of the sources classified as radio quiet contain an AGN that can contribute significantly (~50% or more) to the total radio emission. This is a first direct evidence of the presence of such AGN-triggered radio emission in RQ AGNs at cosmological redshifts.

  11. JVLA observations of IC 348 SW: Compact radio sources and their nature

    SciTech Connect

    Rodríguez, Luis F.; Zapata, Luis A.; Palau, Aina E-mail: l.zapata@crya.unam.mx

    2014-07-20

    We present sensitive 2.1 and 3.3 cm Jansky Very Large Array radio continuum observations of the region IC 348 SW. We detect a total of 10 compact radio sources in the region, 7 of which are first reported here. One of the sources is associated with the remarkable periodic time-variable infrared source LRLL 54361, opening the possibility of monitoring this object at radio wavelengths. Four of the sources appear to be powering outflows in the region, including HH 211 and HH 797. In the case of the rotating outflow HH 797, we detect a double radio source at its center, separated by ∼3''. Two of the sources are associated with infrared stars that possibly have gyrosynchrotron emission produced in active magnetospheres. Finally, three of the sources are interpreted as background objects.

  12. The radio-far infrared correlation: Spiral and blue compact dwarf galaxies opposed

    NASA Technical Reports Server (NTRS)

    Klein, U.; Wunderlich, E.

    1987-01-01

    The recently established correlation between radio continuum and far infrared emission in galaxies was further investigated by comparing normal spiral and blue compact dwarf galaxies. The puzzling result is that the ratio of radio to far infrared luminosity and its dispersion is the same for both samples, although their ratios of blue to far infrared luminosity, their radio spectral indices and their dust temperatures exhibit markedly different mean values and dispersions. This suggests that the amount of energy radiated in the two regimes is enhanced in the same way although the mechanisms responsible for the two components are rather different and complex. The fact that the blue light does not increase at the same proportion shows that both the radio and the far infrared emission are connected with the recent star formation history.

  13. Difficulties in Estimating the Physical Parameters of Compact Radio Sources in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Artyukh, V. S.

    2016-12-01

    The various factors influencing estimates of the physical parameters of compact radio sources in active galactic nuclei (AGN) using a methods based on uniform models of synchrotron radiation sources are analyzed. It is found that the form of the relativistic electron energy density distribution as a function of magnetic energy density (Ee-EH) in the radio sources is determined by the shape of the electron energy spectrum. It is shown that the very large observed deviations of the estimated energies of the field and relativistic particles from equipartition are mainly caused by nonuniformity of the radio sources. In order to obtain correct estimates of the physical parameters of nonuniform radio sources, it is necessary to know their angular sizes at low frequencies (in the opaque region) and their Doppler factors.

  14. Extremely red compact radio sources - The empty field objects

    NASA Technical Reports Server (NTRS)

    Beichman, C. A.; Neugebauer, G.; Soifer, B. T.; Matthews, K.; Wootten, H. A.; Pravdo, S. H.

    1981-01-01

    Radiation of 10 microns has been detected from 1413+135, one of the very red objects discovered by Rieke, Lebofsky, and Kinman (1979) at near-infrared wavelengths. The spectrum of this object flattens at wavelengths longer than 2.2 microns. Upper limits are also given for the 10-micron emission from 2255+14, 0026+34, and 0406+121. Photometry between 1.25 and 2.2 microns confirms the variability of 1413+135, 2255+41, and 0406+121. Five percent resolution spectra of 1413+135 and 0406+121 between 1.5 and 2.4 microns show no emission or absorption lines. The spectral data rule out the possibility that 1413+135 is a quasar with normal line strengths and a redshift less than 1.3 and greater than 4. The lack of features of the 1.5-2.4-micron spectra, the rapid variability, and the overall shape of the radio, infrared, and X-ray energy distributions are consistent with a BL Lac nature for these objects.

  15. A search for extended radio emission from selected compact galaxy groups

    NASA Astrophysics Data System (ADS)

    Nikiel-Wroczyński, B.; Urbanik, M.; Soida, M.; Beck, R.; Bomans, D. J.

    2017-07-01

    Context. Studies on compact galaxy groups have led to the conclusion that a plenitude of phenomena take place in between galaxies that form them. However, radio data on these objects are extremely scarce and not much is known concerning the existence and role of the magnetic field in intergalactic space. Aims: We aim to study a small sample of galaxy groups that look promising as possible sources of intergalactic magnetic fields; for example data from radio surveys suggest that most of the radio emission is due to extended, diffuse structures in and out of the galaxies. Methods: We used the Effelsberg 100 m radio telescope at 4.85 GHz and NRAO VLA Sky Survey (NVSS) data at 1.40 GHz. After subtraction of compact sources we analysed the maps searching for diffuse, intergalactic radio emission. Spectral index and magnetic field properties were derived. Results: Intergalactic magnetic fields exist in groups HCG 15 and HCG 60, whereas there are no signs of them in HCG 68. There are also hints of an intergalactic bridge in HCG 44 at 4.85 GHz. Conclusions: Intergalactic magnetic fields exist in galaxy groups and their energy density may be comparable to the thermal (X-ray) density, suggesting an important role of the magnetic field in the intra-group medium, wherever it is detected.

  16. Millimeter-wave spectra and variability of bright, compact radio sources

    NASA Technical Reports Server (NTRS)

    Edelson, R. A.

    1987-01-01

    Observations at 2.7 mm and at 1.5 cm were used to study the millimeter spectra and variability of 176 bright, compact radio sources. More than 20 percent of the flat-spectrum sources, but none of the steep-spectrum sources, were seen to vary at 1.5 cm by at least 30 percent over ten months. This is consistent with the hypothesis that flat-spectrum sources are compact and possibly beamed, while steep-spectrum sources are not. These data can also be used to choose sources for VLBI observations and for calibration of millimeter-wave observations.

  17. A Compact High Frequency Doppler Radio Scatterometer for Coastal Oceanography

    NASA Astrophysics Data System (ADS)

    Flament, P. J.; Harris, D.; Flament, M.; Fernandez, I. Q.; Hlivak, R.; Flores-vidal, X.; Marié, L.

    2016-12-01

    A low-power High Frequency Doppler Radar has been designed for large series production. The use of commercial-off-the-shelf components is maximized to minimize overall cost. Power consumption is reduced to 130W in full duty and 20W in stand-by under 20-36 V-DC, thus enabling solar/wind and/or fuel cell operation by default. For 8 channels, commercial components and sub-assemblies cost less than k20 excluding coaxial antenna cables, and less than four man-weeks of technician suffice for integration, testing and calibration, suggesting a final cost of about k36, based on production batches of 25 units. The instrument is integrated into passively-cooled 90x60x20 cm3 field-deployable enclosures, combining signal generation, transmitter, received, A/D converter and computer, alleviating the need for additional protection such as a container or building. It uses frequency-ramped continuous wave signals, and phased-array transmissions to decouple the direct path to the receivers. Five sub-assemblies are controlled by a Linux embedded computer: (i) direct digital synthesis of transmit and orthogonal local oscillator signals, derived from a low phase noise oven-controlled crystal; (ii) distributed power amplifiers totaling 5 W, integrated into λ/8 passive transmit antenna monopoles; (iii) λ/12 compact active receive antenna monopoles with embedded out-of-band rejection filters; (iv) analog receivers based on complex demodulation by double-balanced mixers, translating the HF spectrum to the audio band; (v) 24-bit analog-to-digital sigma-delta conversion at 12 kHz with 512x oversampling, followed by decimation to a final sampling frequency of 750 Hz. Except for the HF interference rejection filters, the electronics can operate between 3 and 50 MHz with no modification. At 13.5 MHz, 5 W transmit power, 15 min integration time, the high signal-to-noise ratio permits a typical range of 120 km for currents measurements with 8-antenna beam-forming. The University of Hawaii HFR

  18. Jets, hotspots and lobes: what X-ray observations tell us about extra-galactic radio sources.

    PubMed

    Hardcastle, Martin J

    2005-12-15

    The brightest and most numerous discrete radio sources in the sky, radio galaxies and quasars, are powered by twin jets of plasma which emerge at relativistic speeds from very small regions at the centre of large elliptical galaxies, powered by mass infall on to supermassive black holes. The jets can carry material out to very large distances (millions of light years) where it forms balloon-like lobes. Until recently it has been impossible to make definite statements about the energy or the nature of the matter supplied by the jets, or the dynamics of the lobes as they expand into the external medium. This has meant that crucial questions about the generation of radio sources and their effect on their environment have gone unanswered. The situation has been revolutionized by the launch at the start of this decade of a new generation of X-ray observatories, Chandra and XMM-Newton. In this article, I explain why observations with these instruments have made such a difference, what we have learned as a result and why the community remains divided on some important features of the interpretation of the data.

  19. RADIO AND MID-INFRARED PROPERTIES OF COMPACT STARBURSTS: DISTANCING THEMSELVES FROM THE MAIN SEQUENCE

    SciTech Connect

    Murphy, E. J.; Stierwalt, S.; Armus, L.; Condon, J. J.; Evans, A. S.

    2013-05-01

    We investigate the relationship between 8.44 GHz brightness temperatures and 1.4 to 8.44 GHz radio spectral indices with 6.2 {mu}m polycyclic aromatic hydrocarbon (PAH) emission and 9.7 {mu}m silicate absorption features for a sample of 36 local luminous and ultraluminous infrared galaxies. We find that galaxies having small 6.2 {mu}m PAH equivalent widths (EQWs), which signal the presence of weak PAH emission and/or an excess of very hot dust, also have flat spectral indices. The three active galactic nuclei (AGN) identified through their excessively large 8.44 GHz brightness temperatures are also identified as AGN via their small 6.2 {mu}m PAH EQWs. We also find that the flattening of the radio spectrum increases with increasing silicate optical depth, 8.44 GHz brightness temperature, and decreasing size of the radio source even after removing potential AGN, supporting the idea that compact starbursts show spectral flattening as the result of increased free-free absorption. These correlations additionally suggest that the dust obscuration in these galaxies must largely be coming from the vicinity of the compact starburst itself, and is not distributed throughout the (foreground) disk of the galaxy. Finally, we investigate the location of these infrared-bright systems relative to the main sequence (star formation rate versus stellar mass) of star-forming galaxies in the local universe. We find that the radio spectral indices of galaxies flatten with increasing distance above the main sequence, or in other words, with increasing specific star formation rate. This indicates that galaxies located above the main sequence, having high specific star formation rates, are typically compact starbursts hosting deeply embedded star formation that becomes more optically thick in the radio and infrared with increased distance above the main sequence.

  20. CONSTRAINING THE EVOLUTIONARY FATE OF CENTRAL COMPACT OBJECTS: ''OLD'' RADIO PULSARS IN SUPERNOVA REMNANTS

    SciTech Connect

    Bogdanov, Slavko; Ng, C.-Y.; Kaspi, Victoria M.

    2014-09-10

    Central compact objects (CCOs) constitute a population of radio-quiet, slowly spinning (≥100 ms) young neutron stars with anomalously high thermal X-ray luminosities. Their spin-down properties imply weak dipole magnetic fields (∼10{sup 10-11} G) and characteristic ages much greater than the ages of their host supernova remnants (SNRs). However, CCOs may posses strong ''hidden'' internal magnetic fields that may re-emerge on timescales of ≳10 kyr, with the neutron star possibly activating as a radio pulsar in the process. This suggests that the immediate descendants of CCOs may be masquerading as slowly spinning ''old'' radio pulsars. We present an X-ray survey of all ordinary radio pulsars within 6 kpc that are positionally coincident with Galactic SNRs in order to test the possible connection between the supposedly old but possibly very young pulsars and the SNRs. None of the targets exhibit anomalously high thermal X-ray luminosities, suggesting that they are genuine old ordinary pulsars unrelated to the superposed SNRs. This implies that CCOs are either latent radio pulsars that activate long after their SNRs dissipate or they remain permanently radio-quiet. The true descendants of CCOs remain at large.

  1. Compact non-thermal radio emission from B-peculiar stars

    NASA Technical Reports Server (NTRS)

    Phillips, R. B.; Lestrade, J.-F.

    1988-01-01

    Some stars hotter than 10,000 K show propensity for unusual surface abundances and excessive magnetic fields. These peculiar stars, Ap and Bp in the spectral nomenclature, show unusually prominent absorption lines of heavier elements. Rapid rotation and strong magnetic fields are revealed by line shapes and Zeeman splitting. VLBI is here used to directly probe the source size and brightness temperature of weak radio emission recently discovered from two isolated Bp stars, sigma Orionis E and HD37017. The emitting zone for each star is no more than 6 stellar diameters in extent, reflecting brightness temperatures of more than one billion K. Such high surface brightness resembles gyrosynchrotron radiation from mildly relativistic electrons trapped in the strong magnetic fields surrounding these stars. Compact radio radiation from these two stars presents new opportunities for probing the physical environments of early-type stars and for precise radio astrometry.

  2. The Radio and IR Luminosity Function of compact Galactic HII regions

    NASA Astrophysics Data System (ADS)

    Paladini, R.; De Zotti, G.; Noriega-Crespo, A.; Carey, S. J.

    2009-01-01

    We present the radio luminosity function (LF) of compact Galactic HII regions, derived by using ˜ 200 sources from the recombination line survey by Caswell & Haynes (1987). The data set is complete for Speak > 1.3 Jy at 5 GHz, corresponding to an integrated flux density of ˜ 3 Jy. The LF is reconstructed by means of a generalized Schmidt's estimator which takes into account the actual spatial distribution of the HII regions along the plane of the Galaxy. The resulting LF is described by a two-component power-law, with a cut-off at log L(α) = ˜ 38.3 erg/sec. This work will be complemented with the derivation, by means of the MIPSGAL data set, of the IR counterpart of the radio LF here presented. An extension of this work will consist in deriving the IR counterpart of the radio LF here obtained, by making use of the MIPSGAL data set.

  3. A VLA Survey for Faint Compact Radio Sources in the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Sheehan, Patrick D.; Eisner, Josh A.; Mann, Rita K.; Williams, Jonathan P.

    2016-11-01

    We present Karl G. Jansky Very Large Array 1.3, 3.6, and 6 cm continuum maps of compact radio sources in the Orion Nebular Cluster (ONC). We mosaicked 34 arcmin2 at 1.3 cm, 70 arcmin2 at 3.6 cm and 109 arcmin2 at 6 cm, containing 778 near-infrared detected young stellar objects and 190 Hubble Space Telescope-identified proplyds (with significant overlap between those characterizations). We detected radio emission from 175 compact radio sources in the ONC, including 26 sources that were detected for the first time at these wavelengths. For each detected source, we fitted a simple free-free and dust emission model to characterize the radio emission. We extrapolate the free-free emission spectrum model for each source to ALMA bands to illustrate how these measurements could be used to correctly measure protoplanetary disk dust masses from submillimeter flux measurements. Finally, we compare the fluxes measured in this survey with previously measured fluxes for our targets, as well as four separate epochs of 1.3 cm data, to search for and quantify the variability of our sources.

  4. A study of the properties of twin radio arms of FR-II extragalactic radio sources within z≤1-II (dynamical properties)

    NASA Astrophysics Data System (ADS)

    Onuchukwu, C. C.; Ubachukwu, A. A.

    2017-04-01

    We carried out a comparative study on the dynamical properties of the Longer Arm (LA) and the Shorter Arm (SA) of different classes of FR-II radio sources (Broad Line Radio Galaxies (BLRG), Quasars (Q), Narrow Line Radio Galaxies (NLRG) and Low Excitation Radio Galaxies (LERG)) based on self-similar model of time evolution of the radio lobes and hotspot properties of radio sources, using the power-law expression for the dependence of hotspot size (D_{hs}), the advance velocity of the hotspot (v_{hs}) and hotspot luminosity (PL) on the core-lobe length (DL). Using observational values of D_{hs}, PL and DL we constrained the exponents of these power-law relations for the LA and SA. We also estimated the hotspot pressure, (p_{hs}), cocoon pressure within the lobe (p_{cc}), the ratio of the hotspot pressure to the cocoon pressure (p_{hc}), the cocoon volume (Vcc), the energy density within the cocoon (u_{cc}), the equipartition magnetic field (B_{em}) in the lobe, the particle number density at the hotspot (n_{hs}), the external density profile (ρ _{ext}) and the kinetic jet power (Q_{jet}) for the LA and the SA. Linear regression analyses indicate a tight correlation between the D_{hs} and the DL of LA for all classes of radio sources with r˜0.5-0.8. Similar result was obtained for SA except for that of Q with r˜ 0.2. For P_{hs} and DL correlation, the result indicates a mild negative correlation that seems stronger for the SA (r˜-0.3 to -0.6) than LA (r˜-0.2 to -0.4) for all the different classes of radio sources. Comparing the values of ρ_{ext}, B_{em}, uB, p_{hs}, p_{cc}, Vcc, and u_{cc} between SA side and LA side, indicate that the SA values of the parameters are higher than those of LA; while (p_{hs}) showed higher values in LA than SA for all the different classes of radio sources. Generally, the hotspot has a larger volume on the LA side than on the SA side except for NLRG, while the hotspot of the SA side contains more particle per unit volume than the

  5. Understanding soft gamma-ray repeaters in the context of the extragalactic radio pulsar origin of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Melia, Fulvio; Fatuzzo, Marco

    1993-01-01

    Gamma-ray burst (GRB) sources and soft gamma-ray repeaters (SGRs) may be neutron stars undergoing structural adjustments that produce transient gamma-ray events. A unified scenario is proposed in which young radio pulsars are responsible for SGRs and classical GRB sources. The radiative emission associated with a pulsar 'glitch' is seen as a GRB or an SGR event depending on the direction of our line of sight. Burst spectra, energetics, and statistics of GRBs and SGRs are discussed. It is shown that classical GRB spectra arise from Compton upscattering by charges accelerated along the viewing direction and SGR burst spectra are due to the thermalization of Alfven wave energy away from this direction. If crustal adjustments occur within the first 50,000 years of a pulsar's lifetime, the model predicts two SGR sources within the galaxy, in agreement with current observations.

  6. Accurate radio and optical positions for southern radio sources

    NASA Technical Reports Server (NTRS)

    Harvey, Bruce R.; Jauncey, David L.; White, Graeme L.; Nothnagel, Axel; Nicolson, George D.; Reynolds, John E.; Morabito, David D.; Bartel, Norbert

    1992-01-01

    Accurate radio positions with a precision of about 0.01 arcsec are reported for eight compact extragalactic radio sources south of -45-deg declination. The radio positions were determined using VLBI at 8.4 GHz on the 9589 km Tidbinbilla (Australia) to Hartebeesthoek (South Africa) baseline. The sources were selected from the Parkes Catalogue to be strong, flat-spectrum radio sources with bright optical QSO counterparts. Optical positions of the QSOs were also measured from the ESO B Sky Survey plates with respect to stars from the Perth 70 Catalogue, to an accuracy of about 0.19 arcsec rms. These radio and optical positions are as precise as any presently available in the far southern sky. A comparison of the radio and optical positions confirms the estimated optical position errors and shows that there is overall agreement at the 0.1-arcsec level between the radio and Perth 70 optical reference frames in the far south.

  7. Accurate radio and optical positions for southern radio sources

    NASA Technical Reports Server (NTRS)

    Harvey, Bruce R.; Jauncey, David L.; White, Graeme L.; Nothnagel, Axel; Nicolson, George D.; Reynolds, John E.; Morabito, David D.; Bartel, Norbert

    1992-01-01

    Accurate radio positions with a precision of about 0.01 arcsec are reported for eight compact extragalactic radio sources south of -45-deg declination. The radio positions were determined using VLBI at 8.4 GHz on the 9589 km Tidbinbilla (Australia) to Hartebeesthoek (South Africa) baseline. The sources were selected from the Parkes Catalogue to be strong, flat-spectrum radio sources with bright optical QSO counterparts. Optical positions of the QSOs were also measured from the ESO B Sky Survey plates with respect to stars from the Perth 70 Catalogue, to an accuracy of about 0.19 arcsec rms. These radio and optical positions are as precise as any presently available in the far southern sky. A comparison of the radio and optical positions confirms the estimated optical position errors and shows that there is overall agreement at the 0.1-arcsec level between the radio and Perth 70 optical reference frames in the far south.

  8. The Population of Compact Radio Sources in the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Forbrich, J.; Rivilla, V. M.; Menten, K. M.; Reid, M. J.; Chandler, C. J.; Rau, U.; Bhatnagar, S.; Wolk, S. J.; Meingast, S.

    2016-05-01

    We present a deep centimeter-wavelength catalog of the Orion Nebula Cluster (ONC), based on a 30 hr single-pointing observation with the Karl G. Jansky Very Large Array in its high-resolution A-configuration using two 1 GHz bands centered at 4.7 and 7.3 GHz. A total of 556 compact sources were detected in a map with a nominal rms noise of 3 μJy bm-1, limited by complex source structure and the primary beam response. Compared to previous catalogs, our detections increase the sample of known compact radio sources in the ONC by more than a factor of seven. The new data show complex emission on a wide range of spatial scales. Following a preliminary correction for the wideband primary-beam response, we determine radio spectral indices for 170 sources whose index uncertainties are less than ±0.5. We compare the radio to the X-ray and near-infrared point-source populations, noting similarities and differences.

  9. A high declination search at 8 GHz for compact radio sources

    NASA Technical Reports Server (NTRS)

    Wittels, J. J.; Shapiro, I. I.; Robertson, D. S.; Hinteregger, H. F.; Knight, C. A.; Clark, T. A.; Hutton, L. K.; Ma, C.; Niell, A. E.; Resch, G. M.

    1978-01-01

    With the Haystack-NRAO interferometer (baseline length of 20 million wavelengths at 3.8 cm) 37 sources were observed whose declinations were above 50 deg. Seven of these sources have compact cores with diameters smaller than 5 milliarcsec and with correlated flux densities greater than about 0.5 Jy; the remaining sources have no cores with flux densities above about 0.3 Jy, the sensitivity limit of the interferometer. Two of the sources with detected compact cores, 4C 67.05 and 3C 418, were also observed with longer-baseline interferometers; the diameter of the core of 4C 67.05 was estimated to be smaller than 1 milliarcsec and that of 3C 418 to be smaller than 0.4 milliarcsec. All diameter estimates were based on an assumed circular Gaussian distribution of radio brightness and refer to the contour with brightness density e to the -1/2 power times that of the center. Positions for the detected sources were also obtained from the interferometric data, the uncertainty in these coordinate estimates ranging from 0.04 to 0.6 arcsec. The compact core detected in 3C 390.3 was found to lie near the center of this extended (approximately 4 arcmin in diameter) double radio source and to be coincident to within 1 arcsec with an N galaxy previously identified with 3C 390.3.

  10. Radio structure at 8.4 GHz in Sagittarius A, the compact radio source at the Galactic center

    NASA Technical Reports Server (NTRS)

    Jauncey, David L.; Batchelor, Robert A.; Gates, John; Preston, Robert A.; Meier, David L.; Morabito, David D.; Skjerve, Lyle; Slade, Martin A.; Niell, Arthur E.; Wehrle, Ann E.

    1989-01-01

    VLBI observations of the compact, nonthermal radio source at the Galactic center show it to be elongated at 8.4 GHz along a position angle of 82 + or - 6 deg. The source has an axial ratio of 0.53 + or - 0.10 with a major axis of 17.4 + or - 0.5 mas. Examination of VLA maps of the Galactic center region indicate no obvious alignment with this smaller-scale elongation of the nuclear region, nor is the nuclear position angle aligned with the axis of Galactic rotation. Comparison with the size measured at frequencies from 1 to 22 GHz shows that the size follows very closely the lambda-squared dependence expected from interstellar scattering. The alongated nature of the source implies either that the scattering medium is anisotropic or that some remnant of the intrinsic structure remains visible through the scattering medium.

  11. The compact spiral-like radio structure of the quasar 3 C 119

    NASA Astrophysics Data System (ADS)

    Nan Ren-Dong; Schilizzi, R. T.; van Breugel, W. J. M.; Fanti, C.; Fanti, R.; Muxlow, T. W. B.; Spencer, R. E.

    1991-05-01

    The compact steep spectrum radio source, 3C 119, has been mapped at 18 cm with a resolution of 5 mas using a 10-station global VLBI network combined with MERLIN. The resulting high dynamic range image reveals a complex spiral-like structure in which a number of components are embedded. The overall physical extent of the source is about 300 pc. These new observations demonstrate that the structure is even more complex than had been derived earlier by Fanti et al. (1986). The physical conditions in the source are reevaluated, and the radio structure is briefly discussed in terms of three models: nonrelativistic and relativistic precessing jets, and a jet deflected by the walls of a cavity in the interstellar medium.

  12. Compact Steep Spectrum 3CR radio sources - VLBI observations at 18 CM

    NASA Astrophysics Data System (ADS)

    Fanti, C.; Fanti, R.; Parma, P.; Schilizzi, R. T.; van Breugel, W. J. M.

    1985-02-01

    Results of a program to investigate the kiloparsec-sized radio structure of a representative sample of Compact Steep Spectrum (CSS) sources from the 3CR catalog (Jenkins et al., 1977) are presented. Ten objects (3C49,67, 119, 237, 241, 268.3, 287, 303.1, 343, 343.1) have been mapped at 18 cm with a resolution of about 30 marcsec using the European VLBI Network. In some cases the VLBI data have been supplemented by MERLIN observations at the same wavelength to enhance sensitivity to large-scale structure. The overall sizes of the CSS sources range from about 0.1 to 1 or 2 arcsec, corresponding to linear sizes of the order of 1 to 10 kpc. The morphological classification ranges from double to core-jet to complex; CSS quasars are generally core-jets or complex, while CSS radio galaxies are doubles, although not necessarily simple doubles.

  13. Compact Radio Sources and Jet-driven AGN Feedback in the Early Universe: Constraints from Integral-Field Spectroscopy

    SciTech Connect

    Nesvadba, N H; Lehnert, M D; De Breuck, C; Gilbert, A; van Breugel, W

    2007-07-05

    To investigate the impact of radio jets during the formation epoch of their massive host galaxies, we present an analysis of two massive, log M{sub stellar}/M{sub {circle_dot}} {approx} 10.6 and 11.3, compact radio galaxies at z = 3.5, TNJ0205+2242 and TNJ0121+1320. Their small radio sizes (R {le} 10 kpc) are most likely a sign of youth. In particular, we compare their radio properties and gas dynamics with those in well extended radio galaxies at high redshift, which show strong evidence for powerful, jet-driven outflows of significant gas masses (M {approx} 10{sup 9-10} M{sub {circle_dot}}). Our analysis combines rest-frame optical integral-field spectroscopy obtained with SINFONI on the VLT with existing radio imaging, CO(4-3) emission line spectra, and rest-frame UV longslit spectroscopy. [OIII]{lambda}5007 line emission is compact in both galaxies and lies within the region defined by the radio lobes. For TNJ0205+2242, the Ly{alpha} profile narrows significantly outside the jet radius, indicating the presence of a quiescent halo. TNJ0121+1320 has two components at a projected relative distance of {approx}10 kpc and a velocity offset of {approx}300 km s{sup -1}, measured from the [OIII]{lambda}5007 velocity map. This suggests that the fainter component is orbiting around the more massive, radio-loud galaxy. If motions are gravitational, this implies a dynamical mass of 2 x 10{sup 11} M{sub {circle_dot}} for the radio-loud component. The dynamical mass, molecular gas mass measured from the CO line emission, and radio luminosity of these two compact radio galaxies imply that compact radio sources may well develop large-scale, energetic outflows as observed in extended radio galaxies, with the potential of removing significant fractions of the ISM from the host galaxy. The absence of luminous emission line gas extending beyond the radio emission in these sources agrees with the observed timescales and outflow rates in extended radio galaxies, and adds further

  14. The Extragalactic Distance Scale

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Donahue, Megan; Panagia, Nino

    1997-07-01

    Participants; Preface; Foreword; Early history of the distance scale problem, S. van den Bergh; Cosmology: From Hubble to HST, M. S. Turner; Age constraints nucleocosmochronology, J. Truran; The ages of globular clusters, P. Demarque; The linearity of the Hubble flow M. Postman; Gravitational lensing and the extragalactic distance scale, R. D. Blandford andT . Kundic; Using the cosmic microwave background to constrain the Hubble constant A. Lasenby and T M. Jones; Cepheids as distance indicators, N. R. Tanvir; The I-band Tully-Fisher relation and the Hubble constant, R. Giovanell; The calibration of type 1a supernovae as standard candles, A. Saha; Focusing in on the Hubble constant, G. A. Tammann & M. Federspiel; Interim report on the calibration of the Tully-Fisher relation in the HST Key Project to measure the Hubble constant, J. Mould et al.; Hubble Space Telescope Key Project on the extragalactic distance scale, W. L. Freedman, B. F. Madore and T R. C. Kennicutt; Novae as distance indicators, M. Livio; Verifying the planetary nebula luminosity function method, G. H. Jacoby; On the possible use of radio supernovae for distance determinations, K. W. Weiler et al.; Post-AGB stars as standard candles, H. Bond; Helium core flash at the tip of the red giant branch: a population II distance indicator, B. F. Madore, W. L. Freedman and T S. Sakai; Globular clusters as distance indicators, B. C. Whitmore; Detached eclipsing binaries as primary distance and age indicators, B. Paczynski; Light echoes: geometric measurement of galaxy distances, W. B. Sparks; The SBF survey of galaxy distances J. L. Tonry; Extragalactic distance scales: The long and short of it, V. Trimble.

  15. Radio jets in NGC 4151

    NASA Technical Reports Server (NTRS)

    Johnston, K. J.; Elvis, M.; Kjer, D.; Shen, B. S. P.

    1982-01-01

    The relationship between the radio and optical emissions from the nucleus of the Seyfert galaxy NGC 4151 is investigated by mapping the radio radiation from this source at wavelengths of 20 and 6 cm using the Very Large Array of the National Radio Astronomy Observatory. Results show that the radio emission at wavelengths from 20 to 6 cm extend 10'' (950 pc) along a position angle of 72-84 degrees. This nonthermal emission is found to consist of at least six components and is similar to jets observed in other compact extragalactic radio sources. These radio jets appear to be coincident with the optical line emission region in NGC 4151 and are aligned with the position angle of the linearly polarized optical continuum emission.

  16. Superluminous Extragalactic Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Chen, C. H. R.; Chu, Y.-H.

    1998-12-01

    Extragalactic supernova remnants (SNRs) are conventionally surveyed by optical emission-line images, using the [S II]/Hα line ratio to diagnose SNRs. The majority of the optically identified extragalactic SNRs are too faint to be confirmed at X-ray or radio wavelengths. Conversely, extragalactic SNRs that are initially identified by X-ray or radio observations are all superluminous, e.g., the X-ray SNR in NGC 6946 (Blair & Fesen 1994, ApJ, 424, L103) and the radio SNR in NGC 5471 (Skillman 1985, ApJ, 290, 449). NGC 5471 is a giant H II region in M101. Optical echelle observations of the SNR in NGC 5471 have detected high-velocity gas with a FWZI of at least 350 km/s. Decomposing the narrow H II component and the broad SNR component in the Hα velocity profile, Chu & Kennicutt (1986) derived a total mass of 6500+/-3000 M_sun and a kinetic energy of a few *E(50) ergs. Using archival ROSAT X-ray observations, Williams & Chu (1995) measured an X-ray luminosity of ~ 1 x 10(38) ergs/s for NGC 5471. Apparently, the SNR in NGC 5471 is superluminous at all wavelengths. To determine the physical conditions and nature of the superluminous SNR in NGC 5471, we have obtained HST WFPC2 images of NGC 5471 in the Hα and [S II] lines and two continuum bands. These high-resolution images reveal a [S II]-enhanced shell with a diameter of ~ 60 pc. A recent 180-ks ROSAT High Resolution Imager image of M101 shows that the X-ray emission from NGC 5471 peaks at this SNR shell. We are thus confident in the identification of the superluminous SNR in NGC 5471. Are superluminous SNRs produced by particularly powerful supernova explosions? Are they associated with gamma-ray bursters? Are their luminosities caused by dense interstellar environment? We will report the detailed physical properties of the SNR in NGC 5471, compare it to the other superluminous SNRs, and address these questions.

  17. A New Catalog of Radio Compact H II Regions in the Milky Way

    SciTech Connect

    Giveon, U; Becker, R; Hefland, D; White, R

    2004-11-02

    We utilize new VLA Galactic plane catalogs at 5 and 1.4 GHz covering the first Galactic quadrant (350{sup o} {le} l {le} 42{sup o}, |b| {le} 0.4{sup o}) in conjunction with the MSX6C Galactic plane catalog to construct a large sample of ultra-compact H II regions. A radio catalog of this region was first published by Becker et al. (1994), but we have added new observations and re-reduced the data with significantly improved calibration and mosaicing procedures, resulting in a tripling of the number of 5 GHz sources detected. Comparison of the new 5 GHz catalog and the MSX6C Galactic plane catalog resulted in a sample of 687 matches, out of which we estimate only 15 to be chance coincidences. Most of the matches show red MSX colors and a thermal radio spectrum. The scale height of their Galactic latitude distribution is very small (FWHM of 16' or {approx} 40 pc). These properties suggest that the sample is dominated by young ultra-compact H II regions, most of which are previously uncataloged.

  18. Structure and evolution of the compact radio source in NGC 1275.

    PubMed

    Romney, J D; Benson, J M; Dhawan, V; Kellermann, K I; Vermeulen, R C; Walker, R C

    1995-12-05

    Investigations of the fine-scale structure in the compact nucleus of the radio source 3C 84 in NGC 1275 (New General Catalogue number) are reported. Structural monitoring observations beginning as early as 1976, and continuing to the present, revealed subluminal motions in a jet-like relatively diffuse region extending away from a flat-spectrum core. A counterjet feature was discovered in 1993, and very recent nearly simultaneous studies have detected the same feature at five frequencies ranging from 5 to 43 GHz. The counterjet exhibits a strong low-frequency cutoff, giving this region of the source an inverted spectrum. The observations are consistent with a physical model in which the cutoff arises from free-free absorption in a volume that surrounds the core but obscures only the counterjet feature. If such a model is confirmed, very-long-baseline radio interferometry observations can then be used to probe the accretion region, outside the radio jet, on parsec scales.

  19. Structure and evolution of the compact radio source in NGC 1275.

    PubMed Central

    Romney, J D; Benson, J M; Dhawan, V; Kellermann, K I; Vermeulen, R C; Walker, R C

    1995-01-01

    Investigations of the fine-scale structure in the compact nucleus of the radio source 3C 84 in NGC 1275 (New General Catalogue number) are reported. Structural monitoring observations beginning as early as 1976, and continuing to the present, revealed subluminal motions in a jet-like relatively diffuse region extending away from a flat-spectrum core. A counterjet feature was discovered in 1993, and very recent nearly simultaneous studies have detected the same feature at five frequencies ranging from 5 to 43 GHz. The counterjet exhibits a strong low-frequency cutoff, giving this region of the source an inverted spectrum. The observations are consistent with a physical model in which the cutoff arises from free-free absorption in a volume that surrounds the core but obscures only the counterjet feature. If such a model is confirmed, very-long-baseline radio interferometry observations can then be used to probe the accretion region, outside the radio jet, on parsec scales. PMID:11607597

  20. Very-long-baseline radio interferometry surveys of the compact structure in active galactic nuclei.

    PubMed Central

    Wilkinson, P N

    1995-01-01

    Very-long-baseline radio interferometry (VLBI) imaging surveys have been undertaken since the late 1970s. The sample sizes were initially limited to a few tens of objects but the snapshot technique has now allowed samples containing almost 200 sources to be studied. The overwhelming majority of powerful compact sources are asymmetric corejects of one form or another, most of which exhibit apparent superluminal motion. However 5-10% of powerful flat-spectrum sources are 100-parsec (pc)-scale compact symmetric objects; these appear to form a continuum with the 1-kpc-scale double-lobed compact steep-spectrum sources, which make up 15-20% of lower frequency samples. It is likely that these sub-galactic-size symmetric sources are the precursors to the large-scale classical double sources. There is a surprising peak around 90 degrees in the histogram of misalignments between the dominant source axes on parsec and kiloparsec scales; this seems to be associated with sources exhibiting a high degree of relativistic beaming. VLBI snapshot surveys have great cosmological potential via measurements of both proper motion and angular size vs. redshift as well as searches for gravitational "millilensing." PMID:11607594

  1. Statistics of the fractional polarization of compact radio sources in Planck maps

    NASA Astrophysics Data System (ADS)

    Bonavera, Laura; González-Nuevo, Joaquin; Argüeso, Francisco; Toffolatti, Luigi

    2017-08-01

    In this work, we apply the stacking technique to estimate the average fractional polarization from 30 to 353 GHz of a primary sample of 1560 compact sources - essentially all radio sources - detected in the 30 GHz Planck all-sky map and listed in the second version of the Planck Catalogue of Compact Sources (PCCS2). We divide our primary sample in two subsamples according to whether the sources lay (679 sources) or not (881 sources) inside the sky region defined by the Planck Galactic mask (fsky ∼ 60 per cent) and the area around the Magellanic Clouds. We find that the average fractional polarization of compact sources is approximately constant (with frequency) in both samples (with a weighted mean over all the channels of 3.08 per cent outside and 3.54 per cent inside the Planck mask). In the sky region outside the adopted mask, we also estimate the μ and σ parameters for the lognormal distribution of the fractional polarization, finding a weighted mean value over all the Planck frequency range of 1.0 for σ and 0.7 for μ (that would imply a weighted mean value for the median fractional polarization of 1.9 per cent).

  2. SDSS J143244.91+301435.3: a link between radio-loud narrow-line Seyfert 1 galaxies and compact steep-spectrum radio sources?

    NASA Astrophysics Data System (ADS)

    Caccianiga, A.; Antón, S.; Ballo, L.; Dallacasa, D.; Della Ceca, R.; Fanali, R.; Foschini, L.; Hamilton, T.; Kraus, A.; Maccacaro, T.; Mack, K.-H.; Marchã, M. J.; Paulino-Afonso, A.; Sani, E.; Severgnini, P.

    2014-06-01

    We present SDSS J143244.91+301435.3, a new case of a radio-loud narrow-line Seyfert 1 (RL NLS1) with a relatively high radio power (P1.4 GHz = 2.1 × 1025 W Hz-1) and large radio-loudness parameter (R1.4 = 600 ± 100). The radio source is compact with a linear size below ˜1.4 kpc but, in contrast to most of the RL NLS1 discovered so far with such a high R1.4, its radio spectrum is very steep (α = 0.93, Sν ∝ ν-α) and does not support a `blazar-like' nature. Both the small mass of the central supermassive black hole and the high accretion rate relative to the Eddington limit estimated for this object (3.2 × 107 M⊙ and 0.27, respectively, with a formal error of ˜0.4 dex for both quantities) are typical of the NLS1 class. Through modelling the spectral energy distribution of the source, we have found that the galaxy hosting SDSS J143244.91+301435.3 is undergoing quite intense star formation (SFR = 50 M⊙ yr-1), which, however, is expected to contribute only marginally (˜1 per cent) to the observed radio emission. The radio properties of SDSS J143244.91+301435.3 are remarkably similar to those of compact steep-spectrum (CSS) radio sources, a class of active galactic nuclei (AGN) mostly composed of young radio galaxies. This may suggest a direct link between these two classes of AGN, with CSS sources possibly representing the misaligned version (the so-called `parent population') of RL NLS1 showing blazar characteristics.

  3. Probing Strongly-Scattered Compact Objects Using Ultra-High-Resolution Techniques in Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Johnson, Michael Douglas

    This dissertation explores fundamental limits in radio astronomy and develops techniques that utilize the scintillation of compact objects to probe detailed properties of their emission regions and of the scattering material. I develop a statistical framework for observations with spectral resolution at or near the Nyquist limit, suitable for describing the observed statistics of strongly-scattered sources. I demonstrate that these statistics can effectively isolate the signature of an extended emission region, requiring no assumptions about the nature or distribution of the scattering material. Then, using observations of the Vela pulsar at 760 MHz with the Green Bank Telescope, I thereby achieve a spatial resolution of 4 km at the pulsar. Finally, I explore the signature of refractive scintillation on the interferometric visibility measured on long baselines, and I derive optimal correlation estimators for quantized data.

  4. Radio Sources in Low-Luminosity Active Galactic Nuclei. I. VLA Detections of Compact, Flat-Spectrum Cores

    NASA Astrophysics Data System (ADS)

    Nagar, Neil M.; Falcke, Heino; Wilson, Andrew S.; Ho, Luis C.

    2000-10-01

    We report a high-resolution (0.2"), 15 GHz survey of a sample of 48 low-luminosity active galactic nuclei with the Very Large Array.5 Compact radio emission has been detected above a flux density of 1.1 mJy in 57% (17 of 30) of low-ionization nuclear emission-line region (LINER) nuclei and low-luminosity Seyfert galaxies. The 2 cm radio power is significantly correlated with the emission-line ([O I] λ6300) luminosity. Using radio fluxes at other frequencies from the literature, we find that at least 15 of the 18 detected radio cores have a flat to inverted spectrum (α>=-0.3, Sν~να). While the present observations are consistent with the radio emission originating in star-forming regions (the brightness temperatures are >=102.5-4.5 K), higher resolution radio observations of 10 of the detected sources, reported in an accompanying paper, show that the cores are very compact (<~1 pc), of high brightness temperature (Tb>~108 K), and probably synchrotron self-absorbed, ruling out a starburst origin. Thus, our results suggest that at least 50% of low-luminosity Seyfert galaxies and LINERs in the sample are accretion powered, with the radio emission presumably coming from jets or advection-dominated accretion flows. We have detected only 1 of 18 ``transition'' (i.e., LINER+H II) nuclei observed, indicating that their radio cores are significantly weaker than those of ``pure'' LINERs. Compact 2 cm radio cores are found in both type 1 (i.e., with broad Hα) and type 2 (without broad Hα) nuclei. There is weak evidence, limited in significance by small numbers, that low-luminosity active galactic nuclei with compact radio cores exhibit radio ejecta preferentially aligned along the rotation axis of the galaxy disk. If this result were confirmed by a larger sample, it would lend support to the idea that the misalignment of accretion disks with the galaxy stellar disk in more luminous Seyfert galaxies is a result of radiation-pressure-induced warping of their accretion

  5. Weak and Compact Radio Emission in Early High-Mass Star Forming Regions

    NASA Astrophysics Data System (ADS)

    Rosero Rueda, Viviana Andrea

    2017-04-01

    I present a high sensitivity radio continuum survey at 6 and 1.3 cm using the Karl. G. Jansky Very Large Array towards a sample of 58 high-mass star forming regions. The sample was chosen from clumps within infrared dark clouds, also known as cold molecular clumps (CMCs) with and without IR sources (CMC-IRs, CMCs, respectively) and hot molecular cores (HMCs), with no previous radio continuum detection at the 1 mJy level. Due to the remarkable improvement in the continuum sensitivity of the VLA, this survey achieved map rms levels of 3-10 ?Jy/beam at sub-arcsecond angular resolution. From this dataset I extracted 70 centimeter continuum sources that are associated with 1.2 mm dust clumps. Most sources are weak, compact, and are prime candidates for high-mass protostars. Detection rates of radio sources associated with the mm dust clumps for CMCs, CMC-IRs and HMCs are 6%, 53% and 100%, respectively. This result is consistent with increasing high-mass star formation activity from CMCs to HMCs. I calculated 5-25 GHz spectral indices using power law fits and obtain a median value of 0.5 (i.e., flux increasing with frequency), which is consistent with thermal emission from ionized jets. Moreover, these detected ionized jets towards high-mass stars are well correlated with jets formed towards lower masses, providing further evidence that ionized jets from any luminosity have a common origin. Ultimately, this set of detections will likely provide good candidates to enable new tests of high-mass star formation theories, in particular testing predictions of core accretion and competitive accretion models.

  6. Active extragalactic sources - Nearly simultaneous observations from 20 centimeters to 1400 A

    NASA Technical Reports Server (NTRS)

    Landau, R.; Golisch, B.; Jones, T. J.; Jones, T. W.; Pedelty, J.; Rudnick, L.; Sitko, M. L.; Kenney, J.; Roellig, T.; Salonen, E.

    1986-01-01

    IRAS, IUE, and ground-based optical, NIR, mm and submm, and radio observations obtained mainly on Apr. 9-23, 1983, are reported for 19 active extragalactic sources and eight control sources. The overall spectra of the compact active sources are shown to be well represented by continuous-curvature functions such as parabolas. The spectra are found to be consistent with models involving continuous particle injection (with synchrotron losses) or first-order Fermi acceleration (with escape and synchrotron losses), but not with models using relativistic Maxwellian electron distributions.

  7. Development of a radio-astrometric catalog by means of very long baseline interferometry observations

    NASA Technical Reports Server (NTRS)

    Fanselow, J. L.; Sovers, O. J.; Thomas, J. B.; Bletzacker, F. R.; Kearns, T. J.; Cohen, E. J.; Purcell, G. H., Jr.; Rogstad, D. H.; Skjerve, L. J.; Young, L. E.

    1981-01-01

    The Jet Propulsion Laboratory has been developing a radio-astrometric catalogue for use in the application of radio interferometry to interplanetary navigation and geodesy. The catalogue consists of approximately 100 compact extragalactic radio sources whose relative positions have formal uncertainties of the order of 0.01 arcsec. The sources cover nearly all of the celestial sphere above -40 deg declination. By using the optical counterparts of many of these radio sources, this radio reference frame has been tied to the FK4 optical system with a global accuracy of approximately 0.1 arcsec. This paper describes the status of this work.

  8. Extending the ICRF to Higher Radio Frequencies: Imaging and Source Structure

    NASA Technical Reports Server (NTRS)

    Boboltz, David A.; Fey, Alan L.; Charlot, Patrick; Fomalont, Edward B.; Lanyi, Gabor E.; Zhang, Li-Wei

    2004-01-01

    We present imaging results and source structure analysis of extragalactic radio sources observed using the Very Long Baseline Array (VLBA) at 24 GHz and 43 GHz as part of an ongoing NASA, USNO, NRAO and Bordeaux Observatory collaboration to extend the International Celestial Reference Frame (ICRF) to higher radio frequencies. The K/Q-band image database now includes images of 108 sources at 43 GHz (Q-braid) and images of 230 sources at 24 GHz (K-band). Preliminary analysis of the observations taken to date shows that the sources are generally more compact as one goes from the ICRF frequency of 8.4 GHz to 24 GHz. This result is consistent with the standard theory of compact extragalactic radio sources and suggests that reference frames defined at these higher radio frequencies will be less susceptible to the effects of intrinsic source structure than those defined at lower frequencies.

  9. Extending the ICRF to Higher Radio Frequencies: 24 and 43 GHz Astrometry

    NASA Technical Reports Server (NTRS)

    Jacobs, Christopher S.; Charlot, Patrick; Fomalont, Ed B.; Gordon, David; Lanyi, Gabor E.; Ma, Chopo; Naudet, Charles J.; Sovers, Ojars J.; Zhang, Li-Wei D.

    2004-01-01

    We present imaging results and source structure analysis of extragalactic radio sources observed using the Very Long Baseline Array (VLBA) at 24 GHz and 43 GHz as part of an ongoing NASA, USNO, NRAO and Bordeaux Observatory collaboration to extend the International Celestial Reference Frame (ICRF) to higher radio frequencies. The K/Q-band image database now includes images of 108 sources at 43 GHz (Q-band) and images of 230 sources at 24 GHz (K-band). Preliminary analysis of the observations taken to date shows that the sources are generally more compact as one goes from the ICRF frequency of 8.4 GHz to 24 GHz. This result is consistent with the standard theory of compact extragalactic radio sources and suggests that reference frames defined at these higher radio frequencies will be less susceptible to the effects of intrinsic source structure than those defined at lower frequencies.

  10. SDSSJ143244.91+301435.3 at VLBI: a compact radio galaxy in a narrow-line Seyfert 1

    NASA Astrophysics Data System (ADS)

    Caccianiga, A.; Dallacasa, D.; Antón, S.; Ballo, L.; Berton, M.; Mack, K.-H.; Paulino-Afonso, A.

    2017-01-01

    We present very long baseline interferometry (VLBI) observations, carried out with the European Very Long Baseline Interferometry Network (EVN), of SDSSJ143244.91+301435.3, a radio-loud narrow-line Seyfert 1 (RL NLS1) characterized by a steep radio spectrum. The source, compact at Very Large Array resolution, is resolved on the milliarcsec scale, showing a central region plus two extended structures. The relatively high brightness temperature of all components (5 × 106-1.3 × 108 K) supports the hypothesis that the radio emission is non-thermal and likely produced by a relativistic jet and/or small radio lobes. The observed radio morphology, the lack of a significant core, and the presence of a low frequency (230 MHz) spectral turnover are reminiscent of the Compact Steep-Spectrum (CSS) sources. However, the linear size of the source (˜0.5 kpc) measured from the EVN map is lower than the value predicted using the turnover/size relation valid for CSS sources (˜6 kpc). This discrepancy can be explained by an additional component not detected in our observations, accounting for about a quarter of the total source flux density, combined to projection effects. The low core dominance of the source (CD < 0.29) confirms that SDSSJ143244.91+301435.3 is not a blazar, i.e. the relativistic jet is not pointing towards the observer. This supports the idea that SDSSJ143244.91+301435.3 may belong to the `parent population' of flat-spectrum RL NLS1 and favours the hypothesis of a direct link between RL NLS1 and compact, possibly young, radio galaxies.

  11. PKS B1718-649: An H I and H2 perspective on the birth of a compact radio source

    NASA Astrophysics Data System (ADS)

    Maccagni, F. M.; Santoro, F.; Morganti, R.; Oosterloo, T. A.; Oonk, J. B. R.; Emonts, B. H. C.

    2016-02-01

    We present neutral hydrogen (H I) and warm molecular hydrogen (H2) observations of the young (102 yr) radio galaxy PKS B1718-649. We study the morphology and the kinematics of both gas components, focusing, in particular, on their properties in relation to the triggering of the radio activity. The regular kinematics of the large scale H I disk, seen in emission, suggests that an interaction event occurred too long ago to be responsible for the recent triggering of the radio activity. In absorption, we detect two absorption lines along the narrow line of sight of the compact ({r<2} pc) radio source. The lines trace two clouds with opposite radial motions. These may represent a population of clouds in the very inner regions of the galaxy, which may be involved in triggering the radio activity. The warm molecular hydrogen (H 2 1-0 S(1) ro-vibrational line) in the innermost kilo-parsec of the galaxy appears to be distributed in a circum-nuclear disk following the regular kinematics of the H I and of the stellar component. An exception to this behaviour arises only in the very centre, where a highly dispersed component is detected. These particular H I and H2 features suggest that a strong interplay between the radio source and the surrounding ISM is ongoing. The physical properties of the cold gas in the proximity of the radio source may regulate the accretion recently triggered in this AGN.

  12. A review of decametric radio astronomy - Instruments and science

    NASA Technical Reports Server (NTRS)

    Erickson, W. C.; Cane, H. V.

    1987-01-01

    The techniques and instruments used in Galactic and extragalactic radio astronomy at dkm wavelengths are surveyed, and typical results are summarized. Consideration is given to the large specialized phased arrays used for early surveys, the use of wideband elements to increase frequency agility, experimental VLBI observations, and limitations on ground-based observations below about 10 MHz (where the proposed LF Space Array, with resolution 0.5-5 arcmin, could make a major contribution). Observations discussed cover the Galactic center, the Galactic background radiation, SNRs, compact Galactic sources, the ISM, and large extragalactic sources.

  13. Young Neutron Stars in Extragalactic Supernovae

    NASA Astrophysics Data System (ADS)

    Tehrani, Nathan; Lorimer, D. R.

    2012-01-01

    Pulsars are compact remnants of stellar cores left behind by supernova explosions. They spin rapidly and emit electromagnetic radiation from their magnetic poles, and gradually lose rotational energy. This project tests and expands upon a previous prediction by Perna et al. for the initial spin rates of neutron stars by attempting to model the x-ray emission from extragalactic supernovae. A computer simulation generated a set of pulsars of known initial rotational periods, magnetic field strengths, and ages, and will calculate the expected x-ray luminosities from the known relationship between magnetic field strengths, slow-down rates, and radio luminosities. This experiment expanded upon the original research by incorporating variability in the angle between the magnetic and rotational axes of each pulsar as well as the braking index value, which in the original publication were kept constant. This examines the effect of the angle on pulsars’ x-ray luminosities. The simulated x-ray luminosities were compared to the known x-ray luminosities of known supernova explosions, which served as an upper limit to determine the highest possible initial rotation speeds. Funding was provided through the WVU Summer Undergraduate Research Program.

  14. Interstellar scattering, the North Polar Spur, and a possible new class of compact galactic radio sources

    NASA Technical Reports Server (NTRS)

    Rickard, J. J.; Cronyn, W. M.

    1979-01-01

    Claims for a galactic-latitude dependence of interstellar angular broadening based on interplanetary-scintillation (IPS) observations are investigated. Analysis of the statistics of the angular sizes in an IPS survey shows that there is no evidence for increased angular broadening in the galactic plane. A region of sky about 500 sq deg of arc in area is considered in which significant angular broadening is thought to exist. An association between this region and the nearby North Polar Spur is proposed on the basis of the former's extension off the galactic plane to high latitudes. An evaluation of two-frequency angular-broadening measurements suggests that the data used to support the conclusion about a galactic-latitude dependence are not statistically significant. A study of pulsar data and implications for the angular broadening expected in the interstellar medium for sources at galactic latitudes below + or - 10 deg indicates the possible existence of a previously unsuspected class of compact galactic nonthermal radio sources, designated 'scintars'.

  15. An Energy-Efficient and Compact Clustering Scheme with Temporary Support Nodes for Cognitive Radio Sensor Networks

    PubMed Central

    Salim, Shelly; Moh, Sangman; Choi, Dongmin; Chung, Ilyong

    2014-01-01

    A cognitive radio sensor network (CRSN) is a wireless sensor network whose sensor nodes are equipped with cognitive radio capability. Clustering is one of the most challenging issues in CRSNs, as all sensor nodes, including the cluster head, have to use the same frequency band in order to form a cluster. However, due to the nature of heterogeneous channels in cognitive radio, it is difficult for sensor nodes to find a cluster head. This paper proposes a novel energy-efficient and compact clustering scheme named clustering with temporary support nodes (CENTRE). CENTRE efficiently achieves a compact cluster formation by adopting two-phase cluster formation with fixed duration. By introducing a novel concept of temporary support nodes to improve the cluster formation, the proposed scheme enables sensor nodes in a network to find a cluster head efficiently. The performance study shows that not only is the clustering process efficient and compact but it also results in remarkable energy savings that prolong the overall network lifetime. In addition, the proposed scheme decreases both the clustering overhead and the average distance between cluster heads and their members. PMID:25116905

  16. An energy-efficient and compact clustering scheme with temporary support nodes for cognitive radio sensor networks.

    PubMed

    Salim, Shelly; Moh, Sangman; Choi, Dongmin; Chung, Ilyong

    2014-08-11

    A cognitive radio sensor network (CRSN) is a wireless sensor network whose sensor nodes are equipped with cognitive radio capability. Clustering is one of the most challenging issues in CRSNs, as all sensor nodes, including the cluster head, have to use the same frequency band in order to form a cluster. However, due to the nature of heterogeneous channels in cognitive radio, it is difficult for sensor nodes to find a cluster head. This paper proposes a novel energy-efficient and compact clustering scheme named clustering with temporary support nodes (CENTRE). CENTRE efficiently achieves a compact cluster formation by adopting two-phase cluster formation with fixed duration. By introducing a novel concept of temporary support nodes to improve the cluster formation, the proposed scheme enables sensor nodes in a network to find a cluster head efficiently. The performance study shows that not only is the clustering process efficient and compact but it also results in remarkable energy savings that prolong the overall network lifetime. In addition, the proposed scheme decreases both the clustering overhead and the average distance between cluster heads and their members.

  17. Measuring the speed of light with ultra-compact radio quasars

    NASA Astrophysics Data System (ADS)

    Cao, Shuo; Biesiada, Marek; Jackson, John; Zheng, Xiaogang; Zhao, Yuhang; Zhu, Zong-Hong

    2017-02-01

    In this paper, based on a 2.29 GHz VLBI all-sky survey of 613 milliarcsecond ultra-compact radio sources with 0.0035compact structure is assumed to depend on source luminosity and redshift as lm=l Lβ (1+z)n, only intermediate-luminosity quasars (1027 W/Hz

  18. The Extragalactic Ferment

    ERIC Educational Resources Information Center

    MOSAIC, 1978

    1978-01-01

    Discusses the efforts which have been accomplished in extragalactic astronomy (the study of bodies and systems beyond the Milky Way) since 1929. Some of the most perplexing problems of extragalactic astronomy such as the missing mass of the galaxies are also discussed. (HM)

  19. The Extragalactic Ferment

    ERIC Educational Resources Information Center

    MOSAIC, 1978

    1978-01-01

    Discusses the efforts which have been accomplished in extragalactic astronomy (the study of bodies and systems beyond the Milky Way) since 1929. Some of the most perplexing problems of extragalactic astronomy such as the missing mass of the galaxies are also discussed. (HM)

  20. Correlation of Fermi Large Area Telescope sources with the 20-GHz Australia Telescope Compact Array radio survey

    NASA Astrophysics Data System (ADS)

    Ghirlanda, G.; Ghisellini, G.; Tavecchio, F.; Foschini, L.

    2010-09-01

    We cross-correlate the Fermi 11-month survey (1FGL) catalogue with the 20-GHz Australia Telescope Compact Array (AT20G) radio survey catalogue composed of 5890 sources at declination < 0°. Among the 738 Fermi sources distributed in the southern sky, we find 230 highly probable candidate counterparts in the AT20G survey. Of these, 222 are already classified in the Fermi one-year Large Area Telescope (LAT) active galactic nucleus (AGN) catalogue (1LAC) as blazars [either flat spectrum radio quasars (FSRQs) or BL Lacertae objects (BL Lacs)], AGNs or sources of unknown class but with an associated counterpart, while eight are new associations. By studying the γ-ray and radio properties of these associations, we find a correlation between the γ-ray flux (above 100 MeV) and the 20-GHz flux density. This correlation is more than 3σ statistically significant, both for the population of BL Lacs and for FSRQs considered separately. We also find that the radio counterparts associated with the Fermi sources have, on average, flat radio spectra between 5 and 20 GHz and that Fermi γ-ray sources are not preferentially associated with `ultra-inverted spectrum' radio sources. For two of the eight new associations, we build the broad-band spectral energy distribution combining Fermi, Swift and radio observations. One of these two sources is identified with the high-redshift FSRQ Swift J1656.3-3302 (z = 2.4) and we classify the other source as a candidate new FSRQ. We also study the brightest radio source of the 46 associations without an optical classification and classify it as a new BL Lac candidate `twin' of the prototypical BL Lac OJ 287 if its redshift is larger, z ~ 0.4.

  1. Fermi/LAT Observations of Swift/BAT Seyfert Galaxies: On the Contribution of Radio-Quiet Active Galactic Nuclei to the Extragalactic gamma-Ray Background

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Mushotzky, Richard F.; Sambruna, Rita M.; Davis, David S.; Reynolds, Christopher S.

    2011-01-01

    We present the analysis of 2.1 years of Fermi Large Area Telescope (LAT) data on 491 Seyfert galaxies detected by the Swift Burst Alert Telescope (BAT) survey. Only the two nearest objects, NGC 1068 and NGC 4945, which were identified in the Fermi first year catalog, are detected. Using Swift/BAT and radio 20 cm fluxes, we define a new radio-loudness parameter R(sub X,BAT) where radio-loud objects have logR(sub X,BAT) > -4.7. Based on this parameter, only radio-loud sources are detected by Fermi/LAT. An upper limit to the flux of the undetected sources is derived to be approx.2x10(exp -11) photons/sq cm/s, approximately seven times lower than the observed flux of NGC 1068. Assuming a median redshift of 0.031, this implies an upper limit to the gamma-ray (1-100 GeV) luminosity of < approx.3x10(exp 41) erg/s. In addition, we identified 120 new Fermi/LAT sources near the Swift/BAT Seyfert galaxies with significant Fermi/LAT detections. A majority of these objects do not have Swift/BAT counterparts, but their possible optical counterparts include blazars, flat-spectrum radio quasars, and quasars.

  2. Fermi/LAT Observations of Swift/BAT Seyfert Galaxies: On the Contribution of Radio-Quiet Active Galactic Nuclei to the Extragalactic gamma-Ray Background

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Mushotzky, Richard F.; Sambruna, Rita M.; Davis, David S.; Reynolds, Christopher S.

    2011-01-01

    We present the analysis of 2.1 years of Fermi Large Area Telescope (LAT) data on 491 Seyfert galaxies detected by the Swift Burst Alert Telescope (BAT) survey. Only the two nearest objects, NGC 1068 and NGC 4945, which were identified in the Fermi first year catalog, are detected. Using Swift/BAT and radio 20 cm fluxes, we define a new radio-loudness parameter R(sub X,BAT) where radio-loud objects have logR(sub X,BAT) > -4.7. Based on this parameter, only radio-loud sources are detected by Fermi/LAT. An upper limit to the flux of the undetected sources is derived to be approx.2x10(exp -11) photons/sq cm/s, approximately seven times lower than the observed flux of NGC 1068. Assuming a median redshift of 0.031, this implies an upper limit to the gamma-ray (1-100 GeV) luminosity of < approx.3x10(exp 41) erg/s. In addition, we identified 120 new Fermi/LAT sources near the Swift/BAT Seyfert galaxies with significant Fermi/LAT detections. A majority of these objects do not have Swift/BAT counterparts, but their possible optical counterparts include blazars, flat-spectrum radio quasars, and quasars.

  3. FERMI/LAT OBSERVATIONS OF SWIFT/BAT SEYFERT GALAXIES: ON THE CONTRIBUTION OF RADIO-QUIET ACTIVE GALACTIC NUCLEI TO THE EXTRAGALACTIC {gamma}-RAY BACKGROUND

    SciTech Connect

    Teng, Stacy H.; Mushotzky, Richard F.; Reynolds, Christopher S.; Sambruna, Rita M.; Davis, David S.

    2011-12-01

    We present the analysis of 2.1 years of Fermi Large Area Telescope (LAT) data on 491 Seyfert galaxies detected by the Swift Burst Alert Telescope (BAT) survey. Only the two nearest objects, NGC 1068 and NGC 4945, which were identified in the Fermi first year catalog, are detected. Using Swift/BAT and radio 20 cm fluxes, we define a new radio-loudness parameter R{sub X,BAT} where radio-loud objects have log R{sub X,BAT} > -4.7. Based on this parameter, only radio-loud sources are detected by Fermi/LAT. An upper limit to the flux of the undetected sources is derived to be {approx}2 Multiplication-Sign 10{sup -11} photons cm{sup -2} s{sup -1}, approximately seven times lower than the observed flux of NGC 1068. Assuming a median redshift of 0.031, this implies an upper limit to the {gamma}-ray (1-100 GeV) luminosity of {approx}< 3 Multiplication-Sign 10{sup 41} erg s{sup -1}. In addition, we identified 120 new Fermi/LAT sources near the Swift/BAT Seyfert galaxies with significant Fermi/LAT detections. A majority of these objects do not have Swift/BAT counterparts, but their possible optical counterparts include blazars, flat-spectrum radio quasars, and quasars.

  4. Observational facts of extragalactic SNRs

    NASA Astrophysics Data System (ADS)

    Filipovic, M.; Kavanagh, P.; Haberl, F.; Sasaki, M.; Bozzetto, L.; Urosevic, D.

    2016-06-01

    This is an exciting time for the discovery of supernova remnants (SNRs) in galaxies other than our Milky Way. SNRs reflect a major process in the elemental enrichment of the interstellar medium (ISM). The study of this interaction in different domains including radio, optical, IR and X-ray, allow a better understanding of these remnants and their environments. Nearby external galaxies offer an ideal laboratory, since they are near enough to be resolved, yet located at relatively known distances.I will review our most recent searches for SNRs in the Magellanic Clouds, M33, M31, NGC 300, NGC 45, NGC 6744 and NGC 7793. New high resolution (~1``) and sensitive (< 0.3 mJy beam-1) radio (ASKAP, ATCA & MWA), X-ray (XMM & CHANDRA), IR (Herschel and Spitzer) and optical (WIFES) images of these galaxies have preliminarily revealed thousands of sources from which we found a total of over 300 extended sources that are SNRs or candidates. We investigate their intrinsic and overall properties and found some remarkable and unexpected differences. I will also present our breakthrough studies of first extragalactic SNRs expansion as well as our first detection of circular polarisation in extragalactic SNR. You will have a chance to see the most complete Sigma-D study of all KNOWN SNRs and how they interact with nearby molecular clouds. I will present the case for DD vs. SD in Type Ia for some 15 LMC SNRs based on our X-ray and radio observations. Finally, I will present our strategies for the next 10 years on how to observe SNRs with the next generation of instruments -- from ASKAP/MWA2 to CTA via eRosita and whoever else.

  5. Angular Structure of the Radio Sources at Decameter Wavelengths

    NASA Astrophysics Data System (ADS)

    Brazhenko, A. I.; Inyutin, G. A.; Koshovyy, V. V.; Lozins'kyy, A. B.; Lytvinenko, O. A.; Megn, A. V.; Rashkovskiy, S. L.; Shepelyev, V. A.; Vaschishin, R. V.

    2006-08-01

    The world biggest decameter radio telescope UTR-2 and four smaller arrays forms the Ukrainian VLBI network URAN with an angular resolution up to 1" operated at decameter wavelengths. A number of galactic and extragalactic radio sources were studed with the URAN interferometers. At decimeter and centimeter wavelengths the studied extragalactic radio sources usually possess compact components and a total size of the sources is of about or less than a resolving power of the shortest baseline of the network. The obtained results allow us to affirm that the structure of the studied extragalactic radio sources changes at the decameter wavelengths. The reason of the changes usually is a combination of various phenomena of radio wave generation and propagation. The peculiarities of the brightness distribution in the range are: - The compact details (hot spots and sources associated with AGN) in the radio galaxies and quasars are usually less prominent at the decameter wavelengths because of synchrotron self-absorption. Their angular diameters are equal to those at higher frequencies or enlarged by the interstellar scattering. - Dimensions of lobes are enlarged as a rule. - A characteristic feature of the quasars structure at lower frequencies is extended components with steep spectra producing the main part of a flux of the sources at the decameter wavelengths. Their angular diameters exceed the total size of the source measured at higher frequencies. Such halos have been revealed in some radio galaxies too. The galactic supernova remnants studied with the URAN mainly possess the same features of their structure as at higher frequencies. Some modificatios of their structure at lower frequencies are caused by interstellar scattering, which increases a size of their compact details and difference of spectral indexes that changes relative fluxes of source parts at the decameters.

  6. Detection of a Compact Radio Source near the Center of a Gravitational Lens: Quasar Image or Galactic Core?

    PubMed

    Gorenstein, M V; Shapiro, I I; Cohen, N L; Corey, B E; Falco, E E; Marcaide, J M; Rogers, A E; Whitney, A R; Porcas, R W; Preston, R A; Rius, A

    1983-01-07

    By use of a new, very sensitive interferometric system, a faint, compact radio source has been detected near the center of the galaxy that acts as the main part of a gravitational lens. This lens forms two previously discovered images of the quasar Q09S7+561, which lies in the direction of the constellation Ursa Major. The newly detected source has a core smaller than 0.002 arc second in diameter with a flux density of 0.6 +/- 0.1 millijansky at the 13-centimeter wavelength of the radio observations. This source could be the predicted third image of the transparent gravitational lens, the central core of the galaxy, or some combination of the two. It is not yet possible to choose reliably between these alternatives.

  7. Time-dependent radio fine structure of the compact sources NRAO 150 and 4C 39.25

    NASA Technical Reports Server (NTRS)

    Baath, L. B.; Cotton, W. D.; Counselman, C. C.; Shapiro, I. I.; Wittels, J. J.; Hinteregger, H. F.; Knight, C. A.; Rogers, A. E. E.; Whitney, A. R.; Clark, T. A.

    1980-01-01

    Very long baseline interferometer observations at 7.85 GHz have been used to probe the milliarcsecond structure of the unidentified, very compact radio source NRAO 150 and QSO 4 C 39.25. NRAO 150 exhibited no structural variations from 1972 to the end of 1974. A model with two circular Gaussian components fits the data well. NRAO 150 had a flux density of 7.6 plus or minus 0.5 Jy in the compact component; 4 C 39.25 showed a two-component structure, the components having a separation of (2.02 plus or minus 0.05 arc sec) x 10 to the -3rd power. The upper bound on the speed of transverse separation is 0.0001 arc sec per year or less than 2.7 c. From the spectrum there are also indications of a third, larger component.

  8. Testing for Shock-Heated X-Ray Gas around Compact Steep Spectrum Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Noel-Storr, Jacob; O'Dea, Christopher; Worrall, Diana M.; Clarke, Tracy E.; Tremblay, Grant; Baum, Stefi; Christiansen, Kevin; Mullarkey, Christopher; Mittal, Rupal

    2017-01-01

    We present Chandra and XMM-Newton X-ray, VLA radio, and optical observations of two CSS radio galaxies. B3 1445+410 is a low excitation emission line galaxy with possibly a hybrid FRI/II (or Fat Double) radio morphology. The Chandra observations are point-like and well fit with a power-law consistent with emission from a Doppler boosted core. PKS B1017-325 is a galaxy with a bent double radio morphology. The XMM-Newton observations are consistent with an ISM with a contribution from hot shocked gas. We compile selected radio and X-ray properties of the nine CSS radio galaxies with X-ray detections so far. We find that 1/3 show evidence for hot shocked gas. We note that the counts in the sources are low and the properties of the 3 sources with evidence for hot shocked gas are typical of the other CSS radio galaxies. We suggest that hot shocked gas may be typical of CSS radio galaxies due to their propagation through their host galaxies.

  9. Compact field programmable gate array-based pulse-sequencer and radio-frequency generator for experiments with trapped atoms

    SciTech Connect

    Pruttivarasin, Thaned; Katori, Hidetoshi

    2015-11-15

    We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.

  10. Radio spectra of bright compact sources at z > 4.5

    NASA Astrophysics Data System (ADS)

    Coppejans, Rocco; van Velzen, Sjoert; Intema, Huib T.; Müller, Cornelia; Frey, Sándor; Coppejans, Deanne L.; Cseh, Dávid; Williams, Wendy L.; Falcke, Heino; Körding, Elmar G.; Orrú, Emanuela; Paragi, Zsolt; Gabányi, Krisztina É.

    2017-05-01

    High-redshift quasars are important to study galaxy and active galactic nuclei evolution, test cosmological models and study supermassive black hole growth. Optical searches for high-redshift sources have been very successful, but radio searches are not hampered by dust obscuration and should be more effective at finding sources at even higher redshifts. Identifying high-redshift sources based on radio data is, however, not trivial. Here we report on new multifrequency Giant Metrewave Radio Telescope observations of eight z > 4.5 sources previously studied at high angular resolution with very long baseline interferometry (VLBI). Combining these observations with those from the literature, we construct broad-band radio spectra of all 30 z > 4.5 sources that have been observed with VLBI. In the sample we found flat, steep and peaked spectra in approximately equal proportions. Despite several selection effects, we conclude that the z > 4.5 VLBI (and likely also non-VLBI) sources have diverse spectra and that only about a quarter of the sources in the sample have flat spectra. Previously, the majority of high-redshift radio sources were identified based on their ultrasteep spectra. Recently, a new method has been proposed to identify these objects based on their megahertz-peaked spectra. No method would have identified more than 18 per cent of the high-redshift sources in this sample. More effective methods are necessary to reliably identify complete samples of high-redshift sources based on radio data.

  11. THE COMPACT, TIME-VARIABLE RADIO SOURCE PROJECTED INSIDE W3(OH): EVIDENCE FOR A PHOTOEVAPORATED DISK?

    SciTech Connect

    Dzib, Sergio A.; Rodriguez-Garza, Carolina B.; Rodriguez, Luis F.; Kurtz, Stan E.; Loinard, Laurent; Zapata, Luis A.; Lizano, Susana

    2013-08-01

    We present new Karl G. Jansky Very Large Array (VLA) observations of the compact ({approx}0.''05), time-variable radio source projected near the center of the ultracompact H II region W3(OH). The analysis of our new data as well as of VLA archival observations confirms the variability of the source on timescales of years and for a given epoch indicates a spectral index of {alpha} = 1.3 {+-} 0.3 (S{sub {nu}}{proportional_to}{nu}{sup {alpha}}). This spectral index and the brightness temperature of the source ({approx}6500 K) suggest that we are most likely detecting partially optically thick free-free radiation. The radio source is probably associated with the ionizing star of W3(OH), but an interpretation in terms of an ionized stellar wind fails because the detected flux densities are orders of magnitude larger than expected. We discuss several scenarios and tentatively propose that the radio emission could arise in a static ionized atmosphere around a fossil photoevaporated disk.

  12. The impact of compact radio sources on their host galaxies: observations

    NASA Astrophysics Data System (ADS)

    Tadhunter, C.

    2016-02-01

    I review the observational evidence that CSS/GPS radio sources have a significant impact on the evolution of their host galaxies, particularly on the kpc-scales of the galaxy bulges. Starting with an overview of the observational evidence for jet-cloud interactions and warm ionised outflows in CSS/GPS sources, I then consider the challenges involved in quantifying the feedback effect of the warm outflows in terms of their mass outflow rates and kinetic powers. For the best-observed cases it is shown that the warm outflows may have a major negative feedback effect in the very central regions, but probably lack the power to heat and eject the full cool ISM contents of the host galaxies. In contrast, the recently-discovered neutral and molecular outflows are more massive and powerful and therefore carry more destructive potential. However, the feedback effect of such outflows is not necessarily negative: there is now clear observational evidence that the molecular outflows are formed as the hot, compressed gas cools behind fast shocks driven into the ISM by the relativistic jets. The natural endpoint of this process is the formation of stars. Therefore, jet-induced star formation may be a significant process in CSS/GPS radio galaxies. Finally, I discuss whether CSS/GPS sources are ``imposters'' in flux-limited radio samples, due the flux boosting of the radio sources by strong jet-cloud interactions in the early stages of radio source evolution.

  13. Radio spectra of bright compact sources at z>4.5

    NASA Astrophysics Data System (ADS)

    Coppejans, Rocco; van Velzen, Sjoert; Intema, Huib T.; Müller, Cornelia; Frey, Sándor; Coppejans, Deanne L.; Cseh, Dávid; Williams, Wendy L.; Falcke, Heino; Körding, Elmar G.; Orrú, Emanuela; Paragi, Zsolt; Gabányi, Krisztina É.

    2017-01-01

    High-redshift quasars are important to study galaxy and active galactic nuclei (AGN) evolution, test cosmological models, and study supermassive black hole growth. Optical searches for high-redshift sources have been very successful, but radio searches are not hampered by dust obscuration and should be more effective at finding sources at even higher redshifts. Identifying high-redshift sources based on radio data is, however, not trivial. Here we report on new multi-frequency Giant Metrewave Radio Telescope (GMRT) observations of eight z > 4.5 sources previously studied at high angular resolution with very long baseline interferometry (VLBI). Combining these observations with those from the literature, we construct broad-band radio spectra of all 30 z > 4.5 sources that have been observed with VLBI. In the sample we found flat, steep and peaked spectra in approximately equal proportions. Despite several selection effects, we conclude that the z > 4.5 VLBI (and likely also non-VLBI) sources have diverse spectra and that only about a quarter of the sources in the sample have flat spectra. Previously, the majority of high-redshift radio sources were identified based on their ultra-steep spectra (USS). Recently a new method has been proposed to identify these objects based on their megahertz-peaked spectra (MPS). Neither method would have identified more than 18 per cent of the high-redshift sources in this sample. More effective methods are necessary to reliably identify complete samples of high-redshift sources based on radio data.

  14. Weak and Compact Radio Emission in Early High-mass Star-forming Regions. I. VLA Observations

    NASA Astrophysics Data System (ADS)

    Rosero, V.; Hofner, P.; Claussen, M.; Kurtz, S.; Cesaroni, R.; Araya, E. D.; Carrasco-González, C.; Rodríguez, L. F.; Menten, K. M.; Wyrowski, F.; Loinard, L.; Ellingsen, S. P.

    2016-12-01

    We present a high-sensitivity radio continuum survey at 6 and 1.3 cm using the Karl G. Jansky Very Large Array toward a sample of 58 high-mass star-forming regions. Our sample was chosen from dust clumps within infrared dark clouds with and without IR sources (CMC-IRs and CMCs, respectively), and hot molecular cores (HMCs), with no previous, or relatively weak radio continuum detection at the 1 mJy level. Due to the improvement in the continuum sensitivity of the Very Large Array, this survey achieved map rms levels of ˜3-10 μJy beam-1 at sub-arcsecond angular resolution. We extracted 70 continuum sources associated with 1.2 mm dust clumps. Most sources are weak, compact, and prime candidates for high-mass protostars. Detection rates of radio sources associated with the millimeter dust clumps for CMCs, CMC-IRs, and HMCs are 6%, 53%, and 100%, respectively. This result is consistent with increasing high-mass star formation activity from CMCs to HMCs. The radio sources located within HMCs and CMC-IRs occur close to the dust clump centers, with a median offset from it of 12,000 au and 4000 au, respectively. We calculated 5-25 GHz spectral indices using power-law fits and obtained a median value of 0.5 (i.e., flux increasing with frequency), suggestive of thermal emission from ionized jets. In this paper we describe the sample, observations, and detections. The analysis and discussion will be presented in Paper II.

  15. High Resolution Rapid Response Observations of Compact Radio Sources with the Ceduna Hobart Interferometer (CHI)

    NASA Technical Reports Server (NTRS)

    Blanchard, Jay M.; Lovell, James E. J.; Ojha, Roopesh; Kadler, Matthias; Dickey, John M.; Edwards, Philip G.

    2011-01-01

    Context. Frequent, simultaneous observations across the electromagnetic spectrum are essential to the study of a range of astrophysical phenomena including Active Galactic Nuclei. A key tool of such studies is the ability to observe an object when it flares i.e. exhibits a rapid and significant increase in its flux density. Aims. We describe the specific observational procedures and the calibration techniques that have been developed and tested to create a single baseline radio interferometer. that can rapidly observe a flaring object. This is the only facility that is dedicated to rapid high resolution radio observations of an object south of -30 degrees declination. An immediate application is to provide rapid contemporaneous radio coverage of AGN flaring at y-ray frequencies detected by the Fermi Gamma-ray Space Telescope. Methods. A single baseline interferometer was formed with radio telescopes in Hobart, Tasmania and Ceduna, South Australia. A software correlator was set up at the University of Tasmania to correlate these data. Results. Measurements of the flux densities of flaring objects can be made using our observing strategy within half an hour of a triggering event. These observations can be calibrated with amplitude errors better than 20%. Lower limits to the brightness temperatures of the sources can also be calculated using CHI. Key words. instrumentation:interferometers - galaxies:active - galaxies:jets - galaxies:nuclei quasars:general gamma rays:galaxies- 1.

  16. A Compact X-ray Source in the Radio PWN G141.2+5.0

    NASA Astrophysics Data System (ADS)

    Reynolds, Stephen P.; Borkowski, Kazimierz J.

    2015-08-01

    We report the results of a 50 ks Chandra observation of the recently discovered radio object G141.2+5.0, presumed to be a pulsar-wind nebula (PWN) (Kothes et al. 2014). We find a faint unresolved X-ray source coincident with the central peak of radio emission. Spectral fits to the 241 counts show that an absorbed power-law describes the data well, with absorbing column NH = 4.8 (2.6, 7.3) x 1021 cm-2 and photon index Γ = 1.6 (1.2, 2.1). (A black-body fit is slightly less favored statistically, and has an implausibly high temperature, kT = 0.9 keV.) For a distance of 4 kpc, the unabsorbed luminosity between 0.5 and 8 keV is 1.8 (1.1, 3.0) x 1032 erg s-1. No extended emission is seen; a very conservative upper limit to Lx (nebula) is about the same luminosity as that observed from the point source. The radio luminosity is about 3 x 1030 erg s-1 the X-ray upper limit then gives Lx/Lr < 700, satisfied by almost all pulsar-wind nebulae. Both Lx and Γ are quite typical of pulsars in PWNe. The steep radio spectrum (α ~ -0.7), if continued to the X-ray without a break, predicts Lx (nebula) ~ 1 x 1033 erg s-1, so additional spectral steepening between radio and X-rays is required, as is true of all known PWNe. The high Galactic latitude gives a z-distance of 350 pc above the Galactic plane, quite unusual for a Population I object.

  17. VizieR Online Data Catalog: Broadband polarisation of radio AGN (O'Sullivan+, 2017)

    NASA Astrophysics Data System (ADS)

    O'Sullivan, S. P.; Purcell, C. R.; Anderson, C. S.; Farnes, J. S.; Sun, X. H.; Gaensler, B. M.

    2017-08-01

    Linear polarisation data as a function of wavelength-squared for 100 extragalactic radio sources, selected to be highly polarised at 1.4GHz. The data presented here were obtained using the Australia Telescope Compact Array (ATCA) over 1.1-3.1GHz (16cm) with 1MHz spectral resolution between 2014 April 19-28. The integrated emission from each source, imaged at 10 MHz intervals, is presented below. See Section 2 for details. (2 data files).

  18. What can we learn about extragalactic jets from galactic jets?

    NASA Astrophysics Data System (ADS)

    Wiseman, Jennifer; Biretta, John

    2002-05-01

    Jets are powerful features of extragalactic radio sources; yet jets are also seen in young stellar objects and X-ray binaries within our own galaxy. These occupy a very different parameter space from the extragalactic jets, and yet many are similar in appearance and nature to their powerful extragalactic cousins. In many cases far more information is available for the galactic jets, due to, e.g., rapid evolution and knowledge of emission line ratios and Doppler velocities. We review properties of galactic jets and speculate at implications they have for extragalactic ones. Specifically we consider central engine mass, jet opening angle and Mach number, the nature of the emission knots, the symmetry of the ejection process, and the source history.

  19. HORIZON-SCALE LEPTON ACCELERATION IN JETS: EXPLAINING THE COMPACT RADIO EMISSION IN M87

    SciTech Connect

    Broderick, Avery E.; Tchekhovskoy, Alexander

    2015-08-10

    It has now become clear that the radio jet in the giant elliptical galaxy M87 must turn on very close to the black hole. This implies the efficient acceleration of leptons within the jet at scales much smaller than feasible by the typical dissipative events usually invoked to explain jet synchrotron emission. Here we show that the stagnation surface, the separatrix between material that falls back into the black hole and material that is accelerated outward forming the jet, is a natural site of pair formation and particle acceleration. This occurs via an inverse Compton pair catastrophe driven by unscreened electric fields within the charge-starved region about the stagnation surface and substantially amplified by a post-gap cascade. For typical estimates of the jet properties in M87, we find excellent quantitive agreement between the predicted relativistic lepton densities and those required by recent high-frequency radio observations of M87. This mechanism fails to adequately fill a putative jet from Sagittarius A{sup *} with relativistic leptons, which may explain the lack of an obvious radio jet in the Galactic center. Finally, this process implies a relationship between the kinetic jet power and the gamma-ray luminosity of blazars, produced during the post-gap cascade.

  20. VizieR Online Data Catalog: The population of compact radio sources in ONC (Forbrich+, 2016)

    NASA Astrophysics Data System (ADS)

    Forbrich, J.; Rivilla, V. M.; Menten, K. M.; Reid, M. J.; Chandler, C. J.; Rau, U.; Bhatnagar, S.; Wolk, S. J.; Meingast, S.

    2016-08-01

    The observations were carried out with the Karl G. Jansky VLA of the National Radio Astronomy Observatory on 2012 September 30, October 2-5 under project code SD630. Data were taken using the VLA's C-band (4-8GHz) receivers in full polarization mode, with two 1GHz basebands centered at 4.736 and 7.336GHz to provide a good baseline for source spectral index determination. Apart from the first epoch, the field was simultaneously observed with the Chandra X-Ray Observatory. Mostly of interest for variability information, these data will be presented as part of a follow-up paper. (1 data file).

  1. VizieR Online Data Catalog: 86GHz VLBI survey of compact radio sources (Lobanov+ 2000)

    NASA Astrophysics Data System (ADS)

    Lobanov; A. P.; Krichbaum; T. P.; Graham; D. A.; Witzel; A.; Kraus; A.; Zensus; J. A.; Britzen; S.; Greve; A.; Grewing; M.

    2000-10-01

    File table1 contains the list of observed sources, providing the source coordinates (J2000) and redshift, detection status, type, optical magnitude, and brightness temperature of the radio emission. File table4 contains the description of the VLBI data, and provide the observed total and correlated flux densities, the parameters of single gaussian component model fits, and the parameters of hybrid images of the observed sources. File table5 contains multicomponent model fits for the sources with detected extended structures and the brightness temperatures derived from these model fits. (3 data files).

  2. X-RAYS FROM A RADIO-LOUD COMPACT BROAD ABSORPTION LINE QUASAR 1045+352 AND THE NATURE OF OUTFLOWS IN RADIO-LOUD BROAD ABSORPTION LINE QUASARS

    SciTech Connect

    Kunert-Bajraszewska, Magdalena; Katarzynski, Krzysztof; Siemiginowska, Aneta; Janiuk, Agnieszka

    2009-11-10

    We present new results on X-ray properties of radio-loud broad absorption line (BAL) quasars and focus on broadband spectral properties of a high-ionization BAL (HiBAL) compact steep spectrum (CSS) radio-loud quasar 1045+352. This HiBAL quasar has a very complex radio morphology indicating either strong interactions between a radio jet and the surrounding interstellar medium or a possible re-start of the jet activity. We detected 1045+352 quasar in a short 5 ksec Chandra ACIS-S observation. We applied theoretical models to explain spectral energy distribution of 1045+352 and argue that non-thermal, inverse-Compton (IC) emission from the innermost parts of the radio jet can account for a large fraction of the observed X-ray emission. In our analysis, we also consider a scenario in which the observed X-ray emission from radio-loud BAL quasars can be a sum of IC jet X-ray emission and optically thin corona X-ray emission. We compiled a sample of radio-loud BAL quasars that were observed in X-rays to date and report no correlation between their X-ray and radio luminosity. However, the radio-loud BAL quasars show a large range of X-ray luminosities and absorption columns. This is consistent with the results obtained earlier for radio-quiet BAL quasars and may indicate an orientation effect in BAL quasars or more complex dependence between X-ray emission, radio emission, and an orientation based on the radio morphology.

  3. Extragalactic Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Shara, Michael M.; Neill, James D.

    2005-03-01

    SALT is uniquely poised to make major inroads in the study of extragalactic cataclysmic variables (CVs) - novae and dwarf novae. The ability to search an external galaxy for erupting CVs night after night, for months at a time, AND to obtain confirmatory spectra within a night of discovery is unique and invaluable. We present several examples of multi-week to multi-month searches for extragalactic CVs with 1 to 4 meter-class telescopes. In particular, we have detected the first erupting dwarf novae in the LMC and placed a lower limit on the number of CVs in that galaxy. We have also observed the Local Group dwarf ellipticals M32 and NGC 205 in their entirety every clear night over a 4.5 month interval. In this survey we discovered one nova each in M32 and NGC 205, far more than previous nova surveys led us to expect. A similar search in M81 again reveals more novae than expected, and demonstrates, conclusively, that novae are predominantly a bulge population in spiral galaxies. Finally we report the detection of intergalactic tramp novae in the Fornax cluster, and emphasize that these are valuable tracers of stars stripped from their hosts during galaxy harassment. The insights gained during these preliminary studies illustrate how valuable SALT campaigns on extragalactic CVs will be.

  4. The compact radio structure of the high-redshift quasar OQ172

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Jiang, D. R.; Gu, M.; Gurvits, L. I.

    2016-02-01

    The GHz-Peaked Spectrum (GPS) quasar OQ172 (J1445+0958) has an extremely high rest-frame rotation measure (RM > 20 000 rad m-2) and an RM gradient in its inner nucleus. Its jet observed with Very Long Baseline Interferometry (VLBI) is strongly bent along an arc spanning > 100 pc. Near infrared (NIR) spectra reveal an unusually large [O III] line width which suggests a large mass within the NLR and/or strong interactions between the emerging jet and the dense material therein. We present our VLBI Space Observatory Programme (VSOP) and Multi-frequency Very Long Baseline Array (VLBA) observation of the GPS quasar OQ172. The observations will help us to explore the VLBI radio properties and to better understand the circumnuclear environment of OQ172.

  5. Very-long-baseline radio interferometry - The Mark III system for geodesy, astrometry, and aperture synthesis

    NASA Technical Reports Server (NTRS)

    Rogers, A. E. E.; Cappalo, R. J.; Hinteregger, H. F.; Levine, J. I.; Nesman, E. F.; Webber, J. C.; Whitney, A. R.; Clark, T. A.; Ryan, C. M. J.; Corey, B. E.

    1983-01-01

    Up to 112 megabit/sec from each radio telescope of an interferometric array can be recorded and processed by the Mark III VLBI system. Sample results are given for baseline lengths between three antennas in the U.S. and three in Europe, as well as for the arc lengths between the positions of six extragalactic radio sources. No significant change is detected in any of these quantities. Signals of a given polarization or of pairs of orthogonal polarizations may be recorded in up to 28 contiguous bands, each nearly 2 MHz wide, for mapping the brightness distribution of compact radio sources. The demonstrated ability to record large bandwidths, and to link many large radio telescopes, allows compact sources with flux densities below 1 millijansky to be detected and studied.

  6. The BL LAC phenomenon: X-ray observations of transition objects and determination of the x-ray spectrum of a complete sample of flat-spectrum radio sources

    NASA Technical Reports Server (NTRS)

    Worrall, Diana M.

    1994-01-01

    This report summarizes the activities related to two ROSAT investigations: (1) x-ray properties of radio galaxies thought to contain BL Lac type nuclei; and (2) x-ray spectra of a complete sample of flat-spectrum radio sources. The following papers describing the research are provided as attachments: Multiple X-ray Emission Components in Low Power Radio Galaxies; New X-ray Results on Radio Galaxies; Analysis Techniques for a Multiwavelength Study of Radio Galaxies; Separation of X-ray Emission Components in Radio Galaxies; X-ray Emission in Powerful Radio Galaxies and Quasars; Extended and Compact X-ray Emission in Powerful Radio Galaxies; and X-ray Spectra of a Complete Sample of Extragalactic Core-dominated Radio Sources.

  7. The compact radio sources in 4C 39.25 and 3C 345. [quasars

    NASA Technical Reports Server (NTRS)

    Shaffer, D. B.; Kellermann, K. I.; Purcell, G. H.; Pauliny-Toth, I. I. K.; Preuss, E.; Witzel, A.; Graham, D.; Schilizzi, R. T.; Cohen, M. H.; Niell, A. E.

    1977-01-01

    Long-baseline interferometry of the quasars 4C 39.25 and 3C 345 at 10.65 and 14.77 GHz shows that the centimeter radio source in each object is double, with component separations of 0.0020 arcsec (4C 39.25) and 0.0013 arcsec (3C 345 at 1974.5). For each source, the separation is the same at both frequencies, as well as similar to the structure observed at 7.85 GHz (and 5.0 GHz for 4C 39.25). The spectra of the individual components are derived and shown to vary with time approximately as expected for expanding self-absorbed synchrotron sources. The magnetic fields in the components are estimated to be as high as 0.1 gauss, but the structure of the sources appears to be unrelated to the magnetic-field orientation derived from low-resolution polarization measurements. The component separation in 4C 39.25 has not changed for several years, whereas 3C 345 shows rapid expansion.

  8. Electronic Catalog Of Extragalactic Objects

    NASA Technical Reports Server (NTRS)

    Helou, George; Madore, Barry F.

    1993-01-01

    NASA/IPAC Extragalactic Database (NED) is publicly accessible computerized catalog of published information about extragalactic observations. Developed to accommodate increasingly large sets of data from surveys, exponentially growing literature, and trend among astronomers to take multispectral approach to astrophysical problems. Accessible to researchers and librarians.

  9. New Limits on Extragalactic Magnetic Fields from Rotation Measures

    NASA Astrophysics Data System (ADS)

    Pshirkov, M. S.; Tinyakov, P. G.; Urban, F. R.

    2016-05-01

    We take advantage of the wealth of rotation measures data contained in the NRAO VLA Sky Survey catalog to derive new, statistically robust, upper limits on the strength of extragalactic magnetic fields. We simulate the extragalactic magnetic field contribution to the rotation measures for a given field strength and correlation length, by assuming that the electron density follows the distribution of Lyman-α clouds. Based on the observation that rotation measures from distant radio sources do not exhibit any trend with redshift, while the extragalactic contribution instead grows with distance, we constrain fields with Jeans' length coherence length to be below 1.7 nG at the 2 σ level, and fields coherent across the entire observable Universe below 0.65 nG. These limits do not depend on the particular origin of these cosmological fields.

  10. Probing the intergalactic medium with fast radio bursts

    SciTech Connect

    Zheng, Z.; Ofek, E. O.; Kulkarni, S. R.; Neill, J. D.; Juric, M.

    2014-12-10

    The recently discovered fast radio bursts (FRBs), presumably of extragalactic origin, have the potential to become a powerful probe of the intergalactic medium (IGM). We point out a few such potential applications. We provide expressions for the dispersion measure and rotation measure as a function of redshift, and we discuss the sensitivity of these measures to the He II reionization and the IGM magnetic field. Finally, we calculate the microlensing effect from an isolated, extragalactic stellar-mass compact object on the FRB spectrum. The time delays between the two lensing images will induce constructive and destructive interference, leaving a specific imprint on the spectra of FRBs. With a high all-sky rate, a large statistical sample of FRBs is expected to make these applications feasible.

  11. Compact steep-spectrum sources as the parent population of flat-spectrum radio-loud narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Berton, M.; Caccianiga, A.; Foschini, L.; Peterson, B. M.; Mathur, S.; Terreran, G.; Ciroi, S.; Congiu, E.; Cracco, V.; Frezzato, M.; La Mura, G.; Rafanelli, P.

    2016-06-01

    Narrow-line Seyfert 1 galaxies (NLS1s) are an interesting subclass of active galactic nuclei (AGN), which tipically does not exhibit any strong radio emission. Seven percent of them, though, are radio-loud and often show a flat radio-spectrum (F-NLS1s). This, along to the detection of γ-ray emission coming from them, is usually interpreted as a sign of a relativistic beamed jet oriented along the line of sight. An important aspect of these AGN that must be understood is the nature of their parent population, in other words how do they appear when observed under different angles. In the recent literature it has been proposed that a specific class of radio-galaxies, compact-steep sources (CSS) classified as high excitation radio galaxies (HERG), can represent the parent population of F-NLS1s. To test this hypothesis in a quantitative way,in this paper we analyzed the only two statistically complete samples of CSS/HERGs and F-NLS1s available in the literature. We derived the black hole mass and Eddington ratio distributions, and we built for the first time the radio luminosity function of F-NLS1s. Finally, we applied a relativistic beaming model to the luminosity function of CSS/HERGs, and compared the result with the observed function of F-NLS1s. We found that compact steep-spectrum sources are valid parent candidates and that F-NLS1s, when observed with a different inclination, might actually appear as CSS/HERGs.

  12. Very Large Array and Jansky Very Large Array observations of the compact radio sources in M8

    SciTech Connect

    Masqué, Josep M.; Rodríguez, Luis F.; Dzib, Sergio

    2014-12-10

    We analyze high-resolution Very Large Array continuum observations of the M8 region carried out at several epochs that span a period of 30 yr. Our maps reveal two compact sources. One is associated with Her 36 SE, a possible companion of the O7 luminous massive star Her 36, and the other is associated with G5.97–1.17, whose proplyd nature was previously established. Using the analyzed data, we do not find significant time variability in any of these sources. The derived spectral index of ≥0.1 for Her 36 SE, the marginal offset of the radio emission with the previous infrared detection, and the associated X-ray emission previously reported suggest the presence of an unresolved interaction region between the strong winds of Her 36 and Her 36 SE. This region would contribute non-thermal contamination to the global wind emission of Her 36, flattening its spectral index. On the other hand, the emission of G5.97–1.17 can also be explained by a mixture of thermal and non-thermal emission components, with different relative contributions of both emission mechanisms along the proplyd. We argue that the shock created by the photo-evaporation flow of the proplyd with the collimated stellar wind of Her 36 accelerates charged particles in G5.97–1.17, producing considerable synchrotron emission. On the contrary, an electron density enhancement at the southwest of G5.97–1.17 makes the thermal emission dominant over this region.

  13. Extragalactic Backgrounds after Planck

    NASA Astrophysics Data System (ADS)

    Dore, Olivier

    Among the potentially most important results of cosmology in the last decade is the realization that the star formation rate at redshifts greater than 1 is higher than at present by about an order of magnitude, and that half of the energy produced since the surface of last scattering has been absorbed and reemitted by dust. Most of the light produced by stars at high redshifts thus reaches us in the far infrared. This radiation is referred to as the cosmic infrared background (CIB) and is emitted primarily by dusty, star-forming galaxies at redshift z=1-4. Embedded in far infrared emission of the CIB is the history of star formation, dust production, and the growth of large scale structures. Our research project aims at shedding new light on several extragalactic backgrounds investigated by NASA surveys, in light of recent observational progresses in mapping the CIB. Most lately, two new missions, Planck and Herschel, released ground-breaking measurements of the CIB. These measurements are an order of magnitude deeper and wider than previous ones, and they are literally revolutionizing the field. Our understanding of these data is now advanced enough for us to leverage our measurement of the CIB in Planck and Herschel, in order to extract new scientific insights from past missions. We propose to combine Planck and Herschel public data with archival data from WISE, GALEX, Chandra and Fermi. Not only original, the impact of our research project should be immediate. Using the CIB as a full sky, bright, high redshift reference extragalactic background, we will exploit the underlying physical connection among these various cosmological datasets. We expect new insights about the CIB, but also about the multiple extragalactic backgrounds probed in combination with it. In particular, we will investigate the cosmic star formation history at a period where it peaks, and because the clustering of matter is driven by dark matter, the measurement of the CIB clustering also

  14. GPS and CSS Radio Sources and Space-VLBI

    NASA Astrophysics Data System (ADS)

    Snellen, I.

    2009-08-01

    A short overview is given of the status of research on young extragalactic radio sources. We concentrate on Very Long Baseline Interferometric (VLBI), and space-VLBI results obtained with the VLBI Space Observatory Programme (VSOP). In 2012, VSOP-2 will be launched, which will allow VLBI observations at an unprecedented angular resolution. One particular question VSOP-2 could answer is whether some of the High Frequency Peakers (HFP) are indeed the youngest objects in the family of GPS and CSS sources. VSOP-2 observations can reveal their angular morphology and determine whether any are Ultra-compact Symmetric Objects.

  15. Statistical Effects of Doppler Beaming and Malmquist Bias on Flux-limited Samples of Compact Radio Sources

    NASA Astrophysics Data System (ADS)

    Lister, Matthew L.; Marscher, Alan P.

    1997-02-01

    We examine the effects of Doppler beaming on flux-limited samples of compact radio sources representative of relativistic jets found in active galactic nuclei (AGNs). We expand upon past studies by incorporating a luminosity function and redshift distribution for the parent population and by allowing the unbeamed synchrotron luminosity L of a relativistic jet to be related to its bulk Lorentz factor (Γ). These enhancements allow us to compare observable parameters other than simply apparent velocity with the data. The predictions of L-Γ-independent (LGI) models are compared to those of a L-Γ-dependent (LGD) scenario in which the Lorentz factor and luminosity are related by the form L ~ Γξ. This is accomplished using Monte Carlo simulations, where we compare the predicted flux density, redshift, monochromatic emitted luminosity, and apparent velocity distributions of flux-limited samples to the Caltech-Jodrell Bank sample of bright, flat-spectrum, radio core-dominated AGNs (CJ-F). The LGI model predictions are consistent with the CJ-F data if we adopt parent Lorentz factor distributions of the form N(Γ) ~ Γa, where -1.5 <~ a <~ -1.75, or, alternatively N(Γ) ~ (Γ - 1)a, where -0.5 <~ a <~ -1. These models reproduce, via selection effects, a deficit of sources having both low apparent velocity (βapp) and high monochromatic emitted luminosity (P) seen in the CJ-F sample, as reported by Vermeulen in 1995. We examine two possible cases for the LGD scenario, the first of which employs a positive correlation between unbeamed synchrotron luminosity and Lorentz factor (the LGC model), and the second of which employs an anticorrelation (the LGA model). The LGA models do not predict enough low-P sources to be consistent with the CJ-F data and do not reproduce the P versus βapp envelope. The predictions of the best-fit LGC model, on the other hand, are very similar to our best-fit LGI models and provide as good fits to the CJ-F data, with the important exception that

  16. `Zwicky's Nonet': a compact merging ensemble of nine galaxies and 4C 35.06, a peculiar radio galaxy with dancing radio jets

    NASA Astrophysics Data System (ADS)

    Biju, K. G.; Bagchi, Joydeep; Ishwara-Chandra, C. H.; Pandey-Pommier, M.; Jacob, Joe; Patil, M. K.; Kumar, P. Sunil; Pandge, Mahadev; Dabhade, Pratik; Gaikwad, Madhuri; Dhurde, Samir; Abraham, Sheelu; Vivek, M.; Mahabal, Ashish A.; Djorgovski, S. G.

    2017-10-01

    We report the results of our radio, optical and infrared studies of a peculiar radio source 4C 35.06, an extended radio-loud active galactic nucleus (AGN) at the centre of galaxy cluster Abell 407 (z = 0.047). The central region of this cluster hosts a remarkably tight ensemble of nine galaxies, the spectra of which resemble those of passive red ellipticals, embedded within a diffuse stellar halo of ∼1 arcmin size. This system (named 'Zwicky's Nonet') provides unique and compelling evidence for a multiple-nucleus cD galaxy precursor. Multifrequency radio observations of 4C 35.06 with the Giant Meterwave Radio Telescope (GMRT) at 610, 235 and 150 MHz reveal a system of 400-kpc scale helically twisted and kinked radio jets and outer diffuse lobes. The outer extremities of jets contain extremely steep-spectrum (spectral index -1.7 to -2.5) relic/fossil radio plasma with a spectral age of a few ×(107-108) yr. Such ultra-steep spectrum relic radio lobes without definitive hotspots are rare and they provide an opportunity to understand the life cycle of relativistic jets and physics of black hole mergers in dense environments. We interpret our observations of this radio source in the context of growth of its central black hole, triggering of its AGN activity and jet precession, all possibly caused by galaxy mergers in this dense galactic system. A slow conical precession of the jet axis due to gravitational perturbation between interacting black holes is invoked to explain the unusual jet morphology.

  17. EXTRAGALACTIC CS SURVEY

    SciTech Connect

    Bayet, E.; Viti, S.; Aladro, R.; MartIn, S.; MartIn-Pintado, J.

    2009-12-10

    We present a coherent and homogeneous multi-line study of the CS molecule in nearby (D < 10 Mpc) galaxies. We include, from the literature, all the available observations from the J = 1-0 to the J = 7-6 transitions toward NGC 253, NGC 1068, IC 342, Henize 2-10, M 82, the Antennae Galaxies, and M 83. We have, for the first time, detected the CS(7-6) line in NGC 253, M 82 (both in the northeast and southwest molecular lobes), NGC 4038, M 83 and tentatively in NGC 1068, IC 342, and Henize 2-10. We use the CS molecule as a tracer of the densest gas component of the interstellar medium in extragalactic star-forming regions, following previous theoretical and observational studies by Bayet et al. In this first paper out of a series, we analyze the CS data sample under both local thermodynamical equilibrium (LTE) and non-LTE (large velocity gradient) approximations. We show that except for M 83 and Overlap (a shifted gas-rich position from the nucleus NGC 4039 in the Antennae Galaxies), the observations in NGC 253, IC 342, M 82-NE, M 82-SW, and NGC 4038 are not well reproduced by a single set of gas component properties and that, at least, two gas components are required. For each gas component, we provide estimates of the corresponding kinetic temperature, total CS column density, and gas density.

  18. Probing the properties of extragalactic SNRs

    NASA Astrophysics Data System (ADS)

    Leonidaki, Ioanna

    2016-06-01

    The investigation of extragalactic SNRs gives us the advantage of surmounting the challenges we are usually confronted with when observing Galactic SNRs, most notably Galactic extinction and distance uncertainties. At the same time, by obtaining larger samples of SNRs, we are allowed to cover a wider range of environments and ISM parameters than our Galaxy, providing us a more complete and representative picture of SNR populations. I will outline the recent progress on extragalactic surveys of SNR populations focusing on the optical, radio, and X-ray bands. Multi-wavelength surveys can provide several key aspects of the physical processes taking place during the evolution of SNRs while at the same time can overcome possible selection effects that are inherent from monochromatic surveys. I will discuss the properties derived in each band (e.g. line ratios, luminosities, densities, temperatures) and their connection in order to yield information on various aspects of their behaviour and evolution. For example their interplay with the surrounding medium, their correlation with star formation activity, their luminosity distributions and their dependence on galaxy types.

  19. Optical monitoring of extragalactic sources for linking the ICRF and the future Gaia celestial reference frame. I. Variability of ICRF sources

    NASA Astrophysics Data System (ADS)

    Taris, F.; Andrei, A.; Klotz, A.; Vachier, F.; Côte, R.; Bouquillon, S.; Souchay, J.; Lambert, S.; Anton, S.; Bourda, G.; Coward, D.

    2013-04-01

    Context. The astrometric mission Gaia of the European Space Agency is scheduled to be launched in 2013. It will provide an astrometric catalog of 500 000 extragalactic sources that could be the basis of a new optical reference frame after the Hipparcos satellite one. On the other hand, the current International Celestial Reference Frame (ICRF) is based on observations of extragalactic sources at radio wavelength. The astrometric coordinates of sources in these two reference systems will have roughly the same uncertainty. It is then mandatory to observe a set of common targets at both optical and radio wavelengths to link the ICRF with what could be called the Gaia Celestial Reference Frame (GCRF). Aims: The goal of this work is to observe a first set of 70 extragalactic sources at optical wavelengths that could achieve the link with the ICRF. Variations in the light curves of these targets are connected with astrophysical processes that could produce displacements of the optical photocenter. Such displacements, if they exist, are critical in the framework of the link of reference systems. Methods: Four telescopes were used to observe the targets at optical wavelengths. Two of them are located in France, one in Chile, and the last one in Australia. First observations were carried out during one year and a half in the R and V bands. A new method of characterizing the compactness of the targets was applied to the images obtained. Results: This paper presents results for the optical monitoring of extragalactic sources suitable for linking reference systems. We show that a large number of targets in our set are variable at the two observational wavelengths. A short presentation of each object is given, along with some references to earlier photometric studies. A morphological index is defined and applied to the 5000 images obtained during the observation campaign. Conclusions: This work fits into a more general project of astrophotometric and astrophysical studies of

  20. Extragalactic sources in Cosmic Microwave Background maps

    SciTech Connect

    Zotti, G. De; Castex, G.; González-Nuevo, J.; Cai, Z.-Y.; Delabrouille, J.; Herranz, D.; Bonavera, L.; Serjeant, S.; Bilicki, M.; Andreani, P. E-mail: gcastex@sissa.it E-mail: marcos.lopez.caniego@sciops.esa.int; and others

    2015-06-01

    We discuss the potential of a next generation space-borne CMB experiment for studies of extragalactic sources with reference to COrE+, a project submitted to ESA in response to the call for a Medium-size mission (M4). We consider three possible options for the telescope size: 1 m, 1.5 m and 2 m (although the last option is probably impractical, given the M4 boundary conditions). The proposed instrument will be far more sensitive than Planck and will have a diffraction-limited angular resolution. These properties imply that even the 1 m telescope option will perform substantially better than Planck for studies of extragalactic sources. The source detection limits as a function of frequency have been estimated by means of realistic simulations taking into account all the relevant foregrounds. Predictions for the various classes of extragalactic sources are based on up-to-date models. The most significant improvements over Planck results are presented for each option. COrE+ will provide much larger samples of truly local star-forming galaxies (by about a factor of 8 for the 1 m telescope, of 17 for 1.5 m, of 30 for 2 m), making possible analyses of the properties of galaxies (luminosity functions, dust mass functions, star formation rate functions, dust temperature distributions, etc.) across the Hubble sequence. Even more interestingly, COrE+ will detect, at |b| > 30°, thousands of strongly gravitationally lensed galaxies (about 2,000, 6,000 and 13,000 for the 1 m, 1.5 m and 2 m options, respectively). Such large samples are of extraordinary astrophysical and cosmological value in many fields. Moreover, COrE+ high frequency maps will be optimally suited to pick up proto-clusters of dusty galaxies, i.e. to investigate the evolution of large scale structure at larger redshifts than can be reached by other means. Thanks to its high sensitivity COrE+ will also yield a spectacular advance in the blind detection of extragalactic sources in polarization: we expect that

  1. Interpretation of extragalactic jets

    SciTech Connect

    Norman, M.L.

    1985-01-01

    The nature of extragalatic radio jets is modeled. The basic hypothesis of these models is that extragalatic jets are outflows of matter which can be described within the framework of fluid dynamics and that the outflows are essentially continuous. The discussion is limited to the interpretation of large-scale (i.e., kiloparsec-scale) jets. The central problem is to infer the physical parameters of the jets from observed distributions of total and polarized intensity and angle of polarization as a function of frequency. 60 refs., 6 figs.

  2. EXTRAGALACTIC VERY HIGH ENERGY GAMMA-RAY BACKGROUND

    SciTech Connect

    Neronov, A.; Semikoz, D. V.

    2012-09-20

    We study the origin of the extragalactic diffuse gamma-ray background using the data from the Fermi telescope. To estimate the background level, we count photons at high Galactic latitudes |b| > 60 Degree-Sign . Subtracting photons associated with known sources and the residual cosmic-ray and Galactic diffuse backgrounds, we estimate the extragalactic gamma-ray background (EGB) flux. We find that the spectrum of EGB in the very high energy band above 30 GeV follows the stacked spectrum of BL Lac objects. Large Area Telescope data reveal the positive (1 + z) {sup k}, 1 < k < 4 cosmological evolution of the BL Lac source population consistent with that of their parent population, Fanaroff-Riley type I radio galaxies. We show that EGB at E > 30 GeV could be completely explained by emission from unresolved BL Lac objects if k {approx_equal} 3.

  3. Extragalactic background light measurements and applications

    PubMed Central

    Cooray, Asantha

    2016-01-01

    This review covers the measurements related to the extragalactic background light intensity from γ-rays to radio in the electromagnetic spectrum over 20 decades in wavelength. The cosmic microwave background (CMB) remains the best measured spectrum with an accuracy better than 1%. The measurements related to the cosmic optical background (COB), centred at 1 μm, are impacted by the large zodiacal light associated with interplanetary dust in the inner Solar System. The best measurements of COB come from an indirect technique involving γ-ray spectra of bright blazars with an absorption feature resulting from pair-production off of COB photons. The cosmic infrared background (CIB) peaking at around 100 μm established an energetically important background with an intensity comparable to the optical background. This discovery paved the way for large aperture far-infrared and sub-millimetre observations resulting in the discovery of dusty, starbursting galaxies. Their role in galaxy formation and evolution remains an active area of research in modern-day astrophysics. The extreme UV (EUV) background remains mostly unexplored and will be a challenge to measure due to the high Galactic background and absorption of extragalactic photons by the intergalactic medium at these EUV/soft X-ray energies. We also summarize our understanding of the spatial anisotropies and angular power spectra of intensity fluctuations. We motivate a precise direct measurement of the COB between 0.1 and 5 μm using a small aperture telescope observing either from the outer Solar System, at distances of 5 AU or more, or out of the ecliptic plane. Other future applications include improving our understanding of the background at TeV energies and spectral distortions of CMB and CIB. PMID:27069645

  4. Extragalactic background light measurements and applications.

    PubMed

    Cooray, Asantha

    2016-03-01

    This review covers the measurements related to the extragalactic background light intensity from γ-rays to radio in the electromagnetic spectrum over 20 decades in wavelength. The cosmic microwave background (CMB) remains the best measured spectrum with an accuracy better than 1%. The measurements related to the cosmic optical background (COB), centred at 1 μm, are impacted by the large zodiacal light associated with interplanetary dust in the inner Solar System. The best measurements of COB come from an indirect technique involving γ-ray spectra of bright blazars with an absorption feature resulting from pair-production off of COB photons. The cosmic infrared background (CIB) peaking at around 100 μm established an energetically important background with an intensity comparable to the optical background. This discovery paved the way for large aperture far-infrared and sub-millimetre observations resulting in the discovery of dusty, starbursting galaxies. Their role in galaxy formation and evolution remains an active area of research in modern-day astrophysics. The extreme UV (EUV) background remains mostly unexplored and will be a challenge to measure due to the high Galactic background and absorption of extragalactic photons by the intergalactic medium at these EUV/soft X-ray energies. We also summarize our understanding of the spatial anisotropies and angular power spectra of intensity fluctuations. We motivate a precise direct measurement of the COB between 0.1 and 5 μm using a small aperture telescope observing either from the outer Solar System, at distances of 5 AU or more, or out of the ecliptic plane. Other future applications include improving our understanding of the background at TeV energies and spectral distortions of CMB and CIB.

  5. Three-dimensional Tomography of the Galactic and Extragalactic Magnetoionic Medium with the SKA

    NASA Astrophysics Data System (ADS)

    Han, J. L.; van Straten, W.; Lazio, T. J. W.; Deller, A.; Sobey, C.; Xu, J.; Schnitzeler, D.; Imai, H.; Chatterjee, S.; Macquart, J.-P.; Kramer, M.; Cordes, J. M.

    2015-04-01

    The magneto-ionic structures of the interstellar medium of the Milky Way and the intergalactic medium are still poorly understood, especially at distances larger than a few kiloparsecs from the Sun. The three-dimensional (3D) structure of the Galactic magnetic field and electron density distribution may be probed through observations of radio pulsars, primarily owing to their compact nature, high velocities, and highly-polarized short-duration radio pulses. Phase 1 of the SKA, i.e. SKA1, will increase the known pulsar population by an order of magnitude, and the full SKA, i.e. SKA2, will discover pulsars in the most distant regions of our Galaxy. SKA1-VLBI will produce model-independent distances to a large number of pulsars, and wide-band polarization observations by SKA1-LOW and SKA1-MID will yield high precision dispersion measure, scattering measure, and rotation measure estimates along thousands of lines of sight. When combined, these observations will enable detailed tomography of the large-scale magneto-ionic structure of both the Galactic disk and the Galactic halo. Turbulence in the interstellar medium can be studied through the variations of these observables and the dynamic spectra of pulsar flux densities. SKA1-LOW and SKA1-MID will monitor interstellar weather and produce sensitive dynamic and secondary spectra of pulsar scintillation, which can be used to make speckle images of the ISM, study turbulence on scales between ˜108 and 1013 m, and probe pulsar emission regions on scales down to ˜10 km. In addition, extragalactic pulsars or fast radio bursts to be discovered by SKA1 and SKA2 can be used to probe the electron density distribution and magnetic fields in the intergalactic medium beyond the Milky Way.

  6. Application of disturbance observer-based control in low-level radio-frequency system in a compact energy recovery linac at KEK

    NASA Astrophysics Data System (ADS)

    Qiu, Feng; Michizono, Shinichiro; Miura, Takako; Matsumoto, Toshihiro; Omet, Mathieu; Sigit, Basuki Wibowo

    2015-09-01

    A disturbance observer (DOB)-based control for a digital low-level radio-frequency (LLRF) system in a compact energy recovery linac (cERL) at KEK has been developed. The motivation for this control approach is to compensate for or suppress the disturbance signal in the rf system such as beam loading, power supply ripples, and microphonics. Disturbance signals in specified frequency ranges were observed and reconstructed accurately in the field-programmable gate array and were then removed in the feedforward model in real time. The key component in this DOB controller is a disturbance observer, which includes the inverse mathematical model of the rf plant. In this paper, we have designed a DOB control-based approach in order to improve the LLRF system performance in disturbance rejection. We have confirmed this approach in the cERL beam commissioning.

  7. MIRI GTO Extragalactic Surveys

    NASA Astrophysics Data System (ADS)

    Rieke, George; MIRI Instrument Team

    2017-06-01

    The MIRI GTO surveys will focus on the redshift range from 1 to 6. At the lower part of this range, we will conduct a multiband survey of about 30 square arcmin centered on the GOODS-S/HUDF region. We have developed means for a reliable separation of star forming galaxies and active galactic nuclei on the basis of these data. We expect to detect well in all bands about 800 star forming galaxies between redshifts of 1 and 2. We will use the data to determine star formation rates down to 10 solar masses per year for the most distant of these galaxies. The survey area has been set to include 30-50 AGN of known types well-detected at 21 microns with MIRI. The multiband data will let us identify any additional obscured AGN through their emission near 5 microns where star forming SEDs have a minimum. Given the ultradeep radio, optical-UV, and X-ray data in the same field, we expect to derive a complete sample of luminous AGNs and define the characteristics of its members. We will also conduct smaller-area ultra-deep surveys at 5.6 and 7.7 microns. They will detect normal galaxies out to z of 6.5 - 7.5, where they will still provide measurements of tens of them. These data will be used with NIRCam measurements to improve the accuracy of the mass estimates for normal galaxies. The depth and resolution of the MIRI images will far exceed any previous data and hence they also have significant discovery potential.

  8. Ultra-compact structure in intermediate-luminosity radio quasars: building a sample of standard cosmological rulers and improving the dark energy constraints up to z 3

    NASA Astrophysics Data System (ADS)

    Cao, Shuo; Zheng, Xiaogang; Biesiada, Marek; Qi, Jingzhao; Chen, Yun; Zhu, Zong-Hong

    2017-09-01

    Context. Ultra-compact structure in radio sources (especially in quasars that can be observed up to very high redshifts), with milliarcsecond angular sizes measured by very-long-baseline interferometry (VLBI), is becoming an important astrophysical tool for probing both cosmology and the physical properties of AGN. Aims: We present a newly compiled data set of 120 milliarcsec. compact radio sources representing intermediate-luminosity quasars covering the redshift range 0.46 < z < 2.76 and check the possibility of using these sources as independent cosmological probes. These quasars observed at 2.29 GHz show negligible dependence on redshifts and intrinsic luminosity, and thus represent a fixed comoving-length of standard ruler. Methods: For a cosmological ruler with intrinsic length lm, the angular size-redshift relation can be written as θ(z) = lm/DA(z, where θ(z) is the angular size at redshift z, and DA(z) is the corresponding angular diameter distance. We use a compilation of angular size and redshift data for ultra-compact radio sources from a well-known VLBI survey, and implement a new cosmology-independent technique to calibrate the linear size of this standard ruler, which is also used to test different cosmological models with and without the flat universe assumption. Results: We determine the linear size of this standard ruler as lm = 11.03 ± 0.25 pc, which is the typical radius at which AGN jets become opaque at the observed frequency ν 2 GHz. Our measurement of this linear size is also consistent with the previous and recent radio observations at other different frequencies. In the framework of flat ΛCDM model, we find a high value of the matter density parameter, Ωm = 0.322+0.244-0.141, and a low value of the Hubble constant, H0 = 67.6+7.8-7.4 km s-1 Mpc-1, which is in excellent agreement with the cosmic microwave background (CMB) anisotropy measurements by Planck. We obtain Ωm = 0.309+0.215-0.151, w = -0.970+0.500-1.730 at 68.3% CL for the

  9. A Compact X-Ray Source in the Radio Pulsar-wind Nebula G141.2+5.0

    NASA Astrophysics Data System (ADS)

    Reynolds, Stephen P.; Borkowski, Kazimierz J.

    2016-01-01

    We report the results of a 50 ks Chandra observation of the recently discovered radio object G141.2+5.0, presumed to be a pulsar-wind nebula. We find a moderately bright unresolved X-ray source that we designate CXOU J033712.8 615302 coincident with the central peak radio emission. An absorbed power-law fit to the 241 counts describes the data well, with absorbing column {N}H=6.7(4.0,9.7)× {10}21 cm-2 and photon index {{Γ }}=1.8(1.4,2.2). For a distance of 4 kpc, the unabsorbed luminosity between 0.5 and 8 keV is {1.7}-0.3+0.4× {10}32 erg s-1 (90% confidence intervals). Both LX and Γ are quite typical of pulsars in PWNe. No extended emission is seen; we estimate a conservative 3σ upper limit to the surface brightness of any X-ray PWN near the point source to be 3× {10}-17 erg cm-2 s-1 arcsec-2 between 0.5 and 8 keV, assuming the same spectrum as the point source; for a nebula of diameter 13\\prime\\prime , the flux limit is 6% of the flux of the point source. The steep radio spectrum of the PWN (α ˜ -0.7), if continued to the X-ray without a break, predicts {L}{{X}} {{(nebula)}}˜ 1× {10}33 erg s-1, so additional spectral steepening between radio and X-rays is required, as is true of all known PWNe. The high Galactic latitude gives a z-distance of 350 pc above the Galactic plane, quite unusual for a Population I object.

  10. Brown University Radio Student Telescope (BURST)

    NASA Astrophysics Data System (ADS)

    Miller, Michelle

    2017-01-01

    The Brown University Radio Student Telescope (BURST) is a rooftop low frequency radio interferometer that we hope to potentially use to observe radio transients, non-thermal radio emission from Galactic synchrotron and supernova remnants, and extragalactic radio sources. It was built by a group of Brown undergraduates this past summer. An overview of the design, ultimate installation, challenges in implementation and data acquisition will be covered in the poster.

  11. Development of a compact precision linear actuator for the active surface upgrade of the Delingha 13.7-m radio telescope

    NASA Astrophysics Data System (ADS)

    Zhou, Guohua; Li, Aihua; Yang, Dehua; Zhang, Zhenchao; Li, Guoping

    2012-09-01

    The Delingha 13.7-m radio telescope is to be upgraded with an active surface for multi-beam observation at 3 mm wavelength. Its primary reflector is paved with 72 aluminum panels which are originally supported by 480 fixtures. One of the critical tasks associated with the upgrade program is development of precision linear displacement actuators to replace the panel fixtures hence to Listed first in the upgrade program is actively drive and position the panels. The linear actuator is required to fit the existing positions, dimensions and connections of the panels and the backup structure, also implicitly required to be as compact and lightweighted as possible. This paper is to report in detail the development and experiment of the compact, folded, precision linear actuator according to given technique requirements and constraints, including the description of the flexible adaption of the fixture of the actuators and the special design of the connecting mechanism with the panels. The experiment system is established with one of the spare panels of the telescope, and six sets of actuator and control electronics are included for driving the panel. This paper will present the test results measured on a single actuator prototype as well as the actuators working together in the spare panel experiment. The test results prove that the actuator manifests positioning accuracy of microns and load capacity of 12 kg. The related connection and electronics design of the actuator also meets the requirements of the update program of the telescope.

  12. Dust in Extragalactic Reflection Nebulae

    NASA Astrophysics Data System (ADS)

    Lee, Chris H.; Hodges-Kluck, Edmund J.

    2017-08-01

    Observational evidence for extragalactic dust has been recently found in the form of UV extragalactic reflection nebulae around edge-on spiral galaxies, but the nature of the dust is largely unknown. To derive dust parameters, UV fluxes from the spacecrafts GALEX and Swift have been compared with model UV halo SEDs, which have been created from galaxy template spectra and a silicate-graphite dust model. The model contains two free parameters, which are fractional composition and maximum grain size. These analyses have been done for a sample of 8 nearby edge-on spiral galaxies with bright UV halos, where the dust properties can be spatially resolved, such as inside and outside of galactic winds or as a function of height from the galactic disc. The dust properties give insight into how dust is expelled from the galactic disc, which can also be applied to understanding gaseous outflows from the galaxies as well.

  13. A-3 scientific results - extragalactic

    NASA Technical Reports Server (NTRS)

    Schwartz, D. A.

    1979-01-01

    The results of the HEAO A-3 experiment are summarized. Specific contributions of the experiment to extragalactic astronomy are emphasized. The discovery of relatively condensed X-ray emission in the cores of those clusters of galaxies which are dominated by a giant elliptical or cD galaxy, the discovery of extended X-ray emitting plasma in groups of galaxies, and the demonstration that BL Lac objects are a class of X-ray sources are among the topics discussed.

  14. Precision geodesy via radio interferometry.

    NASA Technical Reports Server (NTRS)

    Hinteregger, H. F.; Shapiro, I. I.; Robertson, D. S.; Knight, C. A.; Ergas, R. A.; Whitney, A. R.; Burke, B. F.; Rogers, A. E. E.; Moran, J. M.; Clark, T. A.

    1972-01-01

    Very-long-baseline interferometry experiments, involving observations of extragalactic radio sources, were performed in 1969 to determine the vector separations between antenna sites in Massachusetts and West Virginia. The 845.130-kilometer baseline was estimated from two separate experiments. The results agreed with each other to within 2 meters in all three components and with a special geodetic survey to within 2 meters in length; the differences in baseline direction as determined by the survey and by interferometry corresponded to discrepancies of about 5 meters. The experiments also yielded positions for nine extragalactic radio sources and allowed the hydrogen maser clocks at the two sites to be synchronized.

  15. IUE observations of extragalactic objects

    NASA Technical Reports Server (NTRS)

    Boksenberg, A.; Snijders, M. A. J.; Wilson, R.; Benvenuti, P.; Clavell, J.; Macchetto, F.; Penston, M.; Boggess, A.; Gull, T. R.; Gondhalekar, P.

    1978-01-01

    During the commissioning phase of IUE several extragalactic objects were observed spectrally at low dispersion in the UV range lambda lambda 1150-3200: the Seyfert galaxies NGC4151 and NGC1068, the QSO 3C273, the BL Lacertae object B2 1101+38, the giant elliptical galaxy M87 and the spiral galaxy M81. The results obtained are presented and a preliminary analysis given for all six objects, discussing the continuous spectrum, extinction, emission line spectrum and absorption line spectrum, where possible for each case. Several new or confirmatory astrophysical results are obtained.

  16. A review of connected element radio interferometry directed at establishing an almost internal reference frame

    NASA Technical Reports Server (NTRS)

    Johnston, K. J.

    1980-01-01

    The present status of connected element radio interferometry towards establishing an accurate grid of positions of extragalactic radio sources is reviewed. Many of the problems being encountered are, in general, also faced by very long baseline interferometry.

  17. Scatter broadening of compact radio sources by the ionized intergalactic medium: prospects for detection with Space VLBI and the Square Kilometre Array

    NASA Astrophysics Data System (ADS)

    Koay, J. Y.; Macquart, J.-P.

    2015-01-01

    We investigate the feasibility of detecting and probing various components of the ionized intergalactic medium (IGM) and their turbulent properties at radio frequencies through observations of scatter broadening of compact sources. There is a strong case for conducting targeted observations to resolve scatter broadening (where the angular size scales as ˜ν-2) of compact background sources intersected by foreground galaxy haloes and rich clusters of galaxies to probe the turbulence of the ionized gas in these objects, particularly using Space very long baseline interferometry (VLBI) with baselines of 350 000 km at frequencies below 800 MHz. The sensitivity of the Square Kilometre Array (SKA) allows multifrequency surveys of interstellar scintillation (ISS) of ˜ 100 μJy sources to detect or place very strong constraints on IGM scatter broadening down to ˜ 1 μas scales at 5 GHz. Scatter broadening in the warm-hot component of the IGM with typical overdensities of ˜30 cannot be detected, even with Space VLBI or ISS, and even if the outer scales of turbulence have an unlikely low value of ˜1 kpc. None the less, intergalactic scatter broadening can be of the order of ˜ 100 μas at 1 GHz and ˜ 3 μas at 5 GHz for outer scales ˜1 kpc, assuming a sufficiently high-source redshift that most sight-lines intersect within a virial radius of at least one galaxy halo (z ≳ 0.5 and 1.4 for 1010 and 1011 M⊙ systems, following McQuinn 2014). Both Space VLBI and multiwavelength ISS observations with the SKA can easily test such a scenario, or place strong constraints on the outer scale of the turbulence in such regions.

  18. Contribution of quasar-driven outflows to the extragalactic gamma-ray background

    NASA Astrophysics Data System (ADS)

    Wang, Xiawei; Loeb, Abraham

    2016-12-01

    The origin of the extragalactic γ-ray background permeating throughout the Universe remains a mystery forty years after its discovery. The extrapolated population of blazars can account for only half of the background radiation in the energy range of ~0.1-10 GeV (refs ,). Here we show that quasar-driven outflows generate relativistic protons that produce the missing component of the extragalactic γ-ray background and naturally match its spectral fingerprint, with a generic break above ~1 GeV. The associated γ-ray sources are too faint to be detected individually, explaining why they had not been identified so far. However, future radio observations may image their shock fronts directly. Our best fit to the Fermi-LAT observations of the extragalactic γ-ray background spectrum provides constraints on the outflow parameters that agree with observations of these outflows and theoretical predictions. Although our model explains the data, there might be additional contributing sources.

  19. An Overview of Fast Radio Bursts

    NASA Astrophysics Data System (ADS)

    Romero, G. E.

    2017-07-01

    I offer a short review of the current understanding of fast radio bursts: episodic flares of radio waves detected at low frequencies with durations of about 1 ms. These events seem to have an extragalactic origin. I summarize the evidence supporting this statement and I discuss some of the theoretical models proposed so far to explain their nature.

  20. Planck 2013 results. The Planck Catalogue of Compact Sources

    NASA Astrophysics Data System (ADS)

    López-Caniego, M.

    2015-05-01

    The Planck Catalogue of Compact Sources (PCCS) is the catalogue of sources detected in the Planck Nominal mission corresponding to 15 months of data. It consists of nine single-frequency catalogues of Galactic and extragalactic compact sources detected over the entire sky. The PCCS covers the frequency range 30--857 GHz with higher sensitivity and better angular resolution than previous all-sky surveys in the microwave band. The flux density at the 90% completeness level at 143 and 217 GHz, the most sensitive channels, are 190 and 180 mJy. The Planck beams are very different and has a big impact in the detection of compact sources. The resolution of the Planck beams range from 32.38 to 4.33 arcmin at 30 and 857 GHz, respectively. The number of detections change very much with frequency, ranging from ˜1,250 detections at 30 GHz up to ˜24,000 857 GHz, respectively. By construction its reliability is >80 %, and more than 65 % of the sources have been detected at least in two contiguous Planck channels. Many of the Planck PCCS sources can be associated with stars with dust shells, stellar cores, radio galaxies, blazars, infrared luminous galaxies and Galactic interstellar medium features. Here we summarize the construction and validation of the PCCS, its contents and its statistical characterization.

  1. The origin of the Fast Radio Bursts, still an open question

    NASA Astrophysics Data System (ADS)

    Marcote, B.; Giroletti, M.; Garrett, M.; Paragi, Z.; Yuang, J.; Hada, K.; Cheung, C. C.

    2017-03-01

    Fast Radio Bursts (FRBs) are transient sources characterized by exhibiting a strong single pulse (with a duration of milliseconds or submilliseconds). They were firstly discovered by Lorimer et al. (2007), and nowadays tens of these events have been observed. Their origin remains unknown. Both, Galactic and extragalactic origins, have been proposed. The observed pulses resemble the ones from pulsars, and thus preferring a Galactic origin. However, the large dispersion measures observed in the FRBs point to an extragalactic origin. Many scenarios have been proposed up to now to explain the FRBs, most of them based on cataclysmic events. However, the discovery of the first repeating FRB (Spitler et al. 2016) indicates that could there be, at least, two different scenarios. Keane et al. (2016) reported for the first time the localization of an FRB. FRB 150418 was observed by the Parkes Telescope and a transient source associated with a galaxy was localized in the same field of view with the Australian Telescope Compact Array (ATCA). This association would confirm the extragalactic origin of the FRBs. However, this association has been widely discussed during the last months. Here we present a monitoring of the associated galaxy, WISE J071634.59190039.2, with the European VLBI Network (EVN). Our data show a compact radio emission persistent on day/week timescales one year after the observed FRB. This behavior perfectly fits to the expected emission of a regular active galactic nuclei (AGN), and thus not with the association of the FRB. The full study on this source can be found in Giroletti et al. (2016).

  2. Gravitational-wave Constraints on the Progenitors of Fast Radio Bursts

    NASA Astrophysics Data System (ADS)

    Callister, Thomas; Kanner, Jonah; Weinstein, Alan

    2016-07-01

    The nature of fast radio bursts (FRBs) remains enigmatic. Highly energetic radio pulses of millisecond duration, FRBs are observed with dispersion measures consistent with an extragalactic source. A variety of models have been proposed to explain their origin. One popular class of theorized FRB progenitor is the coalescence of compact binaries composed of neutron stars and/or black holes. Such coalescence events are strong gravitational-wave emitters. We demonstrate that measurements made by the LIGO and Virgo gravitational-wave observatories can be leveraged to severely constrain the validity of FRB binary coalescence models. Existing measurements constrain the binary black hole rate to approximately 5% of the FRB rate, and results from Advanced LIGO’s O1 and O2 observing runs may place similarly strong constraints on the fraction of FRBs due to binary neutron star and neutron star-black hole progenitors.

  3. Supergiant pulses from extragalactic neutron stars

    NASA Astrophysics Data System (ADS)

    Cordes, J. M.; Wasserman, Ira

    2016-03-01

    We consider radio bursts that originate from extragalactic neutron stars (NSs) by addressing three questions about source distances. What are the physical limitations on coherent radiation at GHz frequencies? Do they permit detection at cosmological distances? How many bursts per NS are needed to produce the inferred burst rate ˜103-104sky-1 d-1? The burst rate is comparable to the NS formation rate in a Hubble volume, requiring only one per NS if they are bright enough. Radiation physics suggests a closer population, requiring more bursts per NS and increasing the chances for repeats. Bursts comprise sub-ns, coherent shot pulses superposed incoherently to produce ms-duration ˜1 Jy amplitudes; each shot pulse can be much weaker than 1 Jy, placing less restrictive requirements on the emission process. None the less, single shot pulses are similar to the extreme, unresolved (<0.4 ns) MJy shot pulse seen from the Crab pulsar, consistent with coherent curvature radiation emitted near the light cylinder by an almost neutral clump with net charge ˜± 1021e and total energy ≳ 1023 erg. Bursts from Gpc distances require incoherent superposition of {˜ } 10^{12}d_Gpc^2 shot pulses or a total energy ≳ 10^{35} d_Gpc^2 erg. The energy reservoir near the light cylinder limits the detection distance to ≲ few × 100 Mpc for a fluence ˜1 Jy ms unless conditions are more extreme than for the Crab pulsar, such as in magnetars. We discuss contributions to dispersion measures from galaxy clusters and we propose tests for the overall picture presented.

  4. VLA observations of a complete sample of extragalactic X-ray sources. II

    NASA Technical Reports Server (NTRS)

    Schild, R.; Zamorani, G.; Gioia, I. M.; Feigelson, E. D.; Maccacaro, T.

    1983-01-01

    A complete sample of 35 X-ray selected sources found with the Einstein Observatory has been observed with the Very Large Array at 6 cm to investigate the relationship between radio and X-ray emission in extragalactic objects. Detections include three active galactic nuclei (AGNs), two clusters or groups of galaxies, two individual galaxies, and two BL Lac objects. The frequency of radio emission in X-ray selected AGNs is compared with that of optically selected quasars using the integral radio-optical luminosity function. The result suggests that the probability for X-ray selected quasars to be radio sources is higher than for those optically selected. No obvious correlation is found in the sample between the richness of X-ray luminosity of the cluster and the presence of a galaxy with radio luminosity at 5 GHz larger than 10 to the 30th ergs/s/Hz.

  5. Compact Low Frequency Radio Antenna

    DOEpatents

    Punnoose, Ratish J.

    2008-11-11

    An antenna is disclosed that comprises a pair of conductive, orthogonal arches and a pair of conductive annular sector plates, wherein adjacent legs of each arch are fastened to one of the annular sector plates and the opposite adjacent pair of legs is fastened to the remaining annular sector plate. The entire antenna structure is spaced apart from a conductive ground plane by a thin dielectric medium. The antenna is driven by a feed conduit passing through the conductive ground plane and dielectric medium and attached to one of the annular sector plates, wherein the two orthogonal arched act as a pair of crossed dipole elements. This arrangement of elements provides a radiation pattern that is largely omni-directional above the horizon.

  6. Fast Radio Bursts

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria M.

    2017-01-01

    Fast Radio Bursts (FRBs) are a recently discovered phenomenon consisting of short (few ms) bursts of radio waves that have dispersion measures that strongly suggest an extragalactic and possibly cosmological origin. Current best estimates for the rate of FRBs is several thousand per sky per day at radio frequencies near 1.4 GHz. Even with so high a rate, to date, fewer than 20 FRBs have been reported, with one source showing repeated bursts. In this talk I will describe known FRB properties including what is known about the lone repeating source, as well as models for the origin of these mysterious events. I will also describe the CHIME radio telescope, currently under construction in Canada. Thanks to its great sensitivity and unprecedented field-of-view, CHIME promises major progress on FRBs.

  7. Very-Long-Baseline Radio Interferometry: The Mark III System for Geodesy, Astrometry, and Aperture Synthesis.

    PubMed

    Rogers, A E; Cappallo, R J; Hinteregger, H F; Levine, J I; Nesman, E F; Webber, J C; Whitney, A R; Clark, T A; Ma, C; Ryan, J; Corey, B E; Counselman, C C; Herring, T A; Shapiro, I I; Knight, C A; Shaffer, D B; Vandenberg, N R; Lacasse, R; Mauzy, R; Rayhrer, B; Schupler, B R; Pigg, J C

    1983-01-07

    The Mark III very-long-baseline interferometry (VLBI) system allows recording and later processing of up to 112 megabits per second from each radio telescope of an interferometer array. For astrometric and geodetic measurements, signals from two radio-frequency bands (2.2 to 2.3 and 8.2 to 8.6 gigahertz) are sampled and recorded simultaneously at all antenna sites. From these dual-band recordings the relative group delays of signals arriving at each pair of sites can be corrected for the contributions due to the ionosphere. For many radio sources for which the signals are sufficiently intense, these group delays can be determined with uncertainties under 50 picoseconds. Relative positions of widely separated antennas and celestial coordinates of radio sources have been determined from such measurements with 1 standard deviation uncertainties of about 5 centimeters and 3 milliseconds of arc, respectively. Sample results are given for the lengths of baselines between three antennas in the United States and three in Europe as well as for the arc lengths between the positions of six extragalactic radio sources. There is no significant evidence of change in any of these quantities. For mapping the brightness distribution of such compact radio sources, signals of a given polarization, or of pairs of orthogonal polarizations, can be recorded in up to 28 contiguous bands each nearly 2 megahertz wide. The ability to record large bandwidths and to link together many large radio telescopes allows detection and study of compact sources with flux densities under 1 millijansky.

  8. GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey - I. A low-frequency extragalactic catalogue

    NASA Astrophysics Data System (ADS)

    Hurley-Walker, N.; Callingham, J. R.; Hancock, P. J.; Franzen, T. M. O.; Hindson, L.; Kapińska, A. D.; Morgan, J.; Offringa, A. R.; Wayth, R. B.; Wu, C.; Zheng, Q.; Murphy, T.; Bell, M. E.; Dwarakanath, K. S.; For, B.; Gaensler, B. M.; Johnston-Hollitt, M.; Lenc, E.; Procopio, P.; Staveley-Smith, L.; Ekers, R.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Deshpande, A. A.; Greenhill, L.; Hazelton, B. J.; Kaplan, D. L.; Lonsdale, C. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Shankar, N. Udaya; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Webster, R. L.; Williams, A.; Williams, C. L.

    2017-01-01

    Using the Murchison Widefield Array (MWA), the low-frequency Square Kilometre Array precursor located in Western Australia, we have completed the GaLactic and Extragalactic All-sky MWA (GLEAM) survey, and present the resulting extragalactic catalogue, utilizing the first year of observations. The catalogue covers 24 831 square degrees, over declinations south of +30° and Galactic latitudes outside 10° of the Galactic plane, excluding some areas such as the Magellanic Clouds. It contains 307 455 radio sources with 20 separate flux density measurements across 72-231 MHz, selected from a time- and frequency-integrated image centred at 200 MHz, with a resolution of ≈2 arcmin. Over the catalogued region, we estimate that the catalogue is 90 per cent complete at 170 mJy, and 50 per cent complete at 55 mJy, and large areas are complete at even lower flux density levels. Its reliability is 99.97 per cent above the detection threshold of 5σ, which itself is typically 50 mJy. These observations constitute the widest fractional bandwidth and largest sky area survey at radio frequencies to date, and calibrate the low-frequency flux density scale of the southern sky to better than 10 per cent. This paper presents details of the flagging, imaging, mosaicking and source extraction/characterization, as well as estimates of the completeness and reliability. All source measurements and images are available online.1 This is the first in a series of publications describing the GLEAM survey results.

  9. Blazar Duty-Cycle at Gamma-Ray Frequecies: Constraints From Extragalactic Background Radiation And Prospects for AGILE And GLAST

    SciTech Connect

    Pittori, Carlotta; Cavazzuti, Elisabetta; Colafrancesco, Sergio; Giommi, Paolo

    2011-11-29

    We take into account the constraints from the observed extragalactic {gamma}-ray background to estimate the maximum duty cycle allowed for a selected sample of WMAP Blazars, in order to be detectable by AGILE and GLAST {gamma}-ray experiments. For the nominal sensitivity values of both instruments, we identify a subset of sources which can in principle be detectable also in a steady state without over-predicting the extragalactic background. This work is based on the results of a recently derived Blazar radio LogN-LogS obtained by combining several multi-frequency surveys.

  10. Recurrent Activity in Radio Galaxies

    SciTech Connect

    Jamrozy, Marek; Konar, Chiranjib; Machalski, Jerzy; Mack, Karl-Heinz; Saikia, Dhruba; Siemiginowska, Aneta; Stawarz, Lukasz; /KIPAC, Menlo Park /Jagiellonian U.

    2007-10-15

    One of the outstanding issues concerning extragalactic radio sources is the total duration of their active phase and the possible existence of duty cycles of their nuclear activity. A duty cycle can be recognized if there is a mechanism which preserves the information of past activity for a sufficiently long time after a new activity has started up. If a new cycle starts before the radio lobes created during a former activity period have faded, we can recognize this by the observations of a young radio source embedded in an old relic structure.

  11. Searches for Fast Radio Transients

    NASA Astrophysics Data System (ADS)

    Cordes, J. M.; McLaughlin, M. A.

    2003-10-01

    We discuss optimal detection of fast radio transients from astrophysical objects while taking into account the effects of propagation through intervening ionized media, including dispersion, scattering, and scintillation. Our analysis applies to the giant-pulse phenomenon exhibited by some pulsars, for which we show examples, and to radio pulses from other astrophysical sources, such as prompt radio emission from gamma-ray burst sources and modulated signals from extraterrestrial civilizations. We estimate scintillation parameters for extragalactic sources that take into account scattering both in the host galaxy and in foreground Galactic plasma.

  12. Extragalactic astronomy: The universe beyond our galaxy

    NASA Technical Reports Server (NTRS)

    Jacobs, K. C.

    1976-01-01

    This single-topic brochure is for high school physical science teachers to use in introducing students to extragalactic astronomy. The material is presented in three parts: the fundamental content of extragalactic astronomy; modern discoveries delineated in greater detail; and a summary of the earlier discussions within the structure of the Big-Bang Theory of evolution. Each of the three sections is followed by student exercises (activities, laboratory projects, and questions-and-answers). The unit close with a glossary which explains unfamilar terms used in the text and a collection of teacher aids (literature references and audiovisual materials for utilization in further study).

  13. Long term monitoring of extragalactic sources in the framework of the Gaia ESA mission

    NASA Astrophysics Data System (ADS)

    TARIS, François

    2015-08-01

    The Gaia astrometric mission of the European Space Agency has been launched the 19th December 2013. It will provide an astrometric catalogue of 500.000 extragalactic sources that could be the basis of a new optical reference frame after the Hipparcos satellite one. On the other hand, the current International Celestial Reference Frame (ICRF) is based on the observations of extragalactic sources at radio wavelength. The astrometric coordinates of sources in these two reference systems will have roughly the same uncertainty. It is then mandatory to observe a set of common targets at both optical and radio wavelength to link the ICRF with what could be called the GCRF (Gaia Celestial Reference Frame).This poster presents the set of optical telescopes used to observe the targets chosen for the link of the two reference systems.It also presents some results obtained with the Lomb-Scargle method and CLEAN algorithm applied to optical magnitude monitoring of extragalactic sources suitable for the GCRF-ICRF link. These two methods allow to show that some periodic (or quasi-periodic) phenomena could be present and could be at the origin of the observed light curves. This could have an important impact on the photocenter's position of a particular target which is relevant for the link of the reference systems.

  14. The origin of the extragalactic gamma-ray background and implications for dark matter annihilation

    SciTech Connect

    Ajello, M.; Gasparrini, D.; Sánchez-Conde, M.; Zaharijas, G.; Gustafsson, M.; Cohen-Tanugi, J.; Dermer, C. D.; Inoue, Y.; Hartmann, D.; Ackermann, M.; Bechtol, K.; Franckowiak, A.; Reimer, A.; Romani, R. W.; Strong, A. W.

    2015-02-19

    The origin of the extragalactic γ-ray background (EGB) has been debated for some time. The EGB comprises the γ-ray emission from resolved and unresolved extragalactic sources, such as blazars, star-forming galaxies, and radio galaxies, as well as radiation from truly diffuse processes. This Letter focuses on the blazar source class, the most numerous detected population, and presents an updated luminosity function and spectral energy distribution model consistent with the blazar observations performed by the Fermi-Large Area Telescope (LAT). Additionally, we show that blazars account for 50$_{-11}^{+12}$% of the EGB photons (>0.1 GeV), and that Fermi-LAT has already resolved ~70% of this contribution. Blazars, and in particular hard-spectrum sources such as BL Lacs, are responsible for most of the EGB emission above 100 GeV. We find that the extragalactic background light, which attenuates blazars' high-energy emission, is responsible for the high-energy cutoff observed in the EGB spectrum. Finally, we show that blazars, star-forming galaxies, and radio galaxies can naturally account for the amplitude and spectral shape of the background in the 0.1–820 GeV range, leaving only modest room for other contributions. In conclusion, this allows us to set competitive constraints on the dark matter annihilation cross section.

  15. The origin of the extragalactic gamma-ray background and implications for dark matter annihilation

    DOE PAGES

    Ajello, M.; Gasparrini, D.; Sánchez-Conde, M.; ...

    2015-02-19

    The origin of the extragalactic γ-ray background (EGB) has been debated for some time. The EGB comprises the γ-ray emission from resolved and unresolved extragalactic sources, such as blazars, star-forming galaxies, and radio galaxies, as well as radiation from truly diffuse processes. This Letter focuses on the blazar source class, the most numerous detected population, and presents an updated luminosity function and spectral energy distribution model consistent with the blazar observations performed by the Fermi-Large Area Telescope (LAT). Additionally, we show that blazars account for 50more » $$_{-11}^{+12}$$% of the EGB photons (>0.1 GeV), and that Fermi-LAT has already resolved ~70% of this contribution. Blazars, and in particular hard-spectrum sources such as BL Lacs, are responsible for most of the EGB emission above 100 GeV. We find that the extragalactic background light, which attenuates blazars' high-energy emission, is responsible for the high-energy cutoff observed in the EGB spectrum. Finally, we show that blazars, star-forming galaxies, and radio galaxies can naturally account for the amplitude and spectral shape of the background in the 0.1–820 GeV range, leaving only modest room for other contributions. In conclusion, this allows us to set competitive constraints on the dark matter annihilation cross section.« less

  16. PKS 1718-649: a broad-band study of a young radio jet

    NASA Astrophysics Data System (ADS)

    Sobolewska, Malgosia; Siemiginowska, Aneta; Migliori, Giulia; Guainazzi, Matteo; Hardcastle, Martin; Ostorero, Luisa; Stawarz, Lukasz

    2017-08-01

    Physical conditions required to launch and sustain a jet and the jet's impact on black hole surroundings are believed to be strongly linked, and lie at the core of the AGN feedback idea. The physics of the initial stages of a radio jet expansion is still poorly understood. Nevertheless, highly relativistic plasma contained within young radio lobes and shocks accompanying a powerful jet expansion are expected to generate high energy radiation. However, this initial phase is short-lived and observing young radio sources at high energies has been challenging, with only a few sources detected before the Chandra and XMM-Newton era. We compiled a sample of Compact Symmetric Objects (CSO) that have kinematic age determination to study their high energy properties. Here we discuss one of the sources from our sample, PKS 1718-649 (z=0.014), hosting the most compact (2 pc) and youngest (100 years) extragalactic radio jet known to date. We observed PKS 1718-649 for the first time in X-rays and found that it is a low luminosity X-ray source, L(2-10 keV) ~ 6 x 1041 erg s-1, and its X-ray spectrum is consistent with a mildly (intrinsically) absorbed power law (Gamma ~ 1.75, NH ~ 1021 cm-2). In addition, using the Fermi/LAT archive we established that this source is the first robustly confirmed gamma-ray CSO emitter. Merging the archival radio-to-optical data and our high energy results, we constructed a high quality broad-band spectral energy distribution of this source. We tested a theoretical scenario in which the high energy emission of the source arises due to the Inverse Compton upscattering of the low energy photons off the non-thermal electrons in the expanding radio lobes. We discuss the impact of the expanding lobes on the environment, and constraints imposed by the data on the electron distribution within the lobes.

  17. Extragalactic Astronomy: The Universe Beyond Our Galaxy.

    ERIC Educational Resources Information Center

    Jacobs, Kenneth Charles

    This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers of secondary school chemistry, physics, and earth science. The material is presented in three parts: one section provides the fundamental content of extragalactic astronomy, another section discusses modern discoveries in…

  18. Cosmic Rays in Extragalactic Systems: Clusters and Beyond

    NASA Astrophysics Data System (ADS)

    Jones, Thomas

    The existence of cosmic rays (CRs) accelerated outside our galaxy is by now established fact. For instance, the angular and spectral distributions of ultra high energy CRs (UHECRs) above roughly an EeV point clearly to their extragalactic origins. Diffuse nonthermal radio emis-sions in clusters and along their perimeters reveal GeV electrons filling volumes sometimes approaching Mpc scales. The radiative lifetimes of those leptonic CRs are so short that they must be accelerated or produced as secondaries in situ. The dominant energy sources for such extragalactic CRs are not clearly established, although they are likely to be consequences of strucure formation. Large-scale shocks (including cluster accretion shocks) and turbulence in-duced by structure formation are strong candidates. There is also the possibility that CRs may be produced through structure formation process on still larger scales associated with cos-mic filaments, although current evidence for that is sketchy. The effectiveness of processes in these environments that might accelerate CRs depends sensitively on poorly understood "mi-crophysics" in very dilute and weakly magnetized plasmas. All of these CR populations have the potential to produce diagnostic gamma rays in the GeV to TeV range. Consequently, detec-tion or improved detection limits by current and coming gamma ray observatories can provide unique and crucial information about physical processes and conditions in these environments. My talk will outline the current status of these issues. This work is supported by the US NSF, NASA and by the Minnesota Supercomputing Institute.

  19. Precision Geodesy via Radio Interferometry.

    PubMed

    Hinteregger, H F; Shapiro, I I; Robertson, D S; Knight, C A; Ergas, R A; Whitney, A R; Rogers, A E; Moran, J M; Clark, T A; Burke, B F

    1972-10-27

    Very-long-baseline interferometry experiments, involving observations of extragalactic radio sources, were performed in 1969 to determine the vector separations between antenna sites in Massachusetts and West Virginia. The 845.130-kilometer baseline was estimated from two separate experiments. The results agreed with each other to within 2 meters in all three components and with a special geodetic survey to within 2 meters in length; the differences in baseline direction as determined by the survey and by interferometry corresponded to discrepancies of about 5 meters. The experiments also yielded positions for nine extragalactic radio sources, most to within 1 arc second, and allowed the hydrogen maser clocks at the two sites to be synchronized a posteriori with an uncertainty of only a few nanoseconds.

  20. The Astronomical Low Frequency Array: A Proposed Explorer Mission for Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Jones, D.; Allen, R.; Basart, J.; Bastian, T.; Bougeret, J. L.; Dennison, B.; Desch, M.; Dwarakanath, K.; Erickson, W.; Finley, D.; hide

    1999-01-01

    A radio interferometer array in space providing high dynamic range images with unprecedented angular resolution over the broad frequency range from 0.030 - 30 MHz will open new vistas in solar, terrestial, galactic, and extragalactic astrophysics.

  1. Fast variability of tera-electron volt gamma rays from the radio galaxy M87.

    PubMed

    Aharonian, F; Akhperjanian, A G; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Brown, A M; Bühler, R; Büsching, I; Carrigan, S; Chadwick, P M; Chounet, L-M; Coignet, G; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ataï, A; Drury, L O'c; Dubus, G; Egberts, K; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Ferrero, E; Fiasson, A; Fontaine, G; Funk, Seb; Funk, S; Füssling, M; Gallant, Y A; Giebels, B; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Holleran, M; Hoppe, S; Horns, D; Jacholkowska, A; de Jager, O C; Kendziorra, E; Kerschhaggl, M; Khélifi, B; Komin, Nu; Konopelko, A; Kosack, K; Lamanna, G; Latham, I J; Le Gallou, R; Lemière, A; Lemoine-Goumard, M; Lenain, J-P; Lohse, T; Martin, J M; Martineau-Huynh, O; Marcowith, A; Masterson, C; Maurin, G; McComb, T J L; Moulin, E; de Naurois, M; Nedbal, D; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Ranchon, S; Raubenheimer, B C; Raue, M; Rayner, S M; Reimer, A; Ripken, J; Rob, L; Rolland, L; Rosier-Lees, S; Rowell, G; Sahakian, V; Santangelo, A; Saugé, L; Schlenker, S; Schlickeiser, R; Schröder, R; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sol, H; Spangler, D; Spanier, F; Steenkamp, R; Stegmann, C; Superina, G; Tam, P H; Tavernet, J-P; Terrier, R; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Vialle, J P; Vincent, P; Völk, H J; Wagner, S J; Ward, M

    2006-12-01

    The detection of fast variations of the tera-electron volt (TeV) (10(12) eV) gamma-ray flux, on time scales of days, from the nearby radio galaxy M87 is reported. These variations are about 10 times as fast as those observed in any other wave band and imply a very compact emission region with a dimension similar to the Schwarzschild radius of the central black hole. We thus can exclude several other sites and processes of the gamma-ray production. The observations confirm that TeV gamma rays are emitted by extragalactic sources other than blazars, where jets are not relativistically beamed toward the observer.

  2. The effect of local galaxy density on the production of powerful radio sources by early-type galaxies

    NASA Astrophysics Data System (ADS)

    Heckman, T. M.; Carty, T. J.; Bothun, G. D.

    1985-01-01

    The authors have quantitatively analyzed the POSS prints and a set of CCD images obtained at KPNO in order to investigate the local galaxy density around samples of 47 radio-loud and 46 radio-quiet elliptical and lenticular galaxies. The radio sources studied are dominated by steep-spectrum components, not by compact, flat-spectrum ones. The local galaxy density has been measured by weighting the companion galaxies according to their relative size (or luminosity) and/or projected proximity. The primary conclusion is that all measures of average local galaxy density (applied to both the large POSS data set and smaller CCD data set) are larger (by at least a factor of 2 - 3) for the radio-loud galaxies. The statistical significance levels of these results are very high (typically >99.9%). It is argued that the evidence that galaxy interactions foster nuclear activity is now strong and may apply to the whole "zoo" of active extragalactic objects (nuclear starburst galaxies, Seyfert galaxies, Liners, radio galaxies, quasars).

  3. The radio-γ-ray connection in Fermi blazars

    NASA Astrophysics Data System (ADS)

    Ghirlanda, G.; Ghisellini, G.; Tavecchio, F.; Foschini, L.; Bonnoli, G.

    2011-05-01

    We study the correlation between the γ-ray flux (Fγ), averaged over the first 11 months of the Fermi survey and integrated above 100 MeV, and the radio flux density (Fr at 20 GHz) of Fermi sources associated with a radio counterpart in the 20-GHz Australia Telescope Compact Array (AT20G) survey. Considering the blazars detected in both bands, the correlation is highly significant and has the form Fγ∝F0.85±0.04r, similar to BL Lacertae objects and flat-spectrum radio quasars. However, only a small fraction (˜1/15) of the AT20G radio sources with flat radio spectra are detected by Fermi. To understand if this correlation is real, we examine the selection effects introduced by the flux limits of both the radio and the γ-ray surveys, and the importance of variability of the γ-ray flux. After accounting for these effects, we find that the radio-γ-ray flux correlation is real, but its slope is steeper than the observed one, that is, Fγ∝Fδr with δ in the range 1.25-1.5. The observed Fγ-Fr correlation and the fraction of radio sources detected by Fermi are reproduced assuming a long-term γ-ray flux variability, following a lognormal probability distribution with standard deviation σ≥ 0.5 (corresponding to Fγ varying by at least a factor of 3). Such a variability is compatible, even if not necessarily equal, with what is observed when comparing, for the sources in common, the EGRET and the Fermi γ-ray fluxes (even if the Fermi fluxes are averaged over ˜1 yr). Another indication of variability is the non-detection of 12 out of 66 EGRET blazars by Fermi, despite its higher sensitivity. We also study the strong linear correlation between the γ-ray and the radio luminosity of the 144 AT20G-Fermi associations with known redshift and show, through partial correlation analysis, that it is statistically robust. Two possible implications of these correlations are discussed: the contribution of blazars to the extragalactic γ-ray background and the prediction

  4. The extragalactic background light at 4400 A

    NASA Technical Reports Server (NTRS)

    Toller, G. N.

    1983-01-01

    Space based photometric determinations of the extragalactic background light (EBL) are compared with galaxy count determinations of EBL brightness. The results of various EBL studies at blue and visual wavelengths are summarized, and an upper limit of 3.9 S-sub-10 (V)-sub-G2V at the 2 sigma level is placed on the brightness of the extragalactic background at 4400 A. EBL data in regions near the north and south galactic poles are also presented, the first such data obtained from heliocentric distances where the zodiacal light is negligible. Several paradigms consistent with the inferred EBL limits are mentioned, including less galactic evolution or masking of galactic evolution, galaxy formation at very high redshifts, and dusty primeval galaxies decreasing optical EBL and increasing infrared EBL. Models promulgating all primeval galaxies as high-luminosity objects undergoing bursts of star formation are incompatible with the EBL observations.

  5. Infrared Astronomy. [observations of extragalactic sources

    NASA Technical Reports Server (NTRS)

    Neugebauer, G.; Soifer, B. T.; Matthews, K.

    1981-01-01

    Several observational programs in infrared astronomy are described and significant findings are briefly discussed. The near infrared work concentrates largely on the use of the 5 m Hale telescope in spectroscopic and photometric studies of extragalactic sources. Observations of the P alpha line profile in a low redshift quasar, X-ray bursters, reflection nebula, and cataclysmic variables are included. Millimeter continuum observations of dust emission from quasars and galactic molecular clouds are also discussed. Finally, improvements to instrumentation are reported.

  6. Faint Radio Sources in the NOAO Bootes Field. VLBA Imaging And Optical Identifications

    SciTech Connect

    Wrobel, J.M.; Taylor, Greg B.; Rector, T.A.; Myers, S.T.; Fassnacht, C.D.; /UC, Davis

    2005-06-13

    As a step toward investigating the parsec-scale properties of faint extragalactic radio sources, the Very Long Baseline Array (VLBA) was used at 5.0 GHz to obtain phase-referenced images of 76 sources in the NOAO Booetes field. These 76 sources were selected from the FIRST catalog to have peak flux densities above 10 mJy at 5'' resolution and deconvolved major diameters of less than 3'' at 1.4 GHz. Fifty-five of these faint radio sources were identified with accretion-powered radio galaxies and quasars brighter than 25.5 mag in the optical I band. On VLA scales at 1.4 GHz, a measure of the compactness of the faint sources (the ratio of the peak flux density from FIRST to the integrated flux density from the NVSS catalog) spans the full range of possibilities arising from source-resolution effects. Thirty of the faint radio sources, or 39{sub -7}{sup +9}%, were detected with the VLBA at 5.0 GHz with peak flux densities above 6 {sigma} {approx} 2 mJy at 2 mas resolution. The VLBA detections occur through the full range of compactness ratios. The stronger VLBA detections can themselves serve as phase-reference calibrators, boding well for opening up much of the radio sky to VLBA imaging. For the adopted cosmology, the VLBA resolution corresponds to 17 pc or finer. Most VLBA detections are unresolved or slightly resolved but one is diffuse and five show either double or core-jet structures; the properties of these latter six are discussed in detail. Eight VLBA detections are unidentified and fainter than 25.5 mag in the optical I band; their properties are highlighted because they likely mark optically-obscured active nuclei at high redshift.

  7. Multifrequency polarimetry of a complete sample of PACO radio sources

    NASA Astrophysics Data System (ADS)

    Galluzzi, V.; Massardi, M.; Bonaldi, A.; Casasola, V.; Gregorini, L.; Trombetti, T.; Burigana, C.; De Zotti, G.; Ricci, R.; Stevens, J.; Ekers, R. D.; Bonavera, L.; di Serego Alighieri, S.; Liuzzo, E.; López-Caniego, M.; Mignano, A.; Paladino, R.; Toffolatti, L.; Tucci, M.

    2017-03-01

    We present high-sensitivity polarimetric observations (σP ≃0.6 mJy) in six bands covering the 5.5-38 GHz range of a complete sample of 53 compact extragalactic radio sources brighter than 200 mJy at 20 GHz. The observations, carried out with the Australia Telescope Compact Array, achieved a 91 per cent detection rate (at 5σ). Within this frequency range, the spectra of about 95 per cent of sources are well fitted by double power laws, both in total intensity and in polarization, but the spectral shapes are generally different in the two cases. Most sources were classified as either steep- or peaked-spectrum but less than 50 per cent have the same classification in total and in polarized intensity. No significant trends of the polarization degree with flux density or with frequency were found. The mean variability index in total intensity of steep-spectrum sources increases with frequency for a 4-5 yr lag, while no significant trend shows up for the other sources and for the 8 yr lag. In polarization, the variability index, which could be computed only for the 8 yr lag, is substantially higher than in total intensity and has no significant frequency dependence.

  8. Aligning VLBI and Gaia Extragalactic Celestial Reference Frames: source selection scenario

    NASA Astrophysics Data System (ADS)

    Bourda, Geraldine; Charlot, Patrick; Collioud, Arnaud

    2015-08-01

    The European space astrometry mission Gaia will construct a dense optical celestial reference frame based on Quasi Stellar Objects. Accordingly, by 2020, two extragalactic celestial reference frames will coexist: the VLBI frame (Very Long Baseline Interferometry) in the radio domain, currently adopted by the IAU as the fundamental one, and the Gaia frame determined from direct optical observations of quasars by the satellite.For consistency between optical and radio positions of any celestial targets, it will be fundamental to align the Gaia and VLBI frames with the highest accuracy. This issue is also important in the framework of astrophysics, for example to probe properly the jets properties and the physics of the Active Galactic Nuclei.In this paper, based on the ICRF2 catalogue (International Celestial Reference Frame) and specific dedicated VLBI projects (e.g. designed to observe additional weaker extragalactic radio sources), we will discuss the selection of the VLBI-Gaia transfer sources, present our initiatives to reach this alignment, review the status of the various projects in question and draw plans for the future.

  9. The Coordinated Radio and Infrared Survey for High-Mass Star Formation (The CORNISH Survey). I. Survey Design

    NASA Astrophysics Data System (ADS)

    Hoare, M. G.; Purcell, C. R.; Churchwell, E. B.; Diamond, P.; Cotton, W. D.; Chandler, C. J.; Smethurst, S.; Kurtz, S. E.; Mundy, L. G.; Dougherty, S. M.; Fender, R. P.; Fuller, G. A.; Jackson, J. M.; Garrington, S. T.; Gledhill, T. R.; Goldsmith, P. F.; Lumsden, S. L.; Martí, J.; Moore, T. J. T.; Muxlow, T. W. B.; Oudmaijer, R. D.; Pandian, J. D.; Paredes, J. M.; Shepherd, D. S.; Spencer, R. E.; Thompson, M. A.; Umana, G.; Urquhart, J. S.; Zijlstra, A. A.

    2012-09-01

    We describe the motivation, design, and implementation of the CORNISH survey, an arcsecond-resolution radio continuum survey of the inner galactic plane at 5 GHz using the Very Large Array (VLA). It is a blind survey coordinated with the northern Spitzer GLIMPSE I region covering 10° < l < 65° and |b| < 1° at similar resolution. We discuss in detail the strategy that we employed to control the shape of the synthesised beam across this survey, which covers a wide range of fairly low declinations. Two snapshots separated by 4h kept the beam elongation to less that 1.5 over 75% of the survey area and less than 2 over 98% of the survey. The prime scientific motivation is to provide an unbiased survey for ultra-compact H II regions to study this key phase in massive star formation. A sensitivity around 2 mJy will allow the automatic distinction between radio-loud and radio-quiet mid-IR sources found in the Spitzer surveys. This survey has many legacy applications beyond star formation, including evolved stars, active stars and binaries, and extragalactic sources. The CORNISH survey for compact ionized sources complements other Galactic plane surveys that target diffuse and nonthermal sources, as well as atomic and molecular phases to build up a complete picture of the interstellar medium in the Galaxy.

  10. SCORPIO: a deep survey of radio emission from the stellar life-cycle

    NASA Astrophysics Data System (ADS)

    Umana, G.; Trigilio, C.; Franzen, T. M. O.; Norris, R. P.; Leto, P.; Ingallinera, A.; Buemi, C. S.; Agliozzo, C.; Cavallaro, F.; Cerrigone, L.

    2015-11-01

    Radio emission has been detected in a broad variety of stellar objects from all stages of stellar evolution. However, most of our knowledge originates from targeted observations of small samples, which are strongly biased to sources which are peculiar at other wavelengths. In order to tackle this problem we have conducted a deep 1.4 GHz survey by using the Australian Telescope Compact Array, with a net bandwidth of 1.7 GHz (1.4-3.1 GHz) , following the same observing setup as that used for the Australia Telescope Large Area Survey project, this time choosing a region more appropriate for stellar work. In this paper, the Stellar Continuum Originating from Radio Physics In Ourgalaxy (SCORPIO) project is presented as well as results from the pilot experiment. The achieved rms is 30 μJy and the angular resolution ˜10 arcsec. 614 point-like sources have been extracted just from the pilot field. Only 34 of them are classified in SIMBAD or the NASA/IPAC Extragalactic Database. About 80 per cent of the extracted sources are reported in one of the inspected catalogues and 50 per cent of them appears to belong to a reddened stellar/Galactic population. However, the evaluation of extragalactic contaminants is very difficult without further investigations. Interesting results have been obtained for extended radio sources that fall in the SCORPIO field. Many roundish-like structures (indicated as bubbles in the following) have been found, some of which are classified at other wavelengths. However, for all of these sources, our project has provided us with images of unprecedented sensitivity and angular resolution.

  11. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  12. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  13. Observing the Extragalactic Universe with a Square Kilometer Array

    NASA Astrophysics Data System (ADS)

    Blandford, R. D.

    2001-12-01

    The Square Kilometer Array, SKA, is being developed to provide broad, radio survey capability to cm wavelength, with a 1 degree field of view, 1 arcsec resolution and 100 times the VLA sensitivity. In extragalactic astronomy, it will observe unobscured, normal and active galaxies, star formation and mergers, large scale structure and gravitational lenses throughout the universe. It will contribute mightily to our emerging, empirical description of the birth and growth of galaxies of all type. It should also advance our understanding of the conditions that existed prior to galaxy formation at the end of the dark age and help delineate the dark matter skeleton that supports mature galaxies. It will map and monitor, in quite different modes, the same objects as Chandra, SIRTF, HST/ACS, GLAST, SDSS as well as future missions like NGST and Constellation-X. The proposed scientific capability of SKA will be summarized. In addition, the importance of refining its goals and design criteria in a dialog with organizations making complementary plans throughout the electromagnetic spectrum will be emphasized.

  14. Components of the Extragalactic Gamma-Ray Background

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.; Venters, Tonia M.

    2011-01-01

    We present new theoretical estimates of the relative contributions of unresolved blazars and star-forming galaxies to the extragalactic gamma-ray background (EGB) and discuss constraints on the contributions from alternative mechanisms such as dark matter annihilation and truly diffuse gamma-ray production. We find that the Fermi source count data do not rule out a scenario in which the EGB is dominated by emission from unresolved blazars, though unresolved star-forming galaxies may also contribute significantly to the background, within order-of-magnitude uncertainties. In addition, we find that the spectrum of the unresolved star-forming galaxy contribution cannot explain the EGB spectrum found by EGRET at energies between 50 and 200 MeV, whereas the spectrum of unresolved flat spectrum radio quasars, when accounting for the energy-dependent effects of source confusion, could be consistent with the combined spectrum of the low-energy EGRET EGB measurements and the Fermi-Large Area Telescope EGB measurements.

  15. Deep VLA images of the HH 124 IRS radio cluster and its surroundings, and a new determination of the distance to NGC 2264

    SciTech Connect

    Dzib, Sergio A.; Loinard, Laurent; Rodríguez, Luis F.; Galli, Phillip

    2014-06-20

    We present new deep (σ ∼ 6 μJy) radio images of the HH 124 IRS radio cluster at 4.8 and 7.5 GHz. We detect a total of 50 radio sources, most of them compact. Variability and spectral indices were analyzed in order to determine the nature of the sources and of their radio emission. A proper motion study was also performed for several of these radio sources using previously reported radio observations. Our analysis shows that 11 radio sources can be associated with Galactic objects, most of them probably young stars. Interestingly, 8 of these sources are in an area less than 1 arcmin{sup 2} in size. The importance of such compact clusters resides in that all of its members can be observed in a single pointing with most telescopes and are, therefore, ideal for multi-wavelength studies of variability. Another 4 of the detected sources are clearly extragalactic. Finally, we propose from statistical arguments that out of the remaining sources, about 10 are Galactic, but our study does not allow us to identify which of the sources fall in that specific category. The relatively large proper motions observed for the sources in HH 124 IRS suggest that this region is located at about 400 pc from the Sun. This is significantly smaller than the ∼800-900 pc distance usually assigned to the nearby open cluster NGC 2264 with which HH 124 is thought to be associated. However, a reanalysis of the Hipparcos parallaxes for members of NGC 2264, a convergent point approach, and a kinematic analysis all argue in favor of a distance of the order of 400 pc for NGC 2264 as well.

  16. Extragalactic Water Maser Observations with VSOP-2

    NASA Astrophysics Data System (ADS)

    Hagiwara, Y.; VSOP-2 Science Working Group

    2009-08-01

    Space-VLBI is known to achieve greatly increased angular resolution compared with ground-based VLBI observations. VSOP-2 will offer 75 μarcsec angular resolution at 22 GHz. With this improved angular resolution, VSOP-2 observations of H_2O megamaser will refine the measurements of proper motions, accelerations, distances to galaxies, and other physical parameters of galactic nuclei. In this presentation, the prospects of VSOP-2 observations of extragalactic H_2O maser with strong emphasis on H_2O megamaser are presented.

  17. THE CHANDRA SURVEY OF EXTRAGALACTIC SOURCES IN THE 3CR CATALOG: X-RAY EMISSION FROM NUCLEI, JETS, AND HOTSPOTS IN THE CHANDRA ARCHIVAL OBSERVATIONS

    SciTech Connect

    Massaro, F.; Harris, D. E.; Paggi, A.; Wilkes, B. J.; Kuraszkiewicz, J.; Liuzzo, E.; Orienti, M.; Paladino, R.; Tremblay, G. R.; Baum, S. A.; O’Dea, C. P.

    2015-09-15

    As part of our program to build a complete radio and X-ray database of all Third Cambridge catalog extragalactic radio sources, we present an analysis of 93 sources for which Chandra archival data are available. Most of these sources have already been published. Here we provide a uniform re-analysis and present nuclear X-ray fluxes and X-ray emission associated with radio jet knots and hotspots using both publicly available radio images and new radio images that have been constructed from data available in the Very Large Array archive. For about 1/3 of the sources in the selected sample, a comparison between the Chandra and radio observations was not reported in the literature: we find X-ray detections of 2 new radio jet knots and 17 hotspots. We also report the X-ray detection of extended emission from the intergalactic medium for 15 galaxy clusters.

  18. Raman scattering in high-radio-brightness astrophysical systems: application to active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Levinson, Amir; Blandford, Roger

    1995-06-01

    Under conditions of high brightness temperature, stimulated Raman scattering of incident radio waves by Langmuir waves can occur. This proces is analysed for a broad-band radio spectrum, and analytic and numerical models for special cases are presented. Two cases are identified. In strong Raman scattering, the radio brightness temperature is so large that the intensity of the Langmuir waves responsible for the scattering grows to non-linear strength and the radio waves are quickly scattered. In weak Raman scattering, the electrostatic wave intensity is determined by a balance between parametric growth and ion-electron collisional damping. In either case, back-scattering will only occur if the electron density, n, is high enough to allow Langmuir waves of short enough wavelength to propagate without Landau damping; at lower density, the radio waves will be scattered through an angle ~0.2(n/10^6 cm^-3)^1/2(T/10^6 K)^-1/2(nu/1 GHz)^-1. In the weak, back-scattering regime, the reflection length is roughly 3x10^11(T/10^6 K)^-3/2(nu/1 GHz)^-2(T_B/10^15 K)^-2 cm, independent of density, where T_B is the brightness temperature. It is argued that intraday variability in compact extragalactic radio sources is probably not caused by a coherent emission mechanism with brightness temperature ~10^18 K, because the plasma density within and around the source would then have to be unreasonably low. Implications for space very long baseline interferometry (VLBI) and for tracing accretion flows in active galactic nuclei are also briefly discussed. By contrast, source models where the brightness temperature <~10^14 K are not seriously constrained by Raman scattering.

  19. Geodesy by radio interferometry: Studies of the forced nutations of the earth. I - Data analysis. II - Interpretation

    NASA Technical Reports Server (NTRS)

    Herring, T. A.; Gwinn, C. R.; Shapiro, I. I.

    1986-01-01

    Very long baseline interferometry (VLBI) observations of compact extragalactic radio sources collected in North America and Europe between July 1980-December 1984 are analyzed. The nutations derived from VLBI data are compared with the nutations in the Wahr series (1981). Good correlation of the data is observed; however, it is detected that a correction of -1.80 + or - 0.18-i(0.42 + or - 0.18) is required for the amplitude of the retrograde annual nutation in the Wahr series. The change in free core nutation resonance frequency is calculated to explain the derivation in the retrograde annual nutation. It is concluded that VLBI earth nutation measurements have sufficient accuracy to be sensitive to core-mantle boundary properties.

  20. A CHANDRA SNAPSHOT SURVEY FOR 3C RADIO GALAXIES WITH REDSHIFTS BETWEEN 0.3 AND 0.5

    SciTech Connect

    Massaro, F.; Harris, D. E.; Paggi, A.; Tremblay, G. R.; Liuzzo, E.; Bonafede, A.

    2013-05-01

    This paper contains an analysis of short Chandra observations of 19 3C sources with redshifts between 0.3 and 0.5 not previously observed in the X-rays. This sample is part of a project to obtain Chandra data for all of the extragalactic sources in the 3C catalog. Nuclear X-ray intensities as well as any X-ray emission associated with radio jet knots, hotspots, or lobes have been measured in three energy bands: soft, medium, and hard. Standard X-ray spectral analysis for the four brightest nuclei has also been performed. X-ray emission was detected for all the nuclei of the radio sources in the current sample with the exception of 3C 435A. There is one compact steep spectrum source while all the others are FR II radio galaxies. X-ray emission from two galaxy clusters (3C 19 and 3C 320), from six hotspots in four radio galaxies (3C 16, 3C 19, 3C 268.2, 3C 313), and extended X-ray emission on kiloparsec scales in 3C 187 and 3C 313, has been detected.

  1. A compact 10 kW, 476 MHz solid state radio frequency amplifier for pre-buncher cavity of free electron laser injector linear accelerator

    SciTech Connect

    Mohania, Praveen; Mahawar, Ashish; Shrivastava, Purushottam; Gupta, P. D.

    2013-09-15

    A 10 kW, 476 MHz, 0.1% duty cycle solid state RF amplifier system for driving sub-harmonic, pre-buncher cavity of IR-FEL injector LINAC, has been developed at RRCAT. The 10 kW power is achieved by combining output of eight 1400 W amplifier modules using 8-way planar corporate combiner. The solid state amplifier modules have been developed using 50 V RF LDMOS transistors which although meant for push-pull operation are being used in single ended configuration with matching circuit developed on a thin (25 mils), high dielectric constant (9.7), low loss microwave laminate with an aim to have a compact structure. Ease of fabrication, modularity, small size, and low cost are the important features of this design which could be used as a template for low duty cycle medium to high pulsed power UHF amplifier system.

  2. A compact 10 kW, 476 MHz solid state radio frequency amplifier for pre-buncher cavity of free electron laser injector linear accelerator.

    PubMed

    Mohania, Praveen; Mahawar, Ashish; Shrivastava, Purushottam; Gupta, P D

    2013-09-01

    A 10 kW, 476 MHz, 0.1% duty cycle solid state RF amplifier system for driving sub-harmonic, pre-buncher cavity of IR-FEL injector LINAC, has been developed at RRCAT. The 10 kW power is achieved by combining output of eight 1400 W amplifier modules using 8-way planar corporate combiner. The solid state amplifier modules have been developed using 50 V RF LDMOS transistors which although meant for push-pull operation are being used in single ended configuration with matching circuit developed on a thin (25 mils), high dielectric constant (9.7), low loss microwave laminate with an aim to have a compact structure. Ease of fabrication, modularity, small size, and low cost are the important features of this design which could be used as a template for low duty cycle medium to high pulsed power UHF amplifier system.

  3. A repeating fast radio burst.

    PubMed

    Spitler, L G; Scholz, P; Hessels, J W T; Bogdanov, S; Brazier, A; Camilo, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J; Ferdman, R D; Freire, P C C; Kaspi, V M; Lazarus, P; Lynch, R; Madsen, E C; McLaughlin, M A; Patel, C; Ransom, S M; Seymour, A; Stairs, I H; Stappers, B W; van Leeuwen, J; Zhu, W W

    2016-03-10

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

  4. A repeating fast radio burst

    NASA Astrophysics Data System (ADS)

    Spitler, L. G.; Scholz, P.; Hessels, J. W. T.; Bogdanov, S.; Brazier, A.; Camilo, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J.; Ferdman, R. D.; Freire, P. C. C.; Kaspi, V. M.; Lazarus, P.; Lynch, R.; Madsen, E. C.; McLaughlin, M. A.; Patel, C.; Ransom, S. M.; Seymour, A.; Stairs, I. H.; Stappers, B. W.; van Leeuwen, J.; Zhu, W. W.

    2016-03-01

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

  5. The Taiwan Extragalactic Astronomical Data Center

    NASA Astrophysics Data System (ADS)

    Foucaud, S.; Hashimoto, Y.; Tsai, M.-F.; Kamennoff, N.; TWEA-DC Team

    2013-10-01

    Founded in 2010, the Taiwan Extragalactic Astronomical Data Center (TWEA-DC) has for its goal to provide access to large amount of data for the Taiwanese and International community, focusing its efforts on Extragalactic science. In continuation with individual efforts in Taiwan over the past few years, this is the first stepping-stone towards the building of a National Virtual Observatory. Taking advantage of our own fast indexing algorithm (BLINK), based on a octahedral meshing of the sky coupled with a very fast kd-tree and a clever parallelization amongst available resources, TWEA-DC will provide, from spring 2013, a service of “on-the-fly” matching, between on-site and user-based catalogs. We will also offer access to public and private raw and reducible data available to the Taiwanese community. Finally, we are developing high-end on-line analysis tools, such as an automated photometric redshifts and SED fitting code (APz), and an automated groups and clusters finder (APFoF).

  6. Extra-Galactic Diffuse Interstellar Bands

    NASA Astrophysics Data System (ADS)

    Cox, N.; Ehrenfreund, Pascale; Kaper, Lex; Spaans, Marco; Foing, Bernard

    Diffuse Interstellar Bands (DIBs) have been observed ubiquitously along many sight-lines probing the interstellar medium of the Milky Way. Despite extensive efforts, their carrier(s) have not yet been identified, although they are very likely of a carbonaceous nature and reside in the gas phase. Possible candidates include, but are not limited to, polycyclic aromatic hydro- carbons (PAHs), fullerenes and carbon chains. To advance our understanding of DIB behaviour and thus DIB carrier properties we need to study environments inherently different from those observed in the Milky Way. Only recent advances in instrumentation and telescope capabilities are providing us with new exciting possibilities for extra-galactic DIB research. We present here a selection of our recent observational results for (extra)-galactic DIBs in the Local Group and beyond. In particular, DIBs in the Magellanic Clouds and in the spiral galaxy NGC1448. These first results show surprising similarities between certain DIB profiles as well as differences in DIB behaviour. Understanding diffuse cloud chemistry, in particular with respect to complex (carbonaceous) molecules, is crucial to any DIB carrier identification. In this respect, external galaxies offer a unique window as they exhibit local interstellar conditions (such as metallicity, UV-field and gas-to-dust ratio) very different from those observed in the Milky Way. We discuss briefly the effect of metallicity and the gas-to-dust ratio on the physi-chemical properties of diffuse clouds and the subsequent effects on the PAH charge state distribution and the DIB carriers.

  7. A NEW METHOD FOR MEASURING EXTRAGALACTIC DISTANCES

    SciTech Connect

    Yoshii, Yuzuru; Minezaki, Takeo; Kobayashi, Yukiyasu; Koshida, Shintaro; Peterson, Bruce A.

    2014-03-20

    We have pioneered a new method for the measurement of extragalactic distances. This method uses the time lag between variations in the short wavelength and long wavelength light from an active galactic nucleus (AGN), based on a quantitative physical model of dust reverberation that relates the time lag to the absolute luminosity of the AGN. We use the large homogeneous data set from intensive monitoring observations in optical and near-infrared wavelength bands with the dedicated 2 m MAGNUM telescope to obtain the distances to 17 AGNs in the redshift range z = 0.0024 to z = 0.0353. These distance measurements are compared with distances measured using Cepheid variable stars, and are used to infer that H {sub 0} = 73 ± 3 (random) km s{sup –1} Mpc{sup –1}. The systematic error in H {sub 0} is examined, and the uncertainty in the size distribution of dust grains is the largest source of the systematic error, which is much reduced for a sample of AGNs for which their parameter values in the model of dust reverberation are individually measured. This AGN time lag method can be used beyond 30 Mpc, the farthest distance reached by extragalactic Cepheids, and can be extended to high-redshift quasi-stellar objects.

  8. Extragalactic Ultracompact HII Regions: Probing the Birth Environments of Super Star Clusters

    NASA Astrophysics Data System (ADS)

    Johnson, K. E.

    2004-12-01

    In recent years, a number of extragalactic massive star clusters that are still deeply embedded in their birth material have been discovered. These objects represent the youngest stage of massive star cluster evolution yet observed, and the most massive and dense of these may be proto globular clusters. Their properties appear to be similar to those of ultracompact HII regions in the Galaxy, but scaled up in total mass and luminosity. In many cases, these clusters are only visible at mid-IR to radio wavelengths, and they have typically been detected as ``inverted'' spectrum radio sources. However, the set of existing observations is anemic, and our current physical model for these natal clusters in simplistic. This article will overview what we think we know about these objects based on existing observations and outline some of the most significant gaps in our current understanding.

  9. Compact antenna has symmetrical radiation pattern

    NASA Technical Reports Server (NTRS)

    Kuhlman, E. A.; Mckee, E. D.

    1979-01-01

    Compact quadrifilar-helix antenna has exceptionally uniform and axially symmetric radiation pattern. It resists shock and vibration and gives excellent radiation characteristics which make it potentially useful for mobile citizenband radios and other terrestrial communications sytems.

  10. Weak and Compact Radio Emission in Early Massive Star Formation Regions: An Ionized Jet toward G11.11-0.12P1

    NASA Astrophysics Data System (ADS)

    Rosero, V.; Hofner, P.; McCoy, M.; Kurtz, S.; Menten, K. M.; Wyrowski, F.; Araya, E. D.; Loinard, L.; Carrasco-González, C.; Rodríguez, L. F.; Cesaroni, R.; Ellingsen, S. P.

    2014-12-01

    We report 1.3 cm and 6 cm continuum observations toward the massive proto-stellar candidate G11.11-0.12P1 using the Karl G. Jansky Very Large Array. We detect a string of four unresolved radio continuum sources coincident with the mid-infrared source in G11P1. The continuum sources have positive spectral indices consistent with a thermal (free-free) ionized jet. The most likely origins of the ionized gas are shocks due to the interaction of a stellar wind with the surrounding high-density material. We also present NIR United Kingdom Infrared Telescope (UKIRT) archival data that show an extended structure detected only at K band (2.2 μm), which is oriented perpendicular to the jet, and that may be scattered light from a circumstellar disk around the massive protostar. Our observations plus the UKIRT archival data thus provide new evidence that a disk/jet system is present in the massive proto-stellar candidate located in the G11.11-0.12P1 core.

  11. Weak and compact radio emission in early massive star formation regions: an ionized jet toward G11.11–0.12P1

    SciTech Connect

    Rosero, V.; Hofner, P.; McCoy, M.; Kurtz, S.; Loinard, L.; Carrasco-González, C.; Rodríguez, L. F.; Menten, K. M.; Wyrowski, F.; Araya, E. D.; Cesaroni, R.; Ellingsen, S. P.

    2014-12-01

    We report 1.3 cm and 6 cm continuum observations toward the massive proto-stellar candidate G11.11–0.12P1 using the Karl G. Jansky Very Large Array. We detect a string of four unresolved radio continuum sources coincident with the mid-infrared source in G11P1. The continuum sources have positive spectral indices consistent with a thermal (free-free) ionized jet. The most likely origins of the ionized gas are shocks due to the interaction of a stellar wind with the surrounding high-density material. We also present NIR United Kingdom Infrared Telescope (UKIRT) archival data that show an extended structure detected only at K band (2.2 μm), which is oriented perpendicular to the jet, and that may be scattered light from a circumstellar disk around the massive protostar. Our observations plus the UKIRT archival data thus provide new evidence that a disk/jet system is present in the massive proto-stellar candidate located in the G11.11–0.12P1 core.

  12. Radio Jet Feedback and Star Formation in Heavily Obscured, Hyperluminous Quasars at Redshifts ˜ 0.5-3. I. ALMA Observations

    NASA Astrophysics Data System (ADS)

    Lonsdale, Carol J.; Lacy, M.; Kimball, A. E.; Blain, A.; Whittle, M.; Wilkes, B.; Stern, D.; Condon, J.; Kim, M.; Assef, R. J.; Tsai, C.-W.; Efstathiou, A.; Jones, S.; Eisenhardt, P.; Bridge, C.; Wu, J.; Lonsdale, Colin J.; Jones, K.; Jarrett, T.; Smith, R.

    2015-11-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) 870 μm (345 GHz) data for 49 high-redshift (0.47 < z < 2.85), luminous (11.7\\lt {log}({L}{{bol}}/{L}⊙ )\\lt 14.2) radio-powerful active galactic nuclei (AGNs), obtained to constrain cool dust emission from starbursts concurrent with highly obscured radiative-mode black hole (BH) accretion in massive galaxies that possess a small radio jet. The sample was selected from the Wide-field Infrared Survey Explorer with extremely steep (red) mid-infrared colors and with compact radio emission from NVSS/FIRST. Twenty-six sources are detected at 870 μm, and we find that the sample has large mid- to far-infrared luminosity ratios, consistent with a dominant and highly obscured quasar. The rest-frame 3 GHz radio powers are 24.7\\lt {log}({P}\\text{3.0 GHz}/{{{W}} {Hz}}-1)\\lt 27.3, and all sources are radio-intermediate or radio-loud. BH mass estimates are 7.7 < log(MBH/M⊙) < 10.2. The rest-frame 1-5 μm spectral energy distributions are very similar to the “Hot DOGs” (hot dust-obscured galaxies), and steeper (redder) than almost any other known extragalactic sources. ISM masses estimated for the ALMA-detected sources are 9.9 < log (MISM/M⊙) < 11.75 assuming a dust temperature of 30 K. The cool dust emission is consistent with star formation rates reaching several thousand M⊙ yr-1, depending on the assumed dust temperature, but we cannot rule out the alternative that the AGN powers all the emission in some cases. Our best constrained source has radiative transfer solutions with approximately equal contributions from an obscured AGN and a young (10-15 Myr) compact starburst.

  13. Resolving the Extragalactic Gamma-ray Background

    NASA Astrophysics Data System (ADS)

    Ajello, Marco; Di Mauro, Mattia; Manconi, Silvia; Zechlin, Hannes

    2017-08-01

    Models of the extragalactic gamma-ray background (EGB) show that its intensity can be ascribed to the integrated emission of source populations, like blazars, already detected by the Fermi Large Area Telescope (LAT). Taking advantage of the sensitivity increase delivered by Pass 8, the newest event-level analysis, we tested this hypothesis employing a photon fluctuation analysis above 50 GeV. For the first time we were able to resolve nearly the entire EGB and show that blazars contribute at least 85% of the EGB intensity. We will discuss how this analysis can be extended to lower energies and present our current understanding of the origin of the EGB, its ties to the neutrino flux measured by IceCube and the capability to constrain scenarios of dark matter interaction.

  14. Astroparticle transport and yield in extragalactic jets and hot spots

    NASA Astrophysics Data System (ADS)

    Marcowith, A.; Casse, F.

    2005-02-01

    The present work discusses yield and transport of high-energy particle within extragalactic jet terminal shocks, also known as hotspots. These astrophysical sources are responsible for strong non-thermal synchrotron emission produced by relativistic electrons accelerated via a Fermi-type mechanism. We investigate in some details the cosmic ray, neutrinos and high-energy photons yield in hotspots of powerful FRII radio-galaxies by scanning all known spatial transport regimes, adiabatic and radiative losses as well as Fermi acceleration processes. Since both electrons and cosmic rays are prone to the same type of acceleration, we derive analytical estimates of the maximal cosmic ray energy attainable in both toroidal and poloidal magnetic field dominated shock structures by using observational data on synchrotron emission coming from various hot-spots. One of our main conclusions is that the best hot-spot candidates for high energy astroparticle production is the extended (LHS >= 1kpc), strongly magnetized (B > 0.1mG) terminal shock displaying synchrotron emission cut-off lying at least in the optical band. We found only one object (3C273A) over the six objects in our sample being capable to produce cosmic rays up to 1020 eV. We also show that the Bohm regime is unlikely to occur in the whole hot-spot since it would require unrealistically low jet velocities. We finally investigate the astroparticle yields of a characteric cosmic-ray loud hot-spot and compared them to the sensibilities of the future neutrinos and gamma-ray missions.

  15. The Herschel Multi-tiered Extragalactic Survey: HerMES

    NASA Technical Reports Server (NTRS)

    Oliver, S.J.; Bock, J.; Altieri, B.; Amblard, A.; Arumugam, V.; Aussel, H.; Babbedge, T.; Beelen, A.; Bethermin, M.; Blain, A.; Boselli, A.; Bridge, C.; Brisbin, D; Buat, V.; Burgarella, D.; Castro-Rodriguez, N.; Cava, A.; Chanial, P.; Cirasuolo, M.; Clements, D. L.; Conley, A.; Conversi, L.; Dwek, E.; Levenson, L.; Nguyen, H. T.

    2012-01-01

    The Herschel Multi-tiered Extragalactic Survey, HerMES, is a legacy program designed to map a set of nested fields totalling approx. 380 deg(exp 2). Fields range in size from 0.01 to approx. 20 deg (exp 2), using Herschel-SPIRE (at 250, 350 and 500 micron), and Herschel-PACS (at 100 and 160 micron), with an additional wider component of 270 deg. (exp. 2) with SPIRE alone. These bands cover the peak of the redshifted thermal spectral energy distribution from interstellar dust and thus capture the re-processed optical and ultra-violet radiation from star formation that has been absorbed by dust, and are critical for forming a complete multi-wavelength understanding of galaxy formation and evolution. The survey will detect of order 100,000 galaxies at 5-sigma in some of the best studied fields in the sky. Additionally, HerMES is closely coordinated with the PACS Evolutionary Probe survey. Making maximum use of the full spectrum of ancillary data, from radio to X-ray wavelengths, it is designed to: facilitate redshift determination; rapidly identify unusual objects; and understand the relationships between thermal emission from dust and other processes. Scientific questions HerMES will be used to answer include: the total infrared emission of galaxies; the evolution of the luminosity function; the clustering properties of dusty galaxies; and the properties of populations of galaxies which lie below the confusion limit through lensing and statistical techniques. This paper defines the survey observations and data products, outlines the primary scientific goals of the HerMES team, and reviews some of the early results.

  16. The North Ecliptic Pole Extragalactic Background LIght Fluctuations Survey

    NASA Astrophysics Data System (ADS)

    Bock, James; Zemcov, Michael; Cooray, Asantha; Smidt, Joseph; Serjeant, Stephen; Malkan, Matt; Matsuhara, Hideo; Matsumoto, Toshia; Matsuura, Shuji; Clements, David; Pearson, Chris; Im, Myung Shin

    2013-10-01

    We propose to image 6 deg^2 in the North Ecliptic Pole (NEP) with IRAC to determine the origin of Extragalactic Background Light (EBL) fluctuations. These Spitzer images will be combined with CIBER data at 1.1 and 1.6 um, and Akari data at 2.4, 3.2, and 4.1 um, to probe the spectrum and band-to-band correlations of the fluctuations. The fluctuations have been reported by Spitzer and Akari, and are now positively detected in new and CIBER data, but their origin is controversial. This multi-wavelength analysis will allow us to determine if EBL fluctuations arise from epoch of reionization galaxies or diffuse intra-halo light emission both by measuring their spectral energy distribution (SED) from 1.0 to 4.5 um, and by measuring the cross-correlation between different bands. The analysis uses multiple field combinations in Spitzer, CIBER and Akari data to carry out a robust measurement with multiple data combinations for internal consistency tests. In addition, the proposed survey will be used in conjunction with Akari and Herschel data in the NEP survey that has the most comprehensive multi-band infrared coverage of any degree-scale field on the sky and the best available constraints on dust phases (e.g. PAH, silicate absorption, AGN dust tori, GMCs) in galaxies. We will use this multi-wavelength coverage to cross-identify IRAC counterparts to Herschel and Akari sources and obtain SEDs of dusty, star bursting galaxies at z ~ 1 to 3 from the UV to radio, and obtain accurate PAH luminosities of Akari 7.7 um-rest detected galaxies and AGNs.

  17. Thirty Years of Extragalactic H II Region Studies

    NASA Astrophysics Data System (ADS)

    Garnett, D. R.

    2002-02-01

    I review a small part of the past thirty years of studies of extragalactic H II regions. Comparing a review of available results in 1975 to what we know today, we see a enormous increase in our knowledge of physical conditions and abundances in extragalactic H II regions, chemical evolution of galaxies, and the primordial helium fraction. Manuel Peimbert and Silvia Torres-Peimbert have made pioneering contributions to this field. Here I outline the progress in understanding extragalactic H II regions and highlight the Peimberts' contributions.

  18. THE SPITZER ARCHIVAL FAR-INFRARED EXTRAGALACTIC SURVEY

    SciTech Connect

    Hanish, D. J.; Capak, P.; Teplitz, H. I.; Desai, V.; Armus, L.; Brinkworth, C.; Brooke, T.; Colbert, J.; Fadda, D.; Noriega-Crespo, A.; Paladini, R.; Edwards, L.; Frayer, D.; Huynh, M.; Lacy, M.; Murphy, E.; Scarlata, C.; Shenoy, S.

    2015-03-15

    We present the Spitzer Archival Far-InfraRed Extragalactic Survey (SAFIRES). This program produces refined mosaics and source lists for all far-infrared (FIR) extragalactic data taken during the more than six years of the cryogenic operation of the Spitzer Space Telescope. The SAFIRES products consist of FIR data in two wavelength bands (70 and 160 μm) across approximately 180 square degrees of sky, with source lists containing far-infrared fluxes for almost 40,000 extragalactic point sources. Thus, SAFIRES provides a large, robust archival far-infrared data set suitable for many scientific goals.

  19. Early Radio Astronomy in the USSR

    NASA Astrophysics Data System (ADS)

    Kellermann, Kenneth I.

    2007-12-01

    As in many other countries, radio astronomy in the Soviet Union began as an outgrowth of wartime radar research. The early leaders of Soviet radio astronomy, including Simon Braude, Vladimir Kotelnikov, Vladimir Troitskii, and Viktor Vitkevitch, all began their careers during WWII. Although the theoretical contributions of people like Iosef Shklovsky and Vitaly Ginzburg were well known in the West, the early experimental and observational programs received much less attention, partially the result of cold war military secrecy. When they were noticed, the Soviet observations were largely ignored or declared wrong. We will discuss the controversial Soviet contributions to the detection of polarized cosmic radio emission, the development of very long baseline interferometry, the prediction and verification of radio recombination lines, and the first detection of variability in an extragalactic radio source.

  20. VIBRATION COMPACTION

    DOEpatents

    Hauth, J.J.

    1962-07-01

    A method of compacting a powder in a metal container is described including the steps of vibrating the container at above and below the resonant frequency and also sweeping the frequency of vibration across the resonant frequency several times thereby following the change in resonant frequency caused by compaction of the powder. (AEC)

  1. The peculiar radio source M17 JVLA 35

    SciTech Connect

    Rodríguez, L. F.; Carrasco-González, C.; Montes, G.; Tapia, M.

    2014-07-01

    M17 JVLA 35 is a radio source detected in projection against the M17 H II region. In recent observations, its spectrum between 4.96 and 8.46 GHz was found to be positive and very steep, with α ≥ 2.9 ± 0.6 (S {sub ν}∝ν{sup α}). Here we present Very Large Array observations made in the 18.5 to 36.5 GHz region that indicate a spectral turnover at ∼13 GHz and a negative spectral index (α ≅ –2.0) at higher frequencies. The spectrum is consistent with that of an extragalactic high frequency peaker (HFP). However, M17 JVLA 35 has an angular size of ∼0.''5 at 8.46 GHz, while HFPs have extremely compact, milliarcsecond dimensions. We discuss other possible models for the spectrum of the source and do not find them feasible. Finally, we propose that M17 JVLA 35 is indeed an HFP but that its angular size becomes broadened by plasma scattering as its radiation travels across M17. If our interpretation is correct, accurate measurements of the angular size of M17 JVLA 35 across the centimeter range should reveal the expected ν{sup –2} dependence.

  2. Jet Emission in Young Radio Sources: A Fermi Large Area Telescope Gamma-Ray View

    NASA Astrophysics Data System (ADS)

    Migliori, G.; Siemiginowska, A.; Kelly, B. C.; Stawarz, Ł.; Celotti, A.; Begelman, M. C.

    2014-01-01

    We investigate the contribution of the beamed jet component to the high-energy emission in young and compact extragalactic radio sources, focusing for the first time on the γ-ray band. We derive predictions on the γ-ray luminosities associated with the relativistic jet assuming a leptonic radiative model. The high-energy emission is produced via Compton scattering by the relativistic electrons in a spherical region at the considered scales (lsim10 kpc). Simulations show a wide range of γ-ray luminosities, with intensities up to ~1046-1048 erg s-1 depending on the assumed jet parameters. We find a highly linear relation between the simulated X-ray and γ-ray luminosities that can be used to select candidates for γ-ray detection. We compare the simulated luminosity distributions in the radio, X-ray, and γ-ray regimes with observations for the largest sample of X-ray-detected young radio quasars. Our analysis of ~4-yr Fermi Large Area Telescope (LAT) data does not yield any statistically significant detections. However, the majority of the model-predicted γ-ray fluxes for the sample are near or below the current Fermi-LAT flux threshold and compatible with the derived upper limits. Our study gives constraints on the minimum jet power (L jet, kin/L disk > 0.01) of a potential jet contribution to the X-ray emission in the most compact sources (lsim 1 kpc) and on the particle-to-magnetic field energy density ratio that are in broad agreement with equipartition assumptions.

  3. A search for long-time-scale, low-frequency radio transients

    NASA Astrophysics Data System (ADS)

    Murphy, Tara; Kaplan, David L.; Croft, Steve; Lynch, Christene; Callingham, J. R.; Bannister, Keith; Bell, Martin E.; Hurley-Walker, Natasha; Hancock, Paul; Line, Jack; Rowlinson, Antonia; Lenc, Emil; Intema, H. T.; Jagannathan, P.; Ekers, Ronald D.; Tingay, Steven; Yuan, Fang; Wolf, Christian; Onken, Christopher A.; Dwarakanath, K. S.; For, B.-Q.; Gaensler, B. M.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; McKinley, B.; Morgan, J.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wayth, R.; Wu, C.; Zheng, Q.

    2017-04-01

    We present a search for transient and highly variable sources at low radio frequencies (150-200 MHz) that explores long time-scales of 1-3 yr. We conducted this search by comparing the TIFR GMRT Sky Survey Alternative Data Release 1 (TGSS ADR1) and the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey catalogues. To account for the different completeness thresholds in the individual surveys, we searched for compact GLEAM sources above a flux density limit of 100 mJy that were not present in the TGSS ADR1; and also for compact TGSS ADR1 sources above a flux density limit of 200 mJy that had no counterpart in GLEAM. From a total sample of 234 333 GLEAM sources and 275 612 TGSS ADR1 sources in the overlap region between the two surveys, there were 99 658 GLEAM sources and 38 978 TGSS ADR sources that passed our flux density cut-off and compactness criteria. Analysis of these sources resulted in three candidate transient sources. Further analysis ruled out two candidates as imaging artefacts. We analyse the third candidate and show it is likely to be real, with a flux density of 182 ± 26 mJy at 147.5 MHz. This gives a transient surface density of ρ = (6.2 ± 6) × 10-5 deg-2. We present initial follow-up observations and discuss possible causes for this candidate. The small number of spurious sources from this search demonstrates the high reliability of these two new low-frequency radio catalogues.

  4. Radio characteristics of galactic nuclei

    NASA Astrophysics Data System (ADS)

    Condon, J. J.

    1986-02-01

    Radio characteristics of galactic nuclei, providing such unique information as spectral data on source variability, and the long-term history of the central engine and its duration of activity and total energy, are reviewed. The compact radio source characteristics are complicated by orientation-dependent relativistic beaming and by refractive focusing in the interstellar medium. Incoherent synchrotron radiation is thought to be the emission mechanism, with the result that synchrotron self-absorption in compact sources hides the central engine from direct radio observation. However, the history revealed by the extended jets and lobes of radio galaxies and quasars favors a single massive object not supported by radiation pressure, either a spinar or a black hole, as the energy source in radio-galaxy nuclei.

  5. 30 Years of Extragalactic H II Region Studies

    NASA Astrophysics Data System (ADS)

    Garnett, D.

    2000-11-01

    The study of extragalactic H II regions has provided key data on ISM abundan ces in star-forming galaxies, and on the properties and physical mechanisms associated with starbursts. Manuel Peimbert and Silvia Torres-Peimbert were early pioneers in obtaining high-quality on physical conditions in extragalactic H II regions. In this review I will highlight their contributions to the field and our present-day understanding of giant H II regions and starbursts.

  6. A selection of AKARI FIS BSC extragalactic objects

    NASA Astrophysics Data System (ADS)

    Marton, G.; Tóth, L. V.; Balázs, L. G.; Zahorecz, S.; Bagoly, Z.; Horváth, I.; Rácz, I. I.; Nagy, A.

    The point sources in the Bright Source Catalogue (BSC) of the AKARI Far-Infrared Surveyor (FIS) were classified based on their far-IR and mid-IR fluxes and colours using Quadratic Discriminant Analysis method (QDA) and Support Vector Machines (SVM). The reliability of our results show that we can successfully separate galactic and extragalactic AKARI point sources in the multidimensional space of fluxes and colours. However, differentiating among the extragalactic sub-types needs further information.

  7. ANATOMY OF HELICAL EXTRAGALACTIC JETS: THE CASE OF S5 0836+710

    SciTech Connect

    Perucho, M.; Kovalev, Y. Y.; Lobanov, A. P.; Hardee, P. E.; Agudo, I.

    2012-04-10

    Helical structures are common in extragalactic jets. They are usually attributed in the literature to periodical phenomena in the source (e.g., precession). In this work, we use very long baseline interferometry data of the radio jet in the quasar S5 0836+710 and hypothesize that the ridgeline of helical jets like this corresponds to a pressure maximum in the jet and assume that the helically twisted pressure maximum is the result of a helical wave pattern. For our study, we use observations of the jet in S5 0836+710 at different frequencies and epochs. The results show that the structures observed are physical and not generated artificially by the observing arrays. Our hypothesis that the observed intensity ridgeline can correspond to a helically twisted pressure maximum is confirmed by our observational tests. This interpretation allows us to explain jet misalignment between parsec and kiloparsec scales when the viewing angle is small, and also brings us to the conclusion that high-frequency observations may show only a small region of the jet flow concentrated around the maximum pressure ridgeline observed at low frequencies. Our work provides a potential explanation for the apparent transversal superluminal speeds observed in several extragalactic jets by means of transversal shift of an apparent core position with time.

  8. HELP: The Herschel Extragalactic Legacy Project and The Coming of Age of Multi-wavelength Astrophysics

    NASA Astrophysics Data System (ADS)

    Vaccari, M.

    How did galaxies form and evolve? This is one of the most challenging questions in astronomy today. Answering it requires a careful combination of observational and theoretical work to reliably determine the observed properties of cosmic bodies over large portions of the distant Universe on the one hand, and accurately model the physical processes driving their evolution on the other. Most importantly, it requires bringing together disparate multi-wavelength and multi-resolution spectro-photometric datasets in an homogeneous and well-characterized manner so that they are suitable for a rigorous statistical analysis. The Herschel Extragalactic Legacy Project (HELP) funded by the EC FP7 SPACE program aims to achieve this goal by combining the expertise of optical, infrared and radio astronomers to provide a multi-wavelength database for the distant Universe as an accessible value-added resource for the astronomical community. It will do so by bringing together multi-wavelength datasets covering the 1,000 deg2 mapped by Herschel extragalactic surveys in an homogeneous and well-characterized manner, creating a joint lasting legacy from several ambitious sky surveys.

  9. Measuring X-ray Binary Accretion State Distributions in Extragalactic Environments using XMM-Newton

    NASA Astrophysics Data System (ADS)

    West, Lacey; Lehmer, Bret; Yukita, Mihoko; Hornschemeier, Ann E.; Ptak, Andrew; Wik, Daniel R.; Zezas, Andreas

    2017-01-01

    X-ray binary systems (XRBs) in the MW can exist in several different accretion states, and many have been found to vary along specific tracks on intensity-color diagrams. Observationally measuring the distributions of these accretion states in a variety of environments can aid in population synthesis modeling and ultimately help us understand the formation and evolution of XRBs and their compact object components (i.e., black holes and neutron stars). Recent innovative studies with NuSTAR have demonstrated the utility of color-color and intensity-color diagrams in differentiating between XRB accretion states in extragalactic environments (NGC 253, M83, and M31). The key to NuSTAR’s success is its sensitivity above »10keV, where spectral differences between accretion states are most pronounced. However, due to the relatively low spatial resolution and large background of NuSTAR, the constraints from these diagrams is limited to only bright sources in nearby galaxies. In this poster, we present evidence that XMM-Newton observations of M83 in the 4.0-12.0 keV range can be used to create similar color-intensity and color-color diagrams and therefore differentiate between these accretion states. We will further discuss plans to leverage XMM-Newton’s vast archive and 17-year baseline to dramatically expand studies of accretion state distributions and state transitions for XRB populations in extragalactic environments.

  10. Milli-Arcsecond Morphology and Structural Changes in a Complete Sample of Radio Sources

    NASA Astrophysics Data System (ADS)

    Pearson, T. J.; Readhead, A. C. S.; Barthel, P. D.; Conway, J. E.; Myers, S. T.

    1993-05-01

    We have conducted a VLBI survey of a complete, flux-density--limited sample of 65 extragalactic radio sources, selected at 5 GHz, in order to study their morphology and to look for superluminal motion and other structural changes. First-epoch images of 37 sources were published by Pearson & Readhead (1988, ApJ, 328, 114). Here we present 5-GHz images, with a resolution ~ 1 milliarcsec, taken at three epochs spread over 9 years for each of 25 sources. The majority of the sources have an asymmetric, core-jet morphology. Several of these are superluminal sources in which an emission feature moves outward along the jet at v_app > c (e.g., 0850+581, 1642+690, 1928+738, BL Lac, 3C 216, 3C 345). Several other sources with similar morphology, however, show no changes in relative positions of subcomponents, although subcomponent flux densities do change (e.g., 0711+356, 1652+398, 1823+568). We draw attention to a new class of ``compact symmetric'' objects with double or triple morphology (e.g., 0108+388, 0710+439, 2352+495). We have placed limits < c on relative motion of components in these sources, and they show little if any evidence for relativistic beaming. The central engine appears to lie midway between two lobes ~ 100 pc apart. The sample also includes some compact steep-spectrum sources and other sources that are difficult to classify.

  11. Absolute Calibration of the Radio Astronomy Flux Density Scale at 22 to 43 GHz Using Planck

    NASA Astrophysics Data System (ADS)

    Partridge, B.; López-Caniego, M.; Perley, R. A.; Stevens, J.; Butler, B. J.; Rocha, G.; Walter, B.; Zacchei, A.

    2016-04-01

    The Planck mission detected thousands of extragalactic radio sources at frequencies from 28 to 857 GHz. Planck's calibration is absolute (in the sense that it is based on the satellite’s annual motion around the Sun and the temperature of the cosmic microwave background), and its beams are well characterized at sub-percent levels. Thus, Planck's flux density measurements of compact sources are absolute in the same sense. We have made coordinated Very Large Array (VLA) and Australia Telescope Compact Array (ATCA) observations of 65 strong, unresolved Planck sources in order to transfer Planck's calibration to ground-based instruments at 22, 28, and 43 GHz. The results are compared to microwave flux density scales currently based on planetary observations. Despite the scatter introduced by the variability of many of the sources, the flux density scales are determined to 1%-2% accuracy. At 28 GHz, the flux density scale used by the VLA runs 2%-3% ± 1.0% below Planck values with an uncertainty of +/- 1.0%; at 43 GHz, the discrepancy increases to 5%-6% ± 1.4% for both ATCA and the VLA.

  12. Spectral properties and the effect on redshift cut-off of compact active galactic nuclei from the AT20G survey

    NASA Astrophysics Data System (ADS)

    Chhetri, R.; Ekers, R. D.; Mahony, E. K.; Jones, P. A.; Massardi, M.; Ricci, R.; Sadler, E. M.

    2012-05-01

    Spectral index has been traditionally used to separate extragalactic radio sources into compact and extended populations, with the spectral transition placed variably between -0.4 and -0.6. We use high angular resolution data, measured from visibility of sources at the longest baseline of 4500 m of the Australia Telescope Compact Array (ATCA), for the Australia Telescope 20 GHz (AT20G) survey to obtain angular size information for over 94 per cent of AT20G sources. We confirm the previous AT20G result that due to the high survey frequency of 20 GHz, the source population is strongly dominated by compact sources (79 per cent). At 0.15-arcsec angular resolution limit, we show a very strong correlation between the compact and extended sources with flat and steep-spectrum sources respectively for spectral indices obtained between 1 and 5 GHz. Thus, we provide a firm physical basis for the traditional spectral classification into flat and steep-spectrum sources to select compact and extended sources. We find that for spectral indices between 1 and 5 GHz, the cut-offs at -0.4 and -0.5 are quite similar to the optimum cut-off of -0.46 and, hence, recommend the continued use of -0.5 for future studies. We use the recently published redshift data to study the effect of spectral curvature on the redshift cut-off of compact active galactic nuclei (AGNs). Using spectral indices at different frequencies, we correct for the redshift effect and also produce rest-frame frequency spectra for compact sources for redshifts up to z˜ 5. We show that the spectra of most compact sources are flat to ˜30 GHz and then start to steepen. At higher frequencies, the spectra of both compact and extended sources are steep, so the use of spectral index does not separate the compact and extended source populations as well as in lower frequencies. We also find that due to spectral steepening at high frequencies, surveys of compact sources at higher frequencies (ν > 5 GHz) will have redshift cut

  13. Extragalactic Jets as Electrical Circuits and Transmission Lines

    NASA Astrophysics Data System (ADS)

    Kronberg, Philipp

    2014-10-01

    I describe the first attempt to measure a current in an extended radio galaxy jet: ~1018A at ~50 kpc from the elliptical galaxy's ultra-compact nucleus. This class of jet is known to transport its magnetic energy ``intact'', up to supragalactic scales. I discuss plasma parameters for 3C303 and recent attempts to measure its jet axial current. I discuss analogies with both electrical circuits, - and transmission lines. Power is delivered into a ``load'', whose impedance, Z, is close to that of free space, and the jet power flow I2 Z is ~1035 erg s-1 - broadly consistent with astronomically measured total power outputs, luminosities and lifetimes of AGN-powered radio lobes.The current and power levels are also consistent with SMBH accretion disk model predictions by Stirling Colgate, H. Li, V. Pariev, J. Finn, and others, beginning with Lovelace 1976 (Nature). A further analogy with transmission lines shows how the supragalactic power flows can be disrupted by a complex impedance in the ``circuit.'' Reactive components in space, i.e. a complex Z, can disrupt, reflect or deflect the power flow. This could explain the wide variety of magneto-plasma configurations seen in these systems. Funded by NSERC Discovery Grant A5713.

  14. Extragalactic Sub-millimeter H2O Maser - Detection of a 321 GHz Water Maser in Circinus Galaxy

    NASA Astrophysics Data System (ADS)

    Hagiwara, Y.; Horiuchi, S.; Doi, A.; Miyoshi, M.

    2015-12-01

    We present the first detection of the extragalactic 321 GHz H2O emission towards the Circinus Galaxy, the nearby Type2 Seyfert galaxy. It is likely that the detected emission is a maser because of the narrow line shape, the compact emission (< 0.66″) and the high energy level of the transition. High velocity emission, red-shifted up to 635 km/s, was tentatively detected. The maser location of about 0.02 pc from the center of the galaxy is estimated by adopting the Kepler rotating disk model. This could be the molecular material observed closest to the central engine.

  15. VLBI OBSERVATIONS OF 10 COMPACT SYMMETRIC OBJECT CANDIDATES: EXPANSION VELOCITIES OF HOT SPOTS

    SciTech Connect

    An Tao; Wu Fang; Hong Xiaoyu; Wang Weihua; Chen Xi; Yang Jun; Taylor, Gregory B.; Baan, Willem A.; Liu Xiang; Wang Min; Hao Longfei; Cui Lang E-mail: an@astron.nl

    2012-01-01

    Observations of 10 Compact Symmetric Object (CSO) candidates have been made with the Very Long Baseline Array (VLBA) at 8.4 GHz in 2005 and with a combined Chinese and European Very Long Baseline Interferometry (VLBI) array at 8.4 GHz in 2009. The 2009 observations incorporate for the first time the two new Chinese telescopes at Miyun and Kunming for international astrophysical observations. The observational data, in combination with archival VLBA data from previous epochs, have been used to derive the proper motions of the VLBI components. Because of the long time baseline of {approx}16 years of the VLBI data sets, the expansion velocities of the hot spots can be measured at an accuracy as high as {approx}1.3 {mu}as yr{sup -1}. Six of the ten sources are identified as CSOs with a typical double or triple morphology on the basis of both spectral index maps and their mirror symmetry of proper motions of the terminal hot spots. The compact double source J1324+4048 is also identified as a CSO candidate. Among the three remaining sources, J1756+5748 and J2312+3847 are identified as core-jet sources with proper motions of their jet components relating to systemic source expansion. The third source J0017+5312 is likely also a core-jet source, but a robust detection of a core is needed for an unambiguous identification. The kinematic ages of the CSOs derived from proper motions range from 300 to 2500 years. The kinematic age distribution of the CSOs confirm an overabundance of compact young CSOs with ages less than 500 years. CSOs with known kinematic ages may be used to study the dynamical evolution of extragalactic radio sources at early stages.

  16. The grand unified photon spectrum: A coherent view of the diffuse extragalactic background radiation

    NASA Astrophysics Data System (ADS)

    Ressell, M. Ted; Turner, Michael S.

    1989-10-01

    The spectrum of diffuse extragalactic background radiation (DEBRA) at wavelengths from 105 to 10-24 cm is presented in a coherent fashion. Each wavelength region, from the radio to ultra-high energy photons and cosmic rays, is treated both separately and as part of the grand unified photon spectrum (GUPS). A discussion of, and references to, the relevant literature for each wavelength region is included. This review should provide a useful tool for those interested in diffuse backgrounds, the epoch of galaxy formation, astrophysical/cosmological constraints to particle properties, exotic early Universe processes, and many other astrophysical and cosmological enterprises. As a worked example, researchers derive the cosmological constraints to an unstable-neutrino spies (with arbitrary branching ratio to a radiative decay mode) that follow from the GUPS.

  17. The grand unified photon spectrum: A coherent view of the diffuse extragalactic background radiation

    NASA Technical Reports Server (NTRS)

    Ressell, M. Ted; Turner, Michael S.

    1989-01-01

    The spectrum of diffuse extragalactic background radiation (DEBRA) at wavelengths from 10(exp 5) to 10(exp -24) cm is presented in a coherent fashion. Each wavelength region, from the radio to ultra-high energy photons and cosmic rays, is treated both separately and as part of the grand unified photon spectrum (GUPS). A discussion of, and references to, the relevant literature for each wavelength region is included. This review should provide a useful tool for those interested in diffuse backgrounds, the epoch of galaxy formation, astrophysical/cosmological constraints to particle properties, exotic early Universe processes, and many other astrophysical and cosmological enterprises. As a worked example, researchers derive the cosmological constraints to an unstable-neutrino spies (with arbitrary branching ratio to a radiative decay mode) that follow from the GUPS.

  18. The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars

    DOE PAGES

    Ackermann, M.; Ajello, M.; Allafort, A.; ...

    2012-11-30

    The light emitted by stars and accreting compact objects through the history of the universe is encoded in the intensity of the extragalactic background light (EBL). Knowledge of the EBL is important to understand the nature of star formation and galaxy evolution, but direct measurements of the EBL are limited by galactic and other foreground emissions. In this paper, we report an absorption feature seen in the combined spectra of a sample of gamma-ray blazars out to a redshift of z ~ 1.6. Finally, this feature is caused by attenuation of gamma rays by the EBL at optical to ultravioletmore » frequencies and allowed us to measure the EBL flux density in this frequency band.« less

  19. The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars

    SciTech Connect

    Ackermann, M.; Ajello, M.; Allafort, A.; Schady, P.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chaves, R. C. G.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; D'Ammando, F.; de Palma, F.; Dermer, C. D.; Digel, S. W.; do Couto e Silva, E.; Dominguez, A.; Drell, P. S.; Drlica-Wagner, A.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Gustafsson, M.; Hadasch, D.; Hayashida, M.; Hays, E.; Jackson, M. S.; Jogler, T.; Kataoka, J.; Knodlseder, J.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Tramacere, A.; Nuss, E.; Greiner, J.; Ohno, M.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Raino, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reyes, L. C.; Ritz, S.; Rau, A.; Romoli, C.; Roth, M.; Sanchez-Conde, M.; Sanchez, D. A.; Scargle, J. D.; Sgro, C.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Stawarz, L.; Suson, D. J.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Winer, B. L.; Wood, K. S.; Wood, M.

    2012-11-30

    The light emitted by stars and accreting compact objects through the history of the universe is encoded in the intensity of the extragalactic background light (EBL). Knowledge of the EBL is important to understand the nature of star formation and galaxy evolution, but direct measurements of the EBL are limited by galactic and other foreground emissions. In this paper, we report an absorption feature seen in the combined spectra of a sample of gamma-ray blazars out to a redshift of z ~ 1.6. Finally, this feature is caused by attenuation of gamma rays by the EBL at optical to ultraviolet frequencies and allowed us to measure the EBL flux density in this frequency band.

  20. The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Schady, P.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Gehrels, N.; Guirec, S.; Hays, E.; McEnery, J. E.; Perkins, J. S.; Scargle, J. D.; Troja, E.

    2012-01-01

    The light emitted by stars and accreting compact objects through the history of the universe is encoded in the intensity of the extragalactic background light (EBL). Knowledge of the EBL isimportant to understand the nature of star formation and galaxy evolution, but direct measurements of the EBL are limited by galactic and other foreground emissions. Here, we report an absorption feature seen in the combined spectra of a sample of gamma-ray blazars out to a redshift of z approx. 1.6. This feature is caused by attenuation of gamma rays by the EBL at optical to ultraviolet frequencies and allowed us to measure the EBL flux density in this frequency band.

  1. Localising fast radio bursts and other transients using interferometric arrays

    NASA Astrophysics Data System (ADS)

    Obrocka, M.; Stappers, B.; Wilkinson, P.

    2015-07-01

    A new population of sources emitting fast and bright transient radio bursts (FRBs) has recently been identified. Their observed high dispersion measures suggests an extragalactic origin, and accurately determining their positions and distances will provide an opportunity to study the magneto-ionic properties of the intergalactic medium. So far, FRBs have all been found using large dishes equipped with multi-pixel arrays. While these dishes are well-suited to discovering transient sources, they are poor at providing accurate localisations. A 2D snapshot image of the sky, made with a correlation interferometer array, can accurately localise many compact radio sources simultaneously. However, the required time resolution and the need to detect them in real time makes this currently impractical. In a beam-forming approach many narrow tied-array beams (TABs) are produced and the advantages of single dishes and interferometers can be combined. We present a proof-of-concept analysis of a new non-imaging method that utilises the additional spectral and comparative spatial information obtained from multiply overlapping TABs to estimate a transient source location with up to arcsecond accuracy in almost real time. We demonstrate this for a variety of interferometric configurations, that is LOFAR and MeerKAT, and show that the estimated angular position may be sufficient for identifying a host galaxy or other related object, without reference to other simultaneous or follow-up observations. In cases where the position is less accurately determined, we can still significantly reduce the area that needs to be searched for associated emission at other wavelengths and from potential host galaxies.

  2. HST LEGUS - Legacy Extragalactic UV Survey

    NASA Astrophysics Data System (ADS)

    Calzetti, Daniela; LEGUS Team

    2017-01-01

    LEGUS (Legacy ExtraGalactic UV Survey) is a cycle 21 Hubble Space Telescope Treasury program designed to provide a definite characterization of the links between star formation on two fundamental scales: those of individual stars, stellar clusters and associations on parsec scales, and of galaxy disks on kilo-parsec scales.In order to achieve this goal, LEGUS has obtained multi-color images of 50 nearby star-forming galaxies, in the distance range 3-16 Mpc. Wavelength coverage spans five bands (NUV, U, B, V, and I) by combining new WFC3 observations with archival ACS imaging data, when available. The galaxies were carefully selected to sample the full range of galaxy mass, morphology, star formation rate (SFR), sSFR (specific SFR=SFR/mass), metallicity, internal structure (rings, bars), and interaction state found in the Local Volume where HST can resolve and age-date young stellar populations on parsec scales. Many of the galaxies are well-known, iconic ones, with a wealth of additional information available in a number of archives. The multi-color HST images are being used to secure complete inventories of the young stars, star clusters, and structures of the galaxies, together with the characterization of their ages, masses, and extinctions.I will briefly introduce a few highlights on the scientific results obtained so far by the LEGUS team, in addition to describing the high-level science products the team plans to release to the community, in order to enable a wide range of additional scientific applications.

  3. WFIRST Extragalactic Potential Observations (EXPO) Science Investigation Team

    NASA Astrophysics Data System (ADS)

    Robertson, Brant

    The Wide-Field InfraRed Survey Telescope (WFIRST) holds tremendous promise as a space observatory for extragalactic astrophysics beyond cosmological surveys. The WFIRST Extragalactic Potential Observations (EXPO) Science Investigation Team will identify the most pressing and scientifically compelling Guest Investigator and Guest Observer projects with WFIRST to address a range of exciting outstanding issues in galaxy formation, from the epoch of reionization to galaxy-galaxy lensing, the discovery of exotic supernovae and luminous active galaxies, and charting the chemical evolution of galaxies. The identified EXPO GI projects will help maximize the scientific return of the WFIRST cosmological surveys, and supply innovative ideas and methods for archival research that leverages the WFIRST dataset. The EXPO team will also evaluate the science payoff of translating previous successful space telescope surveys to the era of WFIRST, helping us to realize the full power of WFIRST for extragalactic astronomy through the competed GO programs. The WFIRST-EXPO team consists of world-wide experts in designing and executing space-based extragalactic programs, multi-object spectroscopic campaigns in the optical and infrared, and theoretical modeling of galaxy formation, exotic supernovae, and reionization. In support of WFIRST before Critical Design Review, WFIRST-EXPO will 1) develop and publicly release tools to generate mock catalogs for planning extragalactic astrophysics investigations with the HLS (GI) and GO community programs, 2) simulate images for modeling medium- and ultra-deep extragalactic GO programs, 3) develop and publicly release work flows for planning and evaluating the science return of potential extragalactic GI/GO programs, 4) perform case studies of medium- and ultra-deep imaging and spectroscopic GO/GI programs, 5) evaluate WFIRST design choices that influence extragalactic science return, and 6) serve as liaisons to James Webb Space Telescope, Large

  4. THE ATACAMA COSMOLOGY TELESCOPE: EXTRAGALACTIC SOURCES AT 148 GHz IN THE 2008 SURVEY

    SciTech Connect

    Marriage, Tobias A.; Lin Yenting; Das, Sudeep; Juin, Jean Baptiste; Aguirre, Paula; Barrientos, L. Felipe; Marsden, Danica; Devlin, Mark J.; Dicker, Simon R.; Nolta, Michael R.; Bond, John R.; Partridge, Bruce; Ade, Peter A. R.; Amiri, Mandana; Battistelli, Elia S.; Burger, Bryce; Appel, John William; Brown, Ben; Chervenak, Jay

    2011-04-20

    We report on extragalactic sources detected in a 455 deg{sup 2} map of the southern sky made with data at a frequency of 148 GHz from the Atacama Cosmology Telescope (ACT) 2008 observing season. We provide a catalog of 157 sources with flux densities spanning two orders of magnitude: from 15 mJy to 1500 mJy. Comparison to other catalogs shows that 98% of the ACT detections correspond to sources detected at lower radio frequencies. Three of the sources appear to be associated with the brightest cluster galaxies of low-redshift X-ray-selected galaxy clusters. Estimates of the radio to millimeter-wave spectral indices and differential counts of the sources further bolster the hypothesis that they are nearly all radio sources, and that their emission is not dominated by re-emission from warm dust. In a bright (>50 mJy) 148 GHz selected sample with complete cross-identifications from the Australia Telescope 20 GHz survey, we observe an average steepening of the spectra between 5, 20, and 148 GHz with median spectral indices of {alpha}{sub 5-20} = -0.07 {+-} 0.06, {alpha}{sub 20-148} = -0.39 {+-} 0.04, and {alpha}{sub 5-148} = -0.20 {+-} 0.03. When the measured spectral indices are taken into account, the 148 GHz differential source counts are consistent with previous measurements at 30 GHz in the context of a source count model dominated by radio sources. Extrapolating with an appropriately rescaled model for the radio source counts, the Poisson contribution to the spatial power spectrum from synchrotron-dominated sources with flux density less than 20 mJy is C {sup Sync} = (2.8 {+-} 0.3) x 10{sup -6}{mu}K{sup 2}.

  5. The Atacama Cosmology Telescope: Extragalactic Sources at 148 GHz in the 2008 Survey

    NASA Technical Reports Server (NTRS)

    Marriage, T. A.; Juin, J. B.; Lin, Y. T.; Marsden, D.; Nolta, M. R.; Partridge, B.; Ade, P. A. R.; Aguirre, P.; Amiri, M.; Appel, J. W.; Barrientos, L. F.; Battistelli, E. S.; Bond, J. R.; Brown, B.; Burger, B.; Chervenak, J.; Das, S.; Devlin, M. J.; Dicker, S. R.; Doriese, W. B.; Dunkley, J.; Dunner, R.; Essinger-Hileman, T.; Fisher, R. P.; Fowler, J. W.

    2011-01-01

    We report on extragalactic sources detected in a 455 square-degree map of the southern sky made with data at a frequency of 148 GHz from the Atacama Cosmology Telescope 2008 observing season. We provide a catalog of 157 sources with flux densities spanning two orders of magnitude: from 15 mJy to 1500 mJy. Comparison to other catalogs shows that 98% of the ACT detections correspond to sources detected at lower radio frequencies. Three of the sources appear to be associated with the brightest cluster galaxies of low redshift X-ray selected galaxy clusters. Estimates of the radio to mm-wave spectral indices and differential counts of the sources further bolster the hypothesis that they are nearly all radio sources, and that their emission is not dominated by re-emission from warm dust. In a bright (> 50 mJy) 148 GHz-selected sample with complete cross-identifications from the Australia Telescope 20 GHz survey, we observe an average steepening of the spectra between .5, 20, and 148 GHz with median spectral indices of alp[ha (sub 5-20) = -0.07 +/- 0.06, alpha (sub 20-148) -0.39 +/- 0.04, and alpha (sub 5-148) = -0.20 +/- 0.03. When the measured spectral indices are taken into account, the 148 GHz differential source counts are consistent with previous measurements at 30 GHz in the context of a source count model dominated by radio sources. Extrapolating with an appropriately rescaled model for the radio source counts, the Poisson contribution to the spatial power spectrum from synchrotron-dominated sources with flux density less than 20 mJy is C(sup Sync) = (2.8 +/- 0.3) x 1O (exp-6) micro K(exp 2).

  6. A catalogue of AKARI FIS BSC extragalactic objects

    NASA Astrophysics Data System (ADS)

    Marton, Gabor; Toth, L. Viktor; Gyorgy Balazs, Lajos

    2015-08-01

    We combined photometric data of about 70 thousand point sources from the AKARI Far-Infrared Surveyor Bright Source Catalogue with AllWISE catalogue data to identify galaxies. We used Quadratic Discriminant Analysis (QDA) to classify our sources. The classification was based on a 6D parameter space that contained AKARI [F65/F90], [F90/F140], [F140/F160] and WISE W1-W2 colours along with WISE W1 magnitudes and AKARI [F140] flux values. Sources were classified into 3 main objects types: YSO candidates, evolved stars and galaxies. The training samples were SIMBAD entries of the input point sources wherever an associated SIMBAD object was found within a 30 arcsecond search radius. The QDA resulted more than 5000 AKARI galaxy candidate sources. The selection was tested cross-correlating our AKARI extragalactic catalogue with the Revised IRAS-FSC Redshift Catalogue (RIFSCz). A very good match was found. A further classification attempt was also made to differentiate between extragalactic subtypes using Support Vector Machines (SVMs). The results of the various methods showed that we can confidently separate cirrus dominated objects (type 1 of RIFSCz). Some of our “galaxy candidate” sources are associated with 2MASS extended objects, and listed in the NASA Extragalactic Database so far without clear proofs of their extragalactic nature. Examples will be presented in our poster. Finally other AKARI extragalactic catalogues will be also compared to our statistical selection.

  7. AGN content of X-ray, IR and radio sources

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Paronyan, G. M.; Abrahamyan, H. V.; Gyulzadyan, M. V.; Mikayelyan, G. A.

    2016-09-01

    We have carried out a number of surveys and identification works related to X-ray, IR and radio sources and searched for extragalactic ones. Among them, most interesting are Active Galactic Nuclei (AGN) and Starburst (SB) Galaxies. Some 4500 AGN have been revealed from ROSAT BSC and FSC sources, and many more are hidden ones; those showing evidence of activity but with no emission lines in optical wavelengths. We estimated AGN content of X-ray sources as 52.9%. IR sources contain thousands of SBs, and most important are those having signs of interaction and/or merging. We have carried out optical identifications of IRAS point sources, and 1278 IR galaxies have been revealed, including LIRGs and ULIRGs. We have also combined IRAS PSC and FSC catalogs and compiled its extragalactic sample, which allowed to estimate AGN content among IR sources as 23.7%. Extragalactic radio sources contain bright galaxies, AGN and SBs. We have studied the border between AGN and normal galaxies by radio/optical flux ratios to establish which objects may be attributed to AGN based on radio properties. Interestingly, absolute majority of objects associated with both X-ray and radio sources are AGN.

  8. Astroparticle yield and transport from extragalactic jet terminal shocks

    NASA Astrophysics Data System (ADS)

    Casse, Fabien; Marcowith, Alexandre

    2005-02-01

    The present paper deals with the yield and transport of high-energy particle within extragalactic jet terminal shocks, also known as hot-spots. These astrophysical sources are responsible for strong non-thermal synchrotron emission produced by relativistic electrons accelerated via a Fermi-type mechanism. We investigate in some details the cosmic ray, neutrinos and high-energy photons yield in hot-spots of powerful FRII radio-galaxies by scanning all known spatial transport regimes, adiabatic and radiative losses as well as Fermi acceleration process. Since both electrons and cosmic rays are prone to the same type of acceleration, we derive analytical estimates of the maximal cosmic ray energy attainable in both toroidal and poloidal magnetic field dominated shock structures by using observational data on synchrotron emission coming from various hot-spots. One of our main conclusions is that the best hot-spot candidates for high energy astroparticle production is the extended (LHS ⩾ 1 kpc), strongly magnetized (B > 0.1 mG) terminal shock displaying synchrotron emission cut-off lying at least in the optical band. We found only one object (3C273 A) over the six objects in our sample being capable to produce cosmic rays up to 1020 eV. We also show that the Bohm regime is unlikely to occur in the whole hot-spot since it would require unrealistically low jet velocities. Secondly, we investigate the astroparticle spectra produced by two characteristic hot-spots (Cygnus A and 3C273 A) by applying a multi-scale MHD kinetic scheme, coupling MHD simulations to kinetic computations using stochastic differential equations. We show that 3C273 A, matching the previous properties, may produce protons up to 1020 eV in a Kolmogorov-type turbulence by both computing electron and cosmic ray acceleration. We also calculate the high-energy neutrino and gamma-ray fluxes on Earth produced through p γ and p p processes and compare them to the most sensitive astroparticle experiments.

  9. Radio stars

    NASA Astrophysics Data System (ADS)

    Hjellming, Robert M.

    The state of knowledge on continuum radio emission from the stars is considered. Fundamental radio emission process and stellar radiative transfer are reviewed, and solar radio emission is examined. Flare stars and active binaries are addressed, and stellar winds and cataclysmic variables are considered. Radio-emitting X-ray binaries are discussed.

  10. Ureilite compaction

    NASA Astrophysics Data System (ADS)

    Walker, D.; Agee, C. B.

    1988-03-01

    Ureilite meteorites show the simple mineralogy and compact recrystallized textures of adcumulate rock or melting residues. A certain amount of controversy exists about whether they are in fact adcumulate rocks or melting residues and about the nature of the precursor liquid or solid assemblage. The authors undertook a limited experimental study which made possible the evaluation of the potential of the thermal migration mechanism (diffusion on a saturation gradient) for forming ureilite-like aggregates from carbonaceous chondrite precursors. They find that the process can produce compact recrystallized aggregates of silicate crystals which do resemble the ureilities and other interstitial-liquid-free adcumulate rocks in texture.

  11. Radio astrometry from the Moon

    NASA Technical Reports Server (NTRS)

    Linfield, R. P.

    1992-01-01

    An array of three radio telescopes on the Moon, separated by 100-1000 km, could measure the positions of compact radio sources 50-100 times more accurately than can be done on Earth. These measurements would form an all-sky reference frame of extreme precision (5-10 micro-arcsec) and stability, with applications to the dynamics of the solar system, our galaxy, and nearby galaxies.

  12. The faint galaxy contribution to the diffuse extragalactic background light

    NASA Technical Reports Server (NTRS)

    Cole, Shaun; Treyer, Marie-Agnes; Silk, Joseph

    1992-01-01

    Models of the faint galaxy contribution to the diffuse extragalactic background light are presented, which are consistent with current data on faint galaxy number counts and redshifts. The autocorrelation function of surface brightness fluctuations in the extragalactic diffuse light is predicted, and the way in which these predictions depend on the cosmological model and assumptions of biasing is determined. It is confirmed that the recent deep infrared number counts are most compatible with a high density universe (Omega-0 is approximately equal to 1) and that the steep blue counts then require an extra population of rapidly evolving blue galaxies. The faintest presently detectable galaxies produce an interesting contribution to the extragalactic diffuse light, and still fainter galaxies may also produce a significant contribution. These faint galaxies still only produce a small fraction of the total optical diffuse background light, but on scales of a few arcminutes to a few degrees, they produce a substantial fraction of the fluctuations in the diffuse light.

  13. Probing the gas content of radio galaxies through H I absorption stacking

    NASA Astrophysics Data System (ADS)

    Geréb, K.; Morganti, R.; Oosterloo, T. A.

    2014-09-01

    Using the Westerbork Synthesis Radio Telescope, we carried out shallow H i absorption observations of a flux-selected (S1.4 GHz > 50 mJy) sample of 93 radio active galactic nuclei (AGN), which have available SDSS (Sloan Digital Sky Survey) redshifts between 0.02 < z < 0.23. Our main goal is to study the gas properties of radio sources down to S1.4 GHz flux densities not systematically explored before using, for the first time, stacking of absorption spectra of extragalactic H i. Despite the shallow observations, we obtained a direct detection rate of ~29%, comparable with deeper studies of radio galaxies. Furthermore, detections are found at every S1.4 GHz flux level, showing that H i absorption detections are not biased toward brighter sources. The stacked profiles of detections and non-detections reveal a clear dichotomy in the presence of H i, with the 27 detections showing an average peak τ = 0.02 corresponding to N(H i) ~(7.4 ± 0.2) × 1018 (Tspin/cf) cm-2, while the 66 non-detections remain undetected upon stacking with a peak optical depth upper limit τ < 0.002 corresponding to N(H i) < (2.26 ± 0.06) × 1017 (Tspin/cf) cm-2 (using a FWHM of 62 kms-1, derived from the mean width of the detections). Separating the sample into compact and extended radio sources increases the detection rate, optical depth, and FWHM for the compact sample. The dichotomy for the stacked profiles of detections and non-detections still holds between these two groups of objects. We argue that orientation effects connected to a disk-like distribution of the H i can be partly responsible for the dichotomy that we see in our sample. However, orientation effects alone cannot explain all the observational results, and some of our galaxies must be genuinely depleted of cold gas. A fraction of the compact sources in the sample are confirmed by previous studies as likely young radio sources (compact steep spectrum and gigahertz peaked spectrum sources). These show an even higher

  14. Sources of the Radio Background Considered

    SciTech Connect

    Singal, J.; Stawarz, L.; Lawrence, A.; Petrosian, V.; /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept.

    2011-08-22

    We investigate possible origins of the extragalactic radio background reported by the ARCADE 2 collaboration. The surface brightness of the background is several times higher than that which would result from currently observed radio sources. We consider contributions to the background from diffuse synchrotron emission from clusters and the intergalactic medium, previously unrecognized flux from low surface brightness regions of radio sources, and faint point sources below the flux limit of existing surveys. By examining radio source counts available in the literature, we conclude that most of the radio background is produced by radio point sources that dominate at sub {mu}Jy fluxes. We show that a truly diffuse background produced by elections far from galaxies is ruled out because such energetic electrons would overproduce the observed X-ray/{gamma}-ray background through inverse Compton scattering of the other photon fields. Unrecognized flux from low surface brightness regions of extended radio sources, or moderate flux sources missed entirely by radio source count surveys, cannot explain the bulk of the observed background, but may contribute as much as 10%. We consider both radio supernovae and radio quiet quasars as candidate sources for the background, and show that both fail to produce it at the observed level because of insufficient number of objects and total flux, although radio quiet quasars contribute at the level of at least a few percent. We conclude that the most important population for production of the background is likely ordinary starforming galaxies above redshift 1 characterized by an evolving radio far-infrared correlation, which increases toward the radio loud with redshift.

  15. Design of a Compact Coaxial Magnetized Plasma Gun for Magnetic Bubble Expansion Experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Lynn, Alan G.; Hsu, Scott C.; Li, Hui; Liu, Wei; Gilmore, Mark; Watts, Christopher

    2008-11-01

    We will discuss the design of a compact coaxial magnetized plasma gun and its associated hardware systems in detail. The plasma gun will be used for experimental studies of magnetic bubble expansion into a lower pressure background plasma, as a model for extragalactic radio lobes. The gun is powered by an ignitron-switched capacitor bank. High-pressure gas will be puffed into an annular gap between inner and outer coaxial electrodes. An applied high voltage ionizes the gas and creates a radial current sheet. The 100kA discharge current generates toroidal flux; poloidal flux is provided by using an external bias magnet. The axial JxB force ejects plasma out of the gun. If the JxB force exceeds the magnetic tension of the poloidal flux by a sufficient amount then a detached magnetized plasma will be formed. The poster will discuss the plasma bubble formation system including the power system, gas valve control system, bias flux power system, and the magnetic probe diagnostic in detail. Experimental data will be provided.

  16. Extragalactic OH megamasers in strong IRAS sources

    NASA Technical Reports Server (NTRS)

    Bottinelli, L.; Dennefeld, H.; Gouguenheim, L.; Martin, J. M.; Paturel, G.; Lesqueren, A. M.

    1987-01-01

    From the OH and HI survey of the strongest far infrared IRAS sources, 3 new powerful OH megamasers were discovered in Arp 143, IRAS 1510+0724 and in the uncatalogued IRAS source, IRAS 17208-0014. The HI line, the OH 1667 and 1665 MHz main lines and the 21 cm continuum observations were made with Nancy radio telescope. The optical spectra and images were obtained at the European Southern Observatory. The spectra are displayed in figures together with the main IR and OH properties of the 8 megamasers detected up to now, including IC 4553, NGC 3690 and Mrk 231, Mrk 273 and III ZW35.

  17. Evidence for Infrared-faint Radio Sources as z > 1 Radio-loud Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Huynh, Minh T.; Norris, Ray P.; Siana, Brian; Middelberg, Enno

    2010-02-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey which have no observable mid-infrared counterpart in the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6-70 μm) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the spectral energy distribution of these objects shows that they are consistent with high-redshift (z >~ 1) active galactic nuclei.

  18. A radio optical reference frame. III - Additional radio and optical positions in the Southern Hemisphere

    NASA Technical Reports Server (NTRS)

    Russell, J. L.; Jauncey, D. L.; Harvey, B. R.; White, G. L.; Reynolds, J. E.; Ma, C.; Johnston, K. J.; Nothnagel, A.; Nicolson, G.; Kingham, K.

    1992-01-01

    Radio and optical positions are presented for southern hemisphere extragalactic sources from the Parkes 2.7 GHz survey. Sixty-one sources were observed with Mark III VLBI at 8.4 GHz between Tidbinbilla, Australia, and Hartebeesthoek, South Africa. The results presented are part of the effort to establish a global reference frame of 400 extragalactic radio sources. Radio positions with about 10 milliarcsec errors have been estimated for 39 sources not previously in the present radio reference frame catalog, and provisional positions were obtained for two additional sources, bringing the total number of catalog sources to 276. The principal source of error is the uncalibrated ionosphere. Of the remaining sources five were completely undetected, six were either too faint or too resolved, and nine had previous catalog positions. Optical positions on the FK5 system have also been measured for four southern sources using prime focus plates from the Anglo-Australian 4 m telescope with an accuracy of 0.06 arcsec. This raises to 40 the number of radio sources with accurately measured positions for their optical counterparts.

  19. The cosmic population of extended radio sources: A Radio-Optical study

    NASA Astrophysics Data System (ADS)

    Thorat, K.

    2014-03-01

    This thesis presents studies of cosmic populations of extragalactic radio sources. The problems selected for this thesis are 1) the derivation of constraints on the emergence of new sub-mJy populations at flux density below about 1 mJy (at 1.4 GHz) paying careful attention to including sources with low surface brightness and counting sources rather than components 2) development of a new method to estimate the asymmetry in the large scale galaxy environment with respect to the axes of extended radio sources and use this to examine for evidence of impact of the environment on the morphology of radio sources. The studies presented herein have been carried out using the Australia Telescope Low Brightness Survey (ATLBS), which is a sensitive radio survey at 1.4 GHz, imaging 8.42 square degrees of the sky along with accompanying optical observations of the same region.

  20. Compact vortices

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Losano, L.; Marques, M. A.; Menezes, R.; Zafalan, I.

    2017-02-01

    We study a family of Maxwell-Higgs models, described by the inclusion of a function of the scalar field that represent generalized magnetic permeability. We search for vortex configurations which obey first-order differential equations that solve the equations of motion. We first deal with the asymptotic behavior of the field configurations, and then implement a numerical study of the solutions, the energy density and the magnetic field. We work with the generalized permeability having distinct profiles, giving rise to new models, and we investigate how the vortices behave, compared with the solutions of the corresponding standard models. In particular, we show how to build compact vortices, that is, vortex solutions with the energy density and magnetic field vanishing outside a compact region of the plane.

  1. Compact HPD

    SciTech Connect

    Suyama, M.; Kawai, Y.; Kimura, S.

    1996-12-31

    In order to be utilized in such application fields as high energy physics or medical imaging, where a huge number of photodetectors are assembled in designated small area, the world`s smallest HPD, the compact BFD, has been developed. The overall diameter and the length of the tube are 16mm and 15mm, respectively. The effective photocathode area is 8mm in diameter. At applied voltage of -8kV to the photocathode, the electron multiplication gain of a PD incorporated HPD (PD-BPD) is 1,600, and that of an APD (APD-BPD) is 65,000. In the pulse height distribution measurement, photoelectron peaks up to 6 photoelectrons are clearly distinguishable with the APD-BPD. Experiments established that there was no degradation of gain in magnetic fields up to 1.5T, an important performance characteristic of the compact BPD for application in high energy physics.

  2. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  3. On the extragalactic origin of gamma-ray bursts

    SciTech Connect

    Johnson, M.; Teller, E.

    1984-11-02

    A theory to explain the origin of extragalactic gamma ray bursts is presented. Collisions of black dwarf and neutron stars with a subsequent fragmentation of the dwarf producing relativistic particle accelerations toward the neutron star and a resulting turbulent flow of material at the neutron star surface is postulated. (DWL)

  4. CENTAURUS A: THE EXTRAGALACTIC SOURCE OF COSMIC RAYS WITH ENERGIES ABOVE THE KNEE

    SciTech Connect

    Biermann, Peter L.; De Souza, Vitor E-mail: vitor@ifsc.usp.br

    2012-02-10

    The origin of cosmic rays at all energies is still uncertain. In this paper, we present and explore an astrophysical scenario to produce cosmic rays with energy ranging from below 10{sup 15} to 3 Multiplication-Sign 10{sup 20} eV. We show here that just our Galaxy and the radio galaxy Cen A, each with their own galactic cosmic-ray particles but with those from the radio galaxy pushed up in energy by a relativistic shock in the jet emanating from the active black hole, are sufficient to describe the most recent data in the PeV to near ZeV energy range. Data are available over this entire energy range from the KASCADE, KASCADE-Grande, and Pierre Auger Observatory experiments. The energy spectrum calculated here correctly reproduces the measured spectrum beyond the knee and, contrary to widely held expectations, no other extragalactic source population is required to explain the data even at energies far below the general cutoff expected at 6 Multiplication-Sign 10{sup 19} eV, the Greisen-Zatsepin-Kuz'min turnoff due to interaction with the cosmological microwave background. We present several predictions for the source population, the cosmic-ray composition, and the propagation to Earth which can be tested in the near future.

  5. Radio Days.

    ERIC Educational Resources Information Center

    Sanderson, Neil

    1998-01-01

    Thousands of today's high school students run FM radio stations at school, carrying on a tradition that began 50 years ago. Radio helps students learn to work with others and develop a strong sense of responsibility. A sidebar gives advice on starting a high school radio station. (MLF)

  6. The NASA/IPAC Extragalactic Database (NED): Enhanced Content and New Functionality

    NASA Astrophysics Data System (ADS)

    Schmitz, Marion; Baker, K.; Chan, B.; Corwin, H., Jr.; Ebert, R.; Frayer, C.; Helou, G.; LaGue, C.; Lo, T.; Madore, B.; Mazzarella, J.; Pevunova, O.; Steer, I.; Terek, S.

    2011-01-01

    New content and science functionality of the NASA/IPAC Extragalactic Database (NED) are presented. New content includes 230,000 objects from the SWIRE catalog (2008MNRAS.386..697R), 100,000 Chandra Source Catalog v1.1 objects (2010ApJS..189...37E), 13,000 objects in the Extragalactic Distance Database (EDD-2009AJ....138.1938C), 6,000 objects and redshifts from the WINGS survey (2009A&A...495..707C) plus tens of thousands of objects reported in the current refereed literature. The NED-D Distance database has been updated to contain 36,000 distances for 9,000 galaxies. The searchable Galaxy Classification service released in January 2010 continues to grow with past and current published data offering Galaxy Morphologies in both optical and radio regimes, Activity and Spectral Types, Luminosity Classes and more. New functionality is introduced that enables users to control what parameters are returned for objects selected with constraints on galaxy classifications. In addition to selection or deselection of basic source parameters such as coordinates and redshift, the Customized Output feature also enables users to extract detailed measurements such as multi-wavelength photometry and diameters (as available), all from a single query. The resultant data table lists each requested parameter in a separate column, one row for each object in the sample, making further analysis more convenient. In the coming year this capability will be expanded to provide more dynamic and flexible options, and it will be extended to other types of NED queries. Hardware and software modifications will also allow more frequent updates of the NED database. Researchers are encouraged to visit the NED exhibit booth at this meeting for a demonstration and further information. NED is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  7. UNVEILING THE NATURE OF THE UNIDENTIFIED GAMMA-RAY SOURCES. V. ANALYSIS OF THE RADIO CANDIDATES WITH THE KERNEL DENSITY ESTIMATION

    SciTech Connect

    Massaro, F.; Funk, S.; D'Abrusco, R.; Paggi, A.; Smith, Howard A.; Masetti, N.; Giroletti, M.; Tosti, G.

    2013-11-01

    Nearly one-third of the γ-ray sources detected by Fermi are still unidentified, despite significant recent progress in this area. However, all of the γ-ray extragalactic sources associated in the second Fermi-LAT catalog have a radio counterpart. Motivated by this observational evidence, we investigate all the radio sources of the major radio surveys that lie within the positional uncertainty region of the unidentified γ-ray sources (UGSs) at a 95% level of confidence. First, we search for their infrared counterparts in the all-sky survey performed by the Wide-field Infrared Survey Explorer (WISE) and then we analyze their IR colors in comparison with those of the known γ-ray blazars. We propose a new approach, on the basis of a two-dimensional kernel density estimation technique in the single [3.4] – [4.6] – [12] μm WISE color-color plot, replacing the constraint imposed in our previous investigations on the detection at 22 μm of each potential IR counterpart of the UGSs with associated radio emission. The main goal of this analysis is to find distant γ-ray blazar candidates that, being too faint at 22 μm, are not detected by WISE and thus are not selected by our purely IR-based methods. We find 55 UGSs that likely correspond to radio sources with blazar-like IR signatures. An additional 11 UGSs that have blazar-like IR colors have been found within the sample of sources found with deep recent Australia Telescope Compact Array observations.

  8. Firefighters' Radios

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Public Technology Inc. asked for NASA assistance to devise the original firefighter's radio. Good short-range radio communications are essential during a fire to coordinate hose lines, rescue victims, and otherwise increase efficiency. Useful firefighting tool is lower cost, more rugged short range two-way radio. Inductorless electronic circuit replaced inductances and coils in radio circuits with combination of transistors and other low-cost components. Substitution promises reduced circuit size and cost. Enhanced electrical performance made radio more durable and improved maintainability by incorporating modular construction.

  9. Compact magnetograph

    NASA Technical Reports Server (NTRS)

    Title, A. M.; Gillespie, B. A.; Mosher, J. W.

    1982-01-01

    A compact magnetograph system based on solid Fabry-Perot interferometers as the spectral isolation elements was studied. The theory of operation of several Fabry-Perot systems, the suitability of various magnetic lines, signal levels expected for different modes of operation, and the optimal detector systems were investigated. The requirements that the lack of a polarization modulator placed upon the electronic signal chain was emphasized. The PLZT modulator was chosen as a satisfactory component with both high reliability and elatively low voltage requirements. Thermal control, line centering and velocity offset problems were solved by a Fabry-Perot configuration.

  10. Photographic photometry of compact extragalactic objects Optical variability of the quasar 3C 345

    NASA Astrophysics Data System (ADS)

    Babadzhanyants, M. K.; Belokon, E. T.; Denisenko, N. S.; Semenova, E. V.

    1985-08-01

    The results of 11-years photographic observations of optical variability of the quasar 3C 345 are presented. A flare with a timescale of the order of one year, similar to those of 1967 and 1971, was observed in 1982. From a comparison of the obtained series of observations with those of the Rosemary Hill Observatory, a conclusion is drawn on the absence of systematic variability at a timescale of 5 - 20 hours exceeding 0m.2 in magnitude.

  11. Photographic photometry of compact extragalactic objects Optical variability of the quasar 3C 345

    SciTech Connect

    Babadzhaniants, M.K.; Belokon, E.T.; Denisenko, N.S.; Semenova, E.V.

    1985-08-01

    An 11-yr (1973-1983) program of photographic observations at the Leningrad Byurakan station is reported, tracing the optical variability of the quasar 3C 345. A roughly 1-yr flare resembling those of 1967 and 1971 occurred in 1982. Comparison with the concurrent observations at Rosemary Hill, Florida, shows no appreciable systematic B-band fluctuations on time scales of 5-20 h. 10 references.

  12. The Infrared and Radio Flux Densities of Galactic H ii regions

    NASA Astrophysics Data System (ADS)

    Makai, Z.; Anderson, L. D.; Mascoop, J. L.; Johnstone, B.

    2017-09-01

    We derive infrared and radio flux densities of all ∼1000 known Galactic H ii regions in the Galactic longitude range 17\\buildrel{\\circ}\\over{.} 5< {\\ell }< 65^\\circ . Our sample comes from the Wide-Field Infrared Survey Explorer (WISE) catalog of Galactic H ii regions. We compute flux densities at six wavelengths in the infrared (Spitzer GLIMPSE 8 μm, WISE 12 μm and 22 μm, Spitzer MIPSGAL 24 μm, and Herschel Hi-GAL 70 μm and 160 μm) and two in the radio (MAGPIS 20 cm and VGPS 21 cm). All H ii region infrared flux densities are strongly correlated with their ∼20 cm flux densities. All H ii regions used here, regardless of physical size or Galactocentric radius, have similar infrared to radio flux density ratios and similar infrared colors, although the smallest regions (r < 1 pc), have slightly elevated IR to radio ratios. The colors {{log}}10({F}24μ {{m}}/{F}12μ {{m}})≥slant 0 and {{log}}10({F}70μ {{m}}/{F}12μ {{m}})≥slant 1.2, and {{log}}10({F}24μ {{m}}/{F}12μ {{m}})≥slant 0 and {{log}}10({F}160μ {{m}}/{F}70μ {{m}})≤slant 0.67 reliably select H ii regions, independent of size. The infrared colors of ∼22% of H ii regions, spanning a large range of physical sizes, satisfy the IRAS color criteria of Wood & Churchwell for H ii regions, after adjusting the criteria to the wavelengths used here. Because these color criteria are commonly thought to select only ultra-compact H ii regions, this result indicates that the true ultra-compact H ii region population is uncertain. Compared to a sample of IR color indices from star-forming galaxies, H ii regions show higher {{log}}10({F}70μ {{m}}/{F}12μ {{m}}) ratios. We find a weak trend of decreasing infrared to ∼20 cm flux density ratios with increasing R gal, in agreement with previous extragalactic results, possibly indicating a decreased dust abundance in the outer Galaxy.

  13. Exploring Extragalactic Emission: The Hα Dot Survey

    NASA Astrophysics Data System (ADS)

    Rampalli, Rayna; Salzer, John Joseph

    2016-01-01

    The Hα Dot Survey was established as a result of finding point sources of strong line emission in the data obtained for the ALFALFA Hα Survey (Van Sistine et al. 2015). In the latter survey, broad-band R and narrow-band Hα filters were used to examine target galaxies from the ALFALFA blind HI survey (Giovanelli et al. 2005, Haynes et al. 2011). In the process of reducing the ALFALFA Hα Survey data the "Hα Dots" were discovered (Kellar et al. 2008, 2012). Using specialized image analysis tools, a large population of dots has already been detected in the more than 1500 ALFALFA Hα narrow-band images taken with the 0.9m WIYN and 2.1m KPNO telescopes. Follow-up spectra of over 200 Hα Dots discovered from the 0.9m images reveal that these objects are a mix of nearby low-luminosity star-forming galaxies, compact starbursts and Seyfert 2 galaxies at intermediate redshifts, and high-redshift QSOs. Here we present the first list of Hα Dots detected using 2.1m telescope data. The 2.1m images yield a sample of Dots that average almost two magnitudes fainter than those detected with the 0.9m. The current REU project is designed to characterize the set of Hα Dots detected in the deeper 2.1m telescope images, while the broad goals of the Hα Dot Survey include the desire to understand better the chemical evolution of galaxies over cosmic time. This project was supported in part by the NSF REU grant 1358980, by the Maria Mitchell Association (Nantucket, MA), and by the Massachusetts Space Grant Consortium.

  14. The low or retrograde spin of the first extragalactic microquasar: implications for Blandford-Znajek powering of jets

    NASA Astrophysics Data System (ADS)

    Middleton, Matthew J.; Miller-Jones, James C. A.; Fender, Rob P.

    2014-04-01

    Transitions to high mass accretion rates in black hole X-ray binaries are associated with the ejection of powerful, relativistically moving jets. The mechanism that powers such events is thought to be linked to tapping of the angular momentum (spin) of the black hole, the rate of accretion through the disc or some combination of the two. We can attempt to discriminate between these different possibilities by comparing proxies for jet power with spin estimates. Because of the small number of sources that reach Eddington mass accretion rates and have therefore been suggested to act as `standard candles', there has been much recent debate as to whether a significant correlation exists between jet power and black hole spin. We perform continuum fitting to the high-quality, disc-dominated XMM-Newton spectra of the extragalactic microquasar discovered in M31. Assuming prograde spin, we find that for sensible constraints the spin is always very low (a* ≤ 0.15 at 3σ). When combined with a proxy for jet power derived from the maximum 5 GHz radio luminosity during a bright flaring event, we find that the source sits well above the previously reported, rising correlation that would indicate that spin tapping is the dominant mechanism for powering the jets, i.e. it is too `radio loud' for such a low spin. The notable exceptions require the inclination to be improbably small or the jet to be very fast. We investigate whether this could be a byproduct of selecting prograde-only spin, finding that the data statistically favour a substantially retrograde spin for the same constraints (a* ≤-0.17 at 3σ). Although theoretically improbable, this remarkable finding could be confirmation that retrograde spin can power such jets via spin-tapping, as has been suggested for certain radio quasars. In either case this work demonstrates the value of studying local extragalactic microquasars as a means to better understand the physics of jet launching.

  15. A radio view of high-energy emitting AGNs

    NASA Astrophysics Data System (ADS)

    Schulz, Robert Frank

    2016-07-01

    Active galactic nuclei (AGNs) are among the most energetic objects in the Universe. These galaxies that are dominated in part or even throughout the electromagnetic spectrum by emission from their central, compact region. AGNs are extensively studied by multi-wavelength observations. In the standard picture, the main driver of an AGN is a supermassive black hole (SMBH) in its centre that is surrounded by an accretion disk. Perpendicular to the disk, in the vicinity of highly magnetized SMBH relativistic outflows of plasma, so-called jets, can form on either side that can reach far beyond the host galaxy. Only about 10% of all AGNs are dominated by emission from these jets due to relativistic beaming effects and these so-called blazars dominate the extragalactic gamma-ray sky. It is commonly accepted that the low-energy emission (radio to UV/X-ray) is due to synchrotron emission from the jet. The high-energy emission is considered to stem from inverse-Compton scattering of photons on the jet particles, but different sources for these photons are discussed (internal or external to the AGN) and other models for the high-energy emission have also been proposed. The nature of the high-energy emission is strongly linked to the location of the emission region in the jet which requires a detailed understanding of the formation and evolution of jets. Radio observations especially using very long baseline interferometry (VLBI) provide the best way to gain direct information on the intrinsic properties of jets down to sub-pc scales, close to their formation region. In this thesis, I focus on the properties of three different AGNs, IC 310, PKS2004-447, and 3C 111 that belong to the small non-blazar population of gamma-ray-loud AGNs. I study them in detail with a variety of radio astronomical instruments with respect to their high-energy emission and in the context of the large monitoring programmes MOJAVE (Monitoring Of Jets in Active galactic nuclei with VLBA Experiments) and

  16. Radio emission evolution of nonstationary sources in the Hedgehog model

    NASA Technical Reports Server (NTRS)

    Kovalev, Y. A.; Mikhaylutsa, V. P.

    1980-01-01

    Correlations are obtained for numerical calculation of flux F sub v and polarized radiation intensity of a cloud of arbitrary geometry, consisting of ultrarelativistic electrons that dissipate in a radial magnetic field of the nucleus at a random angle to the observer. It is possible that some of the variable extragalactic objects that were previously described by the Shklovskiy model are young formations in the examined model. Radio astronomical observations would permit a determination of their distance, age, and lifetime.

  17. FANATIC: An SIS Radiometer for Radio Astronomy in the 660-690 GHz Band

    NASA Astrophysics Data System (ADS)

    Harris, A. I.; Schuster, K.-F.; Gundlach, K.-H.; Plathner, B.

    1994-05-01

    FANATIC is a compact radiometer optimized for radio astronomy from about 660 to 690 GHz (455-435 micron). We observed a large number of molecular and atomic spectral lines from galactic and extragalactic sources during FANATIC's first run on the James Clerk Maxwell Telescope in early March 1994. Double sideband receiver temperatures during observations were about 800 K (25 hv/k). The heart of the receiver is a two-junction Nb/AlOx/Nb SIS array fed by a sandwiched V-Antenna. The junction array and antenna are fabricated together at IRAM's Grenoble SIS laboratory. Each junction has a normal resistance of Rn~10 ohm, an area of ~2 um^2 , an individual radial stub circuit to resonate the capacitance, and a 1/4-wavelength transformer to match to the antenna. The solid-state local oscillator is a mm-wave Gunn oscillator followed by a doubler and tripler. The LO diplexer is a Martin-Puplett interferometer, which insures that there is always abundant LO power for operation and speedy tuning. The receiver and telescope coupling optics, LO, dewar, and calibration system fit on an 0.6 x 0.8 m optical breadboard.

  18. FANATIC: an SIS radiometer for radio astronomy from 660 to 695 GHz

    NASA Astrophysics Data System (ADS)

    Harris, A. I.; Schuster, K.-F.; Genzel, R.; Plathner, B.; Gundlach, K.-H.

    1994-09-01

    FANATIC is a compact radiometer optimized for radio astronomy from about 660 to 695 GHz (lambda 455 - 432 micron). We observed a large number of molecular and atomic spectral lines from galactic and extragalactic sources during FANATIC's first run on the James Clerk Maxwell Telescope in early March 1994. Double sideband receiver temperatures during observations were about 800 K (25 h nu/k). The heart of the receiver is a two-junction Nb/AlO(x)/Nb SIS array fed by a sandwiched V-antenna. The junction array and antenna are fabricated together at IRAM's Grenoble SIS laboratory. Each junction has a normal resistance of Rn approximately 10 Ohm, an area of approximately 2 sq micron, an individual radial stub circuit to resonate the capacitance, and a lambda/4 transformer to match to the antenna. The solid-state local oscillator is a mm-wave Gunn oscillator followed by a doubler and tripler. The LO diplexer is a Martin-Puplett interferometer, which insures that there is always abundant LO power for operation and speedy tuning. The receiver and telescope coupling optics, LO, dewar, and calibration system fit on an 0.6 x 0.8 m optical breadboard.

  19. Neutrinos from flat-spectrum radio quasars

    NASA Technical Reports Server (NTRS)

    Mannheim, K.; Stanev, T.; Biermann, P. L.

    1992-01-01

    The GRO observation (Hartman et al., 1992) of a very strong flux of gamma rays with an energy index close to 2 from the distant quasar 3C279 and other extragalactic flat-spectrum radio sources is in very good agreement with models that advocate the important role of very high energy protons and nuclei in the energy transport in AGN. Protons and nuclei cool by interactions on the nonthermal fields in the nuclear jet of the AGN and generate gamma ray and neutrino fluxes. Ultra high energy neutrinos could be observed with sensitive air shower experiments in outbursts as powerful as the one seen by GRO.

  20. Neutrinos from flat-spectrum radio quasars

    NASA Technical Reports Server (NTRS)

    Mannheim, K.; Stanev, T.; Biermann, P. L.

    1992-01-01

    The GRO observation (Hartman et al., 1992) of a very strong flux of gamma rays with an energy index close to 2 from the distant quasar 3C279 and other extragalactic flat-spectrum radio sources is in very good agreement with models that advocate the important role of very high energy protons and nuclei in the energy transport in AGN. Protons and nuclei cool by interactions on the nonthermal fields in the nuclear jet of the AGN and generate gamma ray and neutrino fluxes. Ultra high energy neutrinos could be observed with sensitive air shower experiments in outbursts as powerful as the one seen by GRO.

  1. Extragalactic photon-ALP conversion at CTA energies

    DOE PAGES

    Kartavtsev, A.; Raffelt, G.; Vogel, H.

    2017-01-12

    Magnetic fields in extragalactic space between galaxy clusters may induce conversions between photons and axion-like particles (ALPs), thereby shielding the photons from absorption on the extragalactic background light. For TeV gamma rays, the oscillation length (losc) of the photon-ALP system becomes inevitably of the same order as the coherence length of the magnetic field l and the length over which the field changes significantly (transition length lt) due to refraction on background photons. We derive exact statistical evolution equations for the mean and variance of the photon and ALP transfer functions in the non-adiabatic regime (losc ~ l >> lt).more » We also make analytical predictions for the transfer functions in the quasi-adiabatic regime (losc

  2. Extragalactic photon-ALP conversion at CTA energies

    NASA Astrophysics Data System (ADS)

    Kartavtsev, A.; Raffelt, G.; Vogel, H.

    2017-01-01

    Magnetic fields in extragalactic space between galaxy clusters may induce conversions between photons and axion-like particles (ALPs), thereby shielding the photons from absorption on the extragalactic background light. For TeV gamma rays, the oscillation length (losc) of the photon-ALP system becomes inevitably of the same order as the coherence length of the magnetic field l and the length over which the field changes significantly (transition length lt) due to refraction on background photons. We derive exact statistical evolution equations for the mean and variance of the photon and ALP transfer functions in the non-adiabatic regime (losc ~ l gg lt). We also make analytical predictions for the transfer functions in the quasi-adiabatic regime (losc ll l, lt). Our results are important in light of the upcoming Cherenkov Telescope Array (CTA), and may also be applied to models with non-zero ALP masses.

  3. Diffuse Gamma Rays Galactic and Extragalactic Diffuse Emission

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.; Strong, Andrew W.; Reimer, Olaf

    2004-01-01

    Diffuse gamma rays consist of several components: truly diffuse emission from the interstellar medium, the extragalactic background, whose origin is not firmly established yet, and the contribution from unresolved and faint Galactic point sources. One approach to unravel these components is to study the diffuse emission from the interstellar medium, which traces the interactions of high energy particles with interstellar gas and radiation fields. Because of its origin such emission is potentially able to reveal much about the sources and propagation of cosmic rays. The extragalactic background, if reliably determined, can be used in cosmological and blazar studies. Studying the derived average spectrum of faint Galactic sources may be able to give a clue to the nature of the emitting objects.

  4. Astrometric microlensing and rotation of extragalactic reference frame

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. I.; Alexandrov, A. N.; Fedorova, E. V.

    Gravitational field of foreground stars of the Galaxy causes additional motion of images of extragalactic sources. We estimate characteristics of stochastic and average motions of these images. The probability distribution for the image motions and their changes is obtained for general spatial density of microlenses. We show that collective motion of stars induces small nonzero dragging velocity of the reference frame. The results obtained are compared to the other relativistic effects in optical satellite-oriented reference frame.

  5. Compact torus

    SciTech Connect

    Furth, H.P.

    1980-10-01

    The objective of the compact torus approach is to provide toroidal magnetic-field configurations that are based primarily on plasma currents and can be freed from closely surrounding mechanical structures. Some familiar examples are the current-carrying plasma rings of reversed-field theta pinches and relativistic-electron smoke ring experiments. The spheromak concept adds an internal toroidal magnetic field component, in order to enhance MHD stability. In recent experiments, three different approaches have been used to generate spheromak plasmas: (1) the reversed-field theta pinch; (2) the coaxial plasma gun; (3) a new quasi-static method, based on the initial formation of a toroidal plasma sleeve around a mechanical ring that generates poloidal and toroidal fluxes, followed by field-line reconnection to form a detached spheromak plasma. The theoretical and experimental MHD stability results for the spheromak configuration are found to have common features.

  6. Axion-Like particles from extragalactic High Energy sources

    NASA Astrophysics Data System (ADS)

    Conrad, J.; Meyer, M.; Montanino, D.

    2016-05-01

    Background radiation fields (such as Extragalactic Background Light, EBL, or Cosmic Microwave Background, CMB) pervade the Universe. Above a certain energy any gamma ray flux emitted by an extragalactic source should be attenuated by the process γ+ γ(bgk) → e + + e - pair production. We have considered a scenario in which the photons are partly converted into light Axion Like Particles (ALPs) in the local magnetic field of an (extragalactic) source. Then, while the unconverted fraction of photons undergo absorption, the ALP component travel to our galaxy where is converted back to photons by the galactic magnetic field resulting in a sort of cosmic light shining through wall effect. In particular, we have considered two scenarios: 1) conversion in the turbulent magnetic field inside a galaxy cluster; and 2) conversion of photons in the coherent magnetic field at parsec scales in a Blazar jet. Afterwards, we have also analyzed mock data coming from a hypothetical Imaging Air Cherenkov Telescopes (IACT) array with characteristics similar to the Cherenkov Telescope Array (CTA) and we have investigated the dependence of the sensitivity to detect a gamma ray excess on the magnetic field parameters.

  7. Constraints on axions from the extragalactic background light

    NASA Technical Reports Server (NTRS)

    Overduin, J. M.; Wesson, P. S.

    1993-01-01

    We consider the effect of dark matter in the form of multi-eV axions on the extragalactic background light. Our treatment differs from that of other workers in that we assume axions to be clustered in Galactic halos, with nonzero velocity dispersions. We also approach the problem in a fully general relativistic manner, treating the axion halos as luminous elements of a pressure-free perfect fluid in a standard Friedmann-Robertson-Walker universe. We find that the ultraviolet extragalactic background light places a firm upper limit of 9 eV on the axion rest energy, and that this drops to 4 eV for the simplest axion models, all but closing the multi-eV axion window (which begins at 3 eV). These results are close to earlier upper limits of 5 and 8 eV derived from the extragalactic background by Turner and Ressell, respectively. Although our methods differ somewhat from theirs, our findings support their conclusion that axions, if they exist, are likely to have rest energies well below the eV range.

  8. Nanotube radio.

    PubMed

    Jensen, K; Weldon, J; Garcia, H; Zettl, A

    2007-11-01

    We have constructed a fully functional, fully integrated radio receiver from a single carbon nanotube. The nanotube serves simultaneously as all essential components of a radio: antenna, tunable band-pass filter, amplifier, and demodulator. A direct current voltage source, as supplied by a battery, powers the radio. Using carrier waves in the commercially relevant 40-400 MHz range and both frequency and amplitude modulation techniques, we demonstrate successful music and voice reception.

  9. Nanotube Radio

    NASA Astrophysics Data System (ADS)

    Jensen, Kenneth; Weldon, Jeff; Garcia, Henry; Zettl, Alex

    2008-03-01

    We have constructed a fully functional, fully integrated radio receiver from a single carbon nanotube. The nanotube serves simultaneously as all essential components of a radio: antenna, tunable band-pass filter, amplifier, and demodulator. A direct current voltage source, as supplied by a battery, powers the radio. Using carrier waves in the commercially relevant 40-400 MHz range and both frequency and amplitude modulation techniques, we demonstrate successful music and voice reception.

  10. The galactic position dependence of fast radio bursts and the discovery of FRB011025

    SciTech Connect

    Burke-Spolaor, Sarah; Bannister, Keith W.

    2014-09-01

    We report the detection of a dispersed fast radio burst (FRB) in archival intermediate-latitude Parkes Radio Telescope data. The burst appears to be of the same physical origin as the four purported extragalactic FRBs reported by Thornton et al. This burst's arrival time precedes the Thornton et al. bursts by 10 years. We consider that this survey, and many other archival low-latitude (|gb| < 30°) pulsar surveys, have been searched for FRBs but produced fewer detections than the comparatively brief Thornton et al. search. Such a rate dependence on Galactic position could provide critical supporting evidence for an extragalactic origin for FRBs. To test this, we form an analytic expression to account for Galactic position and survey setup in FRB rate predictions. Employing a sky temperature, scattering, and dispersion model of the Milky Way, we compute the expected number of FRBs if they are isotropically distributed on the sky with respect to the Galactic position (i.e., local), and if they are of extragalactic origin. We demonstrate that the relative detection rates reject a local origin with a confidence of 99.96% (∼3.6σ). The extragalactic predictions provide a better agreement; however, there are still strong discrepancies with the low-latitude detection rate at a confidence of 99.69% (∼2.9σ). However, for the extragalactic population, the differences in predicted versus detected population may be accounted for by a number of factors, which we discuss.

  11. Radio emission from binary stars

    NASA Technical Reports Server (NTRS)

    Dulk, George A.

    1986-01-01

    Radio emission from binary star systems; characteristics of the binary systems inferred from the radio observations; and the reasons for the activity are reviewed. Binary stars with two main sequence stars, with one normal star and a white dwarf, and those containing a neutron star or a black hole are described. Energy may be directly available as matter falls into the potential well of a compact object. Electromagnetic induction effects may occur due to relative motions of magnetic fields and matter. By enforcing rapid rotation, binaries can induce strong dynamo action and hence generate free energy in the form of intense, complex, evolving magnetic fields. Whatever the source of energy, the observations at radio and X-ray wavelengths demonstrate that electrons are accelerated to high energies (mildly relativistic and, ultrarelativistic). Observed or inferred radio brightness temperatures range up to 10 to the 15th power K or more, implying coherent emission for sources brighter than 10 billion K.

  12. Radio Science

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Radio science experiments use electromagnetic waves to probe or study the solar system. Three major research areas were identified within this discipline: radio astronomy, radar astronomy, and celestial mechanics. Radio astronomy (or radiometry) is the detection and measurement of naturally produced radio frequency emissions. Sources include surfaces, atmospheres, rings, and plasmas. Radar astronomy is the observation of man-made signals after their interaction with a target. Both imaging and non-imaging results. Celestial mechanics includes all studies related to the motions of (and gravity fields of) bodies within the solar system. These should not be considered rigid separations, but aid in the discussion of the data sets.

  13. Contribution to the extragalactic gamma-ray background from the cascades of very-high energy gamma rays from blazars

    NASA Astrophysics Data System (ADS)

    Venters, Tonia M.

    2009-06-01

    As very-high-energy photons propagate through the extragalactic background light (EBL), they interact with the soft photons and initiate electromagnetic cascades of lower energy photons and electrons. The collective intensity of a cosmological population emitting at very-high energies (VHE) will be attenuated at the highest energies through interactions with the EBL and enhanced at lower energies by the resulting cascade. We calculate the cascade radiation created by VHE photons produced by blazars and investigate the effects of cascades on the collective intensity of blazars and the resulting effects on the extragalactic gamma-ray background. We find that cascade radiation greatly enhances the collective intensity from blazars at high energies before turning over due to attenuation. The prominence of the resulting features depends on the blazar gamma-ray luminosity function, spectral index distribution, and the model of the EBL. We additionally calculate the cascade radiation from the distinct spectral sub-populations of blazars, BL Lacertae objects (BL Lacs) and flat-spectrum radio quasars (FSRQs), finding that the collective intensity of BL Lacs is considerably more enhanced by cascade radiation than that of the FSRQs. Finally, we discuss the implications that this analysis and upcoming Fermi observations could have for the nature of the EBL, the evolution of blazars, blazar spectra, and other sources of gamma-ray emission.

  14. A radio optical reference frame. I - Precise radio source positions determined by Mark III VLBI - Observations from 1979 to 1988 and a tie to the FK5

    NASA Technical Reports Server (NTRS)

    Ma, C.; Shaffer, D. B.; De Vegt, C.; Johnston, K. J.; Russell, J. L.

    1990-01-01

    Observations from 600 Mark III VLBI experiments from 1979 to 1988, resulting in 237,681 acceptable pairs of group delay and phase delay rate observations, have been used to derive positions of 182 extragalactic radio sources with typical formal standard errors less than 1 mas. The sources are distributed fairly evenly above delta = -30 deg, and 70 sources have delta greater than 0 deg. Analysis with different troposphere models, as well as internal and external comparisons, indicates that a coordinate frame defined by this set of radio sources should be reliable at the 1 mas level. The right ascension zero point of this reference frame has been aligned with the FK5 by using the optical positions of 28 extragalactic radio sources whose positions are on the FK5 system. Because of known defects in the knowledge of astronomical constants, daily nutation offsets in longitude and obliquity were determined relative to an arbitrary reference day in the set of experiments.

  15. A radio optical reference frame. I - Precise radio source positions determined by Mark III VLBI - Observations from 1979 to 1988 and a tie to the FK5

    NASA Technical Reports Server (NTRS)

    Ma, C.; Shaffer, D. B.; De Vegt, C.; Johnston, K. J.; Russell, J. L.

    1990-01-01

    Observations from 600 Mark III VLBI experiments from 1979 to 1988, resulting in 237,681 acceptable pairs of group delay and phase delay rate observations, have been used to derive positions of 182 extragalactic radio sources with typical formal standard errors less than 1 mas. The sources are distributed fairly evenly above delta = -30 deg, and 70 sources have delta greater than 0 deg. Analysis with different troposphere models, as well as internal and external comparisons, indicates that a coordinate frame defined by this set of radio sources should be reliable at the 1 mas level. The right ascension zero point of this reference frame has been aligned with the FK5 by using the optical positions of 28 extragalactic radio sources whose positions are on the FK5 system. Because of known defects in the knowledge of astronomical constants, daily nutation offsets in longitude and obliquity were determined relative to an arbitrary reference day in the set of experiments.

  16. Intraday Radio Variability and Micro-Arcsecond Resolution

    NASA Astrophysics Data System (ADS)

    Bignall, H.; Jauncey, D. L.; Kedziora-Chudczer, L.; Lovell, J. E. J.; Macquart, J.-P.; Ojha, R.; Rickett, B. J.

    2009-08-01

    Intraday variability (IDV) of AGN at centimeter wavelengths has been shown to be predominantly due to interstellar scintillation (ISS). Recent VLBI observations have shown that IDV sources are more compact than non-IDVs on milliarcsecond scales, and a significant fraction are completely unresolved with ground-based VLBI. Additionally, very rapid IDV due to ISS has been observed in some extragalactic water masers at 22 GHz, implying masers ˜ 10 micro-arcseconds in angular size. Such bright, compact sources will be excellent targets for observation with VSOP-2 in order to study the sub-pc scale regions of AGN.

  17. Radio-planetary from tie from Phobos-2 VLBI data

    NASA Technical Reports Server (NTRS)

    Hildebrand, C. E.; Iijima, B. A.; Kroger, P. M.; Folkner, W. M.; Edwards, C. D.

    1994-01-01

    In an ongoing effort to improve the knowledge of the relative orientation (the 'frame tie') of the planetary ephemeris reference frame used in deep navigation and a second reference frame that is defined by the coordinates of a set of extragalactic radio sources, VLBI observations of the Soviet Phobos-2 spacecraft and nearby (in angle) radio sources were obtained at two epochs in 1989, shortly after the spacecraft entered orbit about Mars. The frame tie is an important systematic error source affecting both interplanetary navigation and the process of improving the theory of the Earth's orientation. The data from a single Phobos-2 VLBI session measure one component of the direction vector from Earth to Mars in the frame of the extragalactic radio sources (the 'radio frame'). The radio frame has been shown to be stable and internally consistent with an accuracy of 5 nrad. The planetary ephemeris reference frame has an internal consistency of approximately 15 nrad. The planetary and radio source reference frames were aligned prior to 1989 and measurements of occulations of the radio source 3C273 by the Moon. The Phobos-2 VLBI measurements provide improvement in the accuracy of two of the three angles describing a general rotation between the planetary and radio reference frames. A complete set of measurements is not available because data acquisition was terminated prematurely by loss of spacecraft. The analysis of the two Phobos-2 VLBI data sets indicates that, in the directions of the two rotation components determined by these data, the JPL planetary ephemeris DE200 is aligned with the radio frame as adopted by the International Earth Rotation Service within an accuracy of 20-40 nrad, depending on direction. The limiting errors in the solutions for these offsets are spacecraft trajectory (20 nrad), instrumental biases (19 nrad), and dependence of quasar coordinates on observing frequency (24 nrad).

  18. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Taylor, R. M.; Manchester, R. N.

    1980-01-01

    The activities of the Deep Space Network in support of radio and radar astronomy operations during July and August 1980 are reported. A brief update on the OSS-sponsored planetary radio astronomy experiment is provided. Also included are two updates, one each from Spain and Australia on current host country activities.

  19. College Radio.

    ERIC Educational Resources Information Center

    Sauls, Samuel J.

    As with commercial stations, the underlying premise of the college radio station is to serve the community, whether it be the campus community or the community at large, but in unique ways often geared to underserved niches of the population. Much of college radio's charm lies in its unpredictable nature and constant mutations. The stations give…

  20. Radio stars.

    PubMed

    Hjellming, R M; Wade, C M

    1971-09-17

    Up to the present time six classes of radio stars have been established. The signals are almost always very faint and drastically variable. Hence their discovery has owed as much to serendipity as to the highly sophisticated equipment and techniques that have been used. When the variations are regular, as with the pulsars, this characteristic can be exploited very successfully in the search for new objects as well as in the detailed study of those that are already known. The detection of the most erratically variable radio stars, the flare stars and the x-ray stars, is primarily a matter of luck and patience. In the case of the novas, one at least knows where and oughly when to look for radio emission. A very sensitive interferometer is clearly the best instrument to use in the initial detection of a radio star. The fact that weak background sources are frequently present makes it essential to prove that the position of a radio source agrees with that of a star to within a few arc seconds. The potential of radio astronomy for the study of radio stars will not be realized until more powerful instruments than those that are available today can be utilized. So far, we have been able to see only the most luminous of the radio stars.

  1. Exceptionally bright, compact starburst nucleus

    SciTech Connect

    Margon, B.; Anderson, S.F.; Mateo, M.; Fich, M.; Massey, P.

    1988-11-01

    Observations are reported of a remarkably bright (V about 13) starburst nucleus, 0833 + 652, which has been detected at radio, infrared, optical, ultraviolet, and X-ray wavelengths. Despite an observed flux at each of these wavelengths which is comparable to that of NGC 7714, often considered the 'prototypical' example of the starburst phenomenon, 0833 + 652 appears to be a previously uncataloged object. Its ease of detectability throughout the electromagnetic spectrum should make it useful for a variety of problems in the study of compact emission-line galaxies. 30 references.

  2. Structural changes of the quasar 3C454.3 used as an extragalactic reference source for the Gravity Probe B Mission

    NASA Astrophysics Data System (ADS)

    Lederman, Jerusha Isable

    April 20, 2004, marked the launch of the NASA/Stanford Gravity Probe B (GP-B) Mission, a project over forty years in the making. For approximately 12 months, the GP-B spacecraft tested two predictions of Einstein's theory of general relativity (GR) within an accuracy previously unattainable. The GP-B spacecraft orbited Earth at an altitude of approximately 650 km and used custom engineered, essentially free falling gyroscopes to measure the geodetic and frame dragging effects predicted by GR. The geodetic and frame dragging effects describe how a massive rotating body warps and twists spacetime around it. The geodetic effect is a precession of the gyroscopes of 6.6 arcseconds per year in a north - south direction, while the frame dragging effect is a precession of 41 milliarcseconds (mas) per year in the direction of Earth's rotation. Gyro data is currently being analyzed by GP-B's science team at Stanford University and will later be combined with astrophysical data gathered by groups at the Harvard-Smithsonian Centre for Astrophysics (CfA) and York University, in order to meet GP-B's mission objective of measuring geodetic and frame dragging effects with a standard error of 0.01% and 1%, respectively, or better. This means that the gyro precessions have to be measured with a standard error of 0.5 mas per year or better. The measurements of precessions are made relative to a guide star. The guide star is a radio and optically bright RS CVn binary system, known as HR 8703, or IM Pegasi. The motions of IM Pegasi on the sky are being measured with the radio astronomical technique of Very-Long-Baseline Interferometry (VLBI) relative to three extragalactic reference sources nearby on the sky so that changes in the gyros' spin axes can be related to the distant universe. One of these sources is the quasar 3C454.3, a bright radio source with a redshift of z 0.859. 3C454.3 displays a condensed region to the east with two relatively compact components, C1 and C2, a low

  3. Radio Brightness Temperatures and Angular Dimensions of Recently Predicted Vl-Bi Small-Scale Structures

    NASA Astrophysics Data System (ADS)

    Opher, R.

    1990-11-01

    RESUMEN. Muestro que analisis recientes publicados de fuentes de radio galacticas y extragalacticas predicen estructuras en pequera escala en fuentes de radio extendidas, remanentes de supernova, vientos protoestelares, nubes moleculares, distorsiones del fondo de 3 K, enanas blancas magnetizadas, estrellas de tipo tardio y el Sol. Discuto las temperatu- ras de brillo de radio de estas estructuras y sus ditnensiones. Muestro que estas estructuras son detectables con las sensibilidades actuales de VLBI (o en el futuro cercano). ABSTRACT. I show that recently published analysis of galactic and extragalactic radio sources make predictions of small-scale structures in extended radio sources, supernovae remnants, protostellar winds, molecu- lar clouds, distortions of the 3 K background, magnetized white dwarf binaries, late-type stars and the sun. I discuss the radio brightness temperatures of these structures and their dimensions. I show that these structures are detectable with present (or near future) VLBI sensitivities. : RADIO SOURCES-EXTENDED

  4. Compaction behavior of roller compacted ibuprofen.

    PubMed

    Patel, Sarsvatkumar; Kaushal, Aditya Mohan; Bansal, Arvind Kumar

    2008-06-01

    The effect of roller compaction pressure on the bulk compaction of roller compacted ibuprofen was investigated using instrumented rotary tablet press. Three different roller pressures were utilized to prepare granules and Heckel analysis, Walker analysis, compressibility, and tabletability were performed to derive densification, deformation, course of volume reduction and bonding phenomenon of different pressure roller compacted granules. Nominal single granule fracture strength was obtained by micro tensile testing. Heckel analysis indicated that granules prepared using lower pressure during roller compaction showed lower yield strength. The reduction in tabletability was observed for higher pressure roller compacted granules. The reduction in tabletability supports the results of granule size enlargement theory. Apart from the granule size enlargement theory, the available fines and relative fragmentation during compaction is responsible for higher bonding strength and provide larger areas for true particle contact at constant porosity for lower pressure roller compacted granules. Overall bulk compaction parameters indicated that granules prepared by lower roller compaction pressure were advantageous in terms of tabletability and densification. Overall results suggested that densification during roller compaction affects the particle level properties of specific surface area, nominal fracture strength, and compaction behavior.

  5. DENSITY OF WARM IONIZED GAS NEAR THE GALACTIC CENTER: LOW RADIO FREQUENCY OBSERVATIONS

    SciTech Connect

    Roy, Subhashis

    2013-08-10

    We have observed the Galactic center (GC) region at 0.154 and 0.255 GHz with the Giant Metrewave Radio Telescope. A total of 62 compact likely extragalactic (EG) sources are detected. Their scattering sizes decrease linearly with increasing angular distance from the GC up to about 1 Degree-Sign . The apparent scattering sizes of the sources are more than an order of magnitude less than predicted earlier by the NE2001 model of Galactic electron distribution within 359. Degree-Sign 5 < l < 0. Degree-Sign 5 and -0. Degree-Sign 5 < b < 0. Degree-Sign 5 (Hyperstrong Scattering Region) of the Galaxy. High free-free optical depths ({tau}) are observed toward most of the extended non-thermal sources within 0. Degree-Sign 6 from the GC. Significant variation of {tau} indicates that the absorbing medium is patchy at an angular scale of {approx}10' and n{sub e} is {approx}10 cm{sup -3}, which matches the NE2001 model. This model predicts the EG sources to be resolved out from 1.4 GHz interferometric surveys. However, out of 10 EG sources expected in the region, 8 likely EG are present in the 1.4 GHz catalog. Ionized interfaces of dense molecular clouds to the ambient medium are most likely responsible for strong scattering and low radio frequency absorption. However, dense GC clouds traced by CS J = 1-0 emission are found to have a narrow distribution of {approx}0. Degree-Sign 2 across the Galactic plane. Angular distribution of most EG sources seen through the so-called Hyperstrong Scattering Region are random in b, and typically {approx}7 out of 10 sources will not be seen through the dense molecular clouds, which explains why most of them are not scatter broadened at 1.4 GHz.

  6. Compact Reactor

    NASA Astrophysics Data System (ADS)

    Williams, Pharis E.

    2007-01-01

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  7. Compact Reactor

    SciTech Connect

    Williams, Pharis E.

    2007-01-30

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  8. The radio properties of infrared-faint radio sources

    NASA Astrophysics Data System (ADS)

    Middelberg, E.; Norris, R. P.; Hales, C. A.; Seymour, N.; Johnston-Hollitt, M.; Huynh, M. T.; Lenc, E.; Mao, M. Y.

    2011-02-01

    Context. Infrared-faint radio sources (IFRS) are objects that have flux densities of several mJy at 1.4 GHz, but that are invisible at 3.6 μm when using sensitive Spitzer observations with μJy sensitivities. Their nature is unclear and difficult to investigate since they are only visible in the radio. Aims: High-resolution radio images and comprehensive spectral coverage can yield constraints on the emission mechanisms of IFRS and can give hints to similarities with known objects. Methods: We imaged a sample of 17 IFRS at 4.8 GHz and 8.6 GHz with the Australia Telescope Compact Array to determine the structures on arcsecond scales. We added radio data from other observing projects and from the literature to obtain broad-band radio spectra. Results: We find that the sources in our sample are either resolved out at the higher frequencies or are compact at resolutions of a few arcsec, which implies that they are smaller than a typical galaxy. The spectra of IFRS are remarkably steep, with a median spectral index of -1.4 and a prominent lack of spectral indices larger than -0.7. We also find that, given the IR non-detections, the ratio of 1.4 GHz flux density to 3.6 μm flux density is very high, and this puts them into the same regime as high-redshift radio galaxies. Conclusions: The evidence that IFRS are predominantly high-redshift sources driven by active galactic nuclei (AGN) is strong, even though not all IFRS may be caused by the same phenomenon. Compared to the rare and painstakingly collected high-redshift radio galaxies, IFRS appear to be much more abundant, but less luminous, AGN-driven galaxies at similar cosmological distances.

  9. GLEAM: The GaLactic and Extragalactic All-Sky MWA Survey

    NASA Astrophysics Data System (ADS)

    Wayth, R. B.; Lenc, E.; Bell, M. E.; Callingham, J. R.; Dwarakanath, K. S.; Franzen, T. M. O.; For, B.-Q.; Gaensler, B.; Hancock, P.; Hindson, L.; Hurley-Walker, N.; Jackson, C. A.; Johnston-Hollitt, M.; Kapińska, A. D.; McKinley, B.; Morgan, J.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wu, C.; Zheng, Q.; Trott, C. M.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Corey, B. E.; Deshpande, A. A.; Emrich, D.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Kaplan, D. L.; Kasper, J. C.; Kratzenberg, E.; Lonsdale, C. J.; Lynch, M. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Waterson, M.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.

    2015-06-01

    GLEAM, the GaLactic and Extragalactic All-sky MWA survey, is a survey of the entire radio sky south of declination + 25° at frequencies between 72 and 231 MHz, made with the MWA using a drift scan method that makes efficient use of the MWA's very large field-of-view. We present the observation details, imaging strategies, and theoretical sensitivity for GLEAM. The survey ran for two years, the first year using 40-kHz frequency resolution and 0.5-s time resolution; the second year using 10-kHz frequency resolution and 2 s time resolution. The resulting image resolution and sensitivity depends on observing frequency, sky pointing, and image weighting scheme. At 154 MHz, the image resolution is approximately 2.5 × 2.2/cos (δ + 26.7°) arcmin with sensitivity to structures up to ~ 10° in angular size. We provide tables to calculate the expected thermal noise for GLEAM mosaics depending on pointing and frequency and discuss limitations to achieving theoretical noise in Stokes I images. We discuss challenges, and their solutions, that arise for GLEAM including ionospheric effects on source positions and linearly polarised emission, and the instrumental polarisation effects inherent to the MWA's primary beam.

  10. KECK HIRES SPECTROSCOPY OF EXTRAGALACTIC H II REGIONS: C AND O ABUNDANCES FROM RECOMBINATION LINES

    SciTech Connect

    Esteban, Cesar; Mesa-Delgado, Adal; Bresolin, Fabio; Peimbert, Manuel; GarcIa-Rojas, Jorge; Peimbert, Antonio E-mail: amd@iac.es E-mail: peimbert@astroscu.unam.mx E-mail: peimbert@astroscu.unam.mx

    2009-07-20

    We present very deep spectrophotometry of 14 bright extragalactic H II regions belonging to spiral, irregular, and blue compact galaxies. The data for 13 objects were taken with the High Resolution Echelle Spectrometer on the Keck I telescope. We have measured C II recombination lines in 10 of the objects and O II recombination lines in eight of them. We have determined electron temperatures from line ratios of several ions, especially those of low ionization potential. We have found a rather tight linear empirical relation between T {sub e}([N II]) and T {sub e}([O III]). We have found that O II lines give always larger abundances than [O III] lines. Moreover, the difference of both O{sup ++} abundance determinations-the so-called abundance discrepancy factor-is very similar in all the objects, with a mean value of 0.26 {+-} 0.09 dex, independent of the properties of the H II region and of the parent galaxy. Using the observed recombination lines, we have determined the O, C, and C/O radial abundance gradients for three spiral galaxies: M33, M101, and NGC 2403, finding that C abundance gradients are always steeper than those of O, producing negative C/O gradients across the galactic disks. This result is similar to that found in the Milky Way and has important implications for chemical evolution models and the nucleosynthesis of C.

  11. Space VLBI and the Radio Reference Frame

    NASA Astrophysics Data System (ADS)

    Charlot, P.

    2009-08-01

    The current radio reference frame is defined by the VLBI positions of several hundreds of extragalactic sources measured with sub-milliarcsecond accuracy. We discuss whether space VLBI can be used to improve the accuracy of the frame, either directly by conducting absolute astrometric observations using space VLBI baselines, or in an indirect way by making available VLBI images of the reference frame sources with increased angular resolution. The VSOP-2 project, in its present state, is found to have the necessary capabilities for accurate absolute astrometry although there may be limitations due to scheduling constraints. Space VLBI images are essential for pinpointing accurately a stable reference feature within the extended structure of each source. In this respect, the VSOP-2 project may have a significant impact on the definition of the radio reference frame if targeting such reference frame sources on a regular basis.

  12. The Enigmatic Fast Radio Burst FRB121102

    NASA Astrophysics Data System (ADS)

    Hessels, Jason; PALFA Survey Team; VLA+AO FRB121102 Simultaneous Campaign Team; EVN FRB121102 Campaign Team

    2017-01-01

    Fast Radio Bursts (FRBs) are millisecond-duration radio flashes, whose large dispersion measures suggest that they originate at extragalactic distances in extremely energetic environments. Once a phenomenon only observed with the Parkes telescope, the discovery of FRB121102 using Arecibo solidified the astrophysical origin of the FRBs. More recently, Arecibo has enabled the astonishing discovery that FRB121102 sporadically produces additional bursts. This immediately rules out the various cataclysmic models - at least for this particular FRB - and is enabling deep, targeted follow-up observations which aim to localize the source to sub-arcsecond precision and to, ultimately, determine its physical origin. I will present our latest understanding of FRB121102 and its relevance for interpreting the FRB phenomenon in general.

  13. Radio-Excess IRAS Galaxies. II. Host Galaxies

    NASA Astrophysics Data System (ADS)

    Drake, Catherine L.; McGregor, Peter J.; Dopita, Michael A.

    2004-09-01

    This is the second of a series of papers studying a sample of radio-excess IRAS galaxies. These galaxies have radio emission in excess of that expected due to star formation, but largely fall between the traditional categories of radio-loud and radio-quiet active galaxies. R-band images of the hosts of far-infrared (FIR)-luminous radio-excess galaxies are presented and analyzed. The hosts of the FIR-luminous radio-excess galaxies are luminous galaxies, on average 0.8 mag brighter than M*R. Their optical luminosities and morphologies are similar to comparison samples of radio-loud compact steep-spectrum and gigahertz peaked-spectrum sources and extended radio galaxies. We find a similar fraction of galaxies in our sample (~70%) with companions or distorted morphologies as in radio-loud comparison samples. This is consistent with radio activity being associated with tidal interaction. The majority (65%) of the FIR-luminous radio-excess galaxies have radio source sizes that are smaller than the optical host by more than an order of magnitude. These compact radio sources may be young precursors to classical radio galaxies or a different population of radio sources, possibly confined by the host interstellar medium. The host galaxy types were determined by analysis of the surface brightness distributions. The elliptical hosts have effective surface brightnesses and radii consistent with known ellipticals but inconsistent with a population of brightest cluster galaxies. Thus, it is unlikely these objects are the precursors of FR I radio galaxies. The disk hosts have smaller sizes and low radio excesses. However, they have a range of radio source sizes, which is not expected if they are radio-``loud'' Seyfert galaxies.

  14. The radio sources CTA 21 and OF+247: The hot spots of radio galaxies

    NASA Astrophysics Data System (ADS)

    Artyukh, V. S.; Tyul'bashev, S. A.; Chernikov, P. A.

    2013-06-01

    The physical conditions in the radio sources CTA 21 and OF+247 are studied assuming that the low-frequency spectral turnovers are due to synchrotron self-absorption. The physical parameters of the radio sources are estimated using a technique based on a nonuniform synchrotron source model. It is shown that the magnetic-field distributions in the dominant compact components of these radio sources are strongly inhomogeneous. The magnetic fields at the center of the sources are B ˜ 10-1 G, and the fields are two to three orders of magnitude weaker at the periphery. The magnetic field averaged over the compact component is B ˜ 10-3 G, and the density of relativistic electrons is n e ˜ 10-3 cm-3. Assuming that there is equipartition of the energies of the magnetic field and relativistic particles, averaged over the source, < E H > = < E e > ˜ 10-7-10-6 erg cm-3. The energy density of the magnetic field exceeds that of the relativistic electrons at the centers of the radio sources. The derived parameters of CTA 21 and OF+247 are close to those of the hot spots in the radio galaxy Cygnus A. On this basis, it is suggested that CTA 21 and OF+247 are radio galaxies at an early stage of their evolution, when the hot spots (dominant compact radio components) have appeared, and the radio lobes (weak extended components) are still being formed.

  15. Extragalactic origin of gamma-ray bursts. Revision 1

    SciTech Connect

    Johnson, M.; Teller, E.

    1984-11-02

    Detectors of gamma-rays carried by satellites and later by high-flying balloons showed the existence of events lasting from fifteen milliseconds to about a hundred seconds, arriving from all directions in space. A few hundred events have been observed in a little more than a decade. The energy of gamma-rays range from a few kilovolts to millions of volts. Recent evidence indicates that considerable energy may be carried at least in some cases even above 10 MeV. But the bulk of the energy appeared to be emitted between 100 and 200 keV. The observed intensities range between 10/sup -3/ and 10/sup -7/ ergs/cm/sup 2/. The simple facts about intensity distribution are compatible with two extreme assumptions but exclude intermediate hypotheses. Either the events occur in our own galaxy in a region smaller than the thickness of the galaxy or they are of extragalactic origin and come from distant galaxies. Practically all attempted explanations have made the former explanation which requires that a mass of approximately 10/sup 20/ grams impinges on a neutron star (assuming a near to 100% conversion of gravitational energy available on the surface of the neutron star or 10/sup 20/ ergs/gram into gamma-rays which, of course, is unrealistic). In case of an extragalactic origin, the neutron star must attract and convert, as we shall see, about 2 x 10/sup 30/ grams or 10/sup -3/ of the solar mass. It is perhaps the size of such events which deterred a detailed discussion of this alternative. Montgomery Johnson and I have tried to assume these big collisions, explore the consequences, and I shall talk about this extragalactic hypothesis.

  16. Optical Characteristics of Astrometric Radio Sources OCARS

    NASA Astrophysics Data System (ADS)

    Malkin, Z.

    2013-04-01

    In this paper, the current status of the catalog of Optical Characteristics of Astrometric Radio Sources OCARS is presented. The catalog includes radio sources observed in various astrometric and geodetic VLBI programs in 1979-2012. For these sources the physical object type, redshift and visual or infrared magnitude is given when available. Detailed comments are provided when some problems with published data were encountered. Since the first version created in December 2007, the catalog is continuously developed and expanded in respect to inclusion of new radio sources and addition of new or correction of old astrophysical data. Several sources of information are used for OCARS. The main of them are the NASA/IPAC Extragalactic Database (NED) and SIMBAD astronomical databases. Besides several astronomical journals and arXiv depository are regularly monitored, so that new data is included in OCARS just after publication. The redshift for about 150 sources have been determined from dedicated optical spectroscopic observations. As of October 2012, OCARS catalog includes 7173 radio sources. 3898 sources have known redshift, and 4860 sources have known magnitude. In 2009, it was used as a supplement material to the ICRF2. The list of radio sources with a good observational history but lacking astrophysical information is provide for planning of optical observations of the most important astrometric sources. The OCARS catalog is updated, in average every several weeks and is available at http://www.gao.spb.ru/english/as/ac_vlbi/ocars.txt.

  17. Millijansky Radio Variability in SDSS Stripe 82

    NASA Astrophysics Data System (ADS)

    Hodge, J. A.; Becker, R. H.; White, R. L.; Richards, G. T.

    2013-06-01

    We report on a blind survey for extragalactic radio variability that was carried out by comparing two epochs of data from the Faint Images of the Radio Sky at Twenty centimeters survey with a third epoch from a new 1.4 GHz survey of SDSS Stripe 82. The three epochs are spaced seven years apart and have an overlapping area of 60 deg2. We uncover 89 variable sources down to the millijansky level, 75 of which are newly identified, and we find no evidence for transient phenomena. This new sample of variable sources allows us to infer an upper limit to the mean characteristic timescale of active galactic nucleus radio variability of 14 yr. We find that only 1% of extragalactic sources have fractional variability f var > 3, while 44% of Galactic sources vary by this much. The variable sample contains a larger fraction of quasars than a comparable non-variable control sample, though the majority of the variable sources appear to be extended galaxies in the optical. This implies that either quasars are not the dominant contributor to the variability of the sample, or that the deep optical data allow us to detect the host galaxies of some low-z quasars. We use the new, higher resolution data to report on the morphology of the variable sources. Finally, we show that the fraction of sources that are variable remains constant or increases at low flux densities. This may imply that next generation radio surveys with telescopes like Australian Square Kilometer Array Pathfinder and MeerKAT will see a constant or even increasing fraction of variable sources down into the sub-millijansky regime.

  18. Millijansky radio variability in SDSS stripe 82

    SciTech Connect

    Hodge, J. A.; Becker, R. H.; White, R. L.; Richards, G. T.

    2013-06-01

    We report on a blind survey for extragalactic radio variability that was carried out by comparing two epochs of data from the Faint Images of the Radio Sky at Twenty centimeters survey with a third epoch from a new 1.4 GHz survey of SDSS Stripe 82. The three epochs are spaced seven years apart and have an overlapping area of 60 deg{sup 2}. We uncover 89 variable sources down to the millijansky level, 75 of which are newly identified, and we find no evidence for transient phenomena. This new sample of variable sources allows us to infer an upper limit to the mean characteristic timescale of active galactic nucleus radio variability of 14 yr. We find that only 1% of extragalactic sources have fractional variability f {sub var} > 3, while 44% of Galactic sources vary by this much. The variable sample contains a larger fraction of quasars than a comparable non-variable control sample, though the majority of the variable sources appear to be extended galaxies in the optical. This implies that either quasars are not the dominant contributor to the variability of the sample, or that the deep optical data allow us to detect the host galaxies of some low-z quasars. We use the new, higher resolution data to report on the morphology of the variable sources. Finally, we show that the fraction of sources that are variable remains constant or increases at low flux densities. This may imply that next generation radio surveys with telescopes like Australian Square Kilometer Array Pathfinder and MeerKAT will see a constant or even increasing fraction of variable sources down into the sub-millijansky regime.

  19. A lower-limit flux for the extragalactic background light

    NASA Astrophysics Data System (ADS)

    Kneiske, T. M.; Dole, H.

    2010-06-01

    Context. The extragalactic background light (EBL) contains information about the evolution of galaxies from very early times up to the present. The spectral energy distribution is not known accurately, especially in the near- and mid-infrared range. Upper limits and absolute measurements come from direct observations which might be be polluted by foreground emission, while indirect upper limits can also be set by observations of high energy gamma-ray sources. Galaxy number counts integrations of observable galaxies, missing possible faint sources, give strict lower limits. Aims: A model is constructed, which reproduces the EBL lower limit flux. This model can be used for a guaranteed minimum correction of observed spectra of extragalactic gamma-ray sources for extragalactic absorption. Methods: A forward evolution model for the metagalactic radiation field is used to fit recent observations of satelites like Spitzer, ISO, Hubble and GALEX. The model is applied to calculate the Fazio-Stecker relation, and to compute the absorption factor at different redshifts and corrected blazar spectra. Results: A strict lower-limit flux for the evolving extragalactic background light (and in particular the cosmic infrared background) has been calculated up to a redshift of five. The computed flux is below the existing upper limits from direct observations, and agrees with all existing limits derived from very-high energy gamma-ray observations. The corrected spectra still agree with simple theoretical predictions. The derived strict lower-limit EBL flux is very close to the upper limits from gamma-ray observations. This is true for the present day EBL, but also for the diffuse flux at higher redshift. Conclusions: If future detections of high redshift gamma-ray sources require a lower EBL flux than derived here, the physics assumptions used to derive the upper limits have to be revised. The lower-limit EBL model is not only needed for absorption features in active galactic

  20. GUAIX: The UCM Group of Extragalactic Astrophysics and Astronomical Instrumentation

    NASA Astrophysics Data System (ADS)

    Gallego, J.; Cardiel, N.; Zamorano, J.; Gorgas, J.; Castillo-Morales, A.; Eliche-Moral, M. C.; Gil de Paz, A.; Pascual, S.; Pérez-González, P. G.; Guzmán, R.; Barro, G.; Díaz, C.; Espino, N.; Izquierdo, J.; Mármol-Queraltó, E.; Muñoz-Mateos, J. C.; Rodriguez, L.; Sánchez de Miguel, A.; Toloba, E.; Villar, V.; Abelleira, M.

    We present a short summary of the activities developed by GUAIX, the Universidad Complutense de Madrid (UCM) Group of Extragalactic Astrophysics and Astronomical Instrumentation. At present we are focused in the development of data reduction pipelines for several future instruments for the Spanish 10m GTC (Gran Telescopio Canarias). The careful treatment of the random error propagation throughout the data reduction is one of the main improvements of those pipelines. The first hardware development leaded by the GUAIX group will be FISIR, a fully-cryogenic (optimized for the K band) tunable filter in the near-infrared, to be installed within CIRCE, a near-IR camera for GTC.

  1. Compact intracloud discharges

    NASA Astrophysics Data System (ADS)

    Smith, David Adam

    In November of 1993, mysterious signals recorded by a satellite-borne broadband VHF radio science experiment called Blackbeard led to a completely unexpected discovery. Prior to launch of the ALEXIS satellite, it was thought that its secondary payload, Blackbeard, would most often detect the radio emissions from lightning when its receiver was not overwhelmed by noise from narrowband communication carriers. Instead, the vast majority of events that triggered the instrument were isolated pairs of pulses that were one hundred times more energetic than normal thunderstorm electrical emissions. The events, which came to be known as TIPPs (for transionospheric pulse pairs), presented a true mystery to the geophysics community. At the time, it was not even known whether the events had natural or anthropogenic origins. After two and one half years of research into the unique signals, two ground-based receiver arrays in New Mexico first began to detect and record thunderstorm radio emissions that were consistent with the Blackbeard observations. On two occasions, the ground-based systems and Blackbeard even recorded emissions that were produced by the same exact events. From the ground-based observations, it has been determined that TIPP events are produced by brief, singular, isolated, intracloud electrical discharges that occur in intense regions of thunderstorms. These discharges have been dubbed CIDs, an acronym for compact intracloud discharges. During the summer of 1996, ground- based receiver arrays were used to record the electric field change signals and broadband HF emissions from hundreds of CIDs. Event timing that was accurate to within a few microseconds made possible the determination of source locations using methods of differential time of arrival. Ionospheric reflections of signals were recorded in addition to groundwave/line-of-sight signals and were used to determine accurate altitudes for the discharges. Twenty-four CIDs were recorded from three

  2. Compact Intracloud Discharges

    SciTech Connect

    Smith, David A.

    1998-11-01

    In November of 1993, mysterious signals recorded by a satellite-borne broadband VHF radio science experiment called Blackboard led to a completely unexpected discovery. Prior to launch of the ALEXIS satellite, it was thought that its secondary payload, Blackboard, would most often detect the radio emissions from lightning when its receiver was not overwhelmed by noise from narrowband communication carriers. Instead, the vast majority of events that triggered the instrument were isolated pairs of pulses that were one hundred times more energetic than normal thunderstorm electrical emissions. The events, which came to be known as TIPPs (for transionospheric pulse pairs), presented a true mystery to the geophysics community. At the time, it was not even known whether the events had natural or anthropogenic origins. After two and one half years of research into the unique signals, two ground-based receiver arrays in New Mexico first began to detect and record thunderstorm radio emissions that were consistent with the Blackboard observations. On two occasions, the ground-based systems and Blackboard even recorded emissions that were produced by the same exact events. From the ground based observations, it has been determined that TIPP events areproduced by brief, singular, isolated, intracloud electrical discharges that occur in intense regions of thunderstorms. These discharges have been dubbed CIDS, an acronym for compact intracloud discharges. During the summer of 1996, ground-based receiver arrays were used to record the electric field change signals and broadband HF emissions from hundreds of CIDS. Event timing that was accurate to within a few microseconds made possible the determination of source locations using methods of differential time of arrival. Ionospheric reflections of signals were recorded in addition to groundwave/line-of-sight signals and were used to determine accurate altitudes for the discharges. Twenty-four CIDS were recorded from three

  3. Limits on the TeV gamma-ray afterglow of fast radio bursts with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    Schüssler, F.; Brun, F.; Pühlhofer, G.; Rowell, G.; Wagner, R.; H.E.S.S. Collaboration; Keane, E.; Petroff, E.; SUPERB Collaboration

    2017-01-01

    We here present the H.E.S.S. follow-up of Fast Radio Bursts (FRBs), millisecond-long, very strong radio pulses of yet unknown origin. The SUPERB (SUrvey for Pulsars and Extragalactic Radio Bursts) project at the Parkes radio observatory is able to detect these enigmatic events almost in real-time which allows triggering follow-up observations covering the full electromagnetic spectrum. The H.E.S.S. gamma-ray observatory is taking active part in this endeavor. Here we focus on data taken within hours of FRB 150418, which allow us to derive the first limits on gamma-ray afterglow emission of FRBs. Based on the identification of the potential host galaxy of this burst we are able to discuss absorption effects due to the extragalactic background light (EBL) and derive intrinsic, energy dependent limits on the gamma-ray afterglow.

  4. The evolution of the radio SED of high-z powerful radio galaxies

    NASA Astrophysics Data System (ADS)

    Drouart, G.

    2016-08-01

    The SKA_LOW pathfinder MWA (Murchison Wide Array) executed the first all-sky radio survey in the 80-230MHz range, revealing more than 300000 extragalactic sources. Combined with data up to 20GHz, we build exquisite radio SEDs (>~30 data-points) of a sample of a well-known sample of 70 high redshift radio galaxies (the HeRGE sample: L_3GHz restframe > 10^26 W/Hz and z>1). The synchrotron emission is composed of the core, jet and the lobe emission, providing insight on the direct vicinity of the galaxy and the accretion properties of the central supermassive black hole (SMBH). Combined with our previous multi-wavelength campaign from optical to submm (including VLT, Keck, HST, Spitzer, Herschel, SCUBA, LABOCA, and more recently ALMA), providing information on the host galaxy, we now investigate simultaneously the mechanical (from radio) and radiative (from IR) of the SMBH hosted in these progenitors of our local massive galaxies. I will present the results from our radio SED fitting and discuss the connection with our previous results in term of radio loud AGN evolution at the peak of activity in the Universe.

  5. Why Radio?

    ERIC Educational Resources Information Center

    Josephson, Larry

    1979-01-01

    Addresses such broad issues as the function of public radio in contemporary American culture, and how its public service justifies the public money it now receives, or any increased amounts it might receive in the future. (Author/CMV)

  6. Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Beskin, V. S.; Chernov, S. V.; Gwinn, C. R.; Tchekhovskoy, A. A.

    2015-10-01

    Almost 50 years after radio pulsars were discovered in 1967, our understanding of these objects remains incomplete. On the one hand, within a few years it became clear that neutron star rotation gives rise to the extremely stable sequence of radio pulses, that the kinetic energy of rotation provides the reservoir of energy, and that electromagnetic fields are the braking mechanism. On the other hand, no consensus regarding the mechanism of coherent radio emission or the conversion of electromagnetic energy to particle energy yet exists. In this review, we report on three aspects of pulsar structure that have seen recent progress: the self-consistent theory of the magnetosphere of an oblique magnetic rotator; the location, geometry, and optics of radio emission; and evolution of the angle between spin and magnetic axes. These allow us to take the next step in understanding the physical nature of the pulsar activity.

  7. Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Wolken, P. R.; Shaffer, R. D.

    1983-01-01

    Deep Space Network (DSN) 26- and 64-meter antenna stations were utilized in support of Radio Astronomy Experiment Selection Panel experiments. Within a time span of 10 days, in May 1983 (267.75 hours total), nine RAES experiments were supported. Most of these experiments involved multifacility interferometry using Mark 3 data recording terminals and as many as six non-DSN observatories. Investigations of black holes, quasars, galaxies, and radio sources are discussed.

  8. Extra-galactic high-energy transients: event rate density and luminosity function

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Zhang, Bing; Li, Zhuo

    2015-08-01

    Several types of extra-galactic high-energy transients have been discovered, which include high-luminosity and low-luminosity long-duration gamma-ray bursts (GRBs), short-duration GRBs, supernova shock breakouts (SBOs), and tidal disruption events (TDEs) without or with a relativistic jet. In this paper, we apply a unified method to systematically study the reshift-dependent event rate densities and luminosity functions of these extra-galactic high-energy transients. We consider star formation history as the tracer of the redshift distribution for long GRBs and SBOs. For short GRBs, we consider the compact star merger model to introduce several possible merger delay time distribution models. For TDEs, we consider the mass distribution of supermassive black holes as a function of redshift. We derive some empirical formulae for the redshift-dependent event rate density for different types of transients. Based on the observed events, we derive the local specific event rate density, ρ0,L ∝ dρ0/dL for each type of transient, which represents its luminosity function. All the transients are consistent with having a single power law luminosity function, except the high luminosity long GRBs (HL-lGRBs), whose luminosity function can be well described by a broken power law. The total event rate density for a particular transient depends on the luminosity threshold, and we obtain the following values in units of Gpc-3 yr-1: 2.82^{+0.41}_{-0.36} for HL-lGRBs above 4×1049 erg s-1 218^{+130}_{-86} for low luminosity long GRBs above 6×1046 erg s-1 3.18^{+0.88}_{-0.70}, 2.87^{+0.80}_{-0.64}, and 6.25^{+1.73}_{-1.38} above 5×1049 erg s-1 for short GRBs with three different merger delay models (Gaussian, log-normal, and power law); 2.0^{+2.6}_{-1.3}×104 above 9×1043 erg s-1 for SBOs, 3.0^{+1.0}_{-0.8}×105 for normal TDEs above 1042 erg s-1 and 6.2^{+8.2}_{-4.0} above 3×1047 erg s-1for TDE jets as discovered by Swift. Intriguingly, the global specific event rate densities

  9. Multi-frequency optical-depth maps and the case for free-free absorption in two compact symmetric radio sources: The CSO candidate J1324 + 4048 and the CSO J0029 + 3457

    SciTech Connect

    Marr, J. M.; Read, J.; Morris, A. O.; Perry, T. M.; Taylor, G. B.

    2014-01-10

    We obtained dual-polarization very long baseline interferometry observations at six frequencies of the compact symmetric object J0029 + 3457 and the compact symmetric object candidate J1324 + 4048. By comparing the three lower-frequency maps with extrapolations of the high-frequency maps, we produced maps of the optical depth as a function of frequency. The morphology of the optical-depth maps of J1324 + 4048 is strikingly smooth, suggestive of a foreground screen of absorbing gas. The spectra at the intensity peaks fit a simple free-free absorption (FFA) model, with χ{sub ν}{sup 2}≈2, better than a simple synchrotron self-absorption model, in which χ{sub ν}{sup 2}≈3.5--5.5. We conclude that the case for FFA in J1324 + 4048 is strong. The optical-depth maps of J0029 + 3457 exhibit structure, but the morphology does not correlate with that in the intensity maps. The fit of the spectra at the peaks to a simple FFA model yields χ{sub ν}{sup 2}≈1, but because the turnover is gradual, the fit is relatively insensitive to the input parameters. We find that FFA by a thin amount of gas in J0029 + 3457 is likely but not definitive. One compact feature in J0029 + 3457 has an inverted spectrum even at the highest frequencies. We infer this to be the location of the core and estimate an upper limit to the magnetic field of order 3 Gauss at a radius of order 1 pc. In comparison with maps from observations at earlier epochs, no apparent growth in either J1324 + 4048 or J0029 + 3457 is apparent, with upper limits of 0.03 and 0.02 mas yr{sup –1}, corresponding to maximum linear separation speeds of 0.6c and 0.4c.

  10. Compact starbursts in ultraluminous infrared galaxies

    NASA Technical Reports Server (NTRS)

    Condon, J. J.; Huang, Z.-P.; Yin, Q. F.; Thuan, T. X.

    1991-01-01

    The 40 ultraluminous galaxies in the IRAS Bright Galaxy Sample of sources stronger than S = 5.24 Jy at lambda = 60 microns were mapped with approximately 0.25 arcsec resolution at 8.44 GHz. Twenty-five contain diffuse radio sources obeying the FIR-radio correlation; these are almost certainly starburst galaxies. Fourteen other galaxies have nearly blackbody FIR spectra with color temperatures between 60 and 80 K so their (unmeasured) FIR angular sizes must exceed approximately 0.25 arcsec, yet they contain compact (but usually resolved) radio sources smaller than this limit. The unique radio and FIR properties of these galaxies can be modeled by ultraluminous nuclear starbursts so dense that they 67 are optically thick to free-free absorption at about 1.49 GHz and dust absorption at about 25 microns. Only one galaxy (UGC 08058 = Mrk 231) is a dominated by a variable radio source too compact to be an ultraluminous starburst; it must be powered by a 'monster'.

  11. Compact starbursts in ultraluminous infrared galaxies

    NASA Technical Reports Server (NTRS)

    Condon, J. J.; Huang, Z.-P.; Yin, Q. F.; Thuan, T. X.

    1991-01-01

    The 40 ultraluminous galaxies in the IRAS Bright Galaxy Sample of sources stronger than S = 5.24 Jy at lambda = 60 microns were mapped with approximately 0.25 arcsec resolution at 8.44 GHz. Twenty-five contain diffuse radio sources obeying the FIR-radio correlation; these are almost certainly starburst galaxies. Fourteen other galaxies have nearly blackbody FIR spectra with color temperatures between 60 and 80 K so their (unmeasured) FIR angular sizes must exceed approximately 0.25 arcsec, yet they contain compact (but usually resolved) radio sources smaller than this limit. The unique radio and FIR properties of these galaxies can be modeled by ultraluminous nuclear starbursts so dense that they 67 are optically thick to free-free absorption at about 1.49 GHz and dust absorption at about 25 microns. Only one galaxy (UGC 08058 = Mrk 231) is a dominated by a variable radio source too compact to be an ultraluminous starburst; it must be powered by a 'monster'.

  12. A direct localization of a fast radio burst and its host.

    PubMed

    Chatterjee, S; Law, C J; Wharton, R S; Burke-Spolaor, S; Hessels, J W T; Bower, G C; Cordes, J M; Tendulkar, S P; Bassa, C G; Demorest, P; Butler, B J; Seymour, A; Scholz, P; Abruzzo, M W; Bogdanov, S; Kaspi, V M; Keimpema, A; Lazio, T J W; Marcote, B; McLaughlin, M A; Paragi, Z; Ransom, S M; Rupen, M; Spitler, L G; van Langevelde, H J

    2017-01-04

    Fast radio bursts are astronomical radio flashes of unknown physical nature with durations of milliseconds. Their dispersive arrival times suggest an extragalactic origin and imply radio luminosities that are orders of magnitude larger than those of all known short-duration radio transients. So far all fast radio bursts have been detected with large single-dish telescopes with arcminute localizations, and attempts to identify their counterparts (source or host galaxy) have relied on the contemporaneous variability of field sources or the presence of peculiar field stars or galaxies. These attempts have not resulted in an unambiguous association with a host or multi-wavelength counterpart. Here we report the subarcsecond localization of the fast radio burst FRB 121102, the only known repeating burst source, using high-time-resolution radio interferometric observations that directly image the bursts. Our precise localization reveals that FRB 121102 originates within 100 milliarcseconds of a faint 180-microJansky persistent radio source with a continuum spectrum that is consistent with non-thermal emission, and a faint (twenty-fifth magnitude) optical counterpart. The flux density of the persistent radio source varies by around ten per cent on day timescales, and very long baseline radio interferometry yields an angular size of less than 1.7 milliarcseconds. Our observations are inconsistent with the fast radio burst having a Galactic origin or its source being located within a prominent star-forming galaxy. Instead, the source appears to be co-located with a low-luminosity active galactic nucleus or a previously unknown type of extragalactic source. Localization and identification of a host or counterpart has been essential to understanding the origins and physics of other kinds of transient events, including gamma-ray bursts and tidal disruption events. However, if other fast radio bursts have similarly faint radio and optical counterparts, our findings imply that

  13. Energy spectrum of extragalactic gamma-ray sources

    NASA Technical Reports Server (NTRS)

    Protheroe, R. J.

    1985-01-01

    The result of Monte Carlo electron photon cascade calculations for propagation of gamma rays through regions of extragalactic space containing no magnetic field are given. These calculations then provide upper limits to the expected flux from extragalactic sources. Since gamma rays in the 10 to the 14th power eV to 10 to the 17th power eV energy range are of interest, interactions of electrons and photons with the 3 K microwave background radiation are considered. To obtain an upper limit to the expected gamma ray flux from sources, the intergalactic field is assumed to be so low that it can be ignored. Interactions with photons of the near-infrared background radiation are not considered here although these will have important implications for gamma rays below 10 to the 14th power eV if the near infrared background radiation is universal. Interaction lengths of electrons and photons in the microwave background radiation at a temperature of 2.96 K were calculated and are given.

  14. The Astronomy Workshop Extragalactic: Web Tools for Use by Students

    NASA Astrophysics Data System (ADS)

    Hayes-Gehrke, Melissa N.; Bolatto, A. D.

    2014-01-01

    The Astronomy Workshop Extragalactic (http://carma.astro.umd.edu/AWE) is a collection of interactive web tools that were developed for use in undergraduate and high school classes and by the general public. The focus of the tools is on concepts encountered in extragalactic astronomy, which are typically quite difficult for students to understand. Current tools explore Olbers' Paradox; the appearance of galaxies in different wavelengths of light; the Doppler Effect; cosmological redshift; gravitational lensing; Hubble's Law; cosmological parameters; and measuring masses of black holes by observing stellar orbits. The tools have been developed by undergraduate students under our supervision and we are planning to continue to add more tools. This project was inspired by the Astronomy Workshop (http://janus.astro.umd.edu) by Doug Hamilton which has web tools exploring more general astronomical concepts. We would like to thank the NSF for support through the CAREER grant NSF-AST0955836, and the Research Corporation for Science Advancement for a Cottrell Scholar award.

  15. The Extragalactic Distance Database: All Digital H I Profile Catalog

    NASA Astrophysics Data System (ADS)

    Courtois, Hélène M.; Tully, R. Brent; Fisher, J. Richard; Bonhomme, Nicolas; Zavodny, Maximilian; Barnes, Austin

    2009-12-01

    An important component of the Extragalactic Distance Database is a group of catalogs related to the measurement of H I line profile parameters. One of these is the All Digital H I catalog which contains an amalgam of information from new data and old. The new data result from observations with Arecibo and Parkes Telescopes and with the Green Bank Telescope, including continuing input since the award of the NRAO Cosmic Flows Large Program. The old data have been collected from archives, wherever available, particularly the Cornell University Digital H I Archive, the Nançay Telescope extragalactic H I archive, and the Australia Telescope H I archive. The catalog currently contains information on ~15, 000 profiles relating to ~13, 000 galaxies. The channel-flux per channel files, from whatever source, is carried through a common pipeline. The derived parameter of greatest interest is W m50, the profile width at 50% of the mean flux. After appropriate adjustment, the parameter Wmx is derived, the line width that statistically approximates the peak-to-peak maximum rotation velocity before correction for inclination, 2V maxsini. .

  16. THE EXTRAGALACTIC DISTANCE DATABASE: ALL DIGITAL H I PROFILE CATALOG

    SciTech Connect

    Courtois, Helene M.; Bonhomme, Nicolas; Fisher, J. Richard

    2009-12-15

    An important component of the Extragalactic Distance Database is a group of catalogs related to the measurement of H I line profile parameters. One of these is the All Digital H I catalog which contains an amalgam of information from new data and old. The new data result from observations with Arecibo and Parkes Telescopes and with the Green Bank Telescope, including continuing input since the award of the NRAO Cosmic Flows Large Program. The old data have been collected from archives, wherever available, particularly the Cornell University Digital H I Archive, the Nancay Telescope extragalactic H I archive, and the Australia Telescope H I archive. The catalog currently contains information on {approx}15, 000 profiles relating to {approx}13, 000 galaxies. The channel-flux per channel files, from whatever source, is carried through a common pipeline. The derived parameter of greatest interest is W {sub m50}, the profile width at 50% of the mean flux. After appropriate adjustment, the parameter W{sub mx} is derived, the line width that statistically approximates the peak-to-peak maximum rotation velocity before correction for inclination, 2V {sub max}sini.

  17. Dust and molecules in extra-galactic planetary nebulae

    NASA Astrophysics Data System (ADS)

    Garcia-Hernandez, Domingo Aníbal

    2015-08-01

    Extra-galactic planetary nebulae (PNe) permit the study of dust and molecules in metallicity environments other than the Galaxy. Their known distances lower the number of free parameters in the observations vs. models comparison, providing strong constraints on the gas-phase and solid-state astrochemistry models. Observations of PNe in the Galaxy and other Local Group galaxies such as the Magellanic Clouds (MC) provide evidence that metallicity affects the production of dust as well as the formation of complex organic molecules and inorganic solid-state compounds in their circumstellar envelopes. In particular, the lower metallicity MC environments seem to be less favorable to dust production and the frequency of carbonaceous dust features and complex fullerene molecules is generally higher with decreasing metallicity. Here, I present an observational review of the dust and molecular content in extra-galactic PNe as compared to their higher metallicity Galactic counterparts. A special attention is given to the level of dust processing and the formation of complex organic molecules (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors) depending on metallicity.

  18. A direct localization of a fast radio burst and its host

    NASA Astrophysics Data System (ADS)

    Chatterjee, S.; Law, C. J.; Wharton, R. S.; Burke-Spolaor, S.; Hessels, J. W. T.; Bower, G. C.; Cordes, J. M.; Tendulkar, S. P.; Bassa, C. G.; Demorest, P.; Butler, B. J.; Seymour, A.; Scholz, P.; Abruzzo, M. W.; Bogdanov, S.; Kaspi, V. M.; Keimpema, A.; Lazio, T. J. W.; Marcote, B.; McLaughlin, M. A.; Paragi, Z.; Ransom, S. M.; Rupen, M.; Spitler, L. G.; van Langevelde, H. J.

    2017-01-01

    Fast radio bursts are astronomical radio flashes of unknown physical nature with durations of milliseconds. Their dispersive arrival times suggest an extragalactic origin and imply radio luminosities that are orders of magnitude larger than those of all known short-duration radio transients. So far all fast radio bursts have been detected with large single-dish telescopes with arcminute localizations, and attempts to identify their counterparts (source or host galaxy) have relied on the contemporaneous variability of field sources or the presence of peculiar field stars or galaxies. These attempts have not resulted in an unambiguous association with a host or multi-wavelength counterpart. Here we report the subarcsecond localization of the fast radio burst FRB 121102, the only known repeating burst source, using high-time-resolution radio interferometric observations that directly image the bursts. Our precise localization reveals that FRB 121102 originates within 100 milliarcseconds of a faint 180-microJansky persistent radio source with a continuum spectrum that is consistent with non-thermal emission, and a faint (twenty-fifth magnitude) optical counterpart. The flux density of the persistent radio source varies by around ten per cent on day timescales, and very long baseline radio interferometry yields an angular size of less than 1.7 milliarcseconds. Our observations are inconsistent with the fast radio burst having a Galactic origin or its source being located within a prominent star-forming galaxy. Instead, the source appears to be co-located with a low-luminosity active galactic nucleus or a previously unknown type of extragalactic source. Localization and identification of a host or counterpart has been essential to understanding the origins and physics of other kinds of transient events, including gamma-ray bursts and tidal disruption events. However, if other fast radio bursts have similarly faint radio and optical counterparts, our findings imply that

  19. The ``Core'' of the Quasar 3C454.3 as the Extragalactic Reference for the Proper Motion of the Gravity Probe B Guide Star

    NASA Astrophysics Data System (ADS)

    Bartel, Norbert; Ransom, Ryan; Bietenholz, Michael; Lederman, Jerusha; Lebach, Daniel; Ratner, Michael; Shapiro, Irwin; Petrov, Leonid

    2007-04-01

    We used very-long-baseline interferometry (VLBI) radio observations at 8.4 GHz between 1997 and 2005 to determine the coordinates of the ``core'' of the quasar, 3C454.3, relative to two other extragalactic sources, B2250+194 and B2252+172, nearby on the sky. The core of 3C454.3 is stationary relative to these two sources, with the 1σ upper limit on its proper motion being 25 μas yr-1 in right ascension and 35 μas yr-1 in declination. The corresponding upper limit on the proper motion of this core with respect to the quasi-inertial reference frame determined from separate VLBI observations of many extragalactic radio sources, including B2250+194, is of similar magnitude. The core of 3C454.3 provides a sufficiently stable reference with which to measure the proper motion of the Gravity Probe B guide star, IM Pegasi, relative to the distant universe.

  20. Radio emission from supernova remnants

    NASA Astrophysics Data System (ADS)

    Dubner, Gloria; Giacani, Elsa

    2015-09-01

    The explosion of a supernova releases almost instantaneously about 10^{51} ergs of mechanic energy, changing irreversibly the physical and chemical properties of large regions in the galaxies. The stellar ejecta, the nebula resulting from the powerful shock waves, and sometimes a compact stellar remnant, constitute a supernova remnant (SNR). They can radiate their energy across the whole electromagnetic spectrum, but the great majority are radio sources. Almost 70 years after the first detection of radio emission coming from an SNR, great progress has been achieved in the comprehension of their physical characteristics and evolution. We review the present knowledge of different aspects of radio remnants, focusing on sources of the Milky Way and the Magellanic Clouds, where the SNRs can be spatially resolved. We present a brief overview of theoretical background, analyze morphology and polarization properties, and review and critically discuss different methods applied to determine the radio spectrum and distances. The consequences of the interaction between the SNR shocks and the surrounding medium are examined, including the question of whether SNRs can trigger the formation of new stars. Cases of multispectral comparison are presented. A section is devoted to reviewing recent results of radio SNRs in the Magellanic Clouds, with particular emphasis on the radio properties of SN 1987A, an ideal laboratory to investigate dynamical evolution of an SNR in near real time. The review concludes with a summary of issues on radio SNRs that deserve further study, and analysis of the prospects for future research with the latest-generation radio telescopes.

  1. The Infrared Database of Extragalactic Observables from Spitzer (IDEOS)

    NASA Astrophysics Data System (ADS)

    Spoon, Henrik

    During the cryogenic phase of the successful Spitzer mission the Infrared Spectrograph (IRS) performed approximately 15,000 observations of galactic and extragalactic sources. Among these are low-resolution spectra of more than 4200 galaxies beyond the Local Group. Results have been published in a great number of papers, led not only by hardcore infrared observers but increasingly also by non-native infrared astronomers. As the PI team of the IRS instrument, we are especially proud of the achievements of the IRS spectrograph, and we feel a special obligation to enhance the legacy value of its many observations. Last Summer we completed the Cornell Atlas of Spitzer-IRS Sources (CASSIS), containing homogeneously, expert-reduced low-resolution IRS spectra for over 11,000 observations. The spectra are available for download from our newly created CASSIS web portal. Here we propose to continue these efforts by fitting the low-resolution extragalactic spectra in the CASSIS atlas and create an Infrared Database of Extragalactic Observables from Spitzer (IDEOS) of homogeneously measured mid-infrared spectroscopic observables of more than 4200 galaxies beyond the Local Group. IDEOS will provide astronomers with widely varying scientific interests access to diagnostics that were previously available only for limited samples, or available on-the- fly only to expert users. The completion of IDEOS will coincide with the completion of ALMA. By their nature, CASSIS galaxies are attractive targets for high S/N ALMA observations. IDEOS will provide easily-accessible mid-IR selection criteria for compilation of ALMA target lists for probing significant questions on the AGN environment, the nature of starburst activity, or the AGN/starburst connection. The virtual observatory accessibility will also greatly automate the collation of synoptic results, particularly in the compilation of SEDs and in the cross-matching of targets for trend plots of spectroscopic observables. IDEOS will

  2. Remnant radio galaxies in the LOFAR Lockman Hole

    NASA Astrophysics Data System (ADS)

    Brienza, Marisa; Godfrey, Leith; Morganti, Raffaella

    2016-08-01

    I will present recent 150-MHz deep observations performed with the Low-frequency Array (LOFAR) of the well-known extragalactic region of the Lockman Hole. Thanks to its high sensitivity and resolution this data allows us to perform new studies of the radio loud AGN population at low radio frequencies. In particular, we conducted a systematic search of remnant radio galaxies, which represent the final "dying" phase of the radio galaxy evolution, when the jets have switched off. This class of sources is best to investigate the life-cycle of radio loud AGN as well as to quantify the role of radio AGN feedback. Indeed, the modelling of their radio spectrum provides constraints on the time-scales of activity and quiescence of the radio source and on its energy output. For a long time there have been claims that deep low-frequency surveys would have enhanced the detection of this class of sources, which are usually rare in flux limited samples.With our search, we thus intend to provide good statistics on the detection and properties of remnant radio galaxies. To avoid selection biases towards any specific class of objects we used both morphological and spectral selection criteria. To do this we combined the LOFAR data with publicly available surveys at other frequencies as well as dedicated deep observations. We find that the fraction of candidate remnant sources is < 6-8% of the entire radio source population and is dominated by steep spectrum sources. To better understand the observed fraction we developed mock catalogues of the radio sky population based on radio galaxy evolution models. These models are used to constrain the main mechanisms contributing to the source luminosity evolution i.e. adiabatic expansion, radiative losses, as well as to make predictions on their fraction in flux limited samples.

  3. EVIDENCE FOR INFRARED-FAINT RADIO SOURCES AS z > 1 RADIO-LOUD ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Huynh, Minh T.; Norris, Ray P.; Siana, Brian; Middelberg, Enno

    2010-02-10

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey which have no observable mid-infrared counterpart in the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6-70 {mu}m) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the spectral energy distribution of these objects shows that they are consistent with high-redshift (z {approx}> 1) active galactic nuclei.

  4. Joint radio and optical observations of the most radio-powerful intracloud lightning discharges

    NASA Astrophysics Data System (ADS)

    Jacobson, A. R.; Light, T. E. L.; Hamlin, T.; Nemzek, R.

    2013-03-01

    The most radio-powerful intracloud lightning emissions are associated with a phenomenon variously called "narrow bipolar events" or "compact intracloud discharges". This article examines in detail the coincidence and timing relationship between, on the one hand, the most radio-powerful intracloud lightning events and, on the other hand, optical outputs (or lack thereof) of the same discharge process. This is done, first, using coordinated very high frequency (VHF) and optical observations from the FORTE satellite and, second, using coordinated sferic and all-sky optical observations from the Los Alamos Sferic Array. In both cases, it is found that the sought coincidences are exceedingly rare. Moreover, in the handful of coincidences between optical and intense radio emissions that have been identified, the radio emissions differ from their usual behavior, by being accompanied by approximately simultaneous "conventional" lightning radio emissions. It is implied that the most radio-powerful intracloud emission process essentially differs from ordinary incandescent lightning.

  5. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Kellermann, Kenneth I.; Heeschen, David; Backer, Donald C.; Cohen, Marshall H.; Davis, Michael; Depater, Imke; Deyoung, David; Dulk, George A.; Fisher, J. R.; Goss, W. Miller

    1991-01-01

    The following subject areas are covered: (1) scientific opportunities (millimeter and sub-millimeter wavelength astronomy; meter to hectometer astronomy; the Sun, stars, pulsars, interstellar masers, and extrasolar planets; the planets, asteroids, and comets; radio galaxies, quasars, and cosmology; and challenges for radio astronomy in the 1990's); (2) recommendations for new facilities (the millimeter arrays, medium scale instruments, and small-scale projects); (3) continuing activities and maintenance, upgrading of telescopes and instrumentation; (4) long range programs and technology development; and (5) social, political, and organizational considerations.

  6. The CHIME Fast Radio Burst Project

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria M.; CHIME/FRB Collaboration

    2017-01-01

    Fast Radio Bursts are a recently discovered phenomenon consisting of short (few ms) bursts of radio waves that have dispersion measures that strongly suggest an extragalactic and possibly cosmological, but yetunknown, origin. The Canadian Hydrogen Intensity Mapping Experiment was designed to study Baryon Acoustic Oscillations through mapping of redshifted hydrogen, in order to constrain the nature of Dark Energy. CHIME, currently under construction in Penticton, BC in Canada, consists of 4 cylindrical paraboloid reflectors having total collecting area 80 m x 100 m, and will be sensitive in the 400-800 MHz band. With 2048 independent feeds hung along the cylinder axes, CHIME is a transit telescope with no moving parts, but is sensitive to the full ~200 sq. degrees overhead in 1024 formed beams, thanks to the largest correlator ever built. Given CHIME's enormous sensitivity, bandwidth and unprecedented field of view for the radio regime, CHIME will be a superb instrument for studying Fast Radio Bursts, with expected detected event rates of several to several dozen per day, hence promising major progress on the origin and nature of FRBs.

  7. Panchromatic Views of Large-Scale Extragalactic Jets

    SciTech Connect

    Cheung, C.C.; /KIPAC, Menlo Park

    2007-06-01

    Highlights of recent observations of extended jets in AGN are presented. Specifically, we discuss new spectral constraints enabled by Spitzer, studies of the highest-redshift (z{approx}4) radio/X-ray quasar jets, and a new VLBA detection of superluminal motion in the M87 jet associated with a recent dramatic X-ray outburst. Expanding on the title, inverse Compton emission from extended radio lobes is considered and a testable prediction for the gamma-ray emission in one exemplary example is presented. Prospects for future studies with ALMA and low-frequency radio interferometers are briefly described.

  8. Steep Spectrum Radio Sources in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Clarke, Tracy E.

    2012-05-01

    Steep spectrum radio emission associated with galaxy clusters comes from compact central active galactic nuclei (AGN) driven radio sources in dense cool core clusters as well as from large regions of diffuse (halo and relic) emission associated with dynamically complex merging systems. These radio halos and relics are best traced at low radio frequencies where details of their morphology, location and spectral index distribution can be used to probe the underlying acceleration mechanism(s) as well as important details of large scale structure formation. Low frequency radio observations also play an important role in the study of AGN feedback into the intracluster medium and the regulation of cooling cores. While spectacular results are coming from the current generation of low frequency instruments, there will soon be a new revolution in studies of steep spectrum sources with the upcoming generation of low frequency interferometers on Earth and ultimately the moon.

  9. Evolution of luminous IRAS sources - Radio imaging

    NASA Technical Reports Server (NTRS)

    Neff, S. G.; Hutchings, J. B.

    1992-01-01

    Observations of the compact radio morphology of 111 luminous IRAS-selected active galaxies covering a wide range of IR and optical properties are presented and discussed. Of these sources, 72 are observed for the first time with the VLA A configuration. The circumnuclear radio sources are generally small and weak, with 15 nondetections to a limit of about 0.4 mJy. Comparison with the IR and optical properties of the objects indicates that the radio sources turn on within 10 exp 8 yr of the tidal encounter that is presumed to generate the IR activity. However, the radio sources do not all appear at the same time. The radio observations are consistent with the evolution scenario for luminous IRAS galaxies suggested by Hutchings and Neff (1991).

  10. Evolution of the luminosity function of extragalactic objects

    NASA Technical Reports Server (NTRS)

    Petrosian, V.

    1985-01-01

    A nonparametric procedure for determination of the evolution of the luminosity function of extragalactic objects and use of this for prediction of expected redshift and luminosity distribution of objects is described. The relation between this statistical evolution of the population and their physical evolution, such as the variation with cosmological epoch of their luminosity and formation rate is presented. This procedure when applied to a sample of optically selected quasars with redshifts less than two shows that the luminosity function evolves more strongly for higher luminosities, indicating a larger quasar activity at earlier epochs and a more rapid evolution of the objects during their higher luminosity phases. It is also shown that absence of many quasars at redshifts greater than three implies slowing down of this evolution in the conventional cosmological models, perhaps indicating that this is near the epoch of the birth of the quasar (and galaxies).

  11. DARK MATTER POWERED STARS: CONSTRAINTS FROM THE EXTRAGALACTIC BACKGROUND LIGHT

    SciTech Connect

    Maurer, A.; Raue, M.; Kneiske, T.; Horns, D.; Elsaesser, D.; Hauschildt, P. H.

    2012-02-01

    The existence of predominantly cold non-baryonic dark matter is unambiguously demonstrated by several observations (e.g., structure formation, big bang nucleosynthesis, gravitational lensing, and rotational curves of spiral galaxies). A candidate well motivated by particle physics is a weakly interacting massive particle (WIMP). Self-annihilating WIMPs would affect the stellar evolution especially in the early universe. Stars powered by self-annihilating WIMP dark matter should possess different properties compared with standard stars. While a direct detection of such dark matter powered stars seems very challenging, their cumulative emission might leave an imprint in the diffuse metagalactic radiation fields, in particular in the mid-infrared part of the electromagnetic spectrum. In this work, the possible contributions of dark matter powered stars (dark stars, DSs) to the extragalactic background light (EBL) are calculated. It is shown that existing data and limits of the EBL intensity can already be used to rule out some DS parameter sets.

  12. The evolution of cocoons surrounding light, extragalactic jets

    NASA Technical Reports Server (NTRS)

    Cioffi, Denis F.; Blondin, John M.

    1992-01-01

    If the mass density of supersonic, collimated material is less than that of the surrounding medium, a so-called light jet will be enveloped by a cocoon of overpressured shocked gas. Hydrodynamical simulations are used to understand the evolution of the cocoon. The cocoon's evolution is also compared to a simple analytic theory. To reconcile the theory with the simulations, the growth of the jet head must be taken into account. The overpressured cocoon stage exists for a relatively short astronomical time, after which only the region of the cocoon near the jet head remains overpressured. The spatial distribution of the optical emission often observed in distant extragalactic jet systems can be explained with this improved understanding of cocoon evolution.

  13. SN 1961V - An extragalactic ETA Carinae analog

    NASA Technical Reports Server (NTRS)

    Goodrich, Robert W.; Stringfellow, Guy S.; Penrod, G. Donald; Filippenko, Alexei V.

    1989-01-01

    Spectra of the site of the unique type V supernova SN 1961V in NGC 1058 and of two nearby H II regions have been obtained. Broad H-alpha emission with a luminosity of 2 x 10 to the 36th ergs/s is detected at the position, so that SN 1961V becomes the first historical extragalactic object classified as a supernova to be optically recovered. The characteristics and origin of the high-excitation H II regions of the site are discussed. It is argued that SN 1961V was not a supernova, but an exaggerated Eta Carinae-type outburst of a very massive, evolved star near the end of core hydrogen burning.

  14. The Extragalactic Background Light and Absorption in Gamma Ray Spectra

    NASA Astrophysics Data System (ADS)

    Gilmore, Rudy C.

    2008-03-01

    Recent state-of-the-art semi-analytic models (SAMs) can now accurately model the history of galaxy formation and evolution. These SAMs utilize a 'forward evolution' approach and include all of the important processes for determining photon emission from galaxies, such as cooling and shock heating of gas, galaxy mergers, star formation and aging, supernova and AGN feedback, and the reprocessing of light by dust. I will be presenting our group's latest prediction of the extra-galactic background light based on this work and will discuss the implications for the attenuation of VHE gamma rays from distant sources due to pair-production. These results will be compared to recent limits placed on the EBL by observations of GeV and TeV blazar spectra by experiments such as H.E.S.S., MAGIC and VERITAS. The implications for reconstructing the intrinsic spectra of distant blazars will be addressed.

  15. SN 1961V - An extragalactic ETA Carinae analog

    NASA Technical Reports Server (NTRS)

    Goodrich, Robert W.; Stringfellow, Guy S.; Penrod, G. Donald; Filippenko, Alexei V.

    1989-01-01

    Spectra of the site of the unique type V supernova SN 1961V in NGC 1058 and of two nearby H II regions have been obtained. Broad H-alpha emission with a luminosity of 2 x 10 to the 36th ergs/s is detected at the position, so that SN 1961V becomes the first historical extragalactic object classified as a supernova to be optically recovered. The characteristics and origin of the high-excitation H II regions of the site are discussed. It is argued that SN 1961V was not a supernova, but an exaggerated Eta Carinae-type outburst of a very massive, evolved star near the end of core hydrogen burning.

  16. Confusion Noise Level Due to Galactic and Extragalactic Binaries

    NASA Technical Reports Server (NTRS)

    Bender, Peter L.; Hils, Dieter

    1997-01-01

    We have revised our earlier rough estimate of the combined galactic and extragalactic binary confusion noise level curve for gravitational waves. This was done to correct some numerical errors and to allow for roughly three frequency bins worth of information about weaker sources being lost for each galactic binary signal that is removed from the data. The results are still based on the spectral amplitude estimates for different types of galactic binaries reported by Hils et al in 1990, and assume that the gravitational wave power spectral densities for other galaxies are proportional to the optical luminosities. The estimated confusion noise level drops to the LISA instrumental noise level at between roughly 3 and 8 MHz.

  17. The Extragalactic Distance Database: Color-Magnitude Diagrams

    NASA Astrophysics Data System (ADS)

    Jacobs, Bradley A.; Rizzi, Luca; Tully, R. Brent; Shaya, Edward J.; Makarov, Dmitry I.; Makarova, Lidia

    2009-08-01

    The color-magnitude diagrams/tip of the red giant branch (CMDs/TRGB) section of the Extragalactic Distance Database contains a compilation of observations of nearby galaxies from the Hubble Space Telescope. Approximately 250 (and increasing) galaxies in the Local Volume have CMDs and the stellar photometry tables used to produce them available through the Web. Various stellar populations that make up a galaxy are visible in the CMDs, but our primary purpose for collecting and analyzing these galaxy images is to measure the TRGB in each. We can estimate the distance to a galaxy by using stars at the TRGB as standard candles. In this paper, we describe the process of constructing the CMDs and make the results available to the public.

  18. THE EXTRAGALACTIC DISTANCE DATABASE: COLOR-MAGNITUDE DIAGRAMS

    SciTech Connect

    Jacobs, Bradley A.; Tully, R. Brent; Rizzi, Luca; Shaya, Edward J.; Makarov, Dmitry I.; Makarova, Lidia

    2009-08-15

    The color-magnitude diagrams/tip of the red giant branch (CMDs/TRGB) section of the Extragalactic Distance Database contains a compilation of observations of nearby galaxies from the Hubble Space Telescope. Approximately 250 (and increasing) galaxies in the Local Volume have CMDs and the stellar photometry tables used to produce them available through the Web. Various stellar populations that make up a galaxy are visible in the CMDs, but our primary purpose for collecting and analyzing these galaxy images is to measure the TRGB in each. We can estimate the distance to a galaxy by using stars at the TRGB as standard candles. In this paper, we describe the process of constructing the CMDs and make the results available to the public.

  19. Characteristic variation of spark plasma-sintered Ta compacts

    NASA Astrophysics Data System (ADS)

    Cho, Gue-Serb; Lim, Jung-Kyu; Choe, Kyeong-Hwan; Shin, Seung-Yong

    2010-05-01

    In the present study, we applied the SPS process to obtain a tantalum (Ta) compact for a sputtering target. Sintered Ta compacts were characterized with respect to microstructure, relative density, Vickers hardness and phase composition of the inside and the surface. By radio frequency (RF) thermal plasma treatment, a spherical ultra-fine Ta powder was obtained; however, the oxygen content increased due to severe passivation during powder handling. Higher sintering temperature and the RF plasma treatment increased the densification of the sintered compact and also the Vickers hardness. From XRD analysis, only Ta was identified in the cross section of compacts, and TaC formed by the reaction between Ta and the graphite mould was found in the surface of the compacts. The evacuation of the chamber and the reduction by the graphite mould promote the purification of the compact.

  20. IONIZED OUTFLOWS FROM COMPACT STEEP SPECTRUM SOURCES

    SciTech Connect

    Shih, Hsin-Yi; Stockton, Alan; Kewley, Lisa E-mail: stockton@ifa.hawaii.edu

    2013-08-01

    Massive outflows are known to exist, in the form of extended emission-line regions (EELRs), around about one-third of powerful FR II radio sources. We investigate the origin of these EELRs by studying the emission-line regions around compact-steep-spectrum (CSS) radio galaxies that are younger (10{sup 3}-10{sup 5} yr old) versions of the FR II radio galaxies. We have searched for and analyzed the emission-line regions around 11 CSS sources by taking integral field spectra using Gemini Multi-Object Spectrograph on Gemini North. We fit the [O III] {lambda}5007 line and present the velocity maps for each detected emission-line region. We find, in most cases, that the emission-line regions have multi-component velocity structures with different velocity dispersions and/or flux distributions for each component. The velocity gradients of the emission-line gas are mostly well aligned with the radio axis, suggesting a direct causal link between the outflowing gas and the radio jets. The complex velocity structure may be a result of different driving mechanisms related to the onset of the radio jets. We also present the results from the line-ratio diagnostics we used to analyze the ionization mechanism of the extended gas, which supports the scenario where the emission-line regions are ionized by a combination of active galactic nucleus radiation and shock excitation.

  1. Fermi Gamma-Ray Imaging of a Radio Galaxy

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-04-01

    The Fermi Gamma-ray Space Telescope has detected the γ-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved γ-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy γ-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The γ-ray emission from the lobes is interpreted as inverse Compton–scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. In conclusion, these measurements provide γ-raymore » constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.« less

  2. Fermi gamma-ray imaging of a radio galaxy.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Colafrancesco, S; Cominsky, L R; Conrad, J; Costamante, L; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Finke, J; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Georganopoulos, M; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sambruna, R; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stawarz, Ł; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M; Hardcastle, M J; Kazanas, D

    2010-05-07

    The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton-scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.

  3. The spectral evolution of low-frequency variable radio sources

    NASA Technical Reports Server (NTRS)

    Dennison, B.; Broderick, J. J.; Odell, S. L.; Mitchell, K. J.; Altschuler, D. R.; Payne, H. E.; Condon, J. J.

    1984-01-01

    The dynamic spectra of several low frequency extragalactic radio sources are presented. The observations were made at 318, 430, 606, 880, and 1400 MHz at several different radio observatories around the U.S. Two outbursts were observed in AO 0235 + 16 at 1.4 GHz, followed by a diminished variation at the lower frequencies. The dynamic frequencies of NRAO 140, PKS 1117 + 14, DA 406, CTA 102, and 3C 454.3 do not fit the same pattern. These radio sources displayed the following characteristics: (1) departure from straight or curved spectra at the frequencies of variation; (2) no obvious frequency drifting; and (3) negligible variation at 1.4 GHz. Possible explanations for this behavior are briefly discussed.

  4. Fermi Gamma-Ray Imaging of a Radio Galaxy

    SciTech Connect

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Celik, O.; Chekhtman, A.; Cheung, C. C.; Chiang, x. J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Colafrancesco, S.; Cominsky, L. R.; Conrad, J.; Costamante, L.; Cutini, S.; Davis, D. S.; Dermer, C. D.; de Angelis, A.; de Palma, F.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Finke, J.; Focke, W. B.; Fortin, P.; Fukazawa, Y.; Funk, x. S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Georganopoulos, M.; Germani, S.; Giebels, B.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hughes, R. E.; Jackson, M. S.; Johannesson, G.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kerr, M.; Knodlseder, J.; Kocian, x. M. L.; Kuss, M.; Lande, J.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Meurer, C.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Raino, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Ritz, S.; Rochester, L. S.; Rodriguez, A. Y.; Romani, R. W.; Roth, M.; Ryde, F.; Sadrozinski, H. F. W.; Sambruna, R.; Sanchez, D.; Sander, A.; Parkinson, P. M. S.; Scargle, J. D.; Sgro, C.; Siskind, E. J.; Smith, D. A.; Smith, P. D.; Spandre, G.; Spinelli, P.; Starck, J. L.; Stawarz, L.; Strickman, x. M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wallace, E.; Wang, P.; Winer, B. L.; Wood, K. S.; Ylinen, T.; Ziegler, M.; Hardcastle, M. J.; Kazanas, D.

    2010-04-01

    The Fermi Gamma-ray Space Telescope has detected the γ-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved γ-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy γ-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The γ-ray emission from the lobes is interpreted as inverse Compton–scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. In conclusion, these measurements provide γ-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.

  5. The Compact for Education.

    ERIC Educational Resources Information Center

    Harrington, Fred Harvey

    The Compact for Education is not yet particularly significant either for good or evil. Partly because of time and partly because of unreasonable expectations, the Compact is not yet a going concern. Enthusiasts have overestimated Compact possibilities and opponents have overestimated its dangers, so if the organization has limited rather than…

  6. The Host Galaxies of Micro-Jansky Radio Sources

    NASA Astrophysics Data System (ADS)

    Luchsinger, K. M.; Lacy, M.; Jones, K. M.; Mauduit, J. C.; Pforr, J.; Surace, J. A.; Vaccari, M.; Farrah, D.; Gonzales-Solares, E.; Jarvis, M. J.; Maraston, C.; Marchetti, L.; Oliver, S.; Afonso, J.; Cappozi, D.; Sajina, A.

    2015-09-01

    We combine a deep 0.5 deg2, 1.4 GHz deep radio survey in the Lockman Hole with infrared and optical data in the same field, including the Spitzer Extragalactic Representative Volume Survey (SERVS) and UKIDSS near-infrared surveys, to make the largest study to date of the host galaxies of radio sources with typical radio flux densities ˜ 50 μJy. 87% (1274/1467) of radio sources have identifications in SERVS to {AB}≈ 23.1 at 3.6 or 4.5μm, and 9% are blended with bright objects (mostly stars), leaving only 4% (59 objects), which are too faint to confidently identify in the near-infrared. We are able to estimate photometric redshifts for 68% of the radio sources. We use mid-infrared diagnostics to show that the source population consists of a mixture of star-forming galaxies, rapidly accreting (cold mode) active galactic nuclei (AGNs) and low accretion rate (hot mode) AGNs, with neither AGNs nor star-forming galaxies clearly dominating. We see the breakdown in the K-z relation in faint radio source samples, and show that it is due to radio source populations becoming dominated by sources with radio luminosities ˜ {10}23 {{WHz}}-1. At these luminosities, both the star-forming galaxies and the cold mode AGNs have hosts with stellar luminosities of about a factor of two lower than those of hot mode AGNs, which continue to reside in only the most massive hosts. We show that out to at least z˜ 2, galaxies with stellar masses \\gt {10}11.5 {M}⊙ have radio-loud fractions up to ˜30%. This is consistent with there being a sufficient number of radio sources for radio-mode feedback to play a role in galaxy evolution.

  7. Review of Space VLBI RadioAstron studies of AGN

    NASA Astrophysics Data System (ADS)

    Gurvits, Leonid; Kovalev, Yuri

    2016-07-01

    Space VLBI offers an unrivalled resolution in studies of the AGN phenomena. Since 2011, the Russia-led SVLBI mission RadioAstron conducts observations at 92, 18, 6 and 1.3 cm with baselines an order of magnitude longer than the Earth diameter, therefore offering an order of magnitude "sharper" view at the brightest radio sources than achieved with Earth-based VLBI systems. In our presentation we will review the current status of the RadioAstron's scientific programme. Over the first 4.5 years of the in-orbit operations, the mission achieved successful VLBI detections of extragalactic continuum radio sources at all four observing bands. To date, detections on SVLBI baselines have been obtained for more than 150 AGN's at projected baselines up to 350 000 km (about 28 Earth diameters, ED). The highest resolution achieved is 14 microarcscends from 1.3 cm observations. RadioAstron is an international project; it conducts observations with up to 30 Earth-based radio telescopes located on different continents. We will review results of total intensity and polarisation imaging with extreme angular resolution of blazars and nearby active galaxies. We will also discuss typical and maximum brightness temperatures of blazar cores from the AGN Survey obtained with RadioAstron. Physical implications for the AGN jets formation, magnetic field and emission mechanism will be discussed on the basis of the results obtained to date.

  8. Radio optical reference frame. 6: Additional source positions in the northern hemisphere

    NASA Technical Reports Server (NTRS)

    Fey, A. L.; Russell, J. L.; De Vegt, C.; Zacharias, N.; Johnston, K. J.; Ma, C.; Hall, D. M.; Holdenried, E. R.

    1994-01-01

    Radio and optical positions for northern hemisphere extragalactic sources are reported. Milliarcsecond (mas) accurate radio positions of 106 sources north of -2 deg declination are derived from Mark III Very Long Baseline Interferometry (VLBI) observations taken during ten experiments from 1990 January through 1990 October. The results presented supplement an ongoing project to define and maintain an all-sky radio/optical reference frame of 400 or more extragalactic sources with mas accurate radio and optical positions. Radio positions for 34 new sources are presented along with improved radio positions for 72 sources already in the reference frame catalog. An additional nine sources have been determined to be unsuitable reference frame objects. Radio observations of nine calibration sources tie the new positions to the existing catalogue. The radio positions of the new sources have formal mean errors of approximately 0.7 mas in right ascension and approximately 1.0 mas in declination. Sources for which we report improved radio positions now have formal mean errors of approximately 0.5 mas in both coordinates, an improvement in some cases by as much as 75%. Positions in the FK5 system have also been obtained for the optical counterparts of an additional five northern hemisphere radio sources using prime focus plates from the Kitt Peak National Observatory's 4 m telescope and a Ritchey-Chretien focus plate from the Calar Alto 2.2 m telescope. The optical positions have internal accuracies of about 0.03 sec and differ from the radio positions by about 0.07 sec on the average.

  9. Accurate radio positions with the Tidbinbilla interferometer

    NASA Technical Reports Server (NTRS)

    Batty, M. J.; Gulkis, S.; Jauncey, D. L.; Rayner, P. T.

    1979-01-01

    The Tidbinbilla interferometer (Batty et al., 1977) is designed specifically to provide accurate radio position measurements of compact radio sources in the Southern Hemisphere with high sensitivity. The interferometer uses the 26-m and 64-m antennas of the Deep Space Network at Tidbinbilla, near Canberra. The two antennas are separated by 200 m on a north-south baseline. By utilizing the existing antennas and the low-noise traveling-wave masers at 2.29 GHz, it has been possible to produce a high-sensitivity instrument with a minimum of capital expenditure. The north-south baseline ensures that a good range of UV coverage is obtained, so that sources lying in the declination range between about -80 and +30 deg may be observed with nearly orthogonal projected baselines of no less than about 1000 lambda. The instrument also provides high-accuracy flux density measurements for compact radio sources.

  10. Kinetic Alfven Waves and the Depletion of the Thermal Population in Extragalactic Jets

    NASA Astrophysics Data System (ADS)

    Jafelice, L. C.; Opher, R.

    1990-11-01

    RESUMEN. Chorros Extragalacticos (CE) y Fuentes Radio Extendidas (FRE) son locales de ricos y complejos procesos de plasma magnetizado. Recien tes observaciones indican que esas fuentes son estructuradas en filamen tos. Nos concentramos aqui en el analisis de dos problemas: 1) el prob[e ma de injecci6n,queespropuesto porlas teorias de aceleraci6n de p ? las en plasmas de CE e FRE, que necesitan partfculas que ya tengan ener gfas moderadamente relativisticas para que los procesos de Fermi sean efectivos; y 2) la reciente evidencia observacional de la ausencia de partfculas termicas en CE. El presente modelo pone en evidencia que ambos problemas estan 1ntimamente relacionados uno con el otro. Jafelice y Opher (1987a) (Astrophys. Space Sci. 137, 303) muestram que es espera da una abundante generaci6n de olas Alf cineticas (OAC) en CE y FRE. En el presente trabajo estudiamos Ia cadena de procesos: a) OAC aceleran electrons termicos al largo del campo magnetico de fondo producien- do electrones supratermicos fugitivos; b) que generan olas Langmuir; y c) las cuales por su vez aceleran una fraccion de los electrones fugi- tivos hasta energias moderadamente relativfsticas. Mostramos que supo - niendo que no haya otra fuente de poblaci6n termica a no ser la , la secuencia de procesos arriba puede encargarse delconsumo de los elec- trones termicos en una escala de tiempo %< que el tiempo de vida de la fuente. ABSTRACT: Extragalactic Jets (EJ) and Extended Radio Sources (ERS) are sites of rich and complex magnetized plasma processes.Recent observa - tions indicate that these sources are filamentary structured. We concentrate here on the analysis of two problems:i) the injection problem, faced by theories of particle acceleration in EJ and ERS plasmas, which need particles with already moderately relativistic energies for the Fer mi processes `to be effective; and 2) the recent observational evidence of the abscence of thermal particles within EJ. The present model makes

  11. VizieR Online Data Catalog: Planck Catalog of Compact Sources Release 1 (Planck, 2013)

    NASA Astrophysics Data System (ADS)

    Planck Collaboration

    2013-03-01

    Planck is a European Space Agency (ESA) mission, with significant contributions from the U.S. National Aeronautics and Space Agency (NASA). It is the third generation of space-based cosmic microwave background experiments, after the Cosmic Background Explorer (COBE) and the Wilkinson Microwave Anisotropy Probe (WMAP). Planck was launched on 14 May 2009 on an Ariane 5 rocket from Kourou, French Guiana. Following a cruise to the Earth-Sun L2 Lagrange point, cooling and in orbit checkout, Planck initiated the First Light Survey on 13 August 2009. Since then, Planck has been continuously measuring the intensity of the sky over a range of frequencies from 30 to 857GHz (wavelengths of 1cm to 350μm) with spatial resolutions ranging from about 33' to 5' respectively. The Low Frequency Instrument (LFI) on Planck provides temperature and polarization information using radiometers which operate between 30 and 70GHz. The High Frequency Instrument (HFI) uses pairs of polarization-sensitive bolometers at each of four frequencies between 100 and 353GHz but does not measure polarization information in the two upper HFI bands at 545 and 857GHz. The lowest frequencies overlap with WMAP, and the highest frequencies extend far into the submillimeter in order to improve separation between Galactic foregrounds and the cosmic microwave background (CMB). By extending to wavelengths longer than those at which the Infrared Astronomical Satellite (IRAS) operated, Planck is providing an unprecedented window into dust emission at far-infrared and submillimeter wavelengths. The PCCS (Planck Catalog of Compact Sources) is the list of sources detected in the first 15 months of Planck "nominal" mission. It consists of nine single-frequency catalogues of compact sources, both Galactic and extragalactic, detected over the entire sky. The PCCS covers the frequency range 30-857 GHz with higher sensitivity (it is 90% complete at 180mJy in the best channel) and better angular resolution than previous

  12. THE RADIO PROPERTIES OF RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES ON PARSEC SCALES

    SciTech Connect

    Gu, Minfeng; Chen, Yongjun; Shen, Zhiqiang; Komossa, S.; Zensus, J. A.; Yuan, Weimin; Wajima, Kiyoaki; Zhou, Hongyan

    2015-11-15

    We present the detection of the compact radio structures of 14 radio-loud narrow-line Seyfert 1 (NLS1) galaxies from Very Long Baseline Array (VLBA) observations at 5 GHz performed in 2013. While 50% of the sources of our sample show a compact core only, the remaining 50% exhibit a core-jet structure. The measured brightness temperatures of the cores range from 10{sup 8.4} to 10{sup 11.4} K with a median value of 10{sup 10.1} K, indicating that the radio emission is from non-thermal jets, and that, likely, most sources are not strongly beamed, thus implying a low jet speed in these radio-loud NLS1 galaxies. In combination with archival data taken at multiple frequencies, we find that seven sources show flat or even inverted radio spectra, while steep spectra are revealed in the remaining seven objects. Although all of these sources are very radio-loud with R > 100, their jet properties are diverse in terms of their milliarcsecond (mas) scale (parsec scale) morphology and their overall radio spectral shape. The evidence for slow jet speeds (i.e., less relativistic jets), in combination with the low kinetic/radio power, may offer an explanation for the compact VLBA radio structure in most sources. The mildly relativistic jets in these high accretion rate systems are consistent with a scenario where jets are accelerated from the hot corona above the disk by the magnetic field and the radiation force of the accretion disk. Alternatively, a low jet bulk velocity can be explained by low spin in the Blandford–Znajek mechanism.

  13. POLARIZED RADIO SOURCES: A STUDY OF LUMINOSITY, REDSHIFT, AND INFRARED COLORS

    SciTech Connect

    Banfield, Julie K.; George, Samuel J.; Taylor, A. Russ; Stil, Jeroen M.; Kothes, Roland; Scott, Douglas

    2011-05-20

    The Dominion Radio Astrophysical Observatory Deep Field polarization study has been matched with the Spitzer Wide-Area Infrared Extragalactic Survey of the European Large Area Infrared Space Observatory Survey North 1 field. We have used Very Large Array observations with a total intensity rms of 87 {mu}Jy beam{sup -1} to match SWIRE counterparts to the radio sources. Infrared color analysis of our radio sample shows that the majority of polarized sources are elliptical galaxies with an embedded active galactic nucleus. Using available redshift catalogs, we found 429 radio sources of which 69 are polarized with redshifts in the range of 0.04 < z < 3.2. We find no correlation between redshift and percentage polarization for our sample. However, for polarized radio sources, we find a weak correlation between increasing percentage polarization and decreasing luminosity.

  14. Differences in the size-internal velocity relation of galactic and extragalactic HII regions

    NASA Technical Reports Server (NTRS)

    Odell, C. R.

    1990-01-01

    The nature of the size-internal velocity relation in extragalactic HII regions is examined in order to improve their use as distance determinants. The relation between the linear size and the internal velocity was compared for HII regions in the Galaxy and in external galaxies. Data for the former are from the researcher's own studies at high spatial resolution, while the latter have been the subject of spectroscopy that includes almost the entire objects. The Galactic HII regions are corrected to values of the internal velocity that would be observed if they were at extragalactic distances. A very different size-internal velocity relation was found for the two types of objects in the sense that the extragalactic objects are some ten times larger at the same internal velocity. This is interpreted to mean that the extragalactic HII regions are actually complexes of small HII regions comparable in size to their Galactic counterparts.

  15. The Radio JOVE Project - Shoestring Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.

    2010-01-01

    Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials

  16. The Radio JOVE Project - Shoestring Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.

    2010-01-01

    Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials

  17. The Non-Thermal Radio Jet in the NGC 2264 Star-Forming Region

    NASA Astrophysics Data System (ADS)

    Trejo, A.; Rodríguez, L. F.

    2008-06-01

    We investigated the non-thermal radio jet in the NGC 2264 star forming region. The jet was discovered by tet{t-re04}, and it has a non-thermal spectrum and high polarization. We made new observations with the VLA in 2006 and compared with 1995 archival data to search for proper motions and flux density variability. We only detect flux variability in the core. The general lack of variability and proper motions favors an extragalactic nature for this jet.

  18. The X-ray log N-log S relation. [background radiation in extragalactic media

    NASA Technical Reports Server (NTRS)

    Boldt, Elihu

    1989-01-01

    Results from various surveys are reviewed as regards X-ray source counts at high galactic latitudes and the luminosity functions determined for extragalactic sources. Constraints on the associated log N-log S relation provided by the extragalactic X-ray background are emphasized in terms of its spatial fluctuations and spectrum as well as absolute flux level. The large number of sources required for this background suggests that there is not a sharp boundary in the redshift distribution of visible matter.

  19. Space Telecommunications Radio System STRS Cognitive Radio

    NASA Technical Reports Server (NTRS)

    Briones, Janette C.; Handler, Louis M.

    2013-01-01

    Radios today are evolving from awareness toward cognition. A software defined radio (SDR) provides the most capability for integrating autonomic decision making ability and allows the incremental evolution toward a cognitive radio. This cognitive radio technology will impact NASA space communications in areas such as spectrum utilization, interoperability, network operations, and radio resource management over a wide range of operating conditions. NASAs cognitive radio will build upon the infrastructure being developed by Space Telecommunication Radio System (STRS) SDR technology. This paper explores the feasibility of inserting cognitive capabilities in the NASA STRS architecture and the interfaces between the cognitive engine and the STRS radio. The STRS architecture defines methods that can inform the cognitive engine about the radio environment so that the cognitive engine can learn autonomously from experience, and take appropriate actions to adapt the radio operating characteristics and optimize performance.

  20. Extragalactic molecular line surveys: the starburst galaxy NGC253

    NASA Astrophysics Data System (ADS)

    Martín, S.; Mauersberger, R.; Martín-Pintado, J.; Henkel, C.; García-Burillo, S.

    Figure 1 shows the first spectral line survey towards an extragalactic source, the starburst galaxy NGC253. The scan, carried out at the IRAM 30m telescope, covers ~86% of the observable 2mm atmospheric window from 129.1 to 175.2GHz. A total of ~ 100 spectral features have been identified as transitions from 25 different molecular species. Ten out of these 25 molecules have been detected for the first time towards a starbust galaxy. NO, NS, SO2, H2S and H2CS were reported by Martín et al.(2003), Martín et al.(2005) while C2S, CH2NH, NH2CN, HOCO+ and C3H are tentatively detected in the survey. These new detections implies an increase of ~ 40% in the 27 molecular species previosly detected outside the galaxy (Mauersberger & Henkel(1993), Mauersberger et al.(1995), Sage & Ziurys(1995), Heikkila et al.(1999).) Additionaly, DNC and N2D+, two deuterated species never obseved in the extragalactic ISM, are tentatively identified. The molecular abundances derived for each species in NGC253 have been compared with five Galactic sources known to be prototypes of different types of chemistry. The chemical complexity of NGC253 resembles closely that observed towards prototypical Galactic Center molecular clouds (SgrB2(OH) in, thought to be mainly dominated by low velocity shocks Martín-Pintado et al.(2001). This comparison certainly indicates that the chemistry of the molecular environment within the nuclear region of NGC253 and that in Galactic Center molecular clouds are driven by similar physical processes. Also a comparison has been performed with five selected prominent galaxies which clearly shows up the chemical differenciation between nuclei of galaxies. The chemical complexity of IC342, and also that of NGC4945 except for the observed lack of SiO, clearly resemble that of NGC253. On the other hand, it is remarkable the different chemical complexity observed between the starburst nuclei within NGC253 and M82. This difference has been interpreted in terms of the

  1. "Hubble's Survey of the Ultraviolet Universe: Panchromatic Extragalactic Research'' (SUPER)

    NASA Astrophysics Data System (ADS)

    Windhorst, Rogier A.; "SUPER" Team

    2013-01-01

    On behalf of the ``SUPER'' team, we present the concept of a deep, UV-blue extragalactic Treasury survey with WFC3 and ACS. Its goal is to image massive star-formation (SF) at sub-kpc resolution over 9 Gyrs of cosmic time, from the peak in cosmic SF at 2 (cosmic age <3 Gyr) to the local universe at z<0.2 (age >12 Gyr). This "Survey of the Ultraviolet universe: Panchromatic Extragalactic Research" or "SUPER" will provide the last missing link in HST's wide-deep survey legacy. Over the last decades, tens of thousands of hours has been spent to do surveys of distant galaxies at redshifts 1-8 with HST in the optical/near-IR, with Spitzer in the mid-IR, and with Herschel in the far-IR. Only a few hundred hours has been spent on surveys at HST's diffraction limit on galaxies at z=0.2-2 in the near-UV. Hence, existing data in the critical, rest-UV bands dominated by massive SF fall well short of matching the heavily-observed optical-IR bands in terms of spatial resolution, sensitivity, and areal coverage. The proposed HST Treasury program "SUPER" exploits WFC3's superb sensitivity and its unrivaled spatial resolution in the vacuum-UV. The WFC3 CTE degradation requires that we start SUPER soon. SUPER will observe 2 CANDELS fields in 3 new filters (WFC3/F225W and F275W; ACS/F435W), twice as deep (to 27 AB mag), over 6x larger area than existing wide-field HST UV data, and will yield >12x more (or 16,000) objects well imaged in their vacuum-UV. This may well be the last opportunity for decades to come to do a deep wide-field UV-blue imaging survey at sub-kpc resolution. Primary science studies for SUPER include: (1) The physics and evolution of SF in low-mass galaxies over the past 9 Gyrs as a critical benchmark for understanding cosmic reionization at earlier times; (2) Evolution of the star/dust/gas mixture in SF regions, and the influence of supernovae and AGN feedback; (3) Evolution of young, star-forming sub-galactic clumps induced by mergers or gas accretion, and the

  2. The infrared properties of the GPS and CSS radio sources

    NASA Astrophysics Data System (ADS)

    O'Dea, C. P.

    2016-02-01

    I review the results of three Spitzer studies of GHz-Peaked Spectrum (GPS) and Compact Steep Spectrum (CSS) radio galaxies. The luminosity of the IR continuum and the high ionization lines confirm that some GPS/CSS can have central engines which are similar to those of the extended powerful radio sources. This is consistent with the hypothesis that some GPS/CSS can evolve to become the large-scale sources. Warm H_2 is common in the GPS/CSS sources consistent with feedback via jet-ISM interaction. The GPS/CSS seem to have higher star formation rates than typical (2JY + 3CRR) radio sources. This should be confirmed with a larger sample. If compact sources interact with dense, clumpy star forming clouds and if the interaction with the dense medium sufficiently enhances the radio power, these star forming galaxies with enhanced radio emission will be selected for the current bright samples of GPS and CSS sources. This will increase the number of GPS and CSS sources which are observed to be forming stars. If radio sources have longer lives and/or star formation is more common in large radio galaxies, the need for a new population of star forming compact sources with enhanced radio emission is reduced.

  3. On the morphological dichotomies observed in the powerful radio galaxies

    NASA Astrophysics Data System (ADS)

    Miraghaei, H.; Best, P. N.

    2017-06-01

    We study environment and host galaxy properties of powerful radio galaxies with different radio morphologies from compact sources to very extended double lobed radio galaxies and with different optical spectra classified as high excitation (HERG; quasar-mode) and low excitation (LERG; jet-mode) radio galaxies. We use a complete sample of morphologically classified radio sources from [1] and perform three different analyses: i) we compare compact radio sources with the extended sources from the same class of excitation. ii) we compare HERGs with the LERGs using a combined sample of compact and extended sources. iii) we investigate the origin of different morphologies observed in the very extended powerful radio galaxies, historically classified as Fanaroff-Riley (FR) radio galaxies of type I and type II by comparing a sample of FRIs with the FRIIs from the same excitation class. We discuss the results and what causes the differences in each comparison. The role of host galaxy and the central super massive black hole, and the galaxy interactions are all investigated.

  4. High flux compact neutron generators

    SciTech Connect

    Reijonen, J.; Lou, T.-P.; Tolmachoff, B.; Leung, K.-N.; Verbeke, J.; Vujic, J.

    2001-06-15

    Compact high flux neutron generators are developed at the Lawrence Berkeley National Laboratory. The neutron production is based on D-D or D-T reaction. The deuterium or tritium ions are produced from plasma using either a 2 MHz or 13.56 MHz radio frequency (RF) discharge. RF-discharge yields high fraction of atomic species in the beam which enables higher neutron output. In the first tube design, the ion beam is formed using a multiple hole accelerator column. The beam is accelerated to energy of 80 keV by means of a three-electrode extraction system. The ion beam then impinges on a titanium target where either the 2.4 MeV D-D or 14 MeV D-T neutrons are generated. The MCNP computation code has predicted a neutron flux of {approximately}10{sup 11} n/s for the D-D reaction at beam intensity of 1.5 A at 150 kV. The neutron flux measurements of this tube design will be presented. Recently new compact high flux tubes are being developed which can be used for various applications. These tubes also utilize RF-discharge for plasma generation. The design of these tubes and the first measurements will be discussed in this presentation.

  5. The VIMOS Public Extragalactic Redshift Survey. Searching for cosmic voids

    NASA Astrophysics Data System (ADS)

    Micheletti, D.; Iovino, A.; Hawken, A. J.; Granett, B. R.; Bolzonella, M.; Cappi, A.; Guzzo, L.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bottini, D.; Branchini, E.; Coupon, J.; Cucciati, O.; Davidzon, I.; De Lucia, G.; de la Torre, S.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Ilbert, O.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; McCracken, H. J.; Polletta, M.; Pollo, A.; Schimd, C.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Moutard, T.; Moscardini, L.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Zamorani, G.

    2014-10-01

    Context. The characterisation of cosmic voids gives unique information about the large-scale distribution of galaxies, their evolution, and thecosmological model. Aims: We identify and characterise cosmic voids in the VIMOS Public Extragalactic Redshift Survey (VIPERS) at redshift 0.55

  6. Extragalactic chemistry of molecular gas: lessons from the local universe.

    PubMed

    García-Burillo, S; Fuente, A; Martín-Pintado, J; Usero, A; Graciá-Carpio, J; Planesas, P

    2006-01-01

    Observational constraints provided by high resolution and high sensitivity observations of external galaxies made in the millimetre and sub-millimetre range have started to put on a firm footing the study of the extragalactic chemistry of molecular gas. In particular, the availability of multi-species and multi-line surveys of nearby galaxies is central to the interpretation of existent and forthcoming millimetre observations of the high redshift universe. Probing the physical and chemical status of molecular gas in starbursts and active galaxies (AGN) requires the use of specific tracers of the relevant energetic phenomena that are known to be at play in these galaxies: large-scale shocks, strong UV fields, cosmic rays and X-rays. We present below the first results of an ongoing survey, allying the IRAM 30 m telescope with the Plateau de Bure interferometer (PdBI), devoted to the study of the chemistry of molecular gas in a sample of starbursts and AGN of the local universe. These observations highlight the existence of a strong chemical differentiation in the molecular disks of starbursts and AGN.

  7. Modeling Extragalactic Extinction through Gamma-Ray Burst Afterglows

    NASA Astrophysics Data System (ADS)

    Zonca, Alberto; Cecchi-Pestellini, Cesare; Mulas, Giacomo; Casu, Silvia; Aresu, Giambattista

    2016-09-01

    We analyze extragalactic extinction profiles derived through gamma-ray burst afterglows, using a dust model specifically constructed on the assumption that dust grains are not immutable but respond, time-dependently, to the local physics. Such a model includes core-mantle spherical particles of mixed chemical composition (silicate core, sp2, and sp3 carbonaceous layers), and an additional molecular component in the form of free-flying polycyclic aromatic hydrocarbons. We fit most of the observed extinction profiles. Failures occur for lines of sight, presenting remarkable rises blueward of the bump. We find a tendency for the carbon chemical structure to become more aliphatic with the galactic activity, and to some extent with increasing redshifts. Moreover, the contribution of the molecular component to the total extinction is more important in younger objects. The results of the fitting procedure (either successes and failures) may be naturally interpreted through an evolutionary prescription based on the carbon cycle in the interstellar medium of galaxies.

  8. Uncovering hidden black holes with extragalactic X-ray surveys

    NASA Astrophysics Data System (ADS)

    Hickox, Ryan C.

    2017-08-01

    Despite remarkable progress over the past decades, our picture of black hole evolution has remained incomplete due to the challenges of detecting the mysterious "elusive" AGN that are highly obscured or hidden beneath the light of their host galaxies. I will present recent studies by our group and colleagues that use X-ray and multiwavelength extragalactic surveys (particularly with Chandra, NuSTAR, and WISE) to uncover the full population of AGN. Including these elusive AGN in our picture has helped illustrate that AGN accretion is a surprisingly universal, yet highly stochastic process, and has shown that AGN obscuration is linked to processes in galaxy evolution. I will conclude by forecasting the exciting science in this area that will be enabled by future observatories including the Lynx concept X-ray mission. This work is supported by the National Science Foundation through grant numbers 1515404 and 1554584, and NASA through grant numbers NNX15AP24G, NNX15AU32H, and NNX16AN48G.

  9. A model for extremely powerful extragalactic water masers

    SciTech Connect

    Wu, Ying-Cheng; Alcock, C.

    1988-08-01

    The reasons for the differences between extremely powerful extragalatic water masers (EPEWMs) and strong Galactic H/sub 2/O masers are discussed. This model quite successfully explains many important characteristics of EPEWMs; the rapid time variations, the broad range and random velocity distribution, the extremely high luminosities, the various heights or widths of features in spectra, the strong infrared radiation from the galaxies, how an active nucleus contributes to an EPEWM, how some parts of EPEWMs producing strong features are pumped, why this pump mechanism can work, and why EPEWMs are different from strong Galactic H/sub 2/O masers. Recent observations of extragalactic water masers which have extremely high luminosities raise the possibility that the stimulated emission rate in the maser emission line in these regions is much higher than in Galactic masers. It is possible that the local stimulated emission rate exceeds the local bandwidth for the radiation. In this case the standard expression relating the photon emission rate to the profile averaged mean intensity does not apply. A new expression for the photon emission rate is derived.

  10. Gamma ray astrophysics, the extragalactic background light, and new physics

    SciTech Connect

    Serpico, Pasquale D.; /Fermilab

    2008-09-01

    Very high energy gamma-rays are expected to be absorbed by the extragalactic background light over cosmological distances via the process of electron-positron pair production. However, recent observations of cosmologically distant emitters by ground based gamma-ray telescopes might be indicative of a higher-than-expected degree of transparency of the universe. One mechanism to explain this observation is the oscillation between photons and axion-like-particles (ALPs). Here we explore this possibility, focusing on photon-ALP conversion in the magnetic fields in and round gamma-ray sources and in the magnetic field of the Milky Way, where some fraction of the ALP flux is converted back into photons. We show that this mechanism can be efficient in allowed regions of the ALP parameter space, as well as in typical configurations of the Galactic Magnetic Field. As case example, we consider the spectrum observed from a HESS source. We also discuss features of this scenario which could be used to distinguish it from standard or other exotic models.

  11. The Milky Way Disc In Its Extragalactic Context

    NASA Astrophysics Data System (ADS)

    Newman, Jeffrey; Licquia, Timothy; Fielder, Catherine; Zentner, Andrew; Bershady, Matt

    2016-09-01

    We have produced updated estimates of the scale length of the Milky Way stellar disc by applying hierarchical Bayesian (HB) meta-analysis techniques to the extant literature. Our results combine 29 different photometric measurements based on a wide range of observational datasets, Milky Way models and assumptions, and methodologiesK the HB technique is robust to systematic errors that affect only a subset of measurements. In this talk, I will discuss the implications of these improved disc scale length estimates, including separate analyses of optical and infrared measurements (which prove to be consistent with each other). A key finding is that the Milky Way's disc scale length is roughly half as large as would be expected from its luminosity (or total stellar mass) and rotation velocity, lying further from the luminosity-velocity-radius relation than roughly 90% of spirals. Tests with simulations suggest that this result could be connected to the known discrepancies between the properties of the Milky Way's satellite population and predictions from LCDM models. Broader exploration of the links between disc properties and satellite populations in extragalactic samples may be a productive avenue for future work.

  12. New Synthesis Models of the Extragalactic Ionizing Background

    NASA Astrophysics Data System (ADS)

    Madau, Piero

    2007-07-01

    The intergalactic medium {IGM} contains evidence of the epochs of galaxy formation, metal enrichment, reionization, and reheating of the baryons left over from the Big Bang. Hydrogen, helium, and many heavy elements {C, Si, N, 0} observed by Hubble through quasar absorption line studies are kept highly ionized by the extragalactic UV/soft X-ray background {UVB} from active nuclei and star-forming galaxies. The spectrum and intensity of the UVB is one of the most uncertain yet critically important astrophysical input parameters into cosmological simulations of the IGM.It provides the ionization corrections needed for interpreting QSO absorption-line data and derive crucial information on the distribution of primordial baryons and of the nucleosynthetic products of star formation.We propose here to build improved synthesis models of the UVB intensity, spectrum, and evolution with redshift using the radiative transfer code CUBA, updating and extending our previous results {Haardt & Madau 1996}. We will adopt up-to-date determinations of the quasar optical/X-ray luminosity functions and intrinsic spectra, intergalactic photoelectric absorption, and cosmic star formation history from GOODS/ACS data. This research will make use, enhance the value of and have a lasting benefit for past and observational programs with the HST. We will make the latest version of CUBA freely available for public use, allowing for several user-supplied quantities such as source emissivity as a function of frequency and redshift, and amount of intervening absorption.

  13. Particle Acceleration at Relativistic Shocks in Extragalactic Systems

    NASA Astrophysics Data System (ADS)

    Baring, Matthew G.; Summerlin, Errol J.

    2009-11-01

    Diffusive shock acceleration (DSA) at relativistic shocks is expected to be an important acceleration mechanism in a variety of astrophysical objects including extragalactic jets in active galactic nuclei and gamma ray bursts. These sources remain strong and interesting candidate sites for the generation of ultra-high energy cosmic rays. In this paper, key predictions of DSA at relativistic shocks that are salient to the issue of cosmic ray ion and electron production are outlined. Results from a Monte Carlo simulation of such diffusive acceleration in test-particle, relativistic, oblique, MHD shocks are presented. Simulation output is described for both large angle and small angle scattering scenarios, and a variety of shock obliquities including superluminal regimes when the de Hoffman-Teller frame does not exist. The distribution function power-law indices compare favorably with results from other techniques. They are found to depend sensitively on the mean magnetic field orientation in the shock, and the nature of MHD turbulence that propagates along fields in shock environs. An interesting regime of flat spectrum generation is addressed, providing evidence for its origin being due to shock drift acceleration. The impact of these theoretical results on gamma-ray burst and blazar science is outlined. Specifically, Fermi gamma-ray observations of these cosmic sources are already providing significant constraints on important environmental quantities for relativistic shocks, namely the frequency of scattering and the level of field turbulence.

  14. Characterizing extragalactic anomalous microwave emission in NGC 6946 with CARMA

    NASA Astrophysics Data System (ADS)

    Hensley, Brandon; Murphy, Eric; Staguhn, Johannes

    2015-05-01

    Using 1 cm and 3 mm observations from the Combined Array for Research in Millimeter-wave Astronomy and 2 mm observations from the Goddard IRAM Superconducting 2 Millimeter Observer observations, we follow up the first extragalactic detection of anomalous microwave emission (AME) reported by Murphy et al. in an extranuclear region (Enuc. 4) of the nearby face-on spiral galaxy NGC 6946. We find the spectral shape and peak frequency of AME in this region to be consistent with models of spinning dust emission. However, the strength of the emission far exceeds the Galactic AME emissivity given the abundance of polycyclic aromatic hydrocarbons (PAHs) in that region. Using our galaxy-wide 1 cm map (21 arcsec resolution), we identify a total of eight 21 arcsec × 21 arcsec regions in NGC 6946 that harbour AME at >95 per cent significance at levels comparable to that observed in Enuc. 4. The remainder of the galaxy has 1 cm emission consistent with or below the observed Galactic AME emissivity per PAH surface density. We probe relationships between the detected AME and dust surface density, PAH emission, and radiation field, though no environmental property emerges to delineate regions with strong versus weak or non-existent AME. On the basis of these data and other AME observations in the literature, we determine that the AME emissivity per unit dust mass is highly variable. We argue that the spinning dust hypothesis, which predicts the AME power to be approximately proportional to the PAH mass, is therefore incomplete.

  15. Analyzing Extragalactic Magnetic Fields Using Faraday Rotation Measure Synthesis

    NASA Astrophysics Data System (ADS)

    Pare, Dylan; Wang, Q. Daniel; Kamieneski, Patrick; Sullivan, Kendall

    2017-01-01

    Extragalactic magnetic fields are a poorly understood element of galaxies that are likely to play an important role in galaxy formation and evolution. Until recently, however, there was no way to observe these fields to a high level of detail, making it difficult to map the spatial distribution of these fields to any high degree of accuracy. Fortunately, a new technique known as Faraday Rotation Measure Synthesis allows for a more precise analysis of galactic magnetism. This technique uses the observed Faraday rotation of polarized emission from background sources to map the magnetic field of a foreground galaxy. This Faraday rotation occurs when the polarized emission encounters ionized, magnetized gas within the galaxy, causing the emission to be rotated by an amount proportional the magnetic field subjected to the ionized gas. Working as part of CHANG-ES (Continuum HAlos in Nearby Galaxies - an EVLA Survey), we have applied this technique in order to learn about the distribution of magnetic fields in the disks and halos of edge-on spiral galaxies. We will present maps of the galactic magnetic fields of CHANG-ES galaxies using this technique, indicating the potential of this technique in successfully mapping these distant fields.

  16. A Search for Fast Radio Bursts in GALFACTS data

    NASA Astrophysics Data System (ADS)

    Cohen, Tyler; Salter, Christopher J.; Ghosh, Tapasi

    2016-01-01

    Fast Radio Bursts (FRBs) are transient radio sources whose high dispersion measures suggest they are of extra-galactic origin. They are particularly difficult to detect because, unlike other fast radio transients, they are non-recurring events. At present, 11 such bursts have been detected, 10 by the Parkes Radio Telescope and one by Arecibo Observatory. The G-ALFA Continuum Transit Survey (GALFACTS) is the highest resolution, full-Stokes, radio-continuum survey of the foreground sky. The Arecibo radio telescope is the largest single-aperture telescope in the world, offering the superior point-source sensitivity necessary to detect additional FRBs. GALFACTS utilizes Arecibo's ALFA receiver, an L-band 7-beam feed array, to produce a high-time (1 ms), low-spectral (MHz) resolution (HTLS) data stream between 1225 and 1525 MHz. We used ``Red_Transient", a robust search pipeline developed by A.A. Deshpande, to de-disperse the HTLS data with the intention of detecting FRBs in the ~30% of the total sky surveyed by GALFACTS. Concurrently, the student produced a similar search pipeline to calibrate HTLS data and validate detections by ``Red_Transient". Here, we present the results of initial processing runs on the first several days of GALFACTS observations. Currently, no FRB detections have been found. However, the detection of pulses from the known pulsar J1916+1312 indicates that ``Red_Transient" is capable of detecting fast transient signals present in the data stream.

  17. Synergy with new radio facilities: from LOFAR to SKA

    NASA Astrophysics Data System (ADS)

    Morganti, R.

    2016-06-01

    A number of new radio telescopes are coming on-line paving the way to the Square Kilometre Array. Their new capabilities, e.g. large field of view, broad instantaneous band and fast response, offer new possibilities for the science. I will briefly give an overview of the facilities that are becoming available. Many of them have open time and some are planning large surveys that will be made available to the entire astronomical community, providing an important legacy. I will then focus on some of the results obtained with the Low Frequency Array (LOFAR) on topics where a strong synergy with XMM is (or should be) present. In particular, I will focus on pulsars (e.g. fast switching mode pulsars) and accreting systems among the galactic objects. For the extragalactic objects, the combination radio/X-ray is key for understanding the energetics and, therefore, the impact that radio AGN have on their surroundings. I will in particular focus on results from observations of radio galaxies and clusters. Fast response to transient objects in the radio sky is also receiving a lot of attention with LOFAR (and other radio telescopes).

  18. Millimeter and submillimeter observations of nearby radio galaxies

    NASA Technical Reports Server (NTRS)

    Knapp, G. R.; Patten, Brian M.

    1991-01-01

    Radio galaxies are often observed to be strong long wavelength infrared sources. Twenty-six radio galaxies with strong compact cores were observed at wavelengths near 1 mm with the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. The detections and upper limits establish the presence of excess infrared emission for almost all of the galaxies in the sample. The exceptions are the BL Lac objects, which have smooth continuous spectra from radio to infrared wavelengths. The spectral energy distributions of the infrared emission from the radio galaxies favor a thermal origin due to emission from cool interstellar dust. The amounts of dust inferred to be present approach those observed in large spirals.

  19. Prompt Radio Emission from Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Gotthardt, Noelle

    2010-02-01

    Gamma-ray bursts have been observed, but these enigmatic objects are yet unexplained. These short duration events are undoubtedly due to high-energy events. Fading optical emission and even radio emission has been observed from such events, but prompt radio emission from these events would be very useful in pinning down the physics of the bursts, the nature of the progenitor object,and possibly the medium in which it occurs. If these phenomena occur at large redshifts, there is the possibility that the observations could probe the Epoch of Reionization, or the intergalactic medium. A number of models have been proposed to explain the gamma-ray bursts, ranging from compact object mergers, to maser-like coherent emission. These models are not well constrained by current observations. Prompt radio emission may be detected by a transient radio array. I will discuss a planned search for such signals by the Eight-meter-wavelength Transient Array (ETA). )

  20. Radio monitoring of protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Ubach, C.; Maddison, S. T.; Wright, C. M.; Wilner, D. J.; Lommen, D. J. P.; Koribalski, B.

    2017-04-01

    Protoplanetary disc systems observed at radio wavelengths often show excess emission above that expected from a simple extrapolation of thermal dust emission observed at short millimetre wavelengths. Monitoring the emission at radio wavelengths can be used to help disentangle the physical mechanisms responsible for this excess, including free-free emission from a wind or jet, and chromospheric emission associated with stellar activity. We present new results from a radio monitoring survey conducted with Australia Telescope Compact Array over the course of several years with observation intervals spanning days, months and years, where the flux variability of 11 T Tauri stars in the Chamaeleon and Lupus star-forming regions was measured at 7 and 15 mm, and 3 and 6 cm. Results show that most sources are variable to some degree at 7 mm, indicating the presence of emission mechanisms other than thermal dust in some sources. Additionally, evidence of grain growth to centimetre-sized pebbles was found for some sources that also have signs of variable flux at 7 mm. We conclude that multiple processes contributing to the emission are common in T Tauri stars at 7 mm and beyond, and that a detection at a single epoch at radio wavelengths should not be used to determine all processes contributing to the emission.

  1. Radio Monitoring of Protoplanetary Discs

    NASA Astrophysics Data System (ADS)

    Ubach, C.; Maddison, S. T.; Wright, C. M.; Wilner, D. J.; Lommen, D. J. P.; Koribalski, B.

    2017-01-01

    Protoplanetary disc systems observed at radio wavelengths often show excess emission above that expected from a simple extrapolation of thermal dust emission observed at short millimetre wavelengths. Monitoring the emission at radio wavelengths can be used to help disentangle the physical mechanisms responsible for this excess, including free-free emission from a wind or jet, and chromospheric emission associated with stellar activity. We present new results from a radio monitoring survey conducted with Australia Telescope Compact Array over the course of several years with observation intervals spanning days, months and years, where the flux variability of 11 T Tauri stars in the Chamaeleon and Lupus star forming regions was measured at 7 and 15 mm and 3 and 6 cm. Results show that for most sources are variable to some degree at 7 mm, indicating the presence of emission mechanisms other than thermal dust in some sources. Additionally, evidence of grain growth to cm-sized pebbles was found for some sources that also have signs of variable flux at 7 mm. We conclude that multiple processes contributing to the emission are common in T Tauri stars at 7 mm and beyond, and that a detection at a single epoch at radio wavelengths should not be used to determine all processes contributing to the emission.

  2. RADIO ALTIMETERS

    DOEpatents

    Bogle, R.W.

    1960-11-22

    A radio ranging device is described which utilizes a superregenerative oscillator having alternate sending and receiving phases with an intervening ranging interval between said phases, means for varying said ranging interval, means responsive to an on-range noise reduction condition for stopping said means for varying the ranging interval and indicating means coupled to the ranging interval varying means and calibrated in accordance with one-half the product of the ranging interval times the velocity of light whereby the range is indicated.

  3. Compact Polarimetry Potentials

    NASA Technical Reports Server (NTRS)

    Truong-Loi, My-Linh; Dubois-Fernandez, Pascale; Pottier, Eric

    2011-01-01

    The goal of this study is to show the potential of a compact-pol SAR system for vegetation applications. Compact-pol concept has been suggested to minimize the system design while maximize the information and is declined as the ?/4, ?/2 and hybrid modes. In this paper, the applications such as biomass and vegetation height estimates are first presented, then, the equivalence between compact-pol data simulated from full-pol data and compact-pol data processed from raw data as such is shown. Finally, a calibration procedure using external targets is proposed.

  4. Radio Sources Associated with Intermediate X-ray Luminosity Objects in Merging Galaxy Systems

    NASA Technical Reports Server (NTRS)

    Neff, S. G.; Ulvestad, J. S.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    We present new, high-resolution 6, 3.6, and 2 cm radio images of a time-ordered sequence of merging galaxy systems. The new data have a resolution of less than 100pc and a sensitivity comparable to a few x Cas A. We detect compact radio sources in all systems, generally embedded in more diffuse radio emission at the longer wavelengths. Several of the compact radio sources are coincident with compact Intermediate-luminosity X-ray Objects (IXOs) in these systems, and many more are within the 3$/sigma$ Chandra position errors for other IXOs. The fraction of radio identifications and the nature of the radio sources changes as a function of merger stage. These data suggest that the IXOs are associated with complexes of supernova remnants, and therefore with star formation that has occurred within the last $/sim$10$circumflex7$ yr, but are not located in HII regions where copious star formation is occurring currently.

  5. Evolution of luminous IRAS galaxies: Radio imaging

    NASA Technical Reports Server (NTRS)

    Neff, S. G.; Hutchings, J. B.

    1993-01-01

    In a recent study of IRAS galaxies' optical morphologies, we found that luminous IR sources lie in the IR color-luminosity plane in groups which separate out by optical spectroscopic type and also by degree of tidal disturbance. We found that the most luminous steep-IR-spectrum sources are generally galaxies in the initial stages of a major tidal interaction. Galaxies with active nuclei were generally found to have flatter IR spectra, to cover a range of IR luminosity, and to be in the later stages of a tidal interaction. We proposed a sequence of events by which luminous IR sources evolve: they start as interacting or merging galaxies, some develop active nuclei, and most undergo extensive star-formation in their central regions. Another way to study these objects and their individual evolution is to study their radio morphologies. Radio emission may arise at a detectable level from supernovae in star-forming regions and/or the appearance of an active nucleus can be accompanied by a nuclear radio source (which may develop extended structure). Therefore, the compact radio structure may trace the evolution of the inner regions of IRAS-luminous sources. If the radio sources are triggered by the interactions, we would expect to find the radio morphology related to the optical 'interactivity' of the systems. Here, we explore using the radio emission of IRAS galaxies as a possible tracer of galaxy evolution. We present and discuss observations of the compact radio morphology of 111 luminous IRAS-selected active galaxies covering a wide range of IR and optical properties.

  6. Low-Frequency Spectral Energy Distributions of Radio Pulsars Detected with the Murchison Widefield Array

    NASA Astrophysics Data System (ADS)

    Murphy, Tara; Kaplan, David L.; Bell, Martin E.; Callingham, J. R.; Croft, Steve; Johnston, Simon; Dobie, Dougal; Zic, Andrew; Hughes, Jake; Lynch, Christene; Hancock, Paul; Hurley-Walker, Natasha; Lenc, Emil; Dwarakanath, K. S.; For, B.-Q.; Gaensler, B. M.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; McKinley, B.; Morgan, J.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wayth, R.; Wu, C.; Zheng, Q.

    2017-04-01

    We present low-frequency spectral energy distributions of 60 known radio pulsars observed with the Murchison Widefield Array telescope. We searched the GaLactic and Extragalactic All-sky Murchison Widefield Array survey images for 200-MHz continuum radio emission at the position of all pulsars in the Australia Telescope National Facility (ATNF) pulsar catalogue. For the 60 confirmed detections, we have measured flux densities in 20 × 8 MHz bands between 72 and 231 MHz. We compare our results to existing measurements and show that the Murchison Widefield Array flux densities are in good agreement.

  7. Analysis of the Capability and Limitations of Relativistic Gravity Measurements Using Radio Astronomy Methods

    NASA Technical Reports Server (NTRS)

    Shapiro, I. I.; Counselman, C. C., III

    1975-01-01

    The uses of radar observations of planets and very-long-baseline radio interferometric observations of extragalactic objects to test theories of gravitation are described in detail with special emphasis on sources of error. The accuracy achievable in these tests with data already obtained, can be summarized in terms of: retardation of signal propagation (radar), deflection of radio waves (interferometry), advance of planetary perihelia (radar), gravitational quadrupole moment of sun (radar), and time variation of gravitational constant (radar). The analyses completed to date have yielded no significant disagreement with the predictions of general relativity.

  8. Infrared Faint Radio Sources in the Extended Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Huynh, Minh T.

    2009-01-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey (ATLAS) which have no observable counterpart in the Spitzer Wide-area Infrared Extragalactic Survey (SWIRE). The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6 to 70 micron) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the SED of these objects shows that they are consistent with high redshift AGN (z > 2).

  9. Radio Jove: Jupiter Radio Astronomy for Citizens

    NASA Astrophysics Data System (ADS)

    Higgins, Charles; Thieman, J. R.; Flagg, R.; Reyes, F. J.; Sky, J.; Greenman, W.; Brown, J.; Typinski, D.; Ashcraft, T.; Mount, A.

    2014-01-01

    Radio JOVE is a hands-on educational activity that brings the radio sounds of the Sun, Jupiter, the Milky Way Galaxy, and terrestrial radio noise to students, teachers, and the general public. Participants may build a simple radio telescope kit, make scientific observations, and interact with professional radio observatories in real-time over the Internet. Our website (http://radiojove.gsfc.nasa.gov) includes science information, construction manuals, observing guides, and education resources for teachers and students. Radio Jove is continually expanding its participants with over 1800 kits sold to more than 70 countries worldwide. Recently some of our most dedicated observers have upgraded their Radio Jove antennas to semi-professional observatories. We have spectrographs and wide band antennas, some with 8 MHz bandwidth and some with dual polarization capabilities. In an effort to add to the science literature, these observers are coordinating their efforts to pursue some basic questions about Jupiter’s radio emissions (radio source locations, spectral structure, long term changes, etc.). We can compare signal and ionosphere variations using the many Radio Jove observers at different locations. Observers are also working with members of the Long Wavelength Array Station 1 (LWA1) radio telescope to coordinate observations of Jupiter; Radio Jove is planning to make coordinated observations while the Juno Mission is active beginning in 2015. The Radio Jove program is overviewed, its hardware and software are highlighted, recent sample observations are shown, and we demonstrate that we are capable of real citizen science.

  10. Effective temperature of ionizing stars of extragalactic H II regions

    NASA Astrophysics Data System (ADS)

    Dors, O. L.; Hägele, G. F.; Cardaci, M. V.; Krabbe, A. C.

    2017-04-01

    The effective temperature (Teff) of the radiation field of the ionizing star(s) of a large sample of extragalactic H II regions was estimated using the R = log([O II] (λλ3726 + 29)/[O III] λ5007) index. We used a grid of photoionization models to calibrate the Teff-R relation finding that it has a strong dependence with the ionizing parameter, while it shows a weak direct dependence with the metallicity (variations in Z imply variations in U) of both the stellar atmosphere of the ionizing star and the gas phase of the H II region. Since the R index varies slightly with the Teff for values larger than 40 kK, the R index can be used to derive the Teff in the 30-40 kK range. A large fraction of the ionization parameter variation is due to differences in the temperature of the ionizing stars and then the use of the (relatively) low Teff dependent S2 = [S II] (λλ6717 + 31)/Hα emission-line ratio to derive the ionization parameter is preferable over others in the literature. We propose linear metallicity dependent relationships between S2 and U. Teff and metallicity estimations for a sample of 865 H II regions, whose emission-line intensities were compiled from the literature, do not show any Teff-Z correlation. On the other hand, it seems to be hints of the presence of an anticorrelation between Teff-U. We found that the majority of the studied H II regions (˜87 per cent) present Teff values in the range between 37 and 40 kK, with an average value of 38.5(±1) kK. We also studied the variation of Teff as a function of the galactocentric distance for 14 spiral galaxies. Our results are in agreement with the idea of the existence of positive Teff gradients along the disc of spiral galaxies.

  11. Extragalactic circuits, transmission lines, and CR particle acceleration

    NASA Astrophysics Data System (ADS)

    Kronberg, Philipp P.; Lovelace, Richard V. E.

    2015-08-01

    A non-negligible fraction of a Supermassive Black Hole's (SMBH) rest mass energy gets transported into extragalactic space by a remarkable process in jets which are incompletely understood. What are the physical processes which transport this energy? It is likely that the energy flows electromagnetically, rather than via a particle beam flux. The deduced electromagnetic fields may produce particles of energy as high as ˜ 1020 eV. The energetics of SMBH accretion disk models and the electromagnetic energy transfer imply that a SMBH should generate a 1018 - 1019 Ampères current close to the black hole and its accretion disk. We describe the so far best observation-based estimate of the magnitude of the current flow along the axis of the jet extending from the nucleus of the active galaxy in 3C303. The current is measured to be I ˜ 1018 Ampères at ˜ 40 kpc away from the AGN. This indicates that organised current flow remains intact over multi-kpc distances. The electric current I transports electromagnetic power into free space, P = I2Z, where Z ˜ 30 Ohms is related to the impedance of free space, and this points to the existence of cosmic electric circuit. The associated electric potential drop, V = IZ, is of the order of that required to generate Ultra High Energy Cosmic Rays (UHECR). We also explore further implications, including disruption/deflection of the power flow and also why such measurements, exemplified by those on 3C303, are currently very difficult to make and to unambiguously interpret. This naturally leads to the topic of how such measurements can be extended and improved in the future. We describe the analogy of electromagnetically dominated jets with transmission lines. High powered jets in vacuo can be understood by approximate analogy with a waveguide. The importance of inductance, impedance, and other laboratory electrical concepts are discussed in this context.

  12. Determining the extragalactic extinction law with SALT - II. Additional sample

    NASA Astrophysics Data System (ADS)

    Finkelman, Ido; Brosch, Noah; Kniazev, Alexei Y.; Väisänen, Petri; Buckley, David A. H.; O'Donoghue, Darragh; Gulbis, Amanda; Hashimoto, Yas; Loaring, Nicola; Romero-Colmenero, Encarni; Sefako, Ramotholo

    2010-12-01

    We present new results from an ongoing programme to study the dust extragalactic extinction law in E/S0 galaxies with dust lanes with the Southern African Large Telescope (SALT) during its performance verification phase. The wavelength dependence of the dust extinction for seven galaxies is derived in six spectral bands ranging from the near-ultraviolet atmospheric cut-off to the near-infrared. The derivation of an extinction law is performed by fitting model galaxies to the unextinguished parts of the image in each spectral band, and subtracting from these the actual images. We compare our results with the derived extinction law in the Galaxy and find them to run parallel to the Galactic extinction curve with a mean total-to-selective extinction value of RV = 2.71 +/- 0.43. We use total optical extinction values to estimate the dust mass for each galaxy, compare these with dust masses derived from IRAS measurements, and find them to range from 104 to 107 Msolar. We study the case of the well-known dust-lane galaxy NGC2685 for which Hubble Space Telescope/Wide Field Planetary Camera 2 (HST/WFPC2) data are available to test the dust distribution on different scales. Our results imply a scale-free dust distribution across the dust lanes, at least within ~1arcsec (~60 pc) regions. Based on observations made with the Southern African Large Telescope (SALT). E-mail: ido@wise.tau.ac.il (IF); noah@wise.tau.ac.il (NB); akniazev@saao.ac.za (AYK); petri@saao.ac.za (PV); dibnob@saao.ac.za (DAHB); dod@saao.ac.za (DO); amanda@saao.ac.za (AG); hashimot@ntnu.edu.tw (YH); nsl@saao.ac.za (NL); erc@saao.ac.za (ER-C); rrs@saao.ac.za (RS)

  13. NED in the Era of Very Large Extragalactic Surveys

    NASA Astrophysics Data System (ADS)

    Fadda, Dario; Mazzarella, J. M.; Ogle, P. M.; Madore, B. F.; Ebert, R.; Baker, K.; Chan, H.; Chen, X.; Frayer, C.; Helou, G.; Jacobson, J. D.; LaGue, C.; Lo, T. M.; Pevunova, O.; Schmitz, M.; Terek, S.; Steer, I.

    2014-01-01

    The NASA/IPAC Extragalactic Database (NED) is in the process of rapid expansion both from the growth of the astrophysics literature and from very large sky surveys containing hundreds of millions of objects. Over the last year alone, over 3 million objects from more than 5 thousand journal articles have been folded into NED. In the same time period, approximately 60 million UV sources from the GALEX All-Sky Survey and Medium Imaging Survey catalogs have been fully integrated into the database. A new data processing approach has been developed to fold in very large catalogs. Firstly, a new NED layer is created to contain the entries from a catalog. Subsequently, the new entries are cross-matched with existent NED objects following a rule-based statistical approach. This new layer currently contains approximately 500 million near-infrared sources from the 2MASS Point Source Catalog. In future releases, we expect to fully integrate this catalog while loading a new layer of hundreds of millions of sources from the new All-WISE survey. To make accessible this wealth of new data, NED is undergoing a major user interface upgrade. As a result of a "near-position" search, the new interface is able to display sources from very large catalogs which have not yet been cross-matched with other NED objects. Navigation and searches have been simplified and enriched. For instance, the "by-parameters" search has been completely revamped and long searches are now queued and executed in the background. The latest release includes a new tool to explore galaxy environments and a guide for authors documenting the best practices to publish data in the major astrophysical journals. Researchers are encouraged to visit the NED exhibit for a demonstration of these and other new capabilities.

  14. Anatomy of Starbursts in Extragalactic Giant HII Regions

    NASA Astrophysics Data System (ADS)

    Evans, Jessica Marie; Chu, You-Hua

    2013-06-01

    Extragalactic giant HII regions (EGHRs) are sites of active, concentrated star formation, and thus provide excellent labs to analyze the starburst phenomenon. Although they have been known for a long time, ground-based observations cannot resolve the physical structures and stellar content of EGHRs. The high resolution and sensitivity of Hubble Space Telescope (HST) are ideal for detailed studies of EGHRs. We have searched the Hubble Legacy Archives (HLA) and found > 10 nearby galaxies, within 20 Mpc, with H-α and continuum images. To determine the best methods for analyzing these data, we perform an in-depth analysis of the EGHRs in M51. M51 is a face-on spiral galaxy 8.4 Mpc away, with well-resolved multi-wavelength observations in the HLA. We sample the 20 most luminous HII regions in M51, and the top three in several other galaxies, many of which are bonafide EGHRs with an H-α luminosity > 10^{39} ergs s^{-1}. We use the H-α image to study the distribution and physical structure of the gas in each HII region and determine its H-α luminosity and required ionizing flux. We use the continuum images to determine whether super stellar clusters (SSCs) are found in these HII regions, and use photometric measurements to determine the mass and age spread of the resolved stellar population. These are then compared with the interstellar structures. The results help us provide the groundwork for studying EGHRs in multiple galaxies and elucidate the starburst phenomenon by investigating questions such as: What role does environment play in the formation of EGHRs? How do EGHRs evolve? How does star formation proceed in an EGHR?

  15. Star Formation History, Dust Attenuation, and Extragalactic Background Light

    NASA Astrophysics Data System (ADS)

    Khaire, Vikram; Srianand, Raghunathan

    2015-05-01

    At any given epoch, the extragalactic background light (EBL) carries imprints of integrated star formation activities in the universe until that epoch. On the other hand, in order to estimate the EBL when direct observations are not possible, one requires an accurate estimation of the star formation rate density (SFRD) and the dust attenuation ({{A}ν }) in galaxies. Here, we present a “progressive fitting method” that determines the global average SFRD(z) and {{A}ν }(z) for any given extinction curve by using the available multiwavelength, multiepoch galaxy luminosity function measurements. Using the available observations, we determine the best-fit combinations of SFRD(z) and {{A}ν }(z), in a simple fitting form, up to z∼ 8 for five well-known extinction curves. We find, irrespective of the extinction curve used, the z at which the SFRD(z) peaks is higher than the z above which {{A}ν }(z) begins to decline. For each case, we compute the EBL from ultraviolet to the far-infrared regime and the optical depth ({{τ }γ }) encountered by the high-energy γ-rays due to pair production upon collisions with these EBL photons. We compare these with measurements of the local EBL, γ-ray horizon, and {{τ }γ } measurements using Fermi-Large Area Telescope. All these and the comparison of independent SFRD(z) and {{A}ν }(z) measurements from the literature with our predictions favor an extinction curve similar to that of the Large Magellanic Cloud Supershell.

  16. Anatomy of Starbursts in Extragalactic Giant HII Regions

    NASA Astrophysics Data System (ADS)

    Evans, Jessica

    2011-10-01

    Extragalactic giant HII regions {EGHRs} are sites of active, concentrated star formation, and thus provide excellent labs to analyze starburst phenomenon. Although they have been known for a long time, ground-based observations cannot resolve the physical structures and stellar content of EGHRs. The high resolution and sensitivity of Hubble Space Telescope {HST} are ideal for detailed studies of EGHRs. We have searched the Hubble Legacy Archives {HLA} and found 17 nearby galaxies, within 15 Mpc, with H-alpha and continuum images. We propose to use these images to study the three top-ranking HII regions in each galaxy. While these 51 HII regions span a range in luminosity, most of them are bonafide EGHRs, with H-alpha luminosity greater than a few times 10^39 ergs/s. We will use the H-alpha image to study the distribution and physical structure of the gas in each HII region and determine its H-alpha luminosity and required ionizing flux. We will use the continuum images to determine whether concentrated clusters or distributed OB associations reside in these HII regions, and use photometric measurements to determine the mass and age spread of the resolved stellar population. These will then be compared with the interstellar structures. The results will help us understand the starburst phenomenon and answer questions such as: Are globular clusters formed in EGHRs? How does star formation proceed in an EGHR? How does the physical structure of an EGHR relate to the luminosity, physical location in the host galaxy, and the host galaxy type?

  17. The FIRST radio survey: Panchromatic properties of FIRST radio sources identified in the Boötes and Cetus fields

    NASA Astrophysics Data System (ADS)

    El Bouchefry, K.

    2009-01-01

    In this paper the availability of multi-wavelength optical/infrared information of FIRST (Faint Images of the Radio Sky at 20 cm) radio sources counterparts over ˜9.2 deg2 in the Boötes field and ˜2.4 deg2 in the Cetus field is exploited to infer the physical properties of the faint radio population. The radio sources optically identified have been divided into resolved galaxies and stellar-like objects finding that the faint radio population is mainly composed of early-type galaxies with very red colour (Bw-R˜ 4.6). A total number of 57 counterparts of FIRST radio sources have extremely red colour (R-K≥ 5). Photometric redshift from {Hyperz} implies that the Extremely Red Objects (EROs) counterparts to FIRST radio sources are mostly located in the range z=0.7-2 , with the bulk of the population at z˜ 1. Taking advantage of the near infrared imaging with FLAMEX (FLAMINGOS Extragalactic Infrared Survey), the EROs counterparts to FIRST radio sources are separated into passively-evolving and dusty star-forming galaxies using their {RJK} colours; the relatively blue J-K of these galaxies suggest that most are old elliptical galaxies (18/25) rather than dusty starburst galaxies (7/25). A total of 15 Distant Red Galaxy (DRGs) have been identified as counterparts to FIRST radio sources in the Cetus field and 3 DRGs in the Boötes field with J-K>2.3.

  18. The Effect of Blazar Spectral Breaks on the Blazar Contribution to the Extragalactic Gamma-Ray Background

    NASA Technical Reports Server (NTRS)

    Venters, Tonia M.; Pavlidou, Vasiliki

    2011-01-01

    The spectral shapes of the contributions of different classes of unresolved gamma-ray emitters can provide insight into their relative contributions to the extragalactic gamma-ray background (EGB) and the natures of their spectra at GeV energies, We calculate the spectral shapes of the contributions to the EGB arising from BL Lacertae type objects (BL Lacs) and flat-spectrum radio quasars (FSRQs) assuming blazar spectra can be described as broken power laws, We fit the resulting total blazar spectral shape to the Fermi Large Area Telescope measurements of the EGB, finding that the best-fit shape reproduces well the shape of the Fermi EGB for various break scenarios. We conclude that a scenario in which the contribution of blazars is dominant cannot be excluded on spectral grounds alone, even if spectral breaks are shown to be common among Fermi blazars. We also find that while the observation of a featureless (within uncertainties) power-law EGB spectrum by Fermi does not necessarily imply a single class of contributing unresolved sources with featureless individual spectra, such an observation and the collective spectra of the separate contributing populations determine the ratios of their contributions. As such, a comparison with studies including blazar gamma-ray luminosity functions could have profound implications for the blazar contribution to the EGB, blazar evolution, and blazar gamma-ray spectra and emission.

  19. Learning radio astronomy by doing radio astronomy

    NASA Astrophysics Data System (ADS)

    Vaquerizo Gallego, J. A.

    2011-11-01

    PARTNeR (Proyecto Académico con el Radio Telescopio de NASA en Robledo, Academic Project with the NASA Radio Telescope at Robledo) is an educational program that allows high school and undergraduate students to control a 34 meter radio telescope and conduct radio astronomical observations via the internet. High-school teachers who join the project take a course to learn about the science of radio astronomy and how to use the antenna as an educational resource. Also, teachers are provided with learning activities they can do with their students and focused on the classroom implementation of the project within an interdisciplinary framework. PARTNeR provides students with firsthand experience in radio astronomy science. Thus, remote radio astronomical observations allow students to learn with a first rate scientific equipment the basics of radio astronomy research, aiming to arouse scientific careers and positive attitudes toward science. In this contribution we show the current observational programs and some recent results.

  20. High energy gamma rays from nebulae associated with extragalactic microquasars and ultra-luminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Inoue, Yoshiyuki; Lee, Shiu-Hang; Tanaka, Yasuyuki T.; Kobayashi, Shogo B.

    2017-04-01

    In the extragalactic sky, microquasars and ultra-luminous X-ray sources (ULXs) are known as energetic compact objects locating at off-nucleus positions in galaxies. Some of these objects are associated with expanding bubbles with a velocity of 80-250 km s - 1. We investigate the shock acceleration of particles in those expanding nebulae. The nebulae having fast expansion velocity ≳ 120km s - 1 are able to accelerate cosmic rays up to ∼100 TeV. If 10% of the shock kinetic energy goes into particle acceleration, powerful nebulae such as the microquasar S26 in NGC 7793 would emit gamma rays up to several tens TeV with a photon index of ∼2. These nebulae will be good targets for future Cherenkov Telescope Array observations given its sensitivity and angular resolution. They would also contribute to ∼7% of the unresolved cosmic gamma-ray background radiation at ≥ 0.1 GeV. In contrast, particle acceleration in slowly expanding nebulae ≲ 120km s - 1 would be less efficient due to ion-neutral collisions and result in softer spectra at ≳ 10 GeV.