Sample records for compact form factor

  1. High-throughput spectrometer designs in a compact form-factor: principles and applications

    NASA Astrophysics Data System (ADS)

    Norton, S. M.

    2013-05-01

    Many compact, portable Raman spectrometers have entered the market in the past few years with applications in narcotics and hazardous material identification, as well as verification applications in pharmaceuticals and security screening. Often, the required compact form-factor has forced designers to sacrifice throughput and sensitivity for portability and low-cost. We will show that a volume phase holographic (VPH)-based spectrometer design can achieve superior throughput and thus sensitivity over conventional Czerny-Turner reflective designs. We will look in depth at the factors influencing throughput and sensitivity and illustrate specific VPH-based spectrometer examples that highlight these design principles.

  2. Formation of polymer micro-agglomerations in ultralow-binder-content composite based on lunar soil simulant

    NASA Astrophysics Data System (ADS)

    Chen, Tzehan; Chow, Brian J.; Zhong, Ying; Wang, Meng; Kou, Rui; Qiao, Yu

    2018-02-01

    We report results from an experiment on high-pressure compaction of lunar soil simulant (LSS) mixed with 2-5 wt% polymer binder. The LSS grains can be strongly held together, forming an inorganic-organic monolith (IOM) with the flexural strength around 30-40 MPa. The compaction pressure, the number of loadings, the binder content, and the compaction duration are important factors. The LSS-based IOM remains strong from -200 °C to 130 °C, and is quite gas permeable.

  3. Low Gas Fractions Connect Compact Star-Forming Galaxies to their z~2 Quiescent Descendants

    NASA Astrophysics Data System (ADS)

    Spilker, Justin; Bezanson, Rachel; Marrone, Daniel P.; Weiner, Benjamin J.; Whitaker, Katherine E.; Williams, Christina C.

    2017-01-01

    Early quiescent galaxies at z ~ 2 are known to be remarkably compact compared to their nearby counterparts. Possible progenitors of these systems include galaxies that are structurally similar, but are still rapidly forming stars. I will present Karl G. Jansky Very Large Array (VLA) observations of the CO(1-0) line towards three such compact, star-forming galaxies at z ~ 2.3, significantly detecting one. The VLA observations indicate baryonic gas fractions 5 times lower and gas depletion times 10 times shorter than normal, extended massive star-forming galaxies at these redshifts. At their current star formation rates, all three objects will deplete their gas reservoirs within 100Myr. These objects are among the most gas-poor objects observed at z > 2 and are outliers from standard gas scaling relations, a result which remains true regardless of assumptions about the CO-H2 conversion factor. Our observations are consistent with the idea that compact, star-forming galaxies are in a rapid state of transition to quiescence in tandem with the build-up of the z ~ 2 quenched population. In the detected compact galaxy, we see no evidence of rotation or that the CO-emitting gas is spatially extended relative to the stellar light. This casts doubt on recent suggestions that the gas in these compact galaxies is rotating and significantly extended compared to the stars. Instead, we suggest that, at least for this object, the gas is centrally concentrated, and only traces a small fraction of the total galaxy dynamical mass. I will conclude by discussing my ongoing efforts to characterize the gas and star forming properties of this unusual population of galaxies.

  4. Effect of particle size on in-die and out-of-die compaction behavior of ranitidine hydrochloride polymorphs.

    PubMed

    Khomane, Kailas S; Bansal, Arvind K

    2013-09-01

    The present study investigates the effect of particle size on compaction behavior of forms I and II of ranitidine hydrochloride. Compaction studies were performed using three particle size ranges [450-600 (A), 300-400 (B), and 150-180 (C) μm] of both the forms, using a fully instrumented rotary tableting machine. Compaction data were analyzed for out-of-die compressibility, tabletability, and compactibility profiles and in-die Heckel and Kawakita analysis. Tabletability of the studied size fractions followed the order; IB > IA > > IIC > IIB > IIA at all the compaction pressures. In both the polymorphs, decrease in particle size improved the tabletability. Form I showed greater tabletability over form II at a given compaction pressure and sized fraction. Compressibility plot and Heckel and Kawakita analysis revealed greater compressibility and deformation behavior of form II over form I at a given compaction pressure and sized fraction. Decrease in particle size increased the compressibility and plastic deformation of both the forms. For a given polymorph, improved tabletability of smaller sized particles was attributed to their increased compressibility. However, IA and IB, despite poor compressibility and deformation, showed increased tabletability over IIA, IIB, and IIC by virtue of their greater compactibility. Microtensile testing also revealed higher nominal fracture strength of form I particles over form II, thus, supporting greater compactibility of form I. Taken as a whole, though particle size exhibited a trend on tabletability of individual forms, better compactibility of form I over form II has an overwhelming impact on tabletability.

  5. Simulation of roller compaction with subsequent tableting and characterization of lactose and microcrystalline cellulose.

    PubMed

    Hein, Stephanie; Picker-Freyer, Katharina M; Langridge, John

    2008-01-01

    Tablets are by far the most common solid oral dosage forms, and many drugs need to be granulated before they can be tableted. Increasingly roller compaction is being used as a dry granulation technique; however it is a very time and material intensive method. Thus some mini roller compactors and simulations of the roller compaction process have been developed as a means of studying the technique at small scale. An important factor in the selection of materials for roller compaction is their ability to be recompressed into tablets after the initial roller compaction and milling steps. In this paper the roller compaction process was simulated on the basis of some models by Gereg and Cappola (2002) and Zinchuk et al. (2004). An eccentric tableting machine was used to make compacts from alpha-lactose monohydrate, anhydrous beta-lactose, spray-dried lactose and microcrystalline cellulose at different maximum relative densities (rho rel,max 0.6-0.9). These compacts were milled immediately to granules with a rotary granulator. The properties of the granules were analyzed and compared to the properties of the original powders. These granules and powders were then tableted at different maximum relative densities (rho rel,max 0.75-0.95) and their properties including elastic recovery, crushing force and 3D-model were analyzed. The properties of the tablets made from the granules were compared to the properties of the tablets made from the powders to determine which excipients are most suitable for the roller compaction process. The study showed that anhydrous beta-lactose is the preferred form of lactose for use in roller compaction since compaction did not affect tablet crushing force to a large extent. With the simulation of roller compaction process one is able to find qualified materials for use in roller compaction without the necessity of a great deal of material and time.

  6. Low Gas Fractions Connect Compact Star-forming Galaxies to Their z ~ 2 Quiescent Descendants

    NASA Astrophysics Data System (ADS)

    Spilker, Justin S.; Bezanson, Rachel; Marrone, Daniel P.; Weiner, Benjamin J.; Whitaker, Katherine E.; Williams, Christina C.

    2016-11-01

    Early quiescent galaxies at z˜ 2 are known to be remarkably compact compared to their nearby counterparts. Possible progenitors of these systems include galaxies that are structurally similar, but are still rapidly forming stars. Here, we present Karl G. Jansky Very Large Array (VLA) observations of the CO(1-0) line toward three such compact, star-forming galaxies (SFGs) at z˜ 2.3, significantly detecting one. The VLA observations indicate baryonic gas fractions ≳ 5 times lower and gas depletion timescales ≳ 10 times shorter than normal, extended massive SFGs at these redshifts. At their current star formation rates, all three objects will deplete their gas reservoirs within 100 Myr. These objects are among the most gas-poor objects observed at z\\gt 2, and are outliers from standard gas scaling relations, a result that remains true regardless of assumptions about the CO-H2 conversion factor. Our observations are consistent with the idea that compact, SFGs are in a rapid state of transition to quiescence in tandem with the buildup of the z˜ 2 quenched population. In the detected compact galaxy, we see no evidence of rotation or that the CO-emitting gas is spatially extended relative to the stellar light. This casts doubt on recent suggestions that the gas in these compact galaxies is rotating and significantly extended compared to the stars. Instead, we suggest that, at least for this object, the gas is centrally concentrated, and only traces a small fraction of the total galaxy dynamical mass.

  7. Differential compaction behaviour of roller compacted granules of clopidogrel bisulphate polymorphs.

    PubMed

    Khomane, Kailas S; Bansal, Arvind K

    2014-09-10

    In the present work, in-die and out-of-die compaction behaviour of dry-granulated powders of clopidogrel bisulphate (CLP) polymorphs, form I and form II, was investigated using a fully instrumented rotary tablet press. Each polymorph was compacted at three different roller pressures [70.3 (S1), 105.5 (S2) and 140.6 (S3)kgf/cm(2)], and obtained granules were characterized for their physico-mechanical properties. Compaction data were analyzed for out-of-die compressibility, tabletability and compactibility profiles, and in-die Heckel, Kawakita and Walker analysis. The roller compacted granules of both forms showed markedly different tabletting behaviour. Roller pressure exhibited a trend on compaction behaviour of form I granules, whereas, in case of form II, the effect was insignificant. Tabletability of the six granule batches follows the order; I_S1>I_S2>I_S3>II_S1≈II_S2≈II_S3. In case of form I, the reduced tabletability of the granules compacted at higher roller pressure was attributed to the decreased compressibility and plastic deformation. This was confirmed by compressibility plot and various mathematical parameters derived from Heckel (Py), Kawakita (1/b) and Walker (W) equations. The reduced tabletability of form I granules was due to 'granule hardening' during roller compaction. On the other hand, insignificant effect of roller compaction on tabletting behaviour of form II granules was attributed to brittle fragmentation. The extensive fragmentation of granules offered new 'clean' surfaces and higher contact points that negated the effect of granule hardening. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The Effect of Compaction Force on the Transition to Hydrate of Anhydrous Aripiprazole.

    PubMed

    Togo, Taichiro; Taniguchi, Toshiya; Nakata, Yoshitaka

    2018-01-01

    Aripiprazole (APZ) is used to treat schizophrenia and is administered as a tablet containing the anhydrous form of APZ. In this study, the effect of compaction force on the crystal form transition was investigated. The crystalline state was observed by X-ray diffraction (XRD). APZ Anhydrous Form II was compacted into tablets. The XRD intensity of anhydrous APZ became lower with higher compressive force. The degree of crystallinity decreased with the compaction force. The powder and the compacted tablets of anhydrous APZ were stored for one week under 60°C and 75% relative humidity. The powder showed no crystal form transition after storage. For the tablets, however, XRD peaks of APZ hydrate were observed after storage. The tablets compacted with higher force showed the higher XRD diffraction intensity of hydrate form. We concluded that the crystallinity reduction of APZ Anhydrous Form II by compaction caused and accelerated the transition to hydrate under high temperature and humidity conditions. In order to manufacture crystallographically stable tablets containing anhydrous APZ, it is important to prevent this crystallinity reduction during compaction.

  9. Process for forming coal compacts and product thereof

    DOEpatents

    Gunnink, Brett; Kanunar, Jayanth; Liang, Zhuoxiong

    2002-01-01

    A process for forming durable, mechanically strong compacts from coal particulates without use of a binder is disclosed. The process involves applying a compressive stress to a particulate feed comprising substantially water-saturated coal particles while the feed is heated to a final compaction temperature in excess of about 100.degree. C. The water present in the feed remains substantially in the liquid phase throughout the compact forming process. This is achieved by heating and compressing the particulate feed and cooling the formed compact at a pressure sufficient to prevent water present in the feed from boiling. The compacts produced by the process have a moisture content near their water saturation point. As a result, these compacts absorb little water and retain exceptional mechanical strength when immersed in high pressure water. The process can be used to form large, cylindrically-shaped compacts from coal particles (i.e., "coal logs") so that the coal can be transported in a hydraulic coal log pipeline.

  10. Fractional Talbot field and of finite gratings: compact analytical formulation.

    PubMed

    Arrizón, V; Rojo-Velázquez, G

    2001-06-01

    We present a compact analytical formulation for the fractional Talbot effect at the paraxial domain of a finite grating. Our results show that laterally shifted distorted images of the grating basic cell form the Fresnel field at a fractional Talbot plane of the grating. Our formulas give the positions of those images and show that they are given by the convolution of the nondistorted cells (modulated by a quadratic phase factor) with the Fourier transform of the finite-grating pupil.

  11. Compact Assumption Applied to the Monopole Term of Farassat's Formulations

    NASA Technical Reports Server (NTRS)

    Lopes, Leonard V.

    2015-01-01

    Farassat's formulations provide an acoustic prediction at an observer location provided a source surface, including motion and flow conditions. This paper presents compact forms for the monopole term of several of Farassat's formulations. When the physical surface is elongated, such as the case of a high aspect ratio rotorcraft blade, compact forms can be derived which are shown to be a function of the blade cross sectional area by reducing the computation from a surface integral to a line integral. The compact forms of all formulations are applied to two example cases: a short span wing with constant airfoil cross section moving at three forward flight Mach numbers and a rotor at two advance ratios. Acoustic pressure time histories and power spectral densities of monopole noise predicted from the compact forms of all the formulations at several observer positions are shown to compare very closely to the predictions from their non-compact counterparts. A study on the influence of rotorcraft blade shape on the high frequency portion of the power spectral density shows that there is a direct correlation between the aspect ratio of the airfoil and the error incurred by using the compact form. Finally, a prediction of pressure gradient from the non-compact and compact forms of the thickness term of Formulation G1A shows that using the compact forms results in a 99.6% improvement in computation time, which will be critical when noise is incorporated into a design environment.

  12. A Review of Disintegration Mechanisms and Measurement Techniques.

    PubMed

    Markl, Daniel; Zeitler, J Axel

    2017-05-01

    Pharmaceutical solid dosage forms (tablets or capsules) are the predominant form to administer active pharmaceutical ingredients (APIs) to the patient. Tablets are typically powder compacts consisting of several different excipients in addition to the API. Excipients are added to a formulation in order to achieve the desired fill weight of a dosage form, to improve the processability or to affect the drug release behaviour in the body. These complex porous systems undergo different mechanisms when they come in contact with physiological fluids. The performance of a drug is primarily influenced by the disintegration and dissolution behaviour of the powder compact. The disintegration process is specifically critical for immediate-release dosage forms. Its mechanisms and the factors impacting disintegration are discussed and methods used to study the disintegration in-situ are presented. This review further summarises mathematical models used to simulate disintegration phenomena and to predict drug release kinetics.

  13. PROCESS OF FORMING POWDERED MATERIAL

    DOEpatents

    Glatter, J.; Schaner, B.E.

    1961-07-14

    A process of forming high-density compacts of a powdered ceramic material is described by agglomerating the powdered ceramic material with a heat- decompossble binder, adding a heat-decompossble lubricant to the agglomerated material, placing a quantity of the material into a die cavity, pressing the material to form a compact, pretreating the compacts in a nonoxidizing atmosphere to remove the binder and lubricant, and sintering the compacts. When this process is used for making nuclear reactor fuel elements, the ceramic material is an oxide powder of a fissionsble material and after forming, the compacts are placed in a cladding tube which is closed at its ends by vapor tight end caps, so that the sintered compacts are held in close contact with each other and with the interior wall of the cladding tube.

  14. A structural investigation into the compaction behavior of pharmaceutical composites using powder X-ray diffraction and total scattering analysis.

    PubMed

    Moore, Michael D; Steinbach, Alison M; Buckner, Ira S; Wildfong, Peter L D

    2009-11-01

    To use advanced powder X-ray diffraction (PXRD) to characterize the structure of anhydrous theophylline following compaction, alone, and as part of a binary mixture with either alpha-lactose monohydrate or microcrystalline cellulose. Compacts formed from (1) pure theophylline and (2) each type of binary mixture were analyzed intact using PXRD. A novel mathematical technique was used to accurately separate multi-component diffraction patterns. The pair distribution function (PDF) of isolated theophylline diffraction data was employed to assess structural differences induced by consolidation and evaluated by principal components analysis (PCA). Changes induced in PXRD patterns by increasing compaction pressure were amplified by the PDF. Simulated data suggest PDF dampening is attributable to molecular deviations from average crystalline position. Samples compacted at different pressures were identified and differentiated using PCA. Samples compacted at common pressures exhibited similar inter-atomic correlations, where excipient concentration factored in the analyses involving lactose. Practical real-space structural analysis of PXRD data by PDF was accomplished for intact, compacted crystalline drug with and without excipient. PCA was used to compare multiple PDFs and successfully differentiated pattern changes consistent with compaction-induced disordering of theophylline as a single component and in the presence of another material.

  15. Caught in the Act: Gas and Stellar Velocity Dispersions in a Fast Quenching Compact Star-Forming Galaxy at z~1.7

    NASA Astrophysics Data System (ADS)

    Barro, Guillermo; Faber, Sandra M.; Dekel, Avishai; Pacifici, Camilla; Pérez-González, Pablo G.; Toloba, Elisa; Koo, David C.; Trump, Jonathan R.; Inoue, Shigeki; Guo, Yicheng; Liu, Fengshan; Primack, Joel R.; Koekemoer, Anton M.; Brammer, Gabriel; Cava, Antonio; Cardiel, Nicolas; Ceverino, Daniel; Eliche, Carmen; Fang, Jerome J.; Finkelstein, Steven L.; Kocevski, Dale D.; Livermore, Rachael C.; McGrath, Elizabeth

    2016-04-01

    We present Keck I MOSFIRE spectroscopy in the Y and H bands of GDN-8231, a massive, compact, star-forming galaxy at a redshift of z ˜ 1.7. Its spectrum reveals both Hα and [N II] emission lines and strong Balmer absorption lines. The Hα and Spitzer MIPS 24 μm fluxes are both weak, thus indicating a low star-formation rate of SFR ≲ 5{--}10 {M}⊙ yr-1. This, added to a relatively young age of ˜700 Myr measured from the absorption lines, provides the first direct evidence for a distant galaxy being caught in the act of rapidly shutting down its star formation. Such quenching allows GDN-8231 to become a compact, quiescent galaxy, similar to three other galaxies in our sample, by z ˜ 1.5. Moreover, the color profile of GDN-8231 shows a bluer center, consistent with the predictions of recent simulations for an early phase of inside-out quenching. Its line-of-sight velocity dispersion for the gas, {σ }{{{LOS}}}{{gas}} = 127 ± 32 km s-1, is nearly 40% smaller than that of its stars, {σ }{{{LOS}}}\\star = 215 ± 35 km s-1. High-resolution hydro-simulations of galaxies explain such apparently colder gas kinematics of up to a factor of ˜1.5 with rotating disks being viewed at different inclinations and/or centrally concentrated star-forming regions. A clear prediction is that their compact, quiescent descendants preserve some remnant rotation from their star-forming progenitors.

  16. Compact Starburst Galaxies with Fast Outflows: Spatially Resolved Stellar Mass Profiles

    NASA Astrophysics Data System (ADS)

    Gottlieb, Sophia; Diamond-Stanic, Aleksandar; Lipscomb, Charles; Ohene, Senyo; Rines, Josh; Moustakas, John; Sell, Paul; Tremonti, Christy; Coil, Alison; Rudnick, Gregory; Hickox, Ryan C.; Geach, James; Kepley, Amanda

    2018-01-01

    Powerful galactic winds driven by stellar feedback and black hole accretion are thought to play an important role in regulating star formation in galaxies. In particular, strong stellar feedback from supernovae, stellar winds, radiation pressure, and cosmic rays is required by simulations of star-forming galaxies to prevent the vast majority of baryons from cooling and collapsing to form stars. However, it remains unclear whether these stellar processes play a significant role in expelling gas and shutting down star formation in massive progenitors of quiescent galaxies. What are the limits of stellar feedback? We present multi-band photometry with HST/WFC3 (F475W, F814W, F160W) for a dozen compact starburst galaxies at z~0.6 with half-light radii that suggest incredibly large central escape velocities. These massive galaxies are driving fast (>1000 km/s) outflows that have been previously attributed to stellar feedback associated with the compact (r~100 pc) starburst. But how compact is the stellar mass? In the context of the stellar feedback hypothesis, it is unclear whether these fast outflows are being driven at velocities comparable to the escape velocity of an incredibly dense stellar system (as predicted by some models of radiation-pressure winds) or at velocities that exceed the central escape velocity by large factor. Our spatially resolved measurements with HST show that the stellar mass is more extended than the light, and this requires that the physical mechanism responsible for driving the winds must be able to launch gas at velocities that are factors of 5-10 beyond the central escape velocity.

  17. Compaction of fibrin clots reveals the antifibrinolytic effect of factor XIII.

    PubMed

    Rijken, D C; Abdul, S; Malfliet, J J M C; Leebeek, F W G; Uitte de Willige, S

    2016-07-01

    Essentials Factor XIIIa inhibits fibrinolysis by forming fibrin-fibrin and fibrin-inhibitor cross-links. Conflicting studies about magnitude and mechanisms of inhibition have been reported. Factor XIIIa most strongly inhibits lysis of mechanically compacted or retracted plasma clots. Cross-links of α2-antiplasmin to fibrin prevent the inhibitor from being expelled from the clot. Background Although insights into the underlying mechanisms of the effect of factor XIII on fibrinolysis have improved considerably in the last few decades, in particular with the discovery that activated FXIII (FXIIIa) cross-links α2 -antiplasmin to fibrin, the topic remains a matter of debate. Objective To elucidate the mechanisms of the antifibrinolytic effect of FXIII. Methods and Results Platelet-poor plasma clot lysis, induced by the addition of tissue-type plasminogen activator, was measured in the presence or absence of a specific FXIIIa inhibitor. Both in a turbidity assay and in a fluorescence assay, the FXIIIa inhibitor had only a small inhibitory effect: 1.6-fold less tissue-type plasminogen activator was required for 50% clot lysis in the presence of the FXIIIa inhibitor. However, when the plasma clot was compacted by centrifugation, the FXIIIa inhibitor had a strong inhibitory effect, with 7.7-fold less tissue-type plasminogen activator being required for 50% clot lysis in the presence of the FXIIIa inhibitor. In both experiments, the effects of the FXIIIa inhibitor were entirely dependent on the cross-linking of α2 -antiplasmin to fibrin. The FXIIIa inhibitor reduced the amount of α2 -antiplasmin present in the compacted clots from approximately 30% to < 4%. The results were confirmed with experiments in which compaction was achieved by platelet-mediated clot retraction. Conclusions Compaction or retraction of fibrin clots reveals the strong antifibrinolytic effect of FXIII. This is explained by the cross-linking of α2 -antiplasmin to fibrin by FXIIIa, which prevents the plasmin inhibitor from being fully expelled from the clot during compaction/retraction. © 2016 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.

  18. Interactive Educational Multimedia: Coping with the Need for Increasing Data Storage.

    ERIC Educational Resources Information Center

    Malhotra, Yogesh; Erickson, Ranel E.

    1994-01-01

    Discusses the storage requirements for data forms used in interactive multimedia education and presently available storage devices. Highlights include characteristics of educational multimedia; factors determining data storage requirements; storage devices for video and audio needs; laserdiscs and videodiscs; compact discs; magneto-optical drives;…

  19. Process for manufacturing tantalum capacitors

    DOEpatents

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1993-01-01

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1300.degree. to 2000.degree. C. by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO.sub.2. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  20. Process for manufacturing tantalum capacitors

    DOEpatents

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1993-02-02

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1,300 to 2,000 C by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO[sub 2]. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  1. Californium--palladium metal neutron source material

    DOEpatents

    Dahlen, B.L.; Mosly, W.C. Jr.; Smith, P.K.; Albenesius, E.L.

    1974-01-22

    Californium, as metal or oxide, is uniformly dispersed throughout a noble metal matrix, provided in compact, rod or wire form. A solution of californium values is added to palladium metal powder, dried, blended and pressed into a compact having a uni-form distribution of californium. The californium values are decomposed to californium oxide or metal by heating in an inert or reducing atmosphere. Sintering the compact to a high density closes the matrix around the dispersed californium. The sintered compact is then mechanically shaped into an elongated rod or wire form. (4 claims, no drawings) (Official Gazette)

  2. In vitro-reconstituted nucleoids can block mitochondrial DNA replication and transcription.

    PubMed

    Farge, Géraldine; Mehmedovic, Majda; Baclayon, Marian; van den Wildenberg, Siet M J L; Roos, Wouter H; Gustafsson, Claes M; Wuite, Gijs J L; Falkenberg, Maria

    2014-07-10

    The mechanisms regulating the number of active copies of mtDNA are still unclear. A mammalian cell typically contains 1,000-10,000 copies of mtDNA, which are packaged into nucleoprotein complexes termed nucleoids. The main protein component of these structures is mitochondrial transcription factor A (TFAM). Here, we reconstitute nucleoid-like particles in vitro and demonstrate that small changes in TFAM levels dramatically impact the fraction of DNA molecules available for transcription and DNA replication. Compaction by TFAM is highly cooperative, and at physiological ratios of TFAM to DNA, there are large variations in compaction, from fully compacted nucleoids to naked DNA. In compacted nucleoids, TFAM forms stable protein filaments on DNA that block melting and prevent progression of the replication and transcription machineries. Based on our observations, we suggest that small variations in the TFAM-to-mtDNA ratio may be used to regulate mitochondrial gene transcription and DNA replication. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Quasi-Brittle Fracture of Compact Specimens with Sharp Notches and U-Shaped Cuts

    NASA Astrophysics Data System (ADS)

    Kornev, V. M.; Demeshkin, A. G.

    2018-01-01

    A two-parameter (coupled) discrete-integral criterion of fracture is proposed. It can be used to construct fracture diagrams for compact specimens with sharp cracks. Curves separating the stress-crack length plane into three domains are plotted. These domains correspond to the absence of fracture, damage accumulation in the pre-fracture region under repeated loading, and specimen fragmentation under monotonic loading. Constants used for the analytical description of fracture diagrams for quasi-brittle materials with cracks are selected with the use of approximation of the classical stress-strain diagrams for the initial material and the critical stress intensity factor. Predictions of the proposed theory are compared with experimental results on fracture of compact specimens with different radii made of polymethylmethacrylate (PMMA) and solid rubber with crack-type effects in the form of U-shaped cuts.

  4. An ultra-compact and low loss passive beam-forming network integrated on chip with off chip linear array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepkowski, Stefan Mark

    2015-05-01

    The work here presents a review of beam forming architectures. As an example, the author presents an 8x8 Butler Matrix passive beam forming network including the schematic, design/modeling, operation, and simulated results. The limiting factor in traditional beam formers has been the large size dictated by transmission line based couplers. By replacing these couplers with transformer-based couplers, the matrix size is reduced substantially allowing for on chip compact integration. In the example presented, the core area, including the antenna crossover, measures 0.82mm×0.39mm (0.48% the size of a branch line coupler at the same frequency). The simulated beam forming achieves amore » peak PNR of 17.1 dB and 15dB from 57 to 63GHz. At the 60GHz center frequency the average insertion loss is simulated to be 3.26dB. The 8x8 Butler Matrix feeds into an 8-element antenna array to show the array patterns with single beam and adjacent beam isolation.« less

  5. Effects of forming temperature and sintering rate to the final properties of FeCuAl powder compacts formed through uniaxial die compaction process

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Ismail, M. A.; Sopyan, I.; Rahman, H. Y.

    2018-01-01

    This paper presents the outcomes of an experimental investigation on the effects of forming temperature and sintering schedule to the final characteristics of FeCuAl powder mass formed at different temperature and sintered at different schedule. A lab-scale uni-axial die compaction rig was designed and fabricated which enabled the compaction of powder mass at room temperature as well as elevated temperature. Iron (Fe) powder ASC 100.29 was mechanically mixed with other elemental powders, namely copper (Cu), and aluminum (Al) for 60 minutes and compacted at three different temperature, i.e., 30°C, 150°C, and 200°C by applying 425 MPa of simultaneous downward and upward axial loading to generate green compacts. The as-pressed samples were inspected visually and the defect-free green compacts were subsequently sintered in an argon gas fired furnace at 800°C for 60 min at three different heating/cooling rates, i.e., 5, 10, and 15°C/min, respectively. The sintered samples were then characterised for their physical, electrical, and mechanical properties. The microstructures of the sintered samples were also analysed. The results revealed that a forming temperature of 150°C and a sintering rate of 10°C/min could produce a product with better characteristics.

  6. Investigation of solid phase composition on tablet surfaces by grazing incidence X-ray diffraction.

    PubMed

    Koradia, Vishal; Tenho, Mikko; Lopez de Diego, Heidi; Ringkjøbing-Elema, Michiel; Møller-Sonnergaard, Jørn; Salonen, Jarno; Lehto, Vesa-Pekka; Rantanen, Jukka

    2012-01-01

    To investigate solid state transformations of drug substances during compaction using grazing incidence X-ray diffraction (GIXD). The solid forms of three model drugs-theophylline (TP), nitrofurantoin (NF) and amlodipine besylate (AMB)-were compacted at different pressures (from 100 to 1000 MPa); prepared tablets were measured using GIXD. After the initial measurements of freshly compacted tablets, tablets were subjected to suitable recrystallization treatment, and analogous measurements were performed. Solid forms of TP, NF and AMB showed partial amorphization as well as crystal disordering during compaction; the extent of these effects generally increased as a function of pressure. The changes were most pronounced at the outer surface region. The different solid forms showed difference in the formation of amorphicity/crystal disordering. Dehydration due to compaction was observed for the TP monohydrate, whereas hydrates of NF and AMB were stable towards dehydration. With GIXD measurements, it was possible to probe the solid form composition at the different depths of the tablet surfaces and to obtain depth-dependent information on the compaction-induced amorphization, crystal disordering and dehydration.

  7. Trust and compactness in social network groups.

    PubMed

    De Meo, Pasquale; Ferrara, Emilio; Rosaci, Domenico; Sarné, Giuseppe M L

    2015-02-01

    Understanding the dynamics behind group formation and evolution in social networks is considered an instrumental milestone to better describe how individuals gather and form communities, how they enjoy and share the platform contents, how they are driven by their preferences/tastes, and how their behaviors are influenced by peers. In this context, the notion of compactness of a social group is particularly relevant. While the literature usually refers to compactness as a measure to merely determine how much members of a group are similar among each other, we argue that the mutual trustworthiness between the members should be considered as an important factor in defining such a term. In fact, trust has profound effects on the dynamics of group formation and their evolution: individuals are more likely to join with and stay in a group if they can trust other group members. In this paper, we propose a quantitative measure of group compactness that takes into account both the similarity and the trustworthiness among users, and we present an algorithm to optimize such a measure. We provide empirical results, obtained from the real social networks EPINIONS and CIAO, that compare our notion of compactness versus the traditional notion of user similarity, clearly proving the advantages of our approach.

  8. Fracture and compaction of andesite in a volcanic edifice.

    PubMed

    Heap, M J; Farquharson, J I; Baud, P; Lavallée, Y; Reuschlé, T

    The failure mode of lava-dilatant or compactant-depends on the physical attributes of the lava, primarily the porosity and pore size, and the conditions under which it deforms. The failure mode for edifice host rock has attendant implications for the structural stability of the edifice and the efficiency of the sidewall outgassing of the volcanic conduit. In this contribution, we present a systematic experimental study on the failure mode of edifice-forming andesitic rocks (porosity from 7 to 25 %) from Volcán de Colima, Mexico. The experiments show that, at shallow depths (<1 km), both low- and high-porosity lavas dilate and fail by shear fracturing. However, deeper in the edifice (>1 km), while low-porosity (<10 %) lava remains dilatant, the failure of high-porosity lava is compactant and driven by cataclastic pore collapse. Although inelastic compaction is typically characterised by the absence of strain localisation, we observe compactive localisation features in our porous andesite lavas manifest as subplanar surfaces of collapsed pores. In terms of volcano stability, faulting in the upper edifice could destabilise the volcano, leading to an increased risk of flank or large-scale dome collapse, while compactant deformation deeper in the edifice may emerge as a viable mechanism driving volcano subsidence, spreading and destabilisation. The failure mode influences the evolution of rock physical properties: permeability measurements demonstrate that a throughgoing tensile fracture increases sample permeability (i.e. equivalent permeability) by about a factor of two, and that inelastic compaction to an axial strain of 4.5 % reduces sample permeability by an order of magnitude. The implication of these data is that sidewall outgassing may therefore be efficient in the shallow edifice, where rock can fracture, but may be impeded deeper in the edifice due to compaction. The explosive potential of a volcano may therefore be subject to increase over time if the progressive compaction and permeability reduction in the lower edifice cannot be offset by the formation of permeable fracture pathways in the upper edifice. The mode of failure of the edifice host rock is therefore likely to be an important factor controlling lateral outgassing and thus eruption style (effusive versus explosive) at stratovolcanoes.

  9. Spooled packaging of shape memory alloy actuators

    NASA Astrophysics Data System (ADS)

    Redmond, John A.

    A vast cross-section of transportation, manufacturing, consumer product, and medical technologies rely heavily on actuation. Accordingly, progress in these industries is often strongly coupled to the advancement of actuation technologies. As the field of actuation continues to evolve, smart materials show significant promise for satisfying the growing needs of industry. In particular, shape memory alloy (SMA) wire actuators present an opportunity for low-cost, high performance actuation, but until now, they have been limited or restricted from use in many otherwise suitable applications by the difficulty in packaging the SMA wires within tight or unusually shaped form constraints. To address this packaging problem, SMA wires can be spool-packaged by wrapping around mandrels to make the actuator more compact or by redirecting around multiple mandrels to customize SMA wire pathways to unusual form factors. The goal of this dissertation is to develop the scientific knowledge base for spooled packaging of low-cost SMA wire actuators that enables high, predictable performance within compact, customizable form factors. In developing the scientific knowledge base, this dissertation defines a systematic general representation of single and multiple mandrel spool-packaged SMA actuators and provides tools for their analysis, understanding, and synthesis. A quasi-static analytical model distills the underlying mechanics down to the three effects of friction, bending, and binding, which enables prediction of the behavior of generic spool-packaged SMA actuators with specifiable geometric, loading, frictional, and SMA material parameters. An extensive experimental and simulation-based parameter study establishes the necessary understanding of how primary design tradeoffs between performance, packaging, and cost are governed by the underlying mechanics of spooled actuators. A design methodology outlines a systematic approach to synthesizing high performance SMA wire actuators with mitigated material, power, and packaging costs and compact, customizable form factors. By examining the multi-faceted connections between performance, packaging, and cost, this dissertation builds a knowledge base that goes beyond implementing SMA actuators for particular applications. Rather, it provides a well-developed strategy for realizing the advantages of SMA actuation for a broadened range of applications, thereby enabling opportunities for new functionality and capabilities in industry.

  10. (U) Influence of Compaction Model Form on Planar and Cylindrical Compaction Geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredenburg, David A.; Carney, Theodore Clayton; Fichtl, Christopher Allen

    The dynamic compaction response of CeO 2 is examined within the frameworks of the Ramp and P-a compaction models. Hydrocode calculations simulating the dynamic response of CeO 2 at several distinct pressures within the compaction region are investigated in both planar and cylindrically convergent geometries. Findings suggest additional validation of the compaction models is warranted under complex loading configurations.

  11. Production And Artile Of Iron/Surfactant-Modified Zeolite Pellets To Retain And Destroy Water Pollutants

    DOEpatents

    BOWMAN, ROBERT S.; [et al

    2001-07-17

    A method of producing a pollutant adsorption and degradation article, and such article, are provided. At least one adsorbent is mixed with at least one pollutant transforming agent to form a mixture. This mixture is compacted to form a porous, highly permeable article. If necessary, the article can be modified with surfactant either after the compacting step or by adding the surfactant to the mixture prior to the compacting step. In addition, if necessary, a binding agent can be added to the mixture prior to the compacting step.

  12. Matching network for RF plasma source

    DOEpatents

    Pickard, Daniel S.; Leung, Ka-Ngo

    2007-11-20

    A compact matching network couples an RF power supply to an RF antenna in a plasma generator. The simple and compact impedance matching network matches the plasma load to the impedance of a coaxial transmission line and the output impedance of an RF amplifier at radio frequencies. The matching network is formed of a resonantly tuned circuit formed of a variable capacitor and an inductor in a series resonance configuration, and a ferrite core transformer coupled to the resonantly tuned circuit. This matching network is compact enough to fit in existing compact focused ion beam systems.

  13. The Mitochondrial Transcription Factor TFAM Coordinates the Assembly of Multiple DNA Molecules into Nucleoid-like Structures

    PubMed Central

    Kaufman, Brett A.; Durisic, Nela; Mativetsky, Jeffrey M.; Costantino, Santiago; Hancock, Mark A.; Grutter, Peter

    2007-01-01

    Packaging DNA into condensed structures is integral to the transmission of genomes. The mammalian mitochondrial genome (mtDNA) is a high copy, maternally inherited genome in which mutations cause a variety of multisystem disorders. In all eukaryotic cells, multiple mtDNAs are packaged with protein into spheroid bodies called nucleoids, which are the fundamental units of mtDNA segregation. The mechanism of nucleoid formation, however, remains unknown. Here, we show that the mitochondrial transcription factor TFAM, an abundant and highly conserved High Mobility Group box protein, binds DNA cooperatively with nanomolar affinity as a homodimer and that it is capable of coordinating and fully compacting several DNA molecules together to form spheroid structures. We use noncontact atomic force microscopy, which achieves near cryo-electron microscope resolution, to reveal the structural details of protein–DNA compaction intermediates. The formation of these complexes involves the bending of the DNA backbone, and DNA loop formation, followed by the filling in of proximal available DNA sites until the DNA is compacted. These results indicate that TFAM alone is sufficient to organize mitochondrial chromatin and provide a mechanism for nucleoid formation. PMID:17581862

  14. Treatment options for low-level radiologically contaminated ORNL filtercake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hom-Ti; Bostick, W.D.

    1996-04-01

    Water softening sludge (>4000 stored low level contaminated drums; 600 drums per year) generated by the ORNL Process Waste Treatment Plant must be treated, stabilized, and placed in safe storage/disposal. The sludge is primarily CaCO{sub 3} and is contaminated by low levels of {sup 90}Sr and {sup 137}Cs. In this study, microwave sintering and calcination were evaluated for treating the sludge. The microwave melting experiments showed promise: volume reductions were significant (3-5X), and the waste form was durable with glass additives (LiOH, fly ash). A commercial vendor using surrogate has demonstrated a melt mineralization process that yields a dense monolithicmore » waste form with a volume reduction factor (VR) of 7.7. Calcination of the sludge at 850-900 C yielded a VR of 2.5. Compaction at 4500 psi increased the VR to 4.2, but the compressed form is not dimensionally stable. Addition of paraffin helped consolidate fines and yielded a VR of 3.5. In conclusion, microwave melting or another form of vitrification is likely to be the best method; however for immediate implementation, the calculation/compaction/waxing process is viable.« less

  15. Low-rank factorization of electron integral tensors and its application in electronic structure theory

    DOE PAGES

    Peng, Bo; Kowalski, Karol

    2017-01-25

    In this paper, we apply reverse Cuthill-McKee (RCM) algorithm to transform two-electron integral tensors to their block diagonal forms. By further applying Cholesky decomposition (CD) on each of the diagonal blocks, we are able to represent the high-dimensional two-electron integral tensors in terms of permutation matrices and low-rank Cholesky vectors. This representation facilitates low-rank factorizations of high-dimensional tensor contractions in post-Hartree-Fock calculations. Finally, we discuss the second-order Møller-Plesset (MP2) method and the linear coupled-cluster model with doubles (L-CCD) as examples to demonstrate the efficiency of this technique in representing the two-electron integrals in a compact form.

  16. Low-rank factorization of electron integral tensors and its application in electronic structure theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Bo; Kowalski, Karol

    In this paper, we apply reverse Cuthill-McKee (RCM) algorithm to transform two-electron integral tensors to their block diagonal forms. By further applying Cholesky decomposition (CD) on each of the diagonal blocks, we are able to represent the high-dimensional two-electron integral tensors in terms of permutation matrices and low-rank Cholesky vectors. This representation facilitates low-rank factorizations of high-dimensional tensor contractions in post-Hartree-Fock calculations. Finally, we discuss the second-order Møller-Plesset (MP2) method and the linear coupled-cluster model with doubles (L-CCD) as examples to demonstrate the efficiency of this technique in representing the two-electron integrals in a compact form.

  17. The Milky Way Project: What are Yellowballs?

    NASA Astrophysics Data System (ADS)

    Kerton, C. R.; Wolf-Chase, G.; Arvidsson, K.; Lintott, C. J.; Simpson, R. J.

    2015-02-01

    Yellowballs are a collection of approximately 900 compact, infrared sources identified and named by volunteers participating in the Milky Way Project (MWP), a citizen science project that uses GLIMPSE/MIPSGAL images from Spitzer to explore topics related to Galactic star formation. In this paper, through a combination of catalog cross-matching and infrared color analysis, we show that yellowballs are a mix of compact star-forming regions, including ultra-compact and compact H II regions, as well as analogous regions for less massive B-type stars. The resulting MWP yellowball catalog provides a useful complement to the Red MSX Source survey. It similarly highlights regions of massive star formation, but the selection of objects purely on the basis of their infrared morphology and color in Spitzer images identifies a signature of compact star-forming regions shared across a broad range of luminosities and, by inference, masses. We discuss the origin of their striking mid-infrared appearance and suggest that future studies of the yellowball sample will improve our understanding of how massive and intermediate-mass star-forming regions transition from compact to more extended bubble-like structures.

  18. Deformation modes in an Icelandic basalt: From brittle failure to localized deformation bands

    NASA Astrophysics Data System (ADS)

    Adelinet, M.; Fortin, J.; Schubnel, A.; Guéguen, Y.

    2013-04-01

    According to the stress state, deformation mode observed in rocks may be very different. Even in the brittle part of the crust a differential stress can induce shear failure but also localized compacting deformation, such as compaction bands in porous sedimentary rocks. The mode of deformation controls many hydrodynamic factors, such as permeability and porosity. We investigate in this paper two different modes of deformation in an Icelandic basalt by using laboratory seismological tools (elastic waves and acoustic emissions) and microstructural observations. First of all, we show that at low effective confining pressure (Peff = 5 MPa) an axial loading induces a shear failure in the basalt with an angle of about 30° with respect to the main stress direction. On the contrary, at high effective confining pressure (Peff ≥ 75 MPa and more) an increase of the axial stress induces a localization of the deformation in the form of subhorizontal bands again with respect to the main stress direction. In this second regime, focal mechanisms of the acoustic emissions reveal an important number of compression events suggesting pore collapse mechanisms. Microstructural observations confirm this assumption. Similar compaction structures are usually obtained for porous sedimentary rocks (20-25%). However, the investigated basalt has an initial total porosity of only about 10% so that compaction structures were not expected. The pore size and the ratio of pore to grain size are likely to be key factors for the particular observed mechanical behavior.

  19. A New Equivalence Theory Method for Treating Doubly Heterogeneous Fuel - I. Theory

    DOE PAGES

    Williams, Mark L.; Lee, Deokjung; Choi, Sooyoung

    2015-03-04

    A new methodology has been developed to treat resonance self-shielding in doubly heterogeneous very high temperature gas-cooled reactor systems in which the fuel compact region of a reactor lattice consists of small fuel grains dispersed in a graphite matrix. This new method first homogenizes the fuel grain and matrix materials using an analytically derived disadvantage factor from a two-region problem with equivalence theory and intermediate resonance method. This disadvantage factor accounts for spatial self-shielding effects inside each grain within the framework of an infinite array of grains. Then the homogenized fuel compact is self-shielded using a Bondarenko method to accountmore » for interactions between the fuel compact regions in the fuel lattice. In the final form of the equations for actual implementations, the double-heterogeneity effects are accounted for by simply using a modified definition of a background cross section, which includes geometry parameters and cross sections for both the grain and fuel compact regions. With the new method, the doubly heterogeneous resonance self-shielding effect can be treated easily even with legacy codes programmed only for a singly heterogeneous system by simple modifications in the background cross section for resonance integral interpolations. This paper presents a detailed derivation of the new method and a sensitivity study of double-heterogeneity parameters introduced during the derivation. The implementation of the method and verification results for various test cases are presented in the companion paper.« less

  20. Star-formation rate in compact star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Izotova, I. Y.; Izotov, Y. I.

    2018-03-01

    We use the data for the Hβ emission-line, far-ultraviolet (FUV) and mid-infrared 22 μm continuum luminosities to estimate star formation rates < SFR > averaged over the galaxy lifetime for a sample of about 14000 bursting compact star-forming galaxies (CSFGs) selected from the Data Release 12 (DR12) of the Sloan Digital Sky Survey (SDSS). The average coefficient linking < SFR > and the star formation rate SFR0 derived from the Hβ luminosity at zero starburst age is found to be 0.04. We compare < SFR > s with some commonly used SFRs which are derived adopting a continuous star formation during a period of {˜} 100 Myr, and find that the latter ones are 2-3 times higher. It is shown that the relations between SFRs derived using a geometric mean of two star-formation indicators in the UV and IR ranges and reduced to zero starburst age have considerably lower dispersion compared to those with single star-formation indicators. We suggest that our relations for < SFR > determination are more appropriate for CSFGs because they take into account a proper temporal evolution of their luminosities. On the other hand, we show that commonly used SFR relations can be applied for approximate estimation within a factor of {˜} 2 of the < SFR > averaged over the lifetime of the bursting compact galaxy.

  1. Differential erosion and the formation of layered yardangs in the Loulan region (Lop Nur), eastern Tarim Basin

    NASA Astrophysics Data System (ADS)

    Lin, Yongchong; Xu, Lishuai; Mu, Guijin

    2018-02-01

    Yardangs are a type of wind-sculpted landform which generally form in hyper-arid regions. Several factors affect the development of yardangs, and the relative importance of these factors likely varies with differences in regional environmental factors. In the Loulan region of Lop Nur, wind dynamics are the principal factor affecting the development of yardangs. However, layered yardangs, which have undergone a unique form of differential erosion, are common in the region. These erosional landforms differ from typical yardangs which are eroded solely by abrasion and deflation. We conducted field and laboratory investigations of layered yardangs to determine their origin. The results indicate that there are two types of strata comprising the yardangs: uncompacted sand-silt layers, with a lower carbonate content; and compacted clay-silt layers, with a higher carbonate content. Both types of strata are horizontal and occur in alternating layers. This type of structure enables the wind to more easily erode the less resistant sand-silt layers at different heights, leaving the more resistant compacted clay-silt layers relatively intact. Eventually the undercut remnant clay-silt layers collapse once the weight of the suspended strata exceeds their elastic resistance (more than 90% of the fallen blocks have length/thickness ratios between 1.2 and 2.5). Therefore, in addition to wind dynamics, the lithology and structure of the strata are important factors affecting the development of the layered yardangs. This type of differential erosion accelerates the development of the yardangs in the Loulan region.

  2. Compact CFB: The next generation CFB boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utt, J.

    1996-12-31

    The next generation of compact circulating fluidized bed (CFB) boilers is described in outline form. The following topics are discussed: compact CFB = pyroflow + compact separator; compact CFB; compact separator is a breakthrough design; advantages of CFB; new design with substantial development history; KUHMO: successful demo unit; KUHMO: good performance over load range with low emissions; KOKKOLA: first commercial unit and emissions; KOKKOLA: first commercial unit and emissions; compact CFB installations; next generation CFB boiler; grid nozzle upgrades; cast segmented vortex finders; vortex finder installation; ceramic anchors; pre-cast vertical bullnose; refractory upgrades; and wet gunning.

  3. 37 CFR 1.52 - Language, paper, writing, margins, compact disc specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... permanent dark ink or its equivalent; and (v) Presented in a form having sufficient clarity and contrast... statement that the replacement compact disc contains no new matter. The compact disc and copy must be...

  4. Roller-compacted concrete pavements.

    DOT National Transportation Integrated Search

    2010-09-01

    Roller-compacted concrete (RCC) gets its name from the heavy vibratory steel drum and rubber-tired rollers used to help compact it into its final form. RCC has similar strength properties and consists of the same basic ingredients as conventional con...

  5. Counting surface-kernel epimorphisms from a co-compact Fuchsian group to a cyclic group with motivations from string theory and QFT

    NASA Astrophysics Data System (ADS)

    Bibak, Khodakhast; Kapron, Bruce M.; Srinivasan, Venkatesh

    2016-09-01

    Graphs embedded into surfaces have many important applications, in particular, in combinatorics, geometry, and physics. For example, ribbon graphs and their counting is of great interest in string theory and quantum field theory (QFT). Recently, Koch et al. (2013) [12] gave a refined formula for counting ribbon graphs and discussed its applications to several physics problems. An important factor in this formula is the number of surface-kernel epimorphisms from a co-compact Fuchsian group to a cyclic group. The aim of this paper is to give an explicit and practical formula for the number of such epimorphisms. As a consequence, we obtain an 'equivalent' form of Harvey's famous theorem on the cyclic groups of automorphisms of compact Riemann surfaces. Our main tool is an explicit formula for the number of solutions of restricted linear congruence recently proved by Bibak et al. using properties of Ramanujan sums and of the finite Fourier transform of arithmetic functions.

  6. An Active Black Hole in a Compact Dwarf

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    A new type of galaxy has just been added to the galaxy zoo: a small, compact, and old elliptical galaxy that shows signs of a monster black hole actively accreting material in its center. What can this unusual discovery tell us about how compact elliptical galaxies form?A New Galactic BeastCompact elliptical galaxies are an extremely rare early-type dwarf galaxy. Consistent with their name, compact ellipticals are small, very compact collections of ancient stars; these galaxies exhibit a high surface brightness and arent actively forming stars.Optical view of the ancient compact elliptical galaxy SDSS J085431.18+173730.5 (center of image) in an SDSS color composite image. [Adapted from Paudel et al. 2016]Most compact ellipticals are found in dense environments, particularly around massive galaxies. This has led astronomers to believe that compact ellipticals might form via the tidal stripping of a once-large galaxy in interactions with another, massive galaxy. In this model, once the original galaxys outer layers are stripped away, the compact inner bulge component would be left behind as a compact elliptical galaxy. Recent discoveries of a few isolated compact ellipticals, however, have strained this model.Now a new galaxy has been found to confuse our classification schemes: the first-ever compact elliptical to also display signs of an active galactic nucleus. Led by Sanjaya Paudel (Korea Astronomy and Space Science Institute), a team of scientists discovered SDSS J085431.18+173730.5 serendipitously in Sloan Digital Sky Survey data. The team used SDSS images and spectroscopy in combination with data from the Canada-France-Hawaii Telescope to learn more about this unique galaxy.Puzzling CharacteristicsSDSS J085431.18+173730.5 presents an interesting conundrum. Ancient compact ellipticals are supposed to be devoid of gas, with no fuel left to trigger nuclear activity. Yet SDSS J085431.18+173730.5 clearly shows the emission lines that indicate active accretion onto a supermassive black hole of ~2 million solar masses, according to the authors estimates. Paudel and collaboratorsshow that this mass is consistent with the low-mass extension of the known scaling relation between central black-hole mass and brightness of the host galaxy.Central black hole mass vs. bulge K-band magnitude. SDSS J085431.18+173730.5 (red dot) falls right on the low-mass extension of the observed scaling relation. It has similar properties to M32, another compact elliptical galaxy. [Adapted from Paudel et al. 2016]To add to the mystery, SDSS J085431.18+173730.5 has no nearby neighbors: like the few other isolated compact ellipticals recently discovered, there are no massive galaxies in the immediate vicinity that could have led to its tidal stripping. So how was this puzzling ancient galaxy formed?The authors of this study support a previously proposed flyby scenario: isolated compact ellipticals may simply be tidally stripped systems that ran away from their hosts. Paudel and collaborators suggest that SDSS J085431.18+173730.5 might have long ago interacted with NGC 2672 a galaxy group located a whopping 6.5 million light-years away before being flung out to its current location.Further studies of this unique galaxys emission profile, as well as efforts to learn about its underlying stellar population and central kinematics, will hopefully help us to better understand not only the origins of this galaxy, but how all compact ellipticals form and evolve.CitationSanjaya Paudel et al 2016 ApJ 820 L19. doi:10.3847/2041-8205/820/1/L19

  7. Composition and structure of aggregates from compacted soil horizons in the southern steppe zone of European Russia

    NASA Astrophysics Data System (ADS)

    Sorokin, A. S.; Abrosimov, K. N.; Lebedeva, M. P.; Kust, G. S.

    2016-03-01

    The composition and structure of aggregates from different agrogenic soils in the southern steppe zone of European Russia have been studied. It is shown that the multi-level study (from the macro- to microlevel) of these horizons makes it possible to identify soil compaction caused by different elementary soil processes: solonetz-forming, vertisol-forming, and mechanical (wheel) compaction in the rainfed and irrigated soils. The understanding of the genesis of the compaction of soil horizons (natural or anthropogenic) is important for the economic evaluation of soil degradation. It should enable us to make more exact predictions of the rates of degradation processes and undertake adequate mitigation measures. The combined tomographic and micromorphological studies of aggregates of 1-2 and 3-5 mm in diameter from compacted horizons of different soils have been performed for the first time. Additional diagnostic features of negative solonetz- forming processes (low open porosity of aggregates seen on tomograms and filling of a considerable part of the intraped pores with mobile substance) and the vertisol-forming processes (large amount of fine intraaggregate pores seen on tomograms and a virtual absence of humus-clay plasma in the intraped zone)—have been identified. It is shown that the combination of microtomographic and micromorphological methods is helpful for studying the pore space of compacted horizons in cultivated soils.

  8. Electromagnetic form factors of singly heavy baryons in the self-consistent SU(3) chiral quark-soliton model

    NASA Astrophysics Data System (ADS)

    Kim, June-Young; Kim, Hyun-Chul

    2018-06-01

    The self-consistent chiral quark-soliton model is a relativistic pion mean-field approach in the large Nc limit, which describes both light and heavy baryons on an equal footing. In the limit of the infinitely heavy mass of the heavy quark, a heavy baryon can be regarded as Nc-1 valence quarks bound by the pion mean fields, leaving the heavy quark as a color static source. The structure of the heavy baryon in this scheme is mainly governed by the light-quark degrees of freedom. Based on this framework, we evaluate the electromagnetic form factors of the lowest-lying heavy baryons. The rotational 1 /Nc and strange current quark mass corrections in linear order are considered. We discuss the electric charge and magnetic densities of heavy baryons in comparison with those of the nucleons. The results of the electric charge radii of the positive-charged heavy baryons show explicitly that the heavy baryon is a compact object. The electric form factors are presented. The form factor of Σc++ is compared with that from a lattice QCD. We also discuss the results of the magnetic form factors. The magnetic moments of the baryon sextet with spin 1 /2 and the magnetic radii are compared with other works and the lattice data.

  9. Low density microcellular carbon or catalytically impregnated carbon forms and process for their preparation

    DOEpatents

    Hopper, Robert W.; Pekala, Richard W.

    1989-01-01

    Machinable and structurally stable, low density microcellular carbon, and catalytically impregnated carbon, foams, and process for their preparation, are provided. Pulverized sodium chloride is classified to improve particle size uniformity, and the classified particles may be further mixed with a catalyst material. The particles are cold pressed into a compact having internal pores, and then sintered. The sintered compact is immersed and then submerged in a phenolic polymer solution to uniformly fill the pores of the compact with phenolic polymer. The compact is then heated to pyrolyze the phenolic polymer into carbon in the form of a foam. Then the sodium chloride of the compact is leached away with water, and the remaining product is freeze dried to provide the carbon, or catalytically impregnated carbon, foam.

  10. Analysis of Fringe Field Formed Inside LDA Measurement Volume Using Compact Two Hololens Imaging Systems

    NASA Astrophysics Data System (ADS)

    Ghosh, Abhijit; Nirala, A. K.; Yadav, H. L.

    2018-03-01

    We have designed and fabricated four LDA optical setups consisting of aberration compensated four different compact two hololens imaging systems. We have experimentally investigated and realized a hololens recording geometry which is interferogram of converging spherical wavefront with mutually coherent planar wavefront. Proposed real time monitoring and actual fringe field analysis techniques allow complete characterizations of fringes formed at measurement volume and permit to evaluate beam quality, alignment and fringe uniformity with greater precision. After experimentally analyzing the fringes formed at measurement volume by all four imaging systems, it is found that fringes obtained using compact two hololens imaging systems get improved both qualitatively and quantitatively compared to that obtained using conventional imaging system. Results indicate qualitative improvement of non-uniformity in fringe thickness and micro intensity variations perpendicular to the fringes, and quantitative improvement of 39.25% in overall average normalized standard deviations of fringe width formed by compact two hololens imaging systems compare to that of conventional imaging system.

  11. Application Research of Quality Control Technology of Asphalt Pavement based on GPS Intelligent

    NASA Astrophysics Data System (ADS)

    Wang, Min; Gao, Bo; Shang, Fei; Wang, Tao

    2017-10-01

    Due to the difficulty of steel deck pavement asphalt layer compaction caused by the effect of the flexible supporting system (orthotropic steel deck plate), it is usually hard and difficult to control for the site compactness to reach the design goal. The intelligent compaction technology is based on GPS control technology and real-time acquisition of actual compaction tracks, and then forms a cloud maps of compaction times, which guide the roller operator to do the compaction in accordance with the design requirement to ensure the deck compaction technology and compaction quality. From the actual construction situation of actual bridge and checked data, the intelligent compaction technology is significant in guaranteeing the steel deck asphalt pavement compactness and quality stability.

  12. Compact optical transconductance varistor

    DOEpatents

    Sampayan, Stephen

    2015-09-22

    A compact radiation-modulated transconductance varistor device having both a radiation source and a photoconductive wide bandgap semiconductor material (PWBSM) integrally formed on a substrate so that a single interface is formed between the radiation source and PWBSM for transmitting PWBSM activation radiation directly from the radiation source to the PWBSM.

  13. Densified waste form and method for forming

    DOEpatents

    Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina

    2015-08-25

    Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate the temperature sensitive waste material in a physically densified matrix.

  14. REACTOR

    DOEpatents

    Christy, R.F.

    1961-07-25

    A means is described for co-relating the essential physical requirements of a fission chain reaction in order that practical, compact, and easily controllable reactors can be built. These objects are obtained by employing a composition of fissionsble isotope and moderator in fluid form in which the amount of fissionsble isotcpe present governs the reaction. The size of the reactor is no longer a critical factor, the new criterion being the concentration of the fissionable isotope.

  15. Optical Detection of Formaldehyde

    NASA Technical Reports Server (NTRS)

    Patty, Kira D.; Gregory, Don A.

    2008-01-01

    The potential for buildup .of formaldehyde in closed space environments poses a direct health hazard to personnel. The National Aeronautic Space Agency (NASA) has established a maximum permitted concentration of 0.04 ppm for 7 to 180 days for all space craft. Early detection is critical to ensure that formaldehyde levels do not accumulate. above these limits. New sensor technologies are needed to enable real time,in situ detection in a compact and reusable form factor. Addressing this need,research into the use of reactive fluorescent dyes which reversibly bind to formaldehyde (liquid or gas) has been conducted to support the development of a formaldehyde.sensor. In the presence of formaldehyde the dyes' characteristic fluorescence peaks shift providing the basis for an optical detection. Dye responses to formaldehyde exposure were characterized; demonstrating the optical detection of formaldehyde in under 10 seconds and down to concentrations of 0.5 ppm. To .incorporate the dye .in.an optical sensor device requires. a means of containing and manipulating the dye. Multiple form factors using two dissimilar sbstrates were considered to determine a suitable configuration. A prototype sensor was demonstrated and considerations for a field able sensor were presented. This research provides a necessary first step toward the development of a compact, reusable; real time optical formaldehyde sensor suitable for use in the U.S. space program,

  16. Roller compaction of different pseudopolymorphic forms of theophylline: Effect on compressibility and tablet properties.

    PubMed

    Hadzović, Ervina; Betz, Gabriele; Hadzidedić, Seherzada; El-Arini, Silvia Kocova; Leuenberger, Hans

    2010-08-30

    The effect of roller compaction on disintegration time, dissolution rate and compressibility of tablets prepared from theophylline anhydrate powder, theophylline anhydrate fine powder and theophylline monohydrate was studied. In addition, the influence of adding microcrystalline cellulose, a commonly used excipient, in mixtures with these materials was investigated. Theophylline anhydrate powder was used as a model drug to investigate the influence of different compaction pressures on the tablet properties. Tablets with same porosity were prepared by direct compaction and by roller compaction/re-compaction. Compressibility was characterized by Heckel and modified Heckel equations. Due to the property of polymorphic materials to change their form during milling and compression, X-ray diffraction analysis of theophylline anhydrate powder, theophylline anhydrate fine powder and theophylline monohydrate powders and granules was carried out. After roller compaction the disintegration time and the dissolution rate of the tablets were significantly improved. Compressibility of theophylline anhydrate powder and theophylline anhydrate fine powder was decreased, while theophylline monohydrate showed higher compressibility after roller compaction. Microcrystalline cellulose affected compressibility of theophylline anhydrate powder, theophylline anhydrate fine powder and theophylline monohydrate whereby the binary mixtures showed higher compressibility than the individual materials. X-ray diffraction analyses confirmed that there were no polymorphic/pseudopolymorphic changes after roller compaction. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Dissolution Mechanism for High Melting Point Transition Elements in Aluminum Melt

    NASA Astrophysics Data System (ADS)

    Lee, Young E.; Houser, Stephen L.

    When added cold in aluminum melt, the alloying process for compacts of transition metal elements such as Mn, Fe, Cr, Ni, Ti, Cu, and Zn takes a sequence of incubation, exothermic reactions to form intermetallic compounds, and dispersion of the alloying elements into aluminum melt. The experiments with Cr compacts show that the incubation period is affected by the content of ingredient Al and size of compacts and by size of Cr particles. Incubation period becomes longer as the content of ingredient aluminum in compact decreases, and this prolonged incubation period negatively impacts the dissolution of the alloying elements in aluminum. Once liquid aluminum forms at reaction sites, the exothermic reaction takes place quickly and significantly raises the temperature of the compacts. As the result of it, the compacts swell in volume with a sponge like structure. Such porous structure encourages the penetration of liquid aluminum from the melt. The compacts become weak mechanically, and the alloying elements are dispersed and entrained in aluminum melt as discrete and small sized units. When Cr compacts are deficient in aluminum, the unreacted Cr particles are encased by the intermetallic compounds in the dispersed particles. They are carried in the melt flow and continue the dissolution reaction in aluminum. The entire dissolution process of Cr compacts completes within 10 to 15 minutes with a full recovery when the aluminum content is 10 to 20% in compacts.

  18. Factor XIII stiffens fibrin clots by causing fiber compaction.

    PubMed

    Kurniawan, N A; Grimbergen, J; Koopman, J; Koenderink, G H

    2014-10-01

    Factor XIII-induced cross-linking has long been associated with the ability of fibrin blood clots to resist mechanical deformation, but how FXIII can directly modulate clot stiffness is unknown. We hypothesized that FXIII affects the self-assembly of fibrin fibers by altering the lateral association between protofibrils. To test this hypothesis, we studied the cross-linking kinetics and the structural evolution of the fibers and clots during the formation of plasma-derived and recombinant fibrins by using light scattering, and the response of the clots to mechanical stresses by using rheology. We show that the lateral aggregation of fibrin protofibrils initially results in the formation of floppy fibril bundles, which then compact to form tight and more rigid fibers. The first stage is reflected in a fast (10 min) increase in clot stiffness, whereas the compaction phase is characterized by a slow (hours) development of clot stiffness. Inhibition of FXIII completely abrogates the slow compaction. FXIII strongly increases the linear elastic modulus of the clots, but does not affect the non-linear response at large deformations. We propose a multiscale structural model whereby FXIII-mediated cross-linking tightens the coupling between the protofibrils within a fibrin fiber, thus making the fiber stiffer and less porous. At small strains, fiber stiffening enhances clot stiffness, because the clot response is governed by the entropic elasticity of the fibers, but once the clot is sufficiently stressed, the modulus is independent of protofibril coupling, because clot stiffness is governed by individual protofibril stretching. © 2014 International Society on Thrombosis and Haemostasis.

  19. Compact Micromachined Infrared Bandpass Filters for Planetary Spectroscopy

    NASA Technical Reports Server (NTRS)

    Merrell, Willie C., II; Aslam, Shahid; Brown, Ari D.; Chervenak, James A.; Huang, Wei-Chung; Quijada, Manuel; Wollack, Edward

    2011-01-01

    The future needs of space based observational planetary and astronomy missions include low mass and small volume radiometric instruments that can operate in high radiation and low temperature environments. Here we focus on a central spectroscopic component, the bandpass filter. We model the bandpass response of the filters to target the wavelength of the resonance peaks at 20, 40, and 60 micrometers and report good agreement between the modeled and measured response. We present a technique of using common micromachining processes for semiconductor fabrication to make compact, free standing resonant metal mesh filter arrays with silicon support frames. The process can accommodate multiple detector array architectures and the silicon frame provides lightweight mechanical support with low form factor. We also present a conceptual hybridization of the filters with a detector array.

  20. I3Mote: An Open Development Platform for the Intelligent Industrial Internet

    PubMed Central

    Martinez, Borja; Vilajosana, Xavier; Kim, Il Han; Zhou, Jianwei; Tuset-Peiró, Pere; Xhafa, Ariton; Poissonnier, Dominique; Lu, Xiaolin

    2017-01-01

    In this article we present the Intelligent Industrial Internet (I3) Mote, an open hardware platform targeting industrial connectivity and sensing deployments. The I3Mote features the most advanced low-power components to tackle sensing, on-board computing and wireless/wired connectivity for demanding industrial applications. The platform has been designed to fill the gap in the industrial prototyping and early deployment market with a compact form factor, low-cost and robust industrial design. I3Mote is an advanced and compact prototyping system integrating the required components to be deployed as a product, leveraging the need for adopting industries to build their own tailored solution. This article describes the platform design, firmware and software ecosystem and characterizes its performance in terms of energy consumption. PMID:28452945

  1. Compaction within the South Belridge diatomite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chase C.A. Jr.; Dietrich, J.K.

    1989-11-01

    Compaction is incorporated into a field-scale finite-difference thermal simulator to allow practical engineering analysis of reservoir compaction caused by fluid withdrawal. Capabilities new to petroleum applications include hysteresis in the form of limited rebound during fluid injection and the concept of relaxation time (i.e., creep).

  2. Quality by design I: Application of failure mode effect analysis (FMEA) and Plackett-Burman design of experiments in the identification of "main factors" in the formulation and process design space for roller-compacted ciprofloxacin hydrochloride immediate-release tablets.

    PubMed

    Fahmy, Raafat; Kona, Ravikanth; Dandu, Ramesh; Xie, Walter; Claycamp, Gregg; Hoag, Stephen W

    2012-12-01

    As outlined in the ICH Q8(R2) guidance, identifying the critical quality attributes (CQA) is a crucial part of dosage form development; however, the number of possible formulation and processing factors that could influence the manufacturing of a pharmaceutical dosage form is enormous obviating formal study of all possible parameters and their interactions. Thus, the objective of this study is to examine how quality risk management can be used to prioritize the number of experiments needed to identify the CQA, while still maintaining an acceptable product risk profile. To conduct the study, immediate-release ciprofloxacin tablets manufactured via roller compaction were used as a prototype system. Granules were manufactured using an Alexanderwerk WP120 roller compactor and tablets were compressed on a Stokes B2 tablet press. In the early stages of development, prior knowledge was systematically incorporated into the risk assessment using failure mode and effect analysis (FMEA). The factors identified using FMEA were then followed by a quantitative assessed using a Plackett-Burman screening design. Results show that by using prior experience, literature data, and preformulation data the number of experiments could be reduced to an acceptable level, and the use of FMEA and screening designs such as the Plackett Burman can rationally guide the process of reducing the number experiments to a manageable level.

  3. A novel family of DG methods for diffusion problems

    NASA Astrophysics Data System (ADS)

    Johnson, Philip; Johnsen, Eric

    2017-11-01

    We describe and demonstrate a novel family of numerical schemes for handling elliptic/parabolic PDE behavior within the discontinuous Galerkin (DG) framework. Starting from the mixed-form approach commonly applied for handling diffusion (examples include Local DG and BR2), the new schemes apply the Recovery concept of Van Leer to handle cell interface terms. By applying recovery within the mixed-form approach, we have designed multiple schemes that show better accuracy than other mixed-form approaches while being more flexible and easier to implement than the Recovery DG schemes of Van Leer. While typical mixed-form approaches converge at rate 2p in the cell-average or functional error norms (where p is the order of the solution polynomial), many of our approaches achieve order 2p +2 convergence. In this talk, we will describe multiple schemes, including both compact and non-compact implementations; the compact approaches use only interface-connected neighbors to form the residual for each element, while the non-compact approaches add one extra layer to the stencil. In addition to testing the schemes on purely parabolic PDE problems, we apply them to handle the diffusive flux terms in advection-diffusion systems, such as the compressible Navier-Stokes equations.

  4. ComVisMD - compact visualization of multidimensional data: experimenting with cricket players data

    NASA Astrophysics Data System (ADS)

    Dandin, Shridhar B.; Ducassé, Mireille

    2018-03-01

    Database information is multidimensional and often displayed in tabular format (row/column display). Presented in aggregated form, multidimensional data can be used to analyze the records or objects. Online Analytical database Processing (OLAP) proposes mechanisms to display multidimensional data in aggregated forms. A choropleth map is a thematic map in which areas are colored in proportion to the measurement of a statistical variable being displayed, such as population density. They are used mostly for compact graphical representation of geographical information. We propose a system, ComVisMD inspired by choropleth map and the OLAP cube to visualize multidimensional data in a compact way. ComVisMD displays multidimensional data like OLAP Cube, where we are mapping an attribute a (first dimension, e.g. year started playing cricket) in vertical direction, object coloring based on b (second dimension, e.g. batting average), mapping varying-size circles based on attribute c (third dimension, e.g. highest score), mapping numbers based on attribute d (fourth dimension, e.g. matches played). We illustrate our approach on cricket players data, namely on two tables Country and Player. They have a large number of rows and columns: 246 rows and 17 columns for players of one country. ComVisMD’s visualization reduces the size of the tabular display by a factor of about 4, allowing users to grasp more information at a time than the bare table display.

  5. Densified waste form and method for forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina

    Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate themore » temperature sensitive waste material in a physically densified matrix.« less

  6. Porosity and grain size controls on compaction band formation in Jurassic Navajo Sandstone

    USGS Publications Warehouse

    Schultz, Richard A.; Okubo, Chris H.; Fossen, Haakon

    2010-01-01

    Determining the rock properties that permit or impede the growth of compaction bands in sedimentary sequences is a critical problem of importance to studies of strain localization and characterization of subsurface geologic reservoirs. We determine the porosity and average grain size of a sequence of stratigraphic layers of Navajo Sandstone that are then used in a critical state model to infer plastic yield envelopes for the layers. Pure compaction bands are formed in layers having the largest average grain sizes (0.42–0.45 mm) and porosities (28%), and correspondingly the smallest values of critical pressure (-22 MPa) in the sequence. The results suggest that compaction bands formed in these layers after burial to -1.5 km depth in association with thrust faulting beneath the nearby East Kaibab monocline, and that hardening of the yield caps accompanied compactional deformation of the layers.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alatalo, Katherine; Lanz, Lauranne; Bitsakis, Theodoros

    NGC 1266 is a nearby lenticular galaxy that harbors a massive outflow of molecular gas powered by the mechanical energy of an active galactic nucleus (AGN). It has been speculated that such outflows hinder star formation (SF) in their host galaxies, providing a form of feedback to the process of galaxy formation. Previous studies, however, indicated that only jets from extremely rare, high-power quasars or radio galaxies could impart significant feedback on their hosts. Here we present detailed observations of the gas and dust continuum of NGC 1266 at millimeter wavelengths. Our observations show that molecular gas is being drivenmore » out of the nuclear region at M-dot {sub out}≈110 M{sub ⊙} yr{sup –1}, of which the vast majority cannot escape the nucleus. Only 2 M {sub ☉} yr{sup –1} is actually capable of escaping the galaxy. Most of the molecular gas that remains is very inefficient at forming stars. The far-infrared emission is dominated by an ultra-compact (≲ 50 pc) source that could either be powered by an AGN or by an ultra-compact starburst. The ratio of the SF surface density (Σ{sub SFR}) to the gas surface density (Σ{sub H{sub 2}}) indicates that SF is suppressed by a factor of ≈50 compared to normal star-forming galaxies if all gas is forming stars, and ≈150 for the outskirt (98%) dense molecular gas if the central region is powered by an ultra-compact starburst. The AGN-driven bulk outflow could account for this extreme suppression by hindering the fragmentation and gravitational collapse necessary to form stars through a process of turbulent injection. This result suggests that even relatively common, low-power AGNs are able to alter the evolution of their host galaxies as their black holes grow onto the M-σ relation.« less

  8. Compact LWIR sensors using spatial interferometric technology (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bingham, Adam L.; Lucey, Paul G.; Knobbe, Edward T.

    2017-05-01

    Recent developments in reducing the cost and mass of hyperspectral sensors have enabled more widespread use for short range compositional imaging applications. HSI in the long wave infrared (LWIR) is of interest because it is sensitive to spectral phenomena not accessible to other wavelengths, and because of its inherent thermal imaging capability. At Spectrum Photonics we have pursued compact LWIR hyperspectral sensors both using microbolometer arrays and compact cryogenic detector cameras. Our microbolometer-based systems are principally aimed at short standoff applications, currently weigh 10-15 lbs and feature sizes approximately 20x20x10 cm, with sensitivity in the 1-2 microflick range, and imaging times on the order of 30 seconds. Our systems that employ cryogenic arrays are aimed at medium standoff ranges such as nadir looking missions from UAVs. Recent work with cooled sensors has focused on Strained Layer Superlattice (SLS) technology, as these detector arrays are undergoing rapid improvements, and have some advantages compared to HgCdTe detectors in terms of calibration stability. These sensors include full on-board processing sensor stabilization so are somewhat larger than the microbolometer systems, but could be adapted to much more compact form factors. We will review our recent progress in both these application areas.

  9. THE MERGER HISTORY, ACTIVE GALACTIC NUCLEUS, AND DWARF GALAXIES OF HICKSON COMPACT GROUP 59

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konstantopoulos, I. S.; Charlton, J. C.; Brandt, W. N.

    2012-01-20

    Compact group galaxies often appear unaffected by their unusually dense environment. Closer examination can, however, reveal the subtle, cumulative effects of multiple galaxy interactions. Hickson Compact Group (HCG) 59 is an excellent example of this situation. We present a photometric study of this group in the optical (Hubble Space Telescope), infrared (Spitzer), and X-ray (Chandra) regimes aimed at characterizing the star formation and nuclear activity in its constituent galaxies and intra-group medium. We associate five dwarf galaxies with the group and update the velocity dispersion, leading to an increase in the dynamical mass of the group of up to amore » factor of 10 (to 2.8 Multiplication-Sign 10{sup 13} M{sub Sun }), and a subsequent revision of its evolutionary stage. Star formation is proceeding at a level consistent with the morphological types of the four main galaxies, of which two are star-forming and the other are two quiescent. Unlike in some other compact groups, star-forming complexes across HCG 59 closely follow mass-radius scaling relations typical of nearby galaxies. In contrast, the ancient globular cluster populations in galaxies HCG 59A and B show intriguing irregularities, and two extragalactic H II regions are found just west of B. We age-date a faint stellar stream in the intra-group medium at {approx}1 Gyr to examine recent interactions. We detect a likely low-luminosity active galactic nucleus in HCG 59A by its {approx}10{sup 40} erg s{sup -1} X-ray emission; the active nucleus rather than star formation can account for the UV+IR spectral energy distribution. We discuss the implications of our findings in the context of galaxy evolution in dense environments.« less

  10. The Merger History, AGN and Dwarf Galaxies of Hickson Compact Group 59

    NASA Technical Reports Server (NTRS)

    Konstantopoulos, I. S.; Gallagher, S. C.; Fedotov, K.; Durrell, P. R.; Tzanavaris, P.; Hill, A. R.; Zabludoff, A. I.; Maier, M. L.; Elmegreen, D. M.; Charlton, J. C.; hide

    2011-01-01

    Compact group galaxies often appear unaffected by their unusually dense environment. Closer examination can, however, reveal the subtle, cumulative effects of multiple galaxy interactions. Hickson Compact Group (HCG) 59 is an excellent example of this situation. We present a photometric study of this group in the optical (HST), infrared (Spitzer) and X-ray (Chandra) regimes aimed at characterizing the star formation and nuclear activity in its constituent galaxies and intra-group medium. We associate five dwarf galaxies with the group and update the velocity dispersion, leading to an increase in the dynamical mass of the group of up to a factor of 10 (to 2.8 x 10(exp 13) Stellar Mass), and a subsequent revision of its evolutionary stage. Star formation is proceeding at a level consistent with the morphological types of the four main galaxies, of which two are star-forming and the other two quiescent. Unlike in some other compact groups, star-forming complexes across HCG 59 closely follow mass-radius scaling relations typical of nearby galaxies. In contrast, the ancient globular cluster populations in galaxies HCG 59A and B show intriguing irregularities, and two extragalactic HII regions are found just west of B. We age-date a faint stellar stream in the intra-group medium at approx. 1 Gyr to examine recent interactions. We detect a likely low-luminosity AGN in HCG 59A by its approx. 10(exp 40) erg/s X-ray emission; the active nucleus rather than star formation can account for the UV+IR SED. We discuss the implications of our findings in the context of galaxy evolution in dense environments.

  11. Oxide strengthened molybdenum-rhenium alloy

    DOEpatents

    Bianco, Robert; Buckman, Jr., R. William

    2000-01-01

    Provided is a method of making an ODS molybdenum-rhenium alloy which includes the steps of: (a) forming a slurry containing molybdenum oxide and a metal salt dispersed in an aqueous medium, the metal salt being selected from nitrates or acetates of lanthanum, cerium or thorium; (b) heating the slurry in the presence of hydrogen to form a molybdenum powder comprising molybdenum and an oxide of the metal salt; (c) mixing rhenium powder with the molybdenum powder to form a molybdenum-rhenium powder; (d) pressing the molybdenum-rhenium powder to form a molybdenum-rhenium compact; (e) sintering the molybdenum-rhenium compact in hydrogen or under a vacuum to form a molybdenum-rhenium ingot; and (f) compacting the molybdenum-rhenium ingot to reduce the cross-sectional area of the molybdenum-rhenium ingot and form a molybdenum-rhenium alloy containing said metal oxide. The present invention also provides an ODS molybdenum-rhenium alloy made by the method. A preferred Mo--Re-ODS alloy contains 7-14 weight % rhenium and 2-4 volume % lanthanum oxide.

  12. The Rapid Formation of Localized Compaction Bands Under Hydrostatic Load Leading to Pore-pressure Transients in Compacting Rocks

    NASA Astrophysics Data System (ADS)

    Faulkner, D.; Leclere, H.; Bedford, J. D.; Behnsen, J.; Wheeler, J.

    2017-12-01

    Compaction of porous rocks can occur uniformly or within localized deformation bands. The formation of compaction bands and their effects on deformation behaviour are poorly understood. Porosity may be primary and compaction can occur with burial, or it can be produced by metamorphic reactions with a solid volume reduction, that can then undergo collapse. We report results from hydrostatic compaction experiments on porous bassanite (CaSO4.0.5H2O) aggregates. Gypsum (CaSO4.2H2O) is first dehydrated under low effective pressure, 4 MPa, to produce a bassanite aggregate with a porosity of 27%. Compaction is induced by increasing confining pressure at rates from 0.001 MPa/s to 0.02 MPa/s while the sample is maintained at a temperature of 115°C. At slow compaction rates, porosity collapse proceeds smoothly. At higher compaction rates, sudden increases in the pore-fluid pressure occur with a magnitude of 5 MPa. Microstructural investigations using X-ray microtomography and SEM observations show that randomly oriented localized compaction features occur in all samples, where the bulk porosity of 18% outside the band is reduced to 5% inside the band. Previous work on deformation bands has suggested that localized compactive features only form under an elevated differential stress and not under a hydrostatic stress state. The magnitude of the pore-pressure pulses can be explained by the formation of compaction bands. The results indicate that the compaction bands can form by rapid (unstable) propagation across the sample above a critical strain rate, or quasi-statically at low compaction rates without pore-fluid pressure bursts. The absence of pore-fluid pressure bursts at slow compaction rates can be explained by viscous deformation of the bassanite aggregate around the tip of a propagating compaction band, relaxing stress, and promoting stable propagation. Conversely, at higher compaction rates, viscous deformation cannot relax the stress sufficiently and unstable, brittle propagation occurs. In nature, this type of compaction behaviour might result in a mechanism to produce pulses of pore pressure within porous rocks which might have a significant effect on the deformation behaviour at depth.

  13. Design of compact freeform lens for application specific Light-Emitting Diode packaging.

    PubMed

    Wang, Kai; Chen, Fei; Liu, Zongyuan; Luo, Xiaobing; Liu, Sheng

    2010-01-18

    Application specific LED packaging (ASLP) is an emerging technology for high performance LED lighting. We introduced a practical design method of compact freeform lens for extended sources used in ASLP. A new ASLP for road lighting was successfully obtained by integrating a polycarbonate compact freeform lens of small form factor with traditional LED packaging. Optical performance of the ASLP was investigated by both numerical simulation based on Monte Carlo ray tracing method and experiments. Results demonstrated that, comparing with traditional LED module integrated with secondary optics, the ASLP had advantages of much smaller size in volume (approximately 1/8), higher system lumen efficiency (approximately 8.1%), lower cost and more convenience for customers to design and assembly, enabling possible much wider applications of LED for general road lighting. Tolerance analyses were also conducted. Installation errors of horizontal and vertical deviations had more effects on the shape and uniformity of radiation pattern compared with rotational deviation. The tolerances of horizontal, vertical and rotational deviations of this lens were 0.11 mm, 0.14 mm and 2.4 degrees respectively, which were acceptable in engineering.

  14. SpaceCube Version 1.5

    NASA Technical Reports Server (NTRS)

    Geist, Alessandro; Lin, Michael; Flatley, Tom; Petrick, David

    2013-01-01

    SpaceCube 1.5 is a high-performance and low-power system in a compact form factor. It is a hybrid processing system consisting of CPU (central processing unit), FPGA (field-programmable gate array), and DSP (digital signal processor) processing elements. The primary processing engine is the Virtex- 5 FX100T FPGA, which has two embedded processors. The SpaceCube 1.5 System was a bridge to the SpaceCube 2.0 and SpaceCube 2.0 Mini processing systems. The SpaceCube 1.5 system was the primary avionics in the successful SMART (Small Rocket/Spacecraft Technology) Sounding Rocket mission that was launched in the summer of 2011. For SMART and similar missions, an avionics processor is required that is reconfigurable, has high processing capability, has multi-gigabit interfaces, is low power, and comes in a rugged/compact form factor. The original SpaceCube 1.0 met a number of the criteria, but did not possess the multi-gigabit interfaces that were required and is a higher-cost system. The SpaceCube 1.5 was designed with those mission requirements in mind. The SpaceCube 1.5 features one Xilinx Virtex-5 FX100T FPGA and has excellent size, weight, and power characteristics [4×4×3 in. (approx. = 10×10×8 cm), 3 lb (approx. = 1.4 kg), and 5 to 15 W depending on the application]. The estimated computing power of the two PowerPC 440s in the Virtex-5 FPGA is 1100 DMIPS each. The SpaceCube 1.5 includes two Gigabit Ethernet (1 Gbps) interfaces as well as two SATA-I/II interfaces (1.5 to 3.0 Gbps) for recording to data drives. The SpaceCube 1.5 also features DDR2 SDRAM (double data rate synchronous dynamic random access memory); 4- Gbit Flash for storing application code for the CPU, FPGA, and DSP processing elements; and a Xilinx Platform Flash XL to store FPGA configuration files or application code. The system also incorporates a 12 bit analog to digital converter with the ability to read 32 discrete analog sensor inputs. The SpaceCube 1.5 design also has a built-in accelerometer. In addition, the system has 12 receive and transmit RS- 422 interfaces for legacy support. The SpaceCube 1.5 processor card represents the first NASA Goddard design in a compact form factor featuring the Xilinx Virtex- 5. The SpaceCube 1.5 incorporates backward compatibility with the Space- Cube 1.0 form factor and stackable architecture. It also makes use of low-cost commercial parts, but is designed for operation in harsh environments.

  15. Method of making tantalum capacitors

    DOEpatents

    McMillan, April D.; Clausing, Robert E.; Vierow, William F.

    1998-01-01

    A method for manufacturing tantalum capacitors includes preparing a tantalum compact by cold pressing tantalum powder, placing the compact, along with loose refractory metal powder, in a microwave-transparent casket to form an assembly, and heating the assembly for a time sufficient to effect at least partial sintering of the compact and the product made by the method.

  16. Using cover crops to alleviate compaction in organic grain farms: effects on weeds and yields

    USDA-ARS?s Scientific Manuscript database

    Organic producers heavily rely on tillage for mechanical weeding, creating compacted areas ideal for weedy species, and forming a vicious cycle of tillage, compaction and increasing weed populations. In an effort to address the concerns of certified organic farmers from Illinois, we explored the eff...

  17. Using Conservation Systems to Alleviate Soil Compaction in a Southeastern United States Ultisol

    USDA-ARS?s Scientific Manuscript database

    Coastal Plain soils are prone to compaction and tend to form hardpans which restrict root growth and reduce yields. The adoption of non-inversion deep tillage has been recommended to disrupt compacted soil layers and create an adequate medium for crop development. In spite of its efficacy, increased...

  18. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

    1980-01-21

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  19. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, Moshe; Gruen, Dieter M.; Mendelsohn, Marshall H.; Sheft, Irving

    1981-01-01

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  20. Microporous Ti implant compact coated with hydroxyapatite produced by electro-discharge-sintering and electrostatic-spray-deposition.

    PubMed

    Jo, Y J; Kim, Y H; Jo, Y H; Seong, J G; Chang, S Y; Van Tyne, C J; Lee, W H

    2014-11-01

    A single pulse of 1.5 kJ/0.7 g of atomized spherical Ti powder from 300 μF capacitor was applied to produce the porous-surfaced Ti implant compact by electro-discharge-sintering (EDS). A solid core surrounded by porous layer was self-consolidated by a discharge in the middle of the compact in 122 μsec. Average pore size, porosity, and compressive yield strength of EDS Ti compact were estimated to be about 68.2 μm, 25.5%, and 266.4 MPa, respectively. Coatings with hydroxyapatite (HAp) on the Ti compact were conducted by electrostatic-spray-deposition (ESD) method. As-deposited HAp coating was in the form of porous structure and consisted of HAp particles which were uniformly distributed on the Ti porous structure. By heat-treatment at 700 degrees C, HAp particles were agglomerated each other and melted to form a highly smooth and homogeneous HAp thin film consisted of equiaxed nano-scaled grains. Porous-surfaced Ti implant compacts coated with highly crystalline apatite phase were successfully obtained by using the EDS and ESD techniques.

  1. 110K Bi-Sr-Ca-Cu-O superconductor oxide and method for making same

    DOEpatents

    Veal, B.W.; Downey, J.W.; Lam, D.J.; Paulikas, A.P.

    1992-12-22

    A superconductor is disclosed consisting of a sufficiently pure phase of the oxides of Bi, Sr, Ca, and Cu to exhibit a resistive zero near 110K resulting from the process of forming a mixture of Bi[sub 2]O[sub 3], SrCO[sub 3], CaCO[sub 3] and CuO into a particulate compact wherein the atom ratios are Bi[sub 2], Sr[sub 1.2-2.2], Ca[sub 1.8-2.4], Cu[sub 3]. Thereafter, heating the particulate compact rapidly in the presence of oxygen to an elevated temperature near the melting point of the oxides to form a sintered compact, and then maintaining the sintered compact at the elevated temperature for a prolonged period of time. The sintered compact is cooled and reground. Thereafter, the reground particulate material is compacted and heated in the presence of oxygen to an elevated temperature near the melting point of the oxide and maintained at the elevated temperature for a time sufficient to provide a sufficiently pure phase to exhibit a resistive zero near 110K. 7 figs.

  2. 110K Bi-Sr-Ca-Cu-O superconductor oxide and method for making same

    DOEpatents

    Veal, Boyd W.; Downey, John W.; Lam, Daniel J.; Paulikas, Arvydas P.

    1992-01-01

    A superconductor consisting of a sufficiently pure phase of the oxides of Bi, Sr, Ca, and Cu to exhibit a resistive zero near 110K resulting from the process of forming a mixture of Bi.sub.2 O.sub.3, SrCO.sub.3, CaCO.sub.3 and CuO into aparticulate compact wherein the atom ratios are Bi.sub.2, Sr.sub.1.2-2.2, Ca.sub.1.8-2.4, Cu.sub.3. Thereafter, heating the particulate compact rapidly in the presence of oxygen to an elevated temperature near the melting point of the oxides to form a sintered compact, and then maintaining the sintered compact at the elevated temperature for a prolonged period of time. The sintered compact is cooled and reground. Thereafter, the reground particulate material is compacted and heated in the presence of oxygen to an elevated temperature near the melting point of the oxide and maintained at the elevated temperature for a time sufficient to provide a sufficiently pure phase to exhibit a resistive zero near 110K.

  3. Testing of a compact 10-Gbps Lasercomm system for maritime platforms

    NASA Astrophysics Data System (ADS)

    Juarez, Juan C.; Souza, Katherine T.; Nicholes, Dustin D.; Riggins, James L.; Tomey, Hala J.; Venkat, Radha A.

    2017-08-01

    Lasercomm technology continues to be of interest for many applications both in the commercial and defense sectors because of its potential to provide high bandwidth communications that are secure without the need for RF spectrum management. Over the last decade, terrestrial Lasercomm development has progressed from initial experiments in the lab through field demonstrations in airborne and maritime environments. While these demonstrations have shown high capability levels, the complexity, size, weight, and power of the systems has slowed transition into fielded systems. This paper presents field test results of a recently developed maritime Lasercomm terminal and modem architecture with a compact form factor for enabling robust, 10-Gbps class data transport over highly scintillated links as found in terrestrial applications such as air-to-air, air-to-surface, and surface-to-surface links.

  4. The structure and protein binding of amyloid-specific dye reagents.

    PubMed

    Stopa, Barbara; Piekarska, Barbara; Konieczny, Leszek; Rybarska, Janina; Spólnik, Paweł; Zemanek, Grzegorz; Roterman, Irena; Król, Marcin

    2003-01-01

    The self-assembling tendency and protein complexation capability of dyes related to Congo red and also some dyes of different structure were compared to explain the mechanism of Congo red binding and the reason for its specific affinity for beta-structure. Complexation with proteins was measured directly and expressed as the number of dye molecules bound to heat-aggregated IgG and to two light chains with different structural stability. Binding of dyes to rabbit antibodies was measured indirectly as the enhancement effect of the dye on immune complex formation. Self-assembling was tested using dynamic light scattering to measure the size of the supramolecular assemblies. In general the results show that the supramolecular form of a dye is the main factor determining its complexation capability. Dyes that in their compact supramolecular organization are ribbon-shaped may adhere to polypeptides of beta-conformation due to the architectural compatibility in this unique structural form. The optimal fit in complexation seems to depend on two contradictory factors involving, on the one hand, the compactness of the non-covalently stabilized supramolecular ligand, and the dynamic character producing its plasticity on the other. As a result, the highest protein binding capability is shown by dyes with a moderate self-assembling tendency, while those arranging into either very rigid or very unstable supramolecular entities are less able to bind.

  5. Influence of PVP molecular weight on the microwave assisted in situ amorphization of indomethacin.

    PubMed

    Doreth, Maria; Löbmann, Korbinian; Priemel, Petra; Grohganz, Holger; Taylor, Robert; Holm, René; Lopez de Diego, Heidi; Rades, Thomas

    2018-01-01

    In situ amorphization is an approach that enables a phase transition of a crystalline drug to its amorphous form immediately prior to administration. In this study, three different polyvinylpyrrolidones (PVP K12, K17 and K25) were selected to investigate the influence of the molecular weight of the polymer on the degree of amorphization of the model drug indomethacin (IND) upon microwaving. Powder mixtures of crystalline IND and the respective PVP were compacted at 1:2 (w/w) IND:PVP ratios, stored at 54% RH and subsequently microwaved with a total energy input of 90 or 180kJ. After storage, all compacts had a similar moisture content (∼10% (w/w)). Upon microwaving with an energy input of 180kJ, 58±4% of IND in IND:PVP K12 compacts was amorphized, whereas 31±8% of IND was amorphized by an energy input of 90kJ. The drug stayed fully crystalline in all IND:PVP K17 and IND:PVP K25 compacts. After plasticization by moisture, PVP K12 reached a T g below ambient temperature (16±2°C) indicating that the T g of the plasticized polymer is a key factor for the success of in situ amorphization. DSC analysis showed that the amorphized drug was part of a ternary glass solution consisting of IND, PVP K12 and water. In dissolution tests, IND:PVP K12 compacts showed a delayed initial drug release due to a lack of compact disintegration, but reached a higher total drug release eventually. In summary, this study showed that the microwave assisted in situ amorphization was highly dependent on the T g of the plasticized polymer. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. In vitro effectiveness of antimicrobial photodynamic therapy (APDT) using a 660 nm laser and malachite green dye in Staphylococcus aureus biofilms arranged on compact and cancellous bone specimens.

    PubMed

    Rosa, Luciano Pereira; da Silva, Francine Cristina; Nader, Sumaia Alves; Meira, Giselle Andrade; Viana, Magda Souza

    2014-11-01

    The aim of this study was to evaluate the in vitro effectiveness of antimicrobial photodynamic therapy (APDT) using a 660 nm visible laser combined with malachite green (MG) dye in the inactivation of Staphylococcus aureus (ATCC 25923) biofilms formed within compact and cancellous bone specimens. Specimens of 80 compact bones and 80 cancellous bones were contaminated with a standard suspension of S. aureus and incubated for 14 days at 37 °C to allow for the formation of biofilms. The specimens were divided into the following groups (n = 10) according to the treatment conditions: PS-L - (control - no treatment), PS+L - (only MG for 5 min), PS-L + 90 (only laser irradiation for 90 s), PS-L + 180 (only laser irradiation for 180 s), PS-L + 300 (only laser irradiation for 300 s), APDT90 (APDT for 90 s), APDT180 (APDT for 180 s), and APDT300 (APDT for 300 s). The findings were statistically analyzed using an ANOVA 5%. All of the experimental groups were significantly different from the control group for both the compact and cancellous bone specimens. The compact bone specimens that received APDT treatment (for either 90, 180, or 300 s) showed reductions in the log10 CFU/ml of S. aureus by a magnitude of 4 log10. Cancellous bone specimens treated with 300 s of APDT showed the highest efficacy, and these specimens had a reduction in S. aureus CFU/ml by a factor of 3 log10. APDT treatment using these proposed parameters in combination with MG was effective at inactivating S. aureus biofilms in compact and cancellous bone specimens.

  7. In vivo dynamics of GFRα1-positive spermatogonia stimulated by GDNF signals using a bead transplantation assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchida, Aya; Kishi, Kasane; Aiyama, Yoshimi

    In mouse testes, spermatogonial stem cells (SSCs), a subpopulation of GFRα1 (GDNF family receptor-α1)-positive spermatogonia, are widely distributed along the convoluted seminiferous tubules. The proliferation and differentiation of the SSCs are regulated in part by local expression of GDNF (glial cell-derived neurotorphic factor), one of major niche factors for SSCs. However, the in vivo dynamics of the GDNF-stimulated GFRα1-positive spermatogonia remains unclear. Here, we developed a simple method for transplanting DiI-labeled and GDNF-soaked beads into the mouse testicular interstitium. By using this method, we examined the dynamics of GFRα1-positive spermatogonia in the tubular walls close to the transplanted GDNF-soaked beads. Themore » bead-derived GDNF signals were able to induce the stratified aggregate formation of GFRα1-positive undifferentiated spermatogonia by day 3 post-transplantation. Each aggregate consisted of tightly compacted A{sub single} and marginal A{sub paired}–A{sub aligned} GFRα1-positive spermatogonia and was surrounded by A{sub aligned} GFRα1-negative spermatogonia at more advanced stages. These data not only provide in vivo evidence for the inductive roles of GDNF in forming a rapid aggregation of GFRα1-positive spermatogonia but also indicate the usefulness of this in vivo assay system of various growth factors for the stem/progenitor spermatogonia in mammalian spermatogenesis. - Highlights: • A novel bead transplantation assay was developed to examine the in vivo effects of growth factors on spermatogonia. • A rapid aggregation of GFRα1-positive spermatogonia was induced by the transplanted GDNF-soaked beads. • Tightly-compacted A{sub single} and marginal A{sub paired}–A{sub aligned} spermatogonia were formed in each GFRα1-positive aggregate.« less

  8. Cermets and method for making same

    DOEpatents

    Aaron, W. Scott; Kinser, Donald L.; Quinby, Thomas C.

    1983-01-01

    The present invention is directed to a method for making a wide variety of general-purpose cermets and for radioactive waste disposal from ceramic powders prepared from urea-dispersed solutions containing various metal values. The powders are formed into a compact and subjected to a rapid temperature increase in a reducing atmosphere. During this reduction, one or more of the more readily reducible oxides in the compact is reduced to a selected substoichiometric state at a temperature below the eutectic phase for that particular oxide or oxides and then raised to a temperature greater than the eutectic temperature to provide a liquid phase in the compact prior to the reduction of the liquid phase forming oxide to solid metal. This liquid phase forms at a temperature below the melting temperature of the metal and bonds together the remaining particulates in the cermet to form a solid polycrystalline cermet.

  9. Catalytic reactor

    DOEpatents

    Aaron, Timothy Mark [East Amherst, NY; Shah, Minish Mahendra [East Amherst, NY; Jibb, Richard John [Amherst, NY

    2009-03-10

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  10. Understanding and optimizing the dual excipient functionality of sodium lauryl sulfate in tablet formulation of poorly water soluble drug: wetting and lubrication.

    PubMed

    Aljaberi, Ahmad; Chatterji, Ashish; Dong, Zedong; Shah, Navnit H; Malick, Waseem; Singhal, Dharmendra; Sandhu, Harpreet K

    2013-01-01

    To evaluate and optimize sodium lauryl sulfate (SLS) and magnesium stearate (Mg.St) levels, with respect to dissolution and compaction, in a high dose, poorly soluble drug tablet formulation. A model poorly soluble drug was formulated using high shear aqueous granulation. A D-optimal design was used to evaluate and model the effect of granulation conditions, size of milling screen, SLS and Mg.St levels on tablet compaction and ejection. The compaction profiles were generated using a Presster(©) compaction simulator. Dissolution of the kernels was performed using a USP dissolution apparatus II and intrinsic dissolution was determined using a stationary disk system. Unlike kernels dissolution which failed to discriminate between tablets prepared with various SLS contents, the intrinsic dissolution rate showed that a SLS level of 0.57% was sufficient to achieve the required release profile while having minimal effect on compaction. The formulation factors that affect tablet compaction and ejection were identified and satisfactorily modeled. The design space of best factor setting to achieve optimal compaction and ejection properties was successfully constructed by RSM analysis. A systematic study design helped identify the critical factors and provided means to optimize the functionality of key excipient to design robust drug product.

  11. Design and fabrication of metal briquette machine for shop floor

    NASA Astrophysics Data System (ADS)

    Pramod, R.; Kumar, G. B. Veeresh; Prashanth B., N.

    2017-07-01

    Efforts have to be taken to ensure efficient waste management system in shop floors, with minimum utilization of space and energy when it comes to disposing metal chips formed during machining processes. The salvaging of junk metallic chips and the us e of scrap are important for the economic production of a steelworks. For this purpose, we have fabricated a metal chip compaction machine, which can compact the metal chips into small briquettes. The project started with the survey of chips formed in shop floors and the practices involved in waste management. Study was done on the requirements for a better compaction. The heating chamber was designed taking into consideration the temperature required for an easy compaction of the metal chips. The power source for compaction and the pneumatic design for mechanism was done following the appropriate calculations regarding the air pressure provided and thrust required. The processes were tested under different conditions and found effective. The fabrication of the machine has been explained in detail and the results have been discussed.

  12. Explosive Compations of Intermetallic-Forming Powder Mixtures for Fabricating Structural Energetic Materials

    NASA Astrophysics Data System (ADS)

    Du, S. W.; Aydelotte, B.; Fondse, D.; Wei, C.-T.; Jiang, F.; Herbold, E.; Vecchio, K.; Meyers, M. A.; Thadhani, N. N.

    2009-12-01

    A double-tube implosion geometry is used to explosively shock consolidate intermetallic-forming Ni-Al, Ta-Al, Nb-Al, Mo-Al and W-Al powder mixtures for fabricating bulk structural energetic materials, with mechanical strength and ability to undergo impact-initiated exothermic reactions. The compacts are characterized based on uniformity of micro structure and degree of densification. Mechanical properties of the compacts are characterized over the strain-rate range of 10-3 to 104 s-1. The impact reactivity is determined using rod-on-anvil experiments, in which disk-shaped compacts mounted on a copper projectile, are impacted against a steel anvil in using a 7.62 mm gas gun. The impact reactivity of the various explosively-consolidated reactive powder mixture compacts is correlated with overall kinetic energy and impact stress to determine their influence on threshold for reaction initiation. The characteristics of the various compacts, their mechanical properties and impact-initiated chemical reactivity will be described in this paper.

  13. Global typology of urban energy use and potentials for an urbanization mitigation wedge

    PubMed Central

    Creutzig, Felix; Baiocchi, Giovanni; Bierkandt, Robert; Pichler, Peter-Paul; Seto, Karen C.

    2015-01-01

    The aggregate potential for urban mitigation of global climate change is insufficiently understood. Our analysis, using a dataset of 274 cities representing all city sizes and regions worldwide, demonstrates that economic activity, transport costs, geographic factors, and urban form explain 37% of urban direct energy use and 88% of urban transport energy use. If current trends in urban expansion continue, urban energy use will increase more than threefold, from 240 EJ in 2005 to 730 EJ in 2050. Our model shows that urban planning and transport policies can limit the future increase in urban energy use to 540 EJ in 2050 and contribute to mitigating climate change. However, effective policies for reducing urban greenhouse gas emissions differ with city type. The results show that, for affluent and mature cities, higher gasoline prices combined with compact urban form can result in savings in both residential and transport energy use. In contrast, for developing-country cities with emerging or nascent infrastructures, compact urban form, and transport planning can encourage higher population densities and subsequently avoid lock-in of high carbon emission patterns for travel. The results underscore a significant potential urbanization wedge for reducing energy use in rapidly urbanizing Asia, Africa, and the Middle East. PMID:25583508

  14. METHOD FOR PRODUCING CEMENTED CARBIDE ARTICLES

    DOEpatents

    Onstott, E.I.; Cremer, G.D.

    1959-07-14

    A method is described for making molded materials of intricate shape where the materials consist of mixtures of one or more hard metal carbides or oxides and matrix metals or binder metals thereof. In one embodiment of the invention 90% of finely comminuted tungsten carbide powder together with finely comminuted cobalt bonding agent is incorporated at 60 deg C into a slurry with methyl alcohol containing 1.5% paraffin, 3% camphor, 3.5% naphthalene, and 1.8% toluene. The compact is formed by the steps of placing the slurry in a mold at least one surface of which is porous to the fluid organic system, compacting the slurry, removing a portion of the mold from contact with the formed object and heating the formed object to remove the remaining organic matter and to sinter the compact.

  15. Granule fraction inhomogeneity of calcium carbonate/sorbitol in roller compacted granules.

    PubMed

    Bacher, C; Olsen, P M; Bertelsen, P; Sonnergaard, J M

    2008-02-12

    The granule fraction inhomogeneity of roller compacted granules was examined on mixtures of three different morphologic forms of calcium carbonate and three particle sizes of sorbitol. The granule fraction inhomogeneity was determined by the distribution of the calcium carbonate in each of the 10 size fractions between 0 and 2000 microm and by calculating the demixing potential. Significant inhomogeneous occurrence of calcium carbonate in the size fractions was demonstrated, depending mostly on the particles sizes of sorbitol but also on the morphological forms of calcium carbonate. The heterogeneous distribution of calcium carbonate was related to the decrease in compactibility of roller compacted granules in comparison to the ungranulated materials. This phenomenon was explained by a mechanism where fracturing of the ribbon during granulation occurred at the weakest interparticulate bonds (the calcium carbonate: calcium carbonate bonds) and consequently exposed the weakest areas of bond formation on the surface of the granules. Accordingly, the non-uniform allocation of the interparticulate attractive forces in a tablet would cause a lowering of the compactibility. Furthermore, the ability of the powder to agglomerate in the roller compactor was demonstrated to be related to the ability of the powder to be compacted into a tablet, thus the most compactable calcium carbonate and the smallest sized sorbitol improved the homogeneity by decreasing the demixing potential.

  16. METHOD OF FORMING ELONGATED COMPACTS

    DOEpatents

    Larson, H.F.

    1959-05-01

    A powder compacting procedure and apparatus which produces elongated compacts of Be is described. The powdered metal is placed in a thin metal tube which is chemically compatible to lubricant, powder, atmosphere, and die material and will undergo a high degree of plastic deformation and have intermediate hardness. The tube is capped and placed in the die, and punches are applied to the ends. During the compacting stroke the powder seizes the tube and a thickening and shortening of the tube occurs. The tube is easily removed from the die, split, and peeled from the compact. (T.R.H.)

  17. Fragmentation of urban forms and the environmental consequences: results from a high-spatial resolution model system

    NASA Astrophysics Data System (ADS)

    Tang, U. W.; Wang, Z. S.

    2008-10-01

    Each city has its unique urban form. The importance of urban form on sustainable development has been recognized in recent years. Traditionally, air quality modelling in a city is in a mesoscale with grid resolution of kilometers, regardless of its urban form. This paper introduces a GIS-based air quality and noise model system developed to study the built environment of highly compact urban forms. Compared with traditional mesoscale air quality model system, the present model system has a higher spatial resolution down to individual buildings along both sides of the street. Applying the developed model system in the Macao Peninsula with highly compact urban forms, the average spatial resolution of input and output data is as high as 174 receptor points per km2. Based on this input/output dataset with a high spatial resolution, this study shows that even the highly compact urban forms can be fragmented into a very small geographic scale of less than 3 km2. This is due to the significant temporal variation of urban development. The variation of urban form in each fragment in turn affects air dispersion, traffic condition, and thus air quality and noise in a measurable scale.

  18. Galaxy evolution. Isolated compact elliptical galaxies: stellar systems that ran away.

    PubMed

    Chilingarian, Igor; Zolotukhin, Ivan

    2015-04-24

    Compact elliptical galaxies form a rare class of stellar system (~30 presently known) characterized by high stellar densities and small sizes and often harboring metal-rich stars. They were thought to form through tidal stripping of massive progenitors, until two isolated objects were discovered where massive galaxies performing the stripping could not be identified. By mining astronomical survey data, we have now found 195 compact elliptical galaxies in all types of environment. They all share similar dynamical and stellar population properties. Dynamical analysis for nonisolated galaxies demonstrates the feasibility of their ejection from host clusters and groups by three-body encounters, which is in agreement with numerical simulations. Hence, isolated compact elliptical and isolated quiescent dwarf galaxies are tidally stripped systems that ran away from their hosts. Copyright © 2015, American Association for the Advancement of Science.

  19. Iron-carbon compacts and process for making them

    DOEpatents

    Sheinberg, Haskell

    2000-01-01

    The present invention includes iron-carbon compacts and a process for making them. The process includes preparing a slurry comprising iron powder, furfuryl alcohol, and a polymerization catalyst for initiating the polymerization of the furfuryl alcohol into a resin, and heating the slurry to convert the alcohol into the resin. The resulting mixture is pressed into a green body and heated to form the iron-carbon compact. The compact can be used as, or machined into, a magnetic flux concentrator for an induction heating apparatus.

  20. Evaluation of the deformation behavior of binary systems of methacrylic acid copolymers and hydroxypropyl methylcellulose using a compaction simulator.

    PubMed

    Tatavarti, Aditya S; Muller, Francis X; Hoag, Stephen W

    2008-02-04

    Methacrylic acid copolymers have been shown to enhance release of weakly basic drugs from rate controlling polymer matrices through the mechanism of microenvironmental pH modulation. Since these matrices are typically formed through a compaction process, an understanding of the deformation behavior of these polymers in there neat form and in combination with rate controlling polymers such as HPMC is critical to their successful formulation. Binary mixes of two methacrylic acid copolymers, Eudragit L100 and L100-55 in combination with HPMC K4M were subjected to compaction studies on a compaction simulator. The deformation behavior of the powder mixes was analyzed based on pressure-porosity relationships, strain rate sensitivity (SRS), residual die wall force data and work of compaction. Methacrylic acid copolymers, L100-55 and L-100 and the hydrophilic polymer, HPMC K4M exhibited Heckel plots representative of plastic deformation although L-100 exhibited significantly greater resistance to densification as evident from the high yield pressure values ( approximately 120MPa). The yield pressures for the binary mixes were linearly related to the weight fractions of the components. All powder mixes exhibited significant speed sensitivity with SRS values ranging from 21.7% to 42.4%. The residual die-wall pressures indicated that at slow speeds (1mm/s) and at lower pressures (<150MPa), HPMC possesses significant elastic behavior. However, the good compacts formed at this punch speed indicate significant plastic deformation and bond formation which is able to predominate over the elastic recovery component. The apparent mean yield pressure values, the residual die-wall forces and the net work of compaction exhibited a linear relationship with mixture composition, thereby indicating predictability of these parameters based on the behavior of the neat materials.

  1. CRUCIBLE LINING METHOD

    DOEpatents

    Bone, W.H.; Schmidt, W.W.

    1958-11-01

    A method is presented for forming refractory liners in cylindrical reaction vessels used for the reductlon of uranium tetrafluoride to metallic uranium. A preliminary form, having positioning lugs attached thereto, is inserted into the reaction vessel and the refractory powder, usually CaO, is put in the annular space between the form and the inner wall of the reaction vessel. A jolting table is used to compact this charge of liner material ln place, and after thls has been done, the preliminary form is removed and the flnal form or plug is lnserted without disturbing the partially completed lining. The remainder of the lining charge is then introduced and compacted by jolting, after which the form is removed.

  2. Compaction behaviour and mechanical strength of lactose-sodium starch glycolate and lactose-croscarmellose sodium binary tablets

    NASA Astrophysics Data System (ADS)

    Ashikin Yaakub, Nur; Shamsul Anuar, Mohd; Tahir, Suraya Mohd

    2018-04-01

    The focus of this study is to elucidate the effects of adding super disintegrants (SSG and Acdisol) to a filler (lactose) in terms of the compaction behaviour and mechanical strength of the formed binary tablets. The tablets were formed in a uniaxial die compaction process with compaction pressures ranging from 37.7MPa to 150.7 MPa. Consequently, the findings indicated that the increasing of the compaction pressure and the percentage mass composition of the super disintegrants would led to the increased in the strength of the tablets as well as their plastic energies, where this was more apparent for the case of the binary lactose/Acdisol tablets. In addition, as the compaction pressure increased, the maximum ejection pressure required to eject the tablet from the die cavity also increased. In contrast, a decreased in the maximum ejection pressure was observed as the composition of both super disintegrants increased in the lactose-super disintegrant binary tablets. In conclusion, the addition of super disintegrant; SSG with lactose and Acdisol with lactose; would enhanced the mechanical strength of lactose based tablets especially for the case of acdisol-lactose binary tablets in the experimental conditions adopted in this current work.

  3. An approach for modeling the influence of wheel tractor loads and vibration frequencies on soil compaction

    NASA Astrophysics Data System (ADS)

    Verotti, M.; Servadio, P.; Belfiore, N. P.; Bergonzoli, S.

    2012-04-01

    Both soil compaction and ground vibration are forms of environmental degradation that may be understood in the context of the vehicle-soil interaction process considered (Hildebrand et al., 2008). The transit of tractors on agricultural soil is often the main cause of soil compaction increasing. As known, this can be a serious problems for tillage and sowing and therefore the influence of all the affecting factors have been extensively studied in the last decades in order to understand their impact on the biosystem. There are factors related to the climate, namely to the rainfalls and temperature, and many others. Hence, it is not simple to figure out a complete model for predicting an index of compaction, for a given situation. Soil compaction models are important tools for controlling soil compaction due to agricultural field traffic and they are potentially useful technique to provide information concerning correct soil management. By means of such models, strategies and recommendations for prevention of soil compaction may be developed and specific advice may be given to farmers and advisers. In order to predict field wheeled and tracked vehicle performance, some empirical methods, used for off-road vehicle, were applied by Servadio (2010) on agricultural soil. The empirical indexes included, besides the soil strength, the load carried by the tire or track, some technical characteristics of the tire or track of the vehicle (tire or track width, tire or track wheel diameter, unloaded tire section height, number of wheel station in one track, tire deflection, total length of the belt track, the track pitch) as well as the vehicle passes. They have been validated with the tests results of agricultural vehicles over a range of soil in central Italy. Among the parameters which affect soil compaction, the water content of the soil, the axle load and number of vehicle passes proved to be the most important ones. The present paper concerns mainly vehicle-soil-man interaction. In particular, a model based on elasto-visco-plastic concentrated parameters, with multiple degrees of freedom, will be used in order to build a method for detecting a soil damage index, especially expressed in terms of increasing of soil compaction. Besides the axle load, the model will take into account the frequency of the vibrations that the vehicle is transmitting to the soil. Such model expresses a numerical value for the transmissibility coefficient and also allows evaluating the damage at the surface and on the bulk medium where the agricultural crops initially develop. Key words: vehicle-soil interaction, vibration, compaction, models. Acknowledgements This work was carried out under the auspices of the special project "Sceneries of adaptation of the Italian agriculture to the climatic changes" (AGROSCENARI) of the Agricultural Research Council, and Italian Ministry of the Agricultural and Forestry Politics.

  4. Everything you ever wanted to know about the ultraviolet spectra of star-forming galaxies but were afraid to ask

    NASA Technical Reports Server (NTRS)

    Kinney, A. L.; Bohlin, R.; Calzetti, D.; Panagia, N.; Wyse, R.

    1993-01-01

    We present ultraviolet spectra of 143 star-forming galaxies of different morphological types and activity classes including S0, Sa, Sb, Sc, Sd, irregular, starburst, blue compact, blue compact dwarf, Liner, and Seyfert 2 galaxies. These IUE spectra cover the wavelength range from 1200 to 3200 A and are taken in a large aperture (10 x 20 inch). The ultraviolet spectral energy distributions are shown for a subset of the galaxies, ordered by spectral index, and separated by type for normal galaxies, Liners, starburst galaxies, blue compact (BCG) and blue compact dwarf (BCDG) galaxies, and Seyfert 2 galaxies. The ultraviolet spectra of Liners are, for the most part, indistinguishable from the spectra of normal galaxies. Starburst galaxies have a large range of ultraviolet slope, from blue to red. The star-forming galaxies which are the bluest in the optical (BCG and BCDG), also have the 'bluest' average ultraviolet slope of beta = -1.75 +/- 0.63. Seyfert 2 galaxies are the only galaxies in the sample that consistently have detectable UV emission lines.

  5. Keck-I MOSFIRE spectroscopy of compact star-forming galaxies at z ≳ 2: high velocity dispersions in progenitors of compact quiescent galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barro, Guillermo; Koo, David C.; Faber, Sandra M.

    2014-11-10

    We present Keck-I MOSFIRE near-infrared spectroscopy for a sample of 13 compact star-forming galaxies (SFGs) at redshift 2 ≤ z ≤ 2.5 with star formation rates of SFR ∼ 100 M {sub ☉} yr{sup –1} and masses of log(M/M {sub ☉}) ∼10.8. Their high integrated gas velocity dispersions of σ{sub int} =230{sub −30}{sup +40} km s{sup –1}, as measured from emission lines of Hα and [O III], and the resultant M {sub *}-σ{sub int} relation and M {sub *}-M {sub dyn} all match well to those of compact quiescent galaxies at z ∼ 2, as measured from stellar absorption lines.more » Since log(M {sub *}/M {sub dyn}) =–0.06 ± 0.2 dex, these compact SFGs appear to be dynamically relaxed and evolved, i.e., depleted in gas and dark matter (<13{sub −13}{sup +17}%), and present larger σ{sub int} than their non-compact SFG counterparts at the same epoch. Without infusion of external gas, depletion timescales are short, less than ∼300 Myr. This discovery adds another link to our new dynamical chain of evidence that compact SFGs at z ≳ 2 are already losing gas to become the immediate progenitors of compact quiescent galaxies by z ∼ 2.« less

  6. Pillar-structured neutron detector based multiplicity system

    DOE PAGES

    Murphy, John W.; Shao, Qinghui; Voss, Lars F.; ...

    2017-10-04

    This work demonstrates the potential of silicon pillars filled with boron-10 as a sensor technology for a compact and portable neutron multiplicity system. Solid-state, semiconductor based neutron detectors may enable completely new detector form factors, offer an alternate approach to helium-3 based systems, and reduce detector weight and volume requirements. Thirty-two pillar-structured neutron detectors were assembled into a system with an active area of over 20 cm 2 and were used in this work to demonstrate the feasibility of this sensor technology as a potential replacement for helium-3 based gas detectors. Multiplicity measurements were successfully carried out using a californium-252more » neutron source, in which the source mass, system efficiency, and die-away time were determined. As a result, this demonstration shows that these solid-state detectors could allow for a more compact and portable system that could be used for special nuclear material identification in the field.« less

  7. Pressure-induced effects and phase relations in Mg2NiH4

    NASA Astrophysics Data System (ADS)

    Gavra, Z.; Kimmel, G.; Gefen, Y.; Mintz, Moshe H.

    1985-05-01

    The low-temperature (<210 °C) crystallographic structure, electrical conductivity, and thermal stability of Mg2NiH4 powders compacted under isostatic pressures of up to 10 kbar were studied. A comparison is made with the corresponding properties of the noncompressed material. It has been concluded that under stress-free hydriding conditions performed below 210 °C, a two-phase hydride mixture is formed. Each of the hydride particles consists of an inner core composed of an hydrogen-deficient monoclinic phase coated by a layer of a stoichiometric orthorhombic phase. The monoclinic phase has a metalliclike electrical conductivity while the orthorhombic phase is insulating. High compaction pressures cause the transformation of the orthorhombic structure into the monoclinic one, thereby resulting in a pressure-induced insulator-to-conductor transition. Reduced decomposition temperatures are obtained for the compressed hydrides. This reduction is attributed to kinetic factors rather than to a reduced thermodynamic stability.

  8. Collisions in Compact Star Clusters.

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, S. F.

    The high stellar densities in young compact star clusters, such as the star cluster R136 in the 30 Doradus region, may lead to a large number of stellar collisions. Such collisions were recently found to be much more frequent than previous estimates. The number of collisions scales with the number of stars for clusters with the same initial relaxation time. These collisions take place in a few million years. The collision products may finally collapse into massive black holes. The fraction of the total mass in the star cluster which ends up in a single massive object scales with the total mass of the cluster and its relaxation time. This mass fraction is rather constant, within a factor two or so. Wild extrapolation from the relatively small masses of the studied systems to the cores of galactic nuclei may indicate that the massive black holes in these systems have formed in a similar way.

  9. Differential Models for B-Type Open-Closed Topological Landau-Ginzburg Theories

    NASA Astrophysics Data System (ADS)

    Babalic, Elena Mirela; Doryn, Dmitry; Lazaroiu, Calin Iuliu; Tavakol, Mehdi

    2018-05-01

    We propose a family of differential models for B-type open-closed topological Landau-Ginzburg theories defined by a pair (X,W), where X is any non-compact Calabi-Yau manifold and W is any holomorphic complex-valued function defined on X whose critical set is compact. The models are constructed at cochain level using smooth data, including the twisted Dolbeault algebra of polyvector-valued forms and a twisted Dolbeault category of holomorphic factorizations of W. We give explicit proposals for cochain level versions of the bulk and boundary traces and for the bulk-boundary and boundary-bulk maps of the Landau-Ginzburg theory. We prove that most of the axioms of an open-closed TFT (topological field theory) are satisfied on cohomology and conjecture that the remaining two axioms (namely non-degeneracy of bulk and boundary traces and the topological Cardy constraint) are also satisfied.

  10. The Atmospheric Dynamics of alpha Tau (K5 III) - Clues to Understanding the Magnetic Dynamo in Late-Type Giant Stars

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Airapetian, Vladimir

    2008-01-01

    Using HST/GHRS, HST/STIS and FUSE archival data for alpha Tau and the CHIANTI spectroscopic code, we have derived line shifts, volumetric emission measures, and plasma density estimates, and calculated filling factors for a number of UV lines forming between 10,000 K and 300,000 K in the outer atmosphere of this red giant star. The data suggest the presence of low-temperature extended regions and high-temperature compact regions, associated with magnetically open and closed structures in the stellar atmosphere, respectively. The signatures of UV lines from alpha Tau can be consistently understood via a model of upward-traveling Alfven waves in a gravitationally stratified atmosphere. These waves cause non-thermal broadening in UV lines due to unresolved wave motions and downward plasma motions in compact magnetic loops heated by resonant Alfven wave heating.

  11. The Atmospheric Dynamics of Alpha Tau (K5 III) - Clues to Understanding the Magnetic Dynamo in Late-Type Giant Stars

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Airapetian, Vladimir

    2008-01-01

    Using HST/GHRS, HST/STIS and FUSE archival data for a Tau and the CHIANTI spectroscopic code, we have derived line shifts, volumetric emission measures, and plasma density estimates, and calculated filling factors for a number of UV lines forming between 10,000 K and 300,000 K in the outer atmosphere of this red giant star. The data suggest the presence of low-temperature extended regions and high-temperature compact regions, associated with magnetically open and closed structures in the stellar atmosphere, respectively. The signatures of UV lines from a Tau can be consistently understood via a model of upward-traveling Alfv6n waves in a gravitationally stratified atmosphere. These waves cause nonthermal broadening in UV lines due to unresolved wave motions and downward plasma motions in compact magnetic loops heated by resonant Alfven wave heating.

  12. Pillar-structured neutron detector based multiplicity system

    NASA Astrophysics Data System (ADS)

    Murphy, John W.; Shao, Qinghui; Voss, Lars F.; Kerr, Phil L.; Fabris, Lorenzo; Conway, Adam M.; Nikolic, Rebecca J.

    2018-01-01

    This work demonstrates the potential of silicon pillars filled with boron-10 as a sensor technology for a compact and portable neutron multiplicity system. Solid-state, semiconductor based neutron detectors may enable completely new detector form factors, offer an alternate approach to helium-3 based systems, and reduce detector weight and volume requirements. Thirty-two pillar-structured neutron detectors were assembled into a system with an active area of over 20 cm2 and were used in this work to demonstrate the feasibility of this sensor technology as a potential replacement for helium-3 based gas detectors. Multiplicity measurements were successfully carried out using a californium-252 neutron source, in which the source mass, system efficiency, and die-away time were determined. This demonstration shows that these solid-state detectors could allow for a more compact and portable system that could be used for special nuclear material identification in the field.

  13. A Broadband IR Compact High Resolution Spectrometer (BIRCHES) for a Lunar Water Distribution (LWaDi) Cubesat Mission

    NASA Astrophysics Data System (ADS)

    Clark, Pamela E.; Macdowall, Robert J.; Reuter, Dennis; Mauk, Robin

    2014-11-01

    We are in the process of developing the BIRCH (Broadband IR for Cubesats with High Resolution) Spectrometer for characterization of a range of deep space targets. BIRCH is the first extremely compact Broadband IR spectrometer with high spectral resolution designed to measure water type and component distribution for a science-driven cubesat mission, such as the lunar orbital mission LWaDi (Lunar Water Distribution) designed to determine the systematics of lunar water and volatiles as a function of time of day, latitude, and terrain. The development of cubesat form factor instruments, such as BIRCH, capable of providing high priority science goals identified in the decadal survey is critical to achieve low cost planetary exploration promised by the cubesat paradigm by exploring volatile systems via orbiting or landed packages. On the Moon, as well as Mercury, Mars, and the asteroids, the source, distribution, and role of volatiles is a question of major importance, and has implications for formation processes, including interior structure, differentiation, and the origin of life in the early solar system. The form and distribution of water has implications for human exploration, resource exploitation, and sample curation. Recent lunar missions gave unanticipated evidence for the water from NIR instruments not optimized for finding it. Our instrument includes a compact broadband HgCdTe detector with a linear variable filter and a compact cryocooler (for operation below 140K) attached to a compact optical system with 2 off-axis parabolic mirrors and variable field stop operating below 240K. Its 10 nm or better resolution and longer wavelength upper range (1.3 to 3.7 microns) are necessary to identify and separate features associated with water type (adsorbed, bound, ice) and components. Its 4-sided adjustable iris at the field stop enables a constant spot size (10 x 10 km) regardless of altitude. BIRCH will be able to provide systematic and extensive enough information to understand water’s life cycle, temporal and spatial distribution and interactions as a function of lunar cycles, characteristic features, and regolith composition.

  14. The anti-sigma factor RsrA responds to oxidative stress by reburying its hydrophobic core

    PubMed Central

    Rajasekar, Karthik V.; Zdanowski, Konrad; Yan, Jun; Hopper, Jonathan T. S.; Francis, Marie-Louise R.; Seepersad, Colin; Sharp, Connor; Pecqueur, Ludovic; Werner, Jörn M.; Robinson, Carol V.; Mohammed, Shabaz; Potts, Jennifer R.; Kleanthous, Colin

    2016-01-01

    Redox-regulated effector systems that counteract oxidative stress are essential for all forms of life. Here we uncover a new paradigm for sensing oxidative stress centred on the hydrophobic core of a sensor protein. RsrA is an archetypal zinc-binding anti-sigma factor that responds to disulfide stress in the cytoplasm of Actinobacteria. We show that RsrA utilizes its hydrophobic core to bind the sigma factor σR preventing its association with RNA polymerase, and that zinc plays a central role in maintaining this high-affinity complex. Oxidation of RsrA is limited by the rate of zinc release, which weakens the RsrA–σR complex by accelerating its dissociation. The subsequent trigger disulfide, formed between specific combinations of RsrA's three zinc-binding cysteines, precipitates structural collapse to a compact state where all σR-binding residues are sequestered back into its hydrophobic core, releasing σR to activate transcription of anti-oxidant genes. PMID:27432510

  15. Compact Ocean Models Enable Onboard AUV Autonomy and Decentralized Adaptive Sampling

    DTIC Science & Technology

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Compact Ocean Models Enable Onboard AUV Autonomy and...transmitted onboard an AUV . 3. Develop algorithms for adaptive planning of AUV surveys. 4. Demonstrate use of compact ocean models onboard a long...range AUV during a field deployment. Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of

  16. Morphology of diesel soot residuals from supercooled water droplets and ice crystals: Implications for optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    China, Swarup; Kulkarni, Gourihar; Scarnato, Barbara V.

    Freshly emitted soot particles are fractal-like aggregates, but atmospheric processing often transforms their morphology. Morphology of soot particles plays an important role in determining their optical properties, life cycle and hence their effect on Earth’s radiative balance. However, little is known about the morphology of soot particles that participated in cold cloud processes. Here we report results from laboratory experiments that simulate cold cloud processing of diesel soot particles by allowing them to form supercooled droplets and ice crystals at -20 and -40°C, respectively. Electron microscopy revealed that soot residuals from ice crystals were more compact (roundness~0.55) than those frommore » supercooled droplets (roundness ~0.45), while nascent soot particles were the least compact (roundness~0.41). Optical simulations using the discrete dipole approximation showed that the more compact structure enhances soot single scattering albedo by a factor up to 1.4, thereby reducing the top-of-the-atmosphere direct radiative forcing by ~63%. Lastly, these results underscore that climate models should consider the morphological evolution of soot particles due to cold cloud processing to improve the estimate of direct radiative forcing of soot.« less

  17. Morphology of diesel soot residuals from supercooled water droplets and ice crystals: Implications for optical properties

    DOE PAGES

    China, Swarup; Kulkarni, Gourihar; Scarnato, Barbara V.; ...

    2015-11-01

    Freshly emitted soot particles are fractal-like aggregates, but atmospheric processing often transforms their morphology. Morphology of soot particles plays an important role in determining their optical properties, life cycle and hence their effect on Earth’s radiative balance. However, little is known about the morphology of soot particles that participated in cold cloud processes. Here we report results from laboratory experiments that simulate cold cloud processing of diesel soot particles by allowing them to form supercooled droplets and ice crystals at -20 and -40°C, respectively. Electron microscopy revealed that soot residuals from ice crystals were more compact (roundness~0.55) than those frommore » supercooled droplets (roundness ~0.45), while nascent soot particles were the least compact (roundness~0.41). Optical simulations using the discrete dipole approximation showed that the more compact structure enhances soot single scattering albedo by a factor up to 1.4, thereby reducing the top-of-the-atmosphere direct radiative forcing by ~63%. Lastly, these results underscore that climate models should consider the morphological evolution of soot particles due to cold cloud processing to improve the estimate of direct radiative forcing of soot.« less

  18. Ultra-compact switchable SLO/OCT handheld probe design

    NASA Astrophysics Data System (ADS)

    LaRocca, Francesco; Nankivil, Derek; DuBose, Theodore; Farsiu, Sina; Izatt, Joseph A.

    2015-03-01

    Handheld scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) systems facilitate imaging of young children and subjects that have difficulty fixating. More compact and lightweight probes allow for better portability and increased comfort for the operator of the handheld probe. We describe a very compact, novel SLO and OCT handheld probe design. A single 2D microelectromechanical systems (MEMS) scanner and a custom optical design using a converging beam prior to the scanner permitted significant reduction in the system size. Our design utilized a combination of commercial and custom optics that were optimized in Zemax to achieve near diffraction-limited resolution of 8 μm over a 7° field of view. The handheld probe has a form factor of 7 x 6 x 2.5 cm and a weight of only 94 g, which is over an order of magnitude lighter than prior SLO-OCT handheld probes. Images were acquired from a normal subject with an incident power on the eye under the ANSI limit. With this device, which is the world's lightest and smallest SLO-OCT system, we were able to visualize parafoveal cone photoreceptors and nerve fiber bundles without the use of adaptive optics.

  19. Comparing Low-Redshift Compact Dwarf Starbursts in the RESOLVE Survey with High-Redshift Blue Nuggets

    NASA Astrophysics Data System (ADS)

    Palumbo, Michael Louis; Kannappan, Sheila; Snyder, Elaine; Eckert, Kathleen; Norman, Dara; Fraga, Luciano; Quint, Bruno; Amram, Philippe; Mendes de Oliveira, Claudia; RESOLVE Team

    2018-01-01

    We identify and characterize a population of compact dwarf starburst galaxies in the RESOLVE survey, a volume-limited census of galaxies in the local universe, to probe the possibility that these galaxies are related to “blue nuggets,” a class of intensely star-forming and compact galaxies previously identified at high redshift. Blue nuggets are thought to form as the result of intense compaction events that drive fresh gas to their centers. They are expected to display prolate morphology and rotation along their minor axes. We report IFU observations of three of our compact dwarf starburst galaxies, from which we construct high-resolution velocity fields, examining the evidence for minor axis or otherwise misaligned rotation. We find multiple cases of double nuclei in our sample, which may be indicative of a merger origin as in some blue nugget formation scenarios. We compare the masses, radii, gas-to-stellar mass ratios, star formation rates, stellar surface mass densities, and environmental contexts of our sample to expectations for blue nuggets.

  20. METHOD AND APPARATUS FOR MAKING URANIUM-HYDRIDE COMPACTS

    DOEpatents

    Wellborn, W.; Armstrong, J.R.

    1959-03-10

    A method and apparatus are presented for making compacts of pyrophoric hydrides in a continuous operation out of contact with air. It is particularly useful for the preparation of a canned compact of uranium hydride possessing high density and purity. The metallic uranium is enclosed in a container, positioned in a die body evacuated and nvert the uranium to the hydride is admitted and the container sealed. Heat is applied to bring about the formation of the hydride, following which compression is used to form the compact sealed in a container ready for use.

  1. The abundance of compact quiescent galaxies since z ˜ 0.6

    NASA Astrophysics Data System (ADS)

    Charbonnier, Aldée; Huertas-Company, Marc; Gonçalves, Thiago S.; Menéndez-Delmestre, Karín; Bundy, Kevin; Galliano, Emmanuel; Moraes, Bruno; Makler, Martín; Pereira, Maria E. S.; Erben, Thomas; Hildebrandt, Hendrik; Shan, Huan-Yuan; Caminha, Gabriel B.; Grossi, Marco; Riguccini, Laurie

    2017-08-01

    We set out to quantify the number density of quiescent massive compact galaxies at intermediate redshifts. We determine structural parameters based on I-band imaging using the Canada-France-Hawaii Telescope (CFHT) equatorial Sloan Digital Sky Survey (SDSS) Stripe 82 (CS82) survey (˜170 deg2) taking advantage of an exquisite median seeing of ˜0.6 arcsec. We select compact massive (M⋆ > 5 × 1010 M⊙) galaxies within the redshift range of 0.2 < z < 0.6. The large volume sampled allows to decrease the effect of cosmic variance that has hampered the calculation of the number density for this enigmatic population in many previous studies. We undertake an exhaustive analysis in an effort to untangle the various findings inherent to the diverse definition of compactness present in the literature. We find that the absolute number of compact galaxies is very dependent on the adopted definition and can change up to a factor of >10. We systematically measure a factor of ˜5 more compacts at the same redshift than what was previously reported on smaller fields with Hubble Space Telescope (HST) imaging, which are more affected by cosmic variance. This means that the decrease in number density from z ˜ 1.5 to z ˜ 0.2 might be only of a factor of ˜2-5, significantly smaller than what was previously reported. This supports progenitor bias as the main contributor to the size evolution. This milder decrease is roughly compatible with the predictions from recent numerical simulations. Only the most extreme compact galaxies, with Reff < 1.5 × (M⋆/1011 M⊙)0.75 and M⋆ > 1010.7 M⊙, appear to drop in number by a factor of ˜20 and hence likely experience a noticeable size evolution.

  2. 100-Gb/s InP DP-IQ modulator for small-form-factor pluggable coherent transceivers

    NASA Astrophysics Data System (ADS)

    Kikuchi, Nobuhiro; Ogiso, Yoshihiro; Yamada, Eiichi

    2016-02-01

    We developed a compact InP-based DP-IQ modulator for small-form-factor pluggable coherent transceivers. The modulator achieves 112-Gb/s DP-QPSK modulation with a driving voltage of 6 Vppd. In addition, it provides 86-Gb/s DP-16 QAM signal generation and 240-km transmission with negligible degradation of BER performance. The halfwavelength voltage of our recent device is 1.9 V, and a high median extinction ratio of over 32 dB was achieved for more than 1,400 child MZ modulators. We have also proposed an athermal InP-based twin IQ modulator that enables us to use a modulator in a TEC-free operation. It contributes to lowering the power consumption of transceivers. Under a constant driving condition, there is little change in 56-Gb/s x 2 QPSK modulation characteristics in the range of 20 to 80°C.

  3. Low-rank factorization of electron integral tensors and its application in electronic structure theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Bo; Kowalski, Karol

    In this letter, we introduce the reverse Cuthill-McKee (RCM) algorithm, which is often used for the bandwidth reduction of sparse tensors, to transform the two-electron integral tensors to their block diagonal forms. By further applying the pivoted Cholesky decomposition (CD) on each of the diagonal blocks, we are able to represent the high-dimensional two-electron integral tensors in terms of permutation matrices and low-rank Cholesky vectors. This representation facilitates the low-rank factorization of the high-dimensional tensor contractions that are usually encountered in post-Hartree-Fock calculations. In this letter, we discuss the second-order Møller-Plesset (MP2) method and linear coupled- cluster model with doublesmore » (L-CCD) as two simple examples to demonstrate the efficiency of the RCM-CD technique in representing two-electron integrals in a compact form.« less

  4. Correlating Single Crystal Structure, Nanomechanical, and Bulk Compaction Behavior of Febuxostat Polymorphs.

    PubMed

    Yadav, Jayprakash A; Khomane, Kailas S; Modi, Sameer R; Ugale, Bharat; Yadav, Ram Naresh; Nagaraja, C M; Kumar, Navin; Bansal, Arvind K

    2017-03-06

    Febuxostat exhibits unprecedented solid forms with a total of 40 polymorphs and pseudopolymorphs reported. Polymorphs differ in molecular arrangement and conformation, intermolecular interactions, and various physicochemical properties, including mechanical properties. Febuxostat Form Q (FXT Q) and Form H1 (FXT H1) were investigated for crystal structure, nanomechanical parameters, and bulk deformation behavior. FXT Q showed greater compressibility, densification, and plastic deformation as compared to FXT H1 at a given compaction pressure. Lower mechanical hardness of FXT Q (0.214 GPa) as compared to FXT H1 (0.310 GPa) was found to be consistent with greater compressibility and lower mean yield pressure (38 MPa) of FXT Q. Superior compaction behavior of FXT Q was attributed to the presence of active slip systems in crystals which offered greater plastic deformation. By virtue of greater compressibility and densification, FXT Q showed higher tabletability over FXT H1. Significant correlation was found with anticipation that the preferred orientation of molecular planes into a crystal lattice translated nanomechanical parameters to a bulk compaction process. Moreover, prediction of compactibility of materials based on true density or molecular packing should be carefully evaluated, as slip-planes may cause deviation in the structure-property relationship. This study supported how molecular level crystal structure confers a bridge between particle level nanomechanical parameters and bulk level deformation behavior.

  5. COMPACT: The role of soil management in mitigating catchment flood risk

    NASA Astrophysics Data System (ADS)

    Pattison, Ian; Coates, Victoria; Frost, Matthew; Demirci, Emrah

    2017-04-01

    This paper reports a new NERC funded research project which addresses the impact of agricultural soil compaction on surface runoff and catchment scale flood risk. The intensification of agriculture, through increasing the number of animals in pasture, and the use of larger, heavier machinery for arable farming, over the past 50 years or so is hypothesised to have had an impact on the severity and frequency of flooding. These land management practices cause soil compaction, which reduces the rate of rainfall infiltration and the volume of water that can be stored within the sub-surface. This results in more rainfall being partitioned into the faster surface runoff pathway into rivers and potentially causing flooding downstream. However, the level of soil compaction is highly heterogeneous over space and time. This is because different animals i.e. cattle, sheep and horses, exert different loads on the soil and are kept at different densities. Furthermore, farm animals are known to exhibit behaviour whereby certain parts of the field are moved over more frequently than others. The same is the case in arable farming practices, whereby ploughing forms tramlines or wheelings, which are more compacted. Different forms of management practice ranging from zero-tillage to conventional cultivation exert different pressures on the soil at different times of year. However, very little is known about this variability of soil compaction levels at the sub-field level and land under different management practices. This research aims to quantify this sub-field variation in compaction severity and depths through using novel Ground Penetrating Radar (GPR) and Animal tracking GPS technology. Combining these with more conventional soil property tests, including bulk density, saturated hydraulic conductivity and using a penetrometer will allow relationships with frequency of load to be developed over different spatial and temporal scales. Furthermore, X-Ray CT scanning will reveal the fine scale impacts of compaction on soil structure. This data will form the input to a physically based, reduced complexity, spatially distributed hydrological model to test feasible "what if?" scenarios. This will upscale local changes in land management and soil characteristics to catchment scale flooding. Results from research focussing on a priori compacted areas, such as feeding areas, field gates, shelter zones and tractor wheelings show that these are statistically different to areas assumed to be less compacted in the open field.

  6. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Ormsby, John (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing (DSP) functions. Such capability also makes and FPGA a suitable platform for the digital implementation of closed loop controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance in a compact form-factor. Other researchers have presented the notion that a second order digital filter with proportional-integral-derivative (PID) control functionality can be implemented in an FPGA. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSF) devices. Our goal is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. Meeting our goals requires alternative compact implementation of such functionality to withstand the harsh environment encountered on spacecraft. Radiation tolerant FPGA's are a feasible option for reaching these goals.

  7. Meso-Scale Experimental & Numerical Studies for Predicting Macro-scale Performance of Advanced Reactive Materials (ARMs)

    DTIC Science & Technology

    2015-04-01

    of impact-initiated reactions in Ti-Al-B based reactive materials in the form of compacts of powders of different sizes and morphologies . The major...More specifically, the influence of material-inherent elastic/plastic properties and reactant configuration (e.g., porosity, morphology , spacing...materials in the form of compacts of powders of different sizes and morphologies . The major goal is to delineate how processes of localized deformation and

  8. Method for heat treating and sintering metal oxides with microwave radiation

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Meek, Thomas T.

    1989-01-01

    A method for microwave sintering materials, primarily metal oxides, is described. Metal oxides do not normally absorb microwave radiation at temperatures ranging from about room temperature to several hundred degrees centrigrade are sintered with microwave radiation without the use of the heretofore required sintering aids. This sintering is achieved by enclosing a compact of the oxide material in a housing or capsule formed of a oxide which has microwave coupling properties at room temprature up to at least the microwave coupling temperature of the oxide material forming the compact. The heating of the housing effects the initial heating of the oxide material forming the compact by heat transference and then functions as a thermal insulator for the encased oxide material after the oxide material reaches a sufficient temperature to adequately absorb or couple with microwave radiation for heating thereof to sintering temperature.

  9. Complete spacelike hypersurfaces in orthogonally splitted spacetimes

    NASA Astrophysics Data System (ADS)

    Colombo, Giulio; Rigoli, Marco

    2017-10-01

    We provide some "half-space theorems" for spacelike complete non-compact hypersurfaces into orthogonally splitted spacetimes. In particular we generalize some recent work of Rubio and Salamanca on maximal spacelike compact hypersurfaces. Beside compactness, we also relax some of their curvature assumptions and even consider the case of nonconstant mean curvature bounded from above. The analytic tools used in various arguments are based on some forms of the weak maximum principle.

  10. Shear-enhanced compaction bands formed at shallow burial conditions; implications for fluid flow (Provence, France)

    NASA Astrophysics Data System (ADS)

    Ballas, Gregory; Soliva, Roger; Sizun, Jean-Pierre; Fossen, Haakon; Benedicto, Antonio; Skurtveit, Elin

    2013-02-01

    Field observations of highly porous and permeable sandstone in the Orange area (S-E Basin, France) show that networks of shear-enhanced compaction bands can form in a contractional regime at burial depths of about 400 m ± 100 m. These bands show equal compaction and shear displacements, are organized in conjugate and densely distributed networks, and are restricted to the coarse-grained (mean grain diameter of 0.6 ± 0.1 mm) and less porous (porosity of 26 ± 2%) sand layers. The bands are crush microbreccia with limited grain comminution and high grain microfracture density. They show reductions of permeability (mD) ranging from 0 to little more than 1 order of magnitude. They show no control on the alteration products related to meteoric water flow, which suggests that these shear-enhanced compaction bands have no or only negligible influence on subsurface fluid flow. Their selective occurrence and small (20%) reduction in transmissibility in densely populated layers prevented them from compartmentalizing the sandstone reservoirs. A comparison with compaction-band populations in the Navajo and Aztec sandtsones (western U.S.) emphasizes the role of burial depth and the presence of chemical compaction processes for the sealing potential of deformation bands.

  11. A Green Solvent Induced DNA Package

    NASA Astrophysics Data System (ADS)

    Satpathi, Sagar; Sengupta, Abhigyan; Hridya, V. M.; Gavvala, Krishna; Koninti, Raj Kumar; Roy, Bibhisan; Hazra, Partha

    2015-03-01

    Mechanistic details of DNA compaction is essential blue print for gene regulation in living organisms. Many in vitro studies have been implemented using several compaction agents. However, these compacting agents may have some kinds of cytotoxic effects to the cells. To minimize this aspect, several research works had been performed, but people have never focused green solvent, i.e. room temperature ionic liquid as DNA compaction agent. To the best of our knowledge, this is the first ever report where we have shown that guanidinium tris(pentafluoroethyl)trifluorophosphate (Gua-IL) acts as a DNA compacting agent. The compaction ability of Gua-IL has been verified by different spectroscopic techniques, like steady state emission, circular dichroism, dynamic light scattering and UV melting. Notably, we have extensively probed this compaction by Gua-IL through field emission scanning electron microscopy (FE-SEM) and fluorescence microscopy images. We also have discussed the plausible compaction mechanism process of DNA by Gua-IL. Our results suggest that Gua-IL forms a micellar kind of self aggregation above a certain concentration (>=1 mM), which instigates this compaction process. This study divulges the specific details of DNA compaction mechanism by a new class of compaction agent, which is highly biodegradable and eco friendly in nature.

  12. Hydrologic and geologic factors affecting land subsidence near Eloy, Arizona

    USGS Publications Warehouse

    Epstein, V.J.

    1987-01-01

    At an extensometer site near Eloy, Arizona, 1.09 m of land subsidence caused by groundwater withdrawal were measured by leveling in 1965-83. The extensometer, which partially penetrates the compressible sediments, recorded 0.82 m of compaction during the same period. By use of a one-dimensional model, cumulative daily compaction values were simulated to within an average of 0.0038 m of the actual values. Land subsidence was simulated to within an average of 0.011 m using the same model in conjunction with geohydrologic data of the sediments below the extensometer. A highly compressible clay layer that is 24.38 m thick was partially penetrated by the extensometer. The simulation indicated that the layer was driving compaction and land subsidence linearly with respect to time, despite the presence of other compacting layers. Because of its thickness and compressibility, this layer can be expected to continue to compact after applied vertical stresses have stopped increasing and other layers have stopped compacting. Sensitivity analysis indicated that the compressibility of fine-grained sediments (expressed as specific storage) is one of the factors to which compact is most sensitive. Preconsolidation stress and hydraulic conductivity also affect land subsidence near Eloy, Arizona. (Author 's abstract)

  13. Driving Calmodulin Protein towards Conformational Shift by Changing Ionization States of Select Residues

    NASA Astrophysics Data System (ADS)

    Negi, Sunita; Rana Atilgan, Ali; Atilgan, Canan

    2012-12-01

    Proteins are complex systems made up of many conformational sub-states which are mainly determined by the folded structure. External factors such as solvent type, temperature, pH and ionic strength play a very important role in the conformations sampled by proteins. Here we study the conformational multiplicity of calmodulin (CaM) which is a protein that plays an important role in calcium signaling pathways in the eukaryotic cells. CaM can bind to a variety of other proteins or small organic compounds, and mediates different physiological processes by activating various enzymes. Binding of calcium ions and proteins or small organic molecules to CaM induces large conformational changes that are distinct to each interacting partner. In particular, we discuss the effect of pH variation on the conformations of CaM. By using the pKa values of the charged residues as a basis to assign protonation states, the conformational changes induced in CaM by reducing the pH are studied by molecular dynamics simulations. Our current view suggests that at high pH, barrier crossing to the compact form is prevented by repulsive electrostatic interactions between the two lobes. At reduced pH, not only is barrier crossing facilitated by protonation of residues, but also conformations which are on average more compact are attained. The latter are in accordance with the fluorescence resonance energy transfer experiment results of other workers. The key events leading to the conformational change from the open to the compact conformation are (i) formation of a salt bridge between the N-lobe and the linker, stabilizing their relative motions, (ii) bending of the C-lobe towards the N-lobe, leading to a lowering of the interaction energy between the two-lobes, (iii) formation of a hydrophobic patch between the two lobes, further stabilizing the bent conformation by reducing the entropic cost of the compact form, (iv) sharing of a Ca+2 ion between the two lobes.

  14. Well behaved anisotropic compact star models in general relativity

    NASA Astrophysics Data System (ADS)

    Jasim, M. K.; Maurya, S. K.; Gupta, Y. K.; Dayanandan, B.

    2016-11-01

    Anisotropic compact star models have been constructed by assuming a particular form of a metric function e^{λ}. We solved the Einstein field equations for determining the metric function e^{ν}. For this purpose we have assumed a physically valid expression of radial pressure (pr). The obtained anisotropic compact star model is representing the realistic compact objects such as PSR 1937 +21. We have done an extensive study about physical parameters for anisotropic models and found that these parameters are well behaved throughout inside the star. Along with these we have also determined the equation of state for compact star which gives the radial pressure is purely the function of density i.e. pr=f(ρ).

  15. Spontaneous Cracking in Unfired Magnesia Compacts Upon Standing in Air

    NASA Technical Reports Server (NTRS)

    Davies, Myron O.; Grimes, Hubert H.; May, Charles E.

    1961-01-01

    Analytical-grade magnesium oxide powder without binder was compressed hydrostatically to 50,000 lb. per sq. in. to form compacts. When exposed to moist air immediately after pressing, these compacts developed irregularly shaped cracks. Controlled tests, in which these compacts were exposed for various lengths of time to various atmospheres, indicated that in general water vapor, carbon dioxide, and residual stresses had to be present if cracking was to occur. The probable cause of the cracking was the formation of a less dense and mechanically weak basic carbonate of magnesium at crystallite surface points of high stress concentration which developed during the compacting. The adsorption of dry CO2 at such sites prevented subsequent delayed fracture.

  16. Urban Form, Air Pollution, and Health.

    PubMed

    Hankey, Steve; Marshall, Julian D

    2017-12-01

    Urban form can impact air pollution and public health. We reviewed health-related articles that assessed (1) the relationships among urban form, air pollution, and health as well as (2) aspects of the urban environment (i.e., green space, noise, physical activity) that may modify those relationships. Simulation and empirical studies demonstrate an association between compact growth, improved regional air quality, and health. Most studies are cross-sectional and focus on connections between transportation emissions and land use. The physical and mental health impacts of green space, public spaces that promote physical activity, and noise are well-studied aspects of the urban environment and there is evidence that these factors may modify the relationship between air pollution and health. Urban form can support efforts to design clean, health-promoting cities. More work is needed to operationalize specific strategies and to elucidate the causal pathways connecting various aspects of health.

  17. Form factors of the d*(2380 ) resonance

    NASA Astrophysics Data System (ADS)

    Dong, Yubing; Shen, Pengnian; Zhang, Zongye

    2018-06-01

    In order to explore the possible physical quantities for judging different structures of the newly observed resonance d*(2380 ), we study its electromagnetic form factors. In addition to the electric charge monopole C 0 , we calculate its electric quadrupole E 2 , magnetic dipole M 1 , and magnetic octupole M 3 form factors on the base of the realistic coupled Δ Δ +C8C8 channel d* wave function with both the S - and D -partial waves. The results show that the magnetic dipole moment and electric quadrupole deformation of d* are 7.602 and 2.53 ×10-2 fm2 , respectively. The calculated magnetic dipole moment in the naive constituent quark model is also compared with the result of D12π picture. By comparing with partial results where the d* state is considered with a single Δ Δ and with a D12π structures, we find that in addition to the charge distribution of d*, the magnetic dipole moment and magnetic radius can be used to discriminate different structures of d*. Moreover, a quite small electric quadrupole deformation indicates that d* is more inclined to a slightly oblate shape due to our compact hexaquark dominated structure of d*.

  18. Use of biorelevant media for assessment of a poorly soluble weakly basic drug in the form of liquisolid compacts: in vitro and in vivo study.

    PubMed

    Badawy, Mahmoud A; Kamel, Amany O; Sammour, Omaima A

    2016-01-01

    The purpose of this work is to use biorelevant media to evaluate the robustness of a poorly water soluble weakly basic drug to variations along the gastrointestinal tract (GIT) after incorporation in liquisolid compacts and to assess the success of these models in predicting the in vivo performance. Liquisolid tablets were prepared using mosapride citrate as a model drug. A factorial design experiment was used to study the effect of three factors, namely: drug concentration at two levels (5% and 10%), carriers at three levels (avicel, mannitol and lactose) and powder excipients ratio (R) of the coating material at two levels (25 and 30). The in vitro dissolution media utilized were 0.1 N HCl, hypoacidic stomach model and a transfer model simulating the transfer from the stomach to the intestine. All compacts released above 95% of drug after 10 min in 0.1 N HCl. In the hypoacidic model, the compacts with R 30 were superior compared to R 25, where they released >90% of drug after 10 min compared to 80% for R 25. After the transfer of the optimum compacts from Simulated gastric fluid fast (SGFfast) to fasted state simulated intestinal fluid, slight turbidity appeared after 30 min, and the amount of drug dissolved slightly decreased from 96.91% to 90.59%. However, after the transfer from SGFfast to fed state simulated intestinal fluid, no turbidity or precipitation occurred throughout time of the test (60 min). In vivo pharmacokinetic study in human volunteers proved the success of the in vitro models with enhancement of the oral bioavailability (121.20%) compared to the commercial product.

  19. A linearization of quantum channels

    NASA Astrophysics Data System (ADS)

    Crowder, Tanner

    2015-06-01

    Because the quantum channels form a compact, convex set, we can express any quantum channel as a convex combination of extremal channels. We give a Euclidean representation for the channels whose inverses are also valid channels; these are a subset of the extreme points. They form a compact, connected Lie group, and we calculate its Lie algebra. Lastly, we calculate a maximal torus for the group and provide a constructive approach to decomposing any invertible channel into a product of elementary channels.

  20. Ultraviolet to optical spectral distributions of northern star-forming galaxies

    NASA Technical Reports Server (NTRS)

    Mcquade, Kerry; Calzetti, Daniela; Kinney, Anne L.

    1995-01-01

    We report spectral energy distribution from the UV to the optical for a sample of 31 northern star-forming galaxies. We also present measurements for emission-line fluxes, continuum levels, and equivalent widths of absorption features for each individual spectrum as well as averages for the eight galactic activity classes, including normal, starburst, Seyfert 2, blue compact dwarf, blue compact, Low-Inonization Nuclear Emission Regions (LINER), H II, and combination LINER-H II galaxies.

  1. Report of the annual yield of the Arkansas River basin for the Arkansas River Basin Compact, Arkansas-Oklahoma,1983 water year

    USGS Publications Warehouse

    Moore, M.A.; Lamb, T.E.

    1984-01-01

    The computed annual yield and deficiency of the subbasins as defined in the Arkansas River Compact, Arkansas-Oklahoma, are given in tables. Actual runoff from the subbasins and depletion caused by major reservoirs in the compact area are also given in tabular form. Monthly, maximum, minimum, and mean discharges are shown for the 14 streamflow stations used in computing annual yield. (USGS)

  2. High strength-high conductivity Cu--Fe composites produced by powder compaction/mechanical reduction

    DOEpatents

    Verhoeven, John D.; Spitzig, William A.; Gibson, Edwin D.; Anderson, Iver E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an "in-situ" Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite.

  3. Compact Power Conditioning and RF Systems for a High Power RF Source

    DTIC Science & Technology

    2008-12-01

    RF systems have increasing potential for application by the Army. High power RF, or high power microwave ( HPM ), systems can disrupt or disable...that are small, lightweight, portable, and use an independent energy source. The resulting system will be able to produce HPM from a compact package...The consortium was formed to advance the technology of the components required for a compact HPM source with the final goal of full system

  4. Process for fabricating ZnO-based varistors

    DOEpatents

    Lauf, R.J.

    The invention is a process for producing ZnO-based varistors incorporating a metal oxide dopant. In one form, the invention comprises providing a varistor powder mix of colloidal particles of ZnO and metal-oxide dopants including Bi/sub 2/O/sub 3/. The mix is hot-pressed to form a compact at temperatures below 850/sup 0/C and under conditions effecting reduction of the ZnO to sub-stoichiometric oxide. This promotes densification while restricting liquid formation and grain growth. The compact then is heated under conditions restoring the zinc oxide to stoichiometric composition, thus improving the varistor properties of the compact. The process produces fine-grain varistors characterized by a high actual breakdown voltage and a high average breakdown voltage per individual grain boundary.

  5. Process for fabricating ZnO-based varistors

    DOEpatents

    Lauf, Robert J.

    1985-01-01

    The invention is a process for producing ZnO-based varistors incorporating a metal oxide dopant. In one form, the invention comprises providing a varistor powder mix of colloidal particles of ZnO and metal-oxide dopants including Bi.sub.2 O.sub.3. The mix is hot-pressed to form a compact at temperatures below 850.degree. C. and under conditions effecting reduction of the ZnO to sub-stoichiometric oxide. This promotes densification while restricting liquid formation and grain growth. The compact then is heated under conditions restoring the zinc oxide to stoichiometric composition, thus improving the varistor properties of the compact. The process produces fine-grain varistors characterized by a high actual breakdown voltage and a high average breakdown voltage per individual grain boundary.

  6. Advances in compact manufacturing for shape and performance controllability of large-scale components-a review

    NASA Astrophysics Data System (ADS)

    Qin, Fangcheng; Li, Yongtang; Qi, Huiping; Ju, Li

    2017-01-01

    Research on compact manufacturing technology for shape and performance controllability of metallic components can realize the simplification and high-reliability of manufacturing process on the premise of satisfying the requirement of macro/micro-structure. It is not only the key paths in improving performance, saving material and energy, and green manufacturing of components used in major equipments, but also the challenging subjects in frontiers of advanced plastic forming. To provide a novel horizon for the manufacturing in the critical components is significant. Focused on the high-performance large-scale components such as bearing rings, flanges, railway wheels, thick-walled pipes, etc, the conventional processes and their developing situations are summarized. The existing problems including multi-pass heating, wasting material and energy, high cost and high-emission are discussed, and the present study unable to meet the manufacturing in high-quality components is also pointed out. Thus, the new techniques related to casting-rolling compound precise forming of rings, compact manufacturing for duplex-metal composite rings, compact manufacturing for railway wheels, and casting-extruding continuous forming of thick-walled pipes are introduced in detail, respectively. The corresponding research contents, such as casting ring blank, hot ring rolling, near solid-state pressure forming, hot extruding, are elaborated. Some findings in through-thickness microstructure evolution and mechanical properties are also presented. The components produced by the new techniques are mainly characterized by fine and homogeneous grains. Moreover, the possible directions for further development of those techniques are suggested. Finally, the key scientific problems are first proposed. All of these results and conclusions have reference value and guiding significance for the integrated control of shape and performance in advanced compact manufacturing.

  7. A compact bipolar pulse-forming network-Marx generator based on pulse transformers.

    PubMed

    Zhang, Huibo; Yang, Jianhua; Lin, Jiajin; Yang, Xiao

    2013-11-01

    A compact bipolar pulse-forming network (PFN)-Marx generator based on pulse transformers is presented in this paper. The high-voltage generator consisted of two sets of pulse transformers, 6 stages of PFNs with ceramic capacitors, a switch unit, and a matched load. The design is characterized by the bipolar pulse charging scheme and the compact structure of the PFN-Marx. The scheme of bipolar charging by pulse transformers increased the withstand voltage of the ceramic capacitors in the PFNs and decreased the number of the gas gap switches. The compact structure of the PFN-Marx was aimed at reducing the parasitic inductance in the generator. When the charging voltage on the PFNs was 35 kV, the matched resistive load of 48 Ω could deliver a high-voltage pulse with an amplitude of 100 kV. The full width at half maximum of the load pulse was 173 ns, and its rise time was less than 15 ns.

  8. Compact LED based LCOS optical engine for mobile projection

    NASA Astrophysics Data System (ADS)

    Zhang, Wenzi; Li, Xiaoyan; Liu, Qinxiao; Yu, Feihong

    2009-11-01

    With the development of high power LED (light emitting diode) technology and color filter LCOS (liquid crystal on silicon) technology, the research on LED based micro optical engine for mobile projection has been a hot topic recently. In this paper one compact LED powered LCOS optical engine design is presented, which is intended to be embedded in cell phone, digital camera, and so on. Compared to DLP (digital light processor) and traditional color sequential LCOS technology, the color filter based LCOS panel is chosen for the compact optical engine, this is because only white LED is needed. To further decrease the size of the optical engine, only one specifically designed plastic free form lens is applied in the illumination part of the optical engine. This free form lens is designed so that it plays the roles of both condenser and integrator, by which the output light of LED is condensed and redistributed, and light illumination of high efficiency, high uniformity and small incident angle on LCOS is acquired. Besides PBS (polarization beam splitter), LCOS, and projection lens, the compact optical engine contains only this piece of free form plastic lens, which can be produced by plastic injection molding. Finally a white LED powered LCOS optical engine with a compact size of less than 6.6 cc can be acquired. With the ray tracing simulation result, the light efficiency analysis shows that the output flux is over 8.5 ANSI lumens and the ANSI uniformity of over 80%.

  9. Compact microchannel system

    DOEpatents

    Griffiths, Stewart

    2003-09-30

    The present invention provides compact geometries for the layout of microchannel columns through the use of turns and straight channel segments. These compact geometries permit the use of long separation or reaction columns on a small microchannel substrate or, equivalently, permit columns of a fixed length to occupy a smaller substrate area. The new geometries are based in part on mathematical analyses that provide the minimum turn radius for which column performance in not degraded. In particular, we find that straight channel segments of sufficient length reduce the required minimum turn radius, enabling compact channel layout when turns and straight segments are combined. The compact geometries are obtained by using turns and straight segments in overlapped or nested arrangements to form pleated or coiled columns.

  10. CANDELS+3D-HST: Compact SFGs at z ∼ 2-3, the progenitors of the first quiescent galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barro, G.; Faber, S. M.; Koo, D. C.

    We analyze the star-forming and structural properties of 45 massive (log(M/M{sub ☉}) >10) compact star-forming galaxies (SFGs) at 2 < z < 3 to explore whether they are progenitors of compact quiescent galaxies at z ∼ 2. The optical/NIR and far-IR Spitzer/Herschel colors indicate that most compact SFGs are heavily obscured. Nearly half (47%) host an X-ray-bright active galactic nucleus (AGN). In contrast, only about 10% of other massive galaxies at that time host AGNs. Compact SFGs have centrally concentrated light profiles and spheroidal morphologies similar to quiescent galaxies and are thus strikingly different from other SFGs, which typically aremore » disk-like and sometimes clumpy or irregular. Most compact SFGs lie either within the star formation rate (SFR)-mass main sequence (65%) or below it (30%), on the expected evolutionary path toward quiescent galaxies. These results show conclusively that galaxies become more compact before they lose their gas and dust, quenching star formation. Using extensive HST photometry from CANDELS and grism spectroscopy from the 3D-HST survey, we model their stellar populations with either exponentially declining (τ) star formation histories (SFHs) or physically motivated SFHs drawn from semianalytic models (SAMs). SAMs predict longer formation timescales and older ages ∼2 Gyr, which are nearly twice as old as the estimates of the τ models. Both models yield good spectral energy distribution fits, indicating that the systematic uncertainty in the age due to degeneracies in the SFH is of that order of magnitude. However, SAM SFHs better match the observed slope and zero point of the SFR-mass main sequence. Contrary to expectations, some low-mass compact SFGs (log(M/M{sub ☉}) =10-10.6) have younger ages but lower specific SFRs than that of more massive galaxies, suggesting that the low-mass galaxies reach the red sequence faster. If the progenitors of compact SFGs are extended SFGs, state-of-the-art SAMs show that mergers and disk instabilities (DIs) are both able to shrink galaxies, but DIs are more frequent (60% versus 40%) and form more concentrated galaxies. We confirm this result via high-resolution hydrodynamic simulations.« less

  11. Galaxy interactions in compact groups - II. Abundance and kinematic anomalies in HCG 91c

    NASA Astrophysics Data System (ADS)

    Vogt, Frédéric P. A.; Dopita, Michael A.; Borthakur, Sanchayeeta; Verdes-Montenegro, Lourdes; Heckman, Timothy M.; Yun, Min S.; Chambers, Kenneth C.

    2015-07-01

    Galaxies in Hickson Compact Group 91 (HCG 91) were observed with the WiFeS integral field spectrograph as part of our ongoing campaign targeting the ionized gas physics and kinematics inside star-forming members of compact groups. Here, we report the discovery of H II regions with abundance and kinematic offsets in the otherwise unremarkable star-forming spiral HCG 91c. The optical emission line analysis of this galaxy reveals that at least three H II regions harbour an oxygen abundance ˜0.15 dex lower than expected from their immediate surroundings and from the abundance gradient present in the inner regions of HCG 91c. The same star-forming regions are also associated with a small kinematic offset in the form of a lag of 5-10 km s-1 with respect to the local circular rotation of the gas. H I observations of HCG 91 from the Very Large Array and broad-band optical images from Pan-STARRS (Panoramic Survey Telescope And Rapid Response System) suggest that HCG 91c is caught early in its interaction with the other members of HCG 91. We discuss different scenarios to explain the origin of the peculiar star-forming regions detected with WiFeS, and show that evidence points towards infalling and collapsing extraplanar gas clouds at the disc-halo interface, possibly as a consequence of long-range gravitational perturbations of HCG 91c from the other group members. As such, HCG 91c provides evidence that some of the perturbations possibly associated with the early phase of galaxy evolution in compact groups impact the star-forming disc locally, and on sub-kpc scales.

  12. Improved compaction of dried tannery wastewater sludge.

    PubMed

    Della Zassa, M; Zerlottin, M; Refosco, D; Santomaso, A C; Canu, P

    2015-12-01

    We quantitatively studied the advantages of improving the compaction of a powder waste by several techniques, including its pelletization. The goal is increasing the mass storage capacity in a given storage volume, and reducing the permeability of air and moisture, that may trigger exothermic spontaneous reactions in organic waste, particularly as powders. The study is based on dried sludges from a wastewater treatment, mainly from tanneries, but the indications are valid and useful for any waste in the form of powder, suitable to pelletization. Measurements of bulk density have been carried out at the industrial and laboratory scale, using different packing procedures, amenable to industrial processes. Waste as powder, pellets and their mixtures have been considered. The bulk density of waste as powder increases from 0.64 t/m(3) (simply poured) to 0.74 t/m(3) (tapped) and finally to 0.82 t/m(3) by a suitable, yet simple, packing procedure that we called dispersion filling, with a net gain of 28% in the compaction by simply modifying the collection procedure. Pelletization increases compaction by definition, but the packing of pellets is relatively coarse. Some increase in bulk density of pellets can be achieved by tapping; vibration and dispersion filling are not efficient with pellets. Mixtures of powder and pellets is the optimal packing policy. The best compaction result was achieved by controlled vibration of a 30/70 wt% mixture of powders and pellets, leading to a final bulk density of 1t/m(3), i.e. an improvement of compaction by more than 54% with respect to simply poured powders, but also larger than 35% compared to just pellets. That means increasing the mass storage capacity by a factor of 1.56. Interestingly, vibration can be the most or the least effective procedure to improve compaction of mixtures, depending on characteristics of vibration. The optimal packing (30/70 wt% powders/pellets) proved to effectively mitigate the onset of smouldering, leading to self-heating, according to standard tests, whereas the pure pelletization totally removes the self-heating hazard. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. High strength-high conductivity Cu-Fe composites produced by powder compaction/mechanical reduction

    DOEpatents

    Verhoeven, J.D.; Spitzig, W.A.; Gibson, E.D.; Anderson, I.E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an ''in-situ'' Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite. 5 figures.

  14. Convergence of moment expansions for expectation values with embedded random matrix ensembles and quantum chaos

    NASA Astrophysics Data System (ADS)

    Kota, V. K. B.

    2003-07-01

    Smoothed forms for expectation values < K> E of positive definite operators K follow from the K-density moments either directly or in many other ways each giving a series expansion (involving polynomials in E). In large spectroscopic spaces one has to partition the many particle spaces into subspaces. Partitioning leads to new expansions for expectation values. It is shown that all the expansions converge to compact forms depending on the nature of the operator K and the operation of embedded random matrix ensembles and quantum chaos in many particle spaces. Explicit results are given for occupancies < ni> E, spin-cutoff factors < JZ2> E and strength sums < O†O> E, where O is a one-body transition operator.

  15. Determinants of urban resource use and resilience: a comprehensive framework

    NASA Astrophysics Data System (ADS)

    Romero-Lankao, P.; Bourgeron, P.; Gochis, D. J.; Rothman, D. S.; Wilhelmi, O.

    2015-12-01

    During the past decades urbanization has proceeded at unprecedented - yet varied - rates across urban areas globally. The social and environmental transformations implied by urban development have put many regions at risk of transforming the very characteristics that make them attractive and healthy. Meanwhile, climate change is adding new sources of risk and an array of uncertainties to the mix. These changes create risks that vary according to the characteristics of the demographic, economic, ecological, built-environment (technological) and governance dimensions of urbanization and urban areas as socioecological systems. However, few studies have explored the variation in these dimensions across urban areas. I will present a comprehensive analytical framework that explores, in urban areas, patterns of interplay, synergy and tradeoff between socio-demographic, economic, technological, ecological, and governance (SETEG) factors as they shape two issues, traditionally analyzed by separate disciplinary domains: resource use and resilience to climate hazards. Three questions guide this effort: 1) What indicators can be used to socio-demographic, economic, technological, ecological, and governance (SETEG) determinants of urban populations' resource use and resilience to climate hazards? 2) What indicators are important? 3) What combinations (i.e., tradeoffs, synergies) of causal factors better explain urban populations' resource use and resilience to hazards? The interplay between these factors as they shape a population's resource use and resilience is not exempted from synergies and tradeoffs that require careful analysis. Consider population density, a key indicator of urban form. Scholars have found that while more compact cities are more energy efficient and emit less GHG, heat stress is much worse in more compact cities. This begs the question of which combination of urban form factors need to be considered by urban planners when designing effective urban/environmental interventions. The framework, that builds on empirical work globally and in the cities of Buenos Aires, Mexico, Santiago and Mumbai, is intended to inform the design of more effective urban mitigation and adaptation policies.

  16. Impacts into porous asteroids

    NASA Astrophysics Data System (ADS)

    Housen, Kevin R.; Sweet, William J.; Holsapple, Keith A.

    2018-01-01

    Many small bodies in the solar system have bulk density well below the solid density of the constituent mineral grains in their meteorite counterparts. Those low-density bodies undoubtedly have significant porosity, which is a key factor that affects the formation of impact craters. This paper summarizes the results of lab experiments in which materials with porosity ranging from 43% to 96% were impacted at ∼1800 m/s. The experiments were performed on a geotechnical centrifuge, in order to reproduce the lithostatic overburden stress and ejecta ballistics that occur in large-scale cratering events on asteroids or planetary satellites. Experiments performed at various accelerations, up to 514G, simulate the outcomes of impacts at size scales up to several tens of km in diameter. Our experiments show that an impact into a highly porous cohesionless material generates a large ovoid-shaped cavity, due to crushing by the outgoing shock. The cavity opens up to form a transient crater that grows until the material flow is arrested by gravity. The cavity then collapses to form the final crater. During collapse, finely crushed material that lines the cavity wall is carried down and collected in a localized region below the final crater floor. At large simulated sizes (high accelerations), most of the crater volume is formed by compaction, because growth of the transient crater is quickly arrested. Nearly all ejected material falls back into the crater, leaving the crater without an ejecta blanket. We find that such compaction cratering and suppression of the ejecta blankets occur for large craters on porous bodies when the ratio of the lithostatic stress at one crater depth to the crush strength of the target exceeds ∼0.005. The results are used to identify small solar system bodies on which compaction cratering likely occurs. A model is developed that gives the crater size and ejecta mass that would result for a specified impact into a porous object.

  17. Strange stars in f(R,Script T) gravity

    NASA Astrophysics Data System (ADS)

    Deb, Debabrata; Rahaman, Farook; Ray, Saibal; Guha, B. K.

    2018-03-01

    In this article we try to present spherically symmetric isotropic strange star model under the framework of f(R,Script T) theory of gravity. To this end, we consider that the Lagrangian density is a linear function of the Ricci scalar R and the trace of the energy momentum tensor Script T given as f(R,Script T)=R+2χ Script T. We also assume that the quark matter distribution is governed by the simplest form of the MIT bag model equation of state (EOS) as p=1/3(ρ‑4B), where B is the bag constant. We have obtained an exact solution of the modified form of the Tolman-Oppenheimer-Volkoff (TOV) equation in the framework of f(R,Script T) gravity theory and have studied the dependence of different physical properties, viz., the total mass, radius, energy density and pressure for the chosen values of χ. Further, to examine physical acceptability of the proposed stellar model, we have conducted different tests in detail, viz., the energy conditions, modified TOV equation, mass-radius relation, causality condition etc. We have precisely explained the effects arising due to the coupling of the matter and geometry on the compact stellar system. For a chosen value of the bag constant, we have predicted numerical values of the different physical parameters in tabular form for the different strange star candidates. It is found that as the factor χ decreases the strange star candidates become gradually massive and larger in size with less dense stellar configuration. However, when χ increases the stars shrink gradually and become less massive to turn into a more compact stellar system. Hence for χ>0 our proposed model is suitable to explain the ultra-dense compact stars well within the observational limits and for χ<0 case allows to represent the recent massive pulsars and super-Chandrasekhar stars. For χ=0 we retrieve as usual the standard results of the general relativity (GR).

  18. The diversity of evolutionary pathways of compact elliptical galaxies in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Wellons, Sarah

    2017-01-01

    Observations of the high-redshift universe have revealed a population of galaxies which are already very massive (~1e11 solar masses at z=2) and have typical sizes of < 2 kpc, much smaller than their counterparts in the local universe. How such dense, massive galaxies form, and why they appear to be less common at low redshift, have been questions of interest for both theorists and observers. I will discuss these questions in the context of the Illustris simulation, a hydrodynamical cosmological simulation in which tens of thousands of galaxies form, evolve, and interact with each other, situated within a cosmological context. I select a group of massive compact galaxies at z=2 in the simulation and trace them back and forth in time to discover both how they formed at high redshift, and what they evolve into at the present day. I find a variety of both progenitors (compact galaxies form in the simulation either via central starbursts generally brought on by mergers, or by racing out to the tip of the SF main sequence and forming very early) and descendants (many formerly-compact galaxies lurk at the core of a more massive galaxy today, others were consumed in mergers, and some evolve passively and undisturbed). I will also discuss the implications of these results for observational methods of connecting galaxy populations across redshifts - in particular, the assumption of a constant cumulative comoving number density - and suggest an improvement to this method which takes the complexity and variety of galaxies' evolutionary paths into account.

  19. Design and Experimental Investigation of a Compact Circularly Polarized Integrated Filtering Antenna for Wearable Biotelemetric Devices.

    PubMed

    Jiang, Zhi Hao; Gregory, Micah D; Werner, Douglas H

    2016-04-01

    A compact circularly polarized (CP) integrated filtering antenna is reported for wearable biotelemetric devices in the 2.4 GHz ISM band. The design is based on a mutual synthesis of a CP patch antenna connected to a bandpass filter composed of coupled stripline open-loop resonators, which provides an integrated low-profile radiating and filtering module with a compact form factor of 0.44λ(0)×0.44λ(0)×0.04λ(0). The optimized filtering antenna is fabricated and measured, achieving an S11 < -14 dB, an axial ratio of less than 3 dB and gain higher than 3.5 dBi in the targeted ISM band. With the integrated filtering functionality, the antenna exhibits good out-of-band rejection over an ultra-wide frequency range of 1-6 GHz. Further full-wave simulations and experiments were carried out, verifying that the proposed filtering antenna maintains these desirable properties even when mounted in close proximity to the human body at different positions. The stable impedance performance and the simultaneous wide axial ratio and radiated power beam widths make it an ideal candidate as a wearable antenna for off-body communications. The additional integrated filtering functionality further improves utility by greatly reducing interference and crosstalk with other existing wireless systems.

  20. New Ultra-Compact Dwarf Galaxies in Clusters

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    How do ultra-compact dwarf galaxies (UCDs) galaxies that are especially small and dense form and evolve? Scientists have recently examined distant galaxy clusters, searching for more UCDs to help us answer this question.Origins of DwarfsIn recent years we have discovered a growing sample of small, very dense galaxies. Galaxies that are tens to hundreds of light-years across, with masses between a million and a billion solar masses, fall into category of ultra-compact dwarfs (UCDs).An example of an unresolved compact object from the authors survey that is likely an ultra-compact dwarf galaxy. [Adapted from Zhang Bell 2017]How do these dense and compact galaxies form? Two possibilities are commonly suggested:An initially larger galaxy was tidally stripped during interactions with other galaxies in a cluster, leaving behind only its small, dense core as a UCD.UCDs formed as compact galaxies at very early cosmic times. The ones living in a massive dark matter halo may have been able to remain compact over time, evolving into the objectswe see today.To better understand which of these formation scenarios applies to which galaxies, we need a larger sample size! Our census of UCDs is fairly limited and because theyare small and dim, most of the ones weve discovered are in the nearby universe. To build a good sample, we need to find UCDs at higher redshifts as well.A New SampleIn a recent study, two scientists from University of Michigan have demonstrated how we might find more UCDs. Yuanyuan Zhang (also affiliated with Fermilab) and Eric Bell used the Cluster Lensing and Supernova Survey with Hubble (CLASH) to search 17 galaxy clusters at intermediate redshifts of 0.2 z 0.6, looking for unresolved objects that might be UCDs.The mass and size distributions of the UCD candidates reported in this study, in the context of previously known nuclear star clusters, globular clusters (GCs), UCDs, compact elliptical galaxies (cEs), and dwarf galaxies. [Zhang Bell 2017]Zhang and Bell discovered a sample of compact objects grouped around the central galaxies of the clusters that are consistent with ultra-compact galaxies. The inferred sizes (many around 600 light-years in radius) and masses (roughly one billion solar masses) of these objects suggest that this sample may contain some of the densest UCDs discovered to date.The properties of this new set of UCD candidates arent enough to distinguish between formation scenarios yet, but the authors argue that if we find more such galaxies, we will be able to use the statistics of their spatial and color distributions to determine how they were formed.Zhang and Bell estimate that the 17 CLASH clusters studied in this work each contain an average of 2.7 of these objects in the central million light-years of the cluster. The authors work here suggests that searching wide-field survey data for similar discoveries is a plausible way to increase our sample of UCDs. This will allow us to statistically characterize these dense, compact galaxies and better understand their origins.CitationYuanyuan Zhang and Eric F. Bell 2017 ApJL 835 L2. doi:10.3847/2041-8213/835/1/L2

  1. Non compaction cardiomyopathy: Review of a controversial entity.

    PubMed

    Lorca, Rebeca; Rozado, José; Martín, María

    2018-05-11

    Non-compaction cardiomyopathy is a heterogeneous and complex entity concerning which there are still many doubts to be resolved. While the American Heart Association includes it among genetic cardiomyopathies, the European Society of Cardiology treats it as an unclassified cardiomyopathy. It may present in a sporadic or familial form, isolated or associated with other heart diseases, affecting only the left ventricle or both and can sometimes appear as a mixed phenotype in patients with other cardiomyopathies. Different forms of clinical presentation are also associated with its different morphological manifestations, and even non-compaction of the left ventricle may be triggered by other physiological or pathological processes. The purpose of this review is an update of this entity and its controversies. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  2. Study of Diffusion Bonding of 45 Steel through the Compacted Nickel Powder Layer

    NASA Astrophysics Data System (ADS)

    Zeer, G. M.; Zelenkova, E. G.; Temnykh, V. I.; Tokmin, A. M.; Shubin, A. A.; Koroleva, Yu. P.; Mikheev, A. A.

    2018-02-01

    The microstructure of the transition zone and powder spacer, the concentration distribution of chemical elements over the width of the diffusion-bonded joint, and microhardness of 45 steel-compacted Ni powder spacer-45 steel layered composites formed by diffusion bonding have been investigated. It has been shown that the relative spacer thickness χ < 0.06 is optimal for obtaining a high-quality joint has been formed under a compacting pressure of 500 MPa. The solid-state diffusion bonding is accompanied by sintering the nickel powder spacer and the formation of the transition zone between the spacer and steel. The transition zone consists of solid solution of nickel in the α-Fe phase and ordered solid solution of iron in nickel (FeNi3).

  3. Mode 1 stress intensity factors for round compact specimens

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1976-01-01

    The mode 1 stress intensity factors were computed for round compact specimens by the boundary collocation method. Results are presented for ratios A sub T/R sub 0 in the range 0.3 to 0.8, where A sub t is the distance from the specimen center to the crack tip for a specimen of diameter 2R sub 0.

  4. Enhancing the efficiency of planar heterojunction perovskite solar cells via interfacial engineering with 3-aminopropyl trimethoxy silane hydrolysate

    PubMed Central

    Wang, Ya-Qiong; Xu, Shou-Bin; Deng, Jian-Guo

    2017-01-01

    The interfacial compatibility between compact TiO2 and perovskite layers is critical for the performance of planar heterojunction perovskite solar cells (PSCs). A compact TiO2 film employed as an electron-transport layer (ETL) was modified using 3-aminopropyl trimethoxy silane (APMS) hydrolysate. The power conversion efficiency (PCE) of PSCs composed of an APMS-hydrolysate-modified TiO2 layer increased from 13.45 to 15.79%, which was associated with a significant enhancement in the fill factor (FF) from 62.23 to 68.04%. The results indicate that APMS hydrolysate can enhance the wettability of γ-butyrolactone (GBL) on the TiO2 surface, form a perfect CH3NH3PbI3 film, and increase the recombination resistance at the interface. This work demonstrates a simple but efficient method to improve the TiO2/perovskite interface that can be greatly beneficial for developing high-performance PSCs. PMID:29308238

  5. Enhancing the efficiency of planar heterojunction perovskite solar cells via interfacial engineering with 3-aminopropyl trimethoxy silane hydrolysate

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Qiong; Xu, Shou-Bin; Deng, Jian-Guo; Gao, Li-Zhen

    2017-12-01

    The interfacial compatibility between compact TiO2 and perovskite layers is critical for the performance of planar heterojunction perovskite solar cells (PSCs). A compact TiO2 film employed as an electron-transport layer (ETL) was modified using 3-aminopropyl trimethoxy silane (APMS) hydrolysate. The power conversion efficiency (PCE) of PSCs composed of an APMS-hydrolysate-modified TiO2 layer increased from 13.45 to 15.79%, which was associated with a significant enhancement in the fill factor (FF) from 62.23 to 68.04%. The results indicate that APMS hydrolysate can enhance the wettability of γ-butyrolactone (GBL) on the TiO2 surface, form a perfect CH3NH3PbI3 film, and increase the recombination resistance at the interface. This work demonstrates a simple but efficient method to improve the TiO2/perovskite interface that can be greatly beneficial for developing high-performance PSCs.

  6. Enhancing the efficiency of planar heterojunction perovskite solar cells via interfacial engineering with 3-aminopropyl trimethoxy silane hydrolysate.

    PubMed

    Wang, Ya-Qiong; Xu, Shou-Bin; Deng, Jian-Guo; Gao, Li-Zhen

    2017-12-01

    The interfacial compatibility between compact TiO 2 and perovskite layers is critical for the performance of planar heterojunction perovskite solar cells (PSCs). A compact TiO 2 film employed as an electron-transport layer (ETL) was modified using 3-aminopropyl trimethoxy silane (APMS) hydrolysate. The power conversion efficiency (PCE) of PSCs composed of an APMS-hydrolysate-modified TiO 2 layer increased from 13.45 to 15.79%, which was associated with a significant enhancement in the fill factor (FF) from 62.23 to 68.04%. The results indicate that APMS hydrolysate can enhance the wettability of γ-butyrolactone (GBL) on the TiO 2 surface, form a perfect CH 3 NH 3 PbI 3 film, and increase the recombination resistance at the interface. This work demonstrates a simple but efficient method to improve the TiO 2 /perovskite interface that can be greatly beneficial for developing high-performance PSCs.

  7. Big capabilities in small packages: hyperspectral imaging from a compact platform

    NASA Astrophysics Data System (ADS)

    Beasley, Matthew; Goldberg, Hannah; Voorhees, Christopher; Illsley, Peter

    2016-09-01

    We present the Compact Holographic Aberration-corrected Platform (CHAP) instrument, designed and developed at Planetary Resources Development Corporation. By combining a dispersive element with the secondary of a telescope, we are able to produce a relatively long focal length with moderate dispersion at the focal plane. This design enables us to build a capable hyperspectral imaging instrument within the size constraints of the Cubesat form-factor. The advantages of our design revolves around its simplicity: there are only two optical elements, producing both a white light and diffracted image. With the use of a replicated grating, we can produce a long focal length hyperspectral imager at a price point far below other spaceflight instruments. The design is scalable for larger platforms and since it has no transmitting optics and only two reflective surfaces could be designed to function at any desired wavelength. Our system will be capable of spectral imaging across the 400 to 900 nm spectral range for use in small body surveys.

  8. The Atmospheric Dynamics of Alpha Tau (K5 III) -- Clues to Understanding the Magnetic Dynamo

    NASA Technical Reports Server (NTRS)

    Carpenter Kenneth G.

    2008-01-01

    Using HST/GHRS, HST/STIS and FUSE archival data for (alpha) Tau and the CHIANTI spectroscopic code, we have derived line shifts, volumetric emission measures, and plasma density estimates, and calculated filling factors for a number of UV lines forming between 10,000 K and 300,000 K in the outer atmosphere of this red giant star. The data suggest the presence of low-temperature extended regions and high-temperature compact regions, associated with magnetically open and closed structures in the stellar atmosphere, respectively. The signatures of UV lines from Alpha Tau can be consistently understood via a model of upward-traveling Alfven waves in a gravitationally stratified atmosphere. These wakes cause non-thermal broadening in UV lines due to unresolved wave motions and downward plasma motions in compact magnetic loops heated by resonant .4lf\\en wave heating. We discuss implications of this interpretation for understanding the nature of magnetic dynamos operating in late-type giants.

  9. A Search for X-ray Emission in Isolated Compact Triplets

    NASA Technical Reports Server (NTRS)

    Brown, Beth A.; Williams, Barbara

    2006-01-01

    We describe preliminary results of an exploratory search for diffuse X-ray emission in a sample of the poorest galaxy groups, i.e., isolated compact triplets of galaxies. These systems represent the simplest forms of galaxy clustering while manifesting all the complexities inherent in other groups. We have selected 20 compact triplets for this initial study. The component galaxies are expected to interact with each other and with the group's intergalactic medium, if present, in complex ways that trigger high-energy processes.

  10. Studying the compactibility of the VT22 high-strength alloy powder obtained by the PREP method

    NASA Astrophysics Data System (ADS)

    Kryuchkov, D. I.; Berezin, I. M.; Nesterenko, A. V.; Zalazinsky, A. G.; Vichuzhanin, D. I.

    2017-12-01

    Compression curves are plotted for VT22 high-strength alloy powder under conditions of uniaxial compression at room temperature. The density of the compacted briquette at the loading and unloading stages is determined. It is demonstrated that strong interparticle bonds are formed in the area of the action of shear deformation. The results are supposed to be used to identify the flow model of the material studied and to perform the subsequent numerical modeling of the compaction process.

  11. Low density microcellular carbon or catalytically impregnated carbon foams and process for their prepartion

    DOEpatents

    Hopper, Robert W.; Pekala, Richard W.

    1988-01-01

    Machinable and structurally stable, low density microcellular carbon, and catalytically impregnated carbon, foams, and process for their preparation, are provided. Pulverized sodium chloride is classified to improve particle size uniformity, and the classified particles may be further mixed with a catalyst material. The particles are cold pressed into a compact having internal pores, and then sintered. The sintered compact is immersed and then submerged in a phenolic polymer solution to uniformly fill the pores of the compact with phenolic polymer. The compact is then heated to pyrolyze the phenolic polymer into carbon in the form of a foam. Then the sodium chloride of the compact is leached away with water, and the remaining product is freeze dried to provide the carbon, or catalytically impregnated carbon, foam.

  12. Low density microcellular carbon or catalytically impregnated carbon foams and process for their preparation

    DOEpatents

    Hooper, R.W.; Pekala, R.W.

    1987-04-30

    Machinable and structurally stable, low density microcellular carbon, and catalytically impregnated carbon, foams, and process for their preparation, are provided. Pulverized sodium chloride is classified to improve particle size uniformity, and the classified particles may be further mixed with a catalyst material. The particles are cold pressed into a compact having internal pores, and then sintered. The sintered compact is immersed and then submerged in a phenolic polymer solution to uniformly fill the pores of the compact with phenolic polymer. The compact is then heated to pyrolyze the phenolic polymer into carbon in the form of a foam. Then the sodium chloride of the compact is leached away with water, and the remaining product is freeze dried to provide the carbon, or catalytically impregnated carbon, foam.

  13. Steady state compact toroidal plasma production

    DOEpatents

    Turner, William C.

    1986-01-01

    Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

  14. Fibulin 5 Forms a Compact Dimer in Physiological Solutions*

    PubMed Central

    Jones, Richard P. O.; Wang, Ming-Chuan; Jowitt, Thomas A.; Ridley, Caroline; Mellody, Kieran T.; Howard, Marjorie; Wang, Tao; Bishop, Paul N.; Lotery, Andrew J.; Kielty, Cay M.; Baldock, Clair; Trump, Dorothy

    2009-01-01

    Fibulin 5 is a 52-kDa calcium-binding epidermal growth factor (cbEGF)-rich extracellular matrix protein that is essential for the formation of elastic tissues. Missense mutations in fibulin 5 cause the elastin disorder cutis laxa and have been associated with age-related macular degeneration, a leading cause of blindness. We investigated the structure, hydrodynamics, and oligomerization of fibulin 5 using small angle x-ray scattering, EM, light scattering, circular dichroism, and sedimentation. Compact structures for the monomer were determined by small angle x-ray scattering and EM, and are supported by close agreement between the theoretical sedimentation of the structures and the experimental sedimentation of the monomer in solution. EM showed that monomers associate around a central cavity to form a dimer. Light scattering and equilibrium sedimentation demonstrated that the equilibrium between the monomer and the dimer is dependent upon NaCl and Ca2+ concentrations and that the dimer is dominant under physiological conditions. The dimerization of fragments containing just the cbEGF domains suggests that intermolecular interactions between cbEGFs cause dimerization of fibulin 5. It is possible that fibulin 5 functions as a dimer during elastinogenesis or that dimerization may provide a method for limiting interactions with binding partners such as tropoelastin. PMID:19617354

  15. The formation of compact groups of galaxies. I: Optical properties

    NASA Technical Reports Server (NTRS)

    Diaferio, Antonaldo; Geller, Margaret J.; Ramella, Massimo

    1994-01-01

    The small crossing time of compact groups of galaxies (t(sub cr)H(sub 0) approximately less than 0.02) makes it hard to understand why they are observable at all. Our dissipationless N-body simulations show that within a single rich collapsing group compact groups of galaxies continually form. The mean lifetime of a particular compact configuration if approximately 1 Gyr. On this time scale, members may merge and/or other galaxies in the loose group may join the compact configuration. In other words, compact configurations are continually replaced by new systems. The frequency of this process explains the observability of compact groups. Our model produces compact configurations (compact groups (CG's) with optical properties remarkably similar to Hickson's (1982) compact groups (HCG's): (1) CG's have a frequency distribution of members similar to that of HCG's; (2) CG's are approximately equals 10 times as dense as loose groups; (3) CG's have dynamical properties remarkably similar to those of HCG's; (4) most of the galaxy members of CG's are not merger remnants. The crucial aspect of the model is the relationship between CG's and the surrounding rich loose group. Our model predicts the frequency of occurrence of CG's. A preliminary analysis of 18 rich loose groups is consistent with the model prediction. We suggest further observational tests of the model.

  16. The diverse evolutionary paths of simulated high-z massive, compact galaxies to z = 0

    NASA Astrophysics Data System (ADS)

    Wellons, Sarah; Torrey, Paul; Ma, Chung-Pei; Rodriguez-Gomez, Vicente; Pillepich, Annalisa; Nelson, Dylan; Genel, Shy; Vogelsberger, Mark; Hernquist, Lars

    2016-02-01

    Massive quiescent galaxies have much smaller physical sizes at high redshift than today. The strong evolution of galaxy size may be caused by progenitor bias, major and minor mergers, adiabatic expansion, and/or renewed star formation, but it is difficult to test these theories observationally. Herein, we select a sample of 35 massive, compact galaxies (M* = 1-3 × 1011 M⊙, M*/R1.5 > 1010.5 M⊙/kpc1.5) at z = 2 in the cosmological hydrodynamical simulation Illustris and trace them forwards to z = 0 to uncover their evolution and identify their descendants. By z = 0, the original factor of 3 difference in stellar mass spreads to a factor of 20. The dark matter halo masses similarly spread from a factor of 5 to 40. The galaxies' evolutionary paths are diverse: about half acquire an ex situ envelope and are the core of a more massive descendant, a third survive undisturbed and gain very little mass, 15 per cent are consumed in a merger with a more massive galaxy, and a small remainder are thoroughly mixed by major mergers. The galaxies grow in size as well as mass, and only ˜10 per cent remain compact by z = 0. The majority of the size growth is driven by the acquisition of ex situ mass. The most massive galaxies at z = 0 are the most likely to have compact progenitors, but this trend possesses significant dispersion which precludes a direct linkage to compact galaxies at z = 2. The compact galaxies' merger rates are influenced by their z = 2 environments, so that isolated or satellite compact galaxies (which are protected from mergers) are the most likely to survive to the present day.

  17. Deep Compaction Control of Sandy Soils

    NASA Astrophysics Data System (ADS)

    Bałachowski, Lech; Kurek, Norbert

    2015-02-01

    Vibroflotation, vibratory compaction, micro-blasting or heavy tamping are typical improvement methods for the cohesionless deposits of high thickness. The complex mechanism of deep soil compaction is related to void ratio decrease with grain rearrangements, lateral stress increase, prestressing effect of certain number of load cycles, water pressure dissipation, aging and other effects. Calibration chamber based interpretation of CPTU/DMT can be used to take into account vertical and horizontal stress and void ratio effects. Some examples of interpretation of soundings in pre-treated and compacted sands are given. Some acceptance criteria for compaction control are discussed. The improvement factors are analysed including the normalised approach based on the soil behaviour type index.

  18. Richness of compact radio sources in NGC 6334D to F

    NASA Astrophysics Data System (ADS)

    Medina, S.-N. X.; Dzib, S. A.; Tapia, M.; Rodríguez, L. F.; Loinard, L.

    2018-02-01

    Context. The presence and properties of compact radio sources embedded in massive star forming regions can reveal important physical properties about these regions and the processes occurring within them. The NGC 6334 complex, a massive star forming region, has been studied extensively. Nevertheless, none of these studies has focused in its content in compact radio sources. Aims: Our goal here is to report on a systematic census of the compact radio sources toward NGC 6334, and their characteristics. This will be used to attempt to define their very nature. Methods: We used the VLA C band (4-8 GHz) archive data with 0.̋36 (500 AU) of spatial resolution and noise level of 50 μJy bm‑1 to carry out a systematic search for compact radio sources within NGC 6334. We also searched for infrared counterparts to provide some constraints on the nature of the detected radio sources. Results: A total of 83 compact sources and three slightly resolved sources were detected. Most of them are here reported for the first time. We found that 29 of these 86 sources have infrared counterparts and three are highly variable. Region D contains 18 of these sources. The compact source toward the center, in projection, of region E is also detected. Conclusions: From statistical analyses, we suggest that the 83 reported compact sources are real and most of them are related to NGC 6334 itself. A stellar nature for 27 of them is confirmed by their IR emission. Compared with Orion, region D suffers a deficit of compact radio sources. The infrared nebulosities around two of the slightly resolved sources are suggested to be warm dust, and we argue that the associated radio sources trace free-free emission from ionized material. We confirm the thermal radio emission of the compact source in region E. However, its detection at infrared wavelengths implies that it is located in the foreground of the molecular cloud. Finally, three strongly variable sources are suggested to be magnetically active young stars.

  19. Chirality-selected phase behaviour in ionic polypeptide complexes

    DOE PAGES

    Perry, Sarah L.; Leon, Lorraine; Hoffmann, Kyle Q.; ...

    2015-01-14

    In this study, polyelectrolyte complexes present new opportunities for self-assembled soft matter. Factors determining whether the phase of the complex is solid or liquid remain unclear. Ionic polypeptides enable examination of the effects of stereochemistry on complex formation. Here we demonstrate that chirality determines the state of polyelectrolyte complexes, formed from mixing dilute solutions of oppositely charged polypeptides, via a combination of electrostatic and hydrogen-bonding interactions. Fluid complexes occur when at least one of the polypeptides in the mixture is racemic, which disrupts backbone hydrogen-bonding networks. Pairs of purely chiral polypeptides, of any sense, form compact, fibrillar solids with amore » β-sheet structure. Analogous behaviour occurs in micelles formed from polypeptide block copolymers with polyethylene oxide, where assembly into aggregates with either solid or fluid cores, and eventually into ordered phases at high concentrations, is possible. Chirality is an exploitable tool for manipulating material properties in polyelectrolyte complexation.« less

  20. Compact, Highly Efficient, and Fully Flexible Circularly Polarized Antenna Enabled by Silver Nanowires for Wireless Body-Area Networks.

    PubMed

    Jiang, Zhi Hao; Cui, Zheng; Yue, Taiwei; Zhu, Yong; Werner, Douglas H

    2017-08-01

    A compact and flexible circularly polarized (CP) wearable antenna is introduced for wireless body-area network systems at the 2.4 GHz industrial, scientific, and medical (ISM) band, which is implemented by employing a low-loss composite of polydimethylsiloxane (PDMS) and silver nanowires (AgNWs). The circularly polarized radiation is enabled by placing a planar linearly polarized loop monopole above a finite anisotropic artificial ground plane. By truncating the anisotropic artificial ground plane to contain only 2 by 2 unit cells, an integrated antenna with a compact form factor of 0.41λ 0 × 0.41λ 0 × 0.045λ 0 is obtained, all while possessing an improved angular coverage of CP radiation. A flexible prototype was fabricated and characterized, experimentally achieving S 11 <- 15 dB, an axial ratio of less than 3 dB, a gain of around 5.2 dBi, and a wide CP angular coverage in the targeted ISM band. Furthermore, this antenna is compared to a conventional CP patch antenna of the same physical size, which is also comprised of the same PDMS and AgNW composite. The results of this comparison reveal that the proposed antenna has much more stable performance under bending and human body loading, as well as a lower specific absorption rate. In all, the demonstrated wearable antenna offers a compact, flexible, and robust solution which makes it a strong candidate for future integration into body-area networks that require efficient off-body communications.

  1. Condensins exert force on chromatin-nuclear envelope tethers to mediate nucleoplasmic reticulum formation in Drosophila melanogaster.

    PubMed

    Bozler, Julianna; Nguyen, Huy Q; Rogers, Gregory C; Bosco, Giovanni

    2014-12-30

    Although the nuclear envelope is known primarily for its role as a boundary between the nucleus and cytoplasm in eukaryotes, it plays a vital and dynamic role in many cellular processes. Studies of nuclear structure have revealed tissue-specific changes in nuclear envelope architecture, suggesting that its three-dimensional structure contributes to its functionality. Despite the importance of the nuclear envelope, the factors that regulate and maintain nuclear envelope shape remain largely unexplored. The nuclear envelope makes extensive and dynamic interactions with the underlying chromatin. Given this inexorable link between chromatin and the nuclear envelope, it is possible that local and global chromatin organization reciprocally impact nuclear envelope form and function. In this study, we use Drosophila salivary glands to show that the three-dimensional structure of the nuclear envelope can be altered with condensin II-mediated chromatin condensation. Both naturally occurring and engineered chromatin-envelope interactions are sufficient to allow chromatin compaction forces to drive distortions of the nuclear envelope. Weakening of the nuclear lamina further enhanced envelope remodeling, suggesting that envelope structure is capable of counterbalancing chromatin compaction forces. Our experiments reveal that the nucleoplasmic reticulum is born of the nuclear envelope and remains dynamic in that they can be reabsorbed into the nuclear envelope. We propose a model where inner nuclear envelope-chromatin tethers allow interphase chromosome movements to change nuclear envelope morphology. Therefore, interphase chromatin compaction may be a normal mechanism that reorganizes nuclear architecture, while under pathological conditions, such as laminopathies, compaction forces may contribute to defects in nuclear morphology. Copyright © 2015 Bozler et al.

  2. Condensins Exert Force on Chromatin-Nuclear Envelope Tethers to Mediate Nucleoplasmic Reticulum Formation in Drosophila melanogaster

    PubMed Central

    Bozler, Julianna; Nguyen, Huy Q.; Rogers, Gregory C.; Bosco, Giovanni

    2014-01-01

    Although the nuclear envelope is known primarily for its role as a boundary between the nucleus and cytoplasm in eukaryotes, it plays a vital and dynamic role in many cellular processes. Studies of nuclear structure have revealed tissue-specific changes in nuclear envelope architecture, suggesting that its three-dimensional structure contributes to its functionality. Despite the importance of the nuclear envelope, the factors that regulate and maintain nuclear envelope shape remain largely unexplored. The nuclear envelope makes extensive and dynamic interactions with the underlying chromatin. Given this inexorable link between chromatin and the nuclear envelope, it is possible that local and global chromatin organization reciprocally impact nuclear envelope form and function. In this study, we use Drosophila salivary glands to show that the three-dimensional structure of the nuclear envelope can be altered with condensin II-mediated chromatin condensation. Both naturally occurring and engineered chromatin-envelope interactions are sufficient to allow chromatin compaction forces to drive distortions of the nuclear envelope. Weakening of the nuclear lamina further enhanced envelope remodeling, suggesting that envelope structure is capable of counterbalancing chromatin compaction forces. Our experiments reveal that the nucleoplasmic reticulum is born of the nuclear envelope and remains dynamic in that they can be reabsorbed into the nuclear envelope. We propose a model where inner nuclear envelope-chromatin tethers allow interphase chromosome movements to change nuclear envelope morphology. Therefore, interphase chromatin compaction may be a normal mechanism that reorganizes nuclear architecture, while under pathological conditions, such as laminopathies, compaction forces may contribute to defects in nuclear morphology. PMID:25552604

  3. A proposed standard round compact specimen for plane strain fracture toughness testing

    NASA Technical Reports Server (NTRS)

    Underwood, J. H.; Newman, J. C., Jr.; Seeley, R. R.

    1980-01-01

    A round, disk-shaped specimen is proposed as a standard test specimen for addition to ASTM Test for Plane-Strain Fracture Toughness of Metallic Materials (E 399-78A). The specimen is diametrically cracked, and loaded in the same way as the existing standard compact specimen. Tests and analyses were performed to verify that the proposed round compact specimen and associated stress intensity factor K solution are appropriate for a standard plane strain fracture toughness test. The use of the round compact specimen for other fracture tests is described.

  4. Recovery of compacted soils in Mojave Desert ghost towns.

    USGS Publications Warehouse

    Webb, R.H.; Steiger, J.W.; Wilshire, H.G.

    1986-01-01

    Residual compaction of soils was measured at seven sites in five Mojave Desert ghost towns. Soils in these Death Valley National Monument townsites were compacted by vehicles, animals, and human trampling, and the townsites had been completely abandoned and the buildings removed for 64 to 75 yr. Recovery times extrapolated using a linear recovery model ranged from 80 to 140 yr and averaged 100 yr. The recovery times were related to elevation, suggesting freeze-thaw loosening as an important factor in ameliorating soil compaction in the Mojave Desert. -from Authors

  5. Compaction and sintering behaviors of a Nd-Fe-B permanent magnet alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, T.; Hung, M.; Tsai, D.

    1988-11-15

    Extensive x-ray diffraction (XRD) and magnetic measurements were done on Nd/sub 15/ Fe/sub 77/ B/sub 8/ magnet alloy green compacts after cold isostatic pressing following a pulsed 2-T field (CIP) and die-pressing under a static 1.2-T perpendicular field (DP1) or parallel field (DP2), and on those after sintering. An alignment factor F, through the calculation of the integrated diffraction intensity ratio of the XRD patterns, was adopted as the effectiveness of magnetic alignment. At the green compact state, DP1 has the best alignment while CIP the worst. However, after sintering the alignment factor was such that CIP>DPI>DP2, the same ordermore » as the magnetic properties. Three mechanisms were proposed for the evolution of the alignment factor at different stages of sintering, i.e., that both the appearance of a liquid phase at low temperatures and preferred grain growth at high temperatures enhance F, while recrystallization at intermediate temperatures deteriorates F. CIP results in less-defect green compact, hence less recrystallization, leading to better resultant alignment« less

  6. Condenser assembly system for an appliance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litch, Andrew David

    2017-10-17

    An appliance includes a compact condenser assembly formed with at least two separately and independently produced wire on tube condensers. Each of the at least two wire on tube condensers has a condenser inlet and a condenser outlet. The at least two wire on tube condensers are at least substantially locked and positioned in a matingly engaged configuration forming a compact condenser assembly. The at least two wire on tube condensers are configured to be operationally connected in at least one of a parallel configuration, a series configuration, a selectable configuration, and a bypass configuration.

  7. Small form factor optical fiber connector evaluation for harsh environments

    NASA Astrophysics Data System (ADS)

    Ott, Melanie N.; Thomes, W. Joe, Jr.; Chuska, Richard F.; Switzer, Robert; Blair, Diana E.

    2011-09-01

    For the past decade NASA programs have utilized the Diamond AVIM connector for optical fiber assemblies on space flight instrumentation. These connectors have been used in communications, sensing and LIDAR systems where repeatability and high performance are required. Recently Diamond has released a smaller form factor optical fiber connector called the "Mini-AVIM" which although more compact still includes the tight tolerances and the ratcheting feature of the heritage AVIM. NASA Goddard Space Flight Center Photonics Group in the Parts, Packaging and Assembly Technologies Office has been performing evaluations of this connector to determine how it compares to the performance of the AVIM connector and to assess its feasibility for harsh environmental applications. Vibration and thermal testing were performed on the Mini-AVIM with both multi-mode and single-mode optical fiber using insitu optical transmission monitoring. Random vibration testing was performed using typical launch condition profiles for most NASA missions but extended to 35 Grms, which is much higher than most requirements. Thermal testing was performed incrementally up to a range of -55°C to +125°C. The test results include both unjacketed fiber and cabled assembly evaluations. The data presented here indicate that the Mini-AVIM provides a viable option for small form factor applications that require a high performance optical fiber connector.

  8. Ignitor with stable low-energy thermite igniting system

    DOEpatents

    Kelly, Michael D.; Munger, Alan C.

    1991-02-05

    A stable compact low-energy igniting system in an ignitor utilizes two components, an initiating charge and an output charge. The initiating charge is a thermite in ultra-fine powder form compacted to 50-70% of theoretical maximum density and disposed in a cavity of a header of the ignitor adjacent to an electrical ignition device, or bridgewire, mounted in the header cavity. The initiating charge is ignitable by operation of the ignition device in a hot-wire mode. The output charge is a thermite in high-density consoladated form compacted to 90-99% of theoretical maximum density and disposed adjacent to the initiating charge on an opposite end thereof from the electrical ignition device and ignitable by the initiating charge. A sleeve is provided for mounting the output charge to the ignitor header with the initiating charge confined therebetween in the cavity.

  9. Calculation analysis of magnetic-pulse compaction of explosively formed high-velocity metal elements used for meteoroid protection testing

    NASA Astrophysics Data System (ADS)

    Fedorov, Sergey V.; Selivanov, Victor V.; Veldanov, Vladislav A.

    2017-06-01

    Accumulation of microdamages as a result of intensive plastic deformation leads to a decrease in the average density of the high-velocity elements that are formed at the explosive collapse of the special shape metal liners. For compaction of such elements in tests of their spacecraft meteoroid protection reliability, the use of magnetic-field action on the produced elements during their movement trajectory before interaction with a target is proposed. On the basis of numerical modeling within the one-dimensional axisymmetric problem of continuum mechanics and electrodynamics, the physical processes occurring in the porous conducting elastoplastic cylinder placed in a magnetic field are investigated. Using this model, the parameters of the magnetic-pulse action necessary for the compaction of the steel and aluminum elements are determined.

  10. Simultaneous plate forming and hydriding of La(Fe, Si)13 magnetocaloric powders

    NASA Astrophysics Data System (ADS)

    Yang, Nannan; You, Caiyin; Tian, Na; Zhang, Yue; Leng, Haiyan; He, Jun

    2018-04-01

    In this work, we propose a way to simultaneously realize the plate forming and hydriding of La(Fe, Si)13 powders by mixing hydride MgNiYHx and solder powders Sn3.0Ag0.5Cu. Under the annealing of the green compact, the hydriding of La(Fe, Si)13 was realized through absorbing the released hydrogen from the metallic hydride MgNiYHx. The Curie temperature of La(Fe, Si)13 alloy increased from 213 K to 333 K and hysteresis reduced from 3.3 J/kg·K to 1.33 J/kg·K. Due to the bonding of Sn3.0Ag0.5Cu powders, the mechanical strength of the composite compact was highly improved in comparison to the compact of La(Fe, Si)13 powders alone.

  11. The Effects of Nucleosome Positioning and Chromatin Architecture on Transgene Expression

    ERIC Educational Resources Information Center

    Kempton, Colton E.

    2017-01-01

    Eukaryotes use proteins to carefully package and compact their genomes to fit into the nuclei of their individual cells. Nucleosomes are the primary level of compaction. Nucleosomes are formed when DNA wraps around an octamer of histone proteins and a nucleosome's position can limit access to genetic regulatory elements. Therefore, nucleosomes…

  12. Sediment compaction in deepwater basin of the South China Sea: estimation from ODP 184 and IODP 349 drilling well data.

    NASA Astrophysics Data System (ADS)

    Tuoyu, W.; Xie, Y.

    2017-12-01

    Abnormal compaction in deepwater basins not only cause serious soft sediment deformation, but also significantly affect the safety of the drilling campaign. Therefore, study the compaction condition in the sediments would be an important task in the deepwater basin and associate with the environment variation. We analyze the drilling data from the ODP Leg 184 Site 1144, 1146, 1148 and the IODP Leg 349 Site U1431, U1432, U1433, U1435 to study the sediment compaction and controls in the northern South China Sea. We have found the sedimentation rate, sediment content, distribution area and buried depth control the sediment compaction in deepwater basin of the South China Sea. Among all the factors, the sediment content is the most important factor. The fitted normal compacted coefficients and the mudline porosity for interval 50 m shows disciplinary variation versus depth. The pore pressure predicted from different fitted results shows different overpressure situation. The normal compaction trend from Site 1144 reflects the porosity variation trend in stable deposition basins in the northern South China Sea. The predicted pore pressure shows overpressure at Site 1144, which is attributed to compaction disequilibrium. Nevertheless, the mixed lithology column may influence the predicted overpressure at Site 1148, which is responsible for the confusing result. Above all. we find that sediment compaction should be act as a proxy for pore pressure in the deepwater basin of the South China Sea. The study will help us to nature of sedimentation in the deepwater basin set up and can be used as analog for older sediments deposited in the similar kind of depositional environment in deepwater basin of the South China Sea.

  13. The Effects of Urban Form on Ambient Air Pollution and Public Health Risk: A Case Study in Raleigh, North Carolina

    PubMed Central

    Rodriguez, Daniel A.; Huegy, Joseph; Gibson, Jacqueline MacDonald

    2014-01-01

    Since motor vehicles are a major air pollution source, urban designs that decrease private automobile use could improve air quality and decrease air pollution health risks. Yet, the relationships among urban form, air quality, and health are complex and not fully understood. To explore these relationships, we model the effects of three alternative development scenarios on annual average fine particulate matter (PM2.5) concentrations in ambient air and associated health risks from PM2.5 exposure in North Carolina’s Raleigh-Durham-Chapel Hill area. We integrate transportation demand, land-use regression, and health risk assessment models to predict air quality and health impacts for three development scenarios: current conditions, compact development, and sprawling development. Compact development slightly decreases (−0.2%) point estimates of regional annual average PM2.5 concentrations, while sprawling development slightly increases (+1%) concentrations. However, point estimates of health impacts are in opposite directions: compact development increases (+39%) and sprawling development decreases (−33%) PM2.5-attributable mortality. Further, compactness increases local variation in PM2.5 concentrations and increases the severity of local air pollution hotspots. Hence, this research suggests that while compact development may improve air quality from a regional perspective, it may also increase the concentration of PM2.5 in local hotspots and increase population exposure to PM2.5. Health effects may be magnified if compact neighborhoods and PM2.5 hotspots are spatially co-located. We conclude that compactness alone is an insufficient means of reducing the public health impacts of transportation emissions in automobile-dependent regions. Rather, additional measures are needed to decrease automobile dependence and the health risks of transportation emissions. PMID:25490890

  14. Development of Digital SLR Camera: PENTAX K-7

    NASA Astrophysics Data System (ADS)

    Kawauchi, Hiraku

    The DSLR "PENTAX K-7" comes with an easy-to-carry, minimal yet functional small form factor, a long inherited identities of the PENTAX brand. Nevertheless for its compact body, this camera has up-to-date enhanced fundamental features such as high-quality viewfinder, enhanced shutter mechanism, extended continuous shooting capabilities, reliable exposure control, and fine-tuned AF systems, as well as strings of newest technologies such as movie recording capability and automatic leveling function. The main focus of this article is to reveal the ideas behind the concept making of this product and its distinguished features.

  15. Compact vacuum insulation embodiments

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  16. Inert electrode connection

    DOEpatents

    Weyand, J.D.; Woods, R.W.; DeYoung, D.H.; Ray, S.P.

    1985-02-19

    An inert electrode connection is disclosed wherein a layer of inert electrode material is bonded to a layer of conductive material by providing at least one intermediate layer of material therebetween comprising a predetermined ratio of inert material to conductive material. In a preferred embodiment, the connection is formed by placing in a die a layer of powdered inert material, at least one layer of a mixture of powdered inert material and conductive material, and a layer of powdered conductive material. The connection is then formed by pressing the material at 15,000--20,000 psi to form a powder compact and then densifying the powder compact in an inert or reducing atmosphere at a temperature of 1,200--1,500 C. 5 figs.

  17. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  18. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1993-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  19. Compact vacuum insulation embodiments

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  20. Method for immobilizing radioactive iodine

    DOEpatents

    Babad, Harry; Strachan, Denis M.

    1980-01-01

    Radioactive iodine, present as alkali metal iodides or iodates in an aqueous solution, is incorporated into an inert solid material for long-term storage by adding to the solution a stoichiometric amount with respect to the formation of a sodalite (3M.sub.2 O.3Al.sub.2 O.sub.3. 6SiO.sub.2.2MX, where M=alkali metal; X=I.sup.- or IO.sub.3.sup.-) of an alkali metal, alumina and silica, stirring the solution to form a homogeneous mixture, drying the mixture to form a powder, compacting and sintering the compacted powder at 1073 to 1373 K (800.degree. to 1100.degree. C.) for a time sufficient to form sodalite.

  1. Colloidal isopressing: A new shaping method for ceramic suspensions

    NASA Astrophysics Data System (ADS)

    Yu, Benjamin Christopher

    Colloidal Isopressing is a new processing method for shaping compacts from particulate suspensions. The study of interparticle interactions within a suspension, and their effect on the overall slurry behavior, has led to the prior discovery of a plastic-to-brittle transition in powder compacts formed by pressure filtration. Colloidal Isopressing utilizes this pressure dependent behavior for slurries with a short-range repulsive potential to rapidly transform plastic consolidated bodies into more complex shapes. The first results are presented for aqueous alumina suspensions where electrostatic double layer repulsion is compressed to short interparticle separations by the addition of ammonium chloride. Consolidation at low pressures produces a high relative density slurry that is plastic and can be extruded into a rubber mold. The application of an hydrostatic pressure forces a small amount of liquid into a porous portion of the mold and pushes particles together into a rigid network. As the pressure is released, the newly formed powder compact will partially separate from the lower modulus rubber mold. The body can then be ejected from the mold, dried, and densified to produce the final ceramic component. Colloidal Isopressing has been successfully modeled as a special case of consolidation via pressure filtration. Theoretical analyses have accurately predicted the time required for the rapid transformation from plastic slurry to elastic powder compact. The effects of slurry composition on processing were studied. The electrolyte concentration, powder particle size, slurry pH, and polymer concentration were shown to alter the flow behavior of filter pressed and liquefied compacts. As the free volume of liquid decreased and/or the relative attraction between particles increased, the concentrated slurry became more difficult to process. Finally, drying of compacts formed by Colloidal Isopressing did not result in any shrinkage during drying, thus allowing for very rapid heating rates to be used. In fact, the drying, burnout, and densification could be combined into one step, with final densities approaching the theoretical limit.

  2. Measurements of elastic moduli of pharmaceutical compacts: a new methodology using double compaction on a compaction simulator.

    PubMed

    Mazel, Vincent; Busignies, Virginie; Diarra, Harona; Tchoreloff, Pierre

    2012-06-01

    The elastic properties of pharmaceutical powders play an important role during the compaction process. The elastic behavior can be represented by Young's modulus (E) and Poisson's ratio (v). However, during the compaction, the density of the powder bed changes and the moduli must be determined as a function of the porosity. This study proposes a new methodology to determine E and v as a function of the porosity using double compaction in an instrumented compaction simulator. Precompression is used to form the compact, and the elastic properties are measured during the beginning of the main compaction. By measuring the axial and radial pressure and the powder bed thickness, E and v can be determined as a function of the porosity. Two excipients were studied, microcrystalline cellulose (MCC) and anhydrous calcium phosphate (aCP). The values of E measured are comparable to those obtained using the classical three-point bending test. Poisson's ratio was found to be close to 0.24 for aCP with only small variations with the porosity, and to increase with a decreasing porosity for MCC (0.23-0.38). The classical approximation of a value of 0.3 for ν of pharmaceutical powders should therefore be taken with caution. Copyright © 2012 Wiley Periodicals, Inc.

  3. Structural maintenance of chromosome complexes differentially compact mitotic chromosomes according to genomic context

    PubMed Central

    Schalbetter, S. A.; Goloborodko, A.; Fudenberg, G.; Belton, J.-M.; Miles, C.; Yu, M.; Dekker, J.; Mirny, L.; Baxter, J.

    2017-01-01

    Structural Maintenance of Chromosomes (SMC) protein complexes are key determinants of chromosome conformation. Using Hi-C and polymer modeling, we study how cohesin and condensin, two deeply conserved SMC complexes, organize chromosomes in the budding yeast Saccharomyces cerevisiae. The canonical role of cohesin is to co-align sister chromatids whilst condensin generally compacts mitotic chromosomes. We find strikingly different roles for the two complexes in budding yeast mitosis. First, cohesin is responsible for compacting mitotic chromosome arms, independently of sister chromatid cohesion. Polymer simulations demonstrate this role can be fully accounted for through cis-looping of chromatin. Second, condensin is generally dispensable for compaction along chromosome arms. Instead it plays a targeted role compacting the rDNA proximal regions and promoting resolution of peri-centromeric regions. Our results argue that the conserved mechanism of SMC complexes is to form chromatin loops and that distinct SMC-dependent looping activities are selectively deployed to appropriately compact chromosomes. PMID:28825700

  4. Compressibility of binary powder formulations: investigation and evaluation with compaction equations.

    PubMed

    Gentis, Nicolaos D; Betz, Gabriele

    2012-02-01

    The purpose of this work was to investigate and evaluate the powder compressibility of binary mixtures containing a well-compressible compound (microcrystalline cellulose) and a brittle active drug (paracetamol and mefenamic acid) and its progression after a drug load increase. Drug concentration range was 0%-100% (m/m) with 10% intervals. The powder formulations were compacted to several relative densities with the Zwick material tester. The compaction force and tensile strength were fitted to several mathematical models that give representative factors for the powder compressibility. The factors k and C (Heckel and modified Heckel equation) showed mostly a nonlinear correlation with increasing drug load. The biggest drop in both factors occurred at far regions and drug load ranges. This outcome is crucial because in binary mixtures the drug load regions with higher changeover of plotted factors could be a hint for an existing percolation threshold. The susceptibility value (Leuenberger equation) showed varying values for each formulation without the expected trend of decrease for higher drug loads. The outcomes of this study showed the main challenges for good formulation design. Thus, we conclude that such mathematical plots are mandatory for a scientific evaluation and prediction of the powder compaction process. Copyright © 2011 Wiley Periodicals, Inc.

  5. Compact pulse forming line using barium titanate ceramic material

    NASA Astrophysics Data System (ADS)

    Kumar Sharma, Surender; Deb, P.; Shukla, R.; Prabaharan, T.; Shyam, A.

    2011-11-01

    Ceramic material has very high relative permittivity, so compact pulse forming line can be made using these materials. Barium titanate (BaTiO3) has a relative permittivity of 1200 so it is used for making compact pulse forming line (PFL). Barium titanate also has piezoelectric effects so it cracks during high voltages discharges due to stresses developed in it. Barium titanate is mixed with rubber which absorbs the piezoelectric stresses when the PFL is charged and regain its original shape after the discharge. A composite mixture of barium titanate with the neoprene rubber is prepared. The relative permittivity of the composite mixture is measured to be 85. A coaxial pulse forming line of inner diameter 120 mm, outer diameter 240 mm, and length 350 mm is made and the composite mixture of barium titanate and neoprene rubber is filled between the inner and outer cylinders. The PFL is charged up to 120 kV and discharged into 5 Ω load. The voltage pulse of 70 kV, 21 ns is measured across the load. The conventional PFL is made up of oil or plastics dielectrics with the relative permittivity of 2-10 [D. R. Linde, CRC Handbook of Chemistry and Physics, 90th ed. (CRC, 2009); Xia et al., Rev. Sci. Instrum. 79, 086113 (2008); Yang et al., Rev. Sci. Instrum. 81, 43303 (2010)], which increases the length of PFL. We have reported the compactness in length achieved due to increase in relative permittivity of composite mixture by adding barium titanate in neoprene rubber.

  6. Curved noncommutative tori as Leibniz quantum compact metric spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latrémolière, Frédéric, E-mail: frederic@math.du.edu

    We prove that curved noncommutative tori are Leibniz quantum compact metric spaces and that they form a continuous family over the group of invertible matrices with entries in the image of the quantum tori for the conjugation by modular conjugation operator in the regular representation, when this group is endowed with a natural length function.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, C.; Klimas, P.; Sanchez-Guillen, J.

    For the baby Skyrme model with a specific potential, compacton solutions, i.e., configurations with a compact support and parabolic approach to the vacuum, are derived. Specifically, in the nontopological sector, we find spinning Q-balls and Q-shells, as well as peakons. Moreover, we obtain compact baby skyrmions with nontrivial topological charge. All these solutions may form stable multisoliton configurations provided they are sufficiently separated.

  8. Compact cladding-pumped planar waveguide amplifier and fabrication method

    DOEpatents

    Bayramian, Andy J.; Beach, Raymond J.; Honea, Eric; Murray, James E.; Payne, Stephen A.

    2003-10-28

    A low-cost, high performance cladding-pumped planar waveguide amplifier and fabrication method, for deployment in metro and access networks. The waveguide amplifier has a compact monolithic slab architecture preferably formed by first sandwich bonding an erbium-doped core glass slab between two cladding glass slabs to form a multi-layer planar construction, and then slicing the construction into multiple unit constructions. Using lithographic techniques, a silver stripe is deposited and formed at a top or bottom surface of each unit construction and over a cross section of the bonds. By heating the unit construction in an oven and applying an electric field, the silver stripe is then ion diffused to increase the refractive indices of the core and cladding regions, with the diffusion region of the core forming a single mode waveguide, and the silver diffusion cladding region forming a second larger waveguide amenable to cladding pumping with broad area diodes.

  9. TGF-β-independent CTGF induction regulates cell adhesion mediated drug resistance by increasing collagen I in HCC.

    PubMed

    Song, Yeonhwa; Kim, Jin-Sun; Choi, Eun Kyung; Kim, Joon; Kim, Kang Mo; Seo, Haeng Ran

    2017-03-28

    Hepatocellular carcinoma (HCC) is resistant to conventional chemotherapeutic agents and remains an unmet medical need. Here, we demonstrate a mechanism of cell adhesion-mediated drug resistance using a variety of HCC spheroid models to overcome environment-mediated drug resistance in HCC. We classified spheroids into two groups, tightly compacted and loosely compacted aggregates, based on investigation of dynamics of spheroid formation. Our results show that compactness of HCC spheroids correlated with fibroblast-like characteristics, collagen 1A1 (COL1A1) content, and capacity for chemoresistance. We also showed that ablation of COL1A1 attenuated not only the capacity for compact-spheroid formation, but also chemoresistance. Generally, connective tissue growth factor (CTGF) acts downstream of transforming growth factor (TGF)-β and promotes collagen I fiber deposition in the tumor microenvironment. Importantly, we found that TGF-β-independent CTGF is upregulated and regulates cell adhesion-mediated drug resistance by inducing COL1A1 in tightly compacted HCC spheroids. Furthermore, losartan, which inhibits collagen I synthesis, impaired the compactness of spheroids via disruption of cell-cell contacts and increased the efficacy of anticancer therapeutics in HCC cell line- and HCC patient-derived tumor spheroids. These results strongly suggest functional roles for CTGF-induced collagen I expression in formation of compact spheroids and in evading anticancer therapies in HCC, and suggest that losartan, administered in combination with conventional chemotherapy, might be an effective treatment for liver cancer.

  10. Sediment compaction and pore pressure prediction in deepwater basin of the South China Sea: Estimation from ODP and IODP drilling well data

    NASA Astrophysics Data System (ADS)

    Xie, Yangbing; Wu, Tuoyu; Sun, Jin; Zhang, Hanyu; Wang, Jiliang; Gao, Jinwei; Chen, Chuanxu

    2018-02-01

    Overpressure in deepwater basins not only causes serious soft sediment deformation, but also significantly affects the safety of drilling operations. Therefore, prediction of overpressure in sediments has become an important task in deepwater oil exploration and development. In this study, we analyze the drilling data from ODP Leg 184 Sites 1144, 1146, and 1148, and IODP Leg 349 Sites U1431, U1432, U1433, and U1435 to study the sediment compaction and controls in the northern South China Sea. Sedimentation rate, sediment content, distribution area, and buried depth are the factors that influence sediment compaction in the deepwater basin of the South China Sea. Among these factors, the sediment content is the most important. The fitted normal compacted coefficients and mudline porosity for an interval of 50 m shows disciplinary variation versus depth. The pore pressure predicted from different fitted results shows varying overpressure situations. The normal compaction trend from Site 1144 reflects the porosity variation trend in stable deposition basins in the northern South China Sea. The predicted pore pressure shows overpressure at Site 1144, which is attributed to compaction disequilibrium. Nevertheless, the mixed lithology column may influence the predicted over-pressure at Site 1148, which is responsible for the confusing result. Above all, we find that sediment compaction should serve as a proxy for pore pressure in the deepwater basin of the South China Sea.

  11. ALMA Observations of Starless Core Substructure in Ophiuchus

    NASA Astrophysics Data System (ADS)

    Kirk, H.; Dunham, M. M.; Di Francesco, J.; Johnstone, D.; Offner, S. S. R.; Sadavoy, S. I.; Tobin, J. J.; Arce, H. G.; Bourke, T. L.; Mairs, S.; Myers, P. C.; Pineda, J. E.; Schnee, S.; Shirley, Y. L.

    2017-04-01

    Compact substructure is expected to arise in a starless core as mass becomes concentrated in the central region likely to form a protostar. Additionally, multiple peaks may form if fragmentation occurs. We present Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 2 observations of 60 starless and protostellar cores in the Ophiuchus molecular cloud. We detect eight compact substructures which are > 15\\prime\\prime from the nearest Spitzer young stellar object. Only one of these has strong evidence for being truly starless after considering ancillary data, e.g., from Herschel and X-ray telescopes. An additional extended emission structure has tentative evidence for starlessness. The number of our detections is consistent with estimates from a combination of synthetic observations of numerical simulations and analytical arguments. This result suggests that a similar ALMA study in the Chamaeleon I cloud, which detected no compact substructure in starless cores, may be due to the peculiar evolutionary state of cores in that cloud.

  12. Compact seaweed growth of peritectic phase on confined, flat properitectic dendrites

    NASA Astrophysics Data System (ADS)

    Ludwig, A.; Mogeritsch, J.

    2016-12-01

    Peritectic alloys form a variety of different solidification morphologies at low growth rates. An alloy with a concentration that corresponds to the hyper-peritectic limit should show a cellular/dendritic solidification of the peritectic phase for growth velocities above the corresponding constitutional undercooling limit. However, due to nucleation retardation of the peritectic phase we observed growth of properitectic dendrites before cellular growth of the peritectic could established. The transition happened via an overgrowth of dendrites with a thin layer of peritectic phase. The observations were made using a transparent, metal-like solidifying peritectic system that was solidified directionally in thin samples. In the gap between the flat dendrites and the tubing walls, the peritectic phase grew with a compact seaweed morphology, whereas in the interdendritic spacing it formed small-curved bumps. At same distance behind the tip region, more and more polycrystalline-like objects appeared at the elongated traces of the compact seaweed morphology.

  13. Experimental Measurement and Numerical Modeling of the Effective Thermal Conductivity of TRISO Fuel Compacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Folsom, Charles; Xing, Changhu; Jensen, Colby

    2015-03-01

    Accurate modeling capability of thermal conductivity of tristructural-isotropic (TRISO) fuel compacts is important to fuel performance modeling and safety of Generation IV reactors. To date, the effective thermal conductivity (ETC) of tristructural-isotropic (TRISO) fuel compacts has not been measured directly. The composite fuel is a complicated structure comprised of layered particles in a graphite matrix. In this work, finite element modeling is used to validate an analytic ETC model for application to the composite fuel material for particle-volume fractions up to 40%. The effect of each individual layer of a TRISO particle is analyzed showing that the overall ETC ofmore » the compact is most sensitive to the outer layer constituent. In conjunction with the modeling results, the thermal conductivity of matrix-graphite compacts and the ETC of surrogate TRISO fuel compacts have been successfully measured using a previously developed measurement system. The ETC of the surrogate fuel compacts varies between 50 and 30 W m -1 K -1 over a temperature range of 50-600°C. As a result of the numerical modeling and experimental measurements of the fuel compacts, a new model and approach for analyzing the effect of compact constituent materials on ETC is proposed that can estimate the fuel compact ETC with approximately 15-20% more accuracy than the old method. Using the ETC model with measured thermal conductivity of the graphite matrix-only material indicate that, in the composite form, the matrix material has a much greater thermal conductivity, which is attributed to the high anisotropy of graphite thermal conductivity. Therefore, simpler measurements of individual TRISO compact constituents combined with an analytic ETC model, will not provide accurate predictions of overall ETC of the compacts emphasizing the need for measurements of composite, surrogate compacts.« less

  14. The birthplace of compact groups of galaxies

    NASA Technical Reports Server (NTRS)

    Ramella, Massimo; Diaferio, Antonaldo; Geller, Margaret J.; Huchra, John P.

    1994-01-01

    We use complete redshift surveys to study the redshift neighborhoods of 38 Hickson compact groups (HCGs). Twenty-nine of these HCGs (76%) are embedded in rich looser systems which we call HCG associations. Analysis of the redshift neighborhood of HCGs outside the CfA survey suggests that most HCGs are embedded in more extended physical systems. Rich loose groups extracted from the CfA survey (Ramella et al. (1994)) have physical properties similar to those of the HCG associations. These rich loose groups often contain compact configurations. N-body experiments (Diaferio (1994)) suggest that compact configurations analogous to HCGs form continually during the collapse of rich loose groups. These observational and numerical results suggest that rich loose groups are the birthplace of HCGs.

  15. The Compaction of Ultramafic Cumulates in Layered Intrusions - Time and Length Scales (Invited)

    NASA Astrophysics Data System (ADS)

    Schmidt, M. W.; Manoochehri, S.

    2013-12-01

    Many large mafic intrusions have thick series of mostly ultramafic cumulates composed of dense cumulus minerals (chromite, olivine, pyroxenes) precipitated from low viscosity (roughly basaltic) liquids. To understand the time and length scales involved, the crystal settling and compaction process was simulated through centrifuge-assisted experiments of olivine or chromite in basaltic melt. Experiments were performed in a centrifuging piston cylinder at 200-1500 g, 1200-1300 C, 0.5-1.1 GPa on previously annealed and texturally equilibrated samples. The mechanical settling of the dense olivine or chromite suspensions occurs at 1/6 and 1/2 the speed of simple Stokes settling. The porosity (φm ) of orthocumulates resulting from gravitational settling is 50-55 %, pile up times for natural grain sizes result to 0.1-10 m/day. Hence, gravitational deposition (including re-deposition) of crystals may take place within years, i.e. almost instantaneously with progressing crystallization. After (re-)deposition, grains rest on each other. Further (chemical) compaction occurs through pressure dissolution at grain contacts, olivine or chromite re-precipitates where in contact with melt. Concomitantly excess liquid is expulsed from the cumulate layer. Centrifugation let to porosities as low as 30.3 vol% for olivine. The crystal content at the bottom of the experimentally compacted cumulate is 1-φm ~ log(Δρ h a t), where Δρ = crystal-melt density difference, h = crystal layer thickness, a = acceleration and t = time. Compaction is hence proportional to effective stress integrated over time indicating that pressure dissolution is the dominant mechanism. Notably, chromite crystals compact only about half as fast as olivine crystals. The compaction limit, i.e. the lowermost porosity to be reached, is calculated by equating the lithostatic and hydraulic pressure gradients in the cumulate and results to 3-5 % porosity for the experiments. Crystal size distribution curves and a growth exponent n of 3.1(3) (for olivine) indicate that diffusion controlled Ostwald ripening is the dominant crystal growth mechanism. The experimentally calibrated compaction relationship, combined with a linear scaling for grain size as appropriate for reaction-controlled pressure solution creep, allows calculation of formation times of natural adcumulates. A single layer of olivine adcumulate of 1/2 m thickness with 70-75 vol% olivine at the base (as observed in Rhum), would have typical formation times of 0.4-3 yrs for grain sizes of 2-10 mm, comparing favourably with characteristic cooling times of sills. If a >20 m thick series of cumulate layers pressurizes a base layer with the porosity still filled by a melt, then compaction proceeds to the compaction limit within a few years. To understand the thickness of a simultaneously compacting (layered) crystal pile, (paleo)-porosity gradients determined from incompatible trace elements can be employed when combined with modelled characteristic cooling times. In layered mafic intrusions where cumulates are deposited from a large magma chamber, compaction zones of several tens to hundreds of meter may form adcumulates with porosities in the order of 5%. In conclusion, gravitation driven chemical compaction is feasible for dense mafic minerals in basaltic magmas, in particular in large layered intrusions. The limiting factor appears to be rather the supply of crystals then the time necessary for compaction.

  16. A high-energy, high-flux source of gamma-rays from all-optical non-linear Thomson scattering

    NASA Astrophysics Data System (ADS)

    Corvan, D. J.; Zepf, M.; Sarri, G.

    2016-09-01

    γ-Ray sources are among the most fundamental experimental tools currently available to modern physics. As well as the obvious benefits to fundamental research, an ultra-bright source of γ-rays could form the foundation of scanning of shipping containers for special nuclear materials and provide the bases for new types of cancer therapy. However, for these applications to prove viable, γ-ray sources must become compact and relatively cheap to manufacture. In recent years, advances in laser technology have formed the cornerstone of optical sources of high energy electrons which already have been used to generate synchrotron radiation on a compact scale. Exploiting the scattering induced by a second laser, one can further enhance the energy and number of photons produced provided the problems of synchronisation and compact γ-ray detection are solved. Here, we report on the work that has been done in developing an all-optical and hence, compact non-linear Thomson scattering source, including the new methods of synchronisation and compact γ-ray detection. We present evidence of the generation of multi-MeV (maximum 16-18 MeV) and ultra-high brilliance (exceeding 1020 photons s-1mm-2mrad-2 0.1% BW at 15 MeV) γ-ray beams. These characteristics are appealing for the paramount practical applications mentioned above.

  17. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Monenegro, Justino (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used proportional-integral-derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM-based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a DSP (Digital Signal Processor) or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSP) devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacecraft. Radiation tolerant FPGA's are a feasible option for reaching this goal.

  18. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Montenegro, Justino (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of Field Programmable Gate Arrays (FPGA's) in the hardware implementation of fast digital signal processing functions. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used Proportional-Integral-Derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a Digital Signal Processor (DSP) device or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using DSP devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, Pulse Width Modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacemap. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive-control algorithm approaches. Radiation tolerant FPGA's are a feasible option for reaching this goal.

  19. An atlas of ultraviolet spectra of star-forming galaxies

    NASA Technical Reports Server (NTRS)

    Kinney, A. L.; Bohlin, R. C.; Calzetti, D.; Panagia, N.; Wyse, Rosemary F. G.

    1993-01-01

    A systematic study is presented of the UV spectra of star-forming galaxies of different morphological type and activity class using a sample drawn from a uniformly reduced IUE data set. The spectra for a wide variety of galaxies, including normal spiral, LINER, starburst, blue compact, blue compact dwarf, and Seyfert 2 galaxies, are presented in the form of spectral energy distributions to demonstrate the overall characteristics according to morphology and activity class and in the form of absolute flux distributions to better show the absorption and emission features of individual objects. The data support the picture based on UV spectra of the Orbiting Astronomical Observatory and of the Astronautical Netherlands Satellite that spiral galaxies of later Hubble class have more flux at the shortest UV wavelengths than do spiral galaxies of earlier Hubble class.

  20. Inter- and Intra- Field variations in soil compaction levels and subsequent impacts on hydrological extremes

    NASA Astrophysics Data System (ADS)

    Pattison, Ian; Coates, Victoria

    2015-04-01

    The rural landscape in the UK is dominated by pastoral agriculture, with about 40% of land cover classified as either improved or semi-natural grassland according to the Land Cover Map 2007. Intensification has resulted in greater levels of compaction associated with higher stocking densities. However, there is likely to be a great amount of variability in compaction levels within and between fields due to multiple controlling factors. This research focusses in on two of these factors; firstly animal species, namely sheep, cattle and horses; and secondly field zonation e.g. feeding areas, field gates, open field. Field experiments have been conducted in multiple fields in the River Skell catchment, in Yorkshire, UK, which has an area of 140km2. The effect on physical and hydrologic soil characteristics such as bulk density and moisture contents have been quantified using a wide range of field and laboratory based experiments. Results have highlighted statistically different properties between heavily compacted areas where animals congregate and less-trampled open areas. Furthermore, soil compaction has been hypothesised to contribute to increased flood risk at larger spatial scales. Previous research (Pattison, 2011) on a ~40km2 catchment (Dacre Beck, Lake District, UK) has shown that when soil characteristics are homogeneously parameterised in a hydrological model, downstream peak discharges can be 65% higher for a heavy compacted soil than for a lightly compacted soil. Here we report results from spatially distributed hydrological modelling using soil parameters gained from the field experimentation. Results highlight the importance of both the percentage of the catchment which is heavily compacted and also the spatial distribution of these fields.

  1. How do roll compaction/dry granulation affect the tableting behaviour of inorganic materials? Microhardness of ribbons and mercury porosimetry measurements of tablets.

    PubMed

    Freitag, Franziska; Reincke, Katrin; Runge, Jürgen; Grellmann, Wolfgang; Kleinebudde, Peter

    2004-07-01

    The effect of roll compaction/dry granulation on the ribbon and tablet properties produced using different magnesium carbonates was evaluated. The ribbon microhardness and the pore size distribution of tablets were used as evaluation factors. Increasing the specific compaction force resulted in higher microhardness for ribbons prepared with all four magnesium carbonates accompanied with decreased part of fine. Consequently, the corresponding produced tablets displayed a lower tensile strength. A possible correlation between the particle shape, surface area and the resulting pore structure of tablets produced with the four different types of magnesium carbonate was observed. The tensile strength of tablets prepared using granules was lower than tensile strength of tablets produced using starting materials. The partial loss of compactibility resulted in a demand of low loads during roll compaction. However, the impact of changes in the material properties during the roll compaction depended greatly on the type of magnesium carbonate, the specific compaction force and the tableting pressure applied.

  2. Galaxy triplets in Sloan Digital Sky Survey Data Release 7 - II. A connection with compact groups?

    NASA Astrophysics Data System (ADS)

    Duplancic, Fernanda; O'Mill, Ana Laura; Lambas, Diego G.; Sodré, Laerte; Alonso, Sol

    2013-08-01

    We analyse a sample of 71 triplets of luminous galaxies derived from the work of O'Mill et al. We compare the properties of triplets and their members with those of control samples of compact groups, the 10 brightest members of rich clusters and galaxies in pairs. The triplets are restricted to have members with spectroscopic redshifts in the range 0.01 ≤ z ≤ 0.14 and absolute r-band luminosities brighter than Mr = -20.5. For these member galaxies, we analyse the stellar mass content, the star formation rates, the Dn(4000) parameter and (Mg - Mr) colour index. Since galaxies in triplets may finally merge in a single system, we analyse different global properties of these systems. We calculate the probability that the properties of galaxies in triplets are strongly correlated. We also study total star formation activity and global colours, and define the triplet compactness as a measure of the percentage of the system total area that is filled by the light of member galaxies. We concentrate in the comparison of our results with those of compact groups to assess how the triplets are a natural extension of these compact systems. Our analysis suggests that triplet galaxy members behave similarly to compact group members and galaxies in rich clusters. We also find that systems comprising three blue, star-forming, young stellar population galaxies (blue triplets) are most probably real systems and not a chance configuration of interloping galaxies. The same holds for triplets composed of three red, non-star-forming galaxies, showing the correlation of galaxy properties in these systems. From the analysis of the triplet as a whole, we conclude that, at a given total stellar mass content, triplets show a total star formation activity and global colours similar to compact groups. However, blue triplets show a high total star formation activity with a lower stellar mass content. From an analysis of the compactness parameter of the systems we find that light is even more concentrated in triplets than in compact groups. We propose that triplets composed of three luminous galaxies, should not be considered as an analogous of galaxy pairs with a third extra member, but rather they are a natural extension of compact groups.

  3. Formation of ultra-compact dwarf galaxies from supergiant molecular clouds

    NASA Astrophysics Data System (ADS)

    Goodman, Morgan; Bekki, Kenji

    2018-05-01

    The origin of ultra-compact dwarf galaxies (UCDs) is not yet clear. One possible formation path of UCDs is the threshing of a nucleated elliptical dwarf galaxy (dE, N), however, it remains unclear how such massive nuclear stellar systems were formed in dwarf galaxies. To better establish the early history of UCDs, we investigate the formation of UCD progenitor clusters from super giant molecular clouds (SGMCs), using hydrodynamical simulations. In this study we focus on SGMCs with masses 107 - 108 M_{\\odot } that can form massive star clusters that display physical properties similar to UCDs. We find that the clusters have extended star formation histories with two phases, producing multiple distinct stellar populations, and that the star formation rate is dependent on the feedback effects of SNe and AGB stars. The later generations of stars formed in these clusters are more compact, leading to a clearly nested structure, and these stars will be more He-rich than those of the first generation, leading to a slight colour gradient. The simulated clusters demonstrate scaling relations between Reff and M and σv and M consistent with those observed in UCDs and strongly consistent with those of the original SGMC. We discuss whether SGMCs such as these can be formed through merging of self-gravitating molecular clouds in galaxies at high-z.

  4. Central Stellar Mass Deficits in the Bulges of Local Lenticular Galaxies, and the Connection with Compact z ~ 1.5 Galaxies

    NASA Astrophysics Data System (ADS)

    Dullo, Bililign T.; Graham, Alister W.

    2013-05-01

    We have used the full radial extent of images from the Hubble Space Telescope's Advanced Camera for Surveys and Wide Field Planetary Camera 2 to extract surface brightness profiles from a sample of six, local lenticular galaxy candidates. We have modeled these profiles using a core-Sérsic bulge plus an exponential disk model. Our fast rotating lenticular disk galaxies with bulge magnitudes MV <~ -21.30 mag have central stellar deficits, suggesting that these bulges may have formed from "dry" merger events involving supermassive black holes (BHs) while their surrounding disk was subsequently built up, perhaps via cold gas accretion scenarios. The central stellar mass deficits M def are roughly 0.5-2 M BH (BH mass), rather than ~10-20 M BH as claimed from some past studies, which is in accord with core-Sérsic model mass deficit measurements in elliptical galaxies. Furthermore, these bulges have Sérsic indices n ~3, half-light radii Re < 2 kpc and masses >1011 M ⊙, and therefore appear to be descendants of the compact galaxies reported at z ~ 1.5-2. Past studies which have searched for these local counterparts by using single-component galaxy models to provide the z ~ 0 size comparisons have overlooked these dense, compact, and massive bulges in today's early-type disk galaxies. This evolutionary scenario not only accounts for what are today generally old bulges—which must be present in z ~ 1.5 images—residing in what are generally young disks, but it eliminates the uncomfortable suggestion of a factor of three to five growth in size for the compact, z ~ 1.5 galaxies that are known to possess infant disks.

  5. Novel, ultra-compact, high-performance, eye-safe laser rangefinder for demanding applications

    NASA Astrophysics Data System (ADS)

    Silver, M.; Lee, S. T.; Borthwick, A.; Morton, G.; McNeill, C.; McSporran, D.; McRae, I.; McKinlay, G.; Jackson, D.; Alexander, W.

    2016-05-01

    Compact eye-safe laser rangefinders (LRFs) are a key technology for future sensors. In addition to reduced size, weight and power (SWaP), compact LRFs are increasingly being required to deliver a higher repetition rate, burst mode capability. Burst mode allows acquisition of telemetry data from fast moving targets or while sensing-on-the-move. We will describe a new, ultra-compact, long-range, eye-safe laser rangefinder that incorporates a novel transmitter that can deliver a burst capability. The transmitter is a diode-pumped, erbium:glass, passively Q-switched, solid-state laser which uses design and packaging techniques adopted from the telecom components sector. The key advantage of this approach is that the transmitter can be engineered to match the physical dimensions of the active laser components and the submillimetre sized laser spot. This makes the transmitter significantly smaller than existing designs, leading to big improvements in thermal management, and allowing higher repetition rates. In addition, the design approach leads to devices that have higher reliability, lower cost, and smaller form-factor, than previously possible. We present results from the laser rangefinder that incorporates the new transmitter. The LRF has dimensions (L x W x H) of 100 x 55 x 34 mm and achieves ranges of up to 15km from a single shot, and over a temperature range of -32°C to +60°C. Due to the transmitter's superior thermal performance, the unit is capable of repetition rates of 1Hz continuous operation and short bursts of up to 4Hz. Short bursts of 10Hz have also been demonstrated from the transmitter in the laboratory.

  6. Distance biases in the estimation of the physical properties of Hi-GAL compact sources - I. Clump properties and the identification of high-mass star-forming candidates

    NASA Astrophysics Data System (ADS)

    Baldeschi, Adriano; Elia, D.; Molinari, S.; Pezzuto, S.; Schisano, E.; Gatti, M.; Serra, A.; Merello, M.; Benedettini, M.; Di Giorgio, A. M.; Liu, J. S.

    2017-04-01

    The degradation of spatial resolution in star-forming regions, observed at large distances (d ≳ 1 kpc) with Herschel, can lead to estimates of the physical parameters of the detected compact sources (clumps), which do not necessarily mirror the properties of the original population of cores. This paper aims at quantifying the bias introduced in the estimation of these parameters by the distance effect. To do so, we consider Herschel maps of nearby star-forming regions taken from the Herschel Gould Belt survey, and simulate the effect of increased distance to understand what amount of information is lost when a distant star-forming region is observed with Herschel resolution. In the maps displaced to different distances we extract compact sources, and we derive their physical parameters as if they were original Herschel infrared Galactic Plane Survey maps of the extracted source samples. In this way, we are able to discuss how the main physical properties change with distance. In particular, we discuss the ability of clumps to form massive stars: we estimate the fraction of distant sources that are classified as high-mass stars-forming objects due to their position in the mass versus radius diagram, that are only 'false positives'. We also give a threshold for high-mass star formation M>1282 (r/ [pc])^{1.42} M_{⊙}. In conclusion, this paper provides the astronomer dealing with Herschel maps of distant star-forming regions with a set of prescriptions to partially recover the character of the core population in unresolved clumps.

  7. A Compact and Low-Cost MEMS Loudspeaker for Digital Hearing Aids.

    PubMed

    Sang-Soo Je; Rivas, F; Diaz, R E; Jiuk Kwon; Jeonghwan Kim; Bakkaloglu, B; Kiaei, S; Junseok Chae

    2009-10-01

    A microelectromechanical-systems (MEMS)-based electromagnetically actuated loudspeaker to reduce form factor, cost, and power consumption, and increase energy efficiency in hearing-aid applications is presented. The MEMS loudspeaker has multilayer copper coils, an NiFe soft magnet on a thin polyimide diaphragm, and an NdFeB permanent magnet on the perimeter. The coil impedance is measured at 1.5 Omega, and the resonant frequency of the diaphragm is located far from the audio frequency range. The device is driven by a power-scalable, 0.25-mum complementary metal-oxide semiconductor class-D SigmaDelta amplifier stage. The class-D amplifier is formed by a differential H-bridge driven by a single bit, pulse-density-modulated SigmaDelta bitstream at a 1.2-MHz clock rate. The fabricated MEMS loudspeaker generates more than 0.8-mum displacement, equivalent to 106-dB sound pressure level (SPL), with 0.13-mW power consumption. Driven by the SigmaDelta class-D amplifier, the MEMS loudspeaker achieves measured 65-dB total harmonic distortion (THD) with a measurement uncertainty of less than 10%. Energy-efficient and cost-effective advanced hearing aids would benefit from further miniaturization via MEMS technology. The results from this study appear very promising for developing a compact, mass-producible, low-power loudspeaker with sufficient sound generation for hearing-aid applications.

  8. Compaction of forest soil by logging machinery favours occurrence of prokaryotes.

    PubMed

    Schnurr-Pütz, Silvia; Bååth, Erland; Guggenberger, Georg; Drake, Harold L; Küsel, Kirsten

    2006-12-01

    Soil compaction caused by passage of logging machinery reduces the soil air capacity. Changed abiotic factors might induce a change in the soil microbial community and favour organisms capable of tolerating anoxic conditions. The goals of this study were to resolve differences between soil microbial communities obtained from wheel-tracks (i.e. compacted) and their adjacent undisturbed sites, and to evaluate differences in potential anaerobic microbial activities of these contrasting soils. Soil samples obtained from compacted soil had a greater bulk density and a higher pH than uncompacted soil. Analyses of phospholipid fatty acids demonstrated that the eukaryotic/prokaryotic ratio in compacted soils was lower than that of uncompacted soils, suggesting that fungi were not favoured by the in situ conditions produced by compaction. Indeed, most-probable-number (MPN) estimates of nitrous oxide-producing denitrifiers, acetate- and lactate-utilizing iron and sulfate reducers, and methanogens were higher in compacted than in uncompacted soils obtained from one site that had large differences in bulk density. Compacted soils from this site yielded higher iron-reducing, sulfate-reducing and methanogenic potentials than did uncompacted soils. MPN estimates of H2-utilizing acetogens in compacted and uncompacted soils were similar. These results indicate that compaction of forest soil alters the structure and function of the soil microbial community and favours occurrence of prokaryotes.

  9. Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS).

    PubMed

    Gu, Y W; Khor, K A; Cheang, P

    2004-08-01

    Hydroxyapatite (HA) compacts with high density and superior mechanical properties were fabricated by spark plasma sintering (SPS) using spray-dried HA powders as feedstock. The formation of bone-like apatite layer on SPS consolidated HA compacts were investigated by soaking the HA compacts in simulated body fluid (SBF) for various periods (maximum of 28 days). The structural changes in HA post-SBF were analyzed with scanning electron microscopy, grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy. It was found that a layer consisting microcrystalline carbonate-containing hydroxyapatite was formed on the surface of HA compacts after soaking for 24h. The formation mechanism of apatite on the surface of HA compacts after soaking in SBF was attributed to the ion exchange between HA compacts and the SBF solution. The increase in ionic concentration of calcium and phosphorus as well as the increase in pH after SBF immersion resulted in an increase in ionic activity product of apatite in the solution, and provided a specific surface with a low interface energy that is conducive to the nucleation of apatite on the surface of HA compacts.

  10. SpaceCube Mini

    NASA Technical Reports Server (NTRS)

    Lin, Michael; Petrick, David; Geist, Alessandro; Flatley, Thomas

    2012-01-01

    This version of the SpaceCube will be a full-fledged, onboard space processing system capable of 2500+ MIPS, and featuring a number of plug-andplay gigabit and standard interfaces, all in a condensed 3x3x3 form factor [less than 10 watts and less than 3 lb (approximately equal to 1.4 kg)]. The main processing engine is the Xilinx SIRF radiation- hardened-by-design Virtex-5 FX-130T field-programmable gate array (FPGA). Even as the SpaceCube 2.0 version (currently under test) is being targeted as the platform of choice for a number of the upcoming Earth Science Decadal Survey missions, GSFC has been contacted by customers who wish to see a system that incorporates key features of the version 2.0 architecture in an even smaller form factor. In order to fulfill that need, the SpaceCube Mini is being designed, and will be a very compact and low-power system. A similar flight system with this combination of small size, low power, low cost, adaptability, and extremely high processing power does not otherwise exist, and the SpaceCube Mini will be of tremendous benefit to GSFC and its partners. The SpaceCube Mini will utilize space-grade components. The primary processing engine of the Mini is the Xilinx Virtex-5 SIRF FX-130T radiation-hardened-by-design FPGA for critical flight applications in high-radiation environments. The Mini can also be equipped with a commercial Xilinx Virtex-5 FPGA with integrated PowerPCs for a low-cost, high-power computing platform for use in the relatively radiation- benign LEOs (low-Earth orbits). In either case, this version of the Space-Cube will weigh less than 3 pounds (.1.4 kg), conform to the CubeSat form-factor (10x10x10 cm), and will be low power (less than 10 watts for typical applications). The SpaceCube Mini will have a radiation-hardened Aeroflex FPGA for configuring and scrubbing the Xilinx FPGA by utilizing the onboard FLASH memory to store the configuration files. The FLASH memory will also be used for storing algorithm and application code for the PowerPCs and the Xilinx FPGA. In addition, it will feature highspeed DDR SDRAM (double data rate synchronous dynamic random-access memory) to store the instructions and data of active applications. This version will also feature SATA-II and Gigabit Ethernet interfaces. Furthermore, there will also be general-purpose, multi-gigabit interfaces. In addition, the system will have dozens of transceivers that can support LVDS (low-voltage differential signaling), RS-422, or SpaceWire. The SpaceCube Mini includes an I/O card that can be customized to meet the needs of each mission. This version of the SpaceCube will be designed so that multiple Minis can be networked together using SpaceWire, Ethernet, or even a custom protocol. Scalability can be provided by networking multiple SpaceCube Minis together. Rigid-Flex technology is being targeted for the construction of the SpaceCube Mini, which will make the extremely compact and low-weight design feasible. The SpaceCube Mini is designed to fit in the compact CubeSat form factor, thus allowing deployment in a new class of missions that the previous SpaceCube versions were not suited for. At the time of this reporting, engineering units should be available in the summer 2012.

  11. A Study of Production of Miscibility Gap Alloys with Controlled Structures

    NASA Technical Reports Server (NTRS)

    Parr, R. A.; Johnston, M. H.; Burka, J. A.; Davis, J. H.; Lee, J. A.

    1983-01-01

    Composite materials were directionally solidified using a new technique to align the constituents longitudinally along the length of the specimen. In some instances a tin coating was applied and diffused into the sample to form a high transition temperature superconducting phase. The superconducting properties were measured and compared with the properties obtained for powder composites and re-directionally solidified powder compacts. The samples which were compacted and redirectionally solidified showed the highest transition temperature and wildest transition range. This indicates that both steps, powder compaction and resolidification, determine the final superconducting properties of the material.

  12. A compact 300 kV solid-state high-voltage nanosecond generator for dielectric wall accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yi; Wang, Wei; Liu, Yi

    2015-05-15

    Compact solid-state system is the main development trend in pulsed power technologies. A compact solid-state high-voltage nanosecond pulse generator with output voltage of 300 kV amplitude, 10 ns duration (FWHM), and 3 ns rise-time was designed for a dielectric wall accelerator. The generator is stacked by 15 planar-plate Blumlein pulse forming lines (PFL). Each Blumlein PFL consists of two solid-state planar transmission lines, a GaAs photoconductive semiconductor switch, and a laser diode trigger. The key components of the generator and the experimental results are reported in this paper.

  13. Compacted dimensions and singular plasmonic surfaces

    NASA Astrophysics Data System (ADS)

    Pendry, J. B.; Huidobro, Paloma Arroyo; Luo, Yu; Galiffi, Emanuele

    2017-11-01

    In advanced field theories, there can be more than four dimensions to space, the excess dimensions described as compacted and unobservable on everyday length scales. We report a simple model, unconnected to field theory, for a compacted dimension realized in a metallic metasurface periodically structured in the form of a grating comprising a series of singularities. An extra dimension of the grating is hidden, and the surface plasmon excitations, though localized at the surface, are characterized by three wave vectors rather than the two of typical two-dimensional metal grating. We propose an experimental realization in a doped graphene layer.

  14. A method for predicting asphalt mixture compactability and its influence on mechanical properties.

    DOT National Transportation Integrated Search

    2010-05-01

    This project aimed at providing better understanding of the factors affecting the uniformity and level : of compaction; and the performance of asphalt pavements. TxDOT research report 0-5261-1 documented : some of the findings of this research projec...

  15. Compact rotating cup anemometer

    NASA Technical Reports Server (NTRS)

    Wellman, J. B.

    1968-01-01

    Compact, collapsible rotating cup anemometer is used in remote locations where portability and durability are factors in the choice of equipment. This lightweight instrument has a low wind-velocity threshold, is capable of withstanding large mechanical shocks while in its stowed configuration, and has fast response to wind fluctuations.

  16. Compact Infrared Spectrometers

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis

    2009-01-01

    Concentric spectrometer forms are advantageous for constructing a variety of systems spanning the entire visible to infrared range. Spectrometer examples are given, including broadband or high resolution forms. Some issues associated with the Dyson catadioptric type are also discussed.

  17. Solid state neutron dosimeter for space applications

    NASA Technical Reports Server (NTRS)

    Entine, Gerald; Nagargar, Vivek; Sharif, Daud

    1990-01-01

    Personnel engaged in space flight are exposed to significant flux of high energy neutrons arising from both primary and secondary sources of ionizing radiation. Presently, there exist no compact neutron sensor capable of being integrated in a flight instrument to provide real time measurement of this radiation flux. A proposal was made to construct such an instrument using special PIN silicon diode which has the property of being insensitive to the other forms of ionizing radiation. Studies were performed to determine the design and construction of a better reading system to allow the PIN diode to be read with high precision. The physics of the device was studied, especially with respect to those factors which affect the sensitivity and reproducibility of the neutron response. This information was then used to develop methods to achieve high sensitivity at low neutron doses. The feasibility was shown of enhancing the PIN diode sensitivity to make possible the measurement of the low doses of neutrons encountered in space flights. The new PIN diode will make possible the development of a very compact, accurate, personal neutron dosimeter.

  18. Mobile glasses-free 3D using compact waveguide hologram

    NASA Astrophysics Data System (ADS)

    Pyun, K.; Choi, C.; Morozov, A.; Putilin, A.; Bovsunovskiy, I.; Kim, S.; Ahn, J.; Lee, H.-S.; Lee, S.

    2013-02-01

    The exploding mobile communication devices make 3D data available anywhere anytime. However, to record and reconstruct 3D, the huge number of optical components is often required, which makes overall device size bulky and image quality degraded due to the error-prone tuning. In addition, if additional glass is required, then user experience of 3D is exhausting and unpleasant. Holography is the ultimate 3D that users experience natural 3D in every direction. For mobile glasses-free 3D experience, it is critical to make holography device that can be as compact and integrated as possible. For reliable and economical mass production, integrated optics is needed as integrated circuits in semiconductor industry. Thus, we propose mobile glasses-free 3D using compact waveguide hologram in terms of overall device sizes, quantity of elements and combined functionality of each element. The main advantages of proposed solution are as follows: First, this solution utilizes various integral optical elements, where each of them is a united not adjustable optical element, replacing separate and adjustable optical elements with various forms and configurations. Second, geometrical form of integral elements provides small sizes of whole device. Third, geometrical form of integral elements allows creating flat device. And finally, absence of adjustable elements provide rigidly of whole device. The usage of integrated optical means based on waveguide holographic elements allows creating a new type of compact and high functional devices for mobile glasses-free 3D applications such as mobile medical 3D data visualization.

  19. Fabrication of microporous calcite block from calcium hydroxide compact under carbon dioxide atmosphere at high temperature.

    PubMed

    Otsu, Akihiro; Tsuru, Kanji; Maruta, Michito; Munar, Melvin L; Matsuya, Shigeki; Ishikawa, Kunio

    2012-01-01

    Effects of carbonation temperature and compacting pressure on basic properties of calcite block were studied using Ca(OH)2 compact made with 0.2-2.0 MPa and their carbonation at 200-800ºC for 1 h. Microporous calcite was obtained only when carbonated at 600ºC using Ca(OH)2 compact made with 0.2 MPa even though thermogravimetry analysis showed that calcite powder was stable up to 920ºC under CO2 atmosphere. CaO formed by carbonation at 700ºC and 800ºC is thought to be caused by the limited CO2 diffusion interior to the Ca(OH)2 compact. Also, unreacted Ca(OH)2 was found for Ca(OH)2 compact prepared with 0.5 MPa or higher pressure even when carbonated at 600ºC. As a result of high temperature carbonation, crystallite size of the calcite, 58.0 nm, was significantly larger when compared to that of calcite prepared at room temperature, 35.5 nm. Porosity and diametral tensile strength of the microporous calcite were 39.5% and 6.4 MPa.

  20. A population of compact elliptical galaxies detected with the Virtual Observatory.

    PubMed

    Chilingarian, Igor; Cayatte, Véronique; Revaz, Yves; Dodonov, Serguei; Durand, Daniel; Durret, Florence; Micol, Alberto; Slezak, Eric

    2009-12-04

    Compact elliptical galaxies are characterized by small sizes and high stellar densities. They are thought to form through tidal stripping of massive progenitors. However, only a handful of them were known, preventing us from understanding the role played by this mechanism in galaxy evolution. We present a population of 21 compact elliptical galaxies gathered with the Virtual Observatory. Follow-up spectroscopy and data mining, using high-resolution images and large databases, show that all the galaxies exhibit old metal-rich stellar populations different from those of dwarf elliptical galaxies of similar masses but similar to those of more massive early-type galaxies, supporting the tidal stripping scenario. Their internal properties are reproduced by numerical simulations, which result in compact, dynamically hot remnants resembling the galaxies in our sample.

  1. Field of view of limitations in see-through HMD using geometric waveguides.

    PubMed

    DeHoog, Edward; Holmstedt, Jason; Aye, Tin

    2016-08-01

    Geometric waveguides are being integrated into head-mounted display (HMD) systems, where having see-through capability in a compact, lightweight form factor is required. We developed methods for determining the field of view (FOV) of such waveguide HMD systems and have analytically derived the FOV for waveguides using planar and curved geometries. By using real ray-tracing methods, we are able to show how the geometry and index of refraction of the waveguide, as well as the properties of the coupling optics, impact the FOV. Use of this analysis allows one to determine the maximum theoretical FOV of a planar or curved waveguide-based system.

  2. Metal enrichment in the neutral gas of star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Lebouteiller, V.; Kunth, D.; Désert, J.-M.; Thuan, T. X.

    2009-05-01

    We derive the chemical composition of the neutral gas in the blue compact dwarf (BCD) Pox 36 observed with FUSE. Metals (N, O, Ar, and Fe) are underabundant as compared to the ionized gas associated with H II regions by a factor ~7. The neutral gas, although it is not pristine, is thus probably less chemically evolved than the ionized gas. This could be due to different dispersal and mixing timescales. Results are compared to those of other BCDs observed with FUSE. The metallicity of the neutral gas in BCDs seems to reach a lower threshold of ~1/50Zsolar for extremely-metal poor galaxies.

  3. Compact CPE: a full unit of clinical pastoral education in 27 days.

    PubMed

    Beverly, U H

    1990-01-01

    Details a four-week Basic Clinical Pastoral Education Unit. Gives a rationale for the abbreviated unit. Notes positive factors as well as limitations of such an educational experience and urges other CPE supervisors to try the compact approach. Critical responses follow the article.

  4. Antimicrobial photodynamic inactivation of Staphylococcus aureus biofilms in bone specimens using methylene blue, toluidine blue ortho and malachite green: An in vitro study.

    PubMed

    Rosa, Luciano Pereira; da Silva, Francine Cristina; Nader, Sumaia Alves; Meira, Giselle Andrade; Viana, Magda Souza

    2015-05-01

    To evaluate the in vitro effectiveness of APDI with a 660 nm laser combined with methylene blue (MB), toluidine blue ortho (TBO) and malachite green (MG) dyes to inactivate Staphylococcus aureus (ATCC 25923) biofilms in compact and cancellous bone specimens. Eighty specimens of compact and 80 of cancellous bone were contaminated with a standard suspension of the microorganism and incubated for 14 days at 37°C to form biofilms. After this period, the specimens were divided into groups (n=10) according to established treatment: PS-L- (control - no treatment); PSmb+L-, PStbo+L-, PSmg+L- (only MB, TBO or MG for 5 min in the dark); PS-L+ (only laser irradiation for 180 s); and APDImb, APDItbo and APDImg (APDI with MB, TBO or MG for 180 s). The findings were statistically analyzed by ANOVA at 5% significance levels. All experimental treatments showed significant reduction of log CFU/mL S. aureus biofilms when compared with the control group for compact and cancellous bones specimens; the APDI group's treatment was more effective. The APDI carried out for the compact specimens showed better results when compared with cancellous specimens at all times of application. For the group of compact bone, APDImg showed greater reductions in CFU/mL (4.46 log 10). In the group of cancellous bone, the greatest reductions were found in the APDImb group (3.06 log 10). APDI with methylene blue, toluidine blue ortho and malachite green dyes and a 660 nm laser proved to be effective in the inactivation of S. aureus biofilms formed in compact and cancellous bone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Effect of suspension property on granule morphology and compaction behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hae-Weon Lee, Guesup Song, In-Sik Suk

    1995-12-31

    Granule morphology is an important factor during dry pressing, since it has great influences on die flowability, compaction ratio, and resulting green microstructure. Granule morphology and packing structure of ultrafine Si{sub 3}N{sub 4} particles in the granule were optimized during spray drying by adjusting the suspension structure. The particle packing structure of spray-dried granule was investigated with suspension structure. The effects of granule morphology and its particle packing structure on compaction and resultant sintering behavior were evaluated.

  6. Impacts of compact growth and electric vehicles on future air quality and urban exposures may be mixed.

    PubMed

    Yu, Haofei; Stuart, Amy L

    2017-01-15

    'Smart' growth and electric vehicles are potential solutions to the negative impacts of worldwide urbanization on air pollution and health. However, the effects of planning strategies on distinct types of pollutants, and on human exposures, remain understudied. The goal of this work was to investigate the potential impacts of alternative urban designs for the area around Tampa, Florida USA, on emissions, ambient concentrations, and exposures to oxides of nitrogen (NO x ), 1,3-butadiene, and benzene. We studied three potential future scenarios: sprawling growth, compact growth, and 100% vehicle fleet electrification with compact growth. We projected emissions in the seven-county region to 2050 based on One Bay regional visioning plan data. We estimated pollutant concentrations in the county that contains Tampa using the CALPUFF dispersion model. We applied residential population projections to forecast acute (highest hour) and chronic (annual average) exposure. The compact scenario was projected to result in lower regional emissions of all pollutants than sprawl, with differences of -18%, -3%, and -14% for NO x , butadiene, and benzene, respectively. Within Hillsborough County, the compact form also had lower emissions, concentrations, and exposures than sprawl for NO x (-16%/-5% for acute/chronic exposures, respectively), but higher exposures for butadiene (+41%/+30%) and benzene (+21%/+9%). The addition of complete vehicle fleet electrification to the compact scenario mitigated these in-county increases for the latter pollutants, lowering predicted exposures to butadiene (-25%/-39%) and benzene (-5%/-19%), but also resulted in higher exposures to NO x (+81%/+30%) due to increased demand on power plants. These results suggest that compact forms may have mixed impacts on exposures and health. 'Smart' urban designs should consider multiple pollutants and the diverse mix of pollutant sources. Cleaner power generation will also likely be needed to support aggressive adoption of electric vehicles. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Evaluation of effects of geometrical parameters on density distribution in compaction of PM gears

    NASA Astrophysics Data System (ADS)

    Khodaee, Alireza; Melander, Arne

    2017-10-01

    The usage of powder metallurgy (PM) for manufacturing of transmission components in automotive industries has been studied by many researchers. PM components have become of interest in recent years due to advancements in post processing possibilities such as hot isostatic pressing (HIP). Still in many of the forming process routes for making components from PM materials, the compaction of the powder into green component is the first step. Compaction is required to put the powder into the near net shape of the desired component and it causes a density gradient in the body of the green component. Basically the friction between powder particles and between the powder particles and die walls are the well-known roots for such density gradients in the compacted component. Looking at forming of PM gears, the gradient in density is one of the most important roots of problems in the processing of PM gears as well. That is because making a gear with full density and no pores will be very costly if large density gradients exist in the green component. The purpose of this study is to find the possible relations between the gear geometry and the density gradients in the green component after compaction in addition to the friction effects. For this purpose several gears should be tested. To reduce the research costs, the finite element (FE) method is used. First a FE model of the compaction process is developed and verified. To investigate the relations between the density gradients and the gear parameters such as addendum diameter (da) and the face width (b) several gear geometries have been studied. The compaction of selected gears is simulated using the FE model. The simulations results which are the distribution of density in the green component are evaluated and discussed and conclusion are made based on them.

  8. Effect of product form, compaction, vibration and comminution on energywood bulk density

    Treesearch

    Tim P. McDonald; Bryce J. Stokes; J.F. McNeel

    1995-01-01

    A study was performed to examine the changes in density of stacked roundwood, chips, and chunks as affected by various compaction treatments. Density of stacked roundwood bolts was tested for the effect of stacking orientation, binding of the stack ends, and species. Stacked bolt wood occupied less than 50 percent of the total rack space for all species, giving final...

  9. Compaction die for forming a solid annulus on a right circular cylinder. [Patent application

    DOEpatents

    Harlow, J.L.

    1981-09-14

    A compacting die is disclosed wherein the improvement comprises providing a screen in the die cavity, the screen being positioned parallel to the side walls of said die and dividing the die cavity into center and annular compartments. In addition, the use of this die in a method for producing an annular clad ceramic fuel material is disclosed.

  10. Conformational isomerism of phenolic procyanidins: preferred conformations in organic solvents and water

    Treesearch

    Tsutomu Hatano; Richard W. Hemingway

    1997-01-01

    NMR studies of catechin-{4α→8)-epicatechin (I) and catechin-{4α→8)-catechin (2) provided complete assignment of the proton and carbon resonances for both the more extended and compact conformers in the free phenolic form. When 1 is in organic solvents, the more extended rotamer is preferred over the more compact rotamer (10:7), but...

  11. Differential compaction mechanism for earth fissures near Casa Grande, Arizona.

    USGS Publications Warehouse

    Jachens, R.C.; Holzer, T.L.

    1982-01-01

    Precise gravity measurements indicate that earth fissures or tension cracks caused by ground-water withdrawal within a 10km2 area SE of Casa Grande are associated with relief on the buried interface between the alluvial aquifer and underlying bedrock. These relations suggest that the fissures are forming in response to localized differential compaction caused by localized variations of aquifer-system thickness. -from Authors

  12. Panel 1: A pulsating red giant star and a compact, hot white dwarf star orbit each other.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Panel 1: A pulsating red giant star and a compact, hot white dwarf star orbit each other. Panel 2: The red giant sheds much of its outer layers in a stellar wind. The white dwarf helps concentrate the wind along a thin equatorial plane. The white dwarf accretes some of this escaping gas forming a disk around the itself. Panel 3: When enough gas accumulates on the white dwarf's surface it explodes as a nova outburst. Most of the hot gas forms a pair of expanding bubbles above and below the equatorial disk. Panel 4: A few thousand years after the bubbles expand into space, the white dwarf goes through another nova outburst and makes another pair of bubbles, which form a distinctive hourglass shape.

  13. Anomaly formulas for the complex-valued analytic torsion on compact bordisms

    PubMed Central

    Maldonado Molina, Osmar

    2013-01-01

    We extend the complex-valued analytic torsion, introduced by Burghelea and Haller on closed manifolds, to compact Riemannian bordisms. We do so by considering a flat complex vector bundle over a compact Riemannian manifold, endowed with a fiberwise nondegenerate symmetric bilinear form. The Riemmanian metric and the bilinear form are used to define non-selfadjoint Laplacians acting on vector-valued smooth forms under absolute and relative boundary conditions. In order to define the complex-valued analytic torsion in this situation, we study spectral properties of these generalized Laplacians. Then, as main results, we obtain so-called anomaly formulas for this torsion. Our reasoning takes into account that the coefficients in the heat trace asymptotic expansion associated to the boundary value problem under consideration, are locally computable. The anomaly formulas for the complex-valued Ray–Singer torsion are derived first by using the corresponding ones for the Ray–Singer metric, obtained by Brüning and Ma on manifolds with boundary, and then an argument of analytic continuation. In odd dimensions, our anomaly formulas are in accord with the corresponding results of Su, without requiring the variations of the Riemannian metric and bilinear structures to be supported in the interior of the manifold. PMID:27087744

  14. Sequence-stratigraphic controls on sandstone diagenesis: An example from the Williams Fork formation, Piceance Basin, Colorado

    NASA Astrophysics Data System (ADS)

    Aboktef, Adel

    This study documents the distribution of diagenetic alterations in Williams Fork fluvial sandstones, assess sequence stratigraphic controls on diagenetic features, and addresses diagenetic impacts on porosity. Petrographic point counts of 220 thin sections from six wells forms the database. The near absence of potassium feldspar and volcanic rock fragments in the lower Williams Fork interval and increasing plagioclase content upward represent changes in sediment provenance rather than stratigraphic variability in diagenesis. The lower Williams Fork sands are from sedimentary sources whereas middle and upper Williams Fork sands include input from magmatic arcs and basement uplifts. Compaction, early and late cementation, dissolution, and replacement by calcite or clay minerals combined to alter Williams Fork sandstones. Infiltration of clays occurred prior to any burial. Chlorite, quartz, non-ferroan calcite, compaction and dissolution features, and kaolinite formed during eo-diagenesis at <70°C. More quartz, compaction and dissolution features, plus albite, illite, mixed-layer illite/smectite, ferroan calcite, and dolomite formed in the meso-diagenetic realm (>70°C). Four of these features show spatial variability with respect to systems tracts. Infiltrated clays are concentrated in lowstand systems tracts (LST) and highstand systems tracts (HST) because accommodation space rose slow or fell during deposition of those sands, which led to prolonged sand body exposure on floodplain and ample opportunities for downward percolation of mud during flood events. Concentration of pseudomatrix (mud intraclasts) in HST and LST deposits resulted from floodplain erosion when base-level fell with decreasing accommodation space. Authigenic chlorite formed in the HST and transgressive systems tracts (TST) of the upper half of the Williams Fork Formation because volcanic clasts are abundant in that interval. Quartz overgrowths are more likely to exceed 7% in TST deposits for reasons that are unknown. High total clay content (infiltrated, grain coatings, pseudomatrix) does inhibit quartz overgrowths in all systems tracts. Williams Fork sandstones form low-permeability tight-gas reservoirs. Primary porosity was almost entirely destroyed by compaction and cementation. Reservoir rock resulted from one of two pathways. Eogenetic authigenic chlorite and/or calcite inhibited quartz cementation, minimized compaction and protected some primary porosity. Alternately, dissolution of framework grains or cements created secondary porosity. The later pathway tends to be the more dominant.

  15. ALMA reveals starburst-like interstellar medium conditions in a compact star-forming galaxy at z 2 using [CI] and CO

    NASA Astrophysics Data System (ADS)

    Popping, Gergö; Decarli, Roberto; Man, Allison W. S.; Nelson, Erica J.; Béthermin, Matthieu; De Breuck, Carlos; Mainieri, Vincenzo; van Dokkum, Pieter G.; Gullberg, Bitten; van Kampen, Eelco; Spaans, Marco; Trager, Scott C.

    2017-06-01

    We present ALMA detections of the [CI] 1-0, CO J = 3-2, and CO J = 4-3 emission lines, as well as the ALMA band 4 continuum for a compact star-forming galaxy (cSFG) at z = 2.225, 3D-HST GS30274. As is typical for cSFGs, this galaxy has a stellar mass of 1.89 ± 0.47 × 1011M⊙, with a star formation rate (SFR) of 214 ± 44 M⊙ yr-1 putting it on the star-forming "main-sequence", but with an H-band effective radius of 2.5 kpc, making it much smaller than the bulk of "main-sequence" star-forming galaxies. The intensity ratio of the line detections yield an ISM density ( 6 × 104 cm-3) and a UV-radiation field ( 2 × 104G0), similar to the values in local starburst and ultra-luminous infrared galaxy environments. A starburst phase is consistent with the short depletion times (tH2,dep ≤ 140 Myr) we find in 3D-HST GS30274 using three different proxies for the H2 mass ([CI], CO, dust mass). This depletion time is significantly shorter than in more extended SFGs with similar stellar masses and SFRs. Moreover, the gas fraction of 3D-HST GS30274 is smaller than typically found in extended galaxies. We measure the CO and [CI] kinematics and find a FWHM line width of 750 ± 41 km s-1. The CO and [CI] FWHM are consistent with a previously measured Hα FWHM for this source. The line widths are consistent with gravitational motions, suggesting we are seeing a compact molecular gas reservoir. A previous merger event, as suggested by the asymmetric light profile, may be responsible for the compact distribution of gas and has triggered a central starburst event. This event gives rise to the starburst-like ISM properties and short depletion times in 3D-HST GS30274. The centrally located and efficient star formation is quickly building up a dense core of stars, responsible for the compact distribution of stellar light in 3D-HST GS30274.

  16. PSC algorithm description

    NASA Technical Reports Server (NTRS)

    Nobbs, Steven G.

    1995-01-01

    An overview of the performance seeking control (PSC) algorithm and details of the important components of the algorithm are given. The onboard propulsion system models, the linear programming optimization, and engine control interface are described. The PSC algorithm receives input from various computers on the aircraft including the digital flight computer, digital engine control, and electronic inlet control. The PSC algorithm contains compact models of the propulsion system including the inlet, engine, and nozzle. The models compute propulsion system parameters, such as inlet drag and fan stall margin, which are not directly measurable in flight. The compact models also compute sensitivities of the propulsion system parameters to change in control variables. The engine model consists of a linear steady state variable model (SSVM) and a nonlinear model. The SSVM is updated with efficiency factors calculated in the engine model update logic, or Kalman filter. The efficiency factors are used to adjust the SSVM to match the actual engine. The propulsion system models are mathematically integrated to form an overall propulsion system model. The propulsion system model is then optimized using a linear programming optimization scheme. The goal of the optimization is determined from the selected PSC mode of operation. The resulting trims are used to compute a new operating point about which the optimization process is repeated. This process is continued until an overall (global) optimum is reached before applying the trims to the controllers.

  17. The Optical Green Valley Versus Mid-infrared Canyon in Compact Groups

    NASA Technical Reports Server (NTRS)

    Walker, Lisa May; Butterfield, Natalie; Johnson, Kelsey; Zucker, Catherine; Gallagher, Sarah; Konstantopoulos, Iraklis; Zabludoff, Ann; Hornschemeier, Ann E.; Tzanavaris, Panayiotis; Charlton, Jane C.

    2013-01-01

    Compact groups of galaxies provide conditions similar to those experienced by galaxies in the earlier universe. Recent work on compact groups has led to the discovery of a dearth of mid-infrared transition galaxies (MIRTGs) in Infrared Array Camera (3.6-8.0 micrometers) color space as well as at intermediate specific star formation rates. However, we find that in compact groups these MIRTGs have already transitioned to the optical ([g-r]) red sequence. We investigate the optical color-magnitude diagram (CMD) of 99 compact groups containing 348 galaxies and compare the optical CMD with mid-infrared (mid-IR) color space for compact group galaxies. Utilizing redshifts available from Sloan Digital Sky Survey, we identified new galaxy members for four groups. By combining optical and mid-IR data, we obtain information on both the dust and the stellar populations in compact group galaxies. We also compare with more isolated galaxies and galaxies in the Coma Cluster, which reveals that, similar to clusters, compact groups are dominated by optically red galaxies. While we find that compact group transition galaxies lie on the optical red sequence, LVL (Local Volume Legacy) + (plus) SINGS (Spitzer Infrared Nearby Galaxies Survey) mid-IR (infrared) transition galaxies span the range of optical colors. The dearth of mid-IR transition galaxies in compact groups may be due to a lack of moderately star-forming low mass galaxies; the relative lack of these galaxies could be due to their relatively small gravitational potential wells. This makes them more susceptible to this dynamic environment, thus causing them to more easily lose gas or be accreted by larger members.

  18. The KMOS3D Survey: Rotating Compact Star-forming Galaxies and the Decomposition of Integrated Line Widths

    NASA Astrophysics Data System (ADS)

    Wisnioski, E.; Mendel, J. T.; Förster Schreiber, N. M.; Genzel, R.; Wilman, D.; Wuyts, S.; Belli, S.; Beifiori, A.; Bender, R.; Brammer, G.; Chan, J.; Davies, R. I.; Davies, R. L.; Fabricius, M.; Fossati, M.; Galametz, A.; Lang, P.; Lutz, D.; Nelson, E. J.; Momcheva, I.; Rosario, D.; Saglia, R.; Tacconi, L. J.; Tadaki, K.; Übler, H.; van Dokkum, P. G.

    2018-03-01

    Using integral field spectroscopy, we investigate the kinematic properties of 35 massive centrally dense and compact star-forming galaxies (SFGs; {log}{\\overline{M}}* [{M}ȯ ]=11.1, {log}({{{Σ }}}1{kpc}[{M}ȯ {kpc}}-2])> 9.5, {log}({M}* /{r}e1.5[{M}ȯ {kpc}}-1.5])> 10.3) at z ∼ 0.7–3.7 within the KMOS3D survey. We spatially resolve 23 compact SFGs and find that the majority are dominated by rotational motions with velocities ranging from 95 to 500 km s‑1. The range of rotation velocities is reflected in a similar range of integrated Hα line widths, 75–400 km s‑1, consistent with the kinematic properties of mass-matched extended galaxies from the full KMOS3D sample. The fraction of compact SFGs that are classified as “rotation-dominated” or “disklike” also mirrors the fractions of the full KMOS3D sample. We show that integrated line-of-sight gas velocity dispersions from KMOS3D are best approximated by a linear combination of their rotation and turbulent velocities with a lesser but still significant contribution from galactic-scale winds. The Hα exponential disk sizes of compact SFGs are, on average, 2.5 ± 0.2 kpc, 1–2× the continuum sizes, in agreement with previous work. The compact SFGs have a 1.4× higher active galactic nucleus (AGN) incidence than the full KMOS3D sample at fixed stellar mass with an average AGN fraction of 76%. Given their high and centrally concentrated stellar masses, as well as stellar-to-dynamical mass ratios close to unity, the compact SFGs are likely to have low molecular gas fractions and to quench on a short timescale unless replenished with inflowing gas. The rotation in these compact systems suggests that their direct descendants are rotating passive galaxies. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDs 092A-0091, 093.A-0079, 094.A-0217, 095.A-0047, 096.A-0025, 097.A-0028, and 098.A-0045).

  19. Stress-intensity factors and crack-opening displacements for round compact specimens. [fracture toughness of metallic materials

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1979-01-01

    A two dimensional, boundary collocation stress analysis was used to analyze various round compact specimens. The influence of the round external boundary and of pin-loaded holes on stress intensity factors and crack opening displacements was determined as a function of crack-length-to-specimen-width ratios. A wide-range equation for the stress intensity factors was developed. Equations for crack-surface displacements and load-point displacements were also developed. In addition, stress intensity factors were calculated from compliance methods to demonstrate that load-displacement records must be made at the loading points and not along the crack line for crack-length-to-specimen-width ratios less than about 0.4.

  20. Design of flat pneumatic artificial muscles

    NASA Astrophysics Data System (ADS)

    Wirekoh, Jackson; Park, Yong-Lae

    2017-03-01

    Pneumatic artificial muscles (PAMs) have gained wide use in the field of robotics due to their ability to generate linear forces and motions with a simple mechanism, while remaining lightweight and compact. However, PAMs are limited by their traditional cylindrical form factors, which must increase radially to improve contraction force generation. Additionally, this form factor results in overly complicated fabrication processes when embedded fibers and sensor elements are required to provide efficient actuation and control of the PAMs while minimizing the bulkiness of the overall robotic system. In order to overcome these limitations, a flat two-dimensional PAM capable of being fabricated using a simple layered manufacturing process was created. Furthermore, a theoretical model was developed using Von Karman’s formulation for large deformations and the energy methods. Experimental characterizations of two different types of PAMs, a single-cell unit and a multi-cell unit, were performed to measure the maximum contraction lengths and forces at input pressures ranging from 0 to 150 kPa. Experimental data were then used to verify the fidelity of the theoretical model.

  1. Histidine-rich stabilized polyplexes for cMet-directed tumor-targeted gene transfer

    NASA Astrophysics Data System (ADS)

    Kos, Petra; Lächelt, Ulrich; Herrmann, Annika; Mickler, Frauke Martina; Döblinger, Markus; He, Dongsheng; Krhač Levačić, Ana; Morys, Stephan; Bräuchle, Christoph; Wagner, Ernst

    2015-03-01

    Overexpression of the hepatocyte growth factor receptor/c-Met proto oncogene on the surface of a variety of tumor cells gives an opportunity to specifically target cancerous tissues. Herein, we report the first use of c-Met as receptor for non-viral tumor-targeted gene delivery. Sequence-defined oligomers comprising the c-Met binding peptide ligand cMBP2 for targeting, a monodisperse polyethylene glycol (PEG) for polyplex surface shielding, and various cationic (oligoethanamino) amide cores containing terminal cysteines for redox-sensitive polyplex stabilization, were assembled by solid-phase supported syntheses. The resulting oligomers exhibited a greatly enhanced cellular uptake and gene transfer over non-targeted control sequences, confirming the efficacy and target-specificity of the formed polyplexes. Implementation of endosomal escape-promoting histidines in the cationic core was required for gene expression without additional endosomolytic agent. The histidine-enriched polyplexes demonstrated stability in serum as well as receptor-specific gene transfer in vivo upon intratumoral injection. The co-formulation with an analogous PEG-free cationic oligomer led to a further compaction of pDNA polyplexes with an obvious change of shape as demonstrated by transmission electron microscopy. Such compaction was critically required for efficient intravenous gene delivery which resulted in greatly enhanced, cMBP2 ligand-dependent gene expression in the distant tumor.Overexpression of the hepatocyte growth factor receptor/c-Met proto oncogene on the surface of a variety of tumor cells gives an opportunity to specifically target cancerous tissues. Herein, we report the first use of c-Met as receptor for non-viral tumor-targeted gene delivery. Sequence-defined oligomers comprising the c-Met binding peptide ligand cMBP2 for targeting, a monodisperse polyethylene glycol (PEG) for polyplex surface shielding, and various cationic (oligoethanamino) amide cores containing terminal cysteines for redox-sensitive polyplex stabilization, were assembled by solid-phase supported syntheses. The resulting oligomers exhibited a greatly enhanced cellular uptake and gene transfer over non-targeted control sequences, confirming the efficacy and target-specificity of the formed polyplexes. Implementation of endosomal escape-promoting histidines in the cationic core was required for gene expression without additional endosomolytic agent. The histidine-enriched polyplexes demonstrated stability in serum as well as receptor-specific gene transfer in vivo upon intratumoral injection. The co-formulation with an analogous PEG-free cationic oligomer led to a further compaction of pDNA polyplexes with an obvious change of shape as demonstrated by transmission electron microscopy. Such compaction was critically required for efficient intravenous gene delivery which resulted in greatly enhanced, cMBP2 ligand-dependent gene expression in the distant tumor. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06556e

  2. Remote Sensing-based Models of Soil Vulnerability to Compaction and Erosion from Off-highway Vehicles

    NASA Astrophysics Data System (ADS)

    Villarreal, M. L.; Webb, R. H.; Norman, L.; Psillas, J.; Rosenberg, A.; Carmichael, S.; Petrakis, R.; Sparks, P.

    2014-12-01

    Intensive off-road vehicle use for immigration, smuggling, and security of the United States-Mexico border has prompted concerns about long-term human impacts on sensitive desert ecosystems. To help managers identify areas susceptible to soil erosion from vehicle disturbances, we developed a series of erosion potential models based on factors from the Revised Universal Soil Loss Equation (RUSLE), with particular focus on the management factor (P-factor) and vegetation cover (C-factor). To better express the vulnerability of soils to human disturbances, a soil compaction index (applied as the P-factor) was calculated as the difference in saturated hydrologic conductivity (Ks) between disturbed and undisturbed soils, which was then scaled up to remote sensing-based maps of vehicle tracks and digital soils maps. The C-factor was improved using a satellite-based vegetation index, which was better correlated with estimated ground cover (r2 = 0.77) than data derived from regional land cover maps (r2 = 0.06). RUSLE factors were normalized to give equal weight to all contributing factors, which provided more management-specific information on vulnerable areas where vehicle compaction of sensitive soils intersects with steep slopes and low vegetation cover. Resulting spatial data on vulnerability and erosion potential provide land managers with information to identify critically disturbed areas and potential restoration sites where off-road driving should be restricted to reduce further degradation.

  3. Wide range stress intensity factor expressions for ASTM E 399 standard fracture toughness specimens

    NASA Technical Reports Server (NTRS)

    Srawley, J. E.

    1976-01-01

    For each of the two types of specimens, bend and compact, described previously for plane strain fracture toughness of materials, E 399, a polynominal expression is given for calculation of the stress intensity factor, K, from the applied force, P, and the specimen dimensions. It is explicitly stated, however, that these expressions should not be used outside the range of relative crack length, a/W, from 0.45 to 0.55. While this range is sufficient for the purpose of E 399, the same specimen types are often used for other purposes over a much wider range of a/W; for example, in the study of fatigue crack growth. Expressions are presented which are at least as accurate as those in E 399-74, and which cover much wider ranges of a/W: for the three-point bend specimen from 0 to 1; and for the compact specimen from 0.2 to 1. The range has to be restricted for the compact specimen because of the proximity of the loading pin holes to the crackline, which causes the stress intensity factor to be sensitive to small variations in dimensions when a/W is small. This is a penalty inherently associated with the compactness of the specimen.

  4. Structure Shift of GaN Among Nanowall Network, Nanocolumn, and Compact Film Grown on Si (111) by MBE.

    PubMed

    Zhong, Aihua; Fan, Ping; Zhong, Yuanting; Zhang, Dongping; Li, Fu; Luo, Jingting; Xie, Yizhu; Hane, Kazuhiro

    2018-02-13

    Structure shift of GaN nanowall network, nanocolumn, and compact film were successfully obtained on Si (111) by plasma-assisted molecular beam epitaxy (MBE). As is expected, growth of the GaN nanocolumns was observed in N-rich condition on bare Si, and the growth shifted to compact film when the Ga flux was improved. Interestingly, if an aluminum (Al) pre-deposition for 40 s was carried out prior to the GaN growth, GaN grows in the form of the nanowall network. Results show that the pre-deposited Al exits in the form of droplets with typical diameter and height of ~ 80 and ~ 6.7 nm, respectively. A growth model for the nanowall network is proposed and the growth mechanism is discussed. GaN grows in the area without Al droplets while the growth above Al droplets is hindered, resulting in the formation of continuous GaN nanowall network that removes the obstacles of nano-device fabrication.

  5. Structure Shift of GaN Among Nanowall Network, Nanocolumn, and Compact Film Grown on Si (111) by MBE

    NASA Astrophysics Data System (ADS)

    Zhong, Aihua; Fan, Ping; Zhong, Yuanting; Zhang, Dongping; Li, Fu; Luo, Jingting; Xie, Yizhu; Hane, Kazuhiro

    2018-02-01

    Structure shift of GaN nanowall network, nanocolumn, and compact film were successfully obtained on Si (111) by plasma-assisted molecular beam epitaxy (MBE). As is expected, growth of the GaN nanocolumns was observed in N-rich condition on bare Si, and the growth shifted to compact film when the Ga flux was improved. Interestingly, if an aluminum (Al) pre-deposition for 40 s was carried out prior to the GaN growth, GaN grows in the form of the nanowall network. Results show that the pre-deposited Al exits in the form of droplets with typical diameter and height of 80 and 6.7 nm, respectively. A growth model for the nanowall network is proposed and the growth mechanism is discussed. GaN grows in the area without Al droplets while the growth above Al droplets is hindered, resulting in the formation of continuous GaN nanowall network that removes the obstacles of nano-device fabrication.

  6. Demonstration of Compact and Low-Loss Athermal Arrayed-Waveguide Grating Module Based on 2.5%-Δ Silica-Based Waveguides

    NASA Astrophysics Data System (ADS)

    Maru, Koichi; Abe, Yukio; Uetsuka, Hisato

    2008-10-01

    We demonstrated a compact and low-loss athermal arrayed-waveguide grating (AWG) module utilizing silica-based planar lightwave circuit (PLC) technology. Spot-size converters based on a vertical ridge-waveguide taper were integrated with a 2.5%-Δ athermal AWG to reduce the loss at chip-to-fiber interface. Spot-size converters based on a segmented core were formed around resin-filled trenches for athermalization formed in the slab to reduce the diffraction loss at the trenches. A 16-channel athermal AWG module with 100-GHz channel spacing was fabricated. The use of a 2.5%-Δ athermal chip with a single-side fiber array enabled a compact package of the size of 41.6×16.6×4.5 mm3. Athermal characteristics and a small insertion loss of 3.5-3.8 dB were obtained by virtue of low fiber-to-chip coupling loss and athermalization with low excess loss.

  7. G-Quadruplex Forming Oligonucleotides as Anti-HIV Agents.

    PubMed

    Musumeci, Domenica; Riccardi, Claudia; Montesarchio, Daniela

    2015-09-22

    Though a variety of different non-canonical nucleic acids conformations have been recognized, G-quadruplex structures are probably the structural motifs most commonly found within known oligonucleotide-based aptamers. This could be ascribed to several factors, as their large conformational diversity, marked responsiveness of their folding/unfolding processes to external stimuli, high structural compactness and chemo-enzymatic and thermodynamic stability. A number of G-quadruplex-forming oligonucleotides having relevant in vitro anti-HIV activity have been discovered in the last two decades through either SELEX or rational design approaches. Improved aptamers have been obtained by chemical modifications of natural oligonucleotides, as terminal conjugations with large hydrophobic groups, replacement of phosphodiester linkages with phosphorothioate bonds or other surrogates, insertion of base-modified monomers, etc. In turn, detailed structural studies have elucidated the peculiar architectures adopted by many G-quadruplex-based aptamers and provided insight into their mechanism of action. An overview of the state-of-the-art knowledge of the relevance of putative G-quadruplex forming sequences within the viral genome and of the most studied G-quadruplex-forming aptamers, selectively targeting HIV proteins, is here presented.

  8. The Structure of Resting Bacterial Populations in Soil and Subsoil Permafrost

    NASA Astrophysics Data System (ADS)

    Soina, Vera S.; Mulyukin, Andrei L.; Demkina, Elena V.; Vorobyova, Elena A.; El-Registan, Galina I.

    2004-09-01

    The structure of individual cells in microbial populations in situ of the Arctic and Antarctic permafrost was studied by scanning and transmission electron microscopy methods and compared with that of cyst-like resting forms generated under special conditions by the non-sporeforming bacteria Arthrobacter and Micrococcus isolated from the permafrost. Electron microscopy examination of microorganisms in situ revealed several types of bacterial cells having no signs of damage, including "dwarf" curved forms similar to nanoforms. Intact bacterial cells in situ and frozen cultures of the permafrost isolates differed from vegetative cells by thickened cell walls, the altered structure of cytoplasm, and the compact nucleoid, and were similar in these features to cyst-like resting forms of non-spore-forming "permafrost" bacterial strains of Arthrobacter and Micrococcus spp. Cyst-like cells, being resistant to adverse external factors, are regarded as being responsible for survival of the non-spore-formers under prolonged exposure to subzero temperatures and can be a target to search for living microorganisms in natural environments both on the Earth and on extraterrestrial bodies.

  9. APPARATUS FOR HANDLING MIXTURES OF SOLID MATERIALS

    DOEpatents

    Hubbell, J.P.

    1959-08-25

    An apparatus is described for handling either a mixture of finely subdivided materials or a single material requiring a compacting action thereon preparatory to a chemical reducing process carried out in a crucible container. The apparatus is designed to deposit a mixture of dust-forming solid materials in a container while confining the materials against escape into the surrounding atmosphere. A movable filling tube, having a compacting member, is connected to the container and to a covered hopper receiving the mixture of materials. The filling tube is capable of reciprocating in the container and their relative positions are dependent upon the pressure established upon the material by the compacting member.

  10. Observations on infiltration of silicon carbide compacts with an aluminium alloy

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Rohatgi, P. K.

    1992-01-01

    The melt infiltration of ceramic particulates permits an opportunity to observe such fundamental materials phenomena as nucleation, dynamic wetting and growth in constrained environments. Experimental observations are presented on the infiltration behavior and matrix microstructures that form when porous compacts of platelet-shaped single crystals of alpha- (hexagonal) silicon carbide are infiltrated with a liquid 2014 Al alloy. The infiltration process involved counter gravity infiltration of suitably tamped and preheated compacts of silicon carbide platelets under an external pressure in a special pressure chamber for a set period, then by solidification of the infiltrant metal in the interstices of the bed at atmospheric pressure.

  11. Compacted dimensions and singular plasmonic surfaces.

    PubMed

    Pendry, J B; Huidobro, Paloma Arroyo; Luo, Yu; Galiffi, Emanuele

    2017-11-17

    In advanced field theories, there can be more than four dimensions to space, the excess dimensions described as compacted and unobservable on everyday length scales. We report a simple model, unconnected to field theory, for a compacted dimension realized in a metallic metasurface periodically structured in the form of a grating comprising a series of singularities. An extra dimension of the grating is hidden, and the surface plasmon excitations, though localized at the surface, are characterized by three wave vectors rather than the two of typical two-dimensional metal grating. We propose an experimental realization in a doped graphene layer. Copyright © 2017, American Association for the Advancement of Science.

  12. FGF10/FGFR2b signaling is essential for cardiac fibroblast development and growth of the myocardium

    PubMed Central

    Vega-Hernández, Mónica; Kovacs, Attila; De Langhe, Stijn; Ornitz, David M.

    2011-01-01

    The epicardium serves as a source of growth factors that regulate myocardial proliferation and as a source of epicardial-derived cells (EPDC), which give rise to interstitial cardiac fibroblasts and perivascular cells. These progenitors populate the compact myocardium to become part of the mature coronary vasculature and fibrous skeleton of the heart. Little is known about the mechanisms that regulate EPDC migration into the myocardium or the functions carried out by these cells once they enter the myocardium. However, it has been proposed that cardiac fibroblasts are important for growth of the heart during late gestation and are a source of homeostatic factors in the adult. Here, we identify a myocardial to epicardial fibroblast growth factor (FGF) signal, mediated by FGF10 and FGFR2b, that is essential for movement of cardiac fibroblasts into the compact myocardium. Inactivation of this signaling pathway results in fewer epicardial derived cells within the compact myocardium, decreased myocardial proliferation and a resulting smaller thin-walled heart. PMID:21750042

  13. Diffusion of Eu(III) in compacted bentonite-effect of pH, solution concentration and humic acid.

    PubMed

    Wang, Xiangke; Chen, Yixue; Wu, Yican

    2004-06-01

    The effect of pH, Eu(III) solution concentration and humic acid on the diffusion of Eu(III) in compacted bentonite (rho(b) = 1000 +/- 30 kg/m(3)) was studied with "in-diffusion" method at an ionic strength of 0.1M NaClO(4). The results (K(d) values from the first slice and theoretical calculation, apparent and effective diffusion coefficients) derived from the new capillary method are in good agreement with the literature data under similar conditions, and fit the Fick's second law very well. The results suggest that the diffusion of Eu(III) is dependent on pH values and independent on solution concentration in our experimental conditions. Humic acid forms precipitation/complexation with Eu(III) at the surface of compacted bentonite and thus deduces the diffusion/transport of Eu(III) in compacted bentonite. The K(d) values in compacted bentonite are in most cases lower than those in powdered bentonite obtained from batch experiments. The difference between the K(d) values from powdered and compacted bentonite is a strong function of the bulk density of the bentonite. The results suggest that the content of interlaminary space plays a very important role to the diffusion, sorption and migration of Eu(III) in compacted bentonite.

  14. Role of pressure anisotropy on relativistic compact stars

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Banerjee, Ayan; Hansraj, Sudan

    2018-02-01

    We investigate a compact spherically symmetric relativistic body with anisotropic particle pressure profiles. The distribution possesses characteristics relevant to modeling compact stars within the framework of general relativity. For this purpose, we consider a spatial metric potential of Korkina and Orlyanskii [Ukr. Phys. J. 36, 885 (1991)] type in order to solve the Einstein field equations. An additional prescription we make is that the pressure anisotropy parameter takes the functional form proposed by Lake [Phys. Rev. D 67, 104015 (2003), 10.1103/PhysRevD.67.104015]. Specifying these two geometric quantities allows for further analysis to be carried out in determining unknown constants and obtaining a limit of the mass-radius diagram, which adequately describes compact strange star candidates like Her X-1 and SMC X-1. Using the anisotropic Tolman-Oppenheimer-Volkoff equations, we explore the hydrostatic equilibrium and the stability of such compact objects. Then, we investigate other physical features of this model, such as the energy conditions, speeds of sound, and compactness of the star, in detail and show that our results satisfy all the required elementary conditions for a physically acceptable stellar model. The results obtained are useful in analyzing the stability of other anisotropic compact objects like white dwarfs, neutron stars, and gravastars.

  15. Forming short-period Wolf-Rayet X-ray binaries and double black holes through stable mass transfer

    NASA Astrophysics Data System (ADS)

    van den Heuvel, E. P. J.; Portegies Zwart, S. F.; de Mink, S. E.

    2017-11-01

    We show that black hole high-mass X-ray binaries (HMXBs) with O- or B-type donor stars and relatively short orbital periods, of order one week to several months may survive spiral-in, to then form Wolf-Rayet (WR) X-ray binaries with orbital periods of order a day to a few days; while in systems where the compact star is a neutron star, HMXBs with these orbital periods never survive spiral-in. We therefore predict that WR X-ray binaries can only harbour black holes. The reason why black hole HMXBs with these orbital periods may survive spiral-in is: the combination of a radiative envelope of the donor star and a high mass of the compact star. In this case, when the donor begins to overflow its Roche lobe, the systems are able to spiral in slowly with stable Roche lobe overflow, as is shown by the system SS433. In this case, the transferred mass is ejected from the vicinity of the compact star (so-called isotropic re-emission mass-loss mode, or SS433-like mass-loss), leading to gradual spiral-in. If the mass ratio of donor and black hole is ≳3.5, these systems will go into common-envelope evolution and are less likely to survive. If they survive, they produce WR X-ray binaries with orbital periods of a few hours to one day. Several of the well-known WR+O binaries in our Galaxy and the Magellanic Clouds, with orbital periods in the range between a week and several months, are expected to evolve into close WR-black hole binaries, which may later produce close double black holes. The galactic formation rate of double black holes resulting from such systems is still uncertain, as it depends on several poorly known factors in this evolutionary picture. It might possibly be as high as ˜10-5 yr-1.

  16. Decoupling of paramagnetic and ferrimagnetic AMS development during the experimental chemical compaction of illite shale powder

    NASA Astrophysics Data System (ADS)

    Bruijn, Rolf H. C.; Almqvist, Bjarne S. G.; Hirt, Ann M.; Benson, Philip M.

    2013-03-01

    Inclination shallowing of detrital remanent magnetization in sedimentary strata has solely been constrained for the mechanical processes associated with mud deposition and shallow compaction of clay-rich sediment, even though a significant part of mud diagenesis involves chemical compaction. Here we report, for the first time, on the laboratory simulation of magnetic assemblage development in a chemically compacting illite shale powder of natural origin. The experimental procedure comprised three compaction stages that, when combined, simulate the diagenesis and low-grade metamorphism of illite mud. First, the full extent of load-sensitive mechanical compaction is simulated by room temperature dry axial compression. Subsequently, temperature controlled chemical compaction is initiated by exposing the sample in two stages to amphibolite or granulite facies conditions (temperature is 490 to 750°C and confining pressure is 170 or 300 MPa) both in the absence (confining pressure only) and presence of a deformation stress field (axial compression or confined torsion). Thermodynamic equilibrium in the last two compaction stages was not reached, but illite and mica dehydroxylation initiated, thus providing a wet environment. Magnetic properties were characterized by magnetic susceptibility and its anisotropy (AMS) in both high- and low-applied field. Acquisition of isothermal remanent magnetization (IRM), stepwise three-component thermal de-magnetization of IRM and first-order reversal curves were used to characterize the remanence-bearing minerals. During the chemical compaction experiments ferrimagnetic iron-sulphides formed after reduction of magnetite and detrital pyrite in a low sulphur fugacity environment. The degree of low-field AMS is unaffected by porosity reduction from 15 to ˜1 per cent, regardless of operating conditions and compaction history. High-field paramagnetic AMS increases with compaction for all employed stress regimes and conditions, and is attributed to illite transformation to iron-bearing mica. AMS of authigenic iron-sulphide minerals remained constant during compaction indicating an independence of ferrimagnetic fabric development to chemical compaction in illite shale powder. The decoupling of paramagnetic and ferrimagnetic AMS development during chemical compaction of pelite contrasts with findings from mechanical compaction studies.

  17. Myostatin propeptide mutation of the hypermuscular Compact mice decreases the formation of myostatin and improves insulin sensitivity.

    PubMed

    Kocsis, Tamas; Trencsenyi, Gyorgy; Szabo, Kitti; Baan, Julia Aliz; Muller, Geza; Mendler, Luca; Garai, Ildiko; Reinauer, Hans; Deak, Ferenc; Dux, Laszlo; Keller-Pinter, Aniko

    2017-03-01

    The TGFβ family member myostatin (growth/differentiation factor-8) is a negative regulator of skeletal muscle growth. The hypermuscular Compact mice carry the 12-bp Mstn(Cmpt-dl1Abc) deletion in the sequence encoding the propeptide region of the precursor promyostatin, and additional modifier genes of the Compact genetic background contribute to determine the full expression of the phenotype. In this study, by using mice strains carrying mutant or wild-type myostatin alleles with the Compact genetic background and nonmutant myostatin with the wild-type background, we studied separately the effect of the Mstn(Cmpt-dl1Abc) mutation or the Compact genetic background on morphology, metabolism, and signaling. We show that both the Compact myostatin mutation and Compact genetic background account for determination of skeletal muscle size. Despite the increased musculature of Compact s, the absolute size of heart and kidney is not influenced by myostatin mutation; however, the Compact genetic background increases them. Both Compact myostatin and genetic background exhibit systemic metabolic effects. The Compact mutation decreases adiposity and improves whole body glucose uptake, insulin sensitivity, and 18 FDG uptake of skeletal muscle and white adipose tissue, whereas the Compact genetic background has the opposite effect. Importantly, the mutation does not prevent the formation of mature myostatin; however, a decrease in myostatin level was observed, leading to altered activation of Smad2, Smad1/5/8, and Akt, and an increased level of p-AS160, a Rab-GTPase-activating protein responsible for GLUT4 translocation. Based on our analysis, the Compact genetic background strengthens the effect of myostatin mutation on muscle mass, but those can compensate for each other when systemic metabolic effects are compared. Copyright © 2017 the American Physiological Society.

  18. Candidate high-z protoclusters among the Planck compact sources, as revealed by Herschel-SPIRE

    NASA Astrophysics Data System (ADS)

    Greenslade, J.; Clements, D. L.; Cheng, T.; De Zotti, G.; Scott, D.; Valiante, E.; Eales, S.; Bremer, M. N.; Dannerbauer, H.; Birkinshaw, M.; Farrah, D.; Harrison, D. L.; Michałowski, M. J.; Valtchanov, I.; Oteo, I.; Baes, M.; Cooray, A.; Negrello, M.; Wang, L.; van der Werf, P.; Dunne, L.; Dye, S.

    2018-05-01

    By determining the nature of all the Planck compact sources within 808.4 deg2 of large Herschel surveys, we have identified 27 candidate protoclusters of dusty star-forming galaxies (DSFGs) that are at least 3σ overdense in either 250, 350, or 500 μm sources. We find roughly half of all the Planck compact sources are resolved by Herschel into multiple discrete objects, with the other half remaining unresolved by Herschel. We find a significant difference between versions of the Planck catalogues, with earlier releases hosting a larger fraction of candidate protoclusters and Galactic cirrus than later releases, which we ascribe to a difference in the filters used in the creation of the three catalogues. We find a surface density of DSFG candidate protoclusters of (3.3 ± 0.7) × 10-2 sources deg-2, in good agreement with previous similar studies. We find that a Planck colour selection of S857/S545 < 2 works well to select candidate protoclusters, but can miss protoclusters at z < 2. The Herschel colours of individual candidate protocluster members indicate our candidate protoclusters all likely all lie at z > 1. Our candidate protoclusters are a factor of 5 times brighter at 353 GHz than expected from simulations, even in the most conservative estimates. Further observations are needed to confirm whether these candidate protoclusters are physical clusters, multiple protoclusters along the line of sight, or chance alignments of unassociated sources.

  19. Starbursts in blue compact dwarf galaxies

    NASA Technical Reports Server (NTRS)

    Thuan, Trinh Xuan

    1987-01-01

    All the arguments for a bursting mode of star formation in blue compact dwarf galaxies (BCD) are summarized. It is shown that spectral synthesis of far-ultraviolet spectra of BCDs constitutes a powerful way to study the star formation history in these galaxies. BCD luminosity functions show jumps and discontinuities. These jumps act like fossil records of the star-forming bursts, aiding in the counting and dating of the bursts.

  20. Effects of sintering time and temperature to the characteristics of FeCrAl powder compacts formed at elevated temperature

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Rahman, H. Y.; Awang, M. A. A.; Sopyan, I.

    2018-01-01

    This paper presents the outcomes of an experimental investigation on the effect of sintering schedule, i.e., holding time and temperature to the final properties of FeCrAl powder compacts prepared through uniaxial die compaction process at above room temperature. The feedstock was prepared by mechanically mixing iron powder ASC 100.29 with chromium (22 wt%) and aluminium (11 wt%) for 30 min at room temperature. A cylindrical shape die was filled with the powder mass and heated for one hour for uniform heating of the die assembly together with the powder mass. Once the temperature reached to the setup temperature, i.e., 150°C, the powder mass was formed by applying an axial pressure of 425 MPa simultaneously from upward and downward directions. The as-pressed green compacts were then cooled to room temperature and subsequently sintered in argon gas fired furnace at a rate of 5°C/min for three different holding times, i.e., 30, 60, and 90 min at three different sintering temperatures, i.e., 800, 900, and 1000°C. The sintered samples were characterized for their density, electrical resistivity, bending strength, and microstructure. The results revealed that the sample sintered at 1000°C for 90 min achieved the better characteristics.

  1. On the use of higher order wave forms in the search for gravitational waves emitted by compact binary coalescences

    NASA Astrophysics Data System (ADS)

    McKechan, David J. A.

    2010-11-01

    This thesis concerns the use, in gravitational wave data analysis, of higher order wave form models of the gravitational radiation emitted by compact binary coalescences. We begin with an introductory chapter that includes an overview of the theory of general relativity, gravitational radiation and ground-based interferometric gravitational wave detectors. We then discuss, in Chapter 2, the gravitational waves emitted by compact binary coalescences, with an explanation of higher order waveforms and how they differ from leading order waveforms we also introduce the post-Newtonian formalism. In Chapter 3 the method and results of a gravitational wave search for low mass compact binary coalescences using a subset of LIGO's 5th science run data are presented and in the subsequent chapter we examine how one could use higher order waveforms in such analyses. We follow the development of a new search algorithm that incorporates higher order waveforms with promising results for detection efficiency and parameter estimation. In Chapter 5, a new method of windowing time-domain waveforms that offers benefit to gravitational wave searches is presented. The final chapter covers the development of a game designed as an outreach project to raise public awareness and understanding of the search for gravitational waves.

  2. METHOD AND APPARATUS FOR REACTOR SAFETY CONTROL

    DOEpatents

    Huston, N.E.

    1961-06-01

    A self-contained nuclear reactor fuse controlled device tron absorbing material, normally in a compact form but which can be expanded into an extended form presenting a large surface for neutron absorption when triggered by an increase in neutron flux, is described.

  3. Soil compaction and initial height growth of planted ponderosa pine.

    Treesearch

    P. H. Cochran; Terry. Brock

    1985-01-01

    Early height growth of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings planted in clearcuts in central Oregon was negatively correlated with increasing soil bulk density. Change in bulk density accounted for less than half the total variation in height growth. Although many other factors affect the development of seedlings, compaction...

  4. Microstructure and thermal characterization of dense bone and metals for biomedical use

    NASA Astrophysics Data System (ADS)

    Rodríguez, G. Peña; Calderón, A.; Hernández, R. A. Muñoz; Orea, A. Cruz; Méndez, M.; Sinencio, F. Sánchez

    2000-10-01

    We present a microstructural study and thermal diffusivity measurements at room temperature in two different sections of bull dense bone, bull bone and commercial hydroxyapatite, the last two in powder form. A comparison was realised between these measured values and those obtained from metallic samples frequently used in implants, as high purity titanium and 316L stainless steel. Our results show that the porosity and its orientation in the bone are two important factors for the heat flux through the bone. On the other hand, we obtained that the hydroxyapatite, in compact powder form, presents a thermal diffusivity value close to those obtained for the samples of bone which gives a good thermal agreement between these materials. Finally, it was obtained at one order of magnitude difference between the thermal diffusivity values of metallic samples and those corresponding values to bone and hydroxyapatite being this difference greater in titanium than in stainless steel.

  5. High performance zeolite LTA pervaporation membranes on ceramic hollow fibers by dipcoating-wiping seed deposition.

    PubMed

    Wang, Zhengbao; Ge, Qinqin; Shao, Jia; Yan, Yushan

    2009-05-27

    We demonstrate for the first time that by one single hydrothermal synthesis a zeolite LTA membrane with a high flux of 9.0 kg/m(2) h and high water/ethanol separation factor of 10,000 could be formed on a ceramic hollow fiber that is known for its ability to form a compact module. The flux is the highest reported in the literatures. A novel seeding method, dipcoating-wiping, is key to obtaining zeolite membranes with high separation performance because it reproducibly produces a uniform and trace seed layer on the support. This new seeding method is expected to have serious implications for making defect-free zeolite films and membranes for many applications. The membranes reported here have the potential to solve the key problems that have prevented zeolite membranes from widespread use for biofuel production.

  6. M32 analogs? A population of massive ultra-compact dwarf and compact elliptical galaxies in intermediate-redshift clusters

    DOE PAGES

    Zhang, Yuanyuan; Bell, Eric F.

    2017-01-13

    Here, we report the discovery of relatively massive, M32-like ultra compact dwarf (UCD) and compact elliptical (CE) galaxy candidates inmore » $$0.2\\lt z\\lt 0.6$$ massive galaxy clusters imaged by the Cluster Lensing And Supernova survey with Hubble (CLASH) survey. Examining the nearly unresolved objects in the survey, we identify a sample of compact objects concentrated around the cluster central galaxies with colors similar to cluster red sequence galaxies. Their colors and magnitudes suggest stellar masses around $${10}^{9}{M}_{\\odot }$$. More than half of these galaxies have half-light radii smaller than 200 pc, falling into the category of massive UCDs and CEs, with properties similar to M32. The properties are consistent with a tidal stripping origin, but we cannot rule out the possibility that they are early-formed compact objects trapped in massive dark matter halos. The 17 CLASH clusters studied in this work on average contain 2.7 of these objects in their central 0.3 Mpc and 0.6 in their central 50 kpc. Our study demonstrates the possibility of statistically characterizing UCDs/CEs with a large set of uniform imaging survey data.« less

  7. M32 analogs? A population of massive ultra-compact dwarf and compact elliptical galaxies in intermediate-redshift clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuanyuan; Bell, Eric F.

    Here, we report the discovery of relatively massive, M32-like ultra compact dwarf (UCD) and compact elliptical (CE) galaxy candidates inmore » $$0.2\\lt z\\lt 0.6$$ massive galaxy clusters imaged by the Cluster Lensing And Supernova survey with Hubble (CLASH) survey. Examining the nearly unresolved objects in the survey, we identify a sample of compact objects concentrated around the cluster central galaxies with colors similar to cluster red sequence galaxies. Their colors and magnitudes suggest stellar masses around $${10}^{9}{M}_{\\odot }$$. More than half of these galaxies have half-light radii smaller than 200 pc, falling into the category of massive UCDs and CEs, with properties similar to M32. The properties are consistent with a tidal stripping origin, but we cannot rule out the possibility that they are early-formed compact objects trapped in massive dark matter halos. The 17 CLASH clusters studied in this work on average contain 2.7 of these objects in their central 0.3 Mpc and 0.6 in their central 50 kpc. Our study demonstrates the possibility of statistically characterizing UCDs/CEs with a large set of uniform imaging survey data.« less

  8. Development of a low loss magnetic composite utilizing amorphous metal flake. Second semi-annual progress report, March 19-September 18, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-10-01

    Composite specimens of amorphous metal flakes have been made using several different binders and several different compaction parameters. The binders have included epoxies, anaerobic adhesives, polyimides, polyamideimides, polyeherimides, and polyesterimides. Compaction variables included the time, temperature and pressure of compaction; flake size, and flake alignment. The best results were achieved using a polyetherimide and aligned flake. Packing factors of 87% were achieved in specimens which also exhibited high mechanical integrity and the ability to withstand a high temperature anneal.

  9. A key factor to the spin parameter of uniformly rotating compact stars: crust structure

    NASA Astrophysics Data System (ADS)

    Qi, Bin; Zhang, Nai-Bo; Sun, Bao-Yuan; Wang, Shou-Yu; Gao, Jian-Hua

    2016-04-01

    We study the dimensionless spin parameter j ≡ cJ/(GM2) of different kinds of uniformly rotating compact stars, including traditional neutron stars, hyperonic neutron stars and hybrid stars, based on relativistic mean field theory and the MIT bag model. It is found that jmax ˜ 0.7, which had been suggested in traditional neutron stars, is sustained for hyperonic neutron stars and hybrid stars with M > 0.5 M⊙. Not the interior but rather the crust structure of the stars is a key factor to determine jmax for three kinds of selected compact stars. Furthermore, a universal formula j = 0.63(f/fK) - 0.42(f/fK)2 + 0.48(f/fK)3 is suggested to determine the spin parameter at any rotational frequency f smaller than the Keplerian frequency fK.

  10. A new exact anisotropic solution of embedding class one

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Gupta, Y. K.; T. T., Smitha; Rahaman, Farook

    2016-07-01

    We have presented a new anisotropic solution of Einstein's field equations for compact-star models. Einstein's field equations are solved by using the class-one condition (S.N. Pandey, S.P. Sharma, Gen. Relativ. Gravit. 14, 113 (1982)). We constructed the expression for the anisotropy factor ( Δ by using the pressure anisotropy condition and thereafter we obtained the physical parameters like energy density, radial and transverse pressure. These models parameters are well-behaved inside the star and satisfy all the required physical conditions. Also we observed the very interesting result that all physical parameters depend upon the anisotropy factor ( Δ. The mass and radius of the present compact-star models are quite compatible with the observational astrophysical compact stellar objects like Her X-1, RXJ 1856-37, SAX J1808.4-3658(SS1), SAX J1808.4-3658(SS2).

  11. Where are compact groups in the local Universe?

    NASA Astrophysics Data System (ADS)

    Díaz-Giménez, Eugenia; Zandivarez, Ariel

    2015-06-01

    Aims: The purpose of this work is to perform a statistical analysis of the location of compact groups in the Universe from observational and semi-analytical points of view. Methods: We used the velocity-filtered compact group sample extracted from the Two Micron All Sky Survey for our analysis. We also used a new sample of galaxy groups identified in the 2M++ galaxy redshift catalogue as tracers of the large-scale structure. We defined a procedure to search in redshift space for compact groups that can be considered embedded in other overdense systems and applied this criterion to several possible combinations of different compact and galaxy group subsamples. We also performed similar analyses for simulated compact and galaxy groups identified in a 2M++ mock galaxy catalogue constructed from the Millennium Run Simulation I plus a semi-analytical model of galaxy formation. Results: We observed that only ~27% of the compact groups can be considered to be embedded in larger overdense systems, that is, most of the compact groups are more likely to be isolated systems. The embedded compact groups show statistically smaller sizes and brighter surface brightnesses than non-embedded systems. No evidence was found that embedded compact groups are more likely to inhabit galaxy groups with a given virial mass or with a particular dynamical state. We found very similar results when the analysis was performed using mock compact and galaxy groups. Based on the semi-analytical studies, we predict that 70% of the embedded compact groups probably are 3D physically dense systems. Finally, real space information allowed us to reveal the bimodal behaviour of the distribution of 3D minimum distances between compact and galaxy groups. Conclusions: The location of compact groups should be carefully taken into account when comparing properties of galaxies in environments that are a priori different. Appendices are available in electronic form at http://www.aanda.orgFull Tables B.1 and B.2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A61

  12. Impact resistance and energies of intermetallic bonded diamond composites and polycrystalline diamond compacts and their comparison

    NASA Astrophysics Data System (ADS)

    Gorla, Sai Prasanth

    Chemistry of intermetallic bonded diamond is studied. The impact resistance and energies of intermetallic bonded diamond is compared to current poly crystalline diamond compacts. IBD's are found to have high standards of hardness and have more impact energies absorbed. Intermetallic bonded diamond composite comprises of diamond particles dispersed in Tungsten carbide using Nickel aluminide (Ni3Al) as binder. In previous research conducted on IBD's, diamonds are successfully dispersed in intermetallic alloy of nickel aluminide and processed at 1350°C such that diamond particles remain intact without forming graphite. Composites are formed by milling, pressing the intermetallic binder and diamond particles and sintering at high temperature conditions.

  13. Perovskite solar cell with an efficient TiO₂ compact film.

    PubMed

    Ke, Weijun; Fang, Guojia; Wang, Jing; Qin, Pingli; Tao, Hong; Lei, Hongwei; Liu, Qin; Dai, Xin; Zhao, Xingzhong

    2014-09-24

    A perovskite solar cell with a thin TiO2 compact film prepared by thermal oxidation of sputtered Ti film achieved a high efficiency of 15.07%. The thin TiO2 film prepared by thermal oxidation is very dense and inhibits the recombination process at the interface. The optimum thickness of the TiO2 compact film prepared by thermal oxidation is thinner than that prepared by spin-coating method. Also, the TiO2 compact film and the TiO2 porous film can be sintered at the same time. This one-step sintering process leads to a lower dark current density, a lower series resistance, and a higher recombination resistance than those of two-step sintering. Therefore, the perovskite solar cell with the TiO2 compact film prepared by thermal oxidation has a higher short-circuit current density and a higher fill factor.

  14. The estimation of parameter compaction values for pavement subgrade stabilized with lime

    NASA Astrophysics Data System (ADS)

    Lubis, A. S.; Muis, Z. A.; Simbolon, C. A.

    2018-02-01

    The type of soil material, field control, maintenance and availability of funds are several factors that must be considered in compaction of the pavement subgrade. In determining the compaction parameters in laboratory desperately requires considerable materials, time and funds, and reliable laboratory operators. If the result of soil classification values can be used to estimate the compaction parameters of a subgrade material, so it would save time, energy, materials and cost on the execution of this work. This is also a clarification (cross check) of the work that has been done by technicians in the laboratory. The study aims to estimate the compaction parameter values ie. maximum dry unit weight (γdmax) and optimum water content (Wopt) of the soil subgrade that stabilized with lime. The tests that conducted in the laboratory of soil mechanics were to determine the index properties (Fines and Liquid Limit/LL) and Standard Compaction Test. Soil samples that have Plasticity Index (PI) > 10% were made with additional 3% lime for 30 samples. By using the Goswami equation, the compaction parameter values can be estimated by equation γd max # = -0,1686 Log G + 1,8434 and Wopt # = 2,9178 log G + 17,086. From the validation calculation, there was a significant positive correlation between the compaction parameter values laboratory and the compaction parameter values estimated, with a 95% confidence interval as a strong relationship.

  15. Amyloid deposition in the hippocampus and entorhinal cortex: Quantitative analysis of a transgenic mouse model

    PubMed Central

    Reilly, John F.; Games, Dora; Rydel, Russell E.; Freedman, Stephen; Schenk, Dale; Young, Warren G.; Morrison, John H.; Bloom, Floyd E.

    2003-01-01

    Various transgenic mouse models of Alzheimer's disease (AD) have been developed that overexpress mutant forms of amyloid precursor protein in an effort to elucidate more fully the potential role of β-amyloid (Aβ) in the etiopathogenesis of the disease. The present study represents the first complete 3D reconstruction of Aβ in the hippocampus and entorhinal cortex of PDAPP transgenic mice. Aβ deposits were detected by immunostaining and thioflavin fluorescence, and quantified by using high-throughput digital image acquisition and analysis. Quantitative analysis of amyloid load in hippocampal subfields showed a dramatic increase between 12 and 15 months of age, with little or no earlier detectable deposition. Three-dimensional reconstruction in the oldest brains visualized previously unrecognized sheets of Aβ coursing through the hippocampus and cerebral cortex. In contrast with previous hypotheses, compact plaques form before significant deposition of diffuse Aβ, suggesting that different mechanisms are involved in the deposition of diffuse amyloid and the aggregation into plaques. The dentate gyrus was the hippocampal subfield with the greatest amyloid burden. Sublaminar distribution of Aβ in the dentate gyrus correlated most closely with the termination of afferent projections from the lateral entorhinal cortex, mirroring the selective vulnerability of this circuit in human AD. This detailed temporal and spatial analysis of Aβ and compact amyloid deposition suggests that specific corticocortical circuits express selective, but late, vulnerability to the pathognomonic markers of amyloid deposition, and can provide a basis for detecting prior vulnerability factors. PMID:12697936

  16. Comparison of ibuprofen release from minitablets and capsules containing ibuprofen: β-cyclodextrin complex.

    PubMed

    Salústio, P J; Cabral-Marques, H M; Costa, P C; Pinto, J F

    2011-05-01

    Mixtures containing ibuprofen (IB) complexed with β-cyclodextrin (βCD) obtained by two complexation methods [suspension/solution (with water removed by air stream, spray- and freeze-drying) and kneading technique] were processed into pharmaceutical dosage forms (minitablets and capsules). Powders (IB, βCD and IBβCD) were characterized for moisture content, densities (true and bulk), angle of repose and Carr's index, X-ray and NMR. From physical mixtures and IBβCD complexes without other excipients were prepared 2.5-mm-diameter minitablets and capsules. Minitablets were characterized for the energy of compaction, tensile strength, friability, density and IB release (at pH 1.0 and 7.2), whereby capsules were characterized for IB release. The results from the release of IB were analyzed using different parameters, namely, the similarity factor (f(2)), the dissolution efficiency (DE) and the amounts released at a certain time (30, 60 and 180 min) and compared statistically (α=0.05). The release of IB from the minitablets showed no dependency on the amount of water used in the formation of the complexes. Differences were due to the compaction force used or the presence of a shell for the capsules. The differences observed were mostly due to the characteristics of the particles (dependent on the method considered on the formation of the complexes) and neither to the dosage form nor to the complex of the IB. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Dynamic compaction of human mesenchymal stem/precursor cells (MSC) into spheres self-activates caspase-dependent IL1 signaling to enhance secretion of modulators of inflammation and immunity (PGE2, TSG6 and STC1)

    PubMed Central

    Bazhanov, Nikolay; Kuhlman, Jessica; Prockop, Darwin J.

    2013-01-01

    Human mesenchymal stem/precursor cells (MSC) are similar to some other stem/progenitor cells in that they compact into spheres when cultured in hanging drops or on non-adherent surfaces. Assembly of MSC into spheres alters many of their properties, including enhanced secretion of factors that mediate inflammatory and immune responses. Here we demonstrated that MSC spontaneously aggregated into sphere-like structures after injection into a subcutaneous air pouch or the peritoneum of mice. The structures were similar to MSC spheres formed in cultures demonstrated by the increased expression of genes for inflammation-modulating factors TSG6, STC1, and COX2, a key enzyme in production of PGE2. To identify the signaling pathways involved, hanging drop cultures were used to follow the time-dependent changes in the cells as they compacted into spheres. Among the genes up-regulated were genes for the stress-activated signaling pathway for IL1α/β, and the contact-dependent signaling pathway for Notch. An inhibitor of caspases reduced the up-regulation of IL1A/B expression, and inhibitors of IL1 signaling decreased production of PGE2, TSG6 and STC1. Also, inhibition of IL1A/B expression and secretion of PGE2 negated the anti-inflammatory effects of MSC spheres on stimulated macrophages. Experiments with γ-secretase inhibitors suggested that Notch signaling was also required for production of PGE2 but not TSG6 or STC1. The results indicated that assembly of MSC into spheres triggers caspase-dependent IL1 signaling and the secretion of modulators of inflammation and immunity. Similar aggregation in vivo may account for some of the effects observed with administration of the cells in animal models. PMID:23922312

  18. The properties of coke breeze briquettes produced by ram briquetting

    NASA Astrophysics Data System (ADS)

    Loginov, Yu. N.; Babailov, N. A.; Polyansky, L. I.

    2017-12-01

    The paper reports on the results of briquetting coke breeze with a binder in a closed cylindrical press-die. Liquid glass is used as a binder. Approximating curves for the "compaction ratio vs. compaction pressure" dependences are plotted from experimental data. The mechanical properties of the briquettes are determined, namely, drop damage resistance and breaking stress. The results are presented as approximating dependences in the form of a power function.

  19. Fabrication methods for low impedance lithium polymer electrodes

    DOEpatents

    Chern, T.S.; MacFadden, K.O.; Johnson, S.L.

    1997-12-16

    A process is described for fabricating an electrolyte-electrode composite suitable for high energy alkali metal battery that includes mixing composite electrode materials with excess liquid, such as ethylene carbonate or propylene carbonate, to produce an initial formulation, and forming a shaped electrode therefrom. The excess liquid is then removed from the electrode to compact the electrode composite which can be further compacted by compression. The resulting electrode exhibits at least a 75% lower resistance.

  20. Fabrication methods for low impedance lithium polymer electrodes

    DOEpatents

    Chern, Terry Song-Hsing; MacFadden, Kenneth Orville; Johnson, Steven Lloyd

    1997-01-01

    A process for fabricating an electrolyte-electrode composite suitable for high energy alkali metal battery that includes mixing composite electrode materials with excess liquid, such as ethylene carbonate or propylene carbonate, to produce an initial formulation, and forming a shaped electrode therefrom. The excess liquid is then removed from the electrode to compact the electrode composite which can be further compacted by compression. The resulting electrode exhibits at least a 75% lower resistance.

  1. Structure and dynamics of zymogen human blood coagulation factor X.

    PubMed

    Venkateswarlu, Divi; Perera, Lalith; Darden, Tom; Pedersen, Lee G

    2002-03-01

    The solution structure and dynamics of the human coagulation factor X (FX) have been investigated to understand the key structural elements in the zymogenic form that participates in the activation process. The model was constructed based on the 2.3-A-resolution x-ray crystallographic structure of active-site inhibited human FXa (PDB:1XKA). The missing gamma-carboxyglutamic acid (GLA) and part of epidermal growth factor 1 (EGF1) domains of the light chain were modeled based on the template of GLA-EGF1 domains of the tissue factor (TF)-bound FVIIa structure (PDB:1DAN). The activation peptide and other missing segments of FX were introduced using homology modeling. The full calcium-bound model of FX was subjected to 6.2 ns of molecular dynamics simulation in aqueous medium using the AMBER6.0 package. We observed significant reorientation of the serine-protease (SP) domain upon activation leading to a compact multi-domain structure. The solution structure of zymogen appears to be in a well-extended conformation with the distance between the calcium ions in the GLA domain and the catalytic residues estimated to be approximately 95 A in contrast to approximately 83 A in the activated form. The latter is in close agreement with fluorescence studies on FXa. The S1-specificity residues near the catalytic triad show significant differences between the zymogen and activated structures.

  2. Kid-mediated chromosome compaction ensures proper nuclear envelope formation.

    PubMed

    Ohsugi, Miho; Adachi, Kenjiro; Horai, Reiko; Kakuta, Shigeru; Sudo, Katsuko; Kotaki, Hayato; Tokai-Nishizumi, Noriko; Sagara, Hiroshi; Iwakura, Yoichiro; Yamamoto, Tadashi

    2008-03-07

    Toward the end of mitosis, neighboring chromosomes gather closely to form a compact cluster. This is important for reassembling the nuclear envelope around the entire chromosome mass but not individual chromosomes. By analyzing mice and cultured cells lacking the expression of chromokinesin Kid/kinesin-10, we show that Kid localizes to the boundaries of anaphase and telophase chromosomes and contributes to the shortening of the anaphase chromosome mass along the spindle axis. Loss of Kid-mediated anaphase chromosome compaction often causes the formation of multinucleated cells, specifically at oocyte meiosis II and the first couple of mitoses leading to embryonic death. In contrast, neither male meiosis nor somatic mitosis after the morula-stage is affected by Kid deficiency. These data suggest that Kid-mediated anaphase/telophase chromosome compaction prevents formation of multinucleated cells. This protection is especially important during the very early stages of development, when the embryonic cells are rich in ooplasm.

  3. Coherent states for quantum compact groups

    NASA Astrophysics Data System (ADS)

    Jurĉo, B.; Ŝťovíĉek, P.

    1996-12-01

    Coherent states are introduced and their properties are discussed for simple quantum compact groups A l, Bl, Cl and D l. The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit. The coherent state is interpreted as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R-matrix formulation (generalizing this way the q-deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel-Weil construction) is described using the concept of coherent state. The relation between representation theory and non-commutative differential geometry is suggested.

  4. Radio supernovae and super star clusters in the circumnuclear region of NGC 1365

    NASA Astrophysics Data System (ADS)

    Lindblad, P. O.; Kristen, H.

    Groundbased optical and VLA observations have shown that the nucleus of the barred Seyfert 1 galaxy NGC 1365 is surrounded by a number of star forming regions, or "hot spots", as well as a number of resolved and unresolved continuum radio sources. HST/FOC observations reveal that the nucleus is surrounded by a ring of very compact unresolved sources of the kind that have been discovered in a number of other galaxies, and that have been assumed to be very compact young globular star clusters. The hot spots are resolved into groups of such compact sources. VLA observations at lambda = 2 cm, where the resolution approaches that of HST, reveals that the brightest unresolved radio source at 2 cm, which has been assumed to be a radio supernova, coincides with one of the compact HST sources. The implications of this will be discussed.

  5. POX 186: the ultracompact blue compact dwarf galaxy reveals its nature

    NASA Astrophysics Data System (ADS)

    Doublier, V.; Kunth, D.; Courbin, F.; Magain, P.

    2000-01-01

    High resolution, ground based R and I band observations of the ultra compact dwarf galaxy POX 186 are presented. The data, obtained with the ESO New Technology Telescope (NTT), are analyzed using a new deconvolution algorithm which allows one to resolve the innermost regions of this stellar-like object into three Super-Star Clusters (SSC). Upper limits to both masses (M ~ 105 Msun) and physical sizes (<=60pc) of the SSCs are set. In addition, and maybe most importantly, extended light emission underlying the compact star-forming region is clearly detected in both bands. The R-I color rules out nebular Hα contamination and is consistent with an old stellar population. This casts doubt on the hypothesis that Blue Compact Dwarf Galaxies (BCDG) are young galaxies. based on observations carried out at NTT in La Silla, operated by the European Southern Observatory, during Director's Discretionary Time.

  6. IR-spectroscopical investigations on the glass structure of porous and sintered compacts of colloidal silica gels

    NASA Astrophysics Data System (ADS)

    Clasen, Rolf; Hornfeck, M.; Theiss, Wolfgang

    1991-08-01

    The forming and sintering of fumed silica powders is an interesting route for the preparation of large, very pure or doped silica glasses with a precise geometry. The processing from the shaping of a porous compact to the sintering of transparent silica glass can be successfully investigated with optical spectroscopy. As only the dielectric function DF (a dielectric function is the square root of the complex refractive index) characterizes the material, the vibrational bands were calculated from reflectance measurements. In compacts of fine particles, the topology cannot be neglected. Therefore, the models describing topological effects are briefly reviewed. With these model calculations it could be proven that new bands in the compacts and the significant shifts in the reflectance spectra during sintering are mainly caused by topological effects and that changes in the glass structure play only a secondary role.

  7. A new anisotropic compact star model having Matese & Whitman mass function

    NASA Astrophysics Data System (ADS)

    Bhar, Piyali; Ratanpal, B. S.

    2016-07-01

    Present paper proposed a new singularity free model of anisotropic compact star. The Einstein field equations are solved in closed form by utilizing Matese & Whitman mass function. The model parameters ρ, pr and pt all are well behaved inside the stellar interior and our model satisfies all the required conditions to be physically acceptable. The model given in the present work is compatible with observational data of compact objects like SAX J 1808.4-3658 (SS1), SAX J 1808.4-3658 (SS2) and 4U 1820-30. A particular model of 4U 1820-30 is studied in detail and found that it satisfies all the condition needed for physically acceptable model. The present work is the generalization of Sharma and Ratanpal (Int. J. Mod. Phys. D 22:1350074, 2013) model for compact stars admitting quadratic equation of state.

  8. The evolution of cave systems from the surface to subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loucks, R.G.; Handford, C.R.

    1996-01-01

    Many carbonate reservoirs are the result of cave-forming processes. The origin and recognition of fractures, breccias, and sediment fills associated with paleocaves were determined through the study of modern and paleocaves systems. Cave formation and destruction are the products of near-surface processes. Near-surface processes include solutional excavation, clastic and chemical sedimentation, and collapse of cave walls and ceilings. Cave sediment is derived from inside and/or outside the system. Depositional mechanisms include suspension, tractional, mass-flow and rock-fall. Collapse of ceilings and walls from chaotic breakdown breccias. These piles can be tens of meters thick and contain large voids and variable amountsmore » of matrix. Cave-roof crackle breccia forms from stress-and tension-related fractures in cave-roof strata. As the cave-bearing strata subside into the subsurface, mechanical compaction increases and restructures the existing breccias and remaining cavities. Fracture porosity increases and breccia and vug porosity decreases. Large cavities collapse forming burial chaotic breakdown breccias. Differentially compacted strata over the collapsed chamber fracture and form burial cave-roof crackle breccias. Continued burial leads to more extensive mechanical compaction causing previously formed clasts to fracture and pack closer together. The resulting product is a rebrecciated chaotic breakdown breccia composed predominantly of small clasts. Rebrecciated blocks are often overprinted by crackling. Subsurface paleocave systems commonly have a complex history with several episodes of fracturing and brecciation. The resulting collapsed-paleocave reservoir targets are not single collapsed passages of tens of feet across, but are homogenized collapsed-cave systems hundreds to several thousand feet across.« less

  9. The evolution of cave systems from the surface to subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loucks, R.G.; Handford, C.R.

    1996-12-31

    Many carbonate reservoirs are the result of cave-forming processes. The origin and recognition of fractures, breccias, and sediment fills associated with paleocaves were determined through the study of modern and paleocaves systems. Cave formation and destruction are the products of near-surface processes. Near-surface processes include solutional excavation, clastic and chemical sedimentation, and collapse of cave walls and ceilings. Cave sediment is derived from inside and/or outside the system. Depositional mechanisms include suspension, tractional, mass-flow and rock-fall. Collapse of ceilings and walls from chaotic breakdown breccias. These piles can be tens of meters thick and contain large voids and variable amountsmore » of matrix. Cave-roof crackle breccia forms from stress-and tension-related fractures in cave-roof strata. As the cave-bearing strata subside into the subsurface, mechanical compaction increases and restructures the existing breccias and remaining cavities. Fracture porosity increases and breccia and vug porosity decreases. Large cavities collapse forming burial chaotic breakdown breccias. Differentially compacted strata over the collapsed chamber fracture and form burial cave-roof crackle breccias. Continued burial leads to more extensive mechanical compaction causing previously formed clasts to fracture and pack closer together. The resulting product is a rebrecciated chaotic breakdown breccia composed predominantly of small clasts. Rebrecciated blocks are often overprinted by crackling. Subsurface paleocave systems commonly have a complex history with several episodes of fracturing and brecciation. The resulting collapsed-paleocave reservoir targets are not single collapsed passages of tens of feet across, but are homogenized collapsed-cave systems hundreds to several thousand feet across.« less

  10. Gravity on-shell diagrams

    DOE PAGES

    Herrmann, Enrico; Trnka, Jaroslav

    2016-11-22

    Here, we study on-shell diagrams for gravity theories with any number of super-symmetries and find a compact Grassmannian formula in terms of edge variables of the graphs. Unlike in gauge theory where the analogous form involves only d log-factors, in gravity there is a non-trivial numerator as well as higher degree poles in the edge variables. Based on the structure of the Grassmannian formula for N = 8 supergravity we conjecture that gravity loop amplitudes also possess similar properties. In particular, we find that there are only logarithmic singularities on cuts with finite loop momentum and that poles at infinitymore » are present, in complete agreement with the conjecture presented in.« less

  11. Bursts of star formation in computer simulations of dwarf galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comins, N.F.

    1984-09-01

    A three-dimensional Stochastic Self-Propagating Star Formation (SSPSF) model of compact galacies is presented. Two phases of gas, active and inactive, are present, and permanent depletion of gas in the form of long lived, low mass stars and remnants occurs. Similarly, global infall of gas from a galactic halo or through galactic cannibalism is permitted. We base our parameters on the observed properties of the compact blue galaxy I Zw 36. Our results are that bursts of star formation occur much more frequently in these runs than continuous nonbursting star formation, suggesting that the blue compact galaxies are probably undergoing burstsmore » rather than continuous, nonbursting low-level star formation activity.« less

  12. Scattering-layer-induced energy storage function in polymer-based quasi-solid-state dye-sensitized solar cells.

    PubMed

    Zhang, Xi; Jiang, Hongrui

    2015-03-09

    Photo-self-charging cells (PSCs) are compact devices with dual functions of photoelectric conversion and energy storage. By introducing a scattering layer in polymer-based quasi-solid-state dye-sensitized solar cells, two-electrode PSCs with highly compact structure were obtained. The charge storage function stems from the formed ion channel network in the scattering layer/polymer electrolyte system. Both the photoelectric conversion and the energy storage functions are integrated in only the photoelectrode of such PSCs. This design of PSC could continuously output power as a solar cell with considerable efficiency after being photo-charged. Such PSCs could be applied in highly-compact mini power devices.

  13. Multi-step process for concentrating magnetic particles in waste sludges

    DOEpatents

    Watson, John L.

    1990-01-01

    This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed.

  14. Multi-step process for concentrating magnetic particles in waste sludges

    DOEpatents

    Watson, J.L.

    1990-07-10

    This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed. 7 figs.

  15. Ceramic impregnated superabrasives

    DOEpatents

    Radtke, Robert P.; Sherman, Andrew

    2009-02-10

    A superabrasive fracture resistant compact is formed by depositing successive layers of ceramic throughout the network of open pores in a thermally stable self-bonded polycrystalline diamond or cubic boron nitride preform. The void volume in the preform is from approximately 2 to 10 percent of the volume of the preform, and the average pore size is below approximately 3000 nanometers. The preform is evacuated and infiltrated under at least about 1500 pounds per square inch pressure with a liquid pre-ceramic polymerizable precursor. The precursor is infiltrated into the preform at or below the boiling point of the precursor. The precursor is polymerized into a solid phase material. The excess is removed from the outside of the preform, and the polymer is pyrolized to form a ceramic. The process is repeated at least once more so as to achieve upwards of 90 percent filling of the original void volume. When the remaining void volume drops below about 1 percent the physical properties of the compact, such as fracture resistance, improve substantially. Multiple infiltration cycles result in the deposition of sufficient ceramic to reduce the void volume to below 0.5 percent. The fracture resistance of the compacts in which the pores are lined with formed in situ ceramic is generally at least one and one-half times that of the starting preforms.

  16. Green Peas emit X-rays: Extreme Star Formation in Early Universe Analog Galaxies

    NASA Astrophysics Data System (ADS)

    Brorby, Matthew; Kaaret, Philip

    2017-01-01

    Luminous compact galaxies (LCGs), Lyman Alpha Emitters (LAEs), and Lyman Break Analog galaxies (LBAs) are all used as proxies for star-forming galaxies in the early Universe (z ≥ 6). The X-ray emission from such galaxies has been found to be elevated compared to other star-forming galaxies in our local Universe. It has been suggested that this may be due to the lower metallicity seen in these proxies to high-redshift galaxies and the elevated X-ray emission may affect the heating and Reionization evolution of the early Universe. Our previous studies have suggested the existence of an LX-SFR-metallicity plane for all star-forming galaxies. We present these results in the context of our newest Joint Chandra/HST study containing the first X-ray detection of the Green Pea galaxies, a population of compact starburst galaxies discovered by volunteers in the Galaxy Zoo Project (Cardamone+2009). The galaxies were given the name Green Peas due to their compact size and green appearance in the gri composite images from SDSS. The green color is caused by a strong [OIII]λ5007Å emission line, an indicator of recent star formation. We observed a few of the most promising candidates with joint Chandra/HST observation and discuss our findings here.

  17. Environmental Education Excursions and Proximity to Urban Green Space--Densification in a "Compact City"

    ERIC Educational Resources Information Center

    Wolsink, Maarten

    2016-01-01

    The value of urban green space for environmental education fieldwork is empirically investigated in a study among all secondary schools in Amsterdam. The article describes how the proximity of schools to green spaces emerges as a new factor in the "sustainable city" and the "compact city" debate. For fieldwork excursions…

  18. Hydraulic conductivity of fly ash-sewage sludge mixes for use in landfill cover liners.

    PubMed

    Herrmann, Inga; Svensson, Malin; Ecke, Holger; Kumpiene, Jurate; Maurice, Christian; Andreas, Lale; Lagerkvist, Anders

    2009-08-01

    Secondary materials could help meeting the increasing demand of landfill cover liner materials. In this study, the effect of compaction energy, water content, ash ratio, freezing, drying and biological activity on the hydraulic conductivity of two fly ash-sewage sludge mixes was investigated using a 2(7-1) fractional factorial design. The aim was to identify the factors that influence hydraulic conductivity, to quantify their effects and to assess how a sufficiently low hydraulic conductivity can be achieved. The factors compaction energy and drying, as well as the factor interactions material x ash ratio and ash ratio x compaction energy affected hydraulic conductivity significantly (alpha=0.05). Freezing on five freeze-thaw cycles did not affect hydraulic conductivity. Water content affected hydraulic conductivity only initially. The hydraulic conductivity data were modelled using multiple linear regression. The derived models were reliable as indicated by R(adjusted)(2) values between 0.75 and 0.86. Independent on the ash ratio and the material, hydraulic conductivity was predicted to be between 1.7 x 10(-11)m s(-1) and 8.9 x 10(-10)m s(-1) if the compaction energy was 2.4 J cm(-3), the ash ratio between 20% and 75% and drying did not occur. Thus, the investigated materials met the limit value for non-hazardous waste landfills of 10(-9)m s(-1).

  19. Forming Disk Galaxies Early in the Universe

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    What were galaxies like in the first 500 million years of the universe? According to simulations by Yu Feng (UC Berkeley) and collaborators, the earliest massive galaxies to form were mostly disk-shaped, rather than the compact clumps previously predicted. Early-Galaxy Models. Current models for galaxy formation predict that small perturbations in the distribution of matter in the early universe collapsed to form very compact, irregular, clumpy first galaxies. Observations support this: the furthest out that we've spotted disk-shaped galaxies is at z=3, whereas the galaxies we've observed from earlier times -- up to redshifts of z=8-10 -- are very compact. But could this be a selection effect, arising from the rarity of large galaxies in the early universe? Current surveys at high redshift have thus far only covered relatively small volumes of space, so it's not necessarily surprising that we haven't yet spotted any large disk galaxies. Similarly, numerical simulations of galaxy formation are limited in the size of the volume they can evolve, so resulting models of early galaxy formation also tend to favor compact clumpy galaxies over large disks. An Enormous Simulation. Pushing at these limitations, Feng and his collaborators used the Blue Waters supercomputer to carry out an enormous cosmological hydrodynamic simulation called BlueTides. In this simulation, they track 700 billion particles as they evolve in a volume of 400 comoving Mpc/h -- 40 times the volume of the largest previous simulation and 300 times the volume of the largest observational survey at these redshifts. What they find is that by z=8, a whopping 70% of the most massive galaxies (over 7 billion solar masses each) were disk-shaped, though they are more compact, gas-rich, and turbulent than present-day disk galaxies like the Milky Way. The way the most massive galaxies formed in the simulation also wasn't expected: rather than resulting from major mergers, they were built from smooth accretion onto the disks from nearby filaments. These simulations suggest we still have a lot to learn about the structure of galaxies in the early universe and how they formed. Luckily, future telescope projects should help us out: Feng and collaborators estimate that the WFIRST satellite, for instance, should have the capability to detect 8000 disk galaxies of the type BlueTides predicts -- compared to the weak 30% chance of finding a single one in the current largest-area Hubble survey!

  20. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  1. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  2. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  3. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  4. Broad Halpha Wing Formation in the Planetary Nebula IC 4997.

    PubMed

    Lee; Hyung

    2000-02-10

    The young and compact planetary nebula IC 4997 is known to exhibit very broad wings with a width exceeding 5000 km s-1 around Halpha. We propose that the broad wings are formed through Rayleigh-Raman scattering that involves atomic hydrogen, by which Lybeta photons with a velocity width of a few 102 km s-1 are converted to optical photons and fill the Halpha broad wing region. The conversion efficiency reaches 0.6 near the line center, where the scattering optical depth is much larger than 1, and rapidly decreases in the far wings. Assuming that close to the central star there exists an unresolved inner compact core of high density, nH approximately 109-1010 cm-3, we use the photoionization code "CLOUDY" to show that sufficient Lybeta photons for scattering are produced. Using a top-hat-incident profile for the Lybeta flux and a scattering region with a H i column density NHi=2x1020 cm-2 and a substantial covering factor, we perform a profile-fitting analysis in order to obtain a satisfactory fit to the observed flux. We briefly discuss the astrophysical implications of the Rayleigh-Raman processes in planetary nebulae and other emission objects.

  5. High-power VCSEL systems and applications

    NASA Astrophysics Data System (ADS)

    Moench, Holger; Conrads, Ralf; Deppe, Carsten; Derra, Guenther; Gronenborn, Stephan; Gu, Xi; Heusler, Gero; Kolb, Johanna; Miller, Michael; Pekarski, Pavel; Pollmann-Retsch, Jens; Pruijmboom, Armand; Weichmann, Ulrich

    2015-03-01

    Easy system design, compactness and a uniform power distribution define the basic advantages of high power VCSEL systems. Full addressability in space and time add new dimensions for optimization and enable "digital photonic production". Many thermal processes benefit from the improved control i.e. heat is applied exactly where and when it is needed. The compact VCSEL systems can be integrated into most manufacturing equipment, replacing batch processes using large furnaces and reducing energy consumption. This paper will present how recent technological development of high power VCSEL systems will extend efficiency and flexibility of thermal processes and replace not only laser systems, lamps and furnaces but enable new ways of production. High power VCSEL systems are made from many VCSEL chips, each comprising thousands of low power VCSELs. Systems scalable in power from watts to multiple ten kilowatts and with various form factors utilize a common modular building block concept. Designs for reliable high power VCSEL arrays and systems can be developed and tested on each building block level and benefit from the low power density and excellent reliability of the VCSELs. Furthermore advanced assembly concepts aim to reduce the number of individual processes and components and make the whole system even more simple and reliable.

  6. Algebraic Bethe ansatz for U(1) invariant integrable models: Compact and non-compact applications

    NASA Astrophysics Data System (ADS)

    Martins, M. J.; Melo, C. S.

    2009-10-01

    We apply the algebraic Bethe ansatz developed in our previous paper [C.S. Melo, M.J. Martins, Nucl. Phys. B 806 (2009) 567] to three different families of U(1) integrable vertex models with arbitrary N bond states. These statistical mechanics systems are based on the higher spin representations of the quantum group U[SU(2)] for both generic and non-generic values of q as well as on the non-compact discrete representation of the SL(2,R) algebra. We present for all these models the explicit expressions for both the on-shell and the off-shell properties associated to the respective transfer matrices eigenvalue problems. The amplitudes governing the vectors not parallel to the Bethe states are shown to factorize in terms of elementary building blocks functions. The results for the non-compact SL(2,R) model are argued to be derived from those obtained for the compact systems by taking suitable N→∞ limits. This permits us to study the properties of the non-compact SL(2,R) model starting from systems with finite degrees of freedom.

  7. Experimental study of nonlinear ultrasonic behavior of soil materials during the compaction.

    PubMed

    Chen, Jun; Wang, Hao; Yao, Yangping

    2016-07-01

    In this paper, the nonlinear ultrasonic behavior of unconsolidated granular medium - soil during the compaction is experimentally studied. The second harmonic generation technique is adopted to investigate the change of microstructural void in materials during the compaction process of loose soils. The nonlinear parameter is measured with the change of two important environmental factors i.e. moisture content and impact energy of compaction. It is found the nonlinear parameter of soil material presents a similar variation pattern with the void ratio of soil samples, corresponding to the increased moisture content and impact energy. A same optimum moisture content is found by observing the variation of nonlinear parameter and void ratio with respect to moisture content. The results indicate that the unconsolidated soil is manipulated by a strong material nonlinearity during the compaction procedure. The developed experimental technique based on the second harmonic generation could be a fast and convenient testing method for the determination of optimum moisture content of soil materials, which is very useful for the better compaction effect of filled embankment for civil infrastructures in-situ. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A very strong difference property for semisimple compact connected lie groups

    NASA Astrophysics Data System (ADS)

    Shtern, A. I.

    2011-06-01

    Let G be a topological group. For a function f: G → ℝ and h ∈ G, the difference function Δ h f is defined by the rule Δ h f( x) = f( xh) - f( x) ( x ∈ G). A function H: G → ℝ is said to be additive if it satisfies the Cauchy functional equation H( x + y) = H( x) + H( y) for every x, y ∈ G. A class F of real-valued functions defined on G is said to have the difference property if, for every function f: G → ℝ satisfying Δ h f ∈ F for each h ∈ G, there is an additive function H such that f - H ∈ F. Erdős' conjecture claiming that the class of continuous functions on ℝ has the difference property was proved by N. G. de Bruijn; later on, F. W. Carroll and F. S. Koehl obtained a similar result for compact Abelian groups and, under the additional assumption that the other one-sided difference function ∇ h f defined by ∇ h f( x) = f( xh) - f( x) ( x ∈ G, h ∈ G) is measurable for any h ∈ G, also for noncommutative compact metric groups. In the present paper, we consider a narrower class of groups, namely, the family of semisimple compact connected Lie groups. It turns out that these groups admit a significantly stronger difference property. Namely, if a function f: G → ℝ on a semisimple compact connected Lie group has continuous difference functions Δ h f for any h ∈ G (without the additional assumption concerning the measurability of the functions of the form ∇ h f), then f is automatically continuous, and no nontrivial additive function of the form H is needed. Some applications are indicated, including difference theorems for homogeneous spaces of compact connected Lie groups.

  9. Formation of compact HII regions possibly triggered by cloud-cloud collision

    NASA Astrophysics Data System (ADS)

    Ohama, Akio; Torii, Kazufumi; Hasegawa, Keisuke; Fukui, Yasuo

    2015-08-01

    Compact HII regions are ionized by young high-mass star(s) and ~1000 compact HII regions are cataloged in the Galaxy (Urquhart et al. MNRAS 443, 1555-1586 (2014)). Compact HII regions are one of the major populations of Galactic HII regions. The molecular environments around compact HII regions are however not well understood due to lack of extensive molecular surveys. In order to better understand formation of exciting stars and compact HII regions, we have carried out a systematic study of molecular clouds toward compact HII regions by using the 12CO datasets obtained with the JCMT and NANTEN2 telescopes for l = 10 - 56, and present here the first results.In one of the present samples, RCW166, we have discovered that the HII region is associated with two molecular clouds whose velocity separation is ~10 km s-1 the two clouds show complimentary spatial distributions, where one of the clouds have a cavity-like distribution apparently embracing the other. We present an interpretation that the two clouds collided with each other and the cavity-like distribution represents a hole created by the collision in the larger cloud as modeled by Habe and Ohta (1992). Similar molecular distributions are often found in the other compact HII regions in the present study.A recent study by Torii et al. (2015, arXiv:1503.00070) indicates that the Spitzer bubble RCW120 was formed by cloud-cloud collision where the inside of the cavity is fully ionized by the exiting stars. RCW166, on the other hand, shows that only a small part of the cavity, the compact HII region, is ionized. We thus suggest that RCW166 represents an evolutionary stage corresponding to an earlier phase of RCW120 in the collision scenario.

  10. Fabrication of Compositionally and Topographically Complex Robust Tissue Forms by 3D-Electrochemical Compaction of Collagen

    PubMed Central

    Younesi, Mousa; Islam, Anowarul; Kishore, Vipuil; Panit, Stefi; Akkus, Ozan

    2015-01-01

    Collagen solutions are phase-transformed to mechanically robust shell structures with curviplanar topographies using electrochemically induced pH gradients. The process enables rapid layer-by-layer deposition of collagen-rich mixtures over the entire field simultaneously to obtain compositionally diverse multilayered structures. In-plane tensile strength and modulus of the electrocompacted collagen sheet samples were 5200 -fold and 2300 -fold greater than that of uncompacted collagen samples. Out of plane compression tests showed 27 -fold and fold increase in compressive stress and 46 -fold increase in compressive modulus compared to uncompacted collagen sheets. Cells proliferated 4.9 times faster, and cellular area spread was 2.7 times greater on compacted collagen sheets. Electrocompaction also resulted in 2.9 times greater focal adhesion area than on regular collagen hydrogel. The reported improvements in the cell-matrix interactions with electrocompaction would serve to expedite the population of electrocompacted collagen scaffolds by cells. The capacity of the method to fabricate nonlinear curved topographies with compositional heterogeneous layers is demonstrated by sequential deposition of collagenhydroxyapatite layer over a collagen layer. The complex curved topography of the nasal structure is replicated by the electrochemical compaction method. The presented electrochemical compaction process is an enabling modality which holds significant promise for reconstruction of a wide spectrum of topographically complex systems such as joint surfaces, craniofacial defects, ears, nose or urogenital forms. PMID:26069162

  11. A quantum wave based compact modeling approach for the current in ultra-short DG MOSFETs suitable for rapid multi-scale simulations

    NASA Astrophysics Data System (ADS)

    Hosenfeld, Fabian; Horst, Fabian; Iñíguez, Benjamín; Lime, François; Kloes, Alexander

    2017-11-01

    Source-to-drain (SD) tunneling decreases the device performance in MOSFETs falling below the 10 nm channel length. Modeling quantum mechanical effects including SD tunneling has gained more importance specially for compact model developers. The non-equilibrium Green's function (NEGF) has become a state-of-the-art method for nano-scaled device simulation in the past years. In the sense of a multi-scale simulation approach it is necessary to bridge the gap between compact models with their fast and efficient calculation of the device current, and numerical device models which consider quantum effects of nano-scaled devices. In this work, an NEGF based analytical model for nano-scaled double-gate (DG) MOSFETs is introduced. The model consists of a closed-form potential solution of a classical compact model and a 1D NEGF formalism for calculating the device current, taking into account quantum mechanical effects. The potential calculation omits the iterative coupling and allows the straightforward current calculation. The model is based on a ballistic NEGF approach whereby backscattering effects are considered as second order effect in a closed-form. The accuracy and scalability of the non-iterative DG MOSFET model is inspected in comparison with numerical NanoMOS TCAD data for various channel lengths. With the help of this model investigations on short-channel and temperature effects are performed.

  12. Shear enhanced compaction-solution bands in quartz-rich calcarenites of the Cotiella Massif (Spanish Pyrennes)

    NASA Astrophysics Data System (ADS)

    Tavani, Stefano; Granado, Pablo; Cantanero, Irene; Balsamo, Fabrizio; Corradetti, Amerigo; Muñoz, Josep

    2017-04-01

    In this contribution we describe deformation bands developed due to the interplay between shearing and mechanical and chemical compaction in Paleocene quartz-rich calcarenites. The studied structures are located in the footwall of the Cotiella Thrust (Spanish Pyrennes) and form anastomosed, mm-thick tabular bands, composed of high concentration of quartz grains. The bands strike perpendicular to the local transport direction of the regional thrust sheet, thus indicating a tectonic origin, and are organized in three sets. One set is perpendicular to the shallow-dipping bedding surface, while the other two are roughly perpendicular to each other and form an angle of 45°, in opposite directions, with the bedding. No macroscopic evidence of shearing is found along these bands. Optical microscope and SEM investigations on both undeformed and deformed rocks indicate that the high concentration of quartz within the deformation bands was caused by the localized pressure-enhanced dissolution of calcite grains, which determined the enrichment of the less soluble quartz grains. Quartz grains fracturing, fragmentation and crushing was observed along in all deformation bands, whereas cataclasis and shear occurs only along oblique oblique-to-bedding sets. All these features indicate that studied deformation bands are hybrid structures most likely developed during layer-parallel shortening. In detail, bedding perpendicular and bedding oblique structures can be interpreted as pure compaction and shear-enhanced compaction bands, respectively.

  13. Workshop on Physics of Accretion Disks Around Compact and Young Stars

    NASA Technical Reports Server (NTRS)

    Liang, E (Editor); Stepinski, T. F. (Editor)

    1995-01-01

    The purpose of the two-day Workshop on Physics of Accretion Disks Around Compact and Young Stars was to bring together workers on accretion disks in the western Gulf region (Texas and Louisiana). Part 2 presents the workshop program, a list of poster presentations, and a list of workshop participants. Accretion disks are believed to surround many stars. Some of these disks form around compact stars, such as white dwarfs, neutron stars, or black holes that are members of binary systems and reveal themselves as a power source, especially in the x-ray and gamma regions of the spectrum. On the other hand, protostellar disks are believed to be accretion disks associated with young, pre-main-sequence stars and manifest themselves mostly in infrared and radio observations. These disks are considered to be a natural outcome of the star formation process. The focus of this workshop included theory and observations relevant to accretion disks around compact objects and newly forming stars, with the primary purpose of bringing the two communities together for intellectual cross-fertilization. The nature of the workshop was exploratory, to see how much interaction is possible between distinct communities and to better realize the local potential in this subject. A critical workshop activity was identification and documentation of key issues that are of mutual interest to both communities.

  14. Formation of Green compact structure of low-temperature ceramics with taking into account the thermal degradation of the binder

    NASA Astrophysics Data System (ADS)

    Tovpinets, A. O.; Leytsin, V. N.; Dmitrieva, M. A.; Ivonin, I. V.; Ponomarev, S. V.

    2017-12-01

    The solution of the tasks in the field of creating and processing materials for additive technologies requires the development of a single theory of materials for various applications and processes. A separate class of materials that are promising for use in additive technologies includes materials whose consolidation is ensured by the presence of low-melting components in the initial mixture which form a matrix at a temperature not exceeding the melting point, recrystallization or destruction of any of the responsible refractory components of the initial dispersion. The study of the contribution of the binder thermal destruction to the structure and phase composition of the initial compact of the future composite is essential for the development of modern technologies for the synthesis of low-temperature ceramics. This paper investigates the effect of the thermal destruction of a binder on the formation of a green compact of low-temperature ceramics and the structural-mechanical characteristics of sintered ceramics. The approach proposed in Ref. [1] for evaluating the structure and physical characteristics of sintered low-temperature ceramics is improved to clarify the structure of green compacts obtained after thermal destruction of the polymer binder, with taking into account the pores formed and the infusible residue. The obtained results enable a more accurate prediction of thermal stresses in the matrix of sintered ceramics and serve as a basis for optimization.

  15. Geographic Distribution of QCDs Around the Northern Plains Basins of Mars and the Relationship to Lowland Materials

    NASA Technical Reports Server (NTRS)

    Buczkowski, D. L.; Frey, H. V.; McGill, G. E.

    2005-01-01

    It has been suggested that quasicircular depressions (QCDs) without a structural representation in Viking and MOC visible imagery represent buried impact craters [1,2,3,4]. Topographic depressions will form over impact craters buried by a differentially compacting cover material because total cover thickness, and thus total compaction, is greater over the center of completely buried impact craters than their rims [5]. If this is the process by which QCDs form, then only areas of differentially compacting materials should have QCDs. Previous work has established that there is a relationship of surface relief to diameter for QCDs around the Utopia Basin [6]. The slope of the trend of this relationship varies depending on cover thickness, becoming steeper with decreasing thickness [7]. Comparing trendslopes of QCDs around different lowland basins might give us insight into the relative thickness of the cover material in these areas. We explore the geographic distribution of QCDs around the Utopia, Isidis and Acidalia basins and compare their location to geologic units and materials. We also compare evidence for relative thickness of cover material at the three basins.

  16. Effect of temperature on compact layer of Pt electrode in PEMFCs by first-principles molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    He, Yang; Chen, Changfeng; Yu, Haobo; Lu, Guiwu

    2017-01-01

    Formation of the double-layer electric field and capacitance of the water-metal interface is of significant interest in physicochemical processes. In this study, we perform first- principles molecular dynamics simulations on the water/Pt(111) interface to investigate the temperature dependence of the compact layer electric field and capacitance based on the calculated charge densities. On the Pt (111) surface, water molecules form ice-like structures that exhibit more disorder along the height direction with increasing temperature. The Osbnd H bonds of more water molecules point toward the Pt surface to form Ptsbnd H covalent bonds with increasing temperature, which weaken the corresponding Osbnd H bonds. In addition, our calculated capacitance at 300 K is 15.2 mF/cm2, which is in good agreement with the experimental results. As the temperature increases from 10 to 450 K, the field strength and capacitance of the compact layer on Pt (111) first increase and then decrease slightly, which is significant for understanding the water/Pt interface from atomic level.

  17. Modeling picking on pharmaceutical tablets

    NASA Astrophysics Data System (ADS)

    Swaminathan, Shrikant

    Tablets are the most popular solid dosage form in the pharmaceutical industry because they are cheap to manufacture, chemically and mechanically stable and easy to transport and fairly easy to control dosage. Pharmaceutical tableting operations have been around for decades however the process is still not well understood. One of the common problems faced during the production of pharmaceutical tablets by powder compaction is sticking of powder to the punch face, This is known as 'sticking'. A more specialized case of sticking is picking when the powder is pulled away form the compact in the vicinity of debossed features. In the pharmaceutical industry, picking is solved by trial and error which is an expensive, labor intensive and time consuming affair. The objective of this work was to develop, validate, and implement a modeling framework for predicting picking in powder compacts. The model was developed in Abaqus a commercially available finite element package. The resulting model was used to investigate the influence of debossed feature geometry viz. the stroke angle and degree of pre-pick, and, influence of lubricant on picking. (Abstract shortened by ProQuest.).

  18. Influence of Stress State, Stress Orientation, and Rock Properties on the Development of Deformation-Band 'Ladder' Arrays in Porous Sandstone

    NASA Astrophysics Data System (ADS)

    Schultz, R. A.; Soliva, R.; Fossen, H.

    2013-12-01

    Deformation bands in porous rocks tend to develop into spatially organized arrays that display a variety of lengths and thicknesses, and their geometries and arrangements are of interest with respect to fluid flow in reservoirs. Field examples of deformation band arrays in layered clastic sequences suggest that the development of classic deformation band arrays, such as ladders and conjugate sets, and the secondary formation of through-going faults appear to be related to the physical properties of the host rock, the orientation of stratigraphic layers relative to the far-field stress state, and the evolution of the local stress state within the developing array. We have identified several field examples that demonstrate changes in band properties, such as type and orientation, as a function of one or more of these three main factors. Normal-sense deformation-band arrays such as those near the San Rafael Swell (Utah) develop three-dimensional ladder-style arrays at a high angle to the maximum compression direction; these cataclastic shear bands form at acute angles to the maximum compression not very different from that of the optimum frictional sliding plane, thus facilitating the eventual nucleation of a through-going fault. At Orange quarry (France), geometrically conjugate sets of reverse-sense compactional shear bands form with angles to the maximum compression direction that inhibit fault nucleation within them; the bands in this case also form at steep enough angles to bedding that stratigraphic heterogeneities within the deforming formation were apparently not important. Two exposures of thrust-sense ladders at Buckskin Gulch (Utah) demonstrate the importance of host-rock properties, bedding-plane involvement, and local stress perturbations on band-array growth. In one ladder, thrust-sense shear deformation bands nucleated along suitably oriented bedding planes, creating overprinting sets of compaction bands that can be attributed to layer properties and local stress changes near the shear-band tips. Two other ladder exposures preserve compaction bands having nearly perpendicular orientations relative the bounding shear bands that define contractional stepovers that also nucleated on bedding planes. These cases suggest that local stress changes within a deformation-band stepover may lead to either rotation of bands or changes in band type relative to bands formed outside the stepover. The development of the common geometries of deformation band arrays, such as ladders, and the deformation paths to faulting thus depend on a combination of stress state, stress orientation, and rock properties.

  19. Comparison of silver, cesium, and strontium release predictions using PARFUME with results from the AGR-1 irradiation experiment

    NASA Astrophysics Data System (ADS)

    Collin, Blaise P.; Petti, David A.; Demkowicz, Paul A.; Maki, John T.

    2015-11-01

    The PARFUME (PARticle FUel ModEl) code was used to predict the release of fission products silver, cesium, and strontium from tristructural isotropic coated fuel particles and compacts during the first irradiation experiment (AGR-1) of the Advanced Gas Reactor Fuel Development and Qualification program. The PARFUME model for the AGR-1 experiment used the fuel compact volume average temperature for each of the 620 days of irradiation to calculate the release of silver, cesium, and strontium from a representative particle for a select number of AGR-1 compacts. Post-irradiation examination (PIE) measurements provided data on release of these fission products from fuel compacts and fuel particles, and retention of silver in the compacts outside of the silicon carbide (SiC) layer. PARFUME-predicted fractional release of silver, cesium, and strontium was determined and compared to the PIE measurements. For silver, comparisons show a trend of over-prediction at low burnup and under-prediction at high burnup. PARFUME has limitations in the modeling of the temporal and spatial distributions of the temperature and burnup across the compacts, which affects the accuracy of its predictions. Nevertheless, the comparisons on silver release lie in the same order of magnitude. Results show an overall over-prediction of the fractional release of cesium by PARFUME. For particles with failed SiC layers, the over-prediction is by a factor of up to 3, corresponding to a potential over-estimation of the diffusivity in uranium oxycarbide (UCO) by a factor of up to 250. For intact particles, whose release is much lower, the over-prediction is by a factor of up to 100, which could be attributed to an over-estimated diffusivity in SiC by about 40% on average. The release of strontium from intact particles is also over-predicted by PARFUME, which also points towards an over-estimated diffusivity of strontium in either SiC or UCO, or possibly both. The measured strontium fractional release from intact particles varied considerably from compact to compact, making it difficult to assess the effective over-estimation of the diffusivities. Furthermore, the release of strontium from particles with failed SiC is difficult to observe experimentally due to the release from intact particles, preventing any conclusions to be made on the accuracy or validity of the PARFUME predictions and the modeled diffusivity of strontium in UCO.

  20. Anticrack inclusion model for compaction bands in sandstone

    NASA Astrophysics Data System (ADS)

    Sternlof, Kurt R.; Rudnicki, John W.; Pollard, David D.

    2005-11-01

    Detailed observations of compaction bands exposed in the Aztec Sandstone of southeastern Nevada indicate that these thin, tabular, bounded features of localized porosity loss initiated at pervasive grain-scale flaws, which collapsed in response to compressive tectonic loading. From many of these Griffith-type flaws, an apparently self-sustaining progression of collapse propagated outward to form bands of compacted grains a few centimeters thick and tens of meters in planar extent. These compaction bands can be idealized as highly eccentric ellipsoidal bodies that have accommodated uniform uniaxial plastic strain parallel to their short dimension within a surrounding elastic material. They thus can be represented mechanically as contractile Eshelby inclusions, which generate near-tip compressive stress concentrations consistent with self-sustaining, in-plane propagation. The combination of extreme aspect ratio (˜10-4) and significant uniaxial plastic strain (˜10%) also justifies an approximation of the bands as anticracks: sharp boundaries across which a continuous distribution of closing mode displacement discontinuity has been accommodated. This anticrack interpretation of compaction bands is analogous to that of pressure solution surfaces, except that porosity loss takes the place of material dissolution. We find that displacement discontinuity boundary element modeling of compaction bands as anticracks within a two-dimensional linear elastic continuum can accurately represent the perturbed external stress fields they induce.

  1. Blue ellipticals in compact groups

    NASA Technical Reports Server (NTRS)

    Zepf, Stephen E.; Whitmore, Bradley C.

    1990-01-01

    By studying galaxies in compact groups, the authors examine the hypothesis that mergers of spiral galaxies make elliptical galaxies. The authors combine dynamical models of the merger-rich compact group environment with stellar evolution models and predict that roughly 15 percent of compact group ellipticals should be 0.15 mag bluer in B - R color than normal ellipticals. The published colors of these galaxies suggest the existence of this predicted blue population, but a normal distribution with large random errors can not be ruled out based on these data alone. However, the authors have new ultraviolet blue visual data which confirm the blue color of the two ellipticals with blue B - R colors for which they have their own colors. This confirmation of a population of blue ellipticals indicates that interactions are occurring in compact groups, but a blue color in one index alone does not require that these ellipticals are recent products of the merger of two spirals. The authors demonstrate how optical spectroscopy in the blue may distinguish between a true spiral + spiral merger and the swallowing of a gas-rich system by an already formed elliptical. The authors also show that the sum of the luminosity of the galaxies in each group is consistent with the hypothesis that the final stage in the evolution of compact group is an elliptical galaxy.

  2. On Critical States, Rupture States and Interlocking Strength of Granular Materials.

    PubMed

    Szalwinski, Chris M

    2017-07-27

    The Mohr-Coulomb theory of strength identifies cohesion and internal friction as the two principal contributions to the shear strength of a granular material. The contribution of cohesion in over-compacted granular materials has been challenged and replacing cohesion with interlocking has been proposed. A theory of rupture strength that includes interlocking is derived herein. The physics-chemistry concept of critical state is elaborated to accommodate granular materials, based on empirical definitions established in the fields of soil mechanics and bulk solids' flow. A surface in state space, called the critical compaction surface, separates over-compacted states from lightly compacted states. The intersection of this surface with the Mohr-Coulomb envelope forms the critical state surface for a granular material. The rupture strength of an over-compacted granular material is expressed as the sum of cohesion, internal friction and interlocking strength. Interlocking strength is the shear strength contribution due to over-compaction and vanishes at critical state. The theory allows migrations from one critical state to another. Changes in specific volume during such migrations are related to changes in mean-normal effective stress and uncoupled from changes in shearing strain. The theory is reviewed with respect to two established research programs and underlying assumptions are identified.

  3. Liquid-permeable electrode

    DOEpatents

    Folser, George R.

    1980-01-01

    Electrodes for use in an electrolytic cell, which are liquid-permeable and have low electrical resistance and high internal surface area are provided of a rigid, porous, carbonaceous matrix having activated carbon uniformly embedded throughout. The activated carbon may be catalyzed with platinum for improved electron transfer between electrode and electrolyte. Activated carbon is mixed with a powdered thermosetting phenolic resin and compacted to the desired shape in a heated mold to melt the resin and form the green electrode. The compact is then heated to a pyrolyzing temperature to carbonize and volatilize the resin, forming a rigid, porous structure. The permeable structure and high internal surface area are useful in electrolytic cells where it is necessary to continuously remove the products of the electrochemical reaction.

  4. Simple and compact expressions for neutrino oscillation probabilities in matter

    DOE PAGES

    Minakata, Hisakazu; Parke, Stephen J.

    2016-01-29

    We reformulate perturbation theory for neutrino oscillations in matter with an expansion parameter related to the ratio of the solar to the atmospheric Δm 2 scales. Unlike previous works, use a renormalized basis in which certain first-order effects are taken into account in the zeroth-order Hamiltonian. Using this perturbation theory we derive extremely compact expressions for the neutrino oscillations probabilities in matter. We find, for example, that the ν e disappearance probability at this order is of a simple two flavor form with an appropriately identified mixing angle and Δm 2. Furthermore, despite exceptional simplicity in their forms they accommodatemore » all order effects θ 13 and the matter potential.« less

  5. Mineralogy, petrology, and surface features of lunar samples 10062,35, 10067,9, 10069,30, and 10085,16.

    PubMed

    Carter, J L; Macgregor, I D

    1970-01-30

    The primary rocks are a sequence of titanium-rich basic volcanics, composed of clinopyroxene, plagioclase, and ilmenite with minor olivine, troilite, and native iron. The soil and microbreccias are respectively loose and compacted mixtures of fragments and aggregates of similar rocks, minerals, and glassy fragments and spheres. Impact events are reflected by the presence of shock metamorphosed rock fragments, breccias, and glasses and their resulting compaction to form complex breccias, glass-spattered surfaces, and numerous glass-lined craters. Chemistry of the glasses formed by the impact events is highly variable, and the high iron and nickel content of a few moundlike features suggests that at least some of the projectiles are iron and nickel-rich meteorites.

  6. Physical Factors Affecting Plasmid DNA Compaction in Stearylamine-Containing Nanoemulsions Intended for Gene Delivery

    PubMed Central

    Silva, André Leandro; Júnior, Francisco Alexandrino; Verissimo, Lourena Mafra; Agnez-Lima, Lucymara Fassarella; Egito, Lucila Carmem Monte; de Oliveira, Anselmo Gomes; do Egito, Eryvaldo Socrates Tabosa

    2012-01-01

    Cationic lipids have been used in the development of non-viral gene delivery systems as lipoplexes. Stearylamine, a cationic lipid that presents a primary amine group when in solution, is able to compact genetic material by electrostatic interactions. In dispersed systems such as nanoemulsions this lipid anchors on the oil/water interface confering a positive charge to them. The aim of this work was to evaluate factors that influence DNA compaction in cationic nanoemulsions containing stearylamine. The influence of the stearylamine incorporation phase (water or oil), time of complexation, and different incubation temperatures were studied. The complexation rate was assessed by electrophoresis migration on agarose gel 0.7%, and nanoemulsion and lipoplex characterization was done by Dynamic Light Scattering (DLS). The results demonstrate that the best DNA compaction process occurs after 120 min of complexation, at low temperature (4 ± 1 °C), and after incorporation of the cationic lipid into the aqueous phase. Although the zeta potential of lipoplexes was lower than the results found for basic nanoemulsions, the granulometry did not change. Moreover, it was demonstrated that lipoplexes are suitable vehicles for gene delivery. PMID:24281666

  7. Macrophages influence a competition of contact guidance and chemotaxis for fibroblast alignment in a fibrin gel coculture assay.

    PubMed

    Bromberek, B A; Enever, P A J; Shreiber, D I; Caldwell, M D; Tranquillo, R T

    2002-05-01

    Rat dermal fibroblasts were dispersed initially in the outer shell of a fibrin gel sphere, while the inner core either was devoid of cells or contained peritoneal exudate cells (primarily macrophages), thereby mimicking the inflammatory phase of wound healing. The fibroblasts compacted floating fibrin microspheres over time. In the absence of macrophages, the initial distribution of fibroblasts (only in the shell) induced circumferential alignment of fibrin fibrils via compaction of the shell relative to the core. The aligned fibrils created a contact guidance field, which was manifested by strong circumferential alignment of the fibroblasts. However, in the presence of macrophages, the fibroblasts exhibited more radial alignment despite the simultaneous contact guidance field in the circumferential direction associated with compaction. This was attributed to a chemotactic gradient emanating from the core due to a putative factor(s) released by the macrophages. The presence of a radial chemotactic stimulus was supported by the finding of even greater radial alignment when fibrin microspheres were embedded in an agarose-fibrin gel that abolished compaction and consequently the contact guidance field. Our assay permits the simulation of tissue morphogenetic processes that involve cell guidance phenomena and tractional restructuring of the extracellular matrix.

  8. Extrachromosomal Nucleolus-Like Compartmentalization by a Plasmid-Borne Ribosomal RNA Operon and Its Role in Nucleoid Compaction.

    PubMed

    Mata Martin, Carmen; Sun, Zhe; Zhou, Yan Ning; Jin, Ding Jun

    2018-01-01

    In the fast-growing Escherichia coli cells, RNA polymerase (RNAP) molecules are concentrated and form foci at clusters of ribosomal RNA (rRNA) operons resembling eukaryotic nucleolus. The bacterial nucleolus-like organization, spatially compartmentalized at the surface of the compact bacterial chromosome (nucleoid), serves as transcription factories for rRNA synthesis and ribosome biogenesis, which influences the organization of the nucleoid. Unlike wild type that has seven rRNA operons in the genome in a mutant that has six (Δ6 rrn ) rRNA operons deleted in the genome, there are no apparent transcription foci and the nucleoid becomes uncompacted, indicating that formation of RNAP foci requires multiple copies of rRNA operons clustered in space and is critical for nucleoid compaction. It has not been determined, however, whether a multicopy plasmid-borne rRNA operon (p rrnB ) could substitute the multiple chromosomal rRNA operons for the organization of the bacterial nucleolus-like structure in the mutants of Δ6 rrn and Δ7 rrn that has all seven rRNA operons deleted in the genome. We hypothesized that extrachromosomal nucleolus-like structures are similarly organized and functional in trans from p rrnB in these mutants. In this report, using multicolor images of three-dimensional superresolution Structured Illumination Microscopy (3D-SIM), we determined the distributions of both RNAP and NusB that are a transcription factor involved in rRNA synthesis and ribosome biogenesis, p rrnB clustering, and nucleoid structure in these two mutants in response to environmental cues. Our results found that the extrachromosomal nucleolus-like organization tends to be spatially located at the poles of the mutant cells. In addition, formation of RNAP foci at the extrachromosomal nucleolus-like structure condenses the nucleoid, supporting the idea that active transcription at the nucleolus-like organization is a driving force in nucleoid compaction.

  9. Properties of compact HII regions and their host clumps in the inner vs outer Galaxy - early results from SASSy

    NASA Astrophysics Data System (ADS)

    Djordjevic, Julie; Thompson, Mark; Urquhart, James S.

    2017-01-01

    We present a catalog of compact and ultracompact HII regions for all Galactocentric radii. Previous catalogs focus on the inner Galaxy (Rgal ≤ 8 kpc) but the recent SASSy 870 µm survey allows us to identify regions out to ~20 kpc. Early samples are also filled with false classifications leading to uncertainty when deriving star formation efficiencies in Galactic models. These objects have similar mid-IR colours to HII regions. Urquhart et al. (2013) found that they could use mid-IR, submm, and radio data to identify the genuine compact HII regions, avoiding confusion. They used this method on a small portion of the Galaxy (10 < l < 60), identifying 213 HII regions embedded in 170 clumps. We use ATLASGAL and SASSy, crossmatched with RMS, to sample the remaining galactic longitudes out to Rgal = 20 kpc. We derive the properties of the identified compact HII regions and their host clumps while addressing the implications for recent massive star formation in the outer Galaxy. Observations towards nearby galaxies are biased towards massive stars, affecting simulations and overestimating models for galactic evolution and star formation rates. The Milky Way provides the ideal template for studying factors affecting massive star formation rates and efficiencies at high resolution, thus fine-tuning those models. We find that there is no significant change in the rate of massive star formation in the outer vs inner Galaxy. Despite some peaks in known complexes and possible correlation with spiral arms, the outer Galaxy appears to produce massive stars as efficiently as the inner regions. However, many of the potential star forming SASSy clumps have no available radio counterpart to confirm the presence of an HII region or other star formation tracer. Follow-up observations will be required to verify this conclusion and are currently in progress.

  10. Advances in LEDs for automotive applications

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Jy; Peddada, Rao; Spinger, Benno

    2016-03-01

    High power LEDs were introduced in automotive headlights in 2006-2007, for example as full LED headlights in the Audi R8 or low beam in Lexus. Since then, LED headlighting has become established in premium and volume automotive segments and beginning to enable new compact form factors such as distributed low beam and new functions such as adaptive driving beam. New generations of highly versatile high power LEDs are emerging to meet these application needs. In this paper, we will detail ongoing advances in LED technology that enable revolutionary styling, performance and adaptive control in automotive headlights. As the standards which govern the necessary lumens on the road are well established, increasing luminance enables not only more design freedom but also headlight cost reduction with space and weight saving through more compact optics. Adaptive headlighting is based on LED pixelation and requires high contrast, high luminance, smaller LEDs with high-packing density for pixelated Matrix Lighting sources. Matrix applications require an extremely tight tolerance on not only the X, Y placement accuracy, but also on the Z height of the LEDs given the precision optics used to image the LEDs onto the road. A new generation of chip scale packaged (CSP) LEDs based on Wafer Level Packaging (WLP) have been developed to meet these needs, offering a form factor less than 20% increase over the LED emitter surface footprint. These miniature LEDs are surface mount devices compatible with automated tools for L2 board direct attach (without the need for an interposer or L1 substrate), meeting the high position accuracy as well as the optical and thermal performance. To illustrate the versatility of the CSP LEDs, we will show the results of, firstly, a reflector-based distributed low beam using multiple individual cavities each with only 20mm height and secondly 3x4 to 3x28 Matrix arrays for adaptive full beam. Also a few key trends in rear lighting and impact on LED light source technology are discussed.

  11. Effect of deformations on the compactness of odd-Z superheavy nuclei formed in cold and hot fusion reactions

    NASA Astrophysics Data System (ADS)

    Kaur, Gurjit; Sandhu, Kirandeep; Sharma, Manoj K.

    2018-03-01

    Using the extended fragmentation theory, the compactness of hot and cold fusion reactions is analyzed for odd-Z nuclei ranging Z = 105- 117. The calculations for the present work are carried out at T = 0MeV and ℓ = 0 ħ, as the temperature and angular momentum effects remain silent while addressing the orientation degree of freedom (i.e. compact angle configuration). In the hot fusion, 48Ca (spherical) + actinide (prolate) reaction, the non-equatorial compact (nec) shape is obtained for Z = 113 nucleus. On the other hand, Z > 113 nuclei favor equatorial compact (ec) configuration. The distribution of barrier height (VB) illustrate that the ec-shape is obtained when the magnitude of quadrupole deformation of the nucleus is higher than the hexadecupole deformation. In other words, negligible or small -ve β4-deformations support ec configurations. On the other hand, large (+ve) magnitude of the β4-deformation suggests that the configuration appears for compact angle θc < 90 °, leading to nec structure. Similar deformation effects are observed for Bi-induced reactions, in which not belly-to-belly compact (nbbc) configurations are seen at θc = 42 °. In addition to the effect of β2 and β4-deformations, the exclusive role of octupole deformations (β3) is also analyzed. The β3-deformations do not follow the reflection symmetry as that of β2 and β4, leading to the possible occurrence of compact configuration within 0° to 180° angular range.

  12. Inelastic Compaction in High-Porosity Limestone Monitored Using Acoustic Emissions

    NASA Astrophysics Data System (ADS)

    Baud, Patrick; Schubnel, Alexandre; Heap, Michael; Rolland, Alexandra

    2017-12-01

    We performed a systematic investigation of mechanical compaction and strain localization in Saint-Maximin limestone, a quartz-rich, high-porosity (37%) limestone from France. Our new data show that the presence of a significant proportion of secondary mineral (i.e., quartz) did not impact the mechanical strength of the limestone in both the brittle faulting and cataclastic flow regimes, but that the presence of water exerted a significant weakening effect. In contrast to previously published studies on deformation in limestones, inelastic compaction in Saint-Maximin limestone was accompanied by abundant acoustic emission (AE) activity. The location of AE hypocenters during triaxial experiments revealed the presence of compaction localization. Two failure modes were identified in agreement with microstructural analysis and X-ray computed tomography imaging: compactive shear bands developed at low confinement and complex diffuse compaction bands formed at higher confinement. Microstructural observations on deformed samples suggest that the recorded AE activity associated with inelastic compaction, unusual for a porous limestone, could have been due to microcracking at the quartz grain interfaces. Similar to published data on high-porosity macroporous limestones, the crushing of calcite grains was the dominant micromechanism of inelastic compaction in Saint-Maximin limestone. New P wave velocity data show that the effect of microcracking was dominant near the yield point and resulted in a decrease in P wave velocity, while porosity reduction resulted in a significant increase in P wave velocity beyond a few percent of plastic volumetric strain. These new data highlight the complex interplay between mineralogy, rock microstructure, and strain localization in porous rocks.

  13. Sub-mm galaxies as progenitors of compact quiescent galaxies

    NASA Astrophysics Data System (ADS)

    Toft, Sune

    2015-08-01

    Three billion years after the big bang (at redshift z=2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts which produce dense remnants. Sub-millimetre selected galaxies (SMGs) are prime examples of intense, gas-rich, starbursts. With a new, mass-complete spectroscopic sample of compact quiescent galaxies at z=2 and a statistically well-understood sample of SMGs, we show that z = 3 -6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42 (+40/-29) Myr (consistent with independent estimates), indicating that the bulk of stars in these massive galaxies were formed in a major, early surge of star-formation. These results suggests a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star-formation through their appearance as high stellardensity galaxy cores and to their ultimate fate as giant ellipticals.If time permits i will show novel, spatially resolved spectroscopic observations of the inner regions (r2, allowing for strong new constraints on their formation and evolutionary path

  14. Causes of fragmented crystals in ignimbrites: a case study of the Cardones ignimbrite, Northern Chile

    NASA Astrophysics Data System (ADS)

    van Zalinge, M. E.; Cashman, K. V.; Sparks, R. S. J.

    2018-03-01

    Broken crystals have been documented in many large-volume caldera-forming ignimbrites and can help to understand the role of crystal fragmentation in both eruption and compaction processes, the latter generally overlooked in the literature. This study investigates the origin of fragmented crystals in the > 1260 km3, crystal-rich Cardones ignimbrites located in the Central Andes. Observations of fragmented crystals in non-welded pumice clasts indicate that primary fragmentation includes extensive crystal breakage and an associated ca. 5 vol% expansion of individual crystals while preserving their original shapes. These observations are consistent with the hypothesis that crystals fragment in a brittle response to rapid decompression associated with the eruption. Additionally, we observe that the extent of crystal fragmentation increases with increasing stratigraphic depth in the ignimbrite, recording secondary crystal fragmentation during welding and compaction. Secondary crystal fragmentation aids welding and compaction in two ways. First, enhanced crystal fragmentation at crystal-crystal contacts accommodates compaction along the principal axis of stress. Second, rotation and displacement of individual crystal fragments enhances lateral flow in the direction(s) of least principal stress. This process increases crystal aspect ratios and forms textures that resemble mantled porphyroclasts in shear zones, indicating lateral flow adds to processes of compaction and welding alongside bubble collapse. In the Cardones ignimbrite, secondary fragmentation commences at depths of 175-250 m (lithostatic pressures 4-6 MPa), and is modulated by both the overlying crystal load and the time spent above the glass transition temperature. Under these conditions, the existence of force-chains can produce stresses at crystal-crystal contacts of a few times the lithostatic pressure. We suggest that documenting crystal textures, in addition to conventional welding parameters, can provide useful information about welding processes in thick crystal-rich ignimbrites.

  15. Compact 2100 nm laser diode module for next-generation DIRCM

    NASA Astrophysics Data System (ADS)

    Dvinelis, Edgaras; Greibus, Mindaugas; TrinkÅ«nas, Augustinas; NaujokaitÄ--, Greta; Vizbaras, Augustinas; Vizbaras, Dominykas; Vizbaras, Kristijonas

    2017-10-01

    Compact high-power 2100 nm laser diode module for next-generation directional infrared countermeasure (DIRCM) systems is presented. Next-generation DIRCM systems require compact, light-weight and robust laser modules which could provide intense IR light emission capable of disrupting the tracking sensor of heat-seeking missile. Currently used solid-state and fiber laser solutions for mid-IR band are bulky and heavy making them difficult to implement in smaller form-factor DIRCM systems. Recent development of GaSb laser diode technology greatly improved optical output powers and efficiencies of laser diodes working in 1900 - 2450 nm band [1] while also maintaining very attractive size, weight, power consumption and cost characteristics. 2100 nm laser diode module presented in this work performance is based on high-efficiency broad emitting area GaSb laser diode technology. Each laser diode emitter is able to provide 1 W of CW output optical power with working point efficiency up to 20% at temperature of 20 °C. For output beam collimation custom designed fast-axis collimator and slow-axis collimator lenses were used. These lenses were actively aligned and attached using UV epoxy curing. Total 2 emitters stacked vertically were used in 2100 nm laser diode module. Final optical output power of the module goes up to 2 W at temperature of 20 °C. Total dimensions of the laser diode module are 35 x 25 x 16 mm (L x W x H) with a weight of 28 grams. Finally output beam is bore-sighted to mechanical axes of the module housing allowing for easy integration into next-generation DIRCM systems.

  16. Controls on the quality of Miocene reservoirs, southern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Gutiérrez Paredes, Hilda Clarisa; Catuneanu, Octavian; Hernández Romano, Ulises

    2018-01-01

    An investigation was conducted to determine the main controls on the reservoir quality of the middle and upper Miocene sandstones in the southern Gulf of Mexico based on core descriptions, thin section petrography and petrophysical data; as well as to explore the possible link between the sequence stratigraphic framework, depositional facies and diagenetic alterations. The Miocene deep marine sandstones are attributed to the falling-stage, lowstand, and transgressive systems tracts. The middle Miocene falling-stage systems tract includes medium-to very fine-grained, and structureless sandstones deposited in channels and frontal splays, and muddy sandstones, deposited in lobes of debrites. The lowstand and transgressive systems tracts consist of medium-to very fine-grained massive and normally graded sandstones deposited in channel systems within frontal splay complexes. The upper Miocene falling-stage systems tract includes medium-to coarse-grained, structureless sandstones deposited in channel systems and frontal splay, as well as lobes of debrites formed by grain flows and hybrid-flow deposits. The lowstand and transgressive systems tracts include fine-grained sandstones deposited in overbank deposits. The results reveal that the depositional elements with the best reservoir quality are the frontal splays deposited during the falling-stage system tracts. The reservoir quality of the Miocene sandstones was controlled by a combination of depositional facies, sand composition and diagenetic factors (mainly compaction and calcite cementation). Sandstone texture, controlled primarily by depositional facies appears more important than sandstone composition in determining reservoir quality; and compaction was more important than cementation in porosity destruction. Compaction was stopped, when complete calcite cementation occurred.

  17. Measured temperature and pressure dependence of Vp and Vs in compacted, polycrystalline sI methane and sII methane-ethane hydrate

    USGS Publications Warehouse

    Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A.

    2003-01-01

    We report on compressional- and shear-wave-speed measurements made on compacted polycrystalline sI methane and sII methane-ethane hydrate. The gas hydrate samples are synthesized directly in the measurement apparatus by warming granulated ice to 17??C in the presence of a clathrate-forming gas at high pressure (methane for sI, 90.2% methane, 9.8% ethane for sII). Porosity is eliminated after hydrate synthesis by compacting the sample in the synthesis pressure vessel between a hydraulic ram and a fixed end-plug, both containing shear-wave transducers. Wave-speed measurements are made between -20 and 15??C and 0 to 105 MPa applied piston pressure.

  18. Experimental method for estimation of compaction in the Oxfordian bedded limestones of the southern Kraków-Częstochowa Upland, Southern Poland

    NASA Astrophysics Data System (ADS)

    Kochman, Alicja; Matyszkiewicz, Jacek

    2013-12-01

    Kochman, A. and Matyszkiewicz, J. 2013. Experimental method for estimation of compaction in the Oxfordian bedded limestones of the southern Krakow-Częstochowa Upland, Southern Poland. Acta Geologica Polonica, 63(4), 681-696. Warszawa. The Upper Jurassic carbonates exposed in the southern part of the Krakow-Częstochowa Upland are well known for their significant facies diversity related to the presence of microbial and microbial-sponge carbonate buildups and bedded detrital limestone in between. Both the buildups and detrital limestones revealed differential susceptibility to compaction which, apart from differential subsidence of the Palaeozoic basement and synsedimentary faulting, was one of the factors controlling seafloor palaeorelief in the Late Jurassic sedimentary basin. The compaction of the detrital limestones has been estimated with an experimental oedometric method in which specially prepared mixtures made of ground limestones from a quarry in the village of Żary were subjected to oedometer tests. The diameters of the detrital grains and their percentages in the limestones were determined by microscopic examinations of thin sections. The diameters were assigned to predetermined classes corresponding to the Udden-Wentworth scale. The rock samples were then ground down to the grain sizes observed in thin sections. From such materials, mixtures were prepared of grain size distributions corresponding to those observed in thin sections. After adding water the mixtures were subjected to oedometer tests. Analysis of the compression of such mixtures under specific loads enabled preparation of a mathematical formula suitable for the estimation of mechanical compaction of the limestone. The obtained values varied from 27.52 to 55.53% for a load corresponding to 300 metres burial depth. The most significant effect of mechanical compaction was observed for loads representing only 2 metres burial depth. Further loading resulted in a much smaller reduction in sample height. The results of the oedometer tests cannot be used directly to determine compaction of the detrital limestones. Mainly because microscopic observations of thin sections of the experimental material show that chemical compaction was also an important factor influencing thickness reduction of the limestones.

  19. An 8-GW long-pulse generator based on Tesla transformer and pulse forming network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Jiancang; Zhang, Xibo; Li, Rui

    A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW andmore » a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.« less

  20. An 8-GW long-pulse generator based on Tesla transformer and pulse forming network.

    PubMed

    Su, Jiancang; Zhang, Xibo; Li, Rui; Zhao, Liang; Sun, Xu; Wang, Limin; Zeng, Bo; Cheng, Jie; Wang, Ying; Peng, Jianchang; Song, Xiaoxin

    2014-06-01

    A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW and a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.

  1. A new model for the origin of Type-B and Fluffy Type-A CAIs: Analogies to remelted compound chondrules

    NASA Astrophysics Data System (ADS)

    Rubin, Alan E.

    2012-06-01

    In the scenario developed here, most types of calcium-aluminum-rich inclusions (CAIs) formed near the Sun where they developed Wark-Lovering rims before being transported by aerodynamic forces throughout the nebula. The amount of ambient dust in the nebula varied with heliocentric distance, peaking in the CV-CK formation location. Literature data show that accretionary rims (which occur outside the Wark-Lovering rims) around CAIs contain substantial 16O-rich forsterite, suggesting that, at this time, the ambient dust in the nebula consisted largely of 16O-rich forsterite. Individual sub-millimeter-size Compact Type-A CAIs (each surrounded by a Wark-Lovering rim) collided in the CV-CK region and stuck together (in a manner similar to that of sibling compound chondrules); the CTAs were mixed with small amounts of 16O-rich mafic dust and formed centimeter-size compound objects (large Fluffy Type-A CAIs) after experiencing minor melting. In contrast to other types of CAIs, centimeter-size Type-B CAIs formed directly in the CV-CK region after gehlenite-rich Compact Type-A CAIs collided and stuck together, incorporated significant amounts of 16O-rich forsteritic dust (on the order of 10-15%) and probably some anorthite, and experienced extensive melting and partial evaporation. (Enveloping compound chondrules formed in an analogous manner.) In those cases where appreciably higher amounts of 16O-rich forsterite (on the order of 25%) (and perhaps minor anorthite and pyroxene) were incorporated into compound Type-A objects prior to melting, centimeter-size forsterite-bearing Type-B CAIs (B3 inclusions) were produced. Type-B1 inclusions formed from B2 inclusions that collided with and stuck to melilite-rich Compact Type-A CAIs and experienced high-temperature processing.

  2. The Spatial Distribution of Resolved Young Stars in Blue Compact Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Murphy, K.; Crone, M. M.

    2002-12-01

    We present the first results from a survey of the distribution of resolved young stars in Blue Compact Dwarf Galaxies. In order to identify the dominant physical processes driving star formation in these puzzling galaxies, we use a multi-scale cluster-finding algorithm to quantify the characteristic scales and properties of star-forming regions, from sizes smaller than 10 pc up to the size of each entire galaxy. This project was partially funded by the Lubin Chair at Skidmore College.

  3. Photonic integrated circuit as a picosecond pulse timing discriminator.

    PubMed

    Lowery, Arthur James; Zhuang, Leimeng

    2016-04-18

    We report the first experimental demonstration of a compact on-chip optical pulse timing discriminator that is able to provide an output voltage proportional to the relative timing of two 60-ps input pulses on separate paths. The output voltage is intrinsically low-pass-filtered, so the discriminator forms an interface between high-speed optics and low-speed electronics. Potential applications include timing synchronization of multiple pulse trains as a precursor for optical time-division multiplexing, and compact rangefinders with millimeter dimensions.

  4. Compact, Non-Pneumatic Rock-Powder Samplers

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Bar-Cohen, Yoseph; Badescu, Mircea; Bao, Xiaoqi; Chang, Zensheu; Jones, Christopher; Aldrich, Jack

    2008-01-01

    Tool bits that automatically collect powdered rock, permafrost, or other hard material generated in repeated hammering action have been invented. The present invention pertains to the special case in which it is desired to collect samples in powder form for analysis by x-ray diffraction and possibly other techniques. The present invention eliminates the need for both the mechanical collection equipment and the crushing chamber and the pneumatic collection equipment of prior approaches, so that it becomes possible to make the overall sample-acquisition apparatus more compact.

  5. Growing Magnetic Fields in Central Compact Objects

    NASA Astrophysics Data System (ADS)

    Bernal, C. G.; Page, D.

    2011-10-01

    We study the effects of growth models of magnetic fields in Central Compact Objects (CCOs). Such a field evolution is not a new idea (Blandford, Applegate, & Hernquist 1983) but the evolutionary implications not have been followed up completely (Michel 1994). We discussed the new class of neutron stars which belong to five main types that have mainly been recognized in the last ten years. The possibility that a rapid weakly magnetized pulsar might have formed in SN1987A is commented.

  6. Massive Compact Halo Objects from the relics of the cosmic quark-hadron transition

    NASA Astrophysics Data System (ADS)

    Banerjee, Shibaji; Bhattacharyya, Abhijit; Ghosh, Sanjay K.; Raha, Sibaji; Sinha, Bikash; Toki, Hiroshi

    2003-03-01

    The existence of compact gravitational lenses, with masses around 0.5 Msolar, has been reported in the halo of the Milky Way. The nature of these dark lenses is as yet obscure, particularly because these objects have masses well above the threshold for nuclear fusion. In this work, we show that they find a natural explanation as being the evolutionary product of the metastable false vacuum domains (the so-called strange quark nuggets) formed in a first order cosmic quark-hadron transition.

  7. The effect of mulching and soil compaction on fungi composition and microbial communities in the rhizosphere of soybean

    NASA Astrophysics Data System (ADS)

    Frac, M.; Siczek, A.; Lipiec, J.

    2009-04-01

    The soil environment is the habitat of pathogenic and saprotrophic microorganisms. The composition of the microbial community are related to biotic and abiotic factors, such as root exudates, crop residues, climate factors, mulching, mineral fertilization, pesticides introduction and soil compaction. The aim of the study was to determine the effect of the mulching and soil compaction on the microorganism communities in the rhizosphere soil of soybean. The studies were carried out on silty loam soil (Orthic Luvisol) developed from loess (Lublin, Poland). The experiment area was 192m2 divided into 3 sections consisted of 6 micro-plots (7m2). Three levels of soil compaction low, medium and heavy obtained through tractor passes were compared. The soil was compacted and loosened within seedbed layer 2 weeks before sowing. Soybean "Aldana" seeds were inoculated with Bradyrhizobium japonicum and were sown with interrow spacing of 0.3m. Wheat straw (as mulch) was uniformly spread on the half of each micro-plot at an amount of 0.5kg m-1 after sowing. Rhizosphere was collected three times during growing season of soybean. Microbiological analyses were conducted in 3 replications and included the determination of: the total number of bacteria and fungi, the number of bacteria Pseudomonas sp. and Bacillus sp., the genus identification of fungi isolated from rhizosphere of soybean. Results indicated a positive effect of mulching on the increase number of all groups of examined rhizosphere microorganisms (fungi, bacteria, Pseudomonas sp., Bacillus sp.). The highest number of the microorganisms was found in the low and medium compacted soil and markedly decreased in the most compacted soil. Relatively high number of antagonistic fungi (Penicillium sp., Trichoderma sp.) was recorded in the rhizosphere of low and medium compacted soil, particularly in mulched plots. The presence of these fungi can testify to considerable biological activity, which contributes to the improvement of the phytosanitary condition of the soil. However, the decrease of the antagonistic microorganism number in the heavy compacted soil can be responsible for appearance higher number of the potentially phytopathogenic fungi (Fusarium sp., Phoma sp.). Further research, with using molecular technique, will help better understanding interactions between plant and microorganisms in the soybean rhizosphere under different soil management conditions.

  8. Analytical study on the suitability of using bentonite coated gravel as a landfill liner material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Anel A.; Shimaoka, Takayuki

    2008-12-15

    This study investigates the feasibility of using bentonite coated gravel (BCG) as a liner material for waste landfills. BCG has proven to be a very effective capping material/method for the remediation of contaminated sediments in aquatic environments. The concept of BCG is similar to that of peanuts/almonds covered with chocolate; each aggregate particle has been covered with the clayey material. Laboratory tests were aimed at evaluating regulated and non-regulated factors for liner materials, i.e., permeability and strength. Tests included X-ray diffraction, methylene blue absorption, compaction, free swelling, permeability, 1D consolidation, triaxial compression and cone penetration. The compactive efforts used formore » this study were the reduced Proctor, standard Proctor, intermediate Proctor, modified Proctor and super modified Proctor. The compactive energy corresponding to each effort, respectively, is as follows: 355.5, 592.3, 1196.3, 2693.3, and 5386.4 kJ/m{sup 3}. Results revealed that even though aggregate content represents 70% of the weight of the material, hydraulic conductivities as low as 6 x 10{sup -10} cm/s can be achieved when proper compactive efforts are used. Compressibility is very low for this material even at low (or no) compactive efforts. Results also demonstrated how higher compactive efforts can lower the permeability of BCG; however, over-compaction creates fractures in the aggregate core of BCG that could increase permeability. Moreover, higher compactive efforts create higher swelling pressures that could compromise the performance of a barrier constructed using BCG. As a result of this study, moderate compactive efforts, i.e., intermediate Proctor or modified Proctor, are recommended for constructing a BCG barrier. Using moderate compactive efforts, very low hydraulic conductivities, good workability and good trafficability are easily attainable.« less

  9. Analytical study on the suitability of using bentonite coated gravel as a landfill liner material.

    PubMed

    Roberts, Anel A; Shimaoka, Takayuki

    2008-12-01

    This study investigates the feasibility of using bentonite coated gravel (BCG) as a liner material for waste landfills. BCG has proven to be a very effective capping material/method for the remediation of contaminated sediments in aquatic environments. The concept of BCG is similar to that of peanuts/almonds covered with chocolate; each aggregate particle has been covered with the clayey material. Laboratory tests were aimed at evaluating regulated and non-regulated factors for liner materials, i.e., permeability and strength. Tests included X-ray diffraction, methylene blue absorption, compaction, free swelling, permeability, 1D consolidation, triaxial compression and cone penetration. The compactive efforts used for this study were the reduced Proctor, standard Proctor, intermediate Proctor, modified Proctor and super modified Proctor. The compactive energy corresponding to each effort, respectively, is as follows: 355.5, 592.3, 1196.3, 2693.3, and 5386.4 kJ/m(3). Results revealed that even though aggregate content represents 70% of the weight of the material, hydraulic conductivities as low as 6 x 10(-10)cm/s can be achieved when proper compactive efforts are used. Compressibility is very low for this material even at low (or no) compactive efforts. Results also demonstrated how higher compactive efforts can lower the permeability of BCG; however, over-compaction creates fractures in the aggregate core of BCG that could increase permeability. Moreover, higher compactive efforts create higher swelling pressures that could compromise the performance of a barrier constructed using BCG. As a result of this study, moderate compactive efforts, i.e., intermediate Proctor or modified Proctor, are recommended for constructing a BCG barrier. Using moderate compactive efforts, very low hydraulic conductivities, good workability and good trafficability are easily attainable.

  10. Textural evidence of the significance of compaction in the formation of adcumulates in the Skaergaard intrusion, East Greenland

    NASA Astrophysics Data System (ADS)

    Vukmanovic, Zoja; Holness, Marian; Mariani, Elisabetta

    2017-04-01

    It has been argued that the upwards decrease in incompatible element concentration in the Skaergaard Layered Series is due to an upwards increasing significance of compaction driven by gravitational loading. The suggested mechanisms for compaction are dislocation creep and dissolution-reprecipitation creep. Localised elongate zones of strong modal banding in the upper part of the Layered Series, known as trough bands, have also been interpreted as the result of localised recrystallization during compaction. In this study we examine the microstructures of Skaergaard gabbros to determine whether their fabrics (foliations and lineations) preserve a record of compaction. The most common microstructures formed by dislocation creep are low angle boundaries and, as a result of ongoing recovery processes, new grains. The (010)[001] slip system in plagioclase is commonly observed to be a "soft" orientation, creating a crystallographic preferred orientation (CPO) defined by the alignment of (010) planes, with [001] parallel to lineation. Previous work on dissolution-reprecipitation creep, shows a CPO with (010) planes aligned parallel to the principal compressive stress, and preferential mineral growth on (010) planes to form an SPO defined by grains elongated perpendicular to (010). In the Skaergaard Layered Series, the shape of cumulus plagioclase grains (as viewed in thin section) changes systematically up through the stratigraphy from highly tabular to equant. Foliations, defined both by a plagioclase SPO (with tabular grains aligned horizontally) and an associated CPO ((010) parallel to foliation), are strongest lower in the stratigraphy and reduce in strength upwards. Evidence for crystal plasticity is limited to bending of some plagioclase crystals and small numbers of low angle boundaries in all phases. There are no signs of recovery associated with dislocation creep. Compositional zoning is present on all plagioclase growth faces in the lower part of the stratigraphy, inconsistent with preferential dissolution-reprecipitation during compression. There are no fabrics or microstructures that can be attributed to solution-reprecipitation, and evidence for only minor microstructural modification by dislocation creep throughout the entire stratigraphy. The trough bands are characterised by strong lineation of elongate grains, an almost complete absence of microstructures caused by deformation, and euhedral plagioclase grains with concentric compositional zoning. These observations rule out recrystallization driven by compaction, and support the hypothesis that the modal banding in the trough bands is a result of grain sorting by magmatic flow. Our observations suggest that the Skaergaard fabrics throughout the Layered Series, are primary and formed at or close to the magma-mush interface as a consequence of particle re-arrangement by magmatic current, with only minor deformation-related fabric modification deeper in the mush. The Skaergaard adcumulates cannot therefore be attributed to compaction.

  11. Mechanical compaction directly modulates the dynamics of bile canaliculi formation.

    PubMed

    Wang, Yan; Toh, Yi-Chin; Li, Qiushi; Nugraha, Bramasta; Zheng, Baixue; Lu, Thong Beng; Gao, Yi; Ng, Mary Mah Lee; Yu, Hanry

    2013-02-01

    Homeostatic pressure-driven compaction is a ubiquitous mechanical force in multicellular organisms and is proposed to be important in the maintenance of multicellular tissue integrity and function. Previous cell-free biochemical models have demonstrated that there are cross-talks between compaction forces and tissue structural functions, such as cell-cell adhesion. However, its involvement in physiological tissue function has yet to be directly demonstrated. Here, we use the bile canaliculus (BC) as a physiological example of a multicellular functional structure in the liver, and employ a novel 3D microfluidic hepatocyte culture system to provide an unprecedented opportunity to experimentally modulate the compaction states of primary hepatocyte aggregates in a 3D physiological-mimicking environment. Mechanical compaction alters the physical attributes of the hepatocyte aggregates, including cell shape, cell packing density and cell-cell contact area, but does not impair the hepatocytes' remodeling and functional capabilities. Characterization of structural and functional polarity shows that BC formation in compact hepatocyte aggregates is accelerated to as early as 12 hours post-seeding; whereas non-compact control requires 48 hours for functional BC formation. Further dynamic immunofluorescence imaging and gene expression profiling reveal that compaction accelerated BC formation is accompanied by changes in actin cytoskeleton remodeling dynamics and transcriptional levels of hepatic nuclear factor 4α and Annexin A2. Our report not only provides a novel strategy of modeling BC formation for in vitro hepatology research, but also shows a first instance that homeostatic pressure-driven compaction force is directly coupled to the higher-order multicellular functions.

  12. Nuclear Rings in Galaxies - A Kinematic Perspective

    NASA Technical Reports Server (NTRS)

    Mazzuca, Lisa M.; Swaters, Robert A.; Knapen, Johan H.; Veilleux, Sylvain

    2011-01-01

    We combine DensePak integral field unit and TAURUS Fabry-Perot observations of 13 nuclear rings to show an interconnection between the kinematic properties of the rings and their resonant origin. The nuclear rings have regular and symmetric kinematics, and lack strong non-circular motions. This symmetry, coupled with a direct relationship between the position angles and ellipticities of the rings and those of their host galaxies, indicate the rings are in the same plane as the disc and are circular. From the rotation curves derived, we have estimated the compactness (v(sup 2)/r) up to the turnover radius, which is where the nuclear rings reside. We find that there is evidence of a correlation between compactness and ring width and size. Radially wide rings are less compact, and thus have lower mass concentration. The compactness increases as the ring width decreases. We also find that the nuclear ring size is dependent on the bar strength, with weaker bars allowing rings of any size to form.

  13. Optimal space of linear classical observables for Maxwell k-forms via spacelike and timelike compact de Rham cohomologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benini, Marco, E-mail: mbenini87@gmail.com, E-mail: mbenini@uni-potsdam.de

    Being motivated by open questions in gauge field theories, we consider non-standard de Rham cohomology groups for timelike compact and spacelike compact support systems. These cohomology groups are shown to be isomorphic respectively to the usual de Rham cohomology of a spacelike Cauchy surface and its counterpart with compact support. Furthermore, an analog of the usual Poincaré duality for de Rham cohomology is shown to hold for the case with non-standard supports as well. We apply these results to find optimal spaces of linear observables for analogs of arbitrary degree k of both the vector potential and the Faraday tensor.more » The term optimal has to be intended in the following sense: The spaces of linear observables we consider distinguish between different configurations; in addition to that, there are no redundant observables. This last point in particular heavily relies on the analog of Poincaré duality for the new cohomology groups.« less

  14. Concentrated dark matter: Enhanced small-scale structure from codecaying dark matter

    NASA Astrophysics Data System (ADS)

    Dror, Jeff A.; Kuflik, Eric; Melcher, Brandon; Watson, Scott

    2018-03-01

    We study the cosmological consequences of codecaying dark matter—a recently proposed mechanism for depleting the density of dark matter through the decay of nearly degenerate particles. A generic prediction of this framework is an early dark matter dominated phase in the history of the Universe, that results in the enhanced growth of dark matter perturbations on small scales. We compute the duration of the early matter dominated phase and show that the perturbations are robust against washout from free streaming. The enhanced small-scale structure is expected to survive today in the form of compact microhalos and can lead to significant boost factors for indirect-detection experiments, such as FERMI, where dark matter would appear as point sources.

  15. Crowding, Entropic Forces, and Confinement: Crucial Factors for Structures and Functions in the Cell Nucleus.

    PubMed

    Hancock, R

    2018-04-01

    The view of the cell nucleus as a crowded system of colloid particles and that chromosomes are giant self-avoiding polymers is stimulating rapid advances in our understanding of its structure and activities, thanks to concepts and experimental methods from colloid, polymer, soft matter, and nano sciences and to increased computational power for simulating macromolecules and polymers. This review summarizes current understanding of some characteristics of the molecular environment in the nucleus, of how intranuclear compartments are formed, and of how the genome is highly but precisely compacted, and underlines the crucial, subtle, and sometimes unintuitive effects on structures and reactions of entropic forces caused by the high concentration of macromolecules in the nucleus.

  16. DEFORMATION AND FRACTURE OF POORLY CONSOLIDATED MEDIA - Borehole Failure Mechanisms in High-Porosity Sandstone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezalel c. Haimson

    2005-06-10

    We investigated failure mechanisms around boreholes and the formation of borehole breakouts in high-porosity sandstone, with particular interest to grain-scale micromechanics of failure leading to the hitherto unrecognized fracture-like borehole breakouts and apparent compaction band formation in poorly consolidated granular materials. We also looked at a variety of drilling-related factors that contribute to the type, size and shape of borehole breakouts. The objective was to assess their effect on the ability to establish correlations between breakout geometry and in situ stress magnitudes, as well as on borehole stability prediction, and hydrocarbon/water extraction in general. We identified two classes of mediummore » to high porosity (12-30%) sandstones, arkosic, consisting of 50-70% quartz and 15 to 50% feldspar, and quartz-rich sandstones, in which quartz grain contents varied from 90 to 100%. In arkose sandstones critical far-field stress magnitudes induced compressive failure around boreholes in the form of V-shaped (dog-eared) breakouts, the result of dilatant intra-and trans-granular microcracking subparallel to both the maximum horizontal far-field stress and to the borehole wall. On the other hand, boreholes in quartz-rich sandstones failed by developing fracture-like breakouts. These are long and very narrow (several grain diameters) tabular failure zones perpendicular to the maximum stress. Evidence provided mainly by SEM observations suggests a failure process initiated by localized grain-bond loosening along the least horizontal far-field stress springline, the packing of these grains into a lower porosity compaction band resembling those discovered in Navajo and Aztec sandstones, and the emptying of the loosened grains by the circulating drilling fluid starting from the borehole wall. Although the immediate several grain layers at the breakout tip often contain some cracked or even crushed grains, the failure mechanism enabled by the formation of the compaction band is largely non-dilatant, a major departure from the dilatant mechanism observed in Tablerock sandstone. The experimental results suggest that unlike our previous assertion, the strength of grain bonding and the mineral composition, rather than the porosity, are major factors in the formation of compaction bands and the ensuing fracture-like breakouts. Some breakout dimensions in all rocks were correlatable to the far-field principal stresses, and could potentially be used (in conjunction with other information) as indicators of their magnitudes. However, we found that several factors can significantly influence breakout geometry. Larger boreholes and increased drilling-fluid flow rates produce longer fracture-like breakouts, suggesting that breakouts in field-scale wellbores could reach considerable lengths. On the other hand, increased drilling-fluid weight and increased drill-bit penetration rate resulted in a decrease in breakout length. These results indicate that breakout growth can be controlled to some degree by manipulating drilling variables. Realizing how drilling variables impact borehole breakout formation is important in understanding the process by which breakouts form and their potential use as indicators of the far-field in situ stress magnitudes and as sources of sand production. As our research indicates, the final breakout size and mechanism of formation can be a function of several variables and conditions, meaning there is still much to be understood about this phenomenon.« less

  17. Effect of surface energy on powder compactibility.

    PubMed

    Fichtner, Frauke; Mahlin, Denny; Welch, Ken; Gaisford, Simon; Alderborn, Göran

    2008-12-01

    The influence of surface energy on the compactibility of lactose particles has been investigated. Three powders were prepared by spray drying lactose solutions without or with low proportions of the surfactant polysorbate 80. Various powder and tablet characterisation procedures were applied. The surface energy of the powders was characterized by Inverse Gas Chromatography and the compressibility of the powders was described by the relationship between tablet porosity and compression pressure. The compactibility of the powders was analyzed by studying the evolution of tablet tensile strength with increasing compaction pressure and porosity. All powders were amorphous and similar in particle size, shape, and surface area. The compressibility of the powders and the microstructure of the formed tablets were equal. However, the compactibility and dispersive surface energy was dependent of the composition of the powders. The decrease in tablet strength correlated to the decrease in powder surface energy at constant tablet porosities. This supports the idea that tablet strength is controlled by formation of intermolecular forces over the areas of contact between the particles and that the strength of these bonding forces is controlled by surface energy which, in turn, can be altered by the presence of surfactants.

  18. Compact continuum brain model for human electroencephalogram

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Shin, H.-B.; Robinson, P. A.

    2007-12-01

    A low-dimensional, compact brain model has recently been developed based on physiologically based mean-field continuum formulation of electric activity of the brain. The essential feature of the new compact model is a second order time-delayed differential equation that has physiologically plausible terms, such as rapid corticocortical feedback and delayed feedback via extracortical pathways. Due to its compact form, the model facilitates insight into complex brain dynamics via standard linear and nonlinear techniques. The model successfully reproduces many features of previous models and experiments. For example, experimentally observed typical rhythms of electroencephalogram (EEG) signals are reproduced in a physiologically plausible parameter region. In the nonlinear regime, onsets of seizures, which often develop into limit cycles, are illustrated by modulating model parameters. It is also shown that a hysteresis can occur when the system has multiple attractors. As a further illustration of this approach, power spectra of the model are fitted to those of sleep EEGs of two subjects (one with apnea, the other with narcolepsy). The model parameters obtained from the fittings show good matches with previous literature. Our results suggest that the compact model can provide a theoretical basis for analyzing complex EEG signals.

  19. Design of compact freeform LED flashlight capable of two different light distributions

    NASA Astrophysics Data System (ADS)

    Isaac, Annie Shalom; Neumann, Cornelius

    2016-04-01

    Free-form optical surfaces are designed for desired intensity requirements for applications ranging from general to automotive lighting. But a single compact free-form optics which satisfies two different intensity distributions is not presented so far. In this work, a compact LED flashlight fulfilling two different intensity requirements that could be used in potentially explosive atmospheres is designed and validated. The first target is selected after a study on visibility analysis in fog, dust, and smoke environments. Studies showed that a ring-like distribution (5°- 10°) have better visual recognition for short distances in smoky environments. The second target is selected to have a maximum intensity at the peak to provide visibility for longer distances. We realized these two different intensity requirements by moving the LED with respect to the optics along the optical axis. To fulfill the above- required intensity distributions, hybrid TIR optics was designed as free-form curves calculated by combining several geometric optic methods. We validated the free-form TIR hybrid optics using Monte Carlo ray trace simulation. The overall diameter of the optics is 29 mm and 10 mm in thickness. The simulated results showed an optical efficiency of about 84% to realize both target light distributions in a single optics. Then we designed a whole flashlight consisting of LED, PMMA hybrid optics, PC glass casing and a housing including the critical thermal management for explosive environments. To validate the results, a prototype for the designed optics was made. The measured results showed an overall agreement with the simulated results.

  20. High-compactness coating grown by plasma electrolytic oxidation on AZ31 magnesium alloy in the solution of silicate-borax

    NASA Astrophysics Data System (ADS)

    Shen, M. J.; Wang, X. J.; Zhang, M. F.

    2012-10-01

    A ceramic coating was formed on the surface of AZ31 magnesium alloy by plasma electrolytic oxidation (PEO) in the silicate solution with and without borax doped. The composition, morphology, elements and roughness as well as mechanical property of the coating were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and reciprocal-sliding tribometer. The results show that the PEO coating is mainly composed of magnesia. When using borax dope, boron element is permeating into the coating and the boron containing phase exist in the form of amorphous. In addition, the microhardness and compactness of the PEO coating are improved significantly due to doped borax.

  1. Note: Proton microbeam formation with continuously variable kinetic energy using a compact system for three-dimensional proton beam writing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohkubo, T., E-mail: ohkubo.takeru@jaea.go.jp; Ishii, Y.

    A compact focused gaseous ion beam system has been developed to form proton microbeams of a few hundreds of keV with a penetration depth of micrometer range in 3-dimensional proton beam writing. Proton microbeams with kinetic energies of 100-140 keV were experimentally formed on the same point at a constant ratio of the kinetic energy of the object side to that of the image side. The experimental results indicate that the beam diameters were measured to be almost constant at approximately 6 μm at the same point with the kinetic energy range. These characteristics of the system were experimentally andmore » numerically demonstrated to be maintained as long as the ratio was constant.« less

  2. On the nature of the symbiotic star BF Cygni

    NASA Technical Reports Server (NTRS)

    Mikolajewska, J.; Mikolajewski, M.; Kenyon, S. J.

    1989-01-01

    Optical and ultraviolet spectroscopy of the symbiotic binary BF Cyg obtained during 1979-1988 is discussed. This system consists of a low-mass M5 giant filling about 50 percent of its tidal volume and a hot, luminous compact object similar to the central star of a planetary nebula. The binary is embedded in an asymmetric nebula which includes a small, high-density region and an extended region of lower density. The larger nebula is formed by a slow wind ejected by the cool component and ionized by the hot star, while the more compact nebula is material expelled by the hot component in the form of a bipolar wind. The analysis indicates that disk accretion is essential to maintain the nuclear burning shell of the hot star.

  3. Discovery of Compact Quiescent Galaxies at Intermediate Redshifts in DEEP2

    NASA Astrophysics Data System (ADS)

    Blancato, Kirsten; Chilingarian, Igor; Damjanov, Ivana; Moran, Sean; Katkov, Ivan

    2015-01-01

    Compact quiescent galaxies in the redshift range 0.6 < z < 1.1 are the missing link needed to complete the evolutionary histories of these objects from the high redshift z ≥ 2 Universe to the local z ~ 0 Universe. We identify the first intermediate redshift compact quiescent galaxies by searching a sample of 1,089 objects in the DEEP2 Redshift Survey that have multi-band photometry, spectral fitting, and readily available structural parameters. We find 27 compact quiescent candidates between z = 0.6 and z = 1.1 where each candidate galaxy has archival Hubble Space Telescope (HST) imaging and is visually confirmed to be early-type. The candidates have half-light radii ranging from 0.83 < Re,c < 7.14 kpc (median Re,c = 1.77 kpc) and virial masses ranging from 2.2E10 < Mdyn < 5.6E11 Msun (median Mdyn = 7.7E10 Msun). Of our 27 compact quiescent candidates, 13 are truly compact with sizes at most half of the size of their z ~ 0 counterparts of the same mass. In addition to their structural properties bridging the gap between their high and low redshift counterparts, our sample of intermediate redshift quiescent galaxies span a large range of ages but is drawn from two distinct epochs of galaxy formation: formation at z > 2 which suggests these objects may be the relics of the observed high redshift compact galaxies and formation at z ≤ 2 which suggests there is an additional population of more recently formed massive compact galaxies. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  4. A quality by design approach to investigate the effect of mannitol and dicalcium phosphate qualities on roll compaction.

    PubMed

    Souihi, Nabil; Dumarey, Melanie; Wikström, Håkan; Tajarobi, Pirjo; Fransson, Magnus; Svensson, Olof; Josefson, Mats; Trygg, Johan

    2013-04-15

    Roll compaction is a continuous process for solid dosage form manufacturing increasingly popular within pharmaceutical industry. Although roll compaction has become an established technique for dry granulation, the influence of material properties is still not fully understood. In this study, a quality by design (QbD) approach was utilized, not only to understand the influence of different qualities of mannitol and dicalcium phosphate (DCP), but also to predict critical quality attributes of the drug product based solely on the material properties of that filler. By describing each filler quality in terms of several representative physical properties, orthogonal projections to latent structures (OPLS) was used to understand and predict how those properties affected drug product intermediates as well as critical quality attributes of the final drug product. These models were then validated by predicting product attributes for filler qualities not used in the model construction. The results of this study confirmed that the tensile strength reduction, known to affect plastic materials when roll compacted, is not prominent when using brittle materials. Some qualities of these fillers actually demonstrated improved compactability following roll compaction. While direct compression qualities are frequently used for roll compacted drug products because of their excellent flowability and good compaction properties, this study revealed that granules from these qualities were more poor flowing than the corresponding powder blends, which was not seen for granules from traditional qualities. The QbD approach used in this study could be extended beyond fillers. Thus any new compound/ingredient would first be characterized and then suitable formulation characteristics could be determined in silico, without running any additional experiments. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Discrete particle modeling and micromechanical characterization of bilayer tablet compaction.

    PubMed

    Yohannes, B; Gonzalez, M; Abebe, A; Sprockel, O; Nikfar, F; Kiang, S; Cuitiño, A M

    2017-08-30

    A mechanistic particle scale model is proposed for bilayer tablet compaction. Making bilayer tablets involves the application of first layer compaction pressure on the first layer powder and a second layer compaction pressure on entire powder bed. The bonding formed between the first layer and the second layer particles is crucial for the mechanical strength of the bilayer tablet. The bonding and the contact forces between particles of the first layer and second layer are affected by the deformation and rearrangement of particles due to the compaction pressures. Our model takes into consideration the elastic and plastic deformations of the first layer particles due to the first layer compaction pressure, in addition to the mechanical and physical properties of the particles. Using this model, bilayer tablets with layers of the same material and different materials, which are commonly used pharmaceutical powders, are tested. The simulations show that the strength of the layer interface becomes weaker than the strength of the two layers as the first layer compaction pressure is increased. The reduction of strength at the layer interface is related to reduction of the first layer surface roughness. The reduced roughness decreases the available bonding area and hence reduces the mechanical strength at the interface. In addition, the simulations show that at higher first layer compaction pressure the bonding area is significantly less than the total contact area at the layer interface. At the interface itself, there is a non-monotonic relationship between the bonding area and first layer force. The bonding area at the interface first increases and then decreases as the first layer pressure is increased. These results are in agreement with findings of previous experimental studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effect of roll compaction on granule size distribution of microcrystalline cellulose–mannitol mixtures: computational intelligence modeling and parametric analysis

    PubMed Central

    Kazemi, Pezhman; Khalid, Mohammad Hassan; Pérez Gago, Ana; Kleinebudde, Peter; Jachowicz, Renata; Szlęk, Jakub; Mendyk, Aleksander

    2017-01-01

    Dry granulation using roll compaction is a typical unit operation for producing solid dosage forms in the pharmaceutical industry. Dry granulation is commonly used if the powder mixture is sensitive to heat and moisture and has poor flow properties. The output of roll compaction is compacted ribbons that exhibit different properties based on the adjusted process parameters. These ribbons are then milled into granules and finally compressed into tablets. The properties of the ribbons directly affect the granule size distribution (GSD) and the quality of final products; thus, it is imperative to study the effect of roll compaction process parameters on GSD. The understanding of how the roll compactor process parameters and material properties interact with each other will allow accurate control of the process, leading to the implementation of quality by design practices. Computational intelligence (CI) methods have a great potential for being used within the scope of quality by design approach. The main objective of this study was to show how the computational intelligence techniques can be useful to predict the GSD by using different process conditions of roll compaction and material properties. Different techniques such as multiple linear regression, artificial neural networks, random forest, Cubist and k-nearest neighbors algorithm assisted by sevenfold cross-validation were used to present generalized models for the prediction of GSD based on roll compaction process setting and material properties. The normalized root-mean-squared error and the coefficient of determination (R2) were used for model assessment. The best fit was obtained by Cubist model (normalized root-mean-squared error =3.22%, R2=0.95). Based on the results, it was confirmed that the material properties (true density) followed by compaction force have the most significant effect on GSD. PMID:28176905

  7. Effect of roll compaction on granule size distribution of microcrystalline cellulose-mannitol mixtures: computational intelligence modeling and parametric analysis.

    PubMed

    Kazemi, Pezhman; Khalid, Mohammad Hassan; Pérez Gago, Ana; Kleinebudde, Peter; Jachowicz, Renata; Szlęk, Jakub; Mendyk, Aleksander

    2017-01-01

    Dry granulation using roll compaction is a typical unit operation for producing solid dosage forms in the pharmaceutical industry. Dry granulation is commonly used if the powder mixture is sensitive to heat and moisture and has poor flow properties. The output of roll compaction is compacted ribbons that exhibit different properties based on the adjusted process parameters. These ribbons are then milled into granules and finally compressed into tablets. The properties of the ribbons directly affect the granule size distribution (GSD) and the quality of final products; thus, it is imperative to study the effect of roll compaction process parameters on GSD. The understanding of how the roll compactor process parameters and material properties interact with each other will allow accurate control of the process, leading to the implementation of quality by design practices. Computational intelligence (CI) methods have a great potential for being used within the scope of quality by design approach. The main objective of this study was to show how the computational intelligence techniques can be useful to predict the GSD by using different process conditions of roll compaction and material properties. Different techniques such as multiple linear regression, artificial neural networks, random forest, Cubist and k-nearest neighbors algorithm assisted by sevenfold cross-validation were used to present generalized models for the prediction of GSD based on roll compaction process setting and material properties. The normalized root-mean-squared error and the coefficient of determination ( R 2 ) were used for model assessment. The best fit was obtained by Cubist model (normalized root-mean-squared error =3.22%, R 2 =0.95). Based on the results, it was confirmed that the material properties (true density) followed by compaction force have the most significant effect on GSD.

  8. Multiposition Seat

    NASA Technical Reports Server (NTRS)

    Macconochie, Ian O.

    1994-01-01

    Back of seat pivots about either of two axes: one axis for folding back to form bed and second, higher axis for folding forward to form compact ottoman, even when seat thickly padded. Long and short links used to adjust back of seat to variety of positions. Multiposition seat designed for use in spacecraft also adapted to airplanes and land vehicles.

  9. Urban Form and Extreme Heat Events: Are Sprawling Cities More Vulnerable to Climate Change Than Compact Cities?

    PubMed Central

    Stone, Brian; Hess, Jeremy J.; Frumkin, Howard

    2010-01-01

    Background Extreme heat events (EHEs) are increasing in frequency in large U.S. cities and are responsible for a greater annual number of climate-related fatalities, on average, than any other form of extreme weather. In addition, low-density, sprawling patterns of urban development have been associated with enhanced surface temperatures in urbanized areas. Objectives In this study. we examined the association between urban form at the level of the metropolitan region and the frequency of EHEs over a five-decade period. Methods We employed a widely published sprawl index to measure the association between urban form in 2000 and the mean annual rate of change in EHEs between 1956 and 2005. Results We found that the rate of increase in the annual number of EHEs between 1956 and 2005 in the most sprawling metropolitan regions was more than double the rate of increase observed in the most compact metropolitan regions. Conclusions The design and management of land use in metropolitan regions may offer an important tool for adapting to the heat-related health effects associated with ongoing climate change. PMID:21114000

  10. Using noble gas ratios to determine the origin of ground ice

    NASA Astrophysics Data System (ADS)

    Utting, Nicholas; Lauriol, Bernard; Lacelle, Denis; Clark, Ian

    2016-01-01

    Argon, krypton and xenon have different solubilities in water, meaning their ratios in water are different from those in atmospheric air. This characteristic is used in a novel method to distinguish between ice bodies which originate from the compaction of snow (i.e. buried snow banks, glacial ice) vs. ice which forms from the freezing of groundwater (i.e. pingo ice). Ice which forms from the compaction of snow has gas ratios similar to atmospheric air, while ice which forms from the freezing of liquid water is expected to have gas ratios similar to air-equilibrated water. This analysis has been conducted using a spike dilution noble gas line with gas extraction conducted on-line. Samples were mixed with an aliquot of rare noble gases while being melted, then extracted gases are purified and cryogenically separated. Samples have been analysed from glacial ice, buried snow bank ice, intrusive ice, wedge ice, cave ice and two unknown ice bodies. Ice bodies which have formed from different processes have different gas ratios relative to their formation processes.

  11. Contractional deformation of porous sandstone: Insights from the Aztec Sandstone, SE Nevada, USA

    NASA Astrophysics Data System (ADS)

    Fossen, Haakon; Zuluaga, Luisa F.; Ballas, Gregory; Soliva, Roger; Rotevatn, Atle

    2015-05-01

    Contractional deformation of highly porous sandstones is poorly explored, as compared to extensional deformation of such sedimentary rocks. In this work we explore the highly porous Aztec Sandstone in the footwall to the Muddy Mountain thrust in SE Nevada, which contains several types of deformation bands in the Buffington tectonic window: 1) Distributed centimeter-thick shear-enhanced compaction bands (SECBs) and 2) rare pure compaction bands (PCBs) in the most porous parts of the sandstone, cut by 3) thin cataclastic shear-dominated bands (CSBs) with local slip surfaces. Geometric and kinematic analysis of the SECBs, the PCBs and most of the CSBs shows that they formed during ∼E-W (∼100) shortening, consistent with thrusting related to the Cretaceous to early Paleogene Sevier orogeny of the North American Cordilleran thrust system. Based on stress path modeling, we suggest that the compactional bands (PCBs and SECBs) formed during contraction at relatively shallow burial depths, before or at early stages of emplacement of the Muddy Mountains thrust sheet. The younger cataclastic shear bands (CSBs, category 3), also related to E-W Sevier thrusting, are thinner and show larger shear offsets and thus more intense cataclasis, consistent with the initiation of cataclastic shear bands in somewhat less porous materials. Observations made in this work support earlier suggestions that contraction lead to more distributed band populations than what is commonly found in the extensional regime, and that shear-enhanced compaction bands are widespread only where porosity (and permeability) is high.

  12. Submillimeter Galaxies as Progenitors of Compact Quiescent Galaxies

    NASA Technical Reports Server (NTRS)

    Toft, S.; Smolcic, V.; Magnelli, B.; Karim, A.; Zirm, A.; Michalowski, M.; Capak, P.; Sheth, K.; Schawinski, K.; Krogager, J.-K.; hide

    2014-01-01

    Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts.With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42(sup+40) -29 Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.

  13. Submillimeter Galaxies as Progenitors of Compact Quiescent Galaxies

    NASA Astrophysics Data System (ADS)

    Toft, S.; Smolčić, V.; Magnelli, B.; Karim, A.; Zirm, A.; Michalowski, M.; Capak, P.; Sheth, K.; Schawinski, K.; Krogager, J.-K.; Wuyts, S.; Sanders, D.; Man, A. W. S.; Lutz, D.; Staguhn, J.; Berta, S.; Mccracken, H.; Krpan, J.; Riechers, D.

    2014-02-01

    Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts. With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42^{+40}_{-29} Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.

  14. A systematic and mechanistic evaluation of aspartic acid as filler for directly compressed tablets containing trimethoprim and trimethoprim aspartate.

    PubMed

    ElShaer, Amr; Hanson, Peter; Mohammed, Afzal R

    2013-04-01

    The generally accepted paradigm of 'inert' and 'mono functional' excipient in dosage form has been recently challenged with the development of individual excipients capable of exhibiting multiple functions (e.g. binder-disintegrants, surfactant which affect P-gp function). The proposed study has been designed within the realm of multifunctionality and is the first and novel investigation towards evaluation of aspartic acid as a filler and disintegration enhancing agent for the delivery of biopharmaceutical class IV model drug trimethoprim. The study investigated powder characteristics using angle of repose, laser diffractometry and scanning electron microscopy (SEM). The prepared tablets were characterised using Heckel analysis, disintegration time and tensile strength measurements. Although Heckel analysis revealed that both TMP and TMP aspartate salt have high elasticity, the salt form produced a stronger compact which was attributed to the formation of agglomerates. Aspartic acid was found to have high plasticity, but its incorporation into the formulations was found to have a negative impact on the compaction properties of TMP and its salt. Surface morphology investigations showed that mechanical interlocking plays a vital role in binding TMP crystals together during compaction, while the small particle size of TMP aspartate agglomerates was found to have significant impact on the tensile strength of the tablets. The study concluded that aspartic acid can be employed as filler and disintegrant and that compactability within tablets was independent of the surface charge of the excipients. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. The Capacity for Compaction Weakening in Fault Gouge in Nature and Experiment

    NASA Astrophysics Data System (ADS)

    Faulkner, D.; Boulton, C. J.; Sanchez Roa, C.; Den Hartog, S. A. M.; Bedford, J. D.

    2017-12-01

    As faults form in low permeability rocks, the compaction of fault gouge can lead to significant pore-fluid pressure increases. The pore pressure increase results from the collapse of the porosity through shear-enhanced compaction and the low hydraulic diffusivity of the gouge that inhibits fluid flow. In experiments, the frictional properties of clay-bearing fault gouges are significantly affected by the development of locally high pore-fluid pressures when compaction rates are high due to fast displacement rates or slip in underconsolidated materials. We show how the coefficient of friction of fault gouges sheared at different slip velocities can be explained with a numerical model that is constrained by laboratory measurements of contemporaneous changes in permeability and porosity. In nature, for compaction weakening to play an important role in earthquake nucleation (and rupture propagation), a mechanism is required to reset the porosity, i.e., maintain underconsolidated gouge along the fault plane. We use the observations of structures within the principal slip zone of the Alpine Fault in New Zealand to suggest that cyclic fluidization of the gouge occurs during coseismic slip, thereby resetting the gouge porosity prior to the next seismic event. Results from confined laboratory rotary shear measurements at elevated slip rates appear to support the hypothesis that fluidization leads to underconsolidation and, thus, to potential weakening by shear-enhanced compaction-induced pore-fluid pressurization.

  16. Midwest Interstate Low-Level Radioactive Waste Commission annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-08-01

    In 1980, Congress passed the Low-Level Radioactive Waste Policy Act. This Act provided for a new approach to the disposal of low-level radioactive waste. It assigned each state responsibility for the disposal of low-level radioactive waste generated within its borders, and it authorized states to enter into compacts for the purpose of operating regional disposal facilities. It also authorized compacts to restrict the use of regional disposal facilities to only member states. To meet their obligations under the Act, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio and Wisconsin formed the Midwest Interstate Low-Level Radioactive Waste Compact. The Compact was ratified bymore » each of the state legislatures and by Congress. The Compact established the Midwest Interstate Low-Level Radioactive Waste Commission, composed on one representative appointed by the Governor or Legislature of each member state. Article 3 of the compact requires that the Commission prepare an annual report regarding the activities and actions of the Commission. It also requires that the annual report be distributed to the Governors and legislative leaders in the member states. The Commission's Bylaw Article 12 requires the annual report to cover the preceding fiscal year, and to be distributed in August of each year. The Bylaw also requires that an annual audit, prepared by a certified public accountant, be included as part of the annual report. 3 figs.« less

  17. Chondrites: The Compaction of Fine Matrix and Matrix-like Chondrule Rims

    NASA Astrophysics Data System (ADS)

    Wasson, J. T.

    1995-09-01

    Primitive chondritic meteorites mainly consist of chondrules, sulfide+/-metal, and fine-grained matrix. The most unequilibrated chondrites preserve in their phase compositions and, to a lesser degree, their textures, many details about processes that occurred in the solar nebula. On the other hand, much of the textural evidence records processes that occurred in or on the parent body. I suggest that the low-porosity of chondrule matrix and matrix-like rims reflects compaction processes that occurred in asteroid-size bodies, and that neither matrix lumps nor compact matrix-like rims on chondrules could have achieved their observed low porosities in the solar nebula. Recent theoretical studies by Donn and Meakin (1) and Chokshi et al. (2) have concluded that grain-grain sticking in the solar nebula mainly produces fluffy structures having very high porosities (probably >>50%). If these structures grow large enough, they can provide an aerogel-like matrix that can trap chondrules as well as metal and sulfide grains, and thus form suitable precursors of chondritic meteorites. However, the strength of any such structure formed in the solar nebula must be a trivial fraction of that required to survive passage through the Earth's atmosphere in order to fall as a meteorite. The best evidence of accretionary structures appears to be that reported by Metzler et al. (3). They made SEM images of entire thin sections of CM chondrites, and showed that, in the best preserved chondrites, rims are present on all entitities--on chondrules, chondrule fragments, refractory inclusions, etc. A study by Krot and Wasson (4) shows a more complex situation in ordinary chondrites. Although matrix is common, a sizable fraction of chondrules are not surrounded by matrix-like rims. As summarized by Rubin and Krot (1995), there are reports of small textural and compositional differences between matrix lumps and mean matrix-like chondrule rims, but there is so much overlap in properties between these two classes that I will assume that they can be treated as parts of a single statistical population. Published SEM images of matrix lumps and matrix-like rims show them to be relatively compact. Although some porosity is surely present as indicated by broad-beam electron-probe analysis totals <100%, it never reaches values comparable to those expected from low-velocity collisions in the solar nebula. Most chondrite researchers seem to hold that the low porosities reflect efficient packing of each grain as it accreted to the assemblage (i.e., as micrometer-size grains gradually covered the surface of a chondrule to form the matrix-like rim). I find this process very difficult to envision. If the velocities are low, the fluffy structures of Dodd and Meakin (1) should result; if the velocities are high, then rim erosion would seem to be more probable than growth. A possible scenario that avoids this dilemma is to form cm to m-size fluffy structures in low-turbulence regions of the nebular midplane. During accretion of these larger objects these experienced enough compaction to form tough, low-porosity (but unequilibrated) chondrites. If no chondrules were in a region, matrix lumps formed; if chondrules were widely separated, a matrix-like rim resulted. And, if chondrules were close to other chondrules or chondrule fragments, only small amounts of intervening fine-grained materials now separate them from their neighbors. During the compaction event, gas and dust migration occurred, and matrix filled all interstices, as now observed in the most primitive chondrites. According to this picture there could have been more diversity in the fine-grained nebular component before compaction occurred. These differences would be best preserved in matrix-like rims and matrix lumps. Much of the interchondrule matrix should consist of homogenized dust that was mixed during compaction-induced transport. References: [1] Donn B. and Meakin P. (1989) Proc. LPSC 19th, 577-580. [2] Chokshi A. et al. (1993) Astrophys. J., 407, 806-819. [3] Metzler K. et al. (1992) GCA, 56, 2873-2897. [4] Krot A. N. and Wasson J. T. (1995) GCA, in press.

  18. A systematic review of built environment factors related to physical activity and obesity risk: implications for smart growth urban planning.

    PubMed

    Durand, C P; Andalib, M; Dunton, G F; Wolch, J; Pentz, M A

    2011-05-01

    Smart growth is an approach to urban planning that provides a framework for making community development decisions. Despite its growing use, it is not known whether smart growth can impact physical activity. This review utilizes existing built environment research on factors that have been used in smart growth planning to determine whether they are associated with physical activity or body mass. Searching the MEDLINE, Psycinfo and Web-of-Knowledge databases, 204 articles were identified for descriptive review, and 44 for a more in-depth review of studies that evaluated four or more smart growth planning principles. Five smart growth factors (diverse housing types, mixed land use, housing density, compact development patterns and levels of open space) were associated with increased levels of physical activity, primarily walking. Associations with other forms of physical activity were less common. Results varied by gender and method of environmental assessment. Body mass was largely unaffected. This review suggests that several features of the built environment associated with smart growth planning may promote important forms of physical activity. Future smart growth community planning could focus more directly on health, and future research should explore whether combinations or a critical mass of smart growth features is associated with better population health outcomes. © 2011 The Authors. obesity reviews © 2011 International Association for the Study of Obesity.

  19. Porous silicon ring resonator for compact, high sensitivity biosensing applications

    DOE PAGES

    Rodriguez, Gilberto A.; Hu, Shuren; Weiss, Sharon M.

    2015-01-01

    A ring resonator is patterned on a porous silicon slab waveguide to produce a compact, high quality factor biosensor with a large internal surface area available for enhanced recognition of biological and chemical molecules. The porous nature of the ring resonator allows molecules to directly interact with the guided mode. Quality factors near 10,000 were measured for porous silicon ring resonators with a radius of 25 μm. A bulk detection sensitivity of 380 nm/RIU was measured upon exposure to salt water solutions. Specific detection of nucleic acid molecules was demonstrated with a surface detection sensitivity of 4 pm/nM.

  20. Compressibility and compactibility of granules produced by wet and dry granulation.

    PubMed

    Bacher, C; Olsen, P M; Bertelsen, P; Sonnergaard, J M

    2008-06-24

    The bulk properties, compactibility and compressibility of granules produced by wet and dry granulation were compared applying a rotary tablet press, three different morphological forms of calcium carbonate and two particle sizes of sorbitol. Granules from both granulation methods possessed acceptable flow properties; however, the ground (Mikhart) and cubic (Scoralite) calcium carbonate demonstrated better die-filling abilities in the tablet press than the scalenhedral calcium carbonate (Sturcal). The wet processed granules showed in general larger compression properties. This was explained as these granules were mechanical stronger and had a higher initial porosity. In some cases, a large particle surface area of calcium carbonate and sorbitol resulted in a small, insignificant improvement of the consolidation characteristics. A correlation between the compression and compaction characteristics was demonstrated.

  1. Tableting Properties and Compression Models of Labisia pumila Tablets.

    PubMed

    Etti, C J; Yusof, Y A; Chin, N L; Mohd Tahir, S

    2017-03-04

    The tableting properties of Labisia pumila herbal powder, which is well known for its therapeutic benefits was investigated. The herbal powder was compressed into tablets using a stainless steel cylindrical uniaxial die of 13-mm- diameter with compaction pressures ranging from 7 to 25 MPa. Two feed weights, 0.5 and 1.0 g were used to form tablets. Some empirical models were used to describe the compressibility behavior of Labisia pumila tablets. The strength and density of tablets increased with increase in compaction pressure and resulted in reduction in porosity of the tablets. Smaller feeds, higher forces and increase in compaction pressure, contributed to more coherent tablets. These findings can be used to enhance the approach and understanding of tableting properties of Labisia pumila herbal powder tablets.

  2. Egade, Mexico.

    ERIC Educational Resources Information Center

    Kubany, Elizabeth

    2001-01-01

    Presents a business school design in Mexico, whose spiral building sits atop a parking structure creating a compact, symbolic form for an arid urban landscape. Includes seven photographs, a floor plan, and sectional drawing. (GR)

  3. Generalized Factorial Moments

    NASA Astrophysics Data System (ADS)

    Bialas, A.

    2004-02-01

    It is shown that the method of eliminating the statistical fluctuations from event-by-event analysis proposed recently by Fu and Liu can be rewritten in a compact form involving the generalized factorial moments.

  4. Candida Species From Eye Infections: Drug Susceptibility, Virulence Factors, and Molecular Characterization.

    PubMed

    Ranjith, Konduri; Sontam, Bhavani; Sharma, Savitri; Joseph, Joveeta; Chathoth, Kanchana N; Sama, Kalyana C; Murthy, Somasheila I; Shivaji, Sisinthy

    2017-08-01

    To determine the type of Candida species in ocular infections and to investigate the relationship of antifungal susceptibility profile to virulence factors. Fifty isolates of yeast-like fungi from patients with keratitis, endophthalmitis, and orbital cellulitis were identified by Vitek-2 compact system and DNA sequencing of ITS1-5.8S-ITS2 regions of the rRNA gene, followed by phylogenetic analysis for phenotypic and genotypic identification, respectively. Minimum inhibitory concentration of six antifungal drugs was determined by E test/microbroth dilution methods. Phenotypic and genotypic methods were used to determine the virulence factors. Phylogenetic analysis showed the clustering of all isolates into eight distinct groups with a major cluster formed Candida parapsilosis (n = 21), which was the most common species by both Vitek 2 and DNA sequencing. Using χ2 test no significant difference was noted between the techniques except that Vitek 2 did not identify C. viswanathii, C. orthopsilosis, and two non-Candida genera. Of 43 tested Candida isolates high susceptibility to amphotericin B (39/43, 90.6%) and natamycin (43/43, 100%) was noted. While none of the isolates produced coagulase, all produced esterase and catalase. The potential to form biofilm was detected in 23/43 (53.4%) isolates. Distribution of virulence factors by heat map analysis showed difference in metabolic activity of biofilm producers from nonbiofilm producers. Identified by Vitek 2 and DNA sequencing methods C. parapsilosis was the most common species associated with eye infections. Irrespective of the virulence factors elaborated, the Candida isolates were susceptible to commonly used antifungal drugs such as amphotericin B and natamycin.

  5. Detection of high Lyman continuum leakage from four low-redshift compact star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Izotov, Y. I.; Schaerer, D.; Thuan, T. X.; Worseck, G.; Guseva, N. G.; Orlitová, I.; Verhamme, A.

    2016-10-01

    Following our first detection reported in Izotov et al., we present the detection of Lyman continuum (LyC) radiation of four other compact star-forming galaxies observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope. These galaxies, at redshifts of z ˜ 0.3, are characterized by high emission-line flux ratios [O III] λ5007/[O II] λ3727 ≳ 5. The escape fractions of the LyC radiation fesc(LyC) in these galaxies are in the range of ˜6-13 per cent, the highest values found so far in low-redshift star-forming galaxies. Narrow double-peaked Ly α emission lines are detected in the spectra of all four galaxies, compatible with predictions for LyC leakers. We find escape fractions of Ly α, fesc(Ly α) ˜ 20-40 per cent, among the highest known for Ly α emitting galaxies. Surface brightness profiles produced from the COS acquisition images reveal bright star-forming regions in the centre and exponential discs in the outskirts with disc scalelengths α in the range ˜0.6-1.4 kpc. Our galaxies are characterized by low metallicity, ˜1/8-1/5 solar, low stellar mass ˜(0.2-4) × 109 M⊙, high star formation rates, SFR ˜ 14-36 M⊙ yr-1, and high SFR densities, Σ ˜ 2-35 M⊙ yr-1 kpc-2. These properties are comparable to those of high-redshift star-forming galaxies. Finally, our observations, combined with our first detection reported in Izotov et al., reveal that a selection for compact star-forming galaxies showing high [O III] λ5007/[O II] λ3727 ratios appears to pick up very efficiently sources with escaping LyC radiation: all five of our selected galaxies are LyC leakers.

  6. Lunar-forming impacts: processes and alternatives

    PubMed Central

    Canup, R. M.

    2014-01-01

    The formation of a protolunar disc by a giant impact with the early Earth is discussed, focusing on two classes of impacts: (i) canonical impacts, in which a Mars-sized impactor produces a planet–disc system whose angular momentum is comparable to that in the current Earth and Moon, and (ii) high-angular-momentum impacts, which produce a system whose angular momentum is approximately a factor of 2 larger than that in the current Earth and Moon. In (i), the disc originates primarily from impactor-derived material and thus is expected to have an initial composition distinct from that of the Earth's mantle. In (ii), a hotter, more compact initial disc is produced with a silicate composition that can be nearly identical to that of the silicate Earth. Both scenarios require subsequent processes for consistency with the current Earth and Moon: disc–planet compositional equilibration in the case of (i), or large-scale angular momentum loss during capture of the newly formed Moon into the evection resonance with the Sun in the case of (ii). PMID:25114302

  7. Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Whyte, C.; Leigh, R. J.; Lobb, D.; Williams, T.; Remedios, J. J.; Cutter, M.; Monks, P. S.

    2009-12-01

    A breadboard demonstrator of a novel UV/VIS grating spectrometer has been developed based upon a concentric arrangement of a spherical meniscus lens, concave spherical mirror and curved diffraction grating suitable for a range of atmospheric remote sensing applications from the ground or space. The spectrometer is compact and provides high optical efficiency and performance benefits over traditional instruments. The concentric design is capable of handling high relative apertures, owing to spherical aberration and comma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called "smile", the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. This form of spectrometer design offers the potential for exceptionally compact instrument for differential optical absorption spectroscopy (DOAS) applications from LEO, GEO, HAP or ground-based platforms. The breadboard demonstrator has been shown to offer high throughput and a stable Gaussian line shape with a spectral range from 300 to 450 nm at 0.5 nm resolution, suitable for a number of typical DOAS applications.

  8. Solution Dependence of the Collisional Activation of Ubiquitin [M+7H]7+ Ions

    PubMed Central

    Shi, Huilin; Atlasevich, Natalya; Merenbloom, Samuel I.; Clemmer, David E.

    2014-01-01

    The solution dependence of gas-phase unfolding for ubiquitin [M+7H]7+ ions has been studied by ion mobility spectrometry-mass spectrometry (IMS-MS). Different acidic water:methanol solutions are used to favor the native (N), more helical (A), or unfolded (U) solution states of ubiquitin. Unfolding of gas-phase ubiquitin ions is achieved by collisional heating and newly formed structures are examined by IMS. With an activation voltage of 100 V, a selected distribution of compact structures unfolds, forming three resolvable elongated states (E1-E3). The relative populations of these elongated structures depend strongly on the solution composition. Activation of compact ions from aqueous solutions known to favor N-state ubiquitin produces mostly the E1 type elongated state, whereas, activation of compact ions from methanol containing solutions that populate A-state ubiquitin favors the E3 elongated state. Presumably, this difference arises because of differences in precursor ion structures emerging from solution. Thus, it appears that information about solution populations can be retained after ionization, selection, and activation to produce the elongated states. These data as well as others are discussed. PMID:24658799

  9. Quantitative surface topography assessment of directly compressed and roller compacted tablet cores using photometric stereo image analysis.

    PubMed

    Allesø, Morten; Holm, Per; Carstensen, Jens Michael; Holm, René

    2016-05-25

    Surface topography, in the context of surface smoothness/roughness, was investigated by the use of an image analysis technique, MultiRay™, related to photometric stereo, on different tablet batches manufactured either by direct compression or roller compaction. In the present study, oblique illumination of the tablet (darkfield) was considered and the area of cracks and pores in the surface was used as a measure of tablet surface topography; the higher a value, the rougher the surface. The investigations demonstrated a high precision of the proposed technique, which was able to rapidly (within milliseconds) and quantitatively measure the obtained surface topography of the produced tablets. Compaction history, in the form of applied roll force and tablet punch pressure, was also reflected in the measured smoothness of the tablet surfaces. Generally it was found that a higher degree of plastic deformation of the microcrystalline cellulose resulted in a smoother tablet surface. This altogether demonstrated that the technique provides the pharmaceutical developer with a reliable, quantitative response parameter for visual appearance of solid dosage forms, which may be used for process and ultimately product optimization. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Spontaneous Synthesis of Highly Crystalline TiO2 Compact/Mesoporous Stacked Films by a Low-Temperature Steam-Annealing Method for Efficient Perovskite Solar Cells.

    PubMed

    Sanehira, Yoshitaka; Numata, Youhei; Ikegami, Masashi; Miyasaka, Tsutomu

    2018-05-23

    Highly crystalline TiO 2 nanostructured films were synthesized by a simple steam treatment of a TiCl 4 precursor film under a saturated water vapor atmosphere at 125 °C, here referred to as the steam-annealing method. In a single TiO 2 film preparation step, a bilayer structure comprising a compact bottom layer and a mesoporous surface layer was formed. The mesoporous layer was occupied by bipyramidal nanoparticles, with a composite phase of anatase and brookite crystals. Despite the low-temperature treatment process, the crystallinity of the TiO 2 film was high, comparable with that of the TiO 2 film sintered at 500 °C. The compact double-layered TiO 2 film was applied to perovskite solar cells (PSCs) as an electron-collecting layer. The PSC exhibited a maximum power conversion efficiency (PCE) of 18.9% with an open-circuit voltage ( V OC ) of 1.15 V. The PCE and V OC were higher than those of PSCs using a TiO 2 film formed by 500 °C sintering.

  11. The Number Density of Quiescent Compact Galaxies at Intermediate Redshift

    NASA Astrophysics Data System (ADS)

    Damjanov, Ivana; Hwang, Ho Seong; Geller, Margaret J.; Chilingarian, Igor

    2014-09-01

    Massive compact systems at 0.2 < z < 0.6 are the missing link between the predominantly compact population of massive quiescent galaxies at high redshift and their analogs and relics in the local volume. The evolution in number density of these extreme objects over cosmic time is the crucial constraining factor for the models of massive galaxy assembly. We select a large sample of ~200 intermediate-redshift massive compacts from the Baryon Oscillation Spectroscopic Survey (BOSS) spectroscopy by identifying point-like Sloan Digital Sky Survey photometric sources with spectroscopic signatures of evolved redshifted galaxies. A subset of our targets have publicly available high-resolution ground-based images that we use to augment the dynamical and stellar population properties of these systems by their structural parameters. We confirm that all BOSS compact candidates are as compact as their high-redshift massive counterparts and less than half the size of similarly massive systems at z ~ 0. We use the completeness-corrected numbers of BOSS compacts to compute lower limits on their number densities in narrow redshift bins spanning the range of our sample. The abundance of extremely dense quiescent galaxies at 0.2 < z < 0.6 is in excellent agreement with the number densities of these systems at high redshift. Our lower limits support the models of massive galaxy assembly through a series of minor mergers over the redshift range 0 < z < 2.

  12. Numerical simulation of mechanical compaction of deepwater shallow sediments

    NASA Astrophysics Data System (ADS)

    Sun, Jin; Wu, Shiguo; Deng, Jingen; Lin, Hai; Zhang, Hanyu; Wang, Jiliang; Gao, Jinwei

    2018-02-01

    To study the compaction law and overpressure evolution in deepwater shallow sediments, a large-strain compaction model that considers material nonlinearity and moving boundary is formulated. The model considers the dependence of permeability and material properties on void ratio. The modified Cam-Clay model is selected as the constitutive relations of the sediments, and the deactivation/reactivation method is used to capture the moving top surface during the deposition process. A one-dimensional model is used to study the compaction law of the shallow sediments. Results show that the settlement of the shallow sediments is large under their own weight during compaction. The void ratio decreases strictly with burial depth and decreases more quickly near the seafloor than in the deeper layers. The generation of abnormal pressure in the shallow flow sands is closely related to the compaction law of shallow sediments. The two main factors that affect the generation of overpressure in the sands are deposition rate and permeability of overlying clay sediments. Overpressure increases with an increase in deposition rate and a decrease in the permeability of the overlying clay sediment. Moreover, an upper limit for the overpressure exists. A two-dimensional model is used to study the differential compaction of the shallow sediments. The pore pressure will still increase due to the inflow of the pore fluid from the neighboring clay sediment even though the deposition process is interrupted.

  13. Dry minor mergers and size evolution of high-z compact massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Oogi, Taira; Habe, Asao

    2012-09-01

    Recent observations show evidence that high-z (z ~ 2 - 3) early-type galaxies (ETGs) are quite compact than that with comparable mass at z ~ 0. Dry merger scenario is one of the most probable one that can explain such size evolution. However, previous studies based on this scenario do not succeed to explain both properties of high-z compact massive ETGs and local ETGs, consistently. We investigate effects of sequential, multiple dry minor (stellar mass ratio M2/M1<1/4) mergers on the size evolution of compact massive ETGs. We perform N-body simulations of the sequential minor mergers with parabolic and head-on orbits, including a dark matter component and a stellar component. We show that the sequential minor mergers of compact satellite galaxies are the most efficient in the size growth and in decrease of the velocity dispersion of the compact massive ETGs. The change of stellar size and density of the merger remnant is consistent with the recent observations. Furthermore, we construct the merger histories of candidates of high-z compact massive ETGs using the Millennium Simulation Database, and estimate the size growth of the galaxies by dry minor mergers. We can reproduce the mean size growth factor between z = 2 and z = 0, assuming the most efficient size growth obtained in the case of the sequential minor mergers in our simulations.

  14. Monolithic pattern-sensitive detector

    DOEpatents

    Berger, Kurt W.

    2000-01-01

    Extreme ultraviolet light (EUV) is detected using a precisely defined reference pattern formed over a shallow junction photodiode. The reference pattern is formed in an EUV absorber preferably comprising nickel or other material having EUV- and other spectral region attenuating characteristics. An EUV-transmissive energy filter is disposed between a passivation oxide layer of the photodiode and the EUV transmissive energy filter. The device is monolithically formed to provide robustness and compactness.

  15. Method and apparatus for forming ceramic oxide superconductors with ordered structure

    DOEpatents

    Nellis, W.J.; Maple, M.B.

    1987-12-23

    Disclosed are products and processes for making improved magnetic and superconducting articles from anisotropic starting materials by initially reducing the starting materials into a powdered form composed of particles of uniform directional crystal structures, forming a directionally uniform aggregate of particles by exposing the aggregate to a magnetic field of desired magnitude and direction, and then compacting the aggregate into an integral solid body. 2 Figs.

  16. Formation of chemically bonded ceramics with magnesium dihydrogen phosphate binder

    DOEpatents

    Wagh, Arun S.; Jeong, Seung-Young

    2004-08-17

    A new method for combining magnesium oxide, MgO, and magnesium dihydrogen phosphate to form an inexpensive compactible ceramic to stabilize very low solubility metal oxides, ashes, swarfs, and other iron or metal-based additives, to create products and waste forms which can be poured or dye cast, and to reinforce and strengthen the ceramics formed by the addition of fibers to the initial ceramic mixture.

  17. Quantifying the Effect of DNA Packaging on Gene Expression Level

    NASA Astrophysics Data System (ADS)

    Kim, Harold

    2010-10-01

    Gene expression, the process by which the genetic code comes alive in the form of proteins, is one of the most important biological processes in living cells, and begins when transcription factors bind to specific DNA sequences in the promoter region upstream of a gene. The relationship between gene expression output and transcription factor input which is termed the gene regulation function is specific to each promoter, and predicting this gene regulation function from the locations of transcription factor binding sites is one of the challenges in biology. In eukaryotic organisms (for example, animals, plants, fungi etc), DNA is highly compacted into nucleosomes, 147-bp segments of DNA tightly wrapped around histone protein core, and therefore, the accessibility of transcription factor binding sites depends on their locations with respect to nucleosomes - sites inside nucleosomes are less accessible than those outside nucleosomes. To understand how transcription factor binding sites contribute to gene expression in a quantitative manner, we obtain gene regulation functions of promoters with various configurations of transcription factor binding sites by using fluorescent protein reporters to measure transcription factor input and gene expression output in single yeast cells. In this talk, I will show that the affinity of a transcription factor binding site inside and outside the nucleosome controls different aspects of the gene regulation function, and explain this finding based on a mass-action kinetic model that includes competition between nucleosomes and transcription factors.

  18. UV diode-pumped solid state laser for medical applications

    NASA Astrophysics Data System (ADS)

    Apollonov, Victor V.; Konstantinov, K. V.; Sirotkin, A. A.

    1999-07-01

    A compact, solid-state, high-efficiency, and safe UV laser medical system with optical fiber output was created for treatment of destructive forms of pulmonary tuberculosis. A frequency-quadruped quasi-CW Nd:YVO4 laser system pumped by laser-diode array is investigated with various resonator configurations. A longitudinal end-pumping scheme was used in a compact acousto-optical Q-switched laser for producing stable pulses of UV radiation at the repetition frequency 10-20 kHz and the duration 7-10 ns with the fiber-guide output power exceeding 10 mW.

  19. Analysis of Flexural Fatigue Strength of Self Compacting Fibre Reinforced Concrete Beams

    NASA Astrophysics Data System (ADS)

    Murali, G.; Sudar Celestina, J. P. Arul; Subhashini, N.; Vigneshwari, M.

    2017-07-01

    This study presents the extensive statistical investigation ofvariations in flexural fatigue life of self-compacting Fibrous Concrete (FC) beams. For this purpose, the experimental data of earlier researchers were examined by two parameter Weibull distribution.Two methods namely Graphical and moment wereused to analyse the variations in experimental data and the results have been presented in the form of probability of survival. The Weibull parameters values obtained from graphical and method of moments are precise. At 0.7 stress level, the fatigue life shows 59861 cyclesfor areliability of 90%.

  20. The Role of Bulk Additions in Solid Lubricant Compacts

    DTIC Science & Technology

    1987-04-01

    compact Surface ............. 138 36. Wear Volume as a Function of Kohn Hardness.... 161 37. Melt Temperature of Oxides as Function of Kohs Hardness...PROPERTIES OF ANTIMONY AND ANTIMONY OXIDES ELEMENT OR FORMULA FORMULA CRYSTAL SP MELT BOILING COMPOUND WEIGHT FORM GRAY POINT POINT (C0 (00 Antimony...be rationalized as oxidation of smaller particle size Sb203(o) followed by melting and, 84 .40 00 0 o0 40 an M a CA 𔃺o 0u 1 "M OX3 ---- fýO’N Pý > 85

  1. Evaluation of the physicochemical properties and compaction behavior of melt granules produced in microwave-induced and conventional melt granulation in a single pot high shear processor.

    PubMed

    Loh, Z H; Sia, B Y; Heng, Paul W S; Lee, C C; Liew, Celine V

    2011-12-01

    Recently, microwave-induced melt granulation was shown to be a promising alternative to conventional melt granulation with improved process monitoring capabilities. This study aimed to compare the physicochemical and compaction properties of granules produced from microwave-induced and conventional melt granulation. Powder admixtures comprising equivalent proportions by weight of lactose 200 M and anhydrous dicalcium phosphate were granulated with polyethylene glycol 3350 under the influence of microwave-induced and conventional heating in a 10-L single pot high shear processor. The properties of the granules and compacts produced from the two processes were compared. Relative to conventional melt granulation, the rates at which the irradiated powders heated up in microwave-induced melt granulation were lower. Agglomerate growth proceeded at a slower rate, and this necessitated longer massing durations for growth induction. These factors prompted greater evaporative moisture losses from the melt granules. Additionally, nonuniform heating of the powders under the influence of microwaves led to increased inter-batch variations in the binder contents of resultant melt granules and a reliance of content homogeneity on massing duration. Agglomerate growth proceeded more rapidly under the influence of conventional heating due to the enhanced heating capabilities of the powders. Melt granules produced using the conventional method possessed higher moisture contents and improved content homogeneity. The compaction behavior of melt granules were affected by their mean sizes, porosities, flow properties, binder, and moisture contents. The last two factors were responsible for the disparities in compaction behavior of melt granules produced from microwave-induced and conventional melt granulation.

  2. Comparison of silver, cesium, and strontium release predictions using PARFUME with results from the AGR-1 irradiation experiment

    DOE PAGES

    Collin, Blaise P.; Petti, David A.; Demkowicz, Paul A.; ...

    2015-08-22

    Here, the PARFUME (PARticle FUel ModEl) code was used to predict the release of fission products silver, cesium, and strontium from tristructural isotropic coated fuel particles and compacts during the first irradiation experiment (AGR-1) of the Advanced Gas Reactor Fuel Development and Qualification program. The PARFUME model for the AGR-1 experiment used the fuel compact volume average temperature for each of the 620 days of irradiation to calculate the release of silver, cesium, and strontium from a representative particle for a select number of AGR-1 compacts. Post-irradiation examination measurements provided data on release of these fission products from fuel compactsmore » and fuel particles, and retention of silver in the compacts outside of the silicon carbide (SiC) layer. PARFUME-predicted fractional release of silver, cesium, and strontium was determined and compared to the PIE measurements. For silver, comparisons show a trend of over-prediction at low burnup and under-prediction at high burnup. PARFUME has limitations in the modeling of the temporal and spatial distributions of the temperature and burnup across the compacts, which affects the accuracy of its predictions. Nevertheless, the comparisons on silver release lie in the same order of magnitude. Results show an overall over-prediction of the fractional release of cesium by PARFUME. For particles with failed SiC layers, the over-prediction is by a factor of up to 3, corresponding to a potential over-estimation of the diffusivity in uranium oxycarbide (UCO) by a factor of up to 250. For intact particles, whose release is much lower, the over-prediction is by a factor of up to 100, which could be attributed to an over-estimated diffusivity in SiC by about 40% on average. The release of strontium from intact particles is also over-predicted by PARFUME, which also points towards an over-estimated diffusivity of strontium in either SiC or UCO, or possibly both. The measured strontium fractional release from intact particles varied considerably from compact to compact, making it difficult to assess the effective over-estimation of the diffusivities. Moreover, the release of strontium from particles with failed SiC is difficult to observe experimentally due to the release from intact particles, preventing any conclusions to be made on the accuracy or validity of the PARFUME predictions and the modeled diffusivity of strontium in UCO.« less

  3. Detailed characterization of particulate matter emitted by lean-burn gasoline direct injection engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelenyuk, Alla; Wilson, Jacqueline; Imre, Dan

    This study presents detailed characterization of the chemical and physical properties of PM emitted by a 2.0L BMW lean-burn turbocharged GDI engine operated under a number of combustion strategies that include lean homogeneous, lean stratified, stoichiometric, and fuel rich conditions. We characterized PM number concentrations, size distributions, and the size, mass, compositions, and effective density of fractal and compact individual exhaust particles. For the fractal particles, these measurements yielded fractal dimension, average diameter of primary spherules, and number of spherules, void fraction, and dynamic shape factors as function of particle size. Overall, the PM properties were shown to vary significantlymore » with engine operation condition. Lean stratified operation yielded the most diesel-like size distribution and the largest PM number and mass concentrations, with nearly all particles being fractal agglomerates composed of elemental carbon with small amounts of ash and organics. In contrast, stoichiometric operation yielded a larger fraction of ash particles, especially at low speed and low load. Three distinct forms of ash particles were observed, with their fractions strongly dependent on engine operating conditions: sub-50 nm ash particles, abundant at low speed and low load, ash-containing fractal particles, and large compact ash particles that significantly contribute to PM mass loadings« less

  4. The Rotary Zone Thermal Cycler: A Low-Power System Enabling Automated Rapid PCR

    PubMed Central

    Bartsch, Michael S.; Renzi, Ronald F.; Van de Vreugde, James L.; Kim, Hanyoup; Knight, Daniel L.; Sinha, Anupama; Branda, Steven S.; Patel, Kamlesh D.

    2015-01-01

    Advances in molecular biology, microfluidics, and laboratory automation continue to expand the accessibility and applicability of these methods beyond the confines of conventional, centralized laboratory facilities and into point of use roles in clinical, military, forensic, and field-deployed applications. As a result, there is a growing need to adapt the unit operations of molecular biology (e.g., aliquoting, centrifuging, mixing, and thermal cycling) to compact, portable, low-power, and automation-ready formats. Here we present one such adaptation, the rotary zone thermal cycler (RZTC), a novel wheel-based device capable of cycling up to four different fixed-temperature blocks into contact with a stationary 4-microliter capillary-bound sample to realize 1-3 second transitions with steady state heater power of less than 10 W. We demonstrate the utility of the RZTC for DNA amplification as part of a highly integrated rotary zone PCR (rzPCR) system that uses low-volume valves and syringe-based fluid handling to automate sample loading and unloading, thermal cycling, and between-run cleaning functionalities in a compact, modular form factor. In addition to characterizing the performance of the RZTC and the efficacy of different online cleaning protocols, we present preliminary results for rapid single-plex PCR, multiplex short tandem repeat (STR) amplification, and second strand cDNA synthesis. PMID:25826708

  5. HyTES: Thermal Imaging Spectrometer Development

    NASA Technical Reports Server (NTRS)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Realmuto, Vincent; Lamborn, Andy; Paine, Chris; Mumolo, Jason M.; Eng, Bjorn T.

    2011-01-01

    The Jet Propulsion Laboratory has developed the Hyperspectral Thermal Emission Spectrometer (HyTES). It is an airborne pushbroom imaging spectrometer based on the Dyson optical configuration. First low altitude test flights are scheduled for later this year. HyTES uses a compact 7.5-12 micrometer m hyperspectral grating spectrometer in combination with a Quantum Well Infrared Photodetector (QWIP) and grating based spectrometer. The Dyson design allows for a very compact and optically fast system (F/1.6). Cooling requirements are minimized due to the single monolithic prism-like grating design. The configuration has the potential to be the optimal science-grade imaging spectroscopy solution for high altitude, lighter-than-air (HAA, LTA) vehicles and unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The QWIP sensor allows for optimum spatial and spectral uniformity and provides adequate responsivity which allows for near 100mK noise equivalent temperature difference (NEDT) operation across the LWIR passband. The QWIP's repeatability and uniformity will be helpful for data integrity since currently an onboard calibrator is not planned. A calibration will be done before and after eight hour flights to gage any inconsistencies. This has been demonstrated with lab testing. Further test results show adequate NEDT, linearity as well as applicable earth science emissivity target results (Silicates, water) measured in direct sunlight.

  6. Direct Burial Broadband Seismic Instrumentation that are Rugged and Tilt Tolerant for Polar Environments

    NASA Astrophysics Data System (ADS)

    Parker, Tim; Winberry, Paul; Huerta, Audrey; Bainbridge, Geoff; Devanney, Peter

    2016-04-01

    The integrated broadband Meridian Posthole and Compact seismic systems have been engineered and tested for extreme polar environments. Ten percent of the Earth's surface is covered in glacial ice and the dynamics of these environments is a strategic concern for all. The development for these systems was driven by researchers needing to densify observations in ice covered regions with difficult and limited logistics. Funding from an NSF MRI award, GEOICE and investment from the vendor enabled researchers to write the specifications for a hybrid family of instruments that can operate at -55C autonomously with very little power, 1 watt for the Meridian Compact system and 1.5 watts for the Meridian 120PH. Tilt tolerance in unstable ice conditions was a concern and these instruments have a range of up to +/-5 degrees. The form factor, extreme temperature tolerance and power load of the instruments has reduced the bulk of a complete station by 1/2 and simplified installation greatly allowing more instruments to be deployed with limited support and a lighter logistical load. These systems are being tested in the Antarctic at SouthPole Station and McMurdo for the second year and the investment has encouraged other instrument and power system vendors to offer polar rated equipment including telemetry for ancillary support.

  7. Karankawa Linguistic Materials.

    ERIC Educational Resources Information Center

    Grant, Anthony P.

    1994-01-01

    This paper presents, in a compact and usable form, the body of known material on the diverse dialectical forms of the Karankawa Indians of coastal Texas, who have been extinct since the last of their number perished in the 1850s. John Reed Swanton (1940) published 5 of the 6 main sources in a Karankawa-English vocabulary, but his works omitted the…

  8. 10 CFR 110.32 - Information required in an application for a specific license/NRC Form 7.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... equipment or material. (c) Country of origin of equipment or material, and any other countries that have... characteristics, route of transit of shipment, and ultimate disposition (including forms of management) of the...-level waste compact or State to accept the material for management purposes or disposal. (7) Description...

  9. Compacting biomass waste materials for use as fuel

    NASA Astrophysics Data System (ADS)

    Zhang, Ou

    Every year, biomass waste materials are produced in large quantity. The combustibles in biomass waste materials make up over 70% of the total waste. How to utilize these waste materials is important to the nation and the world. The purpose of this study is to test optimum processes and conditions of compacting a number of biomass waste materials to form a densified solid fuel for use at coal-fired power plants or ordinary commercial furnaces. Successful use of such fuel as a substitute for or in cofiring with coal not only solves a solid waste disposal problem but also reduces the release of some gases from burning coal which cause health problem, acid rain and global warming. The unique punch-and-die process developed at the Capsule Pipeline Research Center, University of Missouri-Columbia was used for compacting the solid wastes, including waste paper, plastics (both film and hard products), textiles, leaves, and wood. The compaction was performed to produce strong compacts (biomass logs) under room temperature without binder and without preheating. The compaction conditions important to the commercial production of densified biomass fuel logs, including compaction pressure, pressure holding time, back pressure, moisture content, particle size, binder effects, and mold conditions were studied and optimized. The properties of the biomass logs were evaluated in terms of physical, mechanical, and combustion characteristics. It was found that the compaction pressure and the initial moisture content of the biomass material play critical roles in producing high-quality biomass logs. Under optimized compaction conditions, biomass waste materials can be compacted into high-quality logs with a density of 0.8 to 1.2 g/cm3. The logs made from the combustible wastes have a heating value in the range 6,000 to 8,000 Btu/lb which is only slightly (10 to 30%) less than that of subbituminous coal. To evaluate the feasibility of cofiring biomass logs with coal, burn tests were conducted in a stoke boiler. A separate burning test was also carried out by burning biomass logs alone in an outdoor hot-water furnace for heating a building. Based on a previous coal compaction study, the process of biomass compaction was studied numerically by use of a non-linear finite element code. A constitutive model with sufficient generality was adapted for biomass material to deal with pore contraction during compaction. A contact node algorithm was applied to implement the effect of mold wall friction into the finite element program. Numerical analyses were made to investigate the pressure distribution in a die normal to the axis of compaction, and to investigate the density distribution in a biomass log after compaction. The results of the analyses gave generally good agreement with theoretical analysis of coal log compaction, although assumptions had to be made about the variation in the elastic modulus of the material and the Poisson's ratio during the compaction cycle.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dullo, Bililign T.; Graham, Alister W., E-mail: Bdullo@astro.swin.edu.au

    We have used the full radial extent of images from the Hubble Space Telescope's Advanced Camera for Surveys and Wide Field Planetary Camera 2 to extract surface brightness profiles from a sample of six, local lenticular galaxy candidates. We have modeled these profiles using a core-Sersic bulge plus an exponential disk model. Our fast rotating lenticular disk galaxies with bulge magnitudes M{sub V} {approx}< -21.30 mag have central stellar deficits, suggesting that these bulges may have formed from ''dry'' merger events involving supermassive black holes (BHs) while their surrounding disk was subsequently built up, perhaps via cold gas accretion scenarios.more » The central stellar mass deficits M{sub def} are roughly 0.5-2 M{sub BH} (BH mass), rather than {approx}10-20 M{sub BH} as claimed from some past studies, which is in accord with core-Sersic model mass deficit measurements in elliptical galaxies. Furthermore, these bulges have Sersic indices n {approx}3, half-light radii R{sub e} < 2 kpc and masses >10{sup 11} M{sub Sun }, and therefore appear to be descendants of the compact galaxies reported at z {approx} 1.5-2. Past studies which have searched for these local counterparts by using single-component galaxy models to provide the z {approx} 0 size comparisons have overlooked these dense, compact, and massive bulges in today's early-type disk galaxies. This evolutionary scenario not only accounts for what are today generally old bulges-which must be present in z {approx} 1.5 images-residing in what are generally young disks, but it eliminates the uncomfortable suggestion of a factor of three to five growth in size for the compact, z {approx} 1.5 galaxies that are known to possess infant disks.« less

  11. Computational intelligence models to predict porosity of tablets using minimum features

    PubMed Central

    Khalid, Mohammad Hassan; Kazemi, Pezhman; Perez-Gandarillas, Lucia; Michrafy, Abderrahim; Szlęk, Jakub; Jachowicz, Renata; Mendyk, Aleksander

    2017-01-01

    The effects of different formulations and manufacturing process conditions on the physical properties of a solid dosage form are of importance to the pharmaceutical industry. It is vital to have in-depth understanding of the material properties and governing parameters of its processes in response to different formulations. Understanding the mentioned aspects will allow tighter control of the process, leading to implementation of quality-by-design (QbD) practices. Computational intelligence (CI) offers an opportunity to create empirical models that can be used to describe the system and predict future outcomes in silico. CI models can help explore the behavior of input parameters, unlocking deeper understanding of the system. This research endeavor presents CI models to predict the porosity of tablets created by roll-compacted binary mixtures, which were milled and compacted under systematically varying conditions. CI models were created using tree-based methods, artificial neural networks (ANNs), and symbolic regression trained on an experimental data set and screened using root-mean-square error (RMSE) scores. The experimental data were composed of proportion of microcrystalline cellulose (MCC) (in percentage), granule size fraction (in micrometers), and die compaction force (in kilonewtons) as inputs and porosity as an output. The resulting models show impressive generalization ability, with ANNs (normalized root-mean-square error [NRMSE] =1%) and symbolic regression (NRMSE =4%) as the best-performing methods, also exhibiting reliable predictive behavior when presented with a challenging external validation data set (best achieved symbolic regression: NRMSE =3%). Symbolic regression demonstrates the transition from the black box modeling paradigm to more transparent predictive models. Predictive performance and feature selection behavior of CI models hints at the most important variables within this factor space. PMID:28138223

  12. Computational intelligence models to predict porosity of tablets using minimum features.

    PubMed

    Khalid, Mohammad Hassan; Kazemi, Pezhman; Perez-Gandarillas, Lucia; Michrafy, Abderrahim; Szlęk, Jakub; Jachowicz, Renata; Mendyk, Aleksander

    2017-01-01

    The effects of different formulations and manufacturing process conditions on the physical properties of a solid dosage form are of importance to the pharmaceutical industry. It is vital to have in-depth understanding of the material properties and governing parameters of its processes in response to different formulations. Understanding the mentioned aspects will allow tighter control of the process, leading to implementation of quality-by-design (QbD) practices. Computational intelligence (CI) offers an opportunity to create empirical models that can be used to describe the system and predict future outcomes in silico. CI models can help explore the behavior of input parameters, unlocking deeper understanding of the system. This research endeavor presents CI models to predict the porosity of tablets created by roll-compacted binary mixtures, which were milled and compacted under systematically varying conditions. CI models were created using tree-based methods, artificial neural networks (ANNs), and symbolic regression trained on an experimental data set and screened using root-mean-square error (RMSE) scores. The experimental data were composed of proportion of microcrystalline cellulose (MCC) (in percentage), granule size fraction (in micrometers), and die compaction force (in kilonewtons) as inputs and porosity as an output. The resulting models show impressive generalization ability, with ANNs (normalized root-mean-square error [NRMSE] =1%) and symbolic regression (NRMSE =4%) as the best-performing methods, also exhibiting reliable predictive behavior when presented with a challenging external validation data set (best achieved symbolic regression: NRMSE =3%). Symbolic regression demonstrates the transition from the black box modeling paradigm to more transparent predictive models. Predictive performance and feature selection behavior of CI models hints at the most important variables within this factor space.

  13. Compact Binary Mergers and the Event Rate of Fast Radio Bursts

    NASA Astrophysics Data System (ADS)

    Cao, Xiao-Feng; Yu, Yun-Wei; Zhou, Xia

    2018-05-01

    Fast radio bursts (FRBs) are usually suggested to be associated with mergers of compact binaries consisting of white dwarfs (WDs), neutron stars (NSs), or black holes (BHs). We test these models by fitting the observational distributions in both redshift and isotropic energy of 22 Parkes FRBs, where, as usual, the rates of compact binary mergers (CBMs) are connected with cosmic star formation rates by a power-law distributed time delay. It is found that the observational distributions can well be produced by the CBM model with a characteristic delay time from several tens to several hundreds of megayears and an energy function index 1.2 ≲ γ ≲ 1.7, where a tentative fixed spectral index β = 0.8 is adopted for all FRBs. Correspondingly, the local event rate of FRBs is constrained to {(3{--}6)× {10}4{f}{{b}}-1({ \\mathcal T }/270{{s}})}-1{({ \\mathcal A }/2π )}-1 {Gpc}}-3 {yr}}-1 for an adopted minimum FRB energy of E min = 3 × 1039 erg, where f b is the beaming factor of the radiation, { \\mathcal T } is the duration of each pointing observation, and { \\mathcal A } is the sky area of the survey. This event rate, about an order of magnitude higher than the rates of NS–NS/NS–BH mergers, indicates that the most promising origin of FRBs in the CBM scenario could be mergers of WD–WD binaries. Here a massive WD could be produced since no FRB was found to be associated with an SN Ia. Alternatively, if all FRBs can repeat on a timescale much longer than the period of current observations, then they could also originate from a young active NS that forms from relatively rare NS–NS mergers and accretion-induced collapses of WD–WD binaries.

  14. Effects of soil compaction on root and root hair morphology: implications for campsite rehabilitation

    Treesearch

    L. Alessa; C. G. Earnhart

    2000-01-01

    Recreational use of wild lands can create areas, such as campsites, which may experience soil compaction and a decrease in vegetation cover and diversity. Plants are highly reliant on their roots’ ability to uptake nutrients and water from soil. Any factors that affect the highly specialized root hairs (“feeder cells”) compromise the overall health and survival of the...

  15. Centrosome structure and function is altered by chloral hydrate and diazepam during the first reproductive cell cycles in sea urchin eggs

    NASA Technical Reports Server (NTRS)

    Schatten, H.; Chakrabarti, A.

    1998-01-01

    This paper explores the mode of action of the tranquillizers chloral hydrate and diazepam during fertilization and mitosis of the first reproductive cell cycles in sea urchin eggs. Most striking effects of these drugs are the alteration of centrosomal material and the abnormal microtubule configurations during exposure and after recovery from the drugs. This finding is utilized to study the mechanisms of centrosome compaction and decompaction and the dynamic configurational changes of centrosomal material and its interactions with microtubules. When 0.1% chloral hydrate or 350-750 microM diazepam is applied at specific phases during the first cell cycle of sea urchin eggs, expanded centrosomal material compacts at distinct regions and super-compacts into dense spheres while microtubules disassemble. When eggs are treated before pronuclear fusion, centrosomal material aggregates around each of the two pronuclei while microtubules disappear. Upon recovery, atypical asters oftentimes with multiple foci are formed from centrosomal material surrounding the pronuclei which indicates that the drugs have affected centrosomal material and prevent it from functioning normally. Electron microscopy and immunofluorescence studies with antibodies that routinely stain centrosomes in sea urchin eggs (4D2; and Ah-6) depict centrosomal material that is altered when compared to control cells. This centrosomal material is not able to reform normal microtubule patterns upon recovery but will form multiple asters around the two pronuclei. When cells are treated with 0.1% chloral hydrate or 350-750 microM diazepam during mitosis, the bipolar centrosomal material becomes compacted and aggregates into multiple dense spheres while spindle and polar microtubules disassemble. With increased incubation time, the smaller dense centrosome particles aggregate into bigger and fewer spheres. Upon recovery, unusual irregular microtubule configurations are formed from centrosomes that have lost their ability to reform normal mitotic figures. These results indicate that chloral hydrate and diazepam affect centrosome structure which results in the inability to reform normal microtubule formations and causes abnormal fertilization and mitosis.

  16. Experimental Study on Modification of Concrete with Asphalt Admixture

    NASA Astrophysics Data System (ADS)

    Bołtryk, Michał; Małaszkiewicz, Dorota; Pawluczuk, Edyta

    2017-10-01

    Durability of engineering structures made of cement concrete with high compressive strength is a very vital issue, especially when they are exposed to different aggressive environments and dynamic loads. Concrete resistance to weathering actions and chemical attack can be improved by combined chemical and mechanical modification of concrete microstructure. Asphalt admixture in the form of asphalt paste (AP) was used for chemical modification of cement composite microstructure. Concrete structure was formed using special technology of compaction. A stand for vibro-vibropressing with regulated vibrator force and pressing force was developed. The following properties of the modified concrete were tested: compressive strength, water absorption, freeze-thaw resistance, scaling resistance in the presence of de-icing agents, chloride migration, resistance to CO2 and corrosion in aggressive solutions. Corrosion resistance was tested alternately in 1.8% solutions of NH4Cl, MgSO4, (NH2)2CO and CaCl2, which were altered every 7 days; the experiment lasted 9.5 months. Optimum compaction parameters in semi-industrial conditions were determined: ratio between piston stress (Qp ) and external top vibrator force (Po ) in the range 0.4÷-0.5 external top vibrator force 4 kN. High strength concretes with compressive strength fcm = 60÷70 MPa, very low water absorption (<1%) and high resistance to aggressive environments were obtained in this study. AP content was reduced from 10% (previous investigations) to 2-4% of cement mass thanks to the special compaction method. Excellent chloride ion penetration resistance and carbonation resistance of concrete containing AP admixture is due to the asphalt barrier formed in pores of cement hydrates against dioxide and chloride ions. Concrete specimens containing AP 4% c.m. and consolidated by vibro-vibropressing method proved to be practically resistant to highly corrosive environment. Vibro-vibropressing compaction technology of concrete modified with AP can be applied in prefabrication plants to produce elements for road, bridge and hydraulic engineering constructions.

  17. [Phenotypes of dendritic cells in central lymph of healthy rabbits and during correction of experimental atherosclerosis].

    PubMed

    Kuznetsov, A V

    1992-09-01

    Dendritic cells of central lymph of rabbits have been identified according to the form of the cell body, characteristics of formation and branchiness of its processes in health, in atherosclerosis, its correction with radon, polyphenol preparations made of Sanguisorba officinalis and in combination of the latter. Two main types of dendritic cells have been distinguished. Type I is characterized by a rounded body with clear outlines, protrusions and one compact process. Such cells are often found in lymph of intact animals. Type II has a cell body of various forms with two and more compact or branching processes. This type is mainly detected in atherosclerosis and its correction. The prevalence of the above phenotypes of dendritic cells is attributed to the response of the immune system to atherosclerosis and its correction.

  18. Continious production of exfoliated graphite composite compositions and flow field plates

    DOEpatents

    Shi, Jinjun; Zhamu, Aruna; Jang, Bor Z.

    2010-07-20

    A process of continuously producing a more isotropic, electrically conductive composite composition is provided. The process comprises: (a) continuously supplying a compressible mixture comprising exfoliated graphite worms and a binder or matrix material, wherein the binder or matrix material is in an amount of between 3% and 60% by weight based on the total weight of the mixture; (b) continuously compressing the compressible mixture at a pressure within the range of from about 5 psi or 0.035 MPa to about 50,000 psi or 350 MPa in at least a first direction into a cohered graphite composite compact; and (c) continuously compressing the composite compact in a second direction, different from the first direction, to form the composite composition in a sheet or plate form. The process leads to composite plates with exceptionally high thickness-direction electrical conductivity.

  19. Role of the α clamp in the protein translocation mechanism of anthrax toxin

    PubMed Central

    Brown, Michael J.; Thoren, Katie L.; Krantz, Bryan A.

    2015-01-01

    Membrane-embedded molecular machines are utilized to move water-soluble proteins across these barriers. Anthrax toxin forms one such machine through the self-assembly of its three component proteins—protective antigen (PA), lethal factor (LF), and edema factor (EF). Upon endocytosis into host cells, acidification of the endosome induces PA to form a membrane-inserted channel, which unfolds LF and EF and translocates them into the host cytosol. Translocation is driven by the proton motive force, comprised of the chemical potential, the proton-gradient (ΔpH), and the membrane potential (ΔΨ). A crystal structure of the lethal toxin core complex revealed an “α clamp” structure that binds to substrate helices nonspecifically. Here we test the hypothesis that through the recognition of unfolding helical structure the α clamp can accelerate the rate of translocation. We produced a synthetic PA mutant in which an α helix was crosslinked into the α clamp to block its function. This synthetic construct impairs translocation by raising a yet uncharacterized translocation barrier shown to be much less force dependent than the known unfolding barrier. We also report that the α clamp more stably binds substrates that can form helices than those, such as polyproline, that cannot. Hence the α clamp recognizes substrates by a general shape-complementarity mechanism. Substrates that are incapable of forming compact secondary structure (due to the introduction of a polyproline track) are severely deficient for translocation. Therefore, the α clamp and its recognition of helical structure in the translocating substrate play key roles in the molecular mechanism of protein translocation. PMID:26344833

  20. Fluffy dust forms icy planetesimals by static compression

    NASA Astrophysics Data System (ADS)

    Kataoka, Akimasa; Tanaka, Hidekazu; Okuzumi, Satoshi; Wada, Koji

    2013-09-01

    Context. Several barriers have been proposed in planetesimal formation theory: bouncing, fragmentation, and radial drift problems. Understanding the structure evolution of dust aggregates is a key in planetesimal formation. Dust grains become fluffy by coagulation in protoplanetary disks. However, once they are fluffy, they are not sufficiently compressed by collisional compression to form compact planetesimals. Aims: We aim to reveal the pathway of dust structure evolution from dust grains to compact planetesimals. Methods: Using the compressive strength formula, we analytically investigate how fluffy dust aggregates are compressed by static compression due to ram pressure of the disk gas and self-gravity of the aggregates in protoplanetary disks. Results: We reveal the pathway of the porosity evolution from dust grains via fluffy aggregates to form planetesimals, circumventing the barriers in planetesimal formation. The aggregates are compressed by the disk gas to a density of 10-3 g/cm3 in coagulation, which is more compact than is the case with collisional compression. Then, they are compressed more by self-gravity to 10-1 g/cm3 when the radius is 10 km. Although the gas compression decelerates the growth, the aggregates grow rapidly enough to avoid the radial drift barrier when the orbital radius is ≲6 AU in a typical disk. Conclusions: We propose a fluffy dust growth scenario from grains to planetesimals. It enables icy planetesimal formation in a wide range beyond the snowline in protoplanetary disks. This result proposes a concrete initial condition of planetesimals for the later stages of the planet formation.

  1. Cardiac myocyte diversity and a fibroblast network in the junctional region of the zebrafish heart revealed by transmission and serial block-face scanning electron microscopy.

    PubMed

    Lafontant, Pascal J; Behzad, Ali R; Brown, Evelyn; Landry, Paul; Hu, Norman; Burns, Alan R

    2013-01-01

    The zebrafish has emerged as an important model of heart development and regeneration. While the structural characteristics of the developing and adult zebrafish ventricle have been previously studied, little attention has been paid to the nature of the interface between the compact and spongy myocardium. Here we describe how these two distinct layers are structurally and functionally integrated. We demonstrate by transmission electron microscopy that this interface is complex and composed primarily of a junctional region occupied by collagen, as well as a population of fibroblasts that form a highly complex network. We also describe a continuum of uniquely flattened transitional cardiac myocytes that form a circumferential plate upon which the radially-oriented luminal trabeculae are anchored. In addition, we have uncovered within the transitional ring a subpopulation of markedly electron dense cardiac myocytes. At discrete intervals the transitional cardiac myocytes form contact bridges across the junctional space that are stabilized through localized desmosomes and fascia adherentes junctions with adjacent compact cardiac myocytes. Finally using serial block-face scanning electron microscopy, segmentation and volume reconstruction, we confirm the three-dimensional nature of the junctional region as well as the presence of the sheet-like fibroblast network. These ultrastructural studies demonstrate the previously unrecognized complexity with which the compact and spongy layers are structurally integrated, and provide a new basis for understanding development and regeneration in the zebrafish heart.

  2. Wet disc contraction to galactic blue nuggets and quenching to red nuggets

    NASA Astrophysics Data System (ADS)

    Dekel, A.; Burkert, A.

    2014-02-01

    We study the origin of high-redshift, compact, quenched spheroids (red nuggets) through the dissipative shrinkage of gaseous discs into compact star-forming systems (blue nuggets). The discs, fed by cold streams, undergo violent disc instability that drives gas into the centre (along with mergers). The inflow is dissipative when its time-scale is shorter than the star formation time-scale. This implies a threshold of ˜0.28 in the cold-to-total mass ratio within the disc radius. For the typical gas fraction ˜0.5 at z ˜ 2, this threshold is traced back to a maximum spin parameter of ˜0.05, implying that ˜half the star-forming galaxies contract to blue nuggets, while the rest form extended stellar discs. Thus, the surface density of blue galaxies is expected to be bimodal about ˜109 M⊙ kpc-2, slightly increasing with mass. The blue nuggets are expected to be rare at low z when the gas fraction is low. The blue nuggets quench to red nuggets by complementary internal and external mechanisms. Internal quenching by a compact bulge, in a fast mode and especially at high z, may involve starbursts, stellar and active galactic nucleus feedback, or Q-quenching. Quenching due to hot-medium haloes above 1012 M⊙ provides maintenance and a slower mode at low redshift. These predictions are confirmed in simulations and are consistent with observations at z = 0-3.

  3. Cloud-cloud collision in the Galactic center 50 km s-1 molecular cloud

    NASA Astrophysics Data System (ADS)

    Tsuboi, Masato; Miyazaki, Atsushi; Uehara, Kenta

    2015-12-01

    We performed a search of star-forming sites influenced by external factors, such as SNRs, H II regions, and cloud-cloud collisions (CCCs), to understand the star-forming activity in the Galactic center region using the NRO Galactic Center Survey in SiO v = 0, J = 2-1, H13CO+J = 1-0, and CS J = 1-0 emission lines obtained with the Nobeyama 45 m telescope. We found a half-shell-like feature (HSF) with a high integrated line intensity ratio of ∫TB(SiO v = 0, J = 2-1)dv/∫TB(H13CO+J = 1-0)dv ˜ 6-8 in the 50 km s-1 molecular cloud; the HSF is a most conspicuous molecular cloud in the region and harbors an active star-forming site where several compact H II regions can be seen. The high ratio in the HSF indicates that the cloud contains huge shocked molecular gas. The HSF can be also seen as a half-shell feature in the position-velocity diagram. A hypothesis explaining the chemical and kinetic properties of the HSF is that the feature originates from a CCC. We analyzed the CS J = 1-0 emission line data obtained with the Nobeyama Millimeter Array to reveal the relation between the HSF and the molecular cloud cores in the cloud. We made a cumulative core mass function (CMF) of the molecular cloud cores within the HSF. The CMF in the CCC region is not truncated at least up to ˜2500 M⊙, although the CMF of the non-CCC region reaches the upper limit of ˜1500 M⊙. Most massive molecular cores with Mgas > 750 M⊙ are located only around the ridge of the HSF and adjoin the compact H II region. These may be a sign of massive star formation induced by CCCs in the Galactic center region.

  4. Fundamental properties of monolithic bentonite buffer material formed by cold isostatic pressing for high-level radioactive waste repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakami, S.; Yamanaka, Y.; Kato, K.

    1999-07-01

    The methods of fabrication, handling, and emplacement of engineered barriers used in a deep geological repository for high level radioactive waste should be planned as simply as possible from the engineering and economic viewpoints. Therefore, a new concept of a monolithic buffer material around a waste package have been proposed instead of the conventional concept with the use of small blocks, which would decrease the cost for buffer material. The monolithic buffer material is composed of two parts of highly compacted bentonite, a cup type body and a cover. As the forming method of the monolithic buffer material, compaction bymore » the cold isostatic pressing process (CIP) has been employed. In this study, monolithic bentonite bodies with the diameter of about 333 mm and the height of about 455 mm (corresponding to the approx. 1/5 scale for the Japanese reference concept) were made by the CIP of bentonite powder. The dry densities: {rho}d of the bodies as a whole were measured and the small samples were cut from several locations to investigate the density distribution. The swelling pressure and hydraulic conductivity as function of the monolithic body density for CIP-formed specimens were also measured. High density ({rho}d: 1.4--2.0 Mg/m{sup 3}) and homogeneous monolithic bodies were formed by the CIP. The measured results of the swelling pressure (3--15 MPa) and hydraulic conductivity (0.5--1.4 x 10{sup {minus}13} m/s) of the specimens were almost the same as those for the uniaxial compacted bentonite in the literature. It is shown that the vacuum hoist system is an applicable handling method for emplacement of the monolithic bentonite.« less

  5. PREPARATION OF UO$sub 2$ FOR NUCLEAR REACTOR FUEL PELLETS

    DOEpatents

    Googin, J.M.

    1962-06-01

    A method is given for preparing high-density UO/sub 2/ compacts. An aqueous uranyl fluoride solution is contacted with an aqueous ammonium hydroxide solution at an ammonium to-uranium ratio of 25: 1 to 30:1 to form a precipitate. The precipitate is separated from the- mother liquor, dried, and contacted with steam at a uniform temperature within the range of 400 to 650 deg C to produce U/ sub 3/O/sub 8/. The U/sub 3/O/sub 8/ is red uced to UO/sub 2/ with hydrogen at a uniform temperature within the range of 550 to 600 deg C. The UO/sub 2/ is then compressed into compacts and sintered. High-density compacts are fabricated to close tolerances without use of a binder and without machining or grinding. (AEC)

  6. Hydrodynamic simulations of stellar wind disruption by a compact X-ray source

    NASA Technical Reports Server (NTRS)

    Blondin, John M.; Kallman, Timothy R.; Fryxell, Bruce A.; Taam, Ronald E.

    1990-01-01

    This paper presents two-dimensional numerical simulations of the gas flow in the orbital plane of a massive X-ray binary system, in which the mass accretion is fueled by a radiation-driven wind from an early-type companion star. These simulations are used to examine the role of the compact object (either a neutron star or a black hole) in disturbing the radiatively accelerating wind of the OB companion, with an emphasis on understanding the origin of the observed soft X-ray photoelectric absorption seen at late orbital phases in these systems. On the basis of these simulations, it is suggested that the phase-dependent photoelectric absorption seen in several of these systems can be explained by dense filaments of compressend gas formed in the nonsteady accreation bow shock and wake of the compact object.

  7. Compact and low power operation optical switch using silicon-germanium/silicon hetero-structure waveguide.

    PubMed

    Sekiguchi, Shigeaki; Kurahashi, Teruo; Zhu, Lei; Kawaguchi, Kenichi; Morito, Ken

    2012-04-09

    We proposed a silicon-based optical switch with a carrier-plasma-induced phase shifter which employs a silicon-germanium (SiGe) / silicon (Si) hetero-structure in the waveguide core. A type-I hetero-interface formed by SiGe and Si is expected to confine carriers effectively in the SiGe waveguide core. The fabricated Mach-Zehnder optical switch shows a low switching power of only 1.53 mW with a compact phase shifter length of 250 μm. The switching time of the optical switch is less than 4.6 ns for the case of a square waveform driving condition, and 1 ns for the case of a pre-emphasis electric driving condition. These results show that our proposed SiGe/Si waveguide structure holds promise for active devices with compact size and low operation power.

  8. Characterization of compressibility and compactibility of poly(ethylene oxide) polymers for modified release application by compaction simulator.

    PubMed

    Yang, L; Venkatesh, G; Fassihi, R

    1996-10-01

    Poly(ethylene oxide) polymers (PEO) appear to have great potential for controlled release applications. These polymers are hydrophilic with good water solubility, low toxicity, and high swelling capacity. As part of formulation optimization for a large-scale solid dosage form production, physicomechanical characterization of PEO was undertaken using a compaction simulator. Heckel plots for all PEOs were constructed, and yield pressures (Py) at different punch velocities were calculated from the linear portion of the plots. Low Py values, increase of Py with increasing punch speed, upward curvature of the plot, and strain rate sensitivity values indicate that the densification process and consolidation mechanism for PEOs of various molecular weights (0.2 x 10(6) to 7 x 10(6)) are identical and follow plastic deformation. PEOs have a high degree of crystallinity (57-85%) and show significant axial recovery (15-25%) upon decompression and ejection. The low Py values (58-78 MPa) and low mean compaction pressures demonstrate that volume reduction (compressibility) under pressure is excellent. However, due to viscoelastic behavior and large axial expansion, tablets of relatively low tensile strength are produced. These observations suggest the need to blend PEO with highly compactible excipients in order to produce tables on a high-speed production press.

  9. Planck 2015 results. XXVI. The Second Planck Catalogue of Compact Sources

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Argüeso, F.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Beichman, C.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Böhringer, H.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clemens, M.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Negrello, M.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Sanghera, H. S.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tornikoski, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Walter, B.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogues, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalogue. The second (PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow us to increase the number of objects in the catalogue, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC).

  10. How much land for your sand: effects of vegetation and compaction on crevasse splay formation

    NASA Astrophysics Data System (ADS)

    Nienhuis, J.; Tornqvist, T. E.; Esposito, C. R.

    2016-12-01

    Crevasse splays, failed avulsions that make up a significant portion of fluvio-deltaic overbank architecture in the Mississippi River Delta, are a natural analog for sediment diversions that are being planned to rebuild or sustain coastal wetlands. Here we use Delft3D to study the rates and mechanisms of crevasse splay growth. Because crevasse splays often form in peat-rich and vegetated environments, we have modified Delft3D to include simple formulations for the dynamic interaction between morphodynamics, vegetation, and soil compaction. Detailed stratigraphic data from prehistoric splays in the Mississippi River Delta provide useful constraints on long-term compaction rates, sedimentology, and splay volumes. We find that compaction and the absence of vegetation increase the lifespan of crevasse splays, sometimes from 900 to 4000 flood days (days during which the crevasse is geomorphically active, equivalent to model days in our simulations). Additionally, we find that in a few tested scenarios vegetation primarily acts to increase channel depths and flush out fine-grained sediment towards the flood-basin, decreasing the bulk mud capture efficiency of the splay. One model experiment with moderate vegetation heights and low susceptibility for soil compaction was a particularly "efficient" sediment diversion: every 1 m3 of imported sediment resulted in 2.55 m2 of new land.

  11. Inverse scattering theory: Inverse scattering series method for one dimensional non-compact support potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Jie, E-mail: yjie2@uh.edu; Lesage, Anne-Cécile; Hussain, Fazle

    2014-12-15

    The reversion of the Born-Neumann series of the Lippmann-Schwinger equation is one of the standard ways to solve the inverse acoustic scattering problem. One limitation of the current inversion methods based on the reversion of the Born-Neumann series is that the velocity potential should have compact support. However, this assumption cannot be satisfied in certain cases, especially in seismic inversion. Based on the idea of distorted wave scattering, we explore an inverse scattering method for velocity potentials without compact support. The strategy is to decompose the actual medium as a known single interface reference medium, which has the same asymptoticmore » form as the actual medium and a perturbative scattering potential with compact support. After introducing the method to calculate the Green’s function for the known reference potential, the inverse scattering series and Volterra inverse scattering series are derived for the perturbative potential. Analytical and numerical examples demonstrate the feasibility and effectiveness of this method. Besides, to ensure stability of the numerical computation, the Lanczos averaging method is employed as a filter to reduce the Gibbs oscillations for the truncated discrete inverse Fourier transform of each order. Our method provides a rigorous mathematical framework for inverse acoustic scattering with a non-compact support velocity potential.« less

  12. Aerodynamic Performance of a Compact, High Work-Factor Centrifugal Compressor at the Stage and Subcomponent Level

    NASA Technical Reports Server (NTRS)

    Braunscheidel, Edward P.; Welch, Gerard E.; Skoch, Gary J.; Medic, Gorazd; Sharma, Om P.

    2014-01-01

    The measured aerodynamic performance of a compact, high work factor, single-stage centrifugal compressor, comprising an impeller, diffuser, 90-bend, and exit guide vane (EGV), is reported. Performance levels are based on steady-state total-pressure and total-temperature rake and angularity-probe data acquired at key machine rating planes during recent testing at NASA Glenn Research Center. Aerodynamic performance at the stage level are reported for operation between 70 to 105 of design corrected speed, with subcomponent (impeller, diffuser, and exitguide-vane) detailed flow field measurements presented and discussed at the 100 design-speed condition. Individual component losses from measurements are compared with pre-test predictions on a limited basis.

  13. The Ultraviolet and Infrared Star Formation Rates of Compact Group Galaxies: An Expanded Sample

    NASA Technical Reports Server (NTRS)

    Lenkic, Laura; Tzanavaris, Panayiotis; Gallagher, Sarah C.; Desjardins, Tyler D.; Walker, Lisa May; Johnson, Kelsey E.; Fedotov, Konstantin; Charlton, Jane; Cardiff, Ann H.; Durell, Pat R.

    2016-01-01

    Compact groups of galaxies provide insight into the role of low-mass, dense environments in galaxy evolution because the low velocity dispersions and close proximity of galaxy members result in frequent interactions that take place over extended time-scales. We expand the census of star formation in compact group galaxies by Tzanavaris et al. (2010) and collaborators with Swift UVOT, Spitzer IRAC and MIPS 24 m photometry of a sample of 183 galaxies in 46 compact groups. After correcting luminosities for the contribution from old stellar populations, we estimate the dust-unobscured star formation rate (SFRUV) using the UVOT uvw2 photometry. Similarly, we use the MIPS 24 m photometry to estimate the component of the SFR that is obscured by dust (SFRIR). We find that galaxies which are MIR-active (MIR-red), also have bluer UV colours, higher specific SFRs, and tend to lie in Hi-rich groups, while galaxies that are MIR-inactive (MIR-blue) have redder UV colours, lower specific SFRs, and tend to lie in Hi-poor groups. We find the SFRs to be continuously distributed with a peak at about 1 M yr1, indicating this might be the most common value in compact groups. In contrast, the specific SFR distribution is bimodal, and there is a clear distinction between star-forming and quiescent galaxies. Overall, our results suggest that the specific SFR is the best tracer of gas depletion and galaxy evolution in compact groups.

  14. I-Love-Q relations for gravastars and the approach to the black-hole limit

    NASA Astrophysics Data System (ADS)

    Pani, Paolo

    2015-12-01

    The multipole moments and the tidal Love numbers of neutron stars and quark stars satisfy certain relations which are almost insensitive to the star's internal structure. A natural question is whether the same relations hold for different compact objects and how they possibly approach the black-hole limit. Here we consider "gravastars," which are hypothetical compact objects sustained by their internal vacuum energy. Such solutions have been proposed as exotic alternatives to the black-hole paradigm because they can be as compact as black holes and exist in any mass range. By constructing slowly rotating, thin-shell gravastars to quadratic order in the spin, we compute the moment of inertia I , the mass quadrupole moment Q , and the tidal Love number λ in exact form. The I -λ -Q relations of a gravastar are dramatically different from those of an ordinary compact star, but the black-hole limit is continuous; i.e., these quantities approach their Kerr counterparts when the compactness is maximum. Therefore, such relations can be used to discern a gravastar from an ordinary compact star but not to break the degeneracy with the black-hole case. Based on these results, we conjecture that the full multipolar structure and the tidal deformability of a spinning, ultracompact gravastar are identical to those of a Kerr black hole. The approach to the black-hole limit is nonpolynomial, thus differing from the critical behavior recently found for strongly anisotropic neutron stars.

  15. Media additives to promote spheroid circularity and compactness in hanging drop platform.

    PubMed

    Leung, Brendan M; Lesher-Perez, Sasha Cai; Matsuoka, Toshiki; Moraes, Christopher; Takayama, Shuichi

    2015-02-01

    Three-dimensional spheroid cultures have become increasingly popular as drug screening platforms, especially with the advent of different high throughput spheroid forming technologies. However, comparing drug efficacy across different cell types in spheroid culture can be difficult due to variations in spheroid morphologies and transport characteristics. Improving the reproducibility of compact, circular spheroids contributes to standardizing and increasing the fidelity of the desired gradient profiles in these drug screening three-dimensional tissue cultures. In this study we discuss the role that circularity and compaction has on spheroids, and demonstrate the impact methylcellulose (MethoCel) and collagen additives in the culture media can contribute to more compact and circular spheroid morphology. We demonstrate that improved spheroid formation is not a simple function of increased viscosity of the different macromolecule additives, suggesting that other macromolecular characteristics contribute to improved spheroid formation. Of the various macromolecular additives tested for hanging drop culture, MethoCel provided the most desirable spheroid formation. Additionally, the higher viscosity of MethoCel-containing media improved the ease of imaging of cellular spheroids within hanging drop cultures by reducing motion-induced image blur.

  16. Fast synthesis and consolidation of porous FeAl by pressureless Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Dudina, D. V.; Brester, A. E.; Anisimov, A. G.; Bokhonov, B. B.; Legan, M. A.; Novoselov, A. N.; Skovorodin, I. N.; Uvarov, N. F.

    2017-07-01

    We report one-step fast synthesis and consolidation of iron aluminide FeAl of high open porosity by pressureless reactive Spark Plasma Sintering (SPS). The starting material of the Fe-40at.%Al composition was a mixture of an iron powder with an average particle diameter of 4 μm and an aluminum powder with an average particle diameter of 6 μm. The rationale behind the choice of the SPS as a processing technique and fine and comparable sizes of the two reactants for the synthesis of high-open porosity FeAl was realization of fast full chemical conversion of Fe and Al into single-phase FeAl reducing the time available for the compact shrinkage. According to the XRD phase analysis, single-phase FeAl compacts formed after SPS at 800 and 900°C. These compacts had open porosities of 41 and 46%, respectively. The transverse rupture strength of the compacts sintered at 700-900°C was found to change little with the sintering temperature in the selected range.

  17. Photonic Crystal Microchip Laser.

    PubMed

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-09-29

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M 2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the "photonic crystal microchip laser", a very compact and efficient light source emitting high spatial quality high brightness radiation.

  18. Treatment of waste printed wire boards in electronic waste for safe disposal.

    PubMed

    Niu, Xiaojun; Li, Yadong

    2007-07-16

    The printed wire boards (PWBs) in electronic waste (E-waste) have been found to contain large amounts of toxic substances. Studies have concluded that the waste PWBs are hazardous wastes because they fails the toxicity characteristic leaching procedure (TCLP) test with high level of lead (Pb) leaching out. In this study, two treatment methods - high-pressure compaction and cement solidification - were explored for rendering the PWBs into non-hazardous forms so that they may be safely disposed or used. The high-pressure compaction method could turn the PWBs into high-density compacts with significant volume reduction, but the impact resistance of the compacts was too low to keep them intact in the environment for a long run. In contrast, the cement solidification could turn the PWBs into strong monoliths with high impact resistance and relatively high compressive strength. The leaching of the toxic heavy metal Pb from the solidified samples was evaluated by both a dynamic leaching test and the TCLP test. The dynamic leaching results revealed that Pb could be effectively confined in the solidified products under very harsh environmental conditions. The TCLP test results showed that the leaching level of Pb was far below the regulatory level of 5mg/L, suggesting that the solidified PWBs are no longer hazardous. It was concluded that the cement solidification is an effective way to render the waste PWBs into environmentally benign forms so that they can be disposed of as ordinary solid wastes or beneficially used in the place of concrete in some applications.

  19. Effects of Alloying Elements on the Formation of Core-Shell-Structured Reinforcing Particles during Heating of Al–Ti Powder Compacts

    PubMed Central

    Chen, Tijun; Gao, Min; Tong, Yunqi

    2018-01-01

    To prepare core-shell-structured Ti@compound particle (Ti@compoundp) reinforced Al matrix composite via powder thixoforming, the effects of alloying elements, such as Si, Cu, Mg, and Zn, on the reaction between Ti powders and Al melt, and the microstructure of the resulting reinforcements were investigated during heating of powder compacts at 993 K (720 °C). Simultaneously, the situations of the reinforcing particles in the corresponding semisolid compacts were also studied. Both thermodynamic analysis and experiment results all indicate that Si participated in the reaction and promoted the formation of Al–Ti–Si ternary compounds, while Cu, Mg, and Zn did not take part in the reaction and facilitated Al3Ti phase to form to different degrees. The first-formed Al–Ti–Si ternary compound was τ1 phase, and then it gradually transformed into (Al,Si)3Ti phase. The proportion and existing time of τ1 phase all increased as the Si content increased. In contrast, Mg had the largest, Cu had the least, and Si and Zn had an equivalent middle effect on accelerating the reaction. The thicker the reaction shell was, the larger the stress generated in the shell was, and thus the looser the shell microstructure was. The stress generated in (Al,Si)3Ti phase was larger than that in τ1 phase, but smaller than that in Al3Ti phase. So, the shells in the Al–Ti–Si system were more compact than those in the other systems, and Si element was beneficial to obtain thick and compact compound shells. Most of the above results were consistent to those in the semisolid state ones except the product phase constituents in the Al–Ti–Mg system and the reaction rate in the Al–Ti–Zn system. More importantly, the desirable core-shell structured Ti@compoundp was only achieved in the semisolid Al–Ti–Si system. PMID:29342946

  20. Effects of Alloying Elements on the Formation of Core-Shell-Structured Reinforcing Particles during Heating of Al-Ti Powder Compacts.

    PubMed

    Chen, Tijun; Gao, Min; Tong, Yunqi

    2018-01-15

    To prepare core-shell-structured Ti@compound particle (Ti@compound p ) reinforced Al matrix composite via powder thixoforming, the effects of alloying elements, such as Si, Cu, Mg, and Zn, on the reaction between Ti powders and Al melt, and the microstructure of the resulting reinforcements were investigated during heating of powder compacts at 993 K (720 °C). Simultaneously, the situations of the reinforcing particles in the corresponding semisolid compacts were also studied. Both thermodynamic analysis and experiment results all indicate that Si participated in the reaction and promoted the formation of Al-Ti-Si ternary compounds, while Cu, Mg, and Zn did not take part in the reaction and facilitated Al₃Ti phase to form to different degrees. The first-formed Al-Ti-Si ternary compound was τ1 phase, and then it gradually transformed into (Al,Si)₃Ti phase. The proportion and existing time of τ1 phase all increased as the Si content increased. In contrast, Mg had the largest, Cu had the least, and Si and Zn had an equivalent middle effect on accelerating the reaction. The thicker the reaction shell was, the larger the stress generated in the shell was, and thus the looser the shell microstructure was. The stress generated in (Al,Si)₃Ti phase was larger than that in τ1 phase, but smaller than that in Al₃Ti phase. So, the shells in the Al-Ti-Si system were more compact than those in the other systems, and Si element was beneficial to obtain thick and compact compound shells. Most of the above results were consistent to those in the semisolid state ones except the product phase constituents in the Al-Ti-Mg system and the reaction rate in the Al-Ti-Zn system. More importantly, the desirable core-shell structured Ti@compound p was only achieved in the semisolid Al-Ti-Si system.

  1. Clinical translation of handheld optical coherence tomography: practical considerations and recent advancements

    NASA Astrophysics Data System (ADS)

    Monroy, Guillermo L.; Won, Jungeun; Spillman, Darold R.; Dsouza, Roshan; Boppart, Stephen A.

    2017-12-01

    Since the inception of optical coherence tomography (OCT), advancements in imaging system design and handheld probes have allowed for numerous advancements in disease diagnostics and characterization of the structural and optical properties of tissue. OCT system developers continue to reduce form factor and cost, while improving imaging performance (speed, resolution, etc.) and flexibility for applicability in a broad range of fields, and nearly every clinical specialty. An extensive array of components to construct customized systems has also become available, with a range of commercial entities that produce high-quality products, from single components to full systems, for clinical and research use. Many advancements in the development of these miniaturized and portable systems can be linked back to a specific challenge in academic research, or a clinical need in medicine or surgery. Handheld OCT systems are discussed and explored for various applications. Handheld systems are discussed in terms of their relative level of portability and form factor, with mention of the supporting technologies and surrounding ecosystem that bolstered their development. Additional insight from our efforts to implement systems in several clinical environments is provided. The trend toward well-designed, efficient, and compact handheld systems paves the way for more widespread adoption of OCT into point-of-care or point-of-procedure applications in both clinical and commercial settings.

  2. Experimental Investigation of a Piezo-Optical Transducer for Highly Sensitive Strain Gauges

    NASA Astrophysics Data System (ADS)

    Paulish, A. G.; Zagubisalo, P. S.; Barakov, V. N.; Pavlov, M. A.

    2018-03-01

    The characteristics of a piezo-optical transducer of a new design with high strain sensitivity at compact size have been studied.The original form of the photoelastic element provides a considerable increase in the stress in its working area at a given external force, resulting in an increase in the sensitivity of the transducer. The main characteristics of the transducer were measured using a specially designed device. The strain at a given applied force was calculated using a developed mathematical model of the transducer. As a result, the sensitivity to the relative strain was Δ x/ x=3 · 10-10, the dynamic range was at least four orders of magnitude higher and the gauge factor three orders of magnitude higher than those of strain-resistive gauges.

  3. Role of Massive Stars in the Evolution of Primitive Galaxies

    NASA Technical Reports Server (NTRS)

    Heap, Sara

    2012-01-01

    An important factor controlling galaxy evolution is feedback from massive stars. It is believed that the nature and intensity of stellar feedback changes as a function of galaxy mass and metallicity. At low mass and metallicity, feedback from massive stars is mainly in the form of photoionizing radiation. At higher mass and metallicity, it is in stellar winds. IZw 18 is a local blue, compact dwarf galaxy that meets the requirements for a primitive galaxy: low halo mass greater than 10(exp 9)Msun, strong photoionizing radiation, no galactic outflow, and very low metallicity,log(O/H)+12=7.2. We will describe the properties of massive stars and their role in the evolution of IZw 18, based on analysis of ultraviolet images and spectra obtained with HST.

  4. Design of a power-asymmetric actuator for a transtibial prosthesis.

    PubMed

    Bartlett, Harrison L; Lawson, Brian E; Goldfarb, Michael

    2017-07-01

    This paper presents the design and characterization of a power-asymmetric actuator for a transtibial prosthesis. The device is designed to provide the combination of: 1) joint locking, 2) high power dissipation, and 3) low power generation. This actuator functionality allows for a prosthesis to be designed with minimal mass and power consumption relative to a fully-powered robotic prosthesis while maintaining much of the functionality necessary for activities of daily living. The actuator achieves these design characteristics while maintaining a small form factor by leveraging a combination of electromechanical and hydraulic components. The design of the actuator is described herein, and results of an experimental characterization are provided that indicate that the actuator is capable of providing the functional capabilities required of an ankle prosthesis in a compact and lightweight package.

  5. Spacesuit Data Display and Management System

    NASA Technical Reports Server (NTRS)

    Hall, David G.; Sells, Aaron; Shah, Hemal

    2009-01-01

    A prototype embedded avionics system has been designed for the next generation of NASA extra-vehicular-activity (EVA) spacesuits. The system performs biomedical and other sensor monitoring, image capture, data display, and data transmission. An existing NASA Phase I and II award winning design for an embedded computing system (ZIN vMetrics - BioWATCH) has been modified. The unit has a reliable, compact form factor with flexible packaging options. These innovations are significant, because current state-of-the-art EVA spacesuits do not provide capability for data displays or embedded data acquisition and management. The Phase 1 effort achieved Technology Readiness Level 4 (high fidelity breadboard demonstration). The breadboard uses a commercial-grade field-programmable gate array (FPGA) with embedded processor core that can be upgraded to a space-rated device for future revisions.

  6. Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses.

    PubMed

    Okhrimchuk, Andrey; Mezentsev, Vladimir; Shestakov, Alexander; Bennion, Ian

    2012-02-13

    A depressed cladding waveguide with record low loss of 0.12 dB/cm is inscribed in YAG:Nd(0.3at.%) crystal by femtosecond laser pulses with an elliptical beam waist. The waveguide is formed by a set of parallel tracks which constitute the depressed cladding. It is a key element for compact and efficient CW waveguide laser operating at 1064 nm and pumped by a multimode laser diode. Special attention is paid to mechanical stress resulting from the inscription process. Numerical calculation of mode distribution and propagation loss with the elasto-optical effect taken into account leads to the conclusion that the depressed cladding is a dominating factor in waveguide mode formation, while the mechanical stress only slightly distorts waveguide modes.

  7. Multichannel low power time-to-digital converter card with 21 ps precision and full scale range up to 10 μs

    NASA Astrophysics Data System (ADS)

    Tamborini, D.; Portaluppi, D.; Villa, F.; Tisa, S.; Tosi, A.

    2014-11-01

    We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically useful for time-correlated single-photon counting application) through an independent serial link.

  8. Multichannel low power time-to-digital converter card with 21 ps precision and full scale range up to 10 μs.

    PubMed

    Tamborini, D; Portaluppi, D; Villa, F; Tisa, S; Tosi, A

    2014-11-01

    We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically useful for time-correlated single-photon counting application) through an independent serial link.

  9. Speeding Clouds May Reveal Invisible Black Holes

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-07-01

    Several small, speeding clouds have been discovered at the center of our galaxy. A new study suggests that these unusual objects may reveal the lurking presence of inactive black holes.Peculiar Cloudsa) Velocity-integrated intensity map showing the location of the two high-velocity compact clouds, HCN0.0090.044 and HCN0.0850.094, in the context of larger molecular clouds. b) and c) Latitude-velocity and longitude-velocity maps for HCN0.0090.044 and HCN0.0850.094, respectively. d) and e) spectra for the two compacts clouds, respectively. Click for a closer look. [Takekawa et al. 2017]Sgr A*, the supermassive black hole marking the center of our galaxy, is surrounded by a region roughly 650 light-years across known as the Central Molecular Zone. This area at the heart of our galaxy is filled with large amounts of warm, dense molecular gas that has a complex distribution and turbulent kinematics.Several peculiar gas clouds have been discovered within the Central Molecular Zone within the past two decades. These clouds, dubbed high-velocity compact clouds, are characterized by their compact sizes and extremely broad velocity widths.What created this mysterious population of energetic clouds? The recent discovery of two new high-velocity compact clouds, reported on in a paper led by Shunya Takekawa (Keio University, Japan), may help us to answer this question.Two More to the CountUsing the James Clerk Maxwell Telescope in Hawaii, Takekawa and collaborators detected the small clouds near the circumnuclear disk at the centermost part of our galaxy. These two clouds have velocity spreads of -80 to -20 km/s and -80 to 0 km/s and compact sizes of just over 1 light-year. The clouds similar appearances and physical properties suggest that they may both have been formed by the same process.Takekawa and collaborators explore and discard several possible origins for these clouds, such as outflows from massive protostars (no massive, luminous stars have been detected affiliated with these clouds), interaction with supernova remnants (no supernova remnants have been detected toward the clouds), and cloudcloud collisions (such collisions leave other signs, like cavities in the parent cloud, which are not detected here).Masses and velocities of black holes that could create the two high-velocity compact clouds fall above the red and blue lines here. [Takekawa et al. 2017]Revealed on the PlungeAs an alternative explanation, Takekawa and collaborators propose that these two small,speeding cloudswere each created when a massive compact object plunged into a nearby molecular cloud. Since we dont seeany luminous stellar counterparts to the high-velocity compact clouds, this suggests that the responsibleobjects were invisible black holes. As each black hole tore through a molecular cloud, it dragged some of the clouds gas along behind it to form the high-velocity compact cloud.Does this explanation make sense statistically? The authors point out that the number of black holes predicted to silently lurk in the central 30 light-years of the Milky Way is around 10,000. This makes it entirely plausible that we could have caught sight of two of them as they revealed their presence while plunging through molecular clouds.If the authors interpretation is correct, then high-velocity compact clouds provide an excellent opportunity: we can search for these speeding bodiesto potentially discover inactive black holes that would otherwise go undetected.CitationShunya Takekawa et al 2017 ApJL 843 L11. doi:10.3847/2041-8213/aa79ee

  10. Impact of Film Thickness of Ultrathin Dip-Coated Compact TiO2 Layers on the Performance of Mesoscopic Perovskite Solar Cells.

    PubMed

    Masood, Muhammad Talha; Weinberger, Christian; Sarfraz, Jawad; Rosqvist, Emil; Sandén, Simon; Sandberg, Oskar J; Vivo, Paola; Hashmi, Ghufran; Lund, Peter D; Österbacka, Ronald; Smått, Jan-Henrik

    2017-05-31

    Uniform and pinhole-free electron-selective TiO 2 layers are of utmost importance for efficient perovskite solar cells. Here we used a scalable and low-cost dip-coating method to prepare uniform and ultrathin (5-50 nm) compact TiO 2 films on fluorine-doped tin oxide (FTO) glass substrates. The thickness of the film was tuned by changing the TiCl 4 precursor concentration. The formed TiO 2 follows the texture of the underlying FTO substrates, but at higher TiCl 4 concentrations, the surface roughness is substantially decreased. This change occurs at a film thickness close to 20-30 nm. A similar TiCl 4 concentration is needed to produce crystalline TiO 2 films. Furthermore, below this film thickness, the underlying FTO might be exposed resulting in pinholes in the compact TiO 2 layer. When integrated into mesoscopic perovskite solar cells there appears to be a similar critical compact TiO 2 layer thickness above which the devices perform more optimally. The power conversion efficiency was improved by more than 50% (from 5.5% to ∼8.6%) when inserting a compact TiO 2 layer. Devices without or with very thin compact TiO 2 layers display J-V curves with an "s-shaped" feature in the negative voltage range, which could be attributed to immobilized negative ions at the electron-extracting interface. A strong correlation between the magnitude of the s-shaped feature and the exposed FTO seen in the X-ray photoelectron spectroscopy measurements indicates that the s-shape is related to pinholes in the compact TiO 2 layer when it is too thin.

  11. 20 kA PFN capacitor bank with solid-state switching. [pulse forming network for plasma studies

    NASA Technical Reports Server (NTRS)

    Posta, S. J.; Michels, C. J.

    1973-01-01

    A compact high-current pulse-forming network capacitor bank using paralleled silicon controlled rectifiers as switches is described. The maximum charging voltage of the bank is 1kV and maximum load current is 20 kA. The necessary switch equalization criteria and performance with dummy load and an arc plasma generator are described.

  12. Long bunch trains measured using a prototype cavity beam position monitor for the Compact Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cullinan, F. J.; Boogert, S. T.; Farabolini, W.

    2015-11-19

    The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the referencemore » cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2/3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Lastly, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.« less

  13. Preparation of Laponite Bioceramics for Potential Bone Tissue Engineering Applications

    PubMed Central

    Li, Kai; Ju, Yaping; Li, Jipeng; Zhang, Yongxing; Li, Jinhua; Liu, Xuanyong; Shi, Xiangyang; Zhao, Qinghua

    2014-01-01

    We report a facile approach to preparing laponite (LAP) bioceramics via sintering LAP powder compacts for bone tissue engineering applications. The sintering behavior and mechanical properties of LAP compacts under different temperatures, heating rates, and soaking times were investigated. We show that LAP bioceramic with a smooth and porous surface can be formed at 800°C with a heating rate of 5°C/h for 6 h under air. The formed LAP bioceramic was systematically characterized via different methods. Our results reveal that the LAP bioceramic possesses an excellent surface hydrophilicity and serum absorption capacity, and good cytocompatibility and hemocompatibility as demonstrated by resazurin reduction assay of rat mesenchymal stem cells (rMSCs) and hemolytic assay of pig red blood cells, respectively. The potential bone tissue engineering applicability of LAP bioceramic was explored by studying the surface mineralization behavior via soaking in simulated body fluid (SBF), as well as the surface cellular response of rMSCs. Our results suggest that LAP bioceramic is able to induce hydroxyapatite deposition on its surface when soaked in SBF and rMSCs can proliferate well on the LAP bioceramic surface. Most strikingly, alkaline phosphatase activity together with alizarin red staining results reveal that the produced LAP bioceramic is able to induce osteoblast differentiation of rMSCs in growth medium without any inducing factors. Finally, in vivo animal implantation, acute systemic toxicity test and hematoxylin and eosin (H&E)-staining data demonstrate that the prepared LAP bioceramic displays an excellent biosafety and is able to heal the bone defect. Findings from this study suggest that the developed LAP bioceramic holds a great promise for treating bone defects in bone tissue engineering. PMID:24955961

  14. Long bunch trains measured using a prototype cavity beam position monitor for the Compact Linear Collider

    NASA Astrophysics Data System (ADS)

    Cullinan, F. J.; Boogert, S. T.; Farabolini, W.; Lefevre, T.; Lunin, A.; Lyapin, A.; Søby, L.; Towler, J.; Wendt, M.

    2015-11-01

    The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the reference cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2 /3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Finally, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.

  15. Monte Carlo simulation of a compact microbeam radiotherapy system based on carbon nanotube field emission technology.

    PubMed

    Schreiber, Eric C; Chang, Sha X

    2012-08-01

    Microbeam radiation therapy (MRT) is an experimental radiotherapy technique that has shown potent antitumor effects with minimal damage to normal tissue in animal studies. This unique form of radiation is currently only produced in a few large synchrotron accelerator research facilities in the world. To promote widespread translational research on this promising treatment technology we have proposed and are in the initial development stages of a compact MRT system that is based on carbon nanotube field emission x-ray technology. We report on a Monte Carlo based feasibility study of the compact MRT system design. Monte Carlo calculations were performed using EGSnrc-based codes. The proposed small animal research MRT device design includes carbon nanotube cathodes shaped to match the corresponding MRT collimator apertures, a common reflection anode with filter, and a MRT collimator. Each collimator aperture is sized to deliver a beam width ranging from 30 to 200 μm at 18.6 cm source-to-axis distance. Design parameters studied with Monte Carlo include electron energy, cathode design, anode angle, filtration, and collimator design. Calculations were performed for single and multibeam configurations. Increasing the energy from 100 kVp to 160 kVp increased the photon fluence through the collimator by a factor of 1.7. Both energies produced a largely uniform fluence along the long dimension of the microbeam, with 5% decreases in intensity near the edges. The isocentric dose rate for 160 kVp was calculated to be 700 Gy∕min∕A in the center of a 3 cm diameter target. Scatter contributions resulting from collimator size were found to produce only small (<7%) changes in the dose rate for field widths greater than 50 μm. Dose vs depth was weakly dependent on filtration material. The peak-to-valley ratio varied from 10 to 100 as the separation between adjacent microbeams varies from 150 to 1000 μm. Monte Carlo simulations demonstrate that the proposed compact MRT system design is capable of delivering a sufficient dose rate and peak-to-valley ratio for small animal MRT studies.

  16. Roller compaction of moist pharmaceutical powders.

    PubMed

    Wu, C-Y; Hung, W-L; Miguélez-Morán, A M; Gururajan, B; Seville, J P K

    2010-05-31

    The compression behaviour of powders during roller compaction is dominated by a number of factors, such as process conditions (roll speed, roll gap, feeding mechanisms and feeding speed) and powder properties (particle size, shape, moisture content). The moisture content affects the powder properties, such as the flowability and cohesion, but it is not clear how the moisture content will influence the powder compression behaviour during roller compaction. In this study, the effect of moisture contents on roller compaction behaviour of microcrystalline cellulose (MCC, Avicel PH102) was investigated experimentally. MCC samples of different moisture contents were prepared by mixing as-received MCC powder with different amount of water that was sprayed onto the powder bed being agitated in a rotary mixer. The flowability of these samples were evaluated in terms of the poured angle of repose and flow functions. The moist powders were then compacted using the instrumented roller compactor developed at the University of Birmingham. The flow and compression behaviour during roller compaction and the properties of produced ribbons were examined. It has been found that, as the moisture content increases, the flowability of moist MCC powders decreases and the powder becomes more cohesive. As a consequence of non-uniform flow of powder into the compaction zone induced by the friction between powder and side cheek plates, all produced ribbons have a higher density in the middle and lower densities at the edges. For the ribbons made of powders with high moisture contents, different hydration states across the ribbon width were also identified from SEM images. Moreover, it was interesting to find that these ribbons were split into two halves. This is attributed to the reduction in the mechanical strength of moist powder compacts with high moisture contents produced at high compression pressures. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  17. A search for moderate-redshift survivors from the population of luminous compact passive galaxies at high redshift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stockton, Alan; Shih, Hsin-Yi; Larson, Kirsten

    2014-01-10

    From a search of a ∼2400 deg{sup 2} region covered by both the Sloan Digital Sky Survey and UKIRT Infrared Deep Sky Survey databases, we have attempted to identify galaxies at z ∼ 0.5 that are consistent with their being essentially unmodified examples of the luminous passive compact galaxies found at z ∼ 2.5. After isolating good candidates via deeper imaging, we further refine the sample with Keck moderate-resolution spectroscopy and laser guide star adaptive-optics imaging. For four of the five galaxies that so far remain after passing through this sieve, we analyze plausible star-formation histories based on our spectramore » in order to identify galaxies that may have survived with little modification from the population formed at high redshift. We find two galaxies that are consistent with having formed ≳ 95% of their mass at z > 5. We attempt to estimate masses both from our stellar population determinations and from velocity dispersions. Given the high frequency of small axial ratios, both in our small sample and among samples found at high redshifts, we tentatively suggest that some of the more extreme examples of passive compact galaxies may have prolate morphologies.« less

  18. Evaluation of the operatorial Q-system for non-compact super spin chains

    NASA Astrophysics Data System (ADS)

    Frassek, Rouven; Marboe, Christian; Meidinger, David

    2017-09-01

    We present an approach to evaluate the full operatorial Q-system of all u(p,q\\Big|r+s) -invariant spin chains with representations of Jordan-Schwinger type. In particular, this includes the super spin chain of planar N=4 super Yang-Mills theory at one loop in the presence of a diagonal twist. Our method is based on the oscillator construction of Q-operators. The Q-operators are built as traces over Lax operators which are degenerate solutions of the Yang-Baxter equation. For non-compact representations these Lax operators may contain multiple infinite sums that conceal the form of the resulting functions. We determine these infinite sums and calculate the matrix elements of the lowest level Q-operators. Transforming the Lax operators corresponding to the Q-operators into a representation involving only finite sums allows us to take the supertrace and to obtain the explicit form of the Q-operators in terms of finite matrices for a given magnon sector. Imposing the functional relations, we then bootstrap the other Q-operators from those of the lowest level. We exemplify this approach for non-compact spin - s spin chains and apply it to N=4 at the one-loop level using the BMN vacuum as an example.

  19. Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Whyte, C.; Leigh, R. J.; Lobb, D.; Williams, T.; Remedios, J. J.; Cutter, M.; Monks, P. S.

    2009-08-01

    A breadboard demonstrator of a novel UV/VIS grating spectrometer for atmospheric research has been developed based upon a concentric arrangement of a spherical meniscus lens, concave spherical mirror and curved diffraction grating suitable for a range of remote sensing applications from the ground or space. The spectrometer is compact and provides high optical efficiency and performance benefits over traditional instruments. The concentric design is capable of handling high relative apertures, owing to spherical aberration and coma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called "smile", the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. This form of spectrometer design offers the potential for an exceptionally compact instrument for differential optical absorption spectroscopy (DOAS) applications particularly from space (LEO, GEO orbits) and from HAPs or ground-based platforms. The breadboard demonstrator has been shown to offer high throughput and a stable Gaussian line shape with a spectral range from 300 to 450 nm at better than 0.5 nm resolution, suitable for a number of typical DOAS applications.

  20. Local Analysis of Shock Capturing Using Discontinuous Galerkin Methodology

    NASA Technical Reports Server (NTRS)

    Atkins, H. L.

    1997-01-01

    The compact form of the discontinuous Galerkin method allows for a detailed local analysis of the method in the neighborhood of the shock for a non-linear model problem. Insight gained from the analysis leads to new flux formulas that are stable and that preserve the compactness of the method. Although developed for a model equation, the flux formulas are applicable to systems such as the Euler equations. This article presents the analysis for methods with a degree up to 5. The analysis is accompanied by supporting numerical experiments using Burgers' equation and the Euler equations.

  1. Dikir Farmasi: folk songs for health education

    PubMed Central

    Bahri, Salmah; Lee, Kah Seng; Adenan, Mohammad Aswady; Murugiah, Muthu Kumar; Khan, Tahir Mehmood; Neoh, Chin Fen; Long, Chiau Ming

    2016-01-01

    Abstract In an effort to enhance public awareness, we develop Dikir Farmasi as an innovative approach to deliver health information. Dikir Farmasi combines the elements of dikir barat (a type of traditional folk song rhythm) and traditional sketches which are popular in the state of Kelantan, Malaysia. These sketches and dikir barat rhythmic songs, with lyrics touch on issues such as drug abuse and regulation are presented in an entertaining and humorous way. Health promotion messages are disseminated using Dikir Farmasi in the form of compact disks, video compact disks, stage performance, exhibition, social media, printed media (signboard, brochure and flyer). PMID:27695527

  2. Analytic gravitational waveforms for generic precessing compact binaries

    NASA Astrophysics Data System (ADS)

    Chatziioannou, Katerina; Klein, Antoine; Cornish, Neil; Yunes, Nicolas

    2017-01-01

    Gravitational waves from compact binaries are subject to amplitude and phase modulations arising from interactions between the angular momenta of the system. Failure to account for such spin-precession effects in gravitational wave data analysis could hinder detection and completely ruin parameter estimation. In this talk I will describe the construction of closed-form, frequency-domain waveforms for fully-precessing, quasi-circular binary inspirals. The resulting waveforms can model spinning binaries of arbitrary spin magnitudes, spin orientations, and masses during the inspiral phase. I will also describe ongoing efforts to extend these inspiral waveforms to the merger and ringdown phases.

  3. Differential settlement of a geosynthetic reinforced soil abutment : full-scale investigation.

    DOT National Transportation Integrated Search

    2015-05-01

    The Geosynthetic Reinforced Soil Integrated Bridge System (GRS-IBS) uses alternating layers of closely spaced : geosynthetic reinforcement and well-compacted granular fill to support the bridge superstructure and form an integrated roadway : approach...

  4. [A study of the properties of compacts from a mixed dry binder on the base of alpha-lactose monohydrate and microcrystalline cellulose].

    PubMed

    Muzíková, J; Páleník, L

    2005-05-01

    The paper studies the tensile strength and disintegration time of compacts from the mixed dry binder MicroceLac 100. Tensile strength and disintegration time of tablets were tested in connection with the following factors: compression force, compression rate, addition of magnesium stearate, addition of ascorbic acid, the model active principle. The compression forces employed were 5, 6, and 7 kN, compression rates, 20 and 40 mm/min, stearate concentration 0, 0.4, and 0.8%, ascorbic acid concentration, 25 and 50%. With increasing addition of the stearate, the strength of compacts from MicroceLacu 100 was decreased for both compression rates, but with a higher rate, in a concentration of 0.4%, the decrease in strength was more marked. Disintegration time was increased with compression force and the addition of the stearate, but in all cases it was very short. Increased addition of ascorbic acid further intensified the decrease in the strength of compacts and decreased the disintegration time and the effect of the stearate on it. Disintegration time of compacts with ascorbic acid in a concentration of 50% did not increase with compression force.

  5. PAC characterization of Gd and Y doped nanostructured zirconia solid solutions

    NASA Astrophysics Data System (ADS)

    Caracoche, María C.; Martínez, Jorge A.; Pasquevich, Alberto F.; Rivas, Patricia C.; Djurado, Elizabeth; Boulc'h, Florence

    2007-02-01

    A perturbed angular correlation (PAC) study as a function of temperature has been carried out on spray pyrolysis-derived powders and compacts of 2.5 mol% Y 2O 3-ZrO 2 and 2 mol% Gd 2O 3-ZrO 2 nanostructured tetragonal zirconias. The powders undergo the ordinary thermal transformation between the two known defective t‧- and regular t-tetragonal forms and also a partial and irreversible change to an ordered cubic configuration. The dynamical nature of the t‧-form leads to an activation energy of about 0.15 eV for the oxygen vacancies movement. The as-obtained compacts do not exhibit any known cubic nanostructure but some additional contributions. In both of them a hyperfine component assigned to the orthorhombic phase is determined. In the smaller cation Y doped ceramic a small amount of monoclinic phase reflects an incomplete stabilization.

  6. Design of off-axis four-mirror optical system without obscuration based on free-form surface

    NASA Astrophysics Data System (ADS)

    Huang, Chenxu; Liu, Xin

    2015-11-01

    With the development of modern military technology, the requirements of airborne electro-optical search and tracking system are increasing on target detection and recognition. However, traditional off-axis three-mirror system couldn't meet the requirements for reducing weight and compacting size in some circumstances. Based on Seidel aberration theory, by restricting the aberration functions, the optical system could achieve initial construction parameters. During the designing process, decenters and tilts of mirrors were adjusted continuously to eliminate the obscurations. To balance off-axis aberration and increase angle of view, the free-form mirror was introduced into the optical system. Then an unobstructed optical system with effective focal length of 100 mm, FOV of 16°×16°, and relative aperture as F/7 is designed. The results show that the system structure is compact, with imaging qualities approaching diffraction limit.

  7. An interesting case of cryptogenic stroke in a young man due to left ventricular non-compaction: role of cardiac MRI in the accurate diagnosis.

    PubMed

    Kannan, Arun; Das, Anindita; Janardhanan, Rajesh

    2014-06-24

    A 28-year-old man arrived for an outpatient cardiac MRI (CMR) study to evaluate cardiac structure. At the age of 24 the patient presented with acute onset expressive aphasia and was diagnosed with ischaemic stroke. Echocardiography at that time was reported as 'apical wall thickening consistent with apical hypertrophic cardiomyopathy'. CMR revealed a moderately dilated left ventricle with abnormal appearance of the left ventricular (LV) apical segments. Further evaluation was consistent with a diagnosis of LV non-compaction (LVNC) cardiomyopathy with a ratio of non-compacted to compacted myocardium measuring 3. There was extensive delayed hyperenhancement signal involving multiple segments representing a significant myocardial scar which is shown to have a prognostic role. Our patient, with no significant cerebrovascular risk factors, would likely have had an embolic stroke. This case demonstrates the role of CMR in accurately diagnosing LVNC in a patient with young stroke where prior echocardiography was non-diagnostic. 2014 BMJ Publishing Group Ltd.

  8. Morphology and mixing state of aged soot particles at a remote marine free troposphere site: Implications for optical properties

    DOE PAGES

    China, Swarup; Scarnato, Barbara; Owen, Robert C.; ...

    2015-01-14

    The radiative properties of soot particles depend on their morphology and mixing state, but their evolution during transport is still elusive. In this paper, we report observations from an electron microscopy analysis of individual particles transported in the free troposphere over long distances to the remote Pico Mountain Observatory in the Azores in the North Atlantic. Approximately 70% of the soot particles were highly compact and of those 26% were thinly coated. Discrete dipole approximation simulations indicate that this compaction results in an increase in soot single scattering albedo by a factor of ≤2.17. The top of the atmosphere directmore » radiative forcing is typically smaller for highly compact than mass-equivalent lacy soot. Lastly, the forcing estimated using Mie theory is within 12% of the forcing estimated using the discrete dipole approximation for a high surface albedo, implying that Mie calculations may provide a reasonable approximation for compact soot above remote marine clouds.« less

  9. Pathwise upper semi-continuity of random pullback attractors along the time axis

    NASA Astrophysics Data System (ADS)

    Cui, Hongyong; Kloeden, Peter E.; Wu, Fuke

    2018-07-01

    The pullback attractor of a non-autonomous random dynamical system is a time-indexed family of random sets, typically having the form {At(ṡ) } t ∈ R with each At(ṡ) a random set. This paper is concerned with the nature of such time-dependence. It is shown that the upper semi-continuity of the mapping t ↦At(ω) for each ω fixed has an equivalence relationship with the uniform compactness of the local union ∪s∈IAs(ω) , where I ⊂ R is compact. Applied to a semi-linear degenerate parabolic equation with additive noise and a wave equation with multiplicative noise we show that, in order to prove the above locally uniform compactness and upper semi-continuity, no additional conditions are required, in which sense the two properties appear to be general properties satisfied by a large number of real models.

  10. Soft X-Ray Tomography Reveals Gradual Chromatin Compaction and Reorganization during Neurogenesis In Vivo

    DOE PAGES

    Le Gros, Mark A.; Clowney, E. Josephine; Magklara, Angeliki; ...

    2016-11-15

    The realization that nuclear distribution of DNA, RNA, and proteins differs between cell types and developmental stages suggests that nuclear organization serves regulatory functions. Understanding the logic of nuclear architecture and how it contributes to differentiation and cell fate commitment remains challenging. Here, we use soft X-ray tomography (SXT) to image chromatin organization, distribution, and biophysical properties during neurogenesis in vivo. Our analyses reveal that chromatin with similar biophysical properties forms an elaborate connected network throughout the entire nucleus. Although this interconnectivity is present in every developmental stage, differentiation proceeds with concomitant increase in chromatin compaction and re-distribution of condensed chromatinmore » toward the nuclear core. HP1β, but not nucleosome spacing or phasing, regulates chromatin rearrangements because it governs both the compaction of chromatin and its interactions with the nuclear envelope. Our experiments introduce SXT as a powerful imaging technology for nuclear architecture.« less

  11. Shelterin Protects Chromosome Ends by Compacting Telomeric Chromatin

    PubMed Central

    Bandaria, Jigar N.; Qin, Peiwu; Berk, Veysel; Chu, Steven; Yildiz, Ahmet

    2016-01-01

    SUMMARY Telomeres, repetitive DNA sequences at chromosome ends, are shielded against the DNA damage response (DDR) by the shelterin complex. To understand how shelterin protects telomere ends, we investigated the structural organization of telomeric chromatin in human cells using super-resolution microscopy. We found that telomeres form compact globular structures through a complex network of interactions between shelterin subunits and telomeric DNA, and not by DNA methylation, histone deacetylation or histone trimethylation at telomeres and subtelomeric regions. Mutations that abrogate shelterin assembly or removal of individual subunits from telomeres cause up to a 10-fold increase in telomere volume. Decompacted telomeres become more accessible to telomere-associated proteins and accumulate DDR signals. Recompaction of telomeric chromatin using an orthogonal method displaces DDR signals from telomeres. These results reveal the chromatin remodeling activity of shelterin and demonstrate that shelterin-mediated compaction of telomeric chromatin provides robust protection of chromosome ends against the DDR machinery. PMID:26871633

  12. Effect of molding pressure on fabrication of low-crystalline calcite block.

    PubMed

    Lin, Xin; Matsuya, Shigeki; Nakagawa, Masaharu; Terada, Yoshihiro; Ishikawa, Kunio

    2008-02-01

    We have reported that low-crystalline porous calcite block, which is useful as a bone substitute or a source material to prepare apatite-type bone fillers could be fabricated by exposing calcium hydroxide compact to carbon dioxide gas saturated with water vapor. In the present study, we investigated the effect of molding pressure on the transformation of calcium hydroxide into calcite and the mechanical strength of the carbonated compact. Transformation into calcite was almost completed within 72 h, however, a small amount of Ca(OH)(2) still remained unreacted at higher molding pressure because of incomplete penetration of CO(2) gas into the interparticle space due to dense packing of Ca(OH)(2) particles. On the other hand, high molding pressure resulted in an increase in diametral tensile strength (DTS) of the calcite compact formed. Critical porosity of the calcite block was calculated as approximately 68%.

  13. A two-phase micromorphic model for compressible granular materials

    NASA Astrophysics Data System (ADS)

    Paolucci, Samuel; Li, Weiming; Powers, Joseph

    2009-11-01

    We introduce a new two-phase continuum model for compressible granular material based on micromorphic theory and treat it as a two-phase mixture with inner structure. By taking an appropriate number of moments of the local micro scale balance equations, the average phase balance equations result from a systematic averaging procedure. In addition to equations for mass, momentum and energy, the balance equations also include evolution equations for microinertia and microspin tensors. The latter equations combine to yield a general form of a compaction equation when the material is assumed to be isotropic. When non-linear and inertial effects are neglected, the generalized compaction equation reduces to that originally proposed by Bear and Nunziato. We use the generalized compaction equation to numerically model a mixture of granular high explosive and interstitial gas. One-dimensional shock tube and piston-driven solutions are presented and compared with experimental results and other known solutions.

  14. Refractive index sensor based on lateral-offset of coreless silica interferometer

    NASA Astrophysics Data System (ADS)

    Baharin, Nur Faizzah; Azmi, Asrul Izam; Abdullah, Ahmad Sharmi; Mohd Noor, Muhammad Yusof

    2018-02-01

    A compact, cost-effective and high sensitivity fiber interferometer refractive index (RI) sensor based on symmetrical offset coreless silica fiber (CSF) configuration is proposed, optimized and demonstrated. The sensor is formed by splicing a section of CSF between two CSF sections in an offset manner. Thus, two distinct optical paths are created with large index difference, the first path through the connecting CSF sections and the second path is outside the CSF through the surrounding media. RI sensing is established from direct interaction of light with surrounding media, hence high sensitivity can be achieved with a relatively compact sensor length. In the experimental work, a 1.5 mm sensor demonstrates RI sensitivity of 750 nm/RIU for RI range between 1.33 and 1.345. With the main attributes of high sensitivity and compact size, the proposed sensor can be further developed for related applications including blood diagnosis, water quality control and food industries.

  15. Fast kinetics of chromatin assembly revealed by single-molecule videomicroscopy and scanning force microscopy

    PubMed Central

    Ladoux, Benoit; Quivy, Jean-Pierre; Doyle, Patrick; Roure, Olivia du; Almouzni, Geneviève; Viovy, Jean-Louis

    2000-01-01

    Fluorescence videomicroscopy and scanning force microscopy were used to follow, in real time, chromatin assembly on individual DNA molecules immersed in cell-free systems competent for physiological chromatin assembly. Within a few seconds, molecules are already compacted into a form exhibiting strong similarities to native chromatin fibers. In these extracts, the compaction rate is more than 100 times faster than expected from standard biochemical assays. Our data provide definite information on the forces involved (a few piconewtons) and on the reaction path. DNA compaction as a function of time revealed unique features of the assembly reaction in these extracts. They imply a sequential process with at least three steps, involving DNA wrapping as the final event. An absolute and quantitative measure of the kinetic parameters of the early steps in chromatin assembly under physiological conditions could thus be obtained. PMID:11114182

  16. Influence of a Polymer Coating and the Compacting Pressure on the Magnetic Properties of Cobalt-Based Amorphous Alloys

    NASA Astrophysics Data System (ADS)

    Skulkina, N. A.; Ivanov, O. A.; Mazeeva, A. K.; Kuznetsov, P. A.; Stepanova, E. A.; Blinova, O. V.; Mikhalitsyna, E. A.; Denisov, N. D.; Chekis, V. I.

    2017-12-01

    The influence of a polymer coating applied in the manufacture of magnetic shields on magnetic properties has been studied based on the example of ribbons of a cobalt-based soft magnetic alloy (Co-Fe-Ni-Cr-Mn-Si-B) with the saturation magnetostriction close to zero. The influence of polymer coating has been separated from the effect of the compacting pressure applied upon its formation. The polymer coating was formed on the ribbon in the states with different signs of the saturation magnetostriction. It has been shown that the compacting pressure and the polymer coating have opposite effects on the properties of the ribbon and that these impacts partly level off upon the formation of the coating. The degree of the influence of the polymer coating on the magnetic properties depends on the state of the ribbon and on the sign of the saturation magnetostriction in this state.

  17. Determination of an Optimal Commercial Data Bus Architecture for a Flight Data System

    NASA Technical Reports Server (NTRS)

    Crawford, Kevin; Johnson, Martin; Humphries, Rick (Technical Monitor)

    2001-01-01

    NASA/Marshall Space Flight Center (MSFC) is continually looking for methods to reduce cost and schedule while keeping the quality of work high. MSFC is NASA's lead center for space transportation and microgravity research. When supporting NASA's programs several decisions concerning the avionics system must be made. Usually many trade studies must be conducted to determine the best ways to meet the customer's requirements. When deciding the flight data system, one of the first trade studies normally conducted is the determination of the data bus architecture. The schedule, cost, reliability, and environments are some of the factors that are reviewed in the determination of the data bus architecture. Based on the studies, the data bus architecture could result in a proprietary data bus or a commercial data bus. The cost factor usually removes the proprietary data bus from consideration. The commercial data bus's range from Versa Module Eurocard (VME) to Compact PCI to STD 32 to PC 104. If cost, schedule and size are prime factors, VME is usually not considered. If the prime factors are cost, schedule, and size then Compact PCI, STD 32 and PC104 are the choices for the data bus architecture. MSFC's center director has funded a study from his discretionary fund to determine an optimal low cost commercial data bus architecture. The goal of the study is to functionally and environmentally test Compact PCI, STD 32 and PC 104 data bus architectures. This paper will summarize the results of the data bus architecture study.

  18. Flat liquid crystal diffractive lenses with variable focus and magnification

    NASA Astrophysics Data System (ADS)

    Valley, Pouria

    Non-mechanical variable lenses are important for creating compact imaging devices. Various methods employing dielectrically actuated lenses, membrane lenses, and liquid crystal lenses were previously proposed [1-4]. In This dissertation the design, fabrication, and characterization of innovative flat tunable-focus liquid crystal diffractive lenses (LCDL) are presented. LCDL employ binary Fresnel zone electrodes fabricated on Indium-Tin-Oxide using conventional micro-photolithography. The light phase can be adjusted by varying the effective refractive index of a nematic liquid crystal sandwiched between the electrodes and a reference substrate. Using a proper voltage distribution across various electrodes the focal length can be changed between several discrete values. Electrodes are shunted such that the correct phase retardation step sequence is achieved. If the number of 2pi zone boundaries is increased by a factor of m the focal length is changed from f to f/m based on the digitized Fresnel zone equation: f = rm2/2mlambda, where r m is mth zone radius, and lambda is the wavelength. The chromatic aberration of the diffractive lens is addressed and corrected by adding a variable fluidic lens. These LCDL operate at very low voltage levels (+/-2.5V ac input), exhibit fast switching times (20-150 ms), can have large apertures (>10 mm), and small form factor, and are robust and insensitive to vibrations, gravity, and capillary effects that limit membrane and dielectrically actuated lenses. Several tests were performed on the LCDL including diffraction efficiency measurement, switching dynamics, and hybrid imaging with a refractive lens. Negative focal lengths are achieved by adjusting the voltages across electrodes. Using these lenses in combination, magnification can be changed and zoom lenses can be formed. These characteristics make LCDL a good candidate for a variety of applications including auto-focus and zoom lenses in compact imaging devices such as camera phones. A business plan centered on this technology was developed as part of the requirements for the minor in entrepreneurship from the Eller College of Management. An industrial analysis is presented in this study that involves product development, marketing, and financial analyses (Appendix I).

  19. Development of the compaction machine for the production of new shapes of pressed biofuels

    NASA Astrophysics Data System (ADS)

    Šooš, Ľubomír; Matúš, Miloš; Beniak, Juraj; Križan, Peter

    2018-01-01

    Briquettes and especially pellets became the fuel of the 21st century. These are pressed biofuels made from the biomass which have the required heat, shape, size, density and mechanical properties. Today, these pressed biofuels are made in the form of a block, cylinder, n-angle octagonal, either without or with the holes. Several analyses confirm that neither a block, nor the cylinder is the optimal shape for the production of pressed biofuels, both in terms of the production, storage, automated transport in the combustion process and the optimum combustion process. For this reason, we began to analyse different shape, size, density and mechanical properties of briquettes and pellets. In the first part of this article, the biofuel is described from these points of view. The result of this analysis is the new optimized spheroid shape of the pressed biofuels. The goal of the second part of the article is the construction design of a new compacting machine for manufacturing of the optimized shape of the compacted piece. The task is demanding due to the fact that in comparison to the production of cylindrical or square-shaped compacted pieces, the manufacturing of ‘quasi-spherical’ compacted pieces is discontinuous. Furthermore, unlike the standard types of compaction presses which compact the material between the two cylinders, it is necessary to hold the compacted piece for certain time under high pressure and at the high temperature. In this way, the lignin contained in compacted raw material becomes plastic and no further binding material needs to be added. The kinematics of a new compactor was therefore divided into two stages- ‘the stage of compacting’ and ‘the stage of load bearing capacity. This article describes an innovative and patent protected principle of compactor construction. The prototype of a designed machine has already been produced in our department. The first test results of this machine production as described in the conclusion of the paper confirm that kinematics and compactor construction were both correct.

  20. A conserved αβ transmembrane interface forms the core of a compact T-cell receptor–CD3 structure within the membrane

    PubMed Central

    Krshnan, Logesvaran; Park, Soohyung; Im, Wonpil; Call, Melissa J.; Call, Matthew E.

    2016-01-01

    The T-cell antigen receptor (TCR) is an assembly of eight type I single-pass membrane proteins that occupies a central position in adaptive immunity. Many TCR-triggering models invoke an alteration in receptor complex structure as the initiating event, but both the precise subunit organization and the pathway by which ligand-induced alterations are transferred to the cytoplasmic signaling domains are unknown. Here, we show that the receptor complex transmembrane (TM) domains form an intimately associated eight-helix bundle organized by a specific interhelical TCR TM interface. The salient features of this core structure are absolutely conserved between αβ and γδ TCR sequences and throughout vertebrate evolution, and mutations at key interface residues caused defects in the formation of stable TCRαβ:CD3δε:CD3γε:ζζ complexes. These findings demonstrate that the eight TCR–CD3 subunits form a compact and precisely organized structure within the membrane and provide a structural basis for further investigation of conformationally regulated models of transbilayer TCR signaling. PMID:27791034

Top