Massive Compact Halo Objects from the relics of the cosmic quark-hadron transition
NASA Astrophysics Data System (ADS)
Banerjee, Shibaji; Bhattacharyya, Abhijit; Ghosh, Sanjay K.; Raha, Sibaji; Sinha, Bikash; Toki, Hiroshi
2003-03-01
The existence of compact gravitational lenses, with masses around 0.5 Msolar, has been reported in the halo of the Milky Way. The nature of these dark lenses is as yet obscure, particularly because these objects have masses well above the threshold for nuclear fusion. In this work, we show that they find a natural explanation as being the evolutionary product of the metastable false vacuum domains (the so-called strange quark nuggets) formed in a first order cosmic quark-hadron transition.
REVIEWS OF TOPICAL PROBLEMS: Small-scale structure of dark matter and microlensing
NASA Astrophysics Data System (ADS)
Gurevich, Aleksandr V.; Zybin, Kirill P.; Sirota, V. A.
1997-09-01
It has been revealed using microlensing that a considerable part, possibly more than half, of the dark matter in the halo of our Galaxy consists of objects with a mass spectrum ranging from 0.05 to 0.8 of the solar mass. What is the nature of these objects? There exist two hypotheses. According to one, these are Jupiter type planets or small stars (brown and white dwarfs) consisting of normal baryonic matter. According to the other, these are non-compact objects, i.e., small-scale formations in non-baryonic dark matter. Here, a theory is proposed describing the possibility of the existence of non-compact objects in the halo of our Galaxy, their structure and formation from non-baryonic matter. The theory of microlensing on compact and non-compact objects is considered in detail. The results of microlensing observations are described and compared with theory. Possible astrophysical manifestations of the presence of small-scale structure are pointed out. The field is being extensively studied and is of fundamental interest for cosmology and astrophysics.
A new direction for dark matter research: intermediate-mass compact halo objects
NASA Astrophysics Data System (ADS)
Chapline, George F.; Frampton, Paul H.
2016-11-01
The failure to find evidence for elementary particles that could serve as the constituents of dark matter brings to mind suggestions that dark matter might consist of massive compact objects (MACHOs). In particular, it has recently been argued that MACHOs with masses > 15Msolar may have been prolifically produced at the onset of the big bang. Although a variety of astrophysical signatures for primordial MACHOs with masses in this range have been discussed in the literature, we favor a strategy that uses the potential for magnification of stars outside our galaxy due to gravitational microlensing of these stars by MACHOs in the halo of our galaxy. We point out that the effect of the motion of the Earth on the shape of the micro-lensing brightening curves provides a promising approach to testing over the course of next several years the hypothesis that dark matter consists of massive compact objects.
A new direction for dark matter research: intermediate-mass compact halo objects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapline, George F.; Frampton, Paul H., E-mail: george.chapline@gmail.com, E-mail: paul.h.frampton@gmail.com
2016-11-01
The failure to find evidence for elementary particles that could serve as the constituents of dark matter brings to mind suggestions that dark matter might consist of massive compact objects (MACHOs). In particular, it has recently been argued that MACHOs with masses > 15 M {sub ⊙} may have been prolifically produced at the onset of the big bang. Although a variety of astrophysical signatures for primordial MACHOs with masses in this range have been discussed in the literature, we favor a strategy that uses the potential for magnification of stars outside our galaxy due to gravitational microlensing of thesemore » stars by MACHOs in the halo of our galaxy. We point out that the effect of the motion of the Earth on the shape of the micro-lensing brightening curves provides a promising approach to testing over the course of next several years the hypothesis that dark matter consists of massive compact objects.« less
Detecting sub-lunar mass compact objects toward the Local Group galaxies
NASA Astrophysics Data System (ADS)
Inoue, Kaiki Taro
2018-01-01
By monitoring a large number of stars in the Local Group galaxies, we can detect nanolensing events by sub-lunar mass compact objects (SULCOs) such as primordial black holes (PBHs) and rogue (free-floating) dwarf planets in the Milky Way halo. In contarst to microlensing by stellar-mass objects, the finite-source size effect becomes important and the lensing time duration becomes shorter (∼10 1 - 4s). Using stars with V < 26 in M33 as sources, for one-night observation, we would be able to detect 10 3 - 4 nanolensing events caused by SULCOs in the Milky Way halo with a mass of 10-9M⊙ to 10-7M⊙ for sources with S/N > 5 if SULCOs constitute all the dark matter components. Moreover, we expect 10 1 - 2 events in which bright blue stars with S/N > 100 are weakly amplified due to lensing by SULCOs with a mass range of 10-11M⊙ to 10-9M⊙ . Thus the method would open a new window on SULCOs in the Milky Way halo that would otherwise not be observable.
A direct gravitational lensing test for 10 exp 6 solar masses black holes in halos of galaxies
NASA Technical Reports Server (NTRS)
Wambsganss, Joachim; Paczynski, Bohdan
1992-01-01
We propose a method that will be able to detect or exclude the existence of 10 exp 6 solar masses black holes in the halos of galaxies. VLBA radio maps of two milliarcsecond jets of a gravitationally lensed quasar will show the signature of these black holes - if they exist. If there are no compact objects in this mass range along the line of sight, the two jets should be linear mappings of each other. If they are not, there must be compact objects of about 10 exp 6 solar masses in the halo of the galaxy that deform the images by gravitational deflection. We present numerical simulations for the two jets A and B of the double quasar 0957 + 561, but the method is valid for any gravitationally lensed quasar with structure on milliarcsecond scales. As a by-product from high-quality VLBA maps of jets A and B, one will be able to tell which features in the maps are intrinsic in the original jet and which are only an optical illusion, i.e., gravitational distortions by black holes along the line of sight.
Updating the MACHO fraction of the Milky Way dark halo with improved mass models
NASA Astrophysics Data System (ADS)
Calcino, Josh; García-Bellido, Juan; Davis, Tamara M.
2018-05-01
Recent interest in primordial black holes as a possible dark matter candidate has motivated the reanalysis of previous methods for constraining massive astrophysical compact objects in the Milky Way halo and beyond. In order to derive these constraints, a model for the dark matter distribution around the Milky Way must be used. Previous microlensing searches have assumed a semi-isothermal density sphere for this task. We show this model is no longer consistent with data from the Milky Way rotation curve, and test two replacement models, namely NFW and power-law. The power-law model is the most flexible as it can break spherical symmetry, and best fits the data. Thus, we recommend the power-law model as a replacement, although it still lacks the flexibility to fully encapsulate all possible shapes of the Milky Way halo. We then use the power-law model to rederive some previous microlensing constraints in the literature, while propagating the primary halo-shape uncertainties through to our final constraints. Our analysis reveals that the microlensing constraints towards the Large Magellanic Cloud weaken somewhat for MACHO masses around 10 M⊙ when this uncertainty is taken into account, but the constraints tighten at lower masses. Exploring some of the simplifying assumptions of previous constraints we also study the effect of wide mass distributions of compact halo objects, as well as the effect of spatial clustering on microlensing constraints. We find that both effects induce a shift in the constraints towards smaller masses, and can effectively remove the microlensing constraints from M ˜ 1 - 10M⊙ for certain MACHO populations.
NASA Technical Reports Server (NTRS)
Silk, Joseph
1991-01-01
Both canonical primordial nucleosynthesis constraints and large-scale structure measurements, as well as observations of the fundamental cosmological parameters, appear to be consistent with the hypothesis that the universe predominantly consists of baryonic dark matter (BDM). The arguments for BDM to consist of compact objects that are either stellar relics or substellar objects are reviewed. Several techniques for searching for halo BDM are described.
A Discovery of a Compact High Velocity Cloud-Galactic Supershell System
NASA Astrophysics Data System (ADS)
Park, Geumsook; Koo, Bon-Chul; Kang, Ji-hyun; Gibson, Steven J.; Peek, Joshua Eli Goldston; Douglas, Kevin A.; Korpela, Eric J.; Heiles, Carl E.
2017-01-01
High velocity clouds (HVCs) are neutral hydrogen (HI) gas clouds having very different radial velocities from those of the Galactic disk material. While some large HVC complexes are known to be gas streams tidally stripped from satellite galaxies of the Milky Way, there are relatively isolated and small angular-sized HVCs, so called “compact HVCs (CHVCs)”, the origin of which remains controversial. There are about 300 known CHVCs in the Milky Way, and many of them show a head-tail structure, implying a ram pressure interaction with the diffuse Galactic halo gas. It is, however, not clear whether CHVCs are completely dissipated in the Galactic halo to feed the multi-phase circumgalactic medium or they can survive their trip through the halo and collide with the Galactic disk. The colliding CHVCs may leave a gigantic trail in the disk, and it had been suggested that some of HI supershells that require ≧ 3 x 1052 erg may be produced by the collision of such HVCs.Here we report the detection of a kiloparsec (kpc)-size supershell in the outskirts of the Milky Way with the compact HVC 040+01-282 (hereafter, CHVC040) at its geometrical center using the “Inner-Galaxy Arecibo L-band Feed Array” HI 21 cm survey data. The morphological and physical properties of both objects suggest that CHVC040, which is either a fragment of a nearby disrupted galaxy or a cloud that originated from an intergalactic accreting flow, collided with the disk ˜5 Myr ago to form the supershell. Our results show that some compact HVCs can survive their trip through the Galactic halo and inject energy and momentum into the Milky Way disk.
NASA Astrophysics Data System (ADS)
Griest, K.; Murdin, P.
2002-10-01
WIMP is an acronym for weakly interacting massive particle and MACHO is an acronym for massive (astrophysical) compact halo object. WIMPs and MACHOs are two of the most popular DARK MATTER candidates. They represent two very different but reasonable possibilities of what the dominant component of the universe may be....
Zhang, Yuanyuan; Bell, Eric F.
2017-01-13
Here, we report the discovery of relatively massive, M32-like ultra compact dwarf (UCD) and compact elliptical (CE) galaxy candidates inmore » $$0.2\\lt z\\lt 0.6$$ massive galaxy clusters imaged by the Cluster Lensing And Supernova survey with Hubble (CLASH) survey. Examining the nearly unresolved objects in the survey, we identify a sample of compact objects concentrated around the cluster central galaxies with colors similar to cluster red sequence galaxies. Their colors and magnitudes suggest stellar masses around $${10}^{9}{M}_{\\odot }$$. More than half of these galaxies have half-light radii smaller than 200 pc, falling into the category of massive UCDs and CEs, with properties similar to M32. The properties are consistent with a tidal stripping origin, but we cannot rule out the possibility that they are early-formed compact objects trapped in massive dark matter halos. The 17 CLASH clusters studied in this work on average contain 2.7 of these objects in their central 0.3 Mpc and 0.6 in their central 50 kpc. Our study demonstrates the possibility of statistically characterizing UCDs/CEs with a large set of uniform imaging survey data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuanyuan; Bell, Eric F.
Here, we report the discovery of relatively massive, M32-like ultra compact dwarf (UCD) and compact elliptical (CE) galaxy candidates inmore » $$0.2\\lt z\\lt 0.6$$ massive galaxy clusters imaged by the Cluster Lensing And Supernova survey with Hubble (CLASH) survey. Examining the nearly unresolved objects in the survey, we identify a sample of compact objects concentrated around the cluster central galaxies with colors similar to cluster red sequence galaxies. Their colors and magnitudes suggest stellar masses around $${10}^{9}{M}_{\\odot }$$. More than half of these galaxies have half-light radii smaller than 200 pc, falling into the category of massive UCDs and CEs, with properties similar to M32. The properties are consistent with a tidal stripping origin, but we cannot rule out the possibility that they are early-formed compact objects trapped in massive dark matter halos. The 17 CLASH clusters studied in this work on average contain 2.7 of these objects in their central 0.3 Mpc and 0.6 in their central 50 kpc. Our study demonstrates the possibility of statistically characterizing UCDs/CEs with a large set of uniform imaging survey data.« less
Atomic Gas in Blue Ultra Diffuse Galaxies around Hickson Compact Groups
NASA Astrophysics Data System (ADS)
Spekkens, Kristine; Karunakaran, Ananthan
2018-03-01
We have found the atomic gas (H I) reservoirs of the blue ultra diffuse galaxy (UDG) candidates identified by Róman and Trujillo in images near Hickson Compact Groups (HCGs). We confirm that all of the objects are indeed UDGs with effective radii {R}e> 1.5 kpc. Three of them are likely to be gravitationally bound to the HCG near which they project, one is plausibly gravitationally bound to the nearest HCG, and one is in the background. We measure H I masses and velocity widths for each object directly from the spectra, and use the widths together with the UDG effective radii to estimate dynamical masses and halo spin parameters. The location of the blue UDGs in the H I mass–stellar mass plane is consistent with that of the broader gas-rich galaxy population, and both their H I masses and gas richnesses are correlated with their effective radii. The blue UDGs appear to be low-mass objects with high-spin halos, although their properties are not as extreme as those of the faintest diffuse objects found in H I searches. The data presented here highlight the potential of single-dish radio observations for measuring the physical properties of blue diffuse objects detected in the optical.
Constraints on baryonic dark matter in the Galactic halo and Local Group
NASA Technical Reports Server (NTRS)
Richstone, Douglas; Gould, Andrew; Guhathakurta, Puragra; Flynn, Chris
1992-01-01
A four-color method and deep CCD data are used to search for very faint metal-poor stars in the direction of the south Galactic pole. The results make it possible to limit the contribution of ordinary old, metal-poor stars to the dynamical halo of the Galaxy or to the Local Group. The ratio of the mass of the halo to its ordinary starlight must be more than about 2000, unless the halo is very small. For the Local Group, this ratio is greater than about 400. If this local dark matter is baryonic, the process of compact-object formation must produce very few 'impurities' in the form of stars similar to those found in globular clusters. The expected number of unbound stars with MV not greater than 6 within 100 pc of the sun is less than 1 based on the present 90-percent upper limit to the Local Group starlight.
High-resolution imaging of compact high-velocity clouds
NASA Astrophysics Data System (ADS)
Braun, R.; Burton, W. B.
2000-02-01
Six examples of the compact, isolated H i high-velocity clouds (CHVCs) identified by Braun & Burton (\\cite{brau99}), but only marginally resolved in single-dish data, have been imaged with the Westerbork Synthesis Radio Telescope. The 65 confirmed objects in this class define a dynamically cold system, with a global minimum for the velocity dispersion of only 70 km s-1, found in the Local Group Standard of Rest. The population is in-falling at 100 km s-1 toward the Local Group barycenter. These objects have a characteristic morphology, in which one or more compact cores is embedded in a diffuse halo. The compact cores typically account for 40% of the H i line flux while covering some 15% of the source area. The narrow line width of all core components allows unambiguous identification of these with the cool condensed phase of \\hi , the CNM, with kinetic temperature near 100 K, while the halos appear to represent a shielding column of warm diffuse \\hi , the WNM, with temperature near 8000 K. We detect a core with one of the narrowest H i emission lines ever observed, with intrinsic FWHM of no more than 2 km s-1 and 75 K brightness. From a comparison of column and volume densities for this feature we derive a distance in the range 0.5 to 1 Mpc. We determine a metallicity for this same object of 0.04 to 0.07 solar. Comparably high distances are implied by demanding the stability of objects with multiple cores, which show relative velocities as large as 70 km s-1 on 30 arcmin scales. Many of the compact cores show systematic velocity gradients along the major axis of their elliptical extent which are well-fit by circular rotation in a flattened disk system. Two out of three of the derived rotation curves are well-fit by Navarro, Frenk & White (1997) cold dark matter profiles. These kinematic signatures imply a high dark-to-visible mass ratio of 10-50, for D = 0.7 Mpc, which scales as 1/D. The implied dark matter halos dominate the mass volume density within the central 2 kpc (10 arcmin) of each source, providing a sufficent hydrostatic pressure to allow CNM condensation. The CHVC properties are similar in many respects to those of the Local Group dwarf irregular galaxies, excepting the presence of a high surface brightness stellar population.
Universal relations with fermionic dark matter
NASA Astrophysics Data System (ADS)
Krut, A.; Argüelles, C. R.; Rueda, J. A.; Ruffini, R.
2018-01-01
We have recently introduced a new model for the distribution of dark matter (DM) in galaxies, the Ruffini-Argüelles-Rueda (RAR) model, based on a self-gravitating system of massive fermions at finite temperatures. The RAR model, for fermion masses above keV, successfully describes the DM halos in galaxies, and predicts the existence of a denser quantum core towards the center of each configuration. We demonstrate here, for the first time, that the introduction of a cutoff in the fermion phase-space distribution, necessary to account for galaxies finite size and mass, defines a new solution with a compact quantum core which represents an alternative to the central black hole (BH) scenario for SgrA*. For a fermion mass in the range 48keV ≤ mc2 ≤ 345keV, the DM halo distribution fulfills the most recent data of the Milky Way rotation curves while harbors a dense quantum core of 4×106M⊙ within the S2 star pericenter. In particular, for a fermion mass of mc2 ˜ 50keV the model is able to explain the DM halos from typical dwarf spheroidal to normal elliptical galaxies, while harboring dark and massive compact objects from ˜ 103M⊙ tp to 108M⊙ at their respective centers. The model is shown to be in good agreement with different observationally inferred universal relations, such as the ones connecting DM halos with supermassive dark central objects. Finally, the model provides a natural mechanism for the formation of supermassive BHs as heavy as few ˜ 108M⊙. We argue that larger BH masses (few ˜ 109-10M⊙) may be achieved by assuming subsequent accretion processes onto the above heavy seeds, depending on accretion efficiency and environment.
Signatures of compact halos of sterile-neutrino dark matter
NASA Astrophysics Data System (ADS)
Kühnel, Florian; Ohlsson, Tommy
2017-11-01
We investigate compact halos of sterile-neutrino dark matter and examine observable signatures with respect to neutrino and photon emission. Primarily, we consider two cases: primordial black-hole halos and ultracompact minihalos. In both cases, we find that there exists a broad range of possible parameter choices such that detection in the near future with x-ray and gamma-ray telescopes might be well possible. In fact, for energies above 10 TeV, the neutrino telescope IceCube would be a splendid detection machine for such macroscopic dark-matter candidates.
Point sources from dissipative dark matter
NASA Astrophysics Data System (ADS)
Agrawal, Prateek; Randall, Lisa
2017-12-01
If a component of dark matter has dissipative interactions, it can cool to form compact astrophysical objects with higher density than that of conventional cold dark matter (sub)haloes. Dark matter annihilations might then appear as point sources, leading to novel morphology for indirect detection. We explore dissipative models where interaction with the Standard Model might provide visible signals, and show how such objects might give rise to the observed excess in gamma rays arising from the galactic center.
NASA Astrophysics Data System (ADS)
Bonetti, Matteo; Perego, Albino; Capelo, Pedro R.; Dotti, Massimo; Miller, M. Coleman
2018-05-01
Surface abundance observations of halo stars hint at the occurrence of r-process nucleosynthesis at low metallicity ([Fe/H] < -3), possibly within the first 108 yr after the formation of the first stars. Possible loci of early-Universe r-process nucleosynthesis are the ejecta of either black hole-neutron star or neutron star-neutron star binary mergers. Here, we study the effect of the inclination-eccentricity oscillations raised by a tertiary (e.g. a star) on the coalescence time-scale of the inner compact object binaries. Our results are highly sensitive to the assumed initial distribution of the inner binary semi-major axes. Distributions with mostly wide compact object binaries are most affected by the third object, resulting in a strong increase (by more than a factor of 2) in the fraction of fast coalescences. If instead the distribution preferentially populates very close compact binaries, general relativistic precession prevents the third body from increasing the inner binary eccentricity to very high values. In this last case, the fraction of coalescing binaries is increased much less by tertiaries, but the fraction of binaries that would coalesce within 108 yr even without a third object is already high. Our results provide additional support to the compact-binary merger scenario for r-process nucleosynthesis.
Detecting and Discriminating Gravitational Microlensing in the SuperMACHO Survey
NASA Astrophysics Data System (ADS)
Garg, Arti
2010-02-01
The SuperMACHO Project is a 5 year survey to determine the nature of the lens population responsible for the excess gravitational microlensing rate toward the Large Magellanic Cloud observed by the MACHO project. The MACHO results indicate a large population of compact lenses toward the clouds, and the observed lensing rate is consistent with a Milky Way halo comprised of up to ˜20% Massive Compact Halo Objects (MACHO's), dark matter that is most likely baryonic. This work describes the method by which gravitational microlensing is detected in the SuperMACHO survey. Based on the MACHO findings and the SuperMACHO observing strategy and selection criteria, we expect <10-6 of the sources monitored to be lensed at any time. Our detection criteria are designed to minimize false positives while preserving a statistically significant detection rate. We provide an overview of the detection criteria. We also discuss the selection criteria used to discriminate between microlensing and other astrophysical transients. )
How do stars affect ψDM halos?
NASA Astrophysics Data System (ADS)
Chan, James H. H.; Schive, Hsi-Yu; Woo, Tak-Pong; Chiueh, Tzihong
2018-04-01
Wave dark matter (ψDM) predicts a compact soliton core and a granular halo in every galaxy. This work presents the first simulation study of an elliptical galaxy by including both stars and ψDM, focusing on the systematic changes of the central soliton and halo granules. With the addition of stars in the inner halo, we find the soliton core consistently becomes more prominent by absorbing mass from the host halo than that without stars, and the halo granules become "non-isothermal", "hotter" in the inner halo and "cooler" in the outer halo, as opposed to the isothermal halo in pure ψDM cosmological simulations. Moreover, the composite (star+ψDM) mass density is found to follow a r-2 isothermal profile near the half-light radius in most cases. Most striking is the velocity dispersion of halo stars that increases rapidly toward the galactic center by a factor of at least 2 inside the half-light radius caused by the deepened soliton gravitational potential, a result that compares favorably with observations of elliptical galaxies and bulges in spiral galaxies. However in some rare situations we find a phase segregation turning a compact distribution of stars into two distinct populations with high and very low velocity dispersions; while the high-velocity component mostly resides in the halo, the very low-velocity component is bound to the interior of the soliton core, resembling stars in faint dwarf spheroidal galaxies.
The end of the MACHO era, revisited: New limits on MACHO masses from halo wide binaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monroy-Rodríguez, Miguel A.; Allen, Christine, E-mail: chris@astro.unam.mx
2014-08-01
In order to determine an upper bound for the mass of the massive compact halo objects (MACHOs), we use the halo binaries contained in a recent catalog by Allen and Monroy-Rodríguez. To dynamically model their interactions with massive perturbers, a Monte Carlo simulation is conducted, using an impulsive approximation method and assuming a galactic halo constituted by massive particles of a characteristic mass. The results of such simulations are compared with several subsamples of our improved catalog of candidate halo wide binaries. In accordance with Quinn et al., we also find our results to be very sensitive to the widestmore » binaries. However, our larger sample, together with the fact that we can obtain galactic orbits for 150 of our systems, allows a more reliable estimate of the maximum MACHO mass than that obtained previously. If we employ the entire sample of 211 candidate halo stars we, obtain an upper limit of 112 M{sub ☉}. However, using the 150 binaries in our catalog with computed galactic orbits, we are able to refine our fitting criteria. Thus, for the 100 most halo-like binaries we obtain a maximum MACHO mass of 21-68 M{sub ☉}. Furthermore, we can estimate the dynamical effects of the galactic disk using binary samples that spend progressively shorter times within the disk. By extrapolating the limits obtained for our most reliable—albeit smallest—sample, we find that as the time spent within the disk tends to zero, the upper bound of the MACHO mass tends to less than 5 M{sub ☉}. The non-uniform density of the halo has also been taken into account, but the limit obtained, less than 5 M{sub ☉}, does not differ much from the previous one. Together with microlensing studies that provide lower limits on the MACHO mass, our results essentially exclude the existence of such objects in the galactic halo.« less
New halo formation mechanism at the KEK compact energy recovery linac
NASA Astrophysics Data System (ADS)
Tanaka, Olga; Nakamura, Norio; Shimada, Miho; Miyajima, Tsukasa; Ueda, Akira; Obina, Takashi; Takai, Ryota
2018-02-01
The beam halo mitigation is a very important challenge for reliable and safe operation of a high-energy machine. A systematic beam halo study was conducted at the KEK compact energy recovery linac (cERL) since non-negligible beam loss was observed in the recirculation loop during a common operation. We found that the beam loss can be avoided by making use of the collimation system. Beam halo measurements have demonstrated the presence of vertical beam halos at multiple locations in the beam line (except the region near the electron gun). Based on these observations, we made a conjecture that the transverse beam halo is attributed to the longitudinal bunch tail arising at the photocathode. The transfer of particles from the longitudinal space to a transverse halo may have been observed and studied in other machines, considering nonlinear effects as their causes. However, our study demonstrates a new unique halo formation mechanism, in which a transverse beam halo can be generated by a longitudinal bunch tail due to transverse rf kicks from the accelerating (monopole) fields of the radio-frequency cavities. This halo formation occurs when nonrelativistic particles enter the cavities with a transverse offset, even if neither nonlinear optics nor nonlinear beam effects are present. A careful realignment of the injector system will mitigate the present halo. Another possible cure is to reduce the bunch tails by changing the photocathode material from the present GaAs to a multi-alkali that is known to have a shorter longitudinal tail.
An improved catalog of halo wide binary candidates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, Christine; Monroy-Rodríguez, Miguel A., E-mail: chris@astro.unam.mx
2014-08-01
We present an improved catalog of halo wide binaries compiled from an extensive literature search. Most of our binaries stem from the common proper motion binary catalogs by Allen et al. and Chanamé and Gould, but we have also included binaries from the lists of Ryan and Zapatero-Osorio and Martín. All binaries were carefully checked and their distances and systemic radial velocities are included when available. Probable membership to the halo population was tested by means of reduced proper motion diagrams for 251 candidate halo binaries. After eliminating obvious disk binaries, we ended up with 211 probable halo binaries, 150more » of which have radial velocities available. We compute galactic orbits for these 150 binaries and calculate the time they spend within the galactic disk. Considering the full sample of 251 candidate halo binaries as well as several subsamples, we find that the distribution of angular separations (or expected major semiaxes) follows a power law f(a) ∼ a {sup –1} (Oepik's relation) up to different limits. For the 50 most disk-like binaries, those that spend their entire lives within z = ±500 pc, this limit is found to be 19,000 AU (0.09 pc), while for the 50 most halo-like binaries, those that spend on average only 18% of their lives within z = ±500 pc, the limit is 63,000 AU (0.31 pc). In a companion paper, we employ this catalog to establish limits on the masses of the halo massive perturbers (massive compact halo objects).« less
NASA Astrophysics Data System (ADS)
Wyrzykowski, Ł.; Kozłowski, S.; Skowron, J.; Belokurov, V.; Smith, M. C.; Udalski, A.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Szewczyk, O.
2010-09-01
The primary goal of this paper is to provide evidence that can prove true or false the hypothesis that dark matter in the Galactic halo can clump into stellar-mass compact objects. If such objects exist, they would act as lenses to external sources in the Magellanic Clouds, giving rise to an observable effect of microlensing. We present the results of our search for such events, based on data from the second phase of the OGLE survey (1996-2000) towards the Small Magellanic Cloud (SMC). The data set we used comprises 2.1 million monitored sources distributed over an area of 2.4deg2. We found only one microlensing event candidate, however its poor-quality light curve limited our discussion of the exact distance to the lensing object. Given a single event, taking blending (crowding of stars) into account for the detection-efficiency simulations and deriving the Hubble Space Telescope (HST)-corrected number of monitored stars, the microlensing optical depth is τ = (1.55 +/- 1.55) × 10-7. This result is consistent with the expected SMC self-lensing signal, with no need to introduce dark matter microlenses. Rejecting the unconvincing event leads to an upper limit on the fraction of dark matter in the form of massive compact halo objects (MACHOs) of f < 20 per cent for deflector masses around 0.4Msolar and f < 11 per cent for masses between 0.003 and 0.2Msolar (95 per cent confidence limit). Our result indicates that the Milky Way's dark matter is unlikely to be clumpy and to form compact objects in the subsolar-mass range. Based on observations obtained with the 1.3-m Warsaw Telescope at the Las Campanas Observatory of the Carnegie Institution of Washington. E-mail: wyrzykow@ast.cam.ac.uk ‡ Name pronunciation: Woocash Vizhikovsky
NASA Astrophysics Data System (ADS)
Corrales, Lia; Mon, Brayden; Haggard, Daryl; Baganoff, Frederick K.; Garmire, Gordon; Degenaar, Nathalie; Reynolds, Mark
2017-08-01
The supermassive black hole at the center of our galaxy, Sgr A*, is surprisingly under-luminous. This problem has motivated a host of theoretical models to explain low-level radiatively inefficient accretion flows onto compact objects. We discuss how the Galactic Center sight line, which is optically thick to the scattering of soft X-rays (tau ~ 5), affects high resolution studies of the accretion flow around Sgr A*. X-ray light from compact objects in the dense GC environment is scattered by foreground dust, producing scattering echoes that are time delayed relative to the X-ray source's light curve. We discuss the scattering halo of SWIFT J174540.7-290015, which underwent the brightest X-ray outburst within 30’' of Sgr A*. Preliminary fits to the scattering halo suggest that a small amount of foreground dust, within 250 pc of the GC, affects the X-ray surface brightness profile within 10’' of any GC point source. The associated time delay is on the order of several hours, which is important for understanding the quiescent accretion flow of Sgr A*. We take advantage of the Chandra Galactic Center XVP dataset to explore the effect of the interstellar medium on the inferred characteristics of Sgr A*.
The Prevalence of the 22 deg Halo in Cirrus Clouds
NASA Technical Reports Server (NTRS)
Diedenhoven, vanBastiaan
2014-01-01
Halos at 22 deg from the sun attributed to randomly-orientated, pristine hexagonal crystals are frequently observed through ice clouds. These frequent sightings of halos formed by pristine crystals pose an apparent inconsistency with the dominance of distorted, nonpristine ice crystals indicated by in situ and remote sensing data. Furthermore, the 46 deg halo, which is associated with pristine hexagonal crystals as well, is observed far less frequently than the 22 deg halo. Considering that plausible mechanisms that could cause crystal distortion such as aggregation, sublimation, riming and collisions are stochastic processes that likely lead to distributions of crystals with varying distortion levels, here the presence of the 22 deg and 46 deg halo features in phase functions of mixtures of pristine and distorted hexagonal ice crystals is examined. We conclude that the 22 deg halo feature is generally present if the contribution by pristine crystals to the total scattering cross section is greater than only about 10% in the case of compact particles or columns, and greater than about 40% for plates. The 46 deg halo feature is present only if the mean distortion level is low and the contribution of pristine crystals to the total scattering cross section is above about 20%, 50% and 70%, in the case of compact crystals, plates and columns, respectively. These results indicate that frequent sightings of 22 deg halos are not inconsistent with the observed dominance of distorted, non-pristine ice crystals. Furthermore, the low mean distortion levels and large contributions by pristine crystals needed to produce the 461 halo features provide a potential explanation of the common sighting of the 22 deg halo without any detectable 46 deg halo.
Baryonic dark clusters in galactic halos and their observable consequences
NASA Technical Reports Server (NTRS)
Wasserman, Ira; Salpeter, Edwin E.
1994-01-01
We consider the possibility that approximately 10% of the mass of a typical galaxy halo is in the form of massive (approximately 10(exp 7) solar masses), compact (escape speeds approximately 100 km/s) baryonic clusters made of neutron stars (approximately 10% by mass), black holes (less than or approximately equal to 1%) and brown dwarfs, asteroids, and other low-mass debris (approximately 90%). These general properties are consistent with several different observational and phenomenological constraints on cluster properties subject to the condition that neutron stars comprise approximately 1% of the total halo mass. Such compact, dark clusters could be the sites of a variety of collisional phenomena involving neutron stars. We find that integrated out to the Hubble distance approximately one neutron star-neutron star or neutron star-black hole collision occurs daily. Of order 0.1-1 asteroid-neutron star collisions may also happen daily in the halo of the Milky Way if there is roughly equal cluster mass per logarithmic particle mass interval between asteroids and brown dwarfs. These event rates are comparable to the frequency of gamma-ray burst detections by the Burst and Transient Source Experiment (BATSE) on the Compton Observatory, implying that if dark halo clusters are the sites of most gamma-ray bursts, perhaps approximately 90% of all bursts are extragalactic, but approximately 10% are galactic. It is possible that dark clusters of the kind discussed here could be detected directly by the Infrared Space Observatory (ISO) or Space Infrared Telescope Facility (SIRTF). If the clusters considered in this paper exist, they should produce spatially correlated gravitational microlensing of stars in the Large Magellanic Cloud (LMC). If 10% of the halo is in the form of dark baryonic clusters, and the remaining 90% is in brown dwarfs and other dark objects which are either unclustered or collected into low-mass clusters, then we expect that two events within approximately 1 min of one another are likely to be seen after a total of order 20-30 microlenses have been detected.
Construction of Database for Pulsating Variable Stars
NASA Astrophysics Data System (ADS)
Chen, B. Q.; Yang, M.; Jiang, B. W.
2011-07-01
A database for the pulsating variable stars is constructed for Chinese astronomers to study the variable stars conveniently. The database includes about 230000 variable stars in the Galactic bulge, LMC and SMC observed by the MACHO (MAssive Compact Halo Objects) and OGLE (Optical Gravitational Lensing Experiment) projects at present. The software used for the construction is LAMP, i.e., Linux+Apache+MySQL+PHP. A web page is provided to search the photometric data and the light curve in the database through the right ascension and declination of the object. More data will be incorporated into the database.
NASA Astrophysics Data System (ADS)
Luque, E.; Queiroz, A.; Santiago, B.; Pieres, A.; Balbinot, E.; Bechtol, K.; Drlica-Wagner, A.; Neto, A. Fausti; da Costa, L. N.; Maia, M. A. G.; Yanny, B.; Abbott, T.; Allam, S.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Eifler, T. F.; Finley, D. A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; March, M.; Marshall, J. L.; Martini, P.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Tucker, D.; Walker, A. R.; Zhang, Y.
2016-05-01
We use the first-year Dark Energy Survey (DES) data down to previously unprobed photometric depths to search for stellar systems in the Galactic halo, therefore complementing the previous analysis of the same data carried out by our group earlier this year. Our search is based on a matched filter algorithm that produces stellar density maps consistent with stellar population models of various ages, metallicities, and distances over the survey area. The most conspicuous density peaks in these maps have been identified automatically and ranked according to their significance and recurrence for different input models. We report the discovery of one additional stellar system besides those previously found by several authors using the same first-year DES data. The object is compact, and consistent with being dominated by an old and metal-poor population. DES 1 is found at high significance and appears in the DES images as a compact concentration of faint blue point sources. Assuming different spatial profile parameterizations, the best-fitting heliocentric distance and total absolute magnitude in the range of 77.6-87.1 kpc and -3.00 ≲ MV ≲ -2.21, respectively. The half-light radius of this object, rh ˜ 10 pc and total luminosity are consistent with it being a low-mass halo cluster. It is also found to have a very elongated shape (ɛ ˜ 0.57). In addition, our deeper probe of DES first-year data confirms the recently reported satellite galaxy candidate Horologium II as a significant stellar overdensity. We also infer its structural properties and compare them to those reported in the literature.
Mapping out the origins of compact stellar systems
NASA Astrophysics Data System (ADS)
Romanowsky, Aaron J.; Brodie, Jean P.; SAGES Collaboration
2017-03-01
We present a suite of extragalactic explorations of the origins and nature of globular clusters (GCs) and ultra-compact dwarfs (UCDs), and the connections between them. An example of GC metallicity bimodality is shown to reflect underlying, distinct metal-poor and metal-rich stellar halo populations. Metallicity-matching methods are used to trace the birth sites and epochs of GCs in giant E/S0s, pointing to clumpy disk galaxies at z ~ 3 for the metal-rich GCs, and to a combination of accreted and in-situ formation modes at z ~ 5-6 for the metal-poor GCs. An increasingly diverse zoo of compact stellar systems is being discovered, including objects that bridge the gaps between UCDs and faint fuzzies, and between UCDs and compact ellipticals. Many of these have properties pointing to origins as the stripped nuclei of larger galaxies, and a smoking-gun example is presented of an ω Cen-like star cluster embedded in a tidal stream.
Galaxies at the Extremes: Ultradiffuse Galaxies in the Virgo Cluster
NASA Astrophysics Data System (ADS)
Mihos, Chris
2017-08-01
The ultradiffuse galaxies (UDGs) recently discovered in massive galaxy clusters presents both challenges and opportunities for our understanding of galaxy evolution in dense clusters. Such large, low density galaxies should be most vulnerable to gravitational destruction within the cluster environment. Thus their presence in cluster cores argues either that they must be stabilized by massive dark halos or else be short-lived objects undergoing rapid transformation, perhaps leading to the formation of ultracompact dwarf galaxies (UCDs) if their destruction leaves only a compact nucleus behind. We propose deep imaging of four Virgo Cluster UDGs to probe their local environment within Virgo via accurate tip of the red giant branch (TRGB) distances. With a distance precision of 1 Mpc, we will accurately place the objects in the Virgo core, cluster outskirts, or intervening field. When coupled with our extant kinematic data, we can determine whether they are infalling objects or instead have already passed through the cluster core. We will also compare their compact nuclei to Virgo UCDs, and study their globular cluster (GC) populations in detail. Probing three magnitudes beyond the turnover in the GC luminosity function, we will construct larger and cleaner GC samples than possible with ground-based imaging, using the total mass and radial extent of the globular cluster systems to estimate the dark halo mass and tidal radius for each UDG. The new information provided by HST about the local environment and intrinsic properties of these Virgo UDGs will be used in conjunction with simulation data to study cluster-driven evolution and transformation of low density galaxies.
XMM-NEWTON MEASUREMENT OF THE GALACTIC HALO X-RAY EMISSION USING A COMPACT SHADOWING CLOUD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henley, David B.; Shelton, Robin L.; Cumbee, Renata S.
2015-02-01
Observations of interstellar clouds that cast shadows in the soft X-ray background can be used to separate the background Galactic halo emission from the local emission due to solar wind charge exchange (SWCX) and/or the Local Bubble (LB). We present an XMM-Newton observation of a shadowing cloud, G225.60–66.40, that is sufficiently compact that the on- and off-shadow spectra can be extracted from a single field of view (unlike previous shadowing observations of the halo with CCD-resolution spectrometers, which consisted of separate on- and off-shadow pointings). We analyzed the spectra using a variety of foreground models: one representing LB emission, andmore » two representing SWCX emission. We found that the resulting halo model parameters (temperature T {sub h} ≈ 2 × 10{sup 6} K, emission measure E{sub h}≈4×10{sup −3} cm{sup −6} pc) were not sensitive to the foreground model used. This is likely due to the relative faintness of the foreground emission in this observation. However, the data do favor the existence of a foreground. The halo parameters derived from this observation are in good agreement with those from previous shadowing observations, and from an XMM-Newton survey of the Galactic halo emission. This supports the conclusion that the latter results are not subject to systematic errors, and can confidently be used to test models of the halo emission.« less
NASA Astrophysics Data System (ADS)
Voggel, Karina Theresia
2015-08-01
Ultra-Compact Dwarf Galaxies (UCDs) have filled the size gap (10-100pc) in the scaling relations of early-type stellar systems. Before their discovery, no objects were known in the parameter space between globular clusters (GCs) and dwarf galaxies. The nature of UCDs is widely debated. Two formation channels have been suggested: either UCDs are surviving nuclei of tidally stripped dwarf galaxies, or they constitute the high mass end of the GC population. In this work we establish new strategies to constrain the formation channel of UCDs, looking for the observational signatures of stripped nuclei.Before falling into a galaxy cluster dwarf galaxies initially host their own GC system. Through tidal interaction the GCs outside of the shrinking tidal radius are lost and disperse in the general GC population of the cluster, whereas GCs inside the tidal radius remain bound to the dwarf galaxy. Therefore, we expect to find some GCs close to the stripped nuclei that have not been removed yet, but dragged towards the nucleus via dynamical friction.We tested this prediction in the halo of NGC 1399, the central Fornax cluster galaxy, where we find a local overabundance of GCs on scales of 0.5 to 1 kpc around UCDs. A similar analysis of GC overdensities around UCDs in the halo of M87, the central Virgo cluster galaxy, is ongoing. Such a clustering signal of GCs around UCDs could be a hint that these UCDs formed as nuclei, and what we see is the remnant GC population of the ancestor galaxy.We also have studied the detailed structural composition of ~100 UCDs in the halo of NGC 1399 by analyzing their surface brightness profiles. We present new evidence for faint asymmetric structures and tidal tails around several UCDs, possible tracers for the assembly history of the central cluster galaxy. With new numbers on the abundance of tidal features and close GC companions within large UCD samples, the contribution of each formation channel to the GC/UCD populations in galaxy halos can be constrained.
New limits on primordial black hole dark matter from an analysis of Kepler source microlensing data.
Griest, Kim; Cieplak, Agnieszka M; Lehner, Matthew J
2013-11-01
We present new limits on the allowed masses of a dark matter (DM) halo consisting of primordial black holes (PBH) (or any other massive compact halo object). We analyze two years of data from the Kepler satellite, searching for short-duration bumps caused by gravitational microlensing. After removing background events consisting of variable stars, flare events, and comets or asteroids moving through the Kepler field, we find no microlensing candidates. We measure the efficiency of our selection criteria by adding millions of simulated microlensing lensing events into the Kepler light curves. We find that PBH DM with masses in the range 2 × 10(-9) M[Symbol: see text] to 10(-7)M[Symbol: see text] cannot make up the entirety of the DM in the Milky Way. At the low-mass end, this decreases the allowed mass range by more than an order of magnititude.
Direct detection of a microlens in the Milky Way.
Alcock, C; Allsman, R A; Alves, D R; Axelrod, T S; Becker, A C; Bennett, D P; Cook, K H; Drake, A J; Freeman, K C; Geha, M; Griest, K; Keller, S C; Lehner, M J; Marshall, S L; Minniti, D; Nelson, C A; Peterson, B A; Popowski, P; Pratt, M R; Quinn, P J; Stubbs, C W; Sutherland, W; Tomaney, A B; Vandehei, T; Welch, D
2001-12-06
The nature of dark matter remains mysterious, with luminous material accounting for at most approximately 25 per cent of the baryons in the Universe. We accordingly undertook a survey looking for the microlensing of stars in the Large Magellanic Cloud (LMC) to determine the fraction of Galactic dark matter contained in massive compact halo objects (MACHOs). The presence of the dark matter would be revealed by gravitational lensing of the light from an LMC star as the foreground dark matter moves across the line of sight. The duration of the lensing event is the key observable parameter, but gives non-unique solutions when attempting to estimate the mass, distance and transverse velocity of the lens. The survey results to date indicate that between 8 and 50 per cent of the baryonic mass of the Galactic halo is in the form of MACHOs (ref. 3), but removing the degeneracy by identifying a lensing object would tighten the constraints on the mass in MACHOs. Here we report a direct image of a microlens, revealing it to be a nearby low-mass star in the disk of the Milky Way. This is consistent with the expected frequency of nearby stars acting as lenses, and demonstrates a direct determination of a lens mass from a microlensing event. Complete solutions such as this for halo microlensing events will probe directly the nature of the MACHOs.
NASA Astrophysics Data System (ADS)
Contenta, Filippo; Gieles, Mark; Balbinot, Eduardo; Collins, Michelle L. M.
2017-04-01
In the last decade, several ultra faint objects (UFOs, MV ≳ -3.5) have been discovered in the outer halo of the Milky Way. For some of these objects, it is not clear whether they are star clusters or (ultra faint) dwarf galaxies. In this work, we quantify the contribution of star clusters to the population of UFOs. We extrapolated the mass and Galactocentric radius distribution of the globular clusters using a population model, finding that the Milky Way contains about 3.3^{+7.3}_{-1.6} star clusters with MV ≳ -3.5 and Galactocentric radius ≥20 kpc. To understand whether dissolving clusters can appear as UFOs, we run a suite of direct N-body models, varying the orbit, the Galactic potential, the binary fraction and the black hole (BH) natal kick velocities. In the analyses, we consider observational biases such as luminosity limit, field stars and line-of-sight projection. We find that star clusters contribute to both the compact and the extended population of UFOs: clusters without BHs appear compact with radii ˜5 pc, while clusters that retain their BHs after formation have radii ≳ 20 pc. The properties of the extended clusters are remarkably similar to those of dwarf galaxies: high-inferred mass-to-light ratios due to binaries, binary properties mildly affected by dynamical evolution, no observable mass segregation and flattened stellar mass function. We conclude that the slope of the stellar mass function as a function of Galactocentric radius and the presence/absence of cold streams can discriminate between dark matter-free and dark matter-dominated UFOs.
NASA Astrophysics Data System (ADS)
Mateo, Mario
1994-01-01
Three teams of astronomers believe they have independently found evidence for dark matter in our galaxy. A brief history of the search for dark matter is presented. The use of microlensing-event observation for spotting dark matter is described. The equipment required to observe microlensing events and three groups working on dark matter detection are discussed. The three groups are the Massive Compact Halo Objects (MACHO) Project team, the Experience de Recherche d'Objets Sombres (EROS) team, and the Optical Gravitational Lensing Experiment (OGLE) team. The first apparent detections of microlensing events by the three teams are briefly reported.
Gravitational lens effects of a cosmological density of compact objects
NASA Technical Reports Server (NTRS)
Canizares, C. R.
1983-01-01
Amplification of quasar light by a cosmological density of compact objects causes significant effects on many quasars in magnitude-limited samples. For lens masses solar mass less than 100,000 solar mass the continuum would be amplified by a magnitude or more but the line emission would not. Examination of the UV selected sample of Marshall et al. (1983) gives limits to more than 90 percent statistical confidence of Omega(c) less than 0.1 for a mass between 200 and 100,000 solar mass, where Omega(c) is the mean density of objects of mass M relative to the closure density. Preliminary results from an X-ray selected sample may probe to more than 0.1 solar mass and give a value for Omega(c) of less than one. These limits indicate that the remnants of an early population of massive stars cannot make a cosmologically significant contribution to the mass density of the universe. On a separate topic, recent work on the enhanced surface density of quasars near galaxies due to lensing by stars in the galaxy halos is reviewed.
Construction of the Database for Pulsating Variable Stars
NASA Astrophysics Data System (ADS)
Chen, Bing-Qiu; Yang, Ming; Jiang, Bi-Wei
2012-01-01
A database for pulsating variable stars is constructed to favor the study of variable stars in China. The database includes about 230,000 variable stars in the Galactic bulge, LMC and SMC observed in an about 10 yr period by the MACHO(MAssive Compact Halo Objects) and OGLE(Optical Gravitational Lensing Experiment) projects. The software used for the construction is LAMP, i.e., Linux+Apache+MySQL+PHP. A web page is provided for searching the photometric data and light curves in the database through the right ascension and declination of an object. Because of the flexibility of this database, more up-to-date data of variable stars can be incorporated into the database conveniently.
The Chandra Dust-scattering Halo of Galactic Center Transient Swift J174540.7–290015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corrales, L. R.; Mon, B.; Haggard, D.
We report the detection of a dust-scattering halo around a recently discovered X-ray transient, Swift J174540.7–290015, which in early 2016 February underwent one of the brightest outbursts ( F {sub X} ≈ 5 × 10{sup −10} erg cm{sup −2} s{sup −1}) observed from a compact object in the Galactic Center field. We analyze four Chandra images that were taken as follow-up observations to Swift discoveries of new Galactic Center transients. After adjusting our spectral extraction for the effects of detector pile-up, we construct a point-spread function for each observation and compare it to the GC field before the outburst. Wemore » find residual surface brightness around Swift J174540.7–290015, which has a shape and temporal evolution consistent with the behavior expected from X-rays scattered by foreground dust. We examine the spectral properties of the source, which shows evidence that the object transitioned from a soft to hard spectral state as it faded below L {sub X} ∼ 10{sup 36} erg s{sup −1}. This behavior is consistent with the hypothesis that the object is a low-mass X-ray binary in the Galactic Center.« less
INTO THE LAIR: GRAVITATIONAL-WAVE SIGNATURES OF DARK MATTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macedo, Caio F. B.; Cardoso, Vitor; Crispino, Luis C. B.
The nature and properties of dark matter (DM) are both outstanding issues in physics. Besides clustering in halos, the universal character of gravity implies that self-gravitating compact DM configurations-predicted by various models-might be spread throughout the universe. Their astrophysical signature can be used to probe fundamental particle physics, or to test alternative descriptions of compact objects in active galactic nuclei. Here, we discuss the most promising dissection tool of such configurations: the inspiral of a compact stellar-size object and consequent gravitational-wave (GW) emission. The inward motion of this ''test probe'' encodes unique information about the nature of the supermassive configuration.more » When the probe travels through some compact region we show, within a Newtonian approximation, that the quasi-adiabatic inspiral is mainly driven by DM accretion and by dynamical friction, rather than by radiation reaction. When accretion dominates, the frequency and amplitude of the GW signal produced during the latest stages of the inspiral are nearly constant. In the exterior region we study a model in which the inspiral is driven by GW and scalar-wave emission, described at a fully relativistic level. Resonances in the energy flux appear whenever the orbital frequency matches the effective mass of the DM particle, corresponding to the excitation of the central object's quasinormal frequencies. Unexpectedly, these resonances can lead to large dephasing with respect to standard inspiral templates, to such an extent as to prevent detection with matched filtering techniques. We discuss some observational consequences of these effects for GW detection.« less
Active lower limb orthosis with one degree of freedom for people with paraplegia.
Gloger, Michal; Obinata, Goro; Genda, Eiichi; Babjak, Jan; Pei, Yanling
2017-07-01
The main challenges of designing devices for paraplegic walking can be summarized into three groups, stability and comfort, high efficiency or low energy consumption, dimensions and weight. A new economical device for people with paraplegia which tackles all problems of the three groups is introduced in this paper. The main idea of this device is based on HALO mechanism. HALO is compact passive medial hip joint orthosis with contralateral hip and ankle linkage, which keeps the feet always parallel to the ground and assists swinging the leg. The medial hip joint is equipped with one actuator in the new design and the new orthosis is called @halo. Due to this update, we can achieve more stable and smoother walking patterns with decreased energy consumption of the users, yet maintain its compact and lightweight features. It is proven by the results from preliminary experiments with able-bodied subjects during which the same device with and without actuator was evaluated. Waddling and excessive vertical elevation of the center of gravity were decreased by 40% with significantly smaller standard deviations in case of the active orthosis. There was 52% less energy spent by the user wearing @halo which was calculated from the vertical excursion difference. There was measured 38.5% bigger impulse in crutches while using passive orthosis. The new @halo device is the first active orthosis for lower limbs with just one actuated degree of freedom for users with paraplegia.
NASA Astrophysics Data System (ADS)
Kim, Jae Wook
2013-05-01
This paper proposes a novel systematic approach for the parallelization of pentadiagonal compact finite-difference schemes and filters based on domain decomposition. The proposed approach allows a pentadiagonal banded matrix system to be split into quasi-disjoint subsystems by using a linear-algebraic transformation technique. As a result the inversion of pentadiagonal matrices can be implemented within each subdomain in an independent manner subject to a conventional halo-exchange process. The proposed matrix transformation leads to new subdomain boundary (SB) compact schemes and filters that require three halo terms to exchange with neighboring subdomains. The internode communication overhead in the present approach is equivalent to that of standard explicit schemes and filters based on seven-point discretization stencils. The new SB compact schemes and filters demand additional arithmetic operations compared to the original serial ones. However, it is shown that the additional cost becomes sufficiently low by choosing optimal sizes of their discretization stencils. Compared to earlier published results, the proposed SB compact schemes and filters successfully reduce parallelization artifacts arising from subdomain boundaries to a level sufficiently negligible for sophisticated aeroacoustic simulations without degrading parallel efficiency. The overall performance and parallel efficiency of the proposed approach are demonstrated by stringent benchmark tests.
Gerhardt, S P; Fredrickson, E; Guttadora, L; Kaita, R; Kugel, H; Menard, J; Takahashi, H
2011-10-01
This paper describes techniques for measuring halo currents, and their associated toroidal peaking, in the National Spherical Torus Experiments [M. Ono et al., Nucl. Fusion 40, 557 (2000)]. The measurements are based on three techniques: (1) measurement of the toroidal field created by the poloidal halo current, either with segmented Rogowski coils or discrete toroidal field sensors, (2) the direct measurement of halo currents into specially instrument tiles, and (3) small Rogowski coils placed on the mechanical supports of in-vessel components. For the segmented Rogowski coils and discrete toroidal field detectors, it is shown that the toroidal peaking factor inferred from the data is significantly less than the peaking factor of the underlying halo current distribution, and a simple model is developed to relate the two. For the array of discrete toroidal field detectors and small Rogowski sensors, the compensation steps that are used to isolate the halo current signal are described. The electrical and mechanical design of compact under-tile resistive shunts and mini-Rogowski coils is described. Example data from the various systems are shown.
Gerhardt, S. P.; Fredrickson, E.; Guttadora, L.; ...
2011-10-06
This paper describes techniques for measuring halo currents, and their associated toroidal peaking, in the National Spherical Torus Experiments. The measurements are based on three techniques: (i) measurement of the toroidal field created by the poloidal halo current, either with segmented Rogowski coils or discrete toroidal field sensors, (ii) the direct measurement of halo currents into specially instrument tiles, and (iii) small Rogowski coils placed on the mechanical supports of in-vessel components. For the segmented Rogowski coils and discrete toroidal field detectors, it is shown that the toroidal peaking factor inferred from the data is significantly less than the peakingmore » factor of the underlying halo current distribution, and a simple model is developed to relate the two. For the array of discrete toroidal field detectors and small Rogowski sensors, the compensation steps that are used to isolate the halo current signal are described. The electrical and mechanical design of compact under-tile resistive shunts and mini-Rogowski coils is described. Example data from the various systems is shown.« less
Frequency maps as a probe of secular evolution in the Milky Way
NASA Astrophysics Data System (ADS)
Valluri, Monica
2015-03-01
The frequency analysis of the orbits of halo stars and dark matter particles from a cosmological hydrodynamical simulation of a disk galaxy from the MUGS collaboration (Stinson et al. 2010) shows that even if the shape of the dark matter halo is nearly oblate, only about 50% of its orbits are on short-axis tubes, confirming a previous result: under baryonic condensation all orbit families can deform their shapes without changing orbital type (Valluri et al. 2010). Orbits of dark matter particles and halo stars are very similar reflecting their common accretion origin and the influence of baryons. Frequency maps provide a compact representation of the 6-D phase space distribution that also reveals the history of the halo (Valluri et al. 2012). The 6-D phase space coordinates for a large population of halo stars in the Milky Way that will be obtained from future surveys can be used to reconstruct the phase-space distribution function of the stellar halo. The similarity between the frequency maps of halo stars and dark matter particles (Fig. 1) implies that reconstruction of the stellar halo distribution function can reveal the phase space distribution of the unseen dark matter particles and provide evidence for secular evolution. MV is supported by NSF grant AST-0908346 and the Elizabeth Crosby grant.
Shedding light on baryonic dark matter.
Silk, J
1991-02-01
Halo dark matter, if it is baryonic, may plausibly consist of compact stellar remnants. Jeans mass clouds containing 10(6) to 10(8) solar masses could have efficiently formed stars in the early universe and could plausibly have generated, for a suitably top-heavy stellar initial mass function, a high abundance of neutron stars as well as a small admixture of long-lived low mass stars. Within the resulting clusters of dark remnants, which eventually are tidally disrupted when halos eventually form, captures of neutron stars by non-degenerate stars resulted in formation of close binaries. These evolve to produce, by the present epoch, an observable x-ray signal associated with dark matter aggregations in galaxy halos and galaxy cluster cores.
CONSTRAINTS ON MACHO DARK MATTER FROM COMPACT STELLAR SYSTEMS IN ULTRA-FAINT DWARF GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, Timothy D.
2016-06-20
I show that a recently discovered star cluster near the center of the ultra-faint dwarf galaxy Eridanus II provides strong constraints on massive compact halo objects (MACHOs) of ≳5 M {sub ⊙} as the main component of dark matter. MACHO dark matter will dynamically heat the cluster, driving it to larger sizes and higher velocity dispersions until it dissolves into its host galaxy. The stars in compact ultra-faint dwarf galaxies themselves will be subject to the same dynamical heating; the survival of at least 10 such galaxies places independent limits on MACHO dark matter of masses ≳10 M {sub ⊙}.more » Both Eri II’s cluster and the compact ultra-faint dwarfs are characterized by stellar masses of just a few thousand M {sub ⊙} and half-light radii of 13 pc (for the cluster) and ∼30 pc (for the ultra-faint dwarfs). These systems close the ∼20–100 M {sub ⊙} window of allowed MACHO dark matter and combine with existing constraints from microlensing, wide binaries, and disk kinematics to rule out dark matter composed entirely of MACHOs from ∼10{sup −7} M {sub ⊙} up to arbitrarily high masses.« less
NASA Astrophysics Data System (ADS)
Leclercq, Floriane; Bacon, Roland; Wisotzki, Lutz; Mitchell, Peter; Garel, Thibault; Verhamme, Anne; Blaizot, Jérémy; Hashimoto, Takuya; Herenz, Edmund Christian; Conseil, Simon; Cantalupo, Sebastiano; Inami, Hanae; Contini, Thierry; Richard, Johan; Maseda, Michael; Schaye, Joop; Marino, Raffaella Anna; Akhlaghi, Mohammad; Brinchmann, Jarle; Carollo, Marcella
2017-11-01
We report the detection of extended Lyα haloes around 145 individual star-forming galaxies at redshifts 3 ≤ z ≤ 6 in the Hubble Ultra Deep Field observed with the Multi-Unit Spectroscopic Explorer (MUSE) at ESO-VLT. Our sample consists of continuum-faint (- 15 ≥ MUV ≥ -22) Lyα emitters (LAEs). Using a 2D, two-component (continuum-like and halo) decomposition of Lyα emission assuming circular exponential distributions, we measure scale lengths and luminosities of Lyα haloes. We find that 80% of our objects having reliable Lyα halo measurements show Lyα emission that is significantly more extended than the UV continuum detected by HST (by a factor ≈4 to >20). The median exponential scale length of the Lyα haloes in our sample is ≈4.5 kpc with a few haloes exceeding 10 kpc. By comparing the maximal detected extent of the Lyα emission with the predicted dark matter halo virial radii of simulated galaxies, we show that the detected Lyα emission of our selected sample of Lyα emitters probes a significant portion of the cold circum-galactic medium of these galaxies (>50% in average). This result therefore shows that there must be significant HI reservoirs in the circum-galactic medium and reinforces the idea that Lyα haloes are ubiquitous around high-redshift Lyα emitting galaxies. Our characterization of the Lyα haloes indicates that the majority of the Lyα flux comes from the halo (≈65%) and that their scale lengths seem to be linked to the UV properties of the galaxies (sizes and magnitudes). We do not observe a significant Lyα halo size evolution with redshift, although our sample for z> 5 is very small. We also explore the diversity of the Lyα line profiles in our sample and we find that the Lyα lines cover a large range of full width at half maximum (FWHM) from 118 to 512 km s-1. While the FWHM does not seem to be correlated to the Lyα scale length, most compact Lyα haloes and those that are not detected with high significance tend to have narrower Lyα profiles (<350 km s-1). Finally, we investigate the origin of the extended Lyα emission but we conclude that our data do not allow us to disentangle the possible processes, i.e. scattering from star-forming regions, fluorescence, cooling radiation from cold gas accretion, and emission from satellite galaxies. MUSE Ultra Deep Field Lyα haloes catalog (Table B.1) is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A8
HaloSat- A CubeSat to Study the Hot Galactic Halo
NASA Astrophysics Data System (ADS)
Kaaret, Philip
We propose to develop, build, and fly HaloSat, a CubeSat capable of measuring the oxygen line emission from the hot Galactic halo. A dedicated CubeSat enables an instrument design and observing strategy to maximize the halo signal while minimizing foregrounds from solar wind charge exchange interactions within the solar system. We will use HaloSat to map the distribution of hot gas in the Milky Way and determine whether it fills an extended, and thus massive halo, or whether the halo is compact, and thus does not contribute significantly to the total mass of the Milky Way. HaloSat can be accomplished at modest cost using a CubeSat, a novel platform for space astrophysics missions. We will use a commercially available CubeSat bus and commercially available X-ray detectors to reduce development risk and minimize overall mission cost. HaloSat builds on the initiatives of GSFC/Wallops Flight Facility (WFF) in the development of CubeSats for low cost access to space and relies on the technical expertise of WFF personnel for spacecraft and mission design and operations. The team, from University of Iowa (UI), GSFC, Johns Hopkins, and CNRS (France), contains experts in X-ray detector development and data analysis and the astrophysics of hot plasmas and Galactic structure. The UI team will include a number of junior researchers (undergraduates, graduate students, and a postdoc) and help train them for future leadership roles on NASA space flight missions.
Diverse Formation Mechanisms for Compact Galaxies
NASA Astrophysics Data System (ADS)
Kim, Jin-Ah; Paudel, Sanjaya; Yoon, Suk-Jin
2018-01-01
Compact, quenched galaxies such as M32 are unusual ones located off the mass - size scaling relation defined by normal galaxies. Still, their formation mechanisms remain unsolved. Here we investigate the evolution of ~100 compact, quenched galaxies at z = 0 identified in the Illustris cosmological simulation. We identify three ways for a galaxy to become a compact one and, often, multiple mechanisms operate in a combined manner. First, stripping is responsible for making about a third of compact galaxies. Stripping removes stars from galaxies, usually while keeping their sizes intact. About one third are galaxies that cease their growth early on after entering into more massive, gigantic halos. Finally, about half of compact galaxies, ~ 35 % of which turn out to undergo stripping, experience the compaction due to the highly centrally concentrated star formation. We discuss the evolutionary path of compact galaxies on the mass – size plane for each mechanism in a broader context of dwarf galaxy formation and evolution.
Lensing of Fast Radio Bursts as a Probe of Compact Dark Matter
NASA Astrophysics Data System (ADS)
Muñoz, Julian B.; Kovetz, Ely D.; Dai, Liang; Kamionkowski, Marc
2016-08-01
The possibility that part of the dark matter is made of massive compact halo objects (MACHOs) remains poorly constrained over a wide range of masses, and especially in the 20 - 100 M⊙ window. We show that strong gravitational lensing of extragalactic fast radio bursts (FRBs) by MACHOs of masses larger than ˜20 M⊙ would result in repeated FRBs with an observable time delay. Strong lensing of a FRB by a lens of mass ML induces two images, separated by a typical time delay ˜few×(ML/30 M⊙) msec . Considering the expected FRB detection rate by upcoming experiments, such as canadian hydrogen intensity mapping experiment (CHIME), of 1 04 FRBs per year, we should observe from tens to hundreds of repeated bursts yearly, if MACHOs in this window make up all the dark matter. A null search for echoes with just 1 04 FRBs would constrain the fraction fDM of dark matter in MACHOs to fDM≲0.08 for ML≳20 M⊙ .
MoonBEAM: A Beyond Earth-Orbit Gamma-Ray Burst Detector for Gravitational-Wave Astronomy
NASA Technical Reports Server (NTRS)
Hui, C. M.; Briggs, M. S.; Goldstein, A. M.; Jenke, P. A.; Kocevski, D.; Wilson-Hodge, C. A.
2018-01-01
Moon Burst Energetics All-sky Monitor (MoonBEAM) is a CubeSat concept of deploying gamma-ray detectors in cislunar space to improve localization precision for gamma-ray bursts by utilizing the light travel time difference between different orbits. We present here a gamma-ray SmallSat concept in Earth-Moon L3 halo orbit that is capable of rapid response and provide a timing baseline for localization improvement when partnered with an Earth-orbit instrument. Such an instrument would probe the extreme processes in cosmic collision of compact objects and facilitate multi-messenger time-domain astronomy to explore the end of stellar life cycles and black hole formations.
Mass and size growth of early-type galaxies by dry mergers in cluster environments
NASA Astrophysics Data System (ADS)
Oogi, Taira; Habe, Asao; Ishiyama, Tomoaki
2016-02-01
We perform dry merger simulations to investigate the role of dry mergers in the size growth of early-type galaxies in high-density environments. We replace the virialized dark matter haloes obtained by a large cosmological N-body simulation with N-body galaxy models consisting of two components, a stellar bulge and a dark matter halo, which have higher mass resolution than the cosmological simulation. We then resimulate nine cluster-forming regions, whose masses range from 1 × 1014 to 5 × 1014 M⊙. Masses and sizes of stellar bulges are also assumed to satisfy the stellar mass-size relation of high-z compact massive early-type galaxies. We find that dry major mergers considerably contribute to the mass and size growth of central massive galaxies. One or two dry major mergers double the average stellar mass and quadruple the average size between z = 2 and 0. These growths favourably agree with observations. Moreover, the density distributions of our simulated central massive galaxies grow from the inside-out, which is consistent with recent observations. The mass-size evolution is approximated as R∝ M_{{ast }}^{α }, with α ˜ 2.24. Most of our simulated galaxies are efficiently grown by dry mergers, and their stellar mass-size relations match the ones observed in the local Universe. Our results show that the central galaxies in the cluster haloes are potential descendants of high-z (z ˜ 2-3) compact massive early-type galaxies. This conclusion is consistent with previous numerical studies which investigate the formation and evolution of compact massive early-type galaxies.
Testing approximate predictions of displacements of cosmological dark matter halos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munari, Emiliano; Monaco, Pierluigi; Borgani, Stefano
We present a test to quantify how well some approximate methods, designed to reproduce the mildly non-linear evolution of perturbations, are able to reproduce the clustering of DM halos once the grouping of particles into halos is defined and kept fixed. The following methods have been considered: Lagrangian Perturbation Theory (LPT) up to third order, Truncated LPT, Augmented LPT, MUSCLE and COLA. The test runs as follows: halos are defined by applying a friends-of-friends (FoF) halo finder to the output of an N-body simulation. The approximate methods are then applied to the same initial conditions of the simulation, producing formore » all particles displacements from their starting position and velocities. The position and velocity of each halo are computed by averaging over the particles that belong to that halo, according to the FoF halo finder. This procedure allows us to perform a well-posed test of how clustering of the matter density and halo density fields are recovered, without asking to the approximate method an accurate reconstruction of halos. We have considered the results at z =0,0.5,1, and we have analysed power spectrum in real and redshift space, object-by-object difference in position and velocity, density Probability Distribution Function (PDF) and its moments, phase difference of Fourier modes. We find that higher LPT orders are generally able to better reproduce the clustering of halos, while little or no improvement is found for the matter density field when going to 2LPT and 3LPT. Augmentation provides some improvement when coupled with 2LPT, while its effect is limited when coupled with 3LPT. Little improvement is brought by MUSCLE with respect to Augmentation. The more expensive particle-mesh code COLA outperforms all LPT methods, and this is true even for mesh sizes as large as the inter-particle distance. This test sets an upper limit on the ability of these methods to reproduce the clustering of halos, for the cases when these objects are reconstructed at the object-by-object level.« less
Testing approximate predictions of displacements of cosmological dark matter halos
NASA Astrophysics Data System (ADS)
Munari, Emiliano; Monaco, Pierluigi; Koda, Jun; Kitaura, Francisco-Shu; Sefusatti, Emiliano; Borgani, Stefano
2017-07-01
We present a test to quantify how well some approximate methods, designed to reproduce the mildly non-linear evolution of perturbations, are able to reproduce the clustering of DM halos once the grouping of particles into halos is defined and kept fixed. The following methods have been considered: Lagrangian Perturbation Theory (LPT) up to third order, Truncated LPT, Augmented LPT, MUSCLE and COLA. The test runs as follows: halos are defined by applying a friends-of-friends (FoF) halo finder to the output of an N-body simulation. The approximate methods are then applied to the same initial conditions of the simulation, producing for all particles displacements from their starting position and velocities. The position and velocity of each halo are computed by averaging over the particles that belong to that halo, according to the FoF halo finder. This procedure allows us to perform a well-posed test of how clustering of the matter density and halo density fields are recovered, without asking to the approximate method an accurate reconstruction of halos. We have considered the results at z=0,0.5,1, and we have analysed power spectrum in real and redshift space, object-by-object difference in position and velocity, density Probability Distribution Function (PDF) and its moments, phase difference of Fourier modes. We find that higher LPT orders are generally able to better reproduce the clustering of halos, while little or no improvement is found for the matter density field when going to 2LPT and 3LPT. Augmentation provides some improvement when coupled with 2LPT, while its effect is limited when coupled with 3LPT. Little improvement is brought by MUSCLE with respect to Augmentation. The more expensive particle-mesh code COLA outperforms all LPT methods, and this is true even for mesh sizes as large as the inter-particle distance. This test sets an upper limit on the ability of these methods to reproduce the clustering of halos, for the cases when these objects are reconstructed at the object-by-object level.
The Stellar Populations of Ultra-Compact Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Karick, Arna; Gregg, M. D.
2006-12-01
We have discovered an intracluster population of ultra-luminous compact stellar systems in the Fornax cluster. Originally coined "ultra-compact dwarf galaxies" (UCDs), these objects were thought to be remnant nuclei of tidally stripped dE,Ns. Subsequent searches in Fornax (2dF+VLT) have revealed many fainter UCDs; making them the most numerous galaxy type in the cluster and fueling controversy over their origin. UCDs may be the bright tail of the globular cluster (GCs) population associated with NGC1399. Alternatively they may be real intracluster GCs, resulting from hierarchical cluster formation and merging in intracluster space. Determining the stellar populations of these enigmatic objects is challenging. UCDs are unresolved from the ground but our HST/STIS+ACS imaging reveals faint halos around the brightest UCDs. Here we present deep u'g'r'i'z' images of the cluster core using the CTIO 4m Mosaic. Combined with GALEX/UV imaging and using SSP isochrones, UCDs appear to be old, red and unlike cluster dEs. In contrast, our recent IMACS and Keck/LRIS+ESI spectroscopy shows that UCDs are unlike GCs and have intermediate stellar populations with significant variations in their Mg and Hβ line strength indices. This work is supported by National Science Foundation Grant No. 0407445 and was done at the Institute of Geophysics and Planetary Physics, under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Spectroscopic Results of Gravitational Microlenses: Are These Dark Objects or Faint Stars?
NASA Astrophysics Data System (ADS)
Joseph, C. L.; Gallagher, J.; Phillips, M.
1994-12-01
We report on the spectroscopic results obtained in October 1994 with the 4-meter telescope on Cerro Tololo Interamerican Observatory (CTIO). Spectra of 2 recent microlens candidates toward the Galactic bulge reported by the Optical Gravitational Lens Experiment (OGLE) as well as one caught in the early phases of brightening toward the LMC reported by the MAssive Compact Halo Object (MACHO) Project have been obtained. The spectral coverage is from 6500 to 9800 Angstroms at a resolution of 6 Angstroms. The long-term goal of this spectroscopic study is to obtain censored statistical evidence on the luminosity of the microlenses, constraining the nature of these lenses. Several models of composite spectra of a bulge or LMC star plus a cool lensing star of different spectral types are presented to demonstrate the ranges in the product of luminosity times distance that the faint star could be detected in a composite spectrum.
New Ultra-Compact Dwarf Galaxies in Clusters
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-02-01
How do ultra-compact dwarf galaxies (UCDs) galaxies that are especially small and dense form and evolve? Scientists have recently examined distant galaxy clusters, searching for more UCDs to help us answer this question.Origins of DwarfsIn recent years we have discovered a growing sample of small, very dense galaxies. Galaxies that are tens to hundreds of light-years across, with masses between a million and a billion solar masses, fall into category of ultra-compact dwarfs (UCDs).An example of an unresolved compact object from the authors survey that is likely an ultra-compact dwarf galaxy. [Adapted from Zhang Bell 2017]How do these dense and compact galaxies form? Two possibilities are commonly suggested:An initially larger galaxy was tidally stripped during interactions with other galaxies in a cluster, leaving behind only its small, dense core as a UCD.UCDs formed as compact galaxies at very early cosmic times. The ones living in a massive dark matter halo may have been able to remain compact over time, evolving into the objectswe see today.To better understand which of these formation scenarios applies to which galaxies, we need a larger sample size! Our census of UCDs is fairly limited and because theyare small and dim, most of the ones weve discovered are in the nearby universe. To build a good sample, we need to find UCDs at higher redshifts as well.A New SampleIn a recent study, two scientists from University of Michigan have demonstrated how we might find more UCDs. Yuanyuan Zhang (also affiliated with Fermilab) and Eric Bell used the Cluster Lensing and Supernova Survey with Hubble (CLASH) to search 17 galaxy clusters at intermediate redshifts of 0.2 z 0.6, looking for unresolved objects that might be UCDs.The mass and size distributions of the UCD candidates reported in this study, in the context of previously known nuclear star clusters, globular clusters (GCs), UCDs, compact elliptical galaxies (cEs), and dwarf galaxies. [Zhang Bell 2017]Zhang and Bell discovered a sample of compact objects grouped around the central galaxies of the clusters that are consistent with ultra-compact galaxies. The inferred sizes (many around 600 light-years in radius) and masses (roughly one billion solar masses) of these objects suggest that this sample may contain some of the densest UCDs discovered to date.The properties of this new set of UCD candidates arent enough to distinguish between formation scenarios yet, but the authors argue that if we find more such galaxies, we will be able to use the statistics of their spatial and color distributions to determine how they were formed.Zhang and Bell estimate that the 17 CLASH clusters studied in this work each contain an average of 2.7 of these objects in the central million light-years of the cluster. The authors work here suggests that searching wide-field survey data for similar discoveries is a plausible way to increase our sample of UCDs. This will allow us to statistically characterize these dense, compact galaxies and better understand their origins.CitationYuanyuan Zhang and Eric F. Bell 2017 ApJL 835 L2. doi:10.3847/2041-8213/835/1/L2
Metallicity and Kinematics of M31's Outer Stellar Halo from a Keck Spectroscopic Survey
NASA Astrophysics Data System (ADS)
Reitzel, David B.; Guhathakurta, Puragra
2002-07-01
We present first results from a spectroscopic survey designed to examine the metallicity and kinematics of individual red giant branch stars in the outer halo of the Andromeda spiral galaxy (M31). This study is based on multislit spectroscopy with the Keck II 10 m telescope and Low Resolution Imaging Spectrograph of the Ca II near-infrared triplet in 99 M31 halo candidates in a field at R=19 kpc on the southeast minor axis with brightnesses from 20~2 dex range over which the abundance measurement methods are calibrated. The mean/median metallicity of the M31 halo is about <[Fe/H]>=-1.9 to -1.1 dex (depending on the details of metallicity calibration and sample selection) and possibly higher: the high-metallicity end of the distribution is poorly constrained by our data since the selection function for the secure M31 sample excludes over 80% of the giants in solar/supersolar metallicity range. Possible reasons are explored for the apparent discrepancy between the mean [Fe/H] found in our spectroscopic survey (corrected for metallicity selection bias) and the slightly higher mean values found in earlier photometric studies. Field halo red giants in M31 appear to be somewhat more metal-rich on average than their Milky Way counterparts. The M31 halo [Fe/H] distribution is comparable to that of M31 globular clusters, Galactic globular clusters, and Local Group dwarf satellite galaxies. The data in this 19 kpc outer halo field are broadly consistent with a scenario in which the halo is built from the accretion of small stellar subsystems. There are four stars in the secure M31 sample that have particularly strong Ca II lines, indicating solar metallicity, at a common velocity of ~-340 km s-1 close to the galaxy's systemic velocity, similar to what might be expected for M31 disk giants on the minor axis. An extrapolation of the inner disk brightness profile, however, falls far short of accounting for these four stars-the disk would instead have to be very large (Rdisk>~80 kpc) and/or warped. More likely, these four stars represent a metal-rich debris trail from a past accretion event in the halo. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
Luque, E.
2016-02-09
Here, the Dark Energy Survey (DES) is a 5000 sq. degree survey in the southern hemisphere, which is rapidly reducing the existing north-south asymmetry in the census of MW satellites and other stellar substructure. We use the first-year DES data down to previously unprobed photometric depths to search for stellar systems in the Galactic halo, therefore complementing the previous analysis of the same data carried out by our group earlier this year. Our search is based on a matched filter algorithm that produces stellar density maps consistent with stellar population models of various ages, metallicities, and distances over the surveymore » area. The most conspicuous density peaks in these maps have been identified automatically and ranked according to their significance and recurrence for different input models. We report the discovery of one additional stellar system besides those previously found by several authors using the same first-year DES data. The object is compact, and consistent with being dominated by an old and metal-poor population. DES J0034-4902 is found at high significance and appears in the DES images as a compact concentration of faint blue point sources at ~ 87 {kpc}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luque, E.
Here, the Dark Energy Survey (DES) is a 5000 sq. degree survey in the southern hemisphere, which is rapidly reducing the existing north-south asymmetry in the census of MW satellites and other stellar substructure. We use the first-year DES data down to previously unprobed photometric depths to search for stellar systems in the Galactic halo, therefore complementing the previous analysis of the same data carried out by our group earlier this year. Our search is based on a matched filter algorithm that produces stellar density maps consistent with stellar population models of various ages, metallicities, and distances over the surveymore » area. The most conspicuous density peaks in these maps have been identified automatically and ranked according to their significance and recurrence for different input models. We report the discovery of one additional stellar system besides those previously found by several authors using the same first-year DES data. The object is compact, and consistent with being dominated by an old and metal-poor population. DES J0034-4902 is found at high significance and appears in the DES images as a compact concentration of faint blue point sources at ~ 87 {kpc}.« less
A DISTANT RADIO MINI-HALO IN THE PHOENIX GALAXY CLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Weeren, R. J.; Andrade-Santos, F.; Forman, W. R.
We report the discovery of extended radio emission in the Phoenix cluster (SPT-CL J2344-4243, z = 0.596) with the Giant Metrewave Radio Telescope (GMRT) at 610 MHz. The diffuse emission extends over a region of at least 400-500 kpc and surrounds the central radio source of the Brightest Cluster Galaxy, but does not appear to be directly associated with it. We classify the diffuse emission as a radio mini-halo, making it the currently most distant mini-halo known. Radio mini-halos have been explained by synchrotron emitting particles re-accelerated via turbulence, possibly induced by gas sloshing generated from a minor merger event. Chandra observationsmore » show a non-concentric X-ray surface brightness distribution, which is consistent with this sloshing interpretation. The mini-halo has a flux density of 17 ± 5 mJy, resulting in a 1.4 GHz radio power of (10.4 ± 3.5) × 10{sup 24} W Hz{sup –1}. The combined cluster emission, which includes the central compact radio source, is also detected in a shallow GMRT 156 MHz observation and together with the 610 MHz data we compute a spectral index of –0.84 ± 0.12 for the overall cluster radio emission. Given that mini-halos typically have steeper radio spectra than cluster radio galaxies, this spectral index should be taken as an upper limit for the mini-halo.« less
Lensing of Fast Radio Bursts as a Probe of Compact Dark Matter.
Muñoz, Julian B; Kovetz, Ely D; Dai, Liang; Kamionkowski, Marc
2016-08-26
The possibility that part of the dark matter is made of massive compact halo objects (MACHOs) remains poorly constrained over a wide range of masses, and especially in the 20-100 M_{⊙} window. We show that strong gravitational lensing of extragalactic fast radio bursts (FRBs) by MACHOs of masses larger than ∼20 M_{⊙} would result in repeated FRBs with an observable time delay. Strong lensing of a FRB by a lens of mass M_{L} induces two images, separated by a typical time delay ∼few×(M_{L}/30 M_{⊙}) msec. Considering the expected FRB detection rate by upcoming experiments, such as canadian hydrogen intensity mapping experiment (CHIME), of 10^{4} FRBs per year, we should observe from tens to hundreds of repeated bursts yearly, if MACHOs in this window make up all the dark matter. A null search for echoes with just 10^{4} FRBs would constrain the fraction f_{DM} of dark matter in MACHOs to f_{DM}≲0.08 for M_{L}≳20 M_{⊙}.
SHARP - V. Modelling gravitationally-lensed radio arcs imaged with global VLBI observations
NASA Astrophysics Data System (ADS)
Spingola, C.; McKean, J. P.; Auger, M. W.; Fassnacht, C. D.; Koopmans, L. V. E.; Lagattuta, D. J.; Vegetti, S.
2018-05-01
We present milliarcsecond (mas) angular resolution observations of the gravitationally lensed radio source MG J0751+2716 (at z = 3.2) obtained with global Very Long Baseline Interferometry (VLBI) at 1.65 GHz. The background object is highly resolved in the tangential and radial directions, showing evidence of both compact and extended structure across several gravitational arcs that are 200 to 600 mas in size. By identifying compact sub-components in the multiple images, we constrain the mass distribution of the foreground z = 0.35 gravitational lens using analytic models for the main deflector [power-law elliptical mass model; ρ(r)∝r-γ, where γ = 2 corresponds to isothermal] and for the members of the galaxy group. Moreover, our mass models with and without the group find an inner mass-density slope steeper than isothermal for the main lensing galaxy, with γ1 = 2.08 ± 0.02 and γ2 = 2.16 ± 0.02 at the 4.2σ level and 6.8σ level, respectively, at the Einstein radius (b1 = 0.4025 ± 0.0008 and b2 = 0.307 ± 0.002 arcsec, respectively). We find randomly distributed image position residuals of about 3 mas, which are much larger that the measurement errors (40 μas on average). This suggests that at the mas level, the assumption of a smooth mass distribution fails, requiring additional structure in the model. However, given the environment of the lensing galaxy, it is not clear whether this extra mass is in the form of sub-haloes within the lens or along the line of sight, or from a more complex halo for the galaxy group.
Globular Clusters Shine in a Galaxy Lacking Dark Matter
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2018-04-01
You may have seen recent news about NGC 1052DF2, a galaxy that was discovered to have little or no dark matter. Now, a new study explores what NGC 1052DF2 does have: an enigmatic population of unusually large and luminous globular clusters.Keck/LRIS spectra (left and right) and HST images (center) of the 11 clusters associated with NGC 1052DF2. The color images each span 1 1. [van Dokkum et al. 2018]An Unusual DwarfThe ultra-diffuse galaxy NGC 1052DF2, originally identified with the Dragonfly Telescope Array, has puzzled astronomers since the discovery that its dynamical mass determined by the motions of globular-cluster-like objects spotted within it is essentially the same as its stellar mass. This equivalence implies that the galaxy is strangely lacking dark matter; the upper limit set on its dark matter halo is 400 times smaller than what we would expect for such a dwarf galaxy.Led by Pieter van Dokkum (Yale University), the team that made this discovery has now followed up with detailed Hubble Space Telescope imaging and Keck spectroscopy. Their goal? To explore the objects that allowed them to make the dynamical-mass measurement: the oddly bright globular clusters of NGC 1052DF2.Sizes (circularized half-light radii) vs. absolute magnitudes for globular clusters in NGC1052DF2 (black) and the Milky Way (red). [Adapted from van Dokkum et al. 2018]Whats Up with the Globular Clusters?Van Dokkum and collaborators spectroscopically confirmed 11 compact objects associated with the faint galaxy. These objects are globular-cluster-like in their appearance, but the peak of their luminosity distribution is offset by a factor of four from globular clusters of other galaxies; these globular clusters are significantly brighter than is typical.Using the Hubble imaging, the authors determined that NGC 1052DF2s globular clusters are more than twice the size of the Milky Ways globular clusters in the same luminosity range. As is typical for globular clusters, they are an old ( 9.3 billion years) population and metal-poor.Rethinking Formation TheoriesThe long-standing picture of galaxies has closely connected old, metal-poor globular clusters to the galaxies dark-matter halos. Past studies have found that the ratio between the total globular-cluster mass and the overall mass of a galaxy (i.e., all dark + baryonic matter) holds remarkably constant across galaxies its typically 3 x 10-5. This has led researchers to believe that properties of the dark-matter halo may determine globular-cluster formation.The luminosity function of the compact objects in NGC 1052DF2. The red and blue curves show the luminosity functions of globular clusters in the Milky Way and in the typical ultra-diffuse galaxies of the Coma cluster, respectively. NGC 1052DF2s globular clusters peak at a significantly higher luminosity. [Adapted from van Dokkum et al. 2018]NGC 1052DF2, with a globular-cluster mass thats 3% of the mass of the galaxy ( 1000 times the expected ratio!), defies this picture. This unusual galaxy therefore demonstrates that the usual relation between globular-cluster mass and total galaxy mass probably isnt due to a fundamental connection between the dark-matter halo and globular-cluster formation. Instead, van Dokkum and collaborators suggest, globular-cluster formation may ultimately be a baryon-driven process.As with all unexpected discoveries in astronomy, we must now determine whether NGC 1052DF2 is simply a fluke, or whether it represents a new class of object we can expect to find more of. Either way, this unusual galaxy is forcing us to rethink what we know about galaxies and the star clusters they host.CitationPieter van Dokkum et al 2018 ApJL 856 L30. doi:10.3847/2041-8213/aab60b
NASA Astrophysics Data System (ADS)
Deason, A. J.; Conroy, C.; Wetzel, A. R.; Tinker, J. L.
2013-11-01
We investigate the use of the halo mass-gap statistic—defined as the logarithmic difference in mass between the host halo and its most massive satellite subhalo—as a probe of halo age and concentration. A cosmological N-body simulation is used to study N ~ 25, 000 group/cluster-sized halos in the mass range 1012.5 < M halo/M ⊙ < 1014.5. In agreement with previous work, we find that halo mass-gap is related to halo formation time and concentration. On average, older and more highly concentrated halos have larger halo mass-gaps, and this trend is stronger than the mass-concentration relation over a similar dynamic range. However, there is a large amount of scatter owing to the transitory nature of the satellite subhalo population, which limits the use of the halo mass-gap statistic on an object-by-object basis. For example, we find that 20% of very large halo mass-gap systems (akin to "fossil groups") are young and have likely experienced a recent merger between a massive satellite subhalo and the central subhalo. We relate halo mass-gap to the observable stellar mass-gap via abundance matching. Using a galaxy group catalog constructed from the Sloan Digital Sky Survey Data Release 7, we find that the star formation and structural properties of galaxies at fixed mass show no trend with stellar mass-gap. This is despite a variation in halo age of ≈2.5 Gyr over ≈1.2 dex in stellar mass-gap. Thus, we find no evidence to suggest that the halo formation history significantly affects galaxy properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deason, A. J.; Conroy, C.; Wetzel, A. R.
We investigate the use of the halo mass-gap statistic—defined as the logarithmic difference in mass between the host halo and its most massive satellite subhalo—as a probe of halo age and concentration. A cosmological N-body simulation is used to study N ∼ 25, 000 group/cluster-sized halos in the mass range 10{sup 12.5} < M{sub halo}/M{sub ☉} < 10{sup 14.5}. In agreement with previous work, we find that halo mass-gap is related to halo formation time and concentration. On average, older and more highly concentrated halos have larger halo mass-gaps, and this trend is stronger than the mass-concentration relation over amore » similar dynamic range. However, there is a large amount of scatter owing to the transitory nature of the satellite subhalo population, which limits the use of the halo mass-gap statistic on an object-by-object basis. For example, we find that 20% of very large halo mass-gap systems (akin to {sup f}ossil groups{sup )} are young and have likely experienced a recent merger between a massive satellite subhalo and the central subhalo. We relate halo mass-gap to the observable stellar mass-gap via abundance matching. Using a galaxy group catalog constructed from the Sloan Digital Sky Survey Data Release 7, we find that the star formation and structural properties of galaxies at fixed mass show no trend with stellar mass-gap. This is despite a variation in halo age of ≈2.5 Gyr over ≈1.2 dex in stellar mass-gap. Thus, we find no evidence to suggest that the halo formation history significantly affects galaxy properties.« less
Bursts of star formation in computer simulations of dwarf galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comins, N.F.
1984-09-01
A three-dimensional Stochastic Self-Propagating Star Formation (SSPSF) model of compact galacies is presented. Two phases of gas, active and inactive, are present, and permanent depletion of gas in the form of long lived, low mass stars and remnants occurs. Similarly, global infall of gas from a galactic halo or through galactic cannibalism is permitted. We base our parameters on the observed properties of the compact blue galaxy I Zw 36. Our results are that bursts of star formation occur much more frequently in these runs than continuous nonbursting star formation, suggesting that the blue compact galaxies are probably undergoing burstsmore » rather than continuous, nonbursting low-level star formation activity.« less
Properties of Massive Stars in Primitive Galaxies
NASA Technical Reports Server (NTRS)
Heap, Sara
2012-01-01
According to R. Dave, the phases of galaxy formation are distinguished by their halo mass and governing feedback mechanism. Galaxies in the birth phase (our "primitive galaxies") have a low halo mass (M<10(exp 9) Msun); and star formation is affected by photoionizing radiation of massive stars. In contrast, galaxies in the growth phase (e.g. Lyman Break galaxies) are more massive (M=10(exp 9)-10(exp 12) Msun); star formation is fueled by cold accretion but modulated by strong outflows from massive stars. I Zw 18 is a local blue, compact dwarf galaxy that meets the requirements for a birth-phase galaxy: halo mass <10(exp 9) Msun, strong photo ionizing radiation, no galactic outflow, and very low metallicity, log(O/H)=7.2. We will describe the properties of massive stars in I Zw 18 based on analysis of ultraviolet spectra obtained with HST.
Understanding the Milky Way Halo through Large Surveys
NASA Astrophysics Data System (ADS)
Koposov, Sergey
This thesis presents an extensive study of stellar substructure in the outskirts of the Milky Way(MW), combining data mining of SDSS with theoretical modeling. Such substructure, either bound star clusters and satellite galaxies, or tidally disrupted objects forming stellar streams are powerful diagnostics of the Milky Way's dynamics and formation history. I have developed an algorithmic technique of searching for stellar overdensities in the MW halo, based on SDSS catalogs. This led to the discovery of unusual ultra-faint ~ (1000Lsun) globular clusters with very compact sizes and relaxation times << t_Hubble. The detailed analysis of a known stellar stream (GD-1), allowed me to make the first 6-D phase space map for such an object along 60 degrees on the sky. By modeling the stream's orbit I could place strong constraints on the Galactic potential, e.g. Vcirc(R0)= 224+/-13 km/s. The application of the algorithmic search for stellar overdensities to the SDSS dataset and to mock datasets allowed me to quantify SDSS's severe radial incompleteness in its search for ultra-faint dwarf galaxies and to determine the luminosity function of MW satellites down to luminosities of M_V ~ -3. I used the semi-analytical model in order to compare the CDM model predictions for the MW satellite population with the observations; this comparison has shown that the recently increased census of MW satellites, better understanding of the radial incompleteness and the suppression of star formation after the reionization can fully solve the "Missing satellite problem".
NASA Astrophysics Data System (ADS)
Posti, Lorenzo; Nipoti, Carlo; Stiavelli, Massimo; Ciotti, Luca
2014-05-01
Early-type galaxies (ETGs) are observed to be more compact, on average, at z ≳ 2 than at z ≃ 0, at fixed stellar mass. Recent observational works suggest that such size evolution could reflect the similar evolution of the host dark matter halo density as a function of the time of galaxy quenching. We explore this hypothesis by studying the distribution of halo central velocity dispersion (σ0) and half-mass radius (rh) as functions of halo mass M and redshift z, in a cosmological Λ cold dark matter N-body simulation. In the range 0 ≲ z ≲ 2.5, we find σ0∝M0.31-0.37 and rh∝M0.28-0.32, close to the values expected for homologous virialized systems. At fixed M in the range 1011 M⊙ ≲ M ≲ 5.5 × 1014 M⊙ we find σ0 ∝ (1 + z)0.35 and rh ∝ (1 + z)-0.7. We show that such evolution of the halo scaling laws is driven by individual haloes growing in mass following the evolutionary tracks σ0 ∝ M0.2 and rh ∝ M0.6, consistent with simple dissipationless merging models in which the encounter orbital energy is accounted for. We compare the N-body data with ETGs observed at 0 ≲ z ≲ 3 by populating the haloes with a stellar component under simple but justified assumptions: the resulting galaxies evolve consistently with the observed ETGs up to z ≃ 2, but the model has difficulty in reproducing the fast evolution observed at z ≳ 2. We conclude that a substantial fraction of the size evolution of ETGs can be ascribed to a systematic dependence on redshift of the dark matter haloes structural properties.
A GRAVITATIONAL DOUBLE-SCATTERING MECHANISM FOR GENERATING HIGH-VELOCITY OBJECTS DURING HALO MERGERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samsing, Johan; Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544
2015-02-01
We present a dynamical model that describes how halo particles can receive a significant energy kick from the merger between their own host halo and a target halo. This could provide a possible explanation for some high-velocity objects, including extended systems like globular clusters (GCs). In the model we especially introduce a double-scattering mechanism, where a halo particle receives a significant part of its total energy kick by first undergoing a gravitational deflection by the target halo and subsequently by its original host halo. This generates an energy kick that is due to the relative velocity between the halos duringmore » the deflections. We derive analytically the total kick energy of the particle, which is composed of energy from the double-scattering mechanism and tidal fields, as a function of its position in its original host halo just before merger. In the case of a 1:10 merger, we find that the presented mechanisms can easily generate particles with a velocity approximately two times the virial velocity of the target halo. This motivates us to suggest that the high velocity of the recently discovered GC HVGC-1 can be explained by a head-on halo merger. Finally, we illustrate the orbital evolution of high-velocity particles outside the virial sphere of the target halo by solving the equation of motion in an expanding universe. We find a sweet spot around a scale factor of 0.3-0.5 for ejecting particles into large orbits, which can easily reach beyond approximately five virial radii.« less
Improving fast generation of halo catalogues with higher order Lagrangian perturbation theory
NASA Astrophysics Data System (ADS)
Munari, Emiliano; Monaco, Pierluigi; Sefusatti, Emiliano; Castorina, Emanuele; Mohammad, Faizan G.; Anselmi, Stefano; Borgani, Stefano
2017-03-01
We present the latest version of PINOCCHIO, a code that generates catalogues of dark matter haloes in an approximate but fast way with respect to an N-body simulation. This code version implements a new on-the-fly production of halo catalogue on the past light cone with continuous time sampling, and the computation of particle and halo displacements are extended up to third-order Lagrangian perturbation theory (LPT), in contrast with previous versions that used Zel'dovich approximation. We run PINOCCHIO on the same initial configuration of a reference N-body simulation, so that the comparison extends to the object-by-object level. We consider haloes at redshifts 0 and 1, using different LPT orders either for halo construction or to compute halo final positions. We compare the clustering properties of PINOCCHIO haloes with those from the simulation by computing the power spectrum and two-point correlation function in real and redshift space (monopole and quadrupole), the bispectrum and the phase difference of halo distributions. We find that 2LPT and 3LPT give noticeable improvement. 3LPT provides the best agreement with N-body when it is used to displace haloes, while 2LPT gives better results for constructing haloes. At the highest orders, linear bias is typically recovered at a few per cent level. In Fourier space and using 3LPT for halo displacements, the halo power spectrum is recovered to within 10 per cent up to kmax ∼ 0.5 h Mpc-1. The results presented in this paper have interesting implications for the generation of large ensemble of mock surveys for the scientific exploitation of data from big surveys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behroozi, Peter S.; Wechsler, Risa H.; Wu, Hao-Yi
We present a new algorithm for generating merger trees and halo catalogs which explicitly ensures consistency of halo properties (mass, position, and velocity) across time steps. Our algorithm has demonstrated the ability to improve both the completeness (through detecting and inserting otherwise missing halos) and purity (through detecting and removing spurious objects) of both merger trees and halo catalogs. In addition, our method is able to robustly measure the self-consistency of halo finders; it is the first to directly measure the uncertainties in halo positions, halo velocities, and the halo mass function for a given halo finder based on consistencymore » between snapshots in cosmological simulations. We use this algorithm to generate merger trees for two large simulations (Bolshoi and Consuelo) and evaluate two halo finders (ROCKSTAR and BDM). We find that both the ROCKSTAR and BDM halo finders track halos extremely well; in both, the number of halos which do not have physically consistent progenitors is at the 1%-2% level across all halo masses. Our code is publicly available at http://code.google.com/p/consistent-trees. Our trees and catalogs are publicly available at http://hipacc.ucsc.edu/Bolshoi/.« less
Compact configurations within small evolving groups of galaxies
NASA Astrophysics Data System (ADS)
Mamon, G. A.
Small virialized groups of galaxies are evolved with a gravitational N-body code, where the galaxies and a diffuse background are treated as single particles, but with mass and luminosity profiles attached, which enbles the estimation of parameters such as internal energies, half-mass radii, and the softened potential energies of interaction. The numerical treatment includes mergers, collisional stripping, tidal limitation by the mean-field of the background (evaluated using a combination of instantaneous and impulsive formulations), galaxy heating from collisons, and background heating from dynamical friction. The groups start out either as dense as appear the groups in Hickson's (1982) catalog, or as loose as appear those in Turner and Gott's (1976a) catalog, and they are simulated many times (usually 20) with different initial positions and velocities. Dense groups of galaxies with massive dark haloes coalesce into a single galaxy and lose their compact group appearance in approximately 3 group half-mass crossing times, while dense groups of galaxies without massive haloes survive the merger instability for 15 half-mass crossing times (in a more massive background to keep the same total group mass).
NASA Astrophysics Data System (ADS)
Lister, M. L.; Tingay, S. J.; Preston, R. A.
2001-06-01
We have performed a multidimensional correlation analysis on the observed properties of a statistically complete core-selected sample of compact radio-loud active galactic nuclei based on data from the VLBI Space Observing Programme (Paper I) and previously published studies. Our sample is drawn from the well-studied Pearson-Readhead (PR) survey and is ideally suited for investigating the general effects of relativistic beaming in compact radio sources. In addition to confirming many previously known correlations, we have discovered several new trends that lend additional support to the beaming model. These trends suggest that the most highly beamed sources in core-selected samples tend to have (1) high optical polarizations; (2) large parsec- kiloparsec-scale jet misalignments; (3) prominent VLBI core components; (4) one-sided, core, or halo radio morphology on kiloparsec scales; (5) narrow emission line equivalent widths; and (6) a strong tendency for intraday variability at radio wavelengths. We have used higher resolution space and ground-based VLBI maps to confirm the bimodality of the jet misalignment distribution for the PR survey and find that the sources with aligned parsec- and kiloparsec-scale jets generally have arcsecond-scale radio emission on both sides of the core. The aligned sources also have broader emission line widths. We find evidence that the BL Lacertae objects in the PR survey are all highly beamed and have very similar properties to the high optically polarized quasars, with the exception of smaller redshifts. A cluster analysis on our data shows that after partialing out the effects of redshift, the luminosities of our sample objects in various wave bands are generally well correlated with each other but not with other source properties.
Shrinking galaxy disks with fountain-driven accretion from the halo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmegreen, Bruce G.; Struck, Curtis; Hunter, Deidre A., E-mail: bge@watson.ibm.com, E-mail: curt@iastate.edu, E-mail: dah@lowell.edu
2014-12-01
Star formation in most galaxies requires cosmic gas accretion because the gas consumption time is short compared to the Hubble time. This accretion presumably comes from a combination of infalling satellite debris, cold flows, and condensation of hot halo gas at the cool disk interface, perhaps aided by a galactic fountain. In general, the accretion will have a different specific angular momentum than the part of the disk that receives it, even if the gas comes from the nearby halo. The gas disk then expands or shrinks over time. Here we show that condensation of halo gas at a ratemore » proportional to the star formation rate in the fountain model will preserve an initial shape, such as an exponential, with a shrinking scale length, leaving behind a stellar disk with a slightly steeper profile of younger stars near the center. This process is slow for most galaxies, producing imperceptible radial speeds, and it may be dominated by other torques, but it could be important for blue compact dwarfs, which tend to have large, irregular gas reservoirs and steep blue profiles in their inner stellar disks.« less
A High-velocity Cloud Impact Forming a Supershell in the Milky Way
NASA Astrophysics Data System (ADS)
Park, Geumsook; Koo, Bon-Chul; Kang, Ji-hyun; Gibson, Steven J.; Peek, J. E. G.; Douglas, Kevin A.; Korpela, Eric J.; Heiles, Carl E.
2016-08-01
Neutral atomic hydrogen (H I) gas in interstellar space is largely organized into filaments, loops, and shells, the most prominent of which are “supershells.” These gigantic structures, which require ≳ 3× {10}52 erg to form, are generally thought to be produced by either the explosion of multiple supernovae (SNe) in OB associations or, alternatively, by the impact of high-velocity clouds (HVCs) falling into the Galactic disk. Here, we report the detection of a kiloparsec (kpc)-size supershell in the outskirts of the Milky Way with the compact HVC 040 + 01-282 (hereafter, CHVC040) at its geometrical center using the “Inner-Galaxy Arecibo L-band Feed Array” H I 21 cm survey data. The morphological and physical properties of both objects suggest that CHVC040, which is either a fragment of a nearby disrupted galaxy or a cloud that originated from an intergalactic accreting flow, collided with the disk ˜5 Myr ago to form the supershell. Our results show that some compact HVCs can survive their trip through the Galactic halo and inject energy and momentum into the Milky Way disk.
NASA Astrophysics Data System (ADS)
Yamauchi, Toyohiko; Yamada, Hidenao; Matsui, Hisayuki; Yasuhiko, Osamu; Ueda, Yukio
2018-02-01
We developed a compact Mach-Zehnder interferometer module to be used as a replacement of the objective lens in a conventional inverted microscope (Nikon, TS100-F) in order to make them quantitative phase microscopes. The module has a 90-degree-flipped U-shape; the dimensions of the module are 160 mm by 120 mm by 40 mm and the weight is 380 grams. The Mach-Zehnder interferometer equipped with the separate reference and sample arms was implemented in this U-shaped housing and the path-length difference between the two arms was manually adjustable. The sample under test was put on the stage of the microscope and a sample light went through it. Both arms had identical achromatic lenses for image formation and the lateral positions of them were also manually adjustable. Therefore, temporally and spatially low coherent illumination was applicable because the users were able to balance precisely the path length of the two arms and to overlap the two wavefronts. In the experiment, spectrally filtered LED light for illumination (wavelength = 633 nm and bandwidth = 3 nm) was input to the interferometer module via a 50 micrometer core optical fiber. We have successfully captured full-field interference images by a camera put on the trinocular tube of the microscope and constructed quantitative phase images of the cultured cells by means of the quarter-wavelength phase shifting algorithm. The resultant quantitative phase images were speckle-free and halo-free due to spectrally and spatially low coherent illumination.
Strong bimodality in the host halo mass of central galaxies from galaxy-galaxy lensing
NASA Astrophysics Data System (ADS)
Mandelbaum, Rachel; Wang, Wenting; Zu, Ying; White, Simon; Henriques, Bruno; More, Surhud
2016-04-01
We use galaxy-galaxy lensing to study the dark matter haloes surrounding a sample of locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey. We measure mean halo mass as a function of the stellar mass and colour of the central galaxy. Mock catalogues constructed from semi-analytic galaxy formation simulations demonstrate that most LBGs are the central objects of their haloes, greatly reducing interpretation uncertainties due to satellite contributions to the lensing signal. Over the full stellar mass range, 10.3 < log [M*/M⊙] < 11.6, we find that passive central galaxies have haloes that are at least twice as massive as those of star-forming objects of the same stellar mass. The significance of this effect exceeds 3σ for log [M*/M⊙] > 10.7. Tests using the mock catalogues and on the data themselves clarify the effects of LBG selection and show that it cannot artificially induce a systematic dependence of halo mass on LBG colour. The bimodality in halo mass at fixed stellar mass is reproduced by the astrophysical model underlying our mock catalogue, but the sign of the effect is inconsistent with recent, nearly parameter-free age-matching models. The sign and magnitude of the effect can, however, be reproduced by halo occupation distribution models with a simple (few-parameter) prescription for type dependence.
HUBBLE'S 100,000TH EXPOSURE CAPTURES IMAGE OF DISTANT QUASAR
NASA Technical Reports Server (NTRS)
2002-01-01
The Hubble Space Telescope achieved its 100,000th exposure June 22 with a snapshot of a quasar that is about 9 billion light-years from Earth. The Wide Field and Planetary Camera 2 clicked this image of the quasar, the bright object in the center of the photo. The fainter object just above it is an elliptical galaxy. Although the two objects appear to be close to each other, they are actually separated by about 2 billion light-years. Located about 7 billion light-years away, the galaxy is almost directly in front of the quasar. Astronomer Charles Steidel of the California Institute of Technology in Pasadena, Calif., indirectly discovered the galaxy when he examined the quasar's light, which contained information about the galaxy's chemical composition. The reason, Steidel found, was that the galaxy was absorbing the light at certain frequencies. The astronomer is examining other background quasars to determine which kinds of galaxies absorb light at the same frequencies. Steidel also was somewhat surprised to discover that the galaxy is an elliptical, rather than a spiral. Elliptical galaxies are generally believed to contain very little gas. However, this elliptical has a gaseous 'halo' and contains no visible stars. Part of the halo is directly in front of the quasar. The bright object to the right of the quasar is a foreground star. The quasar and star are separated by billions of light-years. The quasar looks as bright as the star because it produces a tremendous amount of light from a compact source. The 'disturbed-looking' double spiral galaxy above the quasar also is in the foreground. Credit: Charles Steidel (California Institute of Technology, Pasadena, CA) and NASA. Image files in GIF and JPEG format and captions may be accessed on Internet via anonymous ftp from ftp.stsci.edu in /pubinfo.
NASA Astrophysics Data System (ADS)
Peirani, Sébastien; Dubois, Yohan; Volonteri, Marta; Devriendt, Julien; Bundy, Kevin; Silk, Joe; Pichon, Christophe; Kaviraj, Sugata; Gavazzi, Raphaël; Habouzit, Mélanie
2017-12-01
Using a suite of three large cosmological hydrodynamical simulations, HORIZON-AGN, HORIZON–NOAGN (no AGN feedback) and HORIZON-DM (no baryons), we investigate how a typical sub-grid model for AGN feedback affects the evolution of the inner density profiles of massive dark matter haloes and galaxies. Based on direct object-to-object comparisons, we find that the integrated inner mass and density slope differences between objects formed in these three simulations (hereafter, HAGN, HnoAGN and HDM) significantly evolve with time. More specifically, at high redshift (z ∼ 5), the mean central density profiles of HAGN and HnoAGN dark matter haloes tend to be much steeper than their HDM counterparts owing to the rapidly growing baryonic component and ensuing adiabatic contraction. By z ∼ 1.5, these mean halo density profiles in HAGN have flattened, pummelled by powerful AGN activity ('quasar mode'): the integrated inner mass difference gaps with HnoAGN haloes have widened, and those with HDM haloes have narrowed. Fast forward 9.5 billion years, down to z = 0, and the trend reverses: HAGN halo mean density profiles drift back to a more cusped shape as AGN feedback efficiency dwindles ('radio mode'), and the gaps in integrated central mass difference with HnoAGN and HDM close and broaden, respectively. On the galaxy side, the story differs noticeably. Averaged stellar profile central densities and inner slopes are monotonically reduced by AGN activity as a function of cosmic time, resulting in better agreement with local observations.
Shedding light on baryonic dark matter
NASA Technical Reports Server (NTRS)
Silk, Joseph
1991-01-01
Halo dark matter, if it is baryonic, may plausibly consist of compact stellar remnants. Jeans mass clouds containing 10 to the 6th to 10 to the 8th solar masses could have efficiently formed stars in the early universe and could plausibly have generated, for a suitably top-heavy stellar initial mass function, a high abundance of neutron stars as well as a small admixture of long-lived low mass stars. Within the resulting clusters of dark remnants, which eventually are tidally disrupted when halos eventually form, captures of neutron stars by nondegenerate stars resulted in formation of close binaries. These evolve to produce, by the present epoch, an observable X-ray signal associated with dark matter aggregations in galaxy cluster cores.
HALOS: fast, autonomous, holographic adaptive optics
NASA Astrophysics Data System (ADS)
Andersen, Geoff P.; Gelsinger-Austin, Paul; Gaddipati, Ravi; Gaddipati, Phani; Ghebremichael, Fassil
2014-08-01
We present progress on our holographic adaptive laser optics system (HALOS): a compact, closed-loop aberration correction system that uses a multiplexed hologram to deconvolve the phase aberrations in an input beam. The wavefront characterization is based on simple, parallel measurements of the intensity of fixed focal spots and does not require any complex calculations. As such, the system does not require a computer and is thus much cheaper, less complex than conventional approaches. We present details of a fully functional, closed-loop prototype incorporating a 32-element MEMS mirror, operating at a bandwidth of over 10kHz. Additionally, since the all-optical sensing is made in parallel, the speed is independent of actuator number - running at the same bandwidth for one actuator as for a million.
NASA Astrophysics Data System (ADS)
Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Freeman, K. C.; Geha, M.; Griest, K.; Lehner, M. J.; Marshall, S. L.; McNamara, B. J.; Minniti, D.; Nelson, C.; Peterson, B. A.; Popowski, P.; Pratt, M. R.; Quinn, P. J.; Rodgers, A. W.; Sutherland, W.; Templeton, M. R.; Vandehei, T.; Welch, D. L.
2000-06-01
We have detected 90 objects with periods and light-curve structures similar to those of field δ Scuti stars using the Massive Compact Halo Object (MACHO) Project database of Galactic bulge photometry. If we assume similar extinction values for all candidates and absolute magnitudes similar to those of other field high-amplitude δ Scuti stars (HADS), the majority of these objects lie in or near the Galactic bulge. At least two of these objects are likely foreground δ Scuti stars, one of which may be an evolved nonradial pulsator, similar to other evolved, disk-population δ Scuti stars. We have analyzed the light curves of these objects and find that they are similar to the light curves of field δ Scuti stars and the δ Scuti stars found by the Optical Gravitational Lens Experiment (OGLE). However, the amplitude distribution of these sources lies between those of low- and high-amplitude δ Scuti stars, which suggests that they may be an intermediate population. We have found nine double-mode HADS with frequency ratios ranging from 0.75 to 0.79, four probable double- and multiple-mode objects, and another four objects with marginal detections of secondary modes. The low frequencies (5-14 cycles day-1) and the observed period ratios of ~0.77 suggest that the majority of these objects are evolved stars pulsating in fundamental or first overtone radial modes.
The Excursion Set Theory of Halo Mass Functions, Halo Clustering, and Halo Growth
NASA Astrophysics Data System (ADS)
Zentner, Andrew R.
I review the excursion set theory with particular attention toward applications to cold dark matter halo formation and growth, halo abundance, and halo clustering. After a brief introduction to notation and conventions, I begin by recounting the heuristic argument leading to the mass function of bound objects given by Press and Schechter. I then review the more formal derivation of the Press-Schechter halo mass function that makes use of excursion sets of the density field. The excursion set formalism is powerful and can be applied to numerous other problems. I review the excursion set formalism for describing both halo clustering and bias and the properties of void regions. As one of the most enduring legacies of the excursion set approach and one of its most common applications, I spend considerable time reviewing the excursion set theory of halo growth. This section of the review culminates with the description of two Monte Carlo methods for generating ensembles of halo mass accretion histories. In the last section, I emphasize that the standard excursion set approach is the result of several simplifying assumptions. Dropping these assumptions can lead to more faithful predictions and open excursion set theory to new applications. One such assumption is that the height of the barriers that define collapsed objects is a constant function of scale. I illustrate the implementation of the excursion set approach for barriers of arbitrary shape. One such application is the now well-known improvement of the excursion set mass function derived from the "moving" barrier for ellipsoidal collapse. I also emphasize that the statement that halo accretion histories are independent of halo environment in the excursion set approach is not a general prediction of the theory. It is a simplifying assumption. I review the method for constructing correlated random walks of the density field in the more general case. I construct a simple toy model to illustrate that excursion set theory (with a constant barrier height) makes a simple and general prediction for the relation between halo accretion histories and the large-scale environments of halos: regions of high density preferentially contain late-forming halos and conversely for regions of low density. I conclude with a brief discussion of the importance of this prediction relative to recent numerical studies of the environmental dependence of halo properties.
Emergence of a stellar cusp by a dark matter cusp in a low-mass compact ultrafaint dwarf galaxy
NASA Astrophysics Data System (ADS)
Inoue, Shigeki
2017-06-01
Recent observations have been discovering new ultrafaint dwarf galaxies as small as ˜20 pc in half-light radius and ˜3 km s-1 in line-of-sight velocity dispersion. In these galaxies, dynamical friction on a star against dark matter can be significant and alter their stellar density distribution. The effect can strongly depend on a central density profile of dark matter, I.e. cusp or core. In this study, I perform computations using a classical and a modern analytic formula and N-body simulations to study how dynamical friction changes a stellar density profile and how different it is between a cuspy and a cored dark matter halo. This study shows that, if a dark matter halo has a cusp, dynamical friction can cause shrivelling instability that results in emergence of a stellar cusp in the central region ≲2 pc. On the other hand, if it has a constant-density core, dynamical friction is significantly weaker and does not generate a stellar cusp even if the galaxy has the same line-of-sight velocity dispersion. In such a compact and low-mass galaxy, since the shrivelling instability by dynamical friction is inevitable if it has a dark matter cusp, absence of a stellar cusp implies that the galaxy has a dark matter core. I expect that this could be used to diagnose a dark matter density profile in these compact ultrafaint dwarf galaxies.
NASA Astrophysics Data System (ADS)
Alejo, A.; Marti, L.; Moreno, A.; Ostrovskii, Iu. I.; Serra, R.
1985-06-01
Consideration is given to the relationship between the diffraction halo radius Theta(h) and the displacement (Delta) of the object in double exposed speckle photographs taken in various conditions. The numerical values of Theta(h)/Delta were obtained for several speckle recordings having exposure times in the range 0.5-3.8 s. It is shown that long exposure times did not significantly decrease the minimum measureable displacement of the object. The radii of the diffraction halo were the same in the case of both long and short exposure times.
NASA Technical Reports Server (NTRS)
Catura, Richard C.
1993-01-01
The objective of this research was to study the halo surrounding the ROSAT image of the cataclysmic variable AM Her that is formed by scattering of x-rays by interstellar dust grains. AM Her was in a low state of x-ray emission during the 14,400 sec observation and thus an insufficient number of counts were obtained to detect the x-ray halo.
Galaxy halo expansions: a new biorthogonal family of potential-density pairs
NASA Astrophysics Data System (ADS)
Lilley, Edward J.; Sanders, Jason L.; Evans, N. Wyn; Erkal, Denis
2018-05-01
Efficient expansions of the gravitational field of (dark) haloes have two main uses in the modelling of galaxies: first, they provide a compact representation of numerically constructed (or real) cosmological haloes, incorporating the effects of triaxiality, lopsidedness or other distortion. Secondly, they provide the basis functions for self-consistent field expansion algorithms used in the evolution of N-body systems. We present a new family of biorthogonal potential-density pairs constructed using the Hankel transform of the Laguerre polynomials. The lowest order density basis functions are double-power-law profiles cusped like ρ ˜ r-2+1/α at small radii with asymptotic density fall-off like ρ ˜ r-3-1/(2α). Here, α is a parameter satisfying α ≥ 1/2. The family therefore spans the range of inner density cusps found in numerical simulations, but has much shallower - and hence more realistic - outer slopes than the corresponding members of the only previously known family deduced by Zhao and exemplified by Hernquist & Ostriker. When α = 1, the lowest order density profile has an inner density cusp of ρ ˜ r-1 and an outer density slope of ρ ˜ r-3.5, similar to the famous Navarro, Frenk & White (NFW) model. For this reason, we demonstrate that our new expansion provides a more accurate representation of flattened NFW haloes than the competing Hernquist-Ostriker expansion. We utilize our new expansion by analysing a suite of numerically constructed haloes and providing the distributions of the expansion coefficients.
Infall of Associations of Dwarf Galaxies into the Milky Way Halo
NASA Astrophysics Data System (ADS)
Benavides, J.; Casas-Miranda, R. A.
2018-01-01
The origin of the satellite disc of the Milky Way (DoS or VPOS) and M31 (GPoA) remains an open problem in astrophysics (Klypling, Kravtsov, & Valenzuela, 1999; Pawlowski, Kroupa, & Jerjen, 2013). This paper presents a study on the possible formation of the Milky Way satellite disc from an association of dwarf galaxies that infall into the Milky Way dark matter halo in parabolic orbits. For this, we performed Newtonian numerical simulations of N-bodies taking values for the initial distances of 4, 2 and 1 Mpc. Morphological properties of dwarfs were analyzed after a simulation time of 10 Gy, proposed for the interaction with the Milky Way, taking into account: the distributions obtained around the plane of the host galaxy, the distances to which the dwarfs are located, their density profiles and their velocity dispersion. One results is that, after 10 Gy of fall, the structures remain compact maintaining their morphological properties, with better results when the halo of dark matter that envelops them is included. Only associations of dwarf galaxies located at distances of 1 Mpc these manage to enter the halo of the galaxy. This is supported by the fact that these closest associations are those that have fallen in towards the halo of the galaxy, which is why no associations of dwarfs are observed at these distances in the Local Group, the closet association being 14+12 at a distance of 1.37 Mpc from the Milky Way (Tully, 2006).
Mpc-scale diffuse radio emission in two massive cool-core clusters of galaxies
NASA Astrophysics Data System (ADS)
Sommer, Martin W.; Basu, Kaustuv; Intema, Huib; Pacaud, Florian; Bonafede, Annalisa; Babul, Arif; Bertoldi, Frank
2017-04-01
Radio haloes are diffuse synchrotron sources on scales of ˜1 Mpc that are found in merging clusters of galaxies, and are believed to be powered by electrons re-accelerated by merger-driven turbulence. We present measurements of extended radio emission on similarly large scales in two clusters of galaxies hosting cool cores: Abell 2390 and Abell 2261. The analysis is based on interferometric imaging with the Karl G. Jansky Very Large Array, Very Large Array and Giant Metrewave Radio Telescope. We present detailed radio images of the targets, subtract the compact emission components and measure the spectral indices for the diffuse components. The radio emission in A2390 extends beyond a known sloshing-like brightness discontinuity, and has a very steep in-band spectral slope at 1.5 GHz that is similar to some known ultrasteep spectrum radio haloes. The diffuse signal in A2261 is more extended than in A2390 but has lower luminosity. X-ray morphological indicators, derived from XMM-Newton X-ray data, place these clusters in the category of relaxed or regular systems, although some asymmetric features that can indicate past minor mergers are seen in the X-ray brightness images. If these two Mpc-scale radio sources are categorized as giant radio haloes, they question the common assumption of radio haloes occurring exclusively in clusters undergoing violent merging activity, in addition to commonly used criteria for distinguishing between radio haloes and minihaloes.
Molecular environment and X-ray study of the metal-rich thermal composite supernova remnant Kes 79
NASA Astrophysics Data System (ADS)
Zhou, Ping; Chen, Yang; Safi-Harb, Samar; Sun, Ming
2015-08-01
Kes 79 is a thermal composite SNR hosting a central compact object (anti-magnetar) and with a transient magnetar in the south. The SNR has an intriguing double radio shell structure and the nature of the centrally-filled X-ray morphology is still unclear. We have performed 13CO 1-0, 12CO 1-0, 12CO 2-1, and 12CO 3-2 study towards this remnant to investigate the molecular environment. SNR Kes 79 is found to be associated with the molecular cloud in LSR velocity 100-120 km/s. The inner radio shell appears to be well confined by a molecular shell at VLSR˜113 km/s. We also revisited the 380 ks XMM-Newton data of Kes 79, which reveals many bright filamentary structures well coincident with 24 um infrared filaments and an X-ray faint halo confined by the outer radio shell. We performed a spatially resolved spectroscopic analysis for the X-ray filaments and the halo emission. We also study the overabundant metal species Mg, Si, S and Ar, and show their asymmetric distribution across the remnant. The broadband observations suggest that the centrally filled X-ray morphology is a projection effect. Finally, we will discuss the progenitor star of Kes 79 based on the molecular line and X-ray properties.
Microlensing towards the Magellanic Clouds and M31: is the quest for MACHOs still open?
NASA Astrophysics Data System (ADS)
Calchi Novati, Sebastiano
2012-03-01
Microlensing is the tool of choice for the search and the analysis of compact halo objects ("MACHOs"), a still viable class of dark matter candidates at the galactic scale. Different analyses point towards an agreement in excluding dark matter MACHOs of less than about 10-1 Modot; it remains however an ongoing debate for values in the mass range (0.1 - 1) Modot. The more robust constraints, though not all in agreement, come from the observational campaigns towards the Magellanic Clouds (the LMC and the SMC). The analyses towards the nearby galaxy of M31, in the so called "pixel lensing" regime, have expanded the perspectives in this field of research. In this contribution first we draw a critical view on recent results and then we focus on the pixel lensing analysis towards M31 of the PLAN collaboration.
Comparison of two laboratory-based systems for evaluation of halos in intraocular lenses
Alexander, Elsinore; Wei, Xin; Lee, Shinwook
2018-01-01
Purpose Multifocal intraocular lenses (IOLs) can be associated with unwanted visual phenomena, including halos. Predicting potential for halos is desirable when designing new multifocal IOLs. Halo images from 6 IOL models were compared using the Optikos modulation transfer function bench system and a new high dynamic range (HDR) system. Materials and methods One monofocal, 1 extended depth of focus, and 4 multifocal IOLs were evaluated. An off-the-shelf optical bench was used to simulate a distant (>50 m) car headlight and record images. A custom HDR system was constructed using an imaging photometer to simulate headlight images and to measure quantitative halo luminance data. A metric was developed to characterize halo luminance properties. Clinical relevance was investigated by correlating halo measurements to visual outcomes questionnaire data. Results The Optikos system produced halo images useful for visual comparisons; however, measurements were relative and not quantitative. The HDR halo system provided objective and quantitative measurements used to create a metric from the area under the curve (AUC) of the logarithmic normalized halo profile. This proposed metric differentiated between IOL models, and linear regression analysis found strong correlations between AUC and subjective clinical ratings of halos. Conclusion The HDR system produced quantitative, preclinical metrics that correlated to patients’ subjective perception of halos. PMID:29503526
Interaction of clumpy dark matter with interstellar medium in astrophysical systems
NASA Astrophysics Data System (ADS)
Baushev, A. N.
2012-02-01
Contemporary cosmological conceptions suggest that the dark matter in haloes of galaxies and galaxy clusters has most likely a clumpy structure. If a stream of gas penetrates through it, a small-scale gravitational field created by the clumps disturbs the flow resulting in momentum exchange between the stream and the dark matter. In this article, we perform an analysis of this effect, based on the hierarchical halo model of the dark matter structure and Navarro-Frenk-White density profiles. We consider the clumps of various masses, from the smallest up to the highest ones M≥ 109 M⊙. It has been found that in any event the effect grows with the mass of the clump: not only the drag force ? acting on the clump but also its acceleration ? increases. We discuss various astrophysical systems. The mechanism proved to be ineffective in the case of galaxy or galaxy cluster collisions. On the other hand, it played an important role during the process of galaxy formation. As a result, the dark matter should have formed a more compact, oblate and faster rotating substructure in the halo of our Galaxy. We have shown that this thick disc should be more clumpy than the halo. This fact is very important for the indirect detection experiments since it is the clumps that give the main contribution to the annihilation signal. Our calculations show that the mechanism of momentum exchange between the dark and baryon matter is ineffective on the outskirts of the galactic halo. It means that the clumps from there were not transported to the thick disc, and this region should be more clumpy than the halo on the average.
Hot gas, cold gas and sub-haloes in a Lyman α blob at redshift 2.38
NASA Astrophysics Data System (ADS)
Francis, Paul. J.; Dopita, Michael A.; Colbert, James W.; Palunas, Povilas; Scarlata, Claudia; Teplitz, Harry; Williger, Gerard M.; Woodgate, Bruce E.
2013-01-01
We present integral field spectroscopy of a Lyman α blob at redshift 2.38, with a spectral resolution three times better than previous published work. As with previous observations, the blob has a chaotic velocity structure, much of which breaks up into multiple components. Our spectroscopy shows, however, that some of these multiple components are extremely narrow: they have velocity widths of less than 100 km s- 1. Combining these new data with previous observations, we argue that this Lyman α blob resides in a dark matter halo of around 1013 M⊙. At the centre of this halo are two compact red massive galaxies. They are surrounded by hot gas, probably a superwind from merger-induced nuclear starbursts. This hot gas has shut down star formation in the non-nuclear region of these galaxies, leading to their red-and-dead colours. A filament or lump of infalling cold gas is colliding with the hot gas phase and being shocked to high temperatures, while still around 30 kpc from the red galaxies. The shock region is self-absorbed in Lyman α but produces C iv emission. Further out still, the cold gas in a number of sub-haloes is being lit up, most likely by a combination of tidally triggered star formation, bow shocks as they plough through the hot halo medium, resonant scattering of Lyman α from the filament collision and tidal stripping of gas which enhances the Lyman α escape fraction. The observed Lyman α emission from the blob is dominated by the sum of the emission from these sub-haloes. On statistical grounds, we argue that Lyman α blobs are not greatly elongated in shape and that most are not powered by ionization or scattering from a central active galactic nucleus or starburst.
FRONTIER FIELDS CLUSTERS: CHANDRA AND JVLA VIEW OF THE PRE-MERGING CLUSTER MACS J0416.1-2403
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogrean, G. A.; Weeren, R. J. van; Jones, C.
2015-10-20
Merging galaxy clusters leave long-lasting signatures on the baryonic and non-baryonic cluster constituents, including shock fronts, cold fronts, X-ray substructure, radio halos, and offsets between the dark matter (DM) and the gas components. Using observations from Chandra, the Jansky Very Large Array, the Giant Metrewave Radio Telescope, and the Hubble Space Telescope, we present a multiwavelength analysis of the merging Frontier Fields cluster MACS J0416.1-2403 (z = 0.396), which consists of NE and SW subclusters whose cores are separated on the sky by ∼250 kpc. We find that the NE subcluster has a compact core and hosts an X-ray cavity,more » yet it is not a cool core. Approximately 450 kpc south–southwest of the SW subcluster, we detect a density discontinuity that corresponds to a compression factor of ∼1.5. The discontinuity was most likely caused by the interaction of the SW subcluster with a less massive structure detected in the lensing maps SW of the subcluster's center. For both the NE and the SW subclusters, the DM and the gas components are well-aligned, suggesting that MACS J0416.1-2403 is a pre-merging system. The cluster also hosts a radio halo, which is unusual for a pre-merging system. The halo has a 1.4 GHz power of (1.3 ± 0.3) × 10{sup 24} W Hz{sup −1}, which is somewhat lower than expected based on the X-ray luminosity of the cluster if the spectrum of the halo is not ultra-steep. We suggest that we are either witnessing the birth of a radio halo, or have discovered a rare ultra-steep spectrum halo.« less
Topology and geometry of the dark matter web
NASA Astrophysics Data System (ADS)
Ramachandra, Nesar; Shandarin, Sergei
2017-01-01
Topological connections in the single-streaming voids and multi-streaming filaments and walls reveal a cosmic web structure different from traditional mass density fields. A single void structure not only percolates the multi-stream field in all the directions, but also occupies over 99 per cent of all the single-streaming regions. Sub-grid analyses on scales smaller than simulation resolution reveal tiny pockets of voids that are isolated by membranes of the structure. For the multi-streaming excursion sets, the percolating structure is much thinner than the filaments in over-density excursion approach. We also introduce, for the first time, a framework to detect dark matter haloes in multi-stream fields. Closed compact regions hosting local maxima of the multi-stream field are detected using local geometrical conditions and properties of the Lagrangian sub-manifold. All the halo particles are guaranteed to be completely outside void regions of the Universe. Majority of the halo candidates are embedded in the largest structure that percolates the entire volume. The University of Kansas FY 2017 Competition General Research Fund, GRF Award 2301155.
NASA Technical Reports Server (NTRS)
Desjardins, Tyler D.; Gallagher, Sarah C.; Hornschemeier, Ann E.; Mulchaey, John S.; Walker, Lisa May; Brandt, Willian N.; Charlton, Jane C.; Johnson, Kelsey E.; Tzanavaris, Panayiotis
2014-01-01
We present an analysis of the diffuse X-ray emission in 19 compact groups (CGs) of galaxies observed with Chandra. The hottest, most X-ray luminous CGs agree well with the galaxy cluster X-ray scaling relations in L(x-T) and (L(x-sigma), even in CGs where the hot gas is associated with only the brightest galaxy. Using Spitzer photometry, we compute stellar masses and classify Hickson CGs 19, 22, 40, and 42, and RSCGs 32, 44, and 86 as fossil groups using a new definition for fossil systems that includes a broader range of masses. We find that CGs with total stellar and Hi masses are great than or equal to 10(sup (11.3) solar mass are often X-ray luminous, while lower-mass CGs only sometimes exhibit faint, localized X-ray emission. Additionally, we compare the diffuse X-ray luminosity against both the total UV and 24 micron star formation rates of each CG and optical colors of the most massive galaxy in each of the CGs. The most X-ray luminous CGs have the lowest star formation rates, likely because there is no cold gas available for star formation, either because the majority of the baryons in these CGs are in stars or the X-ray halo, or due togas stripping from the galaxies in CGs with hot halos. Finally, the optical colors that trace recent star formation histories of the most massive group galaxies do not correlate with the X-ray luminosities of the CGs, indicating that perhaps the current state of the X-ray halos is independent of the recent history of stellar mass assembly in the most massive galaxies.
Halo correlations in nonlinear cosmic density fields
NASA Astrophysics Data System (ADS)
Bernardeau, F.; Schaeffer, R.
1999-09-01
The question we address in this paper is the determination of the correlation properties of the dark matter halos appearing in cosmic density fields once they underwent a strongly nonlinear evolution induced by gravitational dynamics. A series of previous works have given indications that kind of non-Gaussian features are induced by nonlinear evolution in term of the high-order correlation functions. Assuming such patterns for the matter field, i.e. that the high-order correlation functions behave as products of two-body correlation functions, we derive the correlation properties of the halos, that are assumed to represent the correlation properties of galaxies or clusters. The hierarchical pattern originally induced by gravity is shown to be conserved for the halos. The strength of their correlations at any order varies, however, but is found to depend only on their internal properties, namely on the parameter x~ m/r(3-gamma ) where m is the mass of the halo, r its size and gamma is the power law index of the two-body correlation function. This internal parameter is seen to be close to the depth of the internal potential well of virialized objects. We were able to derive the explicit form of the generating function of the moments of the halo counts probability distribution function. In particular we show explicitly that, generically, S_P(x)-> P(P-2) in the rare halo limit. Various illustrations of our general results are presented. As a function of the properties of the underlying matter field, we construct the count probabilities for halos and in particular discuss the halo void probability. We evaluate the dependence of the halo mass function on the environment: within clusters, hierarchical clustering implies the higher masses are favored. These properties solely arise from what is a natural bias (ie, naturally induced by gravity) between the observed objects and the unseen matter field, and how it manifests itself depending on which selection effects are imposed.
Primordial black holes as dark matter: constraints from compact ultra-faint dwarfs
NASA Astrophysics Data System (ADS)
Zhu, Qirong; Vasiliev, Eugene; Li, Yuexing; Jing, Yipeng
2018-05-01
The ground-breaking detections of gravitational waves from black hole mergers by LIGO have rekindled interest in primordial black holes (PBHs) and the possibility of dark matter being composed of PBHs. It has been suggested that PBHs of tens of solar masses could serve as dark matter candidates. Recent analytical studies demonstrated that compact ultra-faint dwarf galaxies can serve as a sensitive test for the PBH dark matter hypothesis, since stars in such a halo-dominated system would be heated by the more massive PBHs, their present-day distribution can provide strong constraints on PBH mass. In this study, we further explore this scenario with more detailed calculations, using a combination of dynamical simulations and Bayesian inference methods. The joint evolution of stars and PBH dark matter is followed with a Fokker-Planck code PHASEFLOW. We run a large suite of such simulations for different dark matter parameters, then use a Markov chain Monte Carlo approach to constrain the PBH properties with observations of ultra-faint galaxies. We find that two-body relaxation between the stars and PBH drives up the stellar core size, and increases the central stellar velocity dispersion. Using the observed half-light radius and velocity dispersion of stars in the compact ultra-faint dwarf galaxies as joint constraints, we infer that these dwarfs may have a cored dark matter halo with the central density in the range of 1-2 M⊙pc - 3, and that the PBHs may have a mass range of 2-14 M⊙ if they constitute all or a substantial fraction of the dark matter.
Detecting the Disruption of Dark-Matter Halos with Stellar Streams.
Bovy, Jo
2016-03-25
Narrow stellar streams in the Milky Way halo are uniquely sensitive to dark-matter subhalos, but many of these subhalos may be tidally disrupted. I calculate the interaction between stellar and dark-matter streams using analytical and N-body calculations, showing that disrupting objects can be detected as low-concentration subhalos. Through this effect, we can constrain the lumpiness of the halo as well as the orbit and present position of individual dark-matter streams. This will have profound implications for the formation of halos and for direct- and indirect-detection dark-matter searches.
Halo-orbit and lunar-swingby missions of the 1990's
NASA Technical Reports Server (NTRS)
Farquhar, Robert W.
1990-01-01
A significant number of spacecraft are planning to use halo orbits and lunar-swingby trajectories in the next decade. Four spacecraft will be placed into halo orbits around the earth's sunward libration point, while two others will be stationed near the sun-earth L2 libration point in the distant geomagnetic tail. Six spacecraft, including two of the aforementioned halo orbiters, will make use of lunar-swingby maneuvers to fulfill their mission objectives. Thus, a total of ten spacecraft, five from the Soviet Union, two from Japan, two from the United States, and one from the European Space Agency, will employ halo orbits and/or lunar-swingby trajectories in the 1990's. Pertinent facts are presented for each of these missions.
A massive, dead disk galaxy in the early Universe.
Toft, Sune; Zabl, Johannes; Richard, Johan; Gallazzi, Anna; Zibetti, Stefano; Prescott, Moire; Grillo, Claudio; Man, Allison W S; Lee, Nicholas Y; Gómez-Guijarro, Carlos; Stockmann, Mikkel; Magdis, Georgios; Steinhardt, Charles L
2017-06-21
At redshift z = 2, when the Universe was just three billion years old, half of the most massive galaxies were extremely compact and had already exhausted their fuel for star formation. It is believed that they were formed in intense nuclear starbursts and that they ultimately grew into the most massive local elliptical galaxies seen today, through mergers with minor companions, but validating this picture requires higher-resolution observations of their centres than is currently possible. Magnification from gravitational lensing offers an opportunity to resolve the inner regions of galaxies. Here we report an analysis of the stellar populations and kinematics of a lensed z = 2.1478 compact galaxy, which-surprisingly-turns out to be a fast-spinning, rotationally supported disk galaxy. Its stars must have formed in a disk, rather than in a merger-driven nuclear starburst. The galaxy was probably fed by streams of cold gas, which were able to penetrate the hot halo gas until they were cut off by shock heating from the dark matter halo. This result confirms previous indirect indications that the first galaxies to cease star formation must have gone through major changes not just in their structure, but also in their kinematics, to evolve into present-day elliptical galaxies.
MATTER IN THE BEAM: WEAK LENSING, SUBSTRUCTURES, AND THE TEMPERATURE OF DARK MATTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahdi, Hareth S.; Elahi, Pascal J.; Lewis, Geraint F.
2016-08-01
Warm dark matter (WDM) models offer an attractive alternative to the current cold dark matter (CDM) cosmological model. We present a novel method to differentiate between WDM and CDM cosmologies, namely, using weak lensing; this provides a unique probe as it is sensitive to all of the “matter in the beam,” not just dark matter haloes and the galaxies that reside in them, but also the diffuse material between haloes. We compare the weak lensing maps of CDM clusters to those in a WDM model corresponding to a thermally produced 0.5 keV dark matter particle. Our analysis clearly shows thatmore » the weak lensing magnification, convergence, and shear distributions can be used to distinguish between CDM and WDM models. WDM models increase the probability of weak magnifications, with the differences being significant to ≳5 σ , while leaving no significant imprint on the shear distribution. WDM clusters analyzed in this work are more homogeneous than CDM ones, and the fractional decrease in the amount of material in haloes is proportional to the average increase in the magnification. This difference arises from matter that would be bound in compact haloes in CDM being smoothly distributed over much larger volumes at lower densities in WDM. Moreover, the signature does not solely lie in the probability distribution function but in the full spatial distribution of the convergence field.« less
The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time
NASA Astrophysics Data System (ADS)
Grand, Robert J. J.; Gómez, Facundo A.; Marinacci, Federico; Pakmor, Rüdiger; Springel, Volker; Campbell, David J. R.; Frenk, Carlos S.; Jenkins, Adrian; White, Simon D. M.
2017-05-01
We introduce a suite of 30 cosmological magneto-hydrodynamical zoom simulations of the formation of galaxies in isolated Milky Way mass dark haloes. These were carried out with the moving mesh code arepo, together with a comprehensive model for galaxy formation physics, including active galactic nuclei (AGN) feedback and magnetic fields, which produces realistic galaxy populations in large cosmological simulations. We demonstrate that our simulations reproduce a wide range of present-day observables, in particular, two-component disc-dominated galaxies with appropriate stellar masses, sizes, rotation curves, star formation rates and metallicities. We investigate the driving mechanisms that set present-day disc sizes/scalelengths, and find that they are related to the angular momentum of halo material. We show that the largest discs are produced by quiescent mergers that inspiral into the galaxy and deposit high-angular momentum material into the pre-existing disc, simultaneously increasing the spin of dark matter and gas in the halo. More violent mergers and strong AGN feedback play roles in limiting disc size by destroying pre-existing discs and by suppressing gas accretion on to the outer disc, respectively. The most important factor that leads to compact discs, however, is simply a low angular momentum for the halo. In these cases, AGN feedback plays an important role in limiting central star formation and the formation of a massive bulge.
2017-06-23
iss052e006482 (6/23/2017) --- Astronaut Peggy Whitson is photographed during a test session of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) Halo investigation in the Kibo module. The SPHERES Halo investigation studies the possibility of launching several separate components and then attaching them once they are in space. The investigation upgrades the International Space Station’s fleet of SPHERES to enable each SPHERE to communicate with six external objects at the same time, testing new control and remote assembly methods.
NASA Astrophysics Data System (ADS)
Cook, K.; Alcock, C.; Allsman, R.; Axelrod, T.; Bennett, D.; Marshall, S.; Stubbs, C.; Griest, K.; Perlmutter, S.; Sutherland, W.; Freeman, K.; Peterson, B.; Quinn, P.; Rodgers, A.
1992-12-01
This collaboration, dubbed the MACHO Project (an acronym for MAssive Compact Halo Objects), has refurbished the 1.27-m, Great Melbourne Telescope at Mt. Stromlo and equipped it with a corrected {1°} FOV. The prime focus corrector yields a red and blue beam for simultaneous imaging in two passbands, 4500{ Angstroms}--6100{ Angstroms} and 6100{ Angstroms}--7900{ Angstroms}. Each beam is imaged by a 2x2 array of 2048x2048 pixel CCDs which are simultaneously read out from two amplifiers on each CCD. A 32 Megapixel dual-color image of 0.5 square degree is clocked directly into computer memory in less than 70 seconds. We are using this system to monitor more than 10(7) stars in the Magellanic Clouds for gravitational microlensing events and will soon monitor an additional 10(7) stars in the bulge of our galaxy. Image data goes directly into a reduction pipeline where photometry for stars in an image is determined and stored in a database. An early version of this pipeline has used a simple aperture photometry code and results from this will be presented. A more sophisticated PSF fitting photometry code is currently being installed in the pipeline and results should also be available at the meeting. The PSF fitting code has also been used to produce ~ 10(7) photometric measurements outside of the pipeline. This poster will present details of the instrumentation, data pipeline, observing conditions (weather and seeing), reductions and analyses for the first six months of dual-color observing. Eventually, we expect to be able to determine whether MACHOs are a significant component of the galactic halo in the mass range of \\(10^{-6} M_{\\sun} < M \\ {lower .5exhbox {\\: \\buildrel < \\over \\sim ;}} \\ 100 M_{\\sun}\\).
Chemistry and the Modern Prospector.
ERIC Educational Resources Information Center
Neff, Thomas R.
1981-01-01
States that the object of any geochemical survey is to detect the trace element "halo" associated with a mineral deposit. Describes primary and secondary halos and the following types of surveys: stream sediment, water, soil, vegetation, bedrock, and vapor surveys. Briefly reviews future trends including airborne geochemistry. (SK)
The Mass of the Milky Way via HST Proper Motions of Satellite Objects
NASA Astrophysics Data System (ADS)
Sohn, Sangmo Tony; van der Marel, Roeland
2018-01-01
The Universe evolves hierarchically with small structures merging and falling in to form bigger structures. Due to its proximity, the Milky Way (MW) is the best place to witness and study these hierarchical processes in action as evidenced by e.g., the many stellar streams found in MW halo. Stellar systems in the MW halo have therefore become the benchmark for testing many aspects of cosmological theories. Despite the advances in both observational and theoretical areas in the last decade or so, the total mass and mass profile of the MW still remain poorly constrained, mainly due to the limited information on the transverse motions of satellite objects in the MW halo. As part of our HSTPROMO collaboration, we have been measuring proper motions of stars, globular clusters, and satellite galaxies in the MW halo to remedy this situation. In this contribution, I will present results from our recent studies, and report our progress of ongoing projects.
Building the Hot Intra-Group Medium in Spiral-Rich Compact Groups
NASA Astrophysics Data System (ADS)
O'Sullivan, Ewan
2014-11-01
Galaxy groups provide a natural laboratory for investigating the formation of the hot intergalactic medium (IGM). While galaxy clusters gain most of their hot gas through accretion and gravitational shocks, in groups the processes of galaxy evolution (stripping, collisions, star formation) play an important role in the initial build up of the hot halo. We present Chandra and XMM-Newton observations of groups still in the process of forming their IGM, including the well known compact groups HCG 16 and Stephan's Quintet (HCG 92). We show that starburst winds and shock-heating of stripped HI provide important contributions of gas and metals to the IGM, and discuss the impact of gas stripping, enhanced star formation and nuclear activity in the group member galaxies.
Theoretical relation between halo current-plasma energy displacement/deformation in EAST
NASA Astrophysics Data System (ADS)
Khan, Shahab Ud-Din; Khan, Salah Ud-Din; Song, Yuntao; Dalong, Chen
2018-04-01
In this paper, theoretical model for calculating halo current has been developed. This work attained novelty as no theoretical calculations for halo current has been reported so far. This is the first time to use theoretical approach. The research started by calculating points for plasma energy in terms of poloidal and toroidal magnetic field orientations. While calculating these points, it was extended to calculate halo current and to developed theoretical model. Two cases were considered for analyzing the plasma energy when flows down/upward to the diverter. Poloidal as well as toroidal movement of plasma energy was investigated and mathematical formulations were designed as well. Two conducting points with respect to (R, Z) were calculated for halo current calculations and derivations. However, at first, halo current was established on the outer plate in clockwise direction. The maximum generation of halo current was estimated to be about 0.4 times of the plasma current. A Matlab program has been developed to calculate halo current and plasma energy calculation points. The main objective of the research was to establish theoretical relation with experimental results so as to precautionary evaluate the plasma behavior in any Tokamak.
Extent of warm haloes around medium-redshift galaxies
NASA Technical Reports Server (NTRS)
Burbidge, E. M.; Barlow, T. A.; Cohen, R. D.; Junkkarinen, V. T.; Womble, D. S.
1989-01-01
The properties of low-to-medium ionization gaseous haloes around galaxies are briefly reviewed. New observations concerning such haloes are presented. For the galaxy-QSO pair in the field of the radio source 3C303, the higher-redshift QSO has been found to show Mg II absorption at the lower redshift of the faint nearby galaxy. Secondly, new data are presented on one of the galaxies in the environment of the well-known BL Lac object AO 0235 + 164.
Digging for red nuggets: discovery of hot halos surrounding massive, compact, relic galaxies
NASA Astrophysics Data System (ADS)
Werner, N.; Lakhchaura, K.; Canning, R. E. A.; Gaspari, M.; Simionescu, A.
2018-04-01
We present the results of Chandra X-ray observations of the isolated, massive, compact, relic galaxies MRK 1216 and PGC 032873. Compact massive galaxies observed at z > 2, also called red nuggets, formed in quick dissipative events and later grew by dry mergers into the local giant ellipticals. Due to the stochastic nature of mergers, a few of the primordial massive galaxies avoided the mergers and remained untouched over cosmic time. We find that the hot atmosphere surrounding MRK 1216 extends far beyond the stellar population and has an 0.5-7 keV X-ray luminosity of LX = (7.0 ± 0.2) × 1041 erg s-1, which is similar to the nearby X-ray bright giant ellipticals. The hot gas has a short central cooling time of ˜50 Myr and the galaxy has a ˜13 Gyr old stellar population. The presence of an X-ray atmosphere with a short nominal cooling time and the lack of young stars indicate the presence of a sustained heating source, which prevented star formation since the dissipative origin of the galaxy 13 Gyrs ago. The central temperature peak and the presence of radio emission in the core of the galaxy indicate that the heating source is radio-mechanical AGN feedback. Given that both MRK 1216 and PGC 032873 appear to have evolved in isolation, the order of magnitude difference in their current X-ray luminosity could be traced back to a difference in the ferocity of the AGN outbursts in these systems. Finally, we discuss the potential connection between the presence of hot halos around such massive galaxies and the growth of super/over-massive black holes via chaotic cold accretion.
H I in group interactions: HCG 44
NASA Astrophysics Data System (ADS)
Hess, Kelley M.; Cluver, M. E.; Yahya, Sahba; Leisman, Lukas; Serra, Paolo; Lucero, Danielle M.; Passmoor, Sean S.; Carignan, Claude
2017-01-01
Extending deep observations of the neutral atomic hydrogen (H I) to the environment around galaxy groups can reveal a complex history of group interactions which is invisible to studies that focus on the stellar component. Hickson Compact Group 44 (HCG 44) is a nearby example, and we have combined H I data from the Karoo Array Telescope, Westerbork Synthesis Radio Telescope, and Arecibo Legacy Fast ALFA survey, in order to achieve high column density sensitivity (N _{H {I}}<2× 10^{18} cm-2) to the neutral gas over a large field of view beyond the compact group itself. We find that the giant H I tail north of HCG 44 contains 1.1 × 109 M⊙ of gas and extends 450 kpc from the compact group: twice as much mass and 33 per cent further than previously detected. However, the additional gas is still unable to account for the known H I deficiency of HCG 44. The tail likely formed through a strong tidal interaction and H I clouds in the tail have survived for 1 Gyr or more after being stripped. This has important implications for understanding the survival of neutral clouds in the intragroup and circumgroup medium, and we discuss their survival in the context of simulations of cold gas in hot haloes. HCG 44 is one of a growing number of galaxy groups found to have more extended H I in the intragroup and circumgroup medium than previously measured. Our results provide constraints for simulations on the properties of galaxy group haloes, and reveal a glimpse of what will be seen by future powerful H I telescopes and surveys.
Digging for red nuggets: discovery of hot haloes surrounding massive, compact, relic galaxies
NASA Astrophysics Data System (ADS)
Werner, N.; Lakhchaura, K.; Canning, R. E. A.; Gaspari, M.; Simionescu, A.
2018-07-01
We present the results of Chandra X-ray observations of the isolated, massive, compact, relic galaxies MRK 1216 and PGC 032873. Compact massive galaxies observed at z > 2, also called red nuggets, formed in quick dissipative events and later grew by dry mergers into the local giant ellipticals. Due to the stochastic nature of mergers, a few of the primordial massive galaxies avoided the mergers and remained untouched over cosmic time. We find that the hot atmosphere surrounding MRK 1216 extends far beyond the stellar population and has a 0.5-7 keV X-ray luminosity of LX = (7.0 ± 0.2) × 1041 erg s-1, which is similar to the nearby X-ray bright giant ellipticals. The hot gas has a short central cooling time of ˜50 Myr and the galaxy has an ˜13-Gyr-old stellar population. The presence of an X-ray atmosphere with a short nominal cooling time and the lack of young stars indicate the presence of a sustained heating source, which prevented star formation since the dissipative origin of the galaxy 13 Gyr ago. The central temperature peak and the presence of radio emission in the core of the galaxy indicate that the heating source is radio-mechanical active galactic nucleus (AGN) feedback. Given that both MRK 1216 and PGC 032873 appear to have evolved in isolation, the order of magnitude difference in their current X-ray luminosity could be traced back to a difference in the ferocity of the AGN outbursts in these systems. Finally, we discuss the potential connection between the presence of hot haloes around such massive galaxies and the growth of super-/overmassive black holes via chaotic cold accretion.
Transient bright "halos" on the South Polar Residual Cap of Mars: Implications for mass-balance
NASA Astrophysics Data System (ADS)
Becerra, Patricio; Byrne, Shane; Brown, Adrian J.
2015-05-01
Spacecraft imaging of Mars' south polar region during mid-southern summer of Mars year 28 (2007) observed bright halo-like features surrounding many of the pits, scarps and slopes of the heavily eroded carbon dioxide ice of the South Polar Residual Cap (SPRC). These features had not been observed before, and have not been observed since. We report on the results of an observational study of these halos, and spectral modeling of the SPRC surface at the time of their appearance. Image analysis was performed using data from MRO's Context Camera (CTX), and High Resolution Imaging Science Experiment (HiRISE), as well as images from Mars Global Surveyor's (MGS) Mars Orbiter Camera (MOC). Data from MRO's Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) were used for the spectral analysis of the SPRC ice at the time of the halos. These data were compared with a Hapke reflectance model of the surface to constrain their formation mechanism. We find that the unique appearance of the halos is intimately linked to a near-perihelion global dust storm that occurred shortly before they were observed. The combination of vigorous summertime sublimation of carbon dioxide ice from sloped surfaces on the SPRC and simultaneous settling of dust from the global storm, resulted in a sublimation wind that deflected settling dust particles away from the edges of these slopes, keeping these areas relatively free of dust compared to the rest of the cap. The fact that the halos were not exhumed in subsequent years indicates a positive mass-balance for flat portions of the SPRC in those years. A net accumulation mass-balance on flat surfaces of the SPRC is required to preserve the cap, as it is constantly being eroded by the expansion of the pits and scarps that populate its surface.
NASA Astrophysics Data System (ADS)
Rodríguez-Puebla, Aldo; Primack, Joel R.; Avila-Reese, Vladimir; Faber, S. M.
2017-09-01
We present new determinations of the stellar-to-halo mass relation (SHMR) at z = 0-10 that match the evolution of the galaxy stellar mass function, the star formation rate (SFR)-M* relation and the cosmic SFR. We utilize a compilation of 40 observational studies from the literature and correct them for potential biases. Using our robust determinations of halo mass assembly and the SHMR, we infer star formation histories, merger rates and structural properties for average galaxies, combining star-forming and quenched galaxies. Our main findings are as follows: (1) The halo mass M50 above which 50 per cent of galaxies are quenched coincides with sSFR/sMAR ˜ 1, where sSFR is the specific SFR and sMAR is the specific halo mass accretion rate. (2) M50 increases with redshift, presumably due to cold streams being more efficient at high redshifts, while virial shocks and active galactic nucleus feedback become more relevant at lower redshifts. (3) The ratio sSFR/sMAR has a peak value, which occurs around {M_vir}˜ 2× 10^{11} M_{⊙}. (4) The stellar mass density within 1 kpc, Σ1, is a good indicator of the galactic global sSFR. (5) Galaxies are statistically quenched after they reach a maximum in Σ1, consistent with theoretical expectations of the gas compaction model; this maximum depends on redshift. (6) In-situ star formation is responsible for most galactic stellar mass growth, especially for lower mass galaxies. (7) Galaxies grow inside-out. The marked change in the slope of the size-mass relation when galaxies became quenched, from d log {R_eff}/d log {M_*}˜ 0.35 to ˜2.5, could be the result of dry minor mergers.
Constraining self-interacting dark matter with scaling laws of observed halo surface densities
NASA Astrophysics Data System (ADS)
Bondarenko, Kyrylo; Boyarsky, Alexey; Bringmann, Torsten; Sokolenko, Anastasia
2018-04-01
The observed surface densities of dark matter halos are known to follow a simple scaling law, ranging from dwarf galaxies to galaxy clusters, with a weak dependence on their virial mass. Here we point out that this can not only be used to provide a method to determine the standard relation between halo mass and concentration, but also to use large samples of objects in order to place constraints on dark matter self-interactions that can be more robust than constraints derived from individual objects. We demonstrate our method by considering a sample of about 50 objects distributed across the whole halo mass range, and by modelling the effect of self-interactions in a way similar to what has been previously done in the literature. Using additional input from simulations then results in a constraint on the self-interaction cross section per unit dark matter mass of about σ/mχlesssim 0.3 cm2/g. We expect that these constraints can be significantly improved in the future, and made more robust, by i) an improved modelling of the effect of self-interactions, both theoretical and by comparison with simulations, ii) taking into account a larger sample of objects and iii) by reducing the currently still relatively large uncertainties that we conservatively assign to the surface densities of individual objects. The latter can be achieved in particular by using kinematic observations to directly constrain the average halo mass inside a given radius, rather than fitting the data to a pre-selected profile and then reconstruct the mass. For a velocity-independent cross-section, our current result is formally already somewhat smaller than the range 0.5‑5 cm2/g that has been invoked to explain potential inconsistencies between small-scale observations and expectations in the standard collisionless cold dark matter paradigm.
Palomar 13: An Unusual Stellar System in the Galactic Halo
NASA Astrophysics Data System (ADS)
Côté, Patrick; Djorgovski, S. G.; Meylan, G.; Castro, Sandra; McCarthy, J. K.
2002-08-01
We report the first results of a program to study the internal kinematics of globular clusters in the outer halo of the Milky Way. Using the Keck telescope and High Resolution Echelle Spectrometer, we have measured precise radial velocities for 30 candidate red giants in the direction of Palomar 13, an object traditionally cataloged as a compact, low-luminosity globular cluster. We have combined these radial velocities with published proper motion membership probabilities and new CCD photometry from the Keck and Canada-France-Hawaii telescopes to isolate a sample of 21 probable members. We find a systemic velocity of
A multifrequency study of star formation in the blue compact dwarf galaxy IZw 36
NASA Technical Reports Server (NTRS)
Viallefond, F.; Thuan, T. X.
1983-01-01
Radio, near IR, optical, and UV observations of I Zw 36 = Mrk 209 = Haro 29 are reported. The H I distribution shows a core-halo structure, the core containing half of the mass and showing systematic motions; the halo is diffuse and contains several H I clumps. The visible star formation region is associated with the core but is shifted slightly with respect to the H I peak column density; and the virial mass is 5 to 7 times the H I mass. Star formation models with an initial mass function of slope 1.5 (the Salpeter value being 1.35) and a burst age or duration of a few million years fit well the optical spectrophotometric measurements. The data also suggest that the column density of molecular hydrogen in I Zw 36 is 6 + or - 3 times that of the neutral hydrogen, about the right amount to account for the virial mass.
The Next Generation Heated Halo for Blackbody Emissivity Measurement
NASA Astrophysics Data System (ADS)
Gero, P.; Taylor, J. K.; Best, F. A.; Revercomb, H. E.; Knuteson, R. O.; Tobin, D. C.; Adler, D. P.; Ciganovich, N. N.; Dutcher, S. T.; Garcia, R. K.
2011-12-01
The accuracy of radiance measurements from space-based infrared spectrometers is contingent on the quality of the calibration subsystem, as well as knowledge of its uncertainty. Future climate benchmarking missions call for measurement uncertainties better than 0.1 K (k=3) in radiance temperature for the detection of spectral climate signatures. Blackbody cavities impart the most accurate calibration for spaceborne infrared sensors, provided that their temperature and emissivity is traceably determined on-orbit. The On-Orbit Absolute Radiance Standard (OARS) has been developed at the University of Wisconsin to meet the stringent requirements of the next generation of infrared remote sensing instruments. It provides on-orbit determination of both traceable temperature and emissivity for calibration blackbodies. The Heated Halo is the component of the OARS that provides a robust and compact method to measure the spectral emissivity of a blackbody in situ. A carefully baffled thermal source is placed in front of a blackbody in an infrared spectrometer system, and the combined radiance of the blackbody and Heated Halo reflection is observed. Knowledge of key temperatures and the viewing geometry allow the blackbody cavity spectral emissivity to be calculated. We present the results from the Heated Halo methodology implemented with a new Absolute Radiance Interferometer (ARI), which is a prototype space-based infrared spectrometer designed for climate benchmarking that was developed under the NASA Instrument Incubator Program (IIP). We compare our findings to models and other experimental methods of emissivity determination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiegert, Theresa; Irwin, Judith; MacGregor, Stephen, E-mail: twiegert@astro.queensu.ca, E-mail: irwin@astro.queensu.ca, E-mail: 11sm36@queensu.ca
We present the first part of the observations made for the Continuum Halos in Nearby Galaxies, an EVLA Survey (CHANG-ES) project. The aim of the CHANG-ES project is to study and characterize the nature of radio halos, their prevalence as well as their magnetic fields, and the cosmic rays illuminating these fields. This paper reports observations with the compact D configuration of the Karl G. Jansky Very Large Array (VLA) for the sample of 35 nearby edge-on galaxies of CHANG-ES. With the new wide bandwidth capabilities of the VLA, an unprecedented sensitivity was achieved for all polarization products. The beammore » resolution is an average of 9.″6 and 36″ with noise levels reaching approximately 6 and 30 μJy beam{sup −1} for C- and L-bands, respectively (robust weighting). We present intensity maps in these two frequency bands (C and L), with different weightings, as well as spectral index maps, polarization maps, and new measurements of star formation rates (SFRs). The data products described herein are available to the public in the CHANG-ES data release available at http://www.queensu.ca/changes. We also present evidence of a trend among galaxies with larger halos having higher SFR surface density, and we show, for the first time, a radio continuum image of the median galaxy, taking advantage of the collective signal-to-noise ratio of 30 of our galaxies. This image shows clearly that a “typical” spiral galaxy is surrounded by a halo of magnetic fields and cosmic rays.« less
Stellar Velocity Dispersion: Linking Quiescent Galaxies to Their Dark Matter Halos
NASA Astrophysics Data System (ADS)
Zahid, H. Jabran; Sohn, Jubee; Geller, Margaret J.
2018-06-01
We analyze the Illustris-1 hydrodynamical cosmological simulation to explore the stellar velocity dispersion of quiescent galaxies as an observational probe of dark matter halo velocity dispersion and mass. Stellar velocity dispersion is proportional to dark matter halo velocity dispersion for both central and satellite galaxies. The dark matter halos of central galaxies are in virial equilibrium and thus the stellar velocity dispersion is also proportional to dark matter halo mass. This proportionality holds even when a line-of-sight aperture dispersion is calculated in analogy to observations. In contrast, at a given stellar velocity dispersion, the dark matter halo mass of satellite galaxies is smaller than virial equilibrium expectations. This deviation from virial equilibrium probably results from tidal stripping of the outer dark matter halo. Stellar velocity dispersion appears insensitive to tidal effects and thus reflects the correlation between stellar velocity dispersion and dark matter halo mass prior to infall. There is a tight relation (≲0.2 dex scatter) between line-of-sight aperture stellar velocity dispersion and dark matter halo mass suggesting that the dark matter halo mass may be estimated from the measured stellar velocity dispersion for both central and satellite galaxies. We evaluate the impact of treating all objects as central galaxies if the relation we derive is applied to a statistical ensemble. A large fraction (≳2/3) of massive quiescent galaxies are central galaxies and systematic uncertainty in the inferred dark matter halo mass is ≲0.1 dex thus simplifying application of the simulation results to currently available observations.
Lohmann, C P; Fitzke, F W; O'Brart, D; Muir, M K; Marshall, J
1993-01-01
After photorefractive keratectomy (PRK) using excimer lasers (193 nm) many patients report the presence of halos around light sources at night. However, halos are not unique to PRK patients, as they are a common observation in myopic contact lens wearers. We present an objective measurement of the halos using a computerized technique. The patient fixated on a red cross within a white circle in the center of a video monitor which served as the halo source. The screen surrounding the circle was not illuminated. The operator controlled the movement of the white spot and moved the spot toward the halo source until the subject indicated when the cursor was at the outer parameter of the halo. Measurements were made at 30 degree intervals around the halo source and expressed as square degrees. The study found that spectacles, soft contact lenses, and excimer laser surgery were superior to hard contact lenses in terms of the size of the halo. A mean value of 2.51 square degrees was obtained for spectacles wearers compared with 3.18 square degrees for soft contact lenses, 3.14 square degrees for excimer laser patients with 4-millimeter ablation zone, 2.76 square degrees for excimer laser patients with a 5-millimeter ablation zone, and 89.5 square degrees for hard contact lenses. It appears that this device is very useful for measuring the halo size after excimer laser PRK. We concluded that halos were not a problem for our patients after excimer laser photorefractive keratectomy.
ZOMG - II. Does the halo assembly history influence central galaxies and gas accretion?
NASA Astrophysics Data System (ADS)
Romano-Díaz, Emilio; Garaldi, Enrico; Borzyszkowski, Mikolaj; Porciani, Cristiano
2017-08-01
The growth rate and the internal dynamics of galaxy-sized dark-matter haloes depend on their location within the cosmic web. Haloes that sit at the nodes grow in mass till the present time and are dominated by radial orbits. Conversely, haloes embedded in prominent filaments do not change much in size and are dominated by tangential orbits. Using zoom hydrodynamical simulations including star formation and feedback, we study how gas accretes on to these different classes of objects, which, for simplicity, we dub 'accreting' and 'stalled' haloes. We find that all haloes get a fresh supply of newly accreted gas in their inner regions, although this slowly decreases with time, in particular for the stalled haloes. The inflow of new gas is always higher than (but comparable with) that of recycled material. Overall, the cold-gas fraction increases (decreases) with time for the accreting (stalled) haloes. In all cases, a stellar disc and a bulge form at the centre of the simulated haloes. The total stellar mass is in excellent agreement with expectations based on the abundance-matching technique. Many properties of the central galaxies do not seem to correlate with the large-scale environment in which the haloes reside. However, there are two notable exceptions that characterize stalled haloes with respect to their accreting counterparts: (I) The galaxy disc contains much older stellar populations. (II) Its vertical scaleheight is larger by a factor of 2 or more. This thickening is likely due to the heating of the long-lived discs by mergers and close flybys.
The Morphology of Passively Evolving Galaxies at Z-2 from HST/WFC3 in the Hubble Ultra Deep Field
NASA Technical Reports Server (NTRS)
Cassata, P.; Giavalisco, M.; Guo, Yicheng; Ferguson, H.; Koekemoer, A.; Renzini, A.; Fontana, A.; Salimbeni, S.; Dickinson, M.; Casertano, S.;
2009-01-01
We discuss near-IR images of six passive galaxies (SSFR< 10(exp -2)/Gyr) at redshift 1.3 < z < 2.4 with stellar mass M approx 10(exp 11) solar mass, selected from the Great Observatories Origins Deep Survey (GOODS), obtained with WFC3/IR and the Hubble Space Telescope (HST). These WFC3 images provide the deepest and highest angular resolution view of the optical rest-frame morphology of such systems to date. We find that the light profile of these; galaxies is generally regular and well described by a Sersic model with index typical of today's spheroids. We confirm the existence of compact and massive early-type galaxies at z approx. 2: four out of six galaxies have T(sub e) approx. 1 kpc or less. The WFC3 images achieve limiting surface brightness mu approx. 26.5 mag/sq arcsec in the F160W bandpass; yet there is no evidence of a faint halo in the five compact galaxies of our sample, nor is a halo observed in their stacked image. We also find very weak "morphological k-correction" in the galaxies between the rest-frame UV (from the ACS z band), and the rest-frame optical (WFC3 H band): the visual classification, Sersic indices and physical sizes of these galaxies are independent or only mildly dependent on the wavelength, within the errors.
Cosmic web and environmental dependence of screening: Vainshtein vs. chameleon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falck, Bridget; Koyama, Kazuya; Zhao, Gong-Bo, E-mail: bridget.falck@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: gong-bo.zhao@port.ac.uk
Theories which modify general relativity to explain the accelerated expansion of the Universe often use screening mechanisms to satisfy constraints on Solar System scales. We investigate the effects of the cosmic web and the local environmental density of dark matter halos on the screening properties of the Vainshtein and chameleon screening mechanisms. We compare the cosmic web morphology of dark matter particles, mass functions of dark matter halos, mass and radial dependence of screening, velocity dispersions and peculiar velocities, and environmental dependence of screening mechanisms in f(R) and nDGP models. Using the ORIGAMI cosmic web identification routine we find thatmore » the Vainshtein mechanism depends on the cosmic web morphology of dark matter particles, since these are defined according to the dimensionality of their collapse, while the chameleon mechanism shows no morphology dependence. The chameleon screening of halos and their velocity dispersions depend on halo mass, and small halos and subhalos can be environmentally screened in the chameleon mechanism. On the other hand, the screening of halos in the Vainshtein mechanism does not depend on mass nor environment, and their velocity dispersions are suppressed. The peculiar velocities of halos in the Vainshtein mechanism are enhanced because screened objects can still feel the fifth force generated by external fields, while peculiar velocities of chameleon halos are suppressed when the halo centers are screened.« less
The Vainshtein mechanism in the cosmic web
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falck, Bridget; Koyama, Kazuya; Zhao, Gong-bo
We investigate the dependence of the Vainshtein screening mechanism on the cosmic web morphology of both dark matter particles and halos as determined by ORIGAMI. Unlike chameleon and symmetron screening, which come into effect in regions of high density, Vainshtein screening instead depends on the dimensionality of the system, and screened bodies can still feel external fields. ORIGAMI is well-suited to this problem because it defines morphologies according to the dimensionality of the collapsing structure and does not depend on a smoothing scale or density threshold parameter. We find that halo particles are screened while filament, wall, and void particlesmore » are unscreened, and this is independent of the particle density. However, after separating halos according to their large scale cosmic web environment, we find no difference in the screening properties of halos in filaments versus halos in clusters. We find that the fifth force enhancement of dark matter particles in halos is greatest well outside the virial radius. We confirm the theoretical expectation that even if the internal field is suppressed by the Vainshtein mechanism, the object still feels the fifth force generated by the external fields, by measuring peculiar velocities and velocity dispersions of halos. Finally, we investigate the morphology and gravity model dependence of halo spins, concentrations, and shapes.« less
Part 1: Physical studies of distant comets. Part 2: Morphologies of planetary nebulae
NASA Astrophysics Data System (ADS)
Jewitt, D. C.
Broadband observations of comets P/Stephan-Oterma (1980g), Bowell (1980b) and Panther (1980u) in the visual and infrared wavelength regions are reported together with measurements in the 1.5 to 2.4 microns wavelength range having 5% spectral resolution. Ice grain halos are detected around P/Stephan-Oterma and Panther. The spatial distribution of (Cl)(3)P to (1)D line emission in NGC 6720 is reported. The emission emanates from small filaments in which the carbon neutral fraction may approach 10%. It is proposed that the Cl is present in regions which are shielded from direct stellar photons, possibly by H2 blobs. A CCD survey of planetary nebulae reveals numerous faint halos around the primary nebulae. About 2/3 of the 44 objects observed show halos. (Sll) electron density measurements show the halo mass in some nebulae. Possible origins of the halos are discussed.
Chemical Compositions of Kinematically Selected Outer Halo Stars
NASA Astrophysics Data System (ADS)
Zhang, Lan; Ishigaki, Miho; Aoki, Wako; Zhao, Gang; Chiba, Masashi
2009-12-01
Chemical abundances of 26 metal-poor dwarfs and giants are determined from high-resolution and high signal-to-noise ratio spectra obtained with the Subaru/High Dispersion Spectrograph. The sample is selected so that most of the objects have outer-halo kinematics. Self-consistent atmospheric parameters were determined by an iterative procedure based on spectroscopic analysis. Abundances of 13 elements, including α-elements (Mg, Si, Ca, Ti), odd-Z light elements (Na, Sc), iron-peak elements (Cr, Mn, Fe, Ni, Zn), and neutron-capture elements (Y, Ba), are determined by two independent data reduction and local thermodynamic equillibrium analysis procedures, confirming the consistency of the stellar parameters and abundances results. We find a decreasing trend of [α/Fe] with increasing [Fe/H] for the range of -3.5< [Fe/H] <-1, as found by Stephens & Boesgaard. [Zn/Fe] values of most objects in our sample are slightly lower than the bulk of halo stars previously studied. These results are discussed as possible chemical properties of the outer halo in the Galaxy. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
NASA Astrophysics Data System (ADS)
Yamaguchi, M. S.; Yano, T.; Gouda, N.
2018-03-01
We develop a method for identifying a compact object in binary systems with astrometric measurements and apply it to some binaries. Compact objects in some high-mass X-ray binaries and gamma-ray binaries are unknown, which is responsible for the fact that emission mechanisms in such systems have not yet confirmed. The accurate estimate of the mass of the compact object allows us to identify the compact object in such systems. Astrometric measurements are expected to enable us to estimate the masses of the compact objects in the binary systems via a determination of a binary orbit. We aim to evaluate the possibility of the identification of the compact objects for some binary systems. We then calculate probabilities that the compact object is correctly identified with astrometric observation (= confidence level) by taking into account a dependence of the orbital shape on orbital parameters and distributions of masses of white dwarfs, neutron stars and black holes. We find that the astrometric measurements with the precision of 70 μas for γ Cas allow us to identify the compact object at 99 per cent confidence level if the compact object is a white dwarf with 0.6 M⊙. In addition, we can identify the compact object with the precision of 10 μas at 97 per cent or larger confidence level for LS I +61° 303 and 99 per cent or larger for HESS J0632+057. These results imply that the astrometric measurements with the 10 μas precision level can realize the identification of compact objects for γ Cas, LS I +61° 303, and HESS J0632+057.
The Luminous X-Ray Halos of Two Compact Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Buote, David A.; Barth, Aaron J.
2018-02-01
There is mounting evidence that compact elliptical galaxies (CEGs) are local analogs of the high-redshift “red nuggets” that are thought to represent progenitors of today’s early-type galaxies (ETGs). We report the discovery of extended X-ray emission from a hot interstellar/intragroup medium in two CEGs, Mrk 1216 and PGC 032873, using shallow Chandra observations. We find that PGC 032873 has an average gas temperature of k B T = 0.67 ± 0.06 keV within a radius of 15 kpc and a luminosity L x = (1.8 ± 0.2) × 1041 erg s‑1 within a radius of 100 kpc. For Mrk 1216, which is closer and more luminous (L x(<100 kpc) = (12.1 ± 1.9) × 1041 erg s‑1), we used an entropy-based hydrostatic equilibrium (HE) procedure and obtained a good constraint on the H-band stellar mass-to-light ratio, M stars/L H = 1.33 ± 0.21 solar, that is in good agreement with stellar dynamical (SD) studies, which supports the HE approximation. We obtain a density slope of 2.22 ± 0.08 within R e that is consistent with other CEGs and normal local ETGs, while the dark matter fraction within R e , f DM = 0.20 ± 0.07 is similar to local ETGs. We constrain the supermasssive black hole mass, M BH = (5 ± 4) × 109 M ⊙, with M BH > 1.4 × 1010 M ⊙ (90% confidence), which is consistent with a recent SD measurement. We obtain a halo concentration (c 200 = 17.5 ± 6.7) and mass (M 200 = (9.6 ± 3.7) × 1012 M ⊙), where c 200 exceeds the mean ΛCDM value (≈7), which is consistent with a system that formed earlier than the general halo population. We suggest that these galaxies should be classified as fossil groups.
Strong lensing by fermionic dark matter in galaxies
NASA Astrophysics Data System (ADS)
Gómez, L. Gabriel; Argüelles, C. R.; Perlick, Volker; Rueda, J. A.; Ruffini, R.
2016-12-01
It has been shown that a self-gravitating system of massive keV fermions in thermodynamic equilibrium correctly describes the dark matter (DM) distribution in galactic halos (from dwarf to spiral and elliptical galaxies) and that, at the same time, it predicts a denser quantum core towards the center of the configuration. Such a quantum core, for a fermion mass in the range of 50 keV ≲m c2≲345 keV , can be an alternative interpretation of the central compact object in Sgr A*, traditionally assumed to be a black hole (BH). We present in this work the gravitational lensing properties of this novel DM configuration in nearby Milky-Way-like spiral galaxies. We describe the lensing effects of the pure DM component both on halo scales, where we compare them to the effects of the Navarro-Frenk-White and the nonsingular isothermal sphere DM models, and near the galaxy center, where we compare them with the effects of a Schwarzschild BH. For the particle mass leading to the most compact DM core, m c2≈1 02 keV , we draw the following conclusions. At distances r ≳20 pc from the center of the lens the effect of the central object on the lensing properties is negligible. However, we show that measurements of the deflection angle produced by the DM distribution in the outer region at a few kpc, together with rotation curve data, could help to discriminate between different DM models. In the inner regions 1 0-6≲r ≲20 pc , the lensing effects of a DM quantum core alternative to the BH scenario becomes a theme of an analysis of unprecedented precision which is challenging for current technological developments. We show that at distances ˜1 0-4 pc strong lensing effects, such as multiple images and Einstein rings, may occur. Large differences in the deflection angle produced by a DM central core and a central BH appear at distances r ≲1 0-6 pc ; in this regime the weak-field formalism is no longer applicable and the exact general-relativistic formula has to be used for the deflection angle which may become bigger than 2 π . An important difference in comparison to BHs is in the fact that quantum DM cores do not show a photon sphere; this implies that they do not cast a shadow (if they are transparent). Similar conclusions apply to the other DM distributions for other fermion masses in the above-specified range and for other galaxy types.
Haloes gone MAD: The Halo-Finder Comparison Project
NASA Astrophysics Data System (ADS)
Knebe, Alexander; Knollmann, Steffen R.; Muldrew, Stuart I.; Pearce, Frazer R.; Aragon-Calvo, Miguel Angel; Ascasibar, Yago; Behroozi, Peter S.; Ceverino, Daniel; Colombi, Stephane; Diemand, Juerg; Dolag, Klaus; Falck, Bridget L.; Fasel, Patricia; Gardner, Jeff; Gottlöber, Stefan; Hsu, Chung-Hsing; Iannuzzi, Francesca; Klypin, Anatoly; Lukić, Zarija; Maciejewski, Michal; McBride, Cameron; Neyrinck, Mark C.; Planelles, Susana; Potter, Doug; Quilis, Vicent; Rasera, Yann; Read, Justin I.; Ricker, Paul M.; Roy, Fabrice; Springel, Volker; Stadel, Joachim; Stinson, Greg; Sutter, P. M.; Turchaninov, Victor; Tweed, Dylan; Yepes, Gustavo; Zemp, Marcel
2011-08-01
We present a detailed comparison of fundamental dark matter halo properties retrieved by a substantial number of different halo finders. These codes span a wide range of techniques including friends-of-friends, spherical-overdensity and phase-space-based algorithms. We further introduce a robust (and publicly available) suite of test scenarios that allow halo finder developers to compare the performance of their codes against those presented here. This set includes mock haloes containing various levels and distributions of substructure at a range of resolutions as well as a cosmological simulation of the large-scale structure of the universe. All the halo-finding codes tested could successfully recover the spatial location of our mock haloes. They further returned lists of particles (potentially) belonging to the object that led to coinciding values for the maximum of the circular velocity profile and the radius where it is reached. All the finders based in configuration space struggled to recover substructure that was located close to the centre of the host halo, and the radial dependence of the mass recovered varies from finder to finder. Those finders based in phase space could resolve central substructure although they found difficulties in accurately recovering its properties. Through a resolution study we found that most of the finders could not reliably recover substructure containing fewer than 30-40 particles. However, also here the phase-space finders excelled by resolving substructure down to 10-20 particles. By comparing the halo finders using a high-resolution cosmological volume, we found that they agree remarkably well on fundamental properties of astrophysical significance (e.g. mass, position, velocity and peak of the rotation curve). We further suggest to utilize the peak of the rotation curve, vmax, as a proxy for mass, given the arbitrariness in defining a proper halo edge. Airport code for Madrid, Spain
What sets the central structure of dark matter haloes?
NASA Astrophysics Data System (ADS)
Ogiya, Go; Hahn, Oliver
2018-02-01
Dark matter (DM) haloes forming near the thermal cut-off scale of the density perturbations are unique, since they are the smallest objects and form through monolithic gravitational collapse, while larger haloes contrastingly have experienced mergers. While standard cold dark matter (CDM) simulations readily produce haloes that follow the universal Navarro-Frenk-White (NFW) density profile with an inner slope, ρ ∝ r-α, with α = 1, recent simulations have found that when the free-streaming cut-off expected for the CDM model is resolved, the resulting haloes follow nearly power-law density profiles of α ∼ 1.5. In this paper, we study the formation of density cusps in haloes using idealized N-body simulations of the collapse of proto-haloes. When the proto-halo profile is initially cored due to particle free-streaming at high redshift, we universally find ∼r-1.5 profiles irrespective of the proto-halo profile slope outside the core and large-scale non-spherical perturbations. Quite in contrast, when the proto-halo has a power-law profile, then we obtain profiles compatible with the NFW shape when the density slope of the proto-halo patch is shallower than a critical value, αini ∼ 0.3, while the final slope can be steeper for αini ≳ 0.3. We further demonstrate that the r-1.5 profiles are sensitive to small-scale noise, which gradually drives them towards an inner slope of -1, where they become resilient to such perturbations. We demonstrate that the r-1.5 solutions are in hydrostatic equilibrium, largely consistent with a simple analytic model, and provide arguments that angular momentum appears to determine the inner slope.
NASA Astrophysics Data System (ADS)
Corradi, R. L. M.; Schönberner, D.; Steffen, M.; Perinotto, M.
2003-04-01
We present a comprehensive observational study of haloes around planetary nebulae (PNe). Deep Hα+[NII] and/or [OIII] narrow-band images have been obtained for 35 PNe, and faint extended haloes have been newly discovered in the following 10 objects: Cn 1-5, IC 2165, IC 2553, NGC 2792, NGC 2867, NGC 3918, NGC 5979, NGC 6578, PB 4, and possibly IC 1747. New deep images have also been obtained of other known or suspected haloes, including the huge extended emission around NGC 3242 and Sh 2-200. In addition, the literature was searched, and together with the new observations an improved data base containing some 50 PN haloes has been compiled. The halo sample is illustrated in an image atlas contained in this paper, and the original images are made available for use by the scientific community at
Very Massive Stars in the Primitive Galaxy, IZw 18
NASA Technical Reports Server (NTRS)
Heap, Sara
2012-01-01
IZw 18 is a local blue, compact dwarf galaxy that meets the requirements for a primitive galaxy: low halo mass greater than 10(exp 9) Msun, strong photoionizing radiation, no galactic outflow, and very low metallicity,log(O/H)+12=7.2. We will describe the properties and evolutionary status of very massive stars in IZw 18, based on UV photometry of individual stars in I Zw 18 and analysis of unresolved ultraviolet spectra of IZw 18-NW obtained with HST.
Black holes in binary stellar systems and galactic nuclei
NASA Astrophysics Data System (ADS)
Cherepashchuk, A. M.
2014-04-01
In the last 40 years, following pioneering papers by Ya B Zeldovich and E E Salpeter, in which a powerful energy release from nonspherical accretion of matter onto a black hole (BH) was predicted, many observational studies of black holes in the Universe have been carried out. To date, the masses of several dozen stellar-mass black holes (M_BH = (4{-}20) M_\\odot) in X-ray binary systems and of several hundred supermassive black holes (M_BH = (10^{6}{-}10^{10}) M_\\odot) in galactic nuclei have been measured. The estimated radii of these massive and compact objects do not exceed several gravitational radii. For about ten stellar-mass black holes and several dozen supermassive black holes, the values of the dimensionless angular momentum a_* have been estimated, which, in agreement with theoretical predictions, do not exceed the limiting value a_* = 0.998. A new field of astrophysics, so-called black hole demography, which studies the birth and growth of black holes and their evolutionary connection to other objects in the Universe, namely stars, galaxies, etc., is rapidly developing. In addition to supermassive black holes, massive stellar clusters are observed in galactic nuclei, and their evolution is distinct from that of supermassive black holes. The evolutionary relations between supermassive black holes in galactic centers and spheroidal stellar components (bulges) of galaxies, as well as dark-matter galactic haloes are brought out. The launch into Earth's orbit of the space radio interferometer RadioAstron opened up the real possibility of finally proving that numerous discovered massive and highly compact objects with properties very similar to those of black holes make up real black holes in the sense of Albert Einstein's General Relativity. Similar proofs of the existence of black holes in the Universe can be obtained by intercontinental radio interferometry at short wavelengths \\lambda \\lesssim 1 mm (the international program, Event Horizon Telescope).
Pneumocranium secondary to halo vest pin penetration through an enlarged frontal sinus.
Cheong, Min Lee; Chan, Chris Yin Wei; Saw, Lim Beng; Kwan, Mun Keong
2009-07-01
We present a case report of a patient with pneumocranium secondary to halo vest pin penetration and a review of literature. The objectives of this study are to report a rare complication of halo vest pin insertion and to discuss methods of prevention of this complication. Halo vest orthosis is a commonly used and well-tolerated upper cervical spinal stabilizing device. Reports of complications related to pin penetration is rare and from our review, there has been no reports of pneumocranium occurring from insertion of pins following standard anatomical landmarks. A 57-year-old male sustained a type 1 traumatic spondylolisthesis of C2/C3 following a motor vehicle accident. During application of the halo vest, penetration of the left anterior pin through the abnormally enlarged frontal sinus occurred. The patient developed headache, vomiting and CSF rhinorrhoea over his left nostril. He was treated with intravenous Ceftriaxone for 1 week. This resulted in resolution of his symptoms as well as the pneumocranium. In conclusion, complications of halo vest pin penetration are rare and need immediate recognition. Despite the use of anatomical landmarks, pin penetration is still possible due to aberrant anatomy. All patients should have a skull X-ray with a radio-opaque marker done prior to placement of the halo vest pins and halo vest pins have to be inserted by experienced personnel to enable early detection of pin penetration.
Structure finding in cosmological simulations: the state of affairs
NASA Astrophysics Data System (ADS)
Knebe, Alexander; Pearce, Frazer R.; Lux, Hanni; Ascasibar, Yago; Behroozi, Peter; Casado, Javier; Moran, Christine Corbett; Diemand, Juerg; Dolag, Klaus; Dominguez-Tenreiro, Rosa; Elahi, Pascal; Falck, Bridget; Gottlöber, Stefan; Han, Jiaxin; Klypin, Anatoly; Lukić, Zarija; Maciejewski, Michal; McBride, Cameron K.; Merchán, Manuel E.; Muldrew, Stuart I.; Neyrinck, Mark; Onions, Julian; Planelles, Susana; Potter, Doug; Quilis, Vicent; Rasera, Yann; Ricker, Paul M.; Roy, Fabrice; Ruiz, Andrés N.; Sgró, Mario A.; Springel, Volker; Stadel, Joachim; Sutter, P. M.; Tweed, Dylan; Zemp, Marcel
2013-10-01
The ever increasing size and complexity of data coming from simulations of cosmic structure formation demand equally sophisticated tools for their analysis. During the past decade, the art of object finding in these simulations has hence developed into an important discipline itself. A multitude of codes based upon a huge variety of methods and techniques have been spawned yet the question remained as to whether or not they will provide the same (physical) information about the structures of interest. Here we summarize and extent previous work of the `halo finder comparison project': we investigate in detail the (possible) origin of any deviations across finders. To this extent, we decipher and discuss differences in halo-finding methods, clearly separating them from the disparity in definitions of halo properties. We observe that different codes not only find different numbers of objects leading to a scatter of up to 20 per cent in the halo mass and Vmax function, but also that the particulars of those objects that are identified by all finders differ. The strength of the variation, however, depends on the property studied, e.g. the scatter in position, bulk velocity, mass and the peak value of the rotation curve is practically below a few per cent, whereas derived quantities such as spin and shape show larger deviations. Our study indicates that the prime contribution to differences in halo properties across codes stems from the distinct particle collection methods and - to a minor extent - the particular aspects of how the procedure for removing unbound particles is implemented. We close with a discussion of the relevance and implications of the scatter across different codes for other fields such as semi-analytical galaxy formation models, gravitational lensing and observables in general.
A MegaCam Survey of Outer Halo Satellites. III. Photometric and Structural Parameters
NASA Astrophysics Data System (ADS)
Muñoz, Ricardo R.; Côté, Patrick; Santana, Felipe A.; Geha, Marla; Simon, Joshua D.; Oyarzún, Grecco A.; Stetson, Peter B.; Djorgovski, S. G.
2018-06-01
We present structural parameters from a wide-field homogeneous imaging survey of Milky Way satellites carried out with the MegaCam imagers on the 3.6 m Canada–France–Hawaii Telescope and 6.5 m Magellan-Clay telescope. Our survey targets an unbiased sample of “outer halo” satellites (i.e., substructures having galactocentric distances greater than 25 kpc) and includes classical dSph galaxies, ultra-faint dwarfs, and remote globular clusters. We combine deep, panoramic gr imaging for 44 satellites and archival gr imaging for 14 additional objects (primarily obtained with the DECam instrument as part of the Dark Energy Survey) to measure photometric and structural parameters for 58 outer halo satellites. This is the largest and most uniform analysis of Milky Way satellites undertaken to date and represents roughly three-quarters (58/81 ≃ 72%) of all known outer halo satellites. We use a maximum-likelihood method to fit four density laws to each object in our survey: exponential, Plummer, King, and Sérsic models. We systematically examine the isodensity contour maps and color–magnitude diagrams for each of our program objects, present a comparison with previous results, and tabulate our best-fit photometric and structural parameters, including ellipticities, position angles, effective radii, Sérsic indices, absolute magnitudes, and surface brightness measurements. We investigate the distribution of outer halo satellites in the size–magnitude diagram and show that the current sample of outer halo substructures spans a wide range in effective radius, luminosity, and surface brightness, with little evidence for a clean separation into star cluster and galaxy populations at the faintest luminosities and surface brightnesses.
VLT/MUSE illuminates possible channels for Lyman continuum escape in the halo of SBS 0335-52E
NASA Astrophysics Data System (ADS)
Herenz, E. C.; Hayes, M.; Papaderos, P.; Cannon, J. M.; Bik, A.; Melinder, J.; Östlin, G.
2017-10-01
We report on the discovery of ionised gas filaments in the circum-galactic halo of the extremely metal-poor compact starburst SBS 0335-052E in a 1.5 h integration with the MUSE integral-field spectrograph. We detect these features in Hα and [O III] emission down to a limiting surface-brightness of 5 × 10-19 erg s-1 cm-2 arcsec-2. The filaments have projected diameters of 2.1 kpc and extend more than 9 kpc to the north and north-west from the main stellar body. We also detect extended nebular He II λ4686 emission that brightens towards the north-west at the rim of a starburst driven super-shell. We also present a velocity field of the ionised gas. The filaments appear to connect seamlessly in velocity space to the kinematical disturbances caused by the shell. Similar to high-z star-forming galaxies, the ionised gas in this galaxy is dispersion dominated. We argue that the filaments were created via feedback from the starburst and that these ionised structures in the halo may act as escape channels for Lyman continuum radiation in this gas-rich system. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 096.B-0690.
Are ultracompact minihalos really ultracompact?
NASA Astrophysics Data System (ADS)
Delos, M. Sten; Erickcek, Adrienne L.; Bailey, Avery P.; Alvarez, Marcelo A.
2018-02-01
Ultracompact minihalos (UCMHs) have emerged as a valuable probe of the primordial power spectrum of density fluctuations at small scales. UCMHs are expected to form at early times in regions with δ ρ /ρ ≳10-3 , and they are theorized to possess an extremely compact ρ ∝r-9 /4 radial density profile, which enhances their observable signatures. Nonobservation of UCMHs can thus constrain the primordial power spectrum. Using N -body simulations to study the collapse of extreme density peaks at z ≃1000 , we show that UCMHs forming under realistic conditions do not develop the ρ ∝r-9 /4 profile and instead develop either ρ ∝r-3 /2 or ρ ∝r-1 inner density profiles depending on the shape of the power spectrum. We also demonstrate via idealized simulations that self-similarity—the absence of a scale length—is necessary to produce a halo with the ρ ∝r-9 /4 profile, and we argue that this implies such halos cannot form from a Gaussian primordial density field. Prior constraints derived from UCMH nonobservation must be reworked in light of this discovery. Although the shallower density profile reduces UCMH visibility, our findings reduce their signal by as little as O (10-2) while allowing later-forming halos to be considered, which suggests that new constraints could be significantly stronger.
Modelling giant radio halos. Doctoral Thesis Award Lecture 2012
NASA Astrophysics Data System (ADS)
Donnert, J. M. F.
2013-06-01
We review models for giant radio halos in clusters of galaxies, with a focus on numerical and theoretical work. After summarising the most important observations of these objects, we present an introduction to the theoretical aspects of hadronic models. We compare these models with observations using simulations and find severe problems for hadronic models. We give a short introduction to reacceleration models and show results from the first simulation of CRe reacceleration in cluster mergers. We find that in-line with previous theoretical work, reacceleration models are able to elegantly explain main observables of giant radio halos.
First light: exploring the spectra of high-redshift galaxies in the Renaissance Simulations
NASA Astrophysics Data System (ADS)
Barrow, Kirk S. S.; Wise, John H.; Norman, Michael L.; O'Shea, Brian W.; Xu, Hao
2017-08-01
We present synthetic observations for the first generations of galaxies in the Universe and make predictions for future deep field observations for redshifts greater than 6. Due to the strong impact of nebular emission lines and the relatively compact scale of H II regions, high-resolution cosmological simulations and a robust suite of analysis tools are required to properly simulate spectra. We created a software pipeline consisting of fsps, hyperion, cloudy and our own tools to generate synthetic IR observations from a fully three-dimensional arrangement of gas, dust, and stars. Our prescription allows us to include emission lines for a complete chemical network and tackle the effect of dust extinction and scattering in the various lines of sight. We provide spectra, 2D binned photon imagery for both HST and JWST IR filters, luminosity relationships, and emission-line strengths for a large sample of high-redshift galaxies in the Renaissance Simulations. Our resulting synthetic spectra show high variability between galactic haloes with a strong dependence on stellar mass, metallicity, gas mass fraction, and formation history. Haloes with the lowest stellar mass have the greatest variability in [O III]/Hβ, [O III], and C III], while haloes with higher masses are seen to show consistency in their spectra and [O III] equivalent widths between 1 and 10 Å. Viewing angle accounted for threefold difference in flux due to the presence of ionized gas channels in a halo. Furthermore, JWST colour plots show a discernible relationship between redshift, colour, and mean stellar age.
Resolving the extended stellar halos of nearby galaxies: the wide-field PISCeS survey
NASA Astrophysics Data System (ADS)
Crnojevic, Denija; Sand, David; Spekkens, Kristine; Caldwell, Nelson; Guhathakurta, Puragra; McLeod, Brian; Seth, Anil; Simon, Joshua D.; Strader, Jay; Toloba, Elisa
2018-01-01
I will present results from the wide-field Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS): the resolved stellar halos of two nearby galaxies (the spiral NGC253 and the elliptical Centaurus A, D~3.7 Mpc) are investigated out to a galactocentric radius of 150 kpc with Magellan/Megacam. The survey pushes the limits of near-field cosmology beyond the Local Group, by characterizing the stellar content (ages, metallicities, gradients) of extended halos and their substructures in two environments substantially different from the Local Group, i.e. the loose Sculptor group of galaxies and the Centaurus A group dominated by an elliptical. PISCeS has to date led to the discovery of 11 confirmed satellites as faint as M_V=-8 (including Ultra Diffuse Galaxies), streams and tidal substructures with surface brigthness limits as low as ~32 mag/arcsec^2, and hundreds of globular cluster/ultra-compact dwarf candidates. The unique strength of PISCeS is the exquisite synergy between the wide-field, ground-based survey and its extensive imaging and spectroscopic follow-up (HST, Keck, VLT, Magellan, AAT), which constitute the first accurate characterization of the past and ongoing accretion processes shaping the halos of these nearby galaxies. Our observational campaign will not only provide crucial constraints to quantitatively inform theoretical models of galaxy formation and evolution, but it also represents a necessary testbed in preparation for future very large datasets stemming from the next generation of ground-based (LSST, TMT, GMT) as well as space-borne (JWST, WFIRST) telescopes.
The Heated Halo for Space-Based Blackbody Emissivity Measurement
NASA Astrophysics Data System (ADS)
Gero, P.; Taylor, J. K.; Best, F. A.; Revercomb, H. E.; Garcia, R. K.; Adler, D. P.; Ciganovich, N. N.; Knuteson, R. O.; Tobin, D. C.
2012-12-01
The accuracy of radiance measurements with space-based infrared spectrometers is contingent on the quality of the calibration subsystem, as well as knowledge of its uncertainty. Upcoming climate benchmark missions call for measurement uncertainties better than 0.1 K (k=3) in radiance temperature for the detection of spectral climate signatures. Blackbody cavities impart the most accurate calibration for spaceborne infrared sensors, provided that their temperature and emissivity is traceably determined on-orbit. The On-Orbit Absolute Radiance Standard (OARS) has been developed at the University of Wisconsin and has undergone further refinement under the NASA Instrument Incubator Program (IIP) to meet the stringent requirements of the next generation of infrared remote sensing instruments. It provides on-orbit determination of both traceable temperature and emissivity for calibration blackbodies. The Heated Halo is the component of the OARS that provides a robust and compact method to measure the spectral emissivity of a blackbody in situ. A carefully baffled thermal source is placed in front of a blackbody in an infrared spectrometer system, and the combined radiance of the blackbody and Heated Halo reflection is observed. Knowledge of key temperatures and the viewing geometry allow the blackbody cavity spectral emissivity to be calculated. We present the results from the Heated Halo methodology implemented with a new Absolute Radiance Interferometer (ARI), which is a prototype space-based infrared spectrometer designed for climate benchmarking. We show the evolution of the technical readiness level of this technology and we compare our findings to models and other experimental methods of emissivity determination.
The Virgo cD galaxy M87 and its environment as mapped by Planetary Nebulae
NASA Astrophysics Data System (ADS)
Longobardi, Alessia
2015-08-01
Cosmological simulations predict the evolution of galaxy halos in cluster environments. Because of their low surface brightness, 1% of the night sky or lower, it is difficult to measure their spatial distribution and line-of-sight motions of the associated stars. Planetary nebulas (PNs) are very good tracers of their parent stellar populations, and we can use them to investigate these extended halos as consequence of their relatively strong [OIII] emission line. We have used PNs to study the outer halo of M87, the BCG at the center of the Virgo cluster. From the deepest and most extended narrow band survey done with Supruime Cam on Subaru, we carry out the spectroscopic follow up with FLMES at the VLT of more than 300 emission line objects in the halo of M87 out to ~150 kpc in radius. We confirm 254 PNs associated with the M87 halo and 44 with the intracluster light in the Virgo core. We show that the galaxy halo overlaps with the Virgo intracluster light (ICL) at all distance. Halo and ICL are dynamically distinct components, have different density profiles and parent stellar populations. The latter result shows that the halo of M87 is redder and more metal rich than the ICL population. Because of the excellent spectra resolution of our data, we identify a chevron structure in the projected phase space and identify the substructure in light associated to this dynamical sub-component. This accretion event account for a third of the light of the halo at 90 kpc distance from the center. It shows that at these distances the M87 halo is significantly lumpy and still growing by accretion of satellites.
NASA Technical Reports Server (NTRS)
Burks, Geoffrey S.; Bartko, Frank; Shull, J. Michael; Stocke, John T.; Sachs, Elise R.; Burbidge, E. Margaret; Cohen, Ross D.; Junkkarinen, Vesa T.; Harms, Richard J.; Massa, Derck
1994-01-01
The ultraviolet (1150 - 2850 A) spectra of a number of active galactic nuclei (AGNs) observed with the Hubble Space Telescope (HST) Faint Object Spectrograph (FOS) have been used to study the properties of the Galactic halo. The objects that served as probes are 3C 273, PKS 0454-220, Pg 1211+143, CSO 251, Ton 951, and PG 1351+640. The equivalent widths of certain interstellar ions have been measured, with special attention paid to the C IV/C II and Si IV/Si II ratios. These ratios have been intercompared, and the highest values are found in the direction of 3C 273, where C IV/C II = 1.2 and Si IV/Si II greater than 1. These high ratios may be due to a nearby supernova remnant, rather than to ionized gas higher up in the Galactic halo. Our data give some support to the notion that QSO metal-line systems may arise from intervening galaxies which contain high supernova rates, galactic fountains, and turbulent mixing layers.
The outer halo globular cluster system of M31 - I. The final PAndAS catalogue
NASA Astrophysics Data System (ADS)
Huxor, A. P.; Mackey, A. D.; Ferguson, A. M. N.; Irwin, M. J.; Martin, N. F.; Tanvir, N. R.; Veljanoski, J.; McConnachie, A.; Fishlock, C. K.; Ibata, R.; Lewis, G. F.
2014-08-01
We report the discovery of 59 globular clusters (GCs) and two candidate GCs in a search of the halo of M31, primarily via visual inspection of Canada-France-Hawaii Telescope/MegaCam imagery from the Pan-Andromeda Archaeological Survey (PAndAS). The superior quality of these data also allows us to check the classification of remote objects in the Revised Bologna Catalogue (RBC), plus a subset of GC candidates drawn from Sloan Digital Sky Survey (SDSS) imaging. We identify three additional new GCs from the RBC, and confirm the GC nature of 11 SDSS objects (8 of which appear independently in our remote halo catalogue); the remaining 188 candidates across both lists are either foreground stars or background galaxies. Our new catalogue represents the first uniform census of GCs across the M31 halo - we find clusters to the limit of the PAndAS survey area at projected radii of up to Rproj ˜ 150 kpc. Tests using artificial clusters reveal that detection incompleteness cuts in at luminosities below MV = -6.0; our 50 per cent completeness limit is MV ≈ -4.1. We construct a uniform set of PAndAS photometric measurements for all known GCs outside Rproj = 25 kpc, and any new GCs within this radius. With these data, we update results from Huxor et al., investigating the luminosity function (LF), colours and effective radii of M31 GCs with a particular focus on the remote halo. We find that the GCLF is clearly bimodal in the outer halo (Rproj > 30 kpc), with the secondary peak at MV ˜ -5.5. We argue that the GCs in this peak have most likely been accreted along with their host dwarf galaxies. Notwithstanding, we also find, as in previous surveys, a substantial number of GCs with above-average luminosity in the outer M31 halo - a population with no clear counterpart in the Milky Way.
Understanding the core-halo relation of quantum wave dark matter from 3D simulations.
Schive, Hsi-Yu; Liao, Ming-Hsuan; Woo, Tak-Pong; Wong, Shing-Kwong; Chiueh, Tzihong; Broadhurst, Tom; Hwang, W-Y Pauchy
2014-12-31
We examine the nonlinear structure of gravitationally collapsed objects that form in our simulations of wavelike cold dark matter, described by the Schrödinger-Poisson (SP) equation with a particle mass ∼10(-22) eV. A distinct gravitationally self-bound solitonic core is found at the center of every halo, with a profile quite different from cores modeled in the warm or self-interacting dark matter scenarios. Furthermore, we show that each solitonic core is surrounded by an extended halo composed of large fluctuating dark matter granules which modulate the halo density on a scale comparable to the diameter of the solitonic core. The scaling symmetry of the SP equation and the uncertainty principle tightly relate the core mass to the halo specific energy, which, in the context of cosmological structure formation, leads to a simple scaling between core mass (Mc) and halo mass (Mh), Mc∝a(-1/2)Mh(1/3), where a is the cosmic scale factor. We verify this scaling relation by (i) examining the internal structure of a statistical sample of virialized halos that form in our 3D cosmological simulations and by (ii) merging multiple solitons to create individual virialized objects. Sufficient simulation resolution is achieved by adaptive mesh refinement and graphic processing units acceleration. From this scaling relation, present dwarf satellite galaxies are predicted to have kiloparsec-sized cores and a minimum mass of ∼10(8)M⊙, capable of solving the small-scale controversies in the cold dark matter model. Moreover, galaxies of 2×10(12)M⊙ at z=8 should have massive solitonic cores of ∼2×10(9)M⊙ within ∼60 pc. Such cores can provide a favorable local environment for funneling the gas that leads to the prompt formation of early stellar spheroids and quasars.
Ray tracing and Hubble diagrams in post-Newtonian cosmology
NASA Astrophysics Data System (ADS)
Sanghai, Viraj A. A.; Fleury, Pierre; Clifton, Timothy
2017-07-01
On small scales the observable Universe is highly inhomogeneous, with galaxies and clusters forming a complex web of voids and filaments. The optical properties of such configurations can be quite different from the perfectly smooth Friedmann-Lemaȋtre-Robertson-Walker (FLRW) solutions that are frequently used in cosmology, and must be well understood if we are to make precise inferences about fundamental physics from cosmological observations. We investigate this problem by calculating redshifts and luminosity distances within a class of cosmological models that are constructed explicitly in order to allow for large density contrasts on small scales. Our study of optics is then achieved by propagating one hundred thousand null geodesics through such space-times, with matter arranged in either compact opaque objects or diffuse transparent haloes. We find that in the absence of opaque objects, the mean of our ray tracing results faithfully reproduces the expectations from FLRW cosmology. When opaque objects with sizes similar to those of galactic bulges are introduced, however, we find that the mean of distance measures can be shifted up from FLRW predictions by as much as 10%. This bias is due to the viable photon trajectories being restricted by the presence of the opaque objects, which means that they cannot probe the regions of space-time with the highest curvature. It corresponds to a positive bias of order 10% in the estimation of ΩΛ and highlights the important consequences that astronomical selection effects can have on cosmological observables.
Ray tracing and Hubble diagrams in post-Newtonian cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanghai, Viraj A.A.; Clifton, Timothy; Fleury, Pierre, E-mail: v.a.a.sanghai@qmul.ac.uk, E-mail: pierre.fleury@unige.ch, E-mail: t.clifton@qmul.ac.uk
On small scales the observable Universe is highly inhomogeneous, with galaxies and clusters forming a complex web of voids and filaments. The optical properties of such configurations can be quite different from the perfectly smooth Friedmann-Lemaȋtre-Robertson-Walker (FLRW) solutions that are frequently used in cosmology, and must be well understood if we are to make precise inferences about fundamental physics from cosmological observations. We investigate this problem by calculating redshifts and luminosity distances within a class of cosmological models that are constructed explicitly in order to allow for large density contrasts on small scales. Our study of optics is then achievedmore » by propagating one hundred thousand null geodesics through such space-times, with matter arranged in either compact opaque objects or diffuse transparent haloes. We find that in the absence of opaque objects, the mean of our ray tracing results faithfully reproduces the expectations from FLRW cosmology. When opaque objects with sizes similar to those of galactic bulges are introduced, however, we find that the mean of distance measures can be shifted up from FLRW predictions by as much as 10%. This bias is due to the viable photon trajectories being restricted by the presence of the opaque objects, which means that they cannot probe the regions of space-time with the highest curvature. It corresponds to a positive bias of order 10% in the estimation of Ω{sub Λ} and highlights the important consequences that astronomical selection effects can have on cosmological observables.« less
Simulating cosmologies beyond ΛCDM with PINOCCHIO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizzo, Luca A.; Villaescusa-Navarro, Francisco; Monaco, Pierluigi
2017-01-01
We present a method that extends the capabilities of the PINpointing Orbit-Crossing Collapsed HIerarchical Objects (PINOCCHIO) code, allowing it to generate accurate dark matter halo mock catalogues in cosmological models where the linear growth factor and the growth rate depend on scale. Such cosmologies comprise, among others, models with massive neutrinos and some classes of modified gravity theories. We validate the code by comparing the halo properties from PINOCCHIO against N-body simulations, focusing on cosmologies with massive neutrinos: νΛCDM. We analyse the halo mass function, halo two-point correlation function and halo power spectrum, showing that PINOCCHIO reproduces the results frommore » simulations with the same level of precision as the original code (∼ 5–10%). We demonstrate that the abundance of halos in cosmologies with massless and massive neutrinos from PINOCCHIO matches very well the outcome of simulations, and point out that PINOCCHIO can reproduce the Ω{sub ν}–σ{sub 8} degeneracy that affects the halo mass function. We finally show that the clustering properties of the halos from PINOCCHIO matches accurately those from simulations both in real and redshift-space, in the latter case up to k = 0.3 h Mpc{sup −1}. We emphasize that the computational time required by PINOCCHIO to generate mock halo catalogues is orders of magnitude lower than the one needed for N-body simulations. This makes this tool ideal for applications like covariance matrix studies within the standard ΛCDM model but also in cosmologies with massive neutrinos or some modified gravity theories.« less
Evidence of Pulsars Metamorphism and Their Connection to Stellar Black Holes
NASA Astrophysics Data System (ADS)
Hujeirat, A. A.
2018-03-01
It is agreed that the progenitors of neutron stars (-NSs) and black holes (-BHs) should be massive stars with M > 9 M_{Sun}. Yet none of these objects have ever been found with [2 M_{Sun}< M < 5 M_{Sun}]. Moreover, numerical modelings show that NSs of reasonable masses can be obtained only if the corresponding central density is beyond the nuclear one: an unverifiable density-regime with unknown physics. Here I intend to clarify the reasons underlying the existence of this mass-gap and propose a new class of invisible ultra-compact objects: the end-stage in the cosmological evolution of pulsars and neutron stars in an ever expanding universe. The present study relies on theoretical and experimental considerations as well as on solution of the non-linear TOV equation modified to include a universal scalar field -φ at the background of supranuclear densities. The computer-code is based on finite volume method using both the first-order Euler and fourth-order Rugge-Kutta integration methods. The inclusion of φ at zero-temperature is motivated by recent observations of the short-living pentaquarks at the LHC. Based on these studies, I argue that pulsars must be born with embryonic super-baryons (SBs) that form through merger of individual neutrons at their centers. The cores of SBs are made of purely incompressible superconducting gluon-quark superfluids (henceforth SuSu-fluids). Such quantum fluids have a uniform supranuclear density and governed by the critical EOSs P = E for baryonic matter and for φ-induced dark energy P_{φ}= -E_{φ}. The incompressibility here ensures that particles communicate at the shortest possible time scale, superfluidity and superconductivity enforce SBs to spin-down promptly as dictated by the Onsager-Feynman equation and to expel vortices and magnetic flux tubes, whereas their lowest energy state grants SBs lifetimes that are comparable to those of protons. These extra-ordinary long lifetimes suggest that conglomeration of SuSu-objects would evolve over several big bang events to possibly form dark matter halos that embed the galaxies in the observable universe. Pulsars and young neutron stars should metamorphose into SuSu-objects: a procedure which is predicted to last for one Gyr or even shorter, depending on their initial compactness. Once the process is completed, then they become extraordinary compact and turn invisible. It turns out that recent observations of particle collisions at the LHC and RHIC, observations of glitching pulsars and primordial galaxies remarkably support the present scenario.
On intrinsic nonlinear particle motion in compact synchrotrons
NASA Astrophysics Data System (ADS)
Hwang, Kyung Ryun
Due to the low energy and small curvature characteristics of compact synchrotrons, there can be unexpected features that were not present or negligible in high energy accelerators. Nonlinear kinetics, fringe field effect, and space charge effect are those features which become important for low energy and small curvature accelerators. Nonlinear kinematics can limit the dynamics aperture for compact machine even if it consists of all linear elements. The contribution of the nonlinear kinematics on nonlinear optics parameters are first derived. As the dipole bending radius become smaller, the dipole fringe field effect become stronger. Calculation of the Lie map generator and corresponding mapping equation of dipole fringe field is presented. It is found that the higher order nonlinear potential is inverse proportional to powers of fringe field extent and correction to focusing and low order nonlinear potential is proportional to powers of fringe field extent. The fringe field also found to cause large closed orbit deviation for compact synchrotrons. The 2:1 and 4:1 space charge resonances are known to cause beam loss, emittance growth and halo formation for low energy high intensity beams. By numerical simulations, we observe a higher order 6:2 space charge resonance, which can successfully be understood by the concatenation of 2:1 and 4:1 resonances via canonical perturbation. We also develop an explicit symplectic tracking method for compact electrostatic storage rings and explore the feasibility of electric dipole moment (EDM) measurements.
NASA Astrophysics Data System (ADS)
Carlesi, Edoardo; Knebe, Alexander; Lewis, Geraint F.; Wales, Scott; Yepes, Gustavo
2014-04-01
We present the results of a series of adiabatic hydrodynamical simulations of several quintessence models (both with a free and an interacting scalar field) in comparison to a standard Λ cold dark matter cosmology. For each we use 2 × 10243 particles in a 250 h-1 Mpc periodic box assuming 7-year Wilkinson Microwave Anisotropy Probe cosmology. In this work we focus on the properties of haloes in the cosmic web at z = 0. The web is classified into voids, sheets, filaments and knots depending on the eigenvalues of the velocity shear tensor, which are an excellent proxy for the underlying overdensity distribution. We find that the properties of objects classified according to their surrounding environment show a substantial dependence on the underlying cosmology; for example, while Vmax shows average deviations of ≈5 per cent across the different models when considering the full halo sample, comparing objects classified according to their environment, the size of the deviation can be as large as 20 per cent. We also find that halo spin parameters are positively correlated to the coupling, whereas halo concentrations show the opposite behaviour. Furthermore, when studying the concentration-mass relation in different environments, we find that in all cosmologies underdense regions have a larger normalization and a shallower slope. While this behaviour is found to characterize all the models, differences in the best-fitting relations are enhanced in (coupled) dark energy models, thus providing a clearer prediction for this class of models.
Effect of halo-vest components on stabilizing the injured cervical spine.
Ivancic, Paul C; Beauchman, Naseem N; Tweardy, Lisa
2009-01-15
An in vitro biomechanical study. The objectives were to develop a new biofidelic skull-neck-thorax model capable of quantifying motion patterns of the cervical spine in the presence of a halo-vest; to investigate the effects of vest loosening, superstructure loosening, and removal of the posterior uprights; and to evaluate the ability of the halo-vest to stabilize the neck within physiological motion limits. Previous clinical and biomechanical studies have investigated neck motion with the halo-vest only in the sagittal plane or only at the injured spinal level. No previous studies have quantified three-dimensional intervertebral motion patterns throughout the injured cervical spine stabilized with the halo-vest or studied the effect of halo-vest components on these motions. The halo-vest was applied to the skull-neck-thorax model. Six osteoligamentous whole cervical spine specimens (occiput through T1 vertebra) were used that had sustained multiplanar ligamentous injuries at C3/4 through C7-T1 during a previous protocol. Flexibility tests were performed with normal halo-vest application, loose vest, loose superstructure, and following removal of the posterior uprights. Average total range of motion for each experimental condition was statistically compared (P < 0.05) with the physiologic rotation limit for each spinal level. Cervical spine snaking was observed in both the sagittal and frontal planes. The halo-vest, applied normally, generally limited average spinal motions to within average physiological limits. No significant increases in average spinal motions above physiologic were observed due to loose vest, loose superstructure, or removal of the posterior uprights. However, a trend toward increased motion at C6/7 in lateral bending was observed due to loose superstructure. The halo-vest, applied normally, effectively immobilized the cervical spine. Sagittal or frontal plane snaking of the cervical spine due to the halo-vest may reduce its immobilization capability at the upper cervical spine and cervicothoracic junction.
Ultra-compact high velocity clouds in the ALFALFA HI survey: Candidate Local Group galaxies?
NASA Astrophysics Data System (ADS)
Adams, Elizabeth Ann Kovenz
The increased sensitivity and spatial resolution of the ALFALFA HI survey has resulted in the detection of ultra-compact high velocity clouds (UCHVCs). These objects are good candidates to represent low mass gas-rich galaxies in the Local Group and Local Volume with stellar populations that are too faint to be detected in extant optical surveys. This idea is referred to as the "minihalo hypothesis". We identify the UCHVCs within the ALFALFA dataset via the use of a 3D matched filtering signal identification algorithm. UCHVCs are selected based on a compact size (< 30'), separation from Galactic HI (|upsilon LSR| > 120 km s-1) and isolation. Within the 40% complete ALFALFA survey (alpha.40), 59 UCHVCs are identified; 19 are in a most-isolated subset and are the best galaxy candidates. Due to the presence of large HVC complexes in the fall sky, most notably the Magellanic Stream, the association of UCHVCs with existing structure cannot be ruled out. In the spring sky, the spatial and kinematic distribution of the UCHVCs is consistent with simulations of dark matter halos within the Local Group. In addition, the HI properties of the UCHVCs (if placed at 1 Mpc) are consistent with both theoretical and observational predictions for low mass gas-rich galaxies. Importantly, the HI properties of the UCHVCs are consistent with those of two recently discovered low mass gas-rich galaxies in the Local Group and Local Volume, Leo T and Leo P. Detailed follow-up observations are key for addressing the minihalo hypothesis. High resolution HI observations can constrain the environment of a UCHVC and offer evidence for a hosting dark matter halo through evidence of rotation support and comparison to theoretical models. Observations of one UCHVC at high resolution (15'') reveal the presence of a clumpy HI distribution, similar to both low mass galaxies and circumgalactic compact HVCs. An extended envelope containing ˜50% of the HI flux is resolved out by the array configuration; observations at lower spatial resolution can recover this envelope and constrain the overall morphology and environment. The most direct way to address the minihalo hypothesis is by detection of a stellar counterpart, immediately identifying a UCHVC as a galaxy and allowing a distance to be measured. We have selected a sample of best galaxy candidates from the UCHVCs based on isolation, compactness, surface brightness, and kinematics. We are undertaking targeted optical observations of these systems in two filters to conduct a focused search for a coherent stellar population. Observations are in-hand for 29 systems, and an analysis of a single system is presented as a test case. These data were obtained via "shared-risk" observing, and analysis for all systems is awaiting further pipeline development. If (some of) the UCHVCs represent nearby low mass galaxies, they will help us understand the evolution of the lowest mass galaxies and address the small scale crisis in cosmology. Understanding the nature of the UCHVCs is a complicated and ongoing project. Both optical and HI synthesis imaging data will continue to be acquired and analyzed in order to address the minihalo hypothesis. Future HI surveys of nearby galaxy groups will be able to robustly address the minihalo hypothesis by being sensitive to UCHVCs in other galaxy groups.
THE M33 GLOBULAR CLUSTER SYSTEM WITH PAndAS DATA: THE LAST OUTER HALO CLUSTER?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cockcroft, Robert; Harris, William E.; Ferguson, Annette M. N., E-mail: cockcroft@physics.mcmaster.ca, E-mail: harris@physics.mcmaster.ca, E-mail: ferguson@roe.ac.uk
2011-04-01
We use CFHT/MegaCam data to search for outer halo star clusters in M33 as part of the Pan-Andromeda Archaeological Survey. This work extends previous studies out to a projected radius of 50 kpc and covers over 40 deg{sup 2}. We find only one new unambiguous star cluster in addition to the five previously known in the M33 outer halo (10 kpc {<=} r {<=} 50 kpc). Although we identify 2440 cluster candidates of various degrees of confidence from our objective image search procedure, almost all of these are likely background contaminants, mostly faint unresolved galaxies. We measure the luminosity, color,more » and structural parameters of the new cluster in addition to the five previously known outer halo clusters. At a projected radius of 22 kpc, the new cluster is slightly smaller, fainter, and redder than all but one of the other outer halo clusters, and has g' {approx} 19.9, (g' - i') {approx} 0.6, concentration parameter c {approx} 1.0, a core radius r{sub c} {approx} 3.5 pc, and a half-light radius r{sub h} {approx} 5.5 pc. For M33 to have so few outer halo clusters compared to M31 suggests either tidal stripping of M33's outer halo clusters by M31, or a very different, much calmer accretion history of M33.« less
The M33 Globular Cluster System with PAndAS Data: the Last Outer Halo Cluster?
NASA Astrophysics Data System (ADS)
Cockcroft, Robert; Harris, William E.; Ferguson, Annette M. N.; Huxor, Avon; Ibata, Rodrigo; Irwin, Mike J.; McConnachie, Alan W.; Woodley, Kristin A.; Chapman, Scott C.; Lewis, Geraint F.; Puzia, Thomas H.
2011-04-01
We use CFHT/MegaCam data to search for outer halo star clusters in M33 as part of the Pan-Andromeda Archaeological Survey. This work extends previous studies out to a projected radius of 50 kpc and covers over 40 deg2. We find only one new unambiguous star cluster in addition to the five previously known in the M33 outer halo (10 kpc <= r <= 50 kpc). Although we identify 2440 cluster candidates of various degrees of confidence from our objective image search procedure, almost all of these are likely background contaminants, mostly faint unresolved galaxies. We measure the luminosity, color, and structural parameters of the new cluster in addition to the five previously known outer halo clusters. At a projected radius of 22 kpc, the new cluster is slightly smaller, fainter, and redder than all but one of the other outer halo clusters, and has g' ≈ 19.9, (g' - i') ≈ 0.6, concentration parameter c ≈ 1.0, a core radius rc ≈ 3.5 pc, and a half-light radius rh ≈ 5.5 pc. For M33 to have so few outer halo clusters compared to M31 suggests either tidal stripping of M33's outer halo clusters by M31, or a very different, much calmer accretion history of M33.
The age of the Milky Way inner halo.
Kalirai, Jason S
2012-05-30
The Milky Way galaxy has several components, such as the bulge, disk and halo. Unravelling the assembly history of these stellar populations is often restricted because of difficulties in measuring accurate ages for low-mass, hydrogen-burning stars. Unlike these progenitors, white dwarf stars, the 'cinders' of stellar evolution, are remarkably simple objects and their fundamental properties can be measured with little ambiguity. Here I report observations of newly formed white dwarf stars in the halo of the Milky Way, and a separate analysis of archival data in the well studied 12.5-billion-year-old globular cluster Messier 4. I measure the mass distribution of the remnant stars and invert the stellar evolution process to develop a mathematical relation that links this final stellar mass to the mass of their immediate progenitors, and therefore to the age of the parent population. By applying this technique to a small sample of four nearby and kinematically confirmed halo white dwarf stars, I calculate the age of local field halo stars to be 11.4 ± 0.7 billion years. The oldest globular clusters formed 13.5 billion years ago. Future observations of newly formed white dwarf stars in the halo could be used to reduce the uncertainty, and to probe relative differences between the formation times of the youngest globular clusters and the inner halo.
[Halos and multifocal intraocular lenses: origin and interpretation].
Alba-Bueno, F; Vega, F; Millán, M S
2014-10-01
To present the theoretical and experimental characterization of the halo in multifocal intraocular lenses (MIOL). The origin of the halo in a MIOL is the overlaying of 2 or more images. Using geometrical optics, it can be demonstrated that the diameter of each halo depends on the addition of the lens (ΔP), the base power (P(d)), and the diameter of the IOL that contributes to the «non-focused» focus. In the image plane that corresponds to the distance focus, the halo diameter (δH(d)) is given by: δH(d)=d(pn) ΔP/P(d), where d(pn) is the diameter of the IOL that contributes to the near focus. Analogously, in the near image plane the halo diameter (δH(n)) is: δH(n)=d(pd) ΔP/P(d), where d(pd) is the diameter of the IOL that contributes to the distance focus. Patients perceive halos when they see bright objects over a relatively dark background. In vitro, the halo can be characterized by analyzing the intensity profile of the image of a pinhole that is focused by each of the foci of a MIOL. A comparison has been made between the halos induced by different MIOL of the same base power (20D) in an optical bench. As predicted by theory, the larger the addition of the MIOL, the larger the halo diameter. For large pupils and with MIOL with similar aspheric designs and addition (SN6AD3 vs ZMA00), the apodized MIOL has a smaller halo diameter than a non-apodized one in distance vision, while in near vision the size is very similar, but the relative intensity is higher in the apodized MIOL. When comparing lenses with the same diffractive design, but with different spherical-aspheric base design (SN60D3 vs SN6AD3), the halo in distance vision of the spherical MIOL is larger, while in near vision the spherical IOL induces a smaller halo, but with higher intensity due to the spherical aberration of the distance focus in the near image. In the case of a trifocal-diffractive IOL (AT LISA 839MP) the most noticeable characteristic is the double-halo formation due to the 2 non-focused powers. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.
Investigation relative to the Roentgen Satellite (ROSAT)
NASA Technical Reports Server (NTRS)
Elvis, Martin S.; Primini, Francis A.; Fabbiano, Guiseppina; Harris, Daniel E.; Jones-Foreman, Christine; Trinchieri, Ginevra; Golub, Leon; Bookbinder, Jay; Seward, Frederick D.; Zombeck, Martin V.
1994-01-01
Reports include: High Resolution Observations of the Central Region of M31; The X-ray Emission of Low-X-ray-Luminosity Early-Type Galaxies: Gas Versus Compact Sources; Interaction Between Cluster Gas and Radio Features of Cygnus A; Hot Gas and Dark Halos in Early-Type Galaxies; A Gravitational Lens in X-rays - 0957+461; How Massive are Early-Type Galaxies?; Three Crab-Like SNR in the Large Magellanic Cloud; and Soft X-ray Emission from Boundary Layers in Cataclysmic Variables. Papers submitted to the Astrophysical Journal are attached.
Radio haloes in nearby galaxies modelled with 1D cosmic ray transport using SPINNAKER
NASA Astrophysics Data System (ADS)
Heesen, V.; Krause, M.; Beck, R.; Adebahr, B.; Bomans, D. J.; Carretti, E.; Dumke, M.; Heald, G.; Irwin, J.; Koribalski, B. S.; Mulcahy, D. D.; Westmeier, T.; Dettmar, R.-J.
2018-05-01
We present radio continuum maps of 12 nearby (D ≤ 27 Mpc), edge-on (i ≥ 76°), late-type spiral galaxies mostly at 1.4 and 5 GHz, observed with the Australia Telescope Compact Array, Very Large Array, Westerbork Synthesis Radio Telescope, Effelsberg 100-m, and Parkes 64-m telescopes. All galaxies show clear evidence of radio haloes, including the first detection in the Magellanic-type galaxy NGC 55. In 11 galaxies, we find a thin and a thick disc that can be better fitted by exponential rather than Gaussian functions. We fit our SPINNAKER (SPectral INdex Numerical Analysis of K(c)osmic-ray Electron Radio-emission) 1D cosmic ray transport models to the vertical model profiles of the non-thermal intensity and to the non-thermal radio spectral index in the halo. We simultaneously fit for the advection speed (or diffusion coefficient) and magnetic field scale height. In the thick disc, the magnetic field scale heights range from 2 to 8 kpc with an average across the sample of 3.0 ± 1.7 kpc; they show no correlation with either star formation rate (SFR), SFR surface density (ΣSFR), or rotation speed (Vrot). The advection speeds range from 100 to 700 km s - 1 and display correlations of V∝SFR0.36 ± 0.06 and V∝ Σ _SFR^{0.39± 0.09}; they agree remarkably well with the escape velocities (0.5 ≤ V/Vesc ≤ 2), which can be explained by cosmic ray-driven winds. Radio haloes show the presence of disc winds in galaxies with ΣSFR > 10 - 3 M⊙ yr - 1 kpc - 2 that extend over several kpc and are driven by processes related to the distributed star formation in the disc.
The Diversity of Diffuse Ly α Nebulae around Star-forming Galaxies at High Redshift
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Rui; Lee, Kyoung-Soo; Dey, Arjun
2017-03-10
We report the detection of diffuse Ly α emission, or Ly α halos (LAHs), around star-forming galaxies at z ≈ 3.78 and 2.66 in the NOAO Deep Wide-Field Survey Boötes field. Our samples consist of a total of ∼1400 galaxies, within two separate regions containing spectroscopically confirmed galaxy overdensities. They provide a unique opportunity to investigate how the LAH characteristics vary with host galaxy large-scale environment and physical properties. We stack Ly α images of different samples defined by these properties and measure their median LAH sizes by decomposing the stacked Ly α radial profile into a compact galaxy-like andmore » an extended halo-like component. We find that the exponential scale-length of LAHs depends on UV continuum and Ly α luminosities, but not on Ly α equivalent widths or galaxy overdensity parameters. The full samples, which are dominated by low UV-continuum luminosity Ly α emitters ( M {sub UV} ≳ −21), exhibit LAH sizes of 5–6 kpc. However, the most UV- or Ly α- luminous galaxies have more extended halos with scale-lengths of 7–9 kpc. The stacked Ly α radial profiles decline more steeply than recent theoretical predictions that include the contributions from gravitational cooling of infalling gas and from low-level star formation in satellites. However, the LAH extent matches what one would expect for photons produced in the galaxy and then resonantly scattered by gas in an outflowing envelope. The observed trends of LAH sizes with host galaxy properties suggest that the physical conditions of the circumgalactic medium (covering fraction, H i column density, and outflow velocity) change with halo mass and/or star formation rates.« less
The Diversity of Diffuse Lyα Nebulae around Star-forming Galaxies at High Redshift
NASA Astrophysics Data System (ADS)
Xue, Rui; Lee, Kyoung-Soo; Dey, Arjun; Reddy, Naveen; Hong, Sungryong; Prescott, Moire K. M.; Inami, Hanae; Jannuzi, Buell T.; Gonzalez, Anthony H.
2017-03-01
We report the detection of diffuse Lyα emission, or Lyα halos (LAHs), around star-forming galaxies at z ≈ 3.78 and 2.66 in the NOAO Deep Wide-Field Survey Boötes field. Our samples consist of a total of ˜1400 galaxies, within two separate regions containing spectroscopically confirmed galaxy overdensities. They provide a unique opportunity to investigate how the LAH characteristics vary with host galaxy large-scale environment and physical properties. We stack Lyα images of different samples defined by these properties and measure their median LAH sizes by decomposing the stacked Lyα radial profile into a compact galaxy-like and an extended halo-like component. We find that the exponential scale-length of LAHs depends on UV continuum and Lyα luminosities, but not on Lyα equivalent widths or galaxy overdensity parameters. The full samples, which are dominated by low UV-continuum luminosity Lyα emitters (M UV ≳ -21), exhibit LAH sizes of 5-6 kpc. However, the most UV- or Lyα-luminous galaxies have more extended halos with scale-lengths of 7-9 kpc. The stacked Lyα radial profiles decline more steeply than recent theoretical predictions that include the contributions from gravitational cooling of infalling gas and from low-level star formation in satellites. However, the LAH extent matches what one would expect for photons produced in the galaxy and then resonantly scattered by gas in an outflowing envelope. The observed trends of LAH sizes with host galaxy properties suggest that the physical conditions of the circumgalactic medium (covering fraction, H I column density, and outflow velocity) change with halo mass and/or star formation rates.
Astrophysical applications of gravitational microlensing
NASA Astrophysics Data System (ADS)
Mao, Shude
2012-08-01
Since the first discovery of microlensing events nearly two decades ago, gravitational microlensing has accumulated tens of TBytes of data and developed into a powerful astrophysical technique with diverse applications. The review starts with a theoretical overview of the field and then proceeds to discuss the scientific highlights. (1) Microlensing observations toward the Magellanic Clouds rule out the Milky Way halo being dominated by MAssive Compact Halo Objects (MACHOs). This confirms most dark matter is non-baryonic, consistent with other observations. (2) Microlensing has discovered about 20 extrasolar planets (16 published), including the first two Jupiter-Saturn like systems and the only five “cold Neptunes" yet detected. They probe a different part of the parameter space and will likely provide the most stringent test of core accretion theory of planet formation. (3) Microlensing provides a unique way to measure the mass of isolated stars, including brown dwarfs and normal stars. Half a dozen or so stellar mass black hole candidates have also been proposed. (4) High-resolution, target-of-opportunity spectra of highly-magnified dwarf stars provide intriguing “age" determinations which may either hint at enhanced helium enrichment or unusual bulge formation theories. (5) Microlensing also measured limb-darkening profiles for close to ten giant stars, which challenges stellar atmosphere models. (6) Data from surveys also provide strong constraints on the geometry and kinematics of the Milky Way bar (through proper motions); the latter indicates predictions from current models appear to be too anisotropic compared with observations. The future of microlensing is bright given the new capabilities of current surveys and forthcoming new telescope networks from the ground and from space. Some open issues in the field are identified and briefly discussed.
Primeval very low-mass stars and brown dwarfs - III. The halo transitional brown dwarfs
NASA Astrophysics Data System (ADS)
Zhang, Z. H.; Pinfield, D. J.; Gálvez-Ortiz, M. C.; Homeier, D.; Burgasser, A. J.; Lodieu, N.; Martín, E. L.; Osorio, M. R. Zapatero; Allard, F.; Jones, H. R. A.; Smart, R. L.; Martí, B. López; Burningham, B.; Rebolo, R.
2018-05-01
We report the discovery of an esdL3 subdwarf, ULAS J020858.62+020657.0 and a usdL4.5 subdwarf, ULAS J230711.01+014447.1. They were identified as L subdwarfs by optical spectra obtained with the Gran Telescopio Canarias, and followed up by optical to near infrared spectroscopy with the Very Large Telescope. We also obtained an optical to near infrared spectrum of a previously known L subdwarf, ULAS J135058.85+081506.8, and re-classified it as a usdL3 subdwarf. These three objects all have typical halo kinematics. They have Teff around 2050-2250 K, -1.8 ≤ [Fe/H] ≤-1.5, and mass around 0.0822-0.0833 M⊙, according to model spectral fitting and evolutionary models. These sources are likely halo transitional brown dwarfs with unsteady hydrogen fusions, as their masses are just below the hydrogen-burning minimum mass, which is ˜ 0.0845 M⊙ at [Fe/H] = -1.6 and ˜ 0.0855 M⊙ at [Fe/H] = -1.8. Including these, there are now nine objects in the `halo brown dwarf transition zone', which is a `substellar subdwarf gap' spans a wide temperature range within a narrow mass range of the substellar population.
Hubble space telescope observations and geometric models of compact multipolar planetary nebulae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsia, Chih-Hao; Chau, Wayne; Zhang, Yong
2014-05-20
We report high angular resolution Hubble Space Telescope observations of 10 compact planetary nebulae (PNs). Many interesting internal structures, including multipolar lobes, arcs, two-dimensional rings, tori, and halos, are revealed for the first time. These results suggest that multipolar structures are common among PNs, and these structures develop early in their evolution. From three-dimensional geometric models, we have determined the intrinsic dimensions of the lobes. Assuming the lobes are the result of interactions between later-developed fast winds and previously ejected asymptotic giant branch winds, the geometric structures of these PNs suggest that there are multiple phases of fast winds separatedmore » by temporal variations and/or directional changes. A scenario of evolution from lobe-dominated to cavity-dominated stages is presented. The results reported here will provide serious constraints on any dynamical models of PNs.« less
The diverse evolutionary paths of simulated high-z massive, compact galaxies to z = 0
NASA Astrophysics Data System (ADS)
Wellons, Sarah; Torrey, Paul; Ma, Chung-Pei; Rodriguez-Gomez, Vicente; Pillepich, Annalisa; Nelson, Dylan; Genel, Shy; Vogelsberger, Mark; Hernquist, Lars
2016-02-01
Massive quiescent galaxies have much smaller physical sizes at high redshift than today. The strong evolution of galaxy size may be caused by progenitor bias, major and minor mergers, adiabatic expansion, and/or renewed star formation, but it is difficult to test these theories observationally. Herein, we select a sample of 35 massive, compact galaxies (M* = 1-3 × 1011 M⊙, M*/R1.5 > 1010.5 M⊙/kpc1.5) at z = 2 in the cosmological hydrodynamical simulation Illustris and trace them forwards to z = 0 to uncover their evolution and identify their descendants. By z = 0, the original factor of 3 difference in stellar mass spreads to a factor of 20. The dark matter halo masses similarly spread from a factor of 5 to 40. The galaxies' evolutionary paths are diverse: about half acquire an ex situ envelope and are the core of a more massive descendant, a third survive undisturbed and gain very little mass, 15 per cent are consumed in a merger with a more massive galaxy, and a small remainder are thoroughly mixed by major mergers. The galaxies grow in size as well as mass, and only ˜10 per cent remain compact by z = 0. The majority of the size growth is driven by the acquisition of ex situ mass. The most massive galaxies at z = 0 are the most likely to have compact progenitors, but this trend possesses significant dispersion which precludes a direct linkage to compact galaxies at z = 2. The compact galaxies' merger rates are influenced by their z = 2 environments, so that isolated or satellite compact galaxies (which are protected from mergers) are the most likely to survive to the present day.
Testing the Binary Black Hole Nature of a Compact Binary Coalescence
NASA Astrophysics Data System (ADS)
Krishnendu, N. V.; Arun, K. G.; Mishra, Chandra Kant
2017-09-01
We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.
Testing the Binary Black Hole Nature of a Compact Binary Coalescence.
Krishnendu, N V; Arun, K G; Mishra, Chandra Kant
2017-09-01
We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.
Method for observing phase objects without halos and directional shadows
NASA Astrophysics Data System (ADS)
Suzuki, Yoshimasa; Kajitani, Kazuo; Ohde, Hisashi
2015-03-01
A new microscopy method for observing phase objects without halos and directional shadows is proposed. The key optical element is an annular aperture at the front focal plane of a condenser with a larger diameter than those used in standard phase contrast microscopy. The light flux passing through the annular aperture is changed by the specimen's surface profile and then passes through an objective and contributes to image formation. This paper presents essential conditions for realizing the method. In this paper, images of colonies formed by induced pluripotent stem (iPS) cells using this method are compared with the conventional phase contrast method and the bright-field method when the NA of the illumination is small to identify differences among these techniques. The outlines of the iPS cells are clearly visible with this method, whereas they are not clearly visible due to halos when using the phase contrast method or due to weak contrast when using the bright-field method. Other images using this method are also presented to demonstrate a capacity of this method: a mouse ovum and superimposition of several different images of mouse iPS cells.
Genetically modified haloes: towards controlled experiments in ΛCDM galaxy formation
NASA Astrophysics Data System (ADS)
Roth, Nina; Pontzen, Andrew; Peiris, Hiranya V.
2016-01-01
We propose a method to generate `genetically modified' (GM) initial conditions for high-resolution simulations of galaxy formation in a cosmological context. Building on the Hoffman-Ribak algorithm, we start from a reference simulation with fully random initial conditions, then make controlled changes to specific properties of a single halo (such as its mass and merger history). The algorithm demonstrably makes minimal changes to other properties of the halo and its environment, allowing us to isolate the impact of a given modification. As a significant improvement over previous work, we are able to calculate the abundance of the resulting objects relative to the reference simulation. Our approach can be applied to a wide range of cosmic structures and epochs; here we study two problems as a proof of concept. First, we investigate the change in density profile and concentration as the collapse times of three individual haloes are varied at fixed final mass, showing good agreement with previous statistical studies using large simulation suites. Secondly, we modify the z = 0 mass of haloes to show that our theoretical abundance calculations correctly recover the halo mass function. The results demonstrate that the technique is robust, opening the way to controlled experiments in galaxy formation using hydrodynamic zoom simulations.
van Middendorp, Joost J; Slooff, Willem-Bart M; Nellestein, W Ronald; Oner, F Cumhur
2009-01-01
Since high rates of serious complications, such as death and pneumonia, during halo-vest immobilization have been reported, there has been a tendency of restraint with regard to the use of the halo vest. However, the rate of complications in a high-volume center with sufficient experience is unknown. Our objective was to determine the incidence of and risk factors associated with complications during halo-vest immobilization. During a five-year period, a prospective cohort study was performed in a single, level-I trauma center that was also a tertiary referral center for spinal disorders. Data from all patients undergoing halo-vest immobilization were collected prospectively, and every complication was recorded. The primary outcome was the presence or absence of complications. Univariate regression analysis and regression modeling were used to analyze the results. In 239 patients treated with halo-vest immobilization, twenty-six major, seventy-two intermediate, and 121 minor complications were observed. Fourteen patients (6%) died during the treatment, although only one death was related directly to the immobilization and three were possibly related directly to the immobilization. Twelve patients (5%) acquired pneumonia during halo-vest immobilization. Patients older than sixty-five years did not have an increased risk of pneumonia (p = 0.543) or halo vest-related mortality (p = 0.467). Halo vest-related complications ranged from three patients (1%) with incorrect initial placement of the halo vest to twenty-nine patients (12%) with a pin-site infection. Pin-site infection was significantly related to pin penetration through the outer table of the skull (odds ratio, 4.34; 95% confidence interval, 1.22 to 15.51; p = 0.024). In 164 trauma patients treated only with halo-vest immobilization, cervical fractures with facet joint involvement or dislocations were significantly related to radiographic loss of alignment during follow-up (odds ratio, 2.81; 95% confidence interval, 1.06 to 7.44; p = 0.031). There are relatively low rates of mortality and pneumonia during halo-vest immobilization, and elderly patients do not have an increased risk of pneumonia or death related to halo-vest immobilization. Nevertheless, the total number of minor complications is substantial. This study confirms that awareness of and responsiveness to minor complications can prevent subsequent development of serious morbidities and perhaps reduce mortality.
High Energy Studies of Astrophysical Dust
NASA Astrophysics Data System (ADS)
Corrales, Lia Racquel
Astrophysical dust---any condensed matter ranging from tens of atoms to micron sized grains---accounts for about one third of the heavy elements produced in stars and disseminated into space. These tiny pollutants are responsible for producing the mottled appearance in the spray of light we call the "Milky Way." However these seemingly inert particles play a strong role in the physics of the interstellar medium, aiding star and planet formation, and perhaps helping to guide galaxy evolution. Most dust grains are transparent to X-ray light, leaving a signature of atomic absorption, but also scattering the light over small angles. Bright X-ray objects serendipitously situated behind large columns of dust and gas provide a unique opportunity to study the dust along the line of sight. I focus primarily on X-ray scattering through dust, which produces a diffuse halo image around a central point source. Such objects have been observed around X-ray bright Galactic binaries and extragalactic objects that happen to shine through the plane of the Milky Way. I use the Chandra X-ray Observatory, a space-based laboratory operated by NASA, which has imaging resolution ideal for studying X-ray scattering halos. I examine several bright X-ray objects with dust-free sight lines to test their viability as templates and develop a parametric model for the Chandra HETG point spread function (PSF). The PSF describes the instrument's imaging response to a point source, an understanding of which is necessary for properly measuring the surface brightness of X-ray scattering halos. I use an HETG observation of Cygnus X-3, one of the brightest objects available in the Chandra archive, to derive a dust grain size distribution. There exist degenerate solutions for the dust scattering halo, but with the aid of Bayesian analytics I am able to apply prior knowledge about the Cyg X-3 sight line to measure the relative abundance of dust in intervening Milky Way spiral arms. I also demonstrate how information from a single scattering halo can be used in conjunction with X-ray spectroscopy to directly measure the dust-to-gas mass ratio, laying the groundwork for future scattering halo surveys. Distant quasars also produce X-rays that pierce the intergalactic medium. These sources invite the unique opportunity to search for extragalactic dust, whether distributed diffusely throughout intergalactic space, surrounding other galaxies, or occupying reservoirs of cool intergalactic gas. I review X-ray scattering in a cosmological context, examining the range and sensitivity of Chandra to detect the low surface brightness levels of intergalactic scattering. Of particular interest is large "grey" dust, which would cause systematic errors in precision cosmology experiments at a level comparable to the size of the error bars sought. This requires using the more exact Mie scattering treatment, which reduces the scattering cross-section for soft X-rays by a factor of about ten, compared to the Rayleigh-Gans approximation used for interstellar X-ray scattering studies. This allows me to relax the limit on intergalactic dust imposed by previous X-ray imaging of a z=4.3 quasar, QSO 1508+5714, which overestimated the scattering intensity. After implementing the Mie solution with the cosmological integral for scattering halo intensity, I found that intergalactic dust will scatter 1-3% of soft X-ray light. Unfortunately the wings of the Chandra PSF are brighter than the surface brightness expected for these intergalactic scattering halos. The X-ray signatures of intergalactic dust may only be visible if a distant quasar suddenly dimmed by a factor of 1000 or more, leaving behind an X-ray scattering echo, or "ghost" halo.
An Enigmatic Population of Luminous Globular Clusters in a Galaxy Lacking Dark Matter
NASA Astrophysics Data System (ADS)
van Dokkum, Pieter; Cohen, Yotam; Danieli, Shany; Kruijssen, J. M. Diederik; Romanowsky, Aaron J.; Merritt, Allison; Abraham, Roberto; Brodie, Jean; Conroy, Charlie; Lokhorst, Deborah; Mowla, Lamiya; O’Sullivan, Ewan; Zhang, Jielai
2018-04-01
We recently found an ultra diffuse galaxy (UDG) with a half-light radius of R e = 2.2 kpc and little or no dark matter. The total mass of NGC1052–DF2 was measured from the radial velocities of bright compact objects that are associated with the galaxy. Here, we analyze these objects using a combination of Hubble Space Telescope (HST) imaging and Keck spectroscopy. Their average size is < {r}h> =6.2+/- 0.5 pc and their average ellipticity is < ε > =0.18+/- 0.02. From a stacked Keck spectrum we derive an age of ≳9 Gyr and a metallicity of [Fe/H] = ‑1.35 ± 0.12. Their properties are similar to ω Centauri, the brightest and largest globular cluster in the Milky Way, and our results demonstrate that the luminosity function of metal-poor globular clusters is not universal. The fraction of the total stellar mass that is in the globular cluster system is similar to that in other UDGs, and consistent with “failed galaxy” scenarios, where star formation terminated shortly after the clusters were formed. However, the galaxy is a factor of ∼1000 removed from the relation between globular cluster mass and total galaxy mass that has been found for other galaxies, including other UDGs. We infer that a dark matter halo is not a prerequisite for the formation of metal-poor globular cluster-like objects in high-redshift galaxies.
The Relationship Between KBO Colors and Kuiper-belt Plane Inclination
NASA Astrophysics Data System (ADS)
Kane, J. F.; Gulbis, A. A. S.; Elliot, J. L.
2005-08-01
The colors of Kuiper belt objects (KBOs) can indicate different compositions, environmental conditions, or formation characteristics within the Kuiper belt. Photometric color observations of these objects, combined with dynamical information, can provide insight into their composition, the extent to which space-weathering or impact gardening have played a role in surface modification, and the processes at work during the formation of our solar system. Data from the Deep Ecliptic Survey (DES; Millis et al., 2002, AJ, 123, 2083) have been used to determine the plane of the Kuiper belt, identifying "core" and "halo" populations with respect to this plane (Elliot et al. 2005, AJ, 129, 1117). Gulbis et al. (2005, Icarus, submitted) found the colors of the core KBOs, those having inclinations within approximately 4.6 degrees of the Kuiper-belt plane, to be primarily red, unlike the halo objects. We have combined newly obtained Sloan g', r', and i' observations from the 6.5-m Clay telescope at Las Campanas Observatory of 12 KBOs with previously published data to examine the transition between these populations as a function of color. By comparing the colors of objects as a function of inclination, we can establish trends distinguishing the core and halo populations. For inclination bins containing equal numbers of KBOs, we find that the percentage of red objects (B-R > median B-R of the sample) decreases in a smooth, but nonlinear fashion. This research is partially supported by an MIT fellowship, an NSF GSRF and NSF grant AST0406493.
Structure and Formation of cD Galaxies: NGC 6166 in ABELL 2199
NASA Astrophysics Data System (ADS)
Bender, Ralf; Kormendy, John; Cornell, Mark E.; Fisher, David B.
2015-07-01
Hobby-Eberly Telescope (HET) spectroscopy is used to measure the velocity dispersion profile of the nearest prototypical cD galaxy, NGC 6166 in the cluster Abell 2199. We also present composite surface photometry from many telescopes. We confirm the defining feature of a cD galaxy; i.e., (we suggest), a halo of stars that fills the cluster center and that is controlled dynamically by cluster gravity, not by the central galaxy. Our HET spectroscopy shows that the velocity dispersion of NGC 6166 rises from σ ≃ 300 km s-1 in the inner r˜ 10\\prime\\prime to σ =865+/- 58 km s-1 at r ˜ 100″ in the cD halo. This extends published observations of an outward σ increase and shows for the first time that σ rises all the way to the cluster velocity dispersion of 819 ± 32 km s-1. We also observe that the main body of NGC 6166 moves at +206 ± 39 km s-1 with respect to the cluster mean velocity, but the velocity of the inner cD halo is ˜70 km s-1 closer to the cluster velocity. These results support our picture that cD halos consist of stars that were stripped from individual cluster galaxies by fast tidal encounters. However, our photometry does not confirm the widespread view that cD halos are identifiable as an extra, low-surface-brightness component that is photometrically distinct from the inner, steep-Sérsic-function main body of an otherwise-normal giant elliptical galaxy. Instead, all of the brightness profile of NGC 6166 outside its core is described to ±0.037 V mag arcsec-2 by a single Sérsic function with index n≃ 8.3. The cD halo is not recognizable from photometry alone. This blurs the distinction between cluster-dominated cD halos and the similarly-large-Sérsic-index halos of giant, core-boxy-nonrotating ellipticals. These halos are believed to be accreted onto compact, high-redshift progenitors (“red nuggets”) by large numbers of minor mergers. They belong dynamically to their central galaxies. Still, cDs and core-boxy-nonrotating Es may be more similar than we think: both may have outer halos made largely via minor mergers and the accumulation of tidal debris. We construct a main-body+cD-halo decomposition that fits both the brightness and dispersion profiles. To fit σ (r), we need to force the component Sérsic indices to be smaller than a minimum-{χ }2 photometric decomposition would suggest. The main body has {M}V≃ -22.8≃ 30% of the total galaxy light. The cD halo has {M}V≃ -23.7, ˜1/2 mag brighter than the brightest galaxy in the Virgo cluster. A mass model based on published cluster dynamics and X-ray observations fits our observations if the tangential dispersion is larger than the radial dispersion at r≃ 20\\prime\\prime -60\\prime\\prime . The cD halo is as enhanced in α element abundances as the main body of NGC 6166. Quenching of star formation in ≲1 Gyr suggests that the center of Abell 2199 has been special for a long time during which dynamical evolution has liberated a large mass of now-intracluster stars. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.
A Study of Galaxies and Quasars in the Background of the Andromeda Galaxy
NASA Astrophysics Data System (ADS)
Dhara, Atirath; McConnell, Kaela; Guhathakurta, Puragra; Roy, Namrata; Waite, Jurij
2018-01-01
The SPLASH (Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo) survey is based on wide-field ground-based optical images (KPNO 4-m/Mosaic, CFHT 3.6-m/MegaCam imager, and Subaru 8-m/Suprime-Cam), deep Hubble Space Telescope ultraviolet/optical/near infrared images (ACS and WFC3), and medium resolution spectra (Keck II 10-m/DEIMOS). The SPLASH survey data set contains two main categories of (non-M31) contaminants (SPLASH trash, if you will): foreground Milky Way stars and compact background galaxies/quasars. In this poster, we present the discovery and characterization of galaxies and quasars behind M31. Such objects were identified based on the presence of redshifted emission lines and other galaxy/quasar spectral features (e.g., Ca H+K absorption and IGM absorption). The redshift of each galaxy was measured by cross-correlating its spectrum against an emission line galaxy spectral template. The cross-correlation results (spectrum and best-fit template) were visually inspected to identify cases of incorrect matching of emission lines. Many of these incorrect redshift estimates were corrected by using the second or third highest cross-correlation peak. Quasar redshifts were determined based on cross-correlation against a quasar spectral template. Most of the galaxies in our sample are star forming galaxies with strong emission lines. We analyze their emission line flux ratios in a BPT diagram to learn more about the ionization source and metallicity. Finally, the properties of these compact galaxies behind M31 are compared to those of galaxies selected in a more standard way in the DEEP2 redshift survey to explore the effects of morphological pre-selection (compact vs. extended) on the properties of the resulting galaxy sample.This research was supported by NASA/STScI and the National Science Foundation. Most of this work was carried out by high school students working under the auspices of the Science Internship Program (SIP) at UC Santa Cruz.
Anchoring the Population II Distance Scale: Accurate Ages for Globular Clusters
NASA Technical Reports Server (NTRS)
Chaboyer, Brian C.; Chaboyer, Brian C.; Carney, Bruce W.; Latham, David W.; Dunca, Douglas; Grand, Terry; Layden, Andy; Sarajedini, Ataollah; McWilliam, Andrew; Shao, Michael
2004-01-01
The metal-poor stars in the halo of the Milky Way galaxy were among the first objects formed in our Galaxy. These Population II stars are the oldest objects in the universe whose ages can be accurately determined. Age determinations for these stars allow us to set a firm lower limit, to the age of the universe and to probe the early formation history of the Milky Way. The age of the universe determined from studies of Population II stars may be compared to the expansion age of the universe and used to constrain cosmological models. The largest uncertainty in estimates for the ages of stars in our halo is due to the uncertainty in the distance scale to Population II objects. We propose to obtain accurate parallaxes to a number of Population II objects (globular clusters and field stars in the halo) resulting in a significant improvement in the Population II distance scale and greatly reducing the uncertainty in the estimated ages of the oldest stars in our galaxy. At the present time, the oldest stars are estimated to be 12.8 Gyr old, with an uncertainty of approx. 15%. The SIM observations obtained by this key project, combined with the supporting theoretical research and ground based observations outlined in this proposal will reduce the estimated uncertainty in the age estimates to 5%).
Distribution of compact object mergers around galaxies
NASA Astrophysics Data System (ADS)
Bulik, T.; Belczyński, K.; Zbijewski, W.
1999-09-01
Compact object mergers are one of the favoured models of gamma ray bursts (GRB). Using a binary population synthesis code we calculate properties of the population of compact object binaries; e.g. lifetimes and velocities. We then propagate them in galactic potentials and find their distribution in relation to the host.
NASA Astrophysics Data System (ADS)
Mertes, Stephan; Kästner, Udo; Schulz, Christiane; Klimach, Thomas; Krüger, Mira; Schneider, Johannes
2015-04-01
Airborne sampling of cloud particles inside different cirrus cloud types and inside deep convective clouds was conducted during the HALO missions ML-CIRRUS over Europe in March/April 2014 and ACRIDICON over Amazonia in September 2014. ML-CIRRUS aims at the investigation of the for-mation, evolution, microphysical state and radiative effects of different natural and aviation-induced cirrus clouds in the mid-latitudes. The main objectives of ACRIDICON are the microphysical vertical profiling, vertical aerosol transport and the cloud processing of aerosol particles (compari-son in- and outflow) of tropical deep convective cloud systems in clean and polluted air masses and over forested and deforested regions. The hydrometeors (drops and ice particles) are sampled by a counterflow virtual impactor (CVI) which has to be installed in the front part of the upper fuselage of the HALO aircraft. Such an intake position implies a size dependent abundance of cloud particles with respect to ambient conditions that was studied by particle trajectory simulations (Katrin Witte, HALO Technical Note 2008-003-A). On the other hand, this sampling location avoids that large ice crystals which could potentially bias the cloud particle sampling by shattering and break-up at the inlet shroud and tip enter the inlet. Both aspects as well as the flight conditions of HALO were taken into account for an optimized CVI design for HALO (HALO-CVI). Interstitial particles are pre-segregated and the condensed phase is evaporated/sublimated by the CVI, such that the residuals from cloud droplets and ice particles (CDR and IPR) can be microphysically and chemically analyzed by respective aerosol sensors located in the cabin. Although an even more comprehensive characterization of CDR and IPR was carried out, we like to report on the following measurements of certain aerosol properties. Particle number concentra-tion and size distribution are measured by a condensation particle counter (CPC) and an ultra-high sensitivity aerosol spectrometer (UHSAS). The absorption coefficient and thus a measure for the black carbon mass concentration is derived from the particle soot absorption photometer (PSAP). In the lower warm parts of the probed convective clouds during the ACRIDICON mission the mean charge of droplets was inferred by means of electrometer measurements. For the determination of the chemical properties of CDR and IPR, the Aircraft-based Laser Ablation Aerosol Mass Spec-trometer (ALABAMA) and a Compact-Time-of-Flight-Aerosol-Mass-Spectrometer (C-ToF-AMS) was operated during ML-CIRRUS and ACRIDICON, respectively, to obtain the mixing state and chemical composition of the cloud particle residues. During ML-CIRRUS, differences in IPR concentration, size distribution, and chemical composition between natural and aviation influenced cirrus clouds could be observed as well as between dif-ferent natural cirrus types and between young and aged contrail cirrus. During ACRIDICON, CDR concentration, size distribution, and chemical composition are found to be different for convective cloud systems evolving from more clean air masses compared to systems evolving from more polluted air masses. Droplet charges change from negative to positive values with height in all vertical cloud profiles. The measured IPR concentration strongly vary in the anvil outflow regions.
Local Group dSph radio survey with ATCA - II. Non-thermal diffuse emission
NASA Astrophysics Data System (ADS)
Regis, Marco; Richter, Laura; Colafrancesco, Sergio; Profumo, Stefano; de Blok, W. J. G.; Massardi, Marcella
2015-04-01
Our closest neighbours, the Local Group dwarf spheroidal (dSph) galaxies, are extremely quiescent and dim objects, where thermal and non-thermal diffuse emissions lack, so far, of detection. In order to possibly study the dSph interstellar medium, deep observations are required. They could reveal non-thermal emissions associated with the very low level of star formation, or to particle dark matter annihilating or decaying in the dSph halo. In this work, we employ radio observations of six dSphs, conducted with the Australia Telescope Compact Array in the frequency band 1.1-3.1 GHz, to test the presence of a diffuse component over typical scales of few arcmin and at an rms sensitivity below 0.05 mJy beam-1. We observed the dSph fields with both a compact array and long baselines. Short spacings led to a synthesized beam of about 1 arcmin and were used for the extended emission search. The high-resolution data mapped background sources, which in turn were subtracted in the short-baseline maps, to reduce their confusion limit. We found no significant detection of a diffuse radio continuum component. After a detailed discussion on the modelling of the cosmic ray (CR) electron distribution and on the dSph magnetic properties, we present bounds on several physical quantities related to the dSphs, such that the total radio flux, the angular shape of the radio emissivity, the equipartition magnetic field, and the injection and equilibrium distributions of CR electrons. Finally, we discuss the connection to far-infrared and X-ray observations.
Massive black holes in galactic halos?
NASA Technical Reports Server (NTRS)
Lacey, C. G.; Ostriker, J. P.
1985-01-01
In the present attempt to resolve the problems posed by the composition of dark halos and the heating of stellar disks, under the assumption that galaxy halos are composed of massive black holes, it is noted that the black holes must have masses of the order of one million solar masses. The heating mechanism proposed yields predictions for the dependence of the velocity dispersion on time, and for the shape of the velocity ellipsoid, which are in good agreement with observations. Attention is given to the constraints set by dynamical friction causing black holes to spiral to the Galactic center, by the possible presence of dark matter in dwarf spheroidal galaxies, and by the accretion of interstellar gas by the black holes that produce luminous objects in the Galaxy.
The Detection of Faint Space Objects Using Solid State Imaging Detectors.
1983-12-31
are con.iposed of baryonic matter . New arguments were presented against halos being composed of planets or asteroids. D. Hegyi was also invited to...being made up of baryonic matter . 5.0 THE CHARGE-COUPLED DEVICE IMAGING SYSTEM Our major hardware improvement during the past year is a stainless steel...Hegyi Department of Physics University of Michigan Ann Arbor, Michigan ABSIR:CT The problems with massive halos being composed of baryonic matter are
Forward Modeling of Large-scale Structure: An Open-source Approach with Halotools
Hearin, Andrew P.; Campbell, Duncan; Tollerud, Erik; ...
2017-10-20
Here, we present the first stable release of Halotools (v0.2), a community-driven Python package designed to build and test models of the galaxy-halo connection. Halotools provides a modular platform for creating mock universes of galaxies starting from a catalog of dark matter halos obtained from a cosmological simulation. The package supports many of the common forms used to describe galaxy-halo models: the halo occupation distribution (HOD), the conditional luminosity function (CLF), abundance matching, and alternatives to these models that include effects such as environmental quenching or variable galaxy assembly bias. Satellite galaxies can be modeled to live in subhalos, ormore » to follow custom number density profiles within their halos, including spatial and/or velocity bias with respect to the dark matter profile. Here, the package has an optimized toolkit to make mock observations on a synthetic galaxy population, including galaxy clustering, galaxy-galaxy lensing, galaxy group identification, RSD multipoles, void statistics, pairwise velocities and others, allowing direct comparison to observations. Halotools is object-oriented, enabling complex models to be built from a set of simple, interchangeable components, including those of your own creation.« less
EVIDENCE FOR AN ACCRETION ORIGIN FOR THE OUTER HALO GLOBULAR CLUSTER SYSTEM OF M31
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackey, A. D.; Huxor, A. P.; Ferguson, A. M. N.
2010-07-01
We use a sample of newly discovered globular clusters from the Pan-Andromeda Archaeological Survey (PAndAS) in combination with previously cataloged objects to map the spatial distribution of globular clusters in the M31 halo. At projected radii beyond {approx}30 kpc, where large coherent stellar streams are readily distinguished in the field, there is a striking correlation between these features and the positions of the globular clusters. Adopting a simple Monte Carlo approach, we test the significance of this association by computing the probability that it could be due to the chance alignment of globular clusters smoothly distributed in the M31 halo.more » We find that the likelihood of this possibility is low, below 1%, and conclude that the observed spatial coincidence between globular clusters and multiple tidal debris streams in the outer halo of M31 reflects a genuine physical association. Our results imply that the majority of the remote globular cluster system of M31 has been assembled as a consequence of the accretion of cluster-bearing satellite galaxies. This constitutes the most direct evidence to date that the outer halo globular cluster populations in some galaxies are largely accreted.« less
Forward Modeling of Large-scale Structure: An Open-source Approach with Halotools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hearin, Andrew P.; Campbell, Duncan; Tollerud, Erik
Here, we present the first stable release of Halotools (v0.2), a community-driven Python package designed to build and test models of the galaxy-halo connection. Halotools provides a modular platform for creating mock universes of galaxies starting from a catalog of dark matter halos obtained from a cosmological simulation. The package supports many of the common forms used to describe galaxy-halo models: the halo occupation distribution (HOD), the conditional luminosity function (CLF), abundance matching, and alternatives to these models that include effects such as environmental quenching or variable galaxy assembly bias. Satellite galaxies can be modeled to live in subhalos, ormore » to follow custom number density profiles within their halos, including spatial and/or velocity bias with respect to the dark matter profile. Here, the package has an optimized toolkit to make mock observations on a synthetic galaxy population, including galaxy clustering, galaxy-galaxy lensing, galaxy group identification, RSD multipoles, void statistics, pairwise velocities and others, allowing direct comparison to observations. Halotools is object-oriented, enabling complex models to be built from a set of simple, interchangeable components, including those of your own creation.« less
GLOBAL PROPERTIES OF M31'S STELLAR HALO FROM THE SPLASH SURVEY. I. SURFACE BRIGHTNESS PROFILE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Karoline M.; Guhathakurta, Puragra; Beaton, Rachael L.
2012-11-20
We present the surface brightness profile of M31's stellar halo out to a projected radius of 175 kpc. The surface brightness estimates are based on confirmed samples of M31 red giant branch stars derived from Keck/DEIMOS spectroscopic observations. A set of empirical spectroscopic and photometric M31 membership diagnostics is used to identify and reject foreground and background contaminants. This enables us to trace the stellar halo of M31 to larger projected distances and fainter surface brightnesses than previous photometric studies. The surface brightness profile of M31's halo follows a power law with index -2.2 {+-} 0.2 and extends to amore » projected distance of at least {approx}175 kpc ({approx}2/3 of M31's virial radius), with no evidence of a downward break at large radii. The best-fit elliptical isophotes have b/a = 0.94 with the major axis of the halo aligned along the minor axis of M31's disk, consistent with a prolate halo, although the data are also consistent with M31's halo having spherical symmetry. The fact that tidal debris features are kinematically cold is used to identify substructure in the spectroscopic fields out to projected radii of 90 kpc and investigate the effect of this substructure on the surface brightness profile. The scatter in the surface brightness profile is reduced when kinematically identified tidal debris features in M31 are statistically subtracted; the remaining profile indicates that a comparatively diffuse stellar component to M31's stellar halo exists to large distances. Beyond 90 kpc, kinematically cold tidal debris features cannot be identified due to small number statistics; nevertheless, the significant field-to-field variation in surface brightness beyond 90 kpc suggests that the outermost region of M31's halo is also comprised to a significant degree of stars stripped from accreted objects.« less
Neck motion due to the halo-vest in prone and supine positions.
Ivancic, Paul C; Telles, Connor J
2010-05-01
An in vitro biomechanical study of the effectiveness of halo-vest fixation. The objective was to evaluate motion of the injured cervical spine with normal halo-vest application and vest loose in the prone and supine positions. Snaking motion of the neck is defined as rotation in opposing directions throughout the cervical spine. Previous clinical studies have suggested snaking neck motion due to the halo-vest may lead to inadequate healing or nonunion. The halo-vest was applied to a Human Model of the Neck, which consisted of a cervical spine specimen mounted to the torso of an anthropometric test dummy and carrying a surrogate head. The model was transitioned from prone, to upright, to supine with the halo-vest applied normally and with the vest loose. Average peak spinal motions were computed in the prone and supine positions and contrasted with the physiologic rotation range, obtained from the intact flexibility test, and statistically compared (P < 0.05) between normal halo-vest application and vest loose. Snaking motion of the neck was observed in the prone and supine positions, consisting of extension at head/C1 and C1/2 and flexion at the inferior spinal levels. The intervertebral rotation peaks generally exceeded the physiologic range throughout the cervical spine due to the loose vest in the prone position. Significant increases in the extension peaks at head/C1 (16.9 degrees vs. 5.7 degrees) and flexion peaks at C4/5 (6.9 degrees vs. 3.6 degrees) and C7-T1 (5.2 degrees vs. 0.7 degrees) were observed in the prone position due to the loose vest, as compared to normal halo-vest application. Axial neck separation was consistently observed in the prone and supine positions. The present results, which document snaking motion of the cervical spine due to the halo-vest, indicate that an inadequately fitting or loose vest may significantly diminish its immobilization capacity leading to delayed healing or nonunion.
La Freccia Rossa: an IR-dark cloud hosting the Milky Way intermediate-mass black hole candidate
NASA Astrophysics Data System (ADS)
Ravi, Vikram; Vedantham, Harish; Phinney, E. Sterl
2018-07-01
The dynamics of the high-velocity compact molecular cloud CO-0.40-0.22 have been interpreted as evidence for a ˜105 M⊙ black hole within 60 pc of Sgr A*. Recently, Oka et al. have identified a compact millimetre-continuum source, CO-0.40-0.22*, with this candidate black hole. Here we present a collation of radio and infrared data at this location. Australia Telescope Compact Array constraints on the radio spectrum, and the detection of a mid-infrared counterpart, are in tension with an Sgr A*-like model for CO-0.40-0.22* despite the comparable bolometric to the Eddington luminosity ratios under the intermediate-mass black hole interpretation. A protostellar-disc scenario is, however, tenable. CO-0.40-0.22(*) is positionally coincident with an arrowhead-shaped infrared-dark cloud (which we call the Freccia Rossa). If the VLSR ≈ 70 km s-1 systemic velocity of CO-0.40-0.22 is common to the entire Freccia Rossa system, we hypothesize that it is the remnant of a high-velocity cloud that has plunged into the Milky Way from the Galactic halo.
The globular cluster-dark matter halo connection
NASA Astrophysics Data System (ADS)
Boylan-Kolchin, Michael
2017-12-01
I present a simple phenomenological model for the observed linear scaling of the stellar mass in old globular clusters (GCs) with z = 0 halo mass in which the stellar mass in GCs scales linearly with progenitor halo mass at z = 6 above a minimum halo mass for GC formation. This model reproduces the observed MGCs-Mhalo relation at z = 0 and results in a prediction for the minimum halo mass at z = 6 required for hosting one GC: Mmin(z = 6) = 1.07 × 109 M⊙. Translated to z = 0, the mean threshold mass is Mhalo(z = 0) ≈ 2 × 1010 M⊙. I explore the observability of GCs in the reionization era and their contribution to cosmic reionization, both of which depend sensitively on the (unknown) ratio of GC birth mass to present-day stellar mass, ξ. Based on current detections of z ≳ 6 objects with M1500<-17, values of ξ > 10 are strongly disfavoured; this, in turn, has potentially important implications for GC formation scenarios. Even for low values of ξ, some observed high-z galaxies may actually be GCs, complicating estimates of reionization-era galaxy ultraviolet luminosity functions and constraints on dark matter models. GCs are likely important reionization sources if 5 ≲ ξ ≲ 10. I also explore predictions for the fraction of accreted versus in situ GCs in the local Universe and for descendants of systems at the halo mass threshold of GC formation (dwarf galaxies). An appealing feature of the model presented here is the ability to make predictions for GC properties based solely on dark matter halo merger trees.
Halo histories versus galaxy properties at z = 0 II: large-scale galactic conformity
NASA Astrophysics Data System (ADS)
Tinker, Jeremy L.; Hahn, ChangHoon; Mao, Yao-Yuan; Wetzel, Andrew R.; Conroy, Charlie
2018-06-01
Using group catalogues from the Sloan Digital Sky Survey (SDSS) Data Release 7, we measure galactic conformity in the local universe. We measure the quenched fraction of neighbour galaxies around isolated primary galaxies, dividing the isolated sample into star-forming and quiescent objects. We restrict our measurements to scales >1 Mpc to probe the correlations between halo formation histories. Over the stellar mass range 109.7 ≤ M*/M⊙ ≤ 1010.9, we find minimal evidence for conformity. We further compare these data to predictions of the halo age-matching model, in which the oldest galaxies are associated with the oldest haloes. For models with strong correlations between halo and stellar age, the conformity is too large to be consistent with the data. Weaker implementations of the age-matching model would not produce a detectable signal in SDSS data. We reproduce the results of Kauffmann et al., in which the star formation rates of neighbour galaxies are reduced around primary galaxies when the primaries are low star formers. However, we find this result is mainly driven by contamination in the isolation criterion; when removing the small fraction of satellite galaxies in the sample, the conformity signal largely goes away. Lastly, we show that small conformity signals, i.e. 2-5 per cent differences in the quenched fractions of neighbour galaxies, can be produced by mechanisms other than halo assembly bias. For example, if passive galaxies occupy more massive haloes than star-forming galaxies of the same stellar mass, a conformity signal that is consistent with recent measurements from PRIMUS (Berti et al.) can be produced.
Subhalo demographics in the Illustris simulation: effects of baryons and halo-to-halo variation
NASA Astrophysics Data System (ADS)
Chua, Kun Ting Eddie; Pillepich, Annalisa; Rodriguez-Gomez, Vicente; Vogelsberger, Mark; Bird, Simeon; Hernquist, Lars
2017-12-01
We study the abundance of subhaloes in the hydrodynamical cosmological simulation Illustris, which includes both baryons and dark matter in a cold dark matter volume 106.5 Mpc a side. We compare Illustris to its dark-matter only (DMO) analogue, Illustris-Dark and quantify the effects of baryonic processes on the demographics of subhaloes in the host mass range 1011-3 × 1014 M⊙. We focus on both the evolved (z = 0) subhalo cumulative mass functions (SHMF) and the statistics of subhaloes ever accreted, i.e. infall SHMF. We quantify the variance in subhalo abundance at fixed host mass and investigate the physical reasons responsible for such scatter. We find that in Illustris, baryonic physics impacts both the infall and z = 0 subhalo abundance by tilting the DMO function and suppressing the abundance of low-mass subhaloes. The breaking of self-similarity in the subhalo abundance at z = 0 is enhanced by the inclusion of baryonic physics. The non-monotonic alteration of the evolved subhalo abundances can be explained by the modification of the concentration-mass relation of Illustris hosts compared to Illustris-Dark. Interestingly, the baryonic implementation in Illustris does not lead to an increase in the halo-to-halo variation compared to Illustris-Dark. In both cases, the normalized intrinsic scatter today is larger for Milky Way-like haloes than for cluster-sized objects. For Milky Way-like haloes, it increases from about eight per cent at infall to about 25 per cent at the current epoch. In both runs, haloes of fixed mass formed later host more subhaloes than early formers.
NASA Astrophysics Data System (ADS)
Simha, Vimal; Weinberg, David H.; Davé, Romeel; Gnedin, Oleg Y.; Katz, Neal; Kereš, Dušan
2009-10-01
We examine the accretion and merger histories of central and satellite galaxies in a smoothed particle hydrodynamics (SPH) cosmological simulation that resolves galaxies down to 7 × 109Msolar. Most friends-of-friends haloes in the simulation have a distinct central galaxy, typically 2-5 times more massive than the most massive satellite. As expected, satellites have systematically higher assembly redshifts than central galaxies of the same baryonic mass, and satellites in more massive haloes form earlier. However, contrary to the simplest expectations, satellite galaxies continue to accrete gas and convert it to stars; the gas accretion declines steadily over a period of 0.5-1 Gyr after the satellite halo merges with a larger parent halo. Satellites in a cluster mass halo eventually begin to lose baryonic mass. Typically, satellites in our simulation are 0.1-0.2 mag bluer than in models that assume no gas accretion on to satellites after a halo merger. Since z = 1, 27 per cent of central galaxies (above 3 × 1010Msolar) and 22 per cent of present-day satellite galaxies have merged with a smaller system above a 1:4 mass ratio; about half of the satellite mergers occurred after the galaxy became a satellite and half before. In effect, satellite galaxies can remain `central' objects of halo substructures, with continuing accretion and mergers, making the transition in assembly histories and physical properties a gradual one. Implementing such a gradual transformation in semi-analytic models would improve their agreement with observed colour distributions of satellite galaxies in groups and with the observed colour dependence of galaxy clustering.
Infrared spectrum of an extremely cool white-dwarf star
Hodgkin; Oppenheimer; Hambly; Jameson; Smartt; Steele
2000-01-06
White dwarfs are the remnant cores of stars that initially had masses of less than 8 solar masses. They cool gradually over billions of years, and have been suggested to make up much of the 'dark matter' in the halo of the Milky Way. But extremely cool white dwarfs have proved difficult to detect, owing to both their faintness and their anticipated similarity in colour to other classes of dwarf stars. Recent improved models indicate that white dwarfs are much more blue than previously supposed, suggesting that the earlier searches may have been looking for the wrong kinds of objects. Here we report an infrared spectrum of an extremely cool white dwarf that is consistent with the new models. We determine the star's temperature to be 3,500 +/- 200 K, making it the coolest known white dwarf. The kinematics of this star indicate that it is in the halo of the Milky Way, and the density of such objects implied by the serendipitous discovery of this star is consistent with white dwarfs dominating the dark matter in the halo.
Revisiting Black Holes as Dark Matter
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-02-01
Could dark matter be made of intermediate-mass black holes formed in the beginning of the universe? A recent study takes a renewed look at this question.Galactic LurkersThe nature of dark matter has long been questioned, but the recent discovery of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO) has renewed interest in the possibility that dark matter could consist of primordial black holes in the mass range of 101000 solar masses.The relative amounts of the different constituents of the universe. Dark matter makes up roughly 27%. [ESA/Planck]According to this model, the extreme density of matter present during the universes early expansion led to the formation of a large number of intermediate-mass black holes. These black holes now hide in the halos of galaxies, constituting the mass that weve measured dynamically but remains unseen.LIGOs first gravitational-wave detection revealed the merger of two black holes that were both tens of solar masses in size. If primordial black holes are indeed a major constituent of dark matter, then LIGOs detection is consistent with what we would expect to find: occasional mergers of the intermediate-mass black holes that formed in the early universe and now lurk in galactic halos.Quasar MicrolensingTheres a catch, however. If there truly were a large number of intermediate-mass primordial black holes hiding in galactic halos, they wouldnt go completely unnoticed: we would see signs of their presence in the gravitational microlensing of background quasars. Unseen primordial black holes in a foreground galaxy could cause an image of a background quasar to briefly brighten which would provide us with clear evidence of such black holes despite our not being able to detect them directly.A depiction of quasar microlensing (click for a closer look!). The microlensing object in the foreground galaxy could be a star (as depicted), a primordial black hole, or any other compact object. [NASA/Jason Cowan (Astronomy Technology Center)]A team of scientists led by Evencio Mediavilla (Institute of Astrophysics of the Canaries, University of La Laguna) has now used our observations of quasar microlensing to place constraints on the amount of dark matter that could be made up of intermediate-mass primordial black holes.Poor Outlook for Primordial Black HolesMediavilla and collaborators used simulations to estimate the effects of a distribution of masses on light from distant quasars, and they then compared their results to microlensing magnification measurements from 24 gravitationally lensed quasars. In this way, they were able to determine both the abundance and masses of possible objects causing the quasar microlensing effects we see.The authors find that the observations constrain the mass of the possible microlensing objects to be between 0.05 and 0.45 solar masses not at all the intermediate-mass black holes postulated. Whats more, they find that the lensing objects make up 20% of the total matter, which is barely more than expected for normal stellar matter. This suggests that normal stars are doing the majority of the quasar microlensing, not a large population of intermediate-mass black holes.What does this mean for primordial black holes as dark matter? Black holes in the range of 10200 stellar masses are unlikely to account for much (if any) dark matter, Mediavilla and collaborators conclude which means that LIGOs detection of gravitational waves likely came from two black holes collapsed from stars, not primordial black holes.CitationE. Mediavilla et al 2017 ApJL 836 L18. doi:10.3847/2041-8213/aa5dab
The stellar mass, star formation rate and dark matter halo properties of LAEs at z ˜ 2
NASA Astrophysics Data System (ADS)
Kusakabe, Haruka; Shimasaku, Kazuhiro; Ouchi, Masami; Nakajima, Kimihiko; Goto, Ryosuke; Hashimoto, Takuya; Konno, Akira; Harikane, Yuichi; Silverman, John D.; Capak, Peter L.
2018-01-01
We present average stellar population properties and dark matter halo masses of z ˜ 2 Lyα emitters (LAEs) from spectral energy distribution fitting and clustering analysis, respectively, using ≃ 1250 objects (NB387≤25.5) in four separate fields of ≃ 1 deg2 in total. With an average stellar mass of 10.2 ± 1.8 × 108 M⊙ and star formation rate of 3.4 ± 0.4 M⊙ yr-1, the LAEs lie on an extrapolation of the star-formation main sequence (MS) to low stellar mass. Their effective dark matter halo mass is estimated to be 4.0_{-2.9}^{+5.1} × 10^{10}{ }M_{⊙} with an effective bias of 1.22^{+0.16}_{-0.18}, which is lower than that of z ˜ 2 LAEs (1.8 ± 0.3) obtained by a previous study based on a three times smaller survey area, with a probability of 96%. However, the difference in the bias values can be explained if cosmic variance is taken into account. If such a low halo mass implies a low H I gas mass, this result appears to be consistent with the observations of a high Lyα escape fraction. With the low halo masses and ongoing star formation, our LAEs have a relatively high stellar-to-halo mass ratio (SHMR) and a high efficiency of converting baryons into stars. The extended Press-Schechter formalism predicts that at z = 0 our LAEs are typically embedded in halos with masses similar to that of the Large Magellanic Cloud (LMC); they will also have similar SHMRs to the LMC, if their star formation rates are largely suppressed after z ˜ 2 as some previous studies have reported for the LMC itself.
Wide-Field HST Observations of the Globular Cluster System in NGC 1399
NASA Astrophysics Data System (ADS)
Puzia, Thomas H.; Paolillo, Maurizio; Goudfrooij, Paul; Maccarone, Thomas J.; Fabbiano, Giuseppina; Angelini, Lorella
2014-01-01
We present a comprehensive high spatial-resolution imaging study of globular clusters (GCs) in NGC 1399, the central giant elliptical cD galaxy in the Fornax galaxy cluster, obtained with HST/ACS. Using a novel technique to construct drizzled PSF libraries for HST/ACS data, we accurately determine the GC half-light radius, r_h, for the major fraction of the NGC 1399 GC system and find a trend of increasing r_h versus galactocentric distance, R_gal, out to ~10 kpc and a flat relation beyond. This trend is very similar for blue and red GCs which are found to have a mean size ratio of r_h(red)/r_h(blue)=0.82+/-0.11 at all R_gal from the core regions of the galaxy out to ~40 kpc. This suggests that the size difference between blue and red GCs is due to internal mechanisms related to the evolution of their constituent stellar populations. Modeling the stellar mass density profile of NGC 1399 derived from its surface brightness profile shows that additional external dynamical mechanisms are required to limit the GC size in the galaxy halo regions. We suggest that this may be realized by an exotic GC orbit distribution function, an extended dark matter halo, and/or tidal stress induced by the increased stochasticity in the dwarf halo substructure at larger galactocentric radii. We compare our results with the GC r_h distribution functions in various galaxies and find that the fraction of extended GCs is systematically larger in late-type galaxies compared with GC systems in early-type galaxies. This is likely due to the dynamically more violent evolution of early-type galaxies. We match our GC r_h measurements with radial velocity data from the literature and split the resulting sample at the median r_h value into compact and extended GCs. We find that compact GCs show a significantly smaller line-of-sight velocity dispersion, 225+/-25 km/s, than their extended counterparts, 317+/-21 km/s. Considering the weaker statistical correlation in the GC r_h-color and the GC r_h-R_gal relations, the more significant GC size-dynamics relation appears to be astrophysically more relevant and hints at the dominant influence of the GC orbit distribution function on the evolution of GC structural parameters.
Wide-Field Hubble Space Telescope Observations of the Globular Cluster System in NGC 1399*
NASA Technical Reports Server (NTRS)
Puzia, Thomas H.; Paolillo, Maurizio; Goudfrooij, Paul; Maccarone, Thomas J.; Fabbiano, Giuseppina; Angelini, Lorella
2014-01-01
We present a comprehensive high spatial resolution imaging study of globular clusters (GCs) in NGC 1399, thecentral giant elliptical cD galaxy in the Fornax galaxy cluster, conducted with the Advanced Camera for Surveys(ACS) aboard theHubble Space Telescope(HST).Using a novel technique to construct drizzled point-spreadfunction libraries for HSTACS data, we accurately determine the fidelity of GC structural parameter measurementsfrom detailed artificial star cluster experiments and show the superior robustness of the GC half-light radius,rh,compared with other GC structural parameters, such as King core and tidal radius. The measurement ofrhfor themajor fraction of the NGC 1399 GC system reveals a trend of increasingrhversus galactocentric distance,Rgal,out to about 10 kpc and a flat relation beyond. This trend is very similar for blue and red GCs, which are found tohave a mean size ratio ofrh,redrh,blue0.820.11 at all galactocentric radii from the core regions of the galaxyout to40 kpc. This suggests that the size difference between blue and red GCs is due to internal mechanismsrelated to the evolution of their constituent stellar populations. Modeling the mass density profile of NGC 1399shows that additional external dynamical mechanisms are required to limit the GC size in the galaxy halo regionstorh2 pc. We suggest that this may be realized by an exotic GC orbit distribution function, an extended darkmatter halo, andor tidal stress induced by the increased stochasticity in the dwarf halo substructure at largergalactocentric distances. We compare our results with the GCrhdistribution functions in various galaxies and findthat the fraction of extended GCs withrh5 pc is systematically larger in late-type galaxies compared with GCsystems in early-type galaxies. This is likely due to the dynamically more violent evolution of early-type galaxies.We match our GCrhmeasurements with radial velocity data from the literature and split the resulting sample at themedianrhvalue into compact and extended GCs. We find that compact GCs show a significantly smaller line-of-sight velocity dispersion,cmp22525 km s1, than their extended counterparts,ext31721 km s1.Considering the weaker statistical correlation in the GCrhcolor and the GCrhRgalrelations, the more significantGC sizedynamics relation appears to be astrophysically more relevant and hints at the dominant influence of theGC orbit distribution function on the evolution of GC structural parameters.
Biomechanics of halo-vest and dens screw fixation for type II odontoid fracture.
Ivancic, Paul C; Beauchman, Naseem N; Mo, Fred; Lawrence, Brandon D
2009-03-01
An in vitro biomechanical study of halo-vest and odontoid screw fixation of Type II dens fracture. The objective were to determine upper cervical spine instability due to simulated dens fracture and investigate stability provided by the halo-vest and odontoid screw, applied individually and combined. Previous studies have evaluated posterior fixation techniques for stabilizing dens fracture. No previous biomechanical study has investigated the halo-vest and odontoid screw for stabilizing dens fracture. A biofidelic skull-neck-thorax model was used with 5 osteoligamentous whole cervical spine specimens. Three-dimensional flexibility tests were performed on the specimens while intact, following simulated dens fracture, and following application of the halo-vest alone, odontoid screw alone, and halo-vest and screw combined. Average total neutral zone and total ranges of motion at C0/1 and C1/2 were computed for each experimental condition and statistically compared with physiologic motion limits, obtained from the intact flexibility test. Significance was set at P < 0.05 with a trend toward significance at P < 0.1. Type II dens fracture caused trends toward increased sagittal neutral zone and lateral bending range of motion at C1/2. Spinal motions with the dens screw alone could not be differentiated from physiologic limits. Significant reductions in motion were observed at C0/1 and C1/2 in flexion-extension and axial rotation due to the halo-vest, applied individually or combined with the dens screw. At C1/2, the halo-vest combined with the dens screw generally allowed the smallest average percentages of intact motion: 3% in axial rotation, 17% in flexion-extension, and 18% in lateral bending. The present reduction in C1/2 motion observed, due to the halo-vest and dens screw combined is similar to previously reported immobilization provided by the polyaxial screw/rod system and transarticular screw fixation combined with wiring. The present biomechanical data may be useful to clinicians when choosing an appropriate treatment for those with Type II dens fracture.
The FUSE Survey of 0 VI in the Galactic Halo
NASA Technical Reports Server (NTRS)
Sonneborn, George; Savage, B. D.; Wakker, B. P.; Sembach, K. R.; Jenkins, E. B.; Moos, H. W.; Shull, J. M.
2003-01-01
This paper summarizes the results of the Far-Ultraviolet Spectroscopic Explorer (FUSE) program to study 0 VI in the Milky Way halo. Spectra of 100 extragalactic objects and two distant halo stars are analyzed to obtain measures of O VI absorption along paths through the Milky Way thick disk/halo. Strong O VI absorption over the velocity range from -100 to 100 km/s reveals a widespread but highly irregular distribution of O VI, implying the existence of substantial amounts of hot gas with T approx. 3 x 10(exp 5) K in the Milky Way thick disk/halo. The overall distribution of O VI is not well described by a symmetrical plane-parallel layer of patchy O VI absorption. The simplest departure from such a model that provides a reasonable fit to the observations is a plane-parallel patchy absorbing layer with an average O VI mid-plane density of n(sub 0)(O VI) = 1.7 x 10(exp -2)/cu cm, a scale height of approx. 2.3 kpc, and a approx. 0.25 dex excess of O VI in the northern Galactic polar region. The distribution of O VI over the sky is poorly correlated with other tracers of gas in the halo, including low and intermediate velocity H I, Ha emission from the warm ionized gas at approx. l0(exp 4) K, and hot X-ray emitting gas at approx. l0(exp 6) K . The O VI has an average velocity dispersion, b approx. 60 km/s and standard deviation of 15 km/s. Thermal broadening alone cannot explain the large observed profile widths. A combination of models involving the radiative cooling of hot fountain gas, the cooling of supernova bubbles in the halo, and the turbulent mixing of warm and hot halo gases is required to explain the presence of O VI and other highly ionized atoms found in the halo. The preferential venting of hot gas from local bubbles and superbubbles into the northern Galactic polar region may explain the enhancement of O VI in the North.
Radial Velocity and Metallicity Determinations for Remote Globular Clusters in M31 and M33
NASA Astrophysics Data System (ADS)
Ferguson, Annette; Barmby, Pauline; Cote, Pat; Harris, Bill; Huxor, Avon; Mackey, Dougal; Puzia, Thomas
2009-08-01
We propose to determine radial velocities and metallicities for a sample of ~ 20 remote globular clusters (GCs) which we have discovered in the outer halos of the Local Group galaxies M31 and M33. Most of these objects have been uncovered in the course of the PAndAs survey, an international collaboration which is using CFHT/MegaPrime to map more than 300 square degrees in the g and i bands around M31 and M33. The target clusters, all of which have been identified from high- quality imaging (typically ≲ 0.8'' seeing), lie at projected radii of up to 130 kpc from M31 and 30 kpc from M33 and thus lie significantly beyond all previously-known GCs in these systems. Rather intriguingly, many of the new discoveries exhibit either possible associations with halo tidal streams, or show unusual spatial anisotropies with respect to their host galaxy. Velocity and metallicity data for these objects will provide a detailed characterization of the ensemble properties of the outer halo GC populations, and, through the search for kinematic and metallicity correlations within groups of GCs, help determine what fraction of these objects can be attributed to either late or ongoing accretion events. Ultimately, these data will also provide a basis for improved dynamical mass estimates of both galaxies.
Using Voronoi Tessellations to identify groups in N-body Simulation
NASA Astrophysics Data System (ADS)
Gonzalez, R. E.; Theuns, T.
Dark matter N-body simulations often use a friends-of-friends (FOF) group finder to link together particles above a specified density threshold. An over density of 200 picks-out objects that can be identified with virialised dark matter haloes, based on the spherical collapse model for the formation of structure. When the halo contains significant substructure, as is the case in very high resolution simulations, then FOF will simply link all substructure to the parent halo. Many cosmological simulations now also include gas and stars, and these are often distributed differently from the dark matter. It is then not clear whether the structures identified by FOF are very physical. Here we use Voronoi tesselations to identify structures in hydrodynamical cosmological simulations, that contain dark matter, gas and stars. This adaptive technique allows accurate estimates of densities, and density gradients, for a non-structured distribution of points. We discuss how these estimates allow us to identify structures in the dark matter that can be identified with haloes, and in the stars, to identify galaxies.
Guaranteed time observations support for Faint Object Spectrograph (FOS) on HST
NASA Technical Reports Server (NTRS)
Harms, Richard
1994-01-01
The goals of the GTO effort are for investigations defined in previous years by the IDT to be carried out as HST observations and for the results to be communicated to the scientific community and to the public. The search for possible black holes in the nuclei of both normal and active nucleus galaxies has had to be delayed to the post-servicing era. FOS spectropolarimetric observations of the nuclear region of the peculiar Seyfert galaxy Mrk 231 reveal that the continuum polarization peaks at 18% in the near UV and then declines rapidly toward shorter wavelengths. The papers on the absorption line analysis for our galactic halo address the spatial distribution of high and intermediate level ions in the halo and illustrate the patchy and heterogeneous nature of the halo. The papers on the scattering characteristics of the HST/FOS have provided us with data that shows that the HST mirror surfaces are quite smooth, even at the UV wavelengths. WF-PC and FOC images of the halo PN K648 have been fully analyzed.
The disk-halo connection and the nature of the interstellar medium
NASA Technical Reports Server (NTRS)
Norman, Colin A.; Ikeuchi, Satoru
1988-01-01
Some results on the nature of the interstellar medium that are specifically concerned with the disk-halo interaction are discussed. Over the last five years or so it has become clear that the supernovae rate in our Galaxy is spatially clumped and the consequences of such clumping are superbubbles and supershells fed by tens or hundreds of supernovae per shell. These objects evolve and expand rapidly and soon break out of the disk of the Galaxy, feeding the halo with very significant mass, energy, and momentum. As cooling occurs, gas will rain down onto the disk of the Galaxy completing the cycle. The basic flow of physical quantities from disk to halo and vice versa are discussed. Some of the many implications are noted including aspects of dynamo theory, quasar absorption lines, the theory of galactic coronae, and the nature of the x ray background. The essential difference here with the McKee-Ostriker (1977) theory is that the filling factor of the hot gas in the disk is significantly less than unity.
Investigation of the halo-artifact in 68Ga-PSMA-11-PET/MRI
Rank, Christopher M.; Schäfer, Martin; Dimitrakopoulou-Strauss, Antonia; Schlemmer, Heinz-Peter; Hadaschik, Boris A.; Kopka, Klaus; Bachert, Peter; Kachelrieß, Marc
2017-01-01
Objectives Combined positron emission tomography (PET) and magnetic resonance imaging (MRI) targeting the prostate-specific membrane antigen (PSMA) with a 68Ga-labelled PSMA-analog (68Ga-PSMA-11) is discussed as a promising diagnostic method for patients with suspicion or history of prostate cancer. One potential drawback of this method are severe photopenic (halo-) artifacts surrounding the bladder and the kidneys in the scatter-corrected PET images, which have been reported to occur frequently in clinical practice. The goal of this work was to investigate the occurrence and impact of these artifacts and, secondly, to evaluate variants of the standard scatter correction method with regard to halo-artifact suppression. Methods Experiments using a dedicated pelvis phantom were conducted to investigate whether the halo-artifact is modality-, tracer-, and/or concentration-dependent. Furthermore, 31 patients with history of prostate cancer were selected from an ongoing 68Ga-PSMA-11-PET/MRI study. For each patient, PET raw data were reconstructed employing six different variants of PET scatter correction: absolute scatter scaling, relative scatter scaling, and relative scatter scaling combined with prompt gamma correction, each of which was combined with a maximum scatter fraction (MaxSF) of MaxSF = 75% or MaxSF = 40%. Evaluation of the reconstructed images with regard to halo-artifact suppression was performed both quantitatively using statistical analysis and qualitatively by two independent readers. Results The phantom experiments did not reveal any modality-dependency (PET/MRI vs. PET/CT) or tracer-dependency (68Ga vs. 18F-FDG). Patient- and phantom-based data indicated that halo-artifacts derive from high organ-to-background activity ratios (OBR) between bladder/kidneys and surrounding soft tissue, with a positive correlation between OBR and halo size. Comparing different variants of scatter correction, reducing the maximum scatter fraction from the default value MaxSF = 75% to MaxSF = 40% was found to efficiently suppress halo-artifacts in both phantom and patient data. In 1 of 31 patients, reducing the maximum scatter fraction provided new PET-based information changing the patient’s diagnosis. Conclusion Halo-artifacts are particularly observed for 68Ga-PSMA-11-PET/MRI due to 1) the biodistribution of the PSMA-11-tracer resulting in large OBRs for bladder and kidneys and 2) inaccurate scatter correction methods currently used in clinical routine, which tend to overestimate the scatter contribution. If not compensated for, 68Ga-PSMA-11 uptake pathologies may be masked by halo-artifacts leading to false-negative diagnoses. Reducing the maximum scatter fraction was found to efficiently suppress halo-artifacts. PMID:28817656
NASA Astrophysics Data System (ADS)
Creasey, Peter; Sameie, Omid; Sales, Laura V.; Yu, Hai-Bo; Vogelsberger, Mark; Zavala, Jesús
2017-06-01
Galactic rotation curves are a fundamental constraint for any cosmological model. We use controlled N-body simulations of galaxies to study the gravitational effect of baryons in a scenario with collisionless cold dark matter (CDM) versus one with a self-interacting dark matter (SIDM) component. In particular, we examine the inner profiles of the rotation curves in the velocity range Vmax = [30-250] km s-1, whose diversity has been found to be greater than predicted by the ΛCDM scenario. We find that the scatter in the observed rotation curves exceeds that predicted by dark matter only mass-concentration relations in either the CDM nor SIDM models. Allowing for realistic baryonic content and spatial distributions, however, helps create a large variety of rotation curve shapes, which is in a better agreement with observations in the case of self-interactions due to the characteristic cored profiles being more accommodating to the slowly rising rotation curves than CDM. We find individual fits to model two of the most remarkable outliers of similar Vmax, UGC 5721 and IC 2574 - the former a cusp-like rotation curve and the latter a seemingly 8-kpc-cored profile. This diversity in SIDM arises as permutations of overly concentrated haloes with compact baryonic distributions versus underdense haloes with extended baryonic discs. The SIDM solution is promising and its feasibility ultimately depends on the sampling of the halo mass-concentration relation and its interplay with the baryonic profiles, emphasizing the need for a better understanding of the frequency of extreme outliers present in current observational samples.
A Survey of Compact Star Clusters in the South-West Field of the M 31 Disk
NASA Astrophysics Data System (ADS)
Kodaira, Keiichi; Vansevičius, Vladas; Bridzius, Audrius; Komiyama, Yutaka; Miyazaki, Satoshi; Stonkute, Rima; Šablevičiutė, Ieva; Narbutis, Donatas
2004-12-01
A survey for compact clusters with a dimension of 10pc order was conducted in an area of about 500 square arc-minutes of the south-west part of the M31 disk, making use of the high-resolution capability of Suprime-Cam. Photometry in the B, V, and R broad-bands, and in the R* medium-band centered around Hα with varying apertures was carried out for about 1200 targets, which are related to about 300 compact objects detected in the survey. The results for 101 prominent compact objects are presented as photometric catalogues and morphological atlases, separately for samples with and without strong Hα emission. Many of the compact objects, which were previously suspected to be globular cluster candidates, are judged to be open clusters based upon their internal structures of sub-arc-second order. The majority of the 49 listed compact non-emission objects, which are restricted to be brighter than MV ˜ -5, have colors of 0 < B - V < 1.0, indicating their nature of massive evolved clusters. In contrast, only about 10% of the 52 listed compact emission objects are brighter than MiV ˜ -5, probably reflecting the short period of the emission phase and the substantial effects of the circum-stellar extinction. The detection of a few candidates of background galaxies is also reported.
Modelling the line-of-sight contribution in substructure lensing
NASA Astrophysics Data System (ADS)
Despali, Giulia; Vegetti, Simona; White, Simon D. M.; Giocoli, Carlo; van den Bosch, Frank C.
2018-04-01
We investigate how Einstein rings and magnified arcs are affected by small-mass dark-matter haloes placed along the line of sight to gravitational lens systems. By comparing the gravitational signature of line-of-sight haloes with that of substructures within the lensing galaxy, we derive a mass-redshift relation that allows us to rescale the detection threshold (i.e. lowest detectable mass) for substructures to a detection threshold for line-of-sight haloes at any redshift. We then quantify the line-of-sight contribution to the total number density of low-mass objects that can be detected through strong gravitational lensing. Finally, we assess the degeneracy between substructures and line-of-sight haloes of different mass and redshift to provide a statistical interpretation of current and future detections, with the aim of distinguishing between cold dark matter and warm dark matter. We find that line-of-sight haloes statistically dominate with respect to substructures, by an amount that strongly depends on the source and lens redshifts, and on the chosen dark-matter model. Substructures represent about 30 percent of the total number of perturbers for low lens and source redshifts (as for the SLACS lenses), but less than 10 per cent for high-redshift systems. We also find that for data with high enough signal-to-noise ratio and angular resolution, the non-linear effects arising from a double-lens-plane configuration are such that one is able to observationally recover the line-of-sight halo redshift with an absolute error precision of 0.15 at the 68 per cent confidence level.
Resolving the planetesimal belt of HR 8799 with ALMA
NASA Astrophysics Data System (ADS)
Booth, Mark; Jordán, Andrés; Casassus, Simon; Hales, Antonio S.; Dent, William R. F.; Faramaz, Virginie; Matrà, Luca; Barkats, Denis; Brahm, Rafael; Cuadra, Jorge
2016-07-01
The star HR 8799 hosts one of the largest known debris discs and at least four giant planets. Previous observations have found evidence for a warm belt within the orbits of the planets, a cold planetesimal belt beyond their orbits and a halo of small grains. With the infrared data, it is hard to distinguish the planetesimal belt emission from that of the grains in the halo. With this in mind, the system has been observed with ALMA in band 6 (1.34 mm) using a compact array format. These observations allow the inner edge of the planetesimal belt to be resolved for the first time. A radial distribution of dust grains is fitted to the data using an MCMC method. The disc is best fitted by a broad ring between 145^{+12}_{-12} au and 429^{+37}_{-32} au at an inclination of 40^{+5}_{-6}° and a position angle of 51^{+8}_{-8}°. A disc edge at ˜145 au is too far out to be explained simply by interactions with planet b, requiring either a more complicated dynamical history or an extra planet beyond the orbit of planet b.
Revisiting Stephan's Quintet with deep optical images
NASA Astrophysics Data System (ADS)
Duc, Pierre-Alain; Cuillandre, Jean-Charles; Renaud, Florent
2018-03-01
Stephan's Quintet, a compact group of galaxies, is often used as a laboratory to study a number of phenomena, including physical processes in the interstellar medium, star formation, galaxy evolution, and the formation of fossil groups. As such, it has been subject to intensive multiwavelength observation campaigns. Yet, models lack constrains to pin down the role of each galaxy in the assembly of the group. We revisit here this system with multiband deep optical images obtained with MegaCam on the Canada-France-Hawaii Telescope (CFHT), focusing on the detection of low surface brightness (LSB) structures. They reveal a number of extended LSB features, some new, and some already visible in published images but not discussed before. An extended diffuse, reddish, lopsided, halo is detected towards the early-type galaxy NGC 7317, the role of which had so far been ignored in models. The presence of this halo made of old stars may indicate that the group formed earlier than previously thought. Finally, a number of additional diffuse filaments are visible, some close to the foreground galaxy NGC 7331 located in the same field. Their structure and association with mid-infrared emission suggest contamination by emission from Galactic cirrus.
Unveiling the Nature of Giant Ellipticals and their Stellar Halos with the VST
NASA Astrophysics Data System (ADS)
Spavone, M.; Capaccioli, M.; Napolitano, N. R.; Iodice, E.; Grado, A.; Limatola, L.; Cooper, A. P.; Cantiello, M.; Forbes, D. A.; Paolillo, M.; Schipani, P.
2017-12-01
Observations of diffuse starlight in the outskirts of galaxies provide fundamental constraints on the cosmological context of galaxy assembly in the Lambda Cold Dark Matter model, which predicts that galaxies grow through a combination of in-situ star formation and accretion of stars from other galaxies. Accreted stars are expected to dominate in the outer parts of galaxies. Since dynamical timescales are longer in these regions, substructures related to accretion, such as streams and shells, can persist over many Gyr. In this work we use extremely deep g- and i-band images of six massive early- type galaxies (ETGs) from the VEGAS survey to constrain the properties of their accreted stellar components. The wide field of view of OmegaCAM on the VLT Survey Telescope (VST) also allows us to investigate the properties of small stellar systems (such as globular clusters, ultra-compact dwarfs and satellite galaxies) in the halos of our galaxies. By fitting light profiles, and comparing the results to simulations of elliptical galaxy assembly, we have identified signatures of a transition between relaxed and unrelaxed accreted components and can constrain the balance between in-situ and accreted stars.
Goldstone models of modified gravity
NASA Astrophysics Data System (ADS)
Brax, Philippe; Valageas, Patrick
2017-02-01
We investigate scalar-tensor theories where matter couples to the scalar field via a kinetically dependent conformal coupling. These models can be seen as the low-energy description of invariant field theories under a global Abelian symmetry. The scalar field is then identified with the Goldstone mode of the broken symmetry. It turns out that the properties of these models are very similar to the ones of ultralocal theories where the scalar-field value is directly determined by the local matter density. This leads to a complete screening of the fifth force in the Solar System and between compact objects, through the ultralocal screening mechanism. On the other hand, the fifth force can have large effects in extended structures with large-scale density gradients, such as galactic halos. Interestingly, it can either amplify or damp Newtonian gravity, depending on the model parameters. We also study the background cosmology and the linear cosmological perturbations. The background cosmology is hardly different from its Λ -CDM counterpart while cosmological perturbations crucially depend on whether the coupling function is convex or concave. For concave functions, growth is hindered by the repulsiveness of the fifth force while it is enhanced in the convex case. In both cases, the departures from the Λ -CDM cosmology increase on smaller scales and peak for galactic structures. For concave functions, the formation of structure is largely altered below some characteristic mass, as smaller structures are delayed and would form later through fragmentation, as in some warm dark matter scenarios. For convex models, small structures form more easily than in the Λ -CDM scenario. This could lead to an over-abundance of small clumps. We use a thermodynamic analysis and show that although convex models have a phase transition between homogeneous and inhomogeneous phases, on cosmological scales the system does not enter the inhomogeneous phase. On the other hand, for galactic halos, the coexistence of small and large substructures in their outer regions could lead to observational signatures of these models.
Forward Modeling of Large-scale Structure: An Open-source Approach with Halotools
NASA Astrophysics Data System (ADS)
Hearin, Andrew P.; Campbell, Duncan; Tollerud, Erik; Behroozi, Peter; Diemer, Benedikt; Goldbaum, Nathan J.; Jennings, Elise; Leauthaud, Alexie; Mao, Yao-Yuan; More, Surhud; Parejko, John; Sinha, Manodeep; Sipöcz, Brigitta; Zentner, Andrew
2017-11-01
We present the first stable release of Halotools (v0.2), a community-driven Python package designed to build and test models of the galaxy-halo connection. Halotools provides a modular platform for creating mock universes of galaxies starting from a catalog of dark matter halos obtained from a cosmological simulation. The package supports many of the common forms used to describe galaxy-halo models: the halo occupation distribution, the conditional luminosity function, abundance matching, and alternatives to these models that include effects such as environmental quenching or variable galaxy assembly bias. Satellite galaxies can be modeled to live in subhalos or to follow custom number density profiles within their halos, including spatial and/or velocity bias with respect to the dark matter profile. The package has an optimized toolkit to make mock observations on a synthetic galaxy population—including galaxy clustering, galaxy-galaxy lensing, galaxy group identification, RSD multipoles, void statistics, pairwise velocities and others—allowing direct comparison to observations. Halotools is object-oriented, enabling complex models to be built from a set of simple, interchangeable components, including those of your own creation. Halotools has an automated testing suite and is exhaustively documented on http://halotools.readthedocs.io, which includes quickstart guides, source code notes and a large collection of tutorials. The documentation is effectively an online textbook on how to build and study empirical models of galaxy formation with Python.
Lower bound on the compactness of isotropic ultracompact objects
NASA Astrophysics Data System (ADS)
Hod, Shahar
2018-04-01
Horizonless spacetimes describing spatially regular ultracompact objects which, like black-hole spacetimes, possess closed null circular geodesics (light rings) have recently attracted much attention from physicists and mathematicians. In the present paper we raise the following physically intriguing question: how compact is an ultracompact object? Using analytical techniques, we prove that ultracompact isotropic matter configurations with light rings are characterized by the dimensionless lower bound maxr{2 m (r )/r }>7 /12 on their global compactness parameter.
NASA Astrophysics Data System (ADS)
Cardoso, Vitor; Hopper, Seth; Macedo, Caio F. B.; Palenzuela, Carlos; Pani, Paolo
2016-10-01
Gravitational waves from binary coalescences provide one of the cleanest signatures of the nature of compact objects. It has been recently argued that the postmerger ringdown waveform of exotic ultracompact objects is initially identical to that of a black hole, and that putative corrections at the horizon scale will appear as secondary pulses after the main burst of radiation. Here we extend this analysis in three important directions: (i) we show that this result applies to a large class of exotic compact objects with a photon sphere for generic orbits in the test-particle limit; (ii) we investigate the late-time ringdown in more detail, showing that it is universally characterized by a modulated and distorted train of "echoes"of the modes of vibration associated with the photon sphere; (iii) we study for the first time equal-mass, head-on collisions of two ultracompact boson stars and compare their gravitational-wave signal to that produced by a pair of black holes. If the initial objects are compact enough as to mimic a binary black-hole collision up to the merger, the final object exceeds the maximum mass for boson stars and collapses to a black hole. This suggests that—in some configurations—the coalescence of compact boson stars might be almost indistinguishable from that of black holes. On the other hand, generic configurations display peculiar signatures that can be searched for in gravitational-wave data as smoking guns of exotic compact objects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackenzie, Cristóbal; Pichara, Karim; Protopapas, Pavlos
The success of automatic classification of variable stars depends strongly on the lightcurve representation. Usually, lightcurves are represented as a vector of many descriptors designed by astronomers called features. These descriptors are expensive in terms of computing, require substantial research effort to develop, and do not guarantee a good classification. Today, lightcurve representation is not entirely automatic; algorithms must be designed and manually tuned up for every survey. The amounts of data that will be generated in the future mean astronomers must develop scalable and automated analysis pipelines. In this work we present a feature learning algorithm designed for variablemore » objects. Our method works by extracting a large number of lightcurve subsequences from a given set, which are then clustered to find common local patterns in the time series. Representatives of these common patterns are then used to transform lightcurves of a labeled set into a new representation that can be used to train a classifier. The proposed algorithm learns the features from both labeled and unlabeled lightcurves, overcoming the bias using only labeled data. We test our method on data sets from the Massive Compact Halo Object survey and the Optical Gravitational Lensing Experiment; the results show that our classification performance is as good as and in some cases better than the performance achieved using traditional statistical features, while the computational cost is significantly lower. With these promising results, we believe that our method constitutes a significant step toward the automation of the lightcurve classification pipeline.« less
Clustering-based Feature Learning on Variable Stars
NASA Astrophysics Data System (ADS)
Mackenzie, Cristóbal; Pichara, Karim; Protopapas, Pavlos
2016-04-01
The success of automatic classification of variable stars depends strongly on the lightcurve representation. Usually, lightcurves are represented as a vector of many descriptors designed by astronomers called features. These descriptors are expensive in terms of computing, require substantial research effort to develop, and do not guarantee a good classification. Today, lightcurve representation is not entirely automatic; algorithms must be designed and manually tuned up for every survey. The amounts of data that will be generated in the future mean astronomers must develop scalable and automated analysis pipelines. In this work we present a feature learning algorithm designed for variable objects. Our method works by extracting a large number of lightcurve subsequences from a given set, which are then clustered to find common local patterns in the time series. Representatives of these common patterns are then used to transform lightcurves of a labeled set into a new representation that can be used to train a classifier. The proposed algorithm learns the features from both labeled and unlabeled lightcurves, overcoming the bias using only labeled data. We test our method on data sets from the Massive Compact Halo Object survey and the Optical Gravitational Lensing Experiment; the results show that our classification performance is as good as and in some cases better than the performance achieved using traditional statistical features, while the computational cost is significantly lower. With these promising results, we believe that our method constitutes a significant step toward the automation of the lightcurve classification pipeline.
Where is the fuzz? Undetected Lyman α nebulae around quasars at z ~ 2.3
NASA Astrophysics Data System (ADS)
Herenz, Edmund Christian; Wisotzki, Lutz; Roth, Martin; Anders, Friedrich
2015-04-01
We observed a small sample of five radio-quiet quasars with integral field spectroscopy to search for possible extended emission in the Lyα line. We subtracted the quasar point sources using a simple point spread function (PSF) self-calibration technique that takes advantage of the simultaneous availability of spatial and spectral information. In four of the five objects we find no significant traces of extended Lyα emission beyond the contribution of the quasar nuclei itself, while in UM 247 there is evidence for a weak and spatially quite compact excess in the Lyα line at several kpc outside the nucleus. For all objects in our sample we estimated detection limits for extended, smoothly distributed Lyα emission by adding fake nebulosities into the datacubes and trying to recover them after PSF subtraction. Our observations are consistent with other studies showing that giant Lyα nebulae such as those found recently around some quasars are very rare. Lyα fuzz around typical radio-quiet quasars is fainter and less extended and is therefore much harder to detect. The faintness of these structures is consistent with the idea that radio-quiet quasars typically reside in dark matter haloes of modest masses. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).
On the Distribution of Orbital Poles of Milky Way Satellites
NASA Astrophysics Data System (ADS)
Palma, Christopher; Majewski, Steven R.; Johnston, Kathryn V.
2002-01-01
In numerous studies of the outer Galactic halo some evidence for accretion has been found. If the outer halo did form in part or wholly through merger events, we might expect to find coherent streams of stars and globular clusters following orbits similar to those of their parent objects, which are assumed to be present or former Milky Way dwarf satellite galaxies. We present a study of this phenomenon by assessing the likelihood of potential descendant ``dynamical families'' in the outer halo. We conduct two analyses: one that involves a statistical analysis of the spatial distribution of all known Galactic dwarf satellite galaxies (DSGs) and globular clusters, and a second, more specific analysis of those globular clusters and DSGs for which full phase space dynamical data exist. In both cases our methodology is appropriate only to members of descendant dynamical families that retain nearly aligned orbital poles today. Since the Sagittarius dwarf (Sgr) is considered a paradigm for the type of merger/tidal interaction event for which we are searching, we also undertake a case study of the Sgr system and identify several globular clusters that may be members of its extended dynamical family. In our first analysis, the distribution of possible orbital poles for the entire sample of outer (Rgc>8 kpc) halo globular clusters is tested for statistically significant associations among globular clusters and DSGs. Our methodology for identifying possible associations is similar to that used by Lynden-Bell & Lynden-Bell, but we put the associations on a more statistical foundation. Moreover, we study the degree of possible dynamical clustering among various interesting ensembles of globular clusters and satellite galaxies. Among the ensembles studied, we find the globular cluster subpopulation with the highest statistical likelihood of association with one or more of the Galactic DSGs to be the distant, outer halo (Rgc>25 kpc), second-parameter globular clusters. The results of our orbital pole analysis are supported by the great circle cell count methodology of Johnston, Hernquist, & Bolte. The space motions of the clusters Pal 4, NGC 6229, NGC 7006, and Pyxis are predicted to be among those most likely to show the clusters to be following stream orbits, since these clusters are responsible for the majority of the statistical significance of the association between outer halo, second-parameter globular clusters and the Milky Way DSGs. In our second analysis, we study the orbits of the 41 globular clusters and six Milky Way-bound DSGs having measured proper motions to look for objects with both coplanar orbits and similar angular momenta. Unfortunately, the majority of globular clusters with measured proper motions are inner halo clusters that are less likely to retain memory of their original orbit. Although four potential globular cluster/DSG associations are found, we believe three of these associations involving inner halo clusters to be coincidental. While the present sample of objects with complete dynamical data is small and does not include many of the globular clusters that are more likely to have been captured by the Milky Way, the methodology we adopt will become increasingly powerful as more proper motions are measured for distant Galactic satellites and globular clusters, and especially as results from the Space Interferometry Mission (SIM) become available.
New Asymptotic Giant Branch Carbon Stars in the Galactic Halo
NASA Astrophysics Data System (ADS)
Mauron, N.; Gigoyan, K. S.; Kostandyan, G. R.
2018-03-01
For the first time the data on the eight confirmed or candidate carbon (C) stars found mainly from objective-prism plates are presented. By using the Catalina database of lightcurves, we find that all these stars are pulsating, allowing a distance to be estimated through the K-band Period-Luminosity (PL) relation. This relation does not depend on spectral type (M or C) and distances are reliable even for C candidates. Seven stars are more than 10 kpc from the galactic plane, suggesting they do not belong to the galactic disk. We also find one star located at about 180 kpc from the Sun, being one of the most distant star in the Galaxy. Many of these new C stars are relatively blue. Some comments are also provided on seven other known halo carbon stars for which either a pulsation period is obtained, or because they were not included in previous works on halo C stars.
Disturbed Fossil Group Galaxy NGC 1132
NASA Astrophysics Data System (ADS)
Kim, Dong-Woo; Anderson, Craig; Burke, Doug; Fabbiano, Giuseppina; Fruscione, Antonella; Lauer, Jen; McCollough, Michael; Morgan, Doug; Mossman, Amy; O’Sullivan, Ewan; Paggi, Alessandro; Vrtilek, Saeqa; Trinchieri, Ginevra
2018-02-01
We have analyzed the Chandra archival data of NGC 1132, a well-known fossil group, i.e., a system expected to be old and relaxed long after the giant elliptical galaxy assembly. Instead, the Chandra data reveal that the hot gas morphology is disturbed and asymmetrical, with a cold front following a possible bow shock. We discuss possible origins of the disturbed hot halo, including sloshing by a nearby object, merger, ram pressure by external hotter gas, and nuclear outburst. We consider that the first two mechanisms are likely explanations for the disturbed hot halo, with a slight preference for a minor merger with a low impact parameter because of the match with simulations and previous optical observations. In this case, NGC 1132 may be a rare example of unusual late mergers seen in recent simulations. Regardless of the origin of the disturbed hot halo, the paradigm of the fossil system needs to be reconsidered.
Kinematics of metal-poor giants in an inner-halo field, with implications for disk formation
NASA Technical Reports Server (NTRS)
Morrison, Heather L.
1993-01-01
A sample of approximately 100 predominantly metal-weak giants, identified in a high-latitude field towards the galactic center using an automated objective-prism survey technique, is presented. Abundances and radial velocities have been measured for these giants, whose distances from the Sun range from 1 to 18 kpc. While the extremely metal-weak stars in the field have halo kinematics, the majority of the stars with intermediate abundance have thick disk kinematics, despite the fact that their average distance from the galactic plane is 3 kpc. The most satisfactory explanation for this effect is that the inner halo is moderately flattened, and the metal-weak stars of the thick disk have a scale height of about 2 kpc. It is suggested that the thick disk may have formed in a dissipational collapse, rather than in a separate event such as the accretion of a small satellite galaxy.
NASA Astrophysics Data System (ADS)
Tonbul, H.; Kavzoglu, T.
2016-12-01
In recent years, object based image analysis (OBIA) has spread out and become a widely accepted technique for the analysis of remotely sensed data. OBIA deals with grouping pixels into homogenous objects based on spectral, spatial and textural features of contiguous pixels in an image. The first stage of OBIA, named as image segmentation, is the most prominent part of object recognition. In this study, multiresolution segmentation, which is a region-based approach, was employed to construct image objects. In the application of multi-resolution, three parameters, namely shape, compactness and scale must be set by the analyst. Segmentation quality remarkably influences the fidelity of the thematic maps and accordingly the classification accuracy. Therefore, it is of great importance to search and set optimal values for the segmentation parameters. In the literature, main focus has been on the definition of scale parameter, assuming that the effect of shape and compactness parameters is limited in terms of achieved classification accuracy. The aim of this study is to deeply analyze the influence of shape/compactness parameters by varying their values while using the optimal scale parameter determined by the use of Estimation of Scale Parameter (ESP-2) approach. A pansharpened Qickbird-2 image covering Trabzon, Turkey was employed to investigate the objectives of the study. For this purpose, six different combinations of shape/compactness were utilized to make deductions on the behavior of shape and compactness parameters and optimal setting for all parameters as a whole. Objects were assigned to classes using nearest neighbor classifier in all segmentation observations and equal number of pixels was randomly selected to calculate accuracy metrics. The highest overall accuracy (92.3%) was achieved by setting the shape/compactness criteria to 0.3/0.3. The results of this study indicate that shape/compactness parameters can have significant effect on classification accuracy with 4% change in overall accuracy. Also, statistical significance of differences in accuracy was tested using the McNemar's test and found that the difference between poor and optimal setting of shape/compactness parameters was statistically significant, suggesting a search for optimal parameterization instead of default setting.
The radio relics and halo of El Gordo, a massive z = 0.870 cluster merger
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindner, Robert R.; Baker, Andrew J.; Hughes, John P.
We present 610 MHz and 2.1 GHz imaging of the massive Sunyaev-Zel'dovich Effect selected z = 0.870 cluster merger ACT-CL J0102–4915 ({sup E}l Gordo{sup )}, obtained with the Giant Metrewave Radio Telescope and the Australia Telescope Compact Array (ATCA), respectively. We detect two complexes of radio relics separated by 3.'4 (1.6 Mpc) along the system's northwest-to-southeast collision axis that have high integrated polarization fractions (33%) and steep spectral indices (α between 1 and 2; S {sub ν}∝ν{sup –α}), consistent with creation via Fermi acceleration by shocks in the intracluster medium triggered by the cluster collision. From the spectral index ofmore » the relics, we compute a Mach number M=2.5{sub −0.3}{sup +0.7} and shock speed of 2500{sub −300}{sup +400} km s{sup −1}. With our wide-bandwidth, full-polarization ATCA data, we compute the Faraday depth φ across the northwest relic and find a range of values spanning Δφ = 30 rad m{sup –2}, with a mean value of (φ) = 11 rad m{sup –2} and standard deviation σ{sub φ} = 6 rad m{sup –2}. With the integrated line-of-sight gas density derived from new Chandra X-ray observations, our Faraday depth measurement implies B {sub ∥} ∼ 0.01 μG in the cluster outskirts. The extremely narrow shock widths in the relics (d {sub shock} ≤ 23 kpc), caused by the short synchrotron cooling timescale of relativistic electrons at z = 0.870, prevent us from placing a meaningful constraint on the magnetic field strength B using cooling time arguments. In addition to the relics, we detect a large (r {sub H} ≅ 1.1 Mpc radius), powerful (log (L {sub 1.4}/W Hz{sup –1}) = 25.66 ± 0.12) radio halo with a shape similar to El Gordo's 'bullet'-like X-ray morphology. The spatially resolved spectral-index map of the halo shows the synchrotron spectrum is flattest near the relics, along the system's collision axis, and in regions of high T {sub gas}, all locations associated with recent energy injection. The spatial and spectral correlation between the halo emission and cluster X-ray properties supports primary-electron processes like turbulent reacceleration as the halo production mechanism. The halo's integrated 610 MHz to 2.1 GHz spectral index is a relatively flat α = 1.2 ± 0.1, consistent with the cluster's high T {sub gas} in view of previously established global scaling relations. El Gordo is the highest-redshift cluster known to host a radio halo and/or radio relics, and provides new constraints on the non-thermal physics in clusters at z > 0.6.« less
Topology-preserving quantum deformation with non-numerical parameter
NASA Astrophysics Data System (ADS)
Aukhadiev, Marat; Grigoryan, Suren; Lipacheva, Ekaterina
2013-11-01
We introduce a class of compact quantum semigroups, that we call semigroup deformations of compact Abelian qroups. These objects arise from reduced semigroup -algebras, the generalization of the Toeplitz algebra. We study quantum subgroups, quantum projective spaces and quantum quotient groups for such objects, and show that the group is contained as a compact quantum subgroup in the deformation of itself. The connection with the weak Hopf algebra notion is described. We give a grading on the -algebra of the compact quantum semigroups constructed.
Baryonic Dark Matter: The Results from Microlensing Surveys
NASA Astrophysics Data System (ADS)
Alcock, Charles; Allsman, Robyn A.; Alves, David; Axelrod, Tim S.; Becker, Andrew C.; Bennett, David; Cook, Kem H.; Drake, Andrew J.; Freeman, Ken C.; Griest, Kim; Lehner, Matt; Marshall, Stuart; Minniti, Dante; Peterson, Bruce; Pratt, Mark; Quinn, Peter; Rodgers, Alex; Stubbs, Chris; Sutherland, Will; Tomaney, Austin; Vandehei, Thor; Welch, Doug L.
Baryonic material can exist in several dark forms: ``planets," brown dwarfs, very old degenerate dwarf stars, and neutron stars. (Black holes are frequently added to this list, even though a black hole has no baryon number.) These objects, most of which emit some light but at levels below present day detection thresholds, are collectively known as Machos. Several groups have exploited the gravitational microlens signature to search for Machos in the dark halo of the Milky Way. Over 200 microlensing events have been reported (most by the MACHO Project, which uses the Great Melbourne Telescope near this conference site), of which about 20 are toward the Magellanic Clouds. The most straightforward interpretation of the results is that Machos make up between 20% and 100% of the dark matter in the halo, and that these objects weigh about 0.5 msun. Objects of substellar mass do not comprise much of the dark matter. Many alternative interpretations of these results have been proposed. We will discuss strategies for resolving the differences among these competing explanations.
NASA Astrophysics Data System (ADS)
Hesser, J. E.; Stetson, P. B.; McClure, R. D.; van den Bergh, S.; Bolte, M.; Harris, W. E.; van den Berg, D. A.; Bell, R. A.; Fahlman, G. G.; Richer, H. B.; Bond, H. E.
1997-12-01
Last year we presented evidence from HST photometry of the low-metallicity cluster NGC 2419 (M_V = -9.5, R_⊙ ~ 90 kpc, [Fe/H] = -2.2) that globular cluster formation began at essentially the same time throughout a region of the Galactic halo now almost 200 kpc in diameter (Harris et al. 1997 AJ 114, 1030). We now turn to the time spread of halo formation, with the ultimate aim of addressing the relative roles of mergers over the first 4 or more Gyrs (Searle & Zinn 1978, ApJ, 225, 357; Lee, Demarque & Zinn 1994 ApJ, 423, 248) versus models favoring a rapid collapse (Eggen, Lynden-Bell & Sandage 1962, ApJ, 236, 748; Stetson, VandenBerg & Bolte 1996, PASP, 108, 560), or some combination of those and other processes. We provide the first reliable measurements from the giant branch through the main-sequence turnoffs of red-horizontal-branch clusters in the outer halo, which are frequently postulated to be younger than most other globular clusters. From WFPC2 F555W (`V') and F814W (`I') photometry for Pal 3 (M_V = -5.2, R_⊙ ~ 87 kpc), Pal 4 (M_V = -5.8, R_⊙ ~ 98 kpc), and Eridanus (M_V = -4.8, R_⊙ ~ 78 kpc), all with [Fe/H] ~ -1.5, we estimate their relative ages by making differential comparisons among them and with respect to inner-halo objects of, presumably, comparable chemical compositions. It seems likely at this stage of our analysis that (a) the three clusters are the same age to our measurement precision of ~ 1 Gyr, and, (b) the CMDs of all three outer halo clusters differ from those of M 3 and M 5 (our template clusters of similar metallicity), in the sense that the outer halo clusters are younger by ~ 3 Gyr, or they are ~ 0.5 dex more metal-rich than currently thought. Large uncertainties in chemical compositions (He, [alpha /Fe], [CNO/Fe]) for outer halo and template clusters alike mask the true interpretation.
Global Properties of M31's Stellar Halo from the SPLASH Survey. I. Surface Brightness Profile
NASA Astrophysics Data System (ADS)
Gilbert, Karoline M.; Guhathakurta, Puragra; Beaton, Rachael L.; Bullock, James; Geha, Marla C.; Kalirai, Jason S.; Kirby, Evan N.; Majewski, Steven R.; Ostheimer, James C.; Patterson, Richard J.; Tollerud, Erik J.; Tanaka, Mikito; Chiba, Masashi
2012-11-01
We present the surface brightness profile of M31's stellar halo out to a projected radius of 175 kpc. The surface brightness estimates are based on confirmed samples of M31 red giant branch stars derived from Keck/DEIMOS spectroscopic observations. A set of empirical spectroscopic and photometric M31 membership diagnostics is used to identify and reject foreground and background contaminants. This enables us to trace the stellar halo of M31 to larger projected distances and fainter surface brightnesses than previous photometric studies. The surface brightness profile of M31's halo follows a power law with index -2.2 ± 0.2 and extends to a projected distance of at least ~175 kpc (~2/3 of M31's virial radius), with no evidence of a downward break at large radii. The best-fit elliptical isophotes have b/a = 0.94 with the major axis of the halo aligned along the minor axis of M31's disk, consistent with a prolate halo, although the data are also consistent with M31's halo having spherical symmetry. The fact that tidal debris features are kinematically cold is used to identify substructure in the spectroscopic fields out to projected radii of 90 kpc and investigate the effect of this substructure on the surface brightness profile. The scatter in the surface brightness profile is reduced when kinematically identified tidal debris features in M31 are statistically subtracted; the remaining profile indicates that a comparatively diffuse stellar component to M31's stellar halo exists to large distances. Beyond 90 kpc, kinematically cold tidal debris features cannot be identified due to small number statistics; nevertheless, the significant field-to-field variation in surface brightness beyond 90 kpc suggests that the outermost region of M31's halo is also comprised to a significant degree of stars stripped from accreted objects. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
NASA Astrophysics Data System (ADS)
Kashino, Daichi; More, Surhud; Silverman, John D.; Daddi, Emanuele; Renzini, Alvio; Sanders, David B.; Rodighiero, Giulia; Puglisi, Annagrazia; Kajisawa, Masaru; Valentino, Francesco; Kartaltepe, Jeyhan S.; Le Fèvre, Olivier; Nagao, Tohru; Arimoto, Nobuo; Sugiyama, Naoshi
2017-07-01
We study the properties of dark matter halos that contain star-forming galaxies at 1.43 ≤ z ≤ 1.74, using the FMOS-COSMOS survey. The sample consists of 516 objects with a detection of the Hα emission line, which represent the star forming population at this epoch, having a stellar mass range of 109.57 ≤ M */M ⊙ ≲ 1011.4 and a star-formation rate range of 15 ≲ SFR/(M ⊙ yr-1) ≲ 600. We measure the projected two-point correlation function while carefully taking into account observational biases, and find a significant clustering amplitude at scales of 0.04-10 h -1 cMpc, with a correlation length {r}0={5.26}-0.62+0.75 {h}-1 {cMpc} and a bias b={2.44}-0.32+0.38. We interpret our clustering measurement using a halo occupation distribution model. The sample galaxies appear to reside in halos with mass {M}{{h}}={4.71}-1.62+1.19× {10}12 {h}-1 {M}⊙ on average, which will likely become present-day halos of mass M h (z = 0) ˜ 2 × 1013 h -1 M ⊙, equivalent to the typical halo mass scale of galaxy groups. We then confirm the decline of the stellar-to-halo mass ratio at M h < 1012 M ⊙, finding M */M h ≈ 5 × 10-3 at M h = 7. 5 × 1011 M ⊙, which is lower by a factor of 2-4 than those measured at higher masses (M h ˜ 1012-13 M ⊙). Finally, we use our results to illustrate the future capabilities of Subaru’s Prime-Focus Spectrograph, a next-generation instrument that will provide strong constraints on the galaxy-formation scenario by obtaining precise measurements of galaxy clustering at z > 1.
Dark matter annihilation in the circumgalactic medium at high redshifts
NASA Astrophysics Data System (ADS)
Schön, S.; Mack, K. J.; Wyithe, J. S. B.
2018-03-01
Annihilating dark matter (DM) models offer promising avenues for future DM detection, in particular via modification of astrophysical signals. However, when modelling such potential signals at high redshift, the emergence of both DM and baryonic structure, as well as the complexities of the energy transfer process, needs to be taken into account. In the following paper, we present a detailed energy deposition code and use this to examine the energy transfer efficiency of annihilating DM at high redshift, including the effects on baryonic structure. We employ the PYTHIA code to model neutralino-like DM candidates and their subsequent annihilation products for a range of masses and annihilation channels. We also compare different density profiles and mass-concentration relations for 105-107 M⊙ haloes at redshifts 20 and 40. For these DM halo and particle models, we show radially dependent ionization and heating curves and compare the deposited energy to the haloes' gravitational binding energy. We use the `filtered' annihilation spectra escaping the halo to calculate the heating of the circumgalactic medium and show that the mass of the minimal star-forming object is increased by a factor of 2-3 at redshift 20 and 4-5 at redshift 40 for some DM models.
Dependence of Halo Bias and Kinematics on Assembly Variables
NASA Astrophysics Data System (ADS)
Xu, Xiaoju; Zheng, Zheng
2018-06-01
Using dark matter haloes identified in a large N-body simulation, we study halo assembly bias, with halo formation time, peak maximum circular velocity, concentration, and spin as the assembly variables. Instead of grouping haloes at fixed mass into different percentiles of each assembly variable, we present the joint dependence of halo bias on the values of halo mass and each assembly variable. In the plane of halo mass and one assembly variable, the joint dependence can be largely described as halo bias increasing outward from a global minimum. We find it unlikely to have a combination of halo variables to absorb all assembly bias effects. We then present the joint dependence of halo bias on two assembly variables at fixed halo mass. The gradient of halo bias does not necessarily follow the correlation direction of the two assembly variables and it varies with halo mass. Therefore in general for two correlated assembly variables one cannot be used as a proxy for the other in predicting halo assembly bias trend. Finally, halo assembly is found to affect the kinematics of haloes. Low-mass haloes formed earlier can have much higher pairwise velocity dispersion than those of massive haloes. In general, halo assembly leads to a correlation between halo bias and halo pairwise velocity distribution, with more strongly clustered haloes having higher pairwise velocity and velocity dispersion. However, the correlation is not tight, and the kinematics of haloes at fixed halo bias still depends on halo mass and assembly variables.
The MUSIC of CLASH: Predictions on the Concentration-Mass Relation
NASA Astrophysics Data System (ADS)
Meneghetti, M.; Rasia, E.; Vega, J.; Merten, J.; Postman, M.; Yepes, G.; Sembolini, F.; Donahue, M.; Ettori, S.; Umetsu, K.; Balestra, I.; Bartelmann, M.; Benítez, N.; Biviano, A.; Bouwens, R.; Bradley, L.; Broadhurst, T.; Coe, D.; Czakon, N.; De Petris, M.; Ford, H.; Giocoli, C.; Gottlöber, S.; Grillo, C.; Infante, L.; Jouvel, S.; Kelson, D.; Koekemoer, A.; Lahav, O.; Lemze, D.; Medezinski, E.; Melchior, P.; Mercurio, A.; Molino, A.; Moscardini, L.; Monna, A.; Moustakas, J.; Moustakas, L. A.; Nonino, M.; Rhodes, J.; Rosati, P.; Sayers, J.; Seitz, S.; Zheng, W.; Zitrin, A.
2014-12-01
We present an analysis of the MUSIC-2 N-body/hydrodynamical simulations aimed at estimating the expected concentration-mass relation for the CLASH (Cluster Lensing and Supernova Survey with Hubble) cluster sample. We study nearly 1,400 halos simulated at high spatial and mass resolution. We study the shape of both their density and surface-density profiles and fit them with a variety of radial functions, including the Navarro-Frenk-White (NFW), the generalized NFW, and the Einasto density profiles. We derive concentrations and masses from these fits. We produce simulated Chandra observations of the halos, and we use them to identify objects resembling the X-ray morphologies and masses of the clusters in the CLASH X-ray-selected sample. We also derive a concentration-mass relation for strong-lensing clusters. We find that the sample of simulated halos that resembles the X-ray morphology of the CLASH clusters is composed mainly of relaxed halos, but it also contains a significant fraction of unrelaxed systems. For such a heterogeneous sample we measure an average two-dimensional concentration that is ~11% higher than is found for the full sample of simulated halos. After accounting for projection and selection effects, the average NFW concentrations of CLASH clusters are expected to be intermediate between those predicted in three dimensions for relaxed and super-relaxed halos. Matching the simulations to the individual CLASH clusters on the basis of the X-ray morphology, we expect that the NFW concentrations recovered from the lensing analysis of the CLASH clusters are in the range [3-6], with an average value of 3.87 and a standard deviation of 0.61.
The music of clash: predictions on the concentration-mass relation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meneghetti, M.; Rasia, E.; Vega, J.
We present an analysis of the MUSIC-2 N-body/hydrodynamical simulations aimed at estimating the expected concentration-mass relation for the CLASH (Cluster Lensing and Supernova Survey with Hubble) cluster sample. We study nearly 1,400 halos simulated at high spatial and mass resolution. We study the shape of both their density and surface-density profiles and fit them with a variety of radial functions, including the Navarro-Frenk-White (NFW), the generalized NFW, and the Einasto density profiles. We derive concentrations and masses from these fits. We produce simulated Chandra observations of the halos, and we use them to identify objects resembling the X-ray morphologies andmore » masses of the clusters in the CLASH X-ray-selected sample. We also derive a concentration-mass relation for strong-lensing clusters. We find that the sample of simulated halos that resembles the X-ray morphology of the CLASH clusters is composed mainly of relaxed halos, but it also contains a significant fraction of unrelaxed systems. For such a heterogeneous sample we measure an average two-dimensional concentration that is ∼11% higher than is found for the full sample of simulated halos. After accounting for projection and selection effects, the average NFW concentrations of CLASH clusters are expected to be intermediate between those predicted in three dimensions for relaxed and super-relaxed halos. Matching the simulations to the individual CLASH clusters on the basis of the X-ray morphology, we expect that the NFW concentrations recovered from the lensing analysis of the CLASH clusters are in the range [3-6], with an average value of 3.87 and a standard deviation of 0.61.« less
NASA Astrophysics Data System (ADS)
Janesh, William; Rhode, Katherine L.; Salzer, John J.; Janowiecki, Steven; Adams, Elizabeth; Haynes, Martha P.; Giovanelli, Riccardo; Cannon, John M.
2018-01-01
Nearby gas-rich dwarf galaxies are excellent laboratories for investigating the baryonic feedback processes that govern star formation and galaxy evolution in galaxies at the extreme end of the mass function. Detecting and studying such objects may help resolve the well-known tension between cosmological model predictions for low-mass dark matter halos and observations. The ALFALFA neutral hydrogen (Hi) survey has detected a sample of isolated ultra-compact high-velocity Hi clouds (UCHVCs) with kinematic properties that make them likely members of the Local Volume, but that have no optical counterparts in existing optical surveys. This UCHVC sample possesses Hi properties (at 1 Mpc, Hi masses of ~105-106 M⊙, Hi diameters of ~2-3 kpc, and dynamical masses of ~107-108 M⊙) similar to other known ultra-faint dwarf galaxies like Leo T. Following the discovery of Leo P, an extremely metal-poor, gas-rich star-forming dwarf galaxy associated with an ALFALFA UCHVC, we have initiated a campaign to obtain deep optical imaging of 56 UCHVCs using the wide field-of-view, high-resolution ODI camera on the WIYN 3.5-m telescope. Here we present a brief overview of our campaign to search for resolved stellar populations associated with the UCHVCs in our optical images, and initial results from our survey.After creating a stellar catalog from the pipeline-reduced and stacked ODI g- and i-band images, we apply a color-magnitude filter tuned for old, metal-poor stellar populations to select red giant branch stars at distances between 250 kpc and 2 Mpc. The spatial distribution of the stars selected by the filter is then smoothed, and overdensities in the fields are identified. Of the 22 targets analyzed to date, seven have associated stellar populations detected at a high confidence (92% to 99.9% significance). The detected objects have a range of distances (from 350 kpc to 1.6 Mpc) and have optical properties similar to those of ultra-faint dwarf galaxies. These objects have extreme Hi-to-stellar mass ratios, and given their isolation, may represent a progenitor population to the ultra-faint dwarfs. They also help constrain the conditions needed for star formation in the lowest-mass galaxies.
Not enough stellar mass objects to fill the Galactic halo?
NASA Astrophysics Data System (ADS)
Milsztajn, A.
2000-05-01
The Universe contains a lot more than meets the eye. Sophisticated experiments search diligently for this invisible dark matter. Here the author describes the latest results to emerge from the microlensing technique.
Compact Groups analysis using weak gravitational lensing
NASA Astrophysics Data System (ADS)
Chalela, Martín; Gonzalez, Elizabeth Johana; Garcia Lambas, Diego; Foëx, Gael
2017-05-01
We present a weak lensing analysis of a sample of Sloan Digital Sky Survey compact groups (CGs). Using the measured radial density contrast profile, we derive the average masses under the assumption of spherical symmetry, obtaining a velocity dispersion for the singular isothermal spherical model, σV = 270 ± 40 km s-1, and for the NFW model, R_{200}=0.53± 0.10 h_{70}^{-1} Mpc. We test three different definitions of CG centres to identify which best traces the true dark matter halo centre, concluding that a luminosity-weighted centre is the most suitable choice. We also study the lensing signal dependence on CG physical radius, group surface brightness and morphological mixing. We find that groups with more concentrated galaxy members show steeper mass profiles and larger velocity dispersions. We argue that both, a possible lower fraction of interloper and a true steeper profile, could be playing a role in this effect. Straightforward velocity dispersion estimates from member spectroscopy yield σV ≈ 230 km s-1 in agreement with our lensing results.
La Freccia Rossa: An IR-dark cloud hosting the Milky Way intermediate-mass black hole candidate
NASA Astrophysics Data System (ADS)
Ravi, Vikram; Vedantham, Harish; Phinney, E. Sterl
2018-05-01
The dynamics of the high-velocity compact molecular cloud CO-0.40-0.22 have been interpreted as evidence for a ˜105M⊙ black hole within 60 pc of Sgr A*. Recently, Oka et al. have identified a compact millimetre-continuum source, CO-0.40-0.22*, with this candidate black hole. Here we present a collation of radio and infrared data at this location. ATCA constraints on the radio spectrum, and the detection of a mid-infrared counterpart, are in tension with an Sgr A*-like model for CO-0.40-0.22* despite the comparable bolometric to Eddington luminosity ratios under the IMBH interpretation. A protostellar-disk scenario is, however, tenable. CO-0.40-0.22(*) is positionally coincident with an arrowhead-shaped infrared-dark cloud (which we call the Freccia Rossa). If the VLSR ≈ 70 km s-1 systemic velocity of CO-0.40-0.22 is common to the entire Freccia Rossa system, we hypothesise that it is the remnant of a high-velocity cloud that has plunged into the Milky Way from the Galactic halo.
NASA Technical Reports Server (NTRS)
Small, Ian; Blundell, Katherine M.; Lehmer, B. D.; Alexander, D. M.
2012-01-01
We report the detection of extended X-ray emission around two powerful radio galaxies at z approx. 3.6 (4C 03.24 and 4C 19.71) and use these to investigate the origin of extended, inverse Compton (IC) powered X-ray halos at high redshifts. The halos have X-ray luminosities of L(sub X) approx. 3 x 10(exp 44) erg/s and sizes of approx.60 kpc. Their morphologies are broadly similar to the approx.60 kpc long radio lobes around these galaxies suggesting they are formed from IC scattering by relativistic electrons in the radio lobes, of either cosmic microwave background (CMB) photons or far-infrared photons from the dust-obscured starbursts in these galaxies. These observations double the number of z > 3 radio galaxies with X-ray-detected IC halos. We compare the IC X-ray-to-radio luminosity ratios for the two new detections to the two previously detected z approx. 3.8 radio galaxies. Given the similar redshifts, we would expect comparable X-ray IC luminosities if millimeter photons from the CMB are the dominant seed field for the IC emission (assuming all four galaxies have similar ages and jet powers). Instead we see that the two z approx. 3.6 radio galaxies, which are 4 fainter in the far-infrared than those at z 3.8, also have approx.4x fainter X-ray IC emission. Including data for a further six z > or approx. 2 radio sources with detected IC X-ray halos from the literature, we suggest that in the more compact, majority of radio sources, those with lobe sizes < or approx.100-200 kpc, the bulk of the IC emission may be driven by scattering of locally produced far-infrared photons from luminous, dust-obscured starbursts within these galaxies, rather than millimeter photons from the CMB. The resulting X-ray emission appears sufficient to ionize the gas on approx.100-200 kpc scales around these systems and thus helps form the extended, kinematically quiescent Ly(alpha) emission line halos found around some of these systems. The starburst and active galactic nucleus activity in these galaxies are thus combining to produce an even more effective and widespread "feedback" process, acting on the long-term gas reservoir for the galaxy, than either individually could achieve. If episodic radio activity and co-eval starbursts are common in massive, high-redshift galaxies, then this IC-feedback mechanism may play a role in affecting the star formation histories of the most massive galaxies at the present day.
On the Decreasing Fraction of Strong Ly α Emitters around z ∼ 6-7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadoun, Raphael; Zheng, Zheng; Miralda-Escudé, Jordi, E-mail: raphael.sadoun@utah.edu
2017-04-10
The fraction of galaxies with strong Ly α emission has been observed to decrease rapidly with redshift at z ≳ 6, after a gradual increase at z < 6. This has been interpreted as being a trace of the reionization of the intergalactic medium (IGM): the emitted Ly α photons would be scattered by an increasingly neutral IGM at z > 6. We study this effect by modeling the ionization and Ly α radiative transfer in the infall region and the IGM around a Ly α emitting galaxy (LAE), for a spherical halo model with the mean density and radialmore » velocity profiles in the standard ΛCDM cosmological scenario. We find that the expected fast increase of the ionizing background intensity toward the end of the reionization epoch implies a rapid evolution of halo infall regions from being self-shielded against the external ionizing background to being mostly ionized. Whereas self-shielded infall regions can scatter the Ly α photons over a much larger area than the commonly used apertures for observing LAEs, the same infalling gas is no longer optically thick to the Ly α emission line after it is ionized by the external background, making the Ly α emission more compact and brighter within the observed apertures. Based on this simple model, we show that the observed drop in the abundance of LAEs at z > 6 does not imply a rapid increase with redshift of the fraction of the whole IGM volume that is atomic, but is accounted for by a rapid increase of the neutral fraction in the infall regions around galaxy host halos.« less
Driving gas shells with radiation pressure on dust in radiation-hydrodynamic simulations
NASA Astrophysics Data System (ADS)
Costa, Tiago; Rosdahl, Joakim; Sijacki, Debora; Haehnelt, Martin G.
2018-01-01
We present radiation-hydrodynamic simulations of radiatively-driven gas shells launched by bright active galactic nuclei (AGN) in isolated dark matter haloes. Our goals are (1) to investigate the ability of AGN radiation pressure on dust to launch galactic outflows and (2) to constrain the efficiency of infrared (IR) multiscattering in boosting outflow acceleration. Our simulations are performed with the radiation-hydrodynamic code RAMSES-RT and include both single- and multiscattered radiation pressure from an AGN, radiative cooling and self-gravity. Since outflowing shells always eventually become transparent to the incident radiation field, outflows that sweep up all intervening gas are likely to remain gravitationally bound to their halo even at high AGN luminosities. The expansion of outflowing shells is well described by simple analytic models as long as the shells are mildly optically thick to IR radiation. In this case, an enhancement in the acceleration of shells through IR multiscattering occurs as predicted, i.e. a force \\dot{P} ≈ τ_IR L/c is exerted on the gas. For high optical depths τIR ≳ 50, however, momentum transfer between outflowing optically thick gas and IR radiation is rapidly suppressed, even if the radiation is efficiently confined. At high τIR, the characteristic flow time becomes shorter than the required trapping time of IR radiation such that the momentum flux \\dot{P} ≪ τ_IR L/c. We argue that while unlikely to unbind massive galactic gaseous haloes, AGN radiation pressure on dust could play an important role in regulating star formation and black hole accretion in the nuclei of massive compact galaxies at high redshift.
INTERNAL STELLAR KINEMATICS OF M32 FROM THE SPLASH SURVEY: DARK HALO CONSTRAINTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howley, K. M.; Guhathakurta, P.; Van der Marel, R.
2013-03-01
As part of the SPLASH survey of the Andromeda (M31) system, we have obtained Keck/DEIMOS spectra of the compact elliptical (cE) satellite M32. This is the first resolved-star kinematical study of any cE galaxy. In contrast to most previous kinematical studies that extended out to r {approx}< 30'' {approx} 1 r {sup eff} {sub I} {approx} 100 pc, we measure the rotation curve and velocity dispersion profile out to r {approx} 250'' and higher order Gauss-Hermite moments out to r {approx} 70''. We achieve this by combining integrated-light spectroscopy at small radii (where crowding/blending are severe) with resolved stellar spectroscopymore » at larger radii, using spatial and kinematical information to account statistically for M31 contamination. The rotation curve and velocity dispersion profile extend well beyond the radius (r {approx} 150'') where the isophotes are distorted. Unlike NGC 205, another close dwarf companion of M31, M32's kinematics appear regular and symmetric and do not show obvious sharp gradients across the region of isophotal elongation and twists. We interpret M31's kinematics using three-integral axisymmetric dynamical equilibrium models constructed using Schwarzschild's orbit superposition technique. Models with a constant mass-to-light ratio can fit the data remarkably well. However, since such a model requires an increasing tangential anisotropy with radius, invoking the presence of an extended dark halo may be more plausible. Such an extended dark halo is definitely required to bind a half-dozen fast-moving stars observed at the largest radii, but these stars may not be an equilibrium component of M32.« less
The AU Mic Debris Disk: Far-infrared and Submillimeter Resolved Imaging
NASA Astrophysics Data System (ADS)
Matthews, Brenda C.; Kennedy, Grant; Sibthorpe, Bruce; Holland, Wayne; Booth, Mark; Kalas, Paul; MacGregor, Meredith; Wilner, David; Vandenbussche, Bart; Olofsson, Göran; Blommaert, Joris; Brandeker, Alexis; Dent, W. R. F.; de Vries, Bernard L.; Di Francesco, James; Fridlund, Malcolm; Graham, James R.; Greaves, Jane; Heras, Ana M.; Hogerheijde, Michiel; Ivison, R. J.; Pantin, Eric; Pilbratt, Göran L.
2015-10-01
We present far-infrared and submillimeter maps from the Herschel Space Observatory and the James Clerk Maxwell Telescope of the debris disk host star AU Microscopii. Disk emission is detected at 70, 160, 250, 350, 450, 500, and 850 μm. The disk is resolved at 70, 160, and 450 μm. In addition to the planetesimal belt, we detect thermal emission from AU Mic’s halo for the first time. In contrast to the scattered light images, no asymmetries are evident in the disk. The fractional luminosity of the disk is 3.9× {10}-4 and its milimeter-grain dust mass is 0.01 {M}\\oplus (±20%). We create a simple spatial model that reconciles the disk spectral energy distribution as a blackbody of 53 ± 2 K (a composite of 39 and 50 K components) and the presence of small (non-blackbody) grains which populate the extended halo. The best-fit model is consistent with the “birth ring” model explored in earlier works, i.e., an edge-on dust belt extending from 8.8 to 40 AU, but with an additional halo component with an {r}-1.5 surface density profile extending to the limits of sensitivity (140 AU). We confirm that AU Mic does not exert enough radiation force to blow out grains. For stellar mass-loss rates of 10-100 times solar, compact (zero porosity) grains can only be removed if they are very small; consistently with previous work, if the porosity is 0.9, then grains approaching 0.1 μm can be removed via corpuscular forces (i.e., the stellar wind).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouellette, Nathalie N.-Q.; Courteau, Stéphane; Holtzman, Jon A.
We present parameter distributions and fundamental scaling relations for 190 Virgo cluster galaxies in the SHIVir survey. The distribution of galaxy velocities is bimodal about V {sub circ} ∼ 125 km s{sup −1}, hinting at the existence of dynamically unstable modes in the inner regions of galaxies. An analysis of the Tully-Fisher relation (TFR) of late-type galaxies (LTGs) and the fundamental plane (FP) of early-type galaxies (ETGs) is presented, yielding a compendium of galaxy scaling relations. The slope and zero-point of the Virgo TFR match those of field galaxies, while scatter differences likely reflect distinct evolutionary histories. The velocities minimizingmore » scatter for the TFR and FP are measured at large apertures where the baryonic fraction becomes subdominant. While TFR residuals remain independent of any galaxy parameters, FP residuals (i.e., the FP “tilt”) correlate strongly with the dynamical-to-stellar mass ratio, yielding stringent galaxy formation constraints. We construct a stellar-to-total mass relation (STMR) for ETGs and LTGs and find linear but distinct trends over the range M {sub *} = 10{sup 8–11} M {sub ⊙}. Stellar-to-halo mass relations (SHMRs), which probe the extended dark matter halo, can be scaled down to masses estimated within the optical radius, showing a tight match with the Virgo STMR at low masses; possibly inadequate halo abundance matching prescriptions and broad radial scalings complicate this comparison at all masses. While ETGs appear to be more compact than LTGs of the same stellar mass in projected space, their mass-size relations in physical space are identical. The trends reported here may soon be validated through well-resolved numerical simulations.« less
Rise of the First Super-Massive Stars
NASA Astrophysics Data System (ADS)
Regan, John A.; Downes, Turlough P.
2018-05-01
We use high resolution adaptive mesh refinement simulations to model the formation of massive metal-free stars in the early Universe. By applying Lyman-Werner (LW) backgrounds of 100 J21 and 1000 J21 respectively we construct environments conducive to the formation of massive stars. We find that only in the case of the higher LW backgrounds are super-critical accretion rates realised that are necessary for super-massive star (SMS) formation. Mild fragmentation is observed for both backgrounds. Violent dynamical interactions between the stars that form in the more massive halo formed (1000 J21 background) results in the eventual expulsion of the two most massive stars from the halo. In the smaller mass halo (100 J21 background) mergers of stars occur before any multibody interactions and a single massive Pop III star is left at the centre of the halo at the end of our simulation. Feedback from the very massive Pop III stars is not effective in generating a large HII region with ionising photons absorbed within a few thousand AU of the star. In all cases a massive black hole seed is the expected final fate of the most massive objects. The seed of the massive Pop III star which remained at the centre of the less massive halo experiences steady accretion rates of almost 10-2M_{⊙}/yr and if these rates continue could potentially experience super-Eddington accretion rates in the immediate aftermath of collapsing into a black hole.
How does the Structure of Spherical Dark Matter Halos Affect the Types of Orbits in Disk Galaxies?
NASA Astrophysics Data System (ADS)
Zotos, Euaggelos E.
The main objective of this work is to determine the character of orbits of stars moving in the meridional (R,z) plane of an axially symmetric time-independent disk galaxy model with a central massive nucleus and an additional spherical dark matter halo component. In particular, we try to reveal the influence of the scale length of the dark matter halo on the different families of orbits of stars, by monitoring how the percentage of chaotic orbits, as well as the percentages of orbits of the main regular resonant families evolve when this parameter varies. The smaller alignment index (SALI) was computed by numerically integrating the equations of motion as well as the variational equations to extensive samples of orbits in order to distinguish safely bet ween ordered and chaotic motion. In addition, a method based on the concept of spectral dynamics that utilizes the Fourier transform of the time series of each coordinate is used to identify the various families of regular orbits and also to recognize the secondary resonances that bifurcate from them. Our numerical computations reveal that when the dark matter halo is highly concentrated, that is when the scale length has low values the vast majority of star orbits move in regular orbits, while on the oth er hand in less concentrated dark matter halos the percentage of chaos increases significantly. We also compared our results with early related work.
Forward Modeling of Large-scale Structure: An Open-source Approach with Halotools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hearin, Andrew P.; Campbell, Duncan; Tollerud, Erik
We present the first stable release of Halotools (v0.2), a community-driven Python package designed to build and test models of the galaxy-halo connection. Halotools provides a modular platform for creating mock universes of galaxies starting from a catalog of dark matter halos obtained from a cosmological simulation. The package supports many of the common forms used to describe galaxy-halo models: the halo occupation distribution, the conditional luminosity function, abundance matching, and alternatives to these models that include effects such as environmental quenching or variable galaxy assembly bias. Satellite galaxies can be modeled to live in subhalos or to follow custommore » number density profiles within their halos, including spatial and/or velocity bias with respect to the dark matter profile. The package has an optimized toolkit to make mock observations on a synthetic galaxy population—including galaxy clustering, galaxy–galaxy lensing, galaxy group identification, RSD multipoles, void statistics, pairwise velocities and others—allowing direct comparison to observations. Halotools is object-oriented, enabling complex models to be built from a set of simple, interchangeable components, including those of your own creation. Halotools has an automated testing suite and is exhaustively documented on http://halotools.readthedocs.io, which includes quickstart guides, source code notes and a large collection of tutorials. The documentation is effectively an online textbook on how to build and study empirical models of galaxy formation with Python.« less
New Evidence for a Black Hole in the Compact Binary Cygnus X-3
NASA Technical Reports Server (NTRS)
Shrader, Chris R.; Titarchuk, Lev; Shaposhnikov, Nikolai
2010-01-01
The bright and highly variable X-ray and radio source known as Cygnus X-3 was among the first X-ray sources discovered, yet it remains in many ways an enigma. Its known to consist of a massive. Wolf-Rayet primary in an extremely tight orbit with a compact object. Yet one of the most basic of pa.ranietern the mass of the compact object - is not known. Nor is it even clear whether its is a neutron star or a black hole. In this Paper we present our analysis of the broad-band high-energy continua covering a substantial range in luminosity and spectral morphology. We apply these results to a recently identified scaling relationship which has been demonstrated to provide reliable estimates of the compact object mass in a number of accretion powered binaries. This analysis leads us to conclude that the compact object in Cygnus X-3 has a mass greater than 4.2 solar mass thus clearly indicative of a black hole and as such resolving a longstanding issue. The full range of uncertainty in our analysis and from using a. range of recently published distance estimates constrains the compact object mass to lie between 4.2 solar mass and 14.4 solar mass. Our favored estimate, based on a 9.0 kpc distance estimate is approx. l0 solar mass, with the. error margin of 3.2 solar masses. This result may thus pose challenges to shared-envelope evolutionary models of compact binaries. as well as establishing Cygnus X-3 as the first confirmed accretion-powered galactic gamma: ray source.
Warps and waves in the stellar discs of the Auriga cosmological simulations
NASA Astrophysics Data System (ADS)
Gómez, Facundo A.; White, Simon D. M.; Grand, Robert J. J.; Marinacci, Federico; Springel, Volker; Pakmor, Rüdiger
2017-03-01
Recent studies have revealed an oscillating asymmetry in the vertical structure of the Milky Way's disc. Here, we analyse 16 high-resolution, fully cosmological simulations of the evolution of individual Milky Way-sized galaxies, carried out with the magnetohydrodynamic code AREPO. At redshift zero, about 70 per cent of our galactic discs show strong vertical patterns, with amplitudes that can exceed 2 kpc. Half of these are typical 'integral sign' warps. The rest are oscillations similar to those observed in the Milky Way. Such structures are thus expected to be common. The associated mean vertical motions can be as large as 30 km s-1. Cold disc gas typically follows the vertical patterns seen in the stars. These perturbations have a variety of causes: close encounters with satellites, distant fly-bys of massive objects, accretion of misaligned cold gas from halo infall or from mergers. Tidally induced vertical patterns can be identified in both young and old stellar populations, whereas those originating from cold gas accretion are seen mainly in the younger populations. Galaxies with regular or at most weakly perturbed discs are usually, but not always, free from recent interactions with massive companions, although we have one case where an equilibrium compact disc reforms after a merger.
The role of self-interacting right-handed neutrinos in galactic structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Argüelles, C.R.; Rueda, J.A.; Ruffini, R.
2016-04-01
It has been shown previously that the DM in galactic halos can be explained by a self-gravitating system of massive keV fermions ('inos') in thermodynamic equilibrium, and predicted the existence of a denser quantum core of inos towards the center of galaxies. In this article we show that the inclusion of self-interactions among the inos, modeled within a relativistic mean-field-theory approach, allows the quantum core to become massive and compact enough to explain the dynamics of the S-cluster stars closest to the Milky Way's galactic center. The application of this model to other galaxies such as large elliptical harboring massivemore » central dark objects of ∼ 10{sup 9} M {sub ⊙} is also investigated. We identify these interacting inos with sterile right-handed neutrinos pertaining to minimal extensions of the Standard Model, and calculate the corresponding total cross-section σ within an electroweak-like formalism to be compared with other observationally inferred cross-section estimates. The coincidence of an ino mass range of few tens of keV derived here only from the galactic structure, with the range obtained independently from other astrophysical and cosmological constraints, points towards an important role of the right-handed neutrinos in the cosmic structure.« less
A simple physical model for X-ray burst sources
NASA Technical Reports Server (NTRS)
Joss, P. C.; Rappaport, S.
1977-01-01
In connection with information considered by Illarianov and Sunyaev (1975) and van den Heuvel (1975), a simple physical model for an X-ray burst source in the galactic disk is proposed. The model includes an unevolved OB star with a relatively weak stellar wind and a compact object in a close binary system. For some reason, the stellar wind from the OB star is unable to accrete steadily on to the compact object. When the stellar wind is sufficiently weak, the compact object accretes irregularly, leading to X-ray bursts.
Moving-mesh cosmology: characteristics of galaxies and haloes
NASA Astrophysics Data System (ADS)
Kereš, Dušan; Vogelsberger, Mark; Sijacki, Debora; Springel, Volker; Hernquist, Lars
2012-09-01
We discuss cosmological hydrodynamic simulations of galaxy formation performed with the new moving-mesh code AREPO, which promises higher accuracy compared with the traditional smoothed particle hydrodynamics (SPH) technique that has been widely employed for this problem. In this exploratory study, we deliberately limit the complexity of the physical processes followed by the code for ease of comparison with previous calculations, and include only cooling of gas with a primordial composition, heating by a spatially uniform ultraviolet background, and a simple subresolution model for regulating star formation in the dense interstellar medium. We use an identical set of physics in corresponding simulations carried out with the well-tested SPH code GADGET, adopting also the same high-resolution gravity solver. We are thus able to compare both simulation sets on an object-by-object basis, allowing us to cleanly isolate the impact of different hydrodynamical methods on galaxy and halo properties. In accompanying papers, Vogelsberger et al. and Sijacki et al., we focus on an analysis of the global baryonic statistics predicted by the simulation codes, and complementary idealized simulations that highlight the differences between the hydrodynamical schemes. Here we investigate their influence on the baryonic properties of simulated galaxies and their surrounding haloes. We find that AREPO leads to significantly higher star formation rates for galaxies in massive haloes and to more extended gaseous discs in galaxies, which also feature a thinner and smoother morphology than their GADGET counterparts. Consequently, galaxies formed in AREPO have larger sizes and higher specific angular momentum than their SPH correspondents. Interestingly, the more efficient cooling flows in AREPO yield higher densities and lower entropies in halo centres compared to GADGET, whereas the opposite trend is found in halo outskirts. The cooling differences leading to higher star formation rates of massive galaxies in AREPO also slightly increase the baryon content within the virial radius of massive haloes. We show that these differences persist as a function of numerical resolution. While both codes agree to acceptable accuracy on a number of baryonic properties of cosmic structures, our results thus clearly demonstrate that galaxy formation simulations greatly benefit from the use of more accurate hydrodynamical techniques such as AREPO and call into question the reliability of galaxy formation studies in a cosmological context using traditional standard formulations of SPH, such as the one implemented in GADGET. Our new moving-mesh simulations demonstrate that a population of extended gaseous discs of galaxies in large volume cosmological simulations can be formed even without energetic feedback in the form of galactic winds, although such outflows appear required to obtain realistic stellar masses.
Cosmic web type dependence of halo clustering
NASA Astrophysics Data System (ADS)
Fisher, J. D.; Faltenbacher, A.
2018-01-01
We use the Millennium Simulation to show that halo clustering varies significantly with cosmic web type. Haloes are classified as node, filament, sheet and void haloes based on the eigenvalue decomposition of the velocity shear tensor. The velocity field is sampled by the peculiar velocities of a fixed number of neighbouring haloes, and spatial derivatives are computed using a kernel borrowed from smoothed particle hydrodynamics. The classification scheme is used to examine the clustering of haloes as a function of web type for haloes with masses larger than 1011 h- 1 M⊙. We find that node haloes show positive bias, filament haloes show negligible bias and void and sheet haloes are antibiased independent of halo mass. Our findings suggest that the mass dependence of halo clustering is rooted in the composition of web types as a function of halo mass. The substantial fraction of node-type haloes for halo masses ≳ 2 × 1013 h- 1 M⊙ leads to positive bias. Filament-type haloes prevail at intermediate masses, 1012-1013 h- 1 M⊙, resulting in unbiased clustering. The large contribution of sheet-type haloes at low halo masses ≲ 1012 h- 1 M⊙ generates antibiasing.
Galaxy growth in a massive halo in the first billion years of cosmic history
NASA Astrophysics Data System (ADS)
Marrone, D. P.; Spilker, J. S.; Hayward, C. C.; Vieira, J. D.; Aravena, M.; Ashby, M. L. N.; Bayliss, M. B.; Béthermin, M.; Brodwin, M.; Bothwell, M. S.; Carlstrom, J. E.; Chapman, S. C.; Chen, Chian-Chou; Crawford, T. M.; Cunningham, D. J. M.; De Breuck, C.; Fassnacht, C. D.; Gonzalez, A. H.; Greve, T. R.; Hezaveh, Y. D.; Lacaille, K.; Litke, K. C.; Lower, S.; Ma, J.; Malkan, M.; Miller, T. B.; Morningstar, W. R.; Murphy, E. J.; Narayanan, D.; Phadke, K. A.; Rotermund, K. M.; Sreevani, J.; Stalder, B.; Stark, A. A.; Strandet, M. L.; Tang, M.; Weiß, A.
2018-01-01
According to the current understanding of cosmic structure formation, the precursors of the most massive structures in the Universe began to form shortly after the Big Bang, in regions corresponding to the largest fluctuations in the cosmic density field. Observing these structures during their period of active growth and assembly—the first few hundred million years of the Universe—is challenging because it requires surveys that are sensitive enough to detect the distant galaxies that act as signposts for these structures and wide enough to capture the rarest objects. As a result, very few such objects have been detected so far. Here we report observations of a far-infrared-luminous object at redshift 6.900 (less than 800 million years after the Big Bang) that was discovered in a wide-field survey. High-resolution imaging shows it to be a pair of extremely massive star-forming galaxies. The larger is forming stars at a rate of 2,900 solar masses per year, contains 270 billion solar masses of gas and 2.5 billion solar masses of dust, and is more massive than any other known object at a redshift of more than 6. Its rapid star formation is probably triggered by its companion galaxy at a projected separation of 8 kiloparsecs. This merging companion hosts 35 billion solar masses of stars and has a star-formation rate of 540 solar masses per year, but has an order of magnitude less gas and dust than its neighbour and physical conditions akin to those observed in lower-metallicity galaxies in the nearby Universe. These objects suggest the presence of a dark-matter halo with a mass of more than 100 billion solar masses, making it among the rarest dark-matter haloes that should exist in the Universe at this epoch.
Galaxy growth in a massive halo in the first billion years of cosmic history.
Marrone, D P; Spilker, J S; Hayward, C C; Vieira, J D; Aravena, M; Ashby, M L N; Bayliss, M B; Béthermin, M; Brodwin, M; Bothwell, M S; Carlstrom, J E; Chapman, S C; Chen, Chian-Chou; Crawford, T M; Cunningham, D J M; De Breuck, C; Fassnacht, C D; Gonzalez, A H; Greve, T R; Hezaveh, Y D; Lacaille, K; Litke, K C; Lower, S; Ma, J; Malkan, M; Miller, T B; Morningstar, W R; Murphy, E J; Narayanan, D; Phadke, K A; Rotermund, K M; Sreevani, J; Stalder, B; Stark, A A; Strandet, M L; Tang, M; Weiß, A
2018-01-04
According to the current understanding of cosmic structure formation, the precursors of the most massive structures in the Universe began to form shortly after the Big Bang, in regions corresponding to the largest fluctuations in the cosmic density field. Observing these structures during their period of active growth and assembly-the first few hundred million years of the Universe-is challenging because it requires surveys that are sensitive enough to detect the distant galaxies that act as signposts for these structures and wide enough to capture the rarest objects. As a result, very few such objects have been detected so far. Here we report observations of a far-infrared-luminous object at redshift 6.900 (less than 800 million years after the Big Bang) that was discovered in a wide-field survey. High-resolution imaging shows it to be a pair of extremely massive star-forming galaxies. The larger is forming stars at a rate of 2,900 solar masses per year, contains 270 billion solar masses of gas and 2.5 billion solar masses of dust, and is more massive than any other known object at a redshift of more than 6. Its rapid star formation is probably triggered by its companion galaxy at a projected separation of 8 kiloparsecs. This merging companion hosts 35 billion solar masses of stars and has a star-formation rate of 540 solar masses per year, but has an order of magnitude less gas and dust than its neighbour and physical conditions akin to those observed in lower-metallicity galaxies in the nearby Universe. These objects suggest the presence of a dark-matter halo with a mass of more than 100 billion solar masses, making it among the rarest dark-matter haloes that should exist in the Universe at this epoch.
Distribution and Kinematics of O VI in the Galactic Halo
NASA Astrophysics Data System (ADS)
Savage, B. D.; Sembach, K. R.; Wakker, B. P.; Richter, P.; Meade, M.; Jenkins, E. B.; Shull, J. M.; Moos, H. W.; Sonneborn, G.
2003-05-01
Far-Ultraviolet Spectroscopic Explorer (FUSE) spectra of 100 extragalactic objects and two distant halo stars are analyzed to obtain measures of O VI λλ1031.93, 1037.62 absorption along paths through the Milky Way thick disk/halo. Strong O VI absorption over the velocity range from -100 to 100 km s-1 reveals a widespread but highly irregular distribution of O VI, implying the existence of substantial amounts of hot gas with T~3×105 K in the Milky Way thick disk/halo. The integrated column density, log[N(O VI) cm-2], ranges from 13.85 to 14.78 with an average value of 14.38 and a standard deviation of 0.18. Large irregularities in the gas distribution are found to be similar over angular scales extending from <1° to 180°, implying a considerable amount of small- and large-scale structure in the absorbing gas. The overall distribution of O VI is not well described by a symmetrical plane-parallel layer of patchy O VI absorption. The simplest departure from such a model that provides a reasonable fit to the observations is a plane-parallel patchy absorbing layer with an average O VI midplane density of n0(O VI)=1.7×10-8 cm-3, a scale height of ~2.3 kpc, and a ~0.25 dex excess of O VI in the northern Galactic polar region. The distribution of O VI over the sky is poorly correlated with other tracers of gas in the halo, including low- and intermediate-velocity H I, Hα emission from the warm ionized gas at ~104 K, and hot X-ray-emitting gas at ~106 K. The O VI has an average velocity dispersion, b~60 km s-1, and standard deviation of 15 km s-1. Thermal broadening alone cannot explain the large observed profile widths. The average O VI absorption velocities toward high-latitude objects (|b|>45deg) range from -46 to 82 km s-1, with a high-latitude sample average of 0 km s-1 and a standard deviation of 21 km s-1. High positive velocity O VI absorbing wings extending from ~100 to ~250 km s-1 observed along 21 lines of sight may be tracing the flow of O VI into the halo. A combination of models involving the radiative cooling of hot fountain gas, the cooling of supernova bubbles in the halo, and the turbulent mixing of warm and hot halo gases is required to explain the presence of O VI and other highly ionized atoms found in the halo. The preferential venting of hot gas from local bubbles and superbubbles into the northern Galactic polar region may explain the enhancement of O VI in the north. If a fountain flow dominates, a mass flow rate of approximately 1.4 Msolar yr-1 of cooling hot gas to each side of the Galactic plane with an average density of 10-3 cm-3 is required to explain the average value of log[N(O VI)sin|b|] observed in the southern Galactic hemisphere. Such a flow rate is comparable to that estimated for the Galactic intermediate-velocity clouds.
Where Are All of the Gas-bearing Local Dwarf Galaxies? Quantifying Possible Impacts of Reionization
NASA Astrophysics Data System (ADS)
Tollerud, Erik J.; Peek, J. E. G.
2018-04-01
We present an approach for comparing the detections and non-detections of Local Group (LG) dwarf galaxies in large H I surveys to the predictions of a suite of n-body simulations of the LG. This approach depends primarily on a set of empirical scaling relations to connect the simulations to the observations, rather than making strong theoretical assumptions. We then apply this methodology to the Galactic Arecibo L-band Feed Array Hi (GALFA-HI) Compact Cloud Catalog (CCC), and compare it to the suite Exploring the Local Volume In Simulations (ELVIS) of simulations. This approach reveals a strong tension between the naïve results of the model and the observations: while there are no LG dwarfs in the GALFA-HI CCC, the simulations predict ∼10. Applying a simple model of reionization can resolve this tension by preventing low-mass halos from forming gas. However, and if this effect operates as expected, the observations provide a constraint on the mass scale of the dwarf galaxy that reionization impacts. Combined with the observed properties of Leo T, the halo virial mass scale at which reionization impacts dwarf galaxy gas content is constrained to be ∼ {10}8.5 {M}ȯ , independent of any assumptions about star formation.
Developing Tools to Search for PNe in the JPAS Survey
NASA Astrophysics Data System (ADS)
Gonçalves, D.; Villegas, T. A.; Marcolino, W.; Lorenz-Martins, S.; Borges Fernandes, M.; Kanaan, A.; Pereira, C. B.; Daflon, S.; Ederoclite, A.; Alfaro, E. J.; Ribeiro, T.; Vázquez Ramió, H.; Schmitz, T.; Martínez-Delgado, D.; JPAS Collaboration
2014-04-01
The Javalambre Physics of the Accelerating Universe Astrophysical Survey (J-PAS) is a new astronomical facility dedicated to mapping the observable Universe in 59 colors, and will produce high-quality images and an unique spectral resolution over the 8000 deg^2. It will consist of two telescopes. One of 2.5-m (J-PAS) and another of 0.8-m (J-PLUS, mainly for calibrations). The former will have a dedicated 1.2-G pixel survey camera (containing an array of 14 CCDs) with a FoV of 5 deg^2. It is planned to take 4-5 years and is expected to map the above area to a 5σ magnitude depth for point sources equivalent to i˜23.3 over an aperture of 2 arcsec^2. The J-PAS filter system consists of 54 contiguous narrow band filters of 100-Å FWHM, from 3,500 to 10,000Å. To those filters 2 broad-band ones will be at the extremes, UV and IR, plus 3 SDSS g, r, and i filters. J-PLUS, on the other hand, comprise 12 filters, including g, r, i and z SDSS ones. Though about 2,500 PNe (confirmed spectroscopically) are known in the Galaxy, only about 20 objects have been identified as halo PNe. They were found from their location, kinematics and chemistry. Halo PNe are able to reveal precious information for the study of low- and intermediate-mass star evolution and the early chemical conditions of the Galaxy. The characteristic low continuum and intense line emissions of PNe make them good objects to be searched for by J-PAS. For instance, the halo PNe BoBn 1, DdDm 1 and PS 1, located somewhere between 11 and 24 kpc from the Sun, have B magnitudes of 16, 14 and 13.4, respectively. Such values are easily encompassed by J-PAS, given the typical limit magnitude of the survey. Because of the low number of halo PNe detected so far, we are developing tools to find these objects by using J-PAS/J-PLUS, and planning a follow-up study for any possible candidate identified by the survey. Color magnitudes diagram able to separate PNe from other strong line emission objects are being explored by the group and results are discussed in this contribution.
The immitigable nature of assembly bias: the impact of halo definition on assembly bias
NASA Astrophysics Data System (ADS)
Villarreal, Antonio S.; Zentner, Andrew R.; Mao, Yao-Yuan; Purcell, Chris W.; van den Bosch, Frank C.; Diemer, Benedikt; Lange, Johannes U.; Wang, Kuan; Campbell, Duncan
2017-11-01
Dark matter halo clustering depends not only on halo mass, but also on other properties such as concentration and shape. This phenomenon is known broadly as assembly bias. We explore the dependence of assembly bias on halo definition, parametrized by spherical overdensity parameter, Δ. We summarize the strength of concentration-, shape-, and spin-dependent halo clustering as a function of halo mass and halo definition. Concentration-dependent clustering depends strongly on mass at all Δ. For conventional halo definitions (Δ ∼ 200 - 600 m), concentration-dependent clustering at low mass is driven by a population of haloes that is altered through interactions with neighbouring haloes. Concentration-dependent clustering can be greatly reduced through a mass-dependent halo definition with Δ ∼ 20 - 40 m for haloes with M200 m ≲ 1012 h-1M⊙. Smaller Δ implies larger radii and mitigates assembly bias at low mass by subsuming altered, so-called backsplash haloes into now larger host haloes. At higher masses (M200 m ≳ 1013 h-1M⊙) larger overdensities, Δ ≳ 600 m, are necessary. Shape- and spin-dependent clustering are significant for all halo definitions that we explore and exhibit a relatively weaker mass dependence. Generally, both the strength and the sense of assembly bias depend on halo definition, varying significantly even among common definitions. We identify no halo definition that mitigates all manifestations of assembly bias. A halo definition that mitigates assembly bias based on one halo property (e.g. concentration) must be mass dependent. The halo definitions that best mitigate concentration-dependent halo clustering do not coincide with the expected average splashback radii at fixed halo mass.
Earth-mass dark-matter haloes as the first structures in the early Universe.
Diemand, J; Moore, B; Stadel, J
2005-01-27
The Universe was nearly smooth and homogeneous before a redshift of z = 100, about 20 million years after the Big Bang. After this epoch, the tiny fluctuations imprinted upon the matter distribution during the initial expansion began to collapse because of gravity. The properties of these fluctuations depend on the unknown nature of dark matter, the determination of which is one of the biggest challenges in present-day science. Here we report supercomputer simulations of the concordance cosmological model, which assumes neutralino dark matter (at present the preferred candidate), and find that the first objects to form are numerous Earth-mass dark-matter haloes about as large as the Solar System. They are stable against gravitational disruption, even within the central regions of the Milky Way. We expect over 10(15) to survive within the Galactic halo, with one passing through the Solar System every few thousand years. The nearest structures should be among the brightest sources of gamma-rays (from particle-particle annihilation).
Lagrangian methods of cosmic web classification
NASA Astrophysics Data System (ADS)
Fisher, J. D.; Faltenbacher, A.; Johnson, M. S. T.
2016-05-01
The cosmic web defines the large-scale distribution of matter we see in the Universe today. Classifying the cosmic web into voids, sheets, filaments and nodes allows one to explore structure formation and the role environmental factors have on halo and galaxy properties. While existing studies of cosmic web classification concentrate on grid-based methods, this work explores a Lagrangian approach where the V-web algorithm proposed by Hoffman et al. is implemented with techniques borrowed from smoothed particle hydrodynamics. The Lagrangian approach allows one to classify individual objects (e.g. particles or haloes) based on properties of their nearest neighbours in an adaptive manner. It can be applied directly to a halo sample which dramatically reduces computational cost and potentially allows an application of this classification scheme to observed galaxy samples. Finally, the Lagrangian nature admits a straightforward inclusion of the Hubble flow negating the necessity of a visually defined threshold value which is commonly employed by grid-based classification methods.
Deep photometry of two accreted families of globular clusters in the remote M31 halo
NASA Astrophysics Data System (ADS)
Mackey, Dougal
2013-10-01
Globular clusters {GCs} are fossil relics from which we can obtain critical insights into the merger and accretion events that underlie hierarchical galaxy assembly. As part of the major Pan-Andromeda Archaeological Survey {PAndAS} we have discovered two groups of GCs that closely trace narrow stellar debris streams in the M31 halo. These clearly represent two distinct accreted families of GCs - the only known examples apart from the few Galactic GCs arriving with the Sagittarius dwarf. We propose to obtain deep ACS imaging of 14 GCs spanning these two accreted families, allowing us to measure the constituent stellar populations, line-of-sight distance, and structural parameters of each object. We will, for the first time, quantify the typical properties of accreted GCs in the M31 halo as well as the degree of variation amongst them, and how closely they correspond to the suspected accreted GC population in the Milky Way. Combined with new radial velocity measurements for the GCs, our proposed observations will allow us to trace the 3D orbits of the two streams within the M31 halo, and thus break the main degeneracies that plague numerical models designed to probe the gravitational potential and distribution of dark mass.
Faint blue counts from formation of dwarf galaxies at z approximately equals 1
NASA Technical Reports Server (NTRS)
Babul, Arif; Rees, Martin J.
1993-01-01
The nature of faint blue objects (FBO's) has been a source of much speculation since their detection in deep CCD images of the sky. Their high surface density argues against them being progenitors of present-day bright galaxies and since they are only weakly clustered on small scales, they cannot be entities that merged together to form present-day galaxies. Babul & Rees (1992) have suggested that the observed faint blue counts may be due to dwarf elliptical galaxies undergoing their initial starburst at z is approximately equal to 1. In generic hierarchical clustering scenarios, however, dwarf galaxy halos (M is approximately 10(exp 9) solar mass) are expected to form at an earlier epoch; for example, typical 10(exp 9) solar mass halos will virialize at z is approximately equal to 2.3 if the power-spectrum for the density fluctuations is that of the standard b = 2 cold dark matter (CDM) model. Under 'ordinary conditions' the gas would rapidly cool, collect in the cores, and undergo star-formation. Conditions at high redshifts are far from 'ordinary'. The intense UV background will prevent the gas in the dwarf halos from cooling, the halos being released from their suspended state only when the UV flux has diminished sufficiently.
Beyond assembly bias: exploring secondary halo biases for cluster-size haloes
NASA Astrophysics Data System (ADS)
Mao, Yao-Yuan; Zentner, Andrew R.; Wechsler, Risa H.
2018-03-01
Secondary halo bias, commonly known as `assembly bias', is the dependence of halo clustering on a halo property other than mass. This prediction of the Λ Cold Dark Matter cosmology is essential to modelling the galaxy distribution to high precision and interpreting clustering measurements. As the name suggests, different manifestations of secondary halo bias have been thought to originate from halo assembly histories. We show conclusively that this is incorrect for cluster-size haloes. We present an up-to-date summary of secondary halo biases of high-mass haloes due to various halo properties including concentration, spin, several proxies of assembly history, and subhalo properties. While concentration, spin, and the abundance and radial distribution of subhaloes exhibit significant secondary biases, properties that directly quantify halo assembly history do not. In fact, the entire assembly histories of haloes in pairs are nearly identical to those of isolated haloes. In general, a global correlation between two halo properties does not predict whether or not these two properties exhibit similar secondary biases. For example, assembly history and concentration (or subhalo abundance) are correlated for both paired and isolated haloes, but follow slightly different conditional distributions in these two cases. This results in a secondary halo bias due to concentration (or subhalo abundance), despite the lack of assembly bias in the strict sense for cluster-size haloes. Due to this complexity, caution must be exercised in using any one halo property as a proxy to study the secondary bias due to another property.
NASA Astrophysics Data System (ADS)
Salcedo, Andrés N.; Maller, Ariyeh H.; Berlind, Andreas A.; Sinha, Manodeep; McBride, Cameron K.; Behroozi, Peter S.; Wechsler, Risa H.; Weinberg, David H.
2018-04-01
We explore the phenomenon commonly known as halo assembly bias, whereby dark matter haloes of the same mass are found to be more or less clustered when a second halo property is considered, for haloes in the mass range 3.7 × 1011-5.0 × 1013 h-1 M⊙. Using the Large Suite of Dark Matter Simulations (LasDamas) we consider nine commonly used halo properties and find that a clustering bias exists if haloes are binned by mass or by any other halo property. This secondary bias implies that no single halo property encompasses all the spatial clustering information of the halo population. The mean values of some halo properties depend on their halo's distance to a more massive neighbour. Halo samples selected by having high values of one of these properties therefore inherit a neighbour bias such that they are much more likely to be close to a much more massive neighbour. This neighbour bias largely accounts for the secondary bias seen in haloes binned by mass and split by concentration or age. However, haloes binned by other mass-like properties still show a secondary bias even when the neighbour bias is removed. The secondary bias of haloes selected by their spin behaves differently than that for other halo properties, suggesting that the origin of the spin bias is different than of other secondary biases.
Structure formation and microlensing with axion miniclusters
NASA Astrophysics Data System (ADS)
Fairbairn, Malcolm; Marsh, David J. E.; Quevillon, Jérémie; Rozier, Simon
2018-04-01
If the symmetry breaking responsible for axion dark matter production occurs during the radiation-dominated epoch in the early Universe, then this produces large amplitude perturbations that collapse into dense objects known as axion miniclusters. The characteristic minicluster mass, M0, is set by the mass inside the horizon when axion oscillations begin. For the QCD axion M0˜10-10 M⊙, however, for an axionlike particle, M0 can approach M⊙ or higher. Using the Press-Schechter formalism we compute the mass function of halos formed by hierarchical structure formation from these seeds. We compute the concentrations and collapse times of these halos and show that they can grow to be as massive as 1 06M0. Within the halos, miniclusters likely remain tightly bound, and we compute their gravitational microlensing signal taking the fraction of axion dark matter collapsed into miniclusters, fMC, as a free parameter. A large value of fMC severely weakens constraints on axion scenarios from direct detection experiments. We take into account the non-Gaussian distribution of sizes of miniclusters and determine how this affects the number of microlensing events. We develop the tools to consider microlensing by an extended mass function of nonpointlike objects, and we use microlensing data to place the first observational constraints on fMC. This opens a new window for the potential discovery of the axion.
The dependence of galaxy clustering on tidal environment in the Sloan Digital Sky Survey
NASA Astrophysics Data System (ADS)
Paranjape, Aseem; Hahn, Oliver; Sheth, Ravi K.
2018-06-01
The influence of the Cosmic Web on galaxy formation and evolution is of great observational and theoretical interest. We investigate whether the Cosmic Web leaves an imprint in the spatial clustering of galaxies in the Sloan Digital Sky Survey (SDSS), using the group catalogue of Yang et al. and tidal field estimates at ˜2 h-1 Mpc scales from the mass-tides-velocity data set of Wang et al. We use the tidal anisotropy α (Paranjape et al.) to characterize the tidal environment of groups, and measure the redshift-space 2-point correlation function (2pcf) of group positions and the luminosity- and colour-dependent clustering of group galaxies using samples segregated by α. We find that all the 2pcf measurements depend strongly on α, with factors of ˜20 between the large-scale 2pcf of objects in the most and least isotropic environments. To test whether these strong trends imply `beyond halo mass' effects for galaxy evolution, we compare our results with corresponding 2pcf measurements in mock catalogues constructed using a halo occupation distribution that uses only halo mass as an input. We find that this prescription qualitatively reproduces all observed trends, and also quantitatively matches many of the observed results. Although there are some statistically significant differences between our `halo mass only' mocks and the data - in the most and least isotropic environments - which deserve further investigation, our results suggest that if the tidal environment induces additional effects on galaxy properties other than those inherited from their host haloes, then these must be weak.
Evidence for an Accretion Origin for the Outer Halo Globular Cluster System of M31
NASA Astrophysics Data System (ADS)
Mackey, A. D.; Huxor, A. P.; Ferguson, A. M. N.; Irwin, M. J.; Tanvir, N. R.; McConnachie, A. W.; Ibata, R. A.; Chapman, S. C.; Lewis, G. F.
2010-07-01
We use a sample of newly discovered globular clusters from the Pan-Andromeda Archaeological Survey (PAndAS) in combination with previously cataloged objects to map the spatial distribution of globular clusters in the M31 halo. At projected radii beyond ≈30 kpc, where large coherent stellar streams are readily distinguished in the field, there is a striking correlation between these features and the positions of the globular clusters. Adopting a simple Monte Carlo approach, we test the significance of this association by computing the probability that it could be due to the chance alignment of globular clusters smoothly distributed in the M31 halo. We find that the likelihood of this possibility is low, below 1%, and conclude that the observed spatial coincidence between globular clusters and multiple tidal debris streams in the outer halo of M31 reflects a genuine physical association. Our results imply that the majority of the remote globular cluster system of M31 has been assembled as a consequence of the accretion of cluster-bearing satellite galaxies. This constitutes the most direct evidence to date that the outer halo globular cluster populations in some galaxies are largely accreted. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii.
Uncertain Classification of Variable Stars: Handling Observational GAPS and Noise
NASA Astrophysics Data System (ADS)
Castro, Nicolás; Protopapas, Pavlos; Pichara, Karim
2018-01-01
Automatic classification methods applied to sky surveys have revolutionized the astronomical target selection process. Most surveys generate a vast amount of time series, or “lightcurves,” that represent the brightness variability of stellar objects in time. Unfortunately, lightcurves’ observations take several years to be completed, producing truncated time series that generally remain without the application of automatic classifiers until they are finished. This happens because state-of-the-art methods rely on a variety of statistical descriptors or features that present an increasing degree of dispersion when the number of observations decreases, which reduces their precision. In this paper, we propose a novel method that increases the performance of automatic classifiers of variable stars by incorporating the deviations that scarcity of observations produces. Our method uses Gaussian process regression to form a probabilistic model of each lightcurve’s observations. Then, based on this model, bootstrapped samples of the time series features are generated. Finally, a bagging approach is used to improve the overall performance of the classification. We perform tests on the MAssive Compact Halo Object (MACHO) and Optical Gravitational Lensing Experiment (OGLE) catalogs, results show that our method effectively classifies some variability classes using a small fraction of the original observations. For example, we found that RR Lyrae stars can be classified with ~80% accuracy just by observing the first 5% of the whole lightcurves’ observations in the MACHO and OGLE catalogs. We believe these results prove that, when studying lightcurves, it is important to consider the features’ error and how the measurement process impacts it.
NASA Technical Reports Server (NTRS)
Dinerstein, Harriet L.; Lester, Daniel F.
1990-01-01
Planetary nebulae of the galactic disk are generally seen to emit a thermal continuum due to dust grains heated by stellar and nebular photons. This continuum typically peaks between 25 and 60 micron m, so that the total power emitted by the dust is sampled well by the broad-band measurements made by IRAS. Researchers examine here the characteristics of the infrared emission from the four planetary nebulae which are believed on the basis of their low overall metallicities to belong to the halo population. These nebulae are of particular interest because they are the most metal-poor ionized nebulae known in our Galaxy, and offer the opportunity to probe possible dependences of the dust properties on nebular composition. Researchers present fluxes extracted from co-addition of the IRAS data, as well as ground-based near infrared measurements. Each of the four halo objects, including the planetary nebula in the globular cluster M15, is detected in at least one infrared band. Researchers compare the estimated infrared excesses of these nebulae (IRE, the ratio of measured infrared power to the power available in the form of resonantly-trapped Lyman alpha photons) to those of disk planetary nebulae with similar densities but more normal abundances. Three of the halo planetaries have IRE values similar to those of the disk nebulae, despite the fact that their Fe- and Si-peak gas phase abundances are factors of 10 to 100 lower. However, these halo nebulae have normal or elevated C/H ratios, due to nuclear processing and mixing in their red giant progenitors. Unlike the other halo planetaries, DDDM1 is deficient in carbon as well as in the other light metals. This nebula has a substantially lower IRE than the other halo planetaries, and may be truly dust efficient. Researchers suggest that the deficiency is due to a lack of the raw material for producing carbon-based grains, and that the main bulk constituent of the dust in these planetary nebulae is carbon.
Space-Charge Simulation of Integrable Rapid Cycling Synchrotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, Jeffery; Valishev, Alexander
2017-05-01
Integrable optics is an innovation in particle accelerator design that enables strong nonlinear focusing without generating parametric resonances. We use a Synergia space-charge simulation to investigate the application of integrable optics to a high-intensity hadron ring that could replace the Fermilab Booster. We find that incorporating integrability into the design suppresses the beam halo generated by a mismatched KV beam. Our integrable rapid cycling synchrotron (iRCS) design includes other features of modern ring design such as low momentum compaction factor and harmonically canceling sextupoles. Experimental tests of high-intensity beams in integrable lattices will take place over the next several yearsmore » at the Fermilab Integrable Optics Test Accelerator (IOTA) and the University of Maryland Electron Ring (UMER).« less
Poor Man's Asteroid Sample Return Missions
NASA Astrophysics Data System (ADS)
Landis, R. R.; Graham, L. D.
2018-02-01
A cislunar platform at a Near-Rectilinear [Halo] Orbit in the vicinity of the Moon could provide an opportunity for a small NEA sample return mission at relatively low cost. There are a couple potential small ( 1m) object target dynamical groups.
Beyond assembly bias: exploring secondary halo biases for cluster-size haloes
Mao, Yao-Yuan; Zentner, Andrew R.; Wechsler, Risa H.
2017-12-01
Secondary halo bias, commonly known as ‘assembly bias’, is the dependence of halo clustering on a halo property other than mass. This prediction of the Λ Cold Dark Matter cosmology is essential to modelling the galaxy distribution to high precision and interpreting clustering measurements. As the name suggests, different manifestations of secondary halo bias have been thought to originate from halo assembly histories. We show conclusively that this is incorrect for cluster-size haloes. We present an up-to-date summary of secondary halo biases of high-mass haloes due to various halo properties including concentration, spin, several proxies of assembly history, and subhalomore » properties. While concentration, spin, and the abundance and radial distribution of subhaloes exhibit significant secondary biases, properties that directly quantify halo assembly history do not. In fact, the entire assembly histories of haloes in pairs are nearly identical to those of isolated haloes. In general, a global correlation between two halo properties does not predict whether or not these two properties exhibit similar secondary biases. For example, assembly history and concentration (or subhalo abundance) are correlated for both paired and isolated haloes, but follow slightly different conditional distributions in these two cases. Lastly, this results in a secondary halo bias due to concentration (or subhalo abundance), despite the lack of assembly bias in the strict sense for cluster-size haloes. Due to this complexity, caution must be exercised in using any one halo property as a proxy to study the secondary bias due to another property.« less
Beyond assembly bias: exploring secondary halo biases for cluster-size haloes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Yao-Yuan; Zentner, Andrew R.; Wechsler, Risa H.
Secondary halo bias, commonly known as ‘assembly bias’, is the dependence of halo clustering on a halo property other than mass. This prediction of the Λ Cold Dark Matter cosmology is essential to modelling the galaxy distribution to high precision and interpreting clustering measurements. As the name suggests, different manifestations of secondary halo bias have been thought to originate from halo assembly histories. We show conclusively that this is incorrect for cluster-size haloes. We present an up-to-date summary of secondary halo biases of high-mass haloes due to various halo properties including concentration, spin, several proxies of assembly history, and subhalomore » properties. While concentration, spin, and the abundance and radial distribution of subhaloes exhibit significant secondary biases, properties that directly quantify halo assembly history do not. In fact, the entire assembly histories of haloes in pairs are nearly identical to those of isolated haloes. In general, a global correlation between two halo properties does not predict whether or not these two properties exhibit similar secondary biases. For example, assembly history and concentration (or subhalo abundance) are correlated for both paired and isolated haloes, but follow slightly different conditional distributions in these two cases. Lastly, this results in a secondary halo bias due to concentration (or subhalo abundance), despite the lack of assembly bias in the strict sense for cluster-size haloes. Due to this complexity, caution must be exercised in using any one halo property as a proxy to study the secondary bias due to another property.« less
Galaxy and Mass Assembly (GAMA): halo formation times and halo assembly bias on the cosmic web
NASA Astrophysics Data System (ADS)
Tojeiro, Rita; Eardley, Elizabeth; Peacock, John A.; Norberg, Peder; Alpaslan, Mehmet; Driver, Simon P.; Henriques, Bruno; Hopkins, Andrew M.; Kafle, Prajwal R.; Robotham, Aaron S. G.; Thomas, Peter; Tonini, Chiara; Wild, Vivienne
2017-09-01
We present evidence for halo assembly bias as a function of geometric environment (GE). By classifying Galaxy and Mass Assembly (GAMA) galaxy groups as residing in voids, sheets, filaments or knots using a tidal tensor method, we find that low-mass haloes that reside in knots are older than haloes of the same mass that reside in voids. This result provides direct support to theories that link strong halo tidal interactions with halo assembly times. The trend with GE is reversed at large halo mass, with haloes in knots being younger than haloes of the same mass in voids. We find a clear signal of halo downsizing - more massive haloes host galaxies that assembled their stars earlier. This overall trend holds independently of GE. We support our analysis with an in-depth exploration of the L-Galaxies semi-analytic model, used here to correlate several galaxy properties with three different definitions of halo formation time. We find a complex relationship between halo formation time and galaxy properties, with significant scatter. We confirm that stellar mass to halo mass ratio, specific star formation rate (SFR) and mass-weighed age are reasonable proxies of halo formation time, especially at low halo masses. Instantaneous SFR is a poor indicator at all halo masses. Using the same semi-analytic model, we create mock spectral observations using complex star formation and chemical enrichment histories, which approximately mimic GAMA's typical signal-to-noise ratio and wavelength range. We use these mocks to assert how well potential proxies of halo formation time may be recovered from GAMA-like spectroscopic data.
Central Compact Objects in Kes 79 and RCW 103 as `Hidden' Magnetars with Crustal Activity
NASA Astrophysics Data System (ADS)
Popov, S. B.; Kaurov, A. A.; Kaminker, A. D.
2015-05-01
We propose that observations of `hidden' magnetars in central compact objects can be used to probe crustal activity of neutron stars with large internal magnetic fields. Estimates based on calculations by Perna & Pons, Pons & Rea and Kaminker et al. suggest that central compact objects, which are proposed to be `hidden' magnetars, must demonstrate flux variations on the time scale of months-years. However, the most prominent candidate for the `hidden' magnetars - CXO J1852.6+0040 in Kes 79 - shows constant (within error bars) flux. This can be interpreted by lower variable crustal activity than in typical magnetars. Alternatively, CXO J1852.6+0040 can be in a high state of variable activity during the whole period of observations. Then we consider the source 1E161348 - 5055 in RCW103 as another candidate. Employing a simple 2D-modelling we argue that properties of the source can be explained by the crustal activity of the magnetar type. Thus, this object may be supplemented for the three known candidates for the `hidden' magnetars among central compact objects discussed in literature.
Galaxy interactions in compact groups - II. Abundance and kinematic anomalies in HCG 91c
NASA Astrophysics Data System (ADS)
Vogt, Frédéric P. A.; Dopita, Michael A.; Borthakur, Sanchayeeta; Verdes-Montenegro, Lourdes; Heckman, Timothy M.; Yun, Min S.; Chambers, Kenneth C.
2015-07-01
Galaxies in Hickson Compact Group 91 (HCG 91) were observed with the WiFeS integral field spectrograph as part of our ongoing campaign targeting the ionized gas physics and kinematics inside star-forming members of compact groups. Here, we report the discovery of H II regions with abundance and kinematic offsets in the otherwise unremarkable star-forming spiral HCG 91c. The optical emission line analysis of this galaxy reveals that at least three H II regions harbour an oxygen abundance ˜0.15 dex lower than expected from their immediate surroundings and from the abundance gradient present in the inner regions of HCG 91c. The same star-forming regions are also associated with a small kinematic offset in the form of a lag of 5-10 km s-1 with respect to the local circular rotation of the gas. H I observations of HCG 91 from the Very Large Array and broad-band optical images from Pan-STARRS (Panoramic Survey Telescope And Rapid Response System) suggest that HCG 91c is caught early in its interaction with the other members of HCG 91. We discuss different scenarios to explain the origin of the peculiar star-forming regions detected with WiFeS, and show that evidence points towards infalling and collapsing extraplanar gas clouds at the disc-halo interface, possibly as a consequence of long-range gravitational perturbations of HCG 91c from the other group members. As such, HCG 91c provides evidence that some of the perturbations possibly associated with the early phase of galaxy evolution in compact groups impact the star-forming disc locally, and on sub-kpc scales.
Salcedo, Andres N.; Maller, Ariyeh H.; Berlind, Andreas A.; ...
2018-01-15
Here, we explore the phenomenon commonly known as halo assembly bias, whereby dark matter haloes of the same mass are found to be more or less clustered when a second halo property is considered, for haloes in the mass range 3.7 × 10 11–5.0 × 10 13 h –1 M ⊙. Using the Large Suite of Dark Matter Simulations (LasDamas) we consider nine commonly used halo properties and find that a clustering bias exists if haloes are binned by mass or by any other halo property. This secondary bias implies that no single halo property encompasses all the spatial clusteringmore » information of the halo population. The mean values of some halo properties depend on their halo's distance to a more massive neighbour. Halo samples selected by having high values of one of these properties therefore inherit a neighbour bias such that they are much more likely to be close to a much more massive neighbour. This neighbour bias largely accounts for the secondary bias seen in haloes binned by mass and split by concentration or age. However, haloes binned by other mass-like properties still show a secondary bias even when the neighbour bias is removed. The secondary bias of haloes selected by their spin behaves differently than that for other halo properties, suggesting that the origin of the spin bias is different than of other secondary biases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salcedo, Andres N.; Maller, Ariyeh H.; Berlind, Andreas A.
Here, we explore the phenomenon commonly known as halo assembly bias, whereby dark matter haloes of the same mass are found to be more or less clustered when a second halo property is considered, for haloes in the mass range 3.7 × 10 11–5.0 × 10 13 h –1 M ⊙. Using the Large Suite of Dark Matter Simulations (LasDamas) we consider nine commonly used halo properties and find that a clustering bias exists if haloes are binned by mass or by any other halo property. This secondary bias implies that no single halo property encompasses all the spatial clusteringmore » information of the halo population. The mean values of some halo properties depend on their halo's distance to a more massive neighbour. Halo samples selected by having high values of one of these properties therefore inherit a neighbour bias such that they are much more likely to be close to a much more massive neighbour. This neighbour bias largely accounts for the secondary bias seen in haloes binned by mass and split by concentration or age. However, haloes binned by other mass-like properties still show a secondary bias even when the neighbour bias is removed. The secondary bias of haloes selected by their spin behaves differently than that for other halo properties, suggesting that the origin of the spin bias is different than of other secondary biases.« less
Unique crater morphologies on Vesta, and the context of a deep regolith and intermediate gravity
NASA Astrophysics Data System (ADS)
Hoffmann, M.; Nathues, A.; Vincent, J. B.; Sierks, H.
2012-04-01
The Dawn spacecraft orbiting the minor planet Vesta has revealed details of the surface properties on a key object for the understanding of the evolution processes in an early epoch of our planetary system. In order to understand these phenomena the three dimensional structure of the surface must be deduced from identifiable processes known to be present elsewhere in the planetary system. Therefore the morphology of impact craters and their geological context (Keil 2002, Clark et al. 2002) plays an important role. They expose material at significant depth in the surface layers, they show a chronologic sequence of rearrangement of the original uppermost layer of Vesta, and their apparent mechanical properties fill the gap between topographic roughness and micro-structural photometric roughness and porosity. Many impact craters on Vesta show significant differences to impact craters on the Moon and Mercury, where their morphology is basically dominated by a rigid surface, and to those on volatile-rich surfaces like on Mars or the icy satellites of the outer planets. The closest match with Vestan crater morphologies is that with those on Lutetia (Vincent et al. 2012). This similarity can be seen by signs of granular fluidity in land-slide phenomena. A prominent and unique property of craters on Vesta is the occurrence of features showing singular concentric central pits, which so far have been associated with liquid materials: either molten rock on Mercury or the Moon, or the liquefaction of ice on Mars, Ganymede, and Callisto (Schultz, 1988). Selected from a collection of 200 sample features in the diameter range 1 to 30 km, some prototypes of this type are presented as indicators of such a porous regolith. The prototypes include simple hopper-shaped to pan-shaped features (the basic structure), but also a subclass with approximately circular symmetric multiple-depression structure (features typically larger than 10 km), and a subclass with unusual halo shapes not observed in regular impact craters. Main criteria of establishment of a causal link between the outer halo and the inner depression are the unique coincidence of their morphologies, the consistency from an 'evolutionary' point of view, and a statistically significant excess with respect to the expected number of chance configurations. These criteria have been tested and confirmed. The variety of features with the basic structure is consistent with more than a single kind of process. Several active and passive modes of their generation could be identified by the observational evidence, e.g. the collapse of a porous area shaken by the seismic wave from an impact into a regolith layer with high porosity. The required geophysical context is the presence of a sufficiently deep layer of regolith, a suitable distribution of size and shapes of its constituents, a deposit under low velocity and low pressure conditions, and a specific seismic history. These conditions are met by the giant impacts on Vesta, the 'intermediate' gravity (escape velocity sufficient for retention of ejecta but small for complete structural destruction by re-impactors), and the environment of craters of intermediate diameter (in the range of 10 km). Then significantly deep layers with similar properties can be created with the intact porosity of a fractal aggregate (Kaye, 1989). Diagnostic data are the histograms of the local distribution, the determination of surface roughness on all scales. Test areas on opposite sides of Vesta with areas of 400 km2 show differences in the abundance of pit craters to normal ones by a factor of two. Locally the fraction of pit craters exceeds 50% of all, whereas elsewhere they are obviously rare. Since under-abundance is found in the low albedo hemisphere of Vesta, a correlation with composition is indicated. The existence of the necessary conditions for the formation of a porous regolith has been tested by calculation of the trajectories of crater ejecta on the rapidly rotating object Vesta. Results show that on the trailing side of the original impact the opportunity for very slow re-impacts (less than a few meters per second) is significantly enhanced. Also the traveling times for the seismic wave and the arrival of ejecta have been compared, resulting in consistent details of the distance distribution of the related compactions. Further evidence comes from the analysis of brightness profiles of the surface which demonstrates local smoothing. The distribution of diameter ratio of halo to central depression matches that found for the Iovian satellite Callisto, thus hinting to the granular fluidity of the regolith on Vesta. Another unique type of interacting craters on Vesta is shown, which is related to different stages of compaction of the regolith. Concluding, it is shown that for individual features strong indications are found for a common origin of a crater and a surrounding halo by identifiable processes. A completely equivalent environment of impacts has been created by Lohse et al (2004) in laboratory, resulting in strikingly similar features. Therefore the paradigms of crater erosion and saturation have to be expanded to porous collapses. Age determinations by crater counts are affected. Although it is obvious that also some of these features were created by chance, even then the outcome in the sense of a compaction process can be studied.
Mapping photometric metallicities in the Galactic halo using broadband photometry
NASA Astrophysics Data System (ADS)
Hebenstreit, Samuel David; Nidever, David L.; Munn, Jeffrey A.; Majewski, Steven R.
2018-06-01
An important objective of modern Astrophysics is to trace the history of galaxies and the dynamics of their formations. The outer regions of the Milky Way, including the Galactic halo, could potentially elucidate the evolutionary history of our galaxy. In this study, we make use of extensive DDO51 photometry combined with SDSS broadband photometry to select giant stars reaching to 90 kpc. Photometric metallicities, calibrated by overlapping spectroscopic data (SDSS, APOGEE and LAMOST), and distances are calculated for all giant stars. Using these metallicities and distances, we construct metallicity distribution functions (MDFs) from these stars. We study the MDFs for information pertaining to the accretion history of the Milky Way.
Comparative analysis of proton- and neutron-halo breakups
NASA Astrophysics Data System (ADS)
Mukeru, B.
2018-06-01
A detailed analysis of the proton- and neutron-halo breakup cross sections is presented. Larger neutron-halo breakup cross sections than proton-halo breakup cross sections are obtained. This is found to be mainly due to the projectile structure, namely the ground state wave function and the dipole electric response function. It is also found that the continuum–continuum couplings are stronger in the proton-halo breakup than in the neutron-halo breakup. The increase of proton- and neutron-halo ground state separation energy slightly strengthens these couplings in the proton- and neutron-halo total and nuclear breakups, while they are weakened in the proton- and neutron-halo Coulomb breakups. The Coulomb-nuclear interference remains strongly destructive in both proton- and neutron-halo breakups and this is independent of the ground state separation energy. The results also show that the increase of the neutron-halo ground state separation energy decreases significantly the agreement between the proton- and neutron-halo breakup cross sections, both qualitatively and quantitatively. It is obtained that when the proton-halo ground state separation energy is increased by a factor of 4.380, the proton-halo breakup cross section is reduced by a factor of 4.392, indicating a clear proportionality. However, when the neutron-halo ground state separation energy is increased by the same factor, the neutron-halo total breakup cross section is reduced by a factor of 8.522.
Halo Intrinsic Alignment: Dependence on Mass, Formation Time, and Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Qianli; Kang, Xi; Wang, Peng
In this paper we use high-resolution cosmological simulations to study halo intrinsic alignment and its dependence on mass, formation time, and large-scale environment. In agreement with previous studies using N -body simulations, it is found that massive halos have stronger alignment. For the first time, we find that for a given halo mass older halos have stronger alignment and halos in cluster regions also have stronger alignment than those in filaments. To model these dependencies, we extend the linear alignment model with inclusion of halo bias and find that the halo alignment with its mass and formation time dependence canmore » be explained by halo bias. However, the model cannot account for the environment dependence, as it is found that halo bias is lower in clusters and higher in filaments. Our results suggest that halo bias and environment are independent factors in determining halo alignment. We also study the halo alignment correlation function and find that halos are strongly clustered along their major axes and less clustered along the minor axes. The correlated halo alignment can extend to scales as large as 100 h {sup −1} Mpc, where its feature is mainly driven by the baryon acoustic oscillation effect.« less
Revealing the Cosmic Web-dependent Halo Bias
NASA Astrophysics Data System (ADS)
Yang, Xiaohu; Zhang, Youcai; Lu, Tianhuan; Wang, Huiyuan; Shi, Feng; Tweed, Dylan; Li, Shijie; Luo, Wentao; Lu, Yi; Yang, Lei
2017-10-01
Halo bias is the one of the key ingredients of the halo models. It was shown at a given redshift to be only dependent, to the first order, on the halo mass. In this study, four types of cosmic web environments—clusters, filaments, sheets, and voids—are defined within a state-of-the-art high-resolution N-body simulation. Within these environments, we use both halo-dark matter cross correlation and halo-halo autocorrelation functions to probe the clustering properties of halos. The nature of the halo bias differs strongly between the four different cosmic web environments described here. With respect to the overall population, halos in clusters have significantly lower biases in the {10}11.0˜ {10}13.5 {h}-1 {M}⊙ mass range. In other environments, however, halos show extremely enhanced biases up to a factor 10 in voids for halos of mass ˜ {10}12.0 {h}-1 {M}⊙ . Such a strong cosmic web environment dependence in the halo bias may play an important role in future cosmological and galaxy formation studies. Within this cosmic web framework, the age dependency of halo bias is found to be only significant in clusters and filaments for relatively small halos ≲ {10}12.5 {h}-1 {M}⊙ .
Observational Corollaries of Proto-AGN: Understanding Formation of Supermassive Black Hole Seeds
NASA Astrophysics Data System (ADS)
Shlosman, Isaac
2016-10-01
Formation of supermassive black holes (SMBHs) is still an enigma. Recent detections of high-z quasars which harbor massive SMBHs provide a challenge to models of structure buildup in the universe. Main alternatives for the formation of SMBH seeds are (1) remnants of Population III stars, and (2) a direct baryonic collapse within dark matter (DM) halos of 10^8 Mo -- first halos whose virial temperature exceeds 10^4 K, and which can lead to the formation of proto-AGN -- luminous pre-SMBH objects. Potentially, this can involve both high-z objects as well as low-z dwarf galaxies in voids. We focus on the direct collapse in 10^8 Mo halos which circumvents the pitfalls of Pop III remnants. The collapse can proceed via a radiation pressure-supported quasistar -- with a modified blackbody continuum. Such a configuration requires a very efficient angular momentum transfer. Or, it can form a thick, differentially rotating, self-gravitating disk, which is associated with an X-ray-infrared continuum and Seyfert-level luminosity, anisotropic emission, massive bi-conical outflows, and will be a powerful source of the Ly-alpha emission. We propose to perform radiative transfer in the continuum and hydrogen lines (e.g., Lyman and Balmer), using our models of proto-AGN, and do it on-the-fly -- concurrently with the collapse. We shall test the path to quasistellar and disky proto-AGN, produce first synthetic spectra of proto-AGN, and address the issue of feasibility of their detection by the JWST. Finally, we shall develop the strategy of searching for these objects at high- and low-z, based on the specific features in the spectra and associated variability.
A MegaCam Survey of Outer Halo Satellites. I. Description of the Survey
NASA Astrophysics Data System (ADS)
Muñoz, Ricardo R.; Côté, Patrick; Santana, Felipe A.; Geha, Marla; Simon, Joshua D.; Oyarzún, Grecco A.; Stetson, Peter B.; Djorgovski, S. G.
2018-06-01
We describe a deep, systematic imaging study of satellites in the outer halo of the Milky Way. Our sample consists of 58 stellar overdensities—i.e., substructures classified as either globular clusters, classical dwarf galaxies, or ultra-faint dwarf galaxies—that are located at Galactocentric distances of R GC ≥ 25 kpc (outer halo) and out to ∼400 kpc. This includes 44 objects for which we have acquired deep, wide-field, g- and r-band imaging with the MegaCam mosaic cameras on the 3.6 m Canada–France–Hawaii Telescope and the 6.5 m Magellan-Clay telescope. These data are supplemented by archival imaging, or published gr photometry, for an additional 14 objects, most of which were discovered recently in the Dark Energy Survey (DES). We describe the scientific motivation for our survey, including sample selection, observing strategy, data reduction pipeline, calibration procedures, and the depth and precision of the photometry. The typical 5σ point-source limiting magnitudes for our MegaCam imaging—which collectively covers an area of ≈52 deg2—are g lim ≃ 25.6 and r lim ≃ 25.3 AB mag. These limits are comparable to those from the coadded DES images and are roughly a half-magnitude deeper than will be reached in a single visit with the Large Synoptic Survey Telescope. Our photometric catalog thus provides the deepest and most uniform photometric database of Milky Way satellites available for the foreseeable future. In other papers in this series, we have used these data to explore the blue straggler populations in these objects, their density distributions, star formation histories, scaling relations, and possible foreground structures.
MUSE spectroscopy and deep observations of a unique compact JWST target, lensing cluster CLIO
NASA Astrophysics Data System (ADS)
Griffiths, Alex; Conselice, Christopher J.; Alpaslan, Mehmet; Frye, Brenda L.; Diego, Jose M.; Zitrin, Adi; Yan, Haojing; Ma, Zhiyuan; Barone-Nugent, Robert; Bhatawdekar, Rachana; Driver, Simon P.; Robotham, Aaron S. G.; Windhorst, Rogier A.; Wyithe, J. Stuart B.
2018-04-01
We present the results of a VLT MUSE/FORS2 and Spitzer survey of a unique compact lensing cluster CLIO at z = 0.42, discovered through the GAMA survey using spectroscopic redshifts. Compact and massive clusters such as this are understudied, but provide a unique prospective on dark matter distributions and for finding background lensed high-z galaxies. The CLIO cluster was identified for follow-up observations due to its almost unique combination of high-mass and dark matter halo concentration, as well as having observed lensing arcs from ground-based images. Using dual band optical and infra-red imaging from FORS2 and Spitzer, in combination with MUSE optical spectroscopy we identify 89 cluster members and find background sources out to z = 6.49. We describe the physical state of this cluster, finding a strong correlation between environment and galaxy spectral type. Under the assumption of an NFW profile, we measure the total mass of CLIO to be M200 = (4.49 ± 0.25) × 1014 M⊙. We build and present an initial strong-lensing model for this cluster, and measure a relatively low intracluster light (ICL) fraction of 7.21 ± 1.53 per cent through galaxy profile fitting. Due to its strong potential for lensing background galaxies and its low ICL, the CLIO cluster will be a target for our 110 h James Webb Space Telescope `Webb Medium-Deep Field' (WMDF) GTO program.
Wet disc contraction to galactic blue nuggets and quenching to red nuggets
NASA Astrophysics Data System (ADS)
Dekel, A.; Burkert, A.
2014-02-01
We study the origin of high-redshift, compact, quenched spheroids (red nuggets) through the dissipative shrinkage of gaseous discs into compact star-forming systems (blue nuggets). The discs, fed by cold streams, undergo violent disc instability that drives gas into the centre (along with mergers). The inflow is dissipative when its time-scale is shorter than the star formation time-scale. This implies a threshold of ˜0.28 in the cold-to-total mass ratio within the disc radius. For the typical gas fraction ˜0.5 at z ˜ 2, this threshold is traced back to a maximum spin parameter of ˜0.05, implying that ˜half the star-forming galaxies contract to blue nuggets, while the rest form extended stellar discs. Thus, the surface density of blue galaxies is expected to be bimodal about ˜109 M⊙ kpc-2, slightly increasing with mass. The blue nuggets are expected to be rare at low z when the gas fraction is low. The blue nuggets quench to red nuggets by complementary internal and external mechanisms. Internal quenching by a compact bulge, in a fast mode and especially at high z, may involve starbursts, stellar and active galactic nucleus feedback, or Q-quenching. Quenching due to hot-medium haloes above 1012 M⊙ provides maintenance and a slower mode at low redshift. These predictions are confirmed in simulations and are consistent with observations at z = 0-3.
Westerbork Synthesis Radio Telescope HI Imaging of HI-selected Local Group Galaxy Candidates
NASA Astrophysics Data System (ADS)
Adams, Elizabeth A.; Cannon, J. M.; Oosterloo, T.; Giovanelli, R.; Haynes, M. P.
2014-01-01
The paucity of low mass galaxies in the Universe is a long-standing problem. We recently presented a set of isolated ultra-compact high velocity clouds (UCHVCs) identified within the dataset of the Arecibo Legacy Fast ALFA (ALFALFA) HI line survey that are consistent with representing low mass gas-bearing dark matter halos within the Local Group (Adams et al. 2013). At distances of ~1 Mpc, the UCHVCs have HI masses of ~10^5 Msun and indicative dynamical masses of ~10^7 Msun. The HI diameters of the UCHVCs range from 4' to 20', or 1 to 6 kpc at a distance of 1 Mpc. We have selected the most compact and isolated UCHVCs with the highest average column densities as representing the best galaxy candidates. Seven of these systems have been observed with WSRT to enable higher spatial resolution 40-60") studies of the HI distribution. The HI morphology revealed by the WSRT data offers clues to the environment of the UCHVCs, and velocity fields allow the underlying mass distribution to be constrained. The Cornell ALFALFA team is supported by NSF AST-1107390 and by the Brinson Foundation. JMC is supported by NSF grant AST-1211683.
Relativistic compact stars with charged anisotropic matter
NASA Astrophysics Data System (ADS)
Maurya, S. K.; Banerjee, Ayan; Channuie, Phongpichit
2018-05-01
In this article, we perform a detailed theoretical analysis of new exact solutions with anisotropic fluid distribution of matter for compact objects subject to hydrostatic equilibrium. We present a family solution to the Einstein-Maxwell equations describing a spherically symmetric, static distribution of a fluid with pressure anisotropy. We implement an embedding class one condition to obtain a relation between the metric functions. We generalize the properties of a spherical star with hydrostatic equilibrium using the generalised Tolman-Oppenheimer-Volkoff (TOV) equation. We match the interior solution to an exterior Reissner-Nordström one, and study the energy conditions, speed of sound, and mass-radius relation of the star. We also show that the obtained solutions are compatible with observational data for the compact object Her X-1. Regarding our results, the physical behaviour of the present model may serve for the modeling of ultra compact objects.
Gravitationally Focused Dark Matter around Compact Stars
NASA Astrophysics Data System (ADS)
Bromley, Benjamin C.
2011-12-01
If dark matter self-annihilates then it may produce an observable signal when its density is high. The details depend on the intrinsic properties of dark matter and how it clusters in space. For example, the density profile of some dark matter candidates may rise steeply enough toward the Galactic Center that self-annihilation may produce detectable γ-ray emission. Here, we discuss the possibility that an annihilation signal arises near a compact object (e.g., neutron star or black hole) even when the density of dark matter in the neighborhood of the object is uniform. Gravitational focusing produces a local enhancement of density with a profile that falls off approximately as the inverse square-root of distance from the compact star. While geometric dilution may overwhelm the annihilation signal from this local enhancement, magnetic fields tied to the compact object can increase the signal's contrast relative to the background.
On the number of light rings in curved spacetimes of ultra-compact objects
NASA Astrophysics Data System (ADS)
Hod, Shahar
2018-01-01
In a very interesting paper, Cunha, Berti, and Herdeiro have recently claimed that ultra-compact objects, self-gravitating horizonless solutions of the Einstein field equations which have a light ring, must possess at least two (and, in general, an even number of) light rings, of which the inner one is stable. In the present compact paper we explicitly prove that, while this intriguing theorem is generally true, there is an important exception in the presence of degenerate light rings which, in the spherically symmetric static case, are characterized by the simple dimensionless relation 8 πrγ2 (ρ +pT) = 1 [here rγ is the radius of the light ring and { ρ ,pT } are respectively the energy density and tangential pressure of the matter fields]. Ultra-compact objects which belong to this unique family can have an odd number of light rings. As a concrete example, we show that spherically symmetric constant density stars with dimensionless compactness M / R = 1 / 3 possess only one light ring which, interestingly, is shown to be unstable.
CEMP Stars in the Halo and Their Origin in Ultra-Faint Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Beers, Timothy C.
2018-06-01
The very metal-poor (VMP; [Fe/H] < –2.0) and extremely metal-poor (EMP; [Fe/H] < –3.0) stars provide a direct view of Galactic chemical and dynamical evolution; detailed spectroscopic studies of these objects are the best way to identify and distinguish between various scenarios for the enrichment of early star-forming gas clouds soon after the Big Bang. It has been recognized that a large fraction of VMP (15-20%) and EMP stars (30-40%) possess significant over-abundances of carbon relative to iron, [C/Fe] > +0.7. This fraction rises to at least 80% for stars with [Fe/H] < –4.0. Recent studies show that the majority of CEMP stars with [Fe/H] < –3.0 belong to the CEMP-no sub-class, characterized by the lack of strong enhancements in the neutron-capture elements (e.g., [Ba/Fe] < 0.0). The CEMP-no abundance signature is commonly observed among stars ultra-faint dwarf spheroidal galaxies such as SEGUE-1. In addition, kinematic studies of CEMP-no stars strongly suggest an association with the outer-halo population of the Galaxy, which was likely formed from the accretion of low-mass mini-halos. These observations, and other lines of evidence, indicate that the CEMP-no stars of the Milky Way were born in low-mass dwarf galaxies, and later subsumed into the halo.
Effects of spatial coherence in diffraction phase microscopy.
Edwards, Chris; Bhaduri, Basanta; Nguyen, Tan; Griffin, Benjamin G; Pham, Hoa; Kim, Taewoo; Popescu, Gabriel; Goddard, Lynford L
2014-03-10
Quantitative phase imaging systems using white light illumination can exhibit lower noise figures than laser-based systems. However, they can also suffer from object-dependent artifacts, such as halos, which prevent accurate reconstruction of the surface topography. In this work, we show that white light diffraction phase microscopy using a standard halogen lamp can produce accurate height maps of even the most challenging structures provided that there is proper spatial filtering at: 1) the condenser to ensure adequate spatial coherence and 2) the output Fourier plane to produce a uniform reference beam. We explain that these object-dependent artifacts are a high-pass filtering phenomenon, establish design guidelines to reduce the artifacts, and then apply these guidelines to eliminate the halo effect. Since a spatially incoherent source requires significant spatial filtering, the irradiance is lower and proportionally longer exposure times are needed. To circumvent this tradeoff, we demonstrate that a supercontinuum laser, due to its high radiance, can provide accurate measurements with reduced exposure times, allowing for fast dynamic measurements.
Leniency and halo effects in marking undergraduate short research projects.
McKinstry, Brian H; Cameron, Helen S; Elton, Robert A; Riley, Simon C
2004-11-29
Supervisors are often involved in the assessment of projects they have supervised themselves. Previous research suggests that detailed marking sheets may alleviate leniency and halo effects. We set out to determine if, despite using such a marking schedule, leniency and halo effects were evident in the supervisors' marking of undergraduate short research projects (special study modules (SSM)). Review of grades awarded by supervisors, second markers and control markers to the written reports of 4th year medical students who had participated in an SSM during two full academic years (n = 399). Paired t-tests were used to compare mean marks, Pearson correlation to look at agreement between marks and multiple linear regression to test the prediction of one mark from several others adjusted for one another. There was a highly significant difference of approximately half a grade between supervisors and second markers with supervisors marking higher. (t = 3.12, p < 0.01, difference in grade score = 0.42, 95% CI for mean difference 0.18-0.80). There was a high correlation between the two marks awarded for performance of the project and the written report by the supervisor (r = 0.75), but a low-modest correlation between supervisor and second marker (r = 0.28). Linear regression analysis of the influence of the supervisors' mark for performance on their mark for the report gave a non-significant result. This suggests a leniency effect but no halo effect. This study shows that with the use of structured marking sheet for assessment of undergraduate medical students, supervisors marks are not associated with a halo effect, but leniency does occur. As supervisor assessment is becoming more common in both under graduate and postgraduate teaching new ways to improve objectivity in marking and to address the leniency of supervisors should be sought.
NIHAO - XIV. Reproducing the observed diversity of dwarf galaxy rotation curve shapes in ΛCDM
NASA Astrophysics Data System (ADS)
Santos-Santos, Isabel M.; Di Cintio, Arianna; Brook, Chris B.; Macciò, Andrea; Dutton, Aaron; Domínguez-Tenreiro, Rosa
2018-02-01
The significant diversity of rotation curve (RC) shapes in dwarf galaxies has recently emerged as a challenge to Λ cold dark matter (ΛCDM): in dark matter (DM) only simulations, DM haloes have a universal cuspy density profile that results in self-similar RC shapes. We compare RC shapes of simulated galaxies from the NIHAO (Numerical Investigation of a Hundred Astrophysical Objects) project with observed galaxies from the homogeneous SPARC data set. The DM haloes of the NIHAO galaxies can expand to form cores, with the degree of expansion depending on their stellar-to-halo mass ratio. By means of the V2kpc-VRlast relation (where VRlast is the outermost measured rotation velocity), we show that both the average trend and the scatter in RC shapes of NIHAO galaxies are in reasonable agreement with SPARC: this represents a significant improvement compared to simulations that do not result in DM core formation, suggesting that halo expansion is a key process in matching the diversity of dwarf galaxy RCs. Note that NIHAO galaxies can reproduce even the extremely slowly rising RCs of IC 2574 and UGC 5750. Revealingly, the range where observed galaxies show the highest diversity corresponds to the range where core formation is most efficient in NIHAO simulations, 50 < VRlast/km s-1 < 100. A few observed galaxies in this range cannot be matched by any NIHAO RC nor by simulations that predict a universal halo profile. Interestingly, the majority of these are starbursts or emission-line galaxies, with steep RCs and small effective radii. Such galaxies represent an interesting observational target providing new clues to the process/viability of cusp-core transformation, the relationship between starburst and inner potential well, and the nature of DM.
NASA Astrophysics Data System (ADS)
Bonamigo, Mario; Despali, Giulia; Limousin, Marceau; Angulo, Raul; Giocoli, Carlo; Soucail, Geneviève
2015-05-01
For the last 30 yr many observational and theoretical evidences have shown that galaxy clusters are not spherical objects, and that their shape is much better described by a triaxial geometry. With the advent of multiwavelength data of increasing quality, triaxial investigations of galaxy clusters is gathering a growing interest from the community, especially in the time of `precision cosmology'. In this work, we aim to provide the first statistically significant predictions in the unexplored mass range above 3 × 1014 M⊙h-1, using haloes from two redshift snapshots (z = 0 and z = 1) of the Millennium XXL simulation. The size of this cosmological dark matter-only simulation (4.1 Gpc) allows the formation of a statistically significant number of massive cluster scale haloes (≈500 with M > 2× 1015 M⊙ h-1, and 780 000 with M > 1014 M⊙ h-1). Besides, we aim to extend this investigation to lower masses in order to look for universal predictions across nearly six orders of magnitude in mass, from 1010 to almost 1016 M⊙ h-1. For this purpose we use the SBARBINE simulations, allowing us to model haloes of masses starting from ≈1010 M⊙ h-1. We use an elliptical overdensity method to select haloes and compute the shapes of the unimodal ones (approximately 50 per cent), while we discard the more unrelaxed. The minor to major and intermediate to major axis ratio distributions are found to be well described by simple universal functional forms that do not depend on cosmology or redshift. Our results extend the findings of Jing & Suto to a higher precision and a wider range of mass. This `recipe' is made available to the community in this paper and in a dedicated web page.
Accretion torques in X-ray pulsars
NASA Technical Reports Server (NTRS)
Rappaport, S.; Joss, P. C.
1977-01-01
An analysis of the accretion process in an X-ray pulsar, whereby angular momentum is transferred to the star and its rotation period is changed, is presented, and an expression for the fractional rate of change of the pulse period in terms of X-ray luminosity and other star parameters is derived. It is shown that observed characteristic spin-up time scales for seven X-ray pulsars strongly support the view that in every source (1) the pulse period reflects the rotation period of a compact object, (2) the accretion is mediated by a disk surrounding the compact object and rotating in the same sense, and (3) the compact object is a neutron star rather than a white dwarf.
REVIEWS OF TOPICAL PROBLEMS: Axisymmetric stationary flows in compact astrophysical objects
NASA Astrophysics Data System (ADS)
Beskin, Vasilii S.
1997-07-01
A review is presented of the analytical results available for a large class of axisymmetric stationary flows in the vicinity of compact astrophysical objects. The determination of the two-dimensional structure of the poloidal magnetic field (hydrodynamic flow field) faces severe difficulties, due to the complexity of the trans-field equation for stationary axisymmetric flows. However, an approach exists which enables direct problems to be solved even within the balance law framework. This possibility arises when an exact solution to the equation is available and flows close to it are investigated. As a result, with the use of simple model problems, the basic features of supersonic flows past real compact objects are determined.
VizieR Online Data Catalog: WINGS: Deep optical phot. of 77 nearby clusters (Varela+, 2009)
NASA Astrophysics Data System (ADS)
Varela, J.; D'Onofrio, M.; Marmo, C.; Fasano, G.; Bettoni, D.; Cava, A.; Couch, J. W.; Dressler, A.; Kjaergaard, P.; Moles, M.; Pignatelli, E.; Poggianti, M. B.; Valentinuzzi, T.
2009-05-01
This is the second paper of a series devoted to the WIde Field Nearby Galaxy-cluster Survey (WINGS). WINGS is a long term project which is gathering wide-field, multi-band imaging and spectroscopy of galaxies in a complete sample of 77 X-ray selected, nearby clusters (0.04200deg). The main goal of this project is to establish a local reference for evolutionary studies of galaxies and galaxy clusters. This paper presents the optical (B,V) photometric catalogs of the WINGS sample and describes the procedures followed to construct them. We have paid special care to correctly treat the large extended galaxies (which includes the brightest cluster galaxies) and the reduction of the influence of the bright halos of very bright stars. We have constructed photometric catalogs based on wide-field images in B and V bands using SExtractor. Photometry has been performed on images in which large galaxies and halos of bright stars were removed after modeling them with elliptical isophotes. We publish deep optical photometric catalogs (90% complete at V21.7, which translates to ~ MV* + 6 at mean redshift), giving positions, geometrical parameters, and several total and aperture magnitudes for all the objects detected. For each field we have produced three catalogs containing galaxies, stars and objects of "unknown" classification (~16%). From simulations we found that the uncertainty of our photometry is quite dependent of the light profile of the objects with stars having the most robust photometry and de Vaucouleurs profiles showing higher uncertainties and also an additional bias of ~-0.2m. The star/galaxy classification of the bright objects (V<20) was checked visually making negligible the fraction of misclassified objects. For fainter objects, we found that simulations do not provide reliable estimates of the possible misclassification and therefore we have compared our data with that from deep counts of galaxies and star counts from models of our Galaxy. Both sets turned out to be consistent with our data within ~5% (in the ratio galaxies/total) up to V~24. Finally, we remark that the application of our special procedure to remove large halos improves the photometry of the large galaxies in our sample with respect to the use of blind automatic procedures and increases (~16%) the detection rate of objects projected onto them. (4 data files).
NASA Astrophysics Data System (ADS)
Liu, D.; Medley, S. S.; Gorelenkova, M. V.; Heidbrink, W. W.; Stagner, L.
2014-10-01
A cloud of halo neutrals is created in the vicinity of beam footprint during the neutral beam injection and the halo neutral density can be comparable with beam neutral density. Proper modeling of halo neutrals is critical to correctly interpret neutral particle analyzers (NPA) and fast ion D-alpha (FIDA) signals since these signals strongly depend on local beam and halo neutral density. A 3D halo neutral model has been recently developed and implemented inside TRANSP code. The 3D halo neutral code uses a ``beam-in-a-box'' model that encompasses both injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset of the full, one-half and one-third beam energy components produce thermal halo neutrals that are tracked through successive halo neutral generations until an ionization event occurs or a descendant halo exits the box. A benchmark between 3D halo neural model in TRANSP and in FIDA/NPA synthetic diagnostic code FIDASIM is carried out. Detailed comparison of halo neutral density profiles from two codes will be shown. The NPA and FIDA simulations with and without 3D halos are applied to projections of plasma performance for the National Spherical Tours eXperiment-Upgrade (NSTX-U) and the effects of halo neutral density on NPA and FIDA signal amplitude and profile will be presented. Work supported by US DOE.
Formation of Compact Ellipticals in the merging star cluster scenario
NASA Astrophysics Data System (ADS)
Urrutia Zapata, Fernanda Cecilia; Theory and star formation group
2018-01-01
In the last years, extended old stellar clusters have been observed. They are like globular clusters (GCs) but with larger sizes(a limit of Re=10 pc is currently seen as reasonable). These extended objects (EOs) cover a huge range of mass. Objects at the low mass end with masses comparable to normal globular clusters are called extended clusters or faint fuzzies Larsen & Brodie (2000) and objects at the high-mass end are called ultra compact dwarf galaxies (UCDs). Ultra compact dwarf galaxies are compact object with luminositys above the brigtest known GCs. UCDs are more compact than typical dwarf galaxies but with comparable luminosities. Usually, a lower mass limit of 2 × 10^6 Solar masses is applied.Fellhauer & Kroupa (2002a,b) demostrated that object like ECs, FFs and UCDs can be the remnants of the merger of star clusters complexes, this scenario is called the Merging Star Cluster Scenario. Amore concise study was performed by Bruens et al. (2009, 2011).Our work tries to explain the formation of compact elliptical(cE). These objects are a comparatively rare class of spheroidal galaxies, possessing very small Re and high central surface brightnesses (Faber 1973). cEs have the same parameters as extended objects but they are slightly larger than 100 pc and the luminosities are in the range of -11 to -12 Mag.The standard formation sceanrio of these systems proposes a galaxy origin. CEs are the result of tidal stripping and truncation of nucleated larger systems. Or they could be a natural extension of the class of elliptical galaxies to lower luminosities and smaller sizes.We want to propose a completely new formation scenario for cEs. In our project we try to model cEs in a similar way that UCDs using the merging star cluster scenario extended to much higher masses and sizes. We think that in the early Universe we might have produced sufficiently strong star bursts to form cluster complexes which merge into cEs. So far it is observationally unknown if cEs are dark matter dominated objects. If our scenario is true, then they would be dark matter free very extended and massive "star clusters".
Environmental screening of dark matter haloes in f(R) gravity
NASA Astrophysics Data System (ADS)
Shi, Difu; Li, Baojiu; Han, Jiaxin
2017-07-01
In certain theories of modified gravity, Solar system constraints on deviations from general relativity (GR) are satisfied by virtue of a so-called screening mechanism, which enables the theory to revert to GR in regions where the matter density is high or the gravitational potential is deep. In the case of chameleon theories, the screening has two contributions - self-screening, which is due to the mass of an object itself, and environmental screening, which is caused by the surrounding matter - which are often entangled, with the second contribution being more crucial for less massive objects. A quantitative understanding of the effect of the environment on the screening can prove critical in observational tests of such theories using systems such as the Local Group and dwarf galaxies, for which the environment may be inferred in various ways. We use the high-resolution liminality simulation of Shi et al. to test the fidelity of different definitions of environment. We find that, although the different ways to define environment in practice do not agree with one another perfectly, they can provide useful guidance, and cross checks about how well a dark matter halo is screened. In addition, the screening of subhaloes in dark matter haloes is primarily determined by the environment, with the subhalo mass playing a minor role, which means that lower resolution simulations where subhaloes are not well resolved can still be useful for understanding the modification of gravity inside subhaloes.
Exploring Hot Gas at Junctions of Galaxy Filaments
NASA Astrophysics Data System (ADS)
Mitsuishi, Ikuyuki; Yamasaki, Noriko; Kawahara, Hajime; Sekiya, Norio; Sasaki, Shin; Sousbie, Thierry
Because galaxies are forced to follow the strong gravitational potential created by the underlying cosmic web of the dark matter, their distribution reflects its filamentary structures. By identifying the filamentary structures, one can therefore recover a map of the network that drives structure formation. Filamentary junctions are regions of particular interest as they identify places where mergers and other interesting astrophysical phenomena have high chances to occur. We identified the galaxy filaments by our original method (Sousbie (2011) & Sousbie et al. (2011)) and X-ray pointing observations were conducted for the six fields locating in the junctions of the galaxy filaments where no specific diffuse X-ray emissions had previously been detected so far. We discovered significant X-ray signals in their images and spectra of the all regions. Spectral analysis demonstrated that six sources originate from diffuse emissions associated with optically bright galaxies, group-scale, or cluster-scale X-ray halos with kT˜1-4 keV, while the others are compact object origin. Interestingly, all of the newly discovered three intracluster media show peculiar features such as complex or elongated morphologies in X-ray and/or optical and hot spot involved in ongoing merger events (Kawahara et al. (2011) & Mitsuishi et al. (2014)). In this conference, results of follow-up radio observations for the merging groups as well as the details of the X-ray observations will be reported.
Classifying and Finding Nearby Compact Stellar Systems
NASA Astrophysics Data System (ADS)
Colebaugh, Alexander; Cunningham, Devin; Dixon, Christopher; Romanowsky, Aaron; Striegel, Stephanie
2018-01-01
Compact stellar systems (CSSs) such as compact ellipticals (cEs) and ultracompact dwarfs (UCDs) are relatively rare and poorly understood types of galaxies. To build a more complete picture of these objects, we create search queries using the Sloan Digital Sky Survey, to inventory CSSs in the nearby universe and to explore their properties. We develop an objective set of criteria for classifying cEs, and use these to construct a large, novel catalog of cEs both during and after formation. We also investigate the numbers of cEs and UCDs around nearby giant galaxies.
GRB070125: The First Long-Duration Gamma-Ray Burst in a Halo Environment
NASA Technical Reports Server (NTRS)
Bradley, Cenko S.; Fox, Derek B.; Penprase, Brian E.; Kulkarni, Shri R.; Price, Paul A.; Berger, Edo; Kulkarni, Shri R.; Harrison, Fiona A.; Gal-Yam, Avishay; Ofek, Eran O.;
2007-01-01
We present the discovery and high signal-to-noise spectroscopic observations of the optical afterglow of the long-duration gamma-ray burst GRB070125. Unlike all previously observed long-duration afterglows in the redshift range 0.5 < z < 2.0, we find no strong (rest-frame equivalent width W > 1.0 A) absorption features in the wavelength range 4000 - 10000 A. The sole significant feature is a weak doublet we identify as Mg 11 2796 (W = 0.18 +/- 0.02 A), 2803 (W = 0.08 +0I.-01 ) at z = 1.5477 +/- 0.0001. The low observed Mg II and inferred H I column densities are typically observed in galactic halos, far away from the bulk of massive star formation. Deep ground-based imaging reveals no host directly underneath the afterglow to a limit of R > 25.4 mag. Either of the two nearest blue galaxies could host GRB070125; the large offset (d >= 27 kpc) would naturally explain the low column density. To remain consistent with the large local (i.e. parsec scale) circum-burst density inferred from broadband afterglow observations, we speculate GRB070125 may have occurred far away from the disk of its host in a compact star-forming cluster. Such distant stellar clusters, typically formed by dynamical galaxy interactions, have been observed in the nearby universe, and should be more prevalent at z>l where galaxy mergers occur more frequently.
How Many-Body Correlations and α Clustering Shape He 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romero-Redondo, Carolina; Quaglioni, Sofia; Navrátil, Petr
The Borromean 6He nucleus is an exotic system characterized by two halo neutrons orbiting around a compact 4He (or α) core, in which the binary subsystems are unbound. The simultaneous reproduction of its small binding energy and extended matter and point-proton radii has been a challenge for ab initio theoretical calculations based on traditional bound-state methods. Using soft nucleon-nucleon interactions based on chiral effective field theory potentials, we show that supplementing the model space with 4He + n + n cluster degrees of freedom largely solves this issue. Lastly, we analyze the role played by α clustering and many-body correlations,more » and study the dependence of the energy spectrum on the resolution scale of the interaction.« less
Mega-geomorphology and neotectonics
NASA Technical Reports Server (NTRS)
Lattman, L. H.
1985-01-01
For several decades, subtle neotectonic effects involving several square kilometers have been studied in detail using remote sensing, primarily various types of stereo-aerial photographs at scales of 1:10,000 to 1:80,000. These subtle effects, especially local uplifts associated with growing structures of differential compaction, have been detected by the effect on drainage patterns, changes in hydraulic geometry of individuals channels or groups of channels, tonal halos (soil) and fracture patterns. The studies were extended with the advent of thermal IR imagery particularly in tonal analysis, and SLAR primarily in fracture pattern studies. Lately, quantitative efforts have begun attempting to link measured uplift over known structures with measured changes in hydraulic geometry and alluvial deposition. Thus, efforts are now underway attempting to quantify the relationship between neo- (micro-) tectonic changes and geomorphic parameters of drainage systems.
Role of Massive Stars in the Evolution of Primitive Galaxies
NASA Technical Reports Server (NTRS)
Heap, Sara
2012-01-01
An important factor controlling galaxy evolution is feedback from massive stars. It is believed that the nature and intensity of stellar feedback changes as a function of galaxy mass and metallicity. At low mass and metallicity, feedback from massive stars is mainly in the form of photoionizing radiation. At higher mass and metallicity, it is in stellar winds. IZw 18 is a local blue, compact dwarf galaxy that meets the requirements for a primitive galaxy: low halo mass greater than 10(exp 9)Msun, strong photoionizing radiation, no galactic outflow, and very low metallicity,log(O/H)+12=7.2. We will describe the properties of massive stars and their role in the evolution of IZw 18, based on analysis of ultraviolet images and spectra obtained with HST.
The AMIDAS Website: An Online Tool for Direct Dark Matter Detection Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Chung-Lin
2010-02-10
Following our long-erm work on development of model-independent data analysis methods for reconstructing the one-dimensional velocity distribution function of halo WIMPs as well as for determining their mass and couplings on nucleons by using data from direct Dark Matter detection experiments directly, we combined the simulation programs to a compact system: AMIDAS (A Model-Independent Data Analysis System). For users' convenience an online system has also been established at the same time. AMIDAS has the ability to do full Monte Carlo simulations, faster theoretical estimations, as well as to analyze (real) data sets recorded in direct detection experiments without modifying themore » source code. In this article, I give an overview of functions of the AMIDAS code based on the use of its website.« less
How Many-Body Correlations and α Clustering Shape He 6
Romero-Redondo, Carolina; Quaglioni, Sofia; Navrátil, Petr; ...
2016-11-23
The Borromean 6He nucleus is an exotic system characterized by two halo neutrons orbiting around a compact 4He (or α) core, in which the binary subsystems are unbound. The simultaneous reproduction of its small binding energy and extended matter and point-proton radii has been a challenge for ab initio theoretical calculations based on traditional bound-state methods. Using soft nucleon-nucleon interactions based on chiral effective field theory potentials, we show that supplementing the model space with 4He + n + n cluster degrees of freedom largely solves this issue. Lastly, we analyze the role played by α clustering and many-body correlations,more » and study the dependence of the energy spectrum on the resolution scale of the interaction.« less
Predicting gravitational lensing by stellar remnants
NASA Astrophysics Data System (ADS)
Harding, Alexander J.; Stefano, R. Di; Lépine, S.; Urama, J.; Pham, D.; Baker, C.
2018-03-01
Gravitational lensing provides a means to measure mass that does not rely on detecting and analysing light from the lens itself. Compact objects are ideal gravitational lenses, because they have relatively large masses and are dim. In this paper, we describe the prospects for predicting lensing events generated by the local population of compact objects, consisting of 250 neutron stars, five black holes, and ≈35 000 white dwarfs. By focusing on a population of nearby compact objects with measured proper motions and known distances from us, we can measure their masses by studying the characteristics of any lensing event they generate. Here, we concentrate on shifts in the position of a background source due to lensing by a foreground compact object. With Hubble Space Telescope, JWST, and Gaia, measurable centroid shifts caused by lensing are relatively frequent occurrences. We find that 30-50 detectable events per decade are expected for white dwarfs. Because relatively few neutron stars and black holes have measured distances and proper motions, it is more difficult to compute realistic rates for them. However, we show that at least one isolated neutron star has likely produced detectable events during the past several decades. This work is particularly relevant to the upcoming data releases by the Gaia mission and also to data that will be collected by JWST. Monitoring predicted microlensing events will not only help to determine the masses of compact objects, but will also potentially discover dim companions to these stellar remnants, including orbiting exoplanets.
NASA Astrophysics Data System (ADS)
Forster, Linda; Seefeldner, Meinhard; Wiegner, Matthias; Mayer, Bernhard
2017-07-01
Halo displays in the sky contain valuable information about ice crystal shape and orientation: e.g., the 22° halo is produced by randomly oriented hexagonal prisms while parhelia (sundogs) indicate oriented plates. HaloCam, a novel sun-tracking camera system for the automated observation of halo displays is presented. An initial visual evaluation of the frequency of halo displays for the ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) field campaign from October to mid-November 2014 showed that sundogs were observed more often than 22° halos. Thus, the majority of halo displays was produced by oriented ice crystals. During the campaign about 27 % of the cirrus clouds produced 22° halos, sundogs or upper tangent arcs. To evaluate the HaloCam observations collected from regular measurements in Munich between January 2014 and June 2016, an automated detection algorithm for 22° halos was developed, which can be extended to other halo types as well. This algorithm detected 22° halos about 2 % of the time for this dataset. The frequency of cirrus clouds during this time period was estimated by co-located ceilometer measurements using temperature thresholds of the cloud base. About 25 % of the detected cirrus clouds occurred together with a 22° halo, which implies that these clouds contained a certain fraction of smooth, hexagonal ice crystals. HaloCam observations complemented by radiative transfer simulations and measurements of aerosol and cirrus cloud optical thickness (AOT and COT) provide a possibility to retrieve more detailed information about ice crystal roughness. This paper demonstrates the feasibility of a completely automated method to collect and evaluate a long-term database of halo observations and shows the potential to characterize ice crystal properties.
The formation of Dwarf Spheroidal galaxies by the dissolving star cluster model.
NASA Astrophysics Data System (ADS)
Alarcon, Alex; Theory and Star Formation Group
2018-01-01
Dwarf spheroidal (dSph) galaxies are regarded as key object in the formation of larger galaxies and are believed to be the most dark matter dominated systems known. There are several model that attempt to explain their formation, but they have problems to model the formation of isolated dSph. Here we will explain a possible formation scenario in which star clusters form in the dark matter halo of a dSph. these cluster suffer from low star formation efficiency and dissolve while orbiting inside the halo. Thereby they build the faint luminous components that we observe in dSph galaxies. Here we will show the main results of this simulations and how they would be corroborated using observational data.
Design and experimental evaluation of compact radial-inflow turbines
NASA Technical Reports Server (NTRS)
Fredmonski, A. J.; Huber, F. W.; Roelke, R. J.; Simonyi, S.
1991-01-01
The application of a multistage 3D Euler solver to the aerodynamic design of two compact radial-inflow turbines is presented, along with experimental results evaluating and validating the designs. The objectives of the program were to design, fabricate, and rig test compact radial-inflow turbines with equal or better efficiency relative to conventional designs, while having 40 percent less rotor length than current traditionally-sized radial turbines. The approach to achieving these objectives was to apply a calibrated 3D multistage Euler code to accurately predict and control the high rotor flow passage velocities and high aerodynamic loadings resulting from the reduction in rotor length. A comparison of the advanced compact designs to current state-of-the-art configurations is presented.
Galactic Warps in Triaxial Halos
NASA Astrophysics Data System (ADS)
Jeon, Myoungwon; Kim, Sungsoo S.; Ann, Hong Bae
2009-05-01
We study the behavior of galactic disks in triaxial halos both numerically and analytically to see if warps can be excited and sustained in triaxial potentials. We consider the following two scenarios: (1) galactic disks that are initially tilted relative to the equatorial plane of the halo (for a pedagogical purpose), and (2) tilted infall of dark matter relative to the equatorial plane of the disk and the halo. With numerical simulations of 100,000 disk particles in a fixed halo potential, we find that in triaxial halos, warps can be excited and sustained just as in spherical or axisymmetric halos but they show some oscillatory behavior and even can be transformed to a polar-ring system if the halo has a prolate-like triaxiality. The nonaxisymmetric component of the halo causes the disk to nutate, and the differential nutation between the inner and outer parts of the disk generally makes the magnitude of the warp slightly diminish and fluctuate. We also find that warps are relatively weaker in oblate and oblate-like triaxial halos, and since these halos are the halo configurations of disk galaxies inferred by cosmological simulations, our results are consistent with the fact that most of the observed warps are quite weak. We derive approximate formulae for the torques exerted on the disk by the triaxial halo and the dark matter torus, and with these formulae we successfully describe the behavior of the disks in our simulations. The techniques used in deriving these formulae could be applied for realistic halos with more complex structures.
Strong orientation dependence of surface mass density profiles of dark haloes at large scales
NASA Astrophysics Data System (ADS)
Osato, Ken; Nishimichi, Takahiro; Oguri, Masamune; Takada, Masahiro; Okumura, Teppei
2018-06-01
We study the dependence of surface mass density profiles, which can be directly measured by weak gravitational lensing, on the orientation of haloes with respect to the line-of-sight direction, using a suite of N-body simulations. We find that, when major axes of haloes are aligned with the line-of-sight direction, surface mass density profiles have higher amplitudes than those averaged over all halo orientations, over all scales from 0.1 to 100 Mpc h-1 we studied. While the orientation dependence at small scales is ascribed to the halo triaxiality, our results indicate even stronger orientation dependence in the so-called two-halo regime, up to 100 Mpc h-1. The orientation dependence for the two-halo term is well approximated by a multiplicative shift of the amplitude and therefore a shift in the halo bias parameter value. The halo bias from the two-halo term can be overestimated or underestimated by up to ˜ 30 per cent depending on the viewing angle, which translates into the bias in estimated halo masses by up to a factor of 2 from halo bias measurements. The orientation dependence at large scales originates from the anisotropic halo-matter correlation function, which has an elliptical shape with the axis ratio of ˜0.55 up to 100 Mpc h-1. We discuss potential impacts of halo orientation bias on other observables such as optically selected cluster samples and a clustering analysis of large-scale structure tracers such as quasars.
NASA Astrophysics Data System (ADS)
Martinez Aviles, G.; Johnston-Hollitt, M.; Ferrari, C.; Venturi, T.; Democles, J.; Dallacasa, D.; Cassano, R.; Brunetti, G.; Giacintucci, S.; Pratt, G. W.; Arnaud, M.; Aghanim, N.; Brown, S.; Douspis, M.; Hurier, J.; Intema, H. T.; Langer, M.; Macario, G.; Pointecouteau, E.
2018-04-01
Aim. A fraction of galaxy clusters host diffuse radio sources whose origins are investigated through multi-wavelength studies of cluster samples. We investigate the presence of diffuse radio emission in a sample of seven galaxy clusters in the largely unexplored intermediate redshift range (0.3 < z < 0.44). Methods: In search of diffuse emission, deep radio imaging of the clusters are presented from wide band (1.1-3.1 GHz), full resolution ( 5 arcsec) observations with the Australia Telescope Compact Array (ATCA). The visibilities were also imaged at lower resolution after point source modelling and subtraction and after a taper was applied to achieve better sensitivity to low surface brightness diffuse radio emission. In case of non-detection of diffuse sources, we set upper limits for the radio power of injected diffuse radio sources in the field of our observations. Furthermore, we discuss the dynamical state of the observed clusters based on an X-ray morphological analysis with XMM-Newton. Results: We detect a giant radio halo in PSZ2 G284.97-23.69 (z = 0.39) and a possible diffuse source in the nearly relaxed cluster PSZ2 G262.73-40.92 (z = 0.421). Our sample contains three highly disturbed massive clusters without clear traces of diffuse emission at the observed frequencies. We were able to inject modelled radio haloes with low values of total flux density to set upper detection limits; however, with our high-frequency observations we cannot exclude the presence of RH in these systems because of the sensitivity of our observations in combination with the high z of the observed clusters. The reduced images are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A94
Low Gas Fractions Connect Compact Star-forming Galaxies to Their z ~ 2 Quiescent Descendants
NASA Astrophysics Data System (ADS)
Spilker, Justin S.; Bezanson, Rachel; Marrone, Daniel P.; Weiner, Benjamin J.; Whitaker, Katherine E.; Williams, Christina C.
2016-11-01
Early quiescent galaxies at z˜ 2 are known to be remarkably compact compared to their nearby counterparts. Possible progenitors of these systems include galaxies that are structurally similar, but are still rapidly forming stars. Here, we present Karl G. Jansky Very Large Array (VLA) observations of the CO(1-0) line toward three such compact, star-forming galaxies (SFGs) at z˜ 2.3, significantly detecting one. The VLA observations indicate baryonic gas fractions ≳ 5 times lower and gas depletion timescales ≳ 10 times shorter than normal, extended massive SFGs at these redshifts. At their current star formation rates, all three objects will deplete their gas reservoirs within 100 Myr. These objects are among the most gas-poor objects observed at z\\gt 2, and are outliers from standard gas scaling relations, a result that remains true regardless of assumptions about the CO-H2 conversion factor. Our observations are consistent with the idea that compact, SFGs are in a rapid state of transition to quiescence in tandem with the buildup of the z˜ 2 quenched population. In the detected compact galaxy, we see no evidence of rotation or that the CO-emitting gas is spatially extended relative to the stellar light. This casts doubt on recent suggestions that the gas in these compact galaxies is rotating and significantly extended compared to the stars. Instead, we suggest that, at least for this object, the gas is centrally concentrated, and only traces a small fraction of the total galaxy dynamical mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biagetti, Matteo; Desjacques, Vincent; Kehagias, Alex
2016-04-01
Dark matter halos are the building blocks of the universe as they host galaxies and clusters. The knowledge of the clustering properties of halos is therefore essential for the understanding of the galaxy statistical properties. We derive an effective halo Boltzmann equation which can be used to describe the halo clustering statistics. In particular, we show how the halo Boltzmann equation encodes a statistically biased gravitational force which generates a bias in the peculiar velocities of virialized halos with respect to the underlying dark matter, as recently observed in N-body simulations.
Halo assembly bias and the tidal anisotropy of the local halo environment
NASA Astrophysics Data System (ADS)
Paranjape, Aseem; Hahn, Oliver; Sheth, Ravi K.
2018-05-01
We study the role of the local tidal environment in determining the assembly bias of dark matter haloes. Previous results suggest that the anisotropy of a halo's environment (i.e. whether it lies in a filament or in a more isotropic region) can play a significant role in determining the eventual mass and age of the halo. We statistically isolate this effect, using correlations between the large-scale and small-scale environments of simulated haloes at z = 0 with masses between 1011.6 ≲ (m/h-1 M⊙) ≲ 1014.9. We probe the large-scale environment, using a novel halo-by-halo estimator of linear bias. For the small-scale environment, we identify a variable αR that captures the tidal anisotropy in a region of radius R = 4R200b around the halo and correlates strongly with halo bias at fixed mass. Segregating haloes by αR reveals two distinct populations. Haloes in highly isotropic local environments (αR ≲ 0.2) behave as expected from the simplest, spherically averaged analytical models of structure formation, showing a negative correlation between their concentration and large-scale bias at all masses. In contrast, haloes in anisotropic, filament-like environments (αR ≳ 0.5) tend to show a positive correlation between bias and concentration at any mass. Our multiscale analysis cleanly demonstrates how the overall assembly bias trend across halo mass emerges as an average over these different halo populations, and provides valuable insights towards building analytical models that correctly incorporate assembly bias. We also discuss potential implications for the nature and detectability of galaxy assembly bias.
Halo histories versus Galaxy properties at z = 0 - I. The quenching of star formation
NASA Astrophysics Data System (ADS)
Tinker, Jeremy L.; Wetzel, Andrew R.; Conroy, Charlie; Mao, Yao-Yuan
2017-12-01
We test whether halo age and galaxy age are correlated at fixed halo and galaxy mass. The formation histories, and thus ages, of dark matter haloes correlate with their large-scale density ρ, an effect known as assembly bias. We test whether this correlation extends to galaxies by measuring the dependence of galaxy stellar age on ρ. To clarify the comparison between theory and observation, and to remove the strong environmental effects on satellites, we use galaxy group catalogues to identify central galaxies and measure their quenched fraction, fQ, as a function of large-scale environment. Models that match halo age to central galaxy age predict a strong positive correlation between fQ and ρ. However, we show that the amplitude of this effect depends on the definition of halo age: assembly bias is significantly reduced when removing the effects of splashback haloes - those haloes that are central but have passed through a larger halo or experienced strong tidal encounters. Defining age using halo mass at its peak value rather than current mass removes these effects. In Sloan Digital Sky Survey data, at M* ≳ 1010 M⊙ h-2, there is a ∼5 per cent increase in fQ from low-to-high densities, which is in agreement with predictions of dark matter haloes using peak halo mass. At lower stellar mass there is little to no correlation of fQ with ρ. For these galaxies, age matching is inconsistent with the data across the range of halo formation metrics that we tested. This implies that halo formation history has a small but statistically significant impact on quenching of star formation at high masses, while the quenching process in low-mass central galaxies is uncorrelated with halo formation history.
NASA Astrophysics Data System (ADS)
Ishiyama, Tomoaki
2015-08-01
The smallest dark matter halos are formed first in the early universe. We present results of very large cosmological N-body simulations of the hierarchical formation and evolution of halos over a wide mass range, beginning from the formation of the smallest halos. In the largest simulation, the motions of 40963 particles in comoving boxes of side lengths 400 pc and 200 pc were followed. The particle masses were 3.4 Χ 10-11 M⊙ and 4.3 Χ 10-12 M⊙, ensuring that halos at the cutoff scale were represented by ˜30,000 and ˜230,000 particles, respectively. We found that the central density cusp is much steeper in these halos than in larger halos (dwarf-galaxy-sized to cluster-sized halos), and scales as ρ ∝ r(-1.5—1.3). The cusp slope gradually becomes shallower as the halo mass increases. The slope of halos 50 times more massive than the smallest halo is approximately -1.3. No strong correlation exists between inner slope and the collapse epoch. The cusp slope of halos above the cutoff scale seems to be reduced primarily due to major merger processes. The concentration, estimated at the present universe, is predicted to be 60—70, consistent with theoretical models and earlier simulations, and ruling out simple power law mass-concentration relations. Such halos could still exist in the present universe with the same steep density profiles. Strongly depending on the subhalo mass function and the adopted concentration model, the steeper inner cusps of halos near the cutoff scale enhance the annihilation luminosity of a Milky Way sized halo between 12 to 67%.
NASA Astrophysics Data System (ADS)
Franchini, Nicola; Pani, Paolo; Maselli, Andrea; Gualtieri, Leonardo; Herdeiro, Carlos A. R.; Radu, Eugen; Ferrari, Valeria
2017-06-01
Light bosonic fields are ubiquitous in extensions of the Standard Model. Even when minimally coupled to gravity, these fields might evade the assumptions of the black-hole no-hair theorems and give rise to spinning black holes which can be drastically different from the Kerr metric. Furthermore, they allow for self-gravitating compact solitons, known as (scalar or Proca) boson stars. The quasiperiodic oscillations (QPOs) observed in the x-ray flux emitted by accreting compact objects carry information about the strong-field region, thus providing a powerful tool to constrain deviations from Kerr's geometry and to search for exotic compact objects. By using the relativistic precession model as a proxy to interpret the QPOs in terms of geodesic frequencies, we investigate how the QPO frequencies could be used to test the no-hair theorem and the existence of light bosonic fields near accreting compact objects. We show that a detection of two QPO triplets with current sensitivity can already constrain these models and that the future eXTP mission or a LOFT-like mission can set very stringent constraints on black holes with bosonic hair and on (scalar or Proca) boson stars. The peculiar geodesic structure of compact scalar/Proca boson stars implies that these objects can easily be ruled out as alternative models for x-ray source GRO J1655-40.
Discovery of Compact Quiescent Galaxies at Intermediate Redshifts in DEEP2
NASA Astrophysics Data System (ADS)
Blancato, Kirsten; Chilingarian, Igor; Damjanov, Ivana; Moran, Sean; Katkov, Ivan
2015-01-01
Compact quiescent galaxies in the redshift range 0.6 < z < 1.1 are the missing link needed to complete the evolutionary histories of these objects from the high redshift z ≥ 2 Universe to the local z ~ 0 Universe. We identify the first intermediate redshift compact quiescent galaxies by searching a sample of 1,089 objects in the DEEP2 Redshift Survey that have multi-band photometry, spectral fitting, and readily available structural parameters. We find 27 compact quiescent candidates between z = 0.6 and z = 1.1 where each candidate galaxy has archival Hubble Space Telescope (HST) imaging and is visually confirmed to be early-type. The candidates have half-light radii ranging from 0.83 < Re,c < 7.14 kpc (median Re,c = 1.77 kpc) and virial masses ranging from 2.2E10 < Mdyn < 5.6E11 Msun (median Mdyn = 7.7E10 Msun). Of our 27 compact quiescent candidates, 13 are truly compact with sizes at most half of the size of their z ~ 0 counterparts of the same mass. In addition to their structural properties bridging the gap between their high and low redshift counterparts, our sample of intermediate redshift quiescent galaxies span a large range of ages but is drawn from two distinct epochs of galaxy formation: formation at z > 2 which suggests these objects may be the relics of the observed high redshift compact galaxies and formation at z ≤ 2 which suggests there is an additional population of more recently formed massive compact galaxies. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.
Some topics in the magnetohydrodynamics of accreting magnetic compact objects
NASA Technical Reports Server (NTRS)
Aly, J. J.
1986-01-01
Magnetic compact objects (neutron stars or white dwarfs) are currently thought to be present in many accreting systems that are releasing large amounts of energy. The magnetic field of the compact star may interact strongly with the accretion flow and play an essential role in the physics of these systems. Some magnetohydrodynamic (MHD) problems that are likely to be relevant in building up self-consistent models of the interaction between the accreting plasma and the star's magnetosphere are addressed in this series of lectures. The basic principles of MHD are first introduced and some important MHD mechanisms (Rayleigh-Taylor and Kelvin-Helmholtz instabilities; reconnection) are discussed, with particular reference to their role in allowing the infalling matter to penetrate the magnetosphere and mix with the field. The structure of a force-free magnetosphere and the possibility of quasistatic momentum and energy transfer between regions linked by field-aligned currents are then studied in some detail. Finally, the structure of axisymmetric accretion flows onto magnetic compact objects is considered.
Characteristic time for halo current growth and rotation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boozer, Allen H., E-mail: ahb17@columbia.edu
2015-10-15
A halo current flows for part of its path through the plasma edge and for part through the chamber walls and during tokamak disruptions can be as large as tenths of the plasma current. The primary interest in halo currents is the large force that they can exert on machine components particularly if the toriodal rotation of the halo current resonates with a natural oscillation frequency of the tokamak device. Halo currents arise when required to slow down the growth of a kink that is too unstable to be stabilized by the chamber walls. The width of the current channelmore » in the halo plasma is comparable to the amplitude of the kink, and the halo current grows linearly, not exponentially, in time. The current density in the halo is comparable to that of the main plasma body. The rocket force due to plasma flowing out of the halo and recombining on the chamber walls can cause the non-axisymmetric magnetic structure produced by the kink to rotate toroidally at a speed comparable to the halo speed of sound. Gerhardt's observations of the halo current in NSTX shot 141 687 [Nucl. Fusion 53, 023005 (2013)] illustrate many features of the theory of halo currents and are discussed as a summary of the theory.« less
The signal of weak gravitational lensing from galaxy groups and clusters
NASA Astrophysics Data System (ADS)
Markert, Sean
2017-02-01
The weak gravitational lensing of galaxy clusters is a valuable tool. The deflection of light around a lens is solely dependent on the underlying distribution of foreground mass, and independent of tracers of mass such as the mass to light ratio and kinematics. As a direct probe of mass, weak lensing serves as an independent calibration of mass-observable relationships. These massive clusters are objects of great interest to astronomers, as their abundance is dependent on the conditions of the early universe, and accurate counts of clusters serve as a test of cosmological model. Upcoming surveys, such as LSST and DES, promise to push the limit of observable weak lensing, detecting clusters and sources at higher redshift than has ever been detected before. This makes accurate counts of clusters of a given mass and redshift, and proper calibration of mass-observable relationships, vital to cosmological studies. We used M> 1013.5 h-1M ⊙ halos from the MultiDark Planck simulation at z 0.5 to study the behavior of the reduced shear in clusters. We generated 2D maps of convergence and shear the halos using the GLAMER lensing library. Using these maps, we simulated observations of randomly placed background sources, and generate azimuthal averages of the shear. This reduced shear profile, and the true reduced shear profile of the halo, is fit using analytical solutions for shear of the NFW, Einasto, and truncated NFW density profile. The masses of these density profiles are then compared to the total halo masses from the halo catalogs. We find that fits to the reduced shear for halos extending past ≈ 2 h-1Mpc are fits to the noise of large scale structure along the line of sight. This noise is largely in the 45° rotated component to the reduced tangential shear, and is a breakdown in the approximation of gtan ≈ gnot required for density profile fitting of clusters. If fits are constrained to a projected radii of < 2 h-1Mpc, we see massively improved fits insensitive to the amount of structure present along the line of sight.
The formation of disc galaxies in high-resolution moving-mesh cosmological simulations
NASA Astrophysics Data System (ADS)
Marinacci, Federico; Pakmor, Rüdiger; Springel, Volker
2014-01-01
We present cosmological hydrodynamical simulations of eight Milky Way-sized haloes that have been previously studied with dark matter only in the Aquarius project. For the first time, we employ the moving-mesh code AREPO in zoom simulations combined with a comprehensive model for galaxy formation physics designed for large cosmological simulations. Our simulations form in most of the eight haloes strongly disc-dominated systems with realistic rotation curves, close to exponential surface density profiles, a stellar mass to halo mass ratio that matches expectations from abundance matching techniques, and galaxy sizes and ages consistent with expectations from large galaxy surveys in the local Universe. There is no evidence for any dark matter core formation in our simulations, even so they include repeated baryonic outflows by supernova-driven winds and black hole quasar feedback. For one of our haloes, the object studied in the recent `Aquila' code comparison project, we carried out a resolution study with our techniques, covering a dynamic range of 64 in mass resolution. Without any change in our feedback parameters, the final galaxy properties are reassuringly similar, in contrast to other modelling techniques used in the field that are inherently resolution dependent. This success in producing realistic disc galaxies is reached, in the context of our interstellar medium treatment, without resorting to a high density threshold for star formation, a low star formation efficiency, or early stellar feedback, factors deemed crucial for disc formation by other recent numerical studies.
Spherical torus fusion reactor
Martin Peng, Y.K.M.
1985-10-03
The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.
NASA Astrophysics Data System (ADS)
Sokolov, V. V.; Vlasyuk, V. V.; Petkov, V. B.
2016-06-01
The International Workshop on Quark Phase Transition in Compact Objects and Multimessenger Astronomy: Neutrino Signals, Supernovae and Gamma-Ray Bursts (October, 7-14, 2015) was dedicated to Quantum ChromoDynamics (QCD) Phase Transitions and observational signals of these transitions related to formation of compact astrophysical objects. The aim of this workshop was to bring together researchers working on the problems of behavior of matter under critical conditions achievable in such astrophysical objects as "strange" or "hybrid" stars and in laboratories at heavy-ion collisions to discuss fundamental issues and recent developments. Topics included both observations (radio, optical and X-ray astronomy, gamma ray bursts, gravitational waves, neutrino detection, heavy-ion collisions, etc.) and theory (supernova simulations, proto-neutron and neutron stars, equation of state of dense matter, neutron star cooling, unstable modes, nucleosynthesis, explosive transitions, quark-gluon plasma).
The Impact of Assembly Bias on the Galaxy Content of Dark Matter Halos
NASA Astrophysics Data System (ADS)
Zehavi, Idit; Contreras, Sergio; Padilla, Nelson; Smith, Nicholas J.; Baugh, Carlton M.; Norberg, Peder
2018-01-01
We study the dependence of the galaxy content of dark matter halos on large-scale environment and halo formation time using semi-analytic galaxy models applied to the Millennium simulation. We analyze subsamples of halos at the extremes of these distributions and measure the occupation functions for the galaxies they host. We find distinct differences among these occupation functions. The main effect with environment is that central galaxies (and in one model, also the satellites) in denser regions start populating lower-mass halos. A similar, but significantly stronger, trend exists with halo age, where early-forming halos are more likely to host central galaxies at lower halo mass. We discuss the origin of these trends and the connection to the stellar mass–halo mass relation. We find that, at fixed halo mass, older halos and to some extent also halos in dense environments tend to host more massive galaxies. Additionally, we see a reverse trend for the occupation of satellite galaxies where early-forming halos have fewer satellites, likely due to having more time for them to merge with the central galaxy. We describe these occupancy variations in terms of the changes in the occupation function parameters, which can aid in constructing realistic mock galaxy samples. Finally, we study the corresponding galaxy auto- and cross-correlation functions of the different samples and elucidate the impact of assembly bias on galaxy clustering. Our results can inform theoretical modeling of galaxy assembly bias and attempts to detect it in the real universe.
Galaxy power spectrum in redshift space: Combining perturbation theory with the halo model
NASA Astrophysics Data System (ADS)
Okumura, Teppei; Hand, Nick; Seljak, Uroš; Vlah, Zvonimir; Desjacques, Vincent
2015-11-01
Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to correctly extract cosmological information from galaxy redshift surveys. The task is complicated by the nonlinear biasing and redshift space distortion (RSD) effects, which change with halo mass, and by the wide distribution of halo masses and their occupations by galaxies. One of the main modeling challenges is the existence of satellite galaxies that have both radial distribution inside the halos and large virial velocities inside halos, a phenomenon known as the Finger-of-God (FoG) effect. We present a model for the redshift-space power spectrum of galaxies in which we decompose a given galaxy sample into central and satellite galaxies and relate different contributions to the power spectrum to 1-halo and 2-halo terms in a halo model. Our primary goal is to ensure that any parameters that we introduce have physically meaningful values, and are not just fitting parameters. For the lowest order 2-halo terms we use the previously developed RSD modeling of halos in the context of distribution function and perturbation theory approach. This term needs to be multiplied by the effect of radial distances and velocities of satellites inside the halo. To this one needs to add the 1-halo terms, which are nonperturbative. We show that the real space 1-halo terms can be modeled as almost constant, with the finite extent of the satellites inside the halo inducing a small k2R2 term over the range of scales of interest, where R is related to the size of the halo given by its halo mass. We adopt a similar model for FoG in redshift space, ensuring that FoG velocity dispersion is related to the halo mass. For FoG k2 type expansions do not work over the range of scales of interest and FoG resummation must be used instead. We test several simple damping functions to model the velocity dispersion FoG effect. Applying the formalism to mock galaxies modeled after the "CMASS" sample of the BOSS survey, we find that our predictions for the redshift-space power spectra are accurate up to k ≃0.4 h Mpc-1 within 1% if the halo power spectrum is measured using N -body simulations and within 3% if it is modeled using perturbation theory.
NASA Astrophysics Data System (ADS)
Tomov, N. A.; Tomova, M. T.; Bisikalo, D. V.
2017-12-01
The eclipsing symbiotic binary BF Cyg has had five orbital minima during its last optical outburst after 2006. The second minimum is much shallower than the first one and after that the minimum get deeper again. We determined the parameters of the accretion structure surrounding the compact object in two minima and traced its evolution until 2014. Moreover, we analysed the continuum of the system in the region of the UBVRCIC photometric bands to derive the parameters of its components at two times orbital maximum and calculated the mass-loss rate of the compact object. The results obtained allow us to conclude about the mechanism of fading of the optical light of the system until 2014. These results show that the optical flux of the outbursted compact object decreases because of "contraction" of its observed photosphere (pseudophotosphere) which, on its side, is due to increase of the velocity of its stellar wind, and the optical flux of the circumbinary nebula decreases mainly because of reduction of its mean density, which, on its side, is due to destruction of the accretion structure.
Is the Milky Way's hot halo convectively unstable?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henley, David B.; Shelton, Robin L., E-mail: dbh@physast.uga.edu
2014-03-20
We investigate the convective stability of two popular types of model of the gas distribution in the hot Galactic halo. We first consider models in which the halo density and temperature decrease exponentially with height above the disk. These halo models were created to account for the fact that, on some sight lines, the halo's X-ray emission lines and absorption lines yield different temperatures, implying that the halo is non-isothermal. We show that the hot gas in these exponential models is convectively unstable if γ < 3/2, where γ is the ratio of the temperature and density scale heights. Usingmore » published measurements of γ and its uncertainty, we use Bayes' theorem to infer posterior probability distributions for γ, and hence the probability that the halo is convectively unstable for different sight lines. We find that, if these exponential models are good descriptions of the hot halo gas, at least in the first few kiloparsecs from the plane, the hot halo is reasonably likely to be convectively unstable on two of the three sight lines for which scale height information is available. We also consider more extended models of the halo. While isothermal halo models are convectively stable if the density decreases with distance from the Galaxy, a model of an extended adiabatic halo in hydrostatic equilibrium with the Galaxy's dark matter is on the boundary between stability and instability. However, we find that radiative cooling may perturb this model in the direction of convective instability. If the Galactic halo is indeed convectively unstable, this would argue in favor of supernova activity in the Galactic disk contributing to the heating of the hot halo gas.« less
The Anemic Stellar Halo of M101
NASA Astrophysics Data System (ADS)
Holwerda, Benne
2014-10-01
Models of galaxy formation in a cosmological context predict that massive disk galaxies should have richly-structured extended stellar halos, containing ~10% of a galaxy's stars, originating in large part from the tidal disruption of dwarf galaxies. Observations of a number of nearby disk galaxies have generally agreed with these expectations. Recent new observations in integrated light with a novel array of low scattered-light telephoto lenses have failed to convincingly detect a stellar halo in the nearby massive face-on disk galaxy M101 (van Dokkum et al. 2014). They argue that any halo has to have <0.3% of the mass of the galaxy. This halo would be the least massive of any massive disk galaxy in the local Universe (by factors of several) -- such a halo is not predicted or naturally interpreted by the models, and would present a critical challenge to the picture of ubiquitous stellar halos formed from the debris of disrupting dwarf galaxies.We propose to resolve the stellar populations of this uniquely anemic stellar halo for 6 orbits with HST (ACS and WFC3), allowing us to reach surface brightness limits sufficient to clearly detect and characterize M101's stellar halo if it carries more than 0.1% of M101's mass. With resolved stellar populations, we can use the gradient of stellar populations as a function of radius to separate stellar halo from disk, which is impossible using integrated light observations. The resolved stellar populations will reveal the halo mass to much greater accuracy, measure the halo radial profile, constrain any halo lopsidedness, estimate the halo's stellar metallicity, and permit an analysis of outer disk stellar populations.
Self-consistent construction of virialized wave dark matter halos
NASA Astrophysics Data System (ADS)
Lin, Shan-Chang; Schive, Hsi-Yu; Wong, Shing-Kwong; Chiueh, Tzihong
2018-05-01
Wave dark matter (ψ DM ), which satisfies the Schrödinger-Poisson equation, has recently attracted substantial attention as a possible dark matter candidate. Numerical simulations have, in the past, provided a powerful tool to explore this new territory of possibility. Despite their successes in revealing several key features of ψ DM , further progress in simulations is limited, in that cosmological simulations so far can only address formation of halos below ˜2 ×1011 M⊙ and substantially more massive halos have become computationally very challenging to obtain. For this reason, the present work adopts a different approach in assessing massive halos by constructing wave-halo solutions directly from the wave distribution function. This approach bears certain similarities with the analytical construction of the particle-halo (cold dark matter model). Instead of many collisionless particles, one deals with one single wave that has many noninteracting eigenstates. The key ingredient in the wave-halo construction is the distribution function of the wave power, and we use several halos produced by structure formation simulations as templates to determine the wave distribution function. Among different models, we find the fermionic King model presents the best fits and we use it for our wave-halo construction. We have devised an iteration method for constructing the nonlinear halo and demonstrate its stability by three-dimensional simulations. A Milky Way-sized halo has also been constructed, and the inner halo is found to be flatter than the NFW profile. These wave-halos have small-scale interferences both in space and time producing time-dependent granules. While the spatial scale of granules varies little, the correlation time is found to increase with radius by 1 order of magnitude across the halo.
NASA Astrophysics Data System (ADS)
Medley, S. S.; Liu, D.; Gorelenkova, M. V.; Heidbrink, W. W.; Stagner, L.
2016-02-01
A 3D halo neutral code developed at the Princeton Plasma Physics Laboratory and implemented for analysis using the TRANSP code is applied to projected National Spherical Torus eXperiment-Upgrade (NSTX-U plasmas). The legacy TRANSP code did not handle halo neutrals properly since they were distributed over the plasma volume rather than remaining in the vicinity of the neutral beam footprint as is actually the case. The 3D halo neutral code uses a ‘beam-in-a-box’ model that encompasses both injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset of the full, one-half and one-third beam energy components produce first generation halo neutrals that are tracked through successive generations until an ionization event occurs or the descendant halos exit the box. The 3D halo neutral model and neutral particle analyzer (NPA) simulator in the TRANSP code have been benchmarked with the Fast-Ion D-Alpha simulation (FIDAsim) code, which provides Monte Carlo simulations of beam neutral injection, attenuation, halo generation, halo spatial diffusion, and photoemission processes. When using the same atomic physics database, TRANSP and FIDAsim simulations achieve excellent agreement on the spatial profile and magnitude of beam and halo neutral densities and the NPA energy spectrum. The simulations show that the halo neutral density can be comparable to the beam neutral density. These halo neutrals can double the NPA flux, but they have minor effects on the NPA energy spectrum shape. The TRANSP and FIDAsim simulations also suggest that the magnitudes of beam and halo neutral densities are relatively sensitive to the choice of the atomic physics databases.
NASA Astrophysics Data System (ADS)
Levy, J. S.; Fassett, C. I.; Rader, L. X.; King, I. R.; Chaffey, P. M.; Wagoner, C. M.; Hanlon, A. E.; Watters, J. L.; Kreslavsky, M. A.; Holt, J. W.; Russell, A. T.; Dyar, M. D.
2018-02-01
Boulder halos are circular arrangements of clasts present at Martian middle to high latitudes. Boulder halos are thought to result from impacts into a boulder-poor surficial unit that is rich in ground ice and/or sediments and that is underlain by a competent substrate. In this model, boulders are excavated by impacts and remain at the surface as the crater degrades. To determine the distribution of boulder halos and to evaluate mechanisms for their formation, we searched for boulder halos over 4,188 High Resolution Imaging Science Experiment images located between 50-80° north and 50-80° south latitude. We evaluate geological and climatological parameters at halo sites. Boulder halos are about three times more common in the northern hemisphere than in the southern hemisphere (19% versus 6% of images) and have size-frequency distributions suggesting recent Amazonian formation (tens to hundreds of millions of years). In the north, boulder halo sites are characterized by abundant shallow subsurface ice and high thermal inertia. Spatial patterns of halo distribution indicate that excavation of boulders from beneath nonboulder-bearing substrates is necessary for the formation of boulder halos, but that alone is not sufficient. Rather, surface processes either promote boulder halo preservation in the north or destroy boulder halos in the south. Notably, boulder halos predate the most recent period of near-surface ice emplacement on Mars and persist at the surface atop mobile regolith. The lifetime of observed boulders at the Martian surface is greater than the lifetime of the craters that excavated them. Finally, larger minimum boulder halo sizes in the north indicate thicker icy soil layers on average throughout climate variations driven by spin/orbit changes during the last tens to hundreds of millions of years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medley, S. S.; Liu, D.; Gorelenkova, M. V.
2016-01-12
A 3D halo neutral code developed at the Princeton Plasma Physics Laboratory and implemented for analysis using the TRANSP code is applied to projected National Spherical Torus eXperiment-Upgrade (NSTX-U plasmas). The legacy TRANSP code did not handle halo neutrals properly since they were distributed over the plasma volume rather than remaining in the vicinity of the neutral beam footprint as is actually the case. The 3D halo neutral code uses a 'beam-in-a-box' model that encompasses both injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset of the full, one-half and one-third beam energy components producemore » first generation halo neutrals that are tracked through successive generations until an ionization event occurs or the descendant halos exit the box. The 3D halo neutral model and neutral particle analyzer (NPA) simulator in the TRANSP code have been benchmarked with the Fast-Ion D-Alpha simulation (FIDAsim) code, which provides Monte Carlo simulations of beam neutral injection, attenuation, halo generation, halo spatial diffusion, and photoemission processes. When using the same atomic physics database, TRANSP and FIDAsim simulations achieve excellent agreement on the spatial profile and magnitude of beam and halo neutral densities and the NPA energy spectrum. The simulations show that the halo neutral density can be comparable to the beam neutral density. These halo neutrals can double the NPA flux, but they have minor effects on the NPA energy spectrum shape. The TRANSP and FIDAsim simulations also suggest that the magnitudes of beam and halo neutral densities are relatively sensitive to the choice of the atomic physics databases.« less
NASA Astrophysics Data System (ADS)
Shirasaki, Masato; Yoshida, Naoki
2018-04-01
Weak lensing three-point statistics are powerful probes of the structure of dark matter haloes. We propose to use the correlation of the positions of galaxies with the shapes of background galaxy pairs, known as the halo-shear-shear correlation (HSSC), to measure the mean halo ellipticity and the abundance of subhaloes in a statistical manner. We run high-resolution cosmological N-body simulations and use the outputs to measure the HSSC for galaxy haloes and cluster haloes. Non-spherical haloes cause a characteristic azimuthal variation of the HSSC, and massive subhaloes in the outer region near the virial radius contribute to ˜ 10 per cent of the HSSC amplitude. Using the HSSC and its covariance estimated from our N-body simulations, we make forecast for constraining the internal structure of dark matter haloes with future galaxy surveys. With 1000 galaxy groups with mass greater than 1013.5 h-1M⊙, the average halo ellipticity can be measured with an accuracy of 10 percent. A spherical, smooth mass distribution can be ruled out at a ˜5σ significance level. The existence of subhaloes whose masses are in 1-10 percent of the main halo mass can be detected with ˜104 galaxies/clusters. We conclude that the HSSC provides valuable information on the structure of dark haloes and hence on the nature of dark matter.
NASA Astrophysics Data System (ADS)
Guérou, Adrien; Emsellem, Eric; McDermid, Richard M.; Côté, Patrick; Ferrarese, Laura; Blakeslee, John P.; Durrell, Patrick R.; MacArthur, Lauren A.; Peng, Eric W.; Cuillandre, Jean-Charles; Gwyn, Stephen
2015-05-01
We present Gemini Multi Object Spectrograph integral-field unit (GMOS-IFU) data of eight compact, low-mass early-type galaxies (ETGs) in the Virgo cluster. We analyze their stellar kinematics and stellar population and present two-dimensional maps of these properties covering the central 5″ × 7″ region. We find a large variety of kinematics, from nonrotating to highly rotating objects, often associated with underlying disky isophotes revealed by deep images from the Next Generation Virgo Cluster Survey. In half of our objects, we find a centrally concentrated younger and more metal-rich stellar population. We analyze the specific stellar angular momentum through the λR parameter and find six fast rotators and two slow rotators, one having a thin counterrotating disk. We compare the local galaxy density and stellar populations of our objects with those of 39 more extended low-mass Virgo ETGs from the SMAKCED survey and 260 massive (M > 1010 {{M}⊙ }) ETGs from the ATLAS3D sample. The compact low-mass ETGs in our sample are located in high-density regions, often close to a massive galaxy, and have, on average, older and more metal-rich stellar populations than less compact low-mass galaxies. We find that the stellar population parameters follow lines of constant velocity dispersion in the mass-size plane, smoothly extending the comparable trends found for massive ETGs. Our study supports a scenario where low-mass compact ETGs have experienced long-lived interactions with their environment, including ram-pressure stripping and gravitational tidal forces, that may be responsible for their compact nature.
Low Gas Fractions Connect Compact Star-Forming Galaxies to their z~2 Quiescent Descendants
NASA Astrophysics Data System (ADS)
Spilker, Justin; Bezanson, Rachel; Marrone, Daniel P.; Weiner, Benjamin J.; Whitaker, Katherine E.; Williams, Christina C.
2017-01-01
Early quiescent galaxies at z ~ 2 are known to be remarkably compact compared to their nearby counterparts. Possible progenitors of these systems include galaxies that are structurally similar, but are still rapidly forming stars. I will present Karl G. Jansky Very Large Array (VLA) observations of the CO(1-0) line towards three such compact, star-forming galaxies at z ~ 2.3, significantly detecting one. The VLA observations indicate baryonic gas fractions 5 times lower and gas depletion times 10 times shorter than normal, extended massive star-forming galaxies at these redshifts. At their current star formation rates, all three objects will deplete their gas reservoirs within 100Myr. These objects are among the most gas-poor objects observed at z > 2 and are outliers from standard gas scaling relations, a result which remains true regardless of assumptions about the CO-H2 conversion factor. Our observations are consistent with the idea that compact, star-forming galaxies are in a rapid state of transition to quiescence in tandem with the build-up of the z ~ 2 quenched population. In the detected compact galaxy, we see no evidence of rotation or that the CO-emitting gas is spatially extended relative to the stellar light. This casts doubt on recent suggestions that the gas in these compact galaxies is rotating and significantly extended compared to the stars. Instead, we suggest that, at least for this object, the gas is centrally concentrated, and only traces a small fraction of the total galaxy dynamical mass. I will conclude by discussing my ongoing efforts to characterize the gas and star forming properties of this unusual population of galaxies.
The impact of feedback and the hot halo on the rates of gas accretion onto galaxies
NASA Astrophysics Data System (ADS)
Correa, Camila A.; Schaye, Joop; van de Voort, Freeke; Duffy, Alan R.; Wyithe, J. Stuart B.
2018-04-01
We investigate the physics that drives the gas accretion rates onto galaxies at the centers of dark matter haloes using the EAGLE suite of hydrodynamical cosmological simulations. We find that at redshifts z ≤ 2 the accretion rate onto the galaxy increases with halo mass in the halo mass range 1010 - 1011.7 M⊙, flattens between the halo masses 1011.7 - 1012.7 M⊙, and increases again for higher-mass haloes. However, the galaxy gas accretion does not flatten at intermediate halo masses when AGN feedback is switched off. To better understand these trends, we develop a physically motivated semi-analytic model of galaxy gas accretion. We show that the flattening is produced by the rate of gas cooling from the hot halo. The ratio of the cooling radius and the virial radius does not decrease continuously with increasing halo mass as generally thought. While it decreases up to ˜1013 M⊙ haloes, it increases for higher halo masses, causing an upturn in the galaxy gas accretion rate. This may indicate that in high-mass haloes AGN feedback is not sufficiently efficient. When there is no AGN feedback, the density of the hot halo is higher, the ratio of the cooling and virial radii does not decrease as much and the cooling rate is higher. Changes in the efficiency of stellar feedback can also increase or decrease the accretion rates onto galaxies. The trends can plausibly be explained by the re-accretion of gas ejected by progenitor galaxies and by the suppression of black hole growth, and hence AGN feedback, by stellar feedback.
ZOMG - I. How the cosmic web inhibits halo growth and generates assembly bias
NASA Astrophysics Data System (ADS)
Borzyszkowski, Mikolaj; Porciani, Cristiano; Romano-Díaz, Emilio; Garaldi, Enrico
2017-07-01
The clustering of dark matter haloes with fixed mass depends on their formation history, an effect known as assembly bias. We use zoom N-body simulations to investigate the origin of this phenomenon. For each halo at redshift z = 0, we determine the time in which the physical volume containing its final mass becomes stable. We consider five examples for which this happens at z ˜ 1.5 and two that do not stabilize by z = 0. The zoom simulations show that early-collapsing haloes do not grow in mass at z = 0 while late-forming ones show a net inflow. The reason is that 'accreting' haloes are located at the nodes of a network of thin filaments feeding them. Conversely, each 'stalled' halo lies within a prominent filament that is thicker than the halo size. Infalling material from the surroundings becomes part of the filament while matter within it recedes from the halo. We conclude that assembly bias originates from quenching halo growth due to tidal forces following the formation of non-linear structures in the cosmic web, as previously conjectured in the literature. Also the internal dynamics of the haloes change: the velocity anisotropy profile is biased towards radial (tangential) orbits in accreting (stalled) haloes. Our findings reveal the cause of the yet unexplained dependence of halo clustering on the anisotropy. Finally, we extend the excursion-set theory to account for these effects. A simple criterion based on the ellipticity of the linear tidal field combined with the spherical-collapse model provides excellent predictions for both classes of haloes.
TeV Gamma Rays From Galactic Center Pulsars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooper, Dan; Cholis, Ilias; Linden, Tim
Measurements of the nearby pulsars Geminga and B0656+14 by the HAWC and Milagro telescopes have revealed the presence of bright TeV-emitting halos surrounding these objects. If young and middle-aged pulsars near the Galactic Center transfer a similar fraction of their energy into TeV photons, then these sources could dominate the emission that is observed by HESS and other ground-based telescopes from the innermost ~10^2 parsecs of the Milky Way. In particular, both the spectral shape and the angular extent of this emission is consistent with TeV halos produced by a population of pulsars. The overall flux of this emission requiresmore » a birth rate of ~100-1000 neutron stars per Myr near the Galactic Center, in good agreement with recent estimates.« less
ERIC Educational Resources Information Center
Wolf, Katharina
2015-01-01
Industry placements are popular means to provide students with an opportunity to apply their skills, knowledge and experience in a "real world" setting. Within this context, supervisor feedback allows educators to measure students' performance beyond academic objectives, by benchmarking it against industry expectations. However, industry…
NASA Technical Reports Server (NTRS)
Kafatos, Minas C. (Editor); Harrington, Robert S. (Editor); Maran, Stephen P. (Editor)
1986-01-01
Various reports on theoretical and observational studies of brown dwarfs (BDs) are presented. The topics considered include: astrometric detection of BDs, search for substellar companions to nearby stars using IR imaging, constraints on BD mass function from optical and IR searches, properties of stellar objects near the main sequence mass limit, search for low-mass stellar companions with the HF precision velocity technique, dynamical search for substellar objects, search for BDs in the IRAS data base, deep CCD survey for low mass stars in the disk and halo, the Berkeley search for a faint solar companion, the luminosity function for late M stars, astronomic search for IR dwarfs, and the role of the Space Telescope in the detection of BDs. Also addressed are: theoretical significance of BDs, evolution of super-Jupiters, compositional indicators in IR spectra of BDs, evolution of BDs and the evolutionary status of VB8B, the position of BDs on universal diagrams, theoretical determination of the minimum protostellar mass, Population II BDs and dark halos.
The Dual Origin Of Stellar Halos
NASA Astrophysics Data System (ADS)
Zolotov, Adi
In the dominant Lambda+Cold Dark Matter cosmological paradigm, galaxy stellar halos are thought to form hierarchically from multiple accretion events, starting from the first structures to collapse in the Universe. This dissertation aims to make the first detailed theoretical predictions for the origin of galactic stellar halos. We focus on understanding the physical processes involved in halo formation using high-resolution, N-body + Smooth Particle Hydrodynamic simulations of disk galaxies in a cosmological context. These self-consistent simulations are used to study the competing importance of dissipative processes and dissipationless mergers in the formation of stellar halos. The relative contribution of each mechanism, and its specific role in assembling the inner and outer regions of halos is explored, as a function of galaxy mass and merging history. We show that the presence of both accreted and in situ stars in halos is a generic feature of galaxy formation. For L* galaxies, the relative contribution of each stellar population to a halo is shown to be a function of a galaxy's accretion history. Galaxies with recent mergers, like M31, will host relatively few in situ stars, while galaxies with more quiescent recent histories, like the Milky Way, will likely have a larger relative contribution from an in situ population. We show that in situ halo stars are more [alpha/Fe]-rich than accreted stars at the high [Fe/H] end of a halo's metallicity distribution function. In lower mass galaxies, M ˜ 1010 M, in situ stars dominate the stellarmass of halos. In these galaxies, in situ halo stars are, on average, younger and more metal-rich than accreted halo stars. Because in situ stars are dominant, these trends result in halos that are more metal-rich than simple accretion models predict. The halos of low mass galaxies do not extend out to the virial radii of the primary, as they do in more massive galaxies. We find that the ratio of luminous-halo mass to total galaxy mass decreases from ˜ 1% in L* galaxies to ˜ 0.2% in 1010 M mass galaxies.
Minimizing the stochasticity of halos in large-scale structure surveys
NASA Astrophysics Data System (ADS)
Hamaus, Nico; Seljak, Uroš; Desjacques, Vincent; Smith, Robert E.; Baldauf, Tobias
2010-08-01
In recent work (Seljak, Hamaus, and Desjacques 2009) it was found that weighting central halo galaxies by halo mass can significantly suppress their stochasticity relative to the dark matter, well below the Poisson model expectation. This is useful for constraining relations between galaxies and the dark matter, such as the galaxy bias, especially in situations where sampling variance errors can be eliminated. In this paper we extend this study with the goal of finding the optimal mass-dependent halo weighting. We use N-body simulations to perform a general analysis of halo stochasticity and its dependence on halo mass. We investigate the stochasticity matrix, defined as Cij≡⟨(δi-biδm)(δj-bjδm)⟩, where δm is the dark matter overdensity in Fourier space, δi the halo overdensity of the i-th halo mass bin, and bi the corresponding halo bias. In contrast to the Poisson model predictions we detect nonvanishing correlations between different mass bins. We also find the diagonal terms to be sub-Poissonian for the highest-mass halos. The diagonalization of this matrix results in one large and one low eigenvalue, with the remaining eigenvalues close to the Poisson prediction 1/n¯, where n¯ is the mean halo number density. The eigenmode with the lowest eigenvalue contains most of the information and the corresponding eigenvector provides an optimal weighting function to minimize the stochasticity between halos and dark matter. We find this optimal weighting function to match linear mass weighting at high masses, while at the low-mass end the weights approach a constant whose value depends on the low-mass cut in the halo mass function. This weighting further suppresses the stochasticity as compared to the previously explored mass weighting. Finally, we employ the halo model to derive the stochasticity matrix and the scale-dependent bias from an analytical perspective. It is remarkably successful in reproducing our numerical results and predicts that the stochasticity between halos and the dark matter can be reduced further when going to halo masses lower than we can resolve in current simulations.
WR 148 and the not so compact companion
NASA Astrophysics Data System (ADS)
Munoz, Melissa; Moffat, Anthony J.; Hill, Grant M.; Shenar, Tomer; Richardson, Noel D.; Pablo, Herbert; St-Louis, Nicole; Ramiaramanantsoa, Tahina
2017-11-01
The objective is to determine the nature of the unseen companion of the single-lined spectroscopic binary, WR 148 (= WN7h+?). The absence of companion lines supports a compact companion (cc) scenario. The lack of hard X-rays favours a non-compact companion scenario. Is WR 148 a commonplace WR+OB binary or a rare WR+cc binary?
The f ( R ) halo mass function in the cosmic web
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braun-Bates, F. von; Winther, H.A.; Alonso, D.
An important indicator of modified gravity is the effect of the local environment on halo properties. This paper examines the influence of the local tidal structure on the halo mass function, the halo orientation, spin and the concentration-mass relation. We use the excursion set formalism to produce a halo mass function conditional on large-scale structure. Our simple model agrees well with simulations on large scales at which the density field is linear or weakly non-linear. Beyond this, our principal result is that f ( R ) does affect halo abundances, the halo spin parameter and the concentration-mass relationship in anmore » environment-independent way, whereas we find no appreciable deviation from \\text(ΛCDM) for the mass function with fixed environment density, nor the alignment of the orientation and spin vectors of the halo to the eigenvectors of the local cosmic web. There is a general trend for greater deviation from \\text(ΛCDM) in underdense environments and for high-mass haloes, as expected from chameleon screening.« less
Asphaltic mixture compaction and density validation : research brief.
DOT National Transportation Integrated Search
2017-02-01
Research Objectives: : Evaluate HMA longitudinal joint type, method and compaction data to produce specification recommendations to ensure the highest density at longitudinal joints : Evaluate thin lift overlay HMA and provide recommendations...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okumura, Teppei; Hand, Nick; Seljak, Uros
Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to correctly extract cosmological information from galaxy redshift surveys. The task is complicated by the nonlinear biasing and redshift space distortion (RSD) effects, which change with halo mass, and by the wide distribution of halo masses and their occupations by galaxies. One of the main modeling challenges is the existence of satellite galaxies that have both radial distribution inside the halos and large virial velocities inside halos, a phenomenon known as the Finger-of-God (FoG) effect. We present a model for the redshift-space power spectrum of galaxies in whichmore » we decompose a given galaxy sample into central and satellite galaxies and relate different contributions to the power spectrum to 1-halo and 2-halo terms in a halo model. Our primary goal is to ensure that any parameters that we introduce have physically meaningful values, and are not just fitting parameters. For the lowest order 2-halo terms we use the previously developed RSD modeling of halos in the context of distribution function and perturbation theory approach. This term needs to be multiplied by the effect of radial distances and velocities of satellites inside the halo. To this one needs to add the 1-halo terms, which are nonperturbative. We show that the real space 1-halo terms can be modeled as almost constant, with the finite extent of the satellites inside the halo inducing a small k 2R 2 term over the range of scales of interest, where R is related to the size of the halo given by its halo mass. Furthermore, we adopt a similar model for FoG in redshift space, ensuring that FoG velocity dispersion is related to the halo mass. For FoG k 2 type expansions do not work over the range of scales of interest and FoG resummation must be used instead. We test several simple damping functions to model the velocity dispersion FoG effect. Applying the formalism to mock galaxies modeled after the “CMASS” sample of the BOSS survey, we find that our predictions for the redshift-space power spectra are accurate up to k ≃ 0.4 h Mpc –1 within 1% if the halo power spectrum is measured using N-body simulations and within 3% if it is modeled using perturbation theory.« less
Paired and interacting galaxies: Conference summary
NASA Technical Reports Server (NTRS)
Norman, Colin A.
1990-01-01
The author gives a summary of the conference proceedings. The conference began with the presentation of the basic data sets on pairs, groups, and interacting galaxies with the latter being further discussed with respect to both global properties and properties of the galactic nuclei. Then followed the theory, modelling and interpretation using analytic techniques, simulations and general modelling for spirals and ellipticals, starbursts and active galactic nuclei. Before the conference the author wrote down the three questions concerning pairs, groups and interacting galaxies that he hoped would be answered at the meeting: (1) How do they form, including the role of initial conditions, the importance of subclustering, the evolution of groups to compact groups, and the fate of compact groups; (2) How do they evolve, including issues such as relevant timescales, the role of halos and the problem of overmerging, the triggering and enhancement of star formation and activity in the galactic nuclei, and the relative importance of dwarf versus giant encounters; and (3) Are they important, including the frequency of pairs and interactions, whether merging and interactions are very important aspects of the life of a normal galaxy at formation, during its evolution, in forming bars, shells, rings, bulges, etc., and in the formation and evolution of active galaxies? Where possible he focuses on these three central issues in the summary.
ZOMG - III. The effect of halo assembly on the satellite population
NASA Astrophysics Data System (ADS)
Garaldi, Enrico; Romano-Díaz, Emilio; Borzyszkowski, Mikolaj; Porciani, Cristiano
2018-01-01
We use zoom hydrodynamical simulations to investigate the properties of satellites within galaxy-sized dark-matter haloes with different assembly histories. We consider two classes of haloes at redshift z = 0: 'stalled' haloes that assembled at z > 1 and 'accreting' ones that are still forming nowadays. Previously, we showed that the stalled haloes are embedded within thick filaments of the cosmic web, while the accreting ones lie where multiple thin filaments converge. We find that satellites in the two classes have both similar and different properties. Their mass spectra, radial count profiles, baryonic and stellar content, and the amount of material they shed are indistinguishable. However, the mass fraction locked in satellites is substantially larger for the accreting haloes as they experience more mergers at late times. The largest difference is found in the satellite kinematics. Substructures fall towards the accreting haloes along quasi-radial trajectories whereas an important tangential velocity component is developed, before accretion, while orbiting the filament that surrounds the stalled haloes. Thus, the velocity anisotropy parameter of the satellites (β) is positive for the accreting haloes and negative for the stalled ones. This signature enables us to tentatively categorize the Milky Way halo as stalled based on a recent measurement of β. Half of our haloes contain clusters of satellites with aligned orbital angular momenta corresponding to flattened structures in space. These features are not driven by baryonic physics and are only found in haloes hosting grand-design spiral galaxies, independently of their assembly history.
Quasiperiodic Oscillations in X-ray Binaries
NASA Astrophysics Data System (ADS)
van der Klis, M.; Murdin, P.
2000-11-01
The term quasiperiodic oscillation (QPO) is used in high-energy astrophysics for any type of non-periodic variability that is constrained to a relatively narrow range of variability frequencies. X-RAY BINARIES are systems in which a `compact object', either a BLACK HOLE or a NEUTRON STAR, orbits a normal star and captures matter from it. The matter spirals down to the compact object and heats up ...
Role of pressure anisotropy on relativistic compact stars
NASA Astrophysics Data System (ADS)
Maurya, S. K.; Banerjee, Ayan; Hansraj, Sudan
2018-02-01
We investigate a compact spherically symmetric relativistic body with anisotropic particle pressure profiles. The distribution possesses characteristics relevant to modeling compact stars within the framework of general relativity. For this purpose, we consider a spatial metric potential of Korkina and Orlyanskii [Ukr. Phys. J. 36, 885 (1991)] type in order to solve the Einstein field equations. An additional prescription we make is that the pressure anisotropy parameter takes the functional form proposed by Lake [Phys. Rev. D 67, 104015 (2003), 10.1103/PhysRevD.67.104015]. Specifying these two geometric quantities allows for further analysis to be carried out in determining unknown constants and obtaining a limit of the mass-radius diagram, which adequately describes compact strange star candidates like Her X-1 and SMC X-1. Using the anisotropic Tolman-Oppenheimer-Volkoff equations, we explore the hydrostatic equilibrium and the stability of such compact objects. Then, we investigate other physical features of this model, such as the energy conditions, speeds of sound, and compactness of the star, in detail and show that our results satisfy all the required elementary conditions for a physically acceptable stellar model. The results obtained are useful in analyzing the stability of other anisotropic compact objects like white dwarfs, neutron stars, and gravastars.
Galaxy power spectrum in redshift space: Combining perturbation theory with the halo model
Okumura, Teppei; Hand, Nick; Seljak, Uros; ...
2015-11-19
Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to correctly extract cosmological information from galaxy redshift surveys. The task is complicated by the nonlinear biasing and redshift space distortion (RSD) effects, which change with halo mass, and by the wide distribution of halo masses and their occupations by galaxies. One of the main modeling challenges is the existence of satellite galaxies that have both radial distribution inside the halos and large virial velocities inside halos, a phenomenon known as the Finger-of-God (FoG) effect. We present a model for the redshift-space power spectrum of galaxies in whichmore » we decompose a given galaxy sample into central and satellite galaxies and relate different contributions to the power spectrum to 1-halo and 2-halo terms in a halo model. Our primary goal is to ensure that any parameters that we introduce have physically meaningful values, and are not just fitting parameters. For the lowest order 2-halo terms we use the previously developed RSD modeling of halos in the context of distribution function and perturbation theory approach. This term needs to be multiplied by the effect of radial distances and velocities of satellites inside the halo. To this one needs to add the 1-halo terms, which are nonperturbative. We show that the real space 1-halo terms can be modeled as almost constant, with the finite extent of the satellites inside the halo inducing a small k 2R 2 term over the range of scales of interest, where R is related to the size of the halo given by its halo mass. Furthermore, we adopt a similar model for FoG in redshift space, ensuring that FoG velocity dispersion is related to the halo mass. For FoG k 2 type expansions do not work over the range of scales of interest and FoG resummation must be used instead. We test several simple damping functions to model the velocity dispersion FoG effect. Applying the formalism to mock galaxies modeled after the “CMASS” sample of the BOSS survey, we find that our predictions for the redshift-space power spectra are accurate up to k ≃ 0.4 h Mpc –1 within 1% if the halo power spectrum is measured using N-body simulations and within 3% if it is modeled using perturbation theory.« less
Effects of primordial magnetic field on the formation rate of dark matter halos
NASA Astrophysics Data System (ADS)
Cheera, Varalakshmi; Nigam, Rahul
2018-05-01
We construct and demonstrate a method for computing the formation rate of the dark matter halo in the hierarchical model set up. This method uses the Press-Schecter distribution for the halos and hence applies only to the spherical halos. But this can be generalized to ellipsoidal structures also if one uses the Sheth-Torman distribution. After obtaining the formation rate, we study the effect of primordial magnetic field on the dynamics of these halos. We investigate the effect for different field strengths and conclude that a magnetic field stronger than 10 nG would impact the halos larger than 108 solar masses while a weaker field affects the formation rate of smaller halos.
Imai, Kazuhiro; Minamiya, Yoshihiro; Saito, Hajime; Miyakoshi, Naohisa; Hongo, Michio; Kasukawa, Yuji; Ishikawa, Yoshinori; Motoyama, Satoru; Sato, Yusuke; Shimada, Yoichi; Ogawa, Jun-ichi
2013-07-01
We describe a novel technique of using halo-vest-enforced immobilization to relieve anastomotic tension after tracheal sleeve resection. Immediately after the tracheal sleeve resection, four halo titanium pins were inserted in the skulls of the patients to secure the halo-vest. All patients fitted with halo-vests were able to eat and drink and their clinical course was good. Bronchoscopy confirmed the absence of anastomotic leaks and stenoses, and there were no complications associated with the halo-vest. We believe that ensuring neck flexion using a halo-vest after tracheal sleeve resection is an excellent way of relieving anastomotic tension that would predispose the wound to dehiscence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanghellini, Letizia; Shaw, Richard A.; Villaver, Eva
We present the images of a Hubble Space Telescope ( HST /WFC3) snapshot program of angularly compact Galactic planetary nebulae (PNe), acquired with the aim of studying their size, evolutionary status, and morphology. PNe that are smaller than ∼4″ are underrepresented in most morphological studies, and today they are less well studied than their immediate evolutionary predecessors, the pre-planetary nebulae. The images have been acquired in the light of [O iii] λ 5007, which is commonly used to classify the PN morphology, in the UV continuum with the aim of detecting the central star unambiguously, and in the I -bandmore » to detect a cool stellar companion, if present. The sample of 51 confirmed PNe exhibits nearly the full range of primary morphological classes, with the distribution more heavily weighted toward bipolar PNe, but with the total of aspherical PNe almost identical to that of the general Galactic sample. A large range of microstructures is evident in our sample as well, with many nebulae displaying attached shells, halos, ansae, and internal structure in the form of arcs, rings, and spirals. Various aspherical structures in a few PNe, including detached arcs, suggest an interaction with the ISM. We studied the observed sample of compact Galactic PNe in the context of the general Galactic PN population, and explore whether their physical size, spatial distribution, reddening, radial metallicity gradient, and possible progenitors are peculiar within the population of Galactic PNe. We found that these compact Galactic PNe, which have been selected based on apparent dimensions, constitute a diverse Galactic PN population that is relatively uniformly distributed across the Galactic disk, including the outskirts of our Galaxy. This unique sample will be used in the future to probe the old Galactic disk population.« less
Probing Planckian Corrections at the Horizon Scale with LISA Binaries
NASA Astrophysics Data System (ADS)
Maselli, Andrea; Pani, Paolo; Cardoso, Vitor; Abdelsalhin, Tiziano; Gualtieri, Leonardo; Ferrari, Valeria
2018-02-01
Several quantum-gravity models of compact objects predict microscopic or even Planckian corrections at the horizon scale. We explore the possibility of measuring two model-independent, smoking-gun effects of these corrections in the gravitational waveform of a compact binary, namely, the absence of tidal heating and the presence of tidal deformability. For events detectable by the future space-based interferometer LISA, we show that the effect of tidal heating dominates and allows one to constrain putative corrections down to the Planck scale. The measurement of the tidal Love numbers with LISA is more challenging but, in optimistic scenarios, it allows us to constrain the compactness of a supermassive exotic compact object down to the Planck scale. Our analysis suggests that highly spinning, supermassive binaries at 1-20 Gpc provide unparalleled tests of quantum-gravity effects at the horizon scale.
Probing Planckian Corrections at the Horizon Scale with LISA Binaries.
Maselli, Andrea; Pani, Paolo; Cardoso, Vitor; Abdelsalhin, Tiziano; Gualtieri, Leonardo; Ferrari, Valeria
2018-02-23
Several quantum-gravity models of compact objects predict microscopic or even Planckian corrections at the horizon scale. We explore the possibility of measuring two model-independent, smoking-gun effects of these corrections in the gravitational waveform of a compact binary, namely, the absence of tidal heating and the presence of tidal deformability. For events detectable by the future space-based interferometer LISA, we show that the effect of tidal heating dominates and allows one to constrain putative corrections down to the Planck scale. The measurement of the tidal Love numbers with LISA is more challenging but, in optimistic scenarios, it allows us to constrain the compactness of a supermassive exotic compact object down to the Planck scale. Our analysis suggests that highly spinning, supermassive binaries at 1-20 Gpc provide unparalleled tests of quantum-gravity effects at the horizon scale.
High-resolution disruption halo current measurements using Langmuir probes in Alcator C-Mod
NASA Astrophysics Data System (ADS)
Tinguely, R. A.; Granetz, R. S.; Berg, A.; Kuang, A. Q.; Brunner, D.; LaBombard, B.
2018-01-01
Halo currents generated during disruptions on Alcator C-Mod have been measured with Langmuir ‘rail’ probes. These rail probes are embedded in a lower outboard divertor module in a closely-spaced vertical (poloidal) array. The dense array provides detailed resolution of the spatial dependence (~1 cm spacing) of the halo current distribution in the plasma scrape-off region with high time resolution (400 kHz digitization rate). As the plasma limits on the outboard divertor plate, the contact point is clearly discernible in the halo current data (as an inversion of current) and moves vertically down the divertor plate on many disruptions. These data are consistent with filament reconstructions of the plasma boundary, from which the edge safety factor of the disrupting plasma can be calculated. Additionally, the halo current ‘footprint’ on the divertor plate is obtained and related to the halo flux width. The voltage driving halo current and the effective resistance of the plasma region through which the halo current flows to reach the probes are also investigated. Estimations of the sheath resistance and halo region resistivity and temperature are given. This information could prove useful for modeling halo current dynamics.
Gaia reveals a metal-rich in-situ component of the local stellar halo
NASA Astrophysics Data System (ADS)
Bonaca, Ana; Conroy, Charlie; Wetzel, Andrew; Hopkins, Philip; Keres, Dusan
2018-01-01
We use the first Gaia data release, combined with RAVE and APOGEE spectroscopic surveys, to investigate the origin of halo stars within ~3 kpc from the Sun. We identify halo stars kinematically, as moving with a relative speed of at least 220 km/s with respect to the local standard of rest. These stars are in general more metal-poor than the disk, but surprisingly, half of our halo sample is comprised of stars with [Fe/H]>-1. The orbital directions of these metal-rich halo stars are preferentially aligned with the disk rotation, in sharp contrast with the isotropic orbital distribution of the more metal-poor halo stars. We find similar properties in the Latte cosmological zoom-in simulation of a Milky Way-like galaxy from the FIRE project. In Latte, metal-rich halo stars formed primarily inside of the solar circle, while lower-metallicity halo stars preferentially formed at larger distances (extending beyond the virial radius). This suggests that metal-rich halo stars in the Solar neighborhood in fact formed in situ within the Galactic disk rather than having been accreted from satellite systems. These stars, currently on halo-like orbits, therefore have likely undergone substantial radial migration/heating.
Gaia Reveals a Metal-rich, in situ Component of the Local Stellar Halo
NASA Astrophysics Data System (ADS)
Bonaca, Ana; Conroy, Charlie; Wetzel, Andrew; Hopkins, Philip F.; Kereš, Dušan
2017-08-01
We use the first Gaia data release, combined with the RAVE and APOGEE spectroscopic surveys, to investigate the origin of halo stars within ≲ 3 kpc from the Sun. We identify halo stars kinematically as moving at a relative speed of at least 220 km s-1 with respect to the local standard of rest. These stars are generally less metal-rich than the disk, but surprisingly, half of our halo sample is comprised of stars with [{Fe}/{{H}}]> -1. The orbital directions of these metal-rich halo stars are preferentially aligned with the disk rotation, in sharp contrast with the intrinsically isotropic orbital distribution of the metal-poor halo stars. We find similar properties in the Latte cosmological zoom-in simulation of a Milky Way-like galaxy from the FIRE project. In Latte, metal-rich halo stars formed primarily inside of the solar circle, whereas lower-metallicity halo stars preferentially formed at larger distances (extending beyond the virial radius). This suggests that metal-rich halo stars in the solar neighborhood actually formed in situ within the Galactic disk, rather than having been accreted from satellite systems. These stars, currently on halo-like orbits, therefore have likely undergone substantial radial migration/heating.
Hierarchical formation of dark matter halos and the free streaming scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishiyama, Tomoaki, E-mail: ishiyama@ccs.tsukuba.ac.jp
2014-06-10
The smallest dark matter halos are formed first in the early universe. According to recent studies, the central density cusp is much steeper in these halos than in larger halos and scales as ρ∝r {sup –(1.5-1.3)}. We present the results of very large cosmological N-body simulations of the hierarchical formation and evolution of halos over a wide mass range, beginning from the formation of the smallest halos. We confirmed early studies that the inner density cusps are steeper in halos at the free streaming scale. The cusp slope gradually becomes shallower as the halo mass increases. The slope of halosmore » 50 times more massive than the smallest halo is approximately –1.3. No strong correlation exists between the inner slope and the collapse epoch. The cusp slope of halos above the free streaming scale seems to be reduced primarily due to major merger processes. The concentration, estimated at the present universe, is predicted to be 60-70, consistent with theoretical models and earlier simulations, and ruling out simple power law mass-concentration relations. Microhalos could still exist in the present universe with the same steep density profiles.« less
Gamma-ray evidence for a stellar-mass black hole near the Galactic center
NASA Technical Reports Server (NTRS)
Ramaty, Reuven; Lingenfelter, Richard E.
1989-01-01
An analysis of the time variability of the observed 511-keV line emission from the direction of the Galactic center and the correlation of its variations in the continuum emission above 511 keV from the same direction suggest the existence of a compact object at or near the Galactic center. A possible mechanism of the observed positron annihilation is consistent with a compact interaction region of the order of 10 to the 8th cm. A black hole of several hundred solar masses is favored as a candidate for this compact object; arguments in support of this suggestion are presented.
Global properties of M31's stellar halo from the splash survey. II. Metallicity profile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Karoline M.; Kalirai, Jason S.; Guhathakurta, Puragra
2014-12-01
We present the metallicity distribution of red giant branch (RGB) stars in M31's stellar halo, derived from photometric metallicity estimates for over 1500 spectroscopically confirmed RGB halo stars. The stellar sample comes from 38 halo fields observed with the Keck/DEIMOS spectrograph, ranging from 9 to 175 kpc in projected distance from M31's center, and includes 52 confirmed M31 halo stars beyond 100 kpc. While a wide range of metallicities is seen throughout the halo, the metal-rich peak of the metallicity distribution function becomes significantly less prominent with increasing radius. The metallicity profile of M31's stellar halo shows a continuous gradientmore » from 9 to ∼100 kpc, with a magnitude of ∼ – 0.01 dex kpc{sup –1}. The stellar velocity distributions in each field are used to identify stars that are likely associated with tidal debris features. The removal of tidal debris features does not significantly alter the metallicity gradient in M31's halo: a gradient is maintained in fields spanning 10-90 kpc. We analyze the halo metallicity profile, as well as the relative metallicities of stars associated with tidal debris features and the underlying halo population, in the context of current simulations of stellar halo formation. We argue that the large-scale gradient in M31's halo implies M31 accreted at least one relatively massive progenitor in the past, while the field to field variation seen in the metallicity profile indicates that multiple smaller progenitors are likely to have contributed substantially to M31's outer halo.« less
Tests and consequences of disk plus halo models of gamma-ray burst sources
NASA Technical Reports Server (NTRS)
Smith, I. A.
1995-01-01
The gamma-ray burst observations made by the Burst and Transient Source Experiment (BATSE) and by previous experiments are still consistent with a combined Galactic disk (or Galactic spiral arm) plus extended Galactic halo model. Testable predictions and consequences of the disk plus halo model are discussed here; tests performed on the expanded BATSE database in the future will constrain the allowed model parameters and may eventually rule out the disk plus halo model. Using examples, it is shown that if the halo has an appropriate edge, BATSE will never detect an anisotropic signal from the halo of the Andromeda galaxy. A prediction of the disk plus halo model is that the fraction of the bursts observed to be in the 'disk' population rises as the detector sensitivity improves. A careful reexamination of the numbers of bursts in the two populations for the pre-BATSE databases could rule out this class of models. Similarly, it is predicted that different satellites will observe different relative numbers of bursts in the two classes for any model in which there are two different spatial distribiutions of the sources, or for models in which there is one spatial distribution of the sources that is sampled to different depths for the two classes. An important consequence of the disk plus halo model is that for the birthrate of the halo sources to be small compared to the birthrate of the disk sources, it is necessary for the halo sources to release many orders of magnitude more energy over their bursting lifetime than the disk sources. The halo bursts must also be much more luminous than the disk bursts; if this disk-halo model is correct, it is necessary to explain why the disk sources do not produce halo-type bursts.
The impact of feedback and the hot halo on the rates of gas accretion on to galaxies
NASA Astrophysics Data System (ADS)
Correa, Camila A.; Schaye, Joop; van de Voort, Freeke; Duffy, Alan R.; Wyithe, J. Stuart B.
2018-07-01
We investigate the physics that drives the gas accretion rates on to galaxies at the centres of dark matter haloes using the EAGLE suite of hydrodynamical cosmological simulations. We find that at redshifts z ≤ 2, the accretion rate on to the galaxy increases with halo mass in the halo mass range 1010-1011.7 M⊙, flattens between the halo masses 1011.7 and 1012.7 M⊙, and increases again for higher mass haloes. However, the galaxy gas accretion does not flatten at intermediate halo masses when active galactic nucleus (AGN) feedback is switched off. To better understand these trends, we develop a physically motivated semi-analytic model of galaxy gas accretion. We show that the flattening is produced by the rate of gas cooling from the hot halo. The ratio of the cooling radius and the virial radius does not decrease continuously with increasing halo mass as generally thought. While it decreases up to ˜1013 M⊙ haloes, it increases for higher halo masses, causing an upturn in the galaxy gas accretion rate. This may indicate that in high-mass haloes, AGN feedback is not sufficiently efficient. When there is no AGN feedback, the density of the hot halo is higher, the ratio of the cooling and virial radii does not decrease as much, and the cooling rate is higher. Changes in the efficiency of stellar feedback can also increase or decrease the accretion rates on to galaxies. The trends can plausibly be explained by the re-accretion of gas ejected by progenitor galaxies and by the suppression of black hole growth, and hence AGN feedback, by stellar feedback.
Historical halo displays as past weather indicator
NASA Astrophysics Data System (ADS)
Neuhäuser, Dagmar; Neuhäuser, Ralph
2017-04-01
Certain halo displays like the 22° circle were known to indicate specific weather pattern since millennia - as specified in Babylonian omina, Aristotle's Meteorology, farmers' weather lore, etc. Today, it is known that halo phenomena are due to refraction and reflection of sun and moon light in ice crystals in cirrus and cirrostratus, so that halo observations do indicate atmospheric conditions like temperature, humidity, pressure etc. in a few km height. The Astronomical Diaries of Babylonia have recorded both halo phenomena (circles, parhelia, etc.) and weather conditions (rain, clouds, etc.), so that we can use them to show statistically, whether, which and how fast halo phenomena are related to weather - for the last few centuries BC for Babylonia. We can then also compare the observations of Babylonian priests in the given BC epoch (without air and light pollution) with the last few decades of the modern epoch (with air and light pollution), where amateur halo observers have systematically recorded such phenomena (in Europe). Weather and climate are known to be partly driven by solar activity. Hence, one could also consider whether there is an indirect relation between halo displays as weather proxy and aurorae as solar activity proxy - if low solar activity leads to low pressure systems, one could expect more halos, preliminary studies show such a hint. For the last few decades, we have many halo observations, satellite imaging of the aurora oval, and many data on solar activity. A statistically sufficient amount of aurora and halo observations should be available for the historic time to investigate such a possible connection: halos were recorded very often in antiquity and the medieval times (as found in chronicles etc.), and modern scholarly catalogs of aurorae also often contain unrecognized halo displays.
Simulations of Early Structure Formation: Primordial Gas Clouds
NASA Astrophysics Data System (ADS)
Yoshida, Naoki; Abel, Tom; Hernquist, Lars; Sugiyama, Naoshi
2003-08-01
We use cosmological simulations to study the origin of primordial star-forming clouds in a ΛCDM universe, by following the formation of dark matter halos and the cooling of gas within them. To model the physics of chemically pristine gas, we employ a nonequilibrium treatment of the chemistry of nine species (e-, H, H+, He, He+, He++, H2, H+2, H-) and include cooling by molecular hydrogen. By considering cosmological volumes, we are able to study the statistical properties of primordial halos, and the high resolution of our simulations enables us to examine these objects in detail. In particular, we explore the hierarchical growth of bound structures forming at redshifts z~25-30 with total masses in the range ~105-106Msolar. We find that when the amount of molecular hydrogen in these objects reaches a critical level, cooling by rotational line emission is efficient, and dense clumps of cold gas form. We identify these ``gas clouds'' as sites for primordial star formation. In our simulations, the threshold for gas cloud formation by molecular cooling corresponds to a critical halo mass of ~5×105h-1Msolar, in agreement with earlier estimates, but with a weak dependence on redshift in the range z>16. The complex interplay between the gravitational formation of dark halos and the thermodynamic and chemical evolution of the gas clouds compromises analytic estimates of the critical H2 fraction. Dynamical heating from mass accretion and mergers opposes relatively inefficient cooling by molecular hydrogen, delaying the production of star-forming clouds in rapidly growing halos. We also investigate the effect of photodissociating ultraviolet radiation on the formation of primordial gas clouds. We consider two extreme cases, first by including a uniform radiation field in the optically thin limit and second by accounting for the maximum effect of gas self-shielding in virialized regions. For radiation with Lyman-Werner band flux J>10-23 ergs s-1 cm-2 Hz-1 sr-1, hydrogen molecules are rapidly dissociated, rendering gas cooling inefficient. In both the cases we consider, the overall effect can be described by computing an equilibrium H2 abundance for the radiation flux and defining an effective shielding factor. Based on our numerical results, we develop a semianalytic model of the formation of the first stars and demonstrate how it can be coupled with large N-body simulations to predict the star formation rate in the early universe.
Leniency and halo effects in marking undergraduate short research projects
McKinstry, Brian H; Cameron, Helen S; Elton, Robert A; Riley, Simon C
2004-01-01
Background Supervisors are often involved in the assessment of projects they have supervised themselves. Previous research suggests that detailed marking sheets may alleviate leniency and halo effects. We set out to determine if, despite using such a marking schedule, leniency and halo effects were evident in the supervisors' marking of undergraduate short research projects (special study modules (SSM)). Methods Review of grades awarded by supervisors, second markers and control markers to the written reports of 4th year medical students who had participated in an SSM during two full academic years (n = 399). Paired t-tests were used to compare mean marks, Pearson correlation to look at agreement between marks and multiple linear regression to test the prediction of one mark from several others adjusted for one another. Results There was a highly significant difference of approximately half a grade between supervisors and second markers with supervisors marking higher. (t = 3.12, p < 0.01, difference in grade score = 0.42, 95% CI for mean difference 0.18–0.80). There was a high correlation between the two marks awarded for performance of the project and the written report by the supervisor (r = 0.75), but a low-modest correlation between supervisor and second marker (r = 0.28). Linear regression analysis of the influence of the supervisors' mark for performance on their mark for the report gave a non-significant result. This suggests a leniency effect but no halo effect. Conclusions This study shows that with the use of structured marking sheet for assessment of undergraduate medical students, supervisors marks are not associated with a halo effect, but leniency does occur. As supervisor assessment is becoming more common in both under graduate and postgraduate teaching new ways to improve objectivity in marking and to address the leniency of supervisors should be sought. PMID:15569395
SURFS: Riding the waves with Synthetic UniveRses For Surveys
NASA Astrophysics Data System (ADS)
Elahi, Pascal J.; Welker, Charlotte; Power, Chris; Lagos, Claudia del P.; Robotham, Aaron S. G.; Cañas, Rodrigo; Poulton, Rhys
2018-04-01
We present the Synthetic UniveRses For Surveys (SURFS) simulations, a set of N-body/Hydro simulations of the concordance Λ Cold Dark Matter (ΛCDM) cosmology. These simulations use Planck cosmology, contain up to 10 billion particles, and sample scales and halo masses down to 1 kpc and 108 M⊙. We identify and track haloes from z = 24 to today using a state-of-the-art 6D halo finder and merger tree builder. We demonstrate that certain properties of haloes merger trees are numerically converged for haloes composed of ≳100 particles. Haloes smoothly grow in mass, Vmax, with the mass history characterized by log M(a) ∝ exp [-(a/β)α], where a is the scale factor, α(M) ≈ 0.8 & β(M) ≈ 0.024, with these parameters decreasing with decreasing halo mass. Subhaloes follow power-law cumulative mass and velocity functions, i.e. n( > f) ∝ f-α with αM = 0.83 ± 0.01 and α _{V_max}=2.13± 0.03 for mass and velocity, respectively, independent of redshift, as seen in previous studies. The halo-to-halo scatter in amplitude is 0.9 dex. The number of subhaloes in a halo weakly correlates with a halo's concentration c and spin λ:haloes of high c and low λ have 60 per cent more subhaloes than similar mass haloes of low c and high λ. High cadence tracking shows subhaloes are dynamic residents, with 25 per cent leaving their host halo momentarily, becoming a backsplash subhalo, and another 20 per cent changing hosts entirely, in agreement with previous studies. In general, subhaloes have elliptical orbits, e ≈ 0.6, with periods of 2.3^{+2.1}_{-1.7} Gyrs. Subhaloes lose most of their mass at pericentric passage with mass loss rates of ˜ 40 per cent Gyr-1. These catalogues will be made publicly available.
Galaxy-halo alignments in the Horizon-AGN cosmological hydrodynamical simulation
NASA Astrophysics Data System (ADS)
Chisari, N. E.; Koukoufilippas, N.; Jindal, A.; Peirani, S.; Beckmann, R. S.; Codis, S.; Devriendt, J.; Miller, L.; Dubois, Y.; Laigle, C.; Slyz, A.; Pichon, C.
2017-11-01
Intrinsic alignments of galaxies are a significant astrophysical systematic affecting cosmological constraints from weak gravitational lensing. Obtaining numerical predictions from hydrodynamical simulations of expected survey volumes is expensive, and a cheaper alternative relies on populating large dark matter-only simulations with accurate models of alignments calibrated on smaller hydrodynamical runs. This requires connecting the shapes and orientations of galaxies to those of dark matter haloes and to the large-scale structure. In this paper, we characterize galaxy-halo alignments in the Horizon-AGN cosmological hydrodynamical simulation. We compare the shapes and orientations of galaxies in the redshift range of 0 < z < 3 to those of their embedding dark matter haloes, and to the matching haloes of a twin dark-matter only run with identical initial conditions. We find that galaxy ellipticities, in general, cannot be predicted directly from halo ellipticities. The mean misalignment angle between the minor axis of a galaxy and its embedding halo is a function of halo mass, with residuals arising from the dependence of alignment on galaxy type, but not on environment. Haloes are much more strongly aligned among themselves than galaxies, and they decrease their alignment towards low redshift. Galaxy alignments compete with this effect, as galaxies tend to increase their alignment with haloes towards low redshift. We discuss the implications of these results for current halo models of intrinsic alignments and suggest several avenues for improvement.
Accurate mass and velocity functions of dark matter haloes
NASA Astrophysics Data System (ADS)
Comparat, Johan; Prada, Francisco; Yepes, Gustavo; Klypin, Anatoly
2017-08-01
N-body cosmological simulations are an essential tool to understand the observed distribution of galaxies. We use the MultiDark simulation suite, run with the Planck cosmological parameters, to revisit the mass and velocity functions. At redshift z = 0, the simulations cover four orders of magnitude in halo mass from ˜1011M⊙ with 8783 874 distinct haloes and 532 533 subhaloes. The total volume used is ˜515 Gpc3, more than eight times larger than in previous studies. We measure and model the halo mass function, its covariance matrix w.r.t halo mass and the large-scale halo bias. With the formalism of the excursion-set mass function, we explicit the tight interconnection between the covariance matrix, bias and halo mass function. We obtain a very accurate (<2 per cent level) model of the distinct halo mass function. We also model the subhalo mass function and its relation to the distinct halo mass function. The set of models obtained provides a complete and precise framework for the description of haloes in the concordance Planck cosmology. Finally, we provide precise analytical fits of the Vmax maximum velocity function up to redshift z < 2.3 to push for the development of halo occupation distribution using Vmax. The data and the analysis code are made publicly available in the Skies and Universes data base.
The global dark halo structure of the Andromeda galaxy
NASA Astrophysics Data System (ADS)
Hayashi, Kohei; Chiba, Masashi
2014-01-01
We set new limits on the global shape of the dark halo in the Andromeda galaxy based on axisymmetric mass models constructed by Hayashi & Chiba (2012). This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Based on the application of our models to latest kinematical data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield not a spherical but a prolate shape for its dark halo. We also find that the prolate dark halo is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their galactic host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web.
The Structure of Dark Matter Halos in Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Burkert, A.
1995-07-01
Recent observations indicate that dark matter halos have flat central density profiles. Cosmological simulations with nonbaryonic dark matter, however, predict self-similar halos with central density cusps. This contradiction has lead to the conclusion that dark matter must be baryonic. Here it is shown that the dark matter halos of dwarf spiral galaxies represent a one-parameter family with self-similar density profiles. The observed global halo parameters are coupled with each other through simple scaling relations which can be explained by the standard cold dark matter model if one assumes that all the halos formed from density fluctuations with the same primordial amplitude. We find that the finite central halo densities correlate with the other global parameters. This result rules out scenarios where the flat halo cores formed subsequently through violent dynamical processes in the baryonic component. These cores instead provide important information on the origin and nature of dark matter in dwarf galaxies.
Research Progresses of Halo Streams in the Solar Neighborhood
NASA Astrophysics Data System (ADS)
Xi-long, Liang; Jing-kun, Zhao; Yu-qin, Chen; Gang, Zhao
2018-01-01
The stellar streams originated from the Galactic halo may be detected when they pass by the solar neighborhood, and they still keep some information at their birth times. Thus, the investigation of halo streams in the solar neighborhood is very important for understanding the formation and evolution of our Galaxy. In this paper, the researches of halo streams in the solar neighborhood are briefly reviewed. We have introduced the methods how to detect the halo streams and identify their member stars, summarized the progresses in the observation of member stars of halo streams and in the study of their origins, introduced in detail how to analyze the origins of halo streams in the solar neighborhood by means of numerical simulation and chemical abundance, and finally discussed the prospects of the LAMOST and GAIA in the research of halo streams in the solar neighborhood.
NASA Astrophysics Data System (ADS)
Izosimov, I. N.
2015-10-01
It has been shown that IAS, DIAS, CS, and DCS can simultaneously have n-n, n-p, and p-p halo components in their wave functions. Differences in halo structure of the excited and ground states can result in the formation of isomers (halo-isomers). Both the Borromean and tango halo types can be observed for n-p configurations of atomic nuclei. The structure of the ground and excited states with different isospin quantum number in halo like nuclei is discussed. B(Mλ) and B(Eλ) for γ-transitions in 6,7,8Li, 8,9,10Be, 8,10,11B, 10,11,12,13,14C, 13,14,15,16,17N, 15,16,17,19O, and 17F are analyzed. Special attention is given to nuclei whose ground state does not exhibit halo structure but the excited state may have one.
The halo current in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Pautasso, G.; Giannone, L.; Gruber, O.; Herrmann, A.; Maraschek, M.; Schuhbeck, K. H.; ASDEX Upgrade Team
2011-04-01
Due to the complexity of the phenomena involved, a self-consistent physical model for the prediction of the halo current is not available. Therefore the ITER specifications of the spatial distribution and evolution of the halo current rely on empirical assumptions. This paper presents the results of an extensive analysis of the halo current measured in ASDEX Upgrade with particular emphasis on the evolution of the halo region, on the magnitude and time history of the halo current, and on the structure and duration of its toroidal and poloidal asymmetries. The effective length of the poloidal path of the halo current in the vessel is found to be rather insensitive to plasma parameters. Large values of the toroidally averaged halo current are observed in both vertical displacement events and centred disruptions but last a small fraction of the current quench; they coincide typically with a large but short-lived MHD event.
ULTRAVIOLET HALOS AROUND SPIRAL GALAXIES. I. MORPHOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodges-Kluck, Edmund; Cafmeyer, Julian; Bregman, Joel N., E-mail: hodgeskl@umich.edu
2016-12-10
We examine ultraviolet halos around a sample of highly inclined galaxies within 25 Mpc to measure their morphology and luminosity. Despite contamination from galactic light scattered into the wings of the point-spread function, we find that ultraviolet (UV) halos occur around each galaxy in our sample. Around most galaxies the halos form a thick, diffuse disk-like structure, but starburst galaxies with galactic superwinds have qualitatively different halos that are more extensive and have filamentary structure. The spatial coincidence of the UV halos above star-forming regions, the lack of consistent association with outflows or extraplanar ionized gas, and the strong correlationmore » between the halo and galaxy UV luminosity suggest that the UV light is an extragalactic reflection nebula. UV halos may thus represent 10{sup 6}–10{sup 7} M {sub ⊙} of dust within 2–10 kpc of the disk, whose properties may change with height in starburst galaxies.« less
Newly Discovered Clouds Found Floating High Above Milky Way
NASA Astrophysics Data System (ADS)
2002-10-01
GREEN BANK, WV -- New studies with the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) have revealed a previously unknown population of discrete hydrogen clouds in the gaseous halo that surrounds the Milky Way Galaxy. These clouds were discovered in the transition zone between the Milky Way and intergalactic space, and provide tantalizing evidence that supernova-powered "galactic fountains" continually blast superheated hydrogen gas into our Galactic suburbs. Hydrogen Clouds Graphic Artist's Rendering of the Milky Way (background) with insert showing GBT image of newly-discovered clouds of Hydrogen gas above the plane of the Galaxy. Credit: Kirk Woellert/National Science Foundation. Extending far above the star-filled disk of the Milky Way is an atmosphere, or halo, of hydrogen gas. "By studying this halo, we can learn a great deal about the processes that are going on inside our Galaxy as well as beyond its borders," said Jay Lockman, an astronomer with the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia. "It has remained a mystery, however, how this halo formed and what has prevented gravitational forces from collapsing the gas into a thin layer long ago." Some astronomers have speculated that this gas is distributed as a diffuse mist held up by either magnetic fields or cosmic rays streaming out of the plane of the Milky Way. Others believed that it is made of innumerable long-lived hydrogen clouds bobbing up and down like balls tossed by a juggler. Early observations with other telescopes discovered that there was some neutral hydrogen gas floating far above the Galaxy's plane, but these instruments were not sensitive enough to reveal any structure or resolve questions about its origin. Lockman's studies for the first time show a clear picture of the structure of the gas. Rather than a mist, the halo is in fact full of discrete clouds, each containing 50-to-100 solar masses of hydrogen and averaging about 100 light-years in diameter. "These objects were just below the ability of the older telescopes to detect," said Lockman, "but I looked with the GBT, and they popped right out." Lockman's results will be published in the Astrophysical Journal Letters. The clouds were discovered about 15,000 light-years from Earth toward the center of our Galaxy, and about 5,000 light-years above the Galaxy's plane. One of the most compelling facts revealed by the GBT is that the clouds are coupled dynamically to the disk of the Galaxy; that is, they follow along with the rotation of the rest of the Milky Way. Material from other sources crashing into the Milky Way would have different velocities and also appear quite different. "These are home grown objects, and not interlopers from outside our own Galaxy," said Lockman. Although the origin of these newly discovered clouds is not yet known, one mechanism to explain how this gas could be lifted into the halo is through supernova explosions. When a massive star reaches the end of its life it erupts in a cataclysm that produces a burst of cosmic rays and an enormous expanding bubble of gas at a temperature of several million degrees Celsius. Over time, this hot gas can flow outward into the Milky Way's halo. The question remains, however, what happens to this gas once it's ejected into the halo. One possibility is that it leaves the Galaxy as a wind, never to return. Some astronomers predict, however, that as the gas slowly cools it would condense into hydrogen clouds, eventually falling like raindrops back into the Milky Way, and forming what is referred to as a galactic fountain. "If the clouds were formed by material ejected from the Galactic plane into the halo," Lockman said, "then it's possible that they are now falling back onto the Galaxy. This would then require a continuing flow of new material from supernova explosions into the halo to replenish the hydrogen gas that has rained back into the disk." The researcher comments that further observations, now in progress, should clarify the properties of these halo clouds, determine their distribution throughout the Galaxy, show how they are related to other types of clouds, and reveal their internal structure. Radio telescopes are able to detect the naturally occurring radio emission from neutral atomic hydrogen. As hydrogen atoms move about in space, they can absorb small amounts of energy, sending the atom's single electron to a higher energy state. When the electron eventually moves back to its lower energy -- or resting state, it gives up a small amount of electromagnetic radiation at radio frequencies. The individual energy of a single atom is very weak, but the accumulated signal from vast clouds of hydrogen is strong enough to be detected by sensitive radio telescopes on Earth. The GBT, dedicated in August of 2000, is the world's largest fully steerable radio telescope. Its 100 by 110 meter dish is composed of 2004 individually hinged panels. It also has a unique offset feed arm, which greatly enhances the performance of the telescope, making it ideal for observations of faint astronomical objects. The GBT is completing its commissioning and early science program and will be moving into full time operation. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Searching for planetary nebulae at the Galactic halo via J-PAS and J-PLUS
NASA Astrophysics Data System (ADS)
Goncalves, Denise R.; Aparício-Villegas, Teresa; Akras, Stavros; Borges Fernandes, Marcelo; J-PAS Collaboration
2015-08-01
The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) is a narrow-band imaging, very wide field cosmological survey to be carried out from a dedicated 2.5m telescope and a 4.7 sq.deg camera with 1.2Gpix. It will last 5 years and will observe 8500 sq.deg of Northern sky to a 5-σ magnitude depth for point sources, equivalent to i ~23.3 over an aperture of 2 arcsec2. The J-PAS filter system consists of 54 contiguous narrow band filters of 145-Å FWHM, from 3,500 to 10,000Å. Two broad-band filters will be added at the extremes, UV and IR, plus 3 SDSS g, r, and i filters. The Javalambre Photometric Local Universe Survye (J-PLUS) will be an auxiliary survey ofJ-PAS (mainly for calibration) with a dedicated 0.80m telescope. J-PLUS comprises 12 filters, including g, r, i and z SDSS ones. Though about 2,500 planetary nebulae (PNe, confirmed spectroscopically) are known in the Galaxy, only 14 objects have been convincingly identified as halo PNe. They were classified as such from their location, kinematics and chemistry. Halo PNe are able to reveal precious information for the study of low- and intermediate-mass star evolution and the early chemical conditions of the Galaxy. The characteristic low continuum and intense line emissions of PNe make them good objects to be searched by J-PAS, and even by J-PLUS. For instance, the halo PNe BoBn 1, DdDm 1 and PS 1, located somewhere between 11 and 24 kpc from the Sun, have B magnitudes of 16, 14 and 13.4, respectively. Such values are easily encompassed by J-PAS/J-PLUS, given the typical limit magnitude of the survey. Though covering a significantly smaller sky area, data from the ALHAMBRA survey were used to test our J-PAS/J-PLUS strategy to search for PNe. Our first results will be shown in this poster.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, Kelley M.; Wilcots, Eric M., E-mail: hess@ast.uct.ac.za, E-mail: ewilcots@astro.wisc.edu
We present an analysis of the neutral hydrogen (H I) content and distribution of galaxies in groups as a function of their parent dark matter halo mass. The Arecibo Legacy Fast ALFA survey α.40 data release allows us, for the first time, to study the H I properties of over 740 galaxy groups in the volume of sky common to the Sloan Digital Sky Survey (SDSS) and ALFALFA surveys. We assigned ALFALFA H I detections a group membership based on an existing magnitude/volume-limited SDSS Data Release 7 group/cluster catalog. Additionally, we assigned group ''proximity' membership to H I detected objectsmore » whose optical counterpart falls below the limiting optical magnitude—thereby not contributing substantially to the estimate of the group stellar mass, but significantly to the total group H I mass. We find that only 25% of the H I detected galaxies reside in groups or clusters, in contrast to approximately half of all optically detected galaxies. Further, we plot the relative positions of optical and H I detections in groups as a function of parent dark matter halo mass to reveal strong evidence that H I is being processed in galaxies as a result of the group environment: as optical membership increases, groups become increasingly deficient of H I rich galaxies at their center and the H I distribution of galaxies in the most massive groups starts to resemble the distribution observed in comparatively more extreme cluster environments. We find that the lowest H I mass objects lose their gas first as they are processed in the group environment, and it is evident that the infall of gas rich objects is important to the continuing growth of large scale structure at the present epoch, replenishing the neutral gas supply of groups. Finally, we compare our results to those of cosmological simulations and find that current models cannot simultaneously predict the H I selected halo occupation distribution for both low and high mass halos.« less
The Spin and Orientation of Dark Matter Halos Within Cosmic Filaments
NASA Astrophysics Data System (ADS)
Zhang, Youcai; Yang, Xiaohu; Faltenbacher, Andreas; Springel, Volker; Lin, Weipeng; Wang, Huiyuan
2009-11-01
Clusters, filaments, sheets, and voids are the building blocks of the cosmic web. Forming dark matter halos respond to these different large-scale environments, and this in turn affects the properties of galaxies hosted by the halos. It is therefore important to understand the systematic correlations of halo properties with the morphology of the cosmic web, as this informs both about galaxy formation physics and possible systematics of weak lensing studies. In this study, we present and compare two distinct algorithms for finding cosmic filaments and sheets, a task which is far less well established than the identification of dark matter halos or voids. One method is based on the smoothed dark matter density field and the other uses the halo distributions directly. We apply both techniques to one high-resolution N-body simulation and reconstruct the filamentary/sheet like network of the dark matter density field. We focus on investigating the properties of the dark matter halos inside these structures, in particular, on the directions of their spins and the orientation of their shapes with respect to the directions of the filaments and sheets. We find that both the spin and the major axes of filament halos with masses lsim1013 h -1 M sun are preferentially aligned with the direction of the filaments. The spins and major axes of halos in sheets tend to lie parallel to the sheets. There is an opposite mass dependence of the alignment strength for the spin (negative) and major (positive) axes, i.e. with increasing halo mass the major axis tends to be more strongly aligned with the direction of the filament, whereas the alignment between halo spin and filament becomes weaker with increasing halo mass. The alignment strength as a function of the distance to the most massive node halo indicates that there is a transit large-scale environment impact: from the two-dimensional collapse phase of the filament to the three-dimensional collapse phase of the cluster/node halo at small separation. Overall, the two algorithms for filament/sheet identification investigated here agree well with each other. The method based on halos alone can be easily adapted for use with observational data sets.
VizieR Online Data Catalog: Faint blue objects at high galactic latitude (Mitchell+, 2004)
NASA Astrophysics Data System (ADS)
Mitchell, K. J.; Usher, P. D.
2006-11-01
The US (UV-excess Starlike) survey has cataloged 3987 objects in 7 high Galactic latitude fields according to their optical colors, magnitudes, and morphologies using photographic techniques. This paper analyzes the effectiveness of the survey at producing finding lists for complete samples of hot stars and quasars that exhibit blue and/or ultraviolet excess (B-UVX) relative to the colors of halo F and G subdwarf stars. A table of 599 spectroscopic identifications summarizes the spectroscopic coverage of the US objects that has been accomplished to date. (6 data files).
NASA Astrophysics Data System (ADS)
Hirano, Shingo; Yoshida, Naoki; Sakurai, Yuya; Fujii, Michiko S.
2018-03-01
We perform a set of cosmological simulations of early structure formation incorporating baryonic streaming motions. We present a case where a significantly elongated gas cloud with ∼104 solar mass (M ⊙) is formed in a pre-galactic (∼107 M ⊙) dark halo. The gas streaming into the halo compresses and heats the massive filamentary cloud to a temperature of ∼10,000 Kelvin. The gas cloud cools rapidly by atomic hydrogen cooling, and then by molecular hydrogen cooling down to ∼400 Kelvin. The rapid decrease of the temperature and hence of the Jeans mass triggers fragmentation of the filament to yield multiple gas clumps with a few hundred solar masses. We estimate the mass of the primordial star formed in each fragment by adopting an analytic model based on a large set of radiation hydrodynamics simulations of protostellar evolution. The resulting stellar masses are in the range of ∼50–120 M ⊙. The massive stars gravitationally attract each other and form a compact star cluster. We follow the dynamics of the star cluster using a hybrid N-body simulation. We show that massive star binaries are formed in a few million years through multi-body interactions at the cluster center. The eventual formation of the remnant black holes will leave a massive black hole binary, which can be a progenitor of strong gravitational wave sources similar to those recently detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO).
HaloSat - A CubeSat to Study the Hot Galactic Halo
NASA Astrophysics Data System (ADS)
Kaaret, Philip
2017-01-01
Observations of the nearby universe fail to locate about half of the baryons observed in the early universe. The missing baryons may be in hot galactic halos. HaloSat is a CubeSat designed to map oxygen line emission (O VII and O VIII) around the Milky Way in order to constrain the mass and spatial distribution of hot gas in the halo. HaloSat has a grasp competitive with current X-ray observatories. Its observing program will be optimized to minimize contributions from solar wind charge exchange (SWCX) emission that limit the accuracy of current measurements. We will describe the HaloSat mission concept, progress towards its implementation, and plans for archiving and distribution of the data.
The Initial Conditions and Evolution of Isolated Galaxy Models: Effects of the Hot Gas Halo
NASA Astrophysics Data System (ADS)
Hwang, Jeong-Sun; Park, Changbom; Choi, Jun-Hwan
2013-02-01
We construct several Milky Way-like galaxy models containing a gas halo (as well as gaseous and stellar disks, a dark matter halo, and a stellar bulge) following either an isothermal or an NFW density profile with varying mass and initial spin. In addition, galactic winds associated with star formation are tested in some of the simulations. We evolve these isolated galaxy models using the GADGET-3 N-body/hydrodynamic simulation code, paying particular attention to the effects of the gaseous halo on the evolution. We find that the evolution of the models is strongly affected by the adopted gas halo component, particularly in the gas dissipation and the star formation activity in the disk. The model without a gas halo shows an increasing star formation rate (SFR) at the beginning of the simulation for some hundreds of millions of years and then a continuously decreasing rate to the end of the run at 3 Gyr. Whereas the SFRs in the models with a gas halo, depending on the density profile and the total mass of the gas halo, emerge to be either relatively flat throughout the simulations or increasing until the middle of the run (over a gigayear) and then decreasing to the end. The models with the more centrally concentrated NFW gas halo show overall higher SFRs than those with the isothermal gas halo of the equal mass. The gas accretion from the halo onto the disk also occurs more in the models with the NFW gas halo, however, this is shown to take place mostly in the inner part of the disk and not to contribute significantly to the star formation unless the gas halo has very high density at the central part. The rotation of a gas halo is found to make SFR lower in the model. The SFRs in the runs including galactic winds are found to be lower than those in the same runs but without winds. We conclude that the effects of a hot gaseous halo on the evolution of galaxies are generally too significant to be simply ignored. We also expect that more hydrodynamical processes in galaxies could be understood through numerical simulations employing both gas disk and gas halo components.
Abort Options for Human Missions to Earth-Moon Halo Orbits
NASA Technical Reports Server (NTRS)
Jesick, Mark C.
2013-01-01
Abort trajectories are optimized for human halo orbit missions about the translunar libration point (L2), with an emphasis on the use of free return trajectories. Optimal transfers from outbound free returns to L2 halo orbits are numerically optimized in the four-body ephemeris model. Circumlunar free returns are used for direct transfers, and cislunar free returns are used in combination with lunar gravity assists to reduce propulsive requirements. Trends in orbit insertion cost and flight time are documented across the southern L2 halo family as a function of halo orbit position and free return flight time. It is determined that the maximum amplitude southern halo incurs the lowest orbit insertion cost for direct transfers but the maximum cost for lunar gravity assist transfers. The minimum amplitude halo is the most expensive destination for direct transfers but the least expensive for lunar gravity assist transfers. The on-orbit abort costs for three halos are computed as a function of abort time and return time. Finally, an architecture analysis is performed to determine launch and on-orbit vehicle requirements for halo orbit missions.
On the possibility that ultra-light boson haloes host and form supermassive black holes
NASA Astrophysics Data System (ADS)
Avilez, Ana A.; Bernal, Tula; Padilla, Luis E.; Matos, Tonatiuh
2018-07-01
Several observations suggest the existence of supermassive black holes (SMBH) at the centres of galaxies. However, the mechanism under which these objects form remains non-completely understood. In this work, we review an alternative mechanism of formation of galactic SMBHs from the collapse of a fraction of a dark matter (DM) halo made of an ultra-light scalar field (SF) whose critical mass of collapse is ˜1013 M⊙. Once the BH is formed, a long-living quasi-resonant SF configuration survives and plays the role of a central fraction of the galactic DM halo. In this work, we construct a model with an ultra-light SF configuration laying in a Schwarzschild space-time to describe the centre of the DM halo hosting an SMBH in equilibrium, in the limit where self-gravitating effects can be neglected. We compute the induced stellar velocity dispersion in order to investigate the influence of the BH on to the velocity field of visible matter at the central galactic regions. We fit the empirical correlation between stellar velocity dispersions and masses of SMBHs considering two instances: the idealized case of DM-dominated (DMD) systems, where the gravitational influence of baryons is neglected, and cases of real luminous galaxies (LGAL). In the DMD case, we found it is possible to reproduce the observed stellar velocity dispersions at the effective radius of systems hosting SMBHs of at most 108 M⊙. In the LGAL case, we found that the baryons are crucial to reproduce the observed velocity dispersion.
Squeezing the halo bispectrum: a test of bias models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dizgah, Azadeh Moradinezhad; Chan, Kwan Chuen; Noreña, Jorge
We study the halo-matter cross bispectrum in the presence of primordial non-Gaussianity of the local type. We restrict ourselves to the squeezed limit, for which the calculation are straightforward, and perform the measurements in the initial conditions of N-body simulations, to mitigate the contamination induced by nonlinear gravitational evolution. Interestingly, the halo-matter cross bispectrum is not trivial even in this simple limit as it is strongly sensitive to the scale-dependence of the quadratic and third-order halo bias. Therefore, it can be used to test biasing prescriptions. We consider three different prescription for halo clustering: excursion set peaks (ESP), local biasmore » and a model in which the halo bias parameters are explicitly derived from a peak-background split. In all cases, the model parameters are fully constrained with statistics other than the cross bispectrum. We measure the cross bispectrum involving one halo fluctuation field and two mass overdensity fields for various halo masses and collapse redshifts. We find that the ESP is in reasonably good agreement with the numerical data, while the other alternatives we consider fail in various cases. This suggests that the scale-dependence of halo bias also is a crucial ingredient to the squeezed limit of the halo bispectrum.« less
The Origin of the Milky Way's Halo Age Distribution
NASA Astrophysics Data System (ADS)
Carollo, Daniela; Tissera, Patricia B.; Beers, Timothy C.; Gudin, Dmitrii; Gibson, Brad K.; Freeman, Ken C.; Monachesi, Antonela
2018-05-01
We present an analysis of the radial age gradients for the stellar halos of five Milky Way (MW) mass-sized systems simulated as part of the Aquarius Project. The halos show a diversity of age trends, reflecting their different assembly histories. Four of the simulated halos possess clear negative age gradients, ranging from approximately ‑7 to ‑19 Myr kpc‑1, shallower than those determined by recent observational studies of the Milky Way’s stellar halo. However, when restricting the analysis to the accreted component alone, all of the stellar halos exhibit a steeper negative age gradient with values ranging from ‑8 to ‑32 Myr kpc‑1, closer to those observed in the Galaxy. Two of the accretion-dominated simulated halos show a large concentration of old stars in the center, in agreement with the Ancient Chronographic Sphere reported observationally. The stellar halo that best reproduces the current observed characteristics of the age distributions of the Galaxy is that formed principally by the accretion of small satellite galaxies. Our findings suggest that the hierarchical clustering scenario can reproduce the MW’s halo age distribution if the stellar halo was assembled from accretion and the disruption of satellite galaxies with dynamical masses less than ∼109.5 M ⊙, and a minimal in situ contribution.
NASA Astrophysics Data System (ADS)
Despali, Giulia; Giocoli, Carlo; Bonamigo, Mario; Limousin, Marceau; Tormen, Giuseppe
2017-04-01
In this paper, we study the triaxial properties of dark matter haloes of a wide range of masses extracted from a set of cosmological N-body simulations. We measure the shape at different distances from the halo centre (characterized by different overdensity thresholds), both in three and in two dimensions. We discuss how halo triaxiality increases with mass, redshift and distance from the halo centre. We also examine how the orientations of the different ellipsoids are aligned with each other and what is the gradient in internal shapes for haloes with different virial configurations. Our findings highlight that the internal part of the halo retains memory of the violent formation process keeping the major axis oriented towards the preferential direction of the infalling material while the outer part becomes rounder due to continuous isotropic merging events. This effect is clearly evident in high-mass haloes - which formed more recently - while it is more blurred in low-mass haloes. We present simple distributions that may be used as priors for various mass reconstruction algorithms, operating in different wavelengths, in order to recover a more complex and realistic dark matter distribution of isolated and relaxed systems.
Note: A manifold ranking based saliency detection method for camera.
Zhang, Libo; Sun, Yihan; Luo, Tiejian; Rahman, Mohammad Muntasir
2016-09-01
Research focused on salient object region in natural scenes has attracted a lot in computer vision and has widely been used in many applications like object detection and segmentation. However, an accurate focusing on the salient region, while taking photographs of the real-world scenery, is still a challenging task. In order to deal with the problem, this paper presents a novel approach based on human visual system, which works better with the usage of both background prior and compactness prior. In the proposed method, we eliminate the unsuitable boundary with a fixed threshold to optimize the image boundary selection which can provide more precise estimations. Then, the object detection, which is optimized with compactness prior, is obtained by ranking with background queries. Salient objects are generally grouped together into connected areas that have compact spatial distributions. The experimental results on three public datasets demonstrate that the precision and robustness of the proposed algorithm have been improved obviously.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonnesen, Stephanie; Cen, Renyue, E-mail: stonnes@gmail.com, E-mail: cen@astro.princeton.edu
2015-10-20
The connection between dark matter halos and galactic baryons is often not well constrained nor well resolved in cosmological hydrodynamical simulations. Thus, halo occupation distribution models that assign galaxies to halos based on halo mass are frequently used to interpret clustering observations, even though it is well known that the assembly history of dark matter halos is related to their clustering. In this paper we use high-resolution hydrodynamical cosmological simulations to compare the halo and stellar mass growth of galaxies in a large-scale overdensity to those in a large-scale underdensity (on scales of about 20 Mpc). The simulation reproduces assemblymore » bias, in which halos have earlier formation times in overdense environments than in underdense regions. We find that the ratio of stellar mass to halo mass is larger in overdense regions in central galaxies residing in halos with masses between 10{sup 11} and 10{sup 12.9} M{sub ⊙}. When we force the local density (within 2 Mpc) at z = 0 to be the same for galaxies in the large-scale over- and underdensities, we find the same results. We posit that this difference can be explained by a combination of earlier formation times, more interactions at early times with neighbors, and more filaments feeding galaxies in overdense regions. This result puts the standard practice of assigning stellar mass to halos based only on their mass, rather than considering their larger environment, into question.« less
Microlensing of Extremely Magnified Stars near Caustics of Galaxy Clusters
NASA Astrophysics Data System (ADS)
Venumadhav, Tejaswi; Dai, Liang; Miralda-Escudé, Jordi
2017-11-01
Recent observations of lensed galaxies at cosmological distances have detected individual stars that are extremely magnified when crossing the caustics of lensing clusters. In idealized cluster lenses with smooth mass distributions, two images of a star of radius R approaching a caustic brighten as {t}-1/2 and reach a peak magnification ˜ {10}6{(10{R}⊙ /R)}1/2 before merging on the critical curve. We show that a mass fraction ({κ }\\star ≳ {10}-4.5) in microlenses inevitably disrupts the smooth caustic into a network of corrugated microcaustics and produces light curves with numerous peaks. Using analytical calculations and numerical simulations, we derive the characteristic width of the network, caustic-crossing frequencies, and peak magnifications. For the lens parameters of a recent detection and a population of intracluster stars with {κ }\\star ˜ 0.01, we find a source-plane width of ˜ 20 {pc} for the caustic network, which spans 0.2 {arcsec} on the image plane. A source star takes ˜ 2× {10}4 years to cross this width, with a total of ˜ 6× {10}4 crossings, each one lasting for ˜ 5 {hr} (R/10 {R}⊙ ) with typical peak magnifications of ˜ {10}4 {(R/10{R}⊙ )}-1/2. The exquisite sensitivity of caustic-crossing events to the granularity of the lens-mass distribution makes them ideal probes of dark matter components, such as compact halo objects and ultralight axion dark matter.
Examining the effect of galaxy evolution on the stellar-halo mass relation in the EAGLE simulation
NASA Astrophysics Data System (ADS)
Kulier, Andrea; Padilla, Nelson; Schaye, Joop; Crain, Robert; Schaller, Matthieu; Bower, Richard; Theuns, Tom; Paillas, Enrique
2018-01-01
The EAGLE hydrodynamical simulation was used in Matthee et al. 2016 to examine the scatter in the stellar mass-halo mass relation of central galaxies, finding that the stellar mass (M*) correlates well with the maximum circular velocity (Vmax) of the host halo, but with a substantial scatter that does not correlate significantly with other host halo properties. Here we further examine the scatter in the stellar mass-halo mass relation of central galaxies in EAGLE, its correlation with other properties, and its origin. We find that at fixed Vmax, galaxies with lower concentration have younger stellar populations, as expected from the relationship between concentration and halo assembly time. However, at fixed Vmax and halo concentration, galaxies with larger M* have younger stellar ages, so that combining the two effects, galaxies with younger stellar ages at fixed halo mass have higher stellar masses. The host halos of galaxies with larger M* at fixed Vmax and concentration also contain more gas than those with smaller stellar masses at z = 0.1, i.e. the baryon fraction of the halos is larger. There is an even stronger correlation between the scatter in M* at z = 0.1 and the scatter in the baryon fraction of the galaxy's progenitors at z ~ 1, such that the latter sets ~50% of the scatter in M* at z = 0.1. We conclude that most of the scatter between Vmax and M* at z = 0.1 is set at earlier redshifts by the scatter in the baryon fraction of halos, which in turn is primarily the result of differences in feedback strength within halos.
Diverse stellar haloes in nearby Milky Way mass disc galaxies
NASA Astrophysics Data System (ADS)
Harmsen, Benjamin; Monachesi, Antonela; Bell, Eric F.; de Jong, Roelof S.; Bailin, Jeremy; Radburn-Smith, David J.; Holwerda, Benne W.
2017-04-01
We have examined the resolved stellar populations at large galactocentric distances along the minor axis (from 10 kpc up to between 40 and 75 kpc), with limited major axis coverage, of six nearby highly inclined Milky Way (MW) mass disc galaxies using Hubble Space Telescope data from the Galaxy haloes, Outer discs, Substructure, Thick discs, and Star clusters (GHOSTS) survey. We select red giant branch stars to derive stellar halo density profiles. The projected minor axis density profiles can be approximated by power laws with projected slopes of -2 to -3.7 and a diversity of stellar halo masses of 1-6 × 109 M⊙, or 2-14 per cent of the total galaxy stellar masses. The typical intrinsic scatter around a smooth power-law fit is 0.05-0.1 dex owing to substructure. By comparing the minor and major axis profiles, we infer projected axis ratios c/a at ˜25 kpc between 0.4and0.75. The GHOSTS stellar haloes are diverse, lying between the extremes charted out by the (rather atypical) haloes of the MW and M31. We find a strong correlation between the stellar halo metallicities and the stellar halo masses. We compare our results with cosmological models, finding good agreement between our observations and accretion-only models where the stellar haloes are formed by the disruption of dwarf satellites. In particular, the strong observed correlation between stellar halo metallicity and mass is naturally reproduced. Low-resolution hydrodynamical models have unrealistically high stellar halo masses. Current high-resolution hydrodynamical models appear to predict stellar halo masses somewhat higher than observed but with reasonable metallicities, metallicity gradients, and density profiles.
Nucleoid halo expansion indirectly measures DNA damage in single cells.
Thomas, E A; Thomas, C A
1989-07-01
A simple test has been developed that measures how much DNA damage has occurred in a single mammalian cell. The procedure is based on the microscopic examination of "halos" of nucleoids that adhere to coverslips. Nucleoids are produced by flowing salt solutions containing detergents over the attached cells. The nucleoid halos are thought to be a tangle of loops of free DNA that emanate from the remnants of the nucleus. When visualized by staining with ethidium bromide the nucleoid halos first expand, and then contract as the concentration of ethidium increases. Exposure of nucleoids to very low levels of DNA chain-breaking treatments results in the incremental expansion of the halos to a maximum of 15 microns or more. Our assay is based upon quantitating the degree of halo expansion. If intact cells are exposed to DNA-damaging treatments, then allowed increasing periods of post-treatment growth before forming nucleoids, the DNA repair processes result first in expanded and then in contracted halos. By admixing a supercoiled plasma DNA of known length (38 kb) to nucleoids with contracted halos, the fractional halo expansion and the fraction of surviving plasmid supercoils can be measured from the same solution. Use of photodynamic DNA damage showed that the halo expansion was 11.6 times more sensitive than plasmid relaxation. Use of gamma-irradiation showed that the halo expansion was 3.6 times more sensitive than plasmid relaxation. The latter value demonstrates that one break per 137,000 bp results in the expansion of the halos to 63% of their maximal value. We estimate that this method will detect about 5000 breaks per nucleus containing 5 x 10(9) bp.
CLUMPY: A code for γ-ray signals from dark matter structures
NASA Astrophysics Data System (ADS)
Charbonnier, Aldée; Combet, Céline; Maurin, David
2012-03-01
We present the first public code for semi-analytical calculation of the γ-ray flux astrophysical J-factor from dark matter annihilation/decay in the Galaxy, including dark matter substructures. The core of the code is the calculation of the line of sight integral of the dark matter density squared (for annihilations) or density (for decaying dark matter). The code can be used in three modes: i) to draw skymaps from the Galactic smooth component and/or the substructure contributions, ii) to calculate the flux from a specific halo (that is not the Galactic halo, e.g. dwarf spheroidal galaxies) or iii) to perform simple statistical operations from a list of allowed DM profiles for a given object. Extragalactic contributions and other tracers of DM annihilation (e.g. positrons, anti-protons) will be included in a second release.
Wide-field Hubble Space Telescope Observations of the Globular Cluster System in NGC 1399
NASA Astrophysics Data System (ADS)
Puzia, Thomas H.; Paolillo, Maurizio; Goudfrooij, Paul; Maccarone, Thomas J.; Fabbiano, Giuseppina; Angelini, Lorella
2014-05-01
We present a comprehensive high spatial resolution imaging study of globular clusters (GCs) in NGC 1399, the central giant elliptical cD galaxy in the Fornax galaxy cluster, conducted with the Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST). Using a novel technique to construct drizzled point-spread function libraries for HST/ACS data, we accurately determine the fidelity of GC structural parameter measurements from detailed artificial star cluster experiments and show the superior robustness of the GC half-light radius, rh , compared with other GC structural parameters, such as King core and tidal radius. The measurement of rh for the major fraction of the NGC 1399 GC system reveals a trend of increasing rh versus galactocentric distance, R gal, out to about 10 kpc and a flat relation beyond. This trend is very similar for blue and red GCs, which are found to have a mean size ratio of r h, red/r h, blue = 0.82 ± 0.11 at all galactocentric radii from the core regions of the galaxy out to ~40 kpc. This suggests that the size difference between blue and red GCs is due to internal mechanisms related to the evolution of their constituent stellar populations. Modeling the mass density profile of NGC 1399 shows that additional external dynamical mechanisms are required to limit the GC size in the galaxy halo regions to rh ≈ 2 pc. We suggest that this may be realized by an exotic GC orbit distribution function, an extended dark matter halo, and/or tidal stress induced by the increased stochasticity in the dwarf halo substructure at larger galactocentric distances. We compare our results with the GC rh distribution functions in various galaxies and find that the fraction of extended GCs with rh >= 5 pc is systematically larger in late-type galaxies compared with GC systems in early-type galaxies. This is likely due to the dynamically more violent evolution of early-type galaxies. We match our GC rh measurements with radial velocity data from the literature and split the resulting sample at the median rh value into compact and extended GCs. We find that compact GCs show a significantly smaller line-of-sight velocity dispersion, langσcmprang = 225 ± 25 km s-1, than their extended counterparts, langσextrang = 317 ± 21 km s-1. Considering the weaker statistical correlation in the GC rh color and the GC rh -R gal relations, the more significant GC size-dynamics relation appears to be astrophysically more relevant and hints at the dominant influence of the GC orbit distribution function on the evolution of GC structural parameters. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.
Simulating Halos with the Caterpillar Project
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-04-01
The Caterpillar Project is a beautiful series of high-resolution cosmological simulations. The goal of this project is to examine the evolution of dark-matter halos like the Milky Ways, to learn about how galaxies like ours formed. This immense computational project is still in progress, but the Caterpillar team is already providing a look at some of its first results.Lessons from Dark-Matter HalosWhy simulate the dark-matter halos of galaxies? Observationally, the formation history of our galaxy is encoded in galactic fossil record clues, like the tidal debris from disrupted satellite galaxies in the outer reaches of our galaxy, or chemical abundance patterns throughout our galactic disk and stellar halo.But to interpret this information in a way that lets us learn about our galaxys history, we need to first test galaxy formation and evolution scenarios via cosmological simulations. Then we can compare the end result of these simulations to what we observe today.This figure illustrates the difference that mass resolution makes. In the left panel, the mass resolution is 1.5*10^7 solar masses per particle. In the right panel, the mass resolution is 3*10^4 solar masses per particle [Griffen et al. 2016]A Computational ChallengeDue to how computationally expensive such simulations are, previous N-body simulations of the growth of Milky-Way-like halos have consisted of only one or a few halos each. But in order to establish a statistical understanding of how galaxy halos form and find out whether the Milky Ways halo is typical or unusual! it is necessary to simulate a larger number of halos.In addition, in order to accurately follow the formation and evolution of substructure within the dark-matter halos, these simulations must be able to resolve the smallest dwarf galaxies, which are around a million solar masses. This requires an extremely high mass resolution, which adds to the computational expense of the simulation.First OutcomesThese are the challenges faced by the Caterpillar Project, detailed in a recently published paper led by Brendan Griffen (Massachusetts Institute of Technology). The Caterpillar Project was designed to simulate 70 Milky-Way-size halos (quadrupling the total number of halos that have been simulated in the past!) at a high mass resolution (10,000 solar masses per particle) and time resolution (5 Myr per snapshot). The project is extremely computationally intense, requiring 14 million CPU hours and 700 TB of data storage!Mass evolution of the first 24 Caterpillar halos (selected to be Milky-Way-size at z=0). The inset panel shows the mass evolution normalized by the halo mass at z=0, demonstrating the highly varied evolution these different halos undergo. [Griffen et al. 2016]In this first study, the Griffen and collaboratorsshow the end states for the first 24 halos of the project, evolved from a large redshift to today (z=0). They use these initialresults to demonstrate the integrity of their data and the utility of their methods, which include new halo-finding techniques that recover more substructure within each halo.The first results from the Caterpillar Project are already enough to show clear general trends, such as the highly variable paths the different halos take as they merge, accrete, and evolve, as well as how different their ends states can be. Statistically examining the evolution of these halos is an importantnext step in providinginsight intothe origin and evolution of the Milky Way, and helping us to understand how our galaxy differs from other galaxies of similar mass. Keep an eye out for future results from this project!BonusCheck out this video (make sure to watch in HD!) of how the first 24 Milky-Way-like halos from the Caterpillar simulations form. Seeingthese halos evolve simultaneously is an awesome way to identifythe similarities and differences between them.CitationBrendan F. Griffen et al 2016 ApJ 818 10. doi:10.3847/0004-637X/818/1/10
The outskirts of spiral galaxies: touching stellar halos at z˜0 and z˜1
NASA Astrophysics Data System (ADS)
Bakos, J.; Trujillo, I.
Taking advantage of ultra-deep imaging of SDSS Stripe82 and the Hubble Ultra Deep Field by HST, we explore the properties of stellar halos at two relevant epochs of cosmic history. At z˜0 we find that the radial surface brightness profiles of disks have a smooth continuation into the stellar halo that starts to affect the surface brightness profiles at mu r'˜28 {mag arcsec-2}, and at a radial distance of gtrsim 4-10 inner scale-lengths. The light contribution of the stellar halo to the total galaxy light varies from ˜1% to ˜5%, but in case of ongoing mergers, the halo light fraction can be as high as ˜10%. The integrated (g'-r') color of the stellar halo of our galaxies range from ˜0.4 to ˜1.2. By confronting these colors with model predictions, these halos can be attributed to moderately aged and metal-poor populations, however the extreme red colors (˜1) cannot be explained by populations of conventional IMFs. Very red halo colors can be attributed to stellar populations dominated by very low mass stars of low to intermediate metallicity produced by bottom-heavy IMFs. At z˜1 stellar halos appear to be ˜2 magnitudes brighter than their local counterparts, meanwhile they exhibit bluer colors ((g'-r')≲0.3 mag), as well. The stellar populations corresponding to these colors are compatible with having ages ≲1 Gyr. This latter observation strongly suggests the possibility that these halos were formed between z˜1 and z˜2. This result matches very well the theoretical predictions that locate most of the formation of the stellar halos at those early epochs. A pure passive evolutionary scenario, where the stellar populations of our high-z haloes simply fade to match the stellar halo properties found in the local universe, is consistent with our data.
NASA Astrophysics Data System (ADS)
Beaton, Rachael; Majewski, S. R.; Patterson, R. J.; Guhathakurta, P.; Gilbert, K.; Kalirai, J. S.; Tollerud, E. J.; SPLASH Team
2014-01-01
Owing to their large dynamical timescales, the stellar haloes of Milky Way (MW) sized galaxies represent ideal environments to test modern theories of galaxy formation in the Lambda-CDM paradigm. Only in stellar haloes can the remnants of hierarchical accretion be preserved over long timescales as in-tact dwarf satellites or as tidal debris and can be easily distinguished from the underlying smooth structure. Stellar haloes, however, remain some of the most difficult galactic structures to constrain due to their large angular extent and extremely low surface brightness. Thus, the basic properties of stellar haloes -- the overall stellar distribution, substructure fraction, global kinematics and detailed stellar content -- remained relatively unconstrained. In this thesis, we present several projects designed to understand the current structure and the the formation of the Andromeda (M31) stellar halo, the only stellar halo -- besides our own -- that is within reach of current ground based facilities on the large scale required to constrain the basic properties of stellar haloes. First, we describe a seven season imaging campaign comprising the backbone of the Spectroscopic and Photometric Landscape of the Andromeda Stellar Halo (SPLASH) program. This survey is unique in its application of the Washington + DDO51 filter system to select individual M31 RGB stars without spectroscopic follow up. Second, we use the SPLASH photometric survey to identify sample of halo stars at projected radii of 120 kpc, for which we have obtained spectroscopic follow-up. Third, we add this large radius sample to the existing spectroscopic results from SPLASH, and use this unique sample to explore the stellar kinematics of the halo at large radii with full azimuthal coverage. Lastly, we preview on-going work to constrain the formation of the Andromeda stellar halo, using both in-tact satellites and resolved M31 halo members as tracers of its accretion history.
NASA Astrophysics Data System (ADS)
Khostovan, A. A.; Sobral, D.; Mobasher, B.; Best, P. N.; Smail, I.; Matthee, J.; Darvish, B.; Nayyeri, H.; Hemmati, S.; Stott, J. P.
2018-04-01
We investigate the clustering properties of ˜7000 Hβ +[OIII] and [OII] narrowband-selected emitters at z ˜ 0.8 - 4.7 from the High-z Emission Line Survey. We find clustering lengths, r0, of 1.5 - 4.0 h-1 Mpc and minimum dark matter halo masses of 1010.7 - 12.1 M⊙ for our z = 0.8 - 3.2 Hβ +[OIII] emitters and r0˜2.0 - 8.3 h-1 Mpc and halo masses of 1011.5 - 12.6 M⊙ for our z = 1.5 - 4.7 [OII] emitters. We find r0 to strongly increase both with increasing line luminosity and redshift. By taking into account the evolution of the characteristic line luminosity, L⋆(z), and using our model predictions of halo mass given r0, we find a strong, redshift-independent increasing trend between L/L⋆(z) and minimum halo mass. The faintest Hβ +[OIII] emitters are found to reside in 109.5 M⊙ halos and the brightest emitters in 1013.0 M⊙ halos. For [OII] emitters, the faintest emitters are found in 1010.5 M⊙ halos and the brightest emitters in 1012.6 M⊙ halos. A redshift-independent stellar mass dependency is also observed where the halo mass increases from 1011 M⊙ to 1012.5 M⊙ for stellar masses of 108.5 M⊙ to 1011.5 M⊙, respectively. We investigate the interdependencies of these trends by repeating our analysis in a Lline - Mstar grid space for our most populated samples (Hβ +[OIII] z = 0.84 and [OII] z = 1.47) and find that the line luminosity dependency is stronger than the stellar mass dependency on halo mass. For L > L⋆ emitters at all epochs, we find a relatively flat trend with halo masses of 1012.5 - 13 M⊙ which may be due to quenching mechanisms in massive halos which is consistent with a transitional halo mass predicted by models.
NASA Astrophysics Data System (ADS)
Mulchaey, John
Most galaxy formation models predict that massive low-redshift disk galaxies are embedded in extended hot halos of externally accreted gas. Such gas appears necessary to maintain ongoing star formation in isolated spirals like the Milky Way. To explain the large population of red galaxies in rich groups and clusters, most galaxy evolution models assume that these hot gas halos are stripped completely when a galaxy enters a denser environment. This simple model has been remarkably successful at reproducing many observed properties of galaxies. Although theoretical arguments suggest hot gas halos are an important component in galaxies, we know very little about this gas from an observational standpoint. In fact, previous observations have failed to detect soft X-ray emission from such halos in disk galaxies. Furthermore, the assumption that hot gas halos are stripped completely when a galaxy enters a group or cluster has not been verified. We propose to combine proprietary and archival XMM-Newton observations of galaxies in the field, groups and clusters to study how hot gas halos are impacted by environment. Our proposed program has three components: 1) The deepest search to date for a hot gas halo in a quiescent spiral galaxy. A detection will confirm a basic tenet of disk galaxy formation models, whereas a non-detection will seriously challenge these models and impose new constraints on the growth mode and feedback history of disk galaxies. 2) A detailed study of the hot gas halos properties of field early-type galaxies. As environmental processes such as stripping are not expected to be important in the field, a study of hot gas halos in this environment will allow us to better understand how feedback and other internal processes impact hot gas halos. 3) A study of hot gas halos in the outskirts of groups and clusters. By comparing observations with our suite of simulations we can begin to understand what role the stripping of hot gas halos plays in galaxy evolution.
The Milky Way, the Galactic halo, and the Halos of Galaxies
NASA Astrophysics Data System (ADS)
Gerhard, Ortwin
2015-08-01
The Milky Way, "our" Galaxy, is currently the subject of intense study with many ground-based surveys, in anticipation of upcoming results from the GAIA mission. From this work we have been learning about the full three-dimensional structure of the Galactic box/peanut bulge, the distribution of stars in the bar and disk, and the many streams in the Galactic halo. The data tell us that most of the Galactic bulge formed from the disk, and that a large fraction of the Galactic halo has been accreted from outside. Similarly, in many external galaxy halos there is now evidence for tidal streams and accretion of satellites. To see these features requires exquisite data - mostly very deep photometry, but some halo substructures have also been found with kinematic data. These observations illustrate how galaxy halos are still growing, and sometimes can be used to "time" the accretion events. In comparison with cosmological simulations, the structure of galaxy halos gives us a vivid illustration of the hierarchical nature of our Universe.
Optimal linear reconstruction of dark matter from halo catalogues
Cai, Yan -Chuan; Bernstein, Gary; Sheth, Ravi K.
2011-04-01
The dark matter lumps (or "halos") that contain galaxies have locations in the Universe that are to some extent random with respect to the overall matter distributions. We investigate how best to estimate the total matter distribution from the locations of the halos. We derive the weight function w(M) to apply to dark-matter haloes that minimizes the stochasticity between the weighted halo distribution and its underlying mass density field. The optimal w(M) depends on the range of masses of halos being used. While the standard biased-Poisson model of the halo distribution predicts that bias weighting is optimal, the simple factmore » that the mass is comprised of haloes implies that the optimal w(M) will be a mixture of mass-weighting and bias-weighting. In N-body simulations, the Poisson estimator is up to 15× noisier than the optimal. Optimal weighting could make cosmological tests based on the matter power spectrum or cross-correlations much more powerful and/or cost effective.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izosimov, I. N., E-mail: izosimov@jinr.ru
2015-10-15
It has been shown that IAS, DIAS, CS, and DCS can simultaneously have n-n, n-p, and p-p halo components in their wave functions. Differences in halo structure of the excited and ground states can result in the formation of isomers (halo-isomers). Both the Borromean and tango halo types can be observed for n-p configurations of atomic nuclei. The structure of the ground and excited states with different isospin quantum number in halo like nuclei is discussed. B(Mλ) and B(Eλ) for γ-transitions in {sup 6,7,8}Li, {sup 8,9,10}Be, {sup 8,10,11}B, {sup 10,11,12,13,14}C, {sup 13,14,15,16,17}N, {sup 15,16,17,19}O, and {sup 17}F are analyzed. Specialmore » attention is given to nuclei whose ground state does not exhibit halo structure but the excited state may have one.« less
Large-scale gas dynamical processes affecting the origin and evolution of gaseous galactic halos
NASA Technical Reports Server (NTRS)
Shapiro, Paul R.
1991-01-01
Observations of galactic halo gas are consistent with an interpretation in terms of the galactic fountain model in which supernova heated gas in the galactic disk escapes into the halo, radiatively cools and forms clouds which fall back to the disk. The results of a new study of several large-scale gas dynamical effects which are expected to occur in such a model for the origin and evolution of galactic halo gas will be summarized, including the following: (1) nonequilibrium absorption line and emission spectrum diagnostics for radiatively cooling halo gas in our own galaxy, as well the implications of such absorption line diagnostics for the origin of quasar absorption lines in galactic halo clouds of high redshift galaxies; (2) numerical MHD simulations and analytical analysis of large-scale explosions ad superbubbles in the galactic disk and halo; (3) numerical MHD simulations of halo cloud formation by thermal instability, with and without magnetic field; and (4) the effect of the galactic fountain on the galactic dynamo.
NASA Astrophysics Data System (ADS)
Marchand, Tanguy; Bernard, Laura; Blanchet, Luc; Faye, Guillaume
2018-02-01
We present the first complete (i.e., ambiguity-free) derivation of the equations of motion of two nonspinning compact objects up to the 4PN (post-Newtonian) order, based on the Fokker action of point particles in harmonic coordinates. The last ambiguity parameter is determined from first principle, by resorting to a matching between the near-zone and far-zone fields, and a consistent computation of the 4PN tail effect in d dimensions. Dimensional regularization is used throughout for treating IR divergences appearing at 4PN order, as well as UV divergences due to the modeling of the compact objects as point particles.
The Prolate Dark Matter Halo of the Andromeda Galaxy
NASA Astrophysics Data System (ADS)
Hayashi, Kohei; Chiba, Masashi
2014-07-01
We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi & Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for its dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.
The prolate dark matter halo of the Andromeda galaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, Kohei; Chiba, Masashi, E-mail: k.hayasi@astr.tohoku.ac.jp, E-mail: chiba@astr.tohoku.ac.jp
We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi and Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for itsmore » dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.« less
NASA Astrophysics Data System (ADS)
Chen, Yung-Sheng; Wang, Jeng-Yau
2015-09-01
Light source plays a significant role to acquire a qualified image from objects for facilitating the image processing and pattern recognition. For objects possessing specular surface, the phenomena of reflection and halo appearing in the acquired image will increase the difficulty of information processing. Such a situation may be improved by the assistance of valuable diffuse light source. Consider reading resistor via computer vision, due to the resistor's specular reflective surface it will face with a severe non-uniform luminous intensity on image yielding a higher error rate in recognition without a well-controlled light source. A measurement system including mainly a digital microscope embedded in a replaceable diffuse cover, a ring-type LED embedded onto a small pad carrying a resistor for evaluation, and Arduino microcontrollers connected with PC, is presented in this paper. Several replaceable cost-effective diffuse covers made by paper bowl, cup and box inside pasted with white paper are presented for reducing specular reflection and halo effects and compared with a commercial diffuse some. The ring-type LED can be flexibly configured to be a full or partial lighting based on the application. For each self-made diffuse cover, a set of resistors with 4 or 5 color bands are captured via digital microscope for experiments. The signal-to-noise ratio from the segmented resistor-image is used for performance evaluation. The detected principal axis of resistor body is used for the partial LED configuration to further improve the lighting condition. Experimental results confirm that the proposed mechanism can not only evaluate the cost-effective diffuse light source but also be extended as an automatic recognition system for resistor reading.
Massive black hole factories: Supermassive and quasi-star formation in primordial halos
NASA Astrophysics Data System (ADS)
Schleicher, Dominik R. G.; Palla, Francesco; Ferrara, Andrea; Galli, Daniele; Latif, Muhammad
2013-10-01
Context. Supermassive stars and quasi-stars (massive stars with a central black hole) are both considered as potential progenitors for the formation of supermassive black holes. They are expected to form from rapidly accreting protostars in massive primordial halos. Aims: We explore how long rapidly accreting protostars remain on the Hayashi track, implying large protostellar radii and weak accretion luminosity feedback. We assess the potential role of energy production in the nuclear core, and determine what regulates the evolution of such protostars into quasi-stars or supermassive stars. Methods: We followed the contraction of characteristic mass shells in rapidly accreting protostars, and inferred the timescales for them to reach nuclear densities. We compared the characteristic timescales for nuclear burning with those for which the extended protostellar envelope can be maintained. Results: We find that the extended envelope can be maintained up to protostellar masses of 3.6 × 108 ṁ3 M⊙, where ṁ denotes the accretion rate in solar masses per year. We expect the nuclear core to exhaust its hydrogen content in 7 × 106 yr. If accretion rates ṁ ≫ 0.14 can still be maintained at this point, a black hole may form within the accreting envelope, leading to a quasi-star. Alternatively, the accreting object will gravitationally contract to become a main-sequence supermassive star. Conclusions: Due to the limited gas reservoir in typical 107 M⊙ dark matter halos, the accretion rate onto the central object may drop at late times, implying the formation of supermassive stars as the typical outcome of direct collapse. However, if high accretion rates are maintained, a quasi-star with an interior black hole may form.
Higher-speed coronal mass ejections and their geoeffectiveness
NASA Astrophysics Data System (ADS)
Singh, A. K.; Bhargawa, Asheesh; Tonk, Apeksha
2018-06-01
We have attempted to examine the ability of coronal mass ejections to cause geoeffectiveness. To that end, we have investigated total 571 cases of higher-speed (> 1000 km/s) coronal mass ejection events observed during the years 1996-2012. On the basis of angular width (W) of observance, events of coronal mass ejection were further classified as front-side or halo coronal mass ejections (W = 360°); back-side halo coronal mass ejections (W = 360°); partial halo (120°< W < 360°) and non-halo (W < 120°). From further analysis, we found that front halo coronal mass ejections were much faster and more geoeffective in comparison of partial halo and non-halo coronal mass ejections. We also inferred that the front-sided halo coronal mass ejections were 67.1% geoeffective while geoeffectiveness of partial halo coronal mass ejections and non-halo coronal mass ejections were found to be 44.2% and 56.6% respectively. During the same period of observation, 43% of back-sided CMEs showed geoeffectiveness. We have also investigated some events of coronal mass ejections having speed > 2500 km/s as a case study. We have concluded that mere speed of coronal mass ejection and their association with solar flares or solar activity were not mere criterion for producing geoeffectiveness but angular width of coronal mass ejections and their originating position also played a key role.
N-body dark matter haloes with simple hierarchical histories
NASA Astrophysics Data System (ADS)
Jiang, Lilian; Helly, John C.; Cole, Shaun; Frenk, Carlos S.
2014-05-01
We present a new algorithm which groups the subhaloes found in cosmological N-body simulations by structure finders such as SUBFIND into dark matter haloes whose formation histories are strictly hierarchical. One advantage of these `Dhaloes' over the commonly used friends-of-friends (FoF) haloes is that they retain their individual identity in the cases when FoF haloes are artificially merged by tenuous bridges of particles or by an overlap of their outer diffuse haloes. Dhaloes are thus well suited for modelling galaxy formation and their merger trees form the basis of the Durham semi-analytic galaxy formation model, GALFORM. Applying the Dhalo construction to the Λ cold dark matter Millennium II Simulation, we find that approximately 90 per cent of Dhaloes have a one-to-one, bijective match with a corresponding FoF halo. The remaining 10 per cent are typically secondary components of large FoF haloes. Although the mass functions of both types of haloes are similar, the mass of Dhaloes correlates much more tightly with the virial mass, M200, than FoF haloes. Approximately 80 per cent of FoF and bijective and non-bijective Dhaloes are relaxed according to standard criteria. For these relaxed haloes, all three types have similar concentration-M200 relations and, at fixed mass, the concentration distributions are described accurately by log-normal distributions.
Evaluation of a compact tinnitus therapy by electrophysiological tinnitus decompensation measures.
Low, Yin Fen; Argstatter, Heike; Bolay, Hans Volker; Strauss, Daniel J
2008-01-01
Large-scale neural correlates of the tinnitus decompensation have been identified by using wavelet phase stability criteria of single sweep sequences of auditory late responses (ALRs). Our previous work showed that the synchronization stability in ALR sequences might be used for objective quantification of the tinnitus decompensation and attention which link to Jastreboff tinnitus model. In this study, we intend to provide an objective evaluation for quantifying the effect of music therapy in tinnitus patients. We examined neural correlates of the attentional mechanism in single sweep sequences of ALRs in chronic tinnitus patients who underwent compact therapy course by using the maximum entropy auditory paradigm. Results by our measure showed that the extent of differentiation between attended and unattended conditions improved significantly after the therapy. It is concluded that the wavelet phase synchronization stability of ALRs single sweeps can be used for the objective evaluation of tinnitus therapies, in this case the compact tinnitus music therapy.
Comparison of Laboratory and Field Density of Asphalt Mixtures
DOT National Transportation Integrated Search
1991-01-01
The objective of this paper is to investigate the relationships between the measured density of the mixture obtained in the mix design, during quality control of the mixture (laboratory compaction of field produced mix), after initial compaction (cor...
NASA Astrophysics Data System (ADS)
Nishimichi, Takahiro; Taruya, Atsushi; Koyama, Kazuya; Sabiu, Cristiano
2010-07-01
We study the halo bispectrum from non-Gaussian initial conditions. Based on a set of large N-body simulations starting from initial density fields with local type non-Gaussianity, we find that the halo bispectrum exhibits a strong dependence on the shape and scale of Fourier space triangles near squeezed configurations at large scales. The amplitude of the halo bispectrum roughly scales as fNL2. The resultant scaling on the triangular shape is consistent with that predicted by Jeong & Komatsu based on perturbation theory. We systematically investigate this dependence with varying redshifts and halo mass thresholds. It is shown that the fNL dependence of the halo bispectrum is stronger for more massive haloes at higher redshifts. This feature can be a useful discriminator of inflation scenarios in future deep and wide galaxy redshift surveys.
Pushing down the low-mass halo concentration frontier with the Lomonosov cosmological simulations
NASA Astrophysics Data System (ADS)
Pilipenko, Sergey V.; Sánchez-Conde, Miguel A.; Prada, Francisco; Yepes, Gustavo
2017-12-01
We introduce the Lomonosov suite of high-resolution N-body cosmological simulations covering a full box of size 32 h-1 Mpc with low-mass resolution particles (2 × 107 h-1 M⊙) and three zoom-in simulations of overdense, underdense and mean density regions at much higher particle resolution (4 × 104 h-1 M⊙). The main purpose of this simulation suite is to extend the concentration-mass relation of dark matter haloes down to masses below those typically available in large cosmological simulations. The three different density regions available at higher resolution provide a better understanding of the effect of the local environment on halo concentration, known to be potentially important for small simulation boxes and small halo masses. Yet, we find the correction to be small in comparison with the scatter of halo concentrations. We conclude that zoom simulations, despite their limited representativity of the volume of the Universe, can be effectively used for the measurement of halo concentrations at least at the halo masses probed by our simulations. In any case, after a precise characterization of this effect, we develop a robust technique to extrapolate the concentration values found in zoom simulations to larger volumes with greater accuracy. Altogether, Lomonosov provides a measure of the concentration-mass relation in the halo mass range 107-1010 h-1 M⊙ with superb halo statistics. This work represents a first important step to measure halo concentrations at intermediate, yet vastly unexplored halo mass scales, down to the smallest ones. All Lomonosov data and files are public for community's use.
ARE HALO-LIKE SOLAR CORONAL MASS EJECTIONS MERELY A MATTER OF GEOMETRIC PROJECTION EFFECTS?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Ryun-Young; Zhang, Jie; Vourlidas, Angelos, E-mail: ryunyoung.kwon@gmail.com
2015-02-01
We investigated the physical nature of halo coronal mass ejections (CMEs) based on the stereoscopic observations from the two STEREO spacecraft, Ahead and Behind (hereafter A and B), and the SOHO spacecraft. Sixty-two halo CMEs occurred as observed by SOHO LASCO C2 for the three-year period from 2010 to 2012 during which the separation angles between SOHO and STEREO were nearly 90°. In such quadrature configuration, the coronagraphs of STEREO, COR2-A and -B, showed the side view of those halo CMEs seen by C2. It has been widely believed that the halo appearance of a CME is caused by themore » geometric projection effect, i.e., a CME moves along the Sun-observer line. In other words, it would appear as a non-halo CME if viewed from the side. However, to our surprise, we found that 41 out of 62 events (66%) were observed as halo CMEs by all coronagraphs. This result suggests that a halo CME is not just a matter of the propagating direction. In addition, we show that a CME propagating normal to the line of sight can be observed as a halo CME due to the associated fast magnetosonic wave or shock front. We conclude that the apparent width of CMEs, especially halos or partial halos is driven by the existence and the extent of the associated waves or shocks and does not represent an accurate measure of the CME ejecta size. This effect needs to be taken into careful consideration in space weather predictions and modeling efforts.« less
The Phase-space Density Distribution of Dark Matter Halos
NASA Astrophysics Data System (ADS)
Williams, Liliya L. R.; Austin, Crystal; Barnes, Eric; Babul, Arif; Dalcanton, Julianne
2004-12-01
High resolution N-body simulations have all but converged on a common empirical form for the shape of the density profiles of halos, but the full understanding of the underlying physics of halo formation has eluded them so far. We investigate the formation and structure of dark matter halos using analytical and semi-analytical techniques. Our halos are formed via an extended secondary infall model (ESIM); they contain secondary perturbations and hence random tangential and ra- dial motions which affect the halo’s evolution at it undergoes shell-crossing and virialization. Even though the density profiles of NFW and ESIM halos are different their phase-space density distributions are the same: ρ σ3 ∝ r α , with α 1 875 over 3 decades in radius. We use two approaches to try to explain this “universal” slope: (1) The Jeans equation analysis yields many insights, however, does not answer why α 1 875. (2) The secondary infall model of the 1960’s £ ¤ and 1970’s, augmented by “thermal motions” of particles does predict that halos should have α 1 875. However, this relies on assumptions of spherical symmetry and slow accretion. While £ ¤ for ESIM halos these assumptions are justified, they most certainly break down for simulated halos which forms hierarchically. We speculate that our argument may apply to an “on-average” formation scenario of halos within merger-driven numerical simulations, and thereby explain why α 1 875 for NFW halos. Thus, ρ σ3 ∝ r 1 875 may be a generic feature of violent relaxation.
Mergers and Mass Accretion for Infalling Halos Both End Well Outside Cluster Virial Radii
NASA Astrophysics Data System (ADS)
Behroozi, Peter S.; Wechsler, Risa H.; Lu, Yu; Hahn, Oliver; Busha, Michael T.; Klypin, Anatoly; Primack, Joel R.
2014-06-01
We find that infalling dark matter halos (i.e., the progenitors of satellite halos) begin losing mass well outside the virial radius of their eventual host halos. The peak mass occurs at a range of clustercentric distances, with median and 68th percentile range of 1.8^{+2.3}_{-1.0} \\,R_{vir,host} for progenitors of z = 0 satellites. The peak circular velocity for infalling halos occurs at significantly larger distances (3.7^{+3.3}_{-2.2} \\,R_{vir,host} at z = 0). This difference arises because different physical processes set peak circular velocity (typically, ~1:5 and larger mergers which cause transient circular velocity spikes) and peak mass (typically, smooth accretion) for infalling halos. We find that infalling halos also stop having significant mergers well before they enter the virial radius of their eventual hosts. Mergers larger than a 1:40 ratio in halo mass end for infalling halos at similar clustercentric distances (~1.9 R vir, host) as the end of overall mass accretion. However, mergers larger than 1:3 typically end for infalling halos at more than four virial radial away from their eventual hosts. This limits the ability of mergers to affect quenching and morphology changes in clusters. We also note that the transient spikes which set peak circular velocity may lead to issues with abundance matching on that parameter, including unphysical galaxy stellar mass growth profiles near clusters; we propose a simple observational test to check if a better halo proxy for galaxy stellar mass exists.
A Measurement of the Galaxy Group-Thermal Sunyaev-Zel'dovich Effect Cross-Correlation Function
NASA Astrophysics Data System (ADS)
Vikram, Vinu; Lidz, Adam; Jain, Bhuvnesh
2017-05-01
Stacking cosmic microwave background maps around known galaxy clusters and groups provides a powerful probe of the distribution of hot gas in these systems via the Sunyaev-Zel'dovich (SZ) effect. A stacking analysis allows one to detect the average SZ signal around low-mass haloes, to extend measurements out to large scales and measure the redshift dependence of the SZ background. Motivated by these exciting prospects, we measure the two-point cross-correlation function between ˜380 000 galaxy groups (at z = 0.01-0.2) from the Sloan Digital Sky Survey and Compton-y parameter maps constructed by the Planck collaboration. We find statistically significant correlations in each of six separate mass bins, with halo masses ranging from 1011.5 to 1015.5 M⊙ h-1. We compare with halo models of the SZ signal, which describe the stacked measurement in terms of one-halo and two-halo contributions. The one-halo term quantifies the average pressure profile around the groups in a mass bin, while the two-halo term describes the contribution of correlated neighbouring haloes. For the massive groups, we find clear evidence for the one- and two-halo regimes, while groups with mass below 1013 M⊙ h-1 are dominated by the two-halo term, given the resolution of Planck data. We use the signal in the two-halo regime to determine the bias-weighted electron pressure of the Universe:
Ultra Compact Optical Pickup with Integrated Optical System
NASA Astrophysics Data System (ADS)
Nakata, Hideki; Nagata, Takayuki; Tomita, Hironori
2006-08-01
Smaller and thinner optical pickups are needed for portable audio-visual (AV) products and notebook personal computers (PCs). We have newly developed an ultra compact recordable optical pickup for Mini Disc (MD) that measures less than 4 mm from the disc surface to the bottom of the optical pickup, making the optical system markedly compact. We have integrated all the optical components into an objective lens actuator moving unit, while fully satisfying recording and playback performance requirements. In this paper, we propose an ultra compact optical pickup applicable to portable MD recorders.
Resolution of vitiligo following excision of halo congenital melanocytic nevus: a rare case report.
Wang, Kai; Wang, Zhi; Huang, Weiqing
2016-05-01
Halo congenital melanocytic nevus (CMN) associated with vitiligo is rare, especially with regard to CMN excision. Only two reports of excision of halo CMN following repigmentation of vitiligo are found in the literature. We present a case of a girl with halo CMN and periorbital vitiligo. The halo CMN was excised and followed by spontaneous improvement of vitiligo. The result suggests excision of the inciting lesion may be a promising way to control vitiligo. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Davidson, Ronald C.; Efthimion, Philip C.; Gilson, Erik; Majeski, Richard; Qin, Hong
2002-01-01
The Paul Trap Simulator Experiment (PTSX) is under construction at the Princeton Plasma Physics Laboratory to simulate intense beam propagation through a periodic quadrupole magnetic field. In the Paul trap configuration, a long nonneutral plasma column is confined axially by dc voltages on end cylinders at z=+L and z=-L, and transverse confinement is provided by segmented cylindrical electrodes with applied oscillatory voltages ±V0(t) over 90° segments. Because the transverse focusing force is similar in waveform to that produced by a discrete set of periodic quadrupole magnets in a frame moving with the beam, the Paul trap configuration offers the possibility of simulating intense beam propagation in a compact laboratory facility. The experimental layout is described, together with the planned experiments to study beam mismatch, envelope instabilities, halo particle production, and collective wave excitations.
Development of an Automatic Detection Program of Halo CMEs
NASA Astrophysics Data System (ADS)
Choi, K.; Park, M. Y.; Kim, J.
2017-12-01
The front-side halo CMEs are the major cause for large geomagnetic storms. Halo CMEs can result in damage to satellites, communication, electrical transmission lines and power systems. Thus automated techniques for detecting and analysing Halo CMEs from coronagraph data are of ever increasing importance for space weather monitoring and forecasting. In this study, we developed the algorithm that can automatically detect and do image processing the Halo CMEs in the images from the LASCO C3 coronagraph on board the SOHO spacecraft. With the detection algorithm, we derived the geometric and kinematical parameters of halo CMEs, such as source location, width, actual CME speed and arrival time at 21.5 solar radii.
Effect of antistripping additives on the compaction of bituminous concrete.
DOT National Transportation Integrated Search
1981-01-01
The objective of this investigation was to determine the effect of antistripping additives on the compaction of bituminous concrete. To do this, the densities obtained on test sections with and without additive were compared. Comparisons of nuclear d...
WisDOT asphaltic mixture new specifications implementation : field compaction and density.
DOT National Transportation Integrated Search
2016-06-01
The main research objectives of this study were to evaluate HMA Longitudinal Joint type, method and compaction data to produce specification recommendations that will ensure the highest density longitudinal joint, as well as evaluate and produce a sp...
Stellar and gaseous disc structures in cosmological galaxy equilibrium models
NASA Astrophysics Data System (ADS)
Rathaus, Ben; Sternberg, Amiel
2016-05-01
We present `radially resolved equilibrium models' for the growth of stellar and gaseous discs in cosmologically accreting massive haloes. Our focus is on objects that evolve to redshifts z ˜ 2. We solve the time-dependent equations that govern the radially dependent star formation rates, inflows and outflows from and to the inter- and circumgalactic medium, and inward radial gas flows within the discs. The stellar and gaseous discs reach equilibrium configurations on dynamical time-scales much shorter than variations in the cosmological dark matter halo growth and baryonic accretions rates. We show analytically that mass and global angular momentum conservation naturally give rise to exponential gas and stellar discs over many radial length-scales. As expected, the gaseous discs are more extended as set by the condition Toomre Q < 1 for star formation. The discs rapidly become baryon dominated. For massive, 5 × 1012 M⊙ haloes at redshift z = 2, we reproduced the typical observed star formation rates of ˜100 M⊙ yr-1, stellar masses ˜9 × 1010 M⊙, gas contents ˜1011 M⊙, half-mass sizes of 4.5 and 5.8 kpc for the stars and gas, and characteristic surface densities of 500 and 400 M⊙ pc-2 for the stars and gas.
Modeling the Galaxy-Halo Connection: An open-source approach with Halotools
NASA Astrophysics Data System (ADS)
Hearin, Andrew
2016-03-01
Although the modern form of galaxy-halo modeling has been in place for over ten years, there exists no common code base for carrying out large-scale structure calculations. Considering, for example, the advances in CMB science made possible by Boltzmann-solvers such as CMBFast, CAMB and CLASS, there are clear precedents for how theorists working in a well-defined subfield can mutually benefit from such a code base. Motivated by these and other examples, I present Halotools: an open-source, object-oriented python package for building and testing models of the galaxy-halo connection. Halotools is community-driven, and already includes contributions from over a dozen scientists spread across numerous universities. Designed with high-speed performance in mind, the package generates mock observations of synthetic galaxy populations with sufficient speed to conduct expansive MCMC likelihood analyses over a diverse and highly customizable set of models. The package includes an automated test suite and extensive web-hosted documentation and tutorials (halotools.readthedocs.org). I conclude the talk by describing how Halotools can be used to analyze existing datasets to obtain robust and novel constraints on galaxy evolution models, and by outlining the Halotools program to prepare the field of cosmology for the arrival of Stage IV dark energy experiments.
Fragmentation inside atomic cooling haloes exposed to Lyman-Werner radiation
NASA Astrophysics Data System (ADS)
Regan, John A.; Downes, Turlough P.
2018-04-01
Supermassive stars born in pristine environments in the early Universe hold the promise of being the seeds for the supermassive black holes observed as high redshift quasars shortly after the epoch of reionisation. H2 suppression is thought to be crucial in order to negate normal Population III star formation and allow high accretion rates to drive the formation of supermassive stars. Only in the cases where vigorous fragmentation is avoided will a monolithic collapse be successful, giving rise to a single massive central object. We investigate the number of fragmentation sites formed in collapsing atomic cooling haloes subject to various levels of background Lyman-Werner flux. The background Lyman-Werner flux manipulates the chemical properties of the gas in the collapsing halo by destroying H2. We find that only when the collapsing gas cloud shifts from the molecular to the atomic cooling regime is the degree of fragmentation suppressed. In our particular case, we find that this occurs above a critical Lyman-Werner background of J ˜ 10 J21. The important criterion being the transition to the atomic cooling regime rather than the actual value of J, which will vary locally. Once the temperature of the gas exceeds T ≳ 104 K and the gas transitions to atomic line cooling, then vigorous fragmentation is strongly suppressed.
A recipe for echoes from exotic compact objects
NASA Astrophysics Data System (ADS)
Mark, Zachary; Zimmerman, Aaron; Du, Song Ming; Chen, Yanbei
2017-10-01
Gravitational wave astronomy provides an unprecedented opportunity to test the nature of black holes and search for exotic, compact alternatives. Recent studies have shown that exotic compact objects (ECOs) can ring down in a manner similar to black holes, but can also produce a sequence of distinct pulses resembling the initial ringdown. These "echoes" would provide definite evidence for the existence of ECOs. In this work we study the generation of these echoes in a generic, parametrized model for the ECO, using Green's functions. We show how to reprocess radiation in the near-horizon region of a Schwarzschild black hole into the asymptotic radiation from the corresponding source in an ECO spacetime. Our methods allow us to understand the connection between distinct echoes and ringing at the resonant frequencies of the compact object. We find that the quasinormal mode ringing in the black hole spacetime plays a central role in determining the shape of the first few echoes. We use this observation to develop a simple template for echo waveforms. This template preforms well over a variety of ECO parameters, and with improvements may prove useful in the analysis of gravitational waves.
The Milky Way, the Galactic Halo, and the Halos of Galaxies
NASA Astrophysics Data System (ADS)
Gerhard, Ortwin
2016-08-01
The Milky Way, ``our'' Galaxy, is currently the subject of intense study with many ground-based surveys, in anticipation of upcoming results from the Gaia mission. From this work we have been learning about the full three-dimensional structure of the Galactic box/peanut bulge, the distribution of stars in the bar and disk, and the many streams and substructures in the Galactic halo. The data indicate that a large fraction of the Galactic halo has been accreted from outside. Similarly, in many external galaxy halos there is now evidence for tidal streams and accretion of satellites. To study these features requires exquisite, deep photometry and spectroscopy. These observations illustrate how galaxy halos are still growing, and sometimes can be used to ``time'' the accretion events. In comparison with cosmological simulations, the structure of galaxy halos gives us a vivid illustration of the hierarchical nature of our Universe.
NASA Astrophysics Data System (ADS)
Al-Khalili, Jim
2017-10-01
While neutron halos were discovered 30 years ago, this is the first book written on the subject of this exotic form of nuclei that typically contain many more neutrons than stable isotopes of those elements. It provides an introductory description of the halo and outlines the discovery and evidence for its existence. It also discusses different theoretical models of the halo's structure as well as models and techniques in reaction theory that have allowed us to study the halo. This is written at the graduate student (starting at PhD) level. The author of the book, Jim Al-Khalili, is a theoretician who published some of the key papers on the structure of the halo in the mid and late 90s and was the first to determine its true size. This monograph is based on review articles he has written on the mathematical models used to determine the halo structure and the reactions used to model that structure.
Initial Parameters of Neutron Stars
NASA Astrophysics Data System (ADS)
Popov, S. B.; Turolla, R.
2012-12-01
A subpopulation of neutron stars (NSs), known as central compact objects (CCOs) in supernova remnants, are suspected to be low-field objects basing on P - ṗ measurements for three of them. The birth rate of low-field NSs is probably comparable with the birth rate of normal radio pulsars. However, among compact objects in High-Mass X-ray Binaries (HMXBs) we do not see robust candidates for low-field NSs. We propose that this contradiction can be solved if magnetic fields of CCOs was buried due to strong fall-back, and then the field emerges on the time scale 104 -105 yrs.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-21
..., Notice of Registration, Halo Pharmaceutical, Inc. By Notice dated July 30, 2012, and published in the Federal Register on August 7, 2012, 77 FR 47114, Halo Pharmaceutical, Inc., 30 North Jefferson Road... 21 U.S.C. 823(a), and determined that the registration of Halo Pharmaceutical, Inc., to manufacture...
Gas Accretion and Angular Momentum
NASA Astrophysics Data System (ADS)
Stewart, Kyle R.
In this chapter, we review the role of gas accretion to the acquisition of angular momentum, both in galaxies and in their gaseous halos. We begin by discussing angular momentum in dark matter halos, with a brief review of tidal torque theory and the importance of mergers, followed by a discussion of the canonical picture of galaxy formation within this framework, where halo gas is presumed to shock-eat to the virial temperature of the halo, following the same spin distribution as the dark matter halo before cooling to the center of the halo to form a galaxy there. In the context of recent observational evidence demonstrating the presence of high angular momentum gas in galaxy halos, we review recent cosmological hydrodynamic simulations that have begun to emphasize the role of "cold flow" accretion—anisotropic gas accretion along cosmic filaments that does not shock-heat before sinking to the central galaxy. We discuss the implications of these simulations, reviewing a number of recent developments in the literature, and suggest a revision to the canonical model as it relates to the expected angular momentum content of gaseous halos around galaxies.
Length dependence of a halo orthosis on cervical immobilization.
Triggs, K J; Ballock, R T; Byrne, T; Garfin, S R
1993-02-01
This study was designed to observe the length dependence of a well-molded fiberglass body cast attached to a halo on motion restriction in an unstable cadaveric cervical spine. Also, by using this technique, comparison between the immobilization provided by a body cast and that provided by a standard premolded polyethylene halo vest could be made. Extreme cervical instability was created on adult cadavers. A halo ring was applied and then attached to a fiberglass body cast or to a polyethylene halo vest. Sequential lateral cervical radiographs were obtained during maximum flexion as the body cast was shortened from the level of the iliac crests to the level of the xiphoid process. Radiographic motion was also assessed within the polyethylene halo vest. Results revealed minimal motion difference as the fiberglass body cast was sequentially shortened. In contrast, motions within the polyethylene halo vest were variable. These results suggest that cervical immobilization may be relatively independent of support structure length and that immobilization can be maintained by a well-fitting halo vest extending to the level of the xiphoid process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rojas-Niño, Armando; Pichardo, Barbara; Valenzuela, Octavio
Recent studies have presented evidence that the Milky Way global potential may be non-spherical. In this case, the assembling process of the Galaxy may have left long-lasting stellar halo kinematic fossils due to the shape of the dark matter halo, potentially originated by orbital resonances. We further investigate such a possibility, now considering potential models further away from ΛCDM halos, like scalar field dark matter halos and Modified Newtonian Dynamics (MOND), and including several other factors that may mimic the emergence and permanence of kinematic groups, such as a spherical and triaxial halo with an embedded disk potential. We find that regardless ofmore » the density profile (DM nature), kinematic groups only appear in the presence of a triaxial halo potential. For the case of a MOND-like gravity theory no kinematic structure is present. We conclude that the detection of these kinematic stellar groups could confirm the predicted triaxiality of dark halos in cosmological galaxy formation scenarios.« less
Historic halo displays as weather indicator: Criteria and examples
NASA Astrophysics Data System (ADS)
Neuhäuser, Dagmar L.; Neuhäuser, Ralph
2016-04-01
There are numerous celestial signs reported in historic records, many of them refer to atmospheric ("sub-lunar") phenomena, such as ice halos and aurorae. In an interdisciplinary collaboration between astrophysics and cultural astronomy, we noticed that celestial observations including meteorological phenomena are often misinterpreted, mostly due to missing genuine criteria: especially ice crystal halos were recorded frequently in past centuries for religious reasons, but are mistaken nowadays often for other phenomena like aurorae. Ice halo displays yield clear information on humidity and temperature in certain atmospheric layers, and thereby indicate certain weather patterns. Ancient so-called rain makers used halo observations for weather forecast; e.g., a connection between certain halo displays and rain a few day later is statistically significant. Ice halos exist around sun and moon and are reported for both (they can stay for several days): many near, middle, and far eastern records from day- and night-time include such observations with high frequency. (Partly based on publications on halos by D.L. Neuhäuser & R. Neuhäuser, available at http://www.astro.uni-jena.de/index.php/terra-astronomy.html)
Giant Lyman-alpha Nebulae in the Illustris Simulation
NASA Astrophysics Data System (ADS)
Gronke, Max; Bird, Simeon
2017-02-01
Several “giant” Lyα nebulae with an extent ≳300 kpc and observed Lyα luminosity of ≳1044 erg s-1 cm-2 arcsec-2 have recently been detected, and it has been speculated that their presence hints at a substantial cold gas reservoir in small cool clumps not resolved in modern hydrodynamical simulations. We use the Illustris simulation to predict the Lyα emission emerging from large halos (M > 1011.5 M⊙) at z ˜ 2 and thus test this model. We consider both active galactic nucleus (AGN) and star driven ionization, and compare the simulated surface brightness maps, profiles, and Lyα spectra to a model where most gas is clumped below the simulation resolution scale. We find that with Illustris, no additional clumping is necessary to explain the extents, luminosities, and surface brightness profiles of the “giant Lyα nebulae” observed. Furthermore, the maximal extents of the objects show a wide spread for a given luminosity and do not correlate significantly with any halo properties. We also show how the detected size depends strongly on the employed surface brightness cutoff, and predict that further examples of such objects will be found in the near future.
Alignments of Dark Matter Halos with Large-scale Tidal Fields: Mass and Redshift Dependence
NASA Astrophysics Data System (ADS)
Chen, Sijie; Wang, Huiyuan; Mo, H. J.; Shi, Jingjing
2016-07-01
Large-scale tidal fields estimated directly from the distribution of dark matter halos are used to investigate how halo shapes and spin vectors are aligned with the cosmic web. The major, intermediate, and minor axes of halos are aligned with the corresponding tidal axes, and halo spin axes tend to be parallel with the intermediate axes and perpendicular to the major axes of the tidal field. The strengths of these alignments generally increase with halo mass and redshift, but the dependence is only on the peak height, ν \\equiv {δ }{{c}}/σ ({M}{{h}},z). The scaling relations of the alignment strengths with the value of ν indicate that the alignment strengths remain roughly constant when the structures within which the halos reside are still in a quasi-linear regime, but decreases as nonlinear evolution becomes more important. We also calculate the alignments in projection so that our results can be compared directly with observations. Finally, we investigate the alignments of tidal tensors on large scales, and use the results to understand alignments of halo pairs separated at various distances. Our results suggest that the coherent structure of the tidal field is the underlying reason for the alignments of halos and galaxies seen in numerical simulations and in observations.
The virialization density of peaks with general density profiles under spherical collapse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubin, Douglas; Loeb, Abraham, E-mail: dsrubin@physics.harvard.edu, E-mail: aloeb@cfa.harvard.edu
2013-12-01
We calculate the non-linear virialization density, Δ{sub c}, of halos under spherical collapse from peaks with an arbitrary initial and final density profile. This is in contrast to the standard calculation of Δ{sub c} which assumes top-hat profiles. Given our formalism, the non-linear halo density can be calculated once the shape of the initial peak's density profile and the shape of the virialized halo's profile are provided. We solve for Δ{sub c} for halos in an Einstein de-Sitter and a ΛCDM universe. As examples, we consider power-law initial profiles as well as spherically averaged peak profiles calculated from the statisticsmore » of a Gaussian random field. We find that, depending on the profiles used, Δ{sub c} is smaller by a factor of a few to as much as a factor of 10 as compared to the density given by the standard calculation ( ≈ 200). Using our results, we show that, for halo finding algorithms that identify halos through an over-density threshold, the halo mass function measured from cosmological simulations can be enhanced at all halo masses by a factor of a few. This difference could be important when using numerical simulations to assess the validity of analytic models of the halo mass function.« less
Halo abundance matching: accuracy and conditions for numerical convergence
NASA Astrophysics Data System (ADS)
Klypin, Anatoly; Prada, Francisco; Yepes, Gustavo; Heß, Steffen; Gottlöber, Stefan
2015-03-01
Accurate predictions of the abundance and clustering of dark matter haloes play a key role in testing the standard cosmological model. Here, we investigate the accuracy of one of the leading methods of connecting the simulated dark matter haloes with observed galaxies- the halo abundance matching (HAM) technique. We show how to choose the optimal values of the mass and force resolution in large volume N-body simulations so that they provide accurate estimates for correlation functions and circular velocities for haloes and their subhaloes - crucial ingredients of the HAM method. At the 10 per cent accuracy, results converge for ˜50 particles for haloes and ˜150 particles for progenitors of subhaloes. In order to achieve this level of accuracy a number of conditions should be satisfied. The force resolution for the smallest resolved (sub)haloes should be in the range (0.1-0.3)rs, where rs is the scale radius of (sub)haloes. The number of particles for progenitors of subhaloes should be ˜150. We also demonstrate that the two-body scattering plays a minor role for the accuracy of N-body simulations thanks to the relatively small number of crossing-times of dark matter in haloes, and the limited force resolution of cosmological simulations.
Analytical halo model of galactic conformity
NASA Astrophysics Data System (ADS)
Pahwa, Isha; Paranjape, Aseem
2017-09-01
We present a fully analytical halo model of colour-dependent clustering that incorporates the effects of galactic conformity in a halo occupation distribution framework. The model, based on our previous numerical work, describes conformity through a correlation between the colour of a galaxy and the concentration of its parent halo, leading to a correlation between central and satellite galaxy colours at fixed halo mass. The strength of the correlation is set by a tunable 'group quenching efficiency', and the model can separately describe group-level correlations between galaxy colour (1-halo conformity) and large-scale correlations induced by assembly bias (2-halo conformity). We validate our analytical results using clustering measurements in mock galaxy catalogues, finding that the model is accurate at the 10-20 per cent level for a wide range of luminosities and length-scales. We apply the formalism to interpret the colour-dependent clustering of galaxies in the Sloan Digital Sky Survey (SDSS). We find good overall agreement between the data and a model that has 1-halo conformity at a level consistent with previous results based on an SDSS group catalogue, although the clustering data require satellites to be redder than suggested by the group catalogue. Within our modelling uncertainties, however, we do not find strong evidence of 2-halo conformity driven by assembly bias in SDSS clustering.
A general explanation on the correlation of dark matter halo spin with the large-scale environment
NASA Astrophysics Data System (ADS)
Wang, Peng; Kang, Xi
2017-06-01
Both simulations and observations have found that the spin of halo/galaxy is correlated with the large-scale environment, and particularly the spin of halo flips in filament. A consistent picture of halo spin evolution in different environments is still lacked. Using N-body simulation, we find that halo spin with its environment evolves continuously from sheet to cluster, and the flip of halo spin happens both in filament and nodes. The flip in filament can be explained by halo formation time and migrating time when its environment changes from sheet to filament. For low-mass haloes, they form first in sheets and migrate into filaments later, so their mass and spin growth inside filament are lower, and the original spin is still parallel to filament. For high-mass haloes, they migrate into filaments first, and most of their mass and spin growth are obtained in filaments, so the resulted spin is perpendicular to filament. Our results well explain the overall evolution of cosmic web in the cold dark matter model and can be tested using high-redshift data. The scenario can also be tested against alternative models of dark matter, such as warm/hot dark matter, where the structure formation will proceed in a different way.
The cosmic web and the orientation of angular momenta
NASA Astrophysics Data System (ADS)
Libeskind, Noam I.; Hoffman, Yehuda; Knebe, Alexander; Steinmetz, Matthias; Gottlöber, Stefan; Metuki, Ofer; Yepes, Gustavo
2012-03-01
We use a 64 h-1 Mpc dark-matter-only cosmological simulation to examine the large-scale orientation of haloes and substructures with respect to the cosmic web. A web classification scheme based on the velocity shear tensor is used to assign to each halo in the simulation a web type: knot, filament, sheet or void. Using ˜106 haloes that span ˜3 orders of magnitude in mass, the orientation of the halo's spin and the orbital angular momentum of subhaloes with respect to the eigenvectors of the shear tensor is examined. We find that the orbital angular momentum of subhaloes tends to align with the intermediate eigenvector of the velocity shear tensor for all haloes in knots, filaments and sheets. This result indicates that the kinematics of substructures located deep within the virialized regions of a halo is determined by its infall which in turn is determined by the large-scale velocity shear, a surprising result given the virialized nature of haloes. The non-random nature of subhalo accretion is thus imprinted on the angular momentum measured at z= 0. We also find that the haloes' spin axis is aligned with the third eigenvector of the velocity shear tensor in filaments and sheets: the halo spin axis points along filaments and lies in the plane of cosmic sheets.
Young accreted globular clusters in the outer halo of M31
NASA Astrophysics Data System (ADS)
Mackey, A. D.; Huxor, A. P.; Ferguson, A. M. N.; Irwin, M. J.; Veljanoski, J.; McConnachie, A. W.; Ibata, R. A.; Lewis, G. F.; Tanvir, N. R.
2013-02-01
We report on observations of two newly discovered globular clusters in the outskirts of M31 made using the Gemini Multi-Object Spectrograph (GMOS) instrument on Gemini North. These objects, PAndAS-7 (PA-7) and PAndAS-8 (PA-8), lie at a galactocentric radius of ≈87 kpc and are projected, with separation ≈19 kpc, on to a field halo substructure known as the South-West Cloud. We measure radial velocities for the two clusters which confirm that they are almost certainly physically associated with this feature. Colour-magnitude diagrams reveal strikingly short, exclusively red horizontal branches in both PA-7 and PA-8; both also have photometric [Fe/H] = -1.35 ± 0.15. At this metallicity, the morphology of the horizontal branch is maximally sensitive to age, and we use the distinctive configurations seen in PA-7 and PA-8 to demonstrate that both objects are very likely to be at least 2 Gyr younger than the oldest Milky Way globular clusters. Our observations provide strong evidence for young globular clusters being accreted into the remote outer regions of M31 in a manner entirely consistent with the established picture for the Milky Way, and add credence to the idea that similar processes play a central role in determining the composition of globular cluster systems in large spiral galaxies in general.
Chemical Cartography. I. A Carbonicity Map of the Galactic Halo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Young Sun; Kim, Young Kwang; Beers, Timothy C.
We present the first map of carbonicity, [C/Fe], for the halo system of the Milky Way, based on a sample of over 100,000 main-sequence turnoff stars with available spectroscopy from the Sloan Digital Sky Survey. This map, which explores distances up to 15 kpc from the Sun, reveals clear evidence for the dual nature of the Galactic halo, based on the spatial distribution of stellar carbonicity. The metallicity distribution functions of stars in the inner- and outer-halo regions of the carbonicity map reproduce those previously argued to arise from contributions of the inner- and outer-halo populations, with peaks at [Fe/H]more » = −1.5 and −2.2, respectively. From consideration of the absolute carbon abundances for our sample, A (C), we also confirm that the carbon-enhanced metal-poor (CEMP) stars in the outer-halo region exhibit a higher frequency of CEMP-no stars (those with no overabundances of heavy neutron-capture elements) than of CEMP- s stars (those with strong overabundances of elements associated with the s -process), whereas the stars in the inner-halo region exhibit a higher frequency of CEMP- s stars. We argue that the contrast in the behavior of the CEMP-no and CEMP- s fractions in these regions arises from differences in the mass distributions of the mini-halos from which the stars of the inner- and outer-halo populations formed, which gives rise in turn to the observed dichotomy of the Galactic halo.« less
THE DUAL ORIGIN OF STELLAR HALOS. II. CHEMICAL ABUNDANCES AS TRACERS OF FORMATION HISTORY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolotov, Adi; Hogg, David W.; Willman, Beth
2010-09-20
Fully cosmological, high-resolution N-body+smooth particle hydrodynamic simulations are used to investigate the chemical abundance trends of stars in simulated stellar halos as a function of their origin. These simulations employ a physically motivated supernova feedback recipe, as well as metal enrichment, metal cooling, and metal diffusion. As presented in an earlier paper, the simulated galaxies in this study are surrounded by stellar halos whose inner regions contain both stars accreted from satellite galaxies and stars formed in situ in the central regions of the main galaxies and later displaced by mergers into their inner halos. The abundance patterns ([Fe/H] andmore » [O/Fe]) of halo stars located within 10 kpc of a solar-like observer are analyzed. We find that for galaxies which have not experienced a recent major merger, in situ stars at the high [Fe/H] end of the metallicity distribution function are more [{alpha}/Fe]-rich than accreted stars at similar [Fe/H]. This dichotomy in the [O/Fe] of halo stars at a given [Fe/H] results from the different potential wells within which in situ and accreted halo stars form. These results qualitatively match recent observations of local Milky Way halo stars. It may thus be possible for observers to uncover the relative contribution of different physical processes to the formation of stellar halos by observing such trends in the halo populations of the Milky Way and other local L{sup *} galaxies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behroozi, Peter S.; Wechsler, Risa H.; Lu, Yu
We find that infalling dark matter halos (i.e., the progenitors of satellite halos) begin losing mass well outside the virial radius of their eventual host halos. The peak mass occurs at a range of clustercentric distances, with median and 68th percentile range ofmore » $$1.8^{+2.3}_{-1.0} \\,R_\\mathrm{vir,host}$$ for progenitors of z = 0 satellites. The peak circular velocity for infalling halos occurs at significantly larger distances ($$3.7^{+3.3}_{-2.2} \\,R_\\mathrm{vir,host}$$ at z = 0). This difference arises because different physical processes set peak circular velocity (typically, ~1:5 and larger mergers which cause transient circular velocity spikes) and peak mass (typically, smooth accretion) for infalling halos. We find that infalling halos also stop having significant mergers well before they enter the virial radius of their eventual hosts. Mergers larger than a 1:40 ratio in halo mass end for infalling halos at similar clustercentric distances (~1.9 R vir, host) as the end of overall mass accretion. However, mergers larger than 1:3 typically end for infalling halos at more than four virial radial away from their eventual hosts. This limits the ability of mergers to affect quenching and morphology changes in clusters. We also note that the transient spikes which set peak circular velocity may lead to issues with abundance matching on that parameter, including unphysical galaxy stellar mass growth profiles near clusters; we propose a simple observational test to check if a better halo proxy for galaxy stellar mass exists.« less
A Universal Angular Momentum Profile for Dark Matter Halos
NASA Astrophysics Data System (ADS)
Liao, Shihong; Chen, Jianxiong; Chu, M.-C.
2017-07-01
The angular momentum distribution in dark matter halos and galaxies is a key ingredient in understanding their formation. Specifically, the internal distribution of angular momenta is closely related to the formation of disk galaxies. In this article, we use halos identified from a high-resolution simulation, the Bolshoi simulation, to study the spatial distribution of specific angular momenta, j(r,θ ). We show that by stacking halos with similar masses to increase the signal-to-noise ratio, the profile can be fitted as a simple function, j{(r,θ )={j}s{\\sin }2{(θ /{θ }s)(r/{r}s)}2/(1+r/{r}s)}4, with three free parameters, {j}s,{r}s, and {θ }s. Specifically, j s correlates with the halo mass M vir as {j}s\\propto {M}{vir}2/3, r s has a weak dependence on the halo mass as {r}s\\propto {M}{vir}0.040, and {θ }s is independent of M vir. This profile agrees with that from a rigid shell model, though its origin is unclear. Our universal specific angular momentum profile j(r,θ ) is useful in modeling the angular momenta of halos. Furthermore, by using an empirical stellar mass-halo mass relation, we can infer the average angular momentum distribution of a dark matter halo. The specific angular momentum-stellar mass relation within a halo computed from our profile is shown to share a similar shape as that from the observed disk galaxies.
Cosmic Vorticity and the Origin Halo Spins
NASA Astrophysics Data System (ADS)
Libeskind, Noam I.; Hoffman, Yehuda; Steinmetz, Matthias; Gottlöber, Stefan; Knebe, Alexander; Hess, Steffen
2013-04-01
In the standard model of cosmology, structure emerges out of a non-rotational flow and the angular momentum of collapsing halos is induced by tidal torques. The growth of angular momentum in the linear and quasi-linear phases is associated with a shear, curl-free, flow and it is well described within the linear framework of tidal torque theory (TTT). However, TTT ceases to be applicable as halos approach turnaround when their ambient flow field becomes rotational. Subsequently, halos become embedded in a vortical flow field and the growth of their angular momentum is affected by the vorticity of their ambient velocity field. Using a cosmological simulation, we have examined the importance of the curl of the velocity field in determining halo spin, finding a significant alignment between the two: the vorticity tends to be perpendicular to the axis of the fastest collapse of the velocity shear tensor (e 1). This is independent of halo masses and cosmic web environment. Our results agree with previous findings on the tendency of halo spin to be perpendicular to e 1, and of the spin of (simulated) halos and (observed) galaxies to be aligned with the large-scale structure. It follows that angular momentum growth proceeds in two distinct phases. First, the angular momentum emerges out of a shear, curl-free, potential flow, as described by TTT. In the second phase, in which halos approach virialization, the angular momentum emerges out of a vortical flow and halo spin becomes partially aligned with the vorticity of the ambient flow field.
What makes the family of barred disc galaxies so rich: damping stellar bars in spinning haloes
NASA Astrophysics Data System (ADS)
Collier, Angela; Shlosman, Isaac; Heller, Clayton
2018-05-01
We model and analyse the secular evolution of stellar bars in spinning dark matter (DM) haloes with the cosmological spin λ ˜ 0-0.09. Using high-resolution stellar and DM numerical simulations, we focus on angular momentum exchange between stellar discs and DM haloes of various axisymmetric shapes - spherical, oblate, and prolate. We find that stellar bars experience a diverse evolution that is guided by the ability of parent haloes to absorb angular momentum, J, lost by the disc through the action of gravitational torques, resonant and non-resonant. We confirm that dynamical bar instability is accelerated via resonant J-transfer to the halo. Our main findings relate to the long-term secular evolution of disc-halo systems: with an increasing λ, bars experience less growth and basically dissolve after they pass through vertical buckling instability. Specifically, with increasing λ, (1) the vertical buckling instability in stellar bars colludes with inability of the inner halo to absorb J - this emerges as the main factor weakening or destroying bars in spinning haloes; (2) bars lose progressively less J, and their pattern speeds level off; (3) bars are smaller, and for λ ≳ 0.06 cease their growth completely following buckling; (4) bars in λ > 0.03 haloes have ratio of corotation-to-bar radii, RCR/Rb > 2, and represent so-called slow bars without offset dust lanes. We provide a quantitative analysis of J-transfer in disc-halo systems, and explain the reasons for absence of growth in fast spinning haloes and its observational corollaries. We conclude that stellar bar evolution is substantially more complex than anticipated, and bars are not as resilient as has been considered so far.
The Mass and Absorption Columns of Galactic Gaseous Halos
NASA Astrophysics Data System (ADS)
Qu, Zhijie; Bregman, Joel N.
2018-03-01
The galactic gaseous halo is a gas reservoir for the interstellar medium in the galaxy disk, supplying materials for star formation. We developed a gaseous halo model connecting the galaxy disk and the gaseous halo by assuming that the star formation rate on the disk is balanced by the radiative cooling rate of the gaseous halo, including stellar feedback. In addition to a single-temperature gaseous halo in collisional ionization equilibrium, we also consider the photoionization effect and a steady-state cooling model. Photoionization is important for modifying the ion distribution in low-mass galaxies and in the outskirts of massive galaxies due to the low densities. The multiphase cooling model dominates the region within the cooling radius, where t cooling = t Hubble. Our model reproduces most of the observed high ionization state ions for a wide range of galaxy masses (i.e., O VI, O VII, Ne VIII, Mg X, and O VIII). We find that the O VI column density has a narrow range around ≈1014 cm‑2 for halo masses from M ⋆ ≈ 3 × 1010 M ⊙ to 6 × 1012 M ⊙, which is consistent with some but not all observational studies. For galaxies with halo masses ≲3 × 1011 M ⊙, photoionization produces most of the O VI, while for more massive galaxies, the O VI is from the medium that is cooling from higher temperatures. Fitting the Galactic (Milky-Way) O VII and O VIII suggests a gaseous halo model where the metallicity is ≈0.55 Z ⊙ and the gaseous halo has a maximum temperature of ≈1.9 × 106 K. This gaseous halo model does not close the census of baryonic material within R 200.
Constraining the noise-free distribution of halo spin parameters
NASA Astrophysics Data System (ADS)
Benson, Andrew J.
2017-11-01
Any measurement made using an N-body simulation is subject to noise due to the finite number of particles used to sample the dark matter distribution function, and the lack of structure below the simulation resolution. This noise can be particularly significant when attempting to measure intrinsically small quantities, such as halo spin. In this work, we develop a model to describe the effects of particle noise on halo spin parameters. This model is calibrated using N-body simulations in which the particle noise can be treated as a Poisson process on the underlying dark matter distribution function, and we demonstrate that this calibrated model reproduces measurements of halo spin parameter error distributions previously measured in N-body convergence studies. Utilizing this model, along with previous measurements of the distribution of halo spin parameters in N-body simulations, we place constraints on the noise-free distribution of halo spins. We find that the noise-free median spin is 3 per cent lower than that measured directly from the N-body simulation, corresponding to a shift of approximately 40 times the statistical uncertainty in this measurement arising purely from halo counting statistics. We also show that measurement of the spin of an individual halo to 10 per cent precision requires at least 4 × 104 particles in the halo - for haloes containing 200 particles, the fractional error on spins measured for individual haloes is of order unity. N-body simulations should be viewed as the results of a statistical experiment applied to a model of dark matter structure formation. When viewed in this way, it is clear that determination of any quantity from such a simulation should be made through forward modelling of the effects of particle noise.
Bimodal Formation Time Distribution for Infall Dark Matter Halos
NASA Astrophysics Data System (ADS)
Shi, Jingjing; Wang, Huiyuan; Mo, H. J.; Xie, Lizhi; Wang, Xiaoyu; Lapi, Andrea; Sheth, Ravi K.
2018-04-01
We use a 200 {h}-1 {Mpc} a-side N-body simulation to study the mass accretion history (MAH) of dark matter halos to be accreted by larger halos, which we call infall halos. We define a quantity {a}nf}\\equiv (1+{z}{{f}})/(1+{z}peak}) to characterize the MAH of infall halos, where {z}peak} and {z}{{f}} are the accretion and formation redshifts, respectively. We find that, at given {z}peak}, their MAH is bimodal. Infall halos are dominated by a young population at high redshift and by an old population at low redshift. For the young population, the {a}nf} distribution is narrow and peaks at about 1.2, independent of {z}peak}, while for the old population, the peak position and width of the {a}nf} distribution both increase with decreasing {z}peak} and are both larger than those of the young population. This bimodal distribution is found to be closely connected to the two phases in the MAHs of halos. While members of the young population are still in the fast accretion phase at z peak, those of the old population have already entered the slow accretion phase at {z}peak}. This bimodal distribution is not found for the whole halo population, nor is it seen in halo merger trees generated with the extended Press–Schechter formalism. The infall halo population at {z}peak} are, on average, younger than the whole halo population of similar masses identified at the same redshift. We discuss the implications of our findings in connection to the bimodal color distribution of observed galaxies and to the link between central and satellite galaxies.
NASA Astrophysics Data System (ADS)
Dutton, Aaron A.; van den Bosch, Frank C.
2012-03-01
We combine constraints on the galaxy-dark matter connection with structural and dynamical scaling relations to investigate the angular momentum content of disc galaxies. For haloes with masses in the interval 1011.3 M⊙≲Mvir≲ 1012.7 M⊙ we find that the galaxy spin parameters are basically independent of halo mass with ?. This is significantly lower than for relaxed Λcold dark matter (ΛCDM) haloes, which have an average spin parameter ?. The average ratio between the specific angular momentum of disc galaxies and their host dark matter haloes is therefore ?. This calls into question a standard assumption made in the majority of all (semi-analytical) models for (disc) galaxy formation, namely that ?. Using simple disc formation models we show that it is particularly challenging to understand why ? is independent of halo mass, while the galaxy formation efficiency (ɛGF; proportional to the ratio of galaxy mass to halo mass) reveals a strong halo mass dependence. We argue that the empirical scaling relations between ɛGF, ? and halo mass require both feedback (i.e. galactic outflows) and angular momentum transfer from the baryons to the dark matter (i.e. dynamical friction). Most importantly, the efficiency of angular momentum loss needs to decrease with increasing halo mass. Such a mass dependence may reflect a bias against forming stable discs in high-mass, low-spin haloes or a transition from cold-mode accretion in low-mass haloes to hot-mode accretion at the massive end. However, current hydrodynamical simulations of galaxy formation, which should include these processes, seem unable to reproduce the empirical relation between ɛGF and ?. We conclude that the angular momentum build-up of galactic discs remains poorly understood.
Studies of compact objects with Einstein - Review and prospects
NASA Technical Reports Server (NTRS)
Grindlay, Jonathan E.
1990-01-01
X-ray images and spectra of a wide range of systems containing compact objects were obtained with the Einstein X-ray Observatory. Accreting white dwarfs, neutron stars and black holes were observed in binary systems in the Galaxy, and new constraints were derived for their formation, nature and evolution. Massive black holes were studied in active galactic nuclei, and X-ray spectra (and evolution) of AGN have led to a new model for the diffuse X-ray background.
Statistical Aspects of X-Class Halo and Non-Halo Events, 1996-2014
NASA Technical Reports Server (NTRS)
Wilson, Robert M.
2016-01-01
Of the 166 X-class events that occurred during the interval 1996-2014, 80 had associations with halo events, 68 had no associations with halo events, and 18 occurred during LASCO (Large Angle and Spectrometric COronagraph) data gaps. Both the duration and location of the X-class halo events proved to be statistically important parameters with respect to the geo-effectiveness of the events. Forty-four of the 80 X-class halo events occurred within 45 degrees of the Sun's central meridian and 47 of the 80 had duration greater than or equal to 30 minutes, whereas only 28 of the 68 X-class non-halo events occurred within 45 degrees of the Sun's central meridian (2 events have unknown location) and 22 of the 68 had duration greater than or equal to 30 minutes. Ignoring the 4 largest X-class flares greater than or equal to X4.0 during the LASCO data gaps, 17 of the remaining 20 were associated with halo events, and 14 of the 17 had at least one geo-magnetically disturbed day (Ap (i.e. NOAA's Ap* (ApStar)index: the major magnetic storms going back to 1932) greater than or equal to 25 nanotesias) within 1-5 days following the X-class halo event. Based on the hourly Dst (Disturbance storm time) index, the most geo-effective X-class halo event during the interval 1996-2014 was that of an X1.7 flare that occurred on 2001 March 29 at 0957, having an hourly Disturbance storm time minimum equal to minus 387 nanotesias. On average, the X-class halo events (80 events) were found to have a mean duration (42 minutes) slightly longer than the mean duration (29 minutes) of the X-class non-halo events (68 events) with the difference in the means being statistically important at the 1 percent level of significance.
Redshift-space distortions with the halo occupation distribution - II. Analytic model
NASA Astrophysics Data System (ADS)
Tinker, Jeremy L.
2007-01-01
We present an analytic model for the galaxy two-point correlation function in redshift space. The cosmological parameters of the model are the matter density Ωm, power spectrum normalization σ8, and velocity bias of galaxies αv, circumventing the linear theory distortion parameter β and eliminating nuisance parameters for non-linearities. The model is constructed within the framework of the halo occupation distribution (HOD), which quantifies galaxy bias on linear and non-linear scales. We model one-halo pairwise velocities by assuming that satellite galaxy velocities follow a Gaussian distribution with dispersion proportional to the virial dispersion of the host halo. Two-halo velocity statistics are a combination of virial motions and host halo motions. The velocity distribution function (DF) of halo pairs is a complex function with skewness and kurtosis that vary substantially with scale. Using a series of collisionless N-body simulations, we demonstrate that the shape of the velocity DF is determined primarily by the distribution of local densities around a halo pair, and at fixed density the velocity DF is close to Gaussian and nearly independent of halo mass. We calibrate a model for the conditional probability function of densities around halo pairs on these simulations. With this model, the full shape of the halo velocity DF can be accurately calculated as a function of halo mass, radial separation, angle and cosmology. The HOD approach to redshift-space distortions utilizes clustering data from linear to non-linear scales to break the standard degeneracies inherent in previous models of redshift-space clustering. The parameters of the occupation function are well constrained by real-space clustering alone, separating constraints on bias and cosmology. We demonstrate the ability of the model to separately constrain Ωm,σ8 and αv in models that are constructed to have the same value of β at large scales as well as the same finger-of-god distortions at small scales.
Halo Histories vs. Galaxy Properties at z=0, III: The Properties of Star-Forming Galaxies
NASA Astrophysics Data System (ADS)
Tinker, Jeremy L.; Hahn, ChangHoon; Mao, Yao-Yuan; Wetzel, Andrew R.
2018-05-01
We measure how the properties of star-forming central galaxies correlate with large-scale environment, δ, measured on 10 h-1Mpc scales. We use galaxy group catalogs to isolate a robust sample of central galaxies with high purity and completeness. The galaxy properties we investigate are star formation rate (SFR), exponential disk scale length Rexp, and Sersic index of the galaxy light profile, nS. We find that, at all stellar masses, there is an inverse correlation between SFR and δ, meaning that above-average star forming centrals live in underdense regions. For nS and Rexp, there is no correlation with δ at M_\\ast ≲ 10^{10.5} M⊙, but at higher masses there are positive correlations; a weak correlation with Rexp and a strong correlation with nS. These data are evidence of assembly bias within the star-forming population. The results for SFR are consistent with a model in which SFR correlates with present-day halo accretion rate, \\dot{M}_h. In this model, galaxies are assigned to halos using the abundance matching ansatz, which maps galaxy stellar mass onto halo mass. At fixed halo mass, SFR is then assigned to galaxies using the same approach, but \\dot{M}_h is used to map onto SFR. The best-fit model requires some scatter in the \\dot{M}_h-SFR relation. The Rexp and nS measurements are consistent with a model in which both of these quantities are correlated with the spin parameter of the halo, λ. Halo spin does not correlate with δ at low halo masses, but for higher mass halos, high-spin halos live in higher density environments at fixed Mh. Put together with the earlier installments of this series, these data demonstrate that quenching processes have limited correlation with halo formation history, but the growth of active galaxies, as well as other detailed galaxies properties, are influenced by the details of halo assembly.
Two-halo term in stacked thermal Sunyaev-Zel'dovich measurements: Implications for self-similarity
NASA Astrophysics Data System (ADS)
Hill, J. Colin; Baxter, Eric J.; Lidz, Adam; Greco, Johnny P.; Jain, Bhuvnesh
2018-04-01
The relation between the mass and integrated electron pressure of galaxy group and cluster halos can be probed by stacking maps of the thermal Sunyaev-Zel'dovich (tSZ) effect. Perhaps surprisingly, recent observational results have indicated that the scaling relation between integrated pressure and mass follows the prediction of simple, self-similar models down to halo masses as low as 1 012.5 M⊙ . Hydrodynamical simulations that incorporate energetic feedback processes suggest that gas should be depleted from such low-mass halos, thus decreasing their tSZ signal relative to self-similar predictions. Here, we build on the modeling of V. Vikram, A. Lidz, and B. Jain, Mon. Not. R. Astron. Soc. 467, 2315 (2017), 10.1093/mnras/stw3311 to evaluate the bias in the interpretation of stacked tSZ measurements due to the signal from correlated halos (the "two-halo" term), which has generally been neglected in the literature. We fit theoretical models to a measurement of the tSZ-galaxy group cross-correlation function, accounting explicitly for the one- and two-halo contributions. We find moderate evidence of a deviation from self-similarity in the pressure-mass relation, even after marginalizing over conservative miscentering effects. We explore pressure-mass models with a break at 1 014 M⊙, as well as other variants. We discuss and test for sources of uncertainty in our analysis, in particular a possible bias in the halo mass estimates and the coarse resolution of the Planck beam. We compare our findings with earlier analyses by exploring the extent to which halo isolation criteria can reduce the two-halo contribution. Finally, we show that ongoing third-generation cosmic microwave background experiments will explicitly resolve the one-halo term in low-mass groups; our methodology can be applied to these upcoming data sets to obtain a clear answer to the question of self-similarity and an improved understanding of hot gas in low-mass halos.
Well behaved anisotropic compact star models in general relativity
NASA Astrophysics Data System (ADS)
Jasim, M. K.; Maurya, S. K.; Gupta, Y. K.; Dayanandan, B.
2016-11-01
Anisotropic compact star models have been constructed by assuming a particular form of a metric function e^{λ}. We solved the Einstein field equations for determining the metric function e^{ν}. For this purpose we have assumed a physically valid expression of radial pressure (pr). The obtained anisotropic compact star model is representing the realistic compact objects such as PSR 1937 +21. We have done an extensive study about physical parameters for anisotropic models and found that these parameters are well behaved throughout inside the star. Along with these we have also determined the equation of state for compact star which gives the radial pressure is purely the function of density i.e. pr=f(ρ).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidge, T. J.
2012-12-20
The stellar contents of the open clusters King 12, NGC 7788, and NGC 7790 are investigated using MegaCam images. Comparisons with isochrones yield an age <20 Myr for King 12, 20-40 Myr for NGC 7788, and 60-80 Myr for NGC 7790 based on the properties of stars near the main-sequence turnoff (MSTO) in each cluster. The reddening of NGC 7788 is much larger than previously estimated. The luminosity functions (LFs) of King 12 and NGC 7788 show breaks that are attributed to the onset of pre-main-sequence (PMS) objects, and comparisons with models of PMS evolution yield ages that are consistentmore » with those measured from stars near the MSTO. In contrast, the r' LF of main-sequence stars in NGC 7790 is matched to r' = 20 by a model that is based on the solar neighborhood mass function. The structural properties of all three clusters are investigated by examining the two-point angular correlation function of blue main-sequence stars. King 12 and NGC 7788 are each surrounded by a stellar halo that extends out to a radius of 5 arcmin ({approx}3.4 pc). It is suggested that these halos form in response to large-scale mass ejection early in the evolution of the clusters, as predicted by models. In contrast, blue main-sequence stars in NGC 7790 are traced out to a radius of {approx}7.5 arcmin ({approx}5.5 pc), with no evidence of a halo. It is suggested that all three clusters may have originated in the same star-forming complex, but not in the same giant molecular cloud.« less
Tidal stripping and the structure of dwarf galaxies in the Local Group
NASA Astrophysics Data System (ADS)
Fattahi, Azadeh; Navarro, Julio F.; Frenk, Carlos S.; Oman, Kyle A.; Sawala, Till; Schaller, Matthieu
2018-05-01
The shallow faint-end slope of the galaxy mass function is usually reproduced in Λ cold dark matter (ΛCDM) galaxy formation models by assuming that the fraction of baryons that turn into stars drops steeply with decreasing halo mass and essentially vanishes in haloes with maximum circular velocities Vmax < 20-30 km s-1. Dark-matter-dominated dwarfs should therefore have characteristic velocities of about that value, unless they are small enough to probe only the rising part of the halo circular velocity curve (i.e. half-mass radii, r1/2 ≪ 1 kpc). Many dwarfs have properties in disagreement with this prediction: they are large enough to probe their halo Vmax but their characteristic velocities are well below 20 km s-1. These `cold faint giants' (an extreme example is the recently discovered Crater 2 Milky Way satellite) can only be reconciled with our ΛCDM models if they are the remnants of once massive objects heavily affected by tidal stripping. We examine this possibility using the APOSTLE cosmological hydrodynamical simulations of the Local Group. Assuming that low-velocity-dispersion satellites have been affected by stripping, we infer their progenitor masses, radii, and velocity dispersions, and find them in remarkable agreement with those of isolated dwarfs. Tidal stripping also explains the large scatter in the mass discrepancy-acceleration relation in the dwarf galaxy regime: tides remove preferentially dark matter from satellite galaxies, lowering their accelerations below the amin ˜ 10-11 m s-2 minimum expected for isolated dwarfs. In many cases, the resulting velocity dispersions are inconsistent with the predictions from Modified Newtonian Dynamics, a result that poses a possibly insurmountable challenge to that scenario.
The Ages of the Thin Disk, Thick Disk, and the Halo from Nearby White Dwarfs
NASA Astrophysics Data System (ADS)
Kilic, Mukremin; Munn, Jeffrey A.; Harris, Hugh C.; von Hippel, Ted; Liebert, James W.; Williams, Kurtis A.; Jeffery, Elizabeth; DeGennaro, Steven
2017-03-01
We present a detailed analysis of the white dwarf luminosity functions derived from the local 40 pc sample and the deep proper motion catalog of Munn et al. Many previous studies have ignored the contribution of thick disk white dwarfs to the Galactic disk luminosity function, which results in an erroneous age measurement. We demonstrate that the ratio of thick/thin disk white dwarfs is roughly 20% in the local sample. Simultaneously fitting for both disk components, we derive ages of 6.8-7.0 Gyr for the thin disk and 8.7 ± 0.1 Gyr for the thick disk from the local 40 pc sample. Similarly, we derive ages of 7.4-8.2 Gyr for the thin disk and 9.5-9.9 Gyr for the thick disk from the deep proper motion catalog, which shows no evidence of a deviation from a constant star formation rate in the past 2.5 Gyr. We constrain the time difference between the onset of star formation in the thin disk and the thick disk to be {1.6}-0.4+0.3 Gyr. The faint end of the luminosity function for the halo white dwarfs is less constrained, resulting in an age estimate of {12.5}-3.4+1.4 Gyr for the Galactic inner halo. This is the first time that ages for all three major components of the Galaxy have been obtained from a sample of field white dwarfs that is large enough to contain significant numbers of disk and halo objects. The resultant ages agree reasonably well with the age estimates for the oldest open and globular clusters.
Activity of the aqueous extract of Schinus terebinthifolius Raddi on strains of the Candida genus.
Torres, Kátia Andrea de Menezes; Lima, Sônia Maria Rolim Rosa; Ueda, Suely Mitoi Ykko
2016-12-01
Objectives To evaluate the antifungal susceptibility profile of the aqueous extract of the bark of Schinus terebinthifolius Raddi against the strains of the genus Candida . Methods By using the disk diffusion method, 50 samples of the genus Candida ( Candida albicans ; Candida krusei ; Candida glabrata ; and Candida tropicalis ), isolated from patients receiving treatment at Hospital Santa Casa de Misericórdia de São Paulo, and 1 American Type Culture Collection (ATCC) sample of each species were tested against: the isolated aqueous extract of the bark of Schinus terebinthifolius Raddi, isolated nystatin, and the association of nystatin and the aqueous extract of Schinus terebinthifolius Raddi. Results There were no significant differences regarding the different strains of Candida tested. In the presence of the aqueous extract of Schinus terebinthifolius Raddi, no inhibition halo was visible. Isolated nystatin formed an inhibition halo measuring respectively 18.50 mm and 19.50 mm for the Candida albicans species and the others referred to as non- Candida albicans ( Candida krusei ; Candida glabrata ; and Candida tropicalis ). The association of nystatin and the aqueous extract of Schinus terebinthifolius Raddi resulted in inhibition halos measuring 14.25 mm and 16.50 mm respectively. The comparisons of these results are statistically significant ( p < 0,001). Conclusion The aqueous extract of Schinus terebinthifolius Raddi showed no antifungal activity in vitro against the strains tested, whereas the association of nystatin and the aqueous extract of Schinus terebinthifolius Raddi caused a decrease in the inhibition halo when compared with isolated nystatin. Thieme-Revinter Publicações Ltda Rio de Janeiro, Brazil.
Lyman-α emitters in the context of hierarchical galaxy formation: predictions for VLT/MUSE surveys
NASA Astrophysics Data System (ADS)
Garel, T.; Guiderdoni, B.; Blaizot, J.
2016-02-01
The VLT/Multi Unit Spectrograph Explorer (MUSE) integral-field spectrograph can detect Lyα emitters (LAE) in the redshift range 2.8 ≲ z ≲ 6.7 in a homogeneous way. Ongoing MUSE surveys will notably probe faint Lyα sources that are usually missed by current narrow-band surveys. We provide quantitative predictions for a typical wedding-cake observing strategy with MUSE based on mock catalogues generated with a semi-analytic model of galaxy formation coupled to numerical Lyα radiation transfer models in gas outflows. We expect ≈1500 bright LAEs (FLyα ≳ 10-17 erg s-1 cm-2) in a typical shallow field (SF) survey carried over ≈100 arcmin2 , and ≈2000 sources as faint as 10-18 erg s-1 cm-2 in a medium-deep field (MDF) survey over 10 arcmin2 . In a typical deep field (DF) survey of 1 arcmin2 , we predict that ≈500 extremely faint LAEs (FLyα ≳ 4 × 10-19 erg s-1 cm-2) will be found. Our results suggest that faint Lyα sources contribute significantly to the cosmic Lyα luminosity and SFR budget. While the host haloes of bright LAEs at z ≈ 3 and 6 have descendants with median masses of 2 × 1012 and 5 × 1013 M⊙, respectively, the faintest sources detectable by MUSE at these redshifts are predicted to reside in haloes which evolve into typical sub-L* and L* galaxy haloes at z = 0. We expect typical DF and MDF surveys to uncover the building blocks of Milky Way-like objects, even probing the bulk of the stellar mass content of LAEs located in their progenitor haloes at z ≈ 3.
Aircraft measurements of aerosol properties during GoAmazon - G1 and HALO inter-comparison
NASA Astrophysics Data System (ADS)
Mei, F.; Cecchini, M. A.; Wang, J.; Tomlinson, J. M.; Comstock, J. M.; Hubbe, J. M.; Pekour, M. S.; Machado, L.; Wendisch, M.; Longo, K.; Martin, S. T.; Schmid, B.; Weinzierl, B.; Krüger, M. L.; Zöger, M.
2015-12-01
Currently, the indirect effects of atmospheric aerosols remain the most uncertain components in forcing of climate change over the industrial period (IPCC, 2013). This large uncertainty is partially a result of our incomplete understanding of the ability of particles to form cloud droplets under atmospherically relevant supersaturations. One objective of the US Department of Energy (DOE) Green Ocean Amazon Project (GoAmazon2014/5) is to understand the influence of the emission from Manaus, a tropical megacity, on aerosol size, concentration, and chemical composition, and their impact on cloud condensation nuclei (CCN) spectrum. The GoAmazon2014/5 study was an international campaign with the collaboration efforts from US, Brazil and Germany. During the intensive operation period, in the dry season (Sep. 1st - Oct. 10th, 2014), aerosol concentration, size distributions, and CCN spectra, both under pristine conditions and inside the Manaus plume, were characterized in-situ from the DOE Gulfstream-1 (G-1) research aircraft and German HALO aircraft during 4 coordinated flights on Sep. 9th, Sep. 16th, Sep 21st and Oct. 1st, 2014. During those four flights, aerosol number concentrations and CCN concentrations at two supersaturations (0.25% and 0.5%) were measured by condensation particle counters (CPCs) and a DMT dual column CCN counter onboard both G-1 and HALO. Aerosol size distribution was also measured by a Fast Integrated Mobility Spectrometer (FIMS) aboard the G-1 and is compared with the size distribution from Ultra High Sensitivity Aerosol Spectrometer - Airborne (UHSAS-A, DMT), which were deployed both on the G-1 and the HALO. Good agreement between the aerosol properties measured from the two aircraft has been achieved. The vertical profiles of aerosol size distribution and CCN spectrum will be discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-20
..., Notice of Registration; Halo Pharmaceutical Inc. By Notice dated December 2, 2011, and published in the Federal Register on December 14, 2011, 76 FR 77850, Halo Pharmaceutical Inc., 30 North Jefferson Road... considered the factors in 21 U.S.C. 823(a) and determined that the registration of Halo Pharmaceutical Inc...
Search for and analysis of radioactive halos in lunar material
NASA Technical Reports Server (NTRS)
Gentry, R. V.
1976-01-01
The lunar halo search was conducted because halos in terrestrial minerals serve as pointers to localized radioactivity, and make possible analytical studies on the problems of isotopic dating and mode of crystallization of the host mineral. Ancillary studies were conducted on terrestrial halos and on certain samples of special origin such as tektites and meteorites.
The Outer Halos of Early-Type Galaxies
NASA Astrophysics Data System (ADS)
Gerhard, Ortwin; Arnaboldi, Magda; Longobardi, Alessia
2015-04-01
The outer halos of massive early-type galaxies (ETGs) are dark matter dominated and may have formed by accretion of smaller systems during galaxy evolution. Here a brief report is given of some recent work on the kinematics, angular momentum, and mass distributions of simulated ETG halos, and of corresponding properties of observed halos measured with planetary nebulae (PNe) as tracers. In the outermost regions of the Virgo-central galaxy M87, the PN data show that the stellar halo and the co-spatial intracluster light are distinct kinematic components.
DETECTING TRIAXIALITY IN THE GALACTIC DARK MATTER HALO THROUGH STELLAR KINEMATICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rojas-Nino, Armando; Valenzuela, Octavio; Pichardo, Barbara
Assuming the dark matter halo of the Milky Way to be a non-spherical potential (i.e., triaxial, prolate, oblate), we show how the assembling process of the Milky Way halo may have left long-lasting stellar halo kinematic fossils due to the shape of the dark matter halo. In contrast with tidal streams, which are associated with recent satellite accretion events, these stellar kinematic groups will typically show inhomogeneous chemical and stellar population properties. However, they may be dominated by a single accretion event for certain mass assembling histories. If the detection of these peculiar kinematic stellar groups were confirmed, they wouldmore » be the smoking gun for the predicted triaxiality of dark halos in cosmological galaxy formation scenarios.« less
2017-12-08
The Sun blew out a powerful coronal mass ejection (CME) from just around the edge of the Sun (Oct. 14, 2014). The particle cloud expanded around all the Sun in a rough circle, hence the name 'halo' CME. This event was also associated with a fairly strong flare. The active region that was the source of these events is just rotating into view. Then, we can better observe its size and structure. The bright object to the right and just above the Sun is Venus now on the far side of the Sun. Credit: NASA/ESA/SOHO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
TOMOGRAPHIC MORPHOLOGICAL STUDY OF THE CRANIUM AND ITS CORRELATION WITH CRANIAL HALO USE IN ADULTS
ALMEIDA, TIAGO FERREIRA DE; CHARAFEDDINE, HOMAR TOLEDO; ARAÚJO, FERNANDO FLORES DE; CRISTANTE, ALEXANDRE FOGAÇA; MARCON, RAPHAEL MARTUS; LETAIF, OLAVO BIRAGHI
2017-01-01
ABSTRACT Objective: To evaluate using tomographic study the thickness of the cranial board at the insertions points of the cranial halo pins in adults Methods: This is a retrospective, cross-sectional, descriptive analysis of Computed Tomography (CT) scans of adult patients' crania. The study included adults between 20 and 50 years without cranial abnormalities. We excluded any exam with cranial abnormalities Results: We analyzed 50 CT scans, including 27 men and 23 women, at the original insertion points and alternative points (1 and 2 cm above the frontal and parietal bones). The average values were 7.4333 mm in the frontal bone and 6.0290 mm in the parietal bone Conclusion: There was no statistically significant difference between the classical and alternative points, making room for alternative fixings and safer introduction of the pins, if necessary.Level of Evidence II, Retrospective Study. PMID:28642643
Collapsed Dark Matter Structures
NASA Astrophysics Data System (ADS)
Buckley, Matthew R.; DiFranzo, Anthony
2018-02-01
The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.
Collapsed Dark Matter Structures.
Buckley, Matthew R; DiFranzo, Anthony
2018-02-02
The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.
Optical/Infrared properties of Be stars in X-ray Binary systems
NASA Astrophysics Data System (ADS)
Naik, Sachindra
2018-04-01
Be/X-ray binaries, consisting of a Be star and a compact object (neutron star), form the largest subclass of High Mass X-ray Binaries. The orbit of the compact object around the Be star is wide and highly eccentric. Neutron stars in the Be/X-ray binaries are generally quiescent in X-ray emission. Transient X-ray outbursts seen in these objects are thought to be due to the interaction between the compact object and the circumstellar disk of the Be star at the periastron passage. Optical/infrared observations of the companion Be star during these outbursts show that the increase in the X-ray intensity of the neutron star is coupled with the decrease in the optical/infrared flux of the companion star. Apart from the change in optical/infrared flux, dramatic changes in the Be star emission line profiles are also seen during X-ray outbursts. Observational evidences of changes in the emission line profiles and optical/infrared continuum flux along with associated X-ray outbursts from the neutron stars in several Be/X-ray binaries are presented in this paper.
PARALLEL HOP: A SCALABLE HALO FINDER FOR MASSIVE COSMOLOGICAL DATA SETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skory, Stephen; Turk, Matthew J.; Norman, Michael L.
2010-11-15
Modern N-body cosmological simulations contain billions (10{sup 9}) of dark matter particles. These simulations require hundreds to thousands of gigabytes of memory and employ hundreds to tens of thousands of processing cores on many compute nodes. In order to study the distribution of dark matter in a cosmological simulation, the dark matter halos must be identified using a halo finder, which establishes the halo membership of every particle in the simulation. The resources required for halo finding are similar to the requirements for the simulation itself. In particular, simulations have become too extensive to use commonly employed halo finders, suchmore » that the computational requirements to identify halos must now be spread across multiple nodes and cores. Here, we present a scalable-parallel halo finding method called Parallel HOP for large-scale cosmological simulation data. Based on the halo finder HOP, it utilizes message passing interface and domain decomposition to distribute the halo finding workload across multiple compute nodes, enabling analysis of much larger data sets than is possible with the strictly serial or previous parallel implementations of HOP. We provide a reference implementation of this method as a part of the toolkit {sup yt}, an analysis toolkit for adaptive mesh refinement data that include complementary analysis modules. Additionally, we discuss a suite of benchmarks that demonstrate that this method scales well up to several hundred tasks and data sets in excess of 2000{sup 3} particles. The Parallel HOP method and our implementation can be readily applied to any kind of N-body simulation data and is therefore widely applicable.« less
ELUCID. IV. Galaxy Quenching and its Relation to Halo Mass, Environment, and Assembly Bias
NASA Astrophysics Data System (ADS)
Wang, Huiyuan; Mo, H. J.; Chen, Sihan; Yang, Yang; Yang, Xiaohu; Wang, Enci; van den Bosch, Frank C.; Jing, Yipeng; Kang, Xi; Lin, Weipeng; Lim, S. H.; Huang, Shuiyao; Lu, Yi; Li, Shijie; Cui, Weiguang; Zhang, Youcai; Tweed, Dylan; Wei, Chengliang; Li, Guoliang; Shi, Feng
2018-01-01
We examine the quenched fraction of central and satellite galaxies as a function of galaxy stellar mass, halo mass, and the matter density of their large-scale environment. Matter densities are inferred from our ELUCID simulation, a constrained simulation of the local universe sampled by SDSS, while halo masses and central/satellite classification are taken from the galaxy group catalog of Yang et al. The quenched fraction for the total population increases systematically with the three quantities. We find that the “environmental quenching efficiency,” which quantifies the quenched fraction as a function of halo mass, is independent of stellar mass. And this independence is the origin of the stellar mass independence of density-based quenching efficiency found in previous studies. Considering centrals and satellites separately, we find that the two populations follow similar correlations of quenching efficiency with halo mass and stellar mass, suggesting that they have experienced similar quenching processes in their host halo. We demonstrate that satellite quenching alone cannot account for the environmental quenching efficiency of the total galaxy population, and that the difference between the two populations found previously arises mainly from the fact that centrals and satellites of the same stellar mass reside, on average, in halos of different mass. After removing these effects of halo mass and stellar mass, there remains a weak, but significant, residual dependence on environmental density, which is eliminated when halo assembly bias is taken into account. Our results therefore indicate that halo mass is the prime environmental parameter that regulates the quenching of both centrals and satellites.
A Measurement of the Galaxy Group-Thermal Sunyaev-Zel’dovich Effect Cross-Correlation Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vikram, Vinu; Lidz, Adam; Jain, Bhuvnesh
2017-01-09
Stacking cosmic microwave background maps around known galaxy clusters and groups provides a powerful probe of the distribution of hot gas in these systems via the Sunyaev-Zel'dovich (SZ) effect. A stacking analysis allows one to detect the average SZ signal around low-mass haloes, to extend measurements out to large scales and measure the redshift dependence of the SZ background. Motivated by these exciting prospects, we measure the two-point cross-correlation function between similar to 380 000 galaxy groups (at z = 0.01-0.2) from the Sloan Digital Sky Survey and Compton-y parameter maps constructed by the Planck collaboration. We find statistically significantmore » correlations in each of six separate mass bins, with halo masses ranging from 1011.5 to 1015.5 M(circle dot)h(-1). We compare with halo models of the SZ signal, which describe the stacked measurement in terms of one-halo and two-halo contributions. The onehalo term quantifies the average pressure profile around the groups in a mass bin, while the two-halo term describes the contribution of correlated neighbouring haloes. For the massive groups, we find clear evidence for the one-and two-halo regimes, while groups with mass below 1013M(circle dot)h(-1) are dominated by the two-halo term, given the resolution of Planck data. We use the signal in the two-halo regime to determine the bias-weighted electron pressure of the Universe: < bPe > = 1.50 +/- 0.226 x 10(-7) keV cm(-3) (sigma) at z approximate to 0.15.« less
Quiet-Time Suprathermal ( 0.1-1.5 keV) Electrons in the Solar Wind
NASA Astrophysics Data System (ADS)
Wang, L.; Tao, J.; Zong, Q.; Li, G.; Salem, C. S.; Wimmer-Schweingruber, R. F.; He, J.; Tu, C.; Bale, S. D.
2016-12-01
We present a statistical survey of the energy spectrum of solar wind suprathermal (˜0.1-1.5 keV) electrons measured by the WIND/3DP instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. After separating (beaming) strahl electrons from (isotropic) halo electrons according to their different behaviors in the angular distribution, we fit the observed energy spectrum of both strahl and halo electrons at ˜0.1-1.5 keV to a Kappa distribution function with an index κ and effective temperature Teff. We also calculate the number density n and average energy Eavg of strahl and halo electrons by integrating the electron measurements between ˜0.1 and 1.5 keV. We find a strong positive correlation between κ and Teff for both strahl and halo electrons, and a strong positive correlation between the strahl n and halo n, likely reflecting the nature of the generation of these suprathermal electrons. In both solar cycles, κ is larger at solar minimum than at solar maximum for both strahl and halo electrons. The halo κ is generally smaller than the strahl κ (except during the solar minimum of cycle 23). The strahl n is larger at solar maximum, but the halo n shows no difference between solar minimum and maximum. Both the strahl n and halo n have no clear association with the solar wind core population, but the density ratio between the strahl and halo roughly anti-correlates (correlates) with the solar wind density (velocity).
Quiet-time Suprathermal (~0.1-1.5 keV) Electrons in the Solar Wind
NASA Astrophysics Data System (ADS)
Tao, Jiawei; Wang, Linghua; Zong, Qiugang; Li, Gang; Salem, Chadi S.; Wimmer-Schweingruber, Robert F.; He, Jiansen; Tu, Chuanyi; Bale, Stuart D.
2016-03-01
We present a statistical survey of the energy spectrum of solar wind suprathermal (˜0.1-1.5 keV) electrons measured by the WIND 3DP instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. After separating (beaming) strahl electrons from (isotropic) halo electrons according to their different behaviors in the angular distribution, we fit the observed energy spectrum of both strahl and halo electrons at ˜0.1-1.5 keV to a Kappa distribution function with an index κ and effective temperature Teff. We also calculate the number density n and average energy Eavg of strahl and halo electrons by integrating the electron measurements between ˜0.1 and 1.5 keV. We find a strong positive correlation between κ and Teff for both strahl and halo electrons, and a strong positive correlation between the strahl n and halo n, likely reflecting the nature of the generation of these suprathermal electrons. In both solar cycles, κ is larger at solar minimum than at solar maximum for both strahl and halo electrons. The halo κ is generally smaller than the strahl κ (except during the solar minimum of cycle 23). The strahl n is larger at solar maximum, but the halo n shows no difference between solar minimum and maximum. Both the strahl n and halo n have no clear association with the solar wind core population, but the density ratio between the strahl and halo roughly anti-correlates (correlates) with the solar wind density (velocity).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behroozi, Peter S.; Wechsler, Risa H.; Lu, Yu
We find that infalling dark matter halos (i.e., the progenitors of satellite halos) begin losing mass well outside the virial radius of their eventual host halos. The peak mass occurs at a range of clustercentric distances, with median and 68th percentile range of 1.8{sub −1.0}{sup +2.3} R{sub vir,host} for progenitors of z = 0 satellites. The peak circular velocity for infalling halos occurs at significantly larger distances (3.7{sub −2.2}{sup +3.3} R{sub vir,host} at z = 0). This difference arises because different physical processes set peak circular velocity (typically, ∼1:5 and larger mergers which cause transient circular velocity spikes) and peakmore » mass (typically, smooth accretion) for infalling halos. We find that infalling halos also stop having significant mergers well before they enter the virial radius of their eventual hosts. Mergers larger than a 1:40 ratio in halo mass end for infalling halos at similar clustercentric distances (∼1.9 R {sub vir,} {sub host}) as the end of overall mass accretion. However, mergers larger than 1:3 typically end for infalling halos at more than four virial radial away from their eventual hosts. This limits the ability of mergers to affect quenching and morphology changes in clusters. We also note that the transient spikes which set peak circular velocity may lead to issues with abundance matching on that parameter, including unphysical galaxy stellar mass growth profiles near clusters; we propose a simple observational test to check if a better halo proxy for galaxy stellar mass exists.« less
Investigating the Wave Nature of the Outer Envelope of Halo Coronal Mass Ejections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Ryun-Young; Vourlidas, Angelos, E-mail: rkwon@gmu.edu
We investigate the nature of the outer envelope of halo coronal mass ejections (H-CMEs) using multi-viewpoint observations from the Solar Terrestrial Relations Observatory-A , -B , and SOlar and Heliospheric Observatory coronagraphs. The 3D structure and kinematics of the halo envelopes and the driving CMEs are derived separately using a forward modeling method. We analyze three H-CMEs with peak speeds from 1355 to 2157 km s{sup −1}; sufficiently fast to drive shocks in the corona. We find that the angular widths of the halos range from 192° to 252°, while those of the flux ropes range between only 58° andmore » 91°, indicating that the halos are waves propagating away from the CMEs. The halo widths are in agreement with widths of Extreme Ultraviolet (EUV) waves in the low corona further demonstrating the common origin of these structures. To further investigate the wave nature of the halos, we model their 3D kinematic properties with a linear fast magnetosonic wave model. The model is able to reproduce the position of the halo flanks with realistic coronal medium assumptions but fails closer to the CME nose. The CME halo envelope seems to arise from a driven wave (or shock) close to the CME nose, but it is gradually becoming a freely propagating fast magnetosonic wave at the flanks. This interpretation provides a simple unifying picture for CME halos, EUV waves, and the large longitudinal spread of solar energetic particles.« less