Sample records for compact high field

  1. Can high fields save the tokamak? The challenge of steady-state operation for low cost compact reactors

    NASA Astrophysics Data System (ADS)

    Freidberg, Jeffrey; Dogra, Akshunna; Redman, William; Cerfon, Antoine

    2016-10-01

    The development of high field, high temperature superconductors is thought to be a game changer for the development of fusion power based on the tokamak concept. We test the validity of this assertion for pilot plant scale reactors (Q 10) for two different but related missions: pulsed operation and steady-state operation. Specifically, we derive a set of analytic criteria that determines the basic design parameters of a given fusion reactor mission. As expected there are far more constraints than degrees of freedom in any given design application. However, by defining the mission of the reactor under consideration, we have been able to determine the subset of constraints that drive the design, and calculate the values for the key parameters characterizing the tokamak. Our conclusions are as follows: 1) for pulsed reactors, high field leads to more compact designs and thus cheaper reactors - high B is the way to go; 2) steady-state reactors with H-mode like transport are large, even with high fields. The steady-state constraint is hard to satisfy in compact designs - high B helps but is not enough; 3) I-mode like transport, when combined with high fields, yields relatively compact steady-state reactors - why is there not more research on this favorable transport regime?

  2. Adjusting the Ion Permeability of Polyelectrolyte Multilayers through Layer-by-Layer Assembly under a High Gravity Field.

    PubMed

    Jiang, Chao; Luo, Caijun; Liu, Xiaolin; Shao, Lei; Dong, Youqing; Zhang, Yingwei; Shi, Feng

    2015-05-27

    The layer-by-layer (LbL) assembled multilayer has been widely used as good barrier film or capsule due to the advantages of its flexible tailoring of film permeability and compactness. Although many specific systems have been proposed for film design, developing a versatile strategy to control film compactness remains a challenge. We introduced the simple mechanical energy of a high gravity field to the LbL assembly process to tailor the multilayer permeability through adjusting film compactness. By taking poly(diallyldimethylammonium chloride) (PDDA) and poly{1-4[4-(3-carboxy-4-hydroxyphenylazo)benzenesulfonamido]-1,2-ethanediyl sodium salt} (PAzo) as a model system, we investigated the LbL assembly process under a high gravity field. The results showed that the high gravity field introduced effectively accelerated the multilayer deposition process by 20-fold compared with conventional dipping assembly; the adsorption rate was positively dependent on the rotating speed of the high gravity equipment and the concentration of the building block solutions. More interestingly, the film compactness of the PDDA/PAzo multilayer prepared under the high gravity field increased remarkably with the growing rotational speed of the high gravity equipment, as demonstrated through comparisons of surface morphology, cyclic voltammetry curves, and photoisomerization kinetics of PDDA/PAzo multilayers fabricated through the conventional dipping method and through LbL assembly under a high gravity field, respectively. In this way, we have introduced a simple and versatile external form of mechanical energy into the LbL assembling process to improve film compactness, which should be useful for further applications in controlled ion permeability, anticorrosion, and drug loading.

  3. Ultra-compact Marx-type high-voltage generator

    DOEpatents

    Goerz, David A.; Wilson, Michael J.

    2000-01-01

    An ultra-compact Marx-type high-voltage generator includes individual high-performance components that are closely coupled and integrated into an extremely compact assembly. In one embodiment, a repetitively-switched, ultra-compact Marx generator includes low-profile, annular-shaped, high-voltage, ceramic capacitors with contoured edges and coplanar extended electrodes used for primary energy storage; low-profile, low-inductance, high-voltage, pressurized gas switches with compact gas envelopes suitably designed to be integrated with the annular capacitors; feed-forward, high-voltage, ceramic capacitors attached across successive switch-capacitor-switch stages to couple the necessary energy forward to sufficiently overvoltage the spark gap of the next in-line switch; optimally shaped electrodes and insulator surfaces to reduce electric field stresses in the weakest regions where dissimilar materials meet, and to spread the fields more evenly throughout the dielectric materials, allowing them to operate closer to their intrinsic breakdown levels; and uses manufacturing and assembly methods to integrate the capacitors and switches into stages that can be arranged into a low-profile Marx generator.

  4. Decoupling of paramagnetic and ferrimagnetic AMS development during the experimental chemical compaction of illite shale powder

    NASA Astrophysics Data System (ADS)

    Bruijn, Rolf H. C.; Almqvist, Bjarne S. G.; Hirt, Ann M.; Benson, Philip M.

    2013-03-01

    Inclination shallowing of detrital remanent magnetization in sedimentary strata has solely been constrained for the mechanical processes associated with mud deposition and shallow compaction of clay-rich sediment, even though a significant part of mud diagenesis involves chemical compaction. Here we report, for the first time, on the laboratory simulation of magnetic assemblage development in a chemically compacting illite shale powder of natural origin. The experimental procedure comprised three compaction stages that, when combined, simulate the diagenesis and low-grade metamorphism of illite mud. First, the full extent of load-sensitive mechanical compaction is simulated by room temperature dry axial compression. Subsequently, temperature controlled chemical compaction is initiated by exposing the sample in two stages to amphibolite or granulite facies conditions (temperature is 490 to 750°C and confining pressure is 170 or 300 MPa) both in the absence (confining pressure only) and presence of a deformation stress field (axial compression or confined torsion). Thermodynamic equilibrium in the last two compaction stages was not reached, but illite and mica dehydroxylation initiated, thus providing a wet environment. Magnetic properties were characterized by magnetic susceptibility and its anisotropy (AMS) in both high- and low-applied field. Acquisition of isothermal remanent magnetization (IRM), stepwise three-component thermal de-magnetization of IRM and first-order reversal curves were used to characterize the remanence-bearing minerals. During the chemical compaction experiments ferrimagnetic iron-sulphides formed after reduction of magnetite and detrital pyrite in a low sulphur fugacity environment. The degree of low-field AMS is unaffected by porosity reduction from 15 to ˜1 per cent, regardless of operating conditions and compaction history. High-field paramagnetic AMS increases with compaction for all employed stress regimes and conditions, and is attributed to illite transformation to iron-bearing mica. AMS of authigenic iron-sulphide minerals remained constant during compaction indicating an independence of ferrimagnetic fabric development to chemical compaction in illite shale powder. The decoupling of paramagnetic and ferrimagnetic AMS development during chemical compaction of pelite contrasts with findings from mechanical compaction studies.

  5. On intrinsic nonlinear particle motion in compact synchrotrons

    NASA Astrophysics Data System (ADS)

    Hwang, Kyung Ryun

    Due to the low energy and small curvature characteristics of compact synchrotrons, there can be unexpected features that were not present or negligible in high energy accelerators. Nonlinear kinetics, fringe field effect, and space charge effect are those features which become important for low energy and small curvature accelerators. Nonlinear kinematics can limit the dynamics aperture for compact machine even if it consists of all linear elements. The contribution of the nonlinear kinematics on nonlinear optics parameters are first derived. As the dipole bending radius become smaller, the dipole fringe field effect become stronger. Calculation of the Lie map generator and corresponding mapping equation of dipole fringe field is presented. It is found that the higher order nonlinear potential is inverse proportional to powers of fringe field extent and correction to focusing and low order nonlinear potential is proportional to powers of fringe field extent. The fringe field also found to cause large closed orbit deviation for compact synchrotrons. The 2:1 and 4:1 space charge resonances are known to cause beam loss, emittance growth and halo formation for low energy high intensity beams. By numerical simulations, we observe a higher order 6:2 space charge resonance, which can successfully be understood by the concatenation of 2:1 and 4:1 resonances via canonical perturbation. We also develop an explicit symplectic tracking method for compact electrostatic storage rings and explore the feasibility of electric dipole moment (EDM) measurements.

  6. Compaction of asphaltic concrete pavement with high intensity pneumatic roller : part I.

    DOT National Transportation Integrated Search

    1963-07-01

    The purpose of this investigation was to: : 1) Determine the magnitude of the compactive effort and the umber of passes required in the field to obtain optimum density using a high intensity pneumatic roller. : 2) Effect a correlation between the fie...

  7. A compact high-resolution 3-D imaging spectrometer for discovering Oases on Mars

    USGS Publications Warehouse

    Ge, J.; Ren, D.; Lunine, J.I.; Brown, R.H.; Yelle, R.V.; Soderblom, L.A.; ,

    2002-01-01

    A new design for a very lightweight, very high throughput reflectance sectrometer enabled by two new technologies being developed is presented. These new technologies include integral field unit optics to enable simultaneous imaging and spectroscopy at high spatial resolution with an infrared (IR) array, and silicon grisms to enable compact and high-resolution spectroscopy.

  8. Coherent addition of high power broad-area laser diodes with a compact VBG V-shaped external Talbot cavity

    DOE PAGES

    Liu, Bo; Braiman, Yehuda

    2018-02-06

    In this paper, we introduced a compact V-shaped external Talbot cavity for phase locking of high power broad-area laser diodes. The length of compact cavity is ~25 mm. Near diffraction-limit coherent addition of 10 broad-area laser diodes indicated that high quality phase locking was achieved. We measured the near-field emission mode of each individual broad-area laser diode with different feedback, such as a volume Bragg grating and a high reflection mirror. Finally, we found out that the best result of phase locking broad-area laser diodes was achieved by the compact V-shaped external Talbot cavity with volume Bragg grating feedback.

  9. Coherent addition of high power broad-area laser diodes with a compact VBG V-shaped external Talbot cavity

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Braiman, Yehuda

    2018-05-01

    We introduced a compact V-shaped external Talbot cavity for phase locking of high power broad-area laser diodes. The length of compact cavity is ∼25 mm. Near diffraction-limit coherent addition of 10 broad-area laser diodes indicated that high quality phase locking was achieved. We measured the near-field emission mode of each individual broad-area laser diode with different feedback, such as a volume Bragg grating and a high reflection mirror. We found out that the best result of phase locking broad-area laser diodes was achieved by the compact V-shaped external Talbot cavity with volume Bragg grating feedback.

  10. Coherent addition of high power broad-area laser diodes with a compact VBG V-shaped external Talbot cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bo; Braiman, Yehuda

    In this paper, we introduced a compact V-shaped external Talbot cavity for phase locking of high power broad-area laser diodes. The length of compact cavity is ~25 mm. Near diffraction-limit coherent addition of 10 broad-area laser diodes indicated that high quality phase locking was achieved. We measured the near-field emission mode of each individual broad-area laser diode with different feedback, such as a volume Bragg grating and a high reflection mirror. Finally, we found out that the best result of phase locking broad-area laser diodes was achieved by the compact V-shaped external Talbot cavity with volume Bragg grating feedback.

  11. Design and testing of focusing magnets for a compact electron linac

    NASA Astrophysics Data System (ADS)

    Chen, Qushan; Qin, Bin; Liu, Kaifeng; Liu, Xu; Fu, Qiang; Tan, Ping; Hu, Tongning; Pei, Yuanji

    2015-10-01

    Solenoid field errors have great influence on electron beam qualities. In this paper, design and testing of high precision solenoids for a compact electron linac is presented. We proposed an efficient and practical method to solve the peak field of the solenoid for relativistic electron beams based on the reduced envelope equation. Beam dynamics involving space charge force were performed to predict the focusing effects. Detailed optimization methods were introduced to achieve an ultra-compact configuration as well as high accuracy, with the help of the POISSON and OPERA packages. Efforts were attempted to restrain system errors in the off-line testing, which showed the short lens and the main solenoid produced a peak field of 0.13 T and 0.21 T respectively. Data analysis involving central and off axes was carried out and demonstrated that the testing results fitted well with the design.

  12. Initial Parameters of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Popov, S. B.; Turolla, R.

    2012-12-01

    A subpopulation of neutron stars (NSs), known as central compact objects (CCOs) in supernova remnants, are suspected to be low-field objects basing on P - ṗ measurements for three of them. The birth rate of low-field NSs is probably comparable with the birth rate of normal radio pulsars. However, among compact objects in High-Mass X-ray Binaries (HMXBs) we do not see robust candidates for low-field NSs. We propose that this contradiction can be solved if magnetic fields of CCOs was buried due to strong fall-back, and then the field emerges on the time scale 104 -105 yrs.

  13. Effective shielding to measure beam current from an ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayle, H., E-mail: bayle@bergoz.com; Delferrière, O.; Gobin, R.

    To avoid saturation, beam current transformers must be shielded from solenoid, quad, and RFQ high stray fields. Good understanding of field distribution, shielding materials, and techniques is required. Space availability imposes compact shields along the beam pipe. This paper describes compact effective concatenated magnetic shields for IFMIF-EVEDA LIPAc LEBT and MEBT and for FAIR Proton Linac injector. They protect the ACCT Current Transformers beyond 37 mT radial external fields. Measurements made at Saclay on the SILHI source are presented.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruser, R.; Schilling, R.; Steindl, H.

    This study was conducted to determine the effect of soil compaction and N fertilization on the fluxes of N{sub 2}O and CH{sub 4} in a soil planted with potato (Solanum tuberosum L.). Fluxes of N{sub 2}O and CH{sub 4} were measured weekly for 1 yr on two differently fertilized fields. For the potato cropping period (May-September) these fluxes were quantified separately for the ridges covering two-thirds of the total field area, and for the uncompacted and the tractor-traffic-compacted interrow soils, each of which made up one-sixth of the field area. The annual N{sub 2}O-N emissions for the low and themore » high rates of N fertilization were 8 and 16 kg ha{sup {minus}1}, respectively. The major part (68%) of the total N{sub 2}O release from the fields during the cropping period was emitted from the compacted tractor tramlines; emissions from the ridges made up only 23%. The annual CH{sub 4}-C uptake was 140 and 118 g ha{sup {minus}1} for the low and high levels of fertilization, respectively. The ridge soil and the uncompacted interrow had mean CH{sub 4}-C oxidation rates of 3.8 and 0.8 {micro}g m{sup {minus}2} h{sup {minus}1}, respectively; however, the tractor-compacted soil released CH{sub 4} at 2.1 {micro}g CH{sub 4}-C m{sup {minus}2} h{sup {minus}1}. The results indicate that soil compaction was probably the main reason for increased N{sub 2}O emission and reduced CH{sub 4} uptake of potato-cropped fields.« less

  15. High-frequency electric field measurement using a toroidal antenna

    DOEpatents

    Lee, Ki Ha

    2002-01-01

    A simple and compact method and apparatus for detecting high frequency electric fields, particularly in the frequency range of 1 MHz to 100 MHz, uses a compact toroidal antenna. For typical geophysical applications the sensor will be used to detect electric fields for a wide range of spectrum starting from about 1 MHz, in particular in the frequency range between 1 to 100 MHz, to detect small objects in the upper few meters of the ground. Time-varying magnetic fields associated with time-varying electric fields induce an emf (voltage) in a toroidal coil. The electric field at the center of (and perpendicular to the plane of) the toroid is shown to be linearly related to this induced voltage. By measuring the voltage across a toroidal coil one can easily and accurately determine the electric field.

  16. A comparison of different powder compaction processes adopted for synthesis of lead-free piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Mahesh, M. L. V.; Bhanu Prasad, V. V.; James, A. R.

    2016-04-01

    Barium zirconium titanate, Ba(Zr0.15Ti0.85)O3 nano-crystalline powders were synthesized using high energy ball milling. The calcined powders were compacted adopting two different approaches viz. the conventional uniaxial pressing and cold-isostatic pressing (CIP) and the compacts were sintered at 1350 °C. A single phase perovskite structure was observed in both cases. BZT ceramics compacted using CIP technique exhibited enhanced dielectric and ferroelectric properties compared to ceramics compacted by uniaxial pressing. The polarization current peaks have been used in this paper as an experimental evidence to prove the existence of ferroelectricity in the BZT ceramics under study. The peak polarization current was found to be ~700% higher in case of cold iso-statically compacted ceramics. Similarly electric field induces strain showed a maximum strain ( S max) of 0.08% at an electric field of 28 kV/cm. The dielectric and ferroelectric properties observed are comparable to single crystals of the same material.

  17. High Power LaB6 Plasma Source Performance for the Lockheed Martin Compact Fusion Reactor Experiment

    NASA Astrophysics Data System (ADS)

    Heinrich, Jonathon

    2016-10-01

    Lockheed Martin's Compact Fusion Reactor (CFR) concept is a linear encapsulated ring cusp. Due to the complex field geometry, plasma injection into the device requires careful consideration. A high power thermionic plasma source (>0.25MW; >10A/cm2) has been developed with consideration to phase space for optimal coupling. We present the performance of the plasma source, comparison with alternative plasma sources, and plasma coupling with the CFR field configuration. ©2016 Lockheed Martin Corporation. All Rights Reserved.

  18. Super-Compact Laser

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Microcosm, Inc. produced the portable Farfield-2 laser for field applications that require high power pulsed illumination. The compact design was conceived through research at Goddard Space Flight Center on laser instruments for space missions to carry out geoscience studies of Earth. An exclusive license to the key NASA patent for the compact laser design was assigned to Microcosm. The FarField-2 is ideal for field applications, has low power consumption, does not need water cooling or gas supplies, and produces nearly ideal beam quality. The properties of the laser also make it effective over long distances, which is one reason why NASA developed the technology for laser altimeters that can be toted aboard spacecraft. Applications for the FarField-2 include medicine, biology, and materials science and processing, as well as diamond marking, semiconductor line-cutting, chromosome surgery, and fluorescence microscopy.

  19. Investigation of HMA compactability using GPR technique

    NASA Astrophysics Data System (ADS)

    Plati, Christina; Georgiou, Panos; Loizos, Andreas

    2014-05-01

    In-situ field density is often regarded as one of the most important controls used to ensure that an asphalt pavement being placed is of high quality. The achieved density results from the effectiveness of the applied compaction mode on the Hot Mix Asphalt (HMA) layer. It is worthwhile mentioning that the proper compaction of HMA increases pavement fatigue life, decreases the amount of permanent deformation or rutting, reduces the amount of oxidation or aging, decreases moisture damage or stripping, increases strength and internal stability, and may decrease slightly the amount of low-temperature cracking that may occur in the mix. Conventionally, the HMA density in the field is assessed by direct destructive methods, including through the cutting of samples or drilling cores. These methods are characterized by a high accuracy, although they are intrusive and time consuming. In addition, they provide local information, i.e. information only for the exact test location. To overcome these limitations, the use of non-intrusive techniques is often recommended. The Ground Penetrating Radar (GPR) technique is an example of a non-intrusive technique that has been increasingly used for pavement investigations over the years. GPR technology is practical and application-oriented with the overall design concept, as well as the hardware, usually dependent on the target type and the material composing the target and its surroundings. As the sophistication of operating practices increases, the technology matures and GPR becomes an intelligent sensor system. The intelligent sensing deals with the expanded range of GPR applications in pavements such as determining layer thickness, detecting subsurface distresses, estimating moisture content, detecting voids and others. In addition, the practice of using GPR to predict in-situ field density of compacted asphalt mixture material is still under development and research; however the related research findings seem to be promising. Actually, the prediction is not regulated by any standards or specifications, although the practice is considered to be workable. In view of the above, an extensive experiment was carried out in both the laboratory and the field based on a trial asphalt pavement section under construction. In the laboratory, the study focused on the estimation of the density of HMA specimens achieved through three different roller compaction modes (static, vibratory and a combination of both) targeted to simulate field compaction and assess the asphalt mix compactability. In the field, the different compaction modes were successively implemented on three subsections of the trial pavement section. Along each subsection, GPR data was collected in order to determine the new material's dielectric properties and based on that, to predict its density using proper algorithm. Thus, cores were extracted to be used as ground truth data. The comparison of the new asphalt material compactability as obtained from the laboratory specimens, the predictions based on GPR data and the field cores provided useful information that facilitated the selection of the most effective compaction mode yielding the proper compaction degree in the field. This work benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar."

  20. Flat field concave holographic grating with broad spectral region and moderately high resolution.

    PubMed

    Wu, Jian Fen; Chen, Yong Yan; Wang, Tai Sheng

    2012-02-01

    In order to deal with the conflicts between broad spectral region and high resolution in compact spectrometers based on a flat field concave holographic grating and line array CCD, we present a simple and practical method to design a flat field concave holographic grating that is capable of imaging a broad spectral region at a moderately high resolution. First, we discuss the principle of realizing a broad spectral region and moderately high resolution. Second, we provide the practical method to realize our ideas, in which Namioka grating theory, a genetic algorithm, and ZEMAX are used to reach this purpose. Finally, a near-normal-incidence example modeled in ZEMAX is shown to verify our ideas. The results show that our work probably has a general applicability in compact spectrometers with a broad spectral region and moderately high resolution.

  1. Microelectrode for energy and current control of nanotip field electron emitters

    NASA Astrophysics Data System (ADS)

    Lüneburg, S.; Müller, M.; Paarmann, A.; Ernstorfer, R.

    2013-11-01

    Emerging experiments and applications in electron microscopy, holography, and diffraction benefit from miniaturized electron guns for compact experimental setups. We present a highly compact microelectrode integrated field emitter that consists of a tungsten nanotip coated with a few micrometers thick polyimide film followed by a several nanometers thick gold film, both positioned behind the exposed emitter apex by approximately 10-30 μm. The control of the electric field strength at the nanometer scale tip apex allows suppression, extraction, and energy tuning of field-emitted electrons. The performance of the microelectrode is demonstrated experimentally and supported by numerical simulations.

  2. Compact instrument for fluorescence image-guided surgery

    NASA Astrophysics Data System (ADS)

    Wang, Xinghua; Bhaumik, Srabani; Li, Qing; Staudinger, V. Paul; Yazdanfar, Siavash

    2010-03-01

    Fluorescence image-guided surgery (FIGS) is an emerging technique in oncology, neurology, and cardiology. To adapt intraoperative imaging for various surgical applications, increasingly flexible and compact FIGS instruments are necessary. We present a compact, portable FIGS system and demonstrate its use in cardiovascular mapping in a preclinical model of myocardial ischemia. Our system uses fiber optic delivery of laser diode excitation, custom optics with high collection efficiency, and compact consumer-grade cameras as a low-cost and compact alternative to open surgical FIGS systems. Dramatic size and weight reduction increases flexibility and access, and allows for handheld use or unobtrusive positioning over the surgical field.

  3. Soil compaction vulnerability at Organ Pipe Cactus National Monument, Arizona

    USGS Publications Warehouse

    Webb, Robert H.; Nussear, Kenneth E.; Carmichael, Shinji; Esque, Todd C.

    2014-01-01

    Compaction vulnerability of different types of soils by hikers and vehicles is poorly known, particularly for soils of arid and semiarid regions. Engineering analyses have long shown that poorly sorted soils (for example, sandy loams) compact to high densities, whereas well-sorted soils (for example, eolian sand) do not compact, and high gravel content may reduce compaction. Organ Pipe Cactus National Monument (ORPI) in southwestern Arizona, is affected greatly by illicit activities associated with the United States–Mexico border, and has many soils that resource managers consider to be highly vulnerable to compaction. Using geospatial soils data for ORPI, compaction vulnerability was estimated qualitatively based on the amount of gravel and the degree of sorting of sand and finer particles. To test this qualitative assessment, soil samples were collected from 48 sites across all soil map units, and undisturbed bulk densities were measured. A scoring system was used to create a vulnerability index for soils on the basis of particle-size sorting, soil properties derived from Proctor compaction analyses, and the field undisturbed bulk densities. The results of the laboratory analyses indicated that the qualitative assessments of soil compaction vulnerability underestimated the area of high vulnerability soils by 73 percent. The results showed that compaction vulnerability of desert soils, such as those at ORPI, can be quantified using laboratory tests and evaluated using geographic information system analyses, providing a management tool that managers potentially could use to inform decisions about activities that reduce this type of soil disruption in protected areas.

  4. Calculation analysis of magnetic-pulse compaction of explosively formed high-velocity metal elements used for meteoroid protection testing

    NASA Astrophysics Data System (ADS)

    Fedorov, Sergey V.; Selivanov, Victor V.; Veldanov, Vladislav A.

    2017-06-01

    Accumulation of microdamages as a result of intensive plastic deformation leads to a decrease in the average density of the high-velocity elements that are formed at the explosive collapse of the special shape metal liners. For compaction of such elements in tests of their spacecraft meteoroid protection reliability, the use of magnetic-field action on the produced elements during their movement trajectory before interaction with a target is proposed. On the basis of numerical modeling within the one-dimensional axisymmetric problem of continuum mechanics and electrodynamics, the physical processes occurring in the porous conducting elastoplastic cylinder placed in a magnetic field are investigated. Using this model, the parameters of the magnetic-pulse action necessary for the compaction of the steel and aluminum elements are determined.

  5. High resolution NMR measurements using a 400MHz NMR with an (RE)Ba2Cu3O7-x high-temperature superconducting inner coil: Towards a compact super-high-field NMR.

    PubMed

    Piao, R; Iguchi, S; Hamada, M; Matsumoto, S; Suematsu, H; Saito, A T; Li, J; Nakagome, H; Takao, T; Takahashi, M; Maeda, H; Yanagisawa, Y

    2016-02-01

    Use of high-temperature superconducting (HTS) inner coils in combination with conventional low-temperature superconducting (LTS) outer coils for an NMR magnet, i.e. a LTS/HTS NMR magnet, is a suitable option to realize a high-resolution NMR spectrometer with operating frequency >1GHz. From the standpoint of creating a compact magnet, (RE: Rare earth) Ba2Cu3O7-x (REBCO) HTS inner coils which can tolerate a strong hoop stress caused by a Lorentz force are preferred. However, in our previous work on a first-generation 400MHz LTS/REBCO NMR magnet, the NMR resolution and sensitivity were about ten times worse than that of a conventional LTS NMR magnet. The result was caused by a large field inhomogeneity in the REBCO coil itself and the shielding effect of a screening current induced in that coil. In the present paper, we describe the operation of a modified 400MHz LTS/REBCO NMR magnet with an advanced field compensation technology using a combination of novel ferromagnetic shimming and an appropriate procedure for NMR spectrum line shape optimization. We succeeded in obtaining a good NMR line shape and 2D NOESY spectrum for a lysozyme aqueous sample. We believe that this technology is indispensable for the realization of a compact super-high-field high-resolution NMR. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Microelectrode for energy and current control of nanotip field electron emitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lüneburg, S.; Müller, M., E-mail: m.mueller@fhi-berlin.mpg.de; Paarmann, A., E-mail: alexander.paarmann@fhi-berlin.mpg.de

    2013-11-18

    Emerging experiments and applications in electron microscopy, holography, and diffraction benefit from miniaturized electron guns for compact experimental setups. We present a highly compact microelectrode integrated field emitter that consists of a tungsten nanotip coated with a few micrometers thick polyimide film followed by a several nanometers thick gold film, both positioned behind the exposed emitter apex by approximately 10–30 μm. The control of the electric field strength at the nanometer scale tip apex allows suppression, extraction, and energy tuning of field-emitted electrons. The performance of the microelectrode is demonstrated experimentally and supported by numerical simulations.

  7. Effective High-Frequency Permeability of Compacted Metal Powders

    NASA Astrophysics Data System (ADS)

    Volkovskaya, I. I.; Semenov, V. E.; Rybakov, K. I.

    2018-03-01

    We propose a model for determination of the effective complex permeability of compacted metal-powder media. It is based on the equality of the magnetic moment in a given volume of the media with the desired effective permeability to the total magnetic moment of metal particles in the external high-frequency magnetic field, which arises due to excitation of electric eddy currents in the particles. Calculations within the framework of the proposed model allow us to refine the values of the real and imaginary components of the permeability of metal powder compacts in the microwave band. The conditions of applicability of the proposed model are formulated, and their fulfillment is verified for metal powder compacts in the microwave and millimeter wavelength bands.

  8. Reservoir compaction of the Belridge Diatomite and surface subsidence, south Belridge field, Kern County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowersox, J.R.; Shore, R.A.

    1990-05-01

    Surface subsidence due to reservoir compaction during production has been observed in many large oil fields. Subsidence is most obvious in coastal and offshore fields where inundation by the sea occurs. Well-known examples are Wilmington field in California and Ekofisk field in the North Sea. In South Belridge field, the Belridge Diatomite member of the late Miocene Reef Ridge Shale has proven prone to compaction during production. The reservoir, a high-porosity, low-permeability, highly compressive rock composed largely of diatomite and mudstone, is about 1,000 ft thick and lies at an average depth of 1,600 ft. Within the Belridge Diatomite, reservoirmore » compaction due to withdrawal of oil and water in Sec. 12, T28S, R20E, MDB and M, was noticed after casing failures in producing wells began occurring and tension cracks, enlarged by hydrocompaction after a heavy rainstorm were observed. Surface subsidence in Sec. 12 has been monitored since April 1987, through the surveying of benchmark monuments. The average annualized subsidence rate during 1987 was {minus}1.86 ft/yr, {minus}0.92 ft/yr during 1988, and {minus}0.65 ft/yr during 1989; the estimated peak subsidence rate reached {minus}7.50 ft/yr in July 1985, after 1.5 yrs of production from the Belridge Diatomite reservoir. Since production from the Belridge Diatomite reservoir commenced in February 1984, the surface of the 160-ac producing area has subsided about 12.5 ft. This equates to an estimated reservoir compaction of 30 ft in the Belridge Diatomite and an average loss of reservoir porosity of 2.4% from 55.2 to 52.8%. Injection of water for reservoir pressure maintenance in the Belridge diatomite began in June 1987, and has been effective in mitigating subsidence to current rates and repressurizing the reservoir to near-initial pressure. An added benefit of water injection has been improved recovery of oil from the Belridge Diatomite by waterflood.« less

  9. The conceptual design of a robust, compact, modular tokamak reactor based on high-field superconductors

    NASA Astrophysics Data System (ADS)

    Whyte, D. G.; Bonoli, P.; Barnard, H.; Haakonsen, C.; Hartwig, Z.; Kasten, C.; Palmer, T.; Sung, C.; Sutherland, D.; Bromberg, L.; Mangiarotti, F.; Goh, J.; Sorbom, B.; Sierchio, J.; Ball, J.; Greenwald, M.; Olynyk, G.; Minervini, J.

    2012-10-01

    Two of the greatest challenges to tokamak reactors are 1) large single-unit cost of each reactor's construction and 2) their susceptibility to disruptions from operation at or above operational limits. We present an attractive tokamak reactor design that substantially lessens these issues by exploiting recent advancements in superconductor (SC) tapes allowing peak field on SC coil > 20 Tesla. A R˜3.3 m, B˜9.2 T, ˜ 500 MW fusion power tokamak provides high fusion gain while avoiding all disruptive operating boundaries (no-wall beta, kink, and density limits). Robust steady-state core scenarios are obtained by exploiting the synergy of high field, compact size and ideal efficiency current drive using high-field side launch of Lower Hybrid waves. The design features a completely modular replacement of internal solid components enabled by the demountability of the coils/tapes and the use of an immersion liquid blanket. This modularity opens up the possibility of using the device as a nuclear component test facility.

  10. Testing of a compact 10-Gbps Lasercomm system for maritime platforms

    NASA Astrophysics Data System (ADS)

    Juarez, Juan C.; Souza, Katherine T.; Nicholes, Dustin D.; Riggins, James L.; Tomey, Hala J.; Venkat, Radha A.

    2017-08-01

    Lasercomm technology continues to be of interest for many applications both in the commercial and defense sectors because of its potential to provide high bandwidth communications that are secure without the need for RF spectrum management. Over the last decade, terrestrial Lasercomm development has progressed from initial experiments in the lab through field demonstrations in airborne and maritime environments. While these demonstrations have shown high capability levels, the complexity, size, weight, and power of the systems has slowed transition into fielded systems. This paper presents field test results of a recently developed maritime Lasercomm terminal and modem architecture with a compact form factor for enabling robust, 10-Gbps class data transport over highly scintillated links as found in terrestrial applications such as air-to-air, air-to-surface, and surface-to-surface links.

  11. COMPACT: The role of soil management in mitigating catchment flood risk

    NASA Astrophysics Data System (ADS)

    Pattison, Ian; Coates, Victoria; Frost, Matthew; Demirci, Emrah

    2017-04-01

    This paper reports a new NERC funded research project which addresses the impact of agricultural soil compaction on surface runoff and catchment scale flood risk. The intensification of agriculture, through increasing the number of animals in pasture, and the use of larger, heavier machinery for arable farming, over the past 50 years or so is hypothesised to have had an impact on the severity and frequency of flooding. These land management practices cause soil compaction, which reduces the rate of rainfall infiltration and the volume of water that can be stored within the sub-surface. This results in more rainfall being partitioned into the faster surface runoff pathway into rivers and potentially causing flooding downstream. However, the level of soil compaction is highly heterogeneous over space and time. This is because different animals i.e. cattle, sheep and horses, exert different loads on the soil and are kept at different densities. Furthermore, farm animals are known to exhibit behaviour whereby certain parts of the field are moved over more frequently than others. The same is the case in arable farming practices, whereby ploughing forms tramlines or wheelings, which are more compacted. Different forms of management practice ranging from zero-tillage to conventional cultivation exert different pressures on the soil at different times of year. However, very little is known about this variability of soil compaction levels at the sub-field level and land under different management practices. This research aims to quantify this sub-field variation in compaction severity and depths through using novel Ground Penetrating Radar (GPR) and Animal tracking GPS technology. Combining these with more conventional soil property tests, including bulk density, saturated hydraulic conductivity and using a penetrometer will allow relationships with frequency of load to be developed over different spatial and temporal scales. Furthermore, X-Ray CT scanning will reveal the fine scale impacts of compaction on soil structure. This data will form the input to a physically based, reduced complexity, spatially distributed hydrological model to test feasible "what if?" scenarios. This will upscale local changes in land management and soil characteristics to catchment scale flooding. Results from research focussing on a priori compacted areas, such as feeding areas, field gates, shelter zones and tractor wheelings show that these are statistically different to areas assumed to be less compacted in the open field.

  12. A compact high-speed mechanical sample shuttle for field-dependent high-resolution solution NMR

    NASA Astrophysics Data System (ADS)

    Chou, Ching-Yu; Chu, Minglee; Chang, Chi-Fon; Huang, Tai-huang

    2012-01-01

    Analysis of NMR relaxation data has provided significant insight on molecular dynamic, leading to a more comprehensive understanding of macromolecular functions. However, traditional methodology allows relaxation measurements performed only at a few fixed high fields, thus severely restricting their potential for extracting more complete dynamic information. Here we report the design and performance of a compact high-speed servo-mechanical shuttle assembly adapted to a commercial 600 MHz high-field superconducting magnet. The assembly is capable of shuttling the sample in a regular NMR tube from the center of the magnet to the top (fringe field ˜0.01 T) in 100 ms with no loss of sensitivity other than that due to intrinsic relaxation. The shuttle device can be installed by a single experienced user in 30 min. Excellent 2D- 15N-HSQC spectra of (u- 13C, 15N)-ubiquitin with relaxation at low fields (3.77 T) and detection at 14.1 T were obtained to illustrate its utility in R 1 measurements of macromolecules at low fields. Field-dependent 13C-R 1 data of (3,3,3-d)-alanine at various field strengths were determined and analyzed to assess CSA and 1H- 13C dipolar contributions to the carboxyl 13C-R 1.

  13. Development of a compact bushing for NBI

    NASA Astrophysics Data System (ADS)

    de Esch, H. P. L.; Simonin, A.; Grand, C.; Lepetit, B.; Lemoine, D.; Márquez-Mijares, M.; Minea, T.; Caillault, L.; Seznec, B.; Jager, T.; Odic, E.; Kirkpatrick, M. J.; Teste, Ph.; Dessante, Ph.; Almaksour, K.

    2017-08-01

    Research into a novel type of compact bushing is being conducted through the HVIV (High Voltage holding In Vacuum) partnership between CEA-Cadarache1, GeePs-Centralesupélec4, LPGP3 and LCAR2. The bushing aims to concentrate the high electric field inside its interior, rather than in the vacuum tank. Hence the field emission current is also concentrated inside the bushing and it can be attempted to suppress this so-called dark current by conditioning the internal surfaces and by adding gas. LCAR have performed theoretical quantum mechanical studies of electron field emission and the role of adsorbates in changing the work function. LPGP studied the ionization of gas due to field emission current and the behavior of micro particles exposed to emissive electron current in the vacuum gap under high electric fields. Experiments at Geeps have clarified the role of surface conditioning in reducing the dark current. Geeps also found that adding low pressure nitrogen gas to the vacuum is much more effective than helium in reducing the field emission. An interesting observation is the growth of carbon structures after exposure of an electrode to the electric field. Finally, IRFM have performed experiments on a single stage test bushing that features a 36 cm high porcelain insulator and two cylindrical electrode surfaces in vacuum or low-pressure gas. Using 0.1 Pa N2 gas, the voltage holding exceeded 185 kV over a 40 mm "vacuum" gap without dark current. Above this voltage, exterior breakdowns occurred over the insulator, which was in air. The project will finish with the fabrication of a 2-stage compact bushing, capable to withstand 400 kV.

  14. Compact high-power shipborne doppler lidar based on high spectral resolution techniques

    NASA Astrophysics Data System (ADS)

    Wu, Songhua; Liu, Bingyi; Dai, Guangyao; Qin, Shenguang; Liu, Jintao; Zhang, Kailin; Feng, Changzhong; Zhai, Xiaochun; Song, Xiaoquan

    2018-04-01

    The Compact High-Power Shipborne Doppler Wind Lidar (CHiPSDWiL) based on highspectral-resolution technique has been built up at the Ocean University of China for the measurement of the wind field and the properties of the aerosol and clouds in the troposphere. The design of the CHiPSDWiL including the transceiver, the injection seeding, the locking and the frequency measurement will be presented. Preliminary results measured by the CHiPSDWiL are provided.

  15. Compact and efficient blue laser sheet for measurement

    NASA Astrophysics Data System (ADS)

    Qi, Yan; Wang, Yu; Wu, Bin; Wang, Yanwei; Yan, Boxia

    2017-10-01

    Compact and efficient blue laser sheet has important applications in the field of measurement, with laser diode end pumped Nd:YAG directly and LBO intracavity frequency doubling, a compact and efficient CW 473nm blue laser sheet composed of dual path liner blue laser is realized. At an incident pump power of 12.4W, up to 1.4W output power of the compound blue laser is achieved, the optical-to-optical conversion efficiency is as high as 11.3%.

  16. Application of imaging technology to improve the laboratory and field compaction of HMA.

    DOT National Transportation Integrated Search

    2009-04-01

    Field compaction of asphalt mixtures is an important process that influences performance of asphalt : pavements. This study evaluates the relationship between different field compaction patterns and the : uniformity of air void distribution in asphal...

  17. Compaction and sintering behaviors of a Nd-Fe-B permanent magnet alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, T.; Hung, M.; Tsai, D.

    1988-11-15

    Extensive x-ray diffraction (XRD) and magnetic measurements were done on Nd/sub 15/ Fe/sub 77/ B/sub 8/ magnet alloy green compacts after cold isostatic pressing following a pulsed 2-T field (CIP) and die-pressing under a static 1.2-T perpendicular field (DP1) or parallel field (DP2), and on those after sintering. An alignment factor F, through the calculation of the integrated diffraction intensity ratio of the XRD patterns, was adopted as the effectiveness of magnetic alignment. At the green compact state, DP1 has the best alignment while CIP the worst. However, after sintering the alignment factor was such that CIP>DPI>DP2, the same ordermore » as the magnetic properties. Three mechanisms were proposed for the evolution of the alignment factor at different stages of sintering, i.e., that both the appearance of a liquid phase at low temperatures and preferred grain growth at high temperatures enhance F, while recrystallization at intermediate temperatures deteriorates F. CIP results in less-defect green compact, hence less recrystallization, leading to better resultant alignment« less

  18. The High Field Ultra Low Aspect Ratio Tokamak (HF-ULART)

    NASA Astrophysics Data System (ADS)

    Ribeiro, Celso

    2017-10-01

    Recently, a medium-size HF-ULART has been proposed. The major objective is to explore the high beta and pressure under the high toroidal field, using present day technology. This might be one of pathway scenarios for a potential ultra-compact pulsed neutron source (UCP-NS) based on the spherical tokamak (ST) concept, which may lead to more steady-state NS or even to a fusion reactor, via realistic design scaling. The HF-ULART pulsed mode operation is created by quasi-simultaneous adiabatic compression (AC) in both minor and major radius of a very high beta plasma, possibly with further help of passive-wall stabilization, as envisaged in the RULART concept. This may help the revival of the studies of the AC technique in tokamaks, alongside the less compact and more complex ST-40 device, currently under construction. In addition, by similarities, studies in HF-ULART as a UCP-NS may also help to test the feasibility of the compact NS via the spheromak concept, which also uses the AC technique. Simulations of AC in HF-ULART plasmas will be presented.

  19. Compact LED-based full-field optical coherence microscopy for high-resolution high-speed in vivo imaging

    NASA Astrophysics Data System (ADS)

    Ogien, Jonas; Dubois, Arnaud

    2017-02-01

    This work reports on a compact full-field optical coherence microscopy (FF-OCM) setup specifically designed to meet the needs for in vivo imaging, illuminated by a high-brightness broadband light emitting diode (LED). Broadband LEDs have spectra potentially large enough to provide imaging spatial resolutions similar to those reached using conventional halogen lamps, but their radiance can be much higher, which leads to high speed acquisition and makes in vivo imaging possible. We introduce a FF-OCM setup using a 2.3 W broadband LED, with an interferometer designed to be as compact as possible in order to provide the basis for a portable system that will make it possible to fully benefit from the capacity for in vivo imaging by providing the ability to image any region of interest in real-time. The interferometer part of the compact FF-OCM setup weighs 210 g for a size of 11x11x5 cm3. Using this setup, a sub-micron axial resolution was reached, with a detection sensitivity of 68 dB at an imaging rate of 250 Hz. Due to the high imaging rate, the sensitivity could be improved by accumulation while maintaining an acquisition time short enough for in vivo imaging. It was possible to reach a sensitivity of 75 dB at a 50 Hz imaging rate. High resolution in vivo human skin images were obtained with this setup and compared with images of excised human skin, showing high similarity.

  20. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  1. The Science and Technology Case for High-Field Fusion

    NASA Astrophysics Data System (ADS)

    Whyte, D.

    2017-10-01

    This review will focus on the origin, development and new opportunities of a strategy for fusion energy based on the high-field approach. In this approach confinement devices are designed at the maximum possible value of vacuum magnetic field strength, B. The integrated electrical, mechanical and cooling engineering challenges of high-field on coil (Bcoil) , large-bore electromagnets are examined for both copper and superconductor materials. These engineering challenges are confronted because of the profound science advantages provided by high-B, which are derived and reviewed: high fusion power density, B4, in compact devices, thermonuclear plasmas with significant stability margin, and, in tokamaks, access to higher plasma density. Two distinct high-field strategies emerged in the 1980's. The first was compact, cryogenically-cooled copper devices (BPX, IGNITOR, FIRE) with Bcoil>20 T, while the second was a large-volume, Nb3Sn superconductor device with Bcoil <12 T; with the second path exclusively chosen ca. 2000 with the ITER construction decision. The reasoning, advantages and challenges of that decision are discussed. Yet since that decision, a new opportunity has arisen: compact, Rare Earth Barium Copper Oxide (REBCO) superconductor-based devices with Bcoil >20 T; a strategy that essentially combines the best components of the two previous strategies. Recent activities examining the technology and science implications of this new strategy are reviewed. On the technology side, REBCO superconductors have now been used to produce Bcoil>40 T in small-bore electromagnets, enabled by rapid progress in manufactured REBCO conductor quality, coil modularity and flexible operating temperature range. Specific tokamak designs, over a range of aspect ratios, have been developed to take scientific advantage of these features in various ways, and will be described.

  2. Field-scale and wellbore modeling of compaction-induced casing failures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilbert, L.B. Jr.; Gwinn, R.L.; Moroney, T.A.

    1999-06-01

    Presented in this paper are the results and verification of field- and wellbore-scale large deformation, elasto-plastic, geomechanical finite element models of reservoir compaction and associated casing damage. The models were developed as part of a multidisciplinary team project to reduce the number of costly well failures in the diatomite reservoir of the South Belridge Field near Bakersfield, California. Reservoir compaction of high porosity diatomite rock induces localized shearing deformations on horizontal weak-rock layers and geologic unconformities. The localized shearing deformations result in casing damage or failure. Two-dimensional, field-scale finite element models were used to develop relationships between field operations, surfacemore » subsidence, and shear-induced casing damage. Pore pressures were computed for eighteen years of simulated production and water injection, using a three-dimensional reservoir simulator. The pore pressures were input to the two-dimensional geomechanical field-scale model. Frictional contact surfaces were used to model localized shear deformations. To capture the complex casing-cement-rock interaction that governs casing damage and failure, three-dimensional models of a wellbore were constructed, including a frictional sliding surface to model localized shear deformation. Calculations were compared to field data for verification of the models.« less

  3. Optical Manipulation with Plasmonic Beam Shaping Antenna Structures

    DOE PAGES

    Jun, Young Chul; Brener, Igal

    2012-01-01

    Near-field optical trapping of objects using plasmonic antenna structures has recently attracted great attention. However, metal nanostructures also provide a compact platform for general wavefront engineering of intermediate and far-field beams. Here, we analyze optical forces generated by plasmonic beam shaping antenna structures and show that they can be used for general optical manipulation such as guiding of a dielectric particle along a linear or curved trajectory. This removes the need for bulky diffractive optical components and facilitates the integration of optical force manipulation into a highly functional, compact system.

  4. Parameter exploration for a Compact Advanced Tokamak DEMO

    NASA Astrophysics Data System (ADS)

    Weisberg, D. B.; Buttery, R. J.; Ferron, J. R.; Garofalo, A. M.; Snyder, P. B.; Turnbull, A. D.; Holcomb, C. T.; McClenaghan, J.; Canik, J.; Park, J.-M.

    2017-10-01

    A new parameter study has explored a range of design points to assess the physics feasibility for a compact 200MWe advanced tokamak DEMO that combines high beta (βN < 4) and high toroidal field (BT = 6 - 7 T). A unique aspect of this study is the use of a FASTRAN modeling suite that combines integrated transport, pedestal, stability, and heating & current drive calculations to predict steady-state solutions with neutral beam and helicon powered current drive. This study has identified a range of design solutions in a compact (R0 = 4 m), high-field (BT = 6 - 7 T), strongly-shaped (κ = 2 , δ = 0.6) device. Unlike previous proposals, C-AT DEMO takes advantage of high-beta operation as well as emerging advances in magnet technology to demonstrate net electric production in a moderately sized machine. We present results showing that the large bootstrap fraction and low recirculating power enabled by high normalized beta can achieve tolerable heat and neutron load with good H-mode access. The prediction of operating points with simultaneously achieved high-confinement (H98 < 1.3), high-density (fGW < 1.3), and high-beta warrants additional assessment of this approach towards a cost-attractive DEMO device. Work supported by the US DOE under DE-FC02-04ER54698.

  5. Comparing Low-Redshift Compact Dwarf Starbursts in the RESOLVE Survey with High-Redshift Blue Nuggets

    NASA Astrophysics Data System (ADS)

    Palumbo, Michael Louis; Kannappan, Sheila; Snyder, Elaine; Eckert, Kathleen; Norman, Dara; Fraga, Luciano; Quint, Bruno; Amram, Philippe; Mendes de Oliveira, Claudia; RESOLVE Team

    2018-01-01

    We identify and characterize a population of compact dwarf starburst galaxies in the RESOLVE survey, a volume-limited census of galaxies in the local universe, to probe the possibility that these galaxies are related to “blue nuggets,” a class of intensely star-forming and compact galaxies previously identified at high redshift. Blue nuggets are thought to form as the result of intense compaction events that drive fresh gas to their centers. They are expected to display prolate morphology and rotation along their minor axes. We report IFU observations of three of our compact dwarf starburst galaxies, from which we construct high-resolution velocity fields, examining the evidence for minor axis or otherwise misaligned rotation. We find multiple cases of double nuclei in our sample, which may be indicative of a merger origin as in some blue nugget formation scenarios. We compare the masses, radii, gas-to-stellar mass ratios, star formation rates, stellar surface mass densities, and environmental contexts of our sample to expectations for blue nuggets.

  6. A compact high-speed mechanical sample shuttle for field-dependent high-resolution solution NMR.

    PubMed

    Chou, Ching-Yu; Chu, Minglee; Chang, Chi-Fon; Huang, Tai-Huang

    2012-01-01

    Analysis of NMR relaxation data has provided significant insight on molecular dynamic, leading to a more comprehensive understanding of macromolecular functions. However, traditional methodology allows relaxation measurements performed only at a few fixed high fields, thus severely restricting their potential for extracting more complete dynamic information. Here we report the design and performance of a compact high-speed servo-mechanical shuttle assembly adapted to a commercial 600 MHz high-field superconducting magnet. The assembly is capable of shuttling the sample in a regular NMR tube from the center of the magnet to the top (fringe field ∼0.01 T) in 100 ms with no loss of sensitivity other than that due to intrinsic relaxation. The shuttle device can be installed by a single experienced user in 30 min. Excellent 2D-(15)N-HSQC spectra of (u-(13)C, (15)N)-ubiquitin with relaxation at low fields (3.77 T) and detection at 14.1T were obtained to illustrate its utility in R(1) measurements of macromolecules at low fields. Field-dependent (13)C-R(1) data of (3,3,3-d)-alanine at various field strengths were determined and analyzed to assess CSA and (1)H-(13)C dipolar contributions to the carboxyl (13)C-R(1). Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Compact E x B mass separator for heavy ion beams.

    PubMed

    Wada, M; Hashino, T; Hirata, F; Kasuya, T; Sakamoto, Y; Nishiura, M

    2008-02-01

    A compact E x B mass separator that deflects beam by 30 degrees has been designed and built to prove its principle of operation. The main part of the separator is contained in a shielding box of 11 cm long, 9 cm wide, and 1.5 cm high. An electromagnet of 7 cm pole diameter produced variable magnetic field in the mass separation region instead of a couple of permanent magnets which is to be used in the final design. The experimental result agreed well with the theoretical prediction, and larger mass ions is bent with less magnetic field with the aid of the deflection electric field. The reduction in resolving power for mass separation due to the deflection electric field has been investigated experimentally.

  8. Two-dimensional nonlinear finite element analysis of well damage due to reservoir compaction, well-to-well interactions, and localization on weak layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilbert, L.B. Jr.; Fredrich, J.T.; Bruno, M.S.

    1996-05-01

    In this paper the authors present the results of a coupled nonlinear finite element geomechanics model for reservoir compaction and well-to-well interactions for the high-porosity, low strength diatomite reservoirs of the Belridge field near Bakersfield, California. They show that well damage and failures can occur under the action of two distinct mechanisms: shear deformations induced by pore compaction, and subsidence, and shear deformations due to well-to-well interactions during production or water injection. They show such casting damage or failure can be localized to weak layers that slide or slip under shear due to subsidence. The magnitude of shear displacements andmore » surface subsidence agree with field observations.« less

  9. Inter- and Intra- Field variations in soil compaction levels and subsequent impacts on hydrological extremes

    NASA Astrophysics Data System (ADS)

    Pattison, Ian; Coates, Victoria

    2015-04-01

    The rural landscape in the UK is dominated by pastoral agriculture, with about 40% of land cover classified as either improved or semi-natural grassland according to the Land Cover Map 2007. Intensification has resulted in greater levels of compaction associated with higher stocking densities. However, there is likely to be a great amount of variability in compaction levels within and between fields due to multiple controlling factors. This research focusses in on two of these factors; firstly animal species, namely sheep, cattle and horses; and secondly field zonation e.g. feeding areas, field gates, open field. Field experiments have been conducted in multiple fields in the River Skell catchment, in Yorkshire, UK, which has an area of 140km2. The effect on physical and hydrologic soil characteristics such as bulk density and moisture contents have been quantified using a wide range of field and laboratory based experiments. Results have highlighted statistically different properties between heavily compacted areas where animals congregate and less-trampled open areas. Furthermore, soil compaction has been hypothesised to contribute to increased flood risk at larger spatial scales. Previous research (Pattison, 2011) on a ~40km2 catchment (Dacre Beck, Lake District, UK) has shown that when soil characteristics are homogeneously parameterised in a hydrological model, downstream peak discharges can be 65% higher for a heavy compacted soil than for a lightly compacted soil. Here we report results from spatially distributed hydrological modelling using soil parameters gained from the field experimentation. Results highlight the importance of both the percentage of the catchment which is heavily compacted and also the spatial distribution of these fields.

  10. A Compact Microwave Microfluidic Sensor Using a Re-Entrant Cavity.

    PubMed

    Hamzah, Hayder; Abduljabar, Ali; Lees, Jonathan; Porch, Adrian

    2018-03-19

    A miniaturized 2.4 GHz re-entrant cavity has been designed, manufactured and tested as a sensor for microfluidic compositional analysis. It has been fully evaluated experimentally with water and common solvents, namely methanol, ethanol, and chloroform, with excellent agreement with the expected behaviour predicted by the Debye model. The sensor's performance has also been assessed for analysis of segmented flow using water and oil. The samples' interaction with the electric field in the gap region has been maximized by aligning the sample tube parallel to the electric field in this region, and the small width of the gap (typically 1 mm) result in a highly localised complex permittivity measurement. The re-entrant cavity has simple mechanical geometry, small size, high quality factor, and due to the high concentration of electric field in the gap region, a very small mode volume. These factors combine to result in a highly sensitive, compact sensor for both pure liquids and liquid mixtures in capillary or microfluidic environments.

  11. Corona performance of a compact 230-kV line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chartier, V.L.; Blair, D.E.; Easley, M.D.

    Permitting requirements and the acquisition of new rights-of-way for transmission facilities has in recent years become increasingly difficult for most utilities, including Puget Sound Power and Light Company. In order to maintain a high degree of reliability of service while being responsive to public concerns regarding the siting of high voltage (HV) transmission facilities, Puget Power has found it necessary to more heavily rely upon the use of compact lines in franchise corridors. Compaction does, however, precipitate increased levels of audible noise (AN) and radio and TV interference (RI and TVI) due to corona on the conductors and insulator assemblies.more » Puget Power relies upon the Bonneville Power Administration (BPA) Corona and Field Effects computer program to calculate AN and RI for new lines. Since there was some question of the program`s ability to accurately represent quiet 230-kV compact designs, a joint project was undertaken with BPA to verify the program`s algorithms. Long-term measurements made on an operating Puget Power 230-kV compact line confirmed the accuracy of BPA`s AN model; however, the RI measurements were much lower than predicted by the BPA and other programs. This paper also describes how the BPA computer program can be used to calculate the voltage needed to expose insulator assemblies to the correct electric field in single test setups in HV laboratories.« less

  12. Corona performance of a compact 230-kV line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chartier, V.L.; Blair, D.E.; Easley, M.D.

    Permitting requirements and the acquisition of new rights-of-way for transmission facilities has in recent years become increasingly difficult for most utilities, including Puget Sound Power and Light Company. In order to maintain a high degree of reliability of service while being responsive to public concerns regarding the siting of high voltage (HV) transmission facilities, Puget Power has found it necessary to more heavily rely upon the use of compact lines in franchise corridors. Compaction does, however, precipitant increased levels of audible noise (AN) and radio and TV interference (RI and TVI) due to corona on the conductors and insulator assemblies.more » Puget Power relies upon the Bonneville Power Administration (BPA) Corona and Field Effects computer program to calculate AN and RI for new lines. Since there was some question of the program`s ability to accurately represent quiet 230-kV compact designs, a joint project was undertaken with BPA to verify the program`s algorithms. Long-term measurements made on an operating Puget Power 230-kV compact line confirmed the accuracy of BPA`s AN model; however, the RI measurements were much lower than predicted by the BPA computer and other programs. This paper also describes how the BPA computer program can be used to calculate the voltage needed to expose insulator assemblies to the correct electric field in single test setups in HV laboratories.« less

  13. Carbon Nanotube Field Emitters Synthesized on Metal Alloy Substrate by PECVD for Customized Compact Field Emission Devices to Be Used in X-Ray Source Applications.

    PubMed

    Park, Sangjun; Gupta, Amar Prasad; Yeo, Seung Jun; Jung, Jaeik; Paik, Sang Hyun; Mativenga, Mallory; Kim, Seung Hoon; Shin, Ji Hoon; Ahn, Jeung Sun; Ryu, Jehwang

    2018-05-29

    In this study, a simple, efficient, and economical process is reported for the direct synthesis of carbon nanotube (CNT) field emitters on metal alloy. Given that CNT field emitters can be customized with ease for compact and cold field emission devices, they are promising replacements for thermionic emitters in widely accessible X-ray source electron guns. High performance CNT emitter samples were prepared in optimized plasma conditions through the plasma-enhanced chemical vapor deposition (PECVD) process and subsequently characterized by using a scanning electron microscope, tunneling electron microscope, and Raman spectroscopy. For the cathode current, field emission (FE) characteristics with respective turn on (1 μA/cm²) and threshold (1 mA/cm²) field of 2.84 and 4.05 V/μm were obtained. For a field of 5.24 V/μm, maximum current density of 7 mA/cm² was achieved and a field enhancement factor β of 2838 was calculated. In addition, the CNT emitters sustained a current density of 6.7 mA/cm² for 420 min under a field of 5.2 V/μm, confirming good operational stability. Finally, an X-ray generated image of an integrated circuit was taken using the compact field emission device developed herein.

  14. Camera-based micro interferometer for distance sensing

    NASA Astrophysics Data System (ADS)

    Will, Matthias; Schädel, Martin; Ortlepp, Thomas

    2017-12-01

    Interference of light provides a high precision, non-contact and fast method for measurement method for distances. Therefore this technology dominates in high precision systems. However, in the field of compact sensors capacitive, resistive or inductive methods dominates. The reason is, that the interferometric system has to be precise adjusted and needs a high mechanical stability. As a result, we have usual high-priced complex systems not suitable in the field of compact sensors. To overcome these we developed a new concept for a very small interferometric sensing setup. We combine a miniaturized laser unit, a low cost pixel detector and machine vision routines to realize a demonstrator for a Michelson type micro interferometer. We demonstrate a low cost sensor smaller 1cm3 including all electronics and demonstrate distance sensing up to 30 cm and resolution in nm range.

  15. Assessment of soil compaction properties based on surface wave techniques

    NASA Astrophysics Data System (ADS)

    Jihan Syamimi Jafri, Nur; Rahim, Mohd Asri Ab; Zahid, Mohd Zulham Affandi Mohd; Faizah Bawadi, Nor; Munsif Ahmad, Muhammad; Faizal Mansor, Ahmad; Omar, Wan Mohd Sabki Wan

    2018-03-01

    Soil compaction plays an important role in every construction activities to reduce risks of any damage. Traditionally, methods of assessing compaction include field tests and invasive penetration tests for compacted areas have great limitations, which caused time-consuming in evaluating large areas. Thus, this study proposed the possibility of using non-invasive surface wave method like Multi-channel Analysis of Surface Wave (MASW) as a useful tool for assessing soil compaction. The aim of this study was to determine the shear wave velocity profiles and field density of compacted soils under varying compaction efforts by using MASW method. Pre and post compaction of MASW survey were conducted at Pauh Campus, UniMAP after applying rolling compaction with variation of passes (2, 6 and 10). Each seismic data was recorded by GEODE seismograph. Sand replacement test was conducted for each survey line to obtain the field density data. All seismic data were processed using SeisImager/SW software. The results show the shear wave velocity profiles increase with the number of passes from 0 to 6 passes, but decrease after 10 passes. This method could attract the interest of geotechnical community, as it can be an alternative tool to the standard test for assessing of soil compaction in the field operation.

  16. A Green Solvent Induced DNA Package

    NASA Astrophysics Data System (ADS)

    Satpathi, Sagar; Sengupta, Abhigyan; Hridya, V. M.; Gavvala, Krishna; Koninti, Raj Kumar; Roy, Bibhisan; Hazra, Partha

    2015-03-01

    Mechanistic details of DNA compaction is essential blue print for gene regulation in living organisms. Many in vitro studies have been implemented using several compaction agents. However, these compacting agents may have some kinds of cytotoxic effects to the cells. To minimize this aspect, several research works had been performed, but people have never focused green solvent, i.e. room temperature ionic liquid as DNA compaction agent. To the best of our knowledge, this is the first ever report where we have shown that guanidinium tris(pentafluoroethyl)trifluorophosphate (Gua-IL) acts as a DNA compacting agent. The compaction ability of Gua-IL has been verified by different spectroscopic techniques, like steady state emission, circular dichroism, dynamic light scattering and UV melting. Notably, we have extensively probed this compaction by Gua-IL through field emission scanning electron microscopy (FE-SEM) and fluorescence microscopy images. We also have discussed the plausible compaction mechanism process of DNA by Gua-IL. Our results suggest that Gua-IL forms a micellar kind of self aggregation above a certain concentration (>=1 mM), which instigates this compaction process. This study divulges the specific details of DNA compaction mechanism by a new class of compaction agent, which is highly biodegradable and eco friendly in nature.

  17. Experimental demonstration of subwavelength domino plasmon devices for compact high-frequency circuit.

    PubMed

    Ma, Y G; Lan, L; Zhong, S M; Ong, C K

    2011-10-24

    In optical frequency, surface plasmons of metal provide us a prominent way to build compact photonic devices or circuits with non-diffraction limit. It is attributed by their extraordinary electromagnetic confining effect. But in the counterpart of lower frequencies, plasmonics behavior of metal is screened by eddy current induced in a certain skin depth. To amend this, spoof plasmons engineered by artificial structures have been introduced to mimic surface plasmons in these frequencies. But it is less useful for practical application due to their weak field confinement as manifested by large field decaying length in the upper dielectric space. Recently, a new type of engineered plasmons, domino plasmon was theoretically proposed to produce unusual field confinement and waveguiding capabilities that make them very attractive for ultra-compact device applications [Opt. Exp. 18, 754-764 (2010)]. In this work, we implemented these ideas and built three waveguiding devices based on domino plasmons. Their strong capabilities to produce versatile and ultra-compact devices with multiple electromagnetic functions have been experimentally verified in microwaves. And that can be extended to THz regime to pave the way for a new class of integrated wave circuits. © 2011 Optical Society of America

  18. Fast particles in a steady-state compact FNS and compact ST reactor

    NASA Astrophysics Data System (ADS)

    Gryaznevich, M. P.; Nicolai, A.; Buxton, P.

    2014-10-01

    This paper presents results of studies of fast particles (ions and alpha particles) in a steady-state compact fusion neutron source (CFNS) and a compact spherical tokamak (ST) reactor with Monte-Carlo and Fokker-Planck codes. Full-orbit simulations of fast particle physics indicate that a compact high field ST can be optimized for energy production by a reduction of the necessary (for the alpha containment) plasma current compared with predictions made using simple analytic expressions, or using guiding centre approximation in a numerical code. Alpha particle losses may result in significant heating and erosion of the first wall, so such losses for an ST pilot plant have been calculated and total and peak wall loads dependence on the plasma current has been studied. The problem of dilution has been investigated and results for compact and big size devices are compared.

  19. Compact orthogonal NMR field sensor

    DOEpatents

    Gerald, II, Rex E.; Rathke, Jerome W [Homer Glen, IL

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  20. Quantifying the heterogeneity of soil compaction, physical soil properties and soil moisture across multiple spatial scales

    NASA Astrophysics Data System (ADS)

    Coates, Victoria; Pattison, Ian; Sander, Graham

    2016-04-01

    England's rural landscape is dominated by pastoral agriculture, with 40% of land cover classified as either improved or semi-natural grassland according to the Land Cover Map 2007. Since the Second World War the intensification of agriculture has resulted in greater levels of soil compaction, associated with higher stocking densities in fields. Locally compaction has led to loss of soil storage and an increased in levels of ponding in fields. At the catchment scale soil compaction has been hypothesised to contribute to increased flood risk. Previous research (Pattison, 2011) on a 40km2 catchment (Dacre Beck, Lake District, UK) has shown that when soil characteristics are homogeneously parameterised in a hydrological model, downstream peak discharges can be 65% higher for a heavy compacted soil than for a lightly compacted soil. However, at the catchment scale there is likely to be a significant amount of variability in compaction levels within and between fields, due to multiple controlling factors. This research focusses in on one specific type of land use (permanent pasture with cattle grazing) and areas of activity within the field (feeding area, field gate, tree shelter, open field area). The aim was to determine if the soil characteristics and soil compaction levels are homogeneous in the four areas of the field. Also, to determine if these levels stayed the same over the course of the year, or if there were differences at the end of the dry (October) and wet (April) periods. Field experiments were conducted in the River Skell catchment, in Yorkshire, UK, which has an area of 120km2. The dynamic cone penetrometer was used to determine the structural properties of the soil, soil samples were collected to assess the bulk density, organic matter content and permeability in the laboratory and the Hydrosense II was used to determine the soil moisture content in the topsoil. Penetration results show that the tree shelter is the most compacted and the open field area is least compacted in both periods. The falling head test showed that soil permeability was lowest around the feeding area and highest in the open field area in both periods. Laboratory tests showed that the tree shelter had the lowest bulk density values, due to the higher levels of organic matter content and the field gate had the highest levels of bulk density in both periods. There was also a significant difference in bulk density at the field gate and open field areas between the two periods. These results highlight statistically significant differences between heavily compacted areas where animals congregate and less-trampled areas of the field.

  1. A compact high repetition rate CO2 coherent Doppler lidar

    NASA Technical Reports Server (NTRS)

    Alejandro, S.; Frelin, R.; Dix, B.; Mcnicholl, P.

    1992-01-01

    As part of its program to develop coherent heterodyne detection lidar technology for space, airborne, and ground based applications, the Optical Environment Division of the USAF's Phillips Laboratory developed a compact coherent CO2 TEA lidar system. Although originally conceived as a high altitude balloon borne system, the lidar is presently integrated into a trailer for ground based field measurements of aerosols and wind fields. In this role, it will also serve as a testbed for signal acquisition and processing development for planned future airborne and space based solid state lidar systems. The system has also found significance in new areas of interest to the Air Force such as cloud studies and coherent Differential Absorption Lidar (DIAL) systems.

  2. Magnetoencephalography with a Cs-based high-sensitivity compact atomic magnetometer

    NASA Astrophysics Data System (ADS)

    Sheng, Jingwei; Wan, Shuangai; Sun, Yifan; Dou, Rongshe; Guo, Yuhao; Wei, Kequan; He, Kaiyan; Qin, Jie; Gao, Jia-Hong

    2017-09-01

    In recent years, substantial progress has been made in developing a new generation of magnetoencephalography (MEG) with a spin-exchange relaxation free (SERF)-based atomic magnetometer (AM). An AM employs alkali atoms to detect weak magnetic fields. A compact AM array with high sensitivity is crucial to the design; however, most proposed compact AMs are potassium (K)- or rubidium (Rb)-based with single beam configurations. In the present study, a pump-probe two beam configuration with a Cesium (Cs)-based AM (Cs-AM) is introduced to detect human neuronal magnetic fields. The length of the vapor cell is 4 mm, which can fully satisfy the need of designing a compact sensor array. Compared with state-of-the-art compact AMs, our new Cs-AM has two advantages. First, it can be operated in a SERF regime, requiring much lower heating temperature, which benefits the sensor with a closer distance to scalp due to ease of thermal insulation and less electric heating noise interference. Second, the two-beam configuration in the design can achieve higher sensitivity. It is free of magnetic modulation, which is necessary in one-beam AMs; however, such modulation may cause other interference in multi-channel circumstances. In the frequency band between 10 Hz and 30 Hz, the noise level of the proposed Cs-AM is approximately 10 f T/Hz1/2, which is comparable with state-of-the-art K- or Rb-based compact AMs. The performance of the Cs-AM was verified by measuring human auditory evoked fields (AEFs) in reference to commercial superconducting quantum interference device (SQUID) channels. By using a Cs-AM, we observed a clear peak in AEFs around 100 ms (M100) with a much larger amplitude compared with that of a SQUID, and the temporal profiles of the two devices were in good agreement. The results indicate the possibility of using the compact Cs-AM for MEG recordings, and the current Cs-AM has the potential to be designed for multi-sensor arrays and gradiometers for future neuroscience studies.

  3. Repurposing compact discs as master molds to fabricate high-performance organic nanowire field-effect transistors

    NASA Astrophysics Data System (ADS)

    Kim, Kyunghun; Cho, Jinhwi; Jhon, Heesauk; Jeon, Jongwook; Kang, Myounggon; Eon Park, Chan; Lee, Jihoon; An, Tae Kyu

    2017-05-01

    Organic field-effect transistors (OFETs) have been developed over the past few decades due to their potential applications in future electronics such as wearable and foldable electronics. As the electrical performance of OFETs has improved, patterning organic semiconducting crystals has become a key issue for their commercialization. However, conventional soft lithographic techniques have required the use of expensive processes to fabricate high-resolution master molds. In this study, we demonstrated a cost-effective method to prepare nanopatterned master molds for the fabrication of high-performance nanowire OFETs. We repurposed commercially available compact discs (CDs) as master molds because they already have linear nanopatterns on their surface. Flexible nanopatterned templates were replicated from the CDs using UV-imprint lithography. Subsequently, 6,13-bis-(triisopropylsilylethynyl) pentacene nanowires (NWs) were grown from the templates using a capillary force-assisted lithographic technique. The NW-based OFETs showed a high average field-effect mobility of 2.04 cm2 V-1 s-1. This result was attributed to the high crystallinity of the NWs and to their crystal orientation favorable for charge transport.

  4. Transport of a helicon plasma by a convergent magnetic field for high speed and compact plasma etching

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Motomura, Taisei; Ando, Akira; Kasashima, Yuji; Kikunaga, Kazuya; Uesugi, Fumihiko; Hara, Shiro

    2014-10-01

    A high density argon plasma produced in a compact helicon source is transported by a convergent magnetic field to the central region of a substrate located downstream of the source. The magnetic field converging near the source exit is applied by a solenoid and further converged by installing a permanent magnet (PM) behind the substrate, which is located downstream of the source exit. Then a higher plasma density above 5 × 1012 cm-3 can be obtained in 0.2 Pa argon near the substrate, compared with the case without the PM. As no noticeable changes in the radially integrated density near the substrate and the power transfer efficiency are detected when testing the source with and without the PM, it can be deduced that the convergent field provided by the PM plays a role in constricting the plasma rather than in improving the plasma production. Furthermore it is applied to physical ion etching of silicon and aluminum substrates; then high etching rates of 6.5 µm min-1 and 8 µm min-1 are obtained, respectively.

  5. Stationary bound-state massive scalar field configurations supported by spherically symmetric compact reflecting stars

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2017-12-01

    It has recently been demonstrated that asymptotically flat neutral reflecting stars are characterized by an intriguing no-hair property. In particular, it has been proved that these horizonless compact objects cannot support spatially regular static matter configurations made of scalar (spin-0) fields, vector (spin-1) fields and tensor (spin-2) fields. In the present paper we shall explicitly prove that spherically symmetric compact reflecting stars can support stationary (rather than static) bound-state massive scalar fields in their exterior spacetime regions. To this end, we solve analytically the Klein-Gordon wave equation for a linearized scalar field of mass μ and proper frequency ω in the curved background of a spherically symmetric compact reflecting star of mass M and radius R_{ {s}}. It is proved that the regime of existence of these stationary composed star-field configurations is characterized by the simple inequalities 1-2M/R_{ {s}}<(ω /μ )^2<1. Interestingly, in the regime M/R_{ {s}}≪ 1 of weakly self-gravitating stars we derive a remarkably compact analytical equation for the discrete spectrum {ω (M,R_{ {s}},μ )}^{n=∞}_{n=1} of resonant oscillation frequencies which characterize the stationary composed compact-reflecting-star-linearized-massive-scalar-field configurations. Finally, we verify the accuracy of the analytically derived resonance formula of the composed star-field configurations with direct numerical computations.

  6. Does soil compaction increase floods? A review

    NASA Astrophysics Data System (ADS)

    Alaoui, Abdallah; Rogger, Magdalena; Peth, Stephan; Blöschl, Günter

    2018-02-01

    Europe has experienced a series of major floods in the past years which suggests that flood magnitudes may have increased. Land degradation due to soil compaction from crop farming or grazing intensification is one of the potential drivers of this increase. A literature review suggests that most of the experimental evidence was generated at plot and hillslope scales. At larger scales, most studies are based on models. There are three ways in which soil compaction affects floods at the catchment scale: (i) through an increase in the area affected by soil compaction; (ii) by exacerbating the effects of changes in rainfall, especially for highly degraded soils; and (iii) when soil compaction coincides with soils characterized by a fine texture and a low infiltration capacity. We suggest that future research should focus on better synthesising past research on soil compaction and runoff, tailored field experiments to obtain a mechanistic understanding of the coupled mechanical and hydraulic processes, new mapping methods of soil compaction that combine mechanical and remote sensing approaches, and an effort to bridge all disciplines relevant to soil compaction effects on floods.

  7. Performance Investigation on an Ultra-compact Interstage Turbine Burner with Trapped-vortex Slot Inlet

    NASA Astrophysics Data System (ADS)

    Zhang, Hongtao; Luo, Guangqi; Guan, Lei; Zeng, Jianchen

    2017-10-01

    Ultra-Compact Combustor (UCC), which is one of mainstream design concepts of Interstage Turbine Burner (ITB), has the advantages of compact structure and high combustion efficiency. A design concept of an UCC with trapped-vortex slot inlet was proposed and numerical simulation of the stability, emissions, internal flow velocity and temperature distribution was carried out. The results indicated that the UCC with trapped-vortex slot inlet could enhance the mixing of combustion mixture and the mainstream airflow, improve the combustion efficiency, outlet temperature and the uniformity of outlet temperature field.

  8. Compact high-speed scanning lidar system

    NASA Astrophysics Data System (ADS)

    Dickinson, Cameron; Hussein, Marwan; Tripp, Jeff; Nimelman, Manny; Koujelev, Alexander

    2012-06-01

    The compact High Speed Scanning Lidar (HSSL) was designed to meet the requirements for a rover GN&C sensor. The eye-safe HSSL's fast scanning speed, low volume and low power, make it the ideal choice for a variety of real-time and non-real-time applications including: 3D Mapping; Vehicle guidance and Navigation; Obstacle Detection; Orbiter Rendezvous; Spacecraft Landing / Hazard Avoidance. The HSSL comprises two main hardware units: Sensor Head and Control Unit. In a rover application, the Sensor Head mounts on the top of the rover while the Control Unit can be mounted on the rover deck or within its avionics bay. An Operator Computer is used to command the lidar and immediately display the acquired scan data. The innovative lidar design concept was a result of an extensive trade study conducted during the initial phase of an exploration rover program. The lidar utilizes an innovative scanner coupled with a compact fiber laser and high-speed timing electronics. Compared to existing compact lidar systems, distinguishing features of the HSSL include its high accuracy, high resolution, high refresh rate and large field of view. Other benefits of this design include the capability to quickly configure scan settings to fit various operational modes.

  9. Analysis and reduction of well failures in diatomite reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, L.; Jacobsen, J.; Horsman, J.

    1995-12-31

    Well damage induced by compactable formation deformation has occurred in oil fields in the Gulf of Mexico, the mid-continent region, the North Sea, on-shore Europe, Asia, and South America. The diatomite reservoirs of California are particularly susceptible to compaction due to the very high porosity of the diatomite. In these reservoirs well replacement, lost production and abandonment costs have exceeded $200 million to date. In 1994 alone about 40 wells were damaged. A study is currently underway involving data analysis and 3-D visualization, laboratory testing, and numerical modelling to improve understanding of casing damage due to reservoir compaction and tomore » develop tools and operating strategies to reduce casing damage. The study is focused on the South Belridge field. Results to date show a consistent correlation between failure and structural markers and apparent influence of local production and injection supporting the need for 3-D simulation.« less

  10. Sample-to-answer palm-sized nucleic acid testing device towards low-cost malaria mass screening.

    PubMed

    Choi, Gihoon; Prince, Theodore; Miao, Jun; Cui, Liwang; Guan, Weihua

    2018-05-19

    The effectiveness of malaria screening and treatment highly depends on the low-cost access to the highly sensitive and specific malaria test. We report a real-time fluorescence nucleic acid testing device for malaria field detection with automated and scalable sample preparation capability. The device consists a compact analyzer and a disposable microfluidic reagent compact disc. The parasite DNA sample preparation and subsequent real-time LAMP detection were seamlessly integrated on a single microfluidic compact disc, driven by energy efficient non-centrifuge based magnetic field interactions. Each disc contains four parallel testing units which could be configured either as four identical tests or as four species-specific tests. When configured as species-specific tests, it could identify two of the most life-threatening malaria species (P. falciparum and P. vivax). The NAT device is capable of processing four samples simultaneously within 50 min turnaround time. It achieves a detection limit of ~0.5 parasites/µl for whole blood, sufficient for detecting asymptomatic parasite carriers. The combination of the sensitivity, specificity, cost, and scalable sample preparation suggests the real-time fluorescence LAMP device could be particularly useful for malaria screening in the field settings. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Differential compaction influences on structure in West Cameron Block 225 field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, W.R.

    The concept to be illustrated here is the influence on structural configuration of differential compaction caused by lateral variations in stratigraphy, specifically, changes from sand to shale within the same stratigraphic interval, The example chosen to illustrate this concept is West Cameron Block 225 field. As seen in structural stratigraphic cross sections as well as net sand maps constructed in the example field, several channel sands are seen to strongly influence the structural configuration. The basic structure within the field as defined by well and seismic data consists of a gentle, southerly dipping, north south-oriented ridge, bounded by a down-to-the-eastmore » fault on the west flank and a down-to-the-south fault to the north. Gentle roll into these faults closes the north flank of the structure. The stratigraphic section consists of alternating sands and shales of Miocene and Pliocene age. Several of these sands map out as linear sand bodies interpreted to be channels. These channels, representing thickened sand bodies that grade laterally into predominantly shale facies, are oriented in a general east-west direction. The juxtaposition of the basic structural orientation with the orientation of the channel sand(s) sets up a crossing point(s) on the southern flank of the structure. With the advent of differential compaction between the channel sands and the bounding shale faces, a stratigraphic structure is generated. This resulting compaction structure maps out as a double-lobed or saddled high. This effect is amplified as channels in the shallower section stack out over the southern flank of the structure until the southern crest dominates over the northern one. The overall result is one of migrating structural crests caused by variations in compactibility within the stratigraphic section.« less

  12. High-efficiency K-band tracking antenna feed

    NASA Technical Reports Server (NTRS)

    Beavin, R. L.; Simanyi, A. I.

    1975-01-01

    Antenna feed features high aperture efficiency of multimode near-field horn and develops tracking signals without conventional monopulse bridge. Feed assembly is relatively simple and very compact. However, feed is sensitive to cross-polarized energy which couples into orthogonal error channel.

  13. Open strings and electric fields in compact spaces

    NASA Astrophysics Data System (ADS)

    Condeescu, Cezar; Dudas, Emilian; Pradisi, Gianfranco

    2018-05-01

    We analyse open strings with background electric fields in the internal space, T-dual to branes moving with constant velocities in the internal space. We find that the direction of the electric fields inside a two torus, dual to the D-brane velocities, has to be quantised such that the corresponding direction is compact. This implies that D-brane motion in the internal torus is periodic, with a periodicity that can be parametrically large in terms of the internal radii. By S-duality, this is mapped into an internal magnetic field in a three torus, a quantum mechanical analysis of which yields a similar result, i.e. the parallel direction to the magnetic field has to be compact. Furthermore, for the magnetic case, we find the Landau level degeneracy as being given by the greatest common divisor of the flux numbers. We carry on the string quantisation and derive the relevant partition functions for these models. Our analysis includes also the case of oblique electric fields which can arise when several stacks of branes are present. Compact dimensions and/or oblique sectors influence the energy loss of the system through pair-creation and thus can be relevant for inflationary scenarios with branes. Finally, we show that the compact energy loss is always larger than the non-compact one.

  14. Quantification of Net Erosion and Uplift Experienced by the Barmer Basin, Rajasthan Using Sonic Log

    NASA Astrophysics Data System (ADS)

    Mitra, K.; Schulz, S.; Sarkar, A.

    2015-12-01

    Barmer Basin of Rajasthan, Western India is a hydrocarbon rich sedimentary basin currently being explored by Cairn India Limited. The hydrocarbon bearing Fatehgarh Formation is being found at different depths in different oil fields (e.g. From south to north: Guda, Vijaya & Vandana, Air field High) of the basin. The net uplift and erosion in the Barmer Basin has been quantified using compaction methodology. The sonic log, which is strongly controlled by porosity, is an appropriate indicator of compaction, and hence used for quantification of net uplift and erosion from compaction. The compaction methodology has been applied to the shale rich Dharvi Dungar Formation of Barmer Basin of Late Paleocene age. The net uplift and erosion is also being checked with the help of AFTA-VR and seismic sections. The results show relatively no uplift in the southernmost part of the basin and a Guda field well is thus taken to be the reference well with respect to which the uplifts in different parts of the basin have been calculated. The northern part of the basin i.e. Air Field High wells experienced maximum uplift (~2150m). Interestingly, a few wells further south of the reference well show evidence for uplift. The study was able to point out errors in the report produced with the help of AFTA-VR which found out less uplift in Vijaya & Vandana oil fields as opposed to sonic log data. The process of finding out uplift using sonic log has a standard deviation of 200m as compared to about 500m error in AFTA-VR method. This study has major implications for hydrocarbon exploration. Maturation of source rock will be higher for any given geothermal history if net uplift and erosion is incorporated in maturation modeling. They can also be used for porosity predictions of reservoir units in undrilled targets.

  15. Compact steady-state and high-flux Falcon ion source for tests of plasma-facing materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girka, O.; Bizyukov, I.; Sereda, K.

    2012-08-15

    This paper describes the design and operation of the Falcon ion source. It is based on conventional design of anode layer thrusters. This ion source is a versatile, compact, affordable, and highly functional in the research field of the fusion materials. The reversed magnetic field configuration of the source allows precise focusing of the ion beam into small spot of Almost-Equal-To 3 mm and also provides the limited capabilities for impurity mass-separation. As the result, the source generates steady-state ion beam, which irradiates surface with high heat (0.3 - 21 MW m{sup -2}) and particle fluxes (4 Multiplication-Sign 10{sup 21}-more » 3 Multiplication-Sign 10{sup 23} m{sup -2}s{sup -1}), which approaches the upper limit for the flux range expected in ITER.« less

  16. A simple compact UHV and high magnetic field compatible inertial nanopositioner

    NASA Astrophysics Data System (ADS)

    Pang, Zongqiang; Li, Xiang; Xu, Lei; Rong, Zhou; Liu, Ruilan

    2015-01-01

    We present a novel simple piezoelectric nanopositioner which just has one piezoelectric scanner tube (PST) and one driving signal, using two short quartz rods and one BeCu spring which form a triangle to press the central shaft and can promise the nanopositioner's rigidity. Applying two pulse inverted voltage signals on the PST's outer and inner electrodes, respectively, according to the principle of piezoelectricity, the PST will elongate or contract suddenly while the central shaft will keep stationary for its inertance, so the central shaft will be sliding a distance relative to quartz rods and spring, and then withdraw the pulse voltages slowly, the central shaft will move upward or downward one step. The heavier of the central shaft, the better moving stability, so the nanopositioner has high output force. Due to its compactness and mechanical stability, it can be easily implanted into some extreme conditions, such as ultrahigh vacuum, ultralow temperature, and high magnetic field.

  17. New Generation of Superconducting Solenoids for Heavy-Ion Linac Application

    NASA Astrophysics Data System (ADS)

    Ostroumov, P. N.; Kim, S. H.; Lessner, E. S.; Shepard, K. W.; Laxdal, R. E.

    2002-01-01

    The beam dynamics of superconducting (SC) heavy-ion linacs operating in the velocity range below 0.4c require a compact accelerating-focusing lattice. The use of SC solenoids together with SC RF resonators within a common cryostat can solve the real-estate problem. The solenoids must have low fringe fields to avoid magnetic-flux capture in the SC RF resonators. Also, incorporating dipole steering coils together with the SC solenoids in one magnet assembly can increase the compactness of the linac lattice. R&D work has been carried out to determine the feasibility of combining the three elements of high solenoid field, low fringe field, and integral dipole field, into one compact package. A 9-Tesla magnet has been initially designed and will be prototyped, with the goal of eventually developing 14-Tesla solenoids of similar design. The most important design issues are: (1) to minimize stray field in the RF cavity region using SC bucking coils and (2) to achieve adequate mechanical stability of the transverse dipole windings in the presence of forces produced by the solenoid/bucking coil assembly. The assembly, including terminals, switches, and protection circuit, are designed to fit inside a 25-cm diameter helium reservoir. The results of the preliminary design of the solenoid, including numerical simulations of the beam dynamics, are reported.

  18. Special issue on compact x-ray sources

    NASA Astrophysics Data System (ADS)

    Hooker, Simon; Midorikawa, Katsumi; Rosenzweig, James

    2014-04-01

    Journal of Physics B: Atomic, Molecular and Optical Physics is delighted to announce a forthcoming special issue on compact x-ray sources, to appear in the winter of 2014, and invites you to submit a paper. The potential for high-brilliance x- and gamma-ray sources driven by advanced, compact accelerators has gained increasing attention in recent years. These novel sources—sometimes dubbed 'fifth generation sources'—will build on the revolutionary advance of the x-ray free-electron laser (FEL). New radiation sources of this type have widespread applications, including in ultra-fast imaging, diagnostic and therapeutic medicine, and studies of matter under extreme conditions. Rapid advances in compact accelerators and in FEL techniques make this an opportune moment to consider the opportunities which could be realized by bringing these two fields together. Further, the successful development of compact radiation sources driven by compact accelerators will be a significant milestone on the road to the development of high-gradient colliders able to operate at the frontiers of particle physics. Thus the time is right to publish a peer-reviewed collection of contributions concerning the state-of-the-art in: advanced and novel acceleration techniques; sophisticated physics at the frontier of FELs; and the underlying and enabling techniques of high brightness electron beam physics. Interdisciplinary research connecting two or more of these fields is also increasingly represented, as exemplified by entirely new concepts such as plasma based electron beam sources, and coherent imaging with fs-class electron beams. We hope that in producing this special edition of Journal of Physics B: Atomic, Molecular and Optical Physics (iopscience.iop.org/0953-4075/) we may help further a challenging mission and ongoing intellectual adventure: the harnessing of newly emergent, compact advanced accelerators to the creation of new, agile light sources with unprecedented capabilities. New schemes for compact accelerators: laser- and beam-driven plasma accelerators; dielectric laser accelerators; THz accelerators. Latest results for compact accelerators. Target design and staging of advanced accelerators. Advanced injection and phase space manipulation techniques. Novel diagnostics: single-shot measurement of sub-fs bunch duration; measurement of ultra-low emittance. Generation and characterization of incoherent radiation: betatron and undulator radiation; Thomson/Compton scattering sources, novel THz sources. Generation and characterization of coherent radiation. Novel FEL simulation techniques. Advances in simulations of novel accelerators: simulations of injection and acceleration processes; simulations of coherent and incoherent radiation sources; start-to-end simulations of fifth generation light sources. Novel undulator schemes. Novel laser drivers for laser-driven accelerators: high-repetition rate laser systems; high wall-plug efficiency systems. Applications of compact accelerators: imaging; radiography; medical applications; electron diffraction and microscopy. Please submit your article by 15 May 2014 (expected web publication: winter 2014); submissions received after this date will be considered for the journal, but may not be included in the special issue.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kfir, Ofer, E-mail: ofertx@technion.ac.il, E-mail: oren@si.technion.ac.il; Bordo, Eliyahu; Ilan Haham, Gil

    The recent demonstration of bright circularly polarized high-order harmonics of a bi-circular pump field gave rise to new opportunities in ultrafast chiral science. In previous works, the required nontrivial bi-circular pump field was produced using a relatively complicated and sensitive Mach-Zehnder-like interferometer. We propose a compact and stable in-line apparatus for converting a quasi-monochromatic linearly polarized ultrashort driving laser field into a bi-circular field and employ it for generation of helically polarized high-harmonics. Furthermore, utilizing the apparatus for a spectroscopic spin-mixing measurement, we identify the photon spins of the bi-circular weak component field that are annihilated during the high harmonicsmore » process.« less

  20. Intrinsic Differences in the Inner Jets of High and Low Optically Polarized Radio Quasars

    NASA Technical Reports Server (NTRS)

    Lister, M.; Smith, P.

    2000-01-01

    We have conducted a high-resolution polarization study with the VLBA at 22 and 43 GHz to look for differences in the parsec-scale magnetic field structures of 18 high- and low-optically polarized, compact radio-loud quasars (HPQs and LPRQs, respectively).

  1. Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source

    NASA Astrophysics Data System (ADS)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Frydrych, S.; Kroll, F.; Joost, M.; Al-Omari, H.; Blažević, A.; Zielbauer, B.; Hofmann, I.; Bagnoud, V.; Cowan, T. E.; Roth, M.

    2013-10-01

    Laser ion acceleration provides for compact, high-intensity ion sources in the multi-MeV range. Using a pulsed high-field solenoid, for the first time high-intensity laser-accelerated proton bunches could be selected from the continuous exponential spectrum and delivered to large distances, containing more than 109 particles in a narrow energy interval around a central energy of 9.4 MeV and showing ≤30mrad envelope divergence. The bunches of only a few nanoseconds bunch duration were characterized 2.2 m behind the laser-plasma source with respect to arrival time, energy width, and intensity as well as spatial and temporal bunch profile.

  2. High Efficiency Centrifugal Compressor for Rotorcraft Applications

    NASA Technical Reports Server (NTRS)

    Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.

    2017-01-01

    A centrifugal compressor research effort conducted by United Technologies Research Center under NASA Research Announcement NNC08CB03C is documented. The objectives were to identify key technical barriers to advancing the aerodynamic performance of high-efficiency, high work factor, compact centrifugal compressor aft-stages for turboshaft engines; to acquire measurements needed to overcome the technical barriers and inform future designs; to design, fabricate, and test a new research compressor in which to acquire the requisite flow field data. A new High-Efficiency Centrifugal Compressor stage -- splittered impeller, splittered diffuser, 90 degree bend, and exit guide vanes -- with aerodynamically aggressive performance and configuration (compactness) goals were designed, fabricated, and subquently tested at the NASA Glenn Research Center.

  3. Shear-enhanced compaction bands formed at shallow burial conditions; implications for fluid flow (Provence, France)

    NASA Astrophysics Data System (ADS)

    Ballas, Gregory; Soliva, Roger; Sizun, Jean-Pierre; Fossen, Haakon; Benedicto, Antonio; Skurtveit, Elin

    2013-02-01

    Field observations of highly porous and permeable sandstone in the Orange area (S-E Basin, France) show that networks of shear-enhanced compaction bands can form in a contractional regime at burial depths of about 400 m ± 100 m. These bands show equal compaction and shear displacements, are organized in conjugate and densely distributed networks, and are restricted to the coarse-grained (mean grain diameter of 0.6 ± 0.1 mm) and less porous (porosity of 26 ± 2%) sand layers. The bands are crush microbreccia with limited grain comminution and high grain microfracture density. They show reductions of permeability (mD) ranging from 0 to little more than 1 order of magnitude. They show no control on the alteration products related to meteoric water flow, which suggests that these shear-enhanced compaction bands have no or only negligible influence on subsurface fluid flow. Their selective occurrence and small (20%) reduction in transmissibility in densely populated layers prevented them from compartmentalizing the sandstone reservoirs. A comparison with compaction-band populations in the Navajo and Aztec sandtsones (western U.S.) emphasizes the role of burial depth and the presence of chemical compaction processes for the sealing potential of deformation bands.

  4. Development of a new compact intraoperative magnetic resonance imaging system: concept and initial experience.

    PubMed

    Morita, Akio; Sameshima, Tetsuro; Sora, Shigeo; Kimura, Toshikazu; Nishimura, Kengo; Itoh, Hirotaka; Shibahashi, Keita; Shono, Naoyuki; Machida, Toru; Hara, Naoko; Mikami, Nozomi; Harihara, Yasushi; Kawate, Ryoichi; Ochiai, Chikayuki; Wang, Weimin; Oguro, Toshiki

    2014-06-01

    Magnetic resonance imaging (MRI) during surgery has been shown to improve surgical outcomes, but the current intraoperative MRI systems are too large to install in standard operating suites. Although 1 compact system is available, its imaging quality is not ideal. We developed a new compact intraoperative MRI system and evaluated its use for safety and efficacy. This new system has a magnetic gantry: a permanent magnet of 0.23 T and an interpolar distance of 32 cm. The gantry system weighs 2.8 tons and the 5-G line is within the circle of 2.6 m. We created a new field-of-view head coil and a canopy-style radiofrequency shield for this system. A clinical trial was initiated, and the system has been used in 44 patients. This system is significantly smaller than previous intraoperative MRI systems. High-quality T2 images could discriminate tumor from normal brain tissue and identify anatomic landmarks for accurate surgery. The average imaging time was 45.5 minutes, and no clinical complications or MRI system failures occurred. Floating organisms or particles were minimal (1/200 L maximum). This intraoperative, compact, low-magnetic-field MRI system can be installed in standard operating suites to provide relatively high-quality images without sacrificing safety. We believe that such a system facilitates the introduction of the intraoperative MRI.

  5. Quantum Effects in Cosmology

    NASA Astrophysics Data System (ADS)

    Saharian, A. A.

    2016-09-01

    We investigate the vacuum expectation value of the current density for a charged scalar field on a slice of anti-de Sitter (AdS) space with toroidally compact dimensions. Along the compact dimensions periodicity conditions are imposed on the field operator with general phases and the presence of a constant gauge field is assumed. The latter gives rise to Aharonov-Bohm-like effects on the vacuum currents. The current density along compact dimensions is a periodic function of the gauge field flux with the period equal to the flux quantum. It vanishes on the AdS boundary and, near the horizon, to the leading order, it is conformally related to the corresponding quantity in Minkowski bulk for a massless field. For large values of the length of the compact dimension compared with the AdS curvature radius, the vacuum current decays as power-law for both massless and massive fields. This behavior is essentially different from the corresponding one in Minkowski background, where the currents for a massive field are suppressed exponentially.

  6. Compact Feeding Network for Array Radiations of Spoof Surface Plasmon Polaritons

    NASA Astrophysics Data System (ADS)

    Xu, Jun Jun; Yin, Jia Yuan; Zhang, Hao Chi; Cui, Tie Jun

    2016-03-01

    We propose a splitter feeding network for array radiations of spoof surface plasmon polaritons (SPPs), which are guided by ultrathin corrugated metallic strips. Based on the coupled mode theory, SPP fields along a single waveguide in a certain frequency range can be readily coupled into two adjacent branch waveguides with the same propagation constants. We propose to load U-shaped particles anti-symmetrically at the ends of such two branch waveguides, showing a high integration degree of the feeding network. By controlling linear phase modulations produced by the U-shaped particle chain, we demonstrate theoretically and experimentally that the SPP fields based on bound modes can be efficiently radiated to far fields in broadside direction. The proposed method shows that the symmetry of electromagnetic field modes can be exploited to the SPP transmission network, providing potential solutions to compact power dividers and combiners for microwave and optical devices and systems.

  7. Imaging and identification of waterborne parasites using a chip-scale microscope.

    PubMed

    Lee, Seung Ah; Erath, Jessey; Zheng, Guoan; Ou, Xiaoze; Willems, Phil; Eichinger, Daniel; Rodriguez, Ana; Yang, Changhuei

    2014-01-01

    We demonstrate a compact portable imaging system for the detection of waterborne parasites in resource-limited settings. The previously demonstrated sub-pixel sweeping microscopy (SPSM) technique is a lens-less imaging scheme that can achieve high-resolution (<1 µm) bright-field imaging over a large field-of-view (5.7 mm×4.3 mm). A chip-scale microscope system, based on the SPSM technique, can be used for automated and high-throughput imaging of protozoan parasite cysts for the effective diagnosis of waterborne enteric parasite infection. We successfully imaged and identified three major types of enteric parasite cysts, Giardia, Cryptosporidium, and Entamoeba, which can be found in fecal samples from infected patients. We believe that this compact imaging system can serve well as a diagnostic device in challenging environments, such as rural settings or emergency outbreaks.

  8. Scoping study for compact high-field superconducting net energy tokamaks

    NASA Astrophysics Data System (ADS)

    Mumgaard, R. T.; Greenwald, M.; Freidberg, J. P.; Wolfe, S. M.; Hartwig, Z. S.; Brunner, D.; Sorbom, B. N.; Whyte, D. G.

    2016-10-01

    The continued development and commercialization of high temperature superconductors (HTS) may enable the construction of compact, net-energy tokamaks. HTS, in contrast to present generation low temperature superconductors, offers improved performance in high magnetic fields, higher current density, stronger materials, higher temperature operation, and simplified assembly. Using HTS along with community-consensus confinement physics (H98 =1) may make it possible to achieve net-energy (Q>1) or burning plasma conditions (Q>5) in DIII-D or ASDEX-U sized, conventional aspect ratio tokamaks. It is shown that, by operating at high plasma current and density enabled by the high magnetic field (B>10T), the required triple products may be achieved at plasma volumes under 20m3, major radii under 2m, with external heating powers under 40MW. This is at the scale of existing devices operated by laboratories, universities and companies. The trade-offs in the core heating, divertor heat exhaust, sustainment, stability, and proximity to known plasma physics limits are discussed in the context of the present tokamak experience base and the requirements for future devices. The resulting HTS-based design space is compared and contrasted to previous studies on high-field copper experiments with similar missions. The physics exploration conducted with such HTS devices could decrease the real and perceived risks of ITER exploitation, and aid in quickly developing commercially-applicable tokamak pilot plants and reactors.

  9. Monitoring compaction and compressibility changes in offshore chalk reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, G.; Hardy, R.; Eltvik, P.

    1994-03-01

    Some of the North Sea's largest and most important oil fields are in chalk reservoirs. In these fields, it is important to measure reservoir compaction and compressibility because compaction can result in platform subsidence. Also, compaction drive is a main drive mechanism in these fields, so an accurate reserves estimate cannot be made without first measuring compressibility. Estimating compaction and reserves is difficult because compressibility changes throughout field life. Installing of accurate, permanent downhole pressure gauges on offshore chalk fields makes it possible to use a new method to monitor compressibility -- measurement of reservoir pressure changes caused by themore » tide. This tidal-monitoring technique is an in-situ method that can greatly increase compressibility information. It can be used to estimate compressibility and to measure compressibility variation over time. This paper concentrates on application of the tidal-monitoring technique to North Sea chalk reservoirs. However, the method is applicable for any tidal offshore area and can be applied whenever necessary to monitor in-situ rock compressibility. One such application would be if platform subsidence was expected.« less

  10. Two-step design method for highly compact three-dimensional freeform optical system for LED surface light source.

    PubMed

    Mao, Xianglong; Li, Hongtao; Han, Yanjun; Luo, Yi

    2014-10-20

    Designing an illumination system for a surface light source with a strict compactness requirement is quite challenging, especially for the general three-dimensional (3D) case. In accordance with the two key features of an expected illumination distribution, i.e., a well-controlled boundary and a precise illumination pattern, a two-step design method is proposed in this paper for highly compact 3D freeform illumination systems. In the first step, a target shape scaling strategy is combined with an iterative feedback modification algorithm to generate an optimized freeform optical system with a well-controlled boundary of the target distribution. In the second step, a set of selected radii of the system obtained in the first step are optimized to further improve the illuminating quality within the target region. The method is quite flexible and effective to design highly compact optical systems with almost no restriction on the shape of the desired target field. As examples, three highly compact freeform lenses with ratio of center height h of the lens and the maximum dimension D of the source ≤ 2.5:1 are designed for LED surface light sources to form a uniform illumination distribution on a rectangular, a cross-shaped and a complex cross pierced target plane respectively. High light control efficiency of η > 0.7 as well as low relative standard illumination deviation of RSD < 0.07 is obtained simultaneously for all the three design examples.

  11. Preliminary field investigation of intelligent compaction of hot-mix asphalt.

    DOT National Transportation Integrated Search

    2007-01-01

    Attention is being directed toward intelligent compaction (IC) of pavement layers, which uses rollers especially manufactured to determine the degree of compaction and regulate the compactive effort required to produce a pavement layer with the optim...

  12. Operation of a 400MHz NMR magnet using a (RE:Rare Earth)Ba2Cu3O7-x high-temperature superconducting coil: Towards an ultra-compact super-high field NMR spectrometer operated beyond 1GHz.

    PubMed

    Yanagisawa, Y; Piao, R; Iguchi, S; Nakagome, H; Takao, T; Kominato, K; Hamada, M; Matsumoto, S; Suematsu, H; Jin, X; Takahashi, M; Yamazaki, T; Maeda, H

    2014-12-01

    High-temperature superconductors (HTS) are the key technology to achieve super-high magnetic field nuclear magnetic resonance (NMR) spectrometers with an operating frequency far beyond 1GHz (23.5T). (RE)Ba 2 Cu 3 O 7- x (REBCO, RE: rare earth) conductors have an advantage over Bi 2 Sr 2 Ca 2 Cu 3 O 10- x (Bi-2223) and Bi 2 Sr 2 CaCu 2 O 8- x (Bi-2212) conductors in that they have very high tensile strengths and tolerate strong electromagnetic hoop stress, thereby having the potential to act as an ultra-compact super-high field NMR magnet. As a first step, we developed the world's first NMR magnet comprising an inner REBCO coil and outer low-temperature superconducting (LTS) coils. The magnet was successfully charged without degradation and mainly operated at 400MHz (9.39T). Technical problems for the NMR magnet due to screening current in the REBCO coil were clarified and solved as follows: (i) A remarkable temporal drift of the central magnetic field was suppressed by a current sweep reversal method utilizing ∼10% of the peak current. (ii) A Z2 field error harmonic of the main coil cannot be compensated by an outer correction coil and therefore an additional ferromagnetic shim was used. (iii) Large tesseral harmonics emerged that could not be corrected by cryoshim coils. Due to those harmonics, the resolution and sensitivity of NMR spectra are ten-fold lower than those for a conventional LTS NMR magnet. As a result, a HSQC spectrum could be achieved for a protein sample, while a NOESY spectrum could not be obtained. An ultra-compact 1.2GHz NMR magnet could be realized if we effectively take advantage of REBCO conductors, although this will require further research to suppress the effect of the screening current. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Innovative compact focal plane array for wide field vis and ir orbiting telescopes

    NASA Astrophysics Data System (ADS)

    Hugot, Emmanuel; Vives, Sébastien; Ferrari, Marc; Gaeremynck, Yann; Jahn, Wilfried

    2017-11-01

    The future generation of high angular resolution space telescopes will require breakthrough technologies to combine large diameters and large focal plane arrays with compactness and lightweight mirrors and structures. Considering the allocated volume medium-size launchers, short focal lengths are mandatory, implying complex optical relays to obtain diffraction limited images on large focal planes. In this paper we present preliminary studies to obtain compact focal plane arrays (FPA) for earth observations on low earth orbits at high angular resolution. Based on the principle of image slicers, we present an optical concept to arrange a 1D FPA into a 2D FPA, allowing the use of 2D detector matrices. This solution is particularly attractive for IR imaging requiring a cryostat, which volume could be considerably reduced as well as the relay optics complexity. Enabling the use of 2D matrices for such an application offers new possibilities. Recent developments on curved FPA allows optimization without concerns on the field curvature. This innovative approach also reduces the complexity of the telescope optical combination, specifically for fast telescopes. This paper will describe the concept and optical design of an F/5 - 1.5m telescope equipped with such a FPA, the performances and the impact on the system with a comparison with an equivalent 1.5m wide field Korsch telescope.

  14. Common-path digital holographic microscopy based on a beam displacer unit

    NASA Astrophysics Data System (ADS)

    Di, Jianglei; Zhang, Jiwei; Song, Yu; Wang, Kaiqiang; Wei, Kun; Zhao, Jianlin

    2018-02-01

    Digital holographic microscopy (DHM) has become a novel tool with advantages of full field, non-destructive, high-resolution and 3D imaging, which captures the quantitative amplitude and phase information of microscopic specimens. It's a well-established method for digital recording and numerical reconstructing the full complex field of wavefront of the samples with a diffraction-limited lateral resolution down to 0.3 μm depending on the numerical aperture of microscope objective. Meanwhile, its axial resolution through axial direction is less than 10 nm due to the interferometric nature in phase imaging. Compared with the typical optical configurations such as Mach-Zehnder interferometer and Michelson interferometer, the common-path DHM has the advantages of simple and compact configuration, high stability, and so on. Here, a simple, compact, and low-cost common-path DHM based on a beam displacer unit is proposed for quantitative phase imaging of biological cells. The beam displacer unit is completely compatible with commercial microscope and can be easily set up in the output port of the microscope as a compact independent device. This technique can be used to achieve the quantitative phase measurement of biological cells with an excellent temporal stability of 0.51 nm, which makes it having a good prospect in the fields of biological and medical science. Living mouse osteoblastic cells are quantitatively measured with the system to demonstrate its capability and applicability.

  15. Generation of flat-top pulsed magnetic fields with feedback control approach.

    PubMed

    Kohama, Yoshimitsu; Kindo, Koichi

    2015-10-01

    We describe the construction of a simple, compact, and cost-effective feedback system that produces flat-top field profiles in pulsed magnetic fields. This system is designed for use in conjunction with a typical capacitor-bank driven pulsed magnet and was tested using a 60-T pulsed magnet. With the developed feedback controller, we have demonstrated flat-top magnetic fields as high as 60.64 T with an excellent field stability of ±0.005 T. The result indicates that the flat-top pulsed magnetic field produced features high field stability and an accessible field strength. These features make this system useful for improving the resolution of data with signal averaging.

  16. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    DOEpatents

    McQuaid, James H.; Lavietes, Anthony D.

    1998-05-29

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radio nuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components.

  17. HST images of very compact blue galaxies at z approximately 0.2

    NASA Technical Reports Server (NTRS)

    Koo, David C.; Bershady, Matthew A.; Wirth, Gregory D.; Stanford, S. Adam; Majewski, Steven R.

    1994-01-01

    We present the results of Hubble Space Telescope (HST) Wide-Field Camera (WFC) imaging of seven very compact, very blue galaxies with B less than or equal to 21 and redshifts z approximately 0.1 to 0.35. Based on deconvolved images, we estimate typical half-light diameters of approximately 0.65 sec, corresponding to approximately 1.4 h(exp -1) kpc at redshifts z approximately 0.2. The average rest frame surface brightness within this diameter is mu(sub v) approximately 20.5 mag arcsec(exp -2), approximately 1 mag brighter than that of typical late-type blue galaxies. Ground-based spectra show strong, narrow emission lines indicating high ionization; their very blue colors suggest recent bursts of star-formation; their typical luminosities are approximately 4 times fainter than that of field galaxies. These characteristics suggest H II galaxies as likely local counterparts of our sample, though our most luminous targets appear to be unusually compact for their luminosities.

  18. Design of compact electromagnetic impulse radiating antenna for melanoma treatment.

    PubMed

    Arockiasamy, Petrishia; Mohan, Sasikala

    2016-01-01

    Cancer therapy is one of the several new applications which use nanosecond and subnanosecond high voltage pulses. New treatment based on electromagnetic (EM) fields have been developed as non-surgical and minimally invasive treatments of tumors. In particular, subnanosecond pulses can introduce important non-thermal changes in cell biology, especially the permeabilization of the cell membrane. The motivation behind this work is to launch intense subnanosecond pulses to the target (tumors) non-invasively. This works focuses on the design of a compact intense pulsed EM radiating antenna. In tense EM waves radiated at the first focal point of the Prolate Spheroidal Reflector (PSR) are focused at the second focal point where the target (tumor) is present. Two antennas with PSR but fed with different compact wave radiator are designed to focus pulsed field at the second focal point. The PSR with modified bicone antenna feed and PSR with elliptically tapered horn antenna feed are designed. The design parameters and radiation performance are discussed.

  19. Linear electric field mass spectrometry

    DOEpatents

    McComas, David J.; Nordholt, Jane E.

    1992-01-01

    A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.

  20. Wide-range nuclear magnetic resonance detector

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.; Jirberg, R. J.

    1972-01-01

    Compact and easy to use solid state nuclear magnetic resonance detector is designed for measuring field strength to 20 teslas in cryogenically cooled magnets. Extremely low noise and high sensitivity make detector applicable to nearly all types of analytical nuclear magnetic resonance measurements and can be used in high temperature and radiation environments.

  1. Packing extra mass in compact stellar structures: an interplay between Kalb-Ramond field and extra dimensions

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sumanta; SenGupta, Soumitra

    2018-05-01

    We have derived the Buchdahl's limit for a relativistic star in presence of the Kalb-Ramond field in four as well as in higher dimensions. It turns out that the Buchdahl's limit gets severely affected by the inclusion of the Kalb-Ramond field. In particular, the Kalb-Ramond field in four spacetime dimensions enables one to pack extra mass in any compact stellar structure of a given radius. On the other hand, a completely opposite picture emerges if the Kalb-Ramond field exists in higher dimensions, where the mass content of a compact star is smaller compared to that in general relativity. Implications are discussed.

  2. A compact model for electroosmotic flows in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Qiao, R.; Aluru, N. R.

    2002-09-01

    A compact model to compute flow rate and pressure in microfluidic devices is presented. The microfluidic flow can be driven by either an applied electric field or a combined electric field and pressure gradient. A step change in the ζ-potential on a channel wall is treated by a pressure source in the compact model. The pressure source is obtained from the pressure Poisson equation and conservation of mass principle. In the proposed compact model, the complex fluidic network is simplified by an electrical circuit. The compact model can predict the flow rate, pressure distribution and other basic characteristics in microfluidic channels quickly with good accuracy when compared to detailed numerical simulation. Using the compact model, fluidic mixing and dispersion control are studied in a complex microfluidic network.

  3. The GALAXIE all-optical FEL project

    NASA Astrophysics Data System (ADS)

    Rosenzweig, J. B.; Arab, E.; Andonian, G.; Cahill, A.; Fitzmorris, K.; Fukusawa, A.; Hoang, P.; Jovanovic, I.; Marcus, G.; Marinelli, A.; Murokh, A.; Musumeci, P.; Naranjo, B.; O'Shea, B.; O'Shea, F.; Ovodenko, A.; Pogorelsky, I.; Putterman, S.; Roberts, K.; Shumail, M.; Tantawi, S.; Valloni, A.; Yakimenko, V.; Xu, G.

    2012-12-01

    We describe a comprehensive project, funded under the DARPA AXiS program, to develop an all-optical table-top X-ray FEL based on dielectric acceleration and electromagnetic undulators, yielding a compact source of coherent X-rays for medical and related applications. The compactness of this source demands that high field (>GV/m) acceleration and undulation-inducing fields be employed, thus giving rise to the project's acronym: GV/m AcceLerator And X-ray Integrated Experiment (GALAXIE). There are numerous physics and technical hurdles to surmount in this ambitious scenario, and the integrated solutions include: a biharmonic photonic TW structure, 200 micron wavelength electromagnetic undulators, 5 μm laser development, ultra-high brighness magnetized/asymmetric emittance electron beam generation, and SASE FEL operation. We describe the overall design philosophy of the project, the innovative approaches to addressing the challenges presented by the design, and the significant progress towards realization of these approaches in the nine months since project initialization.

  4. Enhanced method of magnetic powder alignment for production of PLP Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Popov, A. G.; Golovnia, O. A.; Protasov, A. V.

    2017-04-01

    It is demonstrated how the high degree of powder alignment in PLP magnets can be achieved by loading the powder into a container placed in a magnetic field of moderate strength. The strip-cast alloy with a composition of 30.00 Nd, 1.95 Dy, 66.42 Fe, 0.99 B, 0.54 Co, 0.1 Ga (wt%) was subjected to hydrogen decrepitation and then milled in a vibratory mill in toluene to an average particle size of 2.9 μm determined by the FSSS method. The powder was compacted in the magnetic field of 0.2 - 1.2 T to the filling density 2.6 - 3.2×103 kg/m3. It is shown that loading the powder into a container placed in a magnetic field enhances the degree of powder alignment in sintered Nd-Fe-B magnets produced from non-pressed powder. At the filling density less than 3.2×103 kg/m3, the density of magnets is high but insufficient, because of the formation of magnetostatic chains of particles, which impedes the powder compaction. The simulation by the discrete-element method qualitatively proves that the magnetostatic interaction of the chains of particles that are formed in the course of loading in the magnetic field stimulates a decrease in the density of the sintered magnets and its non-uniform distribution over the sample. As a result of the optimization of the parameters of the alignment and compaction of the powder loaded in a magnetic field, PLP magnets with Br ≥1.34 T, Hc ≥950 kA/m, (BH)max ≥340 kJ/m3, and the degree of alignment exceeding 96% were produced.

  5. Comprehensive evaluation of compaction of asphalt pavements and development of compaction monitoring system.

    DOT National Transportation Integrated Search

    2012-04-01

    This study aimed to conduct a comprehensive evaluation of compaction of asphalt pavements and : develop software for monitoring field compaction in real time. In the first phase of this study, the researchers : built several test sections that were c...

  6. Miniature Wide-Angle Lens for Small-Pixel Electronic Camera

    NASA Technical Reports Server (NTRS)

    Mouroulils, Pantazis; Blazejewski, Edward

    2009-01-01

    A proposed wideangle lens is shown that would be especially well suited for an electronic camera in which the focal plane is occupied by an image sensor that has small pixels. The design of the lens is intended to satisfy requirements for compactness, high image quality, and reasonably low cost, while addressing issues peculiar to the operation of small-pixel image sensors. Hence, this design is expected to enable the development of a new generation of compact, high-performance electronic cameras. The lens example shown has a 60 degree field of view and a relative aperture (f-number) of 3.2. The main issues affecting the design are also shown.

  7. Recent advances in laser-driven neutron sources

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.

    2016-11-01

    Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.

  8. Agricultural machineries wheeling and soil qualities mapping in climatic changes conditions

    NASA Astrophysics Data System (ADS)

    Bergonzoli, S.; Servadio, P.

    2012-04-01

    As argued in the Fourth Assessment Report of the UN International Panel on Climate Change (IPCC) published in 2007 the global climate is changing and will continue to change in the near future. Due to the changing in time distribution and intensity of rainfall, the available time to carry out soil tillage operations, seedbed preparation and fertilizers distribution is becoming shorter. These issues are worsened by soil compaction that is one of the major problems facing modern agriculture. Soil compaction impedes infiltration of rainfall, so the increasing scale of mechanization might well be responsible for greater runoff, soil loss by water erosion and water-logging. Overuse of machinery, intensive cropping, short crop rotations, intensive grazing and inappropriate soil management leads to compaction. The objective of this research was to study the compacting effect of two wheeled tractors fitted with different type of tires during fertilizing operations with soil water content over field capacity. Field tests were carried out in a farm near Rome (41°52'502'' Latitude (N); 12°12'866" Longitude (E)) in March 2010 on a clay soil (Vertic Cambisol) during wheat fertilizing. One tractor was fitted with very narrow and high aspect ratio tires with mounted broadcaster coded (WTN), the other tractor was equipped with extra large and low aspect ratio tires with trailed broadcaster for a total of four axles coded (WTEL). Immediately after fertilising operations, such effects have been quantified through spatial variation of some soil parameters: soil water content, soil penetration resistance (CI) and soil shear strength (SS). Soil samplings have been carried out on the tracks left by the tractors and on soil not interested by the passage (control). To monitor all tractors passes across the field and to compute the total area covered by tractors tires a DGPS receiver was placed into the tractors; to map soil parameters studied, both on tracks left by the tractors passes and on control areas, a software GIS was used. Results shown the highest level of soil compaction caused by the traffic of WTN in term of CI and SS. In fact, increment ratio respect to the control measured after the tractors pass were: CI = 0.65 and 0.14 for WTN and for WTEL respectively; SS = 0.65 and 0.46 for WTN and WTEL respectively. Comparing the two different tires, significant differences were found particularly in the surface layers (0-0.20 m depth): mean values of CI and SS were higher for WTN (0.47 and 1.60 respectively) respect to WTEL. Track area covered by the two treatments respect to the whole field (16.32 ha) were: 0.025 for treatment WTN (0.27 m tires width) having an operative work width of 24 m ; 0.075 for treatment WTEL (0.85 m tires width) having an operative work width of 14 m. Results of this study highlighted that, in these field conditions (clay soil, water content over field capacity), tractor pass with very narrow tires caused a soil compaction level too high up to be impossible to traffic into the field. To operate at these soil water content conditions a tractors fitted with low aspect ratio and low inflation pressure tires is necessary. With lower soil water content, narrow tires allow carrying out fertilization into the inter-row avoiding crop trampling and compacting less percentage of field area respect to the a tractor equipped with large tires. Key words: Tractor, Soil trafficability, Soil compaction, Tires, GPS, GIS. Acknowledgements This work was carried out under the auspices of the special project "Sceneries of adaptation of the Italian agriculture to the climatic changes" (AGROSCENARI) of the Agricultural Research Council, and Italian Ministry of the Agricultural and Forestry Politics.

  9. Physics evaluation of compact tokamak ignition experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uckan, N.A.; Houlberg, W.A.; Sheffield, J.

    1985-01-01

    At present, several approaches for compact, high-field tokamak ignition experiments are being considered. A comprehensive method for analyzing the potential physics operating regimes and plasma performance characteristics of such ignition experiments with O-D (analytic) and 1-1/2-D (WHIST) transport models is presented. The results from both calculations are in agreement and show that there are regimes in parameter space in which a class of small (R/sub o/ approx. 1-2 m), high-field (B/sub o/ approx. 8-13 T) tokamaks with aB/sub o/S/q/sub */ approx. 25 +- 5 and kappa = b/a approx. 1.6-2.0 appears ignitable for a reasonable range of transport assumptions. Consideringmore » both the density and beta limits, an evaluation of the performance is presented for various forms of chi/sub e/ and chi/sub i/, including degradation at high power and sawtooth activity. The prospects of ohmic ignition are also examined. 16 refs., 13 figs.« less

  10. Compact DFB laser modules with integrated isolator at 935 nm

    NASA Astrophysics Data System (ADS)

    Reggentin, M.; Thiem, H.; Tsianos, G.; Malach, M.; Hofmann, J.; Plocke, T.; Kneier, M.; Richter, L.

    2018-02-01

    New developments in industrial applications and applications under rough environmental conditions within the field of spectroscopy and quantum technology in the 935 nm wavelength regime demand new compact, stable and robust laser systems. Beside a stable laser source the integration of a compact optical isolator is necessary to reduce size and power consumption for the whole laser system. The integration of a suitable optical isolator suppresses back reflections from the following optical system efficiently. However, the miniaturization of the optics inside the package leads to high optical power density levels that make a more detailed analysis of the components and their laser damage threshold necessary. We present test results on compact stable DFB laser sources (butterfly style packages) with newly integrated optical isolators operating around 935 nm. The presented data includes performance and lifetime tests for the laser diodes as well as package components. Overall performance data of the packaged laser diodes will be shown as well.

  11. Gravitationally Focused Dark Matter around Compact Stars

    NASA Astrophysics Data System (ADS)

    Bromley, Benjamin C.

    2011-12-01

    If dark matter self-annihilates then it may produce an observable signal when its density is high. The details depend on the intrinsic properties of dark matter and how it clusters in space. For example, the density profile of some dark matter candidates may rise steeply enough toward the Galactic Center that self-annihilation may produce detectable γ-ray emission. Here, we discuss the possibility that an annihilation signal arises near a compact object (e.g., neutron star or black hole) even when the density of dark matter in the neighborhood of the object is uniform. Gravitational focusing produces a local enhancement of density with a profile that falls off approximately as the inverse square-root of distance from the compact star. While geometric dilution may overwhelm the annihilation signal from this local enhancement, magnetic fields tied to the compact object can increase the signal's contrast relative to the background.

  12. A compact light-sheet microscope for the study of the mammalian central nervous system

    PubMed Central

    Yang, Zhengyi; Haslehurst, Peter; Scott, Suzanne; Emptage, Nigel; Dholakia, Kishan

    2016-01-01

    Investigation of the transient processes integral to neuronal function demands rapid and high-resolution imaging techniques over a large field of view, which cannot be achieved with conventional scanning microscopes. Here we describe a compact light sheet fluorescence microscope, featuring a 45° inverted geometry and an integrated photolysis laser, that is optimized for applications in neuroscience, in particular fast imaging of sub-neuronal structures in mammalian brain slices. We demonstrate the utility of this design for three-dimensional morphological reconstruction, activation of a single synapse with localized photolysis, and fast imaging of neuronal Ca2+ signalling across a large field of view. The developed system opens up a host of novel applications for the neuroscience community. PMID:27215692

  13. A compact neutron scatter camera for field deployment

    DOE PAGES

    Goldsmith, John E. M.; Gerling, Mark D.; Brennan, James S.

    2016-08-23

    Here, we describe a very compact (0.9 m high, 0.4 m diameter, 40 kg) battery operable neutron scatter camera designed for field deployment. Unlike most other systems, the configuration of the sixteen liquid-scintillator detection cells are arranged to provide omnidirectional (4π) imaging with sensitivity comparable to a conventional two-plane system. Although designed primarily to operate as a neutron scatter camera for localizing energetic neutron sources, it also functions as a Compton camera for localizing gamma sources. In addition to describing the radionuclide source localization capabilities of this system, we demonstrate how it provides neutron spectra that can distinguish plutonium metalmore » from plutonium oxide sources, in addition to the easier task of distinguishing AmBe from fission sources.« less

  14. POSSIBLE CHANGES OF STATE AND RELEVANT TIMESCALES FOR A NEUTRON STAR IN LS I +61 Degree-Sign 303

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papitto, A.; Torres, D. F.; Rea, N.

    2012-09-10

    The properties of the short, energetic bursts recently observed from the {gamma}-ray binary LS I +61 Degree-Sign 303 are typical of those showed by high magnetic field neutron stars (NSs) and thus provide a strong indication in favor of a NS being the compact object in the system. Here, we discuss the transitions among the states accessible to a NS in a system like LS I +61 Degree-Sign 303, such as the ejector, propeller, and accretor phases, depending on the NS spin period, magnetic field, and rate of mass captured. We show how the observed bolometric luminosity ({approx}> few Multiplication-Signmore » 10{sup 35} erg s{sup -1}) and its broadband spectral distribution indicate that the compact object is most probably close to the transition between working as an ejector all along its orbit and being powered by the propeller effect when it is close to the orbit periastron, in a so-called flip-flop state. By assessing the torques acting onto the compact object in the various states, we follow the spin evolution of the system, evaluating the time spent by the system in each of them. Even taking into account the constraint set by the observed {gamma}-ray luminosity, we found that the total age of the system is compatible with being Almost-Equal-To 5-10 kyr, comparable to the typical spin-down ages of high-field NSs. The results obtained are discussed in the context of the various evolutionary stages expected for a NS with a high-mass companion.« less

  15. Effect of soil compaction on the degradation and ecotoxicological impact of isoproturon

    NASA Astrophysics Data System (ADS)

    Mamy, L.; Vrignaud, P.; Cheviron, N.; Perreau, F.; Belkacem, M.; Brault, A.; Breuil, S.; Delarue, G.; Touton, I.; Chaplain, V.

    2009-04-01

    Soil is essentially a non-renewable resource which performs many functions and delivers services vital to human activities and ecosystems survival. However the capacity of soil to keep on fully performing its broad variety of crucial functions is damaged by several threats and, among them, chemical contamination by pesticides and compaction due to intensive agriculture practices. How these two threats could interact is largely unknown: compaction may modify the fate of pesticides in soil therefore their effects on the biological functioning of soil. The aim of this work was to study the effect of soil compaction on (1) the degradation of one herbicide, isoproturon (2) the ecotoxicological impact of this herbicide measured through two enzyme activities involved in C (beta-glucosidase) and N (urease) cycles in soil. Undisturbed soil cylinders were sampled in the 2-4 cm layer of La Cage experimental site (INRA, Versailles, France), under intensive agriculture practices. Several soil samples were prepared with different bulk density then treated with isoproturon (IPU). The samples were incubated at 18 ± 1°C in darkness for 63 days. At 0, 2, 7, 14, 28 and 63 days, the concentrations of isoproturon and of two of its main metabolites in soil (monodesmethyl-isoproturon, IPPMU; didesmethyl-isoproturon, IPPU), and the enzyme activities were measured. The results showed that there was no significant difference in IPU degradation under no and moderate soil compaction. IPU was less persistent in the highly compacted soil, but this soil had also higher humidity which is known to increase the degradation. Only one metabolite, IPPMU, was detected independently of the conditions of compaction. The compaction did not modify the effect of IPU on beta-glucosidase and urease activities in the long term, but microbial communities were probably the same in all the soil samples that were initially not compacted. The communities developed in durably compacted zones in the field are possibly different and modification in enzyme activities might be observed as a result. These first results seem to show that compaction did not modify the degradation and ecotoxicological impact of isoproturon in the soil. However, further studies should be performed using soil samples taken in different zones of compaction in the field, and taking into account the relation between bulk density and soil humidity.

  16. 0-6676 : Rapid field detection of moisture content for base and subgrade : [project summary].

    DOT National Transportation Integrated Search

    2013-08-01

    Properly applying water during compaction of : roadway base and subgrade materials is : important for achieving adequate compaction. : Construction specifications determine the : required water content, and field measurement : historically takes plac...

  17. Compact Full-Field Ion Detector System for SmallSats Beyond LEO

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Clark, Pamela E.; McNeil, Roger R.

    2014-01-01

    NASA Glenn Research Center (GRC) is applying its expertise and facilities in harsh environment instrumentation to develop a Compact Full-Field Ion Detector System (CFIDS). The CFIDS is designed to be an extremely compact, low cost instrument, capable of being flown on a wide variety of deep space platforms, to provide multi-directional, comprehensive (composition, velocity, and direction) in-situ measurements of heavy ions in space plasma environments.

  18. Mapping the spatial patterns of field traffic and traffic intensity to predict soil compaction risks at the field scale

    NASA Astrophysics Data System (ADS)

    Duttmann, Rainer; Kuhwald, Michael; Nolde, Michael

    2015-04-01

    Soil compaction is one of the main threats to cropland soils in present days. In contrast to easily visible phenomena of soil degradation, soil compaction, however, is obscured by other signals such as reduced crop yield, delayed crop growth, and the ponding of water, which makes it difficult to recognize and locate areas impacted by soil compaction directly. Although it is known that trafficking intensity is a key factor for soil compaction, until today only modest work has been concerned with the mapping of the spatially distributed patterns of field traffic and with the visual representation of the loads and pressures applied by farm traffic within single fields. A promising method for for spatial detection and mapping of soil compaction risks of individual fields is to process dGPS data, collected from vehicle-mounted GPS receivers and to compare the soil stress induced by farm machinery to the load bearing capacity derived from given soil map data. The application of position-based machinery data enables the mapping of vehicle movements over time as well as the assessment of trafficking intensity. It also facilitates the calculation of the trafficked area and the modeling of the loads and pressures applied to soil by individual vehicles. This paper focuses on the modeling and mapping of the spatial patterns of traffic intensity in silage maize fields during harvest, considering the spatio-temporal changes in wheel load and ground contact pressure along the loading sections. In addition to scenarios calculated for varying mechanical soil strengths, an example for visualizing the three-dimensional stress propagation inside the soil will be given, using the Visualization Toolkit (VTK) to construct 2D or 3D maps supporting to decision making due to sustainable field traffic management.

  19. Linear electric field mass spectrometry

    DOEpatents

    McComas, D.J.; Nordholt, J.E.

    1992-12-01

    A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

  20. Mirror-field confined compact plasma source using permanent magnet for plasma processings.

    PubMed

    Goto, Tetsuya; Sato, Kei-Ichiro; Yabuta, Yuki; Sugawa, Shigetoshi

    2016-12-01

    A mirror-field confined compact electron cyclotron resonance (ECR) plasma source using permanent magnets was developed, aiming for the realization of high-quality plasma processings where high-density reactive species are supplied to a substrate with minimizing the ion bombardment damages. The ECR position was located between a microwave transmissive window and a quartz limiter, and plasmas were transported from the ECR position to a midplane of the magnetic mirror field through the quartz limiter. Thus, a radius of core plasma could be determined by the limiter, which was 15 mm in this study. Plasma parameters were investigated by the Langmuir probe measurement. High-density plasma larger than 10 11 cm -3 could be produced by applying 5.85-GHz microwave power of 10 W or more. For the outside region of the core plasma where a wafer for plasma processings will be set at, the ion current density was decreased dramatically with distance from the core plasma and became smaller by approximately two orders of magnitude that in the core plasma region for the radial position of 40 mm, suggesting the realization of reduction in ion bombardment damages.

  1. Numerical simulation of magnetic field for compact electromagnet consisting of REBCO coils and iron yoke

    NASA Astrophysics Data System (ADS)

    You, Shuangrong; Chi, Changxin; Guo, Yanqun; Bai, Chuanyi; Liu, Zhiyong; Lu, Yuming; Cai, Chuanbing

    2018-07-01

    This paper presents the numerical simulation of a high-temperature superconductor electromagnet consisting of REBCO (RE-Ba2Cu3O7‑x, RE: rare earth) superconducting tapes and a ferromagnetic iron yoke. The REBCO coils with multi-width design are operating at 77 K, with the iron yoke at room temperature, providing a magnetic space with a 32 mm gap between two poles. The finite element method is applied to compute the 3D model of the studied magnet. Simulated results show that the magnet generates a 1.5 T magnetic field at an operating current of 38.7 A, and the spatial inhomogeneity of the field is 0.8% in a Φ–20 mm diameter sphere volume. Compared with the conventional iron electromagnet, the present compact design is more suitable for practical application.

  2. Accreting neutron stars, black holes, and degenerate dwarf stars.

    PubMed

    Pines, D

    1980-02-08

    During the past 8 years, extended temporal and broadband spectroscopic studies carried out by x-ray astronomical satellites have led to the identification of specific compact x-ray sources as accreting neutron stars, black holes, and degenerate dwarf stars in close binary systems. Such sources provide a unique opportunity to study matter under extreme conditions not accessible in the terrestrial laboratory. Quantitative theoretical models have been developed which demonstrate that detailed studies of these sources will lead to a greatly increased understanding of dense and superdense hadron matter, hadron superfluidity, high-temperature plasma in superstrong magnetic fields, and physical processes in strong gravitational fields. Through a combination of theory and observation such studies will make possible the determination of the mass, radius, magnetic field, and structure of neutron stars and degenerate dwarf stars and the identification of further candidate black holes, and will contribute appreciably to our understanding of the physics of accretion by compact astronomical objects.

  3. Design of pulsed guiding magnetic field for high power microwave generators.

    PubMed

    Ju, J-C; Zhang, H; Zhang, J; Shu, T; Zhong, H-H

    2014-09-01

    In this paper, we present a comprehensive study on designing solenoid together with the corresponding power supply system to excite pulsed magnetic field required for high power microwave generators. Particularly, a solenoid is designed and the excited magnetic field is applied to a Ku-band overmoded Cerenkov generator. It is found in experiment that the electron beam is properly guided by the magnetic field and a 1.1 GW high power microwave is achieved at a central frequency of 13.76 GHz. Pulsed solenoid system has the advantages of compactness and low energy consumption, which are of great interest for repetitive operation. The reported studies and results can be generalized to other applications which require magnetic fields.

  4. Mode-locked thin-disk lasers and their potential application for high-power terahertz generation

    NASA Astrophysics Data System (ADS)

    Saraceno, Clara J.

    2018-04-01

    The progress achieved in the last few decades in the performance of ultrafast laser systems with high average power has been tremendous, and continues to provide momentum to new exciting applications, both in scientific research and technology. Among the various technological advances that have shaped this progress, mode-locked thin-disk oscillators have attracted significant attention as a unique technology capable of providing ultrashort pulses with high energy (tens to hundreds of microjoules) and at very high repetition rates (in the megahertz regime) from a single table-top oscillator. This technology opens the door to compact high repetition rate ultrafast sources spanning the entire electromagnetic spectrum from the XUV to the terahertz regime, opening various new application fields. In this article, we focus on their unexplored potential as compact driving sources for high average power terahertz generation.

  5. Compact and high-efficiency device for Raman scattering measurement using optical fibers.

    PubMed

    Mitsui, Tadashi

    2014-11-01

    We describe the design and development of a high-efficiency optical measurement device for operation within the small bore of a high-power magnet at low temperature. For the high-efficiency measurement of light emitted from this small region, we designed a compact confocal optics with lens focusing and tilting systems, and used a piezodriven translation stage that allows micron-scale focus control of the sample position. We designed a measurement device that uses 10 m-long optical fibers in order to avoid the influence of mechanical vibration and magnetic field leakage of high-power magnets, and we also describe a technique for minimizing the fluorescence signal of optical fibers. The operation of the device was confirmed by Raman scattering measurements of monolayer graphene on quartz glass with a high signal-to-noise ratio.

  6. Interaction dynamics of high Reynolds number magnetized plasma flow on the CTIX plasma accelerator

    NASA Astrophysics Data System (ADS)

    Howard, Stephen James

    The Compact Toroid Injection eXperiment, (CTIX), is a coaxial railgun that forms and accelerates magnetized plasma rings called compact toroids (CT's). CTIX consists of a pair of cylindrical coaxial electrodes with the region between them kept at high vacuum (2 m long, 15 cm outer diameter). Hydrogen is typically the dominant constituent of the CT plasma, however helium can also be used. The railgun effect that accelerates the CT can be accounted for by the Lorentz j x B force density created by the power input from a capacitor bank of roughly a Giga-Watt peak. The final velocity of the CT can be as high as 300 km/s, with an acceleration of about 3 billion times Earth's gravity. The compact toroid is able to withstand these forces because of a large internal magnetic field of about 1 Tesla. Understanding the nature of high speed flow of a magnetized plasma has been the primary challenge of this work. In this dissertation we will explore a sequence of fundamental questions regarding the plasma physics of CTIX. First we will go over some new results about the structure and dynamics of the compact toroid's magnetic field, and its electrical resistivity. Then we will present the results from a sequence of key experiments involving reconnection/compression and thermalization of the plasma during interaction of the CT with target magnetic fields of various geometries. Next, we look at the Doppler shift of a spectral line of the He II ion as a measurement of plasma velocity, and to gain insight into the ionization physics of helium in our plasma. These preliminary experiments provide the background for our primary experimental tool for investigating turbulence, a technique called Gas Puff Imaging (GPI) in which a cloud of helium can be used to enhance plasma brightness, allowing plasma density fluctuations to be imaged. We will conclude with an analysis of the images that show coherent density waves, as well as the transition to turbulence during the interaction with a wire target perturbation.

  7. Efficient measurement of large light source near-field color and luminance distributions for optical design and simulation

    NASA Astrophysics Data System (ADS)

    Kostal, Hubert; Kreysar, Douglas; Rykowski, Ronald

    2009-08-01

    The color and luminance distributions of large light sources are difficult to measure because of the size of the source and the physical space required for the measurement. We describe a method for the measurement of large light sources in a limited space that efficiently overcomes the physical limitations of traditional far-field measurement techniques. This method uses a calibrated, high dynamic range imaging colorimeter and a goniometric system to move the light source through an automated measurement sequence in the imaging colorimeter's field-of-view. The measurement is performed from within the near-field of the light source, enabling a compact measurement set-up. This method generates a detailed near-field color and luminance distribution model that can be directly converted to ray sets for optical design and that can be extrapolated to far-field distributions for illumination design. The measurements obtained show excellent correlation to traditional imaging colorimeter and photogoniometer measurement methods. The near-field goniometer approach that we describe is broadly applicable to general lighting systems, can be deployed in a compact laboratory space, and provides full near-field data for optical design and simulation.

  8. Comparison of Laboratory and Field Density of Asphalt Mixtures

    DOT National Transportation Integrated Search

    1991-01-01

    The objective of this paper is to investigate the relationships between the measured density of the mixture obtained in the mix design, during quality control of the mixture (laboratory compaction of field produced mix), after initial compaction (cor...

  9. Radiation tolerant compact image sensor using CdTe photodiode and field emitter array (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Masuzawa, Tomoaki; Neo, Yoichiro; Mimura, Hidenori; Okamoto, Tamotsu; Nagao, Masayoshi; Akiyoshi, Masafumi; Sato, Nobuhiro; Takagi, Ikuji; Tsuji, Hiroshi; Gotoh, Yasuhito

    2016-10-01

    A growing demand on incident detection is recognized since the Great East Japan Earthquake and successive accidents in Fukushima nuclear power plant in 2011. Radiation tolerant image sensors are powerful tools to collect crucial information at initial stages of such incidents. However, semiconductor based image sensors such as CMOS and CCD have limited tolerance to radiation exposure. Image sensors used in nuclear facilities are conventional vacuum tubes using thermal cathodes, which have large size and high power consumption. In this study, we propose a compact image sensor composed of a CdTe-based photodiode and a matrix-driven Spindt-type electron beam source called field emitter array (FEA). A basic principle of FEA-based image sensors is similar to conventional Vidicon type camera tubes, but its electron source is replaced from a thermal cathode to FEA. The use of a field emitter as an electron source should enable significant size reduction while maintaining high radiation tolerance. Current researches on radiation tolerant FEAs and development of CdTe based photoconductive films will be presented.

  10. Magnetoresistive Current Sensors for High Accuracy, High Bandwidth Current Measurement in Spacecraft Power Electronics

    NASA Astrophysics Data System (ADS)

    Slatter, Rolf; Goffin, Benoit

    2014-08-01

    The usage of magnetoresistive (MR) current sensors is increasing steadily in the field of power electronics. Current sensors must not only be accurate and dynamic, but must also be compact and robust. The MR effect is the basis for current sensors with a unique combination of precision and bandwidth in a compact package. A space-qualifiable magnetoresistive current sensor with high accuracy and high bandwidth is being jointly developed by the sensor manufacturer Sensitec and the spacecraft power electronics supplier Thales Alenia Space (T AS) Belgium. Test results for breadboards incorporating commercial-off-the-shelf (COTS) sensors are presented as well as an application example in the electronic control and power unit for the thrust vector actuators of the Ariane5-ME launcher.

  11. Model for Generation of Neutrons in a Compact Diode with Laser-Plasma Anode and Suppression of Electron Conduction Using a Permanent Cylindrical Magnet

    NASA Astrophysics Data System (ADS)

    Shikanov, A. E.; Vovchenko, E. D.; Kozlovskii, K. I.; Rashchikov, V. I.; Shatokhin, V. L.

    2018-04-01

    A model for acceleration of deuterons and generation of neutrons in a compact laser-plasma diode with electron isolation using magnetic field generated by a hollow cylindrical permanent magnet is presented. Experimental and computer-simulated neutron yields are compared for the diode structure under study. An accelerating neutron tube with a relatively high neutron generation efficiency can be constructed using suppression of electron conduction with the aid of a magnet placed in the vacuum volume.

  12. Escape of gravitational radiation from the field of massive bodies

    NASA Technical Reports Server (NTRS)

    Price, Richard H.; Pullin, Jorge; Kundu, Prasun K.

    1993-01-01

    We consider a compact source of gravitational waves of frequency omega in or near a massive spherically symmetric distribution of matter or a black hole. Recent calculations have led to apparently contradictory results for the influence of the massive body on the propagation of the waves. We show here that the results are in fact consistent and in agreement with the 'standard' viewpoint in which the high-frequency compact source produces the radiation as if in a flat background, and the background curvature affects the propagation of these waves.

  13. Roller compacted concrete : field evaluation and mixture optimization.

    DOT National Transportation Integrated Search

    2014-08-01

    Roller Compacted Concrete (RCC) as an economical, fast construction and sustainable materials has attracted increasing attention for pavement construction. The growth of roller-compacted concrete pavement used in different regions is impeded by conce...

  14. Load dissipation by corn residue on tilled soil in laboratory and field-wheeling conditions.

    PubMed

    Reichert, José M; Brandt, André A; Rodrigues, Miriam F; Reinert, Dalvan J; Braida, João A

    2016-06-01

    Crop residues may partially dissipate applied loads and reduce soil compaction. We evaluated the effect of corn residue on energy-applied dissipation during wheeling. The experiment consisted of a preliminary laboratory test and a confirmatory field test on a Paleaudalf soil. In the laboratory, an adapted Proctor test was performed with three energy levels, with and without corn residue. Field treatments consisted of three 5.1 Mg tractor wheeling intensities (0, 2, and 6), with and without 12 Mg ha(-1) corn residue on the soil surface. Corn residue on the soil surface reduced soil bulk density in the adapted Proctor test. By applying energy of 52.6 kN m m(-3) , soil dissipated 2.98% of applied energy, whereas with 175.4 kN m m(-3) a dissipation of 8.60% was obtained. This result confirms the hypothesis that surface mulch absorbs part of the compaction effort. Residue effects on soil compaction observed in the adapted Proctor test was not replicated under subsoiled soil field conditions, because of differences in applied pressure and soil conditions (structure, moisture and volume confinement). Nevertheless, this negative result does not mean that straw has no effect in the field. Such effects should be measured via stress transmission and compared to soil load-bearing capacity, rather than on bulk deformations. Wheeling by heavy tractor on subsoiled soil increased compaction, independently of surface residue. Two wheelings produced a significantly increase, but six wheelings did not further increase compaction. Reduced traffic intensity on recently tilled soil is necessary to minimize soil compaction, since traffic intensity show a greater effect than surface mulch on soil protection from excessive compaction. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  15. A Broadband IR Compact High Resolution Spectrometer (BIRCHES) for a Lunar Water Distribution (LWaDi) Cubesat Mission

    NASA Astrophysics Data System (ADS)

    Clark, Pamela E.; Macdowall, Robert J.; Reuter, Dennis; Mauk, Robin

    2014-11-01

    We are in the process of developing the BIRCH (Broadband IR for Cubesats with High Resolution) Spectrometer for characterization of a range of deep space targets. BIRCH is the first extremely compact Broadband IR spectrometer with high spectral resolution designed to measure water type and component distribution for a science-driven cubesat mission, such as the lunar orbital mission LWaDi (Lunar Water Distribution) designed to determine the systematics of lunar water and volatiles as a function of time of day, latitude, and terrain. The development of cubesat form factor instruments, such as BIRCH, capable of providing high priority science goals identified in the decadal survey is critical to achieve low cost planetary exploration promised by the cubesat paradigm by exploring volatile systems via orbiting or landed packages. On the Moon, as well as Mercury, Mars, and the asteroids, the source, distribution, and role of volatiles is a question of major importance, and has implications for formation processes, including interior structure, differentiation, and the origin of life in the early solar system. The form and distribution of water has implications for human exploration, resource exploitation, and sample curation. Recent lunar missions gave unanticipated evidence for the water from NIR instruments not optimized for finding it. Our instrument includes a compact broadband HgCdTe detector with a linear variable filter and a compact cryocooler (for operation below 140K) attached to a compact optical system with 2 off-axis parabolic mirrors and variable field stop operating below 240K. Its 10 nm or better resolution and longer wavelength upper range (1.3 to 3.7 microns) are necessary to identify and separate features associated with water type (adsorbed, bound, ice) and components. Its 4-sided adjustable iris at the field stop enables a constant spot size (10 x 10 km) regardless of altitude. BIRCH will be able to provide systematic and extensive enough information to understand water’s life cycle, temporal and spatial distribution and interactions as a function of lunar cycles, characteristic features, and regolith composition.

  16. A Permanent-Magnet Microwave Ion Source For A Compact High-Yield Neutron Generator

    NASA Astrophysics Data System (ADS)

    Waldmann, O.; Ludewigt, B.

    2011-06-01

    We present recent work on the development of a microwave ion source that will be used in a high-yield compact neutron generator for active interrogation applications. The sealed tube generator will be capable of producing high neutron yields, 5×1011 n/s for D-T and ˜1×1010 n/s for D-D reactions, while remaining transportable. We constructed a microwave ion source (2.45 GHz) with permanent magnets to provide the magnetic field strength of 87.5 mT necessary for satisfying the electron cyclotron resonance (ECR) condition. Microwave ion sources can produce high extracted beam currents at the low gas pressures required for sealed tube operation and at lower power levels than previously used RF-driven ion sources. A 100 mA deuterium/tritium beam will be extracted through a large slit (60×6 mm2) to spread the beam power over a larger target area. This paper describes the design of the permanent-magnet microwave ion source and discusses the impact of the magnetic field design on the source performance. The required equivalent proton beam current density of 40 mA/cm2 was extracted at a moderate microwave power of 400 W with an optimized magnetic field.

  17. A compact field fluorometer and its application to dye tracing in karst environments

    NASA Astrophysics Data System (ADS)

    Poulain, Amaël; Rochez, Gaëtan; Van Roy, Jean-Pierre; Dewaide, Lorraine; Hallet, Vincent; De Sadelaer, Geert

    2017-08-01

    Dye tracing is a classic technique in hydrogeology to investigate surface-water or groundwater flow characteristics, and it is useful for many applications including natural or industrial issues. The Fluo-Green field fluorometer has been successfully tested in a karst environment and is specifically suitable for in-cave karst water monitoring. Karst research often uses dyes to obtain information about groundwater flow in unexplored cave passages. The compact device, alternatively named Fluo-G, meets the requirements of cave media: small (10 × 16 × 21 cm), lightweight (0.75 kg without ballast) and simple in conception. It is easy for cavers to set up and handle compared to other sampling methods. The fluorometer records uranine, turbidity and temperature with a user-defined time-step (1 min - 1 day). Very low energy consumption allows 9,000 measurements with six AA batteries. The device was calibrated and tested in the laboratory and in field conditions in Belgian karst systems. Results are in good fit with other sampling methods: in-situ fluorometers and automatic water sampling plus laboratory analysis. Recording high quality data (breakthrough curves) in karst with in-cave monitoring is valuable to improve knowledge of karst systems. Many hydrological and hydrogeological applications can benefit from such a low-cost and compact device, and finding the best compromise between resources and quality data is essential. Several improvements are possible but preliminary field tests are very promising.

  18. Multi-step process for concentrating magnetic particles in waste sludges

    DOEpatents

    Watson, John L.

    1990-01-01

    This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed.

  19. Multi-step process for concentrating magnetic particles in waste sludges

    DOEpatents

    Watson, J.L.

    1990-07-10

    This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed. 7 figs.

  20. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    DOEpatents

    McQuaid, J.H.; Lavietes, A.D.

    1998-05-26

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector is disclosed. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radionuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components. 9 figs.

  1. Current driven wiggler

    NASA Astrophysics Data System (ADS)

    Tournes, C.; Aucouturier, J.; Arnaud, B.; Brasile, J. P.; Convert, G.; Simon, M.

    1992-07-01

    A current-driven wiggler is the cornerstone of an innovative, compact, high-efficiency, transportable tunable free-electron laser (FEL), the feasibility of which is currently being evaluated by Thomson-CSF. The salient advantages are: compactness of the FEL, along with the possibility to accelerate the beam through several successive passes through the accelerating section (the number of passes being defined by the final wavelength of the radiation; i.e. visible, MWIR, LWIR); the wiggler can be turned off and be transparent to the beam until the last pass. Wiggler periodicities as small as 5 mm can be achieved, hence contributing to FEL compactness. To achieve overall efficiencies in the range of 10% at visible wavelengths, not only the wiggler periodicity must be variable, but the strength of the magnetic field of each period can be adjusted separately and fine-tuned versus time during the macropulse, so as to take into account the growing contribution of the wave energy in the cavity to the total ponderomotive force. The salient theoretical point of this design is the optimization of the parameters defining each period of the wiggler for each micropacket of the macropulse. The salient technology point is the mechanical and thermal design of the wiggler which allows the required high currents to achieve magnetic fields up to 2T.

  2. Aerodynamic Performance of a Compact, High Work-Factor Centrifugal Compressor at the Stage and Subcomponent Level

    NASA Technical Reports Server (NTRS)

    Braunscheidel, Edward P.; Welch, Gerard E.; Skoch, Gary J.; Medic, Gorazd; Sharma, Om P.

    2014-01-01

    The measured aerodynamic performance of a compact, high work factor, single-stage centrifugal compressor, comprising an impeller, diffuser, 90-bend, and exit guide vane (EGV), is reported. Performance levels are based on steady-state total-pressure and total-temperature rake and angularity-probe data acquired at key machine rating planes during recent testing at NASA Glenn Research Center. Aerodynamic performance at the stage level are reported for operation between 70 to 105 of design corrected speed, with subcomponent (impeller, diffuser, and exitguide-vane) detailed flow field measurements presented and discussed at the 100 design-speed condition. Individual component losses from measurements are compared with pre-test predictions on a limited basis.

  3. Conformal field theories and compact curves in moduli spaces

    NASA Astrophysics Data System (ADS)

    Donagi, Ron; Morrison, David R.

    2018-05-01

    We show that there are many compact subsets of the moduli space M g of Riemann surfaces of genus g that do not intersect any symmetry locus. This has interesting implications for N=2 supersymmetric conformal field theories in four dimensions.

  4. Mechanics of Ballast Compaction. Volume 2 : Field Methods for Ballast Physical State Measurement

    DOT National Transportation Integrated Search

    1982-03-01

    Field methods for measuring ballast physical state are needed to study the effects of ballast compaction. Following a consideration of various alternatives, three methods were selected for development and evaluation. The first was in-place density, w...

  5. Compact Full-Field Ion Detector System for CubeSat Science Beyond LEO

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Clark, Pamela E.

    2013-01-01

    NASA Glenn Research Center (GRC) is applying its expertise and facilities in harsh environment instrumentation to develop a Compact Full-Field Ion Detector System (CFIDS). The CFIDS is designed to be an extremely compact, low cost instrument, capable of being flown on a wide variety of deep space platforms, to provide comprehensive (composition, velocity, and direction) in situ measurements of heavy ions in space plasma environments with higher fidelity, than previously available.

  6. Compact, maintainable 80-KeV neutral beam module

    DOEpatents

    Fink, Joel H.; Molvik, Arthur W.

    1980-01-01

    A compact, maintainable 80-keV arc chamber, extractor module for a neutral beam system immersed in a vacuum of <10.sup.-2 Torr, incorporating a nested 60-keV gradient shield located midway between the high voltage ion source and surrounding grounded frame. The shield reduces breakdown or arcing path length without increasing the voltage gradient, tends to keep electric fields normal to conducting surfaces rather than skewed and reduces the peak electric field around irregularities on the 80-keV electrodes. The arc chamber or ion source is mounted separately from the extractor or ion accelerator to reduce misalignment of the accelerator and to permit separate maintenance to be performed on these systems. The separate mounting of the ion source provides for maintaining same without removing the ion accelerator.

  7. Bright compact bulges at intermediate redshifts

    NASA Astrophysics Data System (ADS)

    Sachdeva, Sonali; Saha, Kanak

    2018-07-01

    Studying bright (MB < -20), intermediate-redshift (0.4 < z< 1.0), disc-dominated (nB < 2.5) galaxies from Hubble Space Telescope/Advanced Camera for Surveys and Wide Field Camera 3 in Chandra Deep Field-South, in rest-frame B and I band, we found a new class of bulges that is brighter and more compact than ellipticals. We refer to them as `bright, compact bulges' (BCBs) - they resemble neither classical nor pseudo-bulges and constitute ˜12 per cent of the total bulge population at these redshifts. Examining free-bulge + disc decomposition sample and elliptical galaxy sample from Simard et al., we find that only ˜0.2 per cent of the bulges can be classified as BCBs in the local Universe. Bulge to total light ratio of disc galaxies with BCBs is (at ˜0.4) a factor of ˜2 and ˜4 larger than for those with classical and pseudo-bulges. BCBs are ˜2.5 and ˜6 times more massive than classical and pseudo-bulges. Although disc galaxies with BCBs host the most massive and dominant bulge type, their specific star formation rate is 1.5-2 times higher than other disc galaxies. This is contrary to the expectations that a massive compact bulge would lead to lower star formation rates. We speculate that our BCB host disc galaxies are descendant of massive, compact, and passive elliptical galaxies observed at higher redshifts. Those high-redshift ellipticals lack local counterparts and possibly evolved by acquiring a compact disc around them. The overall properties of BCBs support a picture of galaxy assembly in which younger discs are being accreted around massive pre-existing spheroids.

  8. Spectral imaging spreads into new industrial and on-field applications

    NASA Astrophysics Data System (ADS)

    Bouyé, Clémentine; Robin, Thierry; d'Humières, Benoît

    2018-02-01

    Numerous recent innovative developments have led to a high reduction of hyperspectral and multispectral cameras cost and size. The achieved products - compact, reliable, low-cot, easy-to-use - meet end-user requirements in major fields: agriculture, food and beverages, pharmaceutics, machine vision, health. The booming of this technology in industrial and on-field applications is getting closer. Indeed, the Spectral Imaging market is at a turning point. A high growth rate of 20% is expected in the next 5 years. The number of cameras sold will increase from 3 600 in 2017 to more than 9 000 in 2022.

  9. Steady state compact toroidal plasma production

    DOEpatents

    Turner, William C.

    1986-01-01

    Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilson, G. H.; Heitzenroeder, P.; Lyon, J.

    Stellarators use 3D plasma and magnetic field shaping to produce a steady-state disruption-free magnetic confinement configuration. Compact stellarators have additional attractive properties — quasi-symmetric magnetic fields and low aspect ratio. The National Compact Stellarator Experiment (NCSX) is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in partnership with the Oak Ridge National Laboratory (ORNL) to test the physics of a high-beta compact stellarator with a lowripple, tokamak-like magnetic configuration. The engineering challenges of NCSX stem from its complex geometry requirements. These issues are addressed in the construction project through manufacturing R&D and system engineering. As a result, the fabricationmore » of the coil winding forms and vacuum vessel are proceeding in industry without significant technical issues, and preparations for winding the coils at PPPL are in place. Design integration, analysis, and dimensional control are functions provided by system engineering to ensure that the finished product will satisfy the physics requirements, especially accurate realization of the specified coil geometries. After completion of construction in 2009, a research program to test the expected physics benefits will start.« less

  11. Free-form reflective optics for mid-infrared camera and spectrometer on board SPICA

    NASA Astrophysics Data System (ADS)

    Fujishiro, Naofumi; Kataza, Hirokazu; Wada, Takehiko; Ikeda, Yuji; Sakon, Itsuki; Oyabu, Shinki

    2017-11-01

    SPICA (Space Infrared Telescope for Cosmology and Astrophysics) is an astronomical mission optimized for mid-and far-infrared astronomy with a cryogenically cooled 3-m class telescope, envisioned for launch in early 2020s. Mid-infrared Camera and Spectrometer (MCS) is a focal plane instrument for SPICA with imaging and spectroscopic observing capabilities in the mid-infrared wavelength range of 5-38μm. MCS consists of two relay optical modules and following four scientific optical modules of WFC (Wide Field Camera; 5'x 5' field of view, f/11.7 and f/4.2 cameras), LRS (Low Resolution Spectrometer; 2'.5 long slits, prism dispersers, f/5.0 and f/1.7 cameras, spectral resolving power R ∼ 50-100), MRS (Mid Resolution Spectrometer; echelles, integral field units by image slicer, f/3.3 and f/1.9 cameras, R ∼ 1100-3000) and HRS (High Resolution Spectrometer; immersed echelles, f/6.0 and f/3.6 cameras, R ∼ 20000-30000). Here, we present optical design and expected optical performance of MCS. Most parts of MCS optics adopt off-axis reflective system for covering the wide wavelength range of 5-38μm without chromatic aberration and minimizing problems due to changes in shapes and refractive indices of materials from room temperature to cryogenic temperature. In order to achieve the high specification requirements of wide field of view, small F-number and large spectral resolving power with compact size, we employed the paraxial and aberration analysis of off-axial optical systems (Araki 2005 [1]) which is a design method using free-form surfaces for compact reflective optics such as head mount displays. As a result, we have successfully designed compact reflective optics for MCS with as-built performance of diffraction-limited image resolution.

  12. Field Performance Of Three Compacted Clay Landfill Covers

    EPA Science Inventory

    A study was conducted at sites in subtropical Georgia, seasonal and humid Iowa, and arid southeastern California to evaluate the field hydrology of compacted clay covers for final closure of landfills. Water balance of the covers was monitored with large (10 by 20 m ), instrumen...

  13. High-harmonic generation in amorphous solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yong Sing; Yin, Yanchun; Wu, Yi

    High-harmonic generation in isolated atoms and molecules has been widely utilized in extreme ultraviolet photonics and attosecond pulse metrology. Recently, high-harmonic generation has been observed in solids, which could lead to important applications such as all-optical methods to image valance charge density and reconstruct electronic band structures, as well as compact extreme ultraviolet light sources. So far these studies are confined to crystalline solids; therefore, decoupling the respective roles of long-range periodicity and high density has been challenging. Here we report the observation of high-harmonic generation from amorphous fused silica. We also decouple the role of long-range periodicity by comparingmore » harmonics generated from fused silica and crystalline quartz, which contain the same atomic constituents but differ in long-range periodicity. These results advance current understanding of the strong-field processes leading to high-harmonic generation in solids with implications for the development of robust and compact extreme ultraviolet light sources.« less

  14. High-harmonic generation in amorphous solids

    DOE PAGES

    You, Yong Sing; Yin, Yanchun; Wu, Yi; ...

    2017-09-28

    High-harmonic generation in isolated atoms and molecules has been widely utilized in extreme ultraviolet photonics and attosecond pulse metrology. Recently, high-harmonic generation has been observed in solids, which could lead to important applications such as all-optical methods to image valance charge density and reconstruct electronic band structures, as well as compact extreme ultraviolet light sources. So far these studies are confined to crystalline solids; therefore, decoupling the respective roles of long-range periodicity and high density has been challenging. Here we report the observation of high-harmonic generation from amorphous fused silica. We also decouple the role of long-range periodicity by comparingmore » harmonics generated from fused silica and crystalline quartz, which contain the same atomic constituents but differ in long-range periodicity. These results advance current understanding of the strong-field processes leading to high-harmonic generation in solids with implications for the development of robust and compact extreme ultraviolet light sources.« less

  15. DEVELOPMENT AND EVALUATION OF A HIGH-VOLUME DICHOTOMOUS SAMPLER FOR CHEMICAL SPECIATION OF COARSE AND FINE PARTICLES

    EPA Science Inventory

    This paper describes the development and field evaluation of a compact high-volume dichotomous sampler (HVDS) that collects coarse (PM10-2.5) and fine (PM2.5) particulate matter. In its primary configuration as tested, the sampler size-fractionates PM10 into...

  16. A compact large-format streak tube for imaging lidar

    NASA Astrophysics Data System (ADS)

    Hui, Dandan; Luo, Duan; Tian, Liping; Lu, Yu; Chen, Ping; Wang, Junfeng; Sai, Xiaofeng; Wen, Wenlong; Wang, Xing; Xin, Liwei; Zhao, Wei; Tian, Jinshou

    2018-04-01

    The streak tubes with a large effective photocathode area, large effective phosphor screen area, and high photocathode radiant sensitivity are essential for improving the field of view, depth of field, and detectable range of the multiple-slit streak tube imaging lidar. In this paper, a high spatial resolution, large photocathode area, and compact meshless streak tube with a spherically curved cathode and screen is designed and tested. Its spatial resolution reaches 20 lp/mm over the entire Φ28 mm photocathode working area, and the simulated physical temporal resolution is better than 30 ps. The temporal distortion in our large-format streak tube, which is shown to be a non-negligible factor, has a minimum value as the radius of curvature of the photocathode varies. Furthermore, the photocathode radiant sensitivity and radiant power gain reach 41 mA/W and 18.4 at the wavelength of 550 nm, respectively. Most importantly, the external dimensions of our streak tube are no more than Φ60 mm × 110 mm.

  17. DUHOCAMIS: a dual hollow cathode ion source for metal ion beams.

    PubMed

    Zhao, W J; Müller, M W O; Janik, J; Liu, K X; Ren, X T

    2008-02-01

    In this paper we describe a novel ion source named DUHOCAMIS for multiply charged metal ion beams. This ion source is derived from the hot cathode Penning ion gauge ion source (JINR, Dubna, 1957). A notable characteristic is the modified Penning geometry in the form of a hollow sputter electrode, coaxially positioned in a compact bottle-magnetic field along the central magnetic line of force. The interaction of the discharge geometry with the inhomogeneous but symmetrical magnetic field enables this device to be operated as hollow cathode discharge and Penning discharge as well. The main features of the ion source are the very high metal ion efficiency (up to 25%), good operational reproducibility, flexible and efficient operations for low charged as well as highly charged ions, compact setup, and easy maintenance. For light ions, e.g., up to titanium, well-collimated beams in the range of several tens of milliamperes of pulsed ion current (1 ms, 10/s) have been reliably performed in long time runs.

  18. Palm-size miniature superconducting bulk magnet

    NASA Astrophysics Data System (ADS)

    Saho, Norihide; Matsuda, Kazuya; Nishijima, Noriyo

    The development of a small, light, powerful and energy-efficient superconducting magnet has been desired in order to realize better efficiency and manipulability in guiding magnetic nano-particles, magnetic organic cells and other items to the right place. This study focuses on the development of a high-temperature superconducting (HTS) bulk magnet characterized by comparatively low leak magnetism despite a relatively high magnetic field. On this basis, the authors developed a palm-sized superconducting bulk magnet, which is the world's smallest, lightest, and lowest power consuming, as well as a new technology to effectively magnetize such a bulk magnet in a compact Stirling-cycle cryocooler (magnet C) with a pre-magnetized HTS bulk magnet (magnet B) in a compact cryocooler. This technology is demonstrated in two steps. In the first step, magnet B is magnetized using a superconducting solenoid magnet with a high magnetic field (magnet A) via the field cooling method. In the second step, magnet C is magnetized in the high magnetic field of magnet B. The prototype magnet C weighs 1.8 kg, and measures 235 × 65 × 115 mm (L × W × H). Magnet B was magnetized to 4.9 T using a 5 T magnet, and the target, magnet C, was magnetized using magnet B so that its maximum trapped magnetic flux density reached the value of 3.15 T. The net power consumption in a steady cooling state was 23 W, which is very low and comparable to that of a laptop computer.

  19. NAOMI instrument: a product line of compact and versatile cameras designed for high resolution missions in Earth observation

    NASA Astrophysics Data System (ADS)

    Luquet, Ph.; Chikouche, A.; Benbouzid, A. B.; Arnoux, J. J.; Chinal, E.; Massol, C.; Rouchit, P.; De Zotti, S.

    2017-11-01

    EADS Astrium is currently developing a new product line of compact and versatile instruments for high resolution missions in Earth Observation. First version has been developed in the frame of the ALSAT-2 contract awarded by the Algerian Space Agency (ASAL) to EADS Astrium. The Silicon Carbide Korsch-type telescope coupled with a multilines detector array offers a 2.5 m GSD in PAN band at Nadir @ 680 km altitude (10 m GSD in the four multispectral bands) with a 17.5 km swath width. This compact camera - 340 (W) x 460 (L) x 510 (H) mm3, 13 kg - is embarked on a Myriade-type small platform. The electronics unit accommodates video, housekeeping, and thermal control functions and also a 64 Gbit mass memory. Two satellites are developed; the first one is planned to be launched on mid 2009. Several other versions of the instrument have already been defined with enhanced resolution or/and larger field of view.

  20. Thermal performance of a prototype plate heat exchanger with minichannels under boiling conditions

    NASA Astrophysics Data System (ADS)

    Wajs, J.; Mikielewicz, D.; Fornalik-Wajs, E.

    2016-09-01

    To solve the problem and to meet the requirements of customers in the field of high heat fluxes transfer in compact units, a new design of plate heat exchanger with minichannels (minichannels PHE) was proposed. The aim was to construct a compact heat exchanger of high effectiveness for the purpose of household cogeneration ORC system. In this paper the experimental analysis of an assembled prototype of such compact heat exchanger was described. The attention was paid to its thermal performance and the heat transfer coefficients under the boiling conditions. Water and ethanol were chosen as working fluids. The maximal value of transferred heat flux was about 84 kW/m2, while of the overall heat transfer coefficient was about 4000 W/(m2K). Estimated values of heat transfer coefficient on the ethanol (boiling) side reached the level of 7500 W/(m2K). The results are promising in the light of future applications, for example in cogeneration ORC systems, however further systematic investigations are necessary.

  1. Compactly supported linearised observables in single-field inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fröob, Markus B.; Higuchi, Atsushi; Hack, Thomas-Paul, E-mail: mbf503@york.ac.uk, E-mail: thomas-paul.hack@itp.uni-leipzig.de, E-mail: atsushi.higuchi@york.ac.uk

    We investigate the gauge-invariant observables constructed by smearing the graviton and inflaton fields by compactly supported tensors at linear order in general single-field inflation. These observables correspond to gauge-invariant quantities that can be measured locally. In particular, we show that these observables are equivalent to (smeared) local gauge-invariant observables such as the linearised Weyl tensor, which have better infrared properties than the graviton and inflaton fields. Special cases include the equivalence between the compactly supported gauge-invariant graviton observable and the smeared linearised Weyl tensor in Minkowski and de Sitter spaces. Our results indicate that the infrared divergences in the tensormore » and scalar perturbations in single-field inflation have the same status as in de Sitter space and are both a gauge artefact, in a certain technical sense, at tree level.« less

  2. Assessing soil compaction on Forest Inventory & Analysis phase 3 field plots using a pocket penetrometer

    Treesearch

    Michael C. Amacher; Katherine P. O' Neill

    2004-01-01

    Soil compaction is an important indicator of soil quality, yet few practical methods are available to quantitatively measure this variable. Although an assessment of the areal extent of soil compaction is included as part of the soil indicator portion of the Forest Inventory & Analysis (FIA) program, no quantitative measurement of the degree of soil compaction...

  3. Important Learnings for Reliable Management of Hydrocarbon Production and Salt Solution Mining induced Subsidence from Case Histories in the Netherlands

    NASA Astrophysics Data System (ADS)

    Waal, H. D.; Muntendam-Bos, A.; Breunese, J.; Roest, H.; Fokker, P. A.

    2012-12-01

    Reliable management of subsidence caused by hydrocarbon production and salt solution mining is important for a country like the Netherlands where most land surface is below or near sea level. However, a factor two difference between prediction and observation is not uncommon. To nevertheless ensure a high probability that subsidence is kept within the limits an area can robustly sustain, a tightly integrated prediction/monitoring/updating loop is applied. Prior to production, scenario's spanning the range of parameter and model uncertainties are generated to calculate possible subsidence outcomes. The probability of each scenario is updated over time through confrontation with measurements (e.g. using Bayesian statistics) as they become available. Production can thus be halted or adjusted timely if probabilities start to indicate an unacceptable risk of exceeding set limits now or in the future. A number of projects with well documented, high quality prediction and monitoring were started in the Netherlands in the second half of the previous century. They provide quality case histories covering multi-decade production periods from which important learnings have been been extracted. Firstly, from the data it is clear that sandstone reservoir compaction is not a linear function of pressure depletion. Initially the rock in the field compacts much less than expected based on standard lab measurements. As pressure drops further, compaction gradually increases, reaching and exceeding lab values. Various mechanisms could be responsible: delayed compaction in lower permeability/poorly connected parts of the reservoir or aquifers; intrinsic non-linear, time-dependent, rate-type or diffusive behavior of the reservoir rock; previous deeper burial or increasing overpressure over geological time. The observed field behavior is described reasonably well by a single exponential time decay model. The non-linear and/or time-dependent field behavior has to be accounted for when updating predictions based on early field data. Otherwise it leads to under-prediction of subsidence, followed by multiple upward adjustments as new data become available. Secondly, the large difference between lab and field loading rate results in late time field compressibilities that can be 20 to 30% higher then the lab data. For chalk reservoirs the difference in loading rate causes much earlier pore collapse in the field. These effects need and can be accounted for. Thirdly, the case histories show that the shape of the subsidence bowl changes over time. The bowl shape becomes steeper in time for hydrocarbon extraction and flatter in the case of salt extraction. This is believed to be related to the changing elasticity contrast between the compacting volume and its surroundings as the reservoir compressibility increases and surrounding salt layers start to creep. The observed shape changes can be modeled numerically or by a varying rigid basement depth in the analytical van Opstal model. Not accounting for it can result in large subsidence allocation errors where salt mining and hydrocarbon production bowls overlap.

  4. A Survey of Compact Star Clusters in the South-West Field of the M 31 Disk

    NASA Astrophysics Data System (ADS)

    Kodaira, Keiichi; Vansevičius, Vladas; Bridzius, Audrius; Komiyama, Yutaka; Miyazaki, Satoshi; Stonkute, Rima; Šablevičiutė, Ieva; Narbutis, Donatas

    2004-12-01

    A survey for compact clusters with a dimension of 10pc order was conducted in an area of about 500 square arc-minutes of the south-west part of the M31 disk, making use of the high-resolution capability of Suprime-Cam. Photometry in the B, V, and R broad-bands, and in the R* medium-band centered around Hα with varying apertures was carried out for about 1200 targets, which are related to about 300 compact objects detected in the survey. The results for 101 prominent compact objects are presented as photometric catalogues and morphological atlases, separately for samples with and without strong Hα emission. Many of the compact objects, which were previously suspected to be globular cluster candidates, are judged to be open clusters based upon their internal structures of sub-arc-second order. The majority of the 49 listed compact non-emission objects, which are restricted to be brighter than MV ˜ -5, have colors of 0 < B - V < 1.0, indicating their nature of massive evolved clusters. In contrast, only about 10% of the 52 listed compact emission objects are brighter than MiV ˜ -5, probably reflecting the short period of the emission phase and the substantial effects of the circum-stellar extinction. The detection of a few candidates of background galaxies is also reported.

  5. A 3D analysis of the metal distribution in the compact group of galaxies HCG 31

    NASA Astrophysics Data System (ADS)

    Torres-Flores, Sergio; Mendes de Oliveira, Claudia; Alfaro-Cuello, Mayte; Rodrigo Carrasco, Eleazar; de Mello, Duilia; Amram, Philippe

    2015-02-01

    We present new Gemini/GMOS integral field unit observations of the central region of the merging compact group of galaxies HCG 31. Using this data set, we derive the oxygen abundances for the merging galaxies HCG 31A and HCG 31C. We found a smooth metallicity gradient between the nuclei of these galaxies, suggesting a mixing of metals between these objects. These results are confirmed by high-resolution Fabry-Perot data, from which we infer that gas is flowing between HCG 31A and HCG 31C.

  6. Japan Report No. 173.

    DTIC Science & Technology

    1983-06-10

    nuclear ship Mutsu . We will in parallel pursue the development of an advanced ma- rine reactor of more compact and ef- ficient design. In the field...velopment include such subjects as the High Temperature Gas Reactor - envisaged for uses other than power generation - and nuclear ship pro- pulsion. We...950’centigrade. In the field of nuclear ship pro- pulsion, we will proceed on our plans for experimental voyages to be undertaken by our first

  7. A compact dual-wavelength fiber laser: some design aspects

    NASA Astrophysics Data System (ADS)

    Ban, Christian; Zadravec, Dusan

    2017-05-01

    High performance in combination with small size, low weight and low power consumption are among the main drivers in modern defense and commercial applications of laser systems. Consequently, designers of such systems strive for innovative solutions in the field of laser technology. Ten years ago Safran Vectronix AG (hereafter Vectronix) pioneered these activities with the fielding of the first fiber laser for hand-held rangefinders. This paper will deal with the latest evolution of an eye-safe fiber laser source which can emit two wavelengths for an extended range of applications. In order to comply with high performance requirements the laser on one side has to produce high enough pulse energy and on the other side - especially due to the ever increasing requirement for compactness - to use so called single-stage amplification in combination with bending insensitive fiber solutions. Also, the ASE (Amplified Spontaneous Emission) has to be reduced as much as possible as this light enters the eye safety equation but does not contribute in terms of range performance. All of this has to meet severe environmental requirements typical for most demanding defense applications. Additionally, the laser in its rangefinding mode has to produce a sequence of high frequency pulses in such a way that no substantial temperature effects would arise and thus impair either the pulse energy or the boresight alignment. Additionally, in this paper, a compact dual-stage dual-wavelength version of the above laser will be described, which has been developed to generate much stronger pulses for very long rangefinding applications.

  8. Anticrack inclusion model for compaction bands in sandstone

    NASA Astrophysics Data System (ADS)

    Sternlof, Kurt R.; Rudnicki, John W.; Pollard, David D.

    2005-11-01

    Detailed observations of compaction bands exposed in the Aztec Sandstone of southeastern Nevada indicate that these thin, tabular, bounded features of localized porosity loss initiated at pervasive grain-scale flaws, which collapsed in response to compressive tectonic loading. From many of these Griffith-type flaws, an apparently self-sustaining progression of collapse propagated outward to form bands of compacted grains a few centimeters thick and tens of meters in planar extent. These compaction bands can be idealized as highly eccentric ellipsoidal bodies that have accommodated uniform uniaxial plastic strain parallel to their short dimension within a surrounding elastic material. They thus can be represented mechanically as contractile Eshelby inclusions, which generate near-tip compressive stress concentrations consistent with self-sustaining, in-plane propagation. The combination of extreme aspect ratio (˜10-4) and significant uniaxial plastic strain (˜10%) also justifies an approximation of the bands as anticracks: sharp boundaries across which a continuous distribution of closing mode displacement discontinuity has been accommodated. This anticrack interpretation of compaction bands is analogous to that of pressure solution surfaces, except that porosity loss takes the place of material dissolution. We find that displacement discontinuity boundary element modeling of compaction bands as anticracks within a two-dimensional linear elastic continuum can accurately represent the perturbed external stress fields they induce.

  9. VLBI observations of 6 GHz OH masers in three ultra-compact H Ii regions

    NASA Astrophysics Data System (ADS)

    Desmurs, J. F.; Baudry, A.

    1998-12-01

    Following our successful analysis of VLBI observations of the (2) Pi_ {3/ 2}, J={5/ 2}, F=3-3 and F=2-2 excited OH emission at 6035 and 6031 MHz in W3(OH), we have analyzed the same transitions in three other ultra-compact HII regions, M17, ON1, and W51. The restoring beams were in the range 6 to 30 milliarc sec. The F=3-3 and 2-2 hyperfine transitions of OH were both mapped in ON1. Seven 6035 MHz LCP or RCP maser components were identified in ON1. They are distributed over a region whose diameter is similar to that of the compact HII region, namely ~ 0.4 - 0.5 arc sec. In contrast with the F=3-3 line emission, the F=2-2 transition at 6031 MHz is nearly an order of magnitude weaker than the peak 6035 MHz emission. In M17, we observed fringes only in the 6035 MHz line. The detected OH components appear to be projected on to the compact HII region. We report also on weak VLBI detection of the 6035 MHz emission from W51. This emission seems to be located between two active ultra-compact HII regions in a complex area which deserves further investigation. The 5 cm OH minimum brightness temperatures range from about 3 10(7) K in W51 to 8 10(9) K in ON1. Variability of the 6035 or 6031 MHz emission is well established and suggests that the 5 cm OH masers are not fully saturated. The high spectral and spatial resolutions achieved in this work allowed us to identify Zeeman pairs and hence to derive the magnetic field strength. In ON1 and W51 the field lies in the range 4 to 6 mG with a trend for higher field at 6031 MHz than at 6035 MHz in ON1. In M17 no Zeeman splitting was observed and the magnetic field appears to be weaker than 1 mG.

  10. A reliable, compact, and repetitive-rate high power microwave generation system.

    PubMed

    Li, Wei; Li, Zhi-qiang; Sun, Xiao-liang; Zhang, Jun

    2015-11-01

    A compact high power microwave (HPM) generation system is described in this paper. The main parts of the HPM system are a Marx generator with a pulse forming line and a magnetron with diffraction output. The total weight and length of the system are 250 kg and 120 cm, respectively. The output microwave power of the HPM system at 550 kV of applied voltage and 0.33 T of magnetic field reaches 1 GW at 2.32 GHz of central frequency with 38 ns of pulse duration, 23% of power conversion efficiency, and Gaussian radiation pattern. In the bursts operation, both time and amplitude jitters are less than 4 ns and lower than 1.5 dB, respectively.

  11. Generation of surface-wave microwave microplasmas in hollow-core photonic crystal fiber based on a split-ring resonator.

    PubMed

    Vial, Florian; Gadonna, Katell; Debord, Benoît; Delahaye, Frédéric; Amrani, Foued; Leroy, Olivier; Gérôme, Frédéric; Benabid, Fetah

    2016-05-15

    We report on a new and highly compact scheme for the generation and sustainment of microwave-driven plasmas inside the core of an inhibited coupling Kagome hollow-core photonic crystal fiber. The microwave plasma generator consists of a split-ring resonator that efficiently couples the microwave field into the gas-filled fiber. This coupling induces the concomitant generation of a microwave surface wave at the fiber core surround and a stable plasma column confined in the fiber core. The scheme allowed the generation of several centimeters long argon microplasma columns with a very low excitation power threshold. This result represents an important step toward highly compact plasma lasers or plasma-based photonic components.

  12. Aerodynamic Performance of a Compact, High Work-Factor Centrifugal Compressor at the Stage and Subcomponent Level

    NASA Technical Reports Server (NTRS)

    Braunscheidel, Edward P.; Welch, Gerard E.; Skoch, Gary J.; Medic, Gorazd; Sharma, Om P.

    2015-01-01

    The measured aerodynamic performance of a compact, high work-factor, single-stage centrifugal compressor, comprising an impeller, diffuser, 90deg-bend, and exit guide vane is reported. Performance levels are based on steady-state total-pressure and total-temperature rake and angularity-probe data acquired at key machine rating planes during recent testing at NASA Glenn Research Center. Aerodynamic performance at the stage level is reported for operation between 70 to 105 percent of design corrected speed, with subcomponent (impeller, diffuser, and exit-guide-vane) flow field measurements presented and discussed at the 100 percent design-speed condition. Individual component losses from measurements are compared with pre-test CFD predictions on a limited basis.

  13. A reliable, compact, and repetitive-rate high power microwave generation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Li, Zhi-qiang; Sun, Xiao-liang

    2015-11-15

    A compact high power microwave (HPM) generation system is described in this paper. The main parts of the HPM system are a Marx generator with a pulse forming line and a magnetron with diffraction output. The total weight and length of the system are 250 kg and 120 cm, respectively. The output microwave power of the HPM system at 550 kV of applied voltage and 0.33 T of magnetic field reaches 1 GW at 2.32 GHz of central frequency with 38 ns of pulse duration, 23% of power conversion efficiency, and Gaussian radiation pattern. In the bursts operation, both timemore » and amplitude jitters are less than 4 ns and lower than 1.5 dB, respectively.« less

  14. A compact permanent magnet cyclotrino for accelerator mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, A.T.; Clark, D.J.; Kunkel, W.B.

    1995-02-01

    The authors describe the development of a new instrument for the detection of trace amounts of rare isotopes, a Cyclotron Mass Spectrometer (CMS). A compact low energy cyclotron optimized for high mass resolution has been designed and has been fabricated. The instrument has high sensitivity and is designed to measure carbon-14 at abundances of < 10{sup {minus}12}. A novel feature of the instrument is the use of permanent magnets to energize the iron poles of the cyclotron. The instrument uses axial injection, employing a spiral inflector. The instrument has been assembled and preliminary measurements of the magnetic field show thatmore » it has a uniformity on the order of 2 parts in 10{sup 4}.« less

  15. Aerodynamic Performance of a Compact, High Work-Factor Centrifugal Compressor at the Stage and Subcomponent Level

    NASA Technical Reports Server (NTRS)

    Braunscheidel, Edward P.; Welch, Gerard E.; Skoch, Gary J.; Medic, Gorazd; Sharma, Om P.

    2014-01-01

    The measured aerodynamic performance of a compact, high work-factor, single-stage centrifugal compressor, comprising an impeller, diffuser, 90º-bend, and exit guide vane is reported. Performance levels are based on steady-state total-pressure and total-temperature rake and angularity-probe data acquired at key machine rating planes during recent testing at NASA Glenn Research Center. Aerodynamic performance at the stage level is reported for operation between 70 to 105% of design corrected speed, with subcomponent (impeller, diffuser, and exit-guide-vane) flow field measurements presented and discussed at the 100% design-speed condition. Individual component losses from measurements are compared with pre-test CFD predictions on a limited basis.

  16. Development of a Bulk-Format System to Harvest, Handle, Store, and Deliver High-Tonnage Low-Moisture Switchgrass Feedstock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Womac, Alvin; Groothuis, Mitch; Westover, Tyler

    2013-09-24

    This project evaluates and compares comprehensive feedstock logistics systems (FLS), where a FLS is defined to comprehensively span from biomass material standing in a field to conveyance of a uniform, industrial-milled product into the throat of a biomass conversion facility (BCF). Elements of the bulk-format FLS evaluated in this project include: field-standing switchgrass dry chopped into bulk format on the farm, hauled (either loose or bulk compacted) to storage, stored with confining overburden in a protective facility, reclaimed and conveyed to bulk-format discharge, bulk compacted into an ejector trailer, and conveyed as bulk flow into the BCF. In this FLSmore » evaluation, bulk storage bins served as a controlled and sensored proxy for large commercial stacks protected from moisture with a membrane cover.« less

  17. Rich Township High School, Olympia Fields Campus, Rich Township, Illinois. Profiles of Significant Schools.

    ERIC Educational Resources Information Center

    Clinchy, Evans

    A profile is presented of a high school designed to accommodate the organization of teachers into teams working with student groups of varying sizes--this organization is housed in a compact building with the teaching teams centered in clusters of classrooms. The building is heated in winter and cooled in summer by a heat pump system. The…

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conder, A.; Mummolo, F. J.

    The goal of the project was to develop a compact, large active area, high spatial resolution, high dynamic range, charge-coupled device (CCD) camera to replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating X-rays. The camera head and controller needed to be capable of operation within a vacuum environment and small enough to be fielded within the small vacuum target chambers at LLNL.

  19. ARC: A compact, high-field, disassemblable fusion nuclear science facility and demonstration power plant

    NASA Astrophysics Data System (ADS)

    Sorbom, Brandon; Ball, Justin; Palmer, Timothy; Mangiarotti, Franco; Sierchio, Jennifer; Bonoli, Paul; Kasten, Cale; Sutherland, Derek; Barnard, Harold; Haakonsen, Christian; Goh, Jon; Sung, Choongki; Whyte, Dennis

    2014-10-01

    The Affordable, Robust, Compact (ARC) reactor conceptual design aims to reduce the size, cost, and complexity of a combined Fusion Nuclear Science Facility (FNSF) and demonstration fusion pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has Rare Earth Barium Copper Oxide (REBCO) superconducting toroidal field coils with joints to allow disassembly, allowing for removal and replacement of the vacuum vessel as a single component. Inboard-launched current drive of 25 MW LHRF power and 13.6 MW ICRF power is used to provide a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing Fluorine Lithium Beryllium (FLiBe) molten salt. The liquid blanket acts as a working fluid, coolant, and tritium breeder, and minimizes the solid material that can become activated. The large temperature range over which FLiBe is liquid permits blanket operation at 800-900 K with single phase fluid cooling and allows use of a high-efficiency Brayton cycle for electricity production in the secondary coolant loop.

  20. Optical Microfibre Based Photonic Components and Their Applications in Label-Free Biosensing

    PubMed Central

    Wang, Pengfei; Bo, Lin; Semenova, Yuliya; Farrell, Gerald; Brambilla, Gilberto

    2015-01-01

    Optical microfibre photonic components offer a variety of enabling properties, including large evanescent fields, flexibility, configurability, high confinement, robustness and compactness. These unique features have been exploited in a range of applications such as telecommunication, sensing, optical manipulation and high Q resonators. Optical microfibre biosensors, as a class of fibre optic biosensors which rely on small geometries to expose the evanescent field to interact with samples, have been widely investigated. Due to their unique properties, such as fast response, functionalization, strong confinement, configurability, flexibility, compact size, low cost, robustness, ease of miniaturization, large evanescent field and label-free operation, optical microfibres based biosensors seem a promising alternative to traditional immunological methods for biomolecule measurements. Unlabeled DNA and protein targets can be detected by monitoring the changes of various optical transduction mechanisms, such as refractive index, absorption and surface plasmon resonance, since a target molecule is capable of binding to an immobilized optical microfibre. In this review, we critically summarize accomplishments of past optical microfibre label-free biosensors, identify areas for future research and provide a detailed account of the studies conducted to date for biomolecules detection using optical microfibres. PMID:26287252

  1. Formation of S0s via disc accretion around high-redshift compact ellipticals

    NASA Astrophysics Data System (ADS)

    Diaz, Jonathan; Bekki, Kenji; Forbes, Duncan A.; Couch, Warrick J.; Drinkwater, Michael J.; Deeley, Simon

    2018-06-01

    We present hydrodynamical N-body models which demonstrate that elliptical galaxies can transform into S0s by acquiring a disc. In particular, we show that the merger with a massive gas-rich satellite can lead to the formation of a baryonic disc around an elliptical. We model the elliptical as a massive, compact galaxy which could be observed as a `red nugget' in the high-z universe. This scenario contrasts with existing S0 formation scenarios in the literature in two important ways. First, the progenitor is an elliptical galaxy whereas scenarios in the literature typically assume a spiral progenitor. Secondly, the physical conditions underlying our proposed scenario can exist in low-density environments such as the field, in contrast to scenarios in the literature which typically address dense environments like clusters and groups. As a consequence, S0s in the field may be the most likely candidates to have evolved from elliptical progenitors. Our scenario also naturally explains recent observations which indicate that field S0s may have older bulges than discs, contrary to cluster S0s which seem to have older discs than bulges.

  2. Development of a compact 30 T magnetic field system for OMEGA

    NASA Astrophysics Data System (ADS)

    Fiksel, G.; Backhus, R.; McNally, P.; Viges, E.; Villalta, M.; Jacobs-Perkins, D.; Betti, R.

    2017-10-01

    Aiming at conducting studies of magnetized high-energy density plasmas in a high magnetic field, we are developing a compact system capable of creating a pulsed magnetic field of about 30T in a volume of several cubic centimeters. The system prototype will be tested at the University of Michigan and will be adopted afterwards for use at the OMEGA facility of the Laboratory for Laser Energetics (LLE) of the University of Rochester, NY. The system consists of a pulsed power supply situated outside of the Omega vacuum chamber and a magnetic coil inserted into the chamber with a diagnostic inserter. The power supply is based on a 50 μF/20kV storage capacitor and is capable of driving a pulse of current of up to 50kA through the coil. The power supply is connected with the coil via a low-inductive chain of power cables and a strip transmission line. The system electrical, magnetic, and thermal analysis will be presented along with the results of initial testing. This work is supported in part through a DOE-OFES award DE-SC0016258 and a University of Michigan research Grant U051442.

  3. Optical Microfibre Based Photonic Components and Their Applications in Label-Free Biosensing.

    PubMed

    Wang, Pengfei; Bo, Lin; Semenova, Yuliya; Farrell, Gerald; Brambilla, Gilberto

    2015-07-22

    Optical microfibre photonic components offer a variety of enabling properties, including large evanescent fields, flexibility, configurability, high confinement, robustness and compactness. These unique features have been exploited in a range of applications such as telecommunication, sensing, optical manipulation and high Q resonators. Optical microfibre biosensors, as a class of fibre optic biosensors which rely on small geometries to expose the evanescent field to interact with samples, have been widely investigated. Due to their unique properties, such as fast response, functionalization, strong confinement, configurability, flexibility, compact size, low cost, robustness, ease of miniaturization, large evanescent field and label-free operation, optical microfibres based biosensors seem a promising alternative to traditional immunological methods for biomolecule measurements. Unlabeled DNA and protein targets can be detected by monitoring the changes of various optical transduction mechanisms, such as refractive index, absorption and surface plasmon resonance, since a target molecule is capable of binding to an immobilized optical microfibre. In this review, we critically summarize accomplishments of past optical microfibre label-free biosensors, identify areas for future research and provide a detailed account of the studies conducted to date for biomolecules detection using optical microfibres.

  4. Relativistic Dynamos in Magnetospheres of Rotating Compact Objects

    NASA Astrophysics Data System (ADS)

    Tomimatsu, Akira

    2000-01-01

    The kinematic evolution of axisymmetric magnetic fields in rotating magnetospheres of relativistic compact objects is analytically studied, based on relativistic Ohm's law in stationary axisymmetric geometry. By neglecting the poloidal flows of plasma in simplified magnetospheric models, we discuss a self-excited dynamo due to the frame-dragging effect (originally pointed out by Khanna & Camenzind) and propose alternative processes to generate axisymmetric magnetic fields against ohmic dissipation. The first process (which may be called ``induced excitation'') is caused by the help of a background uniform magnetic field in addition to the dragging of inertial frames. It is shown that excited multipolar components of poloidal and azimuthal fields are sustained as stationary modes, and outgoing Poynting flux converges toward the rotation axis. The second process is a self-excited dynamo through azimuthal convection current, which is found to be effective if plasma rotation becomes highly relativistic with a sharp gradient in the angular velocity. In this case, no frame-dragging effect is needed, and the coupling between charge separation and plasma rotation becomes important. We discuss briefly the results in relation to active phenomena in the relativistic magnetospheres.

  5. A study of radar cross section measurement techniques

    NASA Technical Reports Server (NTRS)

    Mcdonald, Malcolm W.

    1986-01-01

    Past, present, and proposed future technologies for the measurement of radar cross section were studied. The purpose was to determine which method(s) could most advantageously be implemented in the large microwave anechoic chamber facility which is operated at the antenna test range site. The progression toward performing radar cross section measurements of space vehicles with which the Orbital Maneuvering Vehicle will be called upon to rendezvous and dock is a natural outgrowth of previous work conducted in recent years of developing a high accuracy range and velocity sensing radar system. The radar system was designed to support the rendezvous and docking of the Orbital Maneuvering Vehicle with various other space vehicles. The measurement of radar cross sections of space vehicles will be necessary in order to plan properly for Orbital Maneuvering Vehicle rendezvous and docking assignments. The methods which were studied include: standard far-field measurements; reflector-type compact range measurements; lens-type compact range measurement; near field/far field transformations; and computer predictive modeling. The feasibility of each approach is examined.

  6. REVIEWS OF TOPICAL PROBLEMS: Axisymmetric stationary flows in compact astrophysical objects

    NASA Astrophysics Data System (ADS)

    Beskin, Vasilii S.

    1997-07-01

    A review is presented of the analytical results available for a large class of axisymmetric stationary flows in the vicinity of compact astrophysical objects. The determination of the two-dimensional structure of the poloidal magnetic field (hydrodynamic flow field) faces severe difficulties, due to the complexity of the trans-field equation for stationary axisymmetric flows. However, an approach exists which enables direct problems to be solved even within the balance law framework. This possibility arises when an exact solution to the equation is available and flows close to it are investigated. As a result, with the use of simple model problems, the basic features of supersonic flows past real compact objects are determined.

  7. Compaction within the South Belridge diatomite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chase C.A. Jr.; Dietrich, J.K.

    1989-11-01

    Compaction is incorporated into a field-scale finite-difference thermal simulator to allow practical engineering analysis of reservoir compaction caused by fluid withdrawal. Capabilities new to petroleum applications include hysteresis in the form of limited rebound during fluid injection and the concept of relaxation time (i.e., creep).

  8. What drives the evolution of Luminous Compact Blue Galaxies in Clusters vs. the Field?

    NASA Astrophysics Data System (ADS)

    Wirth, Gregory

    2017-08-01

    Present-day galaxy clusters consist chiefly of low-mass dwarf elliptical galaxies, but the progenitors of this dominant population remain unclear. A prime candidate is the class of objects known as Luminous Compact Blue Galaxies, common in intermediate-reshift clusters but virtually extinct today. Recent cosmological simulations suggest that the present-day dwarfs galaxies begin as irregular field galaxies, undergo an environmentally-driven starburst phase as they enter the cluster, and stop forming stars earlier than their counterparts in the field. This model predicts that cluster dwarfs should have lower stellar mass per unit dynamical mass than their counterparts in the field. We propose a two-pronged archival research program to test this key prediction using the combination of precision photometry from space and high-quality spectroscopy. First, we will combine optical HST/ACS imaging of five z=0.55 clusters (including two HST Frontier Fields) with Spitzer IR imaging and publicly-released Keck/DEIMOS spectroscopy to measure stellar-to-dynamical-mass ratios for a large sample of cluster LCBGs. Second, we will exploit a new catalog of LCBGs in the COSMOS field to gather corresponding data for a significant sample of field LCBGs. By comparing mass ratios from these datasets, we will test theoretical predictions and determine the primary physical driver of cluster dwarf-galaxy evolution.

  9. Multipurpose surgical robot as a laparoscope assistant.

    PubMed

    Nelson, Carl A; Zhang, Xiaoli; Shah, Bhavin C; Goede, Matthew R; Oleynikov, Dmitry

    2010-07-01

    This study demonstrates the effectiveness of a new, compact surgical robot at improving laparoscope guidance. Currently, the assistant guiding the laparoscope camera tends to be less experienced and requires physical and verbal direction from the surgeon. Human guidance has disadvantages of fatigue and shakiness leading to inconsistency in the field of view. This study investigates whether replacing the assistant with a compact robot can improve the stability of the surgeon's field of view and also reduce crowding at the operating table. A compact robot based on a bevel-geared "spherical mechanism" with 4 degrees of freedom and capable of full dexterity through a 15-mm port was designed and built. The robot was mounted on the standard railing of the operating table and used to manipulate a laparoscope through a supraumbilical port in a porcine model via a joystick controlled externally by a surgeon. The process was videotaped externally via digital video recorder and internally via laparoscope. Robot position data were also recorded within the robot's motion control software. The robot effectively manipulated the laparoscope in all directions to provide a clear and consistent view of liver, small intestine, and spleen. Its range of motion was commensurate with typical motions executed by a human assistant and was well controlled with the joystick. Qualitative analysis of the video suggested that this method of laparoscope guidance provides highly stable imaging during laparoscopic surgery, which was confirmed by robot position data. Because the robot was table-mounted and compact in design, it increased standing room around the operation table and did not interfere with the workspace of other surgical instruments. The study results also suggest that this robotic method may be combined with flexible endoscopes for highly dexterous visualization with more degrees of freedom.

  10. High-Field High-Repetition-Rate Sources for the Coherent THz Control of Matter

    PubMed Central

    Green, B.; Kovalev, S.; Asgekar, V.; Geloni, G.; Lehnert, U.; Golz, T.; Kuntzsch, M.; Bauer, C.; Hauser, J.; Voigtlaender, J.; Wustmann, B.; Koesterke, I.; Schwarz, M.; Freitag, M.; Arnold, A.; Teichert, J.; Justus, M.; Seidel, W.; Ilgner, C.; Awari, N.; Nicoletti, D.; Kaiser, S.; Laplace, Y.; Rajasekaran, S.; Zhang, L.; Winnerl, S.; Schneider, H.; Schay, G.; Lorincz, I.; Rauscher, A. A.; Radu, I.; Mährlein, S.; Kim, T. H.; Lee, J. S.; Kampfrath, T.; Wall, S.; Heberle, J.; Malnasi-Csizmadia, A.; Steiger, A.; Müller, A. S.; Helm, M.; Schramm, U.; Cowan, T.; Michel, P.; Cavalleri, A.; Fisher, A. S.; Stojanovic, N.; Gensch, M.

    2016-01-01

    Ultrashort flashes of THz light with low photon energies of a few meV, but strong electric or magnetic field transients have recently been employed to prepare various fascinating nonequilibrium states in matter. Here we present a new class of sources based on superradiant enhancement of radiation from relativistic electron bunches in a compact electron accelerator that we believe will revolutionize experiments in this field. Our prototype source generates high-field THz pulses at unprecedented quasi-continuous-wave repetition rates up to the MHz regime. We demonstrate parameters that exceed state-of-the-art laser-based sources by more than 2 orders of magnitude. The peak fields and the repetition rates are highly scalable and once fully operational this type of sources will routinely provide 1 MV/cm electric fields and 0.3 T magnetic fields at repetition rates of few 100 kHz. We benchmark the unique properties by performing a resonant coherent THz control experiment with few 10 fs resolution. PMID:26924651

  11. High-Field High-Repetition-Rate Sources for the Coherent THz Control of Matter

    DOE PAGES

    Green, B.; Kovalev, S.; Asgekar, V.; ...

    2016-02-29

    Ultrashort flashes of THz light with low photon energies of a few meV, but strong electric or magnetic field transients have recently been employed to prepare various fascinating nonequilibrium states in matter. Here we present a new class of sources based on superradiant enhancement of radiation from relativistic electron bunches in a compact electron accelerator that we believe will revolutionize experiments in this field. Our prototype source generates high-field THz pulses at unprecedented quasi-continuous-wave repetition rates up to the MHz regime. We demonstrate parameters that exceed state-of-the-art laser-based sources by more than 2 orders of magnitude. The peak fields andmore » the repetition rates are highly scalable and once fully operational this type of sources will routinely provide 1 MV/cm electric fields and 0.3 T magnetic fields at repetition rates of few 100 kHz. In conclusion, we benchmark the unique properties by performing a resonant coherent THz control experiment with few 10 fs resolution.« less

  12. A compact CCD-monitored atomic force microscope with optical vision and improved performances.

    PubMed

    Mingyue, Liu; Haijun, Zhang; Dongxian, Zhang

    2013-09-01

    A novel CCD-monitored atomic force microscope (AFM) with optical vision and improved performances has been developed. Compact optical paths are specifically devised for both tip-sample microscopic monitoring and cantilever's deflection detecting with minimized volume and optimal light-amplifying ratio. The ingeniously designed AFM probe with such optical paths enables quick and safe tip-sample approaching, convenient and effective tip-sample positioning, and high quality image scanning. An image stitching method is also developed to build a wider-range AFM image under monitoring. Experiments show that this AFM system can offer real-time optical vision for tip-sample monitoring with wide visual field and/or high lateral optical resolution by simply switching the objective; meanwhile, it has the elegant performances of nanometer resolution, high stability, and high scan speed. Furthermore, it is capable of conducting wider-range image measurement while keeping nanometer resolution. Copyright © 2013 Wiley Periodicals, Inc.

  13. Compact high-speed reciprocating probe system for measurements in a Hall thruster discharge and plume.

    PubMed

    Dannenmayer, K; Mazouffre, S

    2012-12-01

    A compact high-speed reciprocating probe system has been developed in order to perform measurements of the plasma parameters by means of electrostatic probes in the discharge and the plume of a Hall thruster. The system is based on a piezoelectric linear drive that can achieve a speed of up to 350 mm/s over a travel range of 90 mm. Due to the high velocity of the linear drive the probe can be rapidly moved in and out the measurement region in order to minimize perturbation of the thruster discharge due to sputtering of probe material. To demonstrate the impact of the new system, a heated emissive probe, installed on the high-speed translation stage, was used to measure the plasma potential and the electron temperature in the near-field plume of a low power Hall thruster.

  14. Development of Metamaterial Composites for Compact High Power Microwave Systems and Antennas

    DTIC Science & Technology

    2016-05-01

    for the eddy currents to decay and thus the reverse magnetizing field becomes significant at the surface of the material. This reverse field shields ...76 Appendix A: Ceramic Magnetics , Inc. Ferrite Data Sheets…………………………………81 Appendix B: Conference Presentations and Journal...Figure 21: Magnetic loss tangent as a function of frequency for each of the five ferrite composites

  15. Compact Focal Plane Assembly for Planetary Science

    NASA Technical Reports Server (NTRS)

    Brown, Ari; Aslam, Shahid; Huang, Wei-Chung; Steptoe-Jackson, Rosalind

    2013-01-01

    A compact radiometric focal plane assembly (FPA) has been designed in which the filters are individually co-registered over compact thermopile pixels. This allows for construction of an ultralightweight and compact radiometric instrument. The FPA also incorporates micromachined baffles in order to mitigate crosstalk and low-pass filter windows in order to eliminate high-frequency radiation. Compact metal mesh bandpass filters were fabricated for the far infrared (FIR) spectral range (17 to 100 microns), a game-changing technology for future planetary FIR instruments. This fabrication approach allows the dimensions of individual metal mesh filters to be tailored with better than 10- micron precision. In contrast, conventional compact filters employed in recent missions and in near-term instruments consist of large filter sheets manually cut into much smaller pieces, which is a much less precise and much more labor-intensive, expensive, and difficult process. Filter performance was validated by integrating them with thermopile arrays. Demonstration of the FPA will require the integration of two technologies. The first technology is compact, lightweight, robust against cryogenic thermal cycling, and radiation-hard micromachined bandpass filters. They consist of a copper mesh supported on a deep reactive ion-etched silicon frame. This design architecture is advantageous when constructing a lightweight and compact instrument because (1) the frame acts like a jig and facilitates filter integration with the FPA, (2) the frame can be designed so as to maximize the FPA field of view, (3) the frame can be simultaneously used as a baffle for mitigating crosstalk, and (4) micron-scale alignment features can be patterned so as to permit high-precision filter stacking and, consequently, increase the filter bandwidth and sharpen the out-of-band rolloff. The second technology consists of leveraging, from another project, compact and lightweight Bi0.87Sb0.13/Sb arrayed thermopiles. These detectors consist of 30-layer thermopiles deposited in series upon a silicon nitride membrane. At 300 K, the thermopile arrays are highly linear over many orders of magnitude of incident IR power, and have a reported specific detectivity that exceeds the requirements imposed on future mission concepts. The bandpass filter array board is integrated with a thermopile array board by mounting both boards on a machined aluminum jig.

  16. Transforming the food-water-energy-land-economic nexus of plasticulture production through compact bed geometries

    NASA Astrophysics Data System (ADS)

    Holt, Nathan; Shukla, Sanjay; Hochmuth, George; Muñoz-Carpena, Rafael; Ozores-Hampton, Monica

    2017-12-01

    Raised-bed plasticulture, an intensive production system used around the world for growing high-value crops (e.g., fresh market vegetables), faces a water-food nexus that is actually a food-water-energy-land-economic nexus. Plasticulture represents a multibillion dollar facet of the United States crop production value annually and must become more efficient to be able to produce more on less land, reduce water demands, decrease impacts on surrounding environments, and be economically-competitive. Taller and narrower futuristic beds were designed with the goal of making plasticulture more sustainable by reducing input requirements and associated wastes (e.g., water, nutrients, pesticides, costs, plastics, energy), facilitating usage of modern technologies (e.g., drip-based fumigation), improving adaptability to a changing climate (e.g., flood protection), and increasing yield per unit area. Compact low-input beds were analyzed against conventional beds for the plasticulture production of tomato (Solanum lycopersicum), an economically-important crop, using a systems approach involving field measurements, vadose-zone modeling (HYDRUS), and production analysis. Three compact bed geometries, 61 cm (width) × 25 cm (height), 45 cm × 30 cm, 41 cm × 30 cm, were designed and evaluated against a conventional 76 cm × 20 cm bed. A two-season field study was conducted for tomato in the ecologically-sensitive and productive Everglades region of Florida. Compact beds did not statistically impact yield and were found to reduce: 1) production costs by 150-450/ha; 2) leaching losses by up to 5% (1 cm/ha water, 0.33 kg/ha total nitrogen, 0.05 kg/ha total phosphorus); 3) fumigant by up to 47% (48 kg/ha); 4) plasticulture's carbon footprint by up to 10% (1711 kg CO2-eq/ha) and plastic waste stream by up to 13% (27 kg/ha); 5) flood risks and disease pressure by increasing field's soil water storage capacity by up to 33% (≈1 cm); and 6) field runoff by 0.48-1.40 cm (51-76%) based on HYDRUS model simulations of 10-year, 2-h storm events in other major tomato production regions of California and Virginia. Re-designing the bed geometries in plasticulture production systems to be more compact is an example of win-win production optimization not only for traditional farms in rural areas but also for urban and peri-urban farms which are located closer to city centers. Compact beds could enable more plants per unit area, thus requiring less land area for the same production. Needing less area facilitates urban and peri-urban farming where land values can be high. Urban and peri-urban farming has several benefits, including reductions in transportation energy as production is closer to market and the ability for city wastewater to be reused for irrigation instead of freshwater withdrawals. Compact beds allow plasticulture to have smaller water, chemical, energy, carbon, waste, and economic footprints without impacting production. Improving agricultural systems in this way could enhance economic and environmental viability, which is essential for a sustainable food-water-energy-land-economic nexus.

  17. Combined dispersive/interference spectroscopy for producing a vector spectrum

    DOEpatents

    Erskine, David J.

    2002-01-01

    A method of measuring the spectral properties of broadband waves that combines interferometry with a wavelength disperser having many spectral channels to produce a fringing spectrum. Spectral mapping, Doppler shifts, metrology of angles, distances and secondary effects such as temperature, pressure, and acceleration which change an interferometer cavity length can be measured accurately by a compact instrument using broadband illumination. Broadband illumination avoids the fringe skip ambiguities of monochromatic waves. The interferometer provides arbitrarily high spectral resolution, simple instrument response, compactness, low cost, high field of view and high efficiency. The inclusion of a disperser increases fringe visibility and signal to noise ratio over an interferometer used alone for broadband waves. The fringing spectrum is represented as a wavelength dependent 2-d vector, which describes the fringe amplitude and phase. Vector mathematics such as generalized dot products rapidly computes average broadband phase shifts to high accuracy. A Moire effect between the interferometer's sinusoidal transmission and the illumination heterodynes high resolution spectral detail to low spectral detail, allowing the use of a low resolution disperser. Multiple parallel interferometer cavities of fixed delay allow the instantaneous mapping of a spectrum, with an instrument more compact for the same spectral resolution than a conventional dispersive spectrometer, and not requiring a scanning delay.

  18. Laser-driven electron beam acceleration and future application to compact light sources

    NASA Astrophysics Data System (ADS)

    Hafz, N.; Jeong, T. M.; Lee, S. K.; Pae, K. H.; Sung, J. H.; Choi, I. W.; Yu, T. J.; Jeong, Y. U.; Lee, J.

    2009-07-01

    Laser-driven plasma accelerators are gaining much attention by the advanced accelerator community due to the potential these accelerators hold in miniaturizing future high-energy and medium-energy machines. In the laser wakefield accelerator (LWFA), the ponderomotive force of an ultrashort high intensity laser pulse excites a longitudinal plasma wave or bubble. Due to huge charge separation, electric fields created in the plasma bubble can be several orders of magnitude higher than those available in conventional microwave and RF-based accelerator facilities which are limited (up to ˜100 MV/m) by material breakdown. Therefore, if an electron bunch is injected into the bubble in phase with its field, it will gain relativistic energies within an extremely short distance. Here, in the LWFA we show the generation of high-quality and high-energy electron beams up to the GeV-class within a few millimeters of gas-jet plasmas irradiated by tens of terawatt ultrashort laser pulses. Thus we realize approximately four orders of magnitude acceleration gradients higher than available by conventional technology. As a practical application of the stable high-energy electron beam generation, we are planning on injecting the electron beams into a few-meters long conventional undulator in order to realize compact X-ray synchrotron (immediate) and FEL (future) light sources. Stable laser-driven electron beam and radiation devices will surely open a new era in science, medicine and technology and will benefit a larger number of users in those fields.

  19. Field-portable lensfree tomographic microscope†

    PubMed Central

    Isikman, Serhan O.; Bishara, Waheb; Sikora, Uzair; Yaglidere, Oguzhan; Yeah, John; Ozcan, Aydogan

    2011-01-01

    We present a field-portable lensfree tomographic microscope, which can achieve sectional imaging of a large volume (~20 mm3) on a chip with an axial resolution of <7 μm. In this compact tomographic imaging platform (weighing only ~110 grams), 24 light-emitting diodes (LEDs) that are each butt-coupled to a fibre-optic waveguide are controlled through a cost-effective micro-processor to sequentially illuminate the sample from different angles to record lensfree holograms of the sample that is placed on the top of a digital sensor array. In order to generate pixel super-resolved (SR) lensfree holograms and hence digitally improve the achievable lateral resolution, multiple sub-pixel shifted holograms are recorded at each illumination angle by electromagnetically actuating the fibre-optic waveguides using compact coils and magnets. These SR projection holograms obtained over an angular range of ~50° are rapidly reconstructed to yield projection images of the sample, which can then be back-projected to compute tomograms of the objects on the sensor-chip. The performance of this compact and light-weight lensfree tomographic microscope is validated by imaging micro-beads of different dimensions as well as a Hymenolepis nana egg, which is an infectious parasitic flatworm. Achieving a decent three-dimensional spatial resolution, this field-portable on-chip optical tomographic microscope might provide a useful toolset for telemedicine and high-throughput imaging applications in resource-poor settings. PMID:21573311

  20. A compact electron spectrometer for an LWFA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, A.; Crowell, R.; Li, Y.

    2007-01-01

    The use of a laser wakefield accelerator (LWFA) beam as a driver for a compact free-electron laser (FEL) has been proposed recently. A project is underway at Argonne National Laboratory (ANL) to operate an LWFA in the bubble regime and to use the quasi-monoenergetic electron beam as a driver for a 3-m-long undulator for generation of sub-ps UV radiation. The Terawatt Ultrafast High Field Facility (TUHFF) in the Chemistry Division provides the 20-TW peak power laser. A compact electron spectrometer whose initial fields of 0.45 T provide energy coverage of 30-200 MeV has been selected to characterize the electron beams.more » The system is based on the Ecole Polytechnique design used for their LWFA and incorporates the 5-cm-long permanent magnet dipole, the LANEX scintillator screen located at the dispersive plane, a Roper Scientific 16-bit MCP-intensified CCD camera, and a Bergoz ICT for complementary charge measurements. Test results on the magnets, the 16-bit camera, and the ICT will be described, and initial electron beam data will be presented as available. Other challenges will also be addressed.« less

  1. NEWTON - NEW portable multi-sensor scienTific instrument for non-invasive ON-site characterization of rock from planetary surface and sub-surfaces

    NASA Astrophysics Data System (ADS)

    Díaz-Michelena, M.; de Frutos, J.; Ordóñez, A. A.; Rivero, M. A.; Mesa, J. L.; González, L.; Lavín, C.; Aroca, C.; Sanz, M.; Maicas, M.; Prieto, J. L.; Cobos, P.; Pérez, M.; Kilian, R.; Baeza, O.; Langlais, B.; Thébault, E.; Grösser, J.; Pappusch, M.

    2017-09-01

    In space instrumentation, there is currently no instrument dedicated to susceptibly or complete magnetization measurements of rocks. Magnetic field instrument suites are generally vector (or scalar) magnetometers, which locally measure the magnetic field. When mounted on board rovers, the electromagnetic perturbations associated with motors and other elements make it difficult to reap the benefits from the inclusion of such instruments. However, magnetic characterization is essential to understand key aspects of the present and past history of planetary objects. The work presented here overcomes the limitations currently existing in space instrumentation by developing a new portable and compact multi-sensor instrument for ground breaking high-resolution magnetic characterization of planetary surfaces and sub-surfaces. This new technology introduces for the first time magnetic susceptometry (real and imaginary parts) as a complement to existing compact vector magnetometers for planetary exploration. This work aims to solve the limitations currently existing in space instrumentation by means of providing a new portable and compact multi-sensor instrument for use in space, science and planetary exploration to solve some of the open questions on the crustal and more generally planetary evolution within the Solar System.

  2. A new surface-potential-based compact model for the MoS2 field effect transistors in active matrix display applications

    NASA Astrophysics Data System (ADS)

    Cao, Jingchen; Peng, Songang; Liu, Wei; Wu, Quantan; Li, Ling; Geng, Di; Yang, Guanhua; Ji, Zhouyu; Lu, Nianduan; Liu, Ming

    2018-02-01

    We present a continuous surface-potential-based compact model for molybdenum disulfide (MoS2) field effect transistors based on the multiple trapping release theory and the variable-range hopping theory. We also built contact resistance and velocity saturation models based on the analytical surface potential. This model is verified with experimental data and is able to accurately predict the temperature dependent behavior of the MoS2 field effect transistor. Our compact model is coded in Verilog-A, which can be implemented in a computer-aided design environment. Finally, we carried out an active matrix display simulation, which suggested that the proposed model can be successfully applied to circuit design.

  3. Constraining black holes with light boson hair and boson stars using epicyclic frequencies and quasiperiodic oscillations

    NASA Astrophysics Data System (ADS)

    Franchini, Nicola; Pani, Paolo; Maselli, Andrea; Gualtieri, Leonardo; Herdeiro, Carlos A. R.; Radu, Eugen; Ferrari, Valeria

    2017-06-01

    Light bosonic fields are ubiquitous in extensions of the Standard Model. Even when minimally coupled to gravity, these fields might evade the assumptions of the black-hole no-hair theorems and give rise to spinning black holes which can be drastically different from the Kerr metric. Furthermore, they allow for self-gravitating compact solitons, known as (scalar or Proca) boson stars. The quasiperiodic oscillations (QPOs) observed in the x-ray flux emitted by accreting compact objects carry information about the strong-field region, thus providing a powerful tool to constrain deviations from Kerr's geometry and to search for exotic compact objects. By using the relativistic precession model as a proxy to interpret the QPOs in terms of geodesic frequencies, we investigate how the QPO frequencies could be used to test the no-hair theorem and the existence of light bosonic fields near accreting compact objects. We show that a detection of two QPO triplets with current sensitivity can already constrain these models and that the future eXTP mission or a LOFT-like mission can set very stringent constraints on black holes with bosonic hair and on (scalar or Proca) boson stars. The peculiar geodesic structure of compact scalar/Proca boson stars implies that these objects can easily be ruled out as alternative models for x-ray source GRO J1655-40.

  4. Some topics in the magnetohydrodynamics of accreting magnetic compact objects

    NASA Technical Reports Server (NTRS)

    Aly, J. J.

    1986-01-01

    Magnetic compact objects (neutron stars or white dwarfs) are currently thought to be present in many accreting systems that are releasing large amounts of energy. The magnetic field of the compact star may interact strongly with the accretion flow and play an essential role in the physics of these systems. Some magnetohydrodynamic (MHD) problems that are likely to be relevant in building up self-consistent models of the interaction between the accreting plasma and the star's magnetosphere are addressed in this series of lectures. The basic principles of MHD are first introduced and some important MHD mechanisms (Rayleigh-Taylor and Kelvin-Helmholtz instabilities; reconnection) are discussed, with particular reference to their role in allowing the infalling matter to penetrate the magnetosphere and mix with the field. The structure of a force-free magnetosphere and the possibility of quasistatic momentum and energy transfer between regions linked by field-aligned currents are then studied in some detail. Finally, the structure of axisymmetric accretion flows onto magnetic compact objects is considered.

  5. Theory of Noise Generation from Moving Bodies with an Application to Helicopter Rotors

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1975-01-01

    Several expressions for the determination of the acoustic field of moving bodies are presented. The analysis is based on the Ffowcs Williams-Hawkings equation. Applying some proposed criteria, one of these expressions is singled out for numerical computation of acoustic pressure signature. The compactness of sources is not assumed and the main results are not restricted by the observer position. The distinction between compact and noncompact sources on moving surfaces is discussed. Some thickness noise calculations of helicopter rotors and comparison with experiments are included which suggest this mechanism as the source of high-speed blade slap of rotors.

  6. SlimCS—compact low aspect ratio DEMO reactor with reduced-size central solenoid

    NASA Astrophysics Data System (ADS)

    Tobita, K.; Nishio, S.; Sato, M.; Sakurai, S.; Hayashi, T.; Shibama, Y. K.; Isono, T.; Enoeda, M.; Nakamura, H.; Sato, S.; Ezato, K.; Hayashi, T.; Hirose, T.; Ide, S.; Inoue, T.; Kamada, Y.; Kawamura, Y.; Kawashima, H.; Koizumi, N.; Kurita, G.; Nakamura, Y.; Mouri, K.; Nishitani, T.; Ohmori, J.; Oyama, N.; Sakamoto, K.; Suzuki, S.; Suzuki, T.; Tanigawa, H.; Tsuchiya, K.; Tsuru, D.

    2007-08-01

    The concept for a compact DEMO reactor named 'SlimCS' is presented. Distinctive features of the concept are low aspect ratio (A = 2.6) and use of a reduced-size centre solenoid (CS) which has the function of plasma shaping rather than poloidal flux supply. The reduced-size CS enables us to introduce a thin toroidal field coil system which contributes to reducing the weight and perhaps lessening the construction cost. Low-A has merits of vertical stability for high elongation (κ) and high normalized beta (βN), which leads to a high power density with reasonable physics requirements. This is because high κ facilitates high nGW (because of an increase in Ip), which allows efficient use of the capacity of high βN. From an engineering aspect, low-A may ensure ease in designing blanket modules robust to electromagnetic forces acting on disruptions. Thus, a superconducting low-A tokamak reactor such as SlimCS can be a promising DEMO concept with physics and engineering advantages.

  7. Wide Bandgap Extrinsic Photoconductive Switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, James S.

    2013-07-03

    Semi-insulating Gallium Nitride, 4H and 6H Silicon Carbide are attractive materials for compact, high voltage, extrinsic, photoconductive switches due to their wide bandgap, high dark resistance, high critical electric field strength and high electron saturation velocity. These wide bandgap semiconductors are made semi-insulating by the addition of vanadium (4H and 6HSiC) and iron (2H-GaN) impurities that form deep acceptors. These deep acceptors trap electrons donated from shallow donor impurities. The electrons can be optically excited from these deep acceptor levels into the conduction band to transition the wide bandgap semiconductor materials from a semi-insulating to a conducting state. Extrinsic photoconductivemore » switches with opposing electrodes have been constructed using vanadium compensated 6H-SiC and iron compensated 2H-GaN. These extrinsic photoconductive switches were tested at high voltage and high power to determine if they could be successfully used as the closing switch in compact medical accelerators.« less

  8. Origin of 10{sup 15}–10{sup 16} G magnetic fields in the central engine of gamma ray bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza, Rafael S. de; Opher, Reuven, E-mail: rafael@astro.iag.usp.br, E-mail: opher@astro.iag.usp.br

    2010-02-01

    Various authors have suggested that the gamma-ray burst (GRB) central engine is a rapidly rotating, strongly magnetized, ( ∼ 10{sup 15}–10{sup 16} G) compact object. The strong magnetic field can accelerate and collimate the relativistic flow and the rotation of the compact object can be the energy source of the GRB. The major problem in this scenario is the difficulty of finding an astrophysical mechanism for obtaining such intense fields. Whereas, in principle, a neutron star could maintain such strong fields, it is difficult to justify a scenario for their creation. If the compact object is a black hole, themore » problem is more difficult since, according to general relativity it has ''no hair'' (i.e., no magnetic field). Schuster, Blackett, Pauli, and others have suggested that a rotating neutral body can create a magnetic field by non-minimal gravitational-electromagnetic coupling (NMGEC). The Schuster-Blackett form of NMGEC was obtained from the Mikhail and Wanas's tetrad theory of gravitation (MW). We call the general theory NMGEC-MW. We investigate here the possible origin of the intense magnetic fields ∼ 10{sup 15}–10{sup 16} G in GRBs by NMGEC-MW. Whereas these fields are difficult to explain astrophysically, we find that they are easily explained by NMGEC-MW. It not only explains the origin of the ∼ 10{sup 15}–10{sup 16} G fields when the compact object is a neutron star, but also when it is a black hole.« less

  9. Planar near-field scanning for compact range bistatic radar cross-section measurement. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Tuhela-Reuning, S. R.; Walton, E. K.

    1991-01-01

    The design, construction, and testing of a low cost, planar scanning system to be used in a compact range environment for bistatic radar cross-section (bistatic RCS) measurement data are discussed. This scanning system is similar to structures used for measuring near-field antenna patterns. A synthetic aperture technique is used for plane wave reception. System testing entailed comparison of measured and theoretical bistatic RCS of a sphere and a right circular cylinder. Bistatic scattering analysis of the ogival target support, target and pedestal interactions, and compact range room was necessary to determine measurement validity.

  10. Spherical torus fusion reactor

    DOEpatents

    Martin Peng, Y.K.M.

    1985-10-03

    The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

  11. Compacted dimensions and singular plasmonic surfaces

    NASA Astrophysics Data System (ADS)

    Pendry, J. B.; Huidobro, Paloma Arroyo; Luo, Yu; Galiffi, Emanuele

    2017-11-01

    In advanced field theories, there can be more than four dimensions to space, the excess dimensions described as compacted and unobservable on everyday length scales. We report a simple model, unconnected to field theory, for a compacted dimension realized in a metallic metasurface periodically structured in the form of a grating comprising a series of singularities. An extra dimension of the grating is hidden, and the surface plasmon excitations, though localized at the surface, are characterized by three wave vectors rather than the two of typical two-dimensional metal grating. We propose an experimental realization in a doped graphene layer.

  12. Design of a compact static Fourier transform spectrometer in integrated optics based on a leaky loop structure.

    PubMed

    Martin, Bruno; Morand, Alain; Benech, Pierre; Leblond, Gregory; Blaize, Sylvain; Lerondel, Gilles; Royer, Pascal; Kern, Pierre; Le Coarer, Etienne

    2009-01-15

    A compact static Fourier transform spectrometer for integrated optics is proposed. It is based on a plane leaky loop structure combined with a plane waveguide. The interference pattern produced in the loop structure leaks outside of it and is guided in the plane waveguide to the photodetector array. This configuration allows one to control the shape of the field pattern at the end of the plane waveguide. A large fringe pattern with a high interference fringe contrast is obtained. A two-dimensional model based on an aperiodic Fourier modal method is used to modelize the coupling between the bent and the plane waveguides, completed with the Helmholtz-Kirchhoff propagation. This concept gives access to plan and compact spectrometers requiring only a single low-cost realization process step. The simulation has been done to realize a spectrometer in glass integrated optics (Deltalambda=6.1 nm at 1500 nm).

  13. Dynamics of poroelastic foams

    NASA Astrophysics Data System (ADS)

    Forterre, Yoel; Sobac, Benjamin

    2010-11-01

    Soft poroelastic structures are widespread in biological tissues such as cartilaginous joints in bones, blood-filled placentae or plant organs. Here we investigate the dynamics of open elastic foams immersed in viscous fluids, as model soft poroelastic materials. The experiment consists in slowly compacting blocs of polyurethane solid foam embedded in silicon oil-tanks and studying their relaxation to equilibrium when the confining stress is suddenly released. Measurements of the local fluid pressure and foam velocity field are compared with a simple two-phase flow approach. For small initial compactions, the results show quantitative agreement with the classical diffusion theory of soil consolidation (Terzaghi, Biot). On the other hand, for large initial compactions, the dynamics exhibits long relaxation times and decompaction fronts, which are mainly controlled by the highly non-linear mechanical response of the foam. The analogy between this process and the evaporation of a polymer melt close to the glass transition will be briefly discussed.

  14. Non-orthogonal internally contracted multi-configurational perturbation theory (NICPT): Dynamic electron correlation for large, compact active spaces

    NASA Astrophysics Data System (ADS)

    Kähler, Sven; Olsen, Jeppe

    2017-11-01

    A computational method is presented for systems that require high-level treatments of static and dynamic electron correlation but cannot be treated using conventional complete active space self-consistent field-based methods due to the required size of the active space. Our method introduces an efficient algorithm for perturbative dynamic correlation corrections for compact non-orthogonal MCSCF calculations. In the algorithm, biorthonormal expansions of orbitals and CI-wave functions are used to reduce the scaling of the performance determining step from quadratic to linear in the number of configurations. We describe a hierarchy of configuration spaces that can be chosen for the active space. Potential curves for the nitrogen molecule and the chromium dimer are compared for different configuration spaces. Already the most compact spaces yield qualitatively correct potentials that with increasing size of configuration spaces systematically approach complete active space results.

  15. Compact injector with alternating phase focusing-interdigital H-mode linac and superconducting electron cyclotron resonance ion source for heavy ion cancer therapy

    NASA Astrophysics Data System (ADS)

    Hayashizaki, Noriyosu; Hattori, Toshiyuki; Matsui, Shinjiro; Tomizawa, Hiromitsu; Yoshida, Toru; Isokawa, Katsushi; Kitagawa, Atsushi; Muramatsu, Masayuki; Yamada, Satoru; Okamura, Masahiro

    2000-02-01

    We have researched a compact medical accelerator with low investment and running cost for the popularization of heavy ion cancer therapy. As the first step, the compact injector system has been investigated for a Heavy Ion Medical Accelerator in Chiba at National Institute of Radiological Sciences. The proposed new injector system consists of a 6 MeV/u interdigital H-mode (IH) linac of 3.1 m long and a 18 GHz superconducting electron cyclotron resonance (ECR) (SC-ECR) ion source. The IH linac with high power efficiency is appropriate to a medical and industrial injector system. Its beam trajectory was simulated and a prototype has been constructed. The SC-ECR ion source has been designed to realize lightweight and low power consumption and the mirror field distribution was estimated.

  16. The Next Generation Virgo Cluster Survey. XII. Stellar Populations and Kinematics of Compact, Low-mass Early-type Galaxies from Gemini GMOS-IFU Spectroscopy

    NASA Astrophysics Data System (ADS)

    Guérou, Adrien; Emsellem, Eric; McDermid, Richard M.; Côté, Patrick; Ferrarese, Laura; Blakeslee, John P.; Durrell, Patrick R.; MacArthur, Lauren A.; Peng, Eric W.; Cuillandre, Jean-Charles; Gwyn, Stephen

    2015-05-01

    We present Gemini Multi Object Spectrograph integral-field unit (GMOS-IFU) data of eight compact, low-mass early-type galaxies (ETGs) in the Virgo cluster. We analyze their stellar kinematics and stellar population and present two-dimensional maps of these properties covering the central 5″ × 7″ region. We find a large variety of kinematics, from nonrotating to highly rotating objects, often associated with underlying disky isophotes revealed by deep images from the Next Generation Virgo Cluster Survey. In half of our objects, we find a centrally concentrated younger and more metal-rich stellar population. We analyze the specific stellar angular momentum through the λR parameter and find six fast rotators and two slow rotators, one having a thin counterrotating disk. We compare the local galaxy density and stellar populations of our objects with those of 39 more extended low-mass Virgo ETGs from the SMAKCED survey and 260 massive (M > 1010 {{M}⊙ }) ETGs from the ATLAS3D sample. The compact low-mass ETGs in our sample are located in high-density regions, often close to a massive galaxy, and have, on average, older and more metal-rich stellar populations than less compact low-mass galaxies. We find that the stellar population parameters follow lines of constant velocity dispersion in the mass-size plane, smoothly extending the comparable trends found for massive ETGs. Our study supports a scenario where low-mass compact ETGs have experienced long-lived interactions with their environment, including ram-pressure stripping and gravitational tidal forces, that may be responsible for their compact nature.

  17. Charged reflecting stars supporting charged massive scalar field configurations

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2018-03-01

    The recently published no-hair theorems of Hod, Bhattacharjee, and Sarkar have revealed the intriguing fact that horizonless compact reflecting stars cannot support spatially regular configurations made of scalar, vector and tensor fields. In the present paper we explicitly prove that the interesting no-hair behavior observed in these studies is not a generic feature of compact reflecting stars. In particular, we shall prove that charged reflecting stars can support charged massive scalar field configurations in their exterior spacetime regions. To this end, we solve analytically the characteristic Klein-Gordon wave equation for a linearized charged scalar field of mass μ , charge coupling constant q, and spherical harmonic index l in the background of a spherically symmetric compact reflecting star of mass M, electric charge Q, and radius R_{ {s}}≫ M,Q. Interestingly, it is proved that the discrete set {R_{ {s}}(M,Q,μ ,q,l;n)}^{n=∞}_{n=1} of star radii that can support the charged massive scalar field configurations is determined by the characteristic zeroes of the confluent hypergeometric function. Following this simple observation, we derive a remarkably compact analytical formula for the discrete spectrum of star radii in the intermediate regime M≪ R_{ {s}}≪ 1/μ . The analytically derived resonance spectrum is confirmed by direct numerical computations.

  18. Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response.

    PubMed

    Densmore, A; Xu, D-X; Janz, S; Waldron, P; Mischki, T; Lopinski, G; Delâge, A; Lapointe, J; Cheben, P; Lamontagne, B; Schmid, J H

    2008-03-15

    We demonstrate a new silicon photonic wire waveguide evanescent field (PWEF) sensor that exploits the strong evanescent field of the transverse magnetic mode of this high-index-contrast, submicrometer-dimension waveguide. High sensitivity is achieved by using a 2 mm long double-spiral waveguide structure that fits within a compact circular area of 150 microm diameter, facilitating compatibility with commercial spotting apparatus and the fabrication of densely spaced sensor arrays. By incorporating the PWEF sensor element into a balanced waveguide Mach-Zehnder interferometer circuit, a minimum detectable mass of approximately 10 fg of streptavidin protein is demonstrated with near temperature-independent response.

  19. Implementation of Controlled Traffic in the Canadian Prairies: Soil and Plant Dynamics under Simulated and Field Conditions

    NASA Astrophysics Data System (ADS)

    Guenette, Kris; Hernandez-Ramirez, Guillermo

    2017-04-01

    Achieving resiliency in agroecosystems may be accomplished through the incorporation of contemporary management systems and the diversification of crop rotations with pulse crops, such as controlled traffic farming (CTF) and faba beans (Vicia faba L.). As these practices become more common in the Canadian Prairies, it is imperative to have a well-rounded understanding of how faba beans interact with the soil-plant-atmosphere continuum in conditions found in contemporary management systems. Simulated field conditions emulated soil compaction found in both the trafficked and un-trafficked areas of a CTF system, in which the presence of high water availability was shown to offset the negative results of large applications of compactive effort. Furthermore, low water availability exacerbated differences in plant responses between compaction treatments. The simulated treatment of 1.2 gcm-3 coupled with high water content yielded the most optimal results for most measured parameters, with a contrasting detrimental treatment of 1.4 gcm-3 at low water availability. The simulated field conditions were further bridged through an analysis of two commercial sites in Alberta, Canada that compared both trafficked and un-trafficked soil properties. Soil properties such as available nitrogen (AN), pH, soil total nitrogen (STN), soil organic carbon (SOC), bulk density, macroporosity, soil quality S-Index, plant available water capacity (PAWC) and unsaturated hydraulic conductivity (Km) were analysed and compared among trafficked and un-trafficked areas. The measured soil physical and hydraulic properties of bulk density, macroporosity, S-Index, PAWC and Km were shown to be heavily influenced by the CTF traffic regime, while soil nutrient properties of AN, pH, STN SOC were determined to be dependent on both management and landscape features.

  20. Small pixel pitch MCT IR-modules

    NASA Astrophysics Data System (ADS)

    Lutz, H.; Breiter, R.; Eich, D.; Figgemeier, H.; Fries, P.; Rutzinger, S.; Wendler, J.

    2016-05-01

    It is only some years ago, since VGA format detectors in 15μm pitch, manufactured with AIM's MCT n-on-p LPE standard technology, have been introduced to replace TV/4 format detector arrays as a system upgrade. In recent years a rapid increase in the demand for higher resolution, while preserving high thermal resolution, compactness and low power budget is observed. To satisfy these needs AIM has realized first prototypes of MWIR XGA format (1024x768) detector arrays in 10μm pitch. They fit in the same compact dewar as 640x512, 15μm pitch detector arrays. Therefore, they are best suited for system upgrade purposes to benefit from higher spatial resolution and keep cost on system level low. By combining pitch size reduction with recent development progress in the fields of miniature cryocoolers, short dewars and high operating temperatures the way ahead to ultra-compact high performance MWIR-modules is prepared. For cost reduction MBE grown MCT on commercially available GaAs substrates is introduced at AIM. Recently, 640x512, 15μm pitch FPAs, grown with MBE have successfully passed long-term high temperature storage tests as a crucial step towards serial production readiness level for use in future products. Pitch size reduction is not limited to arrays sensitive in the MWIR, but is of great interest for high performance LWIR or 3rd Gen solutions. Some applications such as rotorcraft pilotage require superior spatial resolution in a compact design to master severe weather conditions or degraded visual environment such as brown-out. For these applications AIM is developing both LWIR as well as dual band detector arrays in HD-format (1280x720) with 12μm pitch. This paper will present latest results in the development of detector arrays with small pitch sizes of 10μm and 12μm at AIM, together with their usage to realize compact cooled IR-modules.

  1. Advances in High Energy Solid-State 2-micron Laser Transmitter Development for Ground and Airborne Wind and CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Kavaya, Michael J.; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Modlin, Edward A.; Koch, Grady; hide

    2010-01-01

    Sustained research efforts at NASA Langley Research Center (LaRC) during last fifteen years have resulted in a significant advancement in 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurement from ground, air and space-borne platform. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  2. Progress on High-Energy 2-micron Solid State Laser for NASA Space-Based Wind and Carbon Dioxide Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.

    2011-01-01

    Sustained research efforts at NASA Langley Research Center during last fifteen years have resulted in significant advancement of a 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurements from ground, air and space-borne platforms. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  3. Central Compact Objects in Kes 79 and RCW 103 as `Hidden' Magnetars with Crustal Activity

    NASA Astrophysics Data System (ADS)

    Popov, S. B.; Kaurov, A. A.; Kaminker, A. D.

    2015-05-01

    We propose that observations of `hidden' magnetars in central compact objects can be used to probe crustal activity of neutron stars with large internal magnetic fields. Estimates based on calculations by Perna & Pons, Pons & Rea and Kaminker et al. suggest that central compact objects, which are proposed to be `hidden' magnetars, must demonstrate flux variations on the time scale of months-years. However, the most prominent candidate for the `hidden' magnetars - CXO J1852.6+0040 in Kes 79 - shows constant (within error bars) flux. This can be interpreted by lower variable crustal activity than in typical magnetars. Alternatively, CXO J1852.6+0040 can be in a high state of variable activity during the whole period of observations. Then we consider the source 1E161348 - 5055 in RCW103 as another candidate. Employing a simple 2D-modelling we argue that properties of the source can be explained by the crustal activity of the magnetar type. Thus, this object may be supplemented for the three known candidates for the `hidden' magnetars among central compact objects discussed in literature.

  4. Ultra-compact high-performance MCT MWIR engine

    NASA Astrophysics Data System (ADS)

    Lutz, H.; Breiter, R.; Eich, D.; Figgemeier, H.; Oelmaier, R.; Rutzinger, S.; Schenk, H.; Wendler, J.

    2017-02-01

    Size, weight and power (SWaP) reduction is highly desired by applications such as sights for the dismounted soldier or small gimbals for UAVs. But why have high performance and small size of IR systems inevitably exclude each other? Namely, recent development progress in the fields of miniature cryocoolers, short dewars and high operating temperature (HOT) FPAs combined with pitch size reduction opens the door for very compact MWIR-modules while keeping high electro-optical performance. Now, AIM has realized first prototypes of an ultra-compact high-performance MWIR engine in a total volume of only 18cl (60mm length x 60mm height x 50mm width). Impressive SWaP characteristics are completed by a total weight below 400g and a power consumption < 4W in basic imaging mode. The engine consists of a XGA-format (1024x768) MCT detector array with 10μm pitch and a low power consuming ROIC. It is cooled down to a typical operating temperature of 160K by the miniature linear cryocooler SX020. The dewar uses a short coldfinger and is designed to reduce the heat load as much as possible. The cooler drive electronics is implemented in the CCE layout in order to reduce the required space of the printed boards and to save power. Uncorrected 14bit video data is provided via Camera Link. Optionally, a small image processing board can be stacked on top of the CCE to gain access to basic functions such as BPR, 2- point NUC and dynamic reduction. This paper will present the design, functionalities and performance data of the ultra-compact MCT MWIR engine operated at HOT.

  5. Bistatic image processing for a 32 x 19 inch model aircraft using scattered fields obtained in the OSU-ESL compact range

    NASA Technical Reports Server (NTRS)

    Lee, T-H.; Burnside, W. D.

    1992-01-01

    Inverse Synthetic Aperture Radar (ISAR) images for a 32 in long and 19 in wide model aircraft are documented. Both backscattered and bistatic scattered fields of this model aircraft were measured in the OSU-ESL compact range to obtain these images. The scattered fields of the target were measured for frequencies from 2 to 18 GHz with a 10 MHz increment and for full 360 deg azimuth rotation angles with a 0.2 deg step. For the bistatic scattering measurement, the compact range was used as the transmitting antenna; while, a broad band AEL double ridge horn was used as the receiving antenna. Bistatic angles of 90 deg and 135 deg were measured. Due to the size of the chamber and target, the receiving antenna was in the near field of the target; nevertheless, the image processing algorithm was valid for this case.

  6. Overview of Alcator C-Mod Research

    NASA Astrophysics Data System (ADS)

    White, A. E.

    2017-10-01

    Alcator C-Mod, a compact (R =0.68m, a =0.21m), high magnetic field, Bt <= 8T, tokamak accesses a variety of naturally ELM-suppressed high confinement regimes that feature extreme power density into the divertor, q|| <= 3 GW/m2, with SOL heat flux widths λq <0.5mm, exceeding conditions expected in ITER and approaching those foreseen in power plants. The unique parameter range provides much of the physics basis of a high-field, compact tokamak reactor. Research spans the topics of core transport and turbulence, RF heating and current drive, pedestal physics, scrape-off layer, divertor and plasma wall interactions. In the last experimental campaign, Super H-mode was explored and featured the highest pedestal pressures ever recorded, pped 90 kPa (90% of ITER target), consistent with EPED predictions. Optimization of naturally ELM-suppressed EDA H-modes accessed the highest volume averaged pressures ever achieved (〈p〉>2 atm), with pped 60 kPa. The SOL heat flux width has been measured at Bpol = 1.25T, confirming the Eich scaling over a broader poloidal field range than before. Multi-channel transport studies focus on the relationship between momentum transport and heat transport with perturbative experiments and new multi-scale gyrokinetic simulation validation techniques were developed. U.S. Department of Energy Grant No. DE-FC02-99ER54512.

  7. Exfoliated YBCO filaments for second-generation superconducting cable

    NASA Astrophysics Data System (ADS)

    Solovyov, Vyacheslav; Farrell, Paul

    2017-01-01

    The second-generation high temperature superconductor (2G HTS) wire is the most promising conductor for high-field magnets such as accelerator dipoles and compact fusion devices. The key element of the wire is a thin Y1Ba2Cu3O7 (YBCO) layer deposited on a flexible metal substrate. The substrate, which becomes incorporated in the 2G conductor, reduces the electrical and mechanical performance of the wire. This is a process that exfoliates the YBCO layer from the substrate while retaining the critical current density of the superconductor. Ten-centimeter long coupons of exfoliated YBCO layers were manufactured, and detailed structural, electrical, and mechanical characterization were reported. After exfoliation, the YBCO layer was supported by a 75 μm thick stainless steel foil, which makes for a compact, mechanically stronger, and inexpensive conductor. The critical current density of the filaments was measured at both 77 K and 4.2 K. The exfoliated YBCO retained 90% of the original critical current. Similarly, tests in an external magnetic field at 4.2 K confirmed that the pinning strength of the YBCO layer was also retained following exfoliation.

  8. An inexpensive and reliable monitoring station design for use with lightweight, compact data loggers

    Treesearch

    Ronald S., Jr. Zalesny; Adam H. Wiese; Edmund O. Bauer; William L., Jr. Headlee; Richard B. Hall; A. Assibi Mahama; Jill A. Zalesny

    2007-01-01

    We designed, constructed, and field-tested an inexpensive and reliable monitoring station that can be used with lightweight, compact data loggers. We feel this design, improved three times over 6 yr, could benefit anyone in nursery or field settings interested in acquiring environmental data. We provide step-by-step instructions on the construction of the monitoring...

  9. The Heidelberg compact electron beam ion traps

    NASA Astrophysics Data System (ADS)

    Micke, P.; Kühn, S.; Buchauer, L.; Harries, J. R.; Bücking, T. M.; Blaum, K.; Cieluch, A.; Egl, A.; Hollain, D.; Kraemer, S.; Pfeifer, T.; Schmidt, P. O.; Schüssler, R. X.; Schweiger, Ch.; Stöhlker, T.; Sturm, S.; Wolf, R. N.; Bernitt, S.; Crespo López-Urrutia, J. R.

    2018-06-01

    Electron beam ion traps (EBITs) are ideal tools for both production and study of highly charged ions (HCIs). In order to reduce their construction, maintenance, and operation costs, we have developed a novel, compact, room-temperature design, the Heidelberg Compact EBIT (HC-EBIT). Four already commissioned devices operate at the strongest fields (up to 0.86 T) reported for such EBITs using permanent magnets, run electron beam currents up to 80 mA, and energies up to 10 keV. They demonstrate HCI production, trapping, and extraction of pulsed Ar16+ bunches and continuous 100 pA ion beams of highly charged Xe up to charge state 29+, already with a 4 mA, 2 keV electron beam. Moreover, HC-EBITs offer large solid-angle ports and thus high photon count rates, e.g., in x-ray spectroscopy of dielectronic recombination in HCIs up to Fe24+, achieving an electron-energy resolving power of E/ΔE > 1500 at 5 keV. Besides traditional on-axis electron guns, we have also implemented a novel off-axis gun for laser, synchrotron, and free-electron laser applications, offering clear optical access along the trap axis. We report on its first operation at a synchrotron radiation facility demonstrating the resonant photoexcitation of highly charged oxygen.

  10. Spherical torus fusion reactor

    DOEpatents

    Peng, Yueng-Kay M.

    1989-04-04

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  11. Spherical torus fusion reactor

    DOEpatents

    Peng, Yueng-Kay M.

    1989-01-01

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  12. Monitoring uranium, hydrogen, and lithium and their isotopes using a compact laser-induced breakdown spectroscopy (LIBS) probe and high-resolution spectrometer.

    PubMed

    Cremers, David A; Beddingfield, Alan; Smithwick, Robert; Chinni, Rosemarie C; Jones, C Randy; Beardsley, Burt; Karch, Larry

    2012-03-01

    The development of field-deployable instruments to monitor radiological, nuclear, and explosive (RNE) threats is of current interest for a number of assessment needs such as the on-site screening of suspect facilities and nuclear forensics. The presence of uranium and plutonium and radiological materials can be determined through monitoring the elemental emission spectrum using relatively low-resolution spectrometers. In addition, uranium compounds, explosives, and chemicals used in nuclear fuel processing (e.g., tributyl-phosphate) can be identified by applying chemometric analysis to the laser-induced breakdown (LIBS) spectrum recorded by these spectrometers. For nuclear forensic applications, however, isotopes of U and Pu and other elements (e.g., H and Li) must also be determined, requiring higher resolution spectrometers given the small magnitude of the isotope shifts for some of these elements (e.g., 25 pm for U and 13 pm for Pu). High-resolution spectrometers will be preferred for several reasons but these must fit into realistic field-based analysis scenarios. To address the need for field instrumentation, we evaluated a previously developed field-deployable hand-held LIBS interrogation probe combined with two relatively new high-resolution spectrometers (λ/Δλ ~75,000 and ~44,000) that have the potential to meet field-based analysis needs. These spectrometers are significantly smaller and lighter in weight than those previously used for isotopic analysis and one unit can provide simultaneous wide spectral coverage and high resolution in a relatively small package. The LIBS interrogation probe was developed initially for use with low resolution compact spectrometers in a person-portable backpack LIBS instrument. Here we present the results of an evaluation of the LIBS probe combined with a high-resolution spectrometer and demonstrate rapid detection of isotopes of uranium and hydrogen and highly enriched samples of (6)Li and (7)Li. © 2012 Society for Applied Spectroscopy

  13. High-gradient low-β accelerating structure using the first negative spatial harmonic of the fundamental mode

    NASA Astrophysics Data System (ADS)

    Kutsaev, Sergey V.; Agustsson, Ronald; Boucher, Salime; Fischer, Richard; Murokh, Alex; Mustapha, Brahim; Nassiri, Alireza; Ostroumov, Peter N.; Plastun, Alexander; Savin, Evgeny; Smirnov, Alexander Yu.

    2017-12-01

    The development of high-gradient accelerating structures for low-β particles is the key for compact hadron linear accelerators. A particular example of such a machine is a hadron therapy linac, which is a promising alternative to cyclic machines, traditionally used for cancer treatment. Currently, the practical utilization of linear accelerators in radiation therapy is limited by the requirement to be under 50 m in length. A usable device for cancer therapy should produce 200-250 MeV protons and/or 400 - 450 MeV /u carbon ions, which sets the requirement of having 35 MV /m average "real-estate gradient" or gradient per unit of actual accelerator length, including different accelerating sections, focusing elements and beam transport lines, and at least 50 MV /m accelerating gradients in the high-energy section of the linac. Such high accelerating gradients for ion linacs have recently become feasible for operations at S-band frequencies. However, the reasonable application of traditional S-band structures is practically limited to β =v /c >0.4 . However, the simulations show that for lower phase velocities, these structures have either high surface fields (>200 MV /m ) or low shunt impedances (<35 M Ω /m ). At the same time, a significant (˜10 % ) reduction in the linac length can be achieved by using the 50 MV /m structures starting from β ˜0.3 . To address this issue, we have designed a novel radio frequency structure where the beam is synchronous with the higher spatial harmonic of the electromagnetic field. In this paper, we discuss the principles of this approach, the related beam dynamics and especially the electromagnetic and thermomechanical designs of this novel structure. Besides the application to ion therapy, the technology described in this paper can be applied to future high gradient normal conducting ion linacs and high energy physics machines, such as a compact hadron collider. This approach preserves linac compactness in settings with limited space availability.

  14. A weed compaction roller system for use with mechanical herbicide application

    Treesearch

    Adam H. Wiese; Daniel A. Netzer; Don E. Riemenschneider; Ronald S., Jr. Zalesny

    2006-01-01

    We designed, constructed, and field-tested a versatile and unique weed compaction roller system that can be used with mechanical herbicide application for invasive weed control in tree plantations, agronomic settings, and areas where localized flora and fauna are in danger of elimination from the landscape. The weed compaction roller system combined with herbicide...

  15. Assessment of in-situ compaction degree of HMA pavement surface layers using GPR and novel dielectric properties-based algorithms

    NASA Astrophysics Data System (ADS)

    Georgiou, Panos; Loizos, Fokion

    2015-04-01

    Field compaction of asphalt pavements is ultimately conducted to achieve layer(s) with suitable mechanical stability. However, the achieved degree of compaction has a significant influence on the performance of asphalt pavements. Providing all desirable mixture design characteristics without adequate compaction could lead to premature permanent deformation, excessive aging, and moisture damage; these distresses reduce the useful life of asphalt pavements. Hence, proper construction of an asphalt pavement is necessary to develop a long lasting roadway that will help minimize future maintenance. This goal is achieved by verifying and confirming that design specifications, in this case density specifications are met through the use of Quality Assurance (QA) practices. With respect to in-situ compaction degree of hot mix asphalt (HMA) pavement surface layers, nearly all agencies specify either cored samples or nuclear/ non nuclear density gauges to provide density measurement of the constructed pavement. Typically, a small number of spot tests (with either cores or nuclear gauges) are run and a judgment about the density level of the entire roadway is made based on the results of this spot testing. Unfortunately, density measurement from a small number of spots may not be representative of the density of the pavement mat. Hence, full coverage evaluation of compaction quality of the pavement mat is needed. The Ground Penetrating Radar (GPR), as a Non Destructive Testing (NDT) technique, is an example of a non-intrusive technique that favors over the methods mentioned above for assessing compaction quality of asphalt pavements, since it allows measurement of all mat areas. Further, research studies in recent years have shown promising results with respect to its capability, coupled with the use of novel algorithms based on the dielectric properties of HMA, to predict the in-situ field density. In view of the above, field experimental surveys were conducted to assess the effectiveness of GPR methodology to estimate the in-situ compaction degree of several test sections. Moreover, considering also the field density results as obtained with traditional methods, comparative evaluation was conducted to assess the potential of using the GPR technique as a surrogate tool for pavement compaction quality purposes. Acknowledgements: This work has been inspired from publications of the COST action TU-1208 funded from EU.

  16. Growing Magnetic Fields in Central Compact Objects

    NASA Astrophysics Data System (ADS)

    Bernal, C. G.; Page, D.

    2011-10-01

    We study the effects of growth models of magnetic fields in Central Compact Objects (CCOs). Such a field evolution is not a new idea (Blandford, Applegate, & Hernquist 1983) but the evolutionary implications not have been followed up completely (Michel 1994). We discussed the new class of neutron stars which belong to five main types that have mainly been recognized in the last ten years. The possibility that a rapid weakly magnetized pulsar might have formed in SN1987A is commented.

  17. Wide field of view common-path lateral-shearing digital holographic interference microscope

    NASA Astrophysics Data System (ADS)

    Vora, Priyanka; Trivedi, Vismay; Mahajan, Swapnil; Patel, Nimit; Joglekar, Mugdha; Chhaniwal, Vani; Moradi, Ali-Reza; Javidi, Bahram; Anand, Arun

    2017-12-01

    Quantitative three-dimensional (3-D) imaging of living cells provides important information about the cell morphology and its time variation. Off-axis, digital holographic interference microscopy is an ideal tool for 3-D imaging, parameter extraction, and classification of living cells. Two-beam digital holographic microscopes, which are usually employed, provide high-quality 3-D images of micro-objects, albeit with lower temporal stability. Common-path digital holographic geometries, in which the reference beam is derived from the object beam, provide higher temporal stability along with high-quality 3-D images. Self-referencing geometry is the simplest of the common-path techniques, in which a portion of the object beam itself acts as the reference, leading to compact setups using fewer optical elements. However, it has reduced field of view, and the reference may contain object information. Here, we describe the development of a common-path digital holographic microscope, employing a shearing plate and converting one of the beams into a separate reference by employing a pin-hole. The setup is as compact as self-referencing geometry, while providing field of view as wide as that of a two-beam microscope. The microscope is tested by imaging and quantifying the morphology and dynamics of human erythrocytes.

  18. Wide field of view common-path lateral-shearing digital holographic interference microscope.

    PubMed

    Vora, Priyanka; Trivedi, Vismay; Mahajan, Swapnil; Patel, Nimit; Joglekar, Mugdha; Chhaniwal, Vani; Moradi, Ali-Reza; Javidi, Bahram; Anand, Arun

    2017-12-01

    Quantitative three-dimensional (3-D) imaging of living cells provides important information about the cell morphology and its time variation. Off-axis, digital holographic interference microscopy is an ideal tool for 3-D imaging, parameter extraction, and classification of living cells. Two-beam digital holographic microscopes, which are usually employed, provide high-quality 3-D images of micro-objects, albeit with lower temporal stability. Common-path digital holographic geometries, in which the reference beam is derived from the object beam, provide higher temporal stability along with high-quality 3-D images. Self-referencing geometry is the simplest of the common-path techniques, in which a portion of the object beam itself acts as the reference, leading to compact setups using fewer optical elements. However, it has reduced field of view, and the reference may contain object information. Here, we describe the development of a common-path digital holographic microscope, employing a shearing plate and converting one of the beams into a separate reference by employing a pin-hole. The setup is as compact as self-referencing geometry, while providing field of view as wide as that of a two-beam microscope. The microscope is tested by imaging and quantifying the morphology and dynamics of human erythrocytes. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  19. What drives the evolution of Luminous Compact Blue Galaxies in Clusters vs. the Field?

    NASA Astrophysics Data System (ADS)

    Wirth, Gregory D.; Bershady, Matthew A.; Crawford, Steven M.; Hunt, Lucas; Pisano, Daniel J.; Randriamampandry, Solohery M.

    2018-06-01

    Low-mass dwarf ellipticals are the most numerous members of present-day galaxy clusters, but the progenitors of this dominant population remain unclear. A prime candidate is the class of objects known as Luminous Compact Blue Galaxies (LCBGs), common in intermediate-redshift clusters but virtually extinct today. Recent cosmological simulations suggest that present-day dwarf galaxies begin as irregular field galaxies, undergo an environmentally-driven starburst phase as they enter the cluster, and stop forming stars earlier than their counterparts in the field. This model predicts that cluster dwarfs should have lower stellar mass per unit dynamical mass than their counterparts in the field. We are undertaking a two-pronged archival research program to test this key prediction using the combination of precision photometry from space and high-quality spectroscopy. First, we are combining optical HST/ACS imaging of five z=0.55 clusters (including two HST Frontier Fields) with Spitzer IR imaging and publicly-released Keck/DEIMOS spectroscopy to measure stellar-to-dynamical-mass ratios for a large sample of cluster LCBGs. Second, we are exploiting a new catalog of LCBGs in the COSMOS field to gather corresponding data for a significant sample of field LCBGs. By comparing mass ratios from these datasets, we aim to test theoretical predictions and determine the primary physical driver of cluster dwarf-galaxy evolution.

  20. Mapping the Properties of Blue Compact Dwarf Galaxies by Means of Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cairós, L. M.; Caon, N.; Weilbacher, P.; Papaderos, P.; García-Lorenzo, B.

    Blue Compact Dwarf (BCD) galaxies are metal-poor and gas-rich systems undergoing intense, spatially extended star-forming activity. These galaxies offer a unique opportunity to investigate dwarf galaxy formation and evolution, and probe violent star formation and its implications on the chemical, dynamical and structural properties of low-mass extragalactic systems near and far. Several fundamental questions in BCD research, such as their star formation histories and the mechanisms that control their cyclic starburst activity, are still far from well understood. In order to improve our understanding on BCD evolution, we are carrying out a comprehensive Integral Field Spectroscopic (IFS) survey of a large sample of BCDs. Integral Field Unit (IFU) spectroscopy provides simultaneously spectral and spatial information, allowing, in just one shot, to study the morphology and evolutionary status of the stellar component, and the physical properties of the warm interstellar medium (e.g., extinction, chemical abundances, kinematics). This ongoing IFS survey will supply much needed local templates that will ease the interpretation of IFS data for intermediate and high-redshift star-forming galaxies.

  1. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array.

    PubMed

    Bishara, Waheb; Sikora, Uzair; Mudanyali, Onur; Su, Ting-Wei; Yaglidere, Oguzhan; Luckhart, Shirley; Ozcan, Aydogan

    2011-04-07

    We report a portable lensless on-chip microscope that can achieve <1 µm resolution over a wide field-of-view of ∼ 24 mm(2) without the use of any mechanical scanning. This compact on-chip microscope weighs ∼ 95 g and is based on partially coherent digital in-line holography. Multiple fiber-optic waveguides are butt-coupled to light emitting diodes, which are controlled by a low-cost micro-controller to sequentially illuminate the sample. The resulting lensfree holograms are then captured by a digital sensor-array and are rapidly processed using a pixel super-resolution algorithm to generate much higher resolution holographic images (both phase and amplitude) of the objects. This wide-field and high-resolution on-chip microscope, being compact and light-weight, would be important for global health problems such as diagnosis of infectious diseases in remote locations. Toward this end, we validate the performance of this field-portable microscope by imaging human malaria parasites (Plasmodium falciparum) in thin blood smears. Our results constitute the first-time that a lensfree on-chip microscope has successfully imaged malaria parasites.

  2. Laser Acceleration of Ions for Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Tajima, Toshiki; Habs, Dietrich; Yan, Xueqing

    Ion beam therapy for cancer has proven to be a successful clinical approach, affording as good a cure as surgery and a higher quality of life. However, the ion beam therapy installation is large and expensive, limiting its availability for public benefit. One of the hurdles is to make the accelerator more compact on the basis of conventional technology. Laser acceleration of ions represents a rapidly developing young field. The prevailing acceleration mechanism (known as target normal sheath acceleration, TNSA), however, shows severe limitations in some key elements. We now witness that a new regime of coherent acceleration of ions by laser (CAIL) has been studied to overcome many of these problems and accelerate protons and carbon ions to high energies with higher efficiencies. Emerging scaling laws indicate possible realization of an ion therapy facility with compact, cost-efficient lasers. Furthermore, dense particle bunches may allow the use of much higher collective fields, reducing the size of beam transport and dump systems. Though ultimate realization of a laser-driven medical facility may take many years, the field is developing fast with many conceptual innovations and technical progress.

  3. Quench Modeling in High-field Nb3Sn Accelerator Magnets

    NASA Astrophysics Data System (ADS)

    Bermudez, S. Izquierdo; Bajas, H.; Bottura, L.

    The development of high-field magnets is on-going in the framework of the LHC luminosity upgrade. The resulting peak field, in the range of 12 T to 13 T, requires the use Nb3Sn as superconductor. Due to the high stored energy density (compact winding for cost reduction) and the low stabilizer fraction (to achieve the desired margins), quench protection becomes a challenging problem. Accurate simulation of quench transientsin these magnets is hence crucial to the design choices, the definition of priority R&D and to prove that the magnets are fit for operation. In this paper we focus on the modelling of quench initiation and propagation, we describe approaches that are suitable for magnet simulation, and we compare numerical results with available experimental data.

  4. A compact microwave patch applicator for hyperthermia treatment of cancer.

    PubMed

    Chakaravarthi, Geetha; Arunachalam, Kavitha

    2014-01-01

    Design and development of a compact microstrip C-type patch applicator for hyperthermia treatment of cancer is presented. The patch antenna is optimized for resonance at 434 MHz, return loss (S11) better than -15dB and co-polarized electric field in tissue. Effect of water bolus thickness on power delivery is studied for improved power coupling. Numerical simulations for antenna design optimization carried out using EM simulation software, Ansys HFSS(®), USA were experimentally verified. The effective field coverage for the optimized patch antenna and experimental results indicate that the compact antenna resonates at ISM frequency 434 MHz with better than -15 dB power coupling.

  5. Compacted dimensions and singular plasmonic surfaces.

    PubMed

    Pendry, J B; Huidobro, Paloma Arroyo; Luo, Yu; Galiffi, Emanuele

    2017-11-17

    In advanced field theories, there can be more than four dimensions to space, the excess dimensions described as compacted and unobservable on everyday length scales. We report a simple model, unconnected to field theory, for a compacted dimension realized in a metallic metasurface periodically structured in the form of a grating comprising a series of singularities. An extra dimension of the grating is hidden, and the surface plasmon excitations, though localized at the surface, are characterized by three wave vectors rather than the two of typical two-dimensional metal grating. We propose an experimental realization in a doped graphene layer. Copyright © 2017, American Association for the Advancement of Science.

  6. Magnetic-field sensing coil embedded in ceramic for measuring ambient magnetic field

    DOEpatents

    Takahashi, Hironori

    2004-02-10

    A magnetic pick-up coil for measuring magnetic field with high specific sensitivity, optionally with an electrostatic shield (24), having coupling elements (22) with high winding packing ratio, oriented in multiple directions, and embedded in ceramic material for structural support and electrical insulation. Elements of the coil are constructed from green ceramic sheets (200) and metallic ink deposited on surfaces and in via holes of the ceramic sheets. The ceramic sheets and the metallic ink are co-fired to create a monolithic hard ceramic body (20) with metallized traces embedded in, and placed on exterior surfaces of, the hard ceramic body. The compact and rugged coil can be used in a variety of environments, including hostile conditions involving ultra-high vacuum, high temperatures, nuclear and optical radiation, chemical reactions, and physically demanding surroundings, occurring either individually or in combinations.

  7. High brightness electron accelerator

    DOEpatents

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  8. Vacuum currents in braneworlds on AdS bulk with compact dimensions

    NASA Astrophysics Data System (ADS)

    Bellucci, S.; Saharian, A. A.; Vardanyan, V.

    2015-11-01

    The two-point function and the vacuum expectation value (VEV) of the current density are investigated for a massive charged scalar field with arbitrary curvature coupling in the geometry of a brane on the background of AdS spacetime with partial toroidal compactification. The presence of a gauge field flux, enclosed by compact dimensions, is assumed. On the brane the field obeys Robin boundary condition and along compact dimensions periodicity conditions with general phases are imposed. There is a range in the space of the values for the coefficient in the boundary condition where the Poincaré vacuum is unstable. This range depends on the location of the brane and is different for the regions between the brane and AdS boundary and between the brane and the horizon. In models with compact dimensions the stability condition is less restrictive than that for the AdS bulk with trivial topology. The vacuum charge density and the components of the current along non-compact dimensions vanish. The VEV of the current density along compact dimensions is a periodic function of the gauge field flux with the period equal to the flux quantum. It is decomposed into the boundary-free and brane-induced contributions. The asymptotic behavior of the latter is investigated near the brane, near the AdS boundary and near the horizon. It is shown that, in contrast to the VEVs of the field squared an denergy-momentum tensor, the current density is finite on the brane and vanishes for the special case of Dirichlet boundary condition. Both the boundary-free and brane-induced contributions vanish on the AdS boundary. The brane-induced contribution vanishes on the horizon and for points near the horizon the current is dominated by the boundary-free part. In the near-horizon limit, the latter is connected to the corresponding quantity for a massless field in the Minkowski bulk by a simple conformal relation. Depending on the value of the Robin coefficient, the presence of the brane can either increase or decrease the vacuum currents. Applications are given for a higher-dimensional version of the Randall-Sundrum 1-brane model.

  9. Radial electron-beam-breakup transit-time oscillator

    DOEpatents

    Kwan, Thomas J. T.; Mostrom, Michael A.

    1998-01-01

    A radial electron-beam-breakup transit-time oscillator (RBTO) provides a compact high power microwave generator. The RBTO includes a coaxial vacuum transmission line having an outer conductor and an inner conductor. The inner conductor defines an annular cavity with dimensions effective to support an electromagnetic field in a TEM.sub.00m mode. A radial field emission cathode is formed on the outer conductor for providing an electron beam directed toward the annular cavity electrode. Microwave energy is then extracted from the annular cavity electrode.

  10. Third-harmonic generation of a laser-driven quantum dot with impurity

    NASA Astrophysics Data System (ADS)

    Sakiroglu, S.; Kilic, D. Gul; Yesilgul, U.; Ungan, F.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2018-06-01

    The third-harmonic generation (THG) coefficient for a laser-driven quantum dot with an on-center Gaussian impurity under static magnetic field is theoretically investigated. Laser field effect is treated within the high-frequency Floquet approach and the analytical expression of the THG coefficient is deduced from the compact density-matrix approach. The numerical results demonstrate that the application of intense laser field causes substantial changes on the behavior of THG. In addition the position and magnitude of the resonant peak of THG coefficient is significantly affected by the magnetic field, quantum dot size and the characteristic parameters of the impurity potential.

  11. A Variable Energy CW Compact Accelerator for Ion Cancer Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstone, Carol J.; Taylor, J.; Edgecock, R.

    2016-03-10

    Cancer is the second-largest cause of death in the U.S. and approximately two-thirds of all cancer patients will receive radiation therapy with the majority of the radiation treatments performed using x-rays produced by electron linacs. Charged particle beam radiation therapy, both protons and light ions, however, offers advantageous physical-dose distributions over conventional photon radiotherapy, and, for particles heavier than protons, a significant biological advantage. Despite recognition of potential advantages, there is almost no research activity in this field in the U.S. due to the lack of clinical accelerator facilities offering light ion therapy in the States. In January, 2013, amore » joint DOE/NCI workshop was convened to address the challenges of light ion therapy [1], inviting more than 60 experts from diverse fields related to radiation therapy. This paper reports on the conclusions of the workshop, then translates the clinical requirements into accelerat or and beam-delivery technical specifications. A comparison of available or feasible accelerator technologies is compared, including a new concept for a compact, CW, and variable energy light ion accelerator currently under development. This new light ion accelerator is based on advances in nonscaling Fixed-Field Alternating gradient (FFAG) accelerator design. The new design concepts combine isochronous orbits with long (up to 4m) straight sections in a compact racetrack format allowing inner circulating orbits to be energy selected for low-loss, CW extraction, effectively eliminating the high-loss energy degrader in conventional CW cyclotron designs.« less

  12. Field-portable lensfree tomographic microscope.

    PubMed

    Isikman, Serhan O; Bishara, Waheb; Sikora, Uzair; Yaglidere, Oguzhan; Yeah, John; Ozcan, Aydogan

    2011-07-07

    We present a field-portable lensfree tomographic microscope, which can achieve sectional imaging of a large volume (∼20 mm(3)) on a chip with an axial resolution of <7 μm. In this compact tomographic imaging platform (weighing only ∼110 grams), 24 light-emitting diodes (LEDs) that are each butt-coupled to a fibre-optic waveguide are controlled through a cost-effective micro-processor to sequentially illuminate the sample from different angles to record lensfree holograms of the sample that is placed on the top of a digital sensor array. In order to generate pixel super-resolved (SR) lensfree holograms and hence digitally improve the achievable lateral resolution, multiple sub-pixel shifted holograms are recorded at each illumination angle by electromagnetically actuating the fibre-optic waveguides using compact coils and magnets. These SR projection holograms obtained over an angular range of ±50° are rapidly reconstructed to yield projection images of the sample, which can then be back-projected to compute tomograms of the objects on the sensor-chip. The performance of this compact and light-weight lensfree tomographic microscope is validated by imaging micro-beads of different dimensions as well as a Hymenolepis nana egg, which is an infectious parasitic flatworm. Achieving a decent three-dimensional spatial resolution, this field-portable on-chip optical tomographic microscope might provide a useful toolset for telemedicine and high-throughput imaging applications in resource-poor settings. This journal is © The Royal Society of Chemistry 2011

  13. High performance infrared fast cooled detectors for missile applications

    NASA Astrophysics Data System (ADS)

    Reibel, Yann; Espuno, Laurent; Taalat, Rachid; Sultan, Ahmad; Cassaigne, Pierre; Matallah, Noura

    2016-05-01

    SOFRADIR was selected in the late 90's for the production of 320×256 MW detectors for major European missile programs. This experience has established our company as a key player in the field of missile programs. SOFRADIR has since developed a vast portfolio of lightweight, compact and high performance JT-based solutions for missiles. ALTAN is a 384x288 Mid Wave infrared detector with 15μm pixel pitch, and is offered in a miniature ultra-fast Joule- Thomson cooled Dewar. Since Sofradir offers both Indium Antimonide (InSb) and Mercury Cadmium Telluride technologies (MCT), we are able to deliver the detectors best suited to customers' needs. In this paper we are discussing different figures of merit for very compact and innovative JT-cooled detectors and are highlighting the challenges for infrared detection technologies.

  14. Development of Compact Electron Cyclotron Resonance Ion Source with Permanent Magnets for High-Energy Carbon-Ion Therapy

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Kitagawa, A.; Iwata, Y.; Hojo, S.; Sakamoto, Y.; Sato, S.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Ueda, T.; Miyazaki, H.; Drentje, A. G.

    2008-11-01

    Heavy-ion cancer treatment is being carried out at the Heavy Ion Medical Accelerator in Chiba (HIMAC) with 140 to 400 MeV/n carbon ions at National Institute of Radiological Sciences (NIRS) since 1994. At NIRS, more than 4,000 patients have been treated, and the clinical efficiency of carbon ion radiotherapy has been demonstrated for many diseases. A more compact accelerator facility for cancer therapy is now being constricted at the Gunma University. In order to reduce the size of the injector (consists of ion source, low-energy beam transport and post-accelerator Linac include these power supply and cooling system), an ion source requires production of highly charged carbon ions, lower electric power for easy installation of the source on a high-voltage platform, long lifetime and easy operation. A compact Electron Cyclotron Resonance Ion Source (ECRIS) with all permanent magnets is one of the best types for this purpose. An ECRIS has advantage for production of highly charged ions. A permanent magnet is suitable for reduce the electric power and cooling system. For this, a 10 GHz compact ECRIS with all permanent magnets (Kei2-source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas-injection side, while the minimum B strength is 0.25 T. These parameters have been optimized for the production of C4+ based on experience at the 10 GHz NIRS-ECR ion source. The Kei2-source has a diameter of 320 mm and a length of 295 mm. The beam intensity of C4+ was obtained to be 618 eμA under an extraction voltage of 30 kV. Outline of the heavy ion therapy and development of the compact ion source for new facility are described in this paper.

  15. Field evaluation of roller integrated intelligent compaction monitoring

    DOT National Transportation Integrated Search

    2016-05-01

    DOTD conducted a demonstration : project to evaluate intelligent compaction (IC). The : project developed specifications, which allo : wed and incorporated : the IC rollers on the : project. The specification went through th : e competitive bidding p...

  16. Optical information-processing systems and architectures II; Proceedings of the Meeting, San Diego, CA, July 9-13, 1990

    NASA Astrophysics Data System (ADS)

    Javidi, Bahram

    The present conference discusses topics in the fields of neural networks, acoustooptic signal processing, pattern recognition, phase-only processing, nonlinear signal processing, image processing, optical computing, and optical information processing. Attention is given to the optical implementation of an inner-product neural associative memory, optoelectronic associative recall via motionless-head/parallel-readout optical disk, a compact real-time acoustooptic image correlator, a multidimensional synthetic estimation filter, and a light-efficient joint transform optical correlator. Also discussed are a high-resolution spatial light modulator, compact real-time interferometric Fourier-transform processors, a fast decorrelation algorithm for permutation arrays, the optical interconnection of optical modules, and carry-free optical binary adders.

  17. On-chip photonic particle sensor

    NASA Astrophysics Data System (ADS)

    Singh, Robin; Ma, Danhao; Agarwal, Anu; Anthony, Brian

    2018-02-01

    We propose an on-chip photonic particle sensor design that can perform particle sizing and counting for various environmental applications. The sensor is based on micro photonic ring resonators that are able to detect the presence of the free space particles through the interaction with their evanescent electric field tail. The sensor can characterize a wide range of the particle size ranging from a few nano meters to micron ( 1 micron). The photonic platform offers high sensitivity, compactness, fast response of the device. Further, FDTD simulations are performed to analyze different particle-light interactions. Such a compact and portable platform, packaged with integrated photonic circuit provides a useful sensing modality in space shuttle and environmental applications.

  18. Demonstration of Single-Shot Picosecond Time-Resolved MeV Electron Imaging Using a Compact Permanent Magnet Quadrupole Based Lens

    NASA Astrophysics Data System (ADS)

    Cesar, D.; Maxson, J.; Musumeci, P.; Sun, Y.; Harrison, J.; Frigola, P.; O'Shea, F. H.; To, H.; Alesini, D.; Li, R. K.

    2016-07-01

    We present the results of an experiment where a short focal length (˜1.3 cm ), permanent magnet electron lens is used to image micron-size features (of a metal sample) with a single shot from an ultrahigh brightness picosecond-long 4 MeV electron beam emitted by a radio-frequency photoinjector. Magnification ratios in excess of 30 × were obtained using a triplet of compact, small gap (3.5 mm), Halbach-style permanent magnet quadrupoles with nearly 600 T /m field gradients. These results pave the way towards single-shot time-resolved electron microscopy and open new opportunities in the applications of high brightness electron beams.

  19. Theoretical study of nanophotonic directional couplers comprising near-field-coupled metal nanoparticles.

    PubMed

    Holmström, Petter; Yuan, Jun; Qiu, Min; Thylén, Lars; Bratkovsky, Alexander M

    2011-04-11

    The properties of integrated-photonics directional couplers composed of near-field-coupled arrays of metal nanoparticles are analyzed theoretically. It is found that it is possible to generate very compact, submicron length, high field-confinement and functionality devices with very low switch energies. The analysis is carried out for a hypothetical lossless silver to demonstrate the potential of this type of circuits for applications in telecom and interconnects. Employing losses of real silver, standalone devices with the above properties are still feasible in optimized metal nanoparticle structures. © 2011 Optical Society of America

  20. Modeling of Diamond Field-Emitter-Arrays for high brightness photocathode applications

    NASA Astrophysics Data System (ADS)

    Kwan, Thomas; Huang, Chengkun; Piryatinski, Andrei; Lewellen, John; Nichols, Kimberly; Choi, Bo; Pavlenko, Vitaly; Shchegolkov, Dmitry; Nguyen, Dinh; Andrews, Heather; Simakov, Evgenya

    2017-10-01

    We propose to employ Diamond Field-Emitter-Arrays (DFEAs) as high-current-density ultra-low-emittance photocathodes for compact laser-driven dielectric accelerators capable of generating ultra-high brightness electron beams for advanced applications. We develop a semi-classical Monte-Carlo photoemission model for DFEAs that includes carriers' transport to the emitter surface and tunneling through the surface under external fields. The model accounts for the electronic structure size quantization affecting the transport and tunneling process within the sharp diamond tips. We compare this first principle model with other field emission models, such as the Child-Langmuir and Murphy-Good models. By further including effects of carrier photoexcitation, we perform simulations of the DFEAs' photoemission quantum yield and the emitted electron beam. Details of the theoretical model and validation against preliminary experimental data will be presented. Work ssupported by LDRD program at LANL.

  1. First Application of the Zeeman Technique to Remotely Measure Auroral Electrojet Intensity From Space

    NASA Technical Reports Server (NTRS)

    Yee, J. H.; Gjerloev, J.; Wu, D.; Schwartz, M. J.

    2017-01-01

    Using the O2 118 GHz spectral radiance measurements obtained by the Microwave Limb Sounder instrument on board the Aura spacecraft, we demonstrate that the Zeeman effect can be used to remotely measure the magnetic field perturbations produced by the auroral electrojet near the Hall current closure altitudes. Our derived current-induced magnetic field perturbations are found to be highly correlated with those coincidently obtained by ground magnetometers. These perturbations are also found to be linearly correlated with auroral electrojet strength. The statistically derived polar maps of our measured magnetic field perturbation reveal a spatial-temporal morphology consistent with that produced by the Hall current during substorms and storms. With today's technology, a constellation of compact, low-power, high spectral-resolution cubesats would have the capability to provide high precision and spatiotemporal magnetic field samplings needed for auroral electrojet measurements to gain insights into the spatiotemporal behavior of the auroral electrojet system.

  2. 3D wide field-of-view Gabor-domain optical coherence microscopy advancing real-time in-vivo imaging and metrology

    NASA Astrophysics Data System (ADS)

    Canavesi, Cristina; Cogliati, Andrea; Hayes, Adam; Tankam, Patrice; Santhanam, Anand; Rolland, Jannick P.

    2017-02-01

    Real-time volumetric high-definition wide-field-of-view in-vivo cellular imaging requires micron-scale resolution in 3D. Compactness of the handheld device and distortion-free images with cellular resolution are also critically required for onsite use in clinical applications. By integrating a custom liquid lens-based microscope and a dual-axis MEMS scanner in a compact handheld probe, Gabor-domain optical coherence microscopy (GD-OCM) breaks the lateral resolution limit of optical coherence tomography through depth, overcoming the tradeoff between numerical aperture and depth of focus, enabling advances in biotechnology. Furthermore, distortion-free imaging with no post-processing is achieved with a compact, lightweight handheld MEMS scanner that obtained a 12-fold reduction in volume and 17-fold reduction in weight over a previous dual-mirror galvanometer-based scanner. Approaching the holy grail of medical imaging - noninvasive real-time imaging with histologic resolution - GD-OCM demonstrates invariant resolution of 2 μm throughout a volume of 1 x 1 x 0.6 mm3, acquired and visualized in less than 2 minutes with parallel processing on graphics processing units. Results on the metrology of manufactured materials and imaging of human tissue with GD-OCM are presented.

  3. GASEOUS DISCHARGE DEVICE

    DOEpatents

    Gow, J.D.

    1961-01-10

    An extremely compact two-terminal gaseous discharge device is described that is capable of producing neutrons in copious quantities, relatively high energy ions, intense x rays, and the like. Principal novelty resides in the provision of a crossed electric-magnetic field region in the discharge envelope that traps electrons and accelerates them to very high energies to provide an intense ionizing medium adjacent the anode of the device for ionizing gas therein with extremely high efficiency. In addition, the crossed-field trapping region holds the electrons close to the anode whereby the acceleration of ions to the cathode is not materially effected by the electron sheath and the ions assume substantially the full energy of the anodecathode potential drop. (auth)

  4. Comparison study of toroidal-field divertors for a compact reversed-field pinch reactor

    NASA Astrophysics Data System (ADS)

    Bathke, C. G.; Krakowski, R. A.; Miller, R. L.

    Two divertor configurations for the Compact Reversed-Field Pinch Reactor (CRFPR) based on diverting the minority (toroidal) field have been reported. A critical factor in evaluating the performance of both poloidally symmetric and bundle divertor configurations is the accurate determination of the divertor connection length and the monitoring of magnetic islands introduced by the divertors, the latter being a three-dimensional effect. To this end the poloidal-field, toroidal-field, and divertor coils and the plasma currents are simulated in three dimensions for field-line trackings in both the divertor channel and the plasma-edge regions. The results of this analysis indicate a clear preference for the poloidally symmetric toroidal-field divertor. Design modifications to the limiter-based CRFPR design that accommodate this divertor are presented.

  5. Development of 3-dimensional compact magnetic dosimeter for environmental magnetic field monitoring

    NASA Astrophysics Data System (ADS)

    Kubota, Yusuke; Obayashi, Haruo; Miyahara, Akira; Ohno, Kazuko; Nakamura, Kouichi; Horii, Kenzi

    1991-07-01

    A computer-driven, three-dimensional magnetic fluxmeter to be used for magnetic field dosimetry has been developed. A magnetic monitor applicable to this object should be measurable to an absolute value of local magnetic field strength and also be able to record its time integration as a measure of exposed dose to the magnetic field. The present fluxmeter consists of signal amplifiers, rectifiers, an A/D converter, and a pocket computer (PC). The signal outputs from the sensors are processed with the PC to compose an absolute strength of magnetic flux density and its time-integrated value. The whole system is driven by a battery and is quite compact in size to be used as a handy portable system. Further details of the design, idea, construction, specification, and testing result of the fluxmeter are described. The measurable range are from 0.4G to 20,000G in normal mode and 8mG to 400G in high-sensitivity AC mode, and the sensitivity is well independent of the magnetic field direction. These measured data are displayed in real time on the LCD panel of the PC and memorized in RAM files. Possible application of the fluxmeter is discussed with special attention to the search of the leakage and/or disturbing error fields around LHD (Large Helical Device) and other magnetic systems, the individual dose control to the workers in strong magnetic fields, and the evaluation of the effects of long irradiation of magnetic fields.

  6. Protocol for Cohesionless Sample Preparation for Physical Experimentation

    DTIC Science & Technology

    2016-05-01

    protocol for specimen preparation that will enable the use of soil strength curves based on expedient field classification testing (e.g., grain-size...void ratio and relative compaction, which compares field compaction to a laboratory maximum density. Gradation charts for the two materials used in...the failure stress. Ring shear testing was performed using the GCTS Residual-Ring Shear System SRS-150 in order to measure the peak torsional

  7. Application of a high-energy-density permanent magnet material in underwater systems

    NASA Astrophysics Data System (ADS)

    Cho, C. P.; Egan, C.; Krol, W. P.

    1996-06-01

    This paper addresses the application of high-energy-density permanent magnet (PM) technology to (1) the brushless, axial-field PM motor and (2) the integrated electric motor/pump system for under-water applications. Finite-element analysis and lumped parameter magnetic circuit analysis were used to calculate motor parameters and performance characteristics and to conduct tradeoff studies. Compact, efficient, reliable, and quiet underwater systems are attainable with the development of high-energy-density PM material, power electronic devices, and power integrated-circuit technology.

  8. Development of a Compact & Easy-to-Use 3-D Camera for High Speed Turbulent Flow Fields

    DTIC Science & Technology

    2013-12-05

    resolved. Also, in the case of a single camera system, the use of an aperture greatly reduces the amount of collected light. The combination of these...a study on wall-bounded turbulence [Sheng_2006]. Nevertheless, these techniques are limited to small measurement volumes, while maintaining a high...It has also been adapted to kHz rates using high-speed cameras for aeroacoustic studies (see Violato et al. [17, 18]. Tomo-PIV, however, has some

  9. High-Resolution Large Field-of-View FUV Compact Camera

    NASA Technical Reports Server (NTRS)

    Spann, James F.

    2006-01-01

    The need for a high resolution camera with a large field of view and capable to image dim emissions in the far-ultraviolet is driven by the widely varying intensities of FUV emissions and spatial/temporal scales of phenomena of interest in the Earth% ionosphere. In this paper, the concept of a camera is presented that is designed to achieve these goals in a lightweight package with sufficient visible light rejection to be useful for dayside and nightside emissions. The camera employs the concept of self-filtering to achieve good spectral resolution tuned to specific wavelengths. The large field of view is sufficient to image the Earth's disk at Geosynchronous altitudes and capable of a spatial resolution of >20 km. The optics and filters are emphasized.

  10. Modeling of heat transfer in compacted machining chips during friction consolidation process

    NASA Astrophysics Data System (ADS)

    Abbas, Naseer; Deng, Xiaomin; Li, Xiao; Reynolds, Anthony

    2018-04-01

    The current study aims to provide an understanding of the heat transfer process in compacted aluminum alloy AA6061 machining chips during the friction consolidation process (FCP) through experimental investigations and mathematical modelling and numerical simulation. Compaction and friction consolidation of machining chips is the first stage of the Friction Extrusion Process (FEP), which is a novel method for recycling machining chips to produce useful products such as wires. In this study, compacted machining chips are modelled as a continuum whose material properties vary with density during friction consolidation. Based on density and temperature dependent thermal properties, the temperature field in the chip material and process chamber caused by frictional heating during the friction consolidation process is predicted. The predicted temperature field is found to compare well with temperature measurements at select points where such measurements can be made using thermocouples.

  11. A compact quantum correction model for symmetric double gate metal-oxide-semiconductor field-effect transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Edward Namkyu; Shin, Yong Hyeon; Yun, Ilgu, E-mail: iyun@yonsei.ac.kr

    2014-11-07

    A compact quantum correction model for a symmetric double gate (DG) metal-oxide-semiconductor field-effect transistor (MOSFET) is investigated. The compact quantum correction model is proposed from the concepts of the threshold voltage shift (ΔV{sub TH}{sup QM}) and the gate capacitance (C{sub g}) degradation. First of all, ΔV{sub TH}{sup QM} induced by quantum mechanical (QM) effects is modeled. The C{sub g} degradation is then modeled by introducing the inversion layer centroid. With ΔV{sub TH}{sup QM} and the C{sub g} degradation, the QM effects are implemented in previously reported classical model and a comparison between the proposed quantum correction model and numerical simulationmore » results is presented. Based on the results, the proposed quantum correction model can be applicable to the compact model of DG MOSFET.« less

  12. Compact Ocean Models Enable Onboard AUV Autonomy and Decentralized Adaptive Sampling

    DTIC Science & Technology

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Compact Ocean Models Enable Onboard AUV Autonomy and...transmitted onboard an AUV . 3. Develop algorithms for adaptive planning of AUV surveys. 4. Demonstrate use of compact ocean models onboard a long...range AUV during a field deployment. Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of

  13. Charged Compact Boson Stars in a Theory of Massless Scalar Field

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjeev

    2018-05-01

    In this work we present some new results obtained in a study of the phase diagram of charged compact boson stars in a theory involving a complex scalar field with a conical potential coupled to a U(1) gauge field and gravity. We obtain new bifurcation points in this model. We present a detailed discussion of the various regions of the phase diagram with respect to the bifurcation points. The theory is seen to contain rich physics in a particular domain of the phase diagram.

  14. Manifestations of dynamo driven large-scale magnetic field in accretion disks of compact objects

    NASA Technical Reports Server (NTRS)

    Chagelishvili, G. D.; Chanishvili, R. G.; Lominadze, J. G.; Sokhadze, Z. A.

    1991-01-01

    A turbulent dynamo nonlinear theory of turbulence was developed that shows that in the compact objects of accretion disks, the generated large-scale magnetic field (when the generation takes place) has a practically toroidal configuration. Its energy density can be much higher than turbulent pulsations energy density, and it becomes comparable with the thermal energy density of the medium. On this basis, the manifestations to which the large-scale magnetic field can lead at the accretion onto black holes and gravimagnetic rotators, respectively, are presented.

  15. Design of a compact, permanent magnet electron cyclotron resonance ion source for proton and H2(+) beam production.

    PubMed

    Jia, Xianlu; Zhang, Tianjue; Luo, Shan; Wang, Chuan; Zheng, Xia; Yin, Zhiguo; Zhong, Junqing; Wu, Longcheng; Qin, Jiuchang

    2010-02-01

    A 2.45 GHz microwave ion source was developed at China Institute of Atomic Energy (CIAE) for proton beam production of over 60 mA [B.-Q. Cui, Y.-W. Bao, L.-Q. Li, W.-S. Jiang, and R.-W. Wang, Proceedings of the High Current Electron Cyclotron Resonance (ECR) Ion Source for Proton Accelerator, APAC-2001, 2001 (unpublished)]. For various proton beam applications, another 2.45 GHz microwave ion source with a compact structure is designed and will be built at CIAE as well for high current proton beam production. It is also considered to be used for the test of H(2)(+) beam, which could be injected into the central region model cyclotron at CIAE, and accelerated to 5 MeV before extraction by stripping. The required ECR magnetic field is supplied by all the permanent magnets rather than electrical solenoids and six poles. The magnetic field distribution provided by this permanent magnets configuration is a large and uniformly volume of ECR zone, with central magnetic field of a magnitude of approximately 875 Gs [T. Taylor and J. S. C. Wills, Nucl. Instrum. Methods Phys. Res. A 309, 37 (1991)]. The field adjustment at the extraction end can be implemented by moving the position of the magnet blocks. The results of plasma, coupling with 2.45 GHz microwave in the ECR zone inside the ion source are simulated by particle-in-cell code to optimize the density by adjusting the magnetic field distribution. The design configuration of the ion source will be summarized in the paper.

  16. Dynamics of Galaxies in Compact Groups II.

    NASA Astrophysics Data System (ADS)

    Amram, P.; Mendes de Oliveira, C.

    We show partial results of a program based on Fabry-Perot Hα velocity field data of compact groups taken at the ESO and the CFH 3.6m telescopes in order to analyze the kinematics of compact group galaxies. This project has three main goals: 1. determine the evolutionary stages of the groups; 2. search for tidal dwarf galaxies and 3. determine the Tully-Fisher relation for the group galaxies. We classify the compact groups studied so far into the following subclasses : (1) merging groups, (2) strongly interacting, (3) mildly interacting, (4) kinematically undisturbed and (5) false groups/single galaxy (details are given in the companion paper Mendes de Oliveira and Amram, 2000). We present examples of velocity fields of galaxies in compact groups that are in different evolutionary stages as classified from the kinematic disturbances. Spiral-only groups have often been considered chance alignments or groups in the very early stages of dynamical evolution. However, we find that the kinematics of the member galaxies for spiral-only groups in classes (1), (2) and (3) above display peculiarities which suggest that the galaxies know of the presence of their neighbors.

  17. On the number of light rings in curved spacetimes of ultra-compact objects

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2018-01-01

    In a very interesting paper, Cunha, Berti, and Herdeiro have recently claimed that ultra-compact objects, self-gravitating horizonless solutions of the Einstein field equations which have a light ring, must possess at least two (and, in general, an even number of) light rings, of which the inner one is stable. In the present compact paper we explicitly prove that, while this intriguing theorem is generally true, there is an important exception in the presence of degenerate light rings which, in the spherically symmetric static case, are characterized by the simple dimensionless relation 8 πrγ2 (ρ +pT) = 1 [here rγ is the radius of the light ring and { ρ ,pT } are respectively the energy density and tangential pressure of the matter fields]. Ultra-compact objects which belong to this unique family can have an odd number of light rings. As a concrete example, we show that spherically symmetric constant density stars with dimensionless compactness M / R = 1 / 3 possess only one light ring which, interestingly, is shown to be unstable.

  18. Characterization of compact-toroid injection during formation, translation, and field penetration

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.; Roche, T.; Allfrey, I.; Sekiguchi, J.; Asai, T.; Gota, H.; Cordero, M.; Garate, E.; Kinley, J.; Valentine, T.; Waggoner, W.; Binderbauer, M.; Tajima, T.

    2016-11-01

    We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ˜1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation, ejection/translation from the MCPG, and penetration into transverse magnetic fields.

  19. Characterization of compact-toroid injection during formation, translation, and field penetration.

    PubMed

    Matsumoto, T; Roche, T; Allfrey, I; Sekiguchi, J; Asai, T; Gota, H; Cordero, M; Garate, E; Kinley, J; Valentine, T; Waggoner, W; Binderbauer, M; Tajima, T

    2016-11-01

    We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ∼1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation, ejection/translation from the MCPG, and penetration into transverse magnetic fields.

  20. Trapped Field Characteristics of Stacked YBCO Thin Plates for Compact NMR Magnets: Spatial Field Distribution and Temporal Stability

    PubMed Central

    Hahn, Seungyong; Kim, Seok Beom; Ahn, Min Cheol; Voccio, John; Bascuñán, Juan; Iwasa, Yukikazu

    2010-01-01

    This paper presents experimental and analytical results of trapped field characteristics of a stack of square YBCO thin film plates for compact NMR magnets. Each YBCO plate, 40 mm × 40 mm × 0.08 mm, has a 25-mm diameter hole at its center. A total of 500 stacked plates were used to build a 40-mm long magnet. Its trapped field, in a bath of liquid nitrogen, was measured for spatial field distribution and temporal stability. Comparison of measured and analytical results is presented: the effects on trapped field characteristics of the unsaturated nickel substrate and the non-uniform current distribution in the YBCO plate are discussed. PMID:20585463

  1. Highly compact neutron stars in scalar-tensor theories of gravity: Spontaneous scalarization versus gravitational collapse

    NASA Astrophysics Data System (ADS)

    Mendes, Raissa F. P.; Ortiz, Néstor

    2016-06-01

    Scalar-tensor theories of gravity are extensions of general relativity (GR) including an extra, nonminimally coupled scalar degree of freedom. A wide class of these theories, albeit indistinguishable from GR in the weak field regime, predicts a radically different phenomenology for neutron stars, due to a nonperturbative, strong-field effect referred to as spontaneous scalarization. This effect is known to occur in theories where the effective linear coupling β0 between the scalar and matter fields is sufficiently negative, i.e. β0≲-4.35 , and has been strongly constrained by pulsar timing observations. In the test-field approximation, spontaneous scalarization manifests itself as a tachyonic-like instability. Recently, it was argued that, in theories where β0>0 , a similar instability would be triggered by sufficiently compact neutron stars obeying realistic equations of state. In this work we investigate the end state of this instability for some representative coupling functions with β0>0 . This is done both through an energy balance analysis of the existing equilibrium configurations, and by numerically determining the nonlinear Cauchy development of unstable initial data. We find that, contrary to the β0<0 case, the final state of the instability is highly sensitive to the details of the coupling function, varying from gravitational collapse to spontaneous scalarization. In particular, we show, for the first time, that spontaneous scalarization can happen in theories with β0>0 , which could give rise to novel astrophysical tests of the theory of gravity.

  2. Multi-aperture microoptical system for close-up imaging

    NASA Astrophysics Data System (ADS)

    Berlich, René; Brückner, Andreas; Leitel, Robert; Oberdörster, Alexander; Wippermann, Frank; Bräuer, Andreas

    2014-09-01

    Modern applications in biomedical imaging, machine vision and security engineering require close-up optical systems with high resolution. Combined with the need for miniaturization and fast image acquisition of extended object fields, the design and fabrication of respective devices is extremely challenging. Standard commercial imaging solutions rely on bulky setups or depend on scanning techniques in order to meet the stringent requirements. Recently, our group has proposed a novel, multi-aperture approach based on parallel image transfer in order to overcome these constraints. It exploits state of the art microoptical manufacturing techniques on wafer level in order to create a compact, cost-effective system with a large field of view. However, initial prototypes have so far been subject to various limitations regarding their manufacturing, reliability and applicability. In this work, we demonstrate the optical design and fabrication of an advanced system, which overcomes these restrictions. In particular, a revised optical design facilitates a more efficient and economical fabrication process and inherently improves system reliability. An additional customized front side illumination module provides homogeneous white light illumination over the entire field of view while maintaining a high degree of compactness. Moreover, the complete imaging assembly is mounted on a positioning system. In combination with an extended working range, this allows for adjustment of the system's focus location. The final optical design is capable of capturing an object field of 36x24 mm2 with a resolution of 150 cycles/mm. Finally, we present experimental results of the respective prototype that demonstrate its enhanced capabilities.

  3. Multiphoton amplitude in a constant background field

    NASA Astrophysics Data System (ADS)

    Ahmad, Aftab; Ahmadiniaz, Naser; Corradini, Olindo; Kim, Sang Pyo; Schubert, Christian

    2018-01-01

    In this contribution, we present our recent compact master formulas for the multiphoton amplitudes of a scalar propagator in a constant background field using the worldline fomulation of quantum field theory. The constant field has been included nonperturbatively, which is crucial for strong external fields. A possible application is the scattering of photons by electrons in a strong magnetic field, a process that has been a subject of great interest since the discovery of astrophysical objects like radio pulsars, which provide evidence that magnetic fields of the order of 1012G are present in nature. The presence of a strong external field leads to a strong deviation from the classical scattering amplitudes. We explicitly work out the Compton scattering amplitude in a magnetic field, which is a process of potential relevance for astrophysics. Our final result is compact and suitable for numerical integration.

  4. Current induced perpendicular-magnetic-anisotropy racetrack memory with magnetic field assistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y.; Klein, J.-O.; Chappert, C.

    2014-01-20

    High current density is indispensable to shift domain walls (DWs) in magnetic nanowires, which limits the using of racetrack memory (RM) for low power and high density purposes. In this paper, we present perpendicular-magnetic-anisotropy (PMA) Co/Ni RM with global magnetic field assistance, which lowers the current density for DW motion. By using a compact model of PMA RM and 40 nm design kit, we perform mixed simulation to validate the functionality of this structure and analyze its density potential. Stochastic DW motion behavior has been taken into account and statistical Monte-Carlo simulations are carried out to evaluate its reliability performance.

  5. ACCELERATION OF COMPACT RADIO JETS ON SUB-PARSEC SCALES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Sung; Lobanov, Andrei P.; Krichbaum, Thomas P.

    2016-08-01

    Jets of compact radio sources are highly relativistic and Doppler boosted, making studies of their intrinsic properties difficult. Observed brightness temperatures can be used to study the intrinsic physical properties of relativistic jets, and constrain models of jet formation in the inner jet region. We aim to observationally test such inner jet models. The very long baseline interferometry (VLBI) cores of compact radio sources are optically thick at a given frequency. The distance of the core from the central engine is inversely proportional to the frequency. Under the equipartition condition between the magnetic field energy and particle energy densities, themore » absolute distance of the VLBI core can be predicted. We compiled the brightness temperatures of VLBI cores at various radio frequencies of 2, 8, 15, and 86 GHz. We derive the brightness temperature on sub-parsec scales in the rest frame of the compact radio sources. We find that the brightness temperature increases with increasing distance from the central engine, indicating that the intrinsic jet speed (the Lorentz factor) increases along the jet. This implies that the jets are accelerated in the (sub-)parsec regions from the central engine.« less

  6. Soybean nodulation and symbiotic nitrogen fixation in response to soil compaction and mulching

    NASA Astrophysics Data System (ADS)

    Siczek, A.; Lipiec, J.

    2009-04-01

    Symbiotic nitrogen fixation by legume crops such as soybean plays a key role in supplying nitrogen for agricultural systems. In symbiotic associations with Bradyrhizobium japonicum soybean can fix up to 200 kg N ha-1 yr-1. This reduces the need for expensive and often environmentally harmful because of leaching nitrogen fertilization. However both soybean nodulation and nitrogen fixation are sensitive to soil conditions. One of the critical soil constraints is soil compaction. Increasing use of heavy equipment and intensive cropping in modern agriculture leads to excessive soil compaction. Compaction often is found as a result of field operations that have to be performed in a very short period of time and when soils are wet and more susceptible to compaction. This results in unfavourable water content, temperature, aeration, pore size distribution, strength for plant growth and microbial activity. The surface mulching can alleviate the adverse effect of the environmental factors on soil by decreasing fluctuation of soil temperature, increasing moisture by controlling evaporation from the soil surface, decreasing bulk density, preventing soil crusting. The effect of mulch on soil conditions largely depends on soil compaction and weather conditions during growing season. The positive effect of the straw mulch on soil moisture has been seen under seasons with insufficient rainfalls. However thicker layers of mulch can act as diffusion barrier, especially when the mulch is wet. Additionally, low soil temperature prevalent during early spring under mulch can impede development of nodule, nodule size and delay onset of nodulation. The aim of this study was to determine the effect of the straw mulch on nodulation and nitrogen fixation of soybean in variously compacted soil. The experimental field was 192 m2and was divided into three parts composed of 6 micro-plots with area 7 m2. Three degrees of soil compaction obtained in each field part through tractor passes were compared: low, medium and heavy (0, 3 or 5 passes, respectively). This resulted in a wide range of soil bulk density (1.2 to 1.65 Mg m-3) that can occur in the arable fields. To obtain uniform conditions for seed germination and initial seedling growth the entire plot area was tilled with a cultivator-harrow to a depth of 5 cm after soil compaction. Soybean "Aldana" seeds inoculated with B. japonicum were sown in rows with spacing of 0.3 m. After sowing half of each micro-plot was mulched with wheat straw (0.5 kg m-2) and another one - not. Nodulation was evaluated by using the parameters of nodule number and nodule weight and acetylene reduction assay was used for the measurement of nitrogenase activity. Number of nodules on root system under mulched and not mulched soil was the highest in not compacted and medium compacted soil, respectively and the lowest - in most compacted soil with mulch. Nitrogenase activity ( mol C2H4 h-1 plant-1) decreased as soil compaction increased but the more pronounced tendency and higher values were obtained in mulched plots. The results indicate that mulching in some range of soil compaction can improve soybean nodulation and nitrogen fixation. This work was funded in part by the Polish Ministry of Science and Higher Education (Grant No N N310 149635).

  7. Intelligent Compaction and Infrared Scanning Field Projects with Consulting Support

    DOT National Transportation Integrated Search

    2018-02-01

    The Missouri Department of Transportation (MoDOT) was awarded a grant from the FHWA Accelerated Innovation Deployment (AID) program, in 2016. MoDOT provided the required matching funds to support this Intelligent Compaction (IC) and Infrared Scanning...

  8. Rapid field detection of moisture content for base and subgrade : technical report.

    DOT National Transportation Integrated Search

    2015-03-01

    Mixing and compacting soil and flexible base pavement materials at the proper moisture content is critical : for obtaining adequate compaction and meeting construction specification requirements. This project sought : to evaluate rapid non-nuclear te...

  9. Accelerated Innovation Deployment (AID) Demonstration Project : Intelligent Compaction and Infrared Scanning Projects

    DOT National Transportation Integrated Search

    2018-02-01

    This report documents the Missouri Department of Transportation (MoDOT) demonstration grant award for field demonstration projects using intelligent compaction (IC) and infrared scanning (IR) (also called paver-mounted thermal profiles PMTP in the AA...

  10. Investigation of Condensed Media in Weak Fields by the Method of Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Davydov, V. V.; Myazin, N. S.; Dudkin, V. I.; Velichko, E. N.

    2018-05-01

    A compact design of a rapid-response nuclear magnetic spectrometer for investigation of condensed media in weak fields is reported. As a result of investigation of different condensed media, special features of recording a nuclear magnetic resonance (NMR) signal in a weak magnetic field from a small volume of the medium under study are established. For the first time the NMR absorption spectra of condensed media in a weak field are collected. Based on the results of experimental studies, the potential of using a compact NMR-spectrometer for condensed media monitoring in a rapid response mode is determined.

  11. A multithreaded and GPU-optimized compact finite difference algorithm for turbulent mixing at high Schmidt number using petascale computing

    NASA Astrophysics Data System (ADS)

    Clay, M. P.; Yeung, P. K.; Buaria, D.; Gotoh, T.

    2017-11-01

    Turbulent mixing at high Schmidt number is a multiscale problem which places demanding requirements on direct numerical simulations to resolve fluctuations down the to Batchelor scale. We use a dual-grid, dual-scheme and dual-communicator approach where velocity and scalar fields are computed by separate groups of parallel processes, the latter using a combined compact finite difference (CCD) scheme on finer grid with a static 3-D domain decomposition free of the communication overhead of memory transposes. A high degree of scalability is achieved for a 81923 scalar field at Schmidt number 512 in turbulence with a modest inertial range, by overlapping communication with computation whenever possible. On the Cray XE6 partition of Blue Waters, use of a dedicated thread for communication combined with OpenMP locks and nested parallelism reduces CCD timings by 34% compared to an MPI baseline. The code has been further optimized for the 27-petaflops Cray XK7 machine Titan using GPUs as accelerators with the latest OpenMP 4.5 directives, giving 2.7X speedup compared to CPU-only execution at the largest problem size. Supported by NSF Grant ACI-1036170, the NCSA Blue Waters Project with subaward via UIUC, and a DOE INCITE allocation at ORNL.

  12. Curved sensors for compact high-resolution wide-field designs: prototype demonstration and optical characterization

    NASA Astrophysics Data System (ADS)

    Chambion, Bertrand; Gaschet, Christophe; Behaghel, Thibault; Vandeneynde, Aurélie; Caplet, Stéphane; Gétin, Stéphane; Henry, David; Hugot, Emmanuel; Jahn, Wilfried; Lombardo, Simona; Ferrari, Marc

    2018-02-01

    Over the recent years, a huge interest has grown for curved electronics, particularly for opto-electronics systems. Curved sensors help the correction of off-axis aberrations, such as Petzval Field Curvature, astigmatism, and bring significant optical and size benefits for imaging systems. In this paper, we first describe advantages of curved sensor and associated packaging process applied on a 1/1.8'' format 1.3Mpx global shutter CMOS sensor (Teledyne EV76C560) into its standard ceramic package with a spherical radius of curvature Rc=65mm and 55mm. The mechanical limits of the die are discussed (Finite Element Modelling and experimental), and electro-optical performances are investigated. Then, based on the monocentric optical architecture, we proposed a new design, compact and with a high resolution, developed specifically for a curved image sensor including optical optimization, tolerances, assembly and optical tests. Finally, a functional prototype is presented through a benchmark approach and compared to an existing standard optical system with same performances and a x2.5 reduction of length. The finality of this work was a functional prototype demonstration on the CEA-LETI during Photonics West 2018 conference. All these experiments and optical results demonstrate the feasibility and high performances of systems with curved sensors.

  13. Design and expected performance of a compact and continuous nuclear demagnetization refrigerator for sub-mK applications

    NASA Astrophysics Data System (ADS)

    Toda, Ryo; Murakawa, Satoshi; Fukuyama, Hiroshi

    2018-03-01

    Sub-mK temperatures are achievable by a copper nuclear demagnetization refrigerator (NDR). Recently, research demands for such an ultra-low temperature environment are increasing not only in condensed matter physics but also in astrophysics. A standard NDR requires a specially designed room, a high-field superconducting magnet, and a high-power dilution refrigerator (DR). And it is a one-shot cooling apparatus. To reduce these requirements, we are developing a compact and continuous NDR with two PrNi5 nuclear stages which occupies only a small space next to an appropriate pre-cooling stage such as DR. PrNi5 has a large magnetic-field enhancement on Pr3+ nuclei due to the strong hyperfine coupling. This enables us to enclose each stage in a miniature superconducting magnet and to locate two such sets in close proximity by surrounding them with high-permeability magnetic shields. The two stages are thermally connected in series to the pre-cooling stage by two Zn superconducting heat switches. A numerical analysis taking account of thermal resistances of all parts and an eddy current heating shows that the lowest sample temperature of 0.8 mK can be maintained continuously under a 10 nW ambient heat leak.

  14. Geometrical optics design of a compact range Gregorian subreflector system by the principle of the central ray

    NASA Technical Reports Server (NTRS)

    Clerici, Giancarlo; Burnside, Walter D.

    1989-01-01

    In recent years, the compact range has become very popular for measuring Radar Cross Section (RCS) and antenna patterns. The compact range, in fact, offers several advantages due to reduced size, a controlled environment, and privacy. On the other hand, it has some problems of its own, which must be solved properly in order to achieve high quality measurement results. For example, diffraction from the edges of the main reflector corrupts the plane wave in the target zone and creates spurious scattering centers in RCS measurements. While diffraction can be minimized by using rolled edges, the field of an offset single reflector compact range is corrupted by three other errors: the taper of the reflected field, the cross polarization introduced by the tilt of the feed and the aperture blockage introduced by the feed itself. These three errors can be eliminated by the use of a subreflector system. A properly designed subreflector system offers very little aperture blockage, no cross-polarization introduced and a minimization of the taper of the reflected field. A Gregorian configuration has been adopted in order to enclose the feed and the ellipsoidal subreflector in a lower chamber, which is isolated by absorbers from the upper chamber, where the main parabolic reflector and the target zone are enclosed. The coupling between the two rooms is performed through a coupling aperture. The first cut design for such a subreflector system is performed through Geometrical Optics ray tracing techniques (GO), and is greatly simplified by the use of the concept of the central ray introduced by Dragone. The purpose of the GO design is to establish the basic dimensions of the main reflector and subreflector, the size of the primary and secondary illuminating surfaces, the tilt angles of the subreflector and feed, and estimate the feed beamwidth. At the same time, the shape of the coupling aperture is initially determined.

  15. The GALAXIE all-optical FEL project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenzweig, J. B.; Arab, E.; Andonian, G.

    2012-12-21

    We describe a comprehensive project, funded under the DARPA AXiS program, to develop an all-optical table-top X-ray FEL based on dielectric acceleration and electromagnetic undulators, yielding a compact source of coherent X-rays for medical and related applications. The compactness of this source demands that high field (>GV/m) acceleration and undulation-inducing fields be employed, thus giving rise to the project's acronym: GV/m AcceLerator And X-ray Integrated Experiment (GALAXIE). There are numerous physics and technical hurdles to surmount in this ambitious scenario, and the integrated solutions include: a biharmonic photonic TW structure, 200 micron wavelength electromagnetic undulators, 5 {mu}m laser development, ultra-highmore » brightness magnetized/asymmetric emittance electron beam generation, and SASE FEL operation. We describe the overall design philosophy of the project, the innovative approaches to addressing the challenges presented by the design, and the significant progress towards realization of these approaches in the nine months since project initialization.« less

  16. Fast-Neutron Survey With Compact Plastic Scintillation Detectors.

    PubMed

    Preston, Rhys M; Tickner, James R

    2017-07-01

    With the rise of the Silicon Photomultiplier (SiPM), it is now practical to build compact scintillation detectors well suited to portable use. A prototype survey meter for fast-neutrons and gamma-rays, based around an EJ-299-34 plastic scintillator with SiPM readout, has been developed and tested. A custom digital pulse processor was used to perform pulse shape discrimination on-the-fly. Ambient dose equivalent H*(10) was calculated by means of two energy-dependent 'G-functions'. The sensitivity was calculated to be between 0.10 and 0.22 cps/(µSv/hr) for fast-neutrons with energies above 2.5 MeV. The prototype was used to survey various laboratory radiation fields, with the readings compared with commercial survey meters. The high sensitivity and lightweight nature of this detector makes it promising for rapid survey of the mixed neutron/gamma-ray fields encountered in industry and homeland security. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Central Compact Objects: some of them could be spinning up?

    NASA Astrophysics Data System (ADS)

    Benli, O.; Ertan, Ü.

    2018-05-01

    Among confirmed central compact objects (CCOs), only three sources have measured period and period derivatives. We have investigated possible evolutionary paths of these three CCOs in the fallback disc model. The model can account for the individual X-ray luminosities and rotational properties of the sources consistently with their estimated supernova ages. For these sources, reasonable model curves can be obtained with dipole field strengths ˜ a few × 109 G on the surface of the star. The model curves indicate that these CCOs were in the spin-up state in the early phase of evolution. The spin-down starts, while accretion is going on, at a time t ˜ 103 - 104 yr depending on the current accretion rate, period and the magnetic dipole moment of the star. This implies that some of the CCOs with relatively long periods, weak dipole fields and high X-ray luminosities could be strong candidates to show spin-up behavior if they indeed evolve with fallback discs.

  18. Implementation of a spark plasma sintering facility in a hermetic glovebox for compaction of toxic, radiotoxic, and air sensitive materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyrpekl, V., E-mail: vaclav.tyrpekl@ec.europa.eu, E-mail: vaclav.tyrpekl@gmail.com; Berkmann, C.; Holzhäuser, M.

    Spark plasma sintering (SPS) is a rapidly developing method for densification of powders into compacts. It belongs to the so-called “field assisted sintering techniques” that enable rapid sintering at much lower temperatures than the classical approaches of pressureless sintering of green pellets or hot isostatic pressing. In this paper, we report the successful integration of a SPS device into a hermetic glovebox for the handling of highly radioactive material containing radioisotopes of U, Th, Pu, Np, and Am. The glovebox implantation has been facilitated by the replacement of the hydraulic system to apply pressure with a compact electromechanical unit. Themore » facility has been successfully tested using UO{sub 2} powder. Pellets with 97% of the theoretical density were obtained at 1000 °C for 5 min, significantly lower than the ∼1600 °C for 5-10 h used in conventional pellet sintering.« less

  19. Soil compaction associated with cut-to-length and whole-tree harvesting of a coniferous forest

    Treesearch

    Sang-Kyun Han; Han Han-Sup; Deborah Page-Dumroese; Leonard R. Johnson

    2009-01-01

    The degree and extent of soil compaction, which may reduce productivity of forest soils, is believed to vary by the type of harvesting system, and a field-based study was conducted to compare soil compaction from cut-to-length (CTL) and whole-tree (WT) harvesting operations. The CTL harvesting system used less area to transport logs to the landings than did the WT...

  20. Modeling Firn Compaction in Dynamic Regions

    NASA Astrophysics Data System (ADS)

    Horlings, Annika N.; Christianson, Knut; Waddington, Edwin D.; Stevens, C. Max; Holschuh, Nicholas

    2017-04-01

    Firn compaction remains the largest source of uncertainty in assessments of ice-sheet mass balance from repeat altimetry measurements due to our limited understanding of the physical processes responsible for the transformation of snow into ice. In addition to the lack of a comprehensive, physically-based constitutive relationship that describes firn compaction, dynamic thinning is an important process in some regions, but is generally neglected in firn-compaction models due to their one-dimensional nature. Here, we report on preliminary results incorporating dynamic strain thinning into firn compaction models. Using a Lagrangian (material-following) reference frame, we first compact each firn element using a standard 1-D firn-compaction model without longitudinal strain. Then, we stretch each firn parcel at each time step by applying a prescribed longitudinal strain rate in the absence of further density changes; this produces additional vertical thinning. To assess variations among firn models, we compare results from eight firn densification models currently included in the UW Community Firn Model. We focus on the Northeast Greenland Ice Stream due to the high extensile strain rates (10-3 yr-1 or higher) in the ice stream's shear margins and the extensive firn-density data in this area from seismic measurements and shallow firn/ice cores. For temperatures and accumulation rates typical for northeast Greenland, our preliminary results indicate up to an 18-meter decrease in bubble close-off depth in the shear margins compared to nearby areas either inside or outside the ice stream, which compares favorably to field data. Further work includes incorporating physically-based constitutive relations and applying these improved models to other dynamic regions, such as the Amundsen Sea Embayment, where dynamic strain thinning has accelerated in recent decades.

  1. Revegetation in abandoned quarries with landfill stabilized waste and gravels: water dynamics and plant growth - a case study

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng-liang; Feng, Jing-jing; Rong, Li-ming; Zhao, Ting-ning

    2017-11-01

    Large amounts of quarry wastes are produced during quarrying. Though quarry wastes are commonly used in pavement construction and concrete production, in situ utilization during ecological restoration of abandoned quarries has the advantage of simplicity. In this paper, rock fragments 2-3 cm in size were mixed with landfill stabilized waste (LSW) in different proportions (LSW : gravel, RL), which was called LGM. The water content, runoff and plant growth under natural precipitation were monitored for 2 years using a runoff plot experiment. LGM with a low fraction of LSW was compacted to different degrees to achieve an appropriate porosity; water dynamics and plant growth of compacted LGM were studied in a field experiment. The results showed the following: (1) LGM can be used during restoration in abandoned quarries as growing material for plants. (2) RL had a significant effect on the infiltration and water-holding capacity of LGM and thus influenced the retention of precipitation, water condition and plant growth. LGM with RL ranging from 8:1 to 3:7 was suitable for plant growth, and the target species grew best when RL was 5:5. (3) Compaction significantly enhanced water content of LGM with a low RL of 2:8, but leaf water content of plants was lower or unchanged in the more compacted plots. Moderate compaction was beneficial to the survival and growth of Robinia pseudoacacia L. Platycladus orientalis (L.) Franco and Medicago sativa L. were not significantly affected by compaction, and they grew better under a high degree of compaction, which was disadvantageous for the uppermost layer of vegetation.

  2. The Effect of Quantum Fluctuations in Compact Star Observables

    NASA Astrophysics Data System (ADS)

    Pósfay, P.; Barnaföldi, G. G.; Jakovác, A.

    2018-05-01

    Astrophysical measurements regarding compact stars are just ahead of a big evolution jump, since the NICER experiment deployed on ISS on 2017 June 14. This will provide soon data that would enable the determination of compact star radius with less than 10% error. This can be further constrained by the new observation of gravitational waves originated from merging neutron stars, GW170817. This poses new challenges to nuclear models aiming to explain the structure of super dense nuclear matter found in neutron stars. Detailed studies of the QCD phase diagram show the importance of bosonic quantum fluctuations in the cold dense matter equation of state. Here we used a demonstrative model with one bosonic and one fermionic degree of freedom coupled by Yukawa coupling, we show the effect of bosonic quantum fluctuations on compact star observables such as mass, radius, and compactness. We have also calculated the difference in the value of compressibility which is caused by quantum fluctuations. The above-mentioned quantities are calculated in the mean field, one-loop, and in high order many loop approximation. The results show that the magnitude of these effects is in the range of 4-5%, which place it into the region where modern measurements may detect it. This forms a base for further investigations that how these results carry over to more complicated models.

  3. Flow Field Dynamics in a High-g Ultra-Compact Combustor

    DTIC Science & Technology

    2016-12-01

    6.1.3.1. Baseline Exit Temperatures .............................................................. 308 x 6.1.3.2. Exit Temperature Effects Due to...through improved thrust-specific fuel consumption ; however, implementation of an effective combustion scheme in the constrained space between turbine...their influence on the combustion process, and the resultant effect on exit temperature profiles and emissions (as detailed in the following section

  4. High intensity proton injector for facility of antiproton and ion research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berezov, R., E-mail: r.berezov@gsi.de; Brodhage, R.; Fils, J.

    The high current ion source with the low energy beam transport (LEBT) will serve as injector into the proton LINAC to provide primary proton beam for the production of antiprotons. The pulsed ion source developed and built in CEA/Saclay operates with a frequency of 2.45 GHz based on ECR plasma production with two coils with 87.5 mT magnetic field necessary for the electron cyclotron resonance. The compact LEBT consists of two solenoids with a maximum magnetic field of 500 mT including two integrated magnetic steerers to adjust the horizontal and vertical beam positions. The total length of the compact LEBTmore » is 2.3 m and was made as short as possible to reduced emittance growth along the beam line. To measure ion beam intensity behind the pentode extraction system, between solenoids and at the end of the beam line, two current transformers and a Faraday cup are installed. To get information about the beam quality and position, the diagnostic chamber with different equipment will be installed between the two solenoids. This article reports the current status of the proton injector for the facility of antiproton and ion research.« less

  5. Investigation of a high power electromagnetic pulse source.

    PubMed

    Wang, Yuwei; Chen, Dongqun; Zhang, Jiande; Cao, Shengguang; Li, Da; Liu, Chebo

    2012-09-01

    A high power electromagnetic pulse source with a resonant antenna driven by a compact power supply was investigated in this paper. To match the impedance of the resonant antenna and initial power source, a compact power conditioning circuit based on electro exploding opening switch (EEOS) and pulsed transformer was adopted. In the preliminary experiments, an impulse capacitor was used to drive the system. With the opening of the EEOS at the current of 15 kA flowing trough the primary of the transformer, the resonant antenna was rapidly charged to about -370 kV within a time of about 100 ns. When the switch in the resonant antenna closed at the charging voltage of about -202 kV, the peak intensity of the detected electric field at a distance of about 10 m from the center of the source was 7.2 kV∕m. The corresponding peak power of the radiated electromagnetic field reached 76 MW, while the total radiated electromagnetic energy was about 0.65 J. The total energy efficiency of the resonant antenna was about 22% which can be improved by increasing the closing rapidity of the switch in the antenna.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesny, D. L.; Oluseyi, H. M.; Orange, N. B.

    Ubiquitous solar atmospheric coronal and transition region bright points (BPs) are compact features overlying strong concentrations of magnetic flux. Here, we utilize high-cadence observations from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory to provide the first observations of extreme ultraviolet quiet-Sun (QS) network BP activity associated with sigmoidal structuring. To our knowledge, this previously unresolved fine structure has never been associated with such small-scale QS events. This QS event precedes a bi-directional jet in a compact, low-energy, and low-temperature environment, where evidence is found in support of the typical fan-spine magnetic field topology. As in active regionsmore » and micro-sigmoids, the sigmoidal arcade is likely formed via tether-cutting reconnection and precedes peak intensity enhancements and eruptive activity. Our QS BP sigmoid provides a new class of small-scale structuring exhibiting self-organized criticality that highlights a multi-scaled self-similarity between large-scale, high-temperature coronal fields and the small-scale, lower-temperature QS network. Finally, our QS BP sigmoid elevates arguments for coronal heating contributions from cooler atmospheric layers, as this class of structure may provide evidence favoring mass, energy, and helicity injections into the heliosphere.« less

  7. The structure and evolution of coronal holes

    NASA Technical Reports Server (NTRS)

    Timothy, A. F.; Krieger, A. S.; Vaiana, G. S.

    1975-01-01

    Soft X-ray observations of coronal holes are analyzed to determine the structure, temporal evolution, and rotational properties of those features as well as possible mechanisms which may account for their almost rigid rotational characteristics. It is shown that coronal holes are open features with a divergent magnetic-field configuration resulting from a particular large-scale magnetic-field topology. They are apparently formed when the successive emergence and dispersion of active-region fields produce a swath of unipolar field founded by fields of opposite polarity, and they die when large-scale field patterns emerge which significantly distort the original field configuration. Two types of holes are described (compact and elongated), and three possible rotation mechanisms are considered: a rigidly rotating subphotospheric phenomenon, a linking of high and low latitudes by closed field lines, and an interaction between moving coronal material and open field lines.

  8. WisDOT asphaltic mixture new specifications implementation : field compaction and density.

    DOT National Transportation Integrated Search

    2016-06-01

    The main research objectives of this study were to evaluate HMA Longitudinal Joint type, method and compaction data to produce specification recommendations that will ensure the highest density longitudinal joint, as well as evaluate and produce a sp...

  9. Commissioning of a compact laser-based proton beam line for high intensity bunches around 10Â MeV

    NASA Astrophysics Data System (ADS)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Kroll, F.; Blažević, A.; Bagnoud, V.; Roth, M.

    2014-03-01

    We report on the first results of experiments with a new laser-based proton beam line at the GSI accelerator facility in Darmstadt. It delivers high current bunches at proton energies around 9.6 MeV, containing more than 109 particles in less than 10 ns and with tunable energy spread down to 2.7% (ΔE/E0 at FWHM). A target normal sheath acceleration stage serves as a proton source and a pulsed solenoid provides for beam collimation and energy selection. Finally a synchronous radio frequency (rf) field is applied via a rf cavity for energy compression at a synchronous phase of -90 deg. The proton bunch is characterized at the end of the very compact beam line, only 3 m behind the laser matter interaction point, which defines the particle source.

  10. X-ray phase-contrast tomosynthesis of a human ex vivo breast slice with an inverse Compton x-ray source

    NASA Astrophysics Data System (ADS)

    Eggl, E.; Schleede, S.; Bech, M.; Achterhold, K.; Grandl, S.; Sztrókay, A.; Hellerhoff, K.; Mayr, D.; Loewen, R.; Ruth, R. D.; Reiser, M. F.; Pfeiffer, F.

    2016-12-01

    While the performance of conventional x-ray tube sources often suffers from the broad polychromatic spectrum, synchrotrons that could provide highly brilliant x-rays are restricted to large research facilities and impose high investment and maintenance costs. Lately, a new type of compact synchrotron sources has been investigated. These compact light sources (CLS) based on inverse Compton scattering provide quasi-monochromatic hard x-rays. The flux and brilliance yielded by a CLS currently lie between x-ray tube sources and third-generation synchrotrons. The relatively large partially coherent x-ray beam is well suited for the investigation of preclinical applications of grating-based phase-contrast and dark-field imaging. Here we present the first grating-based multimodal tomosynthesis images of a human breast slice acquired at a CLS to investigate the possibilities of improved breast cancer diagnostics.

  11. Temperature evolution during compaction of pharmaceutical powders.

    PubMed

    Zavaliangos, Antonios; Galen, Steve; Cunningham, John; Winstead, Denita

    2008-08-01

    A numerical approach to the prediction of temperature evolution in tablet compaction is presented here. It is based on a coupled thermomechanical finite element analysis and a calibrated Drucker-Prager Cap model. This approach is capable of predicting transient temperatures during compaction, which cannot be assessed by experimental techniques due to inherent test limitations. Model predictions are validated with infrared (IR) temperature measurements of the top tablet surface after ejection and match well with experiments. The dependence of temperature fields on speed and degree of compaction are naturally captured. The estimated transient temperatures are maximum at the end of compaction at the center of the tablet and close to the die wall next to the powder/die interface.

  12. Modeling of charged anisotropic compact stars in general relativity

    NASA Astrophysics Data System (ADS)

    Dayanandan, Baiju; Maurya, S. K.; T, Smitha T.

    2017-06-01

    A charged compact star model has been determined for anisotropic fluid distribution. We have solved the Einstein-Maxwell field equations to construct the charged compact star model by using the radial pressure, the metric function e^{λ} and the electric charge function. The generic charged anisotropic solution is verified by exploring different physical conditions like causality condition, mass-radius relation and stability of the solution (via the adiabatic index, TOV equations and the Herrera cracking concept). It is observed that the present charged anisotropic compact star model is compatible with the star PSR 1937+21. Moreover, we also presented the EOS ρ = f(p) for the present charged compact star model.

  13. Well behaved anisotropic compact star models in general relativity

    NASA Astrophysics Data System (ADS)

    Jasim, M. K.; Maurya, S. K.; Gupta, Y. K.; Dayanandan, B.

    2016-11-01

    Anisotropic compact star models have been constructed by assuming a particular form of a metric function e^{λ}. We solved the Einstein field equations for determining the metric function e^{ν}. For this purpose we have assumed a physically valid expression of radial pressure (pr). The obtained anisotropic compact star model is representing the realistic compact objects such as PSR 1937 +21. We have done an extensive study about physical parameters for anisotropic models and found that these parameters are well behaved throughout inside the star. Along with these we have also determined the equation of state for compact star which gives the radial pressure is purely the function of density i.e. pr=f(ρ).

  14. Three axis vector atomic magnetometer utilizing polarimetric technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradhan, Swarupananda, E-mail: spradhan@barc.gov.in, E-mail: pradhans75@gmail.com

    2016-09-15

    The three axis vector magnetic field measurement based on the interaction of a single elliptically polarized light beam with an atomic system is described. The magnetic field direction dependent atomic responses are extracted by the polarimetric detection in combination with laser frequency modulation and magnetic field modulation techniques. The magnetometer geometry offers additional critical requirements like compact size and large dynamic range for space application. Further, the three axis magnetic field is measured using only the reflected signal (one polarization component) from the polarimeter and thus can be easily expanded to make spatial array of detectors and/or high sensitivity fieldmore » gradient measurement as required for biomedical application.« less

  15. For Brighter Electron Sources: A Cryogenically Cooled Photocathode and DC Photogun

    NASA Astrophysics Data System (ADS)

    Lee, Hyeri

    Electron beams produced by photoinjectors have a wide range of applications including colliders for high energy and nuclear physics experiments, Free Electron Lasers (FEL), Energy Recovery Linacs (ERL), and Ultrafast Electron Diffraction (UED) with a variety of uses. These applications have been made possible by recent advancement in photocathode and photoinjector research. The key factor is building a compact high-brightness electron source with high voltage and electric field at the photocathode to maximize the electron emission and minimize emittance growth due to space-charge effect. Achieving high brightness from a compact source is a challenging task because it involves an often-conflicting interplay between various requirements imposed by photoemission, acceleration, and beam dynamics. This thesis presents three important results; (i) cryogenically cooled photocathode. From 300K to 90 K, the MTE reduction has been measured from 38 +/- meV to 22 +/- 1meV. (ii) transmission photocathode. MTEs generated from the photocathode operated in transmission mode is smaller by 20% in comparison with the reflection mode operation, which is accompanied by a corresponding QE decrease of about a factor of 2. (iii) a new design of a DC photoemission gun and beamline constructed at Cornell University, along with demonstration of a cryogenically cooled photocathode and transmission photocathode. This photoemission gun can operate at 200kV at both room temperature (RT) and cryogenic temperature (low T) with a corresponding electric field of 10MV/m.

  16. KENIS: a high-performance thermal imager developed using the OSPREY IR detector

    NASA Astrophysics Data System (ADS)

    Goss, Tristan M.; Baker, Ian M.

    2000-07-01

    `KENIS', a complete, high performance, compact and lightweight thermal imager, is built around the `OSPREY' infrared detector from BAE systems Infrared Ltd. The `OSPREY' detector uses a 384 X 288 element CMT array with a 20 micrometers pixel size and cooled to 120 K. The relatively small pixel size results in very compact cryogenics and optics, and the relatively high operating temperature provides fast start-up time, low power consumption and long operating life. Requiring single input supply voltage and consuming less than 30 watts of power, the thermal imager generates both analogue and digital format outputs. The `KENIS' lens assembly features a near diffraction limited dual field-of-view optical system that has been designed to be athermalized and switches between fields in less than one second. The `OSPREY' detector produces near background limited performance with few defects and has special, pixel level circuitry to eliminate crosstalk and blooming effects. This, together with signal processing based on an effective two-point fixed pattern noise correction algorithm, results in high quality imagery and a thermal imager that is suitable for most traditional thermal imaging applications. This paper describes the rationale used in the development of the `KENIS' thermal imager, and highlights the potential performance benefits to the user's system, primarily gained by selecting the `OSPREY' infra-red detector within the core of the thermal imager.

  17. Design and Implementation of a 200kW, 28GHz gyrotron system for the Compact Toroidal Hybrid Experiment

    NASA Astrophysics Data System (ADS)

    Hartwell, G. J.; Knowlton, S. F.; Ennis, D. A.; Maurer, D. A.; Bigelow, T.

    2016-10-01

    The Compact Toroidal Hybrid (CTH) is an l = 2 , m = 5 torsatron/tokamak hybrid (R0 = 0.75 m, ap 0.2 m, and | B | <= 0.7 T). It can generate its highly configurable confining magnetic fields solely with external coils, but typically operates with up to 80 kA of ohmically-generated plasma current for heating. New studies of edge plasma transport in stellarator geometries will benefit from CTH operating as a pure torsatron with a high temperature edge plasma. Accordingly, a 28 GHz, 200 kW gyrotron operating at 2nd harmonic for ECRH is being installed to supplement the existing 15 kW klystron system operating at the fundamental frequency; the latter will be used to initially generate the plasma. Ray-tracing calculations that guide the selection of launching position, antenna focal length, and beam-steering characteristics of the ECRH have been performed with the TRAVIS code [ 1 ] . The calculated absorption is up to 95.7% for vertically propagating rays, however, the absorption is more sensitive to magnetic field variations than for a side launch where the field gradient is tokamak-like. The design of the waveguide path and components for the top-launch scenario will be presented. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.

  18. Spherical tokamaks with plasma centre-post

    NASA Astrophysics Data System (ADS)

    Ribeiro, Celso

    2013-10-01

    The metal centre-post (MCP) in tokamaks is a structure which carries the total toroidal field current and also houses the Ohmic heating solenoid in conventional or low aspect ratio (Spherical)(ST) tokamaks. The MCP and solenoid are critical components for producing the toroidal field and for the limited Ohmic flux in STs. Constraints for a ST reactor related to these limitations lead to a minimum plasma aspect ratio of 1.4 which reduces the benefit of operation at higher betas in a more compact ST reactor. Replacing the MCP is of great interest for reactor-based ST studies since the device is simplified, compactness increased, and maintenance reduced. An experiment to show the feasibility of using a plasma centre-post (PCP) is being currently under construction and involves a high level of complexity. A preliminary study of a very simple PCP, which is ECR(Electron Cyclotron Resonance)-assisted and which includes an innovative fuelling system based on pellet injection, has recently been reported. This is highly suitable for an ultra-low aspect ratio tokamak (ULART) device. Advances on this PCP ECR-assisted concept within a ULART and the associated fuelling system are presented here, and will include the field topology for the PCP ECR-assisted scheme, pellet ablation modeling, and a possible global equilibrium simulation. VIE-ITCR, IAEA-CRP contr.17592, National Instruments-Costa Rica.

  19. Macrophages influence a competition of contact guidance and chemotaxis for fibroblast alignment in a fibrin gel coculture assay.

    PubMed

    Bromberek, B A; Enever, P A J; Shreiber, D I; Caldwell, M D; Tranquillo, R T

    2002-05-01

    Rat dermal fibroblasts were dispersed initially in the outer shell of a fibrin gel sphere, while the inner core either was devoid of cells or contained peritoneal exudate cells (primarily macrophages), thereby mimicking the inflammatory phase of wound healing. The fibroblasts compacted floating fibrin microspheres over time. In the absence of macrophages, the initial distribution of fibroblasts (only in the shell) induced circumferential alignment of fibrin fibrils via compaction of the shell relative to the core. The aligned fibrils created a contact guidance field, which was manifested by strong circumferential alignment of the fibroblasts. However, in the presence of macrophages, the fibroblasts exhibited more radial alignment despite the simultaneous contact guidance field in the circumferential direction associated with compaction. This was attributed to a chemotactic gradient emanating from the core due to a putative factor(s) released by the macrophages. The presence of a radial chemotactic stimulus was supported by the finding of even greater radial alignment when fibrin microspheres were embedded in an agarose-fibrin gel that abolished compaction and consequently the contact guidance field. Our assay permits the simulation of tissue morphogenetic processes that involve cell guidance phenomena and tractional restructuring of the extracellular matrix.

  20. Modeling of fiber orientation in viscous fluid flow with application to self-compacting concrete

    NASA Astrophysics Data System (ADS)

    Kolařík, Filip; Patzák, Bořek

    2013-10-01

    In recent years, unconventional concrete reinforcement is of growing popularity. Especially fiber reinforcement has very wide usage in high performance concretes like "Self Compacting Concrete" (SCC). The design of advanced tailor-made structures made of SCC can take advantage of anisotropic orientation of fibers. Tools for fiber orientation predictions can contribute to design of tailor made structure and allow to develop casting procedures that enable to achieve the desired fiber distribution and orientation. This paper deals with development and implementation of suitable tool for prediction of fiber orientation in a fluid based on the knowledge of the velocity field. Statistical approach to the topic is employed. Fiber orientation is described by a probability distribution of the fiber angle.

  1. Demonstration of Single-Shot Picosecond Time-Resolved MeV Electron Imaging Using a Compact Permanent Magnet Quadrupole Based Lens.

    PubMed

    Cesar, D; Maxson, J; Musumeci, P; Sun, Y; Harrison, J; Frigola, P; O'Shea, F H; To, H; Alesini, D; Li, R K

    2016-07-08

    We present the results of an experiment where a short focal length (∼1.3  cm), permanent magnet electron lens is used to image micron-size features (of a metal sample) with a single shot from an ultrahigh brightness picosecond-long 4 MeV electron beam emitted by a radio-frequency photoinjector. Magnification ratios in excess of 30× were obtained using a triplet of compact, small gap (3.5 mm), Halbach-style permanent magnet quadrupoles with nearly 600  T/m field gradients. These results pave the way towards single-shot time-resolved electron microscopy and open new opportunities in the applications of high brightness electron beams.

  2. A Portable Infrasonic Detection System

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Burkett, Cecil G.; Zuckerwar, Allan J.; Lawrenson, Christopher C.; Masterman, Michael

    2008-01-01

    During last couple of years, NASA Langley has designed and developed a portable infrasonic detection system which can be used to make useful infrasound measurements at a location where it was not possible previously. The system comprises an electret condenser microphone, having a 3-inch membrane diameter, and a small, compact windscreen. Electret-based technology offers the lowest possible background noise, because Johnson noise generated in the supporting electronics (preamplifier) is minimized. The microphone features a high membrane compliance with a large backchamber volume, a prepolarized backplane and a high impedance preamplifier located inside the backchamber. The windscreen, based on the high transmission coefficient of infrasound through matter, is made of a material having a low acoustic impedance and sufficiently thick wall to insure structural stability. Close-cell polyurethane foam has been found to serve the purpose well. In the proposed test, test parameters will be sensitivity, background noise, signal fidelity (harmonic distortion), and temporal stability. The design and results of the compact system, based upon laboratory and field experiments, will be presented.

  3. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    NASA Astrophysics Data System (ADS)

    Pogorelsky, I. V.

    1997-03-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power CO2 laser may be used for prototype LSS demonstration. In a feasible demonstration experiment, 10-GW, 100-ps CO2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 Å) x-rays of 10-ps pulse duration, with a flux of ˜1019photons/sec, will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to the e-beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 1022 photons/sec level, after the ongoing ATF CO2 laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact "table-top" LSS of monochromatic gamma radiation may become feasible.

  4. Characterization of compact-toroid injection during formation, translation, and field penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, T., E-mail: cstd14003@g.nihon-u.ac.jp; Sekiguchi, J.; Asai, T.

    2016-11-15

    We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ∼1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation,more » ejection/translation from the MCPG, and penetration into transverse magnetic fields.« less

  5. Probing the nature of the pre-merging system Hickson Compact Group 31 through integral field unit data★

    NASA Astrophysics Data System (ADS)

    Alfaro-Cuello, M.; Torres-Flores, S.; Carrasco, E. R.; Mendes de Oliveira, C.; de Mello, D. F.; Amram, P.

    2015-10-01

    We present a study of the kinematics and the physical properties of the central region of the Hickson Compact Group 31 (HCG 31), focusing on the HCG 31A+C system, using integral field spectroscopy data taken with the Gemini South Telescope. The main players in the merging event (galaxies A and C) are two dwarf galaxies, which have had one close encounter, given the observed tidal tails, and may now be in their second approach, and are possibly about to merge. We present new velocity fields and Hα emission, stellar continuum, velocity dispersion, electron density, Hα equivalent-width and age maps. Considering the high spatial resolution of the integral field unit data, we were able to measure various components and estimate their physical parameters, spatially resolving the different structures in this region. Our main findings are the following: (1) We report for the first time the presence of a super stellar cluster next to the burst associated with the HCG 31C central blob, related to the high values of velocity dispersion observed in this region as well as to the highest value of stellar continuum emission. This may suggest that this system is cleaning its environment through strong stellar winds that may then trigger a strong star formation event in its neighbourhood. (2) Among other physical parameters, we estimate L(Hα) ˜ 14 × 1041 erg s-1 and the star formation rate, SFR ˜11 M⊙ yr-1 for the central merging region of HCG 31A+C. These values indicate a high star formation density, suggesting that the system is part of a merging object, supporting previous scenarios proposed for this system.

  6. Scalar field configurations supported by charged compact reflecting stars in a curved spacetime

    NASA Astrophysics Data System (ADS)

    Peng, Yan

    2018-05-01

    We study the system of static scalar fields coupled to charged compact reflecting stars through both analytical and numerical methods. We enclose the star in a box and our solutions are related to cases without box boundaries when putting the box far away from the star. We provide bottom and upper bounds for the radius of the scalar hairy compact reflecting star. We obtain numerical scalar hairy star solutions satisfying boundary conditions and find that the radius of the hairy star in a box is continuous in a range, which is very different from cases without box boundaries where the radius is discrete in the range. We also examine effects of the star charge and mass on the largest radius.

  7. Development of Discrete Compaction Bands in Two Porous Sandstones

    NASA Astrophysics Data System (ADS)

    Tembe, S.; Baud, P.; Wong, T.

    2003-12-01

    Compaction band formation has been documented by recent field and laboratory studies as a localized failure mode occurring in porous sandstones. The coupling of compaction and localization may significantly alter the stress field and strain partitioning, and act as barriers within reservoirs. Two end-members of this failure mode that develop subperpendicular to the maximum principal stress have been identified: numerous discrete compaction bands with a thickness of only several grains, or a few diffuse bands that are significantly thicker. Much of what is known about discrete compaction bands derives from laboratory experiments performed on the relatively homogeneous Bentheim sandstone with 23% porosity. In this study we observe similar compaction localization behavior in the Diemelstadt sandstone, that has an initial porosity of 24.4% and a modal composition of 68% quartz, 26% feldspar, 4% oxides, and 2% micas. CT scans of the Diemelstadt sandstone indicate bedding corresponding to low porosity laminae. Saturated samples cored perpendicular to bedding were deformed at room temperature under drained conditions at a constant pore pressure of 10 MPa and a confining pressure range of 20-175 MPa. Acoustic emission activity and pore volume change were recorded continuously. Samples were deformed to axial strains of 1-4% and recovered from the triaxial cell for microstructural analysis. The mechanical data map the transition in failure mode from brittle faulting to compactive cataclastic flow. The brittle regime occurred at effective pressures up to 40 MPa, associated with failure by conjugate shear bands. At an effective pressure range of 60-175 MPa strain hardening and shear-enhanced compaction were accompanied by the development of discrete compaction bands, that was manifested by episodic surges of acoustic emission. Preliminary microstructural observations of the failed samples suggest that bedding influenced the band orientations which varies between 75-90\\deg relative to the maximum principle stress. Our study demonstrates that despite their different mineralogy, failure modes and development of the compaction localization are similar in the Diemelstadt and Benthiem sandstones.

  8. Compaction of North-sea chalk by pore-failure and pressure solution in a producing reservoir

    NASA Astrophysics Data System (ADS)

    Keszthelyi, Daniel; Dysthe, Dag; Jamtveit, Bjorn

    2016-02-01

    The Ekofisk field, Norwegian North sea,is an example of compacting chalk reservoir with considerable subsequent seafloor subsidence due to petroleum production. Previously, a number of models were created to predict the compaction using different phenomenological approaches. Here we present a different approach, we use a new creep model based on microscopic mechanisms with no fitting parameters to predict strain rate at core scale and at reservoir scale. The model is able to reproduce creep experiments and the magnitude of the observed subsidence making it the first microstructural model which can explain the Ekofisk compaction.

  9. Bright Compact Bulges (BCBs) at intermediate redshifts

    NASA Astrophysics Data System (ADS)

    Sachdeva, Sonali; Saha, Kanak

    2018-04-01

    Studying bright (MB < -20), intermediate-redshift (0.4 < z < 1.0), disc dominated (nB < 2.5) galaxies from HST/ACS and WFC3 in Chandra Deep Field South, in rest-frame B and I-band, we found a new class of bulges which is brighter and more compact than ellipticals. We refer to them as "Bright, Compact Bulges" (BCBs) - they resemble neither classical nor pseudo-bulges and constitute ˜12% of the total bulge population at these redshifts. Examining free-bulge + disc decomposition sample and elliptical galaxy sample from Simard et al. (2011), we find that only ˜0.2% of the bulges can be classified as BCBs in the local Universe. Bulge to total ratio (B/T) of disc galaxies with BCBs is (at ˜0.4) a factor of ˜2 and ˜4 larger than for those with classical and pseudo bulges. BCBs are ˜2.5 and ˜6 times more massive than classical and pseudo bulges. Although disc galaxies with BCBs host the most massive and dominant bulge type, their specific star formation rate is 1.5-2 times higher than other disc galaxies. This is contrary to the expectations that a massive compact bulge would lead to lower star formation rates. We speculate that our BCB host disc galaxies are descendant of massive, compact and passive elliptical galaxies observed at higher redshifts. Those high redshift ellipticals lack local counterparts and possibly evolved by acquiring a compact disc around them. The overall properties of BCBs supports a picture of galaxy assembly in which younger discs are being accreted around massive pre-existing spheroids.

  10. Length matters: Improved high field EEG-fMRI recordings using shorter EEG cables.

    PubMed

    Assecondi, Sara; Lavallee, Christina; Ferrari, Paolo; Jovicich, Jorge

    2016-08-30

    The use of concurrent EEG-fMRI recordings has increased in recent years, allowing new avenues of medical and cognitive neuroscience research; however, currently used setups present problems with data quality and reproducibility. We propose a compact experimental setup for concurrent EEG-fMRI at 4T and compare it to a more standard reference setup. The compact setup uses short EEG cables connecting to the amplifiers, which are placed right at the back of the head RF coil on a form-fitting extension force-locked to the patient MR bed. We compare the two setups in terms of sensitivity to MR-room environmental noise, interferences between measuring devices (EEG or fMRI), and sensitivity to functional responses in a visual stimulation paradigm. The compact setup reduces the system sensitivity to both external noise and MR-induced artefacts by at least 60%, with negligible EEG noise induced from the mechanical vibrations of the cryogenic cooling compression pump. The compact setup improved EEG data quality and the overall performance of MR-artifact correction techniques. Both setups were similar in terms of the fMRI data, with higher reproducibility for cable placement within the scanner in the compact setup. This improved compact setup may be relevant to MR laboratories interested in reducing the sensitivity of their EEG-fMRI experimental setup to external noise sources, setting up an EEG-fMRI workplace for the first time, or for creating a more reproducible configuration of equipment and cables. Implications for safety and ergonomics are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Magnetic resonance imaging with an optical atomic magnetometer

    PubMed Central

    Xu, Shoujun; Yashchuk, Valeriy V.; Donaldson, Marcus H.; Rochester, Simon M.; Budker, Dmitry; Pines, Alexander

    2006-01-01

    We report an approach for the detection of magnetic resonance imaging without superconducting magnets and cryogenics: optical atomic magnetometry. This technique possesses a high sensitivity independent of the strength of the static magnetic field, extending the applicability of magnetic resonance imaging to low magnetic fields and eliminating imaging artifacts associated with high fields. By coupling with a remote-detection scheme, thereby improving the filling factor of the sample, we obtained time-resolved flow images of water with a temporal resolution of 0.1 s and spatial resolutions of 1.6 mm perpendicular to the flow and 4.5 mm along the flow. Potentially inexpensive, compact, and mobile, our technique provides a viable alternative for MRI detection with substantially enhanced sensitivity and time resolution for various situations where traditional MRI is not optimal. PMID:16885210

  12. Environmental impacts of different crop rotations in terms of soil compaction.

    PubMed

    Götze, Philipp; Rücknagel, Jan; Jacobs, Anna; Märländer, Bernward; Koch, Heinz-Josef; Christen, Olaf

    2016-10-01

    Avoiding soil compaction caused by agricultural management is a key aim of sustainable land management, and the soil compaction risk should be considered when assessing the environmental impacts of land use systems. Therefore this project compares different crop rotations in terms of soil structure and the soil compaction risk. It is based on a field trial in Germany, in which the crop rotations (i) silage maize (SM) monoculture, (ii) catch crop mustard (Mu)_sugar beet (SB)-winter wheat (WW)-WW, (iii) Mu_SM-WW-WW and (iv) SB-WW-Mu_SM are established since 2010. Based on the cultivation dates, the operation specific soil compaction risks and the soil compaction risk of the entire crop rotations are modelled at two soil depths (20 and 35 cm). To this end, based on assumptions of the equipment currently used in practice by a model farm, two scenarios are modelled (100 and 50% hopper load for SB and WW harvest). In addition, after one complete rotation, in 2013 and in 2014, the physical soil parameters saturated hydraulic conductivity (kS) and air capacity (AC) were determined at soil depths 2-8, 12-18, 22-28 and 32-38 cm in order to quantify the soil structure. At both soil depths, the modelled soil compaction risks for the crop rotations including SB (Mu_SB-WW-WW, SB-WW-Mu_SM) are higher (20 cm: medium to very high risks; 35 cm: no to medium risks) than for those without SB (SM monoculture, Mu_SM-WW-WW; 20 cm: medium risks; 35 cm: no to low risks). This increased soil compaction risk is largely influenced by the SB harvest in years where soil water content is high. Halving the hopper load and adjusting the tyre inflation pressure reduces the soil compaction risk for the crop rotation as a whole. Under these conditions, there are no to low soil compaction risks for all variants in the subsoil (soil depth 35 cm). Soil structure is mainly influenced in the topsoil (2-8 cm) related to the cultivation of Mu as a catch crop and WW as a preceding crop. Concerning kS, Mu_SB-WW-WW (240 cm d(-1)) and Mu_SM-WW-WW (196 cm d(-1)) displayed significantly higher values than the SM monoculture (67 cm d(-1)), indicating better structural stability and infiltration capacity. At other soil depths, and for the parameter AC, there are no systematic differences in soil structure between the variants. Under the circumstances described, all crop rotations investigated are not associated with environmental impacts caused by soil compaction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The effects of coarse aggregate cleanliness and moisture content on asphalt concrete compactability and moisture susceptibility.

    DOT National Transportation Integrated Search

    2011-12-31

    Twelve field projects were studied where forty-four locations were evaluated to assess the cause or : causes of asphalt concrete that exhibits tender zone characteristics (i.e. instability during compaction) and to : investigate the tendency of...

  14. Compaction and measurement of field density for Oregon open-graded (F-MIX) asphalt pavement

    DOT National Transportation Integrated Search

    1999-06-01

    A research project conducted by Oregon State University (OSU) and the Oregon Department of Transportation (ODOT) investigated compaction of Oregon F-mix asphalt pavement, an open-graded mix with 25-mm maximum size aggregate and air voids typically in...

  15. Mechanics of Ballast Compaction. Volume 3 : Field Test Results for Ballast Physical State Measurement

    DOT National Transportation Integrated Search

    1982-03-01

    The important mechanical processes which influence the ballast physical state in track are tamping, crib and shoulder compaction and train traffic. Three methods of assessing physical state were used at four railroad sites to obtain needed data on th...

  16. What do you gain from deconvolution? - Observing faint galaxies with the Hubble Space Telescope Wide Field Camera

    NASA Technical Reports Server (NTRS)

    Schade, David J.; Elson, Rebecca A. W.

    1993-01-01

    We describe experiments with deconvolutions of simulations of deep HST Wide Field Camera images containing faint, compact galaxies to determine under what circumstances there is a quantitative advantage to image deconvolution, and explore whether it is (1) helpful for distinguishing between stars and compact galaxies, or between spiral and elliptical galaxies, and whether it (2) improves the accuracy with which characteristic radii and integrated magnitudes may be determined. The Maximum Entropy and Richardson-Lucy deconvolution algorithms give the same results. For medium and low S/N images, deconvolution does not significantly improve our ability to distinguish between faint stars and compact galaxies, nor between spiral and elliptical galaxies. Measurements from both raw and deconvolved images are biased and must be corrected; it is easier to quantify and remove the biases for cases that have not been deconvolved. We find no benefit from deconvolution for measuring luminosity profiles, but these results are limited to low S/N images of very compact (often undersampled) galaxies.

  17. Analysis of Fringe Field Formed Inside LDA Measurement Volume Using Compact Two Hololens Imaging Systems

    NASA Astrophysics Data System (ADS)

    Ghosh, Abhijit; Nirala, A. K.; Yadav, H. L.

    2018-03-01

    We have designed and fabricated four LDA optical setups consisting of aberration compensated four different compact two hololens imaging systems. We have experimentally investigated and realized a hololens recording geometry which is interferogram of converging spherical wavefront with mutually coherent planar wavefront. Proposed real time monitoring and actual fringe field analysis techniques allow complete characterizations of fringes formed at measurement volume and permit to evaluate beam quality, alignment and fringe uniformity with greater precision. After experimentally analyzing the fringes formed at measurement volume by all four imaging systems, it is found that fringes obtained using compact two hololens imaging systems get improved both qualitatively and quantitatively compared to that obtained using conventional imaging system. Results indicate qualitative improvement of non-uniformity in fringe thickness and micro intensity variations perpendicular to the fringes, and quantitative improvement of 39.25% in overall average normalized standard deviations of fringe width formed by compact two hololens imaging systems compare to that of conventional imaging system.

  18. A vacuum-sealed compact x-ray tube based on focused carbon nanotube field-emission electrons

    NASA Astrophysics Data System (ADS)

    Jeong, Jin-Woo; Kim, Jae-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2013-03-01

    We report on a fully vacuum-sealed compact x-ray tube based on focused carbon nanotube (CNT) field-emission electrons for various radiography applications. The specially designed two-step brazing process enabled us to accomplish a good vacuum level for the stable and reliable operation of the x-ray tube without any active vacuum pump. Also, the integrated focusing electrodes in the field-emission electron gun focused electron beams from the CNT emitters onto the anode target effectively, giving a small focal spot of around 0.3 mm with a large current of above 50 mA. The active-current control through the cathode electrode of the x-ray tube led a fast digital modulation of x-ray dose with a low voltage of below 5 V. The fabricated compact x-ray tube showed a stable and reliable operation, indicating good maintenance of a vacuum level of below 5 × 10-6 Torr and the possibility of field-emission x-ray tubes in a stand-alone device without an active pumping system.

  19. Mini and micro spectrometers pave the way to on-field advanced analytics

    NASA Astrophysics Data System (ADS)

    Bouyé, Clémentine; Kolb, Hugo; d'Humières, Benoît.

    2016-03-01

    First introduced in the 1990's, miniature optical spectrometers were compact, portable devices brought on the market by the desire to move from time-consuming lab-based analyses to on-field and in situ measurements. This goal of getting spectroscopy into the hands of non-specialists is driving current technical and application developments, the ultimate goal being, in a far future, the integration of a spectrometer into a smartphone or any other smart device (tablet, watch, …). In this article, we present the results of our study on the evolution of the compact spectrometers market towards widespread industrial use and consumer applications. Presently, the main market of compact spectrometers remains academic labs. However, they have been adopted on some industrial applications such as optical source characterization (mainly laser and LEDs). In a near future, manufacturers of compact spectrometers target the following industrial applications: agriculture crop monitoring, food process control or pharmaceuticals quality control. Next steps will be to get closer to the consumer market with point-of-care applications such as glucose detection for diabetics, for example. To reach these objectives, technological breakthroughs will be necessary. Recent progresses have already allowed the release of micro-spectrometers. They take advantage of new micro-technologies such as MEMS (MicroElectroMechanical Systems), MOEMS (Micro-Opto-Electro-Mechanical Systems), micro-mirrors arrays to reduce cost and size while allowing good performance and high volume manufacturability. Integrated photonics is being investigated for future developments. It will also require new business models and new market approaches. Indeed, spreading spectroscopy to more industrial and consumer applications will require spectrometers manufacturers to get closer to the end-users and develop application-oriented products.

  20. Scintillating Fiber Technology for a High Neutron Spectrometer

    NASA Technical Reports Server (NTRS)

    Kuznetsov, Evgeny; Adams, James, Jr.; Christl, Mark; Norwood, Joseph; Watts, John

    2014-01-01

    Develop a compact low-power neutron spectrometer that uniquely identifies neutrons in the mixed radiation field expected on crewed deep-space missions. Secondary neutrons are generated by cosmic rays striking heavy crewed spacecraft as well as lunar and planetary surfaces1,2. It has been shown that secondary neutrons can account for up to 50% if the total dose-equivalent received by the crew.

  1. A search for extended radio emission from selected compact galaxy groups

    NASA Astrophysics Data System (ADS)

    Nikiel-Wroczyński, B.; Urbanik, M.; Soida, M.; Beck, R.; Bomans, D. J.

    2017-07-01

    Context. Studies on compact galaxy groups have led to the conclusion that a plenitude of phenomena take place in between galaxies that form them. However, radio data on these objects are extremely scarce and not much is known concerning the existence and role of the magnetic field in intergalactic space. Aims: We aim to study a small sample of galaxy groups that look promising as possible sources of intergalactic magnetic fields; for example data from radio surveys suggest that most of the radio emission is due to extended, diffuse structures in and out of the galaxies. Methods: We used the Effelsberg 100 m radio telescope at 4.85 GHz and NRAO VLA Sky Survey (NVSS) data at 1.40 GHz. After subtraction of compact sources we analysed the maps searching for diffuse, intergalactic radio emission. Spectral index and magnetic field properties were derived. Results: Intergalactic magnetic fields exist in groups HCG 15 and HCG 60, whereas there are no signs of them in HCG 68. There are also hints of an intergalactic bridge in HCG 44 at 4.85 GHz. Conclusions: Intergalactic magnetic fields exist in galaxy groups and their energy density may be comparable to the thermal (X-ray) density, suggesting an important role of the magnetic field in the intra-group medium, wherever it is detected.

  2. Non-hermetic fiber optic transceivers for space applications

    NASA Astrophysics Data System (ADS)

    Tabbert, Chuck

    2017-11-01

    There is a commercial trend in high data-rate systems to place optical components in close proximity to the data source/sink. This trend forgoes the traditional module packaging approach to create compact components that are embedded near or within the package of high-performance ASICs. This approach reduces the power consumption and electro-magnetic interference (EMI) effects by reducing the length of copper interconnect signal paths. We present an overview of commercial trends and methods for fielding this technology within spacecraft.

  3. Electromagnetic receiver with capacitive electrodes and triaxial induction coil for tunnel exploration

    NASA Astrophysics Data System (ADS)

    Kai, Chen; Sheng, Jin; Wang, Shun

    2017-09-01

    A new type of electromagnetic (EM) receiver has been developed by integrating four capacitive electrodes and a triaxial induction coil with an advanced data logger for tunnel exploration. The new EM receiver can conduct EM observations in tunnels, which is one of the principal goals of surface-tunnel-borehole EM detection for deep ore deposit mapping. The use of capacitive electrodes enables us to record the electrical field (E-field) signals from hard rock surfaces, which are high-resistance terrains. A compact triaxial induction coil integrates three independent induction coils for narrow-tunnel exploration applications. A low-time-drift-error clock source is developed for tunnel applications where GPS signals are unavailable. The three main components of our tunnel EM receiver are: (1) four capacitive electrodes for measuring the E-field signal without digging in hard rock regions; (2) a triaxial induction coil sensor for audio-frequency magnetotelluric and controlled-source audio-frequency magnetotelluric signal measurements; and (3) a data logger that allows us to record five-component MT signals with low noise levels, low time-drift-error for the clock source, and high dynamic range. The proposed tunnel EM receiver was successfully deployed in a mine that exhibited with typical noise characteristics. [Figure not available: see fulltext. Caption: The new EM receiver can conduct EM observations in tunnels, which is one of the principal goals of the surface-tunnel-borehole EM (STBEM) detection for deep ore deposit mapping. The use of a capacitive electrode enables us to record the electrical field (E-field) signals from hard rock surfaces. A compact triaxial induction coil integrated three induction coils, for narrow-tunnel applications.

  4. Solar burst precursors and energy build-up at microwave wavelengths

    NASA Technical Reports Server (NTRS)

    Lang, Kenneth R.; Wilson, Robert F.

    1986-01-01

    We summarize high-resolution microwave observations (VLA) of heating and magnetic triggering in coronal loops. Magnetic changes that precede solar eruptions on time scales of tens of minutes involve primarily emerging coronal loops and the interaction of two or more loops. Thermal cyclotron lines have been detected in coronal loops, suggesting the presence of hot current sheets that enhance emission from relatively thin layers of enhanced temperature and constant magnetic field. These current sheets may play a role in the excitation of solar bursts. A filament-associated source with a high brightness temperature and steep radiation spectrum occurs above a region of apparently weak photospheric field. This source might be attributed to currents that enhance coronal magnetic fields. Compact (phi=5 sec) transient sources with lifetimes of 30 to 60 minutes have also been detected in regions of apparently weak photospheric field. We conclude by comparing VLA observations of coronal loops with simultaneous SMM-XRP observations.

  5. Solar burst precursors and energy build-up at microwave wavelengths

    NASA Astrophysics Data System (ADS)

    Lang, Kenneth R.; Wilson, Robert F.

    We summarize high-resolution microwave observations (VLA) of heating and magnetic triggering in coronal loops. Magnetic changes that precede solar eruptions on time scales of tens of minutes involve primarily emerging coronal loops and the interaction of two or more loops. Thermal cyclotron lines have been detected in coronal loops, suggesting the presence of hot current sheets that enhance emission from relatively thin layers of enhanced temperature and constant magnetic field. These current sheets may play a role in the excitation of solar bursts. A filament-associated source with a high brightness temperature and steep radiation spectrum occurs above a region of apparently weak photospheric field. This source might be attributed to currents that enhance coronal magnetic fields. Compact (phi=5 sec) transient sources with lifetimes of 30 to 60 minutes have also been detected in regions of apparently weak photospheric field. We conclude by comparing VLA observations of coronal loops with simultaneous SMM-XRP observations.

  6. Fractional Talbot field and of finite gratings: compact analytical formulation.

    PubMed

    Arrizón, V; Rojo-Velázquez, G

    2001-06-01

    We present a compact analytical formulation for the fractional Talbot effect at the paraxial domain of a finite grating. Our results show that laterally shifted distorted images of the grating basic cell form the Fresnel field at a fractional Talbot plane of the grating. Our formulas give the positions of those images and show that they are given by the convolution of the nondistorted cells (modulated by a quadratic phase factor) with the Fourier transform of the finite-grating pupil.

  7. Some new results on charged compact boson stars

    DOE PAGES

    Kumar, Sanjeev; Kulshreshtha, Usha; Kulshreshtha, Daya Shankar; ...

    2017-07-21

    In this work we present some new results obtained in a study of the phase diagram of charged compact boson stars in a theory involving a complex scalar field with a conical potential coupled to a U(1) gauge field and gravity. We here obtain new bifurcation points in this model. We present a detailed discussion of the various regions of the phase diagram with respect to the bifurcation points. The theory is seen to contain rich physics in a particular domain of the phase diagram.

  8. Bifocal computational near eye light field displays and Structure parameters determination scheme for bifocal computational display.

    PubMed

    Liu, Mali; Lu, Chihao; Li, Haifeng; Liu, Xu

    2018-02-19

    We propose a bifocal computational near eye light field display (bifocal computational display) and structure parameters determination scheme (SPDS) for bifocal computational display that achieves greater depth of field (DOF), high resolution, accommodation and compact form factor. Using a liquid varifocal lens, two single-focal computational light fields are superimposed to reconstruct a virtual object's light field by time multiplex and avoid the limitation on high refresh rate. By minimizing the deviation between reconstructed light field and original light field, we propose a determination framework to determine the structure parameters of bifocal computational light field display. When applied to different objective to SPDS, it can achieve high average resolution or uniform resolution display over scene depth range. To analyze the advantages and limitation of our proposed method, we have conducted simulations and constructed a simple prototype which comprises a liquid varifocal lens, dual-layer LCDs and a uniform backlight. The results of simulation and experiments with our method show that the proposed system can achieve expected performance well. Owing to the excellent performance of our system, we motivate bifocal computational display and SPDS to contribute to a daily-use and commercial virtual reality display.

  9. In-situ formation compaction monitoring in deep reservoirs by use of fiber optics

    NASA Astrophysics Data System (ADS)

    Murai, Daisuke; Kunisue, Shoji; Higuchi, Tomoyuki; Kokubo, Tatsuo

    2013-04-01

    1. Background The Southern Kanto gas field, the largest field of natural gas dissolved in water in Japan, is located primarily under the Chiba Prefecture. In this field 8 companies produce 460*10^6m3/y of natural gas. In addition, the concentration of the iodine in the brine is almost 2000 times that in seawater and the iodine as well as natural gas is collected from the brine. Iodine is industrially useful and essential for the human body. About 30% of world production is produced in this area in recent years. On the other hand, the land subsidence has become the big problem since 1965 and more than 10cm/mm of land subsidence was observed by leveling in 1972. The natural gas and iodine producers in this area have made a land subsidence prevention agreement with the local government and made effort to prevent and control land subsidence. Although their pumping brine for the gas and the iodine production is inferred to be the main cause of land subsidence from that time, the ratio of the formation compaction caused by pumping brine in the total land subsidence hasn't been well known. Therefore, the measurement of the actual formation compaction has become an important technological issue for the companies and they jointly have developed a new monitoring system for the formation compaction. 2. Contents (1) By using fiber optics technology, we have developed a world's first monitoring system which measures each of the in-situ formation compactions continuously without running tools into the well. (2) In order to check a reliability of this system and the problems when construction, we carried out the preliminary test. We installed the prototype system in the shallow observation well with a depth of 80 m and measured the actual formation compaction. The water well was drilled at the 10m away from the observation well and the formation was artificially compacted by pumping groundwater from it. (3) We installed the monitoring system in the deep observation well with a depth of about 800m, and have been measuring the formation compaction of the natural gas reservoir now. 3. Conclusions (1) We succeeded in installing the monitoring system into the observation well and measure the each of 6 formation compactions in the gas reservoir. (2) As a result of the preliminary test we confirmed that the monitoring system run without big problems even in the field. The formation compacted/expanded with the groundwater level fallen/risen according to the pump rate. (3) We improved the monitoring system based on the knowledge acquired by the demonstration test and installed it into the deep observation well. We are carrying out the long term observation now. 4. Acknowledgements This research was carried out by the support for application of new technologies and technical studies program which Japan Oil, Gas and Metals National Corporation (JOGMEC) undertook.

  10. Mechanics of Ballast Compaction. Volume 4 : Lab. Invest. the Effects of Field Compaction Mechanisms

    DOT National Transportation Integrated Search

    1982-03-01

    This report describes a preliminary series of laboratory tests which attempt to simulate some of the effects of maintenance procedures and traffic on the physical state of ballast as measured by the ballast density test, plate load test, and lateral ...

  11. High Efficiency and Low Cost Thermal Energy Storage System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sienicki, James J.; Lv, Qiuping; Moisseytsev, Anton

    BgtL, LLC (BgtL) is focused on developing and commercializing its proprietary compact technology for processes in the energy sector. One such application is a compact high efficiency Thermal Energy Storage (TES) system that utilizes the heat of fusion through phase change between solid and liquid to store and release energy at high temperatures and incorporate state-of-the-art insulation to minimize heat dissipation. BgtL’s TES system would greatly improve the economics of existing nuclear and coal-fired power plants by allowing the power plant to store energy when power prices are low and sell power into the grid when prices are high. Comparedmore » to existing battery storage technology, BgtL’s novel thermal energy storage solution can be significantly less costly to acquire and maintain, does not have any waste or environmental emissions, and does not deteriorate over time; it can keep constant efficiency and operates cleanly and safely. BgtL’s engineers are experienced in this field and are able to design and engineer such a system to a specific power plant’s requirements. BgtL also has a strong manufacturing partner to fabricate the system such that it qualifies for an ASME code stamp. BgtL’s vision is to be the leading provider of compact systems for various applications including energy storage. BgtL requests that all technical information about the TES designs be protected as proprietary information. To honor that request, only non-proprietay summaries are included in this report.« less

  12. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator.

    PubMed

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H; Davies, A Giles; Vitiello, Miriam S

    2016-03-15

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology.

  13. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator

    PubMed Central

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles; Vitiello, Miriam S.

    2016-01-01

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology. PMID:26976199

  14. Accretion of a symmetry-breaking scalar field by a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Traykova, Dina; Braden, Jonathan; Peiris, Hiranya V.

    2018-01-01

    We simulate the behaviour of a Higgs-like field in the vicinity of a Schwarzschild black hole using a highly accurate numerical framework. We consider both the limit of the zero-temperature Higgs potential and a toy model for the time-dependent evolution of the potential when immersed in a slowly cooling radiation bath. Through these numerical investigations, we aim to improve our understanding of the non-equilibrium dynamics of a symmetry-breaking field (such as the Higgs) in the vicinity of a compact object such as a black hole. Understanding this dynamics may suggest new approaches for studying properties of scalar fields using black holes as a laboratory. This article is part of the Theo Murphy meeting issue `Higgs Cosmology'.

  15. Compact stars in the non-minimally coupled electromagnetic fields to gravity

    NASA Astrophysics Data System (ADS)

    Sert, Özcan

    2018-03-01

    We investigate the gravitational models with the non-minimal Y(R)F^2 coupled electromagnetic fields to gravity, in order to describe charged compact stars, where Y( R) denotes a function of the Ricci curvature scalar R and F^2 denotes the Maxwell invariant term. We determine two parameter family of exact spherically symmetric static solutions and the corresponding non-minimal model without assuming any relation between energy density of matter and pressure. We give the mass-radius, electric charge-radius ratios and surface gravitational redshift which are obtained by the boundary conditions. We reach a wide range of possibilities for the parameters k and α in these solutions. Lastly we show that the models can describe the compact stars even in the more simple case α =3.

  16. Spark-plasma-sintering magnetic field assisted compaction of Co{sub 80}Ni{sub 20} nanowires for anisotropic ferromagnetic bulk materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouar, Nassima; Schoenstein, Frédéric; Mercone, Silvana

    We developed a two-step process showing the way for sintering anisotropic nanostructured bulk ferromagnetic materials. A new reactor has been optimized allowing the synthesis of several grams per batch of nanopowders via a polyol soft chemistry route. The feasibility of the scale-up has been successfully demonstrated for Co{sub 80}Ni{sub 20} nanowires and a massic yield of ∼97% was obtained. The thus obtained nanowires show an average diameter of ∼6 nm and a length of ∼270 nm. A new bottom-up strategy allowed us to compact the powder into a bulk nanostructured system. We used a spark-plasma-sintering technique under uniaxial compression andmore » low temperature assisted by a permanent magnetic field of 1 T. A macroscopic pellet of partially aligned nanowire arrays has been easily obtained. This showed optimized coercive properties along the direction of the magnetic field applied during compaction (i.e., the nanowires' direction)« less

  17. Compact conductively cooled electro-optical Q-switched Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Li, Chaoyang; Lu, Chengqiang; Li, Chuan; Zang, Yannan; Yang, Zhen; Han, Song; Li, Ye; Yang, Ning; Shi, Junfeng; Zhou, Zewu

    2017-11-01

    We report on a compact conductively cooled high-repetition-rate nanosecond Nd:YAG laser. The oscillator was an laser diode side-pumped electro-optical (EO) Q-switched Nd:YAG rod laser adopting unstable cavity with a variable reflectivity mirror. A pulse train of 142 mJ with duration of 10 ns, repetition rate of 80 Hz at 1064 nm has been achieved. Maximum pulse energy was obtained at the pump energy of 1380 mJ, corresponding to the optical-optical conversion efficiency of 10.3%. The peak power was deduced to be 14.2 MW. The near-field pattern demonstrated a nearly super Gaussian flat top profile. To our knowledge, this is the highest repetition rate operation for a conductively cooled EO Q-switched Nd:YAG rod laser.

  18. Compact localized states and flat-band generators in one dimension

    NASA Astrophysics Data System (ADS)

    Maimaiti, Wulayimu; Andreanov, Alexei; Park, Hee Chul; Gendelman, Oleg; Flach, Sergej

    2017-03-01

    Flat bands (FB) are strictly dispersionless bands in the Bloch spectrum of a periodic lattice Hamiltonian, recently observed in a variety of photonic and dissipative condensate networks. FB Hamiltonians are fine-tuned networks, still lacking a comprehensive generating principle. We introduce a FB generator based on local network properties. We classify FB networks through the properties of compact localized states (CLS) which are exact FB eigenstates and occupy U unit cells. We obtain the complete two-parameter FB family of two-band d =1 networks with nearest unit cell interaction and U =2 . We discover a novel high symmetry sawtooth chain with identical hoppings in a transverse dc field, easily accessible in experiments. Our results pave the way towards a complete description of FBs in networks with more bands and in higher dimensions.

  19. Compact microwave re-entrant cavity applicator for plasma-assisted combustion.

    PubMed

    Hemawan, Kadek W; Wichman, Indrek S; Lee, Tonghun; Grotjohn, Timothy A; Asmussen, Jes

    2009-05-01

    The design and experimental operation of a compact microwave/rf applicator is described. This applicator operates at atmospheric pressure and couples electromagnetic energy into a premixed CH(4)/O(2) flame. The addition of only 2-15 W of microwave power to a premixed combustion flame with a flame power of 10-40 W serves to extend the flammability limits for fuel lean conditions, increases the flame length and intensity, and increases the number density and mixture of excited radical species in the flame vicinity. The downstream gas temperature also increases. Optical emission spectroscopy measurements show gas rotational temperatures in the range of 2500-3600 K. At the higher input power of > or = 10 W microplasma discharges can be produced in the high electric field region of the applicator.

  20. Compact microwave re-entrant cavity applicator for plasma-assisted combustion

    NASA Astrophysics Data System (ADS)

    Hemawan, Kadek W.; Wichman, Indrek S.; Lee, Tonghun; Grotjohn, Timothy A.; Asmussen, Jes

    2009-05-01

    The design and experimental operation of a compact microwave/rf applicator is described. This applicator operates at atmospheric pressure and couples electromagnetic energy into a premixed CH4/O2 flame. The addition of only 2-15 W of microwave power to a premixed combustion flame with a flame power of 10-40 W serves to extend the flammability limits for fuel lean conditions, increases the flame length and intensity, and increases the number density and mixture of excited radical species in the flame vicinity. The downstream gas temperature also increases. Optical emission spectroscopy measurements show gas rotational temperatures in the range of 2500-3600 K. At the higher input power of ≥10 W microplasma discharges can be produced in the high electric field region of the applicator.

  1. A massive pulsar in a compact relativistic binary.

    PubMed

    Antoniadis, John; Freire, Paulo C C; Wex, Norbert; Tauris, Thomas M; Lynch, Ryan S; van Kerkwijk, Marten H; Kramer, Michael; Bassa, Cees; Dhillon, Vik S; Driebe, Thomas; Hessels, Jason W T; Kaspi, Victoria M; Kondratiev, Vladislav I; Langer, Norbert; Marsh, Thomas R; McLaughlin, Maura A; Pennucci, Timothy T; Ransom, Scott M; Stairs, Ingrid H; van Leeuwen, Joeri; Verbiest, Joris P W; Whelan, David G

    2013-04-26

    Many physically motivated extensions to general relativity (GR) predict substantial deviations in the properties of spacetime surrounding massive neutron stars. We report the measurement of a 2.01 ± 0.04 solar mass (M⊙) pulsar in a 2.46-hour orbit with a 0.172 ± 0.003 M⊙ white dwarf. The high pulsar mass and the compact orbit make this system a sensitive laboratory of a previously untested strong-field gravity regime. Thus far, the observed orbital decay agrees with GR, supporting its validity even for the extreme conditions present in the system. The resulting constraints on deviations support the use of GR-based templates for ground-based gravitational wave detectors. Additionally, the system strengthens recent constraints on the properties of dense matter and provides insight to binary stellar astrophysics and pulsar recycling.

  2. A compact control system to achieve stable voltage and low jitter trigger for repetitive intense electron-beam accelerator based on resonant charging

    NASA Astrophysics Data System (ADS)

    Qiu, Yongfeng; Liu, Jinliang; Yang, Jianhua; Cheng, Xinbing; Yang, Xiao

    2017-08-01

    A compact control system based on Delphi and Field Programmable Gate Array(FPGA) is developed for a repetitive intense electron-beam accelerator(IEBA), whose output power is 10GW and pulse duration is 160ns. The system uses both hardware and software solutions. It comprises a host computer, a communication module and a main control unit. A device independent applications programming interface, devised using Delphi, is installed on the host computer. Stability theory of voltage in repetitive mode is analyzed and a detailed overview of the hardware and software configuration is presented. High voltage experiment showed that the control system fulfilled the requests of remote operation and data-acquisition. The control system based on a time-sequence control method is used to keep constant of the voltage of the primary capacitor in every shot, which ensured the stable and reliable operation of the electron beam accelerator in the repetitive mode during the experiment. Compared with the former control system based on Labview and PIC micro-controller developed in our laboratory, the present one is more compact, and with higher precision in the time dimension. It is particularly useful for automatic control of IEBA in the high power microwave effects research experiments where pulse-to-pulse reproducibility is required.

  3. Compaction shock dissipation in low density granular explosive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Pratap T.; Gonthier, Keith A., E-mail: gonthier@me.lsu.edu; Chakravarthy, Sunada

    The microstructure of granular explosives can affect dissipative heating within compaction shocks that can trigger combustion and initiate detonation. Because initiation occurs over distances that are much larger than the mean particle size, homogenized (macroscale) theories are often used to describe local thermodynamic states within and behind shocks that are regarded as the average manifestation of thermodynamic fields at the particle scale. In this paper, mesoscale modeling and simulation are used to examine how the initial packing density of granular HMX (C{sub 4}H{sub 8}N{sub 8}O{sub 8}) C{sub 4}H{sub 8}N{sub 8}O{sub 8} having a narrow particle size distribution influences dissipation withinmore » resolved, planar compaction shocks. The model tracks the evolution of thermomechanical fields within large ensembles of particles due to pore collapse. Effective shock profiles, obtained by averaging mesoscale fields over space and time, are compared with those given by an independent macroscale compaction theory that predicts the variation in effective thermomechanical fields within shocks due to an imbalance between the solid pressure and a configurational stress. Reducing packing density is shown to reduce the dissipation rate within shocks but increase the integrated dissipated work over shock rise times, which is indicative of enhanced sensitivity. In all cases, dissipated work is related to shock pressure by a density-dependent power law, and shock rise time is related to pressure by a power law having an exponent of negative one.« less

  4. Fiber optic refractive index and magnetic field sensors based on microhole-induced inline Mach-Zehnder interferometers

    NASA Astrophysics Data System (ADS)

    Chen, Feifei; Jiang, Yi; Zhang, Liuchao; Jiang, Lan; Wang, Sumei

    2018-04-01

    A compact microhole-induced fiber optic inline Mach-Zehnder interferometer (MZI) is demonstrated for measurements of refractive index (RI) and magnetic field. Inline MZIs with different etched diameters, different interaction lengths and different sizes of microholes are fabricated and assessed. The optical transmission spectra of the inline MZIs immersed into a series of liquids are characterized and analysed. Experimental results show that liquid RI sensitivity as high as 539.8436 nm RIU-1 in the RI range of 1.3352-1.4113 RIU is achieved and also exhibits good linearity with a correlation coefficient  >93%. An inline MZI is also fabricated to be a magnetic field sensor by using magnetic fluid material. The experimental results show that this magnetic field sensor has a high sensitivity of  -275.6 pm Oe-1. The inline MZI-based fiber optic sensors possess many advantages, such as small size, simple fabrication, high sensitivity and good linearity, which has a wide application potential in chemical, biological and environmental sensing fields.

  5. Ultra-low switching energy and scaling in electric-field-controlled nanoscale magnetic tunnel junctions with high resistance-area product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grezes, C.; Alzate, J. G.; Cai, X.

    2016-01-04

    We report electric-field-induced switching with write energies down to 6 fJ/bit for switching times of 0.5 ns, in nanoscale perpendicular magnetic tunnel junctions (MTJs) with high resistance-area product and diameters down to 50 nm. The ultra-low switching energy is made possible by a thick MgO barrier that ensures negligible spin-transfer torque contributions, along with a reduction of the Ohmic dissipation. We find that the switching voltage and time are insensitive to the junction diameter for high-resistance MTJs, a result accounted for by a macrospin model of purely voltage-induced switching. The measured performance enables integration with same-size CMOS transistors in compact memorymore » and logic integrated circuits.« less

  6. Study of additive manufactured microwave cavities for pulsed optically pumped atomic clock applications

    NASA Astrophysics Data System (ADS)

    Affolderbach, C.; Moreno, W.; Ivanov, A. E.; Debogovic, T.; Pellaton, M.; Skrivervik, A. K.; de Rijk, E.; Mileti, G.

    2018-03-01

    Additive manufacturing (AM) of passive microwave components is of high interest for the cost-effective and rapid prototyping or manufacture of devices with complex geometries. Here, we present an experimental study on the properties of recently demonstrated microwave resonator cavities manufactured by AM, in view of their applications to high-performance compact atomic clocks. The microwave cavities employ a loop-gap geometry using six electrodes. The critical electrode structures were manufactured monolithically using two different approaches: Stereolithography (SLA) of a polymer followed by metal coating and Selective Laser Melting (SLM) of aluminum. The tested microwave cavities show the desired TE011-like resonant mode at the Rb clock frequency of ≈6.835 GHz, with a microwave magnetic field highly parallel to the quantization axis across the vapor cell. When operated in an atomic clock setup, the measured atomic Rabi oscillations are comparable to those observed for conventionally manufactured cavities and indicate a good uniformity of the field amplitude across the vapor cell. Employing a time-domain Ramsey scheme on one of the SLA cavities, high-contrast (34%) Ramsey fringes are observed for the Rb clock transition, along with a narrow (166 Hz linewidth) central fringe. The measured clock stability of 2.2 × 10-13 τ-1/2 up to the integration time of 30 s is comparable to the current state-of-the-art stabilities of compact vapor-cell clocks based on conventional microwave cavities and thus demonstrates the feasibility of the approach.

  7. Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection

    NASA Astrophysics Data System (ADS)

    Nan, Tianxiang; Hui, Yu; Rinaldi, Matteo; Sun, Nian X.

    2013-06-01

    High sensitivity magnetoelectric sensors with their electromechanical resonance frequencies < 200 kHz have been recently demonstrated using magnetostrictive/piezoelectric magnetoelectric heterostructures. In this work, we demonstrate a novel magnetoelectric nano-electromechanical systems (NEMS) resonator with an electromechanical resonance frequency of 215 MHz based on an AlN/(FeGaB/Al2O3) × 10 magnetoelectric heterostructure for detecting DC magnetic fields. This magnetoelectric NEMS resonator showed a high quality factor of 735, and strong magnetoelectric coupling with a large voltage tunable sensitivity. The admittance of the magnetoelectric NEMS resonator was very sensitive to DC magnetic fields at its electromechanical resonance, which led to a new detection mechanism for ultra-sensitive self-biased RF NEMS magnetoelectric sensor with a low limit of detection of DC magnetic fields of ~300 picoTelsa. The magnetic/piezoelectric heterostructure based RF NEMS magnetoelectric sensor is compact, power efficient and readily integrated with CMOS technology, which represents a new class of ultra-sensitive magnetometers for DC and low frequency AC magnetic fields.

  8. On the unreasonable effectiveness of the post-Newtonian approximation in gravitational physics

    PubMed Central

    Will, Clifford M.

    2011-01-01

    The post-Newtonian approximation is a method for solving Einstein’s field equations for physical systems in which motions are slow compared to the speed of light and where gravitational fields are weak. Yet it has proven to be remarkably effective in describing certain strong-field, fast-motion systems, including binary pulsars containing dense neutron stars and binary black hole systems inspiraling toward a final merger. The reasons for this effectiveness are largely unknown. When carried to high orders in the post-Newtonian sequence, predictions for the gravitational-wave signal from inspiraling compact binaries will play a key role in gravitational-wave detection by laser-interferometric observatories. PMID:21447714

  9. An atomic magnetometer with autonomous frequency stabilization and large dynamic range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradhan, S., E-mail: spradhan@barc.gov.in, E-mail: pradhans75@gmail.com; Poornima,; Dasgupta, K.

    2015-06-15

    The operation of a highly sensitive atomic magnetometer using elliptically polarized resonant light is demonstrated. It is based on measurement of zero magnetic field resonance in degenerate two level systems using polarimetric detection. The transmitted light through the polarimeter is used for laser frequency stabilization, whereas reflected light is used for magnetic field measurement. Thus, the experimental geometry allows autonomous frequency stabilization of the laser frequency leading to compact operation of the overall device and has a preliminary sensitivity of <10 pT/Hz{sup 1/2} @ 1 Hz. Additionally, the dynamic range of the device is improved by feedback controlling the biasmore » magnetic field without compromising on its sensitivity.« less

  10. Portable and cost-effective pixel super-resolution on-chip microscope for telemedicine applications.

    PubMed

    Bishara, Waheb; Sikora, Uzair; Mudanyali, Onur; Su, Ting-Wei; Yaglidere, Oguzhan; Luckhart, Shirley; Ozcan, Aydogan

    2011-01-01

    We report a field-portable lensless on-chip microscope with a lateral resolution of <1 μm and a large field-of-view of ~24 mm(2). This microscope is based on digital in-line holography and a pixel super-resolution algorithm to process multiple lensfree holograms and obtain a single high-resolution hologram. In its compact and cost-effective design, we utilize 23 light emitting diodes butt-coupled to 23 multi-mode optical fibers, and a simple optical filter, with no moving parts. Weighing only ~95 grams, we demonstrate the performance of this field-portable microscope by imaging various objects including human malaria parasites in thin blood smears.

  11. A Highly Ordered Magnetic Field in a Crushed Pulsar Wind Nebula in G327.1-1.1

    NASA Astrophysics Data System (ADS)

    Ma, Yik Ki; Ng, Chi-Yung; Bucciantini, Niccolò; Gaensler, Bryan M.; Slane, Patrick O.; Temim, Tea

    2015-01-01

    A significant fraction of a pulsar's spin-down luminosity is in the form of a relativistic magnetized particle outflow known as a pulsar wind. Confinement of the wind by the ambient medium creates a synchrotron-emitting bubble called a pulsar wind nebula (PWN). Studies of PWNe is important for understanding the physics of relativistic shocks and particle acceleration. Simulations suggest that a PWN will be crushed by the reverse shock of its surrounding supernova remnant at an age of ~10^4 yr, resulting in a turbulent environment. However, given the short timescale of the interaction stage, only a few such systems are observed.We present radio polarization observations of the PWN in supernova remnant G327.1-1.1, taken with the Australia Telescope Compact Array. Previous works suggest that this system has recently interacted with the supernova reverse shock, providing a rare example for the study of magnetic field in a crushed PWN. We found a highly ordered magnetic field in the PWN, which is unexpected given the presumed turbulent interior of the nebula. This suggests that the magnetic pressure in the PWN could play an important role in the interaction with supernova reverse shock.The Australia Telescope Compact Array is part of the Australia Telescope National Facility which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO.YKM and CYN are supported by a ECS grant of the Hong Kong Government under HKU 709713P

  12. Development of a high sensitivity pinhole type gamma camera using semiconductors for low dose rate fields

    NASA Astrophysics Data System (ADS)

    Ueno, Yuichiro; Takahashi, Isao; Ishitsu, Takafumi; Tadokoro, Takahiro; Okada, Koichi; Nagumo, Yasushi; Fujishima, Yasutake; Yoshida, Akira; Umegaki, Kikuo

    2018-06-01

    We developed a pinhole type gamma camera, using a compact detector module of a pixelated CdTe semiconductor, which has suitable sensitivity and quantitative accuracy for low dose rate fields. In order to improve the sensitivity of the pinhole type semiconductor gamma camera, we adopted three methods: a signal processing method to set the discriminating level lower, a high sensitivity pinhole collimator and a smoothing image filter that improves the efficiency of the source identification. We tested basic performances of the developed gamma camera and carefully examined effects of the three methods. From the sensitivity test, we found that the effective sensitivity was about 21 times higher than that of the gamma camera for high dose rate fields which we had previously developed. We confirmed that the gamma camera had sufficient sensitivity and high quantitative accuracy; for example, a weak hot spot (0.9 μSv/h) around a tree root could be detected within 45 min in a low dose rate field test, and errors of measured dose rates with point sources were less than 7% in a dose rate accuracy test.

  13. ADX - Advanced Divertor and RF Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Greenwald, Martin; Labombard, Brian; Bonoli, Paul; Irby, Jim; Terry, Jim; Wallace, Greg; Vieira, Rui; Whyte, Dennis; Wolfe, Steve; Wukitch, Steve; Marmar, Earl

    2015-11-01

    The Advanced Divertor and RF Tokamak Experiment (ADX) is a design concept for a compact high-field tokamak that would address boundary plasma and plasma-material interaction physics challenges whose solution is critical for the viability of magnetic fusion energy. This device would have two crucial missions. First, it would serve as a Divertor Test Tokamak, developing divertor geometries, materials and operational scenarios that could meet the stringent requirements imposed in a fusion power plant. By operating at high field, ADX would address this problem at a level of power loading and other plasma conditions that are essentially identical to those expected in a future reactor. Secondly, ADX would investigate the physics and engineering of high-field-side launch of RF waves for current drive and heating. Efficient current drive is an essential element for achieving steady-state in a practical, power producing fusion device and high-field launch offers the prospect of higher efficiency, better control of the current profile and survivability of the launching structures. ADX would carry out this research in integrated scenarios that simultaneously demonstrate the required boundary regimes consistent with efficient current drive and core performance.

  14. How to fracture formations (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    del Risco V.M.

    1971-01-01

    Government-owned Petroleos del Peru has found the limited-entry fracturing technique to be the most suitable under prevailing conditions for its NW. Peruvian oil fields. There, most formations available for stimulation are low- permeability and highly compact sands interbedded with thin and thick layers of clay. After experimenting with 8 different commercially available methods, a detailed analysis of the results showed the Shoot-Frac system to be the most effective.

  15. Optical Isolators With Transverse Magnets

    NASA Technical Reports Server (NTRS)

    Fan, Yuan X.; Byer, Robert L.

    1991-01-01

    New design for isolator includes zigzag, forward-and-backward-pass beam path and use of transverse rather than longitudinal magnetic field. Design choices produce isolator with as large an aperture as desired using low-Verdet-constant glass rather than more expensive crystals. Uses commercially available permanent magnets in Faraday rotator. More compact and less expensive. Designed to transmit rectangular beam. Square cross section of beam extended to rectangular shape by increasing one dimension of glass without having to increase magnetic field. Potentially useful in laser systems involving slab lasers and amplifiers. Has applications to study of very-high-power lasers for fusion research.

  16. Compact akinetic swept source optical coherence tomography angiography at 1060 nm supporting a wide field of view and adaptive optics imaging modes of the posterior eye.

    PubMed

    Salas, Matthias; Augustin, Marco; Felberer, Franz; Wartak, Andreas; Laslandes, Marie; Ginner, Laurin; Niederleithner, Michael; Ensher, Jason; Minneman, Michael P; Leitgeb, Rainer A; Drexler, Wolfgang; Levecq, Xavier; Schmidt-Erfurth, Ursula; Pircher, Michael

    2018-04-01

    Imaging of the human retina with high resolution is an essential step towards improved diagnosis and treatment control. In this paper, we introduce a compact, clinically user-friendly instrument based on swept source optical coherence tomography (SS-OCT). A key feature of the system is the realization of two different operation modes. The first operation mode is similar to conventional OCT imaging and provides large field of view (FoV) images (up to 45° × 30°) of the human retina and choroid with standard resolution. The second operation mode enables it to optically zoom into regions of interest with high transverse resolution using adaptive optics (AO). The FoV of this second operation mode (AO-OCT mode) is 3.0° × 2.8° and enables the visualization of individual retinal cells such as cone photoreceptors or choriocapillaris. The OCT engine is based on an akinetic swept source at 1060 nm and provides an A-scan rate of 200 kHz. Structural as well as angiographic information can be retrieved from the retina and choroid in both operational modes. The capabilities of the prototype are demonstrated in healthy and diseased eyes.

  17. Compact ECEI system with in-vessel reflective optics for WEST.

    PubMed

    Nam, Y B; Park, H K; Lee, W; Yun, G S; Kim, M; Sabot, R; Elbeze, D; Lotte, P; Shen, J

    2016-11-01

    An electron cyclotron emission imaging (ECEI) diagnostic system for WEST (W Environment for Steady state Tokamak) is under development to study the MHD instabilities affected by tungsten impurities. The system will provide 2-D T e fluctuation images (width × height = ∼18 cm × ∼ 34 cm at low field side and ∼13 cm × ∼ 39 cm at high field side) from a poloidal cross section with high spatial (≤1.7 cm) and temporal (≤2 μs) resolutions. While the key concept and electronic structure are similar to that of prior ECEI systems on other tokamak devices such as KSTAR, DIII-D, or ASDEX-U, part of the imaging optics have to be placed inside the vacuum vessel in order to resolve issues on limited installation space and longer beam path to the detector position. The in-vessel optics consisting of two large curvature-radius mirrors are expected to withstand the extreme heating on long-pulse operation scenario (∼1000 s). The out-vessel optical housing is constructed as compact as possible to remove easily from the installation site in case of necessity. Commissioning of the system is scheduled on the second experimental WEST campaign end of 2017.

  18. Compact akinetic swept source optical coherence tomography angiography at 1060 nm supporting a wide field of view and adaptive optics imaging modes of the posterior eye

    PubMed Central

    Salas, Matthias; Augustin, Marco; Felberer, Franz; Wartak, Andreas; Laslandes, Marie; Ginner, Laurin; Niederleithner, Michael; Ensher, Jason; Minneman, Michael P.; Leitgeb, Rainer A.; Drexler, Wolfgang; Levecq, Xavier; Schmidt-Erfurth, Ursula; Pircher, Michael

    2018-01-01

    Imaging of the human retina with high resolution is an essential step towards improved diagnosis and treatment control. In this paper, we introduce a compact, clinically user-friendly instrument based on swept source optical coherence tomography (SS-OCT). A key feature of the system is the realization of two different operation modes. The first operation mode is similar to conventional OCT imaging and provides large field of view (FoV) images (up to 45° × 30°) of the human retina and choroid with standard resolution. The second operation mode enables it to optically zoom into regions of interest with high transverse resolution using adaptive optics (AO). The FoV of this second operation mode (AO-OCT mode) is 3.0° × 2.8° and enables the visualization of individual retinal cells such as cone photoreceptors or choriocapillaris. The OCT engine is based on an akinetic swept source at 1060 nm and provides an A-scan rate of 200 kHz. Structural as well as angiographic information can be retrieved from the retina and choroid in both operational modes. The capabilities of the prototype are demonstrated in healthy and diseased eyes. PMID:29675326

  19. Uncertainty quantification of overpressure buildup through inverse modeling of compaction processes in sedimentary basins

    NASA Astrophysics Data System (ADS)

    Colombo, Ivo; Porta, Giovanni M.; Ruffo, Paolo; Guadagnini, Alberto

    2017-03-01

    This study illustrates a procedure conducive to a preliminary risk analysis of overpressure development in sedimentary basins characterized by alternating depositional events of sandstone and shale layers. The approach rests on two key elements: (1) forward modeling of fluid flow and compaction, and (2) application of a model-complexity reduction technique based on a generalized polynomial chaos expansion (gPCE). The forward model considers a one-dimensional vertical compaction processes. The gPCE model is then used in an inverse modeling context to obtain efficient model parameter estimation and uncertainty quantification. The methodology is applied to two field settings considered in previous literature works, i.e. the Venture Field (Scotian Shelf, Canada) and the Navarin Basin (Bering Sea, Alaska, USA), relying on available porosity and pressure information for model calibration. It is found that the best result is obtained when porosity and pressure data are considered jointly in the model calibration procedure. Uncertainty propagation from unknown input parameters to model outputs, such as pore pressure vertical distribution, is investigated and quantified. This modeling strategy enables one to quantify the relative importance of key phenomena governing the feedback between sediment compaction and fluid flow processes and driving the buildup of fluid overpressure in stratified sedimentary basins characterized by the presence of low-permeability layers. The results here illustrated (1) allow for diagnosis of the critical role played by the parameters of quantitative formulations linking porosity and permeability in compacted shales and (2) provide an explicit and detailed quantification of the effects of their uncertainty in field settings.

  20. Large-scale HTS bulks for magnetic application

    NASA Astrophysics Data System (ADS)

    Werfel, Frank N.; Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter

    2013-01-01

    ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN2 and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500-3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN2 allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved.

  1. Compact FPGA-based beamformer using oversampled 1-bit A/D converters.

    PubMed

    Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2005-05-01

    A compact medical ultrasound beamformer architecture that uses oversampled 1-bit analog-to-digital (A/D) converters is presented. Sparse sample processing is used, as the echo signal for the image lines is reconstructed in 512 equidistant focal points along the line through its in-phase and quadrature components. That information is sufficient for presenting a B-mode image and creating a color flow map. The high sampling rate provides the necessary delay resolution for the focusing. The low channel data width (1-bit) makes it possible to construct a compact beamformer logic. The signal reconstruction is done using finite impulse reponse (FIR) filters, applied on selected bit sequences of the delta-sigma modulator output stream. The approach allows for a multichannel beamformer to fit in a single field programmable gate array (FPGA) device. A 32-channel beamformer is estimated to occupy 50% of the available logic resources in a commercially available mid-range FPGA, and to be able to operate at 129 MHz. Simulation of the architecture at 140 MHz provides images with a dynamic range approaching 60 dB for an excitation frequency of 3 MHz.

  2. A Search for Nontoroidal Topological Lensing in the Sloan Digital Sky Survey Quasar Catalog

    NASA Astrophysics Data System (ADS)

    Fujii, Hirokazu; Yoshii, Yuzuru

    2013-08-01

    Flat space models with multiply connected topology, which have compact dimensions, are tested against the distribution of high-redshift (z >= 4) quasars of the Sloan Digital Sky Survey (SDSS). When the compact dimensions are smaller in size than the observed universe, topological lensing occurs, in which multiple images of single objects (ghost images) are observed. We improve on the recently introduced method to identify ghost images by means of four-point statistics. Our method is valid for any of the 17 multiply connected flat models, including nontoroidal ones that are compacted by screw motions or glide reflection. Applying the method to the data revealed one possible case of topological lensing caused by sixth-turn screw motion, however, it is consistent with the simply connected model by this test alone. Moreover, simulations suggest that we cannot exclude the other space models despite the absence of their signatures. This uncertainty mainly originates from the patchy coverage of SDSS in the south Galactic cap, and this situation will be improved by future wide-field spectroscopic surveys.

  3. Nonlinear gravitational self-force: Field outside a small body

    NASA Astrophysics Data System (ADS)

    Pound, Adam

    2012-10-01

    A small extended body moving through an external spacetime gαβ creates a metric perturbation hαβ, which forces the body away from geodesic motion in gαβ. The foundations of this effect, called the gravitational self-force, are now well established, but concrete results have mostly been limited to linear order. Accurately modeling the dynamics of compact binaries requires proceeding to nonlinear orders. To that end, I show how to obtain the metric perturbation outside the body at all orders in a class of generalized wave gauges. In a small buffer region surrounding the body, the form of the perturbation can be found analytically as an expansion for small distances r from a representative worldline. Given only a specification of the body’s multipole moments, the field obtained in the buffer region suffices to find the metric everywhere outside the body via a numerical puncture scheme. Following this procedure at first and second order, I calculate the field in the buffer region around an arbitrarily structured compact body at sufficiently high order in r to numerically implement a second-order puncture scheme, including effects of the body’s spin. I also define nth-order (local) generalizations of the Detweiler-Whiting singular and regular fields and show that in a certain sense, the body can be viewed as a skeleton of multipole moments.

  4. Development, characterization and application of compact spectrometers based on MEMS with in-plane capacitive drives

    NASA Astrophysics Data System (ADS)

    Kenda, A.; Kraft, M.; Tortschanoff, A.; Scherf, Werner; Sandner, T.; Schenk, Harald; Luettjohann, Stephan; Simon, A.

    2014-05-01

    With a trend towards the use of spectroscopic systems in various fields of science and industry, there is an increasing demand for compact spectrometers. For UV/VIS to the shortwave near-infrared spectral range, compact hand-held polychromator type devices are widely used and have replaced larger conventional instruments in many applications. Still, for longer wavelengths this type of compact spectrometers is lacking suitable and affordable detector arrays. In perennial development Carinthian Tech Research AG together with the Fraunhofer Institute for Photonic Microsystems endeavor to close this gap by developing spectrometer systems based on photonic MEMS. Here, we review on two different spectrometer developments, a scanning grating spectrometer working in the NIR and a FT-spectrometer accessing the mid-IR range up to 14 μm. Both systems are using photonic MEMS devices actuated by in-plane comb drive structures. This principle allows for high mechanical amplitudes at low driving voltages but results in gratings respectively mirrors oscillating harmonically. Both systems feature special MEMS structures as well as aspects in terms of system integration which shall tease out the best possible overall performance on the basis of this technology. However, the advantages of MEMS as enabling technology for high scanning speed, miniaturization, energy efficiency, etc. are pointed out. Whereas the scanning grating spectrometer has already evolved to a product for the point of sale analysis of traditional Chinese medicine products, the purpose of the FT-spectrometer as presented is to demonstrate what is achievable in terms of performance. Current developments topics address MEMS packaging issues towards long term stability, further miniaturization and usability.

  5. Compact ECR ion source with permanent magnets for carbon therapy

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Kitagawa, A.; Sakamoto, Y.; Sato, Y.; Yamada, S.; Ogawa, H.; Drentje, A. G.; Biri, S.; Yoshida, Y.

    2004-05-01

    Ion sources for the medical facilities should have the following characteristics of easy maintenance, low electric power, good stability, and long operation time without trouble (1 year or longer). For this, a 10 GHz compact electron cyclotron resonance ion source (ECRIS) with all permanent magnets was developed. The beam intensity and stability for C4+ were 280 e μA and better than 6% during 20 h with no adjustment of any source parameters. These results were acceptable for the medical requirements. Recently, many plans were proposed to construct the next generation cancer treatment facility. For such a facility we have designed an all permanent magnet ECRIS, in which a high magnetic field is chosen for increasing the beam intensity. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas injection side, while the minimum B strength is 0.25 T. The source has a diameter of 32 cm and a length of 29.5 cm. Details of the design of this source and its background are described in this article.

  6. Optimization of the GBMV2 implicit solvent force field for accurate simulation of protein conformational equilibria.

    PubMed

    Lee, Kuo Hao; Chen, Jianhan

    2017-06-15

    Accurate treatment of solvent environment is critical for reliable simulations of protein conformational equilibria. Implicit treatment of solvation, such as using the generalized Born (GB) class of models arguably provides an optimal balance between computational efficiency and physical accuracy. Yet, GB models are frequently plagued by a tendency to generate overly compact structures. The physical origins of this drawback are relatively well understood, and the key to a balanced implicit solvent protein force field is careful optimization of physical parameters to achieve a sufficient level of cancellation of errors. The latter has been hampered by the difficulty of generating converged conformational ensembles of non-trivial model proteins using the popular replica exchange sampling technique. Here, we leverage improved sampling efficiency of a newly developed multi-scale enhanced sampling technique to re-optimize the generalized-Born with molecular volume (GBMV2) implicit solvent model with the CHARMM36 protein force field. Recursive optimization of key GBMV2 parameters (such as input radii) and protein torsion profiles (via the CMAP torsion cross terms) has led to a more balanced GBMV2 protein force field that recapitulates the structures and stabilities of both helical and β-hairpin model peptides. Importantly, this force field appears to be free of the over-compaction bias, and can generate structural ensembles of several intrinsically disordered proteins of various lengths that seem highly consistent with available experimental data. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices

    PubMed Central

    Moon, Kiwon; Lee, Il-Min; Shin, Jun-Hwan; Lee, Eui Su; Kim, Namje; Lee, Won-Hui; Ko, Hyunsung; Han, Sang-Pil; Park, Kyung Hyun

    2015-01-01

    Photoconductive antennas with nano-structured electrodes and which show significantly improved performances have been proposed to satisfy the demand for compact and efficient terahertz (THz) sources. Plasmonic field enhancement was previously considered the dominant mechanism accounting for the improvements in the underlying physics. However, we discovered that the role of plasmonic field enhancement is limited and near-field distribution of bias field should be considered as well. In this paper, we clearly show that the locally enhanced bias field due to the size effect is much more important than the plasmonic enhanced absorption in the nano-structured electrodes for the THz emitters. Consequently, an improved nano-electrode design is presented by tailoring bias field distribution and plasmonic enhancement. Our findings will pave the way for new perspectives in the design and analysis of plasmonic nano-structures for more efficient THz photonic devices. PMID:26347288

  8. Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices.

    PubMed

    Moon, Kiwon; Lee, Il-Min; Shin, Jun-Hwan; Lee, Eui Su; Kim, Namje; Lee, Won-Hui; Ko, Hyunsung; Han, Sang-Pil; Park, Kyung Hyun

    2015-09-08

    Photoconductive antennas with nano-structured electrodes and which show significantly improved performances have been proposed to satisfy the demand for compact and efficient terahertz (THz) sources. Plasmonic field enhancement was previously considered the dominant mechanism accounting for the improvements in the underlying physics. However, we discovered that the role of plasmonic field enhancement is limited and near-field distribution of bias field should be considered as well. In this paper, we clearly show that the locally enhanced bias field due to the size effect is much more important than the plasmonic enhanced absorption in the nano-structured electrodes for the THz emitters. Consequently, an improved nano-electrode design is presented by tailoring bias field distribution and plasmonic enhancement. Our findings will pave the way for new perspectives in the design and analysis of plasmonic nano-structures for more efficient THz photonic devices.

  9. Electromagnetic fields of slowly rotating magnetized compact stars in conformal gravity

    NASA Astrophysics Data System (ADS)

    Turimov, Bobur; Ahmedov, Bobomurat; Abdujabbarov, Ahmadjon; Bambi, Cosimo

    2018-06-01

    In this paper we investigate the exterior vacuum electromagnetic fields of slow-rotating magnetized compact stars in conformal gravity. Assuming the dipolar magnetic field configuration, we obtain an analytical solution of the Maxwell equations for the magnetic and the electric fields outside a slowly rotating magnetized star in conformal gravity. Furthermore, we study the dipolar electromagnetic radiation and energy losses from a rotating magnetized star in conformal gravity. In order to get constraints on the L parameter of conformal gravity, the theoretical results for the magnetic field of a magnetized star in conformal gravity are combined with the precise observational data of radio pulsar period slowdown, and it is found that the maximum value of the parameter of conformal gravity is less than L ≲9.5 ×105 cm (L /M ≲5 ).

  10. Scattering effects on the performance of carbon nanotube field effect transistor in a compact model

    NASA Astrophysics Data System (ADS)

    Hamieh, S. D.; Desgreys, P.; Naviner, J. F.

    2010-01-01

    Carbon nanotube field-effect transistors (CNTFET) are being extensively studied as possible successors to CMOS. Device simulators have been developed to estimate their performance in sub-10-nm and device structures have been fabricated. In this work, a new compact model of single-walled semiconducting CNTFET is proposed implementing the calculation of energy conduction sub-band minima and the treatment of scattering effects through energy shift in CNTFET. The developed model has been used to simulate I-V characteristics using VHDL-AMS simulator.

  11. Compact variable-temperature scanning force microscope.

    PubMed

    Chuang, Tien-Ming; de Lozanne, Alex

    2007-05-01

    A compact design for a cryogenic variable-temperature scanning force microscope using a fiber-optic interferometer to measure cantilever deflection is presented. The tip-sample coarse approach and the lateral tip positioning are performed by piezoelectric positioners in situ. The microscope has been operated at temperatures between 6 and 300 K. It is designed to fit into an 8 T superconducting magnet with the field applied in the out-of-plane direction. The results of scanning in various modes are demonstrated, showing contrast based on magnetic field gradients or surface potentials.

  12. Compact Ozone Lidar for Atmospheric Ozone and Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Marcia, Joel; DeYoung, Russell J.

    2007-01-01

    A small compact ozone differential absorption lidar capable of being deployed on a small aircraft or unpiloted atmospheric vehicle (UAV) has been tested. The Ce:LiCAF tunable UV laser is pumped by a quadrupled Nd:YLF laser. Test results on the laser transmitter demonstrated 1.4 W in the IR and 240 mW in the green at 1000 Hz. The receiver consists of three photon-counting channels, which are a far field PMT, a near field UV PMT, and a green PMT. Each channel was tested for their saturation characteristics.

  13. Study on a New Combination Method and High Efficiency Outer Rotor Type Permanent Magnet Motors

    NASA Astrophysics Data System (ADS)

    Enomoto, Yuji; Kitamura, Masashi; Motegi, Yasuaki; Andoh, Takashi; Ochiai, Makoto; Abukawa, Toshimi

    The segment stator core, high space factor coil, and high efficiency magnet are indispensable technologies in the development of compact and a high efficiency motors. But adoption of the segment stator core and high space factor coil has not progressed in the field of outer rotor type motors, for the reason that the inner components cannot be laser welded together. Therefore, we have examined a segment stator core combination technology for the purposes of getting a large increase in efficiency and realizing miniaturization. We have also developed a characteristic estimation method which provides the most suitable performance for segment stator core motors.

  14. Compaction bands in shale revealed through digital volume correlation of time-resolved X-ray tomography scans

    NASA Astrophysics Data System (ADS)

    McBeck, J.; Kobchenko, M.; Hall, S.; Tudisco, E.; Cordonnier, B.; Renard, F.

    2017-12-01

    Previous studies have identified compaction bands primarily within sandstones, and in fewer instances, within other porous rocks and sediments. Using Digital Volume Correlation (DVC) of X-ray microtomography scans, we find evidence of localized zones of high axial contraction that form tabular structures sub-perpendicular to maximum compression, σ1, in Green River shale. To capture in situ strain localization throughout loading, two shale cores were deformed in the HADES triaxial deformation apparatus installed on the X-ray microtomography beamline ID19 at the European Synchrotron Radiation Facility. In these experiments, we increase σ1 in increments of two MPa, with constant confining pressure (20 MPa), until the sample fails in macroscopic shear. After each stress step, a 3D image of the sample inside the rig is acquired at a voxel resolution of 6.5 μm. The evolution of lower density regions within 3D reconstructions of linear attenuation coefficients reveal the development of fractures that fail with some opening. If a fracture produces negligible dilation, it may remain undetected in image segmentation of the reconstructions. We use the DVC software TomoWarp2 to identify undetected fractures and capture the 3D incremental displacement field between each successive pair of microtomography scans acquired in each experiment. The corresponding strain fields reveal localized bands of high axial contraction that host minimal shear strain, and thus match the kinematic definition of compaction bands. The bands develop sub-perpendicular to σ1 in the two samples in which pre-existing bedding laminations were oriented parallel and perpendicular to σ1. As the shales deform plastically toward macroscopic shear failure, the number of bands and axial contraction within the bands increase, while the spacing between the bands decreases. Compaction band development accelerates the rate of overall axial contraction, increasing the mean axial contraction throughout the sample, and strengthens the shale sufficiently to localize shear faults. These results are critical to robust assessment of deformation patterns in shale rocks in contexts such as nuclear waste storage, hydrocarbon recovery and groundwater access.

  15. Compact and light-weight automated semen analysis platform using lensfree on-chip microscopy.

    PubMed

    Su, Ting-Wei; Erlinger, Anthony; Tseng, Derek; Ozcan, Aydogan

    2010-10-01

    We demonstrate a compact and lightweight platform to conduct automated semen analysis using a lensfree on-chip microscope. This holographic on-chip imaging platform weighs ∼46 g, measures ∼4.2 × 4.2 × 5.8 cm, and does not require any lenses, lasers or other bulky optical components to achieve phase and amplitude imaging of sperms over ∼24 mm(2) field-of-view with an effective numerical aperture of ∼0.2. Using this wide-field lensfree on-chip microscope, semen samples are imaged for ∼10 s, capturing a total of ∼20 holographic frames. Digital subtraction of these consecutive lensfree frames, followed by appropriate processing of the reconstructed images, enables automated quantification of the count, the speed and the dynamic trajectories of motile sperms, while summation of the same frames permits counting of immotile sperms. Such a compact and lightweight automated semen analysis platform running on a wide-field lensfree on-chip microscope could be especially important for fertility clinics, personal male fertility tests, as well as for field use in veterinary medicine such as in stud farming and animal breeding applications.

  16. Compact and wide-field-of-view head-mounted display

    NASA Astrophysics Data System (ADS)

    Uchiyama, Shoichi; Kamakura, Hiroshi; Karasawa, Joji; Sakaguchi, Masafumi; Furihata, Takeshi; Itoh, Yoshitaka

    1997-05-01

    A compact and wide field of view HMD having 1.32-in full color VGA poly-Si TFT LCDs and simple eyepieces much like LEEP optics has been developed. The total field of view is 80 deg with a 40 deg overlap in its central area. Each optical unit which includes an LCD and eyepiece is 46 mm in diameter and 42 mm in length. The total number of pixels is equivalent to (864 times 3) times 480. This HMD realizes its wide field of view and compact size by having a narrower binocular area (overlap area) than that of commercialized HMDs. For this reason, it is expected that the frequency of monocular vision will be more than that of commercialized HMDs and human natural vision. Therefore, we researched the convergent state of eyes while observing the monocular areas of this HMD by employing an EOG and considered the suitability of this HMD to human vision. As a result, it was found that the convergent state of the monocular vision was nearly equal to that of binocular vision. That is, it can be said that this HMD has the possibility of being well suited to human vision in terms of the convergence.

  17. A new exact anisotropic solution of embedding class one

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Gupta, Y. K.; T. T., Smitha; Rahaman, Farook

    2016-07-01

    We have presented a new anisotropic solution of Einstein's field equations for compact-star models. Einstein's field equations are solved by using the class-one condition (S.N. Pandey, S.P. Sharma, Gen. Relativ. Gravit. 14, 113 (1982)). We constructed the expression for the anisotropy factor ( Δ by using the pressure anisotropy condition and thereafter we obtained the physical parameters like energy density, radial and transverse pressure. These models parameters are well-behaved inside the star and satisfy all the required physical conditions. Also we observed the very interesting result that all physical parameters depend upon the anisotropy factor ( Δ. The mass and radius of the present compact-star models are quite compatible with the observational astrophysical compact stellar objects like Her X-1, RXJ 1856-37, SAX J1808.4-3658(SS1), SAX J1808.4-3658(SS2).

  18. Low-cost, compact, cooled photomultiplier assembly for use in magnetic fields up to 1400 Gauss

    NASA Technical Reports Server (NTRS)

    Patch, R. W.; Tashjian, R. A.; Jentner, T. A.

    1975-01-01

    Use of vortex tube for cooling and concentric shielding have produced smaller and more compact unit than was previously available. Future uses of device could include installation in gas chromatographs and mass spectrometers. Additional uses would include measurements and controls in magnetohydrodynamic power generators and fusion reactors.

  19. Field Performance Of A Compacted Clay Landfill Final Cover At A Humid Site

    EPA Science Inventory

    A study was conducted in southern Georgia, USA, to evalaute how the hydraulic properties of the compacted clay barrier layer in a final landfill cover changed over a 4-year service life. The cover was part of a test section constructed in a large drainage lysimeter that allowed ...

  20. ROSAT observations of compact groups of galaxies

    NASA Technical Reports Server (NTRS)

    Pildis, Rachel A.; Bregman, Joel N.; Evrard, August E.

    1995-01-01

    We have systematically analyzed a sample of 13 new and archival ROSAT Position Sensitive Proportional Counter (PSPC) observations of compact groups of galaxies: 12 Hickson compact groups plus the NCG 2300 group. We find that approximately two-thirds of the groups have extended X-ray emission and, in four of these, the emission is resolved into diffuse emission from gas at a temperature of kT approximately 1 keV in the group potential. All but one of the groups with extended emission have a spiral fraction of less than 50%. The baryon fraction of groups with diffuse emission is 5%-19%, similar to the values in clusters of galaxies. However, with a single exception (HCG 62), the gas-to-stellar mass ratio in our groups has a median value near 5%, somewhat greater than the values for individual early-type galaxies and two orders of magnitude than in clusters of galaxies. The X-ray luminosities of individual group galaxies are comparable to those of similar field galaxies, although the L(sub X)-L(sub B) relation for early-type galaxies may be flatter in compact groups than in the field.

  1. DEFORMATION AND FRACTURE OF POORLY CONSOLIDATED MEDIA - Borehole Failure Mechanisms in High-Porosity Sandstone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezalel c. Haimson

    2005-06-10

    We investigated failure mechanisms around boreholes and the formation of borehole breakouts in high-porosity sandstone, with particular interest to grain-scale micromechanics of failure leading to the hitherto unrecognized fracture-like borehole breakouts and apparent compaction band formation in poorly consolidated granular materials. We also looked at a variety of drilling-related factors that contribute to the type, size and shape of borehole breakouts. The objective was to assess their effect on the ability to establish correlations between breakout geometry and in situ stress magnitudes, as well as on borehole stability prediction, and hydrocarbon/water extraction in general. We identified two classes of mediummore » to high porosity (12-30%) sandstones, arkosic, consisting of 50-70% quartz and 15 to 50% feldspar, and quartz-rich sandstones, in which quartz grain contents varied from 90 to 100%. In arkose sandstones critical far-field stress magnitudes induced compressive failure around boreholes in the form of V-shaped (dog-eared) breakouts, the result of dilatant intra-and trans-granular microcracking subparallel to both the maximum horizontal far-field stress and to the borehole wall. On the other hand, boreholes in quartz-rich sandstones failed by developing fracture-like breakouts. These are long and very narrow (several grain diameters) tabular failure zones perpendicular to the maximum stress. Evidence provided mainly by SEM observations suggests a failure process initiated by localized grain-bond loosening along the least horizontal far-field stress springline, the packing of these grains into a lower porosity compaction band resembling those discovered in Navajo and Aztec sandstones, and the emptying of the loosened grains by the circulating drilling fluid starting from the borehole wall. Although the immediate several grain layers at the breakout tip often contain some cracked or even crushed grains, the failure mechanism enabled by the formation of the compaction band is largely non-dilatant, a major departure from the dilatant mechanism observed in Tablerock sandstone. The experimental results suggest that unlike our previous assertion, the strength of grain bonding and the mineral composition, rather than the porosity, are major factors in the formation of compaction bands and the ensuing fracture-like breakouts. Some breakout dimensions in all rocks were correlatable to the far-field principal stresses, and could potentially be used (in conjunction with other information) as indicators of their magnitudes. However, we found that several factors can significantly influence breakout geometry. Larger boreholes and increased drilling-fluid flow rates produce longer fracture-like breakouts, suggesting that breakouts in field-scale wellbores could reach considerable lengths. On the other hand, increased drilling-fluid weight and increased drill-bit penetration rate resulted in a decrease in breakout length. These results indicate that breakout growth can be controlled to some degree by manipulating drilling variables. Realizing how drilling variables impact borehole breakout formation is important in understanding the process by which breakouts form and their potential use as indicators of the far-field in situ stress magnitudes and as sources of sand production. As our research indicates, the final breakout size and mechanism of formation can be a function of several variables and conditions, meaning there is still much to be understood about this phenomenon.« less

  2. High sensitive space electric field sensing based on micro fiber interferometer with field force driven gold nanofilm.

    PubMed

    Zhu, Tao; Zhou, Liming; Liu, Min; Zhang, Jingdong; Shi, Leilei

    2015-10-28

    The traditional electrical field sensing can be realized by utilizing electro-optic materials or liquid crystals, and has limitations of easy breakdown, free assembly and difficult measurement of low-frequency. Here, we propose a new method to realize safe measurement of spatial dynamic electric field by using a micro fiber interferometer integrated with gold nanofilm. The energy of the electric charge received through antenna forms the intrinsic electric field with two micro electrodes, one of which is the 120 nm gold film vibration beam micromachined by femtosecond lasers and integrated with the micro fiber. The change of the intrinsic electric field force due to the spatial electric field will cause the vibration of the film beam. By demodulating the output signal of the micro fiber interferometer, the electric field can be measured. We demonstrate the detectable frequency ranges from tens of Hz to tens of KHz, and the minimum electric field intensity is ~200 V/m at 1 KHz. Our electric field measurement technology combining optical fiber interference with gold nanostructures shows the advantages of security, high sensitivity, compact size, and multiplexed multi-point and remote detection.

  3. High sensitive space electric field sensing based on micro fiber interferometer with field force driven gold nanofilm

    PubMed Central

    Zhu, Tao; Zhou, Liming; Liu, Min; Zhang, Jingdong; Shi, Leilei

    2015-01-01

    The traditional electrical field sensing can be realized by utilizing electro-optic materials or liquid crystals, and has limitations of easy breakdown, free assembly and difficult measurement of low-frequency. Here, we propose a new method to realize safe measurement of spatial dynamic electric field by using a micro fiber interferometer integrated with gold nanofilm. The energy of the electric charge received through antenna forms the intrinsic electric field with two micro electrodes, one of which is the 120 nm gold film vibration beam micromachined by femtosecond lasers and integrated with the micro fiber. The change of the intrinsic electric field force due to the spatial electric field will cause the vibration of the film beam. By demodulating the output signal of the micro fiber interferometer, the electric field can be measured. We demonstrate the detectable frequency ranges from tens of Hz to tens of KHz, and the minimum electric field intensity is ~200 V/m at 1 KHz. Our electric field measurement technology combining optical fiber interference with gold nanostructures shows the advantages of security, high sensitivity, compact size, and multiplexed multi-point and remote detection. PMID:26507680

  4. Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers.

    PubMed

    Eigenwillig, Christoph M; Wieser, Wolfgang; Todor, Sebastian; Biedermann, Benjamin R; Klein, Thomas; Jirauschek, Christian; Huber, Robert

    2013-01-01

    Ultrafast lasers have a crucial function in many fields of science; however, up to now, high-energy pulses directly from compact, efficient and low-power semiconductor lasers are not available. Therefore, we introduce a new approach based on temporal compression of the continuous-wave, wavelength-swept output of Fourier domain mode-locked lasers, where a narrowband optical filter is tuned synchronously to the round-trip time of light in a kilometre-long laser cavity. So far, these rapidly swept lasers enabled orders-of-magnitude speed increase in optical coherence tomography. Here we report on the generation of ~60-70 ps pulses at 390 kHz repetition rate. As energy is stored optically in the long-fibre delay line and not as population inversion in the laser-gain medium, high-energy pulses can now be generated directly from a low-power, compact semiconductor-based oscillator. Our theory predicts subpicosecond pulses with this new technique in the future.

  5. Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers

    NASA Astrophysics Data System (ADS)

    Eigenwillig, Christoph M.; Wieser, Wolfgang; Todor, Sebastian; Biedermann, Benjamin R.; Klein, Thomas; Jirauschek, Christian; Huber, Robert

    2013-05-01

    Ultrafast lasers have a crucial function in many fields of science; however, up to now, high-energy pulses directly from compact, efficient and low-power semiconductor lasers are not available. Therefore, we introduce a new approach based on temporal compression of the continuous-wave, wavelength-swept output of Fourier domain mode-locked lasers, where a narrowband optical filter is tuned synchronously to the round-trip time of light in a kilometre-long laser cavity. So far, these rapidly swept lasers enabled orders-of-magnitude speed increase in optical coherence tomography. Here we report on the generation of ~60-70 ps pulses at 390 kHz repetition rate. As energy is stored optically in the long-fibre delay line and not as population inversion in the laser-gain medium, high-energy pulses can now be generated directly from a low-power, compact semiconductor-based oscillator. Our theory predicts subpicosecond pulses with this new technique in the future.

  6. Development of Advanced Nuclide Separation and Recovery Methods using Ion-Exchanhge Techniques in Nuclear Backend

    NASA Astrophysics Data System (ADS)

    Miura, Hitoshi

    The development of compact separation and recovery methods using selective ion-exchange techniques is very important for the reprocessing and high-level liquid wastes (HLLWs) treatment in the nuclear backend field. The selective nuclide separation techniques are effective for the volume reduction of wastes and the utilization of valuable nuclides, and expected for the construction of advanced nuclear fuel cycle system and the rationalization of waste treatment. In order to accomplish the selective nuclide separation, the design and synthesis of novel adsorbents are essential for the development of compact and precise separation processes. The present paper deals with the preparation of highly functional and selective hybrid microcapsules enclosing nano-adsorbents in the alginate gel polymer matrices by sol-gel methods, their characterization and the clarification of selective adsorption properties by batch and column methods. The selective separation of Cs, Pd and Re in real HLLW was further accomplished by using novel microcapsules, and an advanced nuclide separation system was proposed by the combination of selective processes using microcapsules.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Xuenan; Zhang Yundong; Tian He

    We propose to employ the storage of light in a dynamically tuned add-drop resonator to realize an optical gyroscope of ultrahigh sensitivity and compact size. Taking the impact of the linewidth of incident light on the sensitivity into account, we investigate the effect of rotation on the propagation of a partially coherent light field in this dynamically tuned slow-light structure. It is demonstrated that the fundamental trade-off between the rotation-detection sensitivity and the linewidth will be overcome and the sensitivity-linewidth product will be enhanced by two orders of magnitude in comparison to that of the corresponding static slow-light structure. Furthermore,more » the optical gyroscope employing the storage of light in the dynamically tuned add-drop resonator can acquire ultrahigh sensitivity by extremely short fiber length without a high-performance laser source of narrow linewidth and a complex laser frequency stabilization system. Thus the proposal in this paper provides a promising and feasible scheme to realize highly sensitive and compact integrated optical gyroscopes by slow-light structures.« less

  8. Ordered DNA-Surfactant Hybrid Nanospheres Triggered by Magnetic Cationic Surfactants for Photon- and Magneto-Manipulated Drug Delivery and Release.

    PubMed

    Xu, Lu; Wang, Yitong; Wei, Guangcheng; Feng, Lei; Dong, Shuli; Hao, Jingcheng

    2015-12-14

    Here we construct for the first time ordered surfactant-DNA hybrid nanospheres of double-strand (ds) DNA and cationic surfactants with magnetic counterion, [FeCl3Br](-). The specificity of the magnetic cationic surfactants that can compact DNA at high concentrations makes it possible for building ordered nanospheres through aggregation, fusion, and coagulation. Cationic surfactants with conventional Br(-) cannot produce spheres under the same condition because they lose the DNA compaction ability. When a light-responsive magnetic cationic surfactant is used to produce nanospheres, a dual-controllable drug-delivery platform can be built simply by the applications of external magnetic force and alternative UV and visible light. These nanospheres obtain high drug absorption efficiency, slow release property, and good biocompatibility. There is potential for effective magnetic-field-based targeted drug delivery, followed by photocontrollable drug release. We deduce that our results might be of great interest for making new functional nucleic-acid-based nanomachines and be envisioned to find applications in nanotechnology and biochemistry.

  9. Binary Systems as Test-Beds of Gravity Theories

    NASA Astrophysics Data System (ADS)

    Damour, Thibault

    The discovery of binary pulsars in 1974 [1] opened up a new testing ground for relativistic gravity. Before this discovery, the only available testing ground for relativistic gravity was the solar system. As Einstein's theory of General Relativity (GR) is one of the basic pillars of modern science, it deserves to be tested, with the highest possible accuracy, in all its aspects. In the solar sys tem, the gravitational field is slowly varying and represents only a very small deformation of a flat spacetime. As a consequence, solar system tests can only probe the quasi-stationary (non-radiative) weak-field limit of relativis tic gravity. By contrast binary systems containing compact objects (neutron stars or black holes) involve spacetime domains (inside and near the compact objects) where the gravitational field is strong. Indeed, the surface relativistic gravitational field h 00 ≈ 2 GM/c 2 R of a neutron star is of order 0.4, which is close to the one of a black hole (2GM/c 2 R = 1) and much larger than the surface gravitational fields of solar system bodies: (2GM/c 2 R)Sun ˜ 10-6, (2GM/c 2 R)Earth ˜ 10-9. In addition, the high stability of “pulsar clocks” has made it possible to monitor the dynamics of its orbital motion down to a precision allowing one to measure the small (˜ (v/c)5) orbital effects linked to the propagation of the gravitational field at the velocity of light between the pulsar and its companion.

  10. A Large-Particle Monte Carlo Code for Simulating Non-Linear High-Energy Processes Near Compact Objects

    NASA Technical Reports Server (NTRS)

    Stern, Boris E.; Svensson, Roland; Begelman, Mitchell C.; Sikora, Marek

    1995-01-01

    High-energy radiation processes in compact cosmic objects are often expected to have a strongly non-linear behavior. Such behavior is shown, for example, by electron-positron pair cascades and the time evolution of relativistic proton distributions in dense radiation fields. Three independent techniques have been developed to simulate these non-linear problems: the kinetic equation approach; the phase-space density (PSD) Monte Carlo method; and the large-particle (LP) Monte Carlo method. In this paper, we present the latest version of the LP method and compare it with the other methods. The efficiency of the method in treating geometrically complex problems is illustrated by showing results of simulations of 1D, 2D and 3D systems. The method is shown to be powerful enough to treat non-spherical geometries, including such effects as bulk motion of the background plasma, reflection of radiation from cold matter, and anisotropic distributions of radiating particles. It can therefore be applied to simulate high-energy processes in such astrophysical systems as accretion discs with coronae, relativistic jets, pulsar magnetospheres and gamma-ray bursts.

  11. A Pre-ionization System to Limit Neutral Gas in a Compact Toroid Injector

    NASA Astrophysics Data System (ADS)

    Allfrey, Ian; Roche, Thomas; Matsumoto, Tadafumi; Garate, Eusebio; Gota, Hiroshi; Asai, Tomohiko; the TAE Team

    2016-10-01

    Fusion plasmas require long lifetimes and high temperatures, both of which are limited by particle loss, among other factors. Therefore, refueling a long-lived advanced beam-driven field-reversed configuration (FRC) plasma in C-2U is necessary, and injecting a supersonic compact toroid (CT) is an effective means of introducing particles into the FRC core. However, neutral gas that trails the CT into the target chamber cools the FRC. Pre-ionization (PI) system assists the break down between electrodes of the CT injector (CTI), so the amount of introduced gas can be lowered by up to a factor of two, effectively increasing the ionization fraction; thus, reducing the amount of neutral gas in the system. Additionally, the PI decreases the delay in CTI breakdown so a highly reproducible operation is achievable. The PI system consists of a fast, high voltage, pulse discharge circuit coupled to a Teflon insulated semi-rigid coaxial cable inserted into the CTI. System details and experimental data will be presented, in addition to issues such as the introduction of impurities and pre-ionizer lifetime.

  12. A field-deployable mobile molecular diagnostic system for malaria at the point of need.

    PubMed

    Choi, Gihoon; Song, Daniel; Shrestha, Sony; Miao, Jun; Cui, Liwang; Guan, Weihua

    2016-11-01

    In response to the urgent need of a field-deployable and highly sensitive malaria diagnosis, we developed a standalone, "sample-in-answer-out" molecular diagnostic system (AnyMDx) to enable quantitative molecular analysis of blood-borne malaria in low resource areas. The system consists of a durable battery-powered analyzer and a disposable microfluidic compact disc loaded with reagents ready for use. A low power thermal module and a novel fluorescence-sensing module are integrated into the analyzer for real-time monitoring of loop-mediated isothermal nucleic acid amplification (LAMP) of target parasite DNA. With 10 μL of raw blood sample, the AnyMDx system automates the nucleic acid sample preparation and subsequent LAMP and real-time detection. Under laboratory conditions with whole-blood samples spiked with cultured Plasmodium falciparum, we achieved a detection limit of ∼0.6 parasite per μL, much lower than those for the conventional microscopy and rapid diagnostic tests (∼50-100 parasites per μL). The turnaround time from sample to answer is less than 40 minutes. The AnyMDx is user-friendly requiring minimal technological training. The analyzer and the disposable reagent compact discs are cost-effective, making AnyMDx a potential tool for malaria molecular diagnosis under field settings for malaria elimination.

  13. Design, fabrication and space suitability tests of wide field of view, ultra-compact, and high resolution telescope for space application.

    PubMed

    Tumarina, M; Ryazanskiy, M; Jeong, S; Hong, G; Vedenkin, N; Park, I H; Milov, A

    2018-02-05

    We report on the design, manufacture, and testing of an ultra-compact telescope for 16 unit (16U) CubeSats for Earth and space observation. This telescope provides 1 arcsec resolution at a 2.9 degree field of view. Dimensions are optimized to 230 × 230 × 330mm 3 with a mass of less than 6kg including support structure. Our catadioptric 5-element design consists of a full-aperture corrector, a Mangin primary mirror (PM), a secondary mirror (SM), and a 2-lens field corrector. The focal length is 745mm, and squared-circular aperture has an equivalent diameter of 241mm. The designed modulation transfer function (MTF) is 0.275 for the entire unit including baffles at a Nyquist frequency of 161 cycles/mm for the 450-800nm band. As one of the distinguishing features of our state-of-the-art design, all optical surfaces are spherical to simplify adjustment. For the best thermal stability, all optical elements are produced from fused silica. We describe the details of design, adjustment, and laboratory performance tests for space environments in accordance with the requirements for in-orbit operation onboard Earth-observation micro-satellites to be launched in 2018.

  14. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    NASA Technical Reports Server (NTRS)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1996-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  15. Innovative enclosure dome/observing aperture system design for the MROI Array Telescopes

    NASA Astrophysics Data System (ADS)

    Busatta, A.; Marchiori, G.; Mian, S.; Payne, I.; Pozzobon, M.

    2010-07-01

    The close-pack array of the MROI necessitated an original design for the Unit Telescope Enclosure (UTE) at Magdalena Ridge Observatory. The Magdalena Ridge Observatory Interferometer (MROI) is a project which comprises an array of up to ten (10) 1.4m diameter mirror telescopes arranged in a "Y" configuration. Each of these telescopes will be housed inside a Unit Telescope Enclosure (UTE) which are relocatable onto any of 28 stations. The most compact configuration includes all ten telescopes, several of which are at a relative distance of less than 8m center to center from each other. Since the minimum angle of the field of regard is 30° with respect to the horizon, it is difficult to prevent optical blockage caused by adjacent UTEs in this compact array. This paper presents the design constraints inherent in meeting the requirement for the close-pack array. An innovative design enclosure was created which incorporates an unique dome/observing aperture system. The description of this system focuses on how the field of regard requirement led to an unique and highly innovative concept that had to be able to operate in the harsh environmental conditions encountered at an altitude of 10,460ft (3,188m). Finally, we describe the wide use of composites materials and structures (e.g. glass/carbon fibres, sandwich panels etc.) on the aperture system which represents the only way to guarantee adequate thermal and environmental protection, compactness, structural stability and limited power consumption due to reduced mass.

  16. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    NASA Technical Reports Server (NTRS)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1994-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  17. The High Field Path to Practical Fusion Energy

    NASA Astrophysics Data System (ADS)

    Mumgaard, Robert; Whyte, D.; Greenwald, M.; Hartwig, Z.; Brunner, D.; Sorbom, B.; Marmar, E.; Minervini, J.; Bonoli, P.; Irby, J.; Labombard, B.; Terry, J.; Vieira, R.; Wukitch, S.

    2017-10-01

    We propose a faster, lower cost development path for fusion energy enabled by high temperature superconductors, devices at high magnetic field, innovative technologies and modern approaches to technology development. Timeliness, scale, and economic-viability are the drivers for fusion energy to combat climate change and aid economic development. The opportunities provided by high-temperature superconductors, innovative engineering and physics, and new organizational structures identified over the last few years open new possibilities for realizing practical fusion energy that could meet mid-century de-carbonization needs. We discuss re-factoring the fusion energy development path with an emphasis on concrete risk retirement strategies utilizing a modular approach based on the high-field tokamak that leverages the broader tokamak physics understanding of confinement, stability, and operational limits. Elements of this plan include development of high-temperature superconductor magnets, simplified immersion blankets, advanced long-leg divertors, a compact divertor test tokamak, efficient current drive, modular construction, and demountable magnet joints. An R&D plan culminating in the construction of an integrated pilot plant and test facility modeled on the ARC concept is presented.

  18. Simulation of High-Beta Plasma Confinement

    NASA Astrophysics Data System (ADS)

    Font, Gabriel; Welch, Dale; Mitchell, Robert; McGuire, Thomas

    2017-10-01

    The Lockheed Martin Compact Fusion Reactor concept utilizes magnetic cusps to confine the plasma. In order to minimize losses through the axial and ring cusps, the plasma is pushed to a high-beta state. Simulations were made of the plasma and magnetic field system in an effort to quantify particle confinement times and plasma behavior characteristics. Computations are carried out with LSP using implicit PIC methods. Simulations of different sub-scale geometries at high-Beta fusion conditions are used to determine particle loss scaling with reactor size, plasma conditions, and gyro radii. ©2017 Lockheed Martin Corporation. All Rights Reserved.

  19. Design of transmission-type phase holograms for a compact radar-cross-section measurement range at 650 GHz.

    PubMed

    Noponen, Eero; Tamminen, Aleksi; Vaaja, Matti

    2007-07-10

    A design formalism is presented for transmission-type phase holograms for use in a submillimeter-wave compact radar-cross-section (RCS) measurement range. The design method is based on rigorous electromagnetic grating theory combined with conventional hologram synthesis. Hologram structures consisting of a curved groove pattern on a 320 mmx280 mm Teflon plate are designed to transform an incoming spherical wave at 650 GHz into an output wave generating a 100 mm diameter planar field region (quiet zone) at a distance of 1 m. The reconstructed quiet-zone field is evaluated by a numerical simulation method. The uniformity of the quiet-zone field is further improved by reoptimizing the goal field. Measurement results are given for a test hologram fabricated on Teflon.

  20. Preparation of ultra-thin and high-quality WO{sub 3} compact layers and comparision of WO{sub 3} and TiO{sub 2} compact layer thickness in planar perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jincheng; Shi, Chengwu, E-mail: shicw506@foxmail.com; Chen, Junjun

    2016-06-15

    In this paper, the ultra-thin and high-quality WO{sub 3} compact layers were successfully prepared by spin-coating-pyrolysis method using the tungsten isopropoxide solution in isopropanol. The influence of WO{sub 3} and TiO{sub 2} compact layer thickness on the photovoltaic performance of planar perovskite solar cells was systematically compared, and the interface charge transfer and recombination in planar perovskite solar cells with TiO{sub 2} compact layer was analyzed by electrochemical impedance spectroscopy. The results revealed that the optimum thickness of WO{sub 3} and TiO{sub 2} compact layer was 15 nm and 60 nm. The planar perovskite solar cell with 15 nm WO{submore » 3} compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO{sub 2} compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency. - Graphical abstract: The planar perovskite solar cell with 15 nm WO{sub 3} compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO{sub 2} compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency. Display Omitted - Highlights: • Preparation of ultra-thin and high-quality WO{sub 3} compact layers. • Perovskite solar cell with 15 nm-thick WO{sub 3} compact layer achieved PCE of 10.14%. • Perovskite solar cell with 60 nm-thick TiO{sub 2} compact layer achieved PCE of 12.64%.« less

  1. Mechanical and chemical processes affecting the chalk during burial, insights from combined reflection seismics, well data and field work

    NASA Astrophysics Data System (ADS)

    Moreau, Julien; Boussaha, Myriam; Nielsen, Lars; Thibault, Nicolas; Stemmerik, Lars

    2014-05-01

    The chalk must undergo several phases of grain reorganisation and chemical reactions during its diagenetic evolution from a carbonaceous ooze to a sedimentary rock. Some of these transformations could be observed on structures from the kilometre- to the micrometre-scale with seismic reflection and cores analyses, respectively. However, few sites allow to combine all the different scale of observation for chalk diagenesis. Onshore and offshore high resolution seismics, two fully cored >350 m wells with wireline logging tools and very high quality exposures from a coastal cliff and a quarry form such an exceptional dataset in the Stevns peninsula area, eastern Danish Basin (Denmark). The studied chalk interval in the area is of Maastrichtian to Danian age. The chalk has been divided in 4 lithofacies, chalk-marl alternations, white chalk, white chalk with flint layers and bryozoan chalk. Advanced stratigraphic works have been performed with astronomical calibration based on stable isotope stratigraphy, wireline logs as well as several palaeontological proxies and detailed sedimentological analysis. Since a couple of decades, a specific kind of fractures has been described in the Chalk of Denmark, the so-called hairline fractures. They have recently been interpreted as compaction bands associated with the pore collapse of the chalk. We have observed these fractures on the field and on the cores in specific intervals. At depth, these fractures are in genetic relation with the formation of some stylolithes. The pressure-solution allows the formation of carbonate seams in the hairline fractures. At larger scale, on the field are observed faults which are sealed with flint precipitations. They slightly offset (<1 m) strata underlined by flint bands. On the onshore and offshore seismic reflection profiles, numerous strata-bound faults form noisy intervals as well as amplitude anomalies. Their normal offsets are less than 25 m. Their branching patterns, and their restriction to certain stratigraphic intervals (mainly white chalk) is comparable to the observations made on the cores and on the field. We consider that all these features observed at different scales record different diagenetic phases responsible of the transformation of a soft ooze into a rock. It is suggested that after deposition of nanofossil ooze, the water starts to escapes and the ooze compacts into a granular sediment. This phenomenon is associated with the strata bound faults. Later on, the flint starts to precipitate along the strata but also the faults. The pore space continuously reduces with burial and the compaction bands form. Ultimately, stylolithes appear and the remobilised carbonates seal the remaining pore space preferentially along the fractures (the compaction bands). The link between these different features has been realised thanks to the simultaneous analyses of large-scale geophysical data and small-scale core and field geological observations, providing a better understanding of the complex processes of lithification of carbonates.

  2. A compact high brightness laser synchrotron light source for medical applications

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuhisa

    1999-07-01

    The present high-brightness hard X-ray sources have been developed as third generation synchrotron light sources based on large high energy electron storage rings and magnetic undulators. Recently availability of compact terawatt lasers arouses a great interest in the use of lasers as undulators. The laser undulator concept makes it possible to construct an attractive compact synchrotron radiation source which has been proposed as a laser synchrotron light source. This paper proposes a compact laser synchrotron light source for mediacal applications, such as an intravenous coronary angiography and microbeam therapy.

  3. Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields

    DOEpatents

    Clark, M. Collins; Coleman, P. Dale; Marder, Barry M.

    1993-01-01

    A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.

  4. Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields

    DOEpatents

    Clark, M.C.; Coleman, P.D.; Marder, B.M.

    1993-08-10

    A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.

  5. Accretion of a symmetry-breaking scalar field by a Schwarzschild black hole.

    PubMed

    Traykova, Dina; Braden, Jonathan; Peiris, Hiranya V

    2018-03-06

    We simulate the behaviour of a Higgs-like field in the vicinity of a Schwarzschild black hole using a highly accurate numerical framework. We consider both the limit of the zero-temperature Higgs potential and a toy model for the time-dependent evolution of the potential when immersed in a slowly cooling radiation bath. Through these numerical investigations, we aim to improve our understanding of the non-equilibrium dynamics of a symmetry-breaking field (such as the Higgs) in the vicinity of a compact object such as a black hole. Understanding this dynamics may suggest new approaches for studying properties of scalar fields using black holes as a laboratory.This article is part of the Theo Murphy meeting issue 'Higgs Cosmology'. © 2018 The Author(s).

  6. High-resolution computer-aided moire

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.; Bhat, Gopalakrishna K.

    1991-12-01

    This paper presents a high resolution computer assisted moire technique for the measurement of displacements and strains at the microscopic level. The detection of micro-displacements using a moire grid and the problem associated with the recovery of displacement field from the sampled values of the grid intensity are discussed. A two dimensional Fourier transform method for the extraction of displacements from the image of the moire grid is outlined. An example of application of the technique to the measurement of strains and stresses in the vicinity of the crack tip in a compact tension specimen is given.

  7. Review of high field superconducting magnet development at Oxford Instruments

    NASA Astrophysics Data System (ADS)

    Brown, F. J.; Kerley, N. W.; Knox, R. B.; Timms, K. W.

    1996-02-01

    Present commercial development activity for high field superconducting magnets is focused clearly in three directions. The development of solenoid magnets with flux densities in excess of 20 T, the production of highly homogeneous fields at 20 T, and development of large split pair magnets in excess of 12 T. Recent developments in split pair technology allows us to build magnets with useful access, transverse to the field, up to 15 T. Compact solenoid magnets to 20 T have been available commercially for over 3 yr now with a progressive increment in bore size, providing associated engineering challenges. A 20 T solenoid with a clear bore of 52 mm and a homogeneity of 0.1% is now a standard production item. Improving the homogeneity to the 1 ppm level involves re-assessment of critical design parameters and choice of materials. Our development over the last twelve months has culminated in a 20 T solenoid with base homogeneity of 5 ppm over a 10 mm sphere. In order to realise persistent fields in excess of 20 T, requires the priority on development to be switched from engineering and manufacturing towards material development and enhancement. We present the findings and conclusions of our high field development program over the last 3 yr, together with an outline of our requirements and activities in materials and engineering leading to the next step in high field magnet manufacture, using conventional low Tc conductors.

  8. Compact, Robust Chips Integrate Optical Functions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Located in Bozeman, Montana, AdvR Inc. has been an active partner in NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs. Langley Research Center engineers partnered with AdvR through the SBIR program to develop new, compact, lightweight electro-optic components for remote sensing systems. While the primary customer for this technology will be NASA, AdvR foresees additional uses for its NASA-derived circuit chip in the fields of academic and industrial research anywhere that compact, low-cost, stabilized single-frequency lasers are needed.

  9. Designing a compact high performance brain PET scanner—simulation study

    NASA Astrophysics Data System (ADS)

    Gong, Kuang; Majewski, Stan; Kinahan, Paul E.; Harrison, Robert L.; Elston, Brian F.; Manjeshwar, Ravindra; Dolinsky, Sergei; Stolin, Alexander V.; Brefczynski-Lewis, Julie A.; Qi, Jinyi

    2016-05-01

    The desire to understand normal and disordered human brain function of upright, moving persons in natural environments motivates the development of the ambulatory micro-dose brain PET imager (AMPET). An ideal system would be light weight but with high sensitivity and spatial resolution, although these requirements are often in conflict with each other. One potential approach to meet the design goals is a compact brain-only imaging device with a head-sized aperture. However, a compact geometry increases parallax error in peripheral lines of response, which increases bias and variance in region of interest (ROI) quantification. Therefore, we performed simulation studies to search for the optimal system configuration and to evaluate the potential improvement in quantification performance over existing scanners. We used the Cramér-Rao variance bound to compare the performance for ROI quantification using different scanner geometries. The results show that while a smaller ring diameter can increase photon detection sensitivity and hence reduce the variance at the center of the field of view, it can also result in higher variance in peripheral regions when the length of detector crystal is 15 mm or more. This variance can be substantially reduced by adding depth-of-interaction (DOI) measurement capability to the detector modules. Our simulation study also shows that the relative performance depends on the size of the ROI, and a large ROI favors a compact geometry even without DOI information. Based on these results, we propose a compact ‘helmet’ design using detectors with DOI capability. Monte Carlo simulations show the helmet design can achieve four-fold higher sensitivity and resolve smaller features than existing cylindrical brain PET scanners. The simulations also suggest that improving TOF timing resolution from 400 ps to 200 ps also results in noticeable improvement in image quality, indicating better timing resolution is desirable for brain imaging.

  10. Designing a compact high performance brain PET scanner—simulation study

    PubMed Central

    Gong, Kuang; Majewski, Stan; Kinahan, Paul E; Harrison, Robert L; Elston, Brian F; Manjeshwar, Ravindra; Dolinsky, Sergei; Stolin, Alexander V; Brefczynski-Lewis, Julie A; Qi, Jinyi

    2016-01-01

    The desire to understand normal and disordered human brain function of upright, moving persons in natural environments motivates the development of the ambulatory micro-dose brain PET imager (AMPET). An ideal system would be light weight but with high sensitivity and spatial resolution, although these requirements are often in conflict with each other. One potential approach to meet the design goals is a compact brain-only imaging device with a head-sized aperture. However, a compact geometry increases parallax error in peripheral lines of response, which increases bias and variance in region of interest (ROI) quantification. Therefore, we performed simulation studies to search for the optimal system configuration and to evaluate the potential improvement in quantification performance over existing scanners. We used the Cramér–Rao variance bound to compare the performance for ROI quantification using different scanner geometries. The results show that while a smaller ring diameter can increase photon detection sensitivity and hence reduce the variance at the center of the field of view, it can also result in higher variance in peripheral regions when the length of detector crystal is 15 mm or more. This variance can be substantially reduced by adding depth-of- interaction (DOI) measurement capability to the detector modules. Our simulation study also shows that the relative performance depends on the size of the ROI, and a large ROI favors a compact geometry even without DOI information. Based on these results, we propose a compact ‘helmet’ design using detectors with DOI capability. Monte Carlo simulations show the helmet design can achieve four-fold higher sensitivity and resolve smaller features than existing cylindrical brain PET scanners. The simulations also suggest that improving TOF timing resolution from 400 ps to 200 ps also results in noticeable improvement in image quality, indicating better timing resolution is desirable for brain imaging. PMID:27081753

  11. Near field detector for integrated surface plasmon resonance biosensor applications.

    PubMed

    Bora, Mihail; Celebi, Kemal; Zuniga, Jorge; Watson, Colin; Milaninia, Kaveh M; Baldo, Marc A

    2009-01-05

    Integrated surface plasmon resonance biosensors promise to enable compact and portable biosensing at high sensitivities. To replace the far field detector traditionally used to detect surface plasmons we integrate a near field detector below a functionalized gold film. The evanescent field of a surface plasmon at the aqueous-gold interface is converted into photocurrent by a thin film organic heterojunction diode. We demonstrate that use of the near field detector is equivalent to the traditional far field measurement of reflectivity. The sensor is stable and reversible in an aqueous environment for periods of 6 hrs. For specific binding of neutravidin, the detection limit is 4 microg/cm(2). The sensitivity can be improved by reducing surface roughness of the gold layers and optimization of the device design. From simulations, we predict a maximum sensitivity that is two times lower than a comparable conventional SPR biosensor.

  12. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Bozzo, E.; Oskinova, L.; Feldmeier, A.; Falanga, M.

    2016-05-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the nonstationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total timescale of several hours), the transitions of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the nonstationary wind. The X-ray luminosity released by the system is computed at each time step by taking into account the relevant physical processes occurring in the different accretion regimes. Synthetic lightcurves are derived and qualitatively compared with those observed from classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. Although a number of simplifications are assumed in these calculations, we show that taking into account the effects of the centrifugal and magnetic inhibition of accretion significantly reduces the average X-ray luminosity expected for any neutron star wind-fed binary. The present model calculations suggest that long spin periods and stronger magnetic fields are favored in order to reproduce the peculiar behavior of supergiant fast X-ray transients in the X-ray domain.

  13. The nature of the ionised nebula surrounding the red supergiant W26

    NASA Astrophysics Data System (ADS)

    Wesson, Roger

    2015-08-01

    The red supergiant W26 in the massive star cluster Westerlund 1 is surrounded by a compact ionised nebula. This is unique among RSGs, and the excitation mechanism of the nebula is not yet known - it may be ionised by an unseen compact companion, or by a nearby blue supergiant. We present new observations of the nebula: high resolution spatially resolved spectra taken with FLAMES at the VLT show that the nebula is a ring, with velocities consistent with that expected for red supergiant ejecta, and ruling out the possibility of a Luminous Blue Variable-type eruption preceding the RSG phase as the origin of the nebula. A triangular patch of nebulosity outside the ring appears to be associated with W26, and may be material stripped from the expanding ring by the cumulative cluster wind and radiation field.

  14. Transport and energy selection of laser generated protons for postacceleration with a compact linac

    NASA Astrophysics Data System (ADS)

    Sinigardi, Stefano; Turchetti, Giorgio; Londrillo, Pasquale; Rossi, Francesco; Giove, Dario; De Martinis, Carlo; Sumini, Marco

    2013-03-01

    Laser accelerated proton beams have a considerable potential for various applications including oncological therapy. However, the most consolidated target normal sheath acceleration regime based on irradiation of solid targets provides an exponential energy spectrum with a significant divergence. The low count number at the cutoff energy seriously limits at present its possible use. One realistic scenario for the near future is offered by hybrid schemes. The use of transport lines for collimation and energy selection has been considered. We present here a scheme based on a high field pulsed solenoid and collimators which allows one to select a beam suitable for injection at 30 MeV into a compact linac in order to double its energy while preserving a significant intensity. The results are based on a fully 3D simulation starting from laser acceleration.

  15. Response function of single crystal synthetic diamond detectors to 1-4 MeV neutrons for spectroscopy of D plasmas

    NASA Astrophysics Data System (ADS)

    Rebai, M.; Giacomelli, L.; Milocco, A.; Nocente, M.; Rigamonti, D.; Tardocchi, M.; Camera, F.; Cazzaniga, C.; Chen, Z. J.; Du, T. F.; Fan, T. S.; Giaz, A.; Hu, Z. M.; Marchi, T.; Peng, X. Y.; Gorini, G.

    2016-11-01

    A Single-crystal Diamond (SD) detector prototype was installed at Joint European Torus (JET) in 2013 and the achieved results have shown its spectroscopic capability of measuring 2.5 MeV neutrons from deuterium plasmas. This paper presents measurements of the SD response function to monoenergetic neutrons, which is a key point for the development of a neutron spectrometer based on SDs and compares them with Monte Carlo simulations. The analysis procedure allows for a good reconstruction of the experimental results. The good pulse height energy resolution (equivalent FWHM of 80 keV at 2.5 MeV), gain stability, insensitivity to magnetic field, and compact size make SDs attractive as compact neutron spectrometers of high flux deuterium plasmas, such as for instance those needed for the ITER neutron camera.

  16. Compact four-channel terahertz demultiplexer based on directional coupling photonic crystal

    NASA Astrophysics Data System (ADS)

    Jiu-Sheng, Li; Han, Liu; Le, Zhang

    2015-09-01

    Electromagnetic polarization conveys valuable information for signal processing. Manipulation of terahertz wavelength demultiplexer exhibits tremendous potential in developing application of terahertz science and technology. We propose an approach to separate efficiently four frequencies terahertz waves based on three cascaded directional coupling two-dimensional photonic crystal waveguides. Both plane wave expansion method and finite-difference time-domain method are used to calculate and analyze the characteristics of the proposed device. The simulation results show that the designed terahertz wavelength demultiplexer can split four different wavelengths of terahertz wave into different propagation directions with high transmittance and low crosstalk. The present device is very compact and the total size is 6.8×10.6 mm2. This enables the terahertz wavelength demultiplexer to be used in terahertz wave system and terahertz wave integrated circuit fields.

  17. Continious production of exfoliated graphite composite compositions and flow field plates

    DOEpatents

    Shi, Jinjun; Zhamu, Aruna; Jang, Bor Z.

    2010-07-20

    A process of continuously producing a more isotropic, electrically conductive composite composition is provided. The process comprises: (a) continuously supplying a compressible mixture comprising exfoliated graphite worms and a binder or matrix material, wherein the binder or matrix material is in an amount of between 3% and 60% by weight based on the total weight of the mixture; (b) continuously compressing the compressible mixture at a pressure within the range of from about 5 psi or 0.035 MPa to about 50,000 psi or 350 MPa in at least a first direction into a cohered graphite composite compact; and (c) continuously compressing the composite compact in a second direction, different from the first direction, to form the composite composition in a sheet or plate form. The process leads to composite plates with exceptionally high thickness-direction electrical conductivity.

  18. The KMOS3D Survey: Rotating Compact Star-forming Galaxies and the Decomposition of Integrated Line Widths

    NASA Astrophysics Data System (ADS)

    Wisnioski, E.; Mendel, J. T.; Förster Schreiber, N. M.; Genzel, R.; Wilman, D.; Wuyts, S.; Belli, S.; Beifiori, A.; Bender, R.; Brammer, G.; Chan, J.; Davies, R. I.; Davies, R. L.; Fabricius, M.; Fossati, M.; Galametz, A.; Lang, P.; Lutz, D.; Nelson, E. J.; Momcheva, I.; Rosario, D.; Saglia, R.; Tacconi, L. J.; Tadaki, K.; Übler, H.; van Dokkum, P. G.

    2018-03-01

    Using integral field spectroscopy, we investigate the kinematic properties of 35 massive centrally dense and compact star-forming galaxies (SFGs; {log}{\\overline{M}}* [{M}ȯ ]=11.1, {log}({{{Σ }}}1{kpc}[{M}ȯ {kpc}}-2])> 9.5, {log}({M}* /{r}e1.5[{M}ȯ {kpc}}-1.5])> 10.3) at z ∼ 0.7–3.7 within the KMOS3D survey. We spatially resolve 23 compact SFGs and find that the majority are dominated by rotational motions with velocities ranging from 95 to 500 km s‑1. The range of rotation velocities is reflected in a similar range of integrated Hα line widths, 75–400 km s‑1, consistent with the kinematic properties of mass-matched extended galaxies from the full KMOS3D sample. The fraction of compact SFGs that are classified as “rotation-dominated” or “disklike” also mirrors the fractions of the full KMOS3D sample. We show that integrated line-of-sight gas velocity dispersions from KMOS3D are best approximated by a linear combination of their rotation and turbulent velocities with a lesser but still significant contribution from galactic-scale winds. The Hα exponential disk sizes of compact SFGs are, on average, 2.5 ± 0.2 kpc, 1–2× the continuum sizes, in agreement with previous work. The compact SFGs have a 1.4× higher active galactic nucleus (AGN) incidence than the full KMOS3D sample at fixed stellar mass with an average AGN fraction of 76%. Given their high and centrally concentrated stellar masses, as well as stellar-to-dynamical mass ratios close to unity, the compact SFGs are likely to have low molecular gas fractions and to quench on a short timescale unless replenished with inflowing gas. The rotation in these compact systems suggests that their direct descendants are rotating passive galaxies. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDs 092A-0091, 093.A-0079, 094.A-0217, 095.A-0047, 096.A-0025, 097.A-0028, and 098.A-0045).

  19. Laser waveform control of extreme ultraviolet high harmonics from solids.

    PubMed

    You, Yong Sing; Wu, Mengxi; Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Gholam-Mirzaei, Shima; Browne, Dana A; Chini, Michael; Chang, Zenghu; Schafer, Kenneth J; Gaarde, Mette B; Ghimire, Shambhu

    2017-05-01

    Solid-state high-harmonic sources offer the possibility of compact, high-repetition-rate attosecond light emitters. However, the time structure of high harmonics must be characterized at the sub-cycle level. We use strong two-cycle laser pulses to directly control the time-dependent nonlinear current in single-crystal MgO, leading to the generation of extreme ultraviolet harmonics. We find that harmonics are delayed with respect to each other, yielding an atto-chirp, the value of which depends on the laser field strength. Our results provide the foundation for attosecond pulse metrology based on solid-state harmonics and a new approach to studying sub-cycle dynamics in solids.

  20. Fermionic currents in AdS spacetime with compact dimensions

    NASA Astrophysics Data System (ADS)

    Bellucci, S.; Saharian, A. A.; Vardanyan, V.

    2017-09-01

    We derive a closed expression for the vacuum expectation value (VEV) of the fermionic current density in a (D +1 )-dimensional locally AdS spacetime with an arbitrary number of toroidally compactified Poincaré spatial dimensions and in the presence of a constant gauge field. The latter can be formally interpreted in terms of a magnetic flux treading the compact dimensions. In the compact subspace, the field operator obeys quasiperiodicity conditions with arbitrary phases. The VEV of the charge density is zero and the current density has nonzero components along the compact dimensions only. They are periodic functions of the magnetic flux with the period equal to the flux quantum and tend to zero on the AdS boundary. Near the horizon, the effect of the background gravitational field is small and the leading term in the corresponding asymptotic expansion coincides with the VEV for a massless field in the locally Minkowski bulk. Unlike the Minkowskian case, in the system consisting of an equal number of fermionic and scalar degrees of freedom, with same masses, charges and phases in the periodicity conditions, the total current density does not vanish. In these systems, the leading divergences in the scalar and fermionic contributions on the horizon are canceled and, as a consequence of that, the charge flux, integrated over the coordinate perpendicular to the AdS boundary, becomes finite. We show that in odd spacetime dimensions the fermionic fields realizing two inequivalent representations of the Clifford algebra and having equal phases in the periodicity conditions give the same contribution to the VEV of the current density. Combining the contributions from these fields, the current density in odd-dimensional C -,P - and T -symmetric models are obtained. As an application, we consider the ground state current density in curved carbon nanotubes described in terms of a (2 +1 )-dimensional effective Dirac model.

  1. A Missing Link in Galaxy Evolution: The Mysteries of Dissolving Star Clusters

    NASA Astrophysics Data System (ADS)

    Pellerin, Anne; Meyer, Martin; Harris, Jason; Calzetti, Daniela

    2007-05-01

    Star-forming events in starbursts and normal galaxies have a direct impact on the global stellar content of galaxies. These events create numerous compact clusters where stars are produced in great number. These stars eventually end up in the star field background where they are smoothly distributed. However, due to instrumental limitations such as spatial resolution and sensitivity, the processes involved during the transition phase from the compact clusters to the star field background as well as the impact of the environment (spiral waves, bars, starburst) on the lifetime of clusters are still poorly constrained observationally. I will present our latest results on the physical properties of dissolving clusters directly detected in HST/ACS archival images of the three nearby galaxies IC 2574, NGC 1313, and IC 10 (D < 5 Mpc). The ACS has the capability to detect and spatially resolve individual stars in nearby galaxies within a large field-of-view. For all ACS images obtained in three filters (F435W, F555W or F606W, and F814W), we performed PSF stellar photometry in crowded field. Color-magnitude diagrams (CMD) allow us to identify the most massive stars more likely to be part of dissolving clusters (A-type and earlier), and to isolate them from the star field background. We then adapt and use a clustering algorithm on the selected stars to find groups of stars to reveal and quantify the properties of all star clusters (compactness, size, age, mass). With this algorithm, even the less compact clusters are revealed while they are being destroyed. Our sample of three galaxies covers an interesting range in gravitational potential well and explores a variety of galaxy morphological types, which allows us to discuss the dissolving cluster properties as a function of the host galaxy characteristics. The properties of the star field background will also be discussed.

  2. Effects of tractor loads and tyre pressures on soil compaction in Tunisia under different moisture conditions

    NASA Astrophysics Data System (ADS)

    Khemis, Chiheb; Abrougui, Khaoula; Ren, Lidong; Mutuku, Eunice Ann; Chehaibi, Sayed; Cornelis, Wim

    2017-04-01

    Vegetables in Tunisia demand frequent tractor traffic for soil tillage, cultural operations and phytosanitary treatment, resulting in soil compaction. This study evaluates the effects of four levels of compaction by using different loads and tyre pressures of tractors, i.e., load 1 (C1) = 1460 kg, load 2 (C2) = 3100 kg, tyre pressure 1 (C3) = 800 kg cm-2, tyre pressure 2 (C4) = 1500 kg cm-2 on the hydraulic and physical properties of a sandy loam (10% clay, 20% silt, 68% sand) under three natural moisture conditions H0, H1 (15 days later), H2 (30 days later). At H0 average water content between 0 and 30 cm depth varied from 0.04 to 0.06 kg kg-1, at H1 between 0.13 and 0.07 kg kg-1, and at H2 between 0.10 and 0.09 kg kg-1. Each test run was limited to one pass. Undisturbed soil cores were collected in the topsoil (0-10 cm), at 10-20 cm and in the subsoil (20-30 cm) below the trace of the wheel at sites in the Higher Institute of Agronomy of Chott Mariam, Sousse, Tunisia. Soil compaction level was determined by penetration resistance using a penetrologger. Porosity, bulk density and permeability were then determined to evaluate the impact of the four load/tyre pressure combinations at the three moisture conditions on soil compaction. Prior to the experiment (C0), bulk density was 1.4 Mg m-3. After the tractor pass, the highest degree of compaction was observed with tractor load C2 and tyre pressure C4 which significantly changed soil bulk density resulting in values of up to 1.71 Mg m-3 in the topsoil and compacted subsoil under H2, which is significantly above the critical value of 1.6 Mg m-3 for soils with clay content below 17.5%. The high degree of compaction significantly affected penetration resistance and porosity of both topsoil and subsoil layers accordingly. Permeability was significantly reduced as a result of the induced compaction. The results demonstrate that different degrees of soil compaction under different moisture levels could greatly influence hydraulic and physical properties in different ways. Even under relatively low water contents, i.e., below or near field capacity, substantial top and subsoil compaction was induced after one tractor pass.

  3. Emphysema diagnosis using X-ray dark-field imaging at a laser-driven compact synchrotron light source

    PubMed Central

    Schleede, Simone; Meinel, Felix G.; Bech, Martin; Herzen, Julia; Achterhold, Klaus; Potdevin, Guillaume; Malecki, Andreas; Adam-Neumair, Silvia; Thieme, Sven F.; Bamberg, Fabian; Nikolaou, Konstantin; Bohla, Alexander; Yildirim, Ali Ö.; Loewen, Roderick; Gifford, Martin; Ruth, Ronald; Eickelberg, Oliver; Reiser, Maximilian; Pfeiffer, Franz

    2012-01-01

    In early stages of various pulmonary diseases, such as emphysema and fibrosis, the change in X-ray attenuation is not detectable with absorption-based radiography. To monitor the morphological changes that the alveoli network undergoes in the progression of these diseases, we propose using the dark-field signal, which is related to small-angle scattering in the sample. Combined with the absorption-based image, the dark-field signal enables better discrimination between healthy and emphysematous lung tissue in a mouse model. All measurements have been performed at 36 keV using a monochromatic laser-driven miniature synchrotron X-ray source (Compact Light Source). In this paper we present grating-based dark-field images of emphysematous vs. healthy lung tissue, where the strong dependence of the dark-field signal on mean alveolar size leads to improved diagnosis of emphysema in lung radiographs. PMID:23074250

  4. Effect of temperature on compact layer of Pt electrode in PEMFCs by first-principles molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    He, Yang; Chen, Changfeng; Yu, Haobo; Lu, Guiwu

    2017-01-01

    Formation of the double-layer electric field and capacitance of the water-metal interface is of significant interest in physicochemical processes. In this study, we perform first- principles molecular dynamics simulations on the water/Pt(111) interface to investigate the temperature dependence of the compact layer electric field and capacitance based on the calculated charge densities. On the Pt (111) surface, water molecules form ice-like structures that exhibit more disorder along the height direction with increasing temperature. The Osbnd H bonds of more water molecules point toward the Pt surface to form Ptsbnd H covalent bonds with increasing temperature, which weaken the corresponding Osbnd H bonds. In addition, our calculated capacitance at 300 K is 15.2 mF/cm2, which is in good agreement with the experimental results. As the temperature increases from 10 to 450 K, the field strength and capacitance of the compact layer on Pt (111) first increase and then decrease slightly, which is significant for understanding the water/Pt interface from atomic level.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redi, M.H.; Mynick, H.E.; Suewattana, M.

    Hamiltonian coordinate, guiding-center code calculations of the confinement of suprathermal ions in quasi-axisymmetric stellarator (QAS) designs have been carried out to evaluate the attractiveness of compact configurations which are optimized for ballooning stability. A new stellarator particle-following code is used to predict ion loss rates and particle confinement for thermal and neutral beam ions in a small experiment with R = 145 cm, B = 1-2 T and for alpha particles in a reactor-size device. In contrast to tokamaks, it is found that high edge poloidal flux has limited value in improving ion confinement in QAS, since collisional pitch-angle scatteringmore » drives ions into ripple wells and stochastic field regions, where they are quickly lost. The necessity for reduced stellarator ripple fields is emphasized. The high neutral beam ion loss predicted for these configurations suggests that more interesting physics could be explored with an experiment of less constrained size and magnetic field geometry.« less

  6. Plasmonic waveguide with folded stubs for highly confined terahertz propagation and concentration.

    PubMed

    Ye, Longfang; Xiao, Yifan; Liu, Na; Song, Zhengyong; Zhang, Wei; Liu, Qing Huo

    2017-01-23

    We proposed a novel planar terahertz (THz) plasmonic waveguide with folded stub arrays to achieve excellent terahertz propagation performance with tight field confinement and compact size based on the concept of spoof surface plasmon polaritons (spoof SPPs). It is found that the waveguide propagation characteristics can be directly manipulated by increasing the length of the folded stubs without increasing its lateral dimension, which exhibits much lower asymptotic frequency of the dispersion relation and even tighter terahertz field confinement than conventional plasmonic waveguides with rectangular stub arrays. Based on this waveguiding scheme, a terahertz concentrator with gradual step-length folded stubs is proposed to achieve high terahertz field enhancement, and an enhancement factor greater than 20 is demonstrated. This work offers a new perspective on very confined terahertz propagation and concentration, which may have promising potential applications in various integrated terahertz plasmonic circuits and devices, terahertz sensing and terahertz nonlinear optics.

  7. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells.

    PubMed

    Kumar, Santosh; Fan, Haoquan; Kübler, Harald; Jahangiri, Akbar J; Shaffer, James P

    2017-04-17

    Rydberg atom-based electrometry enables traceable electric field measurements with high sensitivity over a large frequency range, from gigahertz to terahertz. Such measurements are particularly useful for the calibration of radio frequency and terahertz devices, as well as other applications like near field imaging of electric fields. We utilize frequency modulated spectroscopy with active control of residual amplitude modulation to improve the signal to noise ratio of the optical readout of Rydberg atom-based radio frequency electrometry. Matched filtering of the signal is also implemented. Although we have reached similarly, high sensitivity with other read-out methods, frequency modulated spectroscopy is advantageous because it is well-suited for building a compact, portable sensor. In the current experiment, ∼3 µV cm-1 Hz-1/2 sensitivity is achieved and is found to be photon shot noise limited.

  8. Achromatic recirculated chicane with fixed geometry and independently variable path length and momentum compaction

    DOEpatents

    Douglas, David R.; Neil, George R.

    2005-04-26

    A particle beam recirculated chicane geometry that, through the inducement of a pair of 180 degree bends directed by the poles of a pair of controllable magnetic fields allows for variation of dipole position, return loop radii and steering/focussing, thereby allowing the implementation of independent variation of path length and momentum compaction.

  9. Kinematics of luminous blue compact galaxies

    NASA Astrophysics Data System (ADS)

    Östlin, Göran; Amram, Philippe; Boulesteix, Jaques; Bergvall, Nils; Masegosa, Josefa; Márquez, Isabel

    We present results from a Fabry-Perot study of the Hα velocity fields and morphologies of a sample of luminous blue compact galaxies. We estimate masses from photometry and kinematics and show that many of these BCGs are not rotationally supported. Mergers or strong interactions appear to be the triggering mechanism of the extreme starbursts seen in these galaxies.

  10. Path to Market for Compact Modular Fusion Power Cores

    NASA Astrophysics Data System (ADS)

    Woodruff, Simon; Baerny, Jennifer K.; Mattor, Nathan; Stoulil, Don; Miller, Ronald; Marston, Theodore

    2012-08-01

    The benefits of an energy source whose reactants are plentiful and whose products are benign is hard to measure, but at no time in history has this energy source been more needed. Nuclear fusion continues to promise to be this energy source. However, the path to market for fusion systems is still regularly a matter for long-term (20 + year) plans. This white paper is intended to stimulate discussion of faster commercialization paths, distilling guidance from investors, utilities, and the wider energy research community (including from ARPA-E). There is great interest in a small modular fusion system that can be developed quickly and inexpensively. A simple model shows how compact modular fusion can produce a low cost development path by optimizing traditional systems that burn deuterium and tritium, operating not only at high magnetic field strength, but also by omitting some components that allow for the core to become more compact and easier to maintain. The dominant hurdles to the development of low cost, practical fusion systems are discussed, primarily in terms of the constraints placed on the cost of development stages in the private sector. The main finding presented here is that the bridge from DOE Office of Science to the energy market can come at the Proof of Principle development stage, providing the concept is sufficiently compact and inexpensive that its development allows for a normal technology commercialization path.

  11. X-ray microscopy of live biological micro-organisms

    NASA Astrophysics Data System (ADS)

    Raja Al-Ani, Ma'an Nassar

    Real-time, compact x-ray microscopy has the potential to benefit many scientific fields, including microbiology, pharmacology, organic chemistry, and physics. Single frame x-ray micro-radiography, produced by a compact, solid-state laser plasma source, allows scientists to use x-ray emission for elemental analysis, and to observe biological specimens in their natural state. In this study, x-ray images of mouse kidney tissue, live bacteria, Pseudomonas aeruginosa and Burkholderia cepacia, and the bacteria's interaction with the antibiotic gentamicin, are examined using x-ray microscopy. For the purposes of comparing between confocal microscopy and x-ray microscopy, we introduced to our work the technique of gold labeling. Indirect immunofluorescence staining and immuno-gold labeling were applied on human lymphocytes and human tumor cells. Differential interference contrast microscopy (DIC) showed the lymphocyte body and nucleus, as did x-ray microscopy. However, the high resolution of x-ray microscopy allows us to differentiate between the gold particles bound to the antibodies and the free gold. A compact, tabletop Nd: glass laser is used in this study to produce x-rays from an Yttrium target. An atomic force microscope is used to scan the x-ray images from the developed photo-resist. The use of compact, tabletop laser plasma sources, in conjunction with x-ray microscopy, is a new technique that has great potential as a flexible, user-friendly scientific research tool.

  12. High Performance Regimes in Alcator C-Mod at High Magnetic Field

    NASA Astrophysics Data System (ADS)

    Marmar, E. S.; Alcator C-Mod Team

    2017-10-01

    Alcator is the only divertor tokamak in the world capable of operating at magnetic fields up to 8 T, equaling and exceeding that planned for ITER. Using RF and microwave tools for auxiliary heating and current drive, C-Mod accesses high pressure, high density, reactor-relevant regimes with no external torque and equilibrated electrons and ions, with exclusive use of high-Z metal plasma-facing components. The 2016 experimental campaign focused on naturally ELM-suppressed, enhanced energy confinement regimes (including I-mode and EDA H-mode, and approaches to super-H-mode), with emphasis on operation at the highest fields (52 atm.) was achieved. Taken together, combined with previous results from C-Mod and the world tokamak database, these results form a strong foundation for the high field, compact approach to achieving fusion energy production. New advances in high temperature, high field superconductors open the possibilities for practical development of this path for commercial fusion. Supported by USDOE.

  13. Mixing high-viscosity fluids via acoustically driven bubbles

    NASA Astrophysics Data System (ADS)

    Orbay, Sinem; Ozcelik, Adem; Lata, James; Kaynak, Murat; Wu, Mengxi; Huang, Tony Jun

    2017-01-01

    We present an acoustofluidic micromixer which can perform rapid and homogeneous mixing of highly viscous fluids in the presence of an acoustic field. In this device, two high-viscosity polyethylene glycol (PEG) solutions were co-injected into a three-inlet PDMS microchannel with the center inlet containing a constant stream of nitrogen flow which forms bubbles in the device. When these bubbles were excited by an acoustic field generated via a piezoelectric transducer, the two solutions mixed homogenously due to the combination of acoustic streaming, droplet ejection, and bubble eruption effects. The mixing efficiency of this acoustofluidic device was evaluated using PEG-700 solutions which are ~106 times more viscous than deionized (DI) water. Our results indicate homogenous mixing of the PEG-700 solutions with a ~0.93 mixing index. The acoustofluidic micromixer is compact, inexpensive, easy to operate, and has the capacity to mix highly viscous fluids within 50 ms.

  14. Compression of high-density 0.16 pC electron bunches through high field gradients for ultrafast single shot electron diffraction: The Compact RF Gun

    PubMed Central

    Daoud, Hazem; Floettmann, Klaus; Dwayne Miller, R. J.

    2017-01-01

    We present an RF gun design for single shot ultrafast electron diffraction experiments that can produce sub-100 fs high-charge electron bunches in the 130 keV energy range. Our simulations show that our proposed half-cell RF cavity is capable of producing 137 keV, 27 fs rms (60 fs FWHM), 106 electron bunches with an rms spot size of 276 μm and a transverse coherence length of 2.0 nm. The required operation power is 9.2 kW, significantly lower than conventional rf cavity designs and a key design feature. This electron source further relies on high electric field gradients at the cathode to simultaneously accelerate and compress the electron bunch to open up new space-time resolution domains for atomically resolved dynamics. PMID:28428973

  15. Compact field color schlieren system for use in microgravity materials processing

    NASA Technical Reports Server (NTRS)

    Poteet, W. M.; Owen, R. B.

    1986-01-01

    A compact color schlieren system designed for field measurement of materials processing parameters has been built and tested in a microgravity environment. Improvements in the color filter design and a compact optical arrangement allowed the system described here to retain the traditional advantages of schlieren, such as simplicity, sensitivity, and ease of data interpretation. Testing was accomplished by successfully flying the instrument on a series of parabolic trajectories on the NASA KC-135 microgravity simulation aircraft. A variety of samples of interest in materials processing were examined. Although the present system was designed for aircraft use, the technique is well suited to space flight experimentation. A major goal of this effort was to accommodate the main optical system within a volume approximately equal to that of a Space Shuttle middeck locker. Future plans include the development of an automated space-qualified facility for use on the Shuttle and Space Station.

  16. Reduction and Analysis of GALFACTS Data in Search of Compact Variable Sources

    NASA Astrophysics Data System (ADS)

    Wenger, Trey; Barenfeld, S.; Ghosh, T.; Salter, C.

    2012-01-01

    The Galactic ALFA Continuum Transit Survey (GALFACTS) is an all-Arecibo sky, full-Stokes survey from 1225 to 1525 MHz using the multibeam Arecibo L-band Feed Array (ALFA). Using data from survey field N1, the first field covered by GALFACTS, we are searching for compact sources that vary in intensity and/or polarization. The multistep procedure for reducing the data includes radio frequency interference (RFI) removal, source detection, Gaussian fitting in multiple dimensions, polarization leakage calibration, and gain calibration. We have developed code to analyze and calculate the calibration parameters from the N1 calibration sources, and apply these to the data of the main run. For detected compact sources, our goal is to compare results from multiple passes over a source to search for rapid variability, as well as to compare our flux densities with those from the NRAO VLA Sky Survey (NVSS) to search for longer time-scale variations.

  17. A short introduction to the status and motivation for reversed field pinch and compact toroid research

    NASA Astrophysics Data System (ADS)

    Dreicer, H.

    1987-09-01

    Potential commercial fusion power systems must be acceptable from a safety and environmental standpoint. They must also promise to be competitive with other sources of energy (i.e., fossil, fission, etc.) when considered from the standpoint of the cost of electricity (COE) and the unit direct cost (UDC) in dollars/kWe. These costs are affected by a host of factors including recirculating power, plant availability, construction time, capital cost, etc., and are influenced by technological complexity. In an attempt to meet these requirements, the emphasis of fusion research in the United States has been moving toward smaller, lower-cost systems. There is increased interest in higher beta tokamaks and stellarators, and in compact alternate concepts such as the Reversed Field Pinch (RFP) and the Compact Toroids (CTs) which are, in part, the subject of this paper.

  18. A high performance field-reversed configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binderbauer, M. W.; Tajima, T.; Steinhauer, L. C.

    2015-05-15

    Conventional field-reversed configurations (FRCs), high-beta, prolate compact toroids embedded in poloidal magnetic fields, face notable stability and confinement concerns. These can be ameliorated by various control techniques, such as introducing a significant fast ion population. Indeed, adding neutral beam injection into the FRC over the past half-decade has contributed to striking improvements in confinement and stability. Further, the addition of electrically biased plasma guns at the ends, magnetic end plugs, and advanced surface conditioning led to dramatic reductions in turbulence-driven losses and greatly improved stability. Together, these enabled the build-up of a well-confined and dominant fast-ion population. Under such conditions,more » highly reproducible, macroscopically stable hot FRCs (with total plasma temperature of ∼1 keV) with record lifetimes were achieved. These accomplishments point to the prospect of advanced, beam-driven FRCs as an intriguing path toward fusion reactors. This paper reviews key results and presents context for further interpretation.« less

  19. A high order compact least-squares reconstructed discontinuous Galerkin method for the steady-state compressible flows on hybrid grids

    NASA Astrophysics Data System (ADS)

    Cheng, Jian; Zhang, Fan; Liu, Tiegang

    2018-06-01

    In this paper, a class of new high order reconstructed DG (rDG) methods based on the compact least-squares (CLS) reconstruction [23,24] is developed for simulating the two dimensional steady-state compressible flows on hybrid grids. The proposed method combines the advantages of the DG discretization with the flexibility of the compact least-squares reconstruction, which exhibits its superior potential in enhancing the level of accuracy and reducing the computational cost compared to the underlying DG methods with respect to the same number of degrees of freedom. To be specific, a third-order compact least-squares rDG(p1p2) method and a fourth-order compact least-squares rDG(p2p3) method are developed and investigated in this work. In this compact least-squares rDG method, the low order degrees of freedom are evolved through the underlying DG(p1) method and DG(p2) method, respectively, while the high order degrees of freedom are reconstructed through the compact least-squares reconstruction, in which the constitutive relations are built by requiring the reconstructed polynomial and its spatial derivatives on the target cell to conserve the cell averages and the corresponding spatial derivatives on the face-neighboring cells. The large sparse linear system resulted by the compact least-squares reconstruction can be solved relatively efficient when it is coupled with the temporal discretization in the steady-state simulations. A number of test cases are presented to assess the performance of the high order compact least-squares rDG methods, which demonstrates their potential to be an alternative approach for the high order numerical simulations of steady-state compressible flows.

  20. Plasma generating apparatus for large area plasma processing

    DOEpatents

    Tsai, C.C.; Gorbatkin, S.M.; Berry, L.A.

    1991-07-16

    A plasma generating apparatus for plasma processing applications is based on a permanent magnet line-cusp plasma confinement chamber coupled to a compact single-coil microwave waveguide launcher. The device creates an electron cyclotron resonance (ECR) plasma in the launcher and a second ECR plasma is created in the line cusps due to a 0.0875 tesla magnetic field in that region. Additional special magnetic field configuring reduces the magnetic field at the substrate to below 0.001 tesla. The resulting plasma source is capable of producing large-area (20-cm diam), highly uniform (.+-.5%) ion beams with current densities above 5 mA/cm[sup 2]. The source has been used to etch photoresist on 5-inch diam silicon wafers with good uniformity. 3 figures.

  1. Plasma generating apparatus for large area plasma processing

    DOEpatents

    Tsai, Chin-Chi; Gorbatkin, Steven M.; Berry, Lee A.

    1991-01-01

    A plasma generating apparatus for plasma processing applications is based on a permanent magnet line-cusp plasma confinement chamber coupled to a compact single-coil microwave waveguide launcher. The device creates an electron cyclotron resonance (ECR) plasma in the launcher and a second ECR plasma is created in the line cusps due to a 0.0875 tesla magnetic field in that region. Additional special magnetic field configuring reduces the magnetic field at the substrate to below 0.001 tesla. The resulting plasma source is capable of producing large-area (20-cm diam), highly uniform (.+-.5%) ion beams with current densities above 5 mA/cm.sup.2. The source has been used to etch photoresist on 5-inch diam silicon wafers with good uniformity.

  2. High strength-high conductivity Cu--Fe composites produced by powder compaction/mechanical reduction

    DOEpatents

    Verhoeven, John D.; Spitzig, William A.; Gibson, Edwin D.; Anderson, Iver E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an "in-situ" Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite.

  3. High-sensitivity and low-temperature magnetic field sensor based on tapered two-mode fiber interference.

    PubMed

    Sun, Bing; Fang, Fang; Zhang, Zuxing; Xu, Jing; Zhang, Lin

    2018-03-15

    A high-sensitivity and low-temperature fiber-optic magnetic field sensor based on a tapered two-mode fiber (TTMF) sandwiched between two single-mode fibers has been proposed and demonstrated. The section of TTMF has a specifically designed transition region as an efficient tool to filter higher-order modes, where the uniform modal interferometer just involved with LP 01 and LP 11 modes is achieved. The transmission spectral characteristics and the magnetic response of the proposed sensors have been investigated. The experimental results show that a maximum sensitivity of 98.2  pm/Oe within a linear magnetic field intensity ranging from 0 to 140 Oe can be achieved. Significantly, the temperature cross-sensitivity problem can be resolved owing to the lower thermal expansion coefficient of the TTMF. Finally, with its low insertion loss, compactness, and ease of fabrication, the proposed sensor would find potential applications in the measurement of a magnetic field.

  4. Solar-burst precursors and energy buildup at microwave wavelengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, K.R.; Willson, R.F.

    High-resolution microwave observations (VLA) of heating and magnetic triggering in coronal loops are summarized. Magnetic changes that precede solar eruptions on time scales of tens of minutes involve primarily emerging coronal loops and the interaction of two or more loops. Thermal cyclotron lines were detected in coronal loops, suggesting the presence of hot current sheets that enhance emission from relatively thin layers of enhanced temperature and constant magnetic field. These current sheets may play a role in the excitation of solar bursts. A filament-associated source with a high brightness temperature and steep radiation spectrum occurs above a region of apparentlymore » weak photospheric field. This source might be attributed to currents that enhance coronal magnetic fields. Compact (phi=5 sec) transient sources with lifetimes of 30 to 60 minutes were also detected in regions of apparently weak photospheric field. VLA observations of coronal loops are compared with simultaneous SMM-XRP observations in conclusion.« less

  5. Quasi-Axially Symmetric Stellarators with 3 Field Periods

    NASA Astrophysics Data System (ADS)

    Garabedian, Paul; Ku, Long-Poe

    1998-11-01

    Compact hybrid configurations with 2 field periods have been studied recently as candidates for a proof of principle experiment at PPPL, cf. A. Reiman et al., Physics design of a high beta quasi-axially symmetric stellarator, J. Plas. Fus. Res. SERIES 1, 429(1998). This enterprise has led us to the discovery of a family of quasi-axially symmetric stellarators with 3 field periods that seem to have significant advantages, although their aspect ratios are a little larger. They have reversed shear and perform better in a local analysis of ballooning modes. Nonlinear equilibrium and stability calculations predict that the average beta limit may be as high as 6% if the bootstrap current turns out to be as big as that expected in comparable tokamaks. The concept relies on a combination of helical fields and bootstrap current to achieve adequate rotational transform at low aspect ratio. A detailed manuscript describing some of this work will be published soon, cf. P.R. Garabedian, Quasi-axially symmetric stellarators, Proc. Natl. Acad. Sci. USA 95 (1998).

  6. Understanding the effects of decompaction maintenance on the infill state and play performance of third-generation artificial grass pitches

    PubMed Central

    Forrester, Stephanie E; McLaren, Nicholas J

    2015-01-01

    Third generation artificial grass pitches have been observed to get harder over time. The maintenance technique of rubber infill decompaction is intended to help slow, or reverse, this process. At present, little is understood about either the science of the infill compaction process or the efficacy of decompaction maintenance. The objective of this study was to measure the changes in rubber infill net bulk density, force reduction (impact absorption) and vertical ball rebound under various levels of compactive effort in controlled laboratory-based testing. The assessments were repeated after the systems had been raked to simulate the decompaction maintenance techniques. These tests defined the limits of compaction (loose to maximally compacted) in terms of the change in rubber infill net bulk density, force reduction and vertical ball rebound. Site testing was also undertaken at four third generation pitches immediately pre and post decompaction, to determine the measurable effects in the less well controlled field environment. Rubber infill net bulk density was found to increase as compactive effort increased, resulting in increased hardness. Decompacting the surface was found to approximately fully reverse these effects. In comparison, the site measurements demonstrated similar but notably smaller magnitudes of change following the decompaction process suggesting that the field state pre and post decompaction did not reach the extremes obtained in the laboratory. The findings suggest that rubber infill net bulk density is an important parameter influencing the hardness of artificial grass and that decompactions can be an effective method to reverse compaction related hardness changes. PMID:29708108

  7. Automated detection of extended sources in radio maps: progress from the SCORPIO survey

    NASA Astrophysics Data System (ADS)

    Riggi, S.; Ingallinera, A.; Leto, P.; Cavallaro, F.; Bufano, F.; Schillirò, F.; Trigilio, C.; Umana, G.; Buemi, C. S.; Norris, R. P.

    2016-08-01

    Automated source extraction and parametrization represents a crucial challenge for the next-generation radio interferometer surveys, such as those performed with the Square Kilometre Array (SKA) and its precursors. In this paper, we present a new algorithm, called CAESAR (Compact And Extended Source Automated Recognition), to detect and parametrize extended sources in radio interferometric maps. It is based on a pre-filtering stage, allowing image denoising, compact source suppression and enhancement of diffuse emission, followed by an adaptive superpixel clustering stage for final source segmentation. A parametrization stage provides source flux information and a wide range of morphology estimators for post-processing analysis. We developed CAESAR in a modular software library, also including different methods for local background estimation and image filtering, along with alternative algorithms for both compact and diffuse source extraction. The method was applied to real radio continuum data collected at the Australian Telescope Compact Array (ATCA) within the SCORPIO project, a pathfinder of the Evolutionary Map of the Universe (EMU) survey at the Australian Square Kilometre Array Pathfinder (ASKAP). The source reconstruction capabilities were studied over different test fields in the presence of compact sources, imaging artefacts and diffuse emission from the Galactic plane and compared with existing algorithms. When compared to a human-driven analysis, the designed algorithm was found capable of detecting known target sources and regions of diffuse emission, outperforming alternative approaches over the considered fields.

  8. TU-H-BRA-02: The Physics of Magnetic Field Isolation in a Novel Compact Linear Accelerator Based MRI-Guided Radiation Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Low, D; Mutic, S; Shvartsman, S

    Purpose: To develop a method for isolating the MRI magnetic field from field-sensitive linear accelerator components at distances close to isocenter. Methods: A MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. In order to accomplish this, the magnetron, port circulator, radiofrequency waveguide, gun driver, and linear accelerator needed to be placed in locations with low magnetic fields. The system was also required to be compact, so moving these components far from the main magnetic field and isocenter was not an option. The magnetic field sensitive components (exclusive of the waveguide) were placedmore » in coaxial steel sleeves that were electrically and mechanically isolated and whose thickness and placement were optimized using E&M modeling software. Six sets of sleeves were placed 60° apart, 85 cm from isocenter. The Faraday effect occurs when the direction of propagation is parallel to the magnetic RF field component, rotating the RF polarization, subsequently diminishing RF power. The Faraday effect was avoided by orienting the waveguides such that the magnetic field RF component was parallel to the magnetic field. Results: The magnetic field within the shields was measured to be less than 40 Gauss, significantly below the amount needed for the magnetron and port circulator. Additional mu-metal was employed to reduce the magnetic field at the linear accelerator to less than 1 Gauss. The orientation of the RF waveguides allowed the RT transport with minimal loss and reflection. Conclusion: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of creating low magnetic field environments for the magnetic-field sensitive components, has been solved. The measured magnetic fields are sufficiently small to enable system integration. This work supported by ViewRay, Inc.« less

  9. High pressure FAST of nanocrystalline barium titanate

    DOE PAGES

    Fraga, Martin B.; Delplanque, Jean -Pierre; Yang, Nancy; ...

    2016-06-01

    Here, this work studies the microstructural evolution of nanocrystalline (<1 µm) barium titanate (BaTiO 3), and presents high pressure in field-assisted sintering (FAST) as a robust methodology to obtain >100 nm BaTiO 3 compacts. Using FAST, two commercial ~50 nm powders were consolidated into compacts of varying densities and grain sizes. Microstructural inhomogeneities were investigated for each case, and an interpretation is developed using a modified Monte Carlo Potts (MCP) simulation. Two recurrent microstructural inhomogeneities are highlighted, heterogeneous grain growth and low-density regions, both ubiqutously present in all samples to varying degrees. In the worst cases, HGG presents an areamore » coverage of 52%. Because HGG is sporadic but homogenous throughout a sample, the catalyst (e.g., the local segregation of species) must be, correspondingly, distributed in a homogenous manner. MCP demonstrates that in such a case, a large distance between nucleating abnormal grains is required—otherwise abnormal grains prematurely impinge on each other, and their size is not distinguishable from that of normal grains. Compacts sintered with a pressure of 300 MPa and temperatures of 900 °C, were 99.5% dense and had a grain size of 90±24 nm. These are unprecedented results for commercial BaTiO 3 powders or any starting powder of 50 nm particle size—other authors have used 16 nm lab-produced powder to obtain similar results.« less

  10. Mapping the QCD Phase Transition with Accreting Compact Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaschke, D.; Bogoliubov Laboratory for Theoretical Physics, JINR Dubna, Joliot-Curie str. 6, 141980 Dubna; Poghosyan, G.

    2008-10-29

    We discuss an idea for how accreting millisecond pulsars could contribute to the understanding of the QCD phase transition in the high-density nuclear matter equation of state (EoS). It is based on two ingredients, the first one being a ''phase diagram'' of rapidly rotating compact star configurations in the plane of spin frequency and mass, determined with state-of-the-art hybrid equations of state, allowing for a transition to color superconducting quark matter. The second is the study of spin-up and accretion evolution in this phase diagram. We show that the quark matter phase transition leads to a characteristic line in themore » {omega}-M plane, the phase border between neutron stars and hybrid stars with a quark matter core. Along this line a drop in the pulsar's moment of inertia entails a waiting point phenomenon in the accreting millisecond pulsar (AMXP) evolution: most of these objects should therefore be found along the phase border in the {omega}-M plane, which may be viewed as the AMXP analog of the main sequence in the Hertzsprung-Russell diagram for normal stars. In order to prove the existence of a high-density phase transition in the cores of compact stars we need population statistics for AMXPs with sufficiently accurate determination of their masses, spin frequencies and magnetic fields.« less

  11. Evaluation of hydraulic plate compactor.

    DOT National Transportation Integrated Search

    2014-12-01

    This report presents the results of two parallel field investigations consisting of utility trench backfill compaction tests. The field : investigation at State College, Pa. was conducted to establish baseline measurements using a walk-behind vibrato...

  12. The radio sources CTA 21 and OF+247: The hot spots of radio galaxies

    NASA Astrophysics Data System (ADS)

    Artyukh, V. S.; Tyul'bashev, S. A.; Chernikov, P. A.

    2013-06-01

    The physical conditions in the radio sources CTA 21 and OF+247 are studied assuming that the low-frequency spectral turnovers are due to synchrotron self-absorption. The physical parameters of the radio sources are estimated using a technique based on a nonuniform synchrotron source model. It is shown that the magnetic-field distributions in the dominant compact components of these radio sources are strongly inhomogeneous. The magnetic fields at the center of the sources are B ˜ 10-1 G, and the fields are two to three orders of magnitude weaker at the periphery. The magnetic field averaged over the compact component is B ˜ 10-3 G, and the density of relativistic electrons is n e ˜ 10-3 cm-3. Assuming that there is equipartition of the energies of the magnetic field and relativistic particles, averaged over the source, < E H > = < E e > ˜ 10-7-10-6 erg cm-3. The energy density of the magnetic field exceeds that of the relativistic electrons at the centers of the radio sources. The derived parameters of CTA 21 and OF+247 are close to those of the hot spots in the radio galaxy Cygnus A. On this basis, it is suggested that CTA 21 and OF+247 are radio galaxies at an early stage of their evolution, when the hot spots (dominant compact radio components) have appeared, and the radio lobes (weak extended components) are still being formed.

  13. Examining the Role of Environment in a Comprehensive Sample of Compact Groups

    NASA Astrophysics Data System (ADS)

    Walker, Lisa May; Johnson, Kelsey E.; Gallagher, Sarah C.; Charlton, Jane C.; Hornschemeier, Ann E.; Hibbard, John E.

    2012-03-01

    Compact groups, with their high number densities, small velocity dispersions, and an interstellar medium that has not been fully processed, provide a local analog to conditions of galaxy interactions in the earlier universe. The frequent and prolonged gravitational encounters that occur in compact groups affect the evolution of the constituent galaxies in a myriad of ways, for example, gas processing and star formation. Recently, a statistically significant "gap" has been discovered in the mid-infrared (MIR: 3.6-8 μm) IRAC color space of compact group galaxies. This gap is not seen in field samples and is a new example of how the compact group environment may affect the evolution of member galaxies. In order to investigate the origin and nature of this gap, we have compiled a larger sample of 37 compact groups in addition to the original 12 groups studied by Johnson et al. (yielding 174 individual galaxies with reliable MIR photometry). We find that a statistically significant deficit of galaxies in this gap region of IRAC color space is persistent in the full sample, lending support to the hypothesis that the compact group environment inhibits moderate specific star formation rates. Using this expanded sample, we have more fully characterized the distribution of galaxies in this color space and quantified the low-density region more fully with respect to MIR bluer and MIR redder colors. We note a curvature in the color-space distribution, which is fully consistent with increasing dust temperature as the activity in a galaxy increases. This full sample of 49 compact groups allows us to subdivide the data according to physical properties of the groups. An analysis of these subsamples indicates that neither projected physical diameter nor density shows a trend in color space within the values represented by this sample. We hypothesize that the apparent lack of a trend is due to the relatively small range of properties in this sample, whose groups have already been pre-selected to be compact and dense. Thus, the relative influence of stochastic effects (such as the particular distribution and amount of star formation in individual galaxies) becomes dominant. We analyze spectral energy distributions of member galaxies as a function of their location in color space and find that galaxies in different regions of MIR color space contain dust with varying temperatures and/or polycyclic aromatic hydrocarbon emission.

  14. Examining the Role of Environment in a Comprehensive Sample of Compact Groups

    NASA Technical Reports Server (NTRS)

    Walker, Lisa May; Johnson, Kelsey E.; Gallagher, Sarah C.; Charlton, Jane C.; Hornschemeier, Ann E.; Hibbard, John E.

    2012-01-01

    Compact groups, with their high number densities, small velocity dispersions, and an interstellar medium that has not been fully processed, provide a local analog to conditions of galaxy interactions in the earlier universe. The frequent and prolonged gravitational encounters that occur in compact groups affect the evolution of the constituent galaxies in a myriad of ways, for example, gas processing and star formation. Recently, a statistically significant "gap" has been discovered in the mid-infrared (MIR: 3.6-8 µm) IRAC color space of compact group galaxies. This gap is not seen in field samples and is a new example of how the compact group environment may affect the evolution of member galaxies. In order to investigate the origin and nature of this gap, we have compiled a larger sample of 37 compact groups in addition to the original 12 groups studied by Johnson et al. (yielding 174 individual galaxies with reliable MIR photometry). We find that a statistically significant deficit of galaxies in this gap region of IRAC color space is persistent in the full sample, lending support to the hypothesis that the compact group environment inhibits moderate specific star formation rates. Using this expanded sample, we have more fully characterized the distribution of galaxies in this color space and quantified the low-density region more fully with respect to MIR bluer and MIR redder colors. We note a curvature in the color-space distribution, which is fully consistent with increasing dust temperature as the activity in a galaxy increases. This full sample of 49 compact groups allows us to subdivide the data according to physical properties of the groups. An analysis of these subsamples indicates that neither projected physical diameter nor density shows a trend in color space within the values represented by this sample. We hypothesize that the apparent lack of a trend is due to the relatively small range of properties in this sample, whose groups have already been pre-selected to be compact and dense. Thus, the relative influence of stochastic effects (such as the particular distribution and amount of star formation in individual galaxies) becomes dominant. We analyze spectral energy distributions of member galaxies as a function of their location in color space and find that galaxies in different regions of MIR color space contain dust with varying temperatures and/or polycyclic aromatic hydrocarbon emission.

  15. A small field of view camera for hybrid gamma and optical imaging

    NASA Astrophysics Data System (ADS)

    Lees, J. E.; Bugby, S. L.; Bhatia, B. S.; Jambi, L. K.; Alqahtani, M. S.; McKnight, W. R.; Ng, A. H.; Perkins, A. C.

    2014-12-01

    The development of compact low profile gamma-ray detectors has allowed the production of small field of view, hand held imaging devices for use at the patient bedside and in operating theatres. The combination of an optical and a gamma camera, in a co-aligned configuration, offers high spatial resolution multi-modal imaging giving a superimposed scintigraphic and optical image. This innovative introduction of hybrid imaging offers new possibilities for assisting surgeons in localising the site of uptake in procedures such as sentinel node detection. Recent improvements to the camera system along with results of phantom and clinical imaging are reported.

  16. Experimental characterization of active plasma lensing for electron beams

    NASA Astrophysics Data System (ADS)

    Pompili, R.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Bini, S.; Bisesto, F.; Brentegani, E.; Castorina, G.; Chiadroni, E.; Cianchi, A.; Croia, M.; Di Giovenale, D.; Ferrario, M.; Filippi, F.; Giribono, A.; Lollo, V.; Marocchino, A.; Marongiu, M.; Mostacci, A.; Di Pirro, G.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2017-03-01

    The active plasma lens represents a compact and affordable tool with radially symmetric focusing and field gradients up to several kT/m. In order to be used as a focusing device, its effects on the particle beam distribution must be well characterized. Here, we present the experimental results obtained by focusing an high-brightness electron beam by means of a 3 cm-long discharge-capillary pre-filled with Hydrogen gas. We achieved minimum spot sizes of 24 μ m (rms) showing that, during plasma lensing, the beam emittance increases due to nonlinearities in the focusing field. The results have been cross-checked with numerical simulations, showing an excellent agreement.

  17. Deep CO(1-0) Observations of z = 1.62 Cluster Galaxies with Substantial Molecular Gas Reservoirs and Normal Star Formation Efficiencies

    NASA Astrophysics Data System (ADS)

    Rudnick, Gregory; Hodge, Jacqueline; Walter, Fabian; Momcheva, Ivelina; Tran, Kim-Vy; Papovich, Casey; da Cunha, Elisabete; Decarli, Roberto; Saintonge, Amelie; Willmer, Christopher; Lotz, Jennifer; Lentati, Lindley

    2017-11-01

    We present an extremely deep CO(1-0) observation of a confirmed z = 1.62 galaxy cluster. We detect two spectroscopically confirmed cluster members in CO(1-0) with signal-to-noise ratio > 5. Both galaxies have log({{ M }}\\star /{{ M }}⊙ ) > 11 and are gas rich, with {{ M }}{mol}/({{ M }}\\star +{{ M }}{mol}) ˜ 0.17-0.45. One of these galaxies lies on the star formation rate (SFR)-{{ M }}\\star sequence, while the other lies an order of magnitude below. We compare the cluster galaxies to other SFR-selected galaxies with CO measurements and find that they have CO luminosities consistent with expectations given their infrared luminosities. We also find that they have gas fractions and star formation efficiencies (SFE) comparable to what is expected from published field galaxy scaling relations. The galaxies are compact in their stellar light distribution, at the extreme end for all high-redshift star-forming galaxies. However, their SFE is consistent with other field galaxies at comparable compactness. This is similar to two other sources selected in a blind CO survey of the HDF-N. Despite living in a highly quenched protocluster core, the molecular gas properties of these two galaxies, one of which may be in the process of quenching, appear entirely consistent with field scaling relations between the molecular gas content, stellar mass, star formation rate, and redshift. We speculate that these cluster galaxies cannot have any further substantive gas accretion if they are to become members of the dominant passive population in z< 1 clusters.

  18. Nuclear fuel particles and method of making nuclear fuel compacts therefrom

    DOEpatents

    DeVelasco, Rubin I.; Adams, Charles C.

    1991-01-01

    Methods for making nuclear fuel compacts exhibiting low heavy metal contamination and fewer defective coatings following compact fabrication from a mixture of hardenable binder, such as petroleum pitch, and nuclear fuel particles having multiple layer fission-product-retentive coatings, with the dense outermost layer of the fission-product-retentive coating being surrounded by a protective overcoating, e.g., pyrocarbon having a density between about 1 and 1.3 g/cm.sup.3. Such particles can be pre-compacted in molds under relatively high pressures and then combined with a fluid binder which is ultimately carbonized to produce carbonaceous nuclear fuel compacts having relatively high fuel loadings.

  19. High strength-high conductivity Cu-Fe composites produced by powder compaction/mechanical reduction

    DOEpatents

    Verhoeven, J.D.; Spitzig, W.A.; Gibson, E.D.; Anderson, I.E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an ''in-situ'' Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite. 5 figures.

  20. Monitoring/Verification using DMS: TATP Example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephan Weeks, Kevin Kyle, Manuel Manard

    Field-rugged and field-programmable differential mobility spectrometry (DMS) networks provide highly selective, universal monitoring of vapors and aerosols at detectable levels from persons or areas involved with illicit chemical/biological/explosives (CBE) production. CBE sensor motes used in conjunction with automated fast gas chromatography with DMS detection (GC/DMS) verification instrumentation integrated into situational operations-management systems can be readily deployed and optimized for changing application scenarios. The feasibility of developing selective DMS motes for a “smart dust” sampling approach with guided, highly selective, fast GC/DMS verification analysis is a compelling approach to minimize or prevent the illegal use of explosives or chemical and biologicalmore » materials. DMS is currently one of the foremost emerging technologies for field separation and detection of gas-phase chemical species. This is due to trace-level detection limits, high selectivity, and small size. Fast GC is the leading field analytical method for gas phase separation of chemical species in complex mixtures. Low-thermal-mass GC columns have led to compact, low-power field systems capable of complete analyses in 15–300 seconds. A collaborative effort optimized a handheld, fast GC/DMS, equipped with a non-rad ionization source, for peroxide-based explosive measurements.« less

  1. Inverse modeling of geochemical and mechanical compaction in sedimentary basins

    NASA Astrophysics Data System (ADS)

    Colombo, Ivo; Porta, Giovanni Michele; Guadagnini, Alberto

    2015-04-01

    We study key phenomena driving the feedback between sediment compaction processes and fluid flow in stratified sedimentary basins formed through lithification of sand and clay sediments after deposition. Processes we consider are mechanic compaction of the host rock and the geochemical compaction due to quartz cementation in sandstones. Key objectives of our study include (i) the quantification of the influence of the uncertainty of the model input parameters on the model output and (ii) the application of an inverse modeling technique to field scale data. Proper accounting of the feedback between sediment compaction processes and fluid flow in the subsurface is key to quantify a wide set of environmentally and industrially relevant phenomena. These include, e.g., compaction-driven brine and/or saltwater flow at deep locations and its influence on (a) tracer concentrations observed in shallow sediments, (b) build up of fluid overpressure, (c) hydrocarbon generation and migration, (d) subsidence due to groundwater and/or hydrocarbons withdrawal, and (e) formation of ore deposits. Main processes driving the diagenesis of sediments after deposition are mechanical compaction due to overburden and precipitation/dissolution associated with reactive transport. The natural evolution of sedimentary basins is characterized by geological time scales, thus preventing direct and exhaustive measurement of the system dynamical changes. The outputs of compaction models are plagued by uncertainty because of the incomplete knowledge of the models and parameters governing diagenesis. Development of robust methodologies for inverse modeling and parameter estimation under uncertainty is therefore crucial to the quantification of natural compaction phenomena. We employ a numerical methodology based on three building blocks: (i) space-time discretization of the compaction process; (ii) representation of target output variables through a Polynomial Chaos Expansion (PCE); and (iii) model inversion (parameter estimation) within a maximum likelihood framework. In this context, the PCE-based surrogate model enables one to (i) minimize the computational cost associated with the (forward and inverse) modeling procedures leading to uncertainty quantification and parameter estimation, and (ii) compute the full set of Sobol indices quantifying the contribution of each uncertain parameter to the variability of target state variables. Results are illustrated through the simulation of one-dimensional test cases. The analyses focuses on the calibration of model parameters through literature field cases. The quality of parameter estimates is then analyzed as a function of number, type and location of data.

  2. The estimation of parameter compaction values for pavement subgrade stabilized with lime

    NASA Astrophysics Data System (ADS)

    Lubis, A. S.; Muis, Z. A.; Simbolon, C. A.

    2018-02-01

    The type of soil material, field control, maintenance and availability of funds are several factors that must be considered in compaction of the pavement subgrade. In determining the compaction parameters in laboratory desperately requires considerable materials, time and funds, and reliable laboratory operators. If the result of soil classification values can be used to estimate the compaction parameters of a subgrade material, so it would save time, energy, materials and cost on the execution of this work. This is also a clarification (cross check) of the work that has been done by technicians in the laboratory. The study aims to estimate the compaction parameter values ie. maximum dry unit weight (γdmax) and optimum water content (Wopt) of the soil subgrade that stabilized with lime. The tests that conducted in the laboratory of soil mechanics were to determine the index properties (Fines and Liquid Limit/LL) and Standard Compaction Test. Soil samples that have Plasticity Index (PI) > 10% were made with additional 3% lime for 30 samples. By using the Goswami equation, the compaction parameter values can be estimated by equation γd max # = -0,1686 Log G + 1,8434 and Wopt # = 2,9178 log G + 17,086. From the validation calculation, there was a significant positive correlation between the compaction parameter values laboratory and the compaction parameter values estimated, with a 95% confidence interval as a strong relationship.

  3. THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS: Neutrino Oscillation Induced by Chiral Phase Transition

    NASA Astrophysics Data System (ADS)

    Mu, Cheng-Fu; Sun, Gao-Feng; Zhuang, Peng-Fei

    2009-03-01

    Electric charge neutrality provides a relationship between chiral dynamics and neutrino propagation in compact stars. Due to the sudden drop of the electron density at thefirst-order chiral phase transition, the oscillation for low energy neutrinos is significant and can be regarded as a signature of chiral symmetry restoration in the core of compact stars.

  4. Construction and performance of rugged ceramic cup soil water samplers

    Treesearch

    Douglas M. Stone; James L. Robl

    1996-01-01

    To assess solute concentration changes associated with soil compaction and organic matter removal resulting from forest harvesting, we constructed and field tested ceramic cup soil water samplers designed to withstand the forces of compaction by heavy equipment. They were installed with the cup at either the 30-or 60-cm depth; the vacuum and collection tubes rested on...

  5. Development of a Drilling Fluid Drive Downhole Tractor in Oil Field

    NASA Astrophysics Data System (ADS)

    Fang, Delei; Shang, Jianzhong; Liu, Yiying; Wu, Wei; Luo, Zirong

    2018-01-01

    This paper proposes a drilling fluid drive downhole tractor, which has the advantages of compact structure, large traction, fast speed and high reliability. The overall mechanical structure of the tractor is introduced, the concrete structures including supporting structure and cushion mechanism are designed. And its all-hydraulic drive continuous propulsion principle is analyzed. Finally the simulation analysis of the tractor operation is carried out to prove that the traction motion scheme is feasible.

  6. Development of compact particle detectors for space based instruments

    NASA Astrophysics Data System (ADS)

    Barner, Lindsey; Grove, Andrew; Mohler, Jacob; Sisson, Caleb; Roth, Alex; Kryemadhi, Abaz

    2017-01-01

    The Silicon Photomultipliers (SiPMs) are new photon-detectors which have been increasingly used in particle physics. Their small size, good single photon resolution, simple readout, and immunity to magnetic fields offers benefits compared to traditional photomultipliers. LYSO and CeBr3 crystals are relatively new scintillators with high stopping power, very good light yield and fast decay time. The response of these detectors to low energy gamma rays will be presented. NASA Pennsylvania Space Grant Consortium.

  7. Internal zone growth method for producing metal oxide metal eutectic composites

    DOEpatents

    Clark, Grady W.; Holder, John D.; Pasto, Arvid E.

    1980-01-01

    An improved method for preparing a cermet comprises preparing a compact having about 85 to 95 percent theoretical density from a mixture of metal and metal oxide powders from a system containing a eutectic composition, and inductively heating the compact in a radiofrequency field to cause the formation of an internal molten zone. The metal oxide particles in the powder mixture are effectively sized relative to the metal particles to permit direct inductive heating of the compact by radiofrequency from room temperature. Surface melting is prevented by external cooling or by effectively sizing the particles in the powder mixture.

  8. I-Love-Q Anisotropically

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolas

    2015-04-01

    Recent work shows that rotating incompressible stars with anisotropic matter in the weak-field limit become prolate, which is rather counter-intuitive. We construct slowly-rotating, incompressible and anisotropic stellar solutions in full General Relativity valid to quadratic order in spin and show that the stellar shape shifts from prolate to oblate as one increases the relativistic effect. Anisotropic stars are also interesting because they can be more compact than isotropic stars, and can even be as compact as black holes. We present how stellar multipole moments approach the black hole limit as one increases the compactness, suggesting that they reach the black hole limit continuously.

  9. Compact Two-step Laser Time-of-Flight Mass Spectrometer for in Situ Analyses of Aromatic Organics on Planetary Missions

    NASA Technical Reports Server (NTRS)

    Getty, Stephanie; Brickerhoff, William; Cornish, Timothy; Ecelberger, Scott; Floyd, Melissa

    2012-01-01

    RATIONALE A miniature time-of-flight mass spectrometer has been adapted to demonstrate two-step laser desorption-ionization (LOI) in a compact instrument package for enhanced organics detection. Two-step LDI decouples the desorption and ionization processes, relative to traditional laser ionization-desorption, in order to produce low-fragmentation conditions for complex organic analytes. Tuning UV ionization laser energy allowed control ofthe degree of fragmentation, which may enable better identification of constituent species. METHODS A reflectron time-of-flight mass spectrometer prototype measuring 20 cm in length was adapted to a two-laser configuration, with IR (1064 nm) desorption followed by UV (266 nm) postionization. A relatively low ion extraction voltage of 5 kV was applied at the sample inlet. Instrument capabilities and performance were demonstrated with analysis of a model polycyclic aromatic hydrocarbon, representing a class of compounds important to the fields of Earth and planetary science. RESULTS L2MS analysis of a model PAH standard, pyrene, has been demonstrated, including parent mass identification and the onset o(tunable fragmentation as a function of ionizing laser energy. Mass resolution m/llm = 380 at full width at half-maximum was achieved which is notable for gas-phase ionization of desorbed neutrals in a highly-compact mass analyzer. CONCLUSIONS Achieving two-step laser mass spectrometry (L2MS) in a highly-miniature instrument enables a powerful approach to the detection and characterization of aromatic organics in remote terrestrial and planetary applications. Tunable detection of parent and fragment ions with high mass resolution, diagnostic of molecular structure, is possible on such a compact L2MS instrument. Selectivity of L2MS against low-mass inorganic salt interferences is a key advantage when working with unprocessed, natural samples, and a mechanism for the observed selectivity is presented.

  10. Compact antenna for two-dimensional beam scan in the JT-60U electron cyclotron heating/current drive system

    NASA Astrophysics Data System (ADS)

    Moriyama, S.; Kajiwara, K.; Takahashi, K.; Kasugai, A.; Seki, M.; Ikeda, Y.; Fujii, T.

    2005-11-01

    A compact antenna system was designed and fabricated to enable millimeter-wave beam scanning in the toroidal and poloidal directions of the JT-60U tokamak for electron cyclotron heating (ECH) and electron cyclotron current drive (ECCD) experiments. The antenna consists of a fast movable flat mirror mounted on the tokamak vacuum vessel and a rotary focusing mirror attached at the end of the waveguide that is supported from outside the vacuum vessel. This separate support concept enables a compact structure inside a shallow port (0.68×0.54×0.2m) that is shared with a subport for an independent diagnostic system. During a plasma shot, the flat mirror is driven by a servomotor with a 3-m-long drive shaft to reduce the influence of the high magnetic field on the motor. The focusing mirror is rotated by a simple mechanism utilizing a push rod and an air cylinder. The antenna has been operated reliably for 3 years after a small improvement to the rotary drive mechanism. It has made significant contributions to ECH and ECCD experiments, especially the current profile control in JT-60U.

  11. Compact Undulator for the Cornell High Energy Synchrotron Source: Design and Beam Test Results

    NASA Astrophysics Data System (ADS)

    Temnykh, A.; Dale, D.; Fontes, E.; Li, Y.; Lyndaker, A.; Revesz, P.; Rice, D.; Woll, A.

    2013-03-01

    We developed, built and beam tested a novel, compact, in-vacuum undulator magnet based on an adjustable phase (AP) scheme. The undulator is 1 m long with a 5mm gap. It has a pure permanent magnet structure with 24.4mm period and 1.1 Tesla maximum peak field. The device consists of two planar magnet arrays mounted on rails inside of a rectangular box-like frame with 156 mm × 146 mm dimensions. The undulator magnet is enclosed in a 273 mm (10.75") diameter cylindrical vacuum vessel with a driver mechanism placed outside. In May 2012 the CHESS Compact Undulator (CCU) was installed in Cornell Electron Storage Ring and beam tested. During four weeks of dedicated run we evaluated undulator radiation properties as well as magnetic, mechanical and vacuum properties of the undulator magnet. We also studied the effect of the CCU on storage ring beam. The spectral characteristics and intensity of radiation were found to be in very good agreement with expected. The magnet demonstrated reproducibility of undulator parameter K at 1.4 × 10-4 level. It was also found that the undulator K. parameter change does not affect electron beam orbit and betatron tunes.

  12. Development of a compact electron-cyclotron-resonance ion source for high-energy carbon-ion therapy

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Kitagawa, A.; Sakamoto, Y.; Sato, S.; Sato, Y.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Drentje, A. G.

    2005-11-01

    Ion sources for medical facilities should have characteristics of easy maintenance, low electric power consumption, good stability, and long operation time without problems (one year or longer). For this, a 10GHz compact electron-cyclotron-resonance ion source with all-permanent magnets (Kei2 source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59T at the extraction side and 0.87T at the gas-injection side, while the minimum B strength is 0.25T. These parameters have been optimized for the production of C4+ based on the experience at the 10GHz NIRS-ECR ion source and a previous prototype compact source (Kei source). The Kei2 source has a diameter of 320mm and a length of 295mm. The beam intensity of C4+ was obtained to be 530μA under an extraction voltage of 40kV. The beam stability was better than 6% at C4+ of 280μA during 90h with no adjustment of the operation parameters. The details of the design and beam tests of the source are described in this paper.

  13. A versatile rotary-stage high frequency probe station for studying magnetic films and devices

    NASA Astrophysics Data System (ADS)

    He, Shikun; Meng, Zhaoliang; Huang, Lisen; Yap, Lee Koon; Zhou, Tiejun; Panagopoulos, Christos

    2016-07-01

    We present a rotary-stage microwave probe station suitable for magnetic films and spintronic devices. Two stages, one for field rotation from parallel to perpendicular to the sample plane (out-of-plane) and the other intended for field rotation within the sample plane (in-plane) have been designed. The sample probes and micro-positioners are rotated simultaneously with the stages, which allows the field orientation to cover θ from 0∘ to 90∘ and φ from 0∘ to 360∘. θ and φ being the angle between the direction of current flow and field in a out-of-plane and an in-plane rotation, respectively. The operation frequency is up to 40 GHz and the magnetic field up to 1 T. The sample holder vision system and probe assembly are compactly designed for the probes to land on a wafer with diameter up to 3 cm. Using homemade multi-pin probes and commercially available high frequency probes, several applications including 4-probe DC measurements, the determination of domain wall velocity, and spin transfer torque ferromagnetic resonance are demonstrated.

  14. Method for improving performance of highly stressed electrical insulating structures

    DOEpatents

    Wilson, Michael J.; Goerz, David A.

    2002-01-01

    Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed. Choosing the optimum technique depends on material, size, and surface accessibility. The simplest deposition method uses a standard electroless plating technique, but other metalization techniques include vapor and energetic deposition, plasma spraying, conductive painting, and other controlled coating methods.

  15. A microdisplay-based HUD for automotive applications: Backplane design, planarization, and optical implementation

    NASA Astrophysics Data System (ADS)

    Schuck, Miller Harry

    Automotive head-up displays require compact, bright, and inexpensive imaging systems. In this thesis, a compact head-up display (HUD) utilizing liquid-crystal-on-silicon microdisplay technology is presented from concept to implementation. The thesis comprises three primary areas of HUD research: the specification, design and implementation of a compact HUD optical system, the development of a wafer planarization process to enhance reflective device brightness and light immunity and the design, fabrication and testing of an inexpensive 640 x 512 pixel active matrix backplane intended to meet the HUD requirements. The thesis addresses the HUD problem at three levels, the systems level, the device level, and the materials level. At the systems level, the optical design of an automotive HUD must meet several competing requirements, including high image brightness, compact packaging, video-rate performance, and low cost. An optical system design which meets the competing requirements has been developed utilizing a fully-reconfigurable reflective microdisplay. The design consists of two optical stages, the first a projector stage which magnifies the display, and a second stage which forms the virtual image eventually seen by the driver. A key component of the optical system is a diffraction grating/field lens which forms a large viewing eyebox while reducing the optical system complexity. Image quality biocular disparity and luminous efficacy were analyzed and results of the optical implementation are presented. At the device level, the automotive HUD requires a reconfigurable, video-rate, high resolution image source for applications such as navigation and night vision. The design of a 640 x 512 pixel active matrix backplane which meets the requirements of the HUD is described. The backplane was designed to produce digital field sequential color images at video rates utilizing fast switching liquid crystal as the modulation layer. The design methodology is discussed, and the example of a clock generator is described from design to implementation. Electrical and optical test results of the fabricated backplane are presented. At the materials level, a planarization method was developed to meet the stringent brightness requirements of automotive HUD's. The research efforts described here have resulted in a simple, low cost post-processing method for planarizing microdisplay substrates based on a spin-cast polymeric resin, benzocyclobutene (BCB). Six- fold reductions in substrate step height were accomplished with a single coating. Via masking and dry etching methods were developed. High reflectivity metal was deposited and patterned over the planarized substrate to produce high aperture pixel mirrors. The process is simple, rapid, and results in microdisplays better able to meet the stringent requirements of high brightness display systems. Methods and results of the post- processing are described.

  16. Reservoir creep and induced seismicity: inferences from geomechanical modeling of gas depletion in the Groningen field

    NASA Astrophysics Data System (ADS)

    van Wees, Jan-Diederik; Osinga, Sander; Van Thienen-Visser, Karin; Fokker, Peter A.

    2018-03-01

    The Groningen gas field in the Netherlands experienced an immediate reduction in seismic events in the year following a massive cut in production. This reduction is inconsistent with existing models of seismicity predictions adopting compaction strains as proxy, since reservoir creep would then result in a more gradual reduction of seismic events after a production stop. We argue that the discontinuity in seismic response relates to a physical discontinuity in stress loading rate on faults upon the arrest of pressure change. The stresses originate from a combination of the direct poroelastic effect through the pressure changes and the delayed effect of ongoing compaction after cessation of reservoir production. Both mechanisms need to be taken into account. To this end, we employed finite-element models in a workflow that couples Kelvin-Chain reservoir creep with a semi-analytical approach for the solution of slip and seismic moment from the predicted stress change. For ratios of final creep and elastic compaction up to 5, the model predicts that the cumulative seismic moment evolution after a production stop is subject to a very moderate increase, 2-10 times less than the values predicted by the alternative approaches using reservoir compaction strain as proxy. This is in agreement with the low seismicity in the central area of the Groningen field immediately after reduction in production. The geomechanical model findings support scope for mitigating induced seismicity through adjusting rates of pressure change by cutting down production.

  17. Bend-resistant large mode area fiber with novel segmented cladding

    NASA Astrophysics Data System (ADS)

    Ma, Shaoshuo; Ning, Tigang; Pei, Li; Li, Jing; Zheng, Jingjing

    2018-01-01

    A novel structure of segment cladding fiber (SCF) with characteristics of bend-resistance and large-mode-area (LMA) is proposed. In this new structure, the high refractive index (RI) core is periodically surrounded by high RI fan-segmented claddings. Numerical investigations show that effective single-mode operation of the proposed fiber with mode field area of 700 μm2 can be achieved when the bending radius is 15 cm. Besides, this fiber is insensitive to the bending orientation at the ranging of [-180°, 180°]. The proposed design shows great potential in high power fiber lasers and amplifiers with compact structure.

  18. Risk assessment of soil compaction in Walloon Region (Belgium)

    NASA Astrophysics Data System (ADS)

    Charlotte, Rosiere; Marie-France, Destain; Jean-Claude, Verbrugge

    2010-05-01

    The proposed Soil Framework Directive COM(2006)232 requires Member States to identify areas at risk of erosion, decline in organic matter, salinisation, compaction, sealing and landslides, as well as to set up an inventory of contaminated sites. The present project aims to identify the susceptibility to compaction of soils of the Walloon Region (Belgium) and to recommend good farming practices avoiding soil compaction as far as possible. Within this scope, the concept of precompression stress (Pc) (Horn and Fleige, 2003) was used. Pc is defined as the maximum major principal stress that a soil horizon can withstand against any applied external vertical stress. If applied stress is higher than Pc, the soil enters in a plastic state, not easily reversible. For a given soil, the intensity of soil compaction is mainly due to the applied load which depends on vehicle characteristics (axle load, tyre dimensions, tyre inflation pressure, and vehicle velocity). To determine soil precompression stress, pedotransfert functions of Lebert and Horn (1991) defined at two water suctions (pF 1.8 and 2.5) were used. Parameters required by these functions were found within several databases (Aardewerk and Digital Map of Walloon Soils) and literature. The validation of Pc was performed by measuring stress-strain relationships using automatic oedometers. Stresses of 15.6, 31, 3, 62.5, 125, 250, 500 and 1000 kPa were applied for 10 min each. In this study, the compaction due to beet harvesters was considered because the axle load can exceed 10 tons and these machines are often used during wet conditions. The compaction at two depth levels was considered: 30 and 50 cm. Compaction of topsoil was not taken into account because, under conventional tillage, the plough depth is lower than 25 cm. Before and after the passage of the machines, following measurements were performed: granulometry, density, soil moisture, pF curve, Atterberg limits, ... The software Soilflex (Keller et al., 2007) was used to estimate the distribution of the vertical stresses z in the soil. Comparison was performed between z and Pc. The following data simulated the passage of a beet harvester machine (mass: 23 580 kg; load: 18 000 kg) in a silty soil located in Hesbaye and classified as Aba (Sirjacobs et al., 2000). The passage of the machine would create a Pc of around 100 kPa at 30 cm depth, while the stress induced by the machine would reach 240 kPa. In the field borders, where more vehicle traffic was usually observed and where the soil was over consolidated, Pc would reach 180 kPa, while z would be 220 kPa. In both cases, the risk of compaction created by the passage of the machine would be high. - Lebert, M. and Horn, R. (1991). A method to predict the mechanical strength of agricultural soils. Soil & Tillage Res. 19, 275-286. - Keller T., Défossez P., Weisskopf P., Arvidson J., Richard G. (2007). SoilFlex : A model for prediction of soil stresses and soil compaction due to agricultural field traffic including a synthesis of analytical approaches. Soil & Tillage Research 93, 391-411. - Sirjacobs D., Hanquet B., Lebeau F., Destain M.-F. (2002). On-line mechanical resistance mapping and correlation with soil physical properties for precision agriculture. Soil and Tillage Research, 64, 231-242.

  19. Dissolution of Hydrocarbon Gas Hydrates in Seawater at 1030-m; Effects of Porosity, Structure, and Compositional Variation as Determined by High-Definition Video and SEM Imaging.

    NASA Astrophysics Data System (ADS)

    Stern, L. A.; Peltzer, E. T.; Durham, W. B.; Kirby, S. H.; Brewer, P. G.; Circone, S.; Rehder, G.

    2002-12-01

    We compare dissolution rates of pure, porous, compacted, and oil-contaminated sI methane hydrate and sII methane-ethane hydrate to rates measured previously on pure, compacted, sI methane hydrate and sI carbon dioxide hydrate (Rehder et al., Fall AGU 2001). Laboratory-synthesized test specimens were used in both studies, allowing characterization of test materials prior to their transport and exposure to seawater at 1030-meter depth on the Monterey Canyon seafloor, off coastal Moss Landing, CA. Although pressure and temperature (P-T) conditions at this site are within the nominal P-T equilibrium fields of all gas hydrates tested here, the seawater is undersaturated with respect to the hydrate-forming gas species. Hence, samples dissolve with time, at a rate dependent on water current flow. Four samples were deployed in this second experiment: (1) pure, 30% porous methane hydrate; (2) pure, compacted methane hydrate; (3) pure methane hydrate compacted and then contaminated with a low-T mineral oil; and (4) pure, compacted sII methane-ethane hydrate with methane:ethane molar ratio 0.72. Samples were transferred by pressure vessel at 0 ° C and 15 MPa to the seafloor observatory via the MBARI remotely operated vehicle Ventana. Samples were then exposed to the deep ocean environment and monitored by HDTV camera for several hours at the beginning and end of a 25-hour period. Local current speed and direction were also measured throughout the experiment. Those samples that did not undergo complete dissolution after 25 h were successfully recovered to the laboratory for subsequent analysis by scanning electron microscopy (SEM). Previously, video analysis showed dissolution rates corresponding to 4.0 +/- 0.5 mmole CO2/m2 s for compacted CO2 hydrate samples, and 0.37 +/- 0.03 mmole CH4/m2s for compacted methane hydrate samples (Rehder et al, AGU 2001). The ratio of dissolution rates fits a simple diffusive boundary layer model that incorporates relative gas solubilities appropriate to the field site. These calculations assume that dissolution occurred only along the outer (i.e. imaged) surface of the samples. This assumption is now validated by SEM analysis of recovered samples from the second dive, showing little to no internal alteration of compacted material following their partial dissolution. Quantitative comparison of results from the two dives poses challenges due to variations in sample size and orientation. However, both compacted methane hydrate samples from the second dive in fact exhibited comparable behavior to that measured in the previous experiment; the oily sample did not dissolve at a slower rate, as might be expected if a hydrophobic contaminant inhibits seawater contact. Surprisingly, the porous methane hydrate exhibited significantly slower face retreat than its compacted counterparts. The sII methane-ethane hydrate dissolved measurably slower than all other samples, consistent with the solubility properties of its guest components. While these results represent only a first step in emulating the more complex interactions of seawater with naturally occurring hydrate-bearing sediments, such end member studies should aid preliminary modelling investigations of the chemical stability and lifetime of gas hydrates exposed at the seafloor.

  20. Globular clusters in high-redshift dwarf galaxies: a case study from the Local Group

    NASA Astrophysics Data System (ADS)

    Zick, Tom O.; Weisz, Daniel R.; Boylan-Kolchin, Michael

    2018-06-01

    We present the reconstructed evolution of rest-frame ultraviolet (UV) luminosities of the most massive Milky Way dwarf spheroidal satellite galaxy, Fornax, and its five globular clusters (GCs) across redshift, based on analysis of the stellar fossil record and stellar population synthesis modelling. We find that (1) Fornax's (proto-)GCs can generate 10-100 times more UV flux than the field population, despite comprising <˜{5} per cent of the stellar mass at the relevant redshifts; (2) due to their respective surface brightnesses, it is more likely that faint, compact sources in the Hubble Frontier Fields (HFFs) are GCs hosted by faint galaxies, than faint galaxies themselves. This may significantly complicate the construction of a galaxy UV luminosity function at z > 3. (3) GC formation can introduce order-of-magnitude errors in abundance matching. We also find that some compact HFF objects are consistent with the reconstructed properties of Fornax's GCs at the same redshifts (e.g. surface brightness, star formation rate), suggesting we may have already detected proto-GCs in the early Universe. Finally, we discuss the prospects for improving the connections between local GCs and proto-GCs detected in the early Universe.

Top