Nonlinear sigma models with compact hyperbolic target spaces
NASA Astrophysics Data System (ADS)
Gubser, Steven; Saleem, Zain H.; Schoenholz, Samuel S.; Stoica, Bogdan; Stokes, James
2016-06-01
We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model [1, 2]. Unlike in the O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. The diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.
Nonlinear sigma models with compact hyperbolic target spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gubser, Steven; Saleem, Zain H.; Schoenholz, Samuel S.
We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model [1, 2]. Unlike in themore » O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. In conclusion, the diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.« less
Nonlinear sigma models with compact hyperbolic target spaces
Gubser, Steven; Saleem, Zain H.; Schoenholz, Samuel S.; ...
2016-06-23
We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model [1, 2]. Unlike in themore » O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. In conclusion, the diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.« less
The limit space of a Cauchy sequence of globally hyperbolic spacetimes
NASA Astrophysics Data System (ADS)
Noldus, Johan
2004-02-01
In this second paper, I construct a limit space of a Cauchy sequence of globally hyperbolic spacetimes. In section 2, I work gradually towards a construction of the limit space. I prove that the limit space is unique up to isometry. I also show that, in general, the limit space has quite complicated causal behaviour. This work prepares the final paper in which I shall study in more detail properties of the limit space and the moduli space of (compact) globally hyperbolic spacetimes (cobordisms). As a fait divers, I give in this paper a suitable definition of dimension of a Lorentz space in agreement with the one given by Gromov in the Riemannian case. The difference in philosophy between Lorentzian and Riemannian geometry is one of relativism versus absolutism. In the latter every point distinguishes itself while in the former in general two elements get distinguished by a third, different, one.
Some remarks on the topology of hyperbolic actions of Rn on n-manifolds
NASA Astrophysics Data System (ADS)
Bouloc, Damien
2017-11-01
This paper contains some results on the topology of a nondegenerate action of Rn on a compact connected n-manifold M when the action is totally hyperbolic (i.e. its toric degree is zero). We study the R-action generated by a fixed vector of Rn, that provides some results on the number of hyperbolic domains and the number of fixed points of the action. We study with more details the case of the 2-sphere, in particular we investigate some combinatorial properties of the associated 4-valent graph embedded in S2. We also construct hyperbolic actions in dimension 3, on the sphere S3 and on the projective space RP3.
Gupta-Bleuler Quantization of the Maxwell Field in Globally Hyperbolic Space-Times
NASA Astrophysics Data System (ADS)
Finster, Felix; Strohmaier, Alexander
2015-08-01
We give a complete framework for the Gupta-Bleuler quantization of the free electromagnetic field on globally hyperbolic space-times. We describe one-particle structures that give rise to states satisfying the microlocal spectrum condition. The field algebras in the so-called Gupta-Bleuler representations satisfy the time-slice axiom, and the corresponding vacuum states satisfy the microlocal spectrum condition. We also give an explicit construction of ground states on ultrastatic space-times. Unlike previous constructions, our method does not require a spectral gap or the absence of zero modes. The only requirement, the absence of zero-resonance states, is shown to be stable under compact perturbations of topology and metric. Usual deformation arguments based on the time-slice axiom then lead to a construction of Gupta-Bleuler representations on a large class of globally hyperbolic space-times. As usual, the field algebra is represented on an indefinite inner product space, in which the physical states form a positive semi-definite subspace. Gauge transformations are incorporated in such a way that the field can be coupled perturbatively to a Dirac field. Our approach does not require any topological restrictions on the underlying space-time.
Constraining the physical state by symmetries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatibene, L., E-mail: lorenzo.fatibene@unito.it; INFN - Sezione Torino - IS QGSKY; Ferraris, M.
After reviewing the hole argument and its relations with initial value problem and general covariance, we shall discuss how much freedom one has to define the physical state in a generally covariant field theory (with or without internal gauge symmetries). Our analysis relies on Cauchy problems, thus it is restricted to globally hyperbolic spacetimes. We shall show that in generally covariant theories on a compact space (as well as for internal gauge symmetries on any spacetime) one has no freedom and one is forced to declare as physically equivalent two configurations which differ by a global spacetime diffeomorphism (or bymore » an internal gauge transformation) as it is usually prescribed. On the contrary, when space is not compact, the result does not hold true and one may have different options to define physically equivalent configurations, still preserving determinism. - Highlights: • Investigate the relation between the hole argument, covariance, determinism and physical state. • Show that if space is compact then any diffeomorphism is a gauge symmetry. • Show that if space is not compact then there may be more freedom in choosing gauge group.« less
Sigma models with negative curvature
Alonso, Rodrigo; Jenkins, Elizabeth E.; Manohar, Aneesh V.
2016-03-16
Here, we construct Higgs Effective Field Theory (HEFT) based on the scalar manifold Hn, which is a hyperbolic space of constant negative curvature. The Lagrangian has a non-compact O(n, 1) global symmetry group, but it gives a unitary theory as long as only a compact subgroup of the global symmetry is gauged. Whether the HEFT manifold has positive or negative curvature can be tested by measuring the S-parameter, and the cross sections for longitudinal gauge boson and Higgs boson scattering, since the curvature (including its sign) determines deviations from Standard Model values.
Discretizing singular point sources in hyperbolic wave propagation problems
Petersson, N. Anders; O'Reilly, Ossian; Sjogreen, Bjorn; ...
2016-06-01
Here, we develop high order accurate source discretizations for hyperbolic wave propagation problems in first order formulation that are discretized by finite difference schemes. By studying the Fourier series expansions of the source discretization and the finite difference operator, we derive sufficient conditions for achieving design accuracy in the numerical solution. Only half of the conditions in Fourier space can be satisfied through moment conditions on the source discretization, and we develop smoothness conditions for satisfying the remaining accuracy conditions. The resulting source discretization has compact support in physical space, and is spread over as many grid points as themore » number of moment and smoothness conditions. In numerical experiments we demonstrate high order of accuracy in the numerical solution of the 1-D advection equation (both in the interior and near a boundary), the 3-D elastic wave equation, and the 3-D linearized Euler equations.« less
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Gottlieb, David; Abarbanel, Saul
1993-01-01
We present a systematic method for constructing boundary conditions (numerical and physical) of the required accuracy, for compact (Pade-like) high-order finite-difference schemes for hyperbolic systems. First, a roper summation-by-parts formula is found for the approximate derivative. A 'simultaneous approximation term' (SAT) is then introduced to treat the boundary conditions. This procedure leads to time-stable schemes even in the system case. An explicit construction of the fourth-order compact case is given. Numerical studies are presented to verify the efficacy of the approach.
NASA Astrophysics Data System (ADS)
Lemaître, Gérard R.; Montiel, Pierre; Joulié, Patrice; Dohlen, Kjetil; Lanzoni, Patrick
2005-12-01
Wide-field astronomy requires the development of larger aperture telescopes. The optical properties of a three-mirror modified-Rumsey design provide significant advantages when compared to other telescope designs: (i) at any wavelength, the design has a flat field and is anastigmatic; (ii) the system is extremely compact, i.e., it is almost four times shorter than a Schmidt. Compared to the equally compact flat-field Ritchey-Chrétien with a doublet-lens corrector, as developed for the Sloan digital sky survey - and which requires the polishing of six optical surfaces - the proposed modified-Rumsey design requires only a two-surface polishing and provides a better imaging quality. All the mirrors are spheroids of the hyperboloid type. Starting from the classical Rumsey design, it is shown that the use of all eight available free parameters allows the simultaneous aspherization of the primary and tertiary mirrors by active optics methods from a single deformable substrate. The continuity conditions between the primary and the tertiary hyperbolizations are achieved by an intermediate narrow ring of constant thickness that is not optically used. After the polishing of a double vase form in a spherical shape, the primary-tertiary hyperbolizations are achieved by in situ stressing. The tulip-form secondary is hyperbolized by stress polishing. Other active optics alternatives are possible for a space telescope. The modified-Rumsey design is of interest for developing large space- and ground-based survey telescopes in UV, visible, or IR ranges, such as currently demonstrated with the construction of identical telescopes MINITRUST-1 and -2, f/5 - 2° field of view. Double-pass optical tests show diffraction-limited images.
Positivity of the universal pairing in 3 dimensions
NASA Astrophysics Data System (ADS)
Calegari, Danny; Freedman, Michael H.; Walker, Kevin
2010-01-01
Associated to a closed, oriented surface S is the complex vector space with basis the set of all compact, oriented 3 -manifolds which it bounds. Gluing along S defines a Hermitian pairing on this space with values in the complex vector space with basis all closed, oriented 3 -manifolds. The main result in this paper is that this pairing is positive, i.e. that the result of pairing a nonzero vector with itself is nonzero. This has bearing on the question of what kinds of topological information can be extracted in principle from unitary (2+1) -dimensional TQFTs. The proof involves the construction of a suitable complexity function c on all closed 3 -manifolds, satisfying a gluing axiom which we call the topological Cauchy-Schwarz inequality, namely that c(AB) le max(c(AA),c(BB)) for all A,B which bound S , with equality if and only if A=B . The complexity function c involves input from many aspects of 3 -manifold topology, and in the process of establishing its key properties we obtain a number of results of independent interest. For example, we show that when two finite-volume hyperbolic 3 -manifolds are glued along an incompressible acylindrical surface, the resulting hyperbolic 3 -manifold has minimal volume only when the gluing can be done along a totally geodesic surface; this generalizes a similar theorem for closed hyperbolic 3 -manifolds due to Agol-Storm-Thurston.
Conformal symmetries of Einstein's field equations and initial data
NASA Astrophysics Data System (ADS)
Sharma, Ramesh
2005-04-01
This paper examines the initial data for the evolution of the space-time solution of Einstein's equations admitting a conformal symmetry. Under certain conditions on the extrinsic curvature of the initial complete spacelike hypersurface and sectional curvature of the space-time with respect to sections containing the normal vector field, we have shown that the initial hypersurface is conformally diffeomorphic to a sphere or a flat space or a hyperbolic space or the product of an open real interval and a complete 2-manifold. It has been further shown that if the initial hypersurface is compact, then it is conformally diffeomorphic to a sphere. Finally, the conformal symmetries of a generalized Robertson-Walker space-time have been described.
On the Ck-embedding of Lorentzian manifolds in Ricci-flat spaces
NASA Astrophysics Data System (ADS)
Avalos, R.; Dahia, F.; Romero, C.
2018-05-01
In this paper, we investigate the problem of non-analytic embeddings of Lorentzian manifolds in Ricci-flat semi-Riemannian spaces. In order to do this, we first review some relevant results in the area and then motivate both the mathematical and physical interests in this problem. We show that any n-dimensional compact Lorentzian manifold (Mn, g), with g in the Sobolev space Hs+3, s >n/2 , admits an isometric embedding in a (2n + 2)-dimensional Ricci-flat semi-Riemannian manifold. The sharpest result available for these types of embeddings, in the general setting, comes as a corollary of Greene's remarkable embedding theorems R. Greene [Mem. Am. Math. Soc. 97, 1 (1970)], which guarantee the embedding of a compact n-dimensional semi-Riemannian manifold into an n(n + 5)-dimensional semi-Euclidean space, thereby guaranteeing the embedding into a Ricci-flat space with the same dimension. The theorem presented here improves this corollary in n2 + 3n - 2 codimensions by replacing the Riemann-flat condition with the Ricci-flat one from the beginning. Finally, we will present a corollary of this theorem, which shows that a compact strip in an n-dimensional globally hyperbolic space-time can be embedded in a (2n + 2)-dimensional Ricci-flat semi-Riemannian manifold.
NASA Technical Reports Server (NTRS)
Harten, A.; Tal-Ezer, H.
1981-01-01
This paper presents a family of two-level five-point implicit schemes for the solution of one-dimensional systems of hyperbolic conservation laws, which generalized the Crank-Nicholson scheme to fourth order accuracy (4-4) in both time and space. These 4-4 schemes are nondissipative and unconditionally stable. Special attention is given to the system of linear equations associated with these 4-4 implicit schemes. The regularity of this system is analyzed and efficiency of solution-algorithms is examined. A two-datum representation of these 4-4 implicit schemes brings about a compactification of the stencil to three mesh points at each time-level. This compact two-datum representation is particularly useful in deriving boundary treatments. Numerical results are presented to illustrate some properties of the proposed scheme.
Infrared hyperbolic metasurface based on nanostructured van der Waals materials
NASA Astrophysics Data System (ADS)
Li, Peining; Dolado, Irene; Alfaro-Mozaz, Francisco Javier; Casanova, Fèlix; Hueso, Luis E.; Liu, Song; Edgar, James H.; Nikitin, Alexey Y.; Vélez, Saül; Hillenbrand, Rainer
2018-02-01
Metasurfaces with strongly anisotropic optical properties can support deep subwavelength-scale confined electromagnetic waves (polaritons), which promise opportunities for controlling light in photonic and optoelectronic applications. We developed a mid-infrared hyperbolic metasurface by nanostructuring a thin layer of hexagonal boron nitride that supports deep subwavelength-scale phonon polaritons that propagate with in-plane hyperbolic dispersion. By applying an infrared nanoimaging technique, we visualize the concave (anomalous) wavefronts of a diverging polariton beam, which represent a landmark feature of hyperbolic polaritons. The results illustrate how near-field microscopy can be applied to reveal the exotic wavefronts of polaritons in anisotropic materials and demonstrate that nanostructured van der Waals materials can form a highly variable and compact platform for hyperbolic infrared metasurface devices and circuits.
The Hyperbolic Sine Cardinal and the Catenary
ERIC Educational Resources Information Center
Sanchez-Reyes, Javier
2012-01-01
The hyperbolic function sinh(x)/x receives scant attention in the literature. We show that it admits a clear geometric interpretation as the ratio between length and chord of a symmetric catenary segment. The inverse, together with the use of dimensionless parameters, furnishes a compact, explicit construction of a general catenary segment of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pesin, Y.; Weiss, H.
1997-01-01
In this paper we establish the complete multifractal formalism for equilibrium measures for Holder continuous conformal expanding maps and expanding Markov Moran-like geometric constructions. Examples include Markov maps of an interval, beta transformations of an interval, rational maps with hyperbolic Julia sets, and conformal total endomorphisms. We also construct a Holder continuous homeomorphism of a compact metric space with an ergodic invariant measure of positive entropy for which the dimension spectrum is not convex, and hence the multifractal formalism fails.
A Note on Expansiveness and Hyperbolicity for Generic Geodesic Flows
NASA Astrophysics Data System (ADS)
Bessa, Mário
2018-06-01
In this short note we contribute to the generic dynamics of geodesic flows associated to metrics on compact Riemannian manifolds of dimension ≥ 2. We prove that there exists a C 2-residual subset R of metrics on a given compact Riemannian manifold such that if g\\in R, then its associated geodesic flow φ tg is expansive if and only if the closure of the set of periodic orbits of φtg is a uniformly hyperbolic set. For surfaces, we obtain a stronger statement: there exists a C 2-residual R such that if g\\in R, then its associated geodesic flow φtg is expansive if and only if φtg is an Anosov flow.
NASA Astrophysics Data System (ADS)
Viotti, Roberto F.; La Padula, Cesare D.; Vignato, Agostino; Lemaitre, Gerard R.; Montiel, Pierre; Dohlen, Kjetil
2002-12-01
A concept based on a two-mirror, three-reflection telescope has been investigated. Its anastigmatism and flat fielded properties, the compactness and optical performances over 2-2.5 arc deg field of view, make this optical system of high interest for the development of much larger telescopes than with Schmidt designs. The 2MTRT concept is a potential candidate for sky surveys with 2-3 meter class telescopes and particularily well adapted for UV space surveys. Preliminary developments have been carried out with the construction of a 30-cm prototype on Amoretti's design, providing encouraging results. At present, a 45-cm 2MTRT prototype has been realized for ground based sky survey of NEOs, based on active optics (MINITRUST), in order to overcome the difficulty of obtaining three aspherical surfaces. The primary and tertiary lie on the same double vase substrate, and have a rest profile. The hyperbolization is carried out in situ by air depressure. The secondary, in a tulip form substrate, has been hyperbolized by elastic relaxation. The project is planned for operation in 2003.
NASA Astrophysics Data System (ADS)
Du, Zhifang; Li, Jiequan
2018-02-01
This paper develops a new fifth order accurate Hermite WENO (HWENO) reconstruction method for hyperbolic conservation schemes in the framework of the two-stage fourth order accurate temporal discretization in Li and Du (2016) [13]. Instead of computing the first moment of the solution additionally in the conventional HWENO or DG approach, we can directly take the interface values, which are already available in the numerical flux construction using the generalized Riemann problem (GRP) solver, to approximate the first moment. The resulting scheme is fourth order temporal accurate by only invoking the HWENO reconstruction twice so that it becomes more compact. Numerical experiments show that such compactness makes significant impact on the resolution of nonlinear waves.
NASA Astrophysics Data System (ADS)
Cohen, Timothy; Craig, Nathaniel; Giudice, Gian F.; McCullough, Matthew
2018-05-01
We introduce the Hyperbolic Higgs, a novel solution to the little hierarchy problem that features Standard Model neutral scalar top partners. At one-loop order, the protection from ultraviolet sensitivity is due to an accidental non-compact symmetry of the Higgs potential that emerges in the infrared. Once the general features of the effective description are detailed, a completion that relies on a five dimensional supersymmetric framework is provided. Novel phenomenology is compared and contrasted with the Twin Higgs scenario.
Hadamard States for the Linearized Yang-Mills Equation on Curved Spacetime
NASA Astrophysics Data System (ADS)
Gérard, C.; Wrochna, M.
2015-07-01
We construct Hadamard states for the Yang-Mills equation linearized around a smooth, space-compact background solution. We assume the spacetime is globally hyperbolic and its Cauchy surface is compact or equal . We first consider the case when the spacetime is ultra-static, but the background solution depends on time. By methods of pseudodifferential calculus we construct a parametrix for the associated vectorial Klein-Gordon equation. We then obtain Hadamard two-point functions in the gauge theory, acting on Cauchy data. A key role is played by classes of pseudodifferential operators that contain microlocal or spectral type low-energy cutoffs. The general problem is reduced to the ultra-static spacetime case using an extension of the deformation argument of Fulling, Narcowich and Wald. As an aside, we derive a correspondence between Hadamard states and parametrices for the Cauchy problem in ordinary quantum field theory.
Polyhedra and packings from hyperbolic honeycombs.
Pedersen, Martin Cramer; Hyde, Stephen T
2018-06-20
We derive more than 80 embeddings of 2D hyperbolic honeycombs in Euclidean 3 space, forming 3-periodic infinite polyhedra with cubic symmetry. All embeddings are "minimally frustrated," formed by removing just enough isometries of the (regular, but unphysical) 2D hyperbolic honeycombs [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] to allow embeddings in Euclidean 3 space. Nearly all of these triangulated "simplicial polyhedra" have symmetrically identical vertices, and most are chiral. The most symmetric examples include 10 infinite "deltahedra," with equilateral triangular faces, 6 of which were previously unknown and some of which can be described as packings of Platonic deltahedra. We describe also related cubic crystalline packings of equal hyperbolic discs in 3 space that are frustrated analogues of optimally dense hyperbolic disc packings. The 10-coordinated packings are the least "loosened" Euclidean embeddings, although frustration swells all of the hyperbolic disc packings to give less dense arrays than the flat penny-packing even though their unfrustrated analogues in [Formula: see text] are denser.
Cascades of Particles Moving at Finite Velocity in Hyperbolic Spaces
NASA Astrophysics Data System (ADS)
Cammarota, V.; Orsingher, E.
2008-12-01
A branching process of particles moving at finite velocity over the geodesic lines of the hyperbolic space (Poincaré half-plane and Poincaré disk) is examined. Each particle can split into two particles only once at Poisson spaced times and deviates orthogonally when splitted. At time t, after N( t) Poisson events, there are N( t)+1 particles moving along different geodesic lines. We are able to obtain the exact expression of the mean hyperbolic distance of the center of mass of the cloud of particles. We derive such mean hyperbolic distance from two different and independent ways and we study the behavior of the relevant expression as t increases and for different values of the parameters c (hyperbolic velocity of motion) and λ (rate of reproduction). The mean hyperbolic distance of each moving particle is also examined and a useful representation, as the distance of a randomly stopped particle moving over the main geodesic line, is presented.
Lamb Shift in the Near Field of Hyperbolic Metamaterial Half Space
NASA Astrophysics Data System (ADS)
Deng, Nai Jing; Yu, Kin Wah
2013-03-01
Hyperbolic metamaterials give a large magnification of the density of states in a specific frequency ranges, and has motivated various applications in emission lifetime reduction, strong absorption, and extraordinary black body radiation, etc. The boost of vacuum energy, which is proportional to the density of states, is expected in hyperbolic metamaterial. We have studied the Lamb shift in vacuum-hyperbolic-metamterial half spaces and shown the non-trivial role of vacuum energy. In our calculation, the easy-fabricated multilayer structure is employed to generate a hyperbolic dispersion relation. The spectrum of hydrogen atoms is calculated with a perturbation method after quantizing the half spaces with a complete mode expansion. It appears that the shift of spectrum is mainly contributed by the terahertz response of materials, which has been well described and predicted in both theories and experiments. Work supported by the General Research Fund of the Hong Kong SAR Government
On the superconvergence of Galerkin methods for hyperbolic IBVP
NASA Technical Reports Server (NTRS)
Gottlieb, David; Gustafsson, Bertil; Olsson, Pelle; Strand, BO
1993-01-01
Finite element Galerkin methods for periodic first order hyperbolic equations exhibit superconvergence on uniform grids at the nodes, i.e., there is an error estimate 0(h(sup 2r)) instead of the expected approximation order 0(h(sup r)). It will be shown that no matter how the approximating subspace S(sup h) is chosen, the superconvergence property is lost if there are characteristics leaving the domain. The implications of this result when constructing compact implicit difference schemes is also discussed.
Special ergodic theorems and dynamical large deviations
NASA Astrophysics Data System (ADS)
Kleptsyn, Victor; Ryzhov, Dmitry; Minkov, Stanislav
2012-11-01
Let f : M → M be a self-map of a compact Riemannian manifold M, admitting a global SRB measure μ. For a continuous test function \\varphi\\colon M\\to R and a constant α > 0, consider the set Kφ,α of the initial points for which the Birkhoff time averages of the function φ differ from its μ-space average by at least α. As the measure μ is a global SRB one, the set Kφ,α should have zero Lebesgue measure. The special ergodic theorem, whenever it holds, claims that, moreover, this set has a Hausdorff dimension less than the dimension of M. We prove that for Lipschitz maps, the special ergodic theorem follows from the dynamical large deviations principle. We also define and prove analogous result for flows. Applying the theorems of Young and of Araújo and Pacifico, we conclude that the special ergodic theorem holds for transitive hyperbolic attractors of C2-diffeomorphisms, as well as for some other known classes of maps (including the one of partially hyperbolic non-uniformly expanding maps) and flows.
Curvature and temperature of complex networks.
Krioukov, Dmitri; Papadopoulos, Fragkiskos; Vahdat, Amin; Boguñá, Marián
2009-09-01
We show that heterogeneous degree distributions in observed scale-free topologies of complex networks can emerge as a consequence of the exponential expansion of hidden hyperbolic space. Fermi-Dirac statistics provides a physical interpretation of hyperbolic distances as energies of links. The hidden space curvature affects the heterogeneity of the degree distribution, while clustering is a function of temperature. We embed the internet into the hyperbolic plane and find a remarkable congruency between the embedding and our hyperbolic model. Besides proving our model realistic, this embedding may be used for routing with only local information, which holds significant promise for improving the performance of internet routing.
The curious case of large-N expansions on a (pseudo)sphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polyakov, Alexander M.; Saleem, Zain H.; Stokes, James
We elucidate the large-N dynamics of one-dimensional sigma models with spherical and hyperbolic target spaces and find a duality between the Lagrange multiplier and the angular momentum. In the hyperbolic model we propose a new class of operators based on the irreducible representations of hyperbolic space. We also uncover unexpected zero modes which lead to the double scaling of the 1/N expansion and explore these modes using Gelfand-Dikiy equations.
The curious case of large-N expansions on a (pseudo)sphere
Polyakov, Alexander M.; Saleem, Zain H.; Stokes, James
2015-02-03
We elucidate the large-N dynamics of one-dimensional sigma models with spherical and hyperbolic target spaces and find a duality between the Lagrange multiplier and the angular momentum. In the hyperbolic model we propose a new class of operators based on the irreducible representations of hyperbolic space. We also uncover unexpected zero modes which lead to the double scaling of the 1/N expansion and explore these modes using Gelfand-Dikiy equations.
2016-03-02
Nyquist tiles and sampling groups in Euclidean geometry, and discussed the extension of these concepts to hyperbolic and spherical geometry and...hyperbolic or spherical spaces. We look to develop a structure for the tiling of frequency spaces in both Euclidean and non-Euclidean domains. In particular...we establish Nyquist tiles and sampling groups in Euclidean geometry, and discuss the extension of these concepts to hyperbolic and spherical geometry
Correlation Functions of σ Fields with Values in a Hyperbolic Space
NASA Astrophysics Data System (ADS)
Haba, Z.
It is shown that the functional integral for a σ field with values in the Poincare upper half-plane (and some other hyperbolic spaces) can be performed explicitly resulting in a conformal invariant noncanonical field theory in two dimensions.
Nonlinear load-deflection behavior of abutment backwalls with varying height and soil density.
DOT National Transportation Integrated Search
2011-12-01
We address the scaling of abutment wall lateral response with wall height and compaction condition through testing and analytical work. The : analytical work was undertaken to develop hyperbolic curves representing the load-deflection response of bac...
NASA Astrophysics Data System (ADS)
Luminet, Jean-Pierre
2015-08-01
Cosmic Topology is the name given to the study of the overall shape of the universe, which involves both global topological features and more local geometrical properties such as curvature. Whether space is finite or infinite, simply-connected or multi-connected like a torus, smaller or greater than the portion of the universe that we can directly observe, are questions that refer to topology rather than curvature. A striking feature of some relativistic, multi-connected "small" universe models is to create multiples images of faraway cosmic sources. While the most recent cosmological data fit the simplest model of a zero-curvature, infinite space model, they are also consistent with compact topologies of the three homogeneous and isotropic geometries of constant curvature, such as, for instance, the spherical Poincaré Dodecahedral Space, the flat hypertorus or the hyperbolic Picard horn. After a "dark age" period, the field of Cosmic Topology has recently become one of the major concerns in cosmology, not only for theorists but also for observational astronomers, leaving open a number of unsolved issues.
Quantum Field Theory on Spacetimes with a Compactly Generated Cauchy Horizon
NASA Astrophysics Data System (ADS)
Kay, Bernard S.; Radzikowski, Marek J.; Wald, Robert M.
1997-02-01
We prove two theorems which concern difficulties in the formulation of the quantum theory of a linear scalar field on a spacetime, (M,g_{ab}), with a compactly generated Cauchy horizon. These theorems demonstrate the breakdown of the theory at certain base points of the Cauchy horizon, which are defined as 'past terminal accumulation points' of the horizon generators. Thus, the theorems may be interpreted as giving support to Hawking's 'Chronology Protection Conjecture', according to which the laws of physics prevent one from manufacturing a 'time machine'. Specifically, we prove: Theorem 1. There is no extension to (M,g_{ab}) of the usual field algebra on the initial globally hyperbolic region which satisfies the condition of F-locality at any base point. In other words, any extension of the field algebra must, in any globally hyperbolic neighbourhood of any base point, differ from the algebra one would define on that neighbourhood according to the rules for globally hyperbolic spacetimes. Theorem 2. The two-point distribution for any Hadamard state defined on the initial globally hyperbolic region must (when extended to a distributional bisolution of the covariant Klein-Gordon equation on the full spacetime) be singular at every base point x in the sense that the difference between this two point distribution and a local Hadamard distribution cannot be given by a bounded function in any neighbourhood (in M 2 M) of (x,x). In consequence of Theorem 2, quantities such as the renormalized expectation value of J2 or of the stress-energy tensor are necessarily ill-defined or singular at any base point. The proof of these theorems relies on the 'Propagation of Singularities' theorems of Duistermaat and Hörmander.
Harrison, John A
2008-09-04
RHF/aug-cc-pVnZ, UHF/aug-cc-pVnZ, and QCISD/aug-cc-pVnZ, n = 2-5, potential energy curves of H2 X (1) summation g (+) are analyzed by Fourier transform methods after transformation to a new coordinate system via an inverse hyperbolic cosine coordinate mapping. The Fourier frequency domain spectra are interpreted in terms of underlying mathematical behavior giving rise to distinctive features. There is a clear difference between the underlying mathematical nature of the potential energy curves calculated at the HF and full-CI levels. The method is particularly suited to the analysis of potential energy curves obtained at the highest levels of theory because the Fourier spectra are observed to be of a compact nature, with the envelope of the Fourier frequency coefficients decaying in magnitude in an exponential manner. The finite number of Fourier coefficients required to describe the CI curves allows for an optimum sampling strategy to be developed, corresponding to that required for exponential and geometric convergence. The underlying random numerical noise due to the finite convergence criterion is also a clearly identifiable feature in the Fourier spectrum. The methodology is applied to the analysis of MRCI potential energy curves for the ground and first excited states of HX (X = H-Ne). All potential energy curves exhibit structure in the Fourier spectrum consistent with the existence of resonances. The compact nature of the Fourier spectra following the inverse hyperbolic cosine coordinate mapping is highly suggestive that there is some advantage in viewing the chemical bond as having an underlying hyperbolic nature.
Representation of the contextual statistical model by hyperbolic amplitudes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khrennikov, Andrei
We continue the development of a so-called contextual statistical model (here context has the meaning of a complex of physical conditions). It is shown that, besides contexts producing the conventional trigonometric cos-interference, there exist contexts producing the hyperbolic cos-interference. Starting with the corresponding interference formula of total probability we represent such contexts by hyperbolic probabilistic amplitudes or in the abstract formalism by normalized vectors of a hyperbolic analogue of the Hilbert space. There is obtained a hyperbolic Born's rule. Incompatible observables are represented by noncommutative operators. This paper can be considered as the first step towards hyperbolic quantum probability. Wemore » also discuss possibilities of experimental verification of hyperbolic quantum mechanics: in physics of elementary particles, string theory as well as in experiments with nonphysical systems, e.g., in psychology, cognitive sciences, and economy.« less
Representation of the contextual statistical model by hyperbolic amplitudes
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei
2005-06-01
We continue the development of a so-called contextual statistical model (here context has the meaning of a complex of physical conditions). It is shown that, besides contexts producing the conventional trigonometric cos-interference, there exist contexts producing the hyperbolic cos-interference. Starting with the corresponding interference formula of total probability we represent such contexts by hyperbolic probabilistic amplitudes or in the abstract formalism by normalized vectors of a hyperbolic analogue of the Hilbert space. There is obtained a hyperbolic Born's rule. Incompatible observables are represented by noncommutative operators. This paper can be considered as the first step towards hyperbolic quantum probability. We also discuss possibilities of experimental verification of hyperbolic quantum mechanics: in physics of elementary particles, string theory as well as in experiments with nonphysical systems, e.g., in psychology, cognitive sciences, and economy.
Can rodents conceive hyperbolic spaces?
Urdapilleta, Eugenio; Troiani, Francesca; Stella, Federico; Treves, Alessandro
2015-01-01
The grid cells discovered in the rodent medial entorhinal cortex have been proposed to provide a metric for Euclidean space, possibly even hardwired in the embryo. Yet, one class of models describing the formation of grid unit selectivity is entirely based on developmental self-organization, and as such it predicts that the metric it expresses should reflect the environment to which the animal has adapted. We show that, according to self-organizing models, if raised in a non-Euclidean hyperbolic cage rats should be able to form hyperbolic grids. For a given range of grid spacing relative to the radius of negative curvature of the hyperbolic surface, such grids are predicted to appear as multi-peaked firing maps, in which each peak has seven neighbours instead of the Euclidean six, a prediction that can be tested in experiments. We thus demonstrate that a useful universal neuronal metric, in the sense of a multi-scale ruler and compass that remain unaltered when changing environments, can be extended to other than the standard Euclidean plane. PMID:25948611
NASA Technical Reports Server (NTRS)
Russell, D. L.
1983-01-01
Various aspects of the control theory of hyperbolic systems, including controllability, stabilization, control canonical form theory, etc., are reviewed. To allow a unified and not excessively technical treatment, attention is restricted to the case of a single space variable. A newly developed procedure of canonical augmentation is discussed.
Trading spaces: building three-dimensional nets from two-dimensional tilings
Castle, Toen; Evans, Myfanwy E.; Hyde, Stephen T.; Ramsden, Stuart; Robins, Vanessa
2012-01-01
We construct some examples of finite and infinite crystalline three-dimensional nets derived from symmetric reticulations of homogeneous two-dimensional spaces: elliptic (S2), Euclidean (E2) and hyperbolic (H2) space. Those reticulations are edges and vertices of simple spherical, planar and hyperbolic tilings. We show that various projections of the simplest symmetric tilings of those spaces into three-dimensional Euclidean space lead to topologically and geometrically complex patterns, including multiple interwoven nets and tangled nets that are otherwise difficult to generate ab initio in three dimensions. PMID:24098839
Positive mass and Penrose type inequalities for asymptotically hyperbolic hypersurfaces
NASA Astrophysics Data System (ADS)
de Lima, Levi Lopes; Girão, Frederico
2015-03-01
We establish versions of the positive mass and Penrose inequalities for a class of asymptotically hyperbolic hypersurfaces. In particular, under the usual dominant energy condition, we prove in all dimensions an optimal Penrose inequality for certain graphs in hyperbolic space whose boundary has constant mean curvature . This settles, for this class of manifolds, an inequality first conjectured by Wang (J Differ Geom 57(2):273-299, 2001).
Links between quantum physics and thought.
Robson, Barry
2009-01-01
Quantum mechanics (QM) provides a variety of ideas that can assist in developing Artificial Intelligence for healthcare, and opens the possibility of developing a unified system of Best Practice for inference that will embrace both QM and classical inference. Of particular interest is inference in the hyperbolic-complex plane, the counterpart of the normal i-complex plane of basic QM. There are two reasons. First, QM appears to rotate from i-complex Hilbert space to hyperbolic-complex descriptions when observations are made on wave functions as particles, yielding classical results, and classical laws of probability manipulation (e.g. the law of composition of probabilities) then hold, whereas in the i-complex plane they do not. Second, i-complex Hilbert space is not the whole story in physics. Hyperbolic complex planes arise in extension from the Dirac-Clifford calculus to particle physics, in relativistic correction thereby, and in regard to spinors and twisters. Generalization of these forms resemble grammatical constructions and promote the idea that probability-weighted algebraic elements can be used to hold dimensions of syntactic and semantic meaning. It is also starting to look as though when a solution is reached by an inference system in the hyperbolic-complex, the hyperbolic-imaginary values disappear, while conversely hyperbolic-imaginary values are associated with the un-queried state of a system and goal seeking behavior.
Topology and Singularities in Cosmological Spacetimes Obeying the Null Energy Condition
NASA Astrophysics Data System (ADS)
Galloway, Gregory J.; Ling, Eric
2018-06-01
We consider globally hyperbolic spacetimes with compact Cauchy surfaces in a setting compatible with the presence of a positive cosmological constant. More specifically, for 3 + 1 dimensional spacetimes which satisfy the null energy condition and contain a future expanding compact Cauchy surface, we establish a precise connection between the topology of the Cauchy surfaces and the occurrence of past singularities. In addition to the Penrose singularity theorem, the proof makes use of some recent advances in the topology of 3-manifolds and of certain fundamental existence results for minimal surfaces.
Magnetic hyperbolic optical metamaterials
Kruk, Sergey S.; Wong, Zi Jing; Pshenay-Severin, Ekaterina; ...
2016-04-13
Strongly anisotropic media where the principal components of electric permittivity or magnetic permeability tensors have opposite signs are termed as hyperbolic media. Such media support propagating electromagnetic waves with extremely large wave vectors exhibiting unique optical properties. However, in all artificial and natural optical materials studied to date, the hyperbolic dispersion originates solely from the electric response. This then restricts material functionality to one polarization of light and inhibits free-space impedance matching. Such restrictions can be overcome in media having components of opposite signs for both electric and magnetic tensors. Here we present the experimental demonstration of the magnetic hyperbolicmore » dispersion in three-dimensional metamaterials. We also measure metamaterial isofrequency contours and reveal the topological phase transition between the elliptic and hyperbolic dispersion. In the hyperbolic regime, we demonstrate the strong enhancement of thermal emission, which becomes directional, coherent and polarized. These findings show the possibilities for realizing efficient impedance-matched hyperbolic media for unpolarized light.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauguière, Frédéric A. L., E-mail: frederic.mauguiere@bristol.ac.uk; Collins, Peter, E-mail: peter.collins@bristol.ac.uk; Wiggins, Stephen, E-mail: stephen.wiggins@mac.com
We examine the phase space structures that govern reaction dynamics in the absence of critical points on the potential energy surface. We show that in the vicinity of hyperbolic invariant tori, it is possible to define phase space dividing surfaces that are analogous to the dividing surfaces governing transition from reactants to products near a critical point of the potential energy surface. We investigate the problem of capture of an atom by a diatomic molecule and show that a normally hyperbolic invariant manifold exists at large atom-diatom distances, away from any critical points on the potential. This normally hyperbolic invariantmore » manifold is the anchor for the construction of a dividing surface in phase space, which defines the outer or loose transition state governing capture dynamics. We present an algorithm for sampling an approximate capture dividing surface, and apply our methods to the recombination of the ozone molecule. We treat both 2 and 3 degrees of freedom models with zero total angular momentum. We have located the normally hyperbolic invariant manifold from which the orbiting (outer) transition state is constructed. This forms the basis for our analysis of trajectories for ozone in general, but with particular emphasis on the roaming trajectories.« less
Ergodicity-breaking bifurcations and tunneling in hyperbolic transport models
NASA Astrophysics Data System (ADS)
Giona, M.; Brasiello, A.; Crescitelli, S.
2015-11-01
One of the main differences between parabolic transport, associated with Langevin equations driven by Wiener processes, and hyperbolic models related to generalized Kac equations driven by Poisson processes, is the occurrence in the latter of multiple stable invariant densities (Frobenius multiplicity) in certain regions of the parameter space. This phenomenon is associated with the occurrence in linear hyperbolic balance equations of a typical bifurcation, referred to as the ergodicity-breaking bifurcation, the properties of which are thoroughly analyzed.
Exact moduli space metrics for hyperbolic vortex polygons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krusch, S.; Speight, J. M.
2010-02-15
Exact metrics on some totally geodesic submanifolds of the moduli space of static hyperbolic N-vortices are derived. These submanifolds, denoted as {sigma}{sub n,m}, are spaces of C{sub n}-invariant vortex configurations with n single vortices at the vertices of a regular polygon and m=N-n coincident vortices at the polygon's center. The geometric properties of {sigma}{sub n,m} are investigated, and it is found that {sigma}{sub n,n-1} is isometric to the hyperbolic plane of curvature -(3{pi}n){sup -1}. The geodesic flow on {sigma}{sub n,m} and a geometrically natural variant of geodesic flow recently proposed by Collie and Tong ['The dynamics of Chern-Simons vortices', Phys.more » Rev. D Part. Fields Gravit. Cosmol. 78, 065013 (2008);e-print arXiv:hep-th/0805.0602] are analyzed in detail.« less
NASA Astrophysics Data System (ADS)
Winicour, Jeffrey
2017-08-01
An algebraic-hyperbolic method for solving the Hamiltonian and momentum constraints has recently been shown to be well posed for general nonlinear perturbations of the initial data for a Schwarzschild black hole. This is a new approach to solving the constraints of Einstein’s equations which does not involve elliptic equations and has potential importance for the construction of binary black hole data. In order to shed light on the underpinnings of this approach, we consider its application to obtain solutions of the constraints for linearized perturbations of Minkowski space. In that case, we find the surprising result that there are no suitable Cauchy hypersurfaces in Minkowski space for which the linearized algebraic-hyperbolic constraint problem is well posed.
Hyperbolicity measures democracy in real-world networks
NASA Astrophysics Data System (ADS)
Borassi, Michele; Chessa, Alessandro; Caldarelli, Guido
2015-09-01
In this work, we analyze the hyperbolicity of real-world networks, a geometric quantity that measures if a space is negatively curved. We provide two improvements in our understanding of this quantity: first of all, in our interpretation, a hyperbolic network is "aristocratic", since few elements "connect" the system, while a non-hyperbolic network has a more "democratic" structure with a larger number of crucial elements. The second contribution is the introduction of the average hyperbolicity of the neighbors of a given node. Through this definition, we outline an "influence area" for the vertices in the graph. We show that in real networks the influence area of the highest degree vertex is small in what we define "local" networks (i.e., social or peer-to-peer networks), and large in "global" networks (i.e., power grid, metabolic networks, or autonomous system networks).
High-resolution deployable telescope for satellite applications
NASA Astrophysics Data System (ADS)
Pica, Giulia; Ciofaniello, Luca; Mattei, Stefania; Santovito, Maria Rosaria; Gardi, Roberto
2004-02-01
CO.RI.S.T.A. is involved in a research project funded by ASI (Italian Space Agency), named MITAR, to realise a very compact, lightweight deployable telescope in visible wavelength range to get earth images from microsatellite. The satellite considered for the study is SMART, an Italian academic multi-mission microsatellite operating on circular sun-synchronous orbits. The telescope has a Cassegrain configuration with a parabolic primary mirror and an hyperbolic secondary mirror. This configuration guaranties the best aberrations corrections and the best compactness. The primary and the secondary mirror are 40 cm and 10 cm in diameter respectively, while their relative distance is 52cm. Mirrors will be realised with innovative composite material to obtain lightweight optical elements. Thanks to its limited size and light weight, the system can be easily deployed. The deployable structure will keep the secondary mirror close to the primary one during launch phases. Once in orbit, a system of lenticular tape springs and dumpers will extend the structure. The structure will be enclosed in multilayer blankets that will shield the sensor from light and will thermally stabilize the structure, preventing excessive thermal deformation. The images will be detected by a very high resolution CCD camera installed onboard the satellite.
Fourth order difference methods for hyperbolic IBVP's
NASA Technical Reports Server (NTRS)
Gustafsson, Bertil; Olsson, Pelle
1994-01-01
Fourth order difference approximations of initial-boundary value problems for hyperbolic partial differential equations are considered. We use the method of lines approach with both explicit and compact implicit difference operators in space. The explicit operator satisfies an energy estimate leading to strict stability. For the implicit operator we develop boundary conditions and give a complete proof of strong stability using the Laplace transform technique. We also present numerical experiments for the linear advection equation and Burgers' equation with discontinuities in the solution or in its derivative. The first equation is used for modeling contact discontinuities in fluid dynamics, the second one for modeling shocks and rarefaction waves. The time discretization is done with a third order Runge-Kutta TVD method. For solutions with discontinuities in the solution itself we add a filter based on second order viscosity. In case of the non-linear Burger's equation we use a flux splitting technique that results in an energy estimate for certain different approximations, in which case also an entropy condition is fulfilled. In particular we shall demonstrate that the unsplit conservative form produces a non-physical shock instead of the physically correct rarefaction wave. In the numerical experiments we compare our fourth order methods with a standard second order one and with a third order TVD-method. The results show that the fourth order methods are the only ones that give good results for all the considered test problems.
Boundary causality versus hyperbolicity for spherical black holes in Gauss-Bonnet gravity
NASA Astrophysics Data System (ADS)
Andrade, Tomás; Cáceres, Elena; Keeler, Cynthia
2017-07-01
We explore the constraints boundary causality places on the allowable Gauss-Bonnet gravitational couplings in asymptotically AdS spaces, specifically considering spherical black hole solutions. We additionally consider the hyperbolicity properties of these solutions, positing that hyperbolicity-violating solutions are sick solutions whose causality properties provide no information about the theory they reside in. For both signs of the Gauss-Bonnet coupling, spherical black holes violate boundary causality at smaller absolute values of the coupling than planar black holes do. For negative coupling, as we tune the Gauss-Bonnet coupling away from zero, both spherical and planar black holes violate hyperbolicity before they violate boundary causality. For positive coupling, the only hyperbolicity-respecting spherical black holes which violate boundary causality do not do so appreciably far from the planar bound. Consequently, eliminating hyperbolicity-violating solutions means the bound on Gauss-Bonnet couplings from the boundary causality of spherical black holes is no tighter than that from planar black holes.
Invariant Measures for Dissipative Dynamical Systems: Abstract Results and Applications
NASA Astrophysics Data System (ADS)
Chekroun, Mickaël D.; Glatt-Holtz, Nathan E.
2012-12-01
In this work we study certain invariant measures that can be associated to the time averaged observation of a broad class of dissipative semigroups via the notion of a generalized Banach limit. Consider an arbitrary complete separable metric space X which is acted on by any continuous semigroup { S( t)} t ≥ 0. Suppose that { S( t)} t ≥ 0 possesses a global attractor {{A}}. We show that, for any generalized Banach limit LIM T → ∞ and any probability distribution of initial conditions {{m}_0}, that there exists an invariant probability measure {{m}}, whose support is contained in {{A}}, such that intX \\varphi(x) d{m}(x) = \\underset{t rightarrow infty}LIM1/T int_0^T int_X \\varphi(S(t) x) d{m}_0(x) dt, for all observables φ living in a suitable function space of continuous mappings on X. This work is based on the framework of Foias et al. (Encyclopedia of mathematics and its applications, vol 83. Cambridge University Press, Cambridge, 2001); it generalizes and simplifies the proofs of more recent works (Wang in Disc Cont Dyn Syst 23(1-2):521-540, 2009; Lukaszewicz et al. in J Dyn Diff Eq 23(2):225-250, 2011). In particular our results rely on the novel use of a general but elementary topological observation, valid in any metric space, which concerns the growth of continuous functions in the neighborhood of compact sets. In the case when { S( t)} t ≥ 0 does not possess a compact absorbing set, this lemma allows us to sidestep the use of weak compactness arguments which require the imposition of cumbersome weak continuity conditions and thus restricts the phase space X to the case of a reflexive Banach space. Two examples of concrete dynamical systems where the semigroup is known to be non-compact are examined in detail. We first consider the Navier-Stokes equations with memory in the diffusion terms. This is the so called Jeffery's model which describes certain classes of viscoelastic fluids. We then consider a family of neutral delay differential equations, that is equations with delays in the time derivative terms. These systems may arise in the study of wave propagation problems coming from certain first order hyperbolic partial differential equations; for example for the study of line transmission problems. For the second example the phase space is {X= C([-tau,0],{R}^n)}, for some delay τ > 0, so that X is not reflexive in this case.
Generalized heat-transport equations: parabolic and hyperbolic models
NASA Astrophysics Data System (ADS)
Rogolino, Patrizia; Kovács, Robert; Ván, Peter; Cimmelli, Vito Antonio
2018-03-01
We derive two different generalized heat-transport equations: the most general one, of the first order in time and second order in space, encompasses some well-known heat equations and describes the hyperbolic regime in the absence of nonlocal effects. Another, less general, of the second order in time and fourth order in space, is able to describe hyperbolic heat conduction also in the presence of nonlocal effects. We investigate the thermodynamic compatibility of both models by applying some generalizations of the classical Liu and Coleman-Noll procedures. In both cases, constitutive equations for the entropy and for the entropy flux are obtained. For the second model, we consider a heat-transport equation which includes nonlocal terms and study the resulting set of balance laws, proving that the corresponding thermal perturbations propagate with finite speed.
NASA Technical Reports Server (NTRS)
Goodrich, John W.
1995-01-01
Two methods for developing high order single step explicit algorithms on symmetric stencils with data on only one time level are presented. Examples are given for the convection and linearized Euler equations with up to the eighth order accuracy in both space and time in one space dimension, and up to the sixth in two space dimensions. The method of characteristics is generalized to nondiagonalizable hyperbolic systems by using exact local polynominal solutions of the system, and the resulting exact propagator methods automatically incorporate the correct multidimensional wave propagation dynamics. Multivariate Taylor or Cauchy-Kowaleskaya expansions are also used to develop algorithms. Both of these methods can be applied to obtain algorithms of arbitrarily high order for hyperbolic systems in multiple space dimensions. Cross derivatives are included in the local approximations used to develop the algorithms in this paper in order to obtain high order accuracy, and improved isotropy and stability. Efficiency in meeting global error bounds is an important criterion for evaluating algorithms, and the higher order algorithms are shown to be up to several orders of magnitude more efficient even though they are more complex. Stable high order boundary conditions for the linearized Euler equations are developed in one space dimension, and demonstrated in two space dimensions.
Second- and third-order upwind difference schemes for hyperbolic conservation laws
NASA Technical Reports Server (NTRS)
Yang, J. Y.
1984-01-01
Second- and third-order two time-level five-point explicit upwind-difference schemes are described for the numerical solution of hyperbolic systems of conservation laws and applied to the Euler equations of inviscid gas dynamics. Nonliner smoothing techniques are used to make the schemes total variation diminishing. In the method both hyperbolicity and conservation properties of the hyperbolic conservation laws are combined in a very natural way by introducing a normalized Jacobian matrix of the hyperbolic system. Entropy satisfying shock transition operators which are consistent with the upwind differencing are locally introduced when transonic shock transition is detected. Schemes thus constructed are suitable for shockcapturing calculations. The stability and the global order of accuracy of the proposed schemes are examined. Numerical experiments for the inviscid Burgers equation and the compressible Euler equations in one and two space dimensions involving various situations of aerodynamic interest are included and compared.
Motion Among Random Obstacles on a Hyperbolic Space
NASA Astrophysics Data System (ADS)
Orsingher, Enzo; Ricciuti, Costantino; Sisti, Francesco
2016-02-01
We consider the motion of a particle along the geodesic lines of the Poincaré half-plane. The particle is specularly reflected when it hits randomly-distributed obstacles that are assumed to be motionless. This is the hyperbolic version of the well-known Lorentz Process studied in the Euclidean context. We analyse the limit in which the density of the obstacles increases to infinity and the size of each obstacle vanishes: under a suitable scaling, we prove that our process converges to a Markovian process, namely a random flight on the hyperbolic manifold.
Exotica and the status of the strong cosmic censor conjecture in four dimensions
NASA Astrophysics Data System (ADS)
Etesi, Gábor
2017-12-01
An immense class of physical counterexamples to the four dimensional strong cosmic censor conjecture—in its usual broad formulation—is exhibited. More precisely, out of any closed and simply connected 4-manifold an open Ricci-flat Lorentzian 4-manifold is constructed which is not globally hyperbolic, and no perturbation of which, in any sense, can be globally hyperbolic. This very stable non-global-hyperbolicity is the consequence of our open spaces having a ‘creased end’—i.e. an end diffeomorphic to an exotic \
Computational methods for estimation of parameters in hyperbolic systems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Ito, K.; Murphy, K. A.
1983-01-01
Approximation techniques for estimating spatially varying coefficients and unknown boundary parameters in second order hyperbolic systems are discussed. Methods for state approximation (cubic splines, tau-Legendre) and approximation of function space parameters (interpolatory splines) are outlined and numerical findings for use of the resulting schemes in model "one dimensional seismic inversion' problems are summarized.
NASA Astrophysics Data System (ADS)
Holst, Michael; Meier, Caleb; Tsogtgerel, G.
2018-01-01
In this article we continue our effort to do a systematic development of the solution theory for conformal formulations of the Einstein constraint equations on compact manifolds with boundary. By building in a natural way on our recent work in Holst and Tsogtgerel (Class Quantum Gravity 30:205011, 2013), and Holst et al. (Phys Rev Lett 100(16):161101, 2008, Commun Math Phys 288(2):547-613, 2009), and also on the work of Maxwell (J Hyperbolic Differ Eqs 2(2):521-546, 2005a, Commun Math Phys 253(3):561-583, 2005b, Math Res Lett 16(4):627-645, 2009) and Dain (Class Quantum Gravity 21(2):555-573, 2004), under reasonable assumptions on the data we prove existence of both near- and far-from-constant mean curvature (CMC) solutions for a class of Robin boundary conditions commonly used in the literature for modeling black holes, with a third existence result for CMC appearing as a special case. Dain and Maxwell addressed initial data engineering for space-times that evolve to contain black holes, determining solutions to the conformal formulation on an asymptotically Euclidean manifold in the CMC setting, with interior boundary conditions representing excised interior black hole regions. Holst and Tsogtgerel compiled the interior boundary results covered by Dain and Maxwell, and then developed general interior conditions to model the apparent horizon boundary conditions of Dainand Maxwell for compact manifolds with boundary, and subsequently proved existence of solutions to the Lichnerowicz equation on compact manifolds with such boundary conditions. This paper picks up where Holst and Tsogtgerel left off, addressing the general non-CMC case for compact manifolds with boundary. As in our previous articles, our focus here is again on low regularity data and on the interaction between different types of boundary conditions. While our work here serves primarily to extend the solution theory for the compact with boundary case, we also develop several technical tools that have potential for use for other cases.
Universal properties of the near-horizon optical geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbons, G. W.; Warnick, C. M.
2009-03-15
Making use of the fact that the optical geometry near a static nondegenerate Killing horizon is asymptotically hyperbolic, we investigate some universal features of black-hole horizons. Applying the Gauss-Bonnet theorem allows us to establish some general properties of gravitational lensing, valid for all black holes. Hyperbolic geometry allows us to find rates for the loss of scalar, vector, and fermionic ''hair'' as objects fall quasistatically towards the horizon, extending previous results for Schwarzschild to all static Killing horizons. In the process we find the Lienard-Wiechert potential for hyperbolic space and calculate the force between electrons mediated by neutrinos, extending themore » flat space result of Feinberg and Sucher. We further demonstrate how these techniques allow us to derive the exact Copson-Linet potential due to a point charge in a Schwarzschild background in a simple fashion.« less
On the Conservation and Convergence to Weak Solutions of Global Schemes
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Gottlieb, David; Shu, Chi-Wang
2001-01-01
In this paper we discuss the issue of conservation and convergence to weak solutions of several global schemes, including the commonly used compact schemes and spectral collocation schemes, for solving hyperbolic conservation laws. It is shown that such schemes, if convergent boundedly almost everywhere, will converge to weak solutions. The results are extensions of the classical Lax-Wendroff theorem concerning conservative schemes.
The Hartman-Grobman theorem for semilinear hyperbolic evolution equations
NASA Astrophysics Data System (ADS)
Hein, Marie-Luise; Prüss, Jan
2016-10-01
The famous Hartman-Grobman theorem for ordinary differential equations is extended to abstract semilinear hyperbolic evolution equations in Banach spaces by means of simple direct proof. It is also shown that the linearising map is Hölder continuous. Several applications to abstract and specific damped wave equations are given, to demonstrate the strength of our results.
Central Configurations of the Curved N-Body Problem
NASA Astrophysics Data System (ADS)
Diacu, Florin; Stoica, Cristina; Zhu, Shuqiang
2018-06-01
We consider the N-body problem of celestial mechanics in spaces of nonzero constant curvature. Using the concept of effective potential, we define the moment of inertia for systems moving on spheres and hyperbolic spheres and show that we can recover the classical definition in the Euclidean case. After proving some criteria for the existence of relative equilibria, we find a natural way to define the concept of central configuration in curved spaces using the moment of inertia and show that our definition is formally similar to the one that governs the classical problem. We prove that, for any given point masses on spheres and hyperbolic spheres, central configurations always exist. We end with results concerning the number of central configurations that lie on the same geodesic, thus extending the celebrated theorem of Moulton to hyperbolic spheres and pointing out that it has no straightforward generalization to spheres, where the count gets complicated even for two bodies.
Cauchy problem as a two-surface based ‘geometrodynamics’
NASA Astrophysics Data System (ADS)
Rácz, István
2015-01-01
Four-dimensional spacetimes foliated by a two-parameter family of homologous two-surfaces are considered in Einstein's theory of gravity. By combining a 1 + (1 + 2) decomposition, the canonical form of the spacetime metric and a suitable specification of the conformal structure of the foliating two-surfaces, a gauge fixing is introduced. It is shown that, in terms of the chosen geometrically distinguished variables, the 1 + 3 Hamiltonian and momentum constraints can be recast into the form of a parabolic equation and a first order symmetric hyperbolic system, respectively. Initial data to this system can be given on one of the two-surfaces foliating the three-dimensional initial data surface. The 1 + 3 reduced Einstein's equations are also determined. By combining the 1 + 3 momentum constraint with the reduced system of the secondary 1 + 2 decomposition, a mixed hyperbolic-hyperbolic system is formed. It is shown that solutions to this mixed hyperbolic-hyperbolic system are also solutions to the full set of Einstein's equations provided that the 1 + 3 Hamiltonian constraint is solved on the initial data surface {{Σ }0} and the 1 + 2 Hamiltonian and momentum type expressions vanish on a world-tube yielded by the Lie transport of one of the two-surfaces foliating {{Σ }0} along the time evolution vector field. Whenever the foliating two-surfaces are compact without boundary in the spacetime and a regular origin exists on the time-slices—this is the location where the foliating two-surfaces smoothly reduce to a point—it suffices to guarantee that the 1 + 3 Hamiltonian constraint holds on the initial data surface. A short discussion on the use of the geometrically distinguished variables in identifying the degrees of freedom of gravity are also included. Dedicated to Zoltán Cseke on the occasion of his 70th birthday.
Perspective Space as a Model for Distance and Size Perception.
Erkelens, Casper J
2017-01-01
In the literature, perspective space has been introduced as a model of visual space. Perspective space is grounded on the perspective nature of visual space during both binocular and monocular vision. A single parameter, that is, the distance of the vanishing point, transforms the geometry of physical space into that of perspective space. The perspective-space model predicts perceived angles, distances, and sizes. The model is compared with other models for distance and size perception. Perspective space predicts that perceived distance and size as a function of physical distance are described by hyperbolic functions. Alternatively, power functions have been widely used to describe perceived distance and size. Comparison of power and hyperbolic functions shows that both functions are equivalent within the range of distances that have been judged in experiments. Two models describing perceived distance on the ground plane appear to be equivalent with the perspective-space model too. The conclusion is that perspective space unifies a number of models of distance and size perception.
Perspective Space as a Model for Distance and Size Perception
2017-01-01
In the literature, perspective space has been introduced as a model of visual space. Perspective space is grounded on the perspective nature of visual space during both binocular and monocular vision. A single parameter, that is, the distance of the vanishing point, transforms the geometry of physical space into that of perspective space. The perspective-space model predicts perceived angles, distances, and sizes. The model is compared with other models for distance and size perception. Perspective space predicts that perceived distance and size as a function of physical distance are described by hyperbolic functions. Alternatively, power functions have been widely used to describe perceived distance and size. Comparison of power and hyperbolic functions shows that both functions are equivalent within the range of distances that have been judged in experiments. Two models describing perceived distance on the ground plane appear to be equivalent with the perspective-space model too. The conclusion is that perspective space unifies a number of models of distance and size perception. PMID:29225765
Well-posedness of characteristic symmetric hyperbolic systems
NASA Astrophysics Data System (ADS)
Secchi, Paolo
1996-06-01
We consider the initial-boundary-value problem for quasi-linear symmetric hyperbolic systems with characteristic boundary of constant multiplicity. We show the well-posedness in Hadamard's sense (i.e., existence, uniqueness and continuous dependence of solutions on the data) of regular solutions in suitable functions spaces which take into account the loss of regularity in the normal direction to the characteristic boundary.
Second-order numerical solution of time-dependent, first-order hyperbolic equations
NASA Technical Reports Server (NTRS)
Shah, Patricia L.; Hardin, Jay
1995-01-01
A finite difference scheme is developed to find an approximate solution of two similar hyperbolic equations, namely a first-order plane wave and spherical wave problem. Finite difference approximations are made for both the space and time derivatives. The result is a conditionally stable equation yielding an exact solution when the Courant number is set to one.
An instability of hyperbolic space under the Yang-Mills flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gegenberg, Jack; Day, Andrew C.; Liu, Haitao
2014-04-15
We consider the Yang-Mills flow on hyperbolic 3-space. The gauge connection is constructed from the frame-field and (not necessarily compatible) spin connection components. The fixed points of this flow include zero Yang-Mills curvature configurations, for which the spin connection has zero torsion and the associated Riemannian geometry is one of constant curvature. We analytically solve the linearized flow equations for a large class of perturbations to the fixed point corresponding to hyperbolic 3-space. These can be expressed as a linear superposition of distinct modes, some of which are exponentially growing along the flow. The growing modes imply the divergence ofmore » the (gauge invariant) perturbative torsion for a wide class of initial data, indicating an instability of the background geometry that we confirm with numeric simulations in the partially compactified case. There are stable modes with zero torsion, but all the unstable modes are torsion-full. This leads us to speculate that the instability is induced by the torsion degrees of freedom present in the Yang-Mills flow.« less
On the Nodal Lines of Eisenstein Series on Schottky Surfaces
NASA Astrophysics Data System (ADS)
Jakobson, Dmitry; Naud, Frédéric
2017-04-01
On convex co-compact hyperbolic surfaces {X=Γ backslash H2}, we investigate the behavior of nodal curves of real valued Eisenstein series {F_λ(z,ξ)}, where {λ} is the spectral parameter, {ξ} the direction at infinity. Eisenstein series are (non-{L^2}) eigenfunctions of the Laplacian {Δ_X} satisfying {Δ_X F_λ=(1/4+λ^2)F_λ}. As {λ} goes to infinity (the high energy limit), we show that, for generic {ξ}, the number of intersections of nodal lines with any compact segment of geodesic grows like {λ}, up to multiplicative constants. Applications to the number of nodal domains inside the convex core of the surface are then derived.
Characterizing omega-limit sets which are closed orbits
NASA Astrophysics Data System (ADS)
Bautista, S.; Morales, C.
Let X be a vector field in a compact n-manifold M, n⩾2. Given Σ⊂M we say that q∈M satisfies (P) Σ if the closure of the positive orbit of X through q does not intersect Σ, but, however, there is an open interval I with q as a boundary point such that every positive orbit through I intersects Σ. Among those q having saddle-type hyperbolic omega-limit set ω(q) the ones with ω(q) being a closed orbit satisfy (P) Σ for some closed subset Σ. The converse is true for n=2 but not for n⩾4. Here we prove the converse for n=3. Moreover, we prove for n=3 that if ω(q) is a singular-hyperbolic set [C. Morales, M. Pacifico, E. Pujals, On C robust singular transitive sets for three-dimensional flows, C. R. Acad. Sci. Paris Sér. I 26 (1998) 81-86], [C. Morales, M. Pacifico, E. Pujals, Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers, Ann. of Math. (2) 160 (2) (2004) 375-432], then ω(q) is a closed orbit if and only if q satisfies (P) Σ for some Σ closed. This result improves [S. Bautista, Sobre conjuntos hiperbólicos-singulares (On singular-hyperbolic sets), thesis Uiversidade Federal do Rio de Janeiro, 2005 (in Portuguese)] and [C. Morales, M. Pacifico, Mixing attractors for 3-flows, Nonlinearity 14 (2001) 359-378].
Elliptical varied line-space (EVLS) gratings
NASA Astrophysics Data System (ADS)
Thomas, Roger J.
2004-10-01
Imaging spectroscopy at wavelengths below 2000 Å offers an especially powerful method for studying many extended high-temperature astronomical objects, like the Sun and its outer layers. But the technology to make such measurements is also especially challenging, because of the poor reflectance of all standard materials at these wavelengths, and because the observation must be made from above the absorbing effects of the Earth's atmosphere. To solve these problems, single-reflection stigmatic spectrographs for XUV wavelengths have bee flown on several space missions based on designs with toroidal uniform line-space (TULS) or spherical varied line-space (SVLS) gratings that operate at near normal-incidence. More recently, three solar EUV/UV instruments have been selected that use toroidal varied line-space (TVLS) gratings; these are SUMI and RAISE, both sounding rocket payloads, and NEXUS, a SMEX satellite-mission. The next logical extension to such designs is the use of elliptical surfaces for varied line-space (EVLS) rulings. In fact, EVLS designs are found to provide superior imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. In some cases, such designs may be optimized even further by using a hyperbolic surface for the feeding telescope. The optical characteristics of two solar EUV spectrometers based on these concepts are described: EUS and EUI, both being developed as possible instruments for ESA's Solar Orbiter mission by consortia led by RAL and by MSSL, respectively.
Quantitative Compactness Estimates for Hamilton-Jacobi Equations
NASA Astrophysics Data System (ADS)
Ancona, Fabio; Cannarsa, Piermarco; Nguyen, Khai T.
2016-02-01
We study quantitative compactness estimates in {W^{1,1}_{loc}} for the map {S_t}, {t > 0} that is associated with the given initial data {u_0in Lip (R^N)} for the corresponding solution {S_t u_0} of a Hamilton-Jacobi equation u_t+Hbig(nabla_{x} ubig)=0, qquad t≥ 0,quad xinR^N, with a uniformly convex Hamiltonian {H=H(p)}. We provide upper and lower estimates of order {1/\\varepsilon^N} on the Kolmogorov {\\varepsilon}-entropy in {W^{1,1}} of the image through the map S t of sets of bounded, compactly supported initial data. Estimates of this type are inspired by a question posed by Lax (Course on Hyperbolic Systems of Conservation Laws. XXVII Scuola Estiva di Fisica Matematica, Ravello, 2002) within the context of conservation laws, and could provide a measure of the order of "resolution" of a numerical method implemented for this equation.
NASA Astrophysics Data System (ADS)
Muscoloni, Alessandro; Vittorio Cannistraci, Carlo
2018-05-01
The investigation of the hidden metric space behind complex network topologies is a fervid topic in current network science and the hyperbolic space is one of the most studied, because it seems associated to the structural organization of many real complex systems. The popularity-similarity-optimization (PSO) model simulates how random geometric graphs grow in the hyperbolic space, generating realistic networks with clustering, small-worldness, scale-freeness and rich-clubness. However, it misses to reproduce an important feature of real complex networks, which is the community organization. The geometrical-preferential-attachment (GPA) model was recently developed in order to confer to the PSO also a soft community structure, which is obtained by forcing different angular regions of the hyperbolic disk to have a variable level of attractiveness. However, the number and size of the communities cannot be explicitly controlled in the GPA, which is a clear limitation for real applications. Here, we introduce the nonuniform PSO (nPSO) model. Differently from GPA, the nPSO generates synthetic networks in the hyperbolic space where heterogeneous angular node attractiveness is forced by sampling the angular coordinates from a tailored nonuniform probability distribution (for instance a mixture of Gaussians). The nPSO differs from GPA in other three aspects: it allows one to explicitly fix the number and size of communities; it allows one to tune their mixing property by means of the network temperature; it is efficient to generate networks with high clustering. Several tests on the detectability of the community structure in nPSO synthetic networks and wide investigations on their structural properties confirm that the nPSO is a valid and efficient model to generate realistic complex networks with communities.
Chimeras and clusters in networks of hyperbolic chaotic oscillators
NASA Astrophysics Data System (ADS)
Cano, A. V.; Cosenza, M. G.
2017-03-01
We show that chimera states, where differentiated subsets of synchronized and desynchronized dynamical elements coexist, can emerge in networks of hyperbolic chaotic oscillators subject to global interactions. As local dynamics we employ Lozi maps, which possess hyperbolic chaotic attractors. We consider a globally coupled system of these maps and use two statistical quantities to describe its collective behavior: the average fraction of elements belonging to clusters and the average standard deviation of state variables. Chimera states, clusters, complete synchronization, and incoherence are thus characterized on the space of parameters of the system. We find that chimera states are related to the formation of clusters in the system. In addition, we show that chimera states arise for a sufficiently long range of interactions in nonlocally coupled networks of these maps. Our results reveal that, under some circumstances, hyperbolicity does not impede the formation of chimera states in networks of coupled chaotic systems, as it had been previously hypothesized.
Boundary conformal anomalies on hyperbolic spaces and Euclidean balls
NASA Astrophysics Data System (ADS)
Rodriguez-Gomez, Diego; Russo, Jorge G.
2017-12-01
We compute conformal anomalies for conformal field theories with free conformal scalars and massless spin 1/2 fields in hyperbolic space ℍ d and in the ball B^d , for 2≤d≤7. These spaces are related by a conformal transformation. In even dimensional spaces, the conformal anomalies on ℍ2 n and B^{2n} are shown to be identical. In odd dimensional spaces, the conformal anomaly on B^{2n+1} comes from a boundary contribution, which exactly coincides with that of ℍ2 n + 1 provided one identifies the UV short-distance cutoff on B^{2n+1} with the inverse large distance IR cutoff on ℍ2 n + 1, just as prescribed by the conformal map. As an application, we determine, for the first time, the conformal anomaly coefficients multiplying the Euler characteristic of the boundary for scalars and half-spin fields with various boundary conditions in d = 5 and d = 7.
A Theoretical Framework for Lagrangian Descriptors
NASA Astrophysics Data System (ADS)
Lopesino, C.; Balibrea-Iniesta, F.; García-Garrido, V. J.; Wiggins, S.; Mancho, A. M.
This paper provides a theoretical background for Lagrangian Descriptors (LDs). The goal of achieving rigorous proofs that justify the ability of LDs to detect invariant manifolds is simplified by introducing an alternative definition for LDs. The definition is stated for n-dimensional systems with general time dependence, however we rigorously prove that this method reveals the stable and unstable manifolds of hyperbolic points in four particular 2D cases: a hyperbolic saddle point for linear autonomous systems, a hyperbolic saddle point for nonlinear autonomous systems, a hyperbolic saddle point for linear nonautonomous systems and a hyperbolic saddle point for nonlinear nonautonomous systems. We also discuss further rigorous results which show the ability of LDs to highlight additional invariants sets, such as n-tori. These results are just a simple extension of the ergodic partition theory which we illustrate by applying this methodology to well-known examples, such as the planar field of the harmonic oscillator and the 3D ABC flow. Finally, we provide a thorough discussion on the requirement of the objectivity (frame-invariance) property for tools designed to reveal phase space structures and their implications for Lagrangian descriptors.
Dynamic hyperbolic geometry: building intuition and understanding mediated by a Euclidean model
NASA Astrophysics Data System (ADS)
Moreno-Armella, Luis; Brady, Corey; Elizondo-Ramirez, Rubén
2018-05-01
This paper explores a deep transformation in mathematical epistemology and its consequences for teaching and learning. With the advent of non-Euclidean geometries, direct, iconic correspondences between physical space and the deductive structures of mathematical inquiry were broken. For non-Euclidean ideas even to become thinkable the mathematical community needed to accumulate over twenty centuries of reflection and effort: a precious instance of distributed intelligence at the cultural level. In geometry education after this crisis, relations between intuitions and geometrical reasoning must be established philosophically, rather than taken for granted. One approach seeks intuitive supports only for Euclidean explorations, viewing non-Euclidean inquiry as fundamentally non-intuitive in nature. We argue for moving beyond such an impoverished approach, using dynamic geometry environments to develop new intuitions even in the extremely challenging setting of hyperbolic geometry. Our efforts reverse the typical direction, using formal structures as a source for a new family of intuitions that emerge from exploring a digital model of hyperbolic geometry. This digital model is elaborated within a Euclidean dynamic geometry environment, enabling a conceptual dance that re-configures Euclidean knowledge as a support for building intuitions in hyperbolic space-intuitions based not directly on physical experience but on analogies extending Euclidean concepts.
Efficient embedding of complex networks to hyperbolic space via their Laplacian
Alanis-Lobato, Gregorio; Mier, Pablo; Andrade-Navarro, Miguel A.
2016-01-01
The different factors involved in the growth process of complex networks imprint valuable information in their observable topologies. How to exploit this information to accurately predict structural network changes is the subject of active research. A recent model of network growth sustains that the emergence of properties common to most complex systems is the result of certain trade-offs between node birth-time and similarity. This model has a geometric interpretation in hyperbolic space, where distances between nodes abstract this optimisation process. Current methods for network hyperbolic embedding search for node coordinates that maximise the likelihood that the network was produced by the afore-mentioned model. Here, a different strategy is followed in the form of the Laplacian-based Network Embedding, a simple yet accurate, efficient and data driven manifold learning approach, which allows for the quick geometric analysis of big networks. Comparisons against existing embedding and prediction techniques highlight its applicability to network evolution and link prediction. PMID:27445157
Efficient embedding of complex networks to hyperbolic space via their Laplacian
NASA Astrophysics Data System (ADS)
Alanis-Lobato, Gregorio; Mier, Pablo; Andrade-Navarro, Miguel A.
2016-07-01
The different factors involved in the growth process of complex networks imprint valuable information in their observable topologies. How to exploit this information to accurately predict structural network changes is the subject of active research. A recent model of network growth sustains that the emergence of properties common to most complex systems is the result of certain trade-offs between node birth-time and similarity. This model has a geometric interpretation in hyperbolic space, where distances between nodes abstract this optimisation process. Current methods for network hyperbolic embedding search for node coordinates that maximise the likelihood that the network was produced by the afore-mentioned model. Here, a different strategy is followed in the form of the Laplacian-based Network Embedding, a simple yet accurate, efficient and data driven manifold learning approach, which allows for the quick geometric analysis of big networks. Comparisons against existing embedding and prediction techniques highlight its applicability to network evolution and link prediction.
Metrics in Keplerian orbits quotient spaces
NASA Astrophysics Data System (ADS)
Milanov, Danila V.
2018-03-01
Quotient spaces of Keplerian orbits are important instruments for the modelling of orbit samples of celestial bodies on a large time span. We suppose that variations of the orbital eccentricities, inclinations and semi-major axes remain sufficiently small, while arbitrary perturbations are allowed for the arguments of pericentres or longitudes of the nodes, or both. The distance between orbits or their images in quotient spaces serves as a numerical criterion for such problems of Celestial Mechanics as search for common origin of meteoroid streams, comets, and asteroids, asteroid families identification, and others. In this paper, we consider quotient sets of the non-rectilinear Keplerian orbits space H. Their elements are identified irrespective of the values of pericentre arguments or node longitudes. We prove that distance functions on the quotient sets, introduced in Kholshevnikov et al. (Mon Not R Astron Soc 462:2275-2283, 2016), satisfy metric space axioms and discuss theoretical and practical importance of this result. Isometric embeddings of the quotient spaces into R^n, and a space of compact subsets of H with Hausdorff metric are constructed. The Euclidean representations of the orbits spaces find its applications in a problem of orbit averaging and computational algorithms specific to Euclidean space. We also explore completions of H and its quotient spaces with respect to corresponding metrics and establish a relation between elements of the extended spaces and rectilinear trajectories. Distance between an orbit and subsets of elliptic and hyperbolic orbits is calculated. This quantity provides an upper bound for the metric value in a problem of close orbits identification. Finally the invariance of the equivalence relations in H under coordinates change is discussed.
A New Time-Space Accurate Scheme for Hyperbolic Problems. 1; Quasi-Explicit Case
NASA Technical Reports Server (NTRS)
Sidilkover, David
1998-01-01
This paper presents a new discretization scheme for hyperbolic systems of conservations laws. It satisfies the TVD property and relies on the new high-resolution mechanism which is compatible with the genuinely multidimensional approach proposed recently. This work can be regarded as a first step towards extending the genuinely multidimensional approach to unsteady problems. Discontinuity capturing capabilities and accuracy of the scheme are verified by a set of numerical tests.
Note on the displacement of a trajectory of hyperbolic motion in curved space-time
NASA Astrophysics Data System (ADS)
Krikorian, R. A.
2012-04-01
The object of this note is to present a physical application of the theory of the infinitesimal deformations or displacements of curves developed by Yano using the concept of Lie derivative. It is shown that an infinitesimal point transformation which carries a given trajectory of hyperbolic motion into a trajectory of the same type, and preserves the affine parametrization of the trajectory, defines a homothetic motion.
String Theory: exact solutions, marginal deformations and hyperbolic spaces
NASA Astrophysics Data System (ADS)
Orlando, Domenico
2006-10-01
This thesis is almost entirely devoted to studying string theory backgrounds characterized by simple geometrical and integrability properties. The archetype of this type of system is given by Wess-Zumino-Witten models, describing string propagation in a group manifold or, equivalently, a class of conformal field theories with current algebras. We study the moduli space of such models by using truly marginal deformations. Particular emphasis is placed on asymmetric deformations that, together with the CFT description, enjoy a very nice spacetime interpretation in terms of the underlying Lie algebra. Then we take a slight detour so to deal with off-shell systems. Using a renormalization-group approach we describe the relaxation towards the symmetrical equilibrium situation. In he final chapter we consider backgrounds with Ramond-Ramond field and in particular we analyze direct products of constant-curvature spaces and find solutions with hyperbolic spaces.
NASA Astrophysics Data System (ADS)
Xi, Yakun; Zhang, Cheng
2017-03-01
We show that one can obtain improved L 4 geodesic restriction estimates for eigenfunctions on compact Riemannian surfaces with nonpositive curvature. We achieve this by adapting Sogge's strategy in (Improved critical eigenfunction estimates on manifolds of nonpositive curvature, Preprint). We first combine the improved L 2 restriction estimate of Blair and Sogge (Concerning Toponogov's Theorem and logarithmic improvement of estimates of eigenfunctions, Preprint) and the classical improved {L^∞} estimate of Bérard to obtain an improved weak-type L 4 restriction estimate. We then upgrade this weak estimate to a strong one by using the improved Lorentz space estimate of Bak and Seeger (Math Res Lett 18(4):767-781, 2011). This estimate improves the L 4 restriction estimate of Burq et al. (Duke Math J 138:445-486, 2007) and Hu (Forum Math 6:1021-1052, 2009) by a power of {(log logλ)^{-1}}. Moreover, in the case of compact hyperbolic surfaces, we obtain further improvements in terms of {(logλ)^{-1}} by applying the ideas from (Chen and Sogge, Commun Math Phys 329(3):435-459, 2014) and (Blair and Sogge, Concerning Toponogov's Theorem and logarithmic improvement of estimates of eigenfunctions, Preprint). We are able to compute various constants that appeared in (Chen and Sogge, Commun Math Phys 329(3):435-459, 2014) explicitly, by proving detailed oscillatory integral estimates and lifting calculations to the universal cover H^2.
NASA Astrophysics Data System (ADS)
Shariati, M.; Talon, L.; Martin, J.; Rakotomalala, N.; Salin, D.; Yortsos, Y. C.
2004-11-01
We consider miscible displacement between parallel plates in the absence of diffusion, with a concentration-dependent viscosity. By selecting a piecewise viscosity function, this can also be considered as ‘three-fluid’ flow in the same geometry. Assuming symmetry across the gap and based on the lubrication (‘equilibrium’) approximation, a description in terms of two quasi-linear hyperbolic equations is obtained. We find that the system is hyperbolic and can be solved analytically, when the mobility profile is monotonic, or when the mobility of the middle phase is smaller than its neighbours. When the mobility of the middle phase is larger, a change of type is displayed, an elliptic region developing in the composition space. Numerical solutions of Riemann problems of the hyperbolic system spanning the elliptic region, with small diffusion added, show good agreement with the analytical outside, but an unstable behaviour inside the elliptic region. In these problems, the elliptic region arises precisely at the displacement front. Crossing the elliptic region requires the solution of essentially an eigenvalue problem of the full higher-dimensional model, obtained here using lattice BGK simulations. The hyperbolic-to-elliptic change-of-type reflects the failing of the lubrication approximation, underlying the quasi-linear hyperbolic formalism, to describe the problem uniformly. The obtained solution is analogous to non-classical shocks recently suggested in problems with change of type.
Fast wavelet based algorithms for linear evolution equations
NASA Technical Reports Server (NTRS)
Engquist, Bjorn; Osher, Stanley; Zhong, Sifen
1992-01-01
A class was devised of fast wavelet based algorithms for linear evolution equations whose coefficients are time independent. The method draws on the work of Beylkin, Coifman, and Rokhlin which they applied to general Calderon-Zygmund type integral operators. A modification of their idea is applied to linear hyperbolic and parabolic equations, with spatially varying coefficients. A significant speedup over standard methods is obtained when applied to hyperbolic equations in one space dimension and parabolic equations in multidimensions.
An improved numerical method for the kernel density functional estimation of disperse flow
NASA Astrophysics Data System (ADS)
Smith, Timothy; Ranjan, Reetesh; Pantano, Carlos
2014-11-01
We present an improved numerical method to solve the transport equation for the one-point particle density function (pdf), which can be used to model disperse flows. The transport equation, a hyperbolic partial differential equation (PDE) with a source term, is derived from the Lagrangian equations for a dilute particle system by treating position and velocity as state-space variables. The method approximates the pdf by a discrete mixture of kernel density functions (KDFs) with space and time varying parameters and performs a global Rayleigh-Ritz like least-square minimization on the state-space of velocity. Such an approximation leads to a hyperbolic system of PDEs for the KDF parameters that cannot be written completely in conservation form. This system is solved using a numerical method that is path-consistent, according to the theory of non-conservative hyperbolic equations. The resulting formulation is a Roe-like update that utilizes the local eigensystem information of the linearized system of PDEs. We will present the formulation of the base method, its higher-order extension and further regularization to demonstrate that the method can predict statistics of disperse flows in an accurate, consistent and efficient manner. This project was funded by NSF Project NSF-DMS 1318161.
Using periodic orbits to compute chaotic transport rates between resonance zones.
Sattari, Sulimon; Mitchell, Kevin A
2017-11-01
Transport properties of chaotic systems are computable from data extracted from periodic orbits. Given a sufficient number of periodic orbits, the escape rate can be computed using the spectral determinant, a function that incorporates the eigenvalues and periods of periodic orbits. The escape rate computed from periodic orbits converges to the true value as more and more periodic orbits are included. Escape from a given region of phase space can be computed by considering only periodic orbits that lie within the region. An accurate symbolic dynamics along with a corresponding partitioning of phase space is useful for systematically obtaining all periodic orbits up to a given period, to ensure that no important periodic orbits are missing in the computation. Homotopic lobe dynamics (HLD) is an automated technique for computing accurate partitions and symbolic dynamics for maps using the topological forcing of intersections of stable and unstable manifolds of a few periodic anchor orbits. In this study, we apply the HLD technique to compute symbolic dynamics and periodic orbits, which are then used to find escape rates from different regions of phase space for the Hénon map. We focus on computing escape rates in parameter ranges spanning hyperbolic plateaus, which are parameter intervals where the dynamics is hyperbolic and the symbolic dynamics does not change. After the periodic orbits are computed for a single parameter value within a hyperbolic plateau, periodic orbit continuation is used to compute periodic orbits over an interval that spans the hyperbolic plateau. The escape rates computed from a few thousand periodic orbits agree with escape rates computed from Monte Carlo simulations requiring hundreds of billions of orbits.
On a Non-Reflecting Boundary Condition for Hyperbolic Conservation Laws
NASA Technical Reports Server (NTRS)
Loh, Ching Y.
2003-01-01
A non-reflecting boundary condition (NRBC) for practical computations in fluid dynamics and aeroacoustics is presented. The technique is based on the hyperbolicity of the Euler equation system and the first principle of plane (simple) wave propagation. The NRBC is simple and effective, provided the numerical scheme maintains locally a C(sup 1) continuous solution at the boundary. Several numerical examples in ID, 2D and 3D space are illustrated to demonstrate its robustness in practical computations.
ERIC Educational Resources Information Center
Mohanty, R. K.; Arora, Urvashi
2002-01-01
Three level-implicit finite difference methods of order four are discussed for the numerical solution of the mildly quasi-linear second-order hyperbolic equation A(x, t, u)u[subscript xx] + 2B(x, t, u)u[subscript xt] + C(x, t, u)u[subscript tt] = f(x, t, u, u[subscript x], u[subscript t]), 0 less than x less than 1, t greater than 0 subject to…
On a Non-Reflecting Boundary Condition for Hyperbolic Conservation Laws
NASA Technical Reports Server (NTRS)
Loh, Ching Y.
2003-01-01
A non-reflecting boundary condition (NRBC) for practical computations in fluid dynamics and aeroacoustics is presented. The technique is based on the first principle of non-reflecting, plane wave propagation and the hyperbolicity of the Euler equation system. The NRBC is simple and effective, provided the numerical scheme maintains locally a C(sup 1) continuous solution at the boundary. Several numerical examples in 1D, 2D, and 3D space are illustrated to demonstrate its robustness in practical computations.
Georlette, O; Gordon, J M
1994-07-01
Generalized nonimaging compound elliptical luminaires (CEL's) and compound hyperbolic luminaires (CHL's) are developed for pair-overlap illumination applications. A comprehensive analysis of CEL's and CHL's is presented. This includes the possibility of reflector truncation, as well as the extreme direction that spans the full range from positive to negative. Negative extreme direction devices have been overlooked in earlier studies and are shown to be well suited to illumination problems for which large cutoff angles are required. Flux maps can be calculated analytically without the need for computer ray tracing. It is demonstrated that, for a broad range of cutoff angles, adjacent pairs of CEL's and CHL's can generate highly uniform far-field illuminance while maintaining maximal lighting efficiency and excellent glare control. The trade-off between luminaire compactness and flux homogeneity is also illustrated. For V troughs, being a special case of CHL's and being well suited to simple, inexpensive fabri ation, we identify geometries that closely approach the performance characteristics of the optimized CEL's and CHL's.
Stability analysis of spectral methods for hyperbolic initial-boundary value systems
NASA Technical Reports Server (NTRS)
Gottlieb, D.; Lustman, L.; Tadmor, E.
1986-01-01
A constant coefficient hyperbolic system in one space variable, with zero initial data is discussed. Dissipative boundary conditions are imposed at the two points x = + or - 1. This problem is discretized by a spectral approximation in space. Sufficient conditions under which the spectral numerical solution is stable are demonstrated - moreover, these conditions have to be checked only for scalar equations. The stability theorems take the form of explicit bounds for the norm of the solution in terms of the boundary data. The dependence of these bounds on N, the number of points in the domain (or equivalently the degree of the polynomials involved), is investigated for a class of standard spectral methods, including Chebyshev and Legendre collocations.
LETTER TO THE EDITOR: Landau levels on the hyperbolic plane
NASA Astrophysics Data System (ADS)
Fakhri, H.; Shariati, M.
2004-11-01
The quantum states of a spinless charged particle on a hyperbolic plane in the presence of a uniform magnetic field with a generalized quantization condition are proved to be the bases of the irreducible Hilbert representation spaces of the Lie algebra u(1, 1). The dynamical symmetry group U(1, 1) with the explicit form of the Lie algebra generators is extracted. It is also shown that the energy has an infinite-fold degeneracy in each of the representation spaces which are allocated to the different values of the magnetic field strength. Based on the simultaneous shift of two parameters, it is also noted that the quantum states realize the representations of Lie algebra u(2) by shifting the magnetic field strength.
Origin of hyperbolicity in brain-to-brain coordination networks
NASA Astrophysics Data System (ADS)
Tadić, Bosiljka; Andjelković, Miroslav; Šuvakov, Milovan
2018-02-01
Hyperbolicity or negative curvature of complex networks is the intrinsic geometric proximity of nodes in the graph metric space, which implies an improved network function. Here, we investigate hidden combinatorial geometries in brain-to-brain coordination networks arising through social communications. The networks originate from correlations among EEG signals previously recorded during spoken communications comprising of 14 individuals with 24 speaker-listener pairs. We find that the corresponding networks are delta-hyperbolic with delta_max=1 and the graph diameter D=3 in each brain. While the emergent hyperbolicity in the two-brain networks satisfies delta_max/D/2 < 1 and can be attributed to the topology of the subgraph formed around the cross-brains linking channels. We identify these subgraphs in each studied two-brain network and decompose their structure into simple geometric descriptors (triangles, tetrahedra and cliques of higher orders) that contribute to hyperbolicity. Considering topologies that exceed two separate brain networks as a measure of coordination synergy between the brains, we identify different neuronal correlation patterns ranging from weak coordination to super-brain structure. These topology features are in qualitative agreement with the listener’s self-reported ratings of own experience and quality of the speaker, suggesting that studies of the cross-brain connector networks can reveal new insight into the neural mechanisms underlying human social behavior.
NASA Astrophysics Data System (ADS)
Gheitaghy, A. M.; Takabi, B.; Alizadeh, M.
2014-03-01
Hyperbolic and parabolic heat equations are formulated to study a nonperfused homogeneous transparent cornea irradiated by high power and ultrashort pulsed laser in the Laser Thermo Keratoplasty (LTK) surgery. Energy absorption inside the cornea is modeled using the Beer-Lambert law that is incorporated as an exponentially decaying heat source. The hyperbolic and parabolic bioheat models of the tissue were solved by exploiting the mathematical analogy between thermal and electrical systems, by using robust circuit simulation program called Hspice to get the solutions of simultaneous RLC and RC transmission line networks. This method can be used to rapidly calculate the temperature in laser-irradiated tissue at time and space domain. It is found that internal energy gained from the irradiated field results in a rapid rise of temperature in the cornea surface during the early heating period, while the hyperbolic wave model predicts a higher temperature rise than the classical heat diffusion model. In addition, this paper investigates and examines the effect of some critical parameters such as relaxation time, convection coefficient, radiation, tear evaporation and variable thermal conductivity of cornea. Accordingly, it is found that a better accordance between hyperbolic and parabolic models will be achieved by time.
NASA Astrophysics Data System (ADS)
Kummer, E. E.; Siegel, Edward Carl-Ludwig
2011-03-01
Clock-model Archimedes [http://linkage.rockeller.edu/ wli/moved.8.04/ 1fnoise/ index. ru.html] HYPERBOLICITY inevitability throughout physics/pure-maths: Newton-law F=ma, Heisenberg and classical uncertainty-principle=Parseval/Plancherel-theorems causes FUZZYICS definition: (so miscalled) "complexity" = UTTER-SIMPLICITY!!! Watkins[www.secamlocal.ex.ac.uk/people/staff/mrwatkin/]-Hubbard[World According to Wavelets (96)-p.14!]-Franklin[1795]-Fourier[1795;1822]-Brillouin[1922] dual/inverse-space(k,w) analysis key to Fourier-unification in Archimedes hyperbolicity inevitability progress up Siegel cognition hierarchy-of-thinking (HoT): data-info.-know.-understand.-meaning-...-unity-simplicity = FUZZYICS!!! Frohlich-Mossbauer-Goldanskii-del Guidice [Nucl.Phys.B:251,375(85);275,185 (86)]-Young [arXiv-0705.4678y2, (5/31/07] theory of health/life=aqueous-electret/ ferroelectric protoplasm BEC = Archimedes-Siegel [Schrodinger Cent.Symp.(87); Symp.Fractals, MRS Fall Mtg.(89)-5-pprs] 1/w-"noise" Zipf-law power-spectrum hyperbolicity INEVITABILITY= Chi; Dirac delta-function limit w=0 concentration= BEC = Chi-Quong.
Geometry in a dynamical system without space: Hyperbolic Geometry in Kuramoto Oscillator Systems
NASA Astrophysics Data System (ADS)
Engelbrecht, Jan; Chen, Bolun; Mirollo, Renato
Kuramoto oscillator networks have the special property that their time evolution is constrained to lie on 3D orbits of the Möbius group acting on the N-fold torus TN which explains the N - 3 constants of motion discovered by Watanabe and Strogatz. The dynamics for phase models can be further reduced to 2D invariant sets in T N - 1 which have a natural geometry equivalent to the unit disk Δ with hyperbolic metric. We show that the classic Kuramoto model with order parameter Z1 (the first moment of the oscillator configuration) is a gradient flow in this metric with a unique fixed point on each generic 2D invariant set, corresponding to the hyperbolic barycenter of an oscillator configuration. This gradient property makes the dynamics especially easy to analyze. We exhibit several new families of Kuramoto oscillator models which reduce to gradient flows in this metric; some of these have a richer fixed point structure including non-hyperbolic fixed points associated with fixed point bifurcations. Work Supported by NSF DMS 1413020.
Doubly stratified MHD tangent hyperbolic nanofluid flow due to permeable stretched cylinder
NASA Astrophysics Data System (ADS)
Nagendramma, V.; Leelarathnam, A.; Raju, C. S. K.; Shehzad, S. A.; Hussain, T.
2018-06-01
An investigation is exhibited to analyze the presence of heat source and sink in doubly stratified MHD incompressible tangent hyperbolic fluid due to stretching of cylinder embedded in porous space under nanoparticles. To develop the mathematical model of tangent hyperbolic nanofluid, movement of Brownian and thermophoretic are accounted. The established equations of continuity, momentum, thermal and solutal boundary layers are reassembled into sets of non-linear expressions. These assembled expressions are executed with the help of Runge-Kutta scheme with MATLAB. The impacts of sundry parameters are illustrated graphically and the engineering interest physical quantities like skin friction, Nusselt and Sherwood number are examined by computing numerical values. It is clear that the power-law index parameter and curvature parameter shows favorable effect on momentum boundary layer thickness whereas Weissennberg number reveals inimical influence.
Rigidity in vacuum under conformal symmetry
NASA Astrophysics Data System (ADS)
Galloway, Gregory J.; Vega, Carlos
2018-04-01
Motivated in part by Eardley et al. (Commun Math Phys 106(1):137-158, 1986), in this note we obtain a rigidity result for globally hyperbolic vacuum spacetimes in arbitrary dimension that admit a timelike conformal Killing vector field. Specifically, we show that if M is a Ricci flat, timelike geodesically complete spacetime with compact Cauchy surfaces that admits a timelike conformal Killing field X, then M must split as a metric product, and X must be Killing. This gives a partial proof of the Bartnik splitting conjecture in the vacuum setting.
Foundation design for a radio telescope on the moon
NASA Astrophysics Data System (ADS)
Chua, Koon Meng; Johnson, Stewart W.; Yuan, Zehong
A foundation design for a 122 m diameter dish-type radio telescope on the moon is presented. The 1.2 m wide and 43 m diameter circular strip footing was analyzed for settlement due to compaction during installation and also for total and differential settlement under in-service laods. An axisymmetrical finite element code of the uppdated Lagrangian formulation was used. Interface slip elements were also used. The nonlinear hyperbolic stress-strain model parameters for the regolith were derived from load-deflection characteristics of astronauts' bootprints and the Rover tracks.
Equivalence of emergent de Sitter spaces from conformal field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asplund, Curtis T.; Callebaut, Nele; Zukowski, Claire
Recently, two groups have made distinct proposals for a de Sitter space that is emergent from conformal field theory (CFT). The first proposal is that, for two-dimensional holographic CFTs, the kinematic space of geodesics on a space-like slice of the asymptotically anti-de Sitter bulk is two-dimensional de Sitter space (dS 2), with a metric that can be derived from the entanglement entropy of intervals in the CFT. In the second proposal, de Sitter dynamics emerges naturally from the first law of entanglement entropy for perturbations around the vacuum state of CFTs. We provide support for the equivalence of these twomore » emergent spacetimes in the vacuum case and beyond. In particular, we study the kinematic spaces of nontrivial solutions of 3d gravity, including the BTZ black string, BTZ black hole, and conical singularities. We argue that the resulting spaces are generically globally hyperbolic spacetimes that support dynamics given boundary conditions at future infinity. For the BTZ black string, corresponding to a thermal state of the CFT, we show that both prescriptions lead to an emergent hyperbolic patch of dS 2. As a result, we offer a general method for relating kinematic space and the auxiliary de Sitter space that is valid in the vacuum and thermal cases.« less
Equivalence of emergent de Sitter spaces from conformal field theory
Asplund, Curtis T.; Callebaut, Nele; Zukowski, Claire
2016-09-27
Recently, two groups have made distinct proposals for a de Sitter space that is emergent from conformal field theory (CFT). The first proposal is that, for two-dimensional holographic CFTs, the kinematic space of geodesics on a space-like slice of the asymptotically anti-de Sitter bulk is two-dimensional de Sitter space (dS 2), with a metric that can be derived from the entanglement entropy of intervals in the CFT. In the second proposal, de Sitter dynamics emerges naturally from the first law of entanglement entropy for perturbations around the vacuum state of CFTs. We provide support for the equivalence of these twomore » emergent spacetimes in the vacuum case and beyond. In particular, we study the kinematic spaces of nontrivial solutions of 3d gravity, including the BTZ black string, BTZ black hole, and conical singularities. We argue that the resulting spaces are generically globally hyperbolic spacetimes that support dynamics given boundary conditions at future infinity. For the BTZ black string, corresponding to a thermal state of the CFT, we show that both prescriptions lead to an emergent hyperbolic patch of dS 2. As a result, we offer a general method for relating kinematic space and the auxiliary de Sitter space that is valid in the vacuum and thermal cases.« less
On the coupling of hyperbolic and parabolic systems: Analytical and numerical approach
NASA Technical Reports Server (NTRS)
Gastaldi, Fabio; Quarteroni, Alfio
1988-01-01
The coupling of hyperbolic and parabolic systems is discussed in a domain Omega divided into two distinct subdomains omega(+) and omega(-). The main concern is to find the proper interface conditions to be fulfilled at the surface separating the two domains. Next, they are used in the numerical approximation of the problem. The justification of the interface conditions is based on a singular perturbation analysis, i.e., the hyperbolic system is rendered parabolic by adding a small artifical viscosity. As this goes to zero, the coupled parabolic-parabolic problem degenerates into the original one, yielding some conditions at the interface. These are taken as interface conditions for the hyperbolic-parabolic problem. Actually, two alternative sets of interface conditions are discussed according to whether the regularization procedure is variational or nonvariational. It is shown how these conditions can be used in the frame of a numerical approximation to the given problem. Furthermore, a method of resolution is discussed which alternates the resolution of the hyperbolic problem within omega(-) and of the parabolic one within omega(+). The spectral collocation method is proposed, as an example of space discretization (different methods could be used as well); both explicit and implicit time-advancing schemes are considered. The present study is a preliminary step toward the analysis of the coupling between Euler and Navier-Stokes equations for compressible flows.
Navigability of Random Geometric Graphs in the Universe and Other Spacetimes.
Cunningham, William; Zuev, Konstantin; Krioukov, Dmitri
2017-08-18
Random geometric graphs in hyperbolic spaces explain many common structural and dynamical properties of real networks, yet they fail to predict the correct values of the exponents of power-law degree distributions observed in real networks. In that respect, random geometric graphs in asymptotically de Sitter spacetimes, such as the Lorentzian spacetime of our accelerating universe, are more attractive as their predictions are more consistent with observations in real networks. Yet another important property of hyperbolic graphs is their navigability, and it remains unclear if de Sitter graphs are as navigable as hyperbolic ones. Here we study the navigability of random geometric graphs in three Lorentzian manifolds corresponding to universes filled only with dark energy (de Sitter spacetime), only with matter, and with a mixture of dark energy and matter. We find these graphs are navigable only in the manifolds with dark energy. This result implies that, in terms of navigability, random geometric graphs in asymptotically de Sitter spacetimes are as good as random hyperbolic graphs. It also establishes a connection between the presence of dark energy and navigability of the discretized causal structure of spacetime, which provides a basis for a different approach to the dark energy problem in cosmology.
NASA Technical Reports Server (NTRS)
Kolomiyets, S. V.
2011-01-01
Some results of the International Heliophysical Year (IHY) Coordinated Investigation Program (CIP) number 65 Meteors in the Earth Atmosphere and Meteoroids in the Solar System are presented. The problem of hyperbolic and near-parabolic orbits is discussed. Some possibilities for the solution of this problem can be obtained from the radar observation of faint meteors. The limiting magnitude of the Kharkov, Ukraine, radar observation program in the 1970 s was +12, resulting in a very large number of meteors being detected. 250,000 orbits down to even fainter limiting magnitude were determined in the 1972-78 period in Kharkov (out of them 7,000 are hyperbolic). The hypothesis of hyperbolic meteors was confirmed. In some radar meteor observations 1 10% of meteors are hyperbolic meteors. Though the Advanced Meteor Orbit Radar (AMOR, New Zealand) and Canadian Meteor Orbit Radar (CMOR, Canada) have accumulated millions of meteor orbits, there are difficulties in comparing the radar observational data obtained from these three sites (New Zealand, Canada, Kharkov). A new global program International Space Weather Initiative (ISWI) has begun in 2010 (http://www.iswi-secretariat.org). Today it is necessary to create the unified radar catalogue of nearparabolic and hyperbolic meteor orbits in the framework of the ISWI, or any other different way, in collaboration of Ukraine, Canada, New Zealand, the USA and, possibly, Japan. Involvement of the Virtual Meteor Observatory (Netherlands) and Meteor Data Centre (Slovakia) is desirable too. International unified radar catalogue of near-parabolic and hyperbolic meteor orbits will aid to a major advance in our understanding of the ecology of meteoroids within the Solar System and beyond.
Error analysis of finite difference schemes applied to hyperbolic initial boundary value problems
NASA Technical Reports Server (NTRS)
Skollermo, G.
1979-01-01
Finite difference methods for the numerical solution of mixed initial boundary value problems for hyperbolic equations are studied. The reported investigation has the objective to develop a technique for the total error analysis of a finite difference scheme, taking into account initial approximations, boundary conditions, and interior approximation. Attention is given to the Cauchy problem and the initial approximation, the homogeneous problem in an infinite strip with inhomogeneous boundary data, the reflection of errors in the boundaries, and two different boundary approximations for the leapfrog scheme with a fourth order accurate difference operator in space.
Summation by parts, projections, and stability
NASA Technical Reports Server (NTRS)
Olsson, Pelle
1993-01-01
We have derived stability results for high-order finite difference approximations of mixed hyperbolic-parabolic initial-boundary value problems (IBVP). The results are obtained using summation by parts and a new way of representing general linear boundary conditions as an orthogonal projection. By slightly rearranging the analytic equations, we can prove strict stability for hyperbolic-parabolic IBVP. Furthermore, we generalize our technique so as to yield strict stability on curvilinear non-smooth domains in two space dimensions. Finally, we show how to incorporate inhomogeneous boundary data while retaining strict stability. Using the same procedure one can prove strict stability in higher dimensions as well.
Triangle based TVD schemes for hyperbolic conservation laws
NASA Technical Reports Server (NTRS)
Durlofsky, Louis J.; Osher, Stanley; Engquist, Bjorn
1990-01-01
A triangle based total variation diminishing (TVD) scheme for the numerical approximation of hyperbolic conservation laws in two space dimensions is constructed. The novelty of the scheme lies in the nature of the preprocessing of the cell averaged data, which is accomplished via a nearest neighbor linear interpolation followed by a slope limiting procedures. Two such limiting procedures are suggested. The resulting method is considerably more simple than other triangle based non-oscillatory approximations which, like this scheme, approximate the flux up to second order accuracy. Numerical results for linear advection and Burgers' equation are presented.
Contractive type non-self mappings on metric spaces of hyperbolic type
NASA Astrophysics Data System (ADS)
Ciric, Ljubomir B.
2006-05-01
Let (X,d) be a metric space of hyperbolic type and K a nonempty closed subset of X. In this paper we study a class of mappings from K into X (not necessarily self-mappings on K), which are defined by the contractive condition (2.1) below, and a class of pairs of mappings from K into X which satisfy the condition (2.28) below. We present fixed point and common fixed point theorems which are generalizations of the corresponding fixed point theorems of Ciric [L.B. Ciric, Quasi-contraction non-self mappings on Banach spaces, Bull. Acad. Serbe Sci. Arts 23 (1998) 25-31; L.B. Ciric, J.S. Ume, M.S. Khan, H.K.T. Pathak, On some non-self mappings, Math. Nachr. 251 (2003) 28-33], Rhoades [B.E. Rhoades, A fixed point theorem for some non-self mappings, Math. Japon. 23 (1978) 457-459] and many other authors. Some examples are presented to show that our results are genuine generalizations of known results from this area.
Some special solutions to the Hyperbolic NLS equation
NASA Astrophysics Data System (ADS)
Vuillon, Laurent; Dutykh, Denys; Fedele, Francesco
2018-04-01
The Hyperbolic Nonlinear SCHRöDINGER equation (HypNLS) arises as a model for the dynamics of three-dimensional narrow-band deep water gravity waves. In this study, the symmetries and conservation laws of this equation are computed. The PETVIASHVILI method is then exploited to numerically compute bi-periodic time-harmonic solutions of the HypNLS equation. In physical space they represent non-localized standing waves. Non-trivial spatial patterns are revealed and an attempt is made to describe them using symbolic dynamics and the language of substitutions. Finally, the dynamics of a slightly perturbed standing wave is numerically investigated by means a highly accurate FOURIER solver.
Circulating transportation orbits between earth and Mars
NASA Technical Reports Server (NTRS)
Friedlander, A. L.; Niehoff, J. C.; Byrnes, D. V.; Longuski, J. M.
1986-01-01
This paper describes the basic characteristics of circulating (cyclical) orbit design as applied to round-trip transportation of crew and materials between earth and Mars in support of a sustained manned Mars Surface Base. The two main types of nonstopover circulating trajectories are the socalled VISIT orbits and the Up/Down Escalator orbits. Access to the large transportation facilities placed in these orbits is by way of taxi vehicles using hyperbolic rendezvous techniques during the successive encounters with earth and Mars. Specific examples of real trajectory data are presented in explanation of flight times, encounter frequency, hyperbolic velocities, closest approach distances, and Delta V maneuver requirements in both interplanetary and planetocentric space.
Tunable infrared hyperbolic metamaterials with periodic indium-tin-oxide nanorods
Guo, Peijun; Chang, Robert P. H.; Schaller, Richard D.
2017-07-10
Hyperbolic metamaterials (HMMs) are artificially engineered optical media that have been used for light confinement, excited state decay rate engineering, and subwavelength imaging, due to their highly anisotropic permittivity and with it the capability of supporting high- k modes. HMMs in the infrared range can be conceived for additional applications such as free space communication, thermal engineering, and molecular sensing. Here, we demonstrate infrared HMMs comprised of periodic indium-tin-oxide nanorod arrays (ITO-NRAs). We show that the ITO-NRA based HMMs exhibit a stationary epsilon-near-pole resonance in the near-infrared regime that is insensitive to the filling ratio, and a highly tunable epsilon-near-zeromore » resonance in the mid-infrared range depending on the array periodicity. Experimental results are supported by finite-element simulations, in which the ITO-NRAs are treated both explicitly and as an effective hyperbolic media. Lastly, our work presents a low-loss HMM platform with favorable spectral tunability in the infrared range.« less
Very high order PNPM schemes on unstructured meshes for the resistive relativistic MHD equations
NASA Astrophysics Data System (ADS)
Dumbser, Michael; Zanotti, Olindo
2009-10-01
In this paper we propose the first better than second order accurate method in space and time for the numerical solution of the resistive relativistic magnetohydrodynamics (RRMHD) equations on unstructured meshes in multiple space dimensions. The nonlinear system under consideration is purely hyperbolic and contains a source term, the one for the evolution of the electric field, that becomes stiff for low values of the resistivity. For the spatial discretization we propose to use high order PNPM schemes as introduced in Dumbser et al. [M. Dumbser, D. Balsara, E.F. Toro, C.D. Munz, A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes, Journal of Computational Physics 227 (2008) 8209-8253] for hyperbolic conservation laws and a high order accurate unsplit time-discretization is achieved using the element-local space-time discontinuous Galerkin approach proposed in Dumbser et al. [M. Dumbser, C. Enaux, E.F. Toro, Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws, Journal of Computational Physics 227 (2008) 3971-4001] for one-dimensional balance laws with stiff source terms. The divergence-free character of the magnetic field is accounted for through the divergence cleaning procedure of Dedner et al. [A. Dedner, F. Kemm, D. Kröner, C.-D. Munz, T. Schnitzer, M. Wesenberg, Hyperbolic divergence cleaning for the MHD equations, Journal of Computational Physics 175 (2002) 645-673]. To validate our high order method we first solve some numerical test cases for which exact analytical reference solutions are known and we also show numerical convergence studies in the stiff limit of the RRMHD equations using PNPM schemes from third to fifth order of accuracy in space and time. We also present some applications with shock waves such as a classical shock tube problem with different values for the conductivity as well as a relativistic MHD rotor problem and the relativistic equivalent of the Orszag-Tang vortex problem. We have verified that the proposed method can handle equally well the resistive regime and the stiff limit of ideal relativistic MHD. For these reasons it provides a powerful tool for relativistic astrophysical simulations involving the appearance of magnetic reconnection.
NASA Technical Reports Server (NTRS)
Chan, William M.
1992-01-01
The following papers are presented: (1) numerical methods for the simulation of complex multi-body flows with applications for the Integrated Space Shuttle vehicle; (2) a generalized scheme for 3-D hyperbolic grid generation; (3) collar grids for intersecting geometric components within the Chimera overlapped grid scheme; and (4) application of the Chimera overlapped grid scheme to simulation of Space Shuttle ascent flows.
Self-dual geometry of generalized Hermitian surfaces
NASA Astrophysics Data System (ADS)
Arsen'eva, O. E.; Kirichenko, V. F.
1998-02-01
Several results on the geometry of conformally semiflat Hermitian surfaces of both classical and hyperbolic types (generalized Hermitian surfaces) are obtained. Some of these results are generalizations and clarifications of already known results in this direction due to Koda, Itoh, and other authors. They reveal some unexpected beautiful connections between such classical characteristics of conformally semiflat (generalized) Hermitian surfaces as the Einstein property, the constancy of the holomorphic sectional curvature, and so on. A complete classification of compact self-dual Hermitian RK-surfaces that are at the same time generalized Hopf manifolds is obtained. This provides a complete solution of the Chen problem in this class of Hermitian surfaces.
On the global "two-sided" characteristic Cauchy problem for linear wave equations on manifolds
NASA Astrophysics Data System (ADS)
Lupo, Umberto
2018-04-01
The global characteristic Cauchy problem for linear wave equations on globally hyperbolic Lorentzian manifolds is examined, for a class of smooth initial value hypersurfaces satisfying favourable global properties. First it is shown that, if geometrically well-motivated restrictions are placed on the supports of the (smooth) initial datum and of the (smooth) inhomogeneous term, then there exists a continuous global solution which is smooth "on each side" of the initial value hypersurface. A uniqueness result in Sobolev regularity H^{1/2+ɛ }_{loc} is proved among solutions supported in the union of the causal past and future of the initial value hypersurface, and whose product with the indicator function of the causal future (resp. past) of the hypersurface is past compact (resp. future compact). An explicit representation formula for solutions is obtained, which prominently features an invariantly defined, densitised version of the null expansion of the hypersurface. Finally, applications to quantum field theory on curved spacetimes are briefly discussed.
Dynamic compaction of granular materials
Favrie, N.; Gavrilyuk, S.
2013-01-01
An Eulerian hyperbolic multiphase flow model for dynamic and irreversible compaction of granular materials is constructed. The reversible model is first constructed on the basis of the classical Hertz theory. The irreversible model is then derived in accordance with the following two basic principles. First, the entropy inequality is satisfied by the model. Second, the corresponding ‘intergranular stress’ coming from elastic energy owing to contact between grains decreases in time (the granular media behave as Maxwell-type materials). The irreversible model admits an equilibrium state corresponding to von Mises-type yield limit. The yield limit depends on the volume fraction of the solid. The sound velocity at the yield surface is smaller than that in the reversible model. The last one is smaller than the sound velocity in the irreversible model. Such an embedded model structure assures a thermodynamically correct formulation of the model of granular materials. The model is validated on quasi-static experiments on loading–unloading cycles. The experimentally observed hysteresis phenomena were numerically confirmed with a good accuracy by the proposed model. PMID:24353466
ERIC Educational Resources Information Center
Tillett, Wade
2016-01-01
The following is an exploration of the spatial configurations (and their implications) within a typical panel session at an academic conference. The presenter initially takes up different roles and hyperbolically describes some possible messages that the spatial arrangement sends. Eventually, the presenter engages the audience members in atypical…
Explicit blow-up solutions to the Schroedinger maps from R{sup 2} to the hyperbolic 2-space H{sup 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding Qing
2009-10-15
In this article, we prove that the equation of the Schroedinger maps from R{sup 2} to the hyperbolic 2-space H{sup 2} is SU(1,1)-gauge equivalent to the following 1+2 dimensional nonlinear Schroedinger-type system of three unknown complex functions p, q, r, and a real function u: iq{sub t}+q{sub zz}-2uq+2(pq){sub z}-2pq{sub z}-4|p|{sup 2}q=0, ir{sub t}-r{sub zz}+2ur+2(pr){sub z}-2pr{sub z}+4|p|{sup 2}r=0, ip{sub t}+(qr){sub z}-u{sub z}=0, p{sub z}+p{sub z}=-|q|{sup 2}+|r|{sup 2}, -r{sub z}+q{sub z}=-2(pr+pq), where z is a complex coordinate of the plane R{sup 2} and z is the complex conjugate of z. Although this nonlinear Schroedinger-type system looks complicated, it admits a class ofmore » explicit blow-up smooth solutions: p=0, q=(e{sup i(bzz/2(a+bt))}/a+bt){alpha}z, r=e{sup -i(bzz/2(a+bt))}/(a+bt){alpha}z, u=2{alpha}{sup 2}zz/(a+bt){sup 2}, where a and b are real numbers with ab<0 and {alpha} satisfies {alpha}{sup 2}=b{sup 2}/16. From these facts, we explicitly construct smooth solutions to the Schroedinger maps from R{sup 2} to the hyperbolic 2-space H{sup 2} by using the gauge transformations such that the absolute values of their gradients blow up in finite time. This reveals some blow-up phenomenon of Schroedinger maps.« less
Incorporating inductances in tissue-scale models of cardiac electrophysiology
NASA Astrophysics Data System (ADS)
Rossi, Simone; Griffith, Boyce E.
2017-09-01
In standard models of cardiac electrophysiology, including the bidomain and monodomain models, local perturbations can propagate at infinite speed. We address this unrealistic property by developing a hyperbolic bidomain model that is based on a generalization of Ohm's law with a Cattaneo-type model for the fluxes. Further, we obtain a hyperbolic monodomain model in the case that the intracellular and extracellular conductivity tensors have the same anisotropy ratio. In one spatial dimension, the hyperbolic monodomain model is equivalent to a cable model that includes axial inductances, and the relaxation times of the Cattaneo fluxes are strictly related to these inductances. A purely linear analysis shows that the inductances are negligible, but models of cardiac electrophysiology are highly nonlinear, and linear predictions may not capture the fully nonlinear dynamics. In fact, contrary to the linear analysis, we show that for simple nonlinear ionic models, an increase in conduction velocity is obtained for small and moderate values of the relaxation time. A similar behavior is also demonstrated with biophysically detailed ionic models. Using the Fenton-Karma model along with a low-order finite element spatial discretization, we numerically analyze differences between the standard monodomain model and the hyperbolic monodomain model. In a simple benchmark test, we show that the propagation of the action potential is strongly influenced by the alignment of the fibers with respect to the mesh in both the parabolic and hyperbolic models when using relatively coarse spatial discretizations. Accurate predictions of the conduction velocity require computational mesh spacings on the order of a single cardiac cell. We also compare the two formulations in the case of spiral break up and atrial fibrillation in an anatomically detailed model of the left atrium, and we examine the effect of intracellular and extracellular inductances on the virtual electrode phenomenon.
NASA Astrophysics Data System (ADS)
Toro, E. F.; Titarev, V. A.
2005-01-01
In this paper we develop non-linear ADER schemes for time-dependent scalar linear and non-linear conservation laws in one-, two- and three-space dimensions. Numerical results of schemes of up to fifth order of accuracy in both time and space illustrate that the designed order of accuracy is achieved in all space dimensions for a fixed Courant number and essentially non-oscillatory results are obtained for solutions with discontinuities. We also present preliminary results for two-dimensional non-linear systems.
NASA Astrophysics Data System (ADS)
Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.
2018-04-01
This paper deals with the design of an optimal state-feedback linear-quadratic (LQ) controller for a system of coupled parabolic-hypebolic non-autonomous partial differential equations (PDEs). The infinite-dimensional state space representation and the corresponding operator Riccati differential equation are used to solve the control problem. Dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the LQ-optimal control problem and also to guarantee the exponential stability of the closed-loop system. Thanks to the eigenvalues and eigenfunctions of the parabolic operator and also the fact that the hyperbolic-associated operator Riccati differential equation can be converted to a scalar Riccati PDE, an algorithm to solve the LQ control problem has been presented. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ optimal controller designed in the early portion of the paper is implemented for the original non-linear model. Numerical simulations are performed to show the controller performances.
NASA Technical Reports Server (NTRS)
Murad, P. A.
1993-01-01
Tsien's method is extended to treat the orbital motion of a body undergoing accelerations and decelerations. A generalized solution is discussed for the generalized case where a body undergoes azimuthal and radial thrust and the problem is further simplified for azimuthal thrust alone. Judicious selection of thrust could generate either an elliptic or hyperbolic trajectory. This is unexpected especially when the body has only enough energy for a lower state trajectory. The methodology is extended treating the problem of vehicle thrust for orbiting a sphere and vehicle thrust within the classical restricted three-body problem. Results for the latter situation can produce hyperbolic trajectories through eigen value decomposition. Since eigen values for no-thrust can be imaginary, thrust can generate real eigen values to describe hyperbolic trajectories. Keplerian dynamics appears to represent but a small subset of a much larger non-Keplerian domain especially when thrust effects are considered. The need for high thrust long duration space-based propulsion systems for changing a trajectory's canonical form is clearly demonstrated.
The Shock and Vibration Digest. Volume 16, Number 11
1984-11-01
wave [19], a secular equation for Rayleigh waves on ing, seismic risk, and related problems are discussed. the surface of an anisotropic half-space...waves in an !so- tive equation of an elastic-plastic rack medium was....... tropic linear elastic half-space with plane material used; the coefficient...pair of semi-linear hyperbolic partial differential -- " Conditions under which the equations of motion equations governing slow variations in amplitude
Synergies in the space of control variables within the equilibrium-point hypothesis.
Ambike, S; Mattos, D; Zatsiorsky, V M; Latash, M L
2016-02-19
We use an approach rooted in the recent theory of synergies to analyze possible co-variation between two hypothetical control variables involved in finger force production based on the equilibrium-point (EP) hypothesis. These control variables are the referent coordinate (R) and apparent stiffness (C) of the finger. We tested a hypothesis that inter-trial co-variation in the {R; C} space during repeated, accurate force production trials stabilizes the fingertip force. This was expected to correspond to a relatively low amount of inter-trial variability affecting force and a high amount of variability keeping the force unchanged. We used the "inverse piano" apparatus to apply small and smooth positional perturbations to fingers during force production tasks. Across trials, R and C showed strong co-variation with the data points lying close to a hyperbolic curve. Hyperbolic regressions accounted for over 99% of the variance in the {R; C} space. Another analysis was conducted by randomizing the original {R; C} data sets and creating surrogate data sets that were then used to compute predicted force values. The surrogate sets always showed much higher force variance compared to the actual data, thus reinforcing the conclusion that finger force control was organized in the {R; C} space, as predicted by the EP hypothesis, and involved co-variation in that space stabilizing total force. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Synergies in the space of control variables within the equilibrium-point hypothesis
Ambike, Satyajit; Mattos, Daniela; Zatsiorsky, Vladimir M.; Latash, Mark L.
2015-01-01
We use an approach rooted in the recent theory of synergies to analyze possible co-variation between two hypothetical control variables involved in finger force production based in the equilibrium-point hypothesis. These control variables are the referent coordinate (R) and apparent stiffness (C) of the finger. We tested a hypothesis that inter-trial co-variation in the {R; C} space during repeated, accurate force production trials stabilizes the fingertip force. This was expected to correspond to a relatively low amount of inter-trial variability affecting force and a high amount of variability keeping the force unchanged. We used the “inverse piano” apparatus to apply small and smooth positional perturbations to fingers during force production tasks. Across trials, R and C showed strong co-variation with the data points lying close to a hyperbolic curve. Hyperbolic regressions accounted for over 99% of the variance in the {R; C} space. Another analysis was conducted by randomizing the original {R; C} data sets and creating surrogate data sets that were then used to compute predicted force values. The surrogate sets always showed much higher force variance compared to the actual data, thus reinforcing the conclusion that finger force control was organized in the {R; C} space, as predicted by the equilibrium-point hypothesis, and involved co-variation in that space stabilizing total force. PMID:26701299
Local bounds preserving stabilization for continuous Galerkin discretization of hyperbolic systems
NASA Astrophysics Data System (ADS)
Mabuza, Sibusiso; Shadid, John N.; Kuzmin, Dmitri
2018-05-01
The objective of this paper is to present a local bounds preserving stabilized finite element scheme for hyperbolic systems on unstructured meshes based on continuous Galerkin (CG) discretization in space. A CG semi-discrete scheme with low order artificial dissipation that satisfies the local extremum diminishing (LED) condition for systems is used to discretize a system of conservation equations in space. The low order artificial diffusion is based on approximate Riemann solvers for hyperbolic conservation laws. In this case we consider both Rusanov and Roe artificial diffusion operators. In the Rusanov case, two designs are considered, a nodal based diffusion operator and a local projection stabilization operator. The result is a discretization that is LED and has first order convergence behavior. To achieve high resolution, limited antidiffusion is added back to the semi-discrete form where the limiter is constructed from a linearity preserving local projection stabilization operator. The procedure follows the algebraic flux correction procedure usually used in flux corrected transport algorithms. To further deal with phase errors (or terracing) common in FCT type methods, high order background dissipation is added to the antidiffusive correction. The resulting stabilized semi-discrete scheme can be discretized in time using a wide variety of time integrators. Numerical examples involving nonlinear scalar Burgers equation, and several shock hydrodynamics simulations for the Euler system are considered to demonstrate the performance of the method. For time discretization, Crank-Nicolson scheme and backward Euler scheme are utilized.
Partial stabilisation of non-homogeneous bilinear systems
NASA Astrophysics Data System (ADS)
Hamidi, Z.; Ouzahra, M.
2018-06-01
In this work, we study in a Hilbert state space, the partial stabilisation of non-homogeneous bilinear systems using a bounded control. Necessary and sufficient conditions for weak and strong stabilisation are formulated in term of approximate observability like assumptions. Applications to parabolic and hyperbolic equations are presented.
The Quest for the Ultimate Anisotropic Banach Space
NASA Astrophysics Data System (ADS)
Baladi, Viviane
2017-02-01
We present a new scale U^{t,s}_p (s<-t<0 and 1≤p <∞) of anisotropic Banach spaces, defined via Paley-Littlewood, on which the transfer operator L_g φ = (g \\cdot φ) circ T^{-1} associated to a hyperbolic dynamical system T has good spectral properties. When p=1 and t is an integer, the spaces are analogous to the "geometric" spaces B^{t,|s+t|} considered by Gouëzel and Liverani (Ergod Theory Dyn Syst 26:189-217, 2006). When p>1 and -1+1/p
Encke-Beta Predictor for Orion Burn Targeting and Guidance
NASA Technical Reports Server (NTRS)
Robinson, Shane; Scarritt, Sara; Goodman, John L.
2016-01-01
The state vector prediction algorithm selected for Orion on-board targeting and guidance is known as the Encke-Beta method. Encke-Beta uses a universal anomaly (beta) as the independent variable, valid for circular, elliptical, parabolic, and hyperbolic orbits. The variable, related to the change in eccentric anomaly, results in integration steps that cover smaller arcs of the trajectory at or near perigee, when velocity is higher. Some burns in the EM-1 and EM-2 mission plans are much longer than burns executed with the Apollo and Space Shuttle vehicles. Burn length, as well as hyperbolic trajectories, has driven the use of the Encke-Beta numerical predictor by the predictor/corrector guidance algorithm in place of legacy analytic thrust and gravity integrals.
The Geometry of the Universe: Part 2
ERIC Educational Resources Information Center
Francis, Stephanie
2009-01-01
Hyperbolic geometry occurs on hyperbolic planes--the most commonly cited one being a saddle shape. In this article, the author explores negative hyperbolic curvature, and provides a detailed description of how she constructed two hyperbolic paraboloids. Hyperbolic geometry occurs on surfaces that have negative curvature. (Contains 11 figures and 4…
NASA Technical Reports Server (NTRS)
Yee, H. C.
1995-01-01
Two classes of explicit compact high-resolution shock-capturing methods for the multidimensional compressible Euler equations for fluid dynamics are constructed. Some of these schemes can be fourth-order accurate away from discontinuities. For the semi-discrete case their shock-capturing properties are of the total variation diminishing (TVD), total variation bounded (TVB), total variation diminishing in the mean (TVDM), essentially nonoscillatory (ENO), or positive type of scheme for 1-D scalar hyperbolic conservation laws and are positive schemes in more than one dimension. These fourth-order schemes require the same grid stencil as their second-order non-compact cousins. One class does not require the standard matrix inversion or a special numerical boundary condition treatment associated with typical compact schemes. Due to the construction, these schemes can be viewed as approximations to genuinely multidimensional schemes in the sense that they might produce less distortion in spherical type shocks and are more accurate in vortex type flows than schemes based purely on one-dimensional extensions. However, one class has a more desirable high-resolution shock-capturing property and a smaller operation count in 3-D than the other class. The extension of these schemes to coupled nonlinear systems can be accomplished using the Roe approximate Riemann solver, the generalized Steger and Warming flux-vector splitting or the van Leer type flux-vector splitting. Modification to existing high-resolution second- or third-order non-compact shock-capturing computer codes is minimal. High-resolution shock-capturing properties can also be achieved via a variant of the second-order Lax-Friedrichs numerical flux without the use of Riemann solvers for coupled nonlinear systems with comparable operations count to their classical shock-capturing counterparts. The simplest extension to viscous flows can be achieved by using the standard fourth-order compact or non-compact formula for the viscous terms.
Self-dual geometry of generalized Hermitian surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arsen'eva, O E; Kirichenko, V F
Several results on the geometry of conformally semiflat Hermitian surfaces of both classical and hyperbolic types (generalized Hermitian surfaces) are obtained. Some of these results are generalizations and clarifications of already known results in this direction due to Koda, Itoh, and other authors. They reveal some unexpected beautiful connections between such classical characteristics of conformally semiflat (generalized) Hermitian surfaces as the Einstein property, the constancy of the holomorphic sectional curvature, and so on. A complete classification of compact self-dual Hermitian RK-surfaces that are at the same time generalized Hopf manifolds is obtained. This provides a complete solution of the Chenmore » problem in this class of Hermitian surfaces.« less
z -classes of isometries of the hyperbolic space
NASA Astrophysics Data System (ADS)
Gongopadhyay, Krishnendu; Kulkarni, Ravi S.
Let G be a group. Two elements x, y are said to be z -equivalent if their centralizers are conjugate in G . The class equation of G is the partition of G into conjugacy classes. Further decomposition of conjugacy classes into z -classes provides important information about the internal structure of the group; cf. J. Ramanujan Math. Soc. 22 (2007), 35-56, for the elaboration of this theme. Let I(H^n) denote the group of isometries of the hyperbolic n -space, and let I_o(H^n) be the identity component of I(H^n) . We show that the number of z -classes in I(H^n) is finite. We actually compute their number; cf. theorem 1.3. We interpret the finiteness of z -classes as accounting for the finiteness of ``dynamical types'' in I(H^n) . Along the way we also parametrize conjugacy classes. We mainly use the linear model of the hyperbolic space for this purpose. This description of parametrizing conjugacy classes appears to be new; cf. Academic Press, New York, 1974, 49-87 and Conformal geometry (Bonn, 1985/1986), 41-64, Aspects Math., E12, Vieweg, Braunschweig, 1988, for previous attempts. Ahlfors (Differential Geometry and Complex Analysis (Springer, 1985), 65-73) suggested the use of Clifford algebras to deal with higher dimensional hyperbolic geometry; cf. Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 15-27, Quasiconformal Mappings and Analysis (Springer, 1998), 109-139, Complex Variables Theory Appl. 15 (1990), 125-133, and Adv. Math. 101 (1993), 87-113. These works may be compared to the approach suggested in this paper. In dimensions 2 and 3 , by remarkable Lie-theoretic isomorphisms, I_o(H2) and I_o(H3) can be lifted to GL_o(2, R) , and GL(2, C) respectively. For orientation-reversing isometries there are some modifications of these liftings. Using these liftings, in the appendix A, we have introduced a single numerical invariant c(A) , to classify the elements of I(H2) and I(H3) , and explained the classical terminology. Using the ``Iwasawa decomposition'' of I_o(H^n) , it is possible to equip H^n with a group structure. In the appendix B, we visualize the stratification of the group H^n into its conjugacy and z -classes.
Dynamic Hyperbolic Geometry: Building Intuition and Understanding Mediated by a Euclidean Model
ERIC Educational Resources Information Center
Moreno-Armella, Luis; Brady, Corey; Elizondo-Ramirez, Rubén
2018-01-01
This paper explores a deep transformation in mathematical epistemology and its consequences for teaching and learning. With the advent of non-Euclidean geometries, direct, iconic correspondences between physical space and the deductive structures of mathematical inquiry were broken. For non-Euclidean ideas even to become "thinkable" the…
NASA Astrophysics Data System (ADS)
Moutsopoulos, George
2013-06-01
We solve the equations of topologically massive gravity (TMG) with a potentially non-vanishing cosmological constant for homogeneous metrics without isotropy. We only reproduce known solutions. We also discuss their homogeneous deformations, possibly with isotropy. We show that de Sitter space and hyperbolic space cannot be infinitesimally homogeneously deformed in TMG. We clarify some of their Segre-Petrov types and discuss the warped de Sitter spacetime.
Entanglement entropy and the colored Jones polynomial
NASA Astrophysics Data System (ADS)
Balasubramanian, Vijay; DeCross, Matthew; Fliss, Jackson; Kar, Arjun; Leigh, Robert G.; Parrikar, Onkar
2018-05-01
We study the multi-party entanglement structure of states in Chern-Simons theory created by performing the path integral on 3-manifolds with linked torus boundaries, called link complements. For gauge group SU(2), the wavefunctions of these states (in a particular basis) are the colored Jones polynomials of the corresponding links. We first review the case of U(1) Chern-Simons theory where these are stabilizer states, a fact we use to re-derive an explicit formula for the entanglement entropy across a general link bipartition. We then present the following results for SU(2) Chern-Simons theory: (i) The entanglement entropy for a bipartition of a link gives a lower bound on the genus of surfaces in the ambient S 3 separating the two sublinks. (ii) All torus links (namely, links which can be drawn on the surface of a torus) have a GHZ-like entanglement structure — i.e., partial traces leave a separable state. By contrast, through explicit computation, we test in many examples that hyperbolic links (namely, links whose complements admit hyperbolic structures) have W-like entanglement — i.e., partial traces leave a non-separable state. (iii) Finally, we consider hyperbolic links in the complexified SL(2,C) Chern-Simons theory, which is closely related to 3d Einstein gravity with a negative cosmological constant. In the limit of small Newton constant, we discuss how the entanglement structure is controlled by the Neumann-Zagier potential on the moduli space of hyperbolic structures on the link complement.
The lifespan of 3D radial solutions to the non-isentropic relativistic Euler equations
NASA Astrophysics Data System (ADS)
Wei, Changhua
2017-10-01
This paper investigates the lower bound of the lifespan of three-dimensional spherically symmetric solutions to the non-isentropic relativistic Euler equations, when the initial data are prescribed as a small perturbation with compact support to a constant state. Based on the structure of the hyperbolic system, we show the almost global existence of the smooth solutions to Eulerian flows (polytropic gases and generalized Chaplygin gases) with genuinely nonlinear characteristics. While for the Eulerian flows (Chaplygin gas and stiff matter) with mild linearly degenerate characteristics, we show the global existence of the radial solutions, moreover, for the non-strictly hyperbolic system (pressureless perfect fluid) satisfying the mild linearly degenerate condition, we prove the blowup phenomenon of the radial solutions and show that the lifespan of the solutions is of order O(ɛ ^{-1}), where ɛ denotes the width of the perturbation. This work can be seen as a complement of our work (Lei and Wei in Math Ann 367:1363-1401, 2017) for relativistic Chaplygin gas and can also be seen as a generalization of the classical Eulerian fluids (Godin in Arch Ration Mech Anal 177:497-511, 2005, J Math Pures Appl 87:91-117, 2007) to the relativistic Eulerian fluids.
Stability of an abstract system of coupled hyperbolic and parabolic equations
NASA Astrophysics Data System (ADS)
Hao, Jianghao; Liu, Zhuangyi
2013-08-01
In this paper, we provide a complete stability analysis for an abstract system of coupled hyperbolic and parabolic equations = -Au + γ A^{α} θ, quad θ_t = -γ A^{α}u_t - kA^{β}θ, u(0) = u_0, quad u_t(0) = v_0, quad θ(0) = θ_0 where A is a self-adjoint, positive definite operator on a Hilbert space H. For {(α,β) in [0,1] × [0,1]} , the region of exponential stability had been identified in Ammar-Khodja et al. (ESAIM Control Optim Calc Var 4:577-593,1999). Our contribution is to show that the rest of the region can be classified as region of polynomial stability and region of instability. Moreover, we obtain the optimality of the order of polynomial stability.
Dai, Siyuan; Ma, Qiong; Yang, Yafang; Rosenfeld, Jeremy; Goldflam, Michael D; McLeod, Alex; Sun, Zhiyuan; Andersen, Trond I; Fei, Zhe; Liu, Mengkun; Shao, Yinming; Watanabe, Kenji; Taniguchi, Takashi; Thiemens, Mark; Keilmann, Fritz; Jarillo-Herrero, Pablo; Fogler, Michael M; Basov, D N
2017-09-13
We investigated phonon-polaritons in hexagonal boron nitride-a naturally hyperbolic van der Waals material-by means of the scattering-type scanning near-field optical microscopy. Real-space nanoimages we have obtained detail how the polaritons are launched when the light incident on a thin hexagonal boron nitride slab is scattered by various intrinsic and extrinsic inhomogeneities, including sample edges, metallic nanodisks deposited on its top surface, random defects, and surface impurities. The scanned tip of the near-field microscope is itself a polariton launcher whose efficiency proves to be superior to all the other types of polariton launchers we studied. Our work may inform future development of polaritonic nanodevices as well as fundamental studies of collective modes in van der Waals materials.
NASA Technical Reports Server (NTRS)
Harten, A.; Tal-Ezer, H.
1981-01-01
An implicit finite difference method of fourth order accuracy in space and time is introduced for the numerical solution of one-dimensional systems of hyperbolic conservation laws. The basic form of the method is a two-level scheme which is unconditionally stable and nondissipative. The scheme uses only three mesh points at level t and three mesh points at level t + delta t. The dissipative version of the basic method given is conditionally stable under the CFL (Courant-Friedrichs-Lewy) condition. This version is particularly useful for the numerical solution of problems with strong but nonstiff dynamic features, where the CFL restriction is reasonable on accuracy grounds. Numerical results are provided to illustrate properties of the proposed method.
CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. II. GRAY RADIATION HYDRODYNAMICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, W.; Almgren, A.; Bell, J.
We describe the development of a flux-limited gray radiation solver for the compressible astrophysics code, CASTRO. CASTRO uses an Eulerian grid with block-structured adaptive mesh refinement based on a nested hierarchy of logically rectangular variable-sized grids with simultaneous refinement in both space and time. The gray radiation solver is based on a mixed-frame formulation of radiation hydrodynamics. In our approach, the system is split into two parts, one part that couples the radiation and fluid in a hyperbolic subsystem, and another parabolic part that evolves radiation diffusion and source-sink terms. The hyperbolic subsystem is solved explicitly with a high-order Godunovmore » scheme, whereas the parabolic part is solved implicitly with a first-order backward Euler method.« less
O(2) Hopf bifurcation of viscous shock waves in a channel
NASA Astrophysics Data System (ADS)
Pogan, Alin; Yao, Jinghua; Zumbrun, Kevin
2015-07-01
Extending work of Texier and Zumbrun in the semilinear non-reflection symmetric case, we study O(2) transverse Hopf bifurcation, or "cellular instability", of viscous shock waves in a channel, for a class of quasilinear hyperbolic-parabolic systems including the equations of thermoviscoelasticity. The main difficulties are to (i) obtain Fréchet differentiability of the time- T solution operator by appropriate hyperbolic-parabolic energy estimates, and (ii) handle O(2) symmetry in the absence of either center manifold reduction (due to lack of spectral gap) or (due to nonstandard quasilinear hyperbolic-parabolic form) the requisite framework for treatment by spatial dynamics on the space of time-periodic functions, the two standard treatments for this problem. The latter issue is resolved by Lyapunov-Schmidt reduction of the time- T map, yielding a four-dimensional problem with O(2) plus approximate S1 symmetry, which we treat "by hand" using direct Implicit Function Theorem arguments. The former is treated by balancing information obtained in Lagrangian coordinates with that from associated constraints. Interestingly, this argument does not apply to gas dynamics or magnetohydrodynamics (MHD), due to the infinite-dimensional family of Lagrangian symmetries corresponding to invariance under arbitrary volume-preserving diffeomorphisms.
NASA Technical Reports Server (NTRS)
Devasia, Santosh
1996-01-01
A technique to achieve output tracking for nonminimum phase linear systems with non-hyperbolic and near non-hyperbolic internal dynamics is presented. This approach integrates stable inversion techniques, that achieve exact-tracking, with approximation techniques, that modify the internal dynamics to achieve desirable performance. Such modification of the internal dynamics is used (1) to remove non-hyperbolicity which an obstruction to applying stable inversion techniques and (2) to reduce large pre-actuation time needed to apply stable inversion for near non-hyperbolic cases. The method is applied to an example helicopter hover control problem with near non-hyperbolic internal dynamic for illustrating the trade-off between exact tracking and reduction of pre-actuation time.
Orienteering in knowledge spaces: the hyperbolic geometry of Wikipedia Mathematics.
Leibon, Gregory; Rockmore, Daniel N
2013-01-01
In this paper we show how the coupling of the notion of a network with directions with the adaptation of the four-point probe from materials testing gives rise to a natural geometry on such networks. This four-point probe geometry shares many of the properties of hyperbolic geometry wherein the network directions take the place of the sphere at infinity, enabling a navigation of the network in terms of pairs of directions: the geodesic through a pair of points is oriented from one direction to another direction, the pair of which are uniquely determined. We illustrate this in the interesting example of the pages of Wikipedia devoted to Mathematics, or "The MathWiki." The applicability of these ideas extends beyond Wikipedia to provide a natural framework for visual search and to prescribe a natural mode of navigation for any kind of "knowledge space" in which higher order concepts aggregate various instances of information. Other examples would include genre or author organization of cultural objects such as books, movies, documents or even merchandise in an online store.
NASA Astrophysics Data System (ADS)
Dumbser, Michael; Peshkov, Ilya; Romenski, Evgeniy; Zanotti, Olindo
2017-11-01
In this paper, we propose a new unified first order hyperbolic model of Newtonian continuum mechanics coupled with electro-dynamics. The model is able to describe the behavior of moving elasto-plastic dielectric solids as well as viscous and inviscid fluids in the presence of electro-magnetic fields. It is actually a very peculiar feature of the proposed PDE system that viscous fluids are treated just as a special case of elasto-plastic solids. This is achieved by introducing a strain relaxation mechanism in the evolution equations of the distortion matrix A, which in the case of purely elastic solids maps the current configuration to the reference configuration. The model also contains a hyperbolic formulation of heat conduction as well as a dissipative source term in the evolution equations for the electric field given by Ohm's law. Via formal asymptotic analysis we show that in the stiff limit, the governing first order hyperbolic PDE system with relaxation source terms tends asymptotically to the well-known viscous and resistive magnetohydrodynamics (MHD) equations. Furthermore, a rigorous derivation of the model from variational principles is presented, together with the transformation of the Euler-Lagrange differential equations associated with the underlying variational problem from Lagrangian coordinates to Eulerian coordinates in a fixed laboratory frame. The present paper hence extends the unified first order hyperbolic model of Newtonian continuum mechanics recently proposed in [110,42] to the more general case where the continuum is coupled with electro-magnetic fields. The governing PDE system is symmetric hyperbolic and satisfies the first and second principle of thermodynamics, hence it belongs to the so-called class of symmetric hyperbolic thermodynamically compatible systems (SHTC), which have been studied for the first time by Godunov in 1961 [61] and later in a series of papers by Godunov and Romenski [67,69,119]. An important feature of the proposed model is that the propagation speeds of all physical processes, including dissipative processes, are finite. The model is discretized using high order accurate ADER discontinuous Galerkin (DG) finite element schemes with a posteriori subcell finite volume limiter and using high order ADER-WENO finite volume schemes. We show numerical test problems that explore a rather large parameter space of the model ranging from ideal MHD, viscous and resistive MHD over pure electro-dynamics to moving dielectric elastic solids in a magnetic field.
NASA Astrophysics Data System (ADS)
Dumbser, Michael; Guercilena, Federico; Köppel, Sven; Rezzolla, Luciano; Zanotti, Olindo
2018-04-01
We present a strongly hyperbolic first-order formulation of the Einstein equations based on the conformal and covariant Z4 system (CCZ4) with constraint-violation damping, which we refer to as FO-CCZ4. As CCZ4, this formulation combines the advantages of a conformal and traceless formulation, with the suppression of constraint violations given by the damping terms, but being first order in time and space, it is particularly suited for a discontinuous Galerkin (DG) implementation. The strongly hyperbolic first-order formulation has been obtained by making careful use of first and second-order ordering constraints. A proof of strong hyperbolicity is given for a selected choice of standard gauges via an analytical computation of the entire eigenstructure of the FO-CCZ4 system. The resulting governing partial differential equations system is written in nonconservative form and requires the evolution of 58 unknowns. A key feature of our formulation is that the first-order CCZ4 system decouples into a set of pure ordinary differential equations and a reduced hyperbolic system of partial differential equations that contains only linearly degenerate fields. We implement FO-CCZ4 in a high-order path-conservative arbitrary-high-order-method-using-derivatives (ADER)-DG scheme with adaptive mesh refinement and local time-stepping, supplemented with a third-order ADER-WENO subcell finite-volume limiter in order to deal with singularities arising with black holes. We validate the correctness of the formulation through a series of standard tests in vacuum, performed in one, two and three spatial dimensions, and also present preliminary results on the evolution of binary black-hole systems. To the best of our knowledge, these are the first successful three-dimensional simulations of moving punctures carried out with high-order DG schemes using a first-order formulation of the Einstein equations.
Arithmetic and Hyperbolic Structures in String Theory
NASA Astrophysics Data System (ADS)
Persson, Daniel
2010-01-01
This monograph is an updated and extended version of the author's PhD thesis. It consists of an introductory text followed by two separate parts which are loosely related but may be read independently of each other. In Part I we analyze certain hyperbolic structures arising when studying gravity in the vicinity of a spacelike singularity (the "BKL-limit"). In this limit, spatial points decouple and the dynamics exhibits ultralocal behaviour which may be described in terms of a (possibly chaotic) hyperbolic billiard. In all supergravities arising as low-energy limits of string theory or M-theory, the billiard dynamics takes place within the fundamental Weyl chambers of certain hyperbolic Kac-Moody algebras, suggesting that these algebras generate hidden infinite-dimensional symmetries of the theory. Part II of the thesis is devoted to a study of how (U-)dualities in string theory provide powerful constraints on perturbative and non-perturbative quantum corrections. These dualities are described by certain arithmetic groups G(Z) which are conjectured to be preserved in the effective action. The exact couplings are given by automorphic forms on the double quotient G(Z)G/K. We discuss in detail various methods of constructing automorphic forms, with particular emphasis on non-holomorphic Eisenstein series. We provide detailed examples for the physically relevant cases of SL(2,Z) and SL(3,Z), for which we construct their respective Eisenstein series and compute their (non-abelian) Fourier expansions. We also show how these techniques can be applied to hypermultiplet moduli spaces in type II Calabi-Yau compactifications, and we provide a detailed analysis for the universal hypermultiplet.
Robust Criterion for the Existence of Nonhyperbolic Ergodic Measures
NASA Astrophysics Data System (ADS)
Bochi, Jairo; Bonatti, Christian; Díaz, Lorenzo J.
2016-06-01
We give explicit C 1-open conditions that ensure that a diffeomorphism possesses a nonhyperbolic ergodic measure with positive entropy. Actually, our criterion provides the existence of a partially hyperbolic compact set with one-dimensional center and positive topological entropy on which the center Lyapunov exponent vanishes uniformly. The conditions of the criterion are met on a C 1-dense and open subset of the set of diffeomorphisms having a robust cycle. As a corollary, there exists a C 1-open and dense subset of the set of non-Anosov robustly transitive diffeomorphisms consisting of systems with nonhyperbolic ergodic measures with positive entropy. The criterion is based on a notion of a blender defined dynamically in terms of strict invariance of a family of discs.
t-topology on the n-dimensional Minkowski space
NASA Astrophysics Data System (ADS)
Agrawal, Gunjan; Shrivastava, Sampada
2009-05-01
In this paper, a topological study of the n-dimensional Minkowski space, n >1, with t-topology, denoted by Mt, has been carried out. This topology, unlike the usual Euclidean one, is more physically appealing being defined by means of the Lorentzian metric. It shares many topological properties with similar candidate topologies and it has the advantage of being first countable. Compact sets of Mt and continuous maps into Mt are studied using the notion of Zeno sequences besides characterizing those sets that have the same subspace topologies induced from the Euclidean and t-topologies on n-dimensional Minkowski space. A necessary and sufficient condition for a compact set in the Euclidean n-space to be compact in Mt is obtained, thereby proving that the n-cube, n >1, as a subspace of Mt, is not compact, while a segment on a timelike line is compact in Mt. This study leads to the nonsimply connectedness of Mt, for n =2. Further, Minkowski space with s-topology has also been dealt with.
Hyperbolic and semi-hyperbolic surface codes for quantum storage
NASA Astrophysics Data System (ADS)
Breuckmann, Nikolas P.; Vuillot, Christophe; Campbell, Earl; Krishna, Anirudh; Terhal, Barbara M.
2017-09-01
We show how a hyperbolic surface code could be used for overhead-efficient quantum storage. We give numerical evidence for a noise threshold of 1.3 % for the \\{4,5\\}-hyperbolic surface code in a phenomenological noise model (as compared with 2.9 % for the toric code). In this code family, parity checks are of weight 4 and 5, while each qubit participates in four different parity checks. We introduce a family of semi-hyperbolic codes that interpolate between the toric code and the \\{4,5\\}-hyperbolic surface code in terms of encoding rate and threshold. We show how these hyperbolic codes outperform the toric code in terms of qubit overhead for a target logical error probability. We show how Dehn twists and lattice code surgery can be used to read and write individual qubits to this quantum storage medium.
Semiclassical propagator of the Wigner function.
Dittrich, Thomas; Viviescas, Carlos; Sandoval, Luis
2006-02-24
Propagation of the Wigner function is studied on two levels of semiclassical propagation: one based on the Van Vleck propagator, the other on phase-space path integration. Leading quantum corrections to the classical Liouville propagator take the form of a time-dependent quantum spot. Its oscillatory structure depends on whether the underlying classical flow is elliptic or hyperbolic. It can be interpreted as the result of interference of a pair of classical trajectories, indicating how quantum coherences are to be propagated semiclassically in phase space. The phase-space path-integral approach allows for a finer resolution of the quantum spot in terms of Airy functions.
Tuning the fragility of a glass-forming liquid by curving space.
Sausset, François; Tarjus, Gilles; Viot, Pascal
2008-10-10
We investigate the influence of space curvature, and of the associated frustration, on the dynamics of a model glass former: a monatomic liquid on the hyperbolic plane. We find that the system's fragility, i.e., the sensitivity of the relaxation time to temperature changes, increases as one decreases the frustration. As a result, curving space provides a way to tune fragility and make it as large as wanted. We also show that the nature of the emerging "dynamic heterogeneities", another distinctive feature of slowly relaxing systems, is directly connected to the presence of frustration-induced topological defects.
Impact of hyperbolicity on chimera states in ensembles of nonlocally coupled chaotic oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semenova, N.; Anishchenko, V.; Zakharova, A.
2016-06-08
In this work we analyse nonlocally coupled networks of identical chaotic oscillators. We study both time-discrete and time-continuous systems (Henon map, Lozi map, Lorenz system). We hypothesize that chimera states, in which spatial domains of coherent (synchronous) and incoherent (desynchronized) dynamics coexist, can be obtained only in networks of chaotic non-hyperbolic systems and cannot be found in networks of hyperbolic systems. This hypothesis is supported by numerical simulations for hyperbolic and non-hyperbolic cases.
Foundation Mathematics for the Physical Sciences
NASA Astrophysics Data System (ADS)
Riley, K. F.; Hobson, M. P.
2011-03-01
1. Arithmetic and geometry; 2. Preliminary algebra; 3. Differential calculus; 4. Integral calculus; 5. Complex numbers and hyperbolic functions; 6. Series and limits; 7. Partial differentiation; 8. Multiple integrals; 9. Vector algebra; 10. Matrices and vector spaces; 11. Vector calculus; 12. Line, surface and volume integrals; 13. Laplace transforms; 14. Ordinary differential equations; 15. Elementary probability; Appendices; Index.
Student Solution Manual for Foundation Mathematics for the Physical Sciences
NASA Astrophysics Data System (ADS)
Riley, K. F.; Hobson, M. P.
2011-03-01
1. Arithmetic and geometry; 2. Preliminary algebra; 3. Differential calculus; 4. Integral calculus; 5. Complex numbers and hyperbolic functions; 6. Series and limits; 7. Partial differentiation; 8. Multiple integrals; 9. Vector algebra; 10. Matrices and vector spaces; 11. Vector calculus; 12. Line, surface and volume integrals; 13. Laplace transforms; 14. Ordinary differential equations; 15. Elementary probability; Appendix.
Reduction and relative equilibria for the two-body problem on spaces of constant curvature
NASA Astrophysics Data System (ADS)
Borisov, A. V.; García-Naranjo, L. C.; Mamaev, I. S.; Montaldi, J.
2018-06-01
We consider the two-body problem on surfaces of constant nonzero curvature and classify the relative equilibria and their stability. On the hyperbolic plane, for each q>0 we show there are two relative equilibria where the masses are separated by a distance q. One of these is geometrically of elliptic type and the other of hyperbolic type. The hyperbolic ones are always unstable, while the elliptic ones are stable when sufficiently close, but unstable when far apart. On the sphere of positive curvature, if the masses are different, there is a unique relative equilibrium (RE) for every angular separation except π /2. When the angle is acute, the RE is elliptic, and when it is obtuse the RE can be either elliptic or linearly unstable. We show using a KAM argument that the acute ones are almost always nonlinearly stable. If the masses are equal, there are two families of relative equilibria: one where the masses are at equal angles with the axis of rotation (`isosceles RE') and the other when the two masses subtend a right angle at the centre of the sphere. The isosceles RE are elliptic if the angle subtended by the particles is acute and is unstable if it is obtuse. At π /2, the two families meet and a pitchfork bifurcation takes place. Right-angled RE are elliptic away from the bifurcation point. In each of the two geometric settings, we use a global reduction to eliminate the group of symmetries and analyse the resulting reduced equations which live on a five-dimensional phase space and possess one Casimir function.
Contracting singular horseshoe
NASA Astrophysics Data System (ADS)
Morales, C. A.; San Martín, B.
2017-11-01
We suggest a notion of hyperbolicity adapted to the geometric Rovella attractor (Robinson 2012 An Introduction to Dynamical Systems—Continuous and Discrete (Pure and Applied Undergraduate Texts vol 19) 2nd edn (Providence, RI: American Mathematical Society)) . More precisely, we call a partially hyperbolic set asymptotically sectional-hyperbolic if its singularities are hyperbolic and if its central subbundle is asymptotically sectional expanding outside the stable manifolds of the singularities. We prove that there are highly chaotic flows with Rovella-like singularities exhibiting this kind of hyperbolicity. We shall call them contracting singular horseshoes.
On dual and three space problems for the compact approximation property
NASA Astrophysics Data System (ADS)
Choi, Changsun; Kim, Ju Myung
2006-11-01
We introduce the properties W*D and BW*D for the dual space of a Banach space. And then solve the dual problem for the compact approximation property (CAP): if X* has the CAP and the W*D, then X has the CAP. Also, we solve the three space problem for the CAP: for example, if M is a closed subspace of a Banach space such that M[perpendicular] is complemented in X* and X* has the W*D, then X has the CAP whenever X/M has the CAP and M has the bounded CAP. Corresponding problems for the bounded compact approximation property are also addressed.
Micro-scale extensional rheometry using hyperbolic converging/diverging channels and jet breakup
Keshavarz, Bavand
2016-01-01
Understanding the elongational rheology of dilute polymer solutions plays an important role in many biological and industrial applications ranging from microfluidic lab-on-a-chip diagnostics to phenomena such as fuel atomization and combustion. Making quantitative measurements of the extensional viscosity for dilute viscoelastic fluids is a long-standing challenge and it motivates developments in microfluidic fabrication techniques and high speed/strobe imaging of millifluidic capillary phenomena in order to develop new classes of instruments. In this paper, we study the elongational rheology of a family of dilute polymeric solutions in two devices: first, steady pressure-driven flow through a hyperbolic microfluidic contraction/expansion and, second, the capillary driven breakup of a thin filament formed from a small diameter jet (Dj∼O(100 μm)). The small length scale of the device allows very large deformation rates to be achieved. Our results show that in certain limits of low viscosity and elasticity, jet breakup studies offer significant advantages over the hyperbolic channel measurements despite the more complex implementation. Using our results, together with scaling estimates of the competing viscous, elastic, inertial and capillary timescales that control the dynamics, we construct a dimensionless map or nomogram summarizing the operating space for each instrument. PMID:27375824
Inhomogeneous anisotropic cosmology
Kleban, Matthew; Senatore, Leonardo
2016-10-12
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here in this paper, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with "flat'' (including toroidal) and "open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarilymore » large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are "flat" or "open". Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with "flat'' or "open" topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.« less
Inhomogeneous anisotropic cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleban, Matthew; Senatore, Leonardo
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here in this paper, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with "flat'' (including toroidal) and "open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarilymore » large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are "flat" or "open". Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with "flat'' or "open" topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.« less
Inhomogeneous anisotropic cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleban, Matthew; Senatore, Leonardo; Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC,2575 Sand Hill Road, M/S 29, Menlo Park, CA 94025
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuationsmore » and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.« less
Conservation laws and evolution schemes in geodesic, hydrodynamic, and magnetohydrodynamic flows
NASA Astrophysics Data System (ADS)
Markakis, Charalampos; Uryū, Kōji; Gourgoulhon, Eric; Nicolas, Jean-Philippe; Andersson, Nils; Pouri, Athina; Witzany, Vojtěch
2017-09-01
Carter and Lichnerowicz have established that barotropic fluid flows are conformally geodesic and obey Hamilton's principle. This variational approach can accommodate neutral, or charged and poorly conducting, fluids. We show that, unlike what has been previously thought, this approach can also accommodate perfectly conducting magnetofluids, via the Bekenstein-Oron description of ideal magnetohydrodynamics. When Noether symmetries associated with Killing vectors or tensors are present in geodesic flows, they lead to constants of motion polynomial in the momenta. We generalize these concepts to hydrodynamic flows. Moreover, the Hamiltonian descriptions of ideal magnetohydrodynamics allow one to cast the evolution equations into a hyperbolic form useful for evolving rotating or binary compact objects with magnetic fields in numerical general relativity. In this framework, Ertel's potential vorticity theorem for baroclinic fluids arises as a special case of a conservation law valid for any Hamiltonian system. Moreover, conserved circulation laws, such as those of Kelvin, Alfvén and Bekenstein-Oron, emerge simply as special cases of the Poincaré-Cartan integral invariant of Hamiltonian systems. We use this approach to obtain an extension of Kelvin's theorem to baroclinic (nonisentropic) fluids, based on a temperature-dependent time parameter. We further extend this result to perfectly or poorly conducting baroclinic magnetoflows. Finally, in the barotropic case, such magnetoflows are shown to also be geodesic, albeit in a Finsler (rather than Riemann) space.
The art and science of hyperbolic tessellations.
Van Dusen, B; Taylor, R P
2013-04-01
The visual impact of hyperbolic tessellations has captured artists' imaginations ever since M.C. Escher generated his Circle Limit series in the 1950s. The scaling properties generated by hyperbolic geometry are different to the fractal scaling properties found in nature's scenery. Consequently, prevalent interpretations of Escher's art emphasize the lack of connection with nature's patterns. However, a recent collaboration between the two authors proposed that Escher's motivation for using hyperbolic geometry was as a method to deliberately distort nature's rules. Inspired by this hypothesis, this year's cover artist, Ben Van Dusen, embeds natural fractals such as trees, clouds and lightning into a hyperbolic scaling grid. The resulting interplay of visual structure at multiple size scales suggests that hybridizations of fractal and hyperbolic geometries provide a rich compositional tool for artists.
1994-07-25
these equations, see Antman [1]. fourth order methods are the only ones that give good results Keyfits and Xranser [(3 considered the string with a...produces a weak solution to the Cauchy problem for arbitrarily large initial data by working in L 2 spaces. [1] Stuart S. Antman , "The Equations for
NASA Technical Reports Server (NTRS)
Steger, J. L.; Rizk, Y. M.
1985-01-01
An efficient numerical mesh generation scheme capable of creating orthogonal or nearly orthogonal grids about moderately complex three dimensional configurations is described. The mesh is obtained by marching outward from a user specified grid on the body surface. Using spherical grid topology, grids have been generated about full span rectangular wings and a simplified space shuttle orbiter.
NASA Astrophysics Data System (ADS)
Baladi, Viviane; Kuna, Tobias; Lucarini, Valerio
2017-08-01
The first main result of Baladi et al (2017 Nonlinearity 30 1204-20) is modified as follows: For any θ in the Sobolev space H^r_p(M) , with 1 and 0, the map t\\mapsto \\int θ dρt is α-Hölder continuous for all \
The hidden hyperbolic geometry of international trade: World Trade Atlas 1870-2013.
García-Pérez, Guillermo; Boguñá, Marián; Allard, Antoine; Serrano, M Ángeles
2016-09-16
Here, we present the World Trade Atlas 1870-2013, a collection of annual world trade maps in which distance combines economic size and the different dimensions that affect international trade beyond mere geography. Trade distances, based on a gravity model predicting the existence of significant trade channels, are such that the closer countries are in trade space, the greater their chance of becoming connected. The atlas provides us with information regarding the long-term evolution of the international trade system and demonstrates that, in terms of trade, the world is not flat but hyperbolic, as a reflection of its complex architecture. The departure from flatness has been increasing since World War I, meaning that differences in trade distances are growing and trade networks are becoming more hierarchical. Smaller-scale economies are moving away from other countries except for the largest economies; meanwhile those large economies are increasing their chances of becoming connected worldwide. At the same time, Preferential Trade Agreements do not fit in perfectly with natural communities within the trade space and have not necessarily reduced internal trade barriers. We discuss an interpretation in terms of globalization, hierarchization, and localization; three simultaneous forces that shape the international trade system.
The hidden hyperbolic geometry of international trade: World Trade Atlas 1870-2013
NASA Astrophysics Data System (ADS)
García-Pérez, Guillermo; Boguñá, Marián; Allard, Antoine; Serrano, M. Ángeles
2016-09-01
Here, we present the World Trade Atlas 1870-2013, a collection of annual world trade maps in which distance combines economic size and the different dimensions that affect international trade beyond mere geography. Trade distances, based on a gravity model predicting the existence of significant trade channels, are such that the closer countries are in trade space, the greater their chance of becoming connected. The atlas provides us with information regarding the long-term evolution of the international trade system and demonstrates that, in terms of trade, the world is not flat but hyperbolic, as a reflection of its complex architecture. The departure from flatness has been increasing since World War I, meaning that differences in trade distances are growing and trade networks are becoming more hierarchical. Smaller-scale economies are moving away from other countries except for the largest economies; meanwhile those large economies are increasing their chances of becoming connected worldwide. At the same time, Preferential Trade Agreements do not fit in perfectly with natural communities within the trade space and have not necessarily reduced internal trade barriers. We discuss an interpretation in terms of globalization, hierarchization, and localization; three simultaneous forces that shape the international trade system.
Focal surfaces of hyperbolic cylinders
NASA Astrophysics Data System (ADS)
Georgiev, Georgi Hristov; Pavlov, Milen Dimov
2017-12-01
Cylindrical surfaces have many applications in geometric modeling, architecture and other branches of engineering. In this paper, we describe two cylindrical surfaces associated to a given hyperbolic cylinder. The first one is a focal surface which is determined by reciprocal principle curvature of the hyperbolic cylinder. The second one is a generalized focal surface obtained by reciprocal mean curvature of the same hyperbolic cylinder. In particular, we show that each of these surfaces admits three different parametric representations. As consequence, it is proved that the focal and generalized focal surfaces of the hyperbolic cylinder are rational surfaces. An illustrative example is included.
Linear guided waves in a hyperbolic planar waveguide. Dispersion relations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyashko, E I; Maimistov, A I
2015-11-30
We have theoretically investigated waveguide modes propagating in a planar waveguide formed by a layer of an isotropic dielectric surrounded by hyperbolic media. The case, when the optical axis of hyperbolic media is perpendicular to the interface, is considered. Dispersion relations are derived for the cases of TE and TM waves. The differences in the characteristics of a hyperbolic and a conventional dielectric waveguide are found. In particular, it is shown that in hyperbolic waveguides for each TM mode there are two cut-off frequencies and the number of propagating modes is always limited. (metamaterials)
Hyperbolic Rendezvous at Mars: Risk Assessments and Mitigation Strategies
NASA Technical Reports Server (NTRS)
Jedrey, Ricky; Landau, Damon; Whitley, Ryan
2015-01-01
Given the current interest in the use of flyby trajectories for human Mars exploration, a key requirement is the capability to execute hyperbolic rendezvous. Hyperbolic rendezvous is used to transport crew from a Mars centered orbit, to a transiting Earth bound habitat that does a flyby. Representative cases are taken from future potential missions of this type, and a thorough sensitivity analysis of the hyperbolic rendezvous phase is performed. This includes early engine cutoff, missed burn times, and burn misalignment. A finite burn engine model is applied that assumes the hyperbolic rendezvous phase is done with at least two burns.
Strong-field tidal distortions of rotating black holes. III. Embeddings in hyperbolic three-space
NASA Astrophysics Data System (ADS)
Penna, Robert F.; Hughes, Scott A.; O'Sullivan, Stephen
2017-09-01
In previous work, we developed tools for quantifying the tidal distortion of a black hole's event horizon due to an orbiting companion. These tools use techniques which require large mass ratios (companion mass μ much smaller than black hole mass M ), but can be used for arbitrary bound orbits and for any black hole spin. We also showed how to visualize these distorted black holes by embedding their horizons in a global Euclidean three-space, E3. Such visualizations illustrate interesting and important information about horizon dynamics. Unfortunately, we could not visualize black holes with spin parameter a*>√{3 }/2 ≈0.866 : such holes cannot be globally embedded into E3. In this paper, we overcome this difficulty by showing how to embed the horizons of tidally distorted Kerr black holes in a hyperbolic three-space, H3. We use black hole perturbation theory to compute the Gaussian curvatures of tidally distorted event horizons, from which we build a two-dimensional metric of their distorted horizons. We develop a numerical method for embedding the tidally distorted horizons in H3. As an application, we give a sequence of embeddings into H3 of a tidally interacting black hole with spin a*=0.9999 . A small-amplitude, high-frequency oscillation seen in previous work shows up particularly clearly in these embeddings.
Conservation laws with coinciding smooth solutions but different conserved variables
NASA Astrophysics Data System (ADS)
Colombo, Rinaldo M.; Guerra, Graziano
2018-04-01
Consider two hyperbolic systems of conservation laws in one space dimension with the same eigenvalues and (right) eigenvectors. We prove that solutions to Cauchy problems with the same initial data differ at third order in the total variation of the initial datum. As a first application, relying on the classical Glimm-Lax result (Glimm and Lax in Decay of solutions of systems of nonlinear hyperbolic conservation laws. Memoirs of the American Mathematical Society, No. 101. American Mathematical Society, Providence, 1970), we obtain estimates improving those in Saint-Raymond (Arch Ration Mech Anal 155(3):171-199, 2000) on the distance between solutions to the isentropic and non-isentropic inviscid compressible Euler equations, under general equations of state. Further applications are to the general scalar case, where rather precise estimates are obtained, to an approximation by Di Perna of the p-system and to a traffic model.
NASA Astrophysics Data System (ADS)
Li, Liangliang; Huang, Yu; Chen, Goong; Huang, Tingwen
If a second order linear hyperbolic partial differential equation in one-space dimension can be factorized as a product of two first order operators and if the two first order operators commute, with one boundary condition being the van der Pol type and the other being linear, one can establish the occurrence of chaos when the parameters enter a certain regime [Chen et al., 2014]. However, if the commutativity of the two first order operators fails to hold, then the treatment in [Chen et al., 2014] no longer works and significant new challenges arise in determining nonlinear boundary conditions that engenders chaos. In this paper, we show that by incorporating a linear memory effect, a nonlinear van der Pol boundary condition can cause chaotic oscillations when the parameter enters a certain regime. Numerical simulations illustrating chaotic oscillations are also presented.
Optofluidic lens with tunable focal length and asphericity
Mishra, Kartikeya; Murade, Chandrashekhar; Carreel, Bruno; Roghair, Ivo; Oh, Jung Min; Manukyan, Gor; van den Ende, Dirk; Mugele, Frieder
2014-01-01
Adaptive micro-lenses enable the design of very compact optical systems with tunable imaging properties. Conventional adaptive micro-lenses suffer from substantial spherical aberration that compromises the optical performance of the system. Here, we introduce a novel concept of liquid micro-lenses with superior imaging performance that allows for simultaneous and independent tuning of both focal length and asphericity. This is achieved by varying both hydrostatic pressures and electric fields to control the shape of the refracting interface between an electrically conductive lens fluid and a non-conductive ambient fluid. Continuous variation from spherical interfaces at zero electric field to hyperbolic ones with variable ellipticity for finite fields gives access to lenses with positive, zero, and negative spherical aberration (while the focal length can be tuned via the hydrostatic pressure). PMID:25224851
Bhattacharya, Abhishek; Dunson, David B.
2012-01-01
This article considers a broad class of kernel mixture density models on compact metric spaces and manifolds. Following a Bayesian approach with a nonparametric prior on the location mixing distribution, sufficient conditions are obtained on the kernel, prior and the underlying space for strong posterior consistency at any continuous density. The prior is also allowed to depend on the sample size n and sufficient conditions are obtained for weak and strong consistency. These conditions are verified on compact Euclidean spaces using multivariate Gaussian kernels, on the hypersphere using a von Mises-Fisher kernel and on the planar shape space using complex Watson kernels. PMID:22984295
NASA Astrophysics Data System (ADS)
Kumar, Vivek; Raghurama Rao, S. V.
2008-04-01
Non-standard finite difference methods (NSFDM) introduced by Mickens [ Non-standard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994] are interesting alternatives to the traditional finite difference and finite volume methods. When applied to linear hyperbolic conservation laws, these methods reproduce exact solutions. In this paper, the NSFDM is first extended to hyperbolic systems of conservation laws, by a novel utilization of the decoupled equations using characteristic variables. In the second part of this paper, the NSFDM is studied for its efficacy in application to nonlinear scalar hyperbolic conservation laws. The original NSFDMs introduced by Mickens (1994) were not in conservation form, which is an important feature in capturing discontinuities at the right locations. Mickens [Construction and analysis of a non-standard finite difference scheme for the Burgers-Fisher equations, Journal of Sound and Vibration 257 (4) (2002) 791-797] recently introduced a NSFDM in conservative form. This method captures the shock waves exactly, without any numerical dissipation. In this paper, this algorithm is tested for the case of expansion waves with sonic points and is found to generate unphysical expansion shocks. As a remedy to this defect, we use the strategy of composite schemes [R. Liska, B. Wendroff, Composite schemes for conservation laws, SIAM Journal of Numerical Analysis 35 (6) (1998) 2250-2271] in which the accurate NSFDM is used as the basic scheme and localized relaxation NSFDM is used as the supporting scheme which acts like a filter. Relaxation schemes introduced by Jin and Xin [The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications in Pure and Applied Mathematics 48 (1995) 235-276] are based on relaxation systems which replace the nonlinear hyperbolic conservation laws by a semi-linear system with a stiff relaxation term. The relaxation parameter ( λ) is chosen locally on the three point stencil of grid which makes the proposed method more efficient. This composite scheme overcomes the problem of unphysical expansion shocks and captures the shock waves with an accuracy better than the upwind relaxation scheme, as demonstrated by the test cases, together with comparisons with popular numerical methods like Roe scheme and ENO schemes.
Hyperbolic-symmetry vector fields.
Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2015-12-14
We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.
NASA Astrophysics Data System (ADS)
Kähler, Sven; Olsen, Jeppe
2017-11-01
A computational method is presented for systems that require high-level treatments of static and dynamic electron correlation but cannot be treated using conventional complete active space self-consistent field-based methods due to the required size of the active space. Our method introduces an efficient algorithm for perturbative dynamic correlation corrections for compact non-orthogonal MCSCF calculations. In the algorithm, biorthonormal expansions of orbitals and CI-wave functions are used to reduce the scaling of the performance determining step from quadratic to linear in the number of configurations. We describe a hierarchy of configuration spaces that can be chosen for the active space. Potential curves for the nitrogen molecule and the chromium dimer are compared for different configuration spaces. Already the most compact spaces yield qualitatively correct potentials that with increasing size of configuration spaces systematically approach complete active space results.
Takemura, Kazuhisa; Murakami, Hajime
2016-01-01
A probability weighting function (w(p)) is considered to be a nonlinear function of probability (p) in behavioral decision theory. This study proposes a psychophysical model of probability weighting functions derived from a hyperbolic time discounting model and a geometric distribution. The aim of the study is to show probability weighting functions from the point of view of waiting time for a decision maker. Since the expected value of a geometrically distributed random variable X is 1/p, we formulized the probability weighting function of the expected value model for hyperbolic time discounting as w(p) = (1 - k log p)(-1). Moreover, the probability weighting function is derived from Loewenstein and Prelec's (1992) generalized hyperbolic time discounting model. The latter model is proved to be equivalent to the hyperbolic-logarithmic weighting function considered by Prelec (1998) and Luce (2001). In this study, we derive a model from the generalized hyperbolic time discounting model assuming Fechner's (1860) psychophysical law of time and a geometric distribution of trials. In addition, we develop median models of hyperbolic time discounting and generalized hyperbolic time discounting. To illustrate the fitness of each model, a psychological experiment was conducted to assess the probability weighting and value functions at the level of the individual participant. The participants were 50 university students. The results of individual analysis indicated that the expected value model of generalized hyperbolic discounting fitted better than previous probability weighting decision-making models. The theoretical implications of this finding are discussed.
On the local well-posedness of Lovelock and Horndeski theories
NASA Astrophysics Data System (ADS)
Papallo, Giuseppe; Reall, Harvey S.
2017-08-01
We investigate local well-posedness of the initial value problem for Lovelock and Horndeski theories of gravity. A necessary condition for local well-posedness is strong hyperbolicity of the equations of motion. Even weak hyperbolicity can fail for strong fields so we restrict to weak fields. The Einstein equation is known to be strongly hyperbolic in harmonic gauge so we study Lovelock theories in harmonic gauge. We show that the equation of motion is always weakly hyperbolic for weak fields but, in a generic weak-field background, it is not strongly hyperbolic. For Horndeski theories, we prove that, for weak fields, the equation of motion is always weakly hyperbolic in any generalized harmonic gauge. For some Horndeski theories there exists a generalized harmonic gauge for which the equation of motion is strongly hyperbolic in a weak-field background. This includes "k-essence" like theories. However, for more general Horndeski theories, there is no generalized harmonic gauge for which the equation of motion is strongly hyperbolic in a generic weak-field background. Our results show that the standard method used to establish local well-posedness of the Einstein equation does not extend to Lovelock or general Horndeski theories. This raises the possibility that these theories may not admit a well-posed initial value problem even for weak fields.
Blackfolds, plane waves and minimal surfaces
NASA Astrophysics Data System (ADS)
Armas, Jay; Blau, Matthias
2015-07-01
Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.
Hyperbolic metamaterials: Novel physics and applications
NASA Astrophysics Data System (ADS)
Smolyaninov, Igor I.; Smolyaninova, Vera N.
2017-10-01
Hyperbolic metamaterials were originally introduced to overcome the diffraction limit of optical imaging. Soon thereafter it was realized that hyperbolic metamaterials demonstrate a number of novel phenomena resulting from the broadband singular behavior of their density of photonic states. These novel phenomena and applications include super resolution imaging, new stealth technologies, enhanced quantum-electrodynamic effects, thermal hyperconductivity, superconductivity, and interesting gravitation theory analogues. Here we briefly review typical material systems, which exhibit hyperbolic behavior and outline important novel applications of hyperbolic metamaterials. In particular, we will describe recent imaging experiments with plasmonic metamaterials and novel VCSEL geometries, in which the Bragg mirrors may be engineered in such a way that they exhibit hyperbolic metamaterial properties in the long wavelength infrared range, so that they may be used to efficiently remove excess heat from the laser cavity. We will also discuss potential applications of three-dimensional self-assembled photonic hypercrystals, which are based on cobalt ferrofluids in external magnetic field. This system bypasses 3D nanofabrication issues, which typically limit metamaterial applications. Photonic hypercrystals combine the most interesting features of hyperbolic metamaterials and photonic crystals.
Inhomogeneous compact extra dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bronnikov, K.A.; Budaev, R.I.; Grobov, A.V.
We show that an inhomogeneous compact extra space possesses two necessary features— their existence does not contradict the observable value of the cosmological constant Λ{sub 4} in pure f ( R ) theory, and the extra dimensions are stable relative to the 'radion mode' of perturbations, the only mode considered. For a two-dimensional extra space, both analytical and numerical solutions for the metric are found, able to provide a zero or arbitrarily small Λ{sub 4}. A no-go theorem has also been proved, that maximally symmetric compact extra spaces are inconsistent with 4D Minkowski space in the framework of pure fmore » ( R ) gravity.« less
Flattening Property and the Existence of Global Attractors in Banach Space
NASA Astrophysics Data System (ADS)
Aris, Naimah; Maharani, Sitti; Jusmawati, Massalesse; Nurwahyu, Budi
2018-03-01
This paper analyses the existence of global attractor in infinite dimensional system using flattening property. The earlier stage we show the existence of the global attractor in complete metric space by using concept of the ω-limit compact concept with measure of non-compactness methods. Then we show that the ω-limit compact concept is equivalent with the flattening property in Banach space. If we can prove there exist an absorbing set in the system and the flattening property holds, then the global attractor exist in the system.
13-Moment System with Global Hyperbolicity for Quantum Gas
NASA Astrophysics Data System (ADS)
Di, Yana; Fan, Yuwei; Li, Ruo
2017-06-01
We point out that the quantum Grad's 13-moment system (Yano in Physica A 416:231-241, 2014) is lack of global hyperbolicity, and even worse, the thermodynamic equilibrium is not an interior point of the hyperbolicity region of the system. To remedy this problem, by fully considering Grad's expansion, we split the expansion into the equilibrium part and the non-equilibrium part, and propose a regularization for the system with the help of the new hyperbolic regularization theory developed in Cai et al. (SIAM J Appl Math 75(5):2001-2023, 2015) and Fan et al. (J Stat Phys 162(2):457-486, 2016). This provides us a new model which is hyperbolic for all admissible thermodynamic states, and meanwhile preserves the approximate accuracy of the original system. It should be noted that this procedure is not a trivial application of the hyperbolic regularization theory.
Cosmological attractors and asymptotic freedom of the inflaton field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kallosh, Renata; Linde, Andrei
2016-06-28
We show that the inflaton coupling to all other fields is exponentially suppressed during inflation in the cosmological α-attractor models. In the context of supergravity, this feature is a consequence of the underlying hyperbolic geometry of the moduli space which has a flat direction corresponding to the inflaton field. A combination of these factors protects the asymptotic flatness of the inflaton potential.
The Relativistic Geometry and Dynamics of Electrons
NASA Astrophysics Data System (ADS)
Atiyah, M. F.; Malkoun, J.
2018-02-01
Atiyah and Sutcliffe (Proc R Soc Lond Ser A 458:1089-1115, 2002) made a number of conjectures about configurations of N distinct points in hyperbolic 3-space, arising from ideas of Berry and Robbins (Proc R Soc Lond Ser A 453:1771-1790, 1997). In this paper we prove all these conjectures, purely geometrically, but we also provide a physical interpretation in terms of Electrons.
Scientific Activities Pursuant to the Provisions of AFOSR Grant 79-0018.
1984-01-01
controllability implies stabilizability n the case of autono- mous finite dimensional linear systems , we are not surprised to find control ...Current Status of the Control Theory of Single Space Dim- ension Hyperbolicr Systems " was presented at the NASA JPL Symposium on Cbntrol and Stabilization ...theory of hyperbolic systems , including controllability , stabilization , control canonical form theory, etc. To allow a unified and not
Examining the Role of Environment in a Comprehensive Sample of Compact Groups
NASA Astrophysics Data System (ADS)
Walker, Lisa May; Johnson, Kelsey E.; Gallagher, Sarah C.; Charlton, Jane C.; Hornschemeier, Ann E.; Hibbard, John E.
2012-03-01
Compact groups, with their high number densities, small velocity dispersions, and an interstellar medium that has not been fully processed, provide a local analog to conditions of galaxy interactions in the earlier universe. The frequent and prolonged gravitational encounters that occur in compact groups affect the evolution of the constituent galaxies in a myriad of ways, for example, gas processing and star formation. Recently, a statistically significant "gap" has been discovered in the mid-infrared (MIR: 3.6-8 μm) IRAC color space of compact group galaxies. This gap is not seen in field samples and is a new example of how the compact group environment may affect the evolution of member galaxies. In order to investigate the origin and nature of this gap, we have compiled a larger sample of 37 compact groups in addition to the original 12 groups studied by Johnson et al. (yielding 174 individual galaxies with reliable MIR photometry). We find that a statistically significant deficit of galaxies in this gap region of IRAC color space is persistent in the full sample, lending support to the hypothesis that the compact group environment inhibits moderate specific star formation rates. Using this expanded sample, we have more fully characterized the distribution of galaxies in this color space and quantified the low-density region more fully with respect to MIR bluer and MIR redder colors. We note a curvature in the color-space distribution, which is fully consistent with increasing dust temperature as the activity in a galaxy increases. This full sample of 49 compact groups allows us to subdivide the data according to physical properties of the groups. An analysis of these subsamples indicates that neither projected physical diameter nor density shows a trend in color space within the values represented by this sample. We hypothesize that the apparent lack of a trend is due to the relatively small range of properties in this sample, whose groups have already been pre-selected to be compact and dense. Thus, the relative influence of stochastic effects (such as the particular distribution and amount of star formation in individual galaxies) becomes dominant. We analyze spectral energy distributions of member galaxies as a function of their location in color space and find that galaxies in different regions of MIR color space contain dust with varying temperatures and/or polycyclic aromatic hydrocarbon emission.
Examining the Role of Environment in a Comprehensive Sample of Compact Groups
NASA Technical Reports Server (NTRS)
Walker, Lisa May; Johnson, Kelsey E.; Gallagher, Sarah C.; Charlton, Jane C.; Hornschemeier, Ann E.; Hibbard, John E.
2012-01-01
Compact groups, with their high number densities, small velocity dispersions, and an interstellar medium that has not been fully processed, provide a local analog to conditions of galaxy interactions in the earlier universe. The frequent and prolonged gravitational encounters that occur in compact groups affect the evolution of the constituent galaxies in a myriad of ways, for example, gas processing and star formation. Recently, a statistically significant "gap" has been discovered in the mid-infrared (MIR: 3.6-8 µm) IRAC color space of compact group galaxies. This gap is not seen in field samples and is a new example of how the compact group environment may affect the evolution of member galaxies. In order to investigate the origin and nature of this gap, we have compiled a larger sample of 37 compact groups in addition to the original 12 groups studied by Johnson et al. (yielding 174 individual galaxies with reliable MIR photometry). We find that a statistically significant deficit of galaxies in this gap region of IRAC color space is persistent in the full sample, lending support to the hypothesis that the compact group environment inhibits moderate specific star formation rates. Using this expanded sample, we have more fully characterized the distribution of galaxies in this color space and quantified the low-density region more fully with respect to MIR bluer and MIR redder colors. We note a curvature in the color-space distribution, which is fully consistent with increasing dust temperature as the activity in a galaxy increases. This full sample of 49 compact groups allows us to subdivide the data according to physical properties of the groups. An analysis of these subsamples indicates that neither projected physical diameter nor density shows a trend in color space within the values represented by this sample. We hypothesize that the apparent lack of a trend is due to the relatively small range of properties in this sample, whose groups have already been pre-selected to be compact and dense. Thus, the relative influence of stochastic effects (such as the particular distribution and amount of star formation in individual galaxies) becomes dominant. We analyze spectral energy distributions of member galaxies as a function of their location in color space and find that galaxies in different regions of MIR color space contain dust with varying temperatures and/or polycyclic aromatic hydrocarbon emission.
The Hype over Hyperbolic Browsers.
ERIC Educational Resources Information Center
Allen, Maryellen Mott
2002-01-01
Considers complaints about the usability in the human-computer interaction aspect of information retrieval and discusses information visualization, the Online Library of Information Visualization Environments, hyperbolic information structure, subject searching, real-world applications, relational databases and hyperbolic trees, and the future of…
Point coordinates extraction from localized hyperbolic reflections in GPR data
NASA Astrophysics Data System (ADS)
Ristić, Aleksandar; Bugarinović, Željko; Vrtunski, Milan; Govedarica, Miro
2017-09-01
In this paper, we propose an automated detection algorithm for the localization of apexes and points on the prongs of hyperbolic reflection incurred as a result of GPR scanning technology. The objects of interest encompass cylindrical underground utilities that have a distinctive form of hyperbolic reflection in radargram. Algorithm involves application of trained neural network to analyze radargram in the form of raster image, resulting with extracted segments of interest that contain hyperbolic reflections. This significantly reduces the amount of data for further analysis. Extracted segments represent the zone for localization of apices. This is followed by extraction of points on prongs of hyperbolic reflections which is carried out until stopping criterion is satisfied, regardless the borders of segment of interest. In final step a classification of false hyperbolic reflections caused by the constructive interference and their removal is done. The algorithm is implemented in MATLAB environment. There are several advantages of the proposed algorithm. It can successfully recognize true hyperbolic reflections in radargram images and extracts coordinates, with very low rate of false detections and without prior knowledge about the number of hyperbolic reflections or buried utilities. It can be applied to radargrams containing single and multiple hyperbolic reflections, intersected, distorted, as well as incomplete (asymmetric) hyperbolic reflections, all in the presence of higher level of noise. Special feature of algorithm is developed procedure for analysis and removal of false hyperbolic reflections generated by the constructive interference from reflectors associated with the utilities. Algorithm was tested on a number of synthetic and radargram acquired in the field survey. To illustrate the performances of the proposed algorithm, we present the characteristics of the algorithm through five representative radargrams obtained in real conditions. In these examples we present different acquisition scenarios by varying the number of buried objects, their disposition, size, and level of noise. Example with highest complexity was tested also as a synthetic radargram generated by gprMax. Processing time in examples with one or two hyperbolic reflections is from 0.1 to 0.3 s, while for the most complex examples it is from 2.2 to 4.9 s. In general, the obtained experimental results show that the proposed algorithm exhibits promising performances both in terms of utility detection and processing speed of the algorithm.
Wavelets and Affine Distributions: A Time-Frequency Perspective
2005-01-07
Ville Distribution ( WVD ) • Prominent member of the AC: the WVD • Properties of the WVD : – Covariant to TF scaling and time shift (of course) – Covariant...QTFRs • Wigner - Ville distribution and affine smoothing • Doppler tolerance and hyperbolic impulses • Hyperbolic TF localization and Bertrand P0...satisfy hyperbolic TF localization property: • Not satisfied by WVD ! 25 – 49 –WAMA-04 Cargèse, France The Bertrand P0 distribution • The hyperbolic
Thermal emitter comprising near-zero permittivity materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luk, Ting S.; Campione, Salvatore; Sinclair, Michael B.
A novel thermal source comprising a semiconductor hyperbolic metamaterial provides control of the emission spectrum and the angular emission pattern. These properties arise because of epsilon-near-zero conditions in the semiconductor hyperbolic metamaterial. In particular, the thermal emission is dominated by the epsilon-near-zero effect in the doped quantum wells composing the semiconductor hyperbolic metamaterial. Furthermore, different properties are observed for s and p polarizations, following the characteristics of the strong anisotropy of hyperbolic metamaterials.
Synchronization of relativistic particles in the hyperbolic Kuramoto model
NASA Astrophysics Data System (ADS)
Ritchie, Louis M.; Lohe, M. A.; Williams, Anthony G.
2018-05-01
We formulate a noncompact version of the Kuramoto model by replacing the invariance group SO(2) of the plane rotations by the noncompact group SO(1, 1). The N equations of the system are expressed in terms of hyperbolic angles αi and are similar to those of the Kuramoto model, except that the trigonometric functions are replaced by hyperbolic functions. Trajectories are generally unbounded, nevertheless synchronization occurs for any positive couplings κi, arbitrary positive multiplicative parameters λi and arbitrary exponents ωi. There are no critical values for the coupling constants. We measure the onset of synchronization by means of several order and disorder parameters. We show numerically and by means of exact solutions for N = 2 that solutions can develop singularities if the coupling constants are negative, or if the initial values are not suitably restricted. We describe a physical interpretation of the system as a cluster of interacting relativistic particles in 1 + 1 dimensions, subject to linear repulsive forces with space-time trajectories parametrized by the rapidity αi. The trajectories synchronize provided that the particle separations remain predominantly time-like, and the synchronized cluster can be viewed as a bound state of N relativistic particle constituents. We extend the defining equations of the system to higher dimensions by means of vector equations which are covariant with respect to SO(p, q).
Flow Visualization and Pattern Formation in Vertically Falling Liquid Films
NASA Astrophysics Data System (ADS)
Balakotaiah, Vemuri; Malamataris, Nikolaos
2008-11-01
Analytical results of a low-dimensional two equation h-q model and results of a direct numerical simulation of the transient two-dimensional Navier Stokes equations are presented for vertically falling liquid films along a solid wall. The numerical study aims at the elucidation of the hydrodynamics of the falling film. The analytical study aims at the calculation of the parameter space where pattern formation occurs for this flow. It has been found that when the wave amplitude exceeds a certain magnitude, flow reversal occurs in the film underneath the minimum of the waves [1]. The instantaneous vortical structures possess two hyperbolic points on the vertical wall and an elliptic point in the film. As the wave amplitude increases further, the elliptic point reaches the free surface of the film and two more hyperbolic points are formed in the free surface that replace the elliptic point. Between the two hyperbolic points on the free surface, the streamwise component of velocity is negative and the film is divided into asymmetric patterns of up and down flows. Depending on the value of the Kapitza number, these patterns are either stationary or oscillatory. Physical reasons for the influence of the Kapitza number on pattern formation are given. Movies are shown where the pattern formation is demonstrated. [1] N.A.Malamataris and V.Balakotaiah (2008), AIChE J., 54(7), p. 1725-1740
Compact Full-Field Ion Detector System for SmallSats Beyond LEO
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Clark, Pamela E.; McNeil, Roger R.
2014-01-01
NASA Glenn Research Center (GRC) is applying its expertise and facilities in harsh environment instrumentation to develop a Compact Full-Field Ion Detector System (CFIDS). The CFIDS is designed to be an extremely compact, low cost instrument, capable of being flown on a wide variety of deep space platforms, to provide multi-directional, comprehensive (composition, velocity, and direction) in-situ measurements of heavy ions in space plasma environments.
Linking initial microstructure and local response during quasistatic granular compaction
Hurley, R. C.; Lind, J.; Pagan, D. C.; ...
2017-07-24
In this study, we performed experiments combining three-dimensional x-ray diffraction and x-ray computed tomography to explore the relationship between microstructure and local force and strain during quasistatic granular compaction. We found that initial void space around a grain and contact coordination number before compaction can be used to predict regions vulnerable to above-average local force and strain at later stages of compaction. We also found correlations between void space around a grain and coordination number, and between grain stress and maximum interparticle force, at all stages of compaction. Finally, we observed grains that fracture to have an above-average initial localmore » void space and a below-average initial coordination number. In conclusion, our findings provide (1) a detailed description of microstructure evolution during quasistatic granular compaction, (2) an approach for identifying regions vulnerable to large values of strain and interparticle force, and (3) methods for identifying regions of a material with large interparticle forces and coordination numbers from measurements of grain stress and local porosity.« less
Traveling wave to a reaction-hyperbolic system for axonal transport
NASA Astrophysics Data System (ADS)
Huang, Feimin; Li, Xing; Zhang, Yinglong
2017-07-01
In this paper, we study a class of nonlinear reaction-hyperbolic systems modeling the neuronal signal transfer in neuroscience. This reaction-hyperbolic system can be regarded as n × n (n ≥ 2) hyperbolic system with relaxation. We first prove the existence of traveling wave by Gershgorin circle theorem and mathematically describe the neuronal signal transport. Then for a special case n = 2, we show the traveling wave is nonlinearly stable, and obtain the convergence rate simultaneously by a weighted estimate.
ERIC Educational Resources Information Center
Wolsink, Maarten
2016-01-01
The value of urban green space for environmental education fieldwork is empirically investigated in a study among all secondary schools in Amsterdam. The article describes how the proximity of schools to green spaces emerges as a new factor in the "sustainable city" and the "compact city" debate. For fieldwork excursions…
On the Behavior of Eisenstein Series Through Elliptic Degeneration
NASA Astrophysics Data System (ADS)
Garbin, D.; Pippich, A.-M. V.
2009-12-01
Let Γ be a Fuchsian group of the first kind acting on the hyperbolic upper half plane {mathbb{H}}, and let {M = Γbackslash mathbb{H}} be the associated finite volume hyperbolic Riemann surface. If γ is a primitive parabolic, hyperbolic, resp. elliptic element of Γ, there is an associated parabolic, hyperbolic, resp. elliptic Eisenstein series. In this article, we study the limiting behavior of these Eisenstein series on an elliptically degenerating family of finite volume hyperbolic Riemann surfaces. In particular, we prove the following result. The elliptic Eisenstein series associated to a degenerating elliptic element converges up to a factor to the parabolic Eisenstein series associated to the parabolic element which fixes the newly developed cusp on the limit surface.
Hyperbolic metamaterials: new physics behind a classical problem.
Drachev, Vladimir P; Podolskiy, Viktor A; Kildishev, Alexander V
2013-06-17
Hyperbolic materials enable numerous surprising applications that include far-field subwavelength imaging, nanolithography, and emission engineering. The wavevector of a plane wave in these media follows the surface of a hyperboloid in contrast to an ellipsoid for conventional anisotropic dielectric. The consequences of hyperbolic dispersion were first studied in the 50's pertaining to the problems of electromagnetic wave propagation in the Earth's ionosphere and in the stratified artificial materials of transmission lines. Recent years have brought explosive growth in optics and photonics of hyperbolic media based on metamaterials across the optical spectrum. Here we summarize earlier theories in the Clemmow's prescription for transformation of the electromagnetic field in hyperbolic media and provide a review of recent developments in this active research area.
Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas
Alfaro-Mozaz, F. J.; Alonso-González, P.; Vélez, S.; Dolado, I.; Autore, M.; Mastel, S.; Casanova, F.; Hueso, L. E.; Li, P.; Nikitin, A. Y.; Hillenbrand, R.
2017-01-01
Polaritons in layered materials—including van der Waals materials—exhibit hyperbolic dispersion and strong field confinement, which makes them highly attractive for applications including optical nanofocusing, sensing and control of spontaneous emission. Here we report a near-field study of polaritonic Fabry–Perot resonances in linear antennas made of a hyperbolic material. Specifically, we study hyperbolic phonon–polaritons in rectangular waveguide antennas made of hexagonal boron nitride (h-BN, a prototypical van der Waals crystal). Infrared nanospectroscopy and nanoimaging experiments reveal sharp resonances with large quality factors around 100, exhibiting atypical modal near-field patterns that have no analogue in conventional linear antennas. By performing a detailed mode analysis, we can assign the antenna resonances to a single waveguide mode originating from the hybridization of hyperbolic surface phonon–polaritons (Dyakonov polaritons) that propagate along the edges of the h-BN waveguide. Our work establishes the basis for the understanding and design of linear waveguides, resonators, sensors and metasurface elements based on hyperbolic materials and metamaterials. PMID:28589941
Super-Coulombic atom–atom interactions in hyperbolic media
Cortes, Cristian L.; Jacob, Zubin
2017-01-01
Dipole–dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole–dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom–atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon–polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media. PMID:28120826
Super-Coulombic atom-atom interactions in hyperbolic media
NASA Astrophysics Data System (ADS)
Cortes, Cristian L.; Jacob, Zubin
2017-01-01
Dipole-dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole-dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom-atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon-polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media.
Conjectures on the relations of linking and causality in causally simple spacetimes
NASA Astrophysics Data System (ADS)
Chernov, Vladimir
2018-05-01
We formulate the generalization of the Legendrian Low conjecture of Natario and Tod (proved by Nemirovski and myself before) to the case of causally simple spacetimes. We prove a weakened version of the corresponding statement. In all known examples, a causally simple spacetime can be conformally embedded as an open subset into some globally hyperbolic and the space of light rays in is an open submanifold of the space of light rays in . If this is always the case, this provides an approach to solving the conjectures relating causality and linking in causally simple spacetimes.
Quantum mechanics of hyperbolic orbits in the Kepler problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauh, Alexander; Parisi, Juergen
2011-04-15
The problem of deriving macroscopic properties from the Hamiltonian of the hydrogen atom is resumed by extending previous results in the literature, which predicted elliptic orbits, into the region of hyperbolic orbits. As a main tool, coherent states of the harmonic oscillator are used which are continued to imaginary frequencies. The Kustaanheimo-Stiefel (KS) map is applied to transform the original configuration space into the product space of four harmonic oscillators with a constraint. The relation derived between real time and oscillator (pseudo) time includes quantum corrections. In the limit ({h_bar}/2{pi}){yields}0, the time-dependent mean values of position and velocity describe themore » classical motion on a hyperbola and a circular hodograph, respectively. Moreover, the connection between pseudotime and real time comes out in analogy to Kepler's equation for elliptic orbits. The mean-square-root deviations of position and velocity components behave similarly in time to the corresponding ones of a spreading Gaussian wave packet in free space. To check the approximate treatment of the constraint, its contribution to the mean energy is determined with the result that it is negligible except for energy values close to the parabolic orbit with eccentricity equal to 1. It is inevitable to introduce a suitable scalar product in R{sup 4} which makes both the transformed Hamiltonian and the velocity operators Hermitian. An elementary necessary criterion is given for the energy interval where the constraint can be approximated by averaging.« less
NASA Astrophysics Data System (ADS)
Berberyan, A. Kh; Garakov, V. G.
2018-04-01
A large number of works have been devoted to investigation of the influence of the piezoelectric properties of a material on the propagation of elastic waves [1–3]. Herewith, the quasi-static piezoelasticity model was mainly used. In the problem of an electromagnetic wave reflection from an elastic medium with piezoelectric properties, it is necessary to consider hyperbolic equations [4].
The hidden hyperbolic geometry of international trade: World Trade Atlas 1870–2013
García-Pérez, Guillermo; Boguñá, Marián; Allard, Antoine; Serrano, M. Ángeles
2016-01-01
Here, we present the World Trade Atlas 1870–2013, a collection of annual world trade maps in which distance combines economic size and the different dimensions that affect international trade beyond mere geography. Trade distances, based on a gravity model predicting the existence of significant trade channels, are such that the closer countries are in trade space, the greater their chance of becoming connected. The atlas provides us with information regarding the long-term evolution of the international trade system and demonstrates that, in terms of trade, the world is not flat but hyperbolic, as a reflection of its complex architecture. The departure from flatness has been increasing since World War I, meaning that differences in trade distances are growing and trade networks are becoming more hierarchical. Smaller-scale economies are moving away from other countries except for the largest economies; meanwhile those large economies are increasing their chances of becoming connected worldwide. At the same time, Preferential Trade Agreements do not fit in perfectly with natural communities within the trade space and have not necessarily reduced internal trade barriers. We discuss an interpretation in terms of globalization, hierarchization, and localization; three simultaneous forces that shape the international trade system. PMID:27633649
Resin-Impregnated Carbon Ablator: A New Ablative Material for Hyperbolic Entry Speeds
NASA Technical Reports Server (NTRS)
Esper, Jaime; Lengowski, Michael
2012-01-01
Ablative materials are required to protect a space vehicle from the extreme temperatures encountered during the most demanding (hyperbolic) atmospheric entry velocities, either for probes launched toward other celestial bodies, or coming back to Earth from deep space missions. To that effect, the resin-impregnated carbon ablator (RICA) is a high-temperature carbon/phenolic ablative thermal protection system (TPS) material designed to use modern and commercially viable components in its manufacture. Heritage carbon/phenolic ablators intended for this use rely on materials that are no longer in production (i.e., Galileo, Pioneer Venus); hence the development of alternatives such as RICA is necessary for future NASA planetary entry and Earth re-entry missions. RICA s capabilities were initially measured in air for Earth re-entry applications, where it was exposed to a heat flux of 14 MW/sq m for 22 seconds. Methane tests were also carried out for potential application in Saturn s moon Titan, with a nominal heat flux of 1.4 MW/sq m for up to 478 seconds. Three slightly different material formulations were manufactured and subsequently tested at the Plasma Wind Tunnel of the University of Stuttgart in Germany (PWK1) in the summer and fall of 2010. The TPS integrity was well preserved in most cases, and results show great promise.
Conformal field theories and compact curves in moduli spaces
NASA Astrophysics Data System (ADS)
Donagi, Ron; Morrison, David R.
2018-05-01
We show that there are many compact subsets of the moduli space M g of Riemann surfaces of genus g that do not intersect any symmetry locus. This has interesting implications for N=2 supersymmetric conformal field theories in four dimensions.
Quantum supersymmetric Bianchi IX cosmology
NASA Astrophysics Data System (ADS)
Damour, Thibault; Spindel, Philippe
2014-11-01
We study the quantum dynamics of a supersymmetric squashed three-sphere by dimensionally reducing (to one timelike dimension) the action of D =4 simple supergravity for a S U (2 ) -homogeneous (Bianchi IX) cosmological model. The quantization of the homogeneous gravitino field leads to a 64-dimensional fermionic Hilbert space. After imposition of the diffeomorphism constraints, the wave function of the Universe becomes a 64-component spinor of spin(8,4) depending on the three squashing parameters, which satisfies Dirac-like, and Klein-Gordon-like, wave equations describing the propagation of a "quantum spinning particle" reflecting off spin-dependent potential walls. The algebra of the supersymmetry constraints and of the Hamiltonian one is found to close. One finds that the quantum Hamiltonian is built from operators that generate a 64-dimensional representation of the (infinite-dimensional) maximally compact subalgebra of the rank-3 hyperbolic Kac-Moody algebra A E3 . The (quartic-in-fermions) squared-mass term μ^ 2 entering the Klein-Gordon-like equation has several remarkable properties: (i) it commutes with all the other (Kac-Moody-related) building blocks of the Hamiltonian; (ii) it is a quadratic function of the fermion number NF; and (iii) it is negative in most of the Hilbert space. The latter property leads to a possible quantum avoidance of the singularity ("cosmological bounce"), and suggests imposing the boundary condition that the wave function of the Universe vanish when the volume of space tends to zero (a type of boundary condition which looks like a final-state condition when considering the big crunch inside a black hole). The space of solutions is a mixture of "discrete-spectrum states" (parametrized by a few constant parameters, and known in explicit form) and of continuous-spectrum states (parametrized by arbitrary functions entering some initial-value problem). The predominantly negative values of the squared-mass term lead to a "bottle effect" between small-volume universes and large-volume ones, and to a possible reduction of the continuous spectrum to a discrete spectrum of quantum states looking like excited versions of the Planckian-size universes described by the discrete states at fermionic levels NF=0 and 1.
NASA Astrophysics Data System (ADS)
Malykh, A. A.; Nutku, Y.; Sheftel, M. B.
2007-08-01
We demonstrate that partner symmetries provide a lift of noninvariant solutions of the three-dimensional Boyer-Finley equation to noninvariant solutions of the four-dimensional hyperbolic complex Monge-Ampère equation. The lift is applied to noninvariant solutions of the Boyer-Finley equation, obtained earlier by the method of group foliation, to yield noninvariant solutions of the hyperbolic complex Monge-Ampère equation. Using these solutions we construct new Ricci-flat ultra-hyperbolic metrics with non-zero curvature tensor that have no Killing vectors.
On the lagrangian 1-form structure of the hyperbolic calogero-moser system
NASA Astrophysics Data System (ADS)
Jairuk, Umpon; Tanasittikosol, Monsit; Yoo-Kong, Sikarin
2017-06-01
In this work, we present the Lagrangian 1-form structure of the hyperbolic Calogero-Moser system in both discrete-time level and continuous-time level. The discrete-time hyperbolic Calogero-Moser system is obtained by considering pole reduction of the semi-discrete Kadomtsev-Petviashvili (KP) equation. Furthermore, it is shown that the hyperbolic Calogero-Moser system possesses the key relation, known as the discrete-time closure relation. This relation is a consequence of the compatibility property of the temporal Lax matrices. The continuous-time hierarchy of the hyperbolic Calogero-Moser system is obtained by taking two successive continuum limits, namely, the skewed limit and full limit. With these successive limits, the continuous-time closure relation is also obtained and is shown to hold at the continuous level.
Hyperbolic phonon polaritons in hexagonal boron nitride (Conference Presentation)
NASA Astrophysics Data System (ADS)
Dai, Siyuan; Ma, Qiong; Fei, Zhe; Liu, Mengkun; Goldflam, Michael D.; Andersen, Trond; Garnett, William; Regan, Will; Wagner, Martin; McLeod, Alexander S.; Rodin, Alexandr; Zhu, Shou-En; Watanabe, Kenji; Taniguchi, T.; Dominguez, Gerado; Thiemens, Mark; Castro Neto, Antonio H.; Janssen, Guido C. A. M.; Zettl, Alex; Keilmann, Fritz; Jarillo-Herrero, Pablo; Fogler, Michael M.; Basov, Dmitri N.
2016-09-01
Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. While hyperbolic responses are normally achieved with metamaterials, hexagonal boron nitride (hBN) naturally possesses this property due to the anisotropic phonons in the mid-infrared. Using scattering-type scanning near-field optical microscopy, we studied polaritonic phenomena in hBN. We performed infrared nano-imaging of highly confined and low-loss hyperbolic phonon polaritons in hBN. The polariton wavelength was shown to be governed by the hBN thickness according to a linear law persisting down to few atomic layers [1]. Additionally, we carried out the modification of hyperbolic response in meta-structures comprised of a mononlayer graphene deposited on hBN [2]. Electrostatic gating of the top graphene layer allows for the modification of wavelength and intensity of hyperbolic phonon polaritons in bulk hBN. The physics of the modification originates from the plasmon-phonon coupling in the hyperbolic medium. Furthermore, we demonstrated the "hyperlens" for subdiffractional focusing and imaging using a slab of hBN [3]. References [1] S. Dai et al., Science, 343, 1125 (2014). [2] S. Dai et al., Nature Nanotechnology, 10, 682 (2015). [3] S. Dai et al., Nature Communications, 6, 6963 (2015).
Compact Full-Field Ion Detector System for CubeSat Science Beyond LEO
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Clark, Pamela E.
2013-01-01
NASA Glenn Research Center (GRC) is applying its expertise and facilities in harsh environment instrumentation to develop a Compact Full-Field Ion Detector System (CFIDS). The CFIDS is designed to be an extremely compact, low cost instrument, capable of being flown on a wide variety of deep space platforms, to provide comprehensive (composition, velocity, and direction) in situ measurements of heavy ions in space plasma environments with higher fidelity, than previously available.
Antiholomorphic perturbations of Weierstrass Zeta functions and Green’s function on tori
NASA Astrophysics Data System (ADS)
Bogdanov, Konstantin; Mamayusupov, Khudoyor; Mukherjee, Sabyasachi; Schleicher, Dierk
2017-08-01
In Bergweiler and Eremenko (2016 Proc. Am. Math. Soc. 144 2911-22), Bergweiler and Eremenko computed the number of critical points of the Green’s function on a torus by investigating the dynamics of a certain family of antiholomorphic meromorphic functions on tori. They also observed that hyperbolic maps are dense in this family of meromorphic functions in a rather trivial way. In this paper, we study the parameter space of this family of meromorphic functions, which can be written as antiholomorphic perturbations of Weierstrass Zeta functions. On the one hand, we give a complete topological description of the hyperbolic components and their boundaries, and on the other hand, we show that these sets admit natural parametrizations by associated dynamical invariants. This settles a conjecture, made in Lin and Wang (2010 Ann. Math. 172 911-54), on the topology of the regions in the upper half plane {H} where the number of critical points of the Green’s function remains constant.
Higher-order jump conditions for conservation laws
NASA Astrophysics Data System (ADS)
Oksuzoglu, Hakan
2018-04-01
The hyperbolic conservation laws admit discontinuous solutions where the solution variables can have finite jumps in space and time. The jump conditions for conservation laws are expressed in terms of the speed of the discontinuity and the state variables on both sides. An example from the Gas Dynamics is the Rankine-Hugoniot conditions for the shock speed. Here, we provide an expression for the acceleration of the discontinuity in terms of the state variables and their spatial derivatives on both sides. We derive a jump condition for the shock acceleration. Using this general expression, we show how to obtain explicit shock acceleration formulas for nonlinear hyperbolic conservation laws. We start with the Burgers' equation and check the derived formula with an analytical solution. We next derive formulas for the Shallow Water Equations and the Euler Equations of Gas Dynamics. We will verify our formulas for the Euler Equations using an exact solution for the spherically symmetric blast wave problem. In addition, we discuss the potential use of these formulas for the implementation of shock fitting methods.
Universality of multi-field α-attractors
NASA Astrophysics Data System (ADS)
Achúcarro, Ana; Kallosh, Renata; Linde, Andrei; Wang, Dong-Gang; Welling, Yvette
2018-04-01
We study a particular version of the theory of cosmological α-attractors with α=1/3, in which both the dilaton (inflaton) field and the axion field are light during inflation. The kinetic terms in this theory originate from maximal Script N=4 superconformal symmetry and from maximal Script N=8 supergravity. We show that because of the underlying hyperbolic geometry of the moduli space in this theory, it exhibits double attractor behavior: their cosmological predictions are stable not only with respect to significant modifications of the dilaton potential, but also with respect to significant modifications of the axion potential: nssimeq1‑2/N, rsimeq4/N2. We also show that the universality of predictions extends to other values of α lesssim Script O(1) with general two-field potentials that may or may not have an embedding in supergravity. Our results support the idea that inflation involving multiple, not stabilized, light fields on a hyperbolic manifold may be compatible with current observational constraints for a broad class of potentials.
Design of fast earth-return trajectories from a lunar base
NASA Astrophysics Data System (ADS)
Anhorn, Walter
1991-09-01
The Apollo Lunar Program utilized efficient transearth trajectories which employed parking orbits in order to minimize energy requirements. This thesis concentrates on a different type of transearth trajectory. These are direct-ascent, hyperbolic trajectories which omit the parking orbits in order to achieve short flight times to and from a future lunar base. The object of the thesis is the development of a three-dimensional transearth trajectory model and associated computer program for exploring trade-offs between flight-time and energy, given various mission constraints. The program also targets the Moon with a hyperbolic trajectory, which can be used for targeting Earth impact points. The first-order model is based on an Earth-centered conic and a massless spherical Moon, using MathCAD version 3.0. This model is intended as the basis for future patched-conic formulations for the design of fast Earth-return trajectories. Applications include placing nuclear deterrent arsenals on the Moon, various space support related activities, and finally protection against Earth-threatening asteroids and comets using lunar bases.
Outer boundary as arrested history in general relativity
NASA Astrophysics Data System (ADS)
Lau, Stephen R.
2002-06-01
We present explicit outer boundary conditions for the canonical variables of general relativity. The conditions are associated with the causal evolution of a finite Cauchy domain, a so-called quasilocal boost, and they suggest a consistent scheme for modelling such an evolution numerically. The scheme involves a continuous boost in the spacetime orthogonal complement ⊥Tp(B) of the tangent space Tp(B) belonging to each point p on the system boundary B. We show how the boost rate may be computed numerically via equations similar to those appearing in canonical investigations of black-hole thermodynamics (although here holding at an outer two-surface rather than the bifurcate two-surface of a Killing horizon). We demonstrate the numerical scheme on a model example, the quasilocal boost of a spherical three-ball in Minkowski spacetime. Developing our general formalism with recent hyperbolic formulations of the Einstein equations in mind, we use Anderson and York's 'Einstein-Christoffel' hyperbolic system as the evolution equations for our numerical simulation of the model.
Approximations and Solution Estimates in Optimization
2016-04-06
comprehensive descriptions of epi-convergence and its connections to variational analysis broadly. Our motivation for going beyond normed linear spaces , which...proper, every closed ball in this metric space is compact and the existence of solutions of such optimal fitting problems is more easily established...lsc-fcns(X), dl(fν , f) → 0 implies that fν epi-converges to f. We recall that a metric space is proper if every closed ball in that space is compact
Aharony, Ofer; Razamat, Shlomo S.; Seiberg, Nathan; ...
2017-02-10
Two-dimensional field theories do not have a moduli space of vacua. Instead, it is common that their low-energy behavior is a sigma model with a target space. When this target space is compact its renormalization group flow is standard. When it is non-compact the continuous spectrum of operators can change the qualitative behavior. Here we discuss two-dimensional gauge theories with N = (2,2) supersymmetry. We focus on two specific theories, for which we argue that they flow to free chiral multiplets at low energies: the U(1) gauge theory with one flavor (two chiral superfields with charges plus and minus one)more » and a non-zero Fayet-Iliopoulos term, and pure SU( N) gauge theories. We argue that the renormalization group flow of these theories has an interesting order of limits issue. Holding the position on the target space fixed, the space flattens out under the renormalization group. On the other hand, if we first go to infinity on the target space and then perform the renormalization group, we always have a non-trivial space, e.g. a cone with a deficit angle. We explain how to interpret low-energy dualities between theories with non-compact target spaces. As a result, we expect a similar qualitative behavior also for other non-compact sigma models, even when they do not flow to free theories.« less
"That's Really Clever!" Ironic Hyperbole Understanding in Children
ERIC Educational Resources Information Center
Aguert, Marc; Le Vallois, Coralie; Martel, Karine; Laval, Virginie
2018-01-01
Hyperbole supports irony comprehension in adults by heightening the contrast between what is said and the actual situation. Because young children do not perceive the communication situation as a whole, but rather give precedence to either the utterance or the context, we predicted that hyperbole would reduce irony comprehension in six-year-olds…
Design, Integration and Flight Test of a Pair of Autonomous Spacecraft Flying in Formation
2013-05-01
representatives from the Air Force Research Laboratory, NASA’s Goddard Space Flight Center, the Jet Propulsion Laboratory, Boeing, Lockheed Martin, as...categories: elliptical , hyperbolic and parabolic (known as “Keplerian orbits”), each with their own characteristics and applications. These equations...of M-SAT’s operation is that of an elliptical nature, or more precisely a near-circular orbit. The primary method of determining the orbital elements
Single-Mode, High Repetition Rate, Compact Ho:YLF Laser for Space-Borne Lidar Applications
NASA Technical Reports Server (NTRS)
Bai, Yingxin; Yu, Jirong; Wong, Teh-Hwa; Chen, Songsheng; Petros, Mulugeta; Singh, Upendra N.
2014-01-01
A single transverse/longitudinal mode, compact Q-switched Ho:YLF laser has been designed and demonstrated for space-borne lidar applications. The pulse energy is between 34-40 mJ for 100-200 Hz operation. The corresponding peak power is >1 MW.
Classification of Tidal Disruption Events Based on Stellar Orbital Properties
NASA Astrophysics Data System (ADS)
Hayasaki, Kimitake; Zhong, Shiyan; Li, Shuo; Berczik, Peter; Spurzem, Rainer
2018-03-01
We study the rates of tidal disruption of stars on bound to unbound orbits by intermediate-mass to supermassive black holes using high-accuracy direct N-body experiments. Stars from the star cluster approaching the black hole can have three types of orbit: eccentric, parabolic, and hyperbolic. Since the mass fallback rate shows different variabilities depending on the orbital type, we can classify tidal disruption events (TDEs) into three main categories: eccentric, parabolic, and hyperbolic. The respective TDEs are characterized by two critical values of the orbital eccentricity: the lower critical eccentricity is the one below which stars on eccentric orbits cause finite, intense accretion, and the upper critical eccentricity is the one above which stars on hyperbolic orbits cause no accretion. Moreover, we find that parabolic TDEs can be divided into three subclasses: precisely parabolic, marginally eccentric, and marginally hyperbolic. We analytically derive that the mass fallback rate of marginally eccentric TDEs can be flatter and slightly higher than the standard fallback rate proportional to t ‑5/3, whereas it can be flatter and lower for marginally hyperbolic TDEs. We confirm using N-body experiments that only a few eccentric, precisely parabolic, and hyperbolic TDEs can occur in a spherical stellar system with a single intermediate-mass to supermassive black hole. A substantial fraction of the stars approaching the black hole would cause marginally eccentric or marginally hyperbolic TDEs.
Balancing Newtonian gravity and spin to create localized structures
NASA Astrophysics Data System (ADS)
Bush, Michael; Lindner, John
2015-03-01
Using geometry and Newtonian physics, we design localized structures that do not require electromagnetic or other forces to resist implosion or explosion. In two-dimensional Euclidean space, we find an equilibrium configuration of a rotating ring of massive dust whose inward gravity is the centripetal force that spins it. We find similar solutions in three-dimensional Euclidean and hyperbolic spaces, but only in the limit of vanishing mass. Finally, in three-dimensional Euclidean space, we generalize the two-dimensional result by finding an equilibrium configuration of a spherical shell of massive dust that supports itself against gravitational collapse by spinning isoclinically in four dimensions so its three-dimensional acceleration is everywhere inward. These Newtonian ``atoms'' illuminate classical physics and geometry.
NASA Astrophysics Data System (ADS)
Boscheri, Walter; Dumbser, Michael
2014-10-01
In this paper we present a new family of high order accurate Arbitrary-Lagrangian-Eulerian (ALE) one-step ADER-WENO finite volume schemes for the solution of nonlinear systems of conservative and non-conservative hyperbolic partial differential equations with stiff source terms on moving tetrahedral meshes in three space dimensions. A WENO reconstruction technique is used to achieve high order of accuracy in space, while an element-local space-time Discontinuous Galerkin finite element predictor on moving curved meshes is used to obtain a high order accurate one-step time discretization. Within the space-time predictor the physical element is mapped onto a reference element using a high order isoparametric approach, where the space-time basis and test functions are given by the Lagrange interpolation polynomials passing through a predefined set of space-time nodes. Since our algorithm is cell-centered, the final mesh motion is computed by using a suitable node solver algorithm. A rezoning step as well as a flattener strategy are used in some of the test problems to avoid mesh tangling or excessive element deformations that may occur when the computation involves strong shocks or shear waves. The ALE algorithm presented in this article belongs to the so-called direct ALE methods because the final Lagrangian finite volume scheme is based directly on a space-time conservation formulation of the governing PDE system, with the rezoned geometry taken already into account during the computation of the fluxes. We apply our new high order unstructured ALE schemes to the 3D Euler equations of compressible gas dynamics, for which a set of classical numerical test problems has been solved and for which convergence rates up to sixth order of accuracy in space and time have been obtained. We furthermore consider the equations of classical ideal magnetohydrodynamics (MHD) as well as the non-conservative seven-equation Baer-Nunziato model of compressible multi-phase flows with stiff relaxation source terms.
Delay, Probability, and Social Discounting in a Public Goods Game
ERIC Educational Resources Information Center
Jones, Bryan A.; Rachlin, Howard
2009-01-01
A human social discount function measures the value to a person of a reward to another person at a given social distance. Just as delay discounting is a hyperbolic function of delay, and probability discounting is a hyperbolic function of odds-against, social discounting is a hyperbolic function of social distance. Experiment 1 obtained individual…
Spacecraft Applications of Compact Optical and Mass Spectrometers
NASA Technical Reports Server (NTRS)
Davinic, N. M.; Nagel, D. J.
1995-01-01
Optical spectrometers, and mass spectrometers to a lesser extent, have a long and rich history of use aboard spacecraft. Space mission applications include deep space science spacecraft, earth orbiting satellites, atmospheric probes, and surface landers, rovers, and penetrators. The large size of capable instruments limited their use to large, expensive spacecraft. Because of the novel application of micro-fabrication technologies, compact optical and mass spectrometers are now available. The new compact devices are especially attractive for spacecraft because of their small mass and volume, as well as their low power consumption. Dispersive optical multi-channel analyzers which cover the 0.4-1.1 micrometer wavelength are now commercially available in packages as small as 3 x 6 x 18 mm exclusive of drive and recording electronics. Mass spectrometers as small as 3 x 3 mm, again without electronics, are under development. A variety of compact optical and mass spectrometers are reviewed in this paper. A number of past space applications are described, along with some upcoming opportunities that are likely candidate missions to fly this new class of compact spectrometers.
Hyperbolic spoof plasmonic metasurfaces
Yang, Yihao; Jing, Liqiao; Shen, Lian; ...
2017-08-25
Hyperbolic metasurfaces have recently emerged as a new research frontier because of the unprecedented capabilities to manipulate surface plasmon polaritons (SPPs) and many potential applications. But, thus far, the existence of hyperbolic metasurfaces has neither been observed nor predicted at low frequencies because noble metals cannot support SPPs at longer wavelengths. Here, we propose and experimentally demonstrate spoof plasmonic metasurfaces with a hyperbolic dispersion, where the spoof SPPs propagate on complementary H-shaped, perfectly conducting surfaces at low frequencies. Therefore, non-divergent diffractions, negative refraction and dispersion-dependent spin-momentum locking are observed as the spoof SPPs travel over the hyperbolic spoof plasmonic metasurfacesmore » (HSPMs). The HSPMs provide fundamental new platforms to explore the propagation and spin of spoof SPPs. They show great capabilities for designing advanced surface wave devices such as spatial multiplexers, focusing and imaging devices, planar hyperlenses, and dispersion-dependent directional couplers, at both microwave and terahertz frequencies.« less
High-Order Residual-Distribution Schemes for Discontinuous Problems on Irregular Triangular Grids
NASA Technical Reports Server (NTRS)
Mazaheri, Alireza; Nishikawa, Hiroaki
2016-01-01
In this paper, we develop second- and third-order non-oscillatory shock-capturing hyperbolic residual distribution schemes for irregular triangular grids, extending our second- and third-order schemes to discontinuous problems. We present extended first-order N- and Rusanov-scheme formulations for hyperbolic advection-diffusion system, and demonstrate that the hyperbolic diffusion term does not affect the solution of inviscid problems for vanishingly small viscous coefficient. We then propose second- and third-order blended hyperbolic residual-distribution schemes with the extended first-order Rusanov-scheme. We show that these proposed schemes are extremely accurate in predicting non-oscillatory solutions for discontinuous problems. We also propose a characteristics-based nonlinear wave sensor for accurately detecting shocks, compression, and expansion regions. Using this proposed sensor, we demonstrate that the developed hyperbolic blended schemes do not produce entropy-violating solutions (unphysical stocks). We then verify the design order of accuracy of these blended schemes on irregular triangular grids.
Strategy Guideline. Compact Air Distribution Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burdick, Arlan
2013-06-01
This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balancedmore » HVAC system, and overall improved energy efficiency of the home.« less
Elliptical, parabolic, and hyperbolic exchanges of energy in drag reducing plane Couette flows
NASA Astrophysics Data System (ADS)
Pereira, Anselmo S.; Mompean, Gilmar; Thompson, Roney L.; Soares, Edson J.
2017-11-01
In the present paper, we investigate the polymer-turbulence interaction by discriminating between the mechanical responses of this system to three different subdomains: elliptical, parabolic, and hyperbolic, corresponding to regions where the magnitude of vorticity is greater than, equal to, or less than the magnitude of the rate of strain, respectively, in accordance with the Q-criterion. Recently, it was recognized that hyperbolic structures play a crucial role in the drag reduction phenomenon of viscoelastic turbulent flows, thanks to the observation that hyperbolic structures, as well as vortical ones, are weakened by the action of polymers in turbulent flows in a process that can be referred to as flow parabolization. We employ direct numerical simulations of a viscoelastic finite extensible nonlinear elastic model with the Peterlin approximation to examine the transient evolution and statistically steady regimes of a plane Couette flow that has been perturbed from a laminar flow at an initial time and developed a turbulent regime as a result of this perturbation. We have found that even more activity is located within the confines of the hyperbolic structures than in the elliptical ones, which highlights the importance of considering the role of hyperbolic structures in the drag reduction mechanism.
Open strings and electric fields in compact spaces
NASA Astrophysics Data System (ADS)
Condeescu, Cezar; Dudas, Emilian; Pradisi, Gianfranco
2018-05-01
We analyse open strings with background electric fields in the internal space, T-dual to branes moving with constant velocities in the internal space. We find that the direction of the electric fields inside a two torus, dual to the D-brane velocities, has to be quantised such that the corresponding direction is compact. This implies that D-brane motion in the internal torus is periodic, with a periodicity that can be parametrically large in terms of the internal radii. By S-duality, this is mapped into an internal magnetic field in a three torus, a quantum mechanical analysis of which yields a similar result, i.e. the parallel direction to the magnetic field has to be compact. Furthermore, for the magnetic case, we find the Landau level degeneracy as being given by the greatest common divisor of the flux numbers. We carry on the string quantisation and derive the relevant partition functions for these models. Our analysis includes also the case of oblique electric fields which can arise when several stacks of branes are present. Compact dimensions and/or oblique sectors influence the energy loss of the system through pair-creation and thus can be relevant for inflationary scenarios with branes. Finally, we show that the compact energy loss is always larger than the non-compact one.
Chen, Jianwei; Chen, Wang; Zhang, Guodong; Lin, Hui; Chen, Shih-Chi
2017-05-29
We present the modeling, design and characterization of a compact spectrometer, achieving a resolution better than 1.5 nm throughout the visible spectrum (360-825 nm). The key component in the spectrometer is a custom-printed varied-line-space (VLS) concave blazed grating, where the groove density linearly decreases from the center of the grating (530 g/mm) at a rate of 0.58 nm/mm to the edge (528 g/mm). Parametric models have been established to deterministically link the system performance with the VLS grating design parameters, e.g., groove density, line-space varying rate, and to minimize the system footprint. Simulations have been performed in ZEMAX to confirm the results, indicating a 15% enhancement in system resolution versus common constant line-space (CLS) gratings. Next, the VLS concave blazed grating is fabricated via our vacuum nanoimprinting system, where a polydimethylsiloxane (PDMS) stamp is non-uniformly expanded to form the varied-line-spacing pattern from a planar commercial grating master (600 g/mm) for precision imprinting. The concave blazed grating is measured to have an absolute diffraction efficiency of 43%, higher than typical holographic gratings (~30%) used in the commercial compact spectrometers. The completed compact spectrometer contains only one optical component, i.e., the VLS concave grating, as well as an entrance slit and linear photodetector array, achieving a footprint of 11 × 11 × 3 cm 3 , which makes it the most compact and resolving (1.46 nm) spectrometer of its kind.
On spectral synthesis on element-wise compact Abelian groups
NASA Astrophysics Data System (ADS)
Platonov, S. S.
2015-08-01
Let G be an arbitrary locally compact Abelian group and let C(G) be the space of all continuous complex-valued functions on G. A closed linear subspace \\mathscr H\\subseteq C(G) is referred to as an invariant subspace if it is invariant with respect to the shifts τ_y\\colon f(x)\\mapsto f(xy), y\\in G. By definition, an invariant subspace \\mathscr H\\subseteq C(G) admits strict spectral synthesis if \\mathscr H coincides with the closure in C(G) of the linear span of all characters of G belonging to \\mathscr H. We say that strict spectral synthesis holds in the space C(G) on G if every invariant subspace \\mathscr H\\subseteq C(G) admits strict spectral synthesis. An element x of a topological group G is said to be compact if x is contained in some compact subgroup of G. A group G is said to be element-wise compact if all elements of G are compact. The main result of the paper is the proof of the fact that strict spectral synthesis holds in C(G) for a locally compact Abelian group G if and only if G is element-wise compact. Bibliography: 14 titles.
Installation of new Generation General Purpose Computer (GPC) compact unit
NASA Technical Reports Server (NTRS)
1991-01-01
In the Kennedy Space Center's (KSC's) Orbiter Processing Facility (OPF) high bay 2, Spacecraft Electronics technician Ed Carter (right), wearing clean suit, prepares for (26864) and installs (26865) the new Generation General Purpose Computer (GPC) compact IBM unit in Atlantis', Orbiter Vehicle (OV) 104's, middeck avionics bay as Orbiter Systems Quality Control technician Doug Snider looks on. Both men work for NASA contractor Lockheed Space Operations Company. All three orbiters are being outfitted with the compact IBM unit, which replaces a two-unit earlier generation computer.
NASA Technical Reports Server (NTRS)
Fox, T. A.
1973-01-01
An experimental reflector reactivity study was made with a compact cylindrical reactor using a uranyl fluoride - water fuel solution. The reactor was axially unreflected and radially reflected with segments of molybdenum. The reflector segments were displaced incrementally in both the axial and radial dimensions, and the shutdown of each configuration was measured by using the pulsed-neutron source technique. The reactivity effects for axial and radial displacement of reflector segments are tabulated separately and compared. The experiments provide data for control-system studies of compact-space-power-reactor concepts.
There was movement that was stationary, for the four-velocity had passed around
NASA Astrophysics Data System (ADS)
Roukema, Boudewijn F.
2010-05-01
Is the Doppler interpretation of galaxy redshifts in a Friedmann-Lemaître-Robertson-Walker (FLRW) model valid in the context of the approach to comoving spatial sections pioneered by de Sitter, Friedmann, Lemaître and Robertson, i.e. according to which the three-manifold of comoving space is characterized by both its curvature and topology? Holonomy transformations for flat, spherical and hyperbolic FLRW spatial sections are proposed. By quotienting a simply connected FLRW spatial section by an appropriate group of holonomy transformations, the Doppler interpretation in a non-expanding Minkowski space-time, obtained via four-velocity parallel transport along a photon path, is found to imply that an inertial observer is receding from herself at a speed greater than zero, implying contradictory world lines. The contradiction in the multiply connected case occurs for arbitrary redshifts in the flat and spherical cases, and for certain large redshifts in the hyperbolic case. The link between the Doppler interpretation of redshifts and cosmic topology can be understood physically as the link between parallel transport along a photon path and the fact that the comoving spatial geodesic corresponding to a photon's path can be a closed loop in an FLRW model of any curvature. Closed comoving spatial loops are fundamental to cosmic topology. With apologies to Andrew Barton `Banjo' Paterson. E-mail: boud@astro.uni.torun.pl
A new method of imposing boundary conditions for hyperbolic equations
NASA Technical Reports Server (NTRS)
Funaro, D.; ative.
1987-01-01
A new method to impose boundary conditions for pseudospectral approximations to hyperbolic equations is suggested. This method involves the collocation of the equation at the boundary nodes as well as satisfying boundary conditions. Stability and convergence results are proven for the Chebyshev approximation of linear scalar hyperbolic equations. The eigenvalues of this method applied to parabolic equations are shown to be real and negative.
Euler and Navier-Stokes equations on the hyperbolic plane.
Khesin, Boris; Misiolek, Gerard
2012-11-06
We show that nonuniqueness of the Leray-Hopf solutions of the Navier-Stokes equation on the hyperbolic plane (2) observed by Chan and Czubak is a consequence of the Hodge decomposition. We show that this phenomenon does not occur on (n) whenever n ≥ 3. We also describe the corresponding general Hamiltonian framework of hydrodynamics on complete Riemannian manifolds, which includes the hyperbolic setting.
The Arabic Hyperbolic Pattern "Fa??al" in Two Recent Translations of the Qur'an
ERIC Educational Resources Information Center
El-Zawawy, Amr M.
2014-01-01
The present study addresses the problem of rendering the ?? ?? 'fa??al' hyperbolic pattern into English in two recent translations of the Qur'an. Due to the variety of Qur'an translations and the large amount of hyperbolic forms of Arabic verbs recorded in the Qur'an, only two translations of the Qur'an are consulted and analyzed: these two…
NASA Astrophysics Data System (ADS)
Zhang, Jian-dong; Chen, Bin
2017-01-01
The kinematic space could play a key role in constructing the bulk geometry from dual CFT. In this paper, we study the kinematic space from geometric points of view, without resorting to differential entropy. We find that the kinematic space could be intrinsically defined in the embedding space. For each oriented geodesic in the Poincaré disk, there is a corresponding point in the kinematic space. This point is the tip of the causal diamond of the disk whose intersection with the Poincaré disk determines the geodesic. In this geometric construction, the causal structure in the kinematic space can be seen clearly. Moreover, we find that every transformation in the SL(2,R) leads to a geodesic in the kinematic space. In particular, for a hyperbolic transformation defining a BTZ black hole, it is a timelike geodesic in the kinematic space. We show that the horizon length of the static BTZ black hole could be computed by the geodesic length of corresponding points in the kinematic space. Furthermore, we discuss the fundamental regions in the kinematic space for the BTZ blackhole and multi-boundary wormholes.
Curved noncommutative tori as Leibniz quantum compact metric spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latrémolière, Frédéric, E-mail: frederic@math.du.edu
We prove that curved noncommutative tori are Leibniz quantum compact metric spaces and that they form a continuous family over the group of invertible matrices with entries in the image of the quantum tori for the conjugation by modular conjugation operator in the regular representation, when this group is endowed with a natural length function.
Hyperbolic polaritons in nanoparticles
NASA Astrophysics Data System (ADS)
Sun, Zhiyuan; Rubio, Angel; Guinea, Francisco; Basov, Dimitri; Fogler, Michael
2015-03-01
Hyperbolic optical materials (HM) are characterized by permittivity tensor that has both positive and negative principal values. Collective electromagnetic modes (polaritons) of HM have novel properties promising for various applications including subdiffractional imaging and on-chip optical communication. Hyperbolic response is actively investigated in the context of metamaterials, anisotropic polar insulators, and layered superconductors. We study polaritons in spheroidal HM nanoparticles using Hamiltonian optics. The field equations are mapped to classical dynamics of fictitious particles (wave packets) of an indefinite Hamiltonian. This dynamics is quantized using the Einstein-Brillouin-Keller quantization rule. The eigenmodes are classified as either bulk or surface according to whether their transverse momenta are real or imaginary. To model how such hyperbolic polaritons can be probed by near-field experiments, we compute the field distribution induced inside and outside the spheroid by an external point dipole. At certain magic frequencies the field shows striking geometric patterns whose origin is traced to the classical periodic orbits. The theory is applied to natural hyperbolic materials hexagonal boron nitride and superconducting LaSrCuO.
Euler and Navier–Stokes equations on the hyperbolic plane
Khesin, Boris; Misiołek, Gerard
2012-01-01
We show that nonuniqueness of the Leray–Hopf solutions of the Navier–Stokes equation on the hyperbolic plane ℍ2 observed by Chan and Czubak is a consequence of the Hodge decomposition. We show that this phenomenon does not occur on ℍn whenever n ≥ 3. We also describe the corresponding general Hamiltonian framework of hydrodynamics on complete Riemannian manifolds, which includes the hyperbolic setting. PMID:23091015
Policy Effects in Hyperbolic vs. Exponential Models of Consumption and Retirement
Gustman, Alan L.; Steinmeier, Thomas L.
2012-01-01
This paper constructs a structural retirement model with hyperbolic preferences and uses it to estimate the effect of several potential Social Security policy changes. Estimated effects of policies are compared using two models, one with hyperbolic preferences and one with standard exponential preferences. Sophisticated hyperbolic discounters may accumulate substantial amounts of wealth for retirement. We find it is frequently difficult to distinguish empirically between models with the two types of preferences on the basis of asset accumulation paths or consumption paths around the period of retirement. Simulations suggest that, despite the much higher initial time preference rate, individuals with hyperbolic preferences may actually value a real annuity more than individuals with exponential preferences who have accumulated roughly equal amounts of assets. This appears to be especially true for individuals with relatively high time preference rates or who have low assets for whatever reason. This affects the tradeoff between current benefits and future benefits on which many of the retirement incentives of the Social Security system rest. Simulations involving increasing the early entitlement age and increasing the delayed retirement credit do not show a great deal of difference whether exponential or hyperbolic preferences are used, but simulations for eliminating the earnings test show a non-trivially greater effect when exponential preferences are used. PMID:22711946
Policy Effects in Hyperbolic vs. Exponential Models of Consumption and Retirement.
Gustman, Alan L; Steinmeier, Thomas L
2012-06-01
This paper constructs a structural retirement model with hyperbolic preferences and uses it to estimate the effect of several potential Social Security policy changes. Estimated effects of policies are compared using two models, one with hyperbolic preferences and one with standard exponential preferences. Sophisticated hyperbolic discounters may accumulate substantial amounts of wealth for retirement. We find it is frequently difficult to distinguish empirically between models with the two types of preferences on the basis of asset accumulation paths or consumption paths around the period of retirement. Simulations suggest that, despite the much higher initial time preference rate, individuals with hyperbolic preferences may actually value a real annuity more than individuals with exponential preferences who have accumulated roughly equal amounts of assets. This appears to be especially true for individuals with relatively high time preference rates or who have low assets for whatever reason. This affects the tradeoff between current benefits and future benefits on which many of the retirement incentives of the Social Security system rest.Simulations involving increasing the early entitlement age and increasing the delayed retirement credit do not show a great deal of difference whether exponential or hyperbolic preferences are used, but simulations for eliminating the earnings test show a non-trivially greater effect when exponential preferences are used.
A Novel Hyperbolization Procedure for The Two-Phase Six-Equation Flow Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samet Y. Kadioglu; Robert Nourgaliev; Nam Dinh
2011-10-01
We introduce a novel approach for the hyperbolization of the well-known two-phase six equation flow model. The six-equation model has been frequently used in many two-phase flow applications such as bubbly fluid flows in nuclear reactors. One major drawback of this model is that it can be arbitrarily non-hyperbolic resulting in difficulties such as numerical instability issues. Non-hyperbolic behavior can be associated with complex eigenvalues that correspond to characteristic matrix of the system. Complex eigenvalues are often due to certain flow parameter choices such as the definition of inter-facial pressure terms. In our method, we prevent the characteristic matrix receivingmore » complex eigenvalues by fine tuning the inter-facial pressure terms with an iterative procedure. In this way, the characteristic matrix possesses all real eigenvalues meaning that the characteristic wave speeds are all real therefore the overall two-phase flowmodel becomes hyperbolic. The main advantage of this is that one can apply less diffusive highly accurate high resolution numerical schemes that often rely on explicit calculations of real eigenvalues. We note that existing non-hyperbolic models are discretized mainly based on low order highly dissipative numerical techniques in order to avoid stability issues.« less
The hyperbolic step potential: Anti-bound states, SUSY partners and Wigner time delays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gadella, M.; Kuru, Ş.; Negro, J., E-mail: jnegro@fta.uva.es
We study the scattering produced by a one dimensional hyperbolic step potential, which is exactly solvable and shows an unusual interest because of its asymmetric character. The analytic continuation of the scattering matrix in the momentum representation has a branch cut and an infinite number of simple poles on the negative imaginary axis which are related with the so called anti-bound states. This model does not show resonances. Using the wave functions of the anti-bound states, we obtain supersymmetric (SUSY) partners which are the series of Rosen–Morse II potentials. We have computed the Wigner reflection and transmission time delays formore » the hyperbolic step and such SUSY partners. Our results show that the more bound states a partner Hamiltonian has the smaller is the time delay. We also have evaluated time delays for the hyperbolic step potential in the classical case and have obtained striking similitudes with the quantum case. - Highlights: • The scattering matrix of hyperbolic step potential is studied. • The scattering matrix has a branch cut and an infinite number of poles. • The poles are associated to anti-bound states. • Susy partners using antibound states are computed. • Wigner time delays for the hyperbolic step and partner potentials are compared.« less
NASA Astrophysics Data System (ADS)
de la Fuente Marcos, Carlos; de la Fuente Marcos, Raúl; Aarseth, Sverre J.
2018-05-01
Observed hyperbolic minor bodies might have an interstellar origin, but they can be natives of the Solar system as well. Fly-bys with the known planets or the Sun may result in the hyperbolic ejection of an originally bound minor body; in addition, members of the Oort cloud could be forced to follow inbound hyperbolic paths as a result of secular perturbations induced by the Galactic disc or, less frequently, due to impulsive interactions with passing stars. These four processes must leave distinctive signatures in the distribution of radiants of observed hyperbolic objects, both in terms of coordinates and velocity. Here, we perform a systematic numerical exploration of the past orbital evolution of known hyperbolic minor bodies using a full N-body approach and statistical analyses to study their radiants. Our results confirm the theoretical expectations that strong anisotropies are present in the data. We also identify a statistically significant overdensity of high-speed radiants towards the constellation of Gemini that could be due to the closest and most recent known fly-by of a star to the Solar system, that of the so-called Scholz's star. In addition to and besides 1I/2017 U1 (`Oumuamua), we single out eight candidate interstellar comets based on their radiants' velocities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benini, Marco, E-mail: mbenini87@gmail.com, E-mail: mbenini@uni-potsdam.de
Being motivated by open questions in gauge field theories, we consider non-standard de Rham cohomology groups for timelike compact and spacelike compact support systems. These cohomology groups are shown to be isomorphic respectively to the usual de Rham cohomology of a spacelike Cauchy surface and its counterpart with compact support. Furthermore, an analog of the usual Poincaré duality for de Rham cohomology is shown to hold for the case with non-standard supports as well. We apply these results to find optimal spaces of linear observables for analogs of arbitrary degree k of both the vector potential and the Faraday tensor.more » The term optimal has to be intended in the following sense: The spaces of linear observables we consider distinguish between different configurations; in addition to that, there are no redundant observables. This last point in particular heavily relies on the analog of Poincaré duality for the new cohomology groups.« less
Compact field color schlieren system for use in microgravity materials processing
NASA Technical Reports Server (NTRS)
Poteet, W. M.; Owen, R. B.
1986-01-01
A compact color schlieren system designed for field measurement of materials processing parameters has been built and tested in a microgravity environment. Improvements in the color filter design and a compact optical arrangement allowed the system described here to retain the traditional advantages of schlieren, such as simplicity, sensitivity, and ease of data interpretation. Testing was accomplished by successfully flying the instrument on a series of parabolic trajectories on the NASA KC-135 microgravity simulation aircraft. A variety of samples of interest in materials processing were examined. Although the present system was designed for aircraft use, the technique is well suited to space flight experimentation. A major goal of this effort was to accommodate the main optical system within a volume approximately equal to that of a Space Shuttle middeck locker. Future plans include the development of an automated space-qualified facility for use on the Shuttle and Space Station.
NASA Astrophysics Data System (ADS)
Toutin, Thierry; Wang, Huili; Charbonneau, Francois; Schmitt, Carla
2013-08-01
This paper presented two methods for the orthorectification of full/compact polarimetric SAR data: the polarimetric processing is performed in the image space (scientist's idealism) or in the ground space (user's realism) before or after the geometric processing, respectively. Radarsat-2 (R2) fine-quad and simulated very high-resolution RCM data acquired with different look angles over a hilly relief study site were processed using accurate lidar digital surface model. Quantitative evaluations between the two methods as a function of different geometric and radiometric parameters were performed to evaluate the impact during the orthorectification. The results demonstrated that the ground-space method can be safely applied to polarimetric R2 SAR data with an exception with the steep look angles and steep terrain slopes. On the other hand, the ground-space method cannot be applied to simulated compact RCM data due to 17dB noise floor and oversampling.
NASA Astrophysics Data System (ADS)
Guliyev, Ayyub; Nabiyev, Shaig
2017-07-01
This paper presents the results of a statistical analysis of the dynamic parameters of 300 comets that have osculating hyperbolic orbits. It is shown that such comets differ from other comets by their large perihelion distances and by a predominance of retrograde motion. It is shown that the values of i, the inclination of the hyperbolic comets, are in comparative excess over the interval 90-120°. The dominance by q, the perihelion distance, renders it difficult to suggest that the excess hyperbolic velocity of these comets can be the result of physical processes that take place in their nuclei. Aspects of the following working hypothesis, that the hyperbolic excess of parameter e might be formed after comets pass through meteoroid streams, are also studied. To evaluate this hypothesis, the distribution of the orbits of hyperbolic comets relative to the plane of motion of 112 established meteoroid streams are analyzed. The number (N) of orbit nodes for hyperbolic comets with respect to the plane of each stream at various distances is calculated. To determine the degree of redundancy of N, a special computing algorithm was applied that provided the expected value nav as well as the standard deviation σ for the number of cometary nodes at the plane of each stream. A comparative analysis of the N and nav values that take σ into account suggests an excess in 40 stream cases. This implies that the passage of comets through meteoroid streams can lead to an acceleration of the comets' heliocentric velocity.
Causal implications of viscous damping in compressible fluid flows
Jordan; Meyer; Puri
2000-12-01
Classically, a compressible, isothermal, viscous fluid is regarded as a mathematical continuum and its motion is governed by the linearized continuity, Navier-Stokes, and state equations. Unfortunately, solutions of this system are of a diffusive nature and hence do not satisfy causality. However, in the case of a half-space of fluid set to motion by a harmonically vibrating plate the classical equation of motion can, under suitable conditions, be approximated by the damped wave equation. Since this equation is hyperbolic, the resulting solutions satisfy causal requirements. In this work the Laplace transform and other analytical and numerical tools are used to investigate this apparent contradiction. To this end the exact solutions, as well as their special and limiting cases, are found and compared for the two models. The effects of the physical parameters on the solutions and associated quantities are also studied. It is shown that propagating wave fronts are only possible under the hyperbolic model and that the concept of phase speed has different meanings in the two formulations. In addition, discontinuities and shock waves are noted and a physical system is modeled under both formulations. Overall, it is shown that the hyperbolic form gives a more realistic description of the physical problem than does the classical theory. Lastly, a simple mechanical analog is given and connections to viscoelastic fluids are noted. In particular, the research presented here supports the notion that linear compressible, isothermal, viscous fluids can, at least in terms of causality, be better characterized as a type of viscoelastic fluid.
Pilot Kent Rominger compacts trash container
1995-11-05
STS073-356-018 (20 October - 5 November 1995) --- Astronaut Kent V. Rominger, pilot, demonstrates an age-old trash-compacting method on the middeck of the Earth-orbiting Space Shuttle Columbia. Following a meal, Rominger had collected the residue wrappers, etc. and filled a plastic bag. Following his compacting maneuvers, Rominger went on to deposit the sack into a temporary trash-stowage area beneath the middeck. Making his first flight into space, Rominger joined four other NASA astronauts and two guest researchers for more than two weeks' research in support of the United States Microgravity Laboratory (USML-2) mission.
Analytic convergence of harmonic metrics for parabolic Higgs bundles
NASA Astrophysics Data System (ADS)
Kim, Semin; Wilkin, Graeme
2018-04-01
In this paper we investigate the moduli space of parabolic Higgs bundles over a punctured Riemann surface with varying weights at the punctures. We show that the harmonic metric depends analytically on the weights and the stable Higgs bundle. This gives a Higgs bundle generalisation of a theorem of McOwen on the existence of hyperbolic cone metrics on a punctured surface within a given conformal class, and a generalisation of a theorem of Judge on the analytic parametrisation of these metrics.
Thermodynamic Volume in AdS/CFT
NASA Astrophysics Data System (ADS)
Kim, Kyung Kiu; Ahn, Byoungjoon
2018-01-01
In this note, we study on extended thermodynamics of AdS black holes by varying cosmological constant. We found and discussed pressure and volume of both bulk and boundary physics through AdS/CFT correspondence. In particular, we derive the relation between thermodynamic volume and a chemical potential for M2 brane dual to four dimensional AdS space. In addition, we show that thermodynamic volume of hyperbolic black hole is related to `entanglement pressure' coming from a generalized first law of entanglement entropy.
Blowup with vorticity control for a 2D model of the Boussinesq equations
NASA Astrophysics Data System (ADS)
Hoang, V.; Orcan-Ekmekci, B.; Radosz, M.; Yang, H.
2018-06-01
We propose a system of equations with nonlocal flux in two space dimensions which is closely modeled after the 2D Boussinesq equations in a hyperbolic flow scenario. Our equations involve a vorticity stretching term and a non-local Biot-Savart law and provide insight into the underlying intrinsic mechanisms of singularity formation. We prove stable, controlled finite time blowup involving upper and lower bounds on the vorticity up to the time of blowup for a wide class of initial data.
1990-12-07
Fundaqao Calouste Gulbenkian, Instituto Gulbenkian de Ci~ncia, Centro de C6lculo Cientifico , Coimbra, 1973. 28, Dirac, P. A. M., Spinors in Hilbert Space...Office of Scientific Research grants 1965 Mathematical Association of America Editorial Prize for the article entitled: "Linear Transformations on...matrices" 1966 L.R. Ford Memorial Prize awarded by the Mathematical Association of America for the article , "Permanents" 1989 Outstanding Computer
Global Bifurcation of Periodic Solutions with Symmetry,
1987-07-01
C4-family of sectorial operators on a real Hilbert (2.32.a) space X, with dense domain D(A(A)) which is independent of A E E, and with compact...Vanl, theorem 2.5.91. If .F and E’ are both Hilbert spaces with orthogonal action of r, we may drop the assumption that 1 is compact. Just take...some meandering. Let us define a limit for any sequence Si of subsets of some metric space . Following Whyburn [Why], we define lir sup Si {z: z
Anosov C-systems and random number generators
NASA Astrophysics Data System (ADS)
Savvidy, G. K.
2016-08-01
We further develop our previous proposal to use hyperbolic Anosov C-systems to generate pseudorandom numbers and to use them for efficient Monte Carlo calculations in high energy particle physics. All trajectories of hyperbolic dynamical systems are exponentially unstable, and C-systems therefore have mixing of all orders, a countable Lebesgue spectrum, and a positive Kolmogorov entropy. These exceptional ergodic properties follow from the C-condition introduced by Anosov. This condition defines a rich class of dynamical systems forming an open set in the space of all dynamical systems. An important property of C-systems is that they have a countable set of everywhere dense periodic trajectories and their density increases exponentially with entropy. Of special interest are the C-systems defined on higher-dimensional tori. Such C-systems are excellent candidates for generating pseudorandom numbers that can be used in Monte Carlo calculations. An efficient algorithm was recently constructed that allows generating long C-system trajectories very rapidly. These trajectories have good statistical properties and can be used for calculations in quantum chromodynamics and in high energy particle physics.
Optimal trajectories based on linear equations
NASA Technical Reports Server (NTRS)
Carter, Thomas E.
1990-01-01
The Principal results of a recent theory of fuel optimal space trajectories for linear differential equations are presented. Both impulsive and bounded-thrust problems are treated. A new form of the Lawden Primer vector is found that is identical for both problems. For this reason, starting iteratives from the solution of the impulsive problem are highly effective in the solution of the two-point boundary-value problem associated with bounded thrust. These results were applied to the problem of fuel optimal maneuvers of a spacecraft near a satellite in circular orbit using the Clohessy-Wiltshire equations. For this case two-point boundary-value problems were solved using a microcomputer, and optimal trajectory shapes displayed. The results of this theory can also be applied if the satellite is in an arbitrary Keplerian orbit through the use of the Tschauner-Hempel equations. A new form of the solution of these equations has been found that is identical for elliptical, parabolic, and hyperbolic orbits except in the way that a certain integral is evaluated. For elliptical orbits this integral is evaluated through the use of the eccentric anomaly. An analogous evaluation is performed for hyperbolic orbits.
Orienteering in Knowledge Spaces: The Hyperbolic Geometry of Wikipedia Mathematics
Leibon, Gregory; Rockmore, Daniel N.
2013-01-01
In this paper we show how the coupling of the notion of a network with directions with the adaptation of the four-point probe from materials testing gives rise to a natural geometry on such networks. This four-point probe geometry shares many of the properties of hyperbolic geometry wherein the network directions take the place of the sphere at infinity, enabling a navigation of the network in terms of pairs of directions: the geodesic through a pair of points is oriented from one direction to another direction, the pair of which are uniquely determined. We illustrate this in the interesting example of the pages of Wikipedia devoted to Mathematics, or “The MathWiki.” The applicability of these ideas extends beyond Wikipedia to provide a natural framework for visual search and to prescribe a natural mode of navigation for any kind of “knowledge space” in which higher order concepts aggregate various instances of information. Other examples would include genre or author organization of cultural objects such as books, movies, documents or even merchandise in an online store. PMID:23844017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starodumov, Ilya; Kropotin, Nikolai
2016-08-10
We investigate the three-dimensional mathematical model of crystal growth called PFC (Phase Field Crystal) in a hyperbolic modification. This model is also called the modified model PFC (originally PFC model is formulated in parabolic form) and allows to describe both slow and rapid crystallization processes on atomic length scales and on diffusive time scales. Modified PFC model is described by the differential equation in partial derivatives of the sixth order in space and second order in time. The solution of this equation is possible only by numerical methods. Previously, authors created the software package for the solution of the Phasemore » Field Crystal problem, based on the method of isogeometric analysis (IGA) and PetIGA program library. During further investigation it was found that the quality of the solution can strongly depends on the discretization parameters of a numerical method. In this report, we show the features that should be taken into account during constructing the computational grid for the numerical simulation.« less
Tunable VO2/Au Hyperbolic Metamaterial
2016-02-12
phenomenon having a potential of advancing the control of light-matter interaction . Metamaterials are engineered composite materials containing sub...ellipsoids15 – the phenomenon known as hyperbolic dispersion. Hyperbolic metamaterials can propagate light waves with very large wave vectors and have a...incidence angles equal to 15°, 45° and 65°. The spectra measured at 45o are depicted in Fig. 6(a). The wavy pattern in the spectra is due to the parasitic
First-Order Hyperbolic System Method for Time-Dependent Advection-Diffusion Problems
2014-03-01
accuracy, with rapid convergence over each physical time step, typically less than five Newton iter - ations. 1 Contents 1 Introduction 3 2 Hyperbolic...however, we employ the Gauss - Seidel (GS) relaxation, which is also an O(N) method for the discretization arising from hyperbolic advection-diffusion system...advection-diffusion scheme. The linear dependency of the iterations on Table 1: Boundary layer problem ( Convergence criteria: Residuals < 10−8.) log10Re
Concave utility, transaction costs, and risk in measuring discounting of delayed rewards.
Kirby, Kris N; Santiesteban, Mariana
2003-01-01
Research has consistently found that the decline in the present values of delayed rewards as delay increases is better fit by hyperbolic than by exponential delay-discounting functions. However, concave utility, transaction costs, and risk each could produce hyperbolic-looking data, even when the underlying discounting function is exponential. In Experiments 1 (N = 45) and 2 (N = 103), participants placed bids indicating their present values of real future monetary rewards in computer-based 2nd-price auctions. Both experiments suggest that utility is not sufficiently concave to account for the superior fit of hyperbolic functions. Experiment 2 provided no evidence that the effects of transaction costs and risk are large enough to account for the superior fit of hyperbolic functions.
NASA Technical Reports Server (NTRS)
Chan, William M.
1993-01-01
An enhanced grid system for the Space Shuttle Orbiter was built by integrating CAD definitions from several sources and then generating the surface and volume grids. The new grid system contains geometric components not modeled previously plus significant enhancements on geometry that has been modeled in the old grid system. The new orbiter grids were then integrated with new grids for the rest of the launch vehicle. Enhancements were made to the hyperbolic grid generator HYPGEN and new tools for grid projection, manipulation, and modification, Cartesian box grid and far field grid generation and post-processing of flow solver data were developed.
NASA Astrophysics Data System (ADS)
Akram, Ghazala; Batool, Fiza
2017-10-01
The (G'/G)-expansion method is utilized for a reliable treatment of space-time fractional biological population model. The method has been applied in the sense of the Jumarie's modified Riemann-Liouville derivative. Three classes of exact traveling wave solutions, hyperbolic, trigonometric and rational solutions of the associated equation are characterized with some free parameters. A generalized fractional complex transform is applied to convert the fractional equations to ordinary differential equations which subsequently resulted in number of exact solutions. It should be mentioned that the (G'/G)-expansion method is very effective and convenient for solving nonlinear partial differential equations of fractional order whose balancing number is a negative integer.
On the topology of the inflaton field in minimal supergravity models
NASA Astrophysics Data System (ADS)
Ferrara, Sergio; Fré, Pietro; Sorin, Alexander S.
2014-04-01
We consider global issues in minimal supergravity models where a single field inflaton potential emerges. In a particular case we reproduce the Starobinsky model and its description dual to a certain formulation of R + R 2 supergravity. For definiteness we confine our analysis to spaces at constant curvature, either vanishing or negative. Five distinct models arise, two flat models with respectively a quadratic and a quartic potential and three based on the space where its distinct isometries, elliptic, hyperbolic and parabolic are gauged. Fayet-Iliopoulos terms are introduced in a geometric way and they turn out to be a crucial ingredient in order to describe the de Sitter inflationary phase of the Starobinsky model.
Interplanetary Mission Design Handbook: Earth-to-Mars Mission Opportunities 2026 to 2045
NASA Technical Reports Server (NTRS)
Burke, Laura M.; Falck, Robert D.; McGuire, Melissa L.
2010-01-01
The purpose of this Mission Design Handbook is to provide trajectory designers and mission planners with graphical information about Earth to Mars ballistic trajectory opportunities for the years of 2026 through 2045. The plots, displayed on a departure date/arrival date mission space, show departure energy, right ascension and declination of the launch asymptote, and target planet hyperbolic arrival excess speed, V(sub infinity), for each launch opportunity. Provided in this study are two sets of contour plots for each launch opportunity. The first set of plots shows Earth to Mars ballistic trajectories without the addition of any deep space maneuvers. The second set of plots shows Earth to Mars transfer trajectories with the addition of deep space maneuvers, which further optimize the determined trajectories. The accompanying texts explains the trajectory characteristics, transfers using deep space maneuvers, mission assumptions and a summary of the minimum departure energy for each opportunity.
NASA Astrophysics Data System (ADS)
Wrochna, Michał; Zahn, Jochen
We investigate linearized gauge theories on globally hyperbolic spacetimes in the BRST formalism. A consistent definition of the classical phase space and of its Cauchy surface analogue is proposed. We prove that it is isomorphic to the phase space in the ‘subsidiary condition’ approach of Hack and Schenkel in the case of Maxwell, Yang-Mills, and Rarita-Schwinger fields. Defining Hadamard states in the BRST formalism in a standard way, their existence in the Maxwell and Yang-Mills case is concluded from known results in the subsidiary condition (or Gupta-Bleuler) formalism. Within our framework, we also formulate criteria for non-degeneracy of the phase space in terms of BRST cohomology and discuss special cases. These include an example in the Yang-Mills case, where degeneracy is not related to a non-trivial topology of the Cauchy surface.
Guidance of Nonlinear Nonminimum-Phase Dynamic Systems
NASA Technical Reports Server (NTRS)
Devasia, Santosh
1996-01-01
The research work has advanced the inversion-based guidance theory for: systems with non-hyperbolic internal dynamics; systems with parameter jumps; and systems where a redesign of the output trajectory is desired. A technique to achieve output tracking for nonminimum phase linear systems with non-hyperbolic and near non-hyperbolic internal dynamics was developed. This approach integrated stable inversion techniques, that achieve exact-tracking, with approximation techniques, that modify the internal dynamics to achieve desirable performance. Such modification of the internal dynamics was used (a) to remove non-hyperbolicity which is an obstruction to applying stable inversion techniques and (b) to reduce large preactuation times needed to apply stable inversion for near non-hyperbolic cases. The method was applied to an example helicopter hover control problem with near non-hyperbolic internal dynamics for illustrating the trade-off between exact tracking and reduction of preactuation time. Future work will extend these results to guidance of nonlinear non-hyperbolic systems. The exact output tracking problem for systems with parameter jumps was considered. Necessary and sufficient conditions were derived for the elimination of switching-introduced output transient. While previous works had studied this problem by developing a regulator that maintains exact tracking through parameter jumps (switches), such techniques are, however, only applicable to minimum-phase systems. In contrast, our approach is also applicable to nonminimum-phase systems and leads to bounded but possibly non-causal solutions. In addition, for the case when the reference trajectories are generated by an exosystem, we developed an exact-tracking controller which could be written in a feedback form. As in standard regulator theory, we also obtained a linear map from the states of the exosystem to the desired system state, which was defined via a matrix differential equation.
Baryon currents in QCD with compact dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucini, B.; Patella, A.; Istituto Nazionale Fisica Nucleare Sezione di Pisa, Largo Pontecorvo 3, 56126 Pisa
2007-06-15
On a compact space with nontrivial cycles, for sufficiently small values of the radii of the compact dimensions, SU(N) gauge theories coupled with fermions in the fundamental representation spontaneously break charge conjugation, time reversal, and parity. We show at one loop in perturbation theory that a physical signature for this phenomenon is a nonzero baryonic current wrapping around the compact directions. The persistence of this current beyond the perturbative regime is checked by lattice simulations.
Discounting of reward sequences: a test of competing formal models of hyperbolic discounting
Zarr, Noah; Alexander, William H.; Brown, Joshua W.
2014-01-01
Humans are known to discount future rewards hyperbolically in time. Nevertheless, a formal recursive model of hyperbolic discounting has been elusive until recently, with the introduction of the hyperbolically discounted temporal difference (HDTD) model. Prior to that, models of learning (especially reinforcement learning) have relied on exponential discounting, which generally provides poorer fits to behavioral data. Recently, it has been shown that hyperbolic discounting can also be approximated by a summed distribution of exponentially discounted values, instantiated in the μAgents model. The HDTD model and the μAgents model differ in one key respect, namely how they treat sequences of rewards. The μAgents model is a particular implementation of a Parallel discounting model, which values sequences based on the summed value of the individual rewards whereas the HDTD model contains a non-linear interaction. To discriminate among these models, we observed how subjects discounted a sequence of three rewards, and then we tested how well each candidate model fit the subject data. The results show that the Parallel model generally provides a better fit to the human data. PMID:24639662
NASA Astrophysics Data System (ADS)
Popov, Nikolay S.
2017-11-01
Solvability of some initial-boundary value problems for linear hyperbolic equations of the fourth order is studied. A condition on the lateral boundary in these problems relates the values of a solution or the conormal derivative of a solution to the values of some integral operator applied to a solution. Nonlocal boundary-value problems for one-dimensional hyperbolic second-order equations with integral conditions on the lateral boundary were considered in the articles by A.I. Kozhanov. Higher-dimensional hyperbolic equations of higher order with integral conditions on the lateral boundary were not studied earlier. The existence and uniqueness theorems of regular solutions are proven. The method of regularization and the method of continuation in a parameter are employed to establish solvability.
Hyperbolic Prismatic Grid Generation and Solution of Euler Equations on Prismatic Grids
NASA Technical Reports Server (NTRS)
Pandya, S. A.; Chattot, JJ; Hafez, M. M.; Kutler, Paul (Technical Monitor)
1994-01-01
A hyperbolic grid generation method is used to generate prismatic grids and an approach using prismatic grids to solve the Euler equations is presented. The theory of the stability and feasibility of the hyperbolic grid generation method is presented. The hyperbolic grid generation method of Steger et al for structured grids is applied to a three dimensional triangularized surface definition to generate a grid that is unstructured on each successive layer. The grid, however, retains structure in the body-normal direction and has a computational cell shaped like a triangular prism. In order to take advantage of the structure in the normal direction, a finite-volume scheme that treats the unknowns along the normal direction implicitly is introduced and the flow over a sphere is simulated.
Namboodiri, Vijay Mohan K; Levy, Joshua M; Mihalas, Stefan; Sims, David W; Hussain Shuler, Marshall G
2016-08-02
Understanding the exploration patterns of foragers in the wild provides fundamental insight into animal behavior. Recent experimental evidence has demonstrated that path lengths (distances between consecutive turns) taken by foragers are well fitted by a power law distribution. Numerous theoretical contributions have posited that "Lévy random walks"-which can produce power law path length distributions-are optimal for memoryless agents searching a sparse reward landscape. It is unclear, however, whether such a strategy is efficient for cognitively complex agents, from wild animals to humans. Here, we developed a model to explain the emergence of apparent power law path length distributions in animals that can learn about their environments. In our model, the agent's goal during search is to build an internal model of the distribution of rewards in space that takes into account the cost of time to reach distant locations (i.e., temporally discounting rewards). For an agent with such a goal, we find that an optimal model of exploration in fact produces hyperbolic path lengths, which are well approximated by power laws. We then provide support for our model by showing that humans in a laboratory spatial exploration task search space systematically and modify their search patterns under a cost of time. In addition, we find that path length distributions in a large dataset obtained from free-ranging marine vertebrates are well described by our hyperbolic model. Thus, we provide a general theoretical framework for understanding spatial exploration patterns of cognitively complex foragers.
NASA Technical Reports Server (NTRS)
Barth, Timothy J.; Kutler, Paul (Technical Monitor)
1998-01-01
Several stabilized demoralization procedures for conservation law equations on triangulated domains will be considered. Specifically, numerical schemes based on upwind finite volume, fluctuation splitting, Galerkin least-squares, and space discontinuous Galerkin demoralization will be considered in detail. A standard energy analysis for several of these methods will be given via entropy symmetrization. Next, we will present some relatively new theoretical results concerning congruence relationships for left or right symmetrized equations. These results suggest new variants of existing FV, DG, GLS, and FS methods which are computationally more efficient while retaining the pleasant theoretical properties achieved by entropy symmetrization. In addition, the task of Jacobean linearization of these schemes for use in Newton's method is greatly simplified owing to exploitation of exact symmetries which exist in the system. The FV, FS and DG schemes also permit discrete maximum principle analysis and enforcement which greatly adds to the robustness of the methods. Discrete maximum principle theory will be presented for general finite volume approximations on unstructured meshes. Next, we consider embedding these nonlinear space discretizations into exact and inexact Newton solvers which are preconditioned using a nonoverlapping (Schur complement) domain decomposition technique. Elements of nonoverlapping domain decomposition for elliptic problems will be reviewed followed by the present extension to hyperbolic and elliptic-hyperbolic problems. Other issues of practical relevance such the meshing of geometries, code implementation, turbulence modeling, global convergence, etc, will. be addressed as needed.
NASA Technical Reports Server (NTRS)
Barth, Timothy; Chancellor, Marisa K. (Technical Monitor)
1997-01-01
Several stabilized discretization procedures for conservation law equations on triangulated domains will be considered. Specifically, numerical schemes based on upwind finite volume, fluctuation splitting, Galerkin least-squares, and space discontinuous Galerkin discretization will be considered in detail. A standard energy analysis for several of these methods will be given via entropy symmetrization. Next, we will present some relatively new theoretical results concerning congruence relationships for left or right symmetrized equations. These results suggest new variants of existing FV, DG, GLS and FS methods which are computationally more efficient while retaining the pleasant theoretical properties achieved by entropy symmetrization. In addition, the task of Jacobian linearization of these schemes for use in Newton's method is greatly simplified owing to exploitation of exact symmetries which exist in the system. These variants have been implemented in the "ELF" library for which example calculations will be shown. The FV, FS and DG schemes also permit discrete maximum principle analysis and enforcement which greatly adds to the robustness of the methods. Some prevalent limiting strategies will be reviewed. Next, we consider embedding these nonlinear space discretizations into exact and inexact Newton solvers which are preconditioned using a nonoverlapping (Schur complement) domain decomposition technique. Elements of nonoverlapping domain decomposition for elliptic problems will be reviewed followed by the present extension to hyperbolic and elliptic-hyperbolic problems. Other issues of practical relevance such the meshing of geometries, code implementation, turbulence modeling, global convergence, etc. will be addressed as needed.
Transformations of asymptotically AdS hyperbolic initial data and associated geometric inequalities
NASA Astrophysics Data System (ADS)
Cha, Ye Sle; Khuri, Marcus
2018-01-01
We construct transformations which take asymptotically AdS hyperbolic initial data into asymptotically flat initial data, and which preserve relevant physical quantities. This is used to derive geometric inequalities in the asymptotically AdS hyperbolic setting from counterparts in the asymptotically flat realm, whenever a geometrically motivated system of elliptic equations admits a solution. The inequalities treated here relate mass, angular momentum, charge, and horizon area. Furthermore, new mass-angular momentum inequalities in this setting are conjectured and discussed.
NASA Technical Reports Server (NTRS)
Funaro, Daniele; Gottlieb, David
1989-01-01
A new method of imposing boundary conditions in the pseudospectral approximation of hyperbolic systems of equations is proposed. It is suggested to collocate the equations, not only at the inner grid points, but also at the boundary points and use the boundary conditions as penalty terms. In the pseudo-spectral Legrendre method with the new boundary treatment, a stability analysis for the case of a constant coefficient hyperbolic system is presented and error estimates are derived.
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; Namburu, Raju R.
1989-01-01
Numerical simulations are presented for hyperbolic heat-conduction problems that involve non-Fourier effects, using explicit, Lax-Wendroff/Taylor-Galerkin FEM formulations as the principal computational tool. Also employed are smoothing techniques which stabilize the numerical noise and accurately predict the propagating thermal disturbances. The accurate capture of propagating thermal disturbances at characteristic time-step values is achieved; numerical test cases are presented which validate the proposed hyperbolic heat-conduction problem concepts.
Strategy Guideline: Compact Air Distribution Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burdick, A.
2013-06-01
This Strategy Guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. Traditional systems sized by 'rule of thumb' (i.e., 1 ton of cooling per 400 ft2 of floor space) that 'wash' the exterior walls with conditioned air from floor registers cannot provide appropriate air mixing and moisture removal in low-load homes. A compact air distribution system locates the HVAC equipment centrally with shorter ducts run to interior walls, and ceiling supply outlets throw the air toward themore » exterior walls along the ceiling plane; alternatively, high sidewall supply outlets throw the air toward the exterior walls. Potential drawbacks include resistance from installing contractors or code officials who are unfamiliar with compact air distribution systems, as well as a lack of availability of low-cost high sidewall or ceiling supply outlets to meet the low air volumes with good throw characteristics. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.« less
The Optical Green Valley Versus Mid-infrared Canyon in Compact Groups
NASA Technical Reports Server (NTRS)
Walker, Lisa May; Butterfield, Natalie; Johnson, Kelsey; Zucker, Catherine; Gallagher, Sarah; Konstantopoulos, Iraklis; Zabludoff, Ann; Hornschemeier, Ann E.; Tzanavaris, Panayiotis; Charlton, Jane C.
2013-01-01
Compact groups of galaxies provide conditions similar to those experienced by galaxies in the earlier universe. Recent work on compact groups has led to the discovery of a dearth of mid-infrared transition galaxies (MIRTGs) in Infrared Array Camera (3.6-8.0 micrometers) color space as well as at intermediate specific star formation rates. However, we find that in compact groups these MIRTGs have already transitioned to the optical ([g-r]) red sequence. We investigate the optical color-magnitude diagram (CMD) of 99 compact groups containing 348 galaxies and compare the optical CMD with mid-infrared (mid-IR) color space for compact group galaxies. Utilizing redshifts available from Sloan Digital Sky Survey, we identified new galaxy members for four groups. By combining optical and mid-IR data, we obtain information on both the dust and the stellar populations in compact group galaxies. We also compare with more isolated galaxies and galaxies in the Coma Cluster, which reveals that, similar to clusters, compact groups are dominated by optically red galaxies. While we find that compact group transition galaxies lie on the optical red sequence, LVL (Local Volume Legacy) + (plus) SINGS (Spitzer Infrared Nearby Galaxies Survey) mid-IR (infrared) transition galaxies span the range of optical colors. The dearth of mid-IR transition galaxies in compact groups may be due to a lack of moderately star-forming low mass galaxies; the relative lack of these galaxies could be due to their relatively small gravitational potential wells. This makes them more susceptible to this dynamic environment, thus causing them to more easily lose gas or be accreted by larger members.
Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material
Dai, S.; Ma, Q.; Andersen, T.; Mcleod, A. S.; Fei, Z.; Liu, M. K.; Wagner, M.; Watanabe, K.; Taniguchi, T.; Thiemens, M.; Keilmann, F.; Jarillo-Herrero, P.; Fogler, M. M.; Basov, D. N.
2015-01-01
Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. In such materials, light propagation is unusual leading to novel and often non-intuitive optical phenomena. Here we report infrared nano-imaging experiments demonstrating that crystals of hexagonal boron nitride, a natural mid-infrared hyperbolic material, can act as a ‘hyper-focusing lens' and as a multi-mode waveguide. The lensing is manifested by subdiffractional focusing of phonon–polaritons launched by metallic disks underneath the hexagonal boron nitride crystal. The waveguiding is revealed through the modal analysis of the periodic patterns observed around such launchers and near the sample edges. Our work opens new opportunities for anisotropic layered insulators in infrared nanophotonics complementing and potentially surpassing concurrent artificial hyperbolic materials with lower losses and higher optical localization. PMID:25902364
"That's really clever!" Ironic hyperbole understanding in children.
Aguert, Marc; LE Vallois, Coralie; Martel, Karine; Laval, Virginie
2018-01-01
Hyperbole supports irony comprehension in adults by heightening the contrast between what is said and the actual situation. Because young children do not perceive the communication situation as a whole, but rather give precedence to either the utterance or the context, we predicted that hyperbole would reduce irony comprehension in six-year-olds (n = 40) by overemphasizing what was said. By contrast, ten-year-olds (n = 40) would benefit from hyperbole in the way that adults do, as they would perceive the utterance and context as a whole, highlighted by the speaker's ironic intent. Short animated cartoons featuring ironic criticisms were shown to participants. We assessed comprehension of the speaker's belief and speaker's intent. Results supported our predictions. The development of mentalization during school years and its impact on the development of irony comprehension is discussed.
First-Order Hyperbolic System Method for Time-Dependent Advection-Diffusion Problems
NASA Technical Reports Server (NTRS)
Mazaheri, Alireza; Nishikawa, Hiroaki
2014-01-01
A time-dependent extension of the first-order hyperbolic system method for advection-diffusion problems is introduced. Diffusive/viscous terms are written and discretized as a hyperbolic system, which recovers the original equation in the steady state. The resulting scheme offers advantages over traditional schemes: a dramatic simplification in the discretization, high-order accuracy in the solution gradients, and orders-of-magnitude convergence acceleration. The hyperbolic advection-diffusion system is discretized by the second-order upwind residual-distribution scheme in a unified manner, and the system of implicit-residual-equations is solved by Newton's method over every physical time step. The numerical results are presented for linear and nonlinear advection-diffusion problems, demonstrating solutions and gradients produced to the same order of accuracy, with rapid convergence over each physical time step, typically less than five Newton iterations.
Modified hyperbolic sine model for titanium dioxide-based memristive thin films
NASA Astrophysics Data System (ADS)
Abu Bakar, Raudah; Syahirah Kamarozaman, Nur; Fazlida Hanim Abdullah, Wan; Herman, Sukreen Hana
2018-03-01
Since the emergence of memristor as the newest fundamental circuit elements, studies on memristor modeling have been evolved. To date, the developed models were based on the linear model, linear ionic drift model using different window functions, tunnelling barrier model and hyperbolic-sine function based model. Although using hyperbolic-sine function model could predict the memristor electrical properties, the model was not well fitted to the experimental data. In order to improve the performance of the hyperbolic-sine function model, the state variable equation was modified. On the one hand, the addition of window function cannot provide an improved fitting. By multiplying the Yakopcic’s state variable model to Chang’s model on the other hand resulted in the closer agreement with the TiO2 thin film experimental data. The percentage error was approximately 2.15%.
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.; Kumar, Dipankar; Chakrabarty, Anuz Kumar
2018-05-01
The (2+1)-dimensional hyperbolic and cubic-quintic nonlinear Schrödinger equations describe the propagation of ultra-short pulses in optical fibers of nonlinear media. By using an extended sinh-Gordon equation expansion method, some new complex hyperbolic and trigonometric functions prototype solutions for two nonlinear Schrödinger equations were derived. The acquired new complex hyperbolic and trigonometric solutions are expressed by dark, bright, combined dark-bright, singular and combined singular solitons. The obtained results are more compatible than those of other applied methods. The extended sinh-Gordon equation expansion method is a more powerful and robust mathematical tool for generating new optical solitary wave solutions for many other nonlinear evolution equations arising in the propagation of optical pulses.
Theory of hyperbolic stratified nanostructures for surface-enhanced Raman scattering
NASA Astrophysics Data System (ADS)
Wong, Herman M. K.; Dezfouli, Mohsen Kamandar; Axelrod, Simon; Hughes, Stephen; Helmy, Amr S.
2017-11-01
We theoretically investigate the enhancement of surface enhanced Raman spectroscopy (SERS) using hyperbolic stratified nanostructures and compare to metal nanoresonators. The photon Green function of each nanostructure within its environment is first obtained from a semianalytical modal theory, which is used in a quantum optics formalism of the molecule-nanostructure interaction to model the SERS spectrum. An intuitive methodology is presented for calculating the single-molecule enhancement factor (SMEF), which is also able to predict known experimental SERS enhancement factors of a gold nanodimer. We elucidate the important figures-of-merit of the enhancement and explore these for different designs. We find that the use of hyperbolic stratified materials can enhance the photonic local density of states (LDOS) by close to two times in comparison to pure metal nanostructures, when both designed to work at the same operating wavelengths. However, the increased LDOS is accompanied by higher electric field concentration within the lossy hyperbolic material, which leads to increased quenching that serves to reduce the overall detected SERS enhancement in the far field. For nanoresonators with resonant localized surface plasmon wavelengths in the near-infrared, the SMEF for the hyperbolic stratified nanostructure is approximately one order of magnitude lower than the pure metal counterpart. Conversely, we show that by detecting the Raman signal using a near-field probe, hyperbolic materials can provide an improvement in SERS enhancement compared to using pure metal nanostructures when the probe is sufficiently close (<50 nm ) to the Raman active molecule at the plasmonic hotspot.
Big Data Clustering via Community Detection and Hyperbolic Network Embedding in IoT Applications.
Karyotis, Vasileios; Tsitseklis, Konstantinos; Sotiropoulos, Konstantinos; Papavassiliou, Symeon
2018-04-15
In this paper, we present a novel data clustering framework for big sensory data produced by IoT applications. Based on a network representation of the relations among multi-dimensional data, data clustering is mapped to node clustering over the produced data graphs. To address the potential very large scale of such datasets/graphs that test the limits of state-of-the-art approaches, we map the problem of data clustering to a community detection one over the corresponding data graphs. Specifically, we propose a novel computational approach for enhancing the traditional Girvan-Newman (GN) community detection algorithm via hyperbolic network embedding. The data dependency graph is embedded in the hyperbolic space via Rigel embedding, allowing more efficient computation of edge-betweenness centrality needed in the GN algorithm. This allows for more efficient clustering of the nodes of the data graph in terms of modularity, without sacrificing considerable accuracy. In order to study the operation of our approach with respect to enhancing GN community detection, we employ various representative types of artificial complex networks, such as scale-free, small-world and random geometric topologies, and frequently-employed benchmark datasets for demonstrating its efficacy in terms of data clustering via community detection. Furthermore, we provide a proof-of-concept evaluation by applying the proposed framework over multi-dimensional datasets obtained from an operational smart-city/building IoT infrastructure provided by the Federated Interoperable Semantic IoT/cloud Testbeds and Applications (FIESTA-IoT) testbed federation. It is shown that the proposed framework can be indeed used for community detection/data clustering and exploited in various other IoT applications, such as performing more energy-efficient smart-city/building sensing.
Big Data Clustering via Community Detection and Hyperbolic Network Embedding in IoT Applications
Sotiropoulos, Konstantinos
2018-01-01
In this paper, we present a novel data clustering framework for big sensory data produced by IoT applications. Based on a network representation of the relations among multi-dimensional data, data clustering is mapped to node clustering over the produced data graphs. To address the potential very large scale of such datasets/graphs that test the limits of state-of-the-art approaches, we map the problem of data clustering to a community detection one over the corresponding data graphs. Specifically, we propose a novel computational approach for enhancing the traditional Girvan–Newman (GN) community detection algorithm via hyperbolic network embedding. The data dependency graph is embedded in the hyperbolic space via Rigel embedding, allowing more efficient computation of edge-betweenness centrality needed in the GN algorithm. This allows for more efficient clustering of the nodes of the data graph in terms of modularity, without sacrificing considerable accuracy. In order to study the operation of our approach with respect to enhancing GN community detection, we employ various representative types of artificial complex networks, such as scale-free, small-world and random geometric topologies, and frequently-employed benchmark datasets for demonstrating its efficacy in terms of data clustering via community detection. Furthermore, we provide a proof-of-concept evaluation by applying the proposed framework over multi-dimensional datasets obtained from an operational smart-city/building IoT infrastructure provided by the Federated Interoperable Semantic IoT/cloud Testbeds and Applications (FIESTA-IoT) testbed federation. It is shown that the proposed framework can be indeed used for community detection/data clustering and exploited in various other IoT applications, such as performing more energy-efficient smart-city/building sensing. PMID:29662043
Faithful actions of locally compact quantum groups on classical spaces
NASA Astrophysics Data System (ADS)
Goswami, Debashish; Roy, Sutanu
2017-07-01
We construct examples of locally compact quantum groups coming from bicrossed product construction, including non-Kac ones, which can faithfully and ergodically act on connected classical (noncompact) smooth manifolds. However, none of these actions can be isometric in the sense of Goswami (Commun Math Phys 285(1):141-160, 2009), leading to the conjecture that the result obtained by Goswami and Joardar (Rigidity of action of compact quantum groups on compact, connected manifolds, 2013. arXiv:1309.1294) about nonexistence of genuine quantum isometry of classical compact connected Riemannian manifolds may hold in the noncompact case as well.
Compaction managed mirror bend achromat
Douglas, David [Yorktown, VA
2005-10-18
A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.
Topology-preserving quantum deformation with non-numerical parameter
NASA Astrophysics Data System (ADS)
Aukhadiev, Marat; Grigoryan, Suren; Lipacheva, Ekaterina
2013-11-01
We introduce a class of compact quantum semigroups, that we call semigroup deformations of compact Abelian qroups. These objects arise from reduced semigroup -algebras, the generalization of the Toeplitz algebra. We study quantum subgroups, quantum projective spaces and quantum quotient groups for such objects, and show that the group is contained as a compact quantum subgroup in the deformation of itself. The connection with the weak Hopf algebra notion is described. We give a grading on the -algebra of the compact quantum semigroups constructed.
Multi-time-scale heat transfer modeling of turbid tissues exposed to short-pulsed irradiations.
Kim, Kyunghan; Guo, Zhixiong
2007-05-01
A combined hyperbolic radiation and conduction heat transfer model is developed to simulate multi-time-scale heat transfer in turbid tissues exposed to short-pulsed irradiations. An initial temperature response of a tissue to an ultrashort pulse irradiation is analyzed by the volume-average method in combination with the transient discrete ordinates method for modeling the ultrafast radiation heat transfer. This response is found to reach pseudo steady state within 1 ns for the considered tissues. The single pulse result is then utilized to obtain the temperature response to pulse train irradiation at the microsecond/millisecond time scales. After that, the temperature field is predicted by the hyperbolic heat conduction model which is solved by the MacCormack's scheme with error terms correction. Finally, the hyperbolic conduction is compared with the traditional parabolic heat diffusion model. It is found that the maximum local temperatures are larger in the hyperbolic prediction than the parabolic prediction. In the modeled dermis tissue, a 7% non-dimensional temperature increase is found. After about 10 thermal relaxation times, thermal waves fade away and the predictions between the hyperbolic and parabolic models are consistent.
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
1992-01-01
The present treatment of elliptic regions via hyperbolic flux-splitting and high order methods proposes a flux splitting in which the corresponding Jacobians have real and positive/negative eigenvalues. While resembling the flux splitting used in hyperbolic systems, the present generalization of such splitting to elliptic regions allows the handling of mixed-type systems in a unified and heuristically stable fashion. The van der Waals fluid-dynamics equation is used. Convergence with good resolution to weak solutions for various Riemann problems are observed.
NASA Technical Reports Server (NTRS)
Steger, Joseph L.
1989-01-01
Hyperbolic grid generation procedures are described which have been used in external flow simulations about complex configurations. For many practical applications a single well-ordered (i.e., structured) grid can be used to mesh an entire configuration, in other problems, composite or unstructured grid procedures are needed. Although the hyperbolic partial differential equation grid generation procedure has mainly been utilized to generate structured grids, an extension of the procedure to semiunstructured grids is briefly described. Extensions of the methodology are also described using two-dimensional equations.
NASA Technical Reports Server (NTRS)
Steger, Joseph L.
1989-01-01
Hyperbolic grid generation procedures are described which have been used in external flow simulations about complex configurations. For many practical applications a single well-ordered (i.e., structured) grid can be used to mesh an entire configuration, in other problems, composite or unstructured grid procedures are needed. Although the hyperbolic partial differential equation grid generation procedure has mainly been utilized to generate structured grids, extension of the procedure to semiunstructured grids is briefly described. Extensions of the methodology are also described using two-dimensional equations.
Hyperbolic chaos in the klystron-type microwave vacuum tube oscillator
NASA Astrophysics Data System (ADS)
Emel'yanov, V. V.; Kuznetsov, S. P.; Ryskin, N. M.
2010-12-01
The ring-loop oscillator consisting of two coupled klystrons which is capable of generating hyperbolic chaotic signal in the microwave band is considered. The system of delayed-differential equations describing the dynamics of the oscillator is derived. This system is further reduced to the two-dimensional return map under the assumption of the instantaneous build-up of oscillations in the cavities. The results of detailed numerical simulation for both models are presented showing that there exists large enough range of control parameters where the sustained regime corresponds to the structurally stable hyperbolic chaos.
NASA Technical Reports Server (NTRS)
Cooper, D. B.; Yalabik, N.
1975-01-01
Approximation of noisy data in the plane by straight lines or elliptic or single-branch hyperbolic curve segments arises in pattern recognition, data compaction, and other problems. The efficient search for and approximation of data by such curves were examined. Recursive least-squares linear curve-fitting was used, and ellipses and hyperbolas are parameterized as quadratic functions in x and y. The error minimized by the algorithm is interpreted, and central processing unit (CPU) times for estimating parameters for fitting straight lines and quadratic curves were determined and compared. CPU time for data search was also determined for the case of straight line fitting. Quadratic curve fitting is shown to require about six times as much CPU time as does straight line fitting, and curves relating CPU time and fitting error were determined for straight line fitting. Results are derived on early sequential determination of whether or not the underlying curve is a straight line.
Quantum dressing orbits on compact groups
NASA Astrophysics Data System (ADS)
Jurčo, Branislav; Šťovíček, Pavel
1993-02-01
The quantum double is shown to imply the dressing transformation on quantum compact groups and the quantum Iwasawa decompositon in the general case. Quantum dressing orbits are described explicitly as *-algebras. The dual coalgebras consisting of differential operators are related to the quantum Weyl elements. Besides, the differential geometry on a quantum leaf allows a remarkably simple construction of irreducible *-representations of the algebras of quantum functions. Representation spaces then consist of analytic functions on classical phase spaces. These representations are also interpreted in the framework of quantization in the spirit of Berezin applied to symplectic leaves on classical compact groups. Convenient “coherent states” are introduced and a correspondence between classical and quantum observables is given.
Island of stability for consistent deformations of Einstein's gravity.
Berkhahn, Felix; Dietrich, Dennis D; Hofmann, Stefan; Kühnel, Florian; Moyassari, Parvin
2012-03-30
We construct deformations of general relativity that are consistent and phenomenologically viable, since they respect, in particular, cosmological backgrounds. These deformations have unique symmetries in accordance with their Minkowski cousins (Fierz-Pauli theory for massive gravitons) and incorporate a background curvature induced self-stabilizing mechanism. Self-stabilization is essential in order to guarantee hyperbolic evolution in and unitarity of the covariantized theory, as well as the deformation's uniqueness. We show that the deformation's parameter space contains islands of absolute stability that are persistent through the entire cosmic evolution.
Tensor tomography on Cartan–Hadamard manifolds
NASA Astrophysics Data System (ADS)
Lehtonen, Jere; Railo, Jesse; Salo, Mikko
2018-04-01
We study the geodesic x-ray transform on Cartan–Hadamard manifolds, generalizing the x-ray transforms on Euclidean and hyperbolic spaces that arise in medical and seismic imaging. We prove solenoidal injectivity of this transform acting on functions and tensor fields of any order. The functions are assumed to be exponentially decaying if the sectional curvature is bounded, and polynomially decaying if the sectional curvature decays at infinity. This work extends the results of Lehtonen (2016 arXiv:1612.04800) to dimensions n ≥slant 3 and to the case of tensor fields of any order.
NASA Astrophysics Data System (ADS)
Secchi, Paolo
2005-05-01
We introduce the main known results of the theory of incompressible and compressible vortex sheets. Moreover, we present recent results obtained by the author with J. F. Coulombel about supersonic compressible vortex sheets in two space dimensions. The problem is a nonlinear free boundary hyperbolic problem with two difficulties: the free boundary is characteristic and the Lopatinski condition holds only in a weak sense, yielding losses of derivatives. Under a supersonic condition that precludes violent instabilities, we prove an energy estimate for the boundary value problem obtained by linearization around an unsteady piecewise solution.
Universal moduli spaces of Riemann surfaces
NASA Astrophysics Data System (ADS)
Ji, Lizhen; Jost, Jürgen
2017-04-01
We construct a moduli space for Riemann surfaces that is universal in the sense that it represents compact Riemann surfaces of any finite genus. This moduli space is a connected complex subspace of an infinite dimensional complex space, and is stratified according to genus such that each stratum has a compact closure, and it carries a metric and a measure that induce a Riemannian metric and a finite volume measure on each stratum. Applications to the Plateau-Douglas problem for minimal surfaces of varying genus and to the partition function of Bosonic string theory are outlined. The construction starts with a universal moduli space of Abelian varieties. This space carries a structure of an infinite dimensional locally symmetric space which is of interest in its own right. The key to our construction of the universal moduli space then is the Torelli map that assigns to every Riemann surface its Jacobian and its extension to the Satake-Baily-Borel compactifications.
NASA Astrophysics Data System (ADS)
Ferrier, K.; Mitrovica, J. X.
2015-12-01
In sedimentary deltas and fans, sea-level changes are strongly modulated by the deposition and compaction of marine sediment. The deposition of sediment and incorporation of water into the sedimentary pore space reduces sea level by increasing the elevation of the seafloor, which reduces the thickness of sea-water above the bed. In a similar manner, the compaction of sediment and purging of water out of the sedimentary pore space increases sea level by reducing the elevation of the seafloor, which increases the thickness of sea water above the bed. Here we show how one can incorporate the effects of sediment deposition and compaction into the global, gravitationally self-consistent sea-level model of Dalca et al. (2013). Incorporating sediment compaction requires accounting for only one additional quantity that had not been accounted for in Dalca et al. (2013): the mean porosity in the sediment column. We provide a general analytic framework for global sea-level changes including sediment deposition and compaction, and we demonstrate how sea level responds to deposition and compaction under one simple parameterization for compaction. The compaction of sediment generates changes in sea level only by changing the elevation of the seafloor. That is, sediment compaction does not affect the mass load on the crust, and therefore does not generate perturbations in crustal elevation or the gravity field that would further perturb sea level. These results have implications for understanding sedimentary effects on sea-level changes and thus for disentangling the various drivers of sea-level change. ReferencesDalca A.V., Ferrier K.L., Mitrovica J.X., Perron J.T., Milne G.A., Creveling J.R., 2013. On postglacial sea level - III. Incorporating sediment redistribution. Geophysical Journal International, doi: 10.1093/gji/ggt089.
NASA Astrophysics Data System (ADS)
Christiansen, Christian; Hartmann, Daniel
This paper documents a package of menu-driven POLYPASCAL87 computer programs for handling grouped observations data from both sieving (increment data) and settling tube procedures (cumulative data). The package is designed deliberately for use on IBM-compatible personal computers. Two of the programs solve the numerical problem of determining the estimates of the four (main) parameters of the log-hyperbolic distribution and their derivatives. The package also contains a program for determining the mean, sorting, skewness. and kurtosis according to the standard moments. Moreover, the package contains procedures for smoothing and grouping of settling tube data. A graphic part of the package plots the data in a log-log plot together with the estimated log-hyperbolic curve. Along with the plot follows all estimated parameters. Another graphic option is a plot of the log-hyperbolic shape triangle with the (χ,ζ) position of the sample.
Kapitanova, Polina V; Ginzburg, Pavel; Rodríguez-Fortuño, Francisco J; Filonov, Dmitry S; Voroshilov, Pavel M; Belov, Pavel A; Poddubny, Alexander N; Kivshar, Yuri S; Wurtz, Gregory A; Zayats, Anatoly V
2014-01-01
The routing of light in a deep subwavelength regime enables a variety of important applications in photonics, quantum information technologies, imaging and biosensing. Here we describe and experimentally demonstrate the selective excitation of spatially confined, subwavelength electromagnetic modes in anisotropic metamaterials with hyperbolic dispersion. A localized, circularly polarized emitter placed at the boundary of a hyperbolic metamaterial is shown to excite extraordinary waves propagating in a prescribed direction controlled by the polarization handedness. Thus, a metamaterial slab acts as an extremely broadband, nearly ideal polarization beam splitter for circularly polarized light. We perform a proof of concept experiment with a uniaxial hyperbolic metamaterial at radio-frequencies revealing the directional routing effect and strong subwavelength λ/300 confinement. The proposed concept of metamaterial-based subwavelength interconnection and polarization-controlled signal routing is based on the photonic spin Hall effect and may serve as an ultimate platform for either conventional or quantum electromagnetic signal processing.
Luminescent hyperbolic metasurfaces
NASA Astrophysics Data System (ADS)
Smalley, J. S. T.; Vallini, F.; Montoya, S. A.; Ferrari, L.; Shahin, S.; Riley, C. T.; Kanté, B.; Fullerton, E. E.; Liu, Z.; Fainman, Y.
2017-01-01
When engineered on scales much smaller than the operating wavelength, metal-semiconductor nanostructures exhibit properties unobtainable in nature. Namely, a uniaxial optical metamaterial described by a hyperbolic dispersion relation can simultaneously behave as a reflective metal and an absorptive or emissive semiconductor for electromagnetic waves with orthogonal linear polarization states. Using an unconventional multilayer architecture, we demonstrate luminescent hyperbolic metasurfaces, wherein distributed semiconducting quantum wells display extreme absorption and emission polarization anisotropy. Through normally incident micro-photoluminescence measurements, we observe absorption anisotropies greater than a factor of 10 and degree-of-linear polarization of emission >0.9. We observe the modification of emission spectra and, by incorporating wavelength-scale gratings, show a controlled reduction of polarization anisotropy. We verify hyperbolic dispersion with numerical simulations that model the metasurface as a composite nanoscale structure and according to the effective medium approximation. Finally, we experimentally demonstrate >350% emission intensity enhancement relative to the bare semiconducting quantum wells.
Campione, Salvatore; Liu, Sheng; Luk, Ting S.; ...
2015-08-05
We employ both the effective medium approximation (EMA) and Bloch theory to compare the dispersion properties of semiconductor hyperbolic metamaterials (SHMs) at mid-infrared frequencies and metallic hyperbolic metamaterials (MHMs) at visible frequencies. This analysis reveals the conditions under which the EMA can be safely applied for both MHMs and SHMs. We find that the combination of precise nanoscale layering and the longer infrared operating wavelengths puts the SHMs well within the effective medium limit and, in contrast to MHMs, allows for the attainment of very high photon momentum states. Additionally, SHMs allow for new phenomena such as ultrafast creation ofmore » the hyperbolic manifold through optical pumping. Furthermore, we examine the possibility of achieving ultrafast topological transitions through optical pumping which can photo-dope appropriately designed quantum wells on the femtosecond time scale.« less
Path integration on the hyperbolic plane with a magnetic field
NASA Astrophysics Data System (ADS)
Grosche, Christian
1990-08-01
In this paper I discuss the path integrals on three formulations of hyperbolic geometry, where a constant magnetic field B is included. These are: the pseudosphere Λ2, the Poincaré disc D, and the hyperbolic strip S. The corresponding path integrals can be reformulated in terms of the path integral for the modified Pöschl-Teller potential. The wave-functions and the energy spectrum for the discrete and continuous part of the spectrum are explicitly calculated in each case. First the results are compared for the limit B → 0 with previous calculations and second with the path integration on the Poincaré upper half-plane U. This work is a continuation of the path integral calculations for the free motion on the various formulations on the hyperbolic plane and for the case of constant magnetic field on the Poincaré upper half-plane U.
Hyperbolic metamaterial lens with hydrodynamic nonlocal response.
Yan, Wei; Mortensen, N Asger; Wubs, Martijn
2013-06-17
We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens.
On intrinsic nonlinear particle motion in compact synchrotrons
NASA Astrophysics Data System (ADS)
Hwang, Kyung Ryun
Due to the low energy and small curvature characteristics of compact synchrotrons, there can be unexpected features that were not present or negligible in high energy accelerators. Nonlinear kinetics, fringe field effect, and space charge effect are those features which become important for low energy and small curvature accelerators. Nonlinear kinematics can limit the dynamics aperture for compact machine even if it consists of all linear elements. The contribution of the nonlinear kinematics on nonlinear optics parameters are first derived. As the dipole bending radius become smaller, the dipole fringe field effect become stronger. Calculation of the Lie map generator and corresponding mapping equation of dipole fringe field is presented. It is found that the higher order nonlinear potential is inverse proportional to powers of fringe field extent and correction to focusing and low order nonlinear potential is proportional to powers of fringe field extent. The fringe field also found to cause large closed orbit deviation for compact synchrotrons. The 2:1 and 4:1 space charge resonances are known to cause beam loss, emittance growth and halo formation for low energy high intensity beams. By numerical simulations, we observe a higher order 6:2 space charge resonance, which can successfully be understood by the concatenation of 2:1 and 4:1 resonances via canonical perturbation. We also develop an explicit symplectic tracking method for compact electrostatic storage rings and explore the feasibility of electric dipole moment (EDM) measurements.
Causality violations in Lovelock theories
NASA Astrophysics Data System (ADS)
Brustein, Ram; Sherf, Yotam
2018-04-01
Higher-derivative gravity theories, such as Lovelock theories, generalize Einstein's general relativity (GR). Modifications to GR are expected when curvatures are near Planckian and appear in string theory or supergravity. But can such theories describe gravity on length scales much larger than the Planck cutoff length scale? Here we find causality constraints on Lovelock theories that arise from the requirement that the equations of motion (EOM) of perturbations be hyperbolic. We find a general expression for the "effective metric" in field space when Lovelock theories are perturbed around some symmetric background solution. In particular, we calculate explicitly the effective metric for a general Lovelock theory perturbed around cosmological Friedman-Robertson-Walker backgrounds and for some specific cases when perturbed around Schwarzschild-like solutions. For the EOM to be hyperbolic, the effective metric needs to be Lorentzian. We find that, unlike for GR, the effective metric is generically not Lorentzian when the Lovelock modifications are significant. So, we conclude that Lovelock theories can only be considered as perturbative extensions of GR and not as truly modified theories of gravity. We compare our results to those in the literature and find that they agree with and reproduce the results of previous studies.
NASA Astrophysics Data System (ADS)
Nutku, Y.; Sheftel, M. B.
2014-02-01
This is a corrected and essentially extended version of the unpublished manuscript by Y Nutku and M Sheftel which contains new results. It is proposed to be published in honour of Y Nutku’s memory. All corrections and new results in sections 1, 2 and 4 are due to M Sheftel. We present new anti-self-dual exact solutions of the Einstein field equations with Euclidean and neutral (ultra-hyperbolic) signatures that admit only one rotational Killing vector. Such solutions of the Einstein field equations are determined by non-invariant solutions of Boyer-Finley (BF) equation. For the case of Euclidean signature such a solution of the BF equation was first constructed by Calderbank and Tod. Two years later, Martina, Sheftel and Winternitz applied the method of group foliation to the BF equation and reproduced the Calderbank-Tod solution together with new solutions for the neutral signature. In the case of Euclidean signature we obtain new metrics which asymptotically locally look like a flat space and have a non-removable singular point at the origin. In the case of ultra-hyperbolic signature there exist three inequivalent forms of metric. Only one of these can be obtained by analytic continuation from the Calderbank-Tod solution whereas the other two are new.
Localization of marine mammals near Hawaii using an acoustic propagation model
NASA Astrophysics Data System (ADS)
Tiemann, Christopher O.; Porter, Michael B.; Frazer, L. Neil
2004-06-01
Humpback whale songs were recorded on six widely spaced receivers of the Pacific Missile Range Facility (PMRF) hydrophone network near Hawaii during March of 2001. These recordings were used to test a new approach to localizing the whales that exploits the time-difference of arrival (time lag) of their calls as measured between receiver pairs in the PMRF network. The usual technique for estimating source position uses the intersection of hyperbolic curves of constant time lag, but a drawback of this approach is its assumption of a constant wave speed and straight-line propagation to associate acoustic travel time with range. In contrast to hyperbolic fixing, the algorithm described here uses an acoustic propagation model to account for waveguide and multipath effects when estimating travel time from hypothesized source positions. A comparison between predicted and measured time lags forms an ambiguity surface, or visual representation of the most probable whale position in a horizontal plane around the array. This is an important benefit because it allows for automated peak extraction to provide a location estimate. Examples of whale localizations using real and simulated data in algorithms of increasing complexity are provided.
A new look at the Feynman ‘hodograph’ approach to the Kepler first law
NASA Astrophysics Data System (ADS)
Cariñena, José F.; Rañada, Manuel F.; Santander, Mariano
2016-03-01
Hodographs for the Kepler problem are circles. This fact, known for almost two centuries, still provides the simplest path to derive the Kepler first law. Through Feynman’s ‘lost lecture’, this derivation has now reached a wider audience. Here we look again at Feynman’s approach to this problem, as well as the recently suggested modification by van Haandel and Heckman (vHH), with two aims in mind, both of which extend the scope of the approach. First we review the geometric constructions of the Feynman and vHH approaches (that prove the existence of elliptic orbits without making use of integral calculus or differential equations) and then extend the geometric approach to also cover the hyperbolic orbits (corresponding to E\\gt 0). In the second part we analyse the properties of the director circles of the conics, which are used to simplify the approach, and we relate with the properties of the hodographs and Laplace-Runge-Lenz vector the constant of motion specific to the Kepler problem. Finally, we briefly discuss the generalisation of the geometric method to the Kepler problem in configuration spaces of constant curvature, i.e. in the sphere and the hyperbolic plane.
NASA Technical Reports Server (NTRS)
Lombard, C. K.
1982-01-01
A conservative flux difference splitting is presented for the hyperbolic systems of gasdynamics. The stable robust method is suitable for wide application in a variety of schemes, explicit or implicit, iterative or direct, for marching in either time or space. The splitting is modeled on the local quasi one dimensional characteristics system for multi-dimensional flow similar to Chakravarthy's nonconservative split coefficient matrix method; but, as the result of maintaining global conservation, the method is able to capture sharp shocks correctly. The embedded characteristics formulation is cast in a primitive variable the volumetric internal energy (rather than the pressure) that is effective for treating real as well as perfect gases. Finally the relationship of the splitting to characteristics boundary conditions is discussed and the associated conservative matrix formulation for a computed blown wall boundary condition is developed as an example. The theoretical development employs and extends the notion of Roe of constructing stable upwind difference formulae by sending split simple one sided flux difference pieces to appropriate mesh sites. The developments are also believed to have the potential for aiding in the analysis of both existing and new conservative difference schemes.
NASA Astrophysics Data System (ADS)
Markfelder, Simon; Klingenberg, Christian
2018-03-01
In this paper we consider the isentropic compressible Euler equations in two space dimensions together with particular initial data. This data consists of two constant states, where one state lies in the lower and the other state in the upper half plane. The aim is to investigate whether there exists a unique entropy solution or if the convex integration method produces infinitely many entropy solutions. For some initial states this question has been answered by Feireisl and Kreml (J Hyperbolic Differ Equ 12(3):489-499, 2015), and also Chen and Chen (J Hyperbolic Differ Equ 4(1):105-122, 2007), where there exists a unique entropy solution. For other initial states Chiodaroli and Kreml (Arch Ration Mech Anal 214(3):1019-1049, 2014) and Chiodaroli et al. (Commun Pure Appl Math 68(7):1157-1190, 2015), showed that there are infinitely many entropy solutions. For still other initial states the question on uniqueness remained open and this will be the content of this paper. This paper can be seen as a completion of the aforementioned papers by showing that the solution is non-unique in all cases (except if the solution is smooth).
Near-field heat transfer between graphene/hBN multilayers
NASA Astrophysics Data System (ADS)
Zhao, Bo; Guizal, Brahim; Zhang, Zhuomin M.; Fan, Shanhui; Antezza, Mauro
2017-06-01
We study the radiative heat transfer between multilayer structures made by a periodic repetition of a graphene sheet and a hexagonal boron nitride (hBN) slab. Surface plasmons in a monolayer graphene can couple with hyperbolic phonon polaritons in a single hBN film to form hybrid polaritons that can assist photon tunneling. For periodic multilayer graphene/hBN structures, the stacked metallic/dielectric array can give rise to a further effective hyperbolic behavior, in addition to the intrinsic natural hyperbolic behavior of hBN. The effective hyperbolicity can enable more hyperbolic polaritons that enhance the photon tunneling and hence the near-field heat transfer. However, the hybrid polaritons on the surface, i.e., surface plasmon-phonon polaritons, dominate the near-field heat transfer between multilayer structures when the topmost layer is graphene. The effective hyperbolic regions can be well predicted by the effective medium theory (EMT), thought EMT fails to capture the hybrid surface polaritons and results in a heat transfer rate much lower compared to the exact calculation. The chemical potential of the graphene sheets can be tuned through electrical gating and results in an additional modulation of the heat transfer. We found that the near-field heat transfer between multilayer structures does not increase monotonously with the number of layers in the stack, which provides a way to control the heat transfer rate by the number of graphene layers in the multilayer structure. The results may benefit the applications of near-field energy harvesting and radiative cooling based on hybrid polaritons in two-dimensional materials.
NASA Astrophysics Data System (ADS)
Macías-Díaz, J. E.; Hendy, A. S.; De Staelen, R. H.
2018-03-01
In this work, we investigate a general nonlinear wave equation with Riesz space-fractional derivatives that generalizes various classical hyperbolic models, including the sine-Gordon and the Klein-Gordon equations from relativistic quantum mechanics. A finite-difference discretization of the model is provided using fractional centered differences. The method is a technique that is capable of preserving an energy-like quantity at each iteration. Some computational comparisons against solutions available in the literature are performed in order to assess the capability of the method to preserve the invariant. Our experiments confirm that the technique yields good approximations to the solutions considered. As an application of our scheme, we provide simulations that confirm, for the first time in the literature, the presence of the phenomenon of nonlinear supratransmission in Riesz space-fractional Klein-Gordon equations driven by a harmonic perturbation at the boundary.
Domain decomposition methods for systems of conservation laws: Spectral collocation approximations
NASA Technical Reports Server (NTRS)
Quarteroni, Alfio
1989-01-01
Hyperbolic systems of conversation laws are considered which are discretized in space by spectral collocation methods and advanced in time by finite difference schemes. At any time-level a domain deposition method based on an iteration by subdomain procedure was introduced yielding at each step a sequence of independent subproblems (one for each subdomain) that can be solved simultaneously. The method is set for a general nonlinear problem in several space variables. The convergence analysis, however, is carried out only for a linear one-dimensional system with continuous solutions. A precise form of the error reduction factor at each iteration is derived. Although the method is applied here to the case of spectral collocation approximation only, the idea is fairly general and can be used in a different context as well. For instance, its application to space discretization by finite differences is straight forward.
Long-distance super-resolution imaging assisted by enhanced spatial Fourier transform.
Tang, Heng-He; Liu, Pu-Kun
2015-09-07
A new gradient-index (GRIN) lens that can realize enhanced spatial Fourier transform (FT) over optically long distances is demonstrated. By using an anisotropic GRIN metamaterial with hyperbolic dispersion, evanescent wave in free space can be transformed into propagating wave in the metamaterial and then focused outside due to negative-refraction. Both the results based on the ray tracing and the finite element simulation show that the spatial frequency bandwidth of the spatial FT can be extended to 2.7k(0) (k(0) is the wave vector in free space). Furthermore, assisted by the enhanced spatial FT, a new long-distance (in the optical far-field region) super-resolution imaging scheme is also proposed and the super resolved capability of λ/5 (λ is the wavelength in free space) is verified. The work may provide technical support for designing new-type high-speed microscopes with long working distances.
Inverse-Square Orbits: A Geometric Approach.
ERIC Educational Resources Information Center
Rainwater, James C.; Weinstock, Robert
1979-01-01
Presents a derivation of Kepler's first law of planetary motion from Newtonian principles. Analogus derivations of the hyperbolic and parabolic orbits of nonreturning comets and the hyperbolic orbit for a particle in a repulsive inverse-square field are also presented. (HM)
Use of hyperbolic partial differential equations to generate body fitted coordinates
NASA Technical Reports Server (NTRS)
Steger, J. L.; Sorenson, R. L.
1980-01-01
The hyperbolic scheme is used to efficiently generate smoothly varying grids with good step size control near the body. Although only two dimensional applications are presented, the basic concepts are shown to extend to three dimensions.
Accuracy limitations of hyperbolic multilateration systems
DOT National Transportation Integrated Search
1973-03-22
The report is an analysis of the accuracy limitations of hyperbolic multilateration systems. A central result is a demonstration that the inverse of the covariance matrix for positional errors corresponds to the moment of inertia matrix of a simple m...
Where are compact groups in the local Universe?
NASA Astrophysics Data System (ADS)
Díaz-Giménez, Eugenia; Zandivarez, Ariel
2015-06-01
Aims: The purpose of this work is to perform a statistical analysis of the location of compact groups in the Universe from observational and semi-analytical points of view. Methods: We used the velocity-filtered compact group sample extracted from the Two Micron All Sky Survey for our analysis. We also used a new sample of galaxy groups identified in the 2M++ galaxy redshift catalogue as tracers of the large-scale structure. We defined a procedure to search in redshift space for compact groups that can be considered embedded in other overdense systems and applied this criterion to several possible combinations of different compact and galaxy group subsamples. We also performed similar analyses for simulated compact and galaxy groups identified in a 2M++ mock galaxy catalogue constructed from the Millennium Run Simulation I plus a semi-analytical model of galaxy formation. Results: We observed that only ~27% of the compact groups can be considered to be embedded in larger overdense systems, that is, most of the compact groups are more likely to be isolated systems. The embedded compact groups show statistically smaller sizes and brighter surface brightnesses than non-embedded systems. No evidence was found that embedded compact groups are more likely to inhabit galaxy groups with a given virial mass or with a particular dynamical state. We found very similar results when the analysis was performed using mock compact and galaxy groups. Based on the semi-analytical studies, we predict that 70% of the embedded compact groups probably are 3D physically dense systems. Finally, real space information allowed us to reveal the bimodal behaviour of the distribution of 3D minimum distances between compact and galaxy groups. Conclusions: The location of compact groups should be carefully taken into account when comparing properties of galaxies in environments that are a priori different. Appendices are available in electronic form at http://www.aanda.orgFull Tables B.1 and B.2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A61
A Few New 2+1-Dimensional Nonlinear Dynamics and the Representation of Riemann Curvature Tensors
NASA Astrophysics Data System (ADS)
Wang, Yan; Zhang, Yufeng; Zhang, Xiangzhi
2016-09-01
We first introduced a linear stationary equation with a quadratic operator in ∂x and ∂y, then a linear evolution equation is given by N-order polynomials of eigenfunctions. As applications, by taking N=2, we derived a (2+1)-dimensional generalized linear heat equation with two constant parameters associative with a symmetric space. When taking N=3, a pair of generalized Kadomtsev-Petviashvili equations with the same eigenvalues with the case of N=2 are generated. Similarly, a second-order flow associative with a homogeneous space is derived from the integrability condition of the two linear equations, which is a (2+1)-dimensional hyperbolic equation. When N=3, the third second flow associative with the homogeneous space is generated, which is a pair of new generalized Kadomtsev-Petviashvili equations. Finally, as an application of a Hermitian symmetric space, we established a pair of spectral problems to obtain a new (2+1)-dimensional generalized Schrödinger equation, which is expressed by the Riemann curvature tensors.
Ultra-Compact Raman Spectrometer for Planetary Explorations
NASA Technical Reports Server (NTRS)
Davis, Derek; Hornef, James; Lucas, John; Elsayed-Ali, Hani; Abedin, M. Nurul
2016-01-01
To develop a compact Raman spectroscopy system with features that will make it suitable for future space missions which require surface landing. Specifically, this system will be appropriate for any mission in which planetary surface samples need to be measured and analyzed.
Improved Sand-Compaction Method for Lost-Foam Metal Casting
NASA Technical Reports Server (NTRS)
Bakhtiyarov, Sayavur I.; Overfelt, Ruel A.
2008-01-01
An improved method of filling a molding flask with sand and compacting the sand around a refractory-coated foam mold pattern has been developed for incorporation into the lost-foam metal-casting process. In comparison with the conventional method of sand filling and compaction, this method affords more nearly complete filling of the space around the refractory-coated foam mold pattern and more thorough compaction of the sand. In so doing, this method enables the sand to better support the refractory coat under metallostatic pressure during filling of the mold with molten metal.
Spectrometers for compact neutron sources
NASA Astrophysics Data System (ADS)
Voigt, J.; Böhm, S.; Dabruck, J. P.; Rücker, U.; Gutberlet, T.; Brückel, T.
2018-03-01
We discuss the potential for neutron spectrometers at novel accelerator driven compact neutron sources. Such a High Brilliance Source (HBS) relies on low energy nuclear reactions, which enable cryogenic moderators in very close proximity to the target and neutron optics at comparably short distances from the moderator compared to existing sources. While the first effect aims at increasing the phase space density of a moderator, the second allows the extraction of a large phase space volume, which is typically requested for spectrometer applications. We find that competitive spectrometers can be realized if (a) the neutron production rate can be synchronized with the experiment repetition rate and (b) the emission characteristics of the moderator can be matched to the phase space requirements of the experiment. MCNP simulations for protons or deuterons on a Beryllium target with a suitable target/moderator design yield a source brightness, from which we calculate the sample fluxes by phase space considerations for different types of spectrometers. These match closely the figures of todays spectrometers at medium flux sources. Hence we conclude that compact neutron sources might be a viable option for next generation neutron sources.
Novel Plasmonic and Hyberbolic Optical Materials for Control of Quantum Nanoemitters
2016-12-08
properties, metal ion implantation techniques, and multi- physics modeling to produce hyperbolic quantum nanoemitters. 15. SUBJECT TERMS nanotechnology 16...techniques, and multi- physics modeling to produce hyperbolic quantum nanoemitters. During the course of this project we studied plasmonic
NASA Astrophysics Data System (ADS)
Ham, Ji-Young; Lee, Joongul
2017-03-01
We calculate the Chern-Simons invariants of the hyperbolic orbifolds of the knot with Conway's notation C(2n, 3) using the Schläfli formula for the generalized Chern-Simons function on the family of C(2n, 3) cone-manifold structures. We present the concrete and explicit formula of them. We apply the general instructions of Hilden, Lozano, and Montesinos-Amilibia and extend the Ham and Lee's methods. As an application, we calculate the Chern-Simons invariants of cyclic coverings of the hyperbolic C(2n, 3) orbifolds.
Congruence Approximations for Entrophy Endowed Hyperbolic Systems
NASA Technical Reports Server (NTRS)
Barth, Timothy J.; Saini, Subhash (Technical Monitor)
1998-01-01
Building upon the standard symmetrization theory for hyperbolic systems of conservation laws, congruence properties of the symmetrized system are explored. These congruence properties suggest variants of several stabilized numerical discretization procedures for hyperbolic equations (upwind finite-volume, Galerkin least-squares, discontinuous Galerkin) that benefit computationally from congruence approximation. Specifically, it becomes straightforward to construct the spatial discretization and Jacobian linearization for these schemes (given a small amount of derivative information) for possible use in Newton's method, discrete optimization, homotopy algorithms, etc. Some examples will be given for the compressible Euler equations and the nonrelativistic MHD equations using linear and quadratic spatial approximation.
Time discounting and smoking behavior: evidence from a panel survey(*).
Kang, Myong-Il; Ikeda, Shinsuke
2014-12-01
By using a panel survey of Japanese adults, we show that smoking behavior is associated with personal time discounting and its biases, such as hyperbolic discounting and the sign effect, in the way that theory predicts: smoking depends positively on the discount rate and the degree of hyperbolic discounting and negatively on the presence of the sign effect. Positive effects of hyperbolic discounting on smoking are salient for naïve people, who are not aware of their self-control problem. By estimating smoking participation and smokers' cigarette consumption in Cragg's two-part model, we find that the two smoking decisions depend on different sets of time-discounting variables. Particularly, smoking participation is affected by being a naïve hyperbolic discounter, whereas the discount rate, the presence of the sign effect, and a hyperbolic discounting proxy constructed from procrastination behavior vis-à-vis doing homework assignments affect both types of decision making. The panel data enable us to analyze the over-time instability of elicited discount rates. The instability is shown to come from measurement errors, rather than preference shocks on time preference. Several evidences indicate that the detected associations between time preferences and smoking behavior are interpersonal one, rather than within-personal one. Copyright © 2013 John Wiley & Sons, Ltd.
Cycle expansions: From maps to turbulence
NASA Astrophysics Data System (ADS)
Lan, Y.
2010-03-01
We present a derivation, a physical explanation and applications of cycle expansions in different dynamical systems, ranging from simple one-dimensional maps to turbulence in fluids. Cycle expansion is a newly devised powerful tool for computing averages of physical observables in nonlinear chaotic systems which combines many innovative ideas developed in dynamical systems, such as hyperbolicity, invariant manifolds, symbolic dynamics, measure theory and thermodynamic formalism. The concept of cycle expansion has a deep root in theoretical physics, bearing a close analogy to cumulant expansion in statistical physics and effective action functional in quantum field theory, the essence of which is to represent a physical system in a hierarchical way by utilizing certain multiplicative structures such that the dominant parts of physical observables are captured by compact, maneuverable objects while minor detailed variations are described by objects with a larger space and time scale. The technique has been successfully applied to many low-dimensional dynamical systems and much effort has recently been made to extend its use to spatially extended systems. For one-dimensional systems such as the Kuramoto-Sivashinsky equation, the method turns out to be very effective while for more complex real-world systems including the Navier-Stokes equation, the method is only starting to yield its first fruits and much more work is needed to enable practical computations. However, the experience and knowledge accumulated so far is already very useful to a large set of research problems. Several such applications are briefly described in what follows. As more research effort is devoted to the study of complex dynamics of nonlinear systems, cycle expansion will undergo a fast development and find wide applications.
Complete spacelike hypersurfaces in orthogonally splitted spacetimes
NASA Astrophysics Data System (ADS)
Colombo, Giulio; Rigoli, Marco
2017-10-01
We provide some "half-space theorems" for spacelike complete non-compact hypersurfaces into orthogonally splitted spacetimes. In particular we generalize some recent work of Rubio and Salamanca on maximal spacelike compact hypersurfaces. Beside compactness, we also relax some of their curvature assumptions and even consider the case of nonconstant mean curvature bounded from above. The analytic tools used in various arguments are based on some forms of the weak maximum principle.
Elliptic complexes over C∗-algebras of compact operators
NASA Astrophysics Data System (ADS)
Krýsl, Svatopluk
2016-03-01
For a C∗-algebra A of compact operators and a compact manifold M, we prove that the Hodge theory holds for A-elliptic complexes of pseudodifferential operators acting on smooth sections of finitely generated projective A-Hilbert bundles over M. For these C∗-algebras and manifolds, we get a topological isomorphism between the cohomology groups of an A-elliptic complex and the space of harmonic elements of the complex. Consequently, the cohomology groups appear to be finitely generated projective C∗-Hilbert modules and especially, Banach spaces. We also prove that in the category of Hilbert A-modules and continuous adjointable Hilbert A-module homomorphisms, the property of a complex of being self-adjoint parametrix possessing characterizes the complexes of Hodge type.
Compact Microscope Imaging System With Intelligent Controls Improved
NASA Technical Reports Server (NTRS)
McDowell, Mark
2004-01-01
The Compact Microscope Imaging System (CMIS) with intelligent controls is a diagnostic microscope analysis tool with intelligent controls for use in space, industrial, medical, and security applications. This compact miniature microscope, which can perform tasks usually reserved for conventional microscopes, has unique advantages in the fields of microscopy, biomedical research, inline process inspection, and space science. Its unique approach integrates a machine vision technique with an instrumentation and control technique that provides intelligence via the use of adaptive neural networks. The CMIS system was developed at the NASA Glenn Research Center specifically for interface detection used for colloid hard spheres experiments; biological cell detection for patch clamping, cell movement, and tracking; and detection of anode and cathode defects for laboratory samples using microscope technology.
The design and fabrication of a prototype trash compacting unit. [for long duration space missions
NASA Technical Reports Server (NTRS)
1973-01-01
A prototype trash compactor, that is compatible with the anticipated requirements of future long-term space missions, is described. Preliminary problem definition studies were conducted to identify typical types and quantities of waste materials to be expected from a typical mission. Bench-scale compaction tests were then conducted on typical waste materials to determine force/compaction curves. These data were used to design a boilerplate compactor that was fabricated to prove the feasibility of the basic design concept. A final design was then prepared from which the deliverable unit was fabricated. Design concepts are presented for suggested further development of the compactor, including a version that is capable of handling wet biodegradable wastes.
Compact time- and space-integrating SAR processor: design and development status
NASA Astrophysics Data System (ADS)
Haney, Michael W.; Levy, James J.; Christensen, Marc P.; Michael, Robert R., Jr.; Mock, Michael M.
1994-06-01
Progress toward a flight demonstration of the acousto-optic time- and space- integrating real-time SAR image formation processor program is reported. The concept overcomes the size and power consumption limitations of electronic approaches by using compact, rugged, and low-power analog optical signal processing techniques for the most computationally taxing portions of the SAR imaging problem. Flexibility and performance are maintained by the use of digital electronics for the critical low-complexity filter generation and output image processing functions. The results reported include tests of a laboratory version of the concept, a description of the compact optical design that will be implemented, and an overview of the electronic interface and controller modules of the flight-test system.
Namboodiri, Vijay Mohan K.; Levy, Joshua M.; Mihalas, Stefan; Sims, David W.; Hussain Shuler, Marshall G.
2016-01-01
Understanding the exploration patterns of foragers in the wild provides fundamental insight into animal behavior. Recent experimental evidence has demonstrated that path lengths (distances between consecutive turns) taken by foragers are well fitted by a power law distribution. Numerous theoretical contributions have posited that “Lévy random walks”—which can produce power law path length distributions—are optimal for memoryless agents searching a sparse reward landscape. It is unclear, however, whether such a strategy is efficient for cognitively complex agents, from wild animals to humans. Here, we developed a model to explain the emergence of apparent power law path length distributions in animals that can learn about their environments. In our model, the agent’s goal during search is to build an internal model of the distribution of rewards in space that takes into account the cost of time to reach distant locations (i.e., temporally discounting rewards). For an agent with such a goal, we find that an optimal model of exploration in fact produces hyperbolic path lengths, which are well approximated by power laws. We then provide support for our model by showing that humans in a laboratory spatial exploration task search space systematically and modify their search patterns under a cost of time. In addition, we find that path length distributions in a large dataset obtained from free-ranging marine vertebrates are well described by our hyperbolic model. Thus, we provide a general theoretical framework for understanding spatial exploration patterns of cognitively complex foragers. PMID:27385831
Holonomy Attractor Connecting Spaces of Different Curvature Responsible for ``Anomalies''
NASA Astrophysics Data System (ADS)
Binder, Bernd
2009-03-01
In this lecture paper we derive Magic Angle Precession (MAP) from first geometric principles. MAP can arise in situations, where precession is multiply related to spin, linearly by time or distance (dynamic phase, rolling, Gauss law) and transcendentally by the holonomy loop path (geometric phase). With linear spin-precession coupling, gyroscopes can be spun up and down to very high frequencies via low frequency holonomy control induced by external accelerations, which provides for extreme coupling strengths or "anomalies" that can be tested by the powerball or gyrotwister device. Geometrically, a gyroscopic manifold with spherical metric is tangentially aligned to a precession wave channel with conic or hyperbolic metric (like the relativistic Thomas precession). Transporting triangular spin/precession vector relations across the tangential boundary of contact with SO(3) Lorentz symmetry, we get extreme vector currents near the attractor fixed points in precession phase space, where spin currents remain intact while crossing the contact boundaries between regions of different curvature signature (-1, 0, +1). The problem can be geometrically solved by considering a curvature invariant triangular condition, which holds on surfaces with different curvature that are in contact and locally parallel. In this case two out of three angles are identical, whereas the third angle is different due to holonomy. If we require that the side length ratio corresponding to these angles are invariant we get a geodesic chaotic attractor, which is a cosine map cos(x)˜Mx in parameter space providing for fixed points, limit cycle bifurcations, and singularities. The situation could be quite natural and common in the context of vector currents in curved spacetime and gauge theories. MAP could even be part of the electromagnetic interaction, where the electric charge is the geometric U(1) precession spin current and gauge potential with magnetic effects given by extra rotations under the SO(3). MAP can be extended to a neural network, where the synaptic connection of the holonomy attractor is just the mathematical condition adjusting and bridging spaces with positive (spherical) and negative (hyperbolic) curvature allowing for lossless/supra spin currents. Another strategy is to look for existing spin/precession anomalies and corresponding nonlinear holonomy conditions at the most fundamental level from the quark level to the cosmic scale. In these sceneries the geodesic attractor could control holonomy and curvature near the fixed points. It was proposed in 2002 that this should happen with electrons in atomic orbits showing a Berry phase part of the Rydberg or Sommerfeld fine structure constant and in 2003 that this effect could be responsible for (in)stabilities in the nuclear range and in superconductors. In 2008 it was shown that the attractor is part of the chaotic mechanical dynamics successfully at work in the Gyro-twister fitness device, and in 2007-2009 that there could be some deep relevance to "anomalies" in many scenarios even on the cosmic scales. Thus, we will point to and discuss some possible future applications that could be utilized for metric engineering: generating artificial holonomy and curvature (DC effect) for propulsion, or forcing holonomy waves (AC effect) in hyperbolic space-time, which are just gravitational waves interesting for communication.
NASA Astrophysics Data System (ADS)
Lisantono, Ade; Praja, Baskoro Abdi; Hermawan, Billy Nouwen
2017-11-01
One of the methods to increase the tensile strength of concrete is adding a fiber material into the concrete. While to reduce a noise in a construction project, a self compacting concrete was a good choices in the project. This paper presents an experimental study of flexural behavior and strength of self compacting fiber reinforced concrete (RC) beams using polypropylene fiber. The micro monofilament polypropylene fibers with the proportion 0.9 kg/m3 of concrete weight were used in this study. Four beam specimens were cast and tested in this study. Two beams were cast of self compacting reinforced concrete without fiber, and two beams were cast of self compacting fiber reinforced concrete using polypropylene. The beams specimen had the section of (180×260) mm and the length was 2000 mm. The beams had simple supported with the span of 1800 mm. The longitudinal reinforcements were using diameter of 10 mm. Two reinforcements of Ø10 mm were put for compressive reinforcement and three reinforcements of Ø10 mm were put for tensile reinforcement. The shear reinforcement was using diameter of 8 mm. The shear reinforcements with spacing of 100 mm were put in the one fourth near to the support and the spacing of 150 mm were put in the middle span. Two points loading were used in the testing. The result shows that the load-carrying capacity of the self compacting reinforced concrete beam using polypropylene was a little bit higher than the self compacting reinforced concrete beam without polypropylene. The increment of load-carrying capacity of self compacting polypropylene fiber reinforced concrete was not so significant because the increment was only 2.80 % compare to self compacting non fiber reinforced concrete. And from the load-carrying capacity-deflection relationship curves show that both the self compacting polypropylene fiber reinforced concrete beam and the self compacting non fiber reinforced concrete beam were ductile beams.
A mixed fluid-kinetic solver for the Vlasov-Poisson equations
NASA Astrophysics Data System (ADS)
Cheng, Yongtao
Plasmas are ionized gases that appear in a wide range of applications including astrophysics and space physics, as well as in laboratory settings such as in magnetically confined fusion. There are two prevailing types of modeling strategies to describe a plasma system: kinetic models and fluid models. Kinetic models evolve particle probability density distributions (PDFs) in phase space, which are accurate but computationally expensive. Fluid models evolve a small number of moments of the distribution function and reduce the dimension of the solution. However, some approximation is necessary to close the system, and finding an accurate moment closure that correctly captures the dynamics away from thermodynamic equilibrium is a difficult and still open problem. The main contributions of the present work can be divided into two main parts: (1) a new class of moment closures, based on a modification of existing quadrature-based moment-closure methods, is developed using bi-B-spline and bi-bubble representations; and (2) a novel mixed solver that combines a fluid and a kinetic solver is proposed, which uses the new class of moment-closure methods described in the first part. For the newly developed quadrature-based moment-closure based on bi-B-spline and bi-bubble representation, the explicit form of flux terms and the moment-realizability conditions are given. It is shown that while the bi-delta system is weakly hyperbolic, the newly proposed fluid models are strongly hyperbolic. Using a high-order Runge-Kutta discontinuous Galerkin method together with Strang operator splitting, the resulting models are applied to the Vlasov-Poisson-Fokker-Planck system in the high field limit. In the second part of this work, results from kinetic solver are used to provide a corrected closure to the fluid model. This correction keeps the fluid model hyperbolic and gives fluid results that match the moments as computed from the kinetic solution. Furthermore, a prolongation operation based on the bi-bubble moment-closure is used to make the first few moments of the kinetic and fluid solvers match. This results in a kinetic solver that exactly conserves mass and total energy. This mixed fluid-kinetic solver is applied to standard test problems for the Vlasov-Poisson system, including two-stream-instability problem and Landau damping.
2015-03-01
lost bank material with compacted, non-dispersive clay and riprap; constructing landward piggy-back levees at discrete locations if space is available...consist of approximately seven miles of levees. The levees have 3:1 side slopes that are made up of clay soil, with a two-foot minimum freeboard. The...reshaping the levee and replacing lost bank material with compacted, non-dispersive clay and riprap or building a landside piggy back levee if space is
Subleading soft theorem for multiple soft gravitons
NASA Astrophysics Data System (ADS)
Chakrabarti, Subhroneel; Kashyap, Sitender Pratap; Sahoo, Biswajit; Sen, Ashoke; Verma, Mritunjay
2017-12-01
We derive the subleading soft graviton theorem in a generic quantum theory of gravity for arbitrary number of soft external gravitons and arbitrary number of finite energy external states carrying arbitrary mass and spin. Our results are valid to all orders in perturbation theory when the number of non-compact space-time dimensions is six or more, but only for tree amplitudes for five or less non-compact space-time dimensions due to enhanced contribution to loop amplitudes from the infrared region.
Compact Deep-Space Optical Communications Transceiver
NASA Technical Reports Server (NTRS)
Roberts, W. Thomas; Charles, Jeffrey R.
2009-01-01
Deep space optical communication transceivers must be very efficient receivers and transmitters of optical communication signals. For deep space missions, communication systems require high performance well beyond the scope of mere power efficiency, demanding maximum performance in relation to the precious and limited mass, volume, and power allocated. This paper describes the opto-mechanical design of a compact, efficient, functional brassboard deep space transceiver that is capable of achieving megabyte-per-second rates at Mars ranges. The special features embodied to enhance the system operability and functionality, and to reduce the mass and volume of the system are detailed. System tests and performance characteristics are described in detail. Finally, lessons learned in the implementation of the brassboard design and suggestions for improvements appropriate for a flight prototype are covered.
Controlling rogue waves in inhomogeneous Bose-Einstein condensates.
Loomba, Shally; Kaur, Harleen; Gupta, Rama; Kumar, C N; Raju, Thokala Soloman
2014-05-01
We present the exact rogue wave solutions of the quasi-one-dimensional inhomogeneous Gross-Pitaevskii equation by using similarity transformation. Then, by employing the exact analytical solutions we have studied the controllable behavior of rogue waves in the Bose-Einstein condensates context for the experimentally relevant systems. Additionally, we have also investigated the nonlinear tunneling of rogue waves through a conventional hyperbolic barrier and periodic barrier. We have found that, for the conventional nonlinearity barrier case, rogue waves are localized in space and time and get amplified near the barrier, while for the dispersion barrier case rogue waves are localized in space and propagating in time and their amplitude is reduced at the barrier location. In the case of the periodic barrier, the interesting dynamical features of rogue waves are obtained and analyzed analytically.
Guzik, Stephen M.; Gao, Xinfeng; Owen, Landon D.; ...
2015-12-20
We present a fourth-order accurate finite-volume method for solving time-dependent hyperbolic systems of conservation laws on mapped grids that are adaptively refined in space and time. Some novel considerations for formulating the semi-discrete system of equations in computational space are combined with detailed mechanisms for accommodating the adapting grids. Furthermore, these considerations ensure that conservation is maintained and that the divergence of a constant vector field is always zero (freestream-preservation property). The solution in time is advanced with a fourth-order Runge-Kutta method. A series of tests verifies that the expected accuracy is achieved in smooth flows and the solution ofmore » a Mach reflection problem demonstrates the effectiveness of the algorithm in resolving strong discontinuities.« less
Congress Examines Efforts to Search for Life in the Universe
NASA Astrophysics Data System (ADS)
Showstack, Randy
2014-06-01
"It is not hyperbolic to suggest that scientists could very well discover extraterrestrial intelligence within 2 decades' time or less, given resources to conduct the search," Seth Shostak, senior astronomer with the SETI Institute, in Mountain View, Calif., testified at a 21 May congressional hearing held by the House of Representatives' Committee on Science, Space, and Technology. He pointed to the progress in extrasolar planet discovery made possible by NASA's Kepler space telescope, the enormous number of potential planets in the Milky Way and other galaxies, the increasing power of digital electronics to find and sort out radio and other signals, and other work related to exoplanets and astrobiology. It was the committee's third hearing on astrobiology and the search for life in the universe in roughly 1 year.
LISA: Astrophysics Out to z Approximately 10 with Low-Frequency Gravitational Waves
NASA Technical Reports Server (NTRS)
Stebbins, Robin T.
2008-01-01
This viewgraph presentation reviews the Laser Interferometer Space Antenna (LISA). LISA os a joint ESA-NASA project to design, build and operate a space-based gravitational wave detector. The 5 million Kilometer long detector will consist of three spacecraft orbiting the Sun in a triangular formation. Space-Time strains induced by gravitational waves are detected by measuring changes in the separation of fiducial masses with laser interferometry. LISA is expected to detect signals from merging massive black holes, compact stellar objects spiraling into super massive black holes in galactic nuclei, thousands of close binaries of compact objects in the Milky way and possible backgrounds of cosmological origin.
Constraining the physical state by symmetries
NASA Astrophysics Data System (ADS)
Fatibene, L.; Ferraris, M.; Magnano, G.
2017-03-01
After reviewing the hole argument and its relations with initial value problem and general covariance, we shall discuss how much freedom one has to define the physical state in a generally covariant field theory (with or without internal gauge symmetries). Our analysis relies on Cauchy problems, thus it is restricted to globally hyperbolic spacetimes. We shall show that in generally covariant theories on a compact space (as well as for internal gauge symmetries on any spacetime) one has no freedom and one is forced to declare as physically equivalent two configurations which differ by a global spacetime diffeomorphism (or by an internal gauge transformation) as it is usually prescribed. On the contrary, when space is not compact, the result does not hold true and one may have different options to define physically equivalent configurations, still preserving determinism. For this scenario to be effective, the group G of formal transformations needs to be a subgroup of dynamical symmetries (otherwise field equations, which are written in terms of configurations would not induce equations for the physical state classes) and it must contain the group D generated by Cauchy transformations (otherwise the equations induced on physical state classes would not be well posed, either). We argue that it is exactly because of this double inclusion that the hole argument in its initial problem formulation is more powerful than in its boundary formulation. In the boundary formulation of the hole argument one still has that the group G of formal transformations is a subgroup of dynamical symmetries, but there is no evidence for it to contain a particular non-trivial subgroup.In this paper we shall show that this scenario is exactly implemented in generally covariant theories. In the last section we shall show it to be implemented in gauge theories as well.Norton also argued (see [1]) that the definition of physical state is something to be discussed in physics and it is not something which can be settled by a purely mathematical argument. This position is certainly plausible and agreeable. However, we shall here argue that some constraints to the definition of physical state can be in fact put on a mathematical stance (the ones which go back to Einstein-Hilbert about well-posedness of Cauchy problems).A physical state is hence defined as an equivalence class of configurations, for which dynamics is well-posed, i.e. its evolution is deterministically singled out by initial conditions. It also defines what the physical observables are, i.e., by definition, the quantities which depend on the equivalence classes, but not on the specific representative configurations. Equivalently, physical observables are defined as quantities which are invariant with respect to formal transformations.A detailed analysis of these issues shows an unexpected structure of cases which is not clarified in general, yet. What is clear is that assuming, as usually done, that the physical state of a generally covariant theory is to be identified with equivalence classes of configurations modulo spacetime diffeomorphisms is a fair assumption, still a choice which is sometimes forced by mathematics (in particular by determinism in the form of Cauchy theorem on globally hyperbolic spacetimes with a compact space) but sometimes it is one of many possible choices which, in those cases, we agree should be addressed from a physical stance.We shall argue that sometimes one can find subclasses of diffeomorphisms (i.e. the group generated by Cauchy-compatible transformations, below denoted by D →) which play a distinctive role in the discussion and which, to the best of our knowledge, has not properly been taken into account in standard frameworks.Let us start, for the sake of simplicity, by restricting to generally covariant theories. Gauge theories will be briefly discussed in the conclusions since most of what we shall do easily applies to those cases, as well; see [20] for general framework and notation.In a generally covariant theory one has a huge group of symmetries S containing the (lift to the configuration bundle of the) spacetime diffeomorphisms. The group of spacetime diffeomorphisms will be denoted by Diff(M) . In particular, the subgroup of spacetime diffeomorphisms which can be connected by a flow with the identity idM will be denoted by Diffe(M) . Any element Φ ∈Diffe(M) can be obtained by evaluating a 1-parameter subgroup Φs at s = 1, i.e. Φ =Φ1. The 1-parameter subgroup Φs is also called a flow of diffeomorphisms.The standard attitude is to assume that in a generally covariant theory any two configurations of fields differing by any spacetime diffeomorphism represent the same physical state. In other words, if σ is a section of the configuration bundle and Φ∗ σ =σ‧ is its image through a diffeomorphism (in Diffe(M) or in Diff(M) depending on the case) then both σ and σ‧ represent the same physical state of the system.Let us call formal transformations the group G of transformations which fix the physical state, or, equivalently, define the physical states of the orbits of the group G. As a matter of fact defining the group of formal transformations is equivalent to defining the physical state. Either one defines the physical state as the orbits of the action of formal transformations or defines formal transformations as the transformations acting on configurations by mapping one representative of the physical state into another representative of the same physical state, i.e. fixing the physical states.In order for this to make sense one needs a formal transformation Φ to be a symmetry of the system (as it is in generally covariant theories) since if σ is a solution, of course also σ‧ must be a solution as well. In other words any formal transformation (acting on configurations but leaving the physical state unchanged) must be a symmetry and the symmetry group is an upper bound to the group of formal transformations, i.e. one must have G ⊂ S.We shall show that there is a lower bound (which will be denoted by D → and which is generated by Cauchy transformations) for the group G of formal transformations as well, i.e. one must have D → ⊂ G ⊂ S.We shall argue that when D → ⊊ S =Diffe(M) one has a certain freedom in setting G between its lower and upper bounds. In these cases one has different options to set the group D → ⊂ G ⊂ S and each different assumption about what G is, in fact defines a different theory with the same dynamics but different interpretation of what is the physical state and what can be in principle observed; see [21]. We shall also discuss topological conditions on M for which this freedom is nullified and one is forced to set G =Diffe(M) as usually done in the literature. On the other hand, we can discuss the motion of particles in spacetime on a physical stance and show that it is reasonable to assume that the physical state is described by worldline trajectories and parameterisations are irrelevant. The two viewpoints come (quite independently) to the same conclusion, which is a good thing. We shall also show a counter example, showing a globally hyperbolic spacetime M = R × R with a non-compact space Σ ≡ R in which the situation is different from the compact space case. As a consequence, the usual assumption of identifying configurations which differ by a diffeomorphism is a legitimate though in general unmotivated choice. When describing a system one should be aware of which assumptions come from mathematical constraints and which assumptions are done on a physical stance.When setting up a general covariant theory one should first study whether the group D → is a strict subgroup of Diffe(M) . If it is, one should characterise possible subgroups D → ⊂ G ⊂ S. Then one should declare which one of such groups G is elected as the group of formal transformations. Different choices lead to different theories with an equivalent dynamics but different observables.
NASA Astrophysics Data System (ADS)
Mokhov, O. I.; Nutku, Y.
1994-10-01
By casting the Born-Infeld equation and the real hyperbolic Monge-Ampère equation into the form of equations of hydrodynamic type, we find that there exists an explicit transformation between them. This is Bianchi transformation.
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; D'Costa, Joseph F.
1991-01-01
This paper describes the evaluation of mixed implicit-explicit finite element formulations for hyperbolic heat conduction problems involving non-Fourier effects. In particular, mixed implicit-explicit formulations employing the alpha method proposed by Hughes et al. (1987, 1990) are described for the numerical simulation of hyperbolic heat conduction models, which involves time-dependent relaxation effects. Existing analytical approaches for modeling/analysis of such models involve complex mathematical formulations for obtaining closed-form solutions, while in certain numerical formulations the difficulties include severe oscillatory solution behavior (which often disguises the true response) in the vicinity of the thermal disturbances, which propagate with finite velocities. In view of these factors, the alpha method is evaluated to assess the control of the amount of numerical dissipation for predicting the transient propagating thermal disturbances. Numerical test models are presented, and pertinent conclusions are drawn for the mixed-time integration simulation of hyperbolic heat conduction models involving non-Fourier effects.
Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling
NASA Astrophysics Data System (ADS)
Tielrooij, Klaas-Jan; Hesp, Niels C. H.; Principi, Alessandro; Lundeberg, Mark B.; Pogna, Eva A. A.; Banszerus, Luca; Mics, Zoltán; Massicotte, Mathieu; Schmidt, Peter; Davydovskaya, Diana; Purdie, David G.; Goykhman, Ilya; Soavi, Giancarlo; Lombardo, Antonio; Watanabe, Kenji; Taniguchi, Takashi; Bonn, Mischa; Turchinovich, Dmitry; Stampfer, Christoph; Ferrari, Andrea C.; Cerullo, Giulio; Polini, Marco; Koppens, Frank H. L.
2018-01-01
Van der Waals heterostructures have emerged as promising building blocks that offer access to new physics, novel device functionalities and superior electrical and optoelectronic properties1-7. Applications such as thermal management, photodetection, light emission, data communication, high-speed electronics and light harvesting8-16 require a thorough understanding of (nanoscale) heat flow. Here, using time-resolved photocurrent measurements, we identify an efficient out-of-plane energy transfer channel, where charge carriers in graphene couple to hyperbolic phonon polaritons17-19 in the encapsulating layered material. This hyperbolic cooling is particularly efficient, giving picosecond cooling times for hexagonal BN, where the high-momentum hyperbolic phonon polaritons enable efficient near-field energy transfer. We study this heat transfer mechanism using distinct control knobs to vary carrier density and lattice temperature, and find excellent agreement with theory without any adjustable parameters. These insights may lead to the ability to control heat flow in van der Waals heterostructures.
Terahertz radiation in graphene hyperbolic medium excited by an electric dipole.
Feng, Xiaodong; Gong, Sen; Zhong, Renbin; Zhao, Tao; Hu, Min; Zhang, Chao; Liu, Shenggang
2018-03-01
In this Letter, the enhanced and directional radiation in a wide terahertz (THz) frequency range in a graphene hyperbolic medium excited by an electric dipole is presented. The numerical simulations and theoretical analyses indicate that the enhanced radiation comes from the strong surface plasmon couplings in the graphene hyperbolic medium, consisting of alternative graphene and dielectric substrate layers. The simulation results also show that the peak power flow of the enhanced THz radiation in the graphene hyperbolic medium is dramatically enhanced by more than 1 order of magnitude over that in a general medium within a certain distance from the dipole, and the electromagnetic fields are strongly concentrated in a narrow angle. Also, the radiation fields can be manipulated, and the fields' angular distributions can be tuned by adjusting the dielectric permittivity and thickness of the substrates, and the chemical potential of graphene. Accordingly, it provides a good opportunity for developing miniature, integratable, high-power-density, and tunable radiation sources in the THz band at room temperature.
NASA Astrophysics Data System (ADS)
Canadell, Marta; Haro, Àlex
2017-12-01
We present several algorithms for computing normally hyperbolic invariant tori carrying quasi-periodic motion of a fixed frequency in families of dynamical systems. The algorithms are based on a KAM scheme presented in Canadell and Haro (J Nonlinear Sci, 2016. doi: 10.1007/s00332-017-9389-y), to find the parameterization of the torus with prescribed dynamics by detuning parameters of the model. The algorithms use different hyperbolicity and reducibility properties and, in particular, compute also the invariant bundles and Floquet transformations. We implement these methods in several 2-parameter families of dynamical systems, to compute quasi-periodic arcs, that is, the parameters for which 1D normally hyperbolic invariant tori with a given fixed frequency do exist. The implementation lets us to perform the continuations up to the tip of the quasi-periodic arcs, for which the invariant curves break down. Three different mechanisms of breakdown are analyzed, using several observables, leading to several conjectures.
Infrared metamaterial by RF magnetron sputtered ZnO/Al:ZnO multilayers
NASA Astrophysics Data System (ADS)
Santiago, Kevin C.; Mundle, Rajeh; White, Curtis; Bahoura, Messaoud; Pradhan, Aswini K.
2018-03-01
Hyperbolic metamaterials create artificial anisotropy using metallic wires suspended in dielectric media or alternating layers of a metal and dielectric (Type I or Type II). In this study we fabricated ZnO/Al:ZnO (AZO) multilayers by the RF magnetron sputtering deposition technique. Our fabricated multilayers satisfy the requirements for a type II hyperbolic metamaterial. The optical response of individual AZO and ZnO films, as well as the multilayered film were investigated via UV-vis-IR transmittance and spectroscopic ellipsometry. The optical response of the multilayered system is calculated using the nonlocal-corrected Effective Medium Approximation (EMA). The spectroscopic ellipsometry data of the multilayered system was modeled using a uniaxial material model and EMA model. Both theoretical and experimental studies validate the fabricated multilayers undergo a hyperbolic transition at a wavelength of 2.2 μm. To our knowledge this is the first AZO/ZnO type II hyperbolic metamaterial system fabricated by magnetron sputtering deposition method.
Evaluating the methodology and performance of jetting and flooding of granular backfill materials.
DOT National Transportation Integrated Search
2014-11-01
Compaction of backfill in confined spaces on highway projects is often performed with small vibratory plates, based : solely on the experience of the contractor, leading to inadequate compaction. As a result, the backfill is prone to : erosion and of...
Design and progress report for compact cryocooled sapphire oscillator 'VCSO'
NASA Technical Reports Server (NTRS)
Dick, G. John; Wang, Rabi T.; Tjoelker, Robert L.
2005-01-01
We report on the development of a compact cryocooled sapphiere oscillator 'VCSO', designed as a higher-performance replacement for ultra-stable quartz oscillators in local oscillator, cleanup, and flywheel applications in the frequency generation and distribution subsystems of NASA's Deep Space Network (DSN).
Compact time- and space-integrating SAR processor: performance analysis
NASA Astrophysics Data System (ADS)
Haney, Michael W.; Levy, James J.; Michael, Robert R., Jr.; Christensen, Marc P.
1995-06-01
Progress made during the previous 12 months toward the fabrication and test of a flight demonstration prototype of the acousto-optic time- and space-integrating real-time SAR image formation processor is reported. Compact, rugged, and low-power analog optical signal processing techniques are used for the most computationally taxing portions of the SAR imaging problem to overcome the size and power consumption limitations of electronic approaches. Flexibility and performance are maintained by the use of digital electronics for the critical low-complexity filter generation and output image processing functions. The results reported for this year include tests of a laboratory version of the RAPID SAR concept on phase history data generated from real SAR high-resolution imagery; a description of the new compact 2D acousto-optic scanner that has a 2D space bandwidth product approaching 106 sports, specified and procured for NEOS Technologies during the last year; and a design and layout of the optical module portion of the flight-worthy prototype.
NASA Astrophysics Data System (ADS)
Konks, V. Ia.
1981-05-01
Barrar's (1961) method for the analysis of the motion of a satellite of an oblate planet is extended to the case of hyperbolic motion. An analysis is presented of the motion of a material point in the gravitational field of a fixed center, combined with a gravitational dipole located at the point of inertia of a dynamically symmetric planet. Formulas are obtained for the hyperbolic motion of a spacecraft in the gravitational field of a spheroidal planet with an accuracy up to the second zonal harmonic of the expansion of its potential into a Legendre polynomial series in spherical coordinates.
Onto the stability analysis of hyperbolic secant-shaped Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Sabari, S.; Murali, R.
2018-05-01
We analyze the stability of the hyperbolic secant-shaped attractive Bose-Einstein condensate in the absence of external trapping potential. The appropriate theoretical model for the system is described by the nonlinear mean-field Gross-Pitaevskii equation with time varying two-body interaction effects. Using the variational method, the stability of the system is analyzed under the influence of time varying two-body interactions. Further we confirm that the stability of the attractive condensate increases by considering the hyperbolic secant-shape profile instead of Gaussian shape. The analytical results are compared with the numerical simulation by employing the split-step Crank-Nicholson method.
On the hyperbolicity of a two-fluid model for debris flows
NASA Astrophysics Data System (ADS)
Mineo, C.; Torrisi, M.
2010-05-01
We consider the system of partial differential equations associated with the mathematical model for debris flows proposed by E.B. Pitman and L. Le (Phil. Trans. R. Soc. A, 363, 1573-1601, 2005) and analyze the problem of the hyperbolicity of the model.
Euclidean, Spherical, and Hyperbolic Shadows
ERIC Educational Resources Information Center
Hoban, Ryan
2013-01-01
Many classical problems in elementary calculus use Euclidean geometry. This article takes such a problem and solves it in hyperbolic and in spherical geometry instead. The solution requires only the ability to compute distances and intersections of points in these geometries. The dramatically different results we obtain illustrate the effect…
Audio signal encryption using chaotic Hénon map and lifting wavelet transforms
NASA Astrophysics Data System (ADS)
Roy, Animesh; Misra, A. P.
2017-12-01
We propose an audio signal encryption scheme based on the chaotic Hénon map. The scheme mainly comprises two phases: one is the preprocessing stage where the audio signal is transformed into data by the lifting wavelet scheme and the other in which the transformed data is encrypted by chaotic data set and hyperbolic functions. Furthermore, we use dynamic keys and consider the key space size to be large enough to resist any kind of cryptographic attacks. A statistical investigation is also made to test the security and the efficiency of the proposed scheme.
NASA Technical Reports Server (NTRS)
Gottlieb, D.; Turkel, E.
1985-01-01
After detailing the construction of spectral approximations to time-dependent mixed initial boundary value problems, a study is conducted of differential equations of the form 'partial derivative of u/partial derivative of t = Lu + f', where for each t, u(t) belongs to a Hilbert space such that u satisfies homogeneous boundary conditions. For the sake of simplicity, it is assumed that L is an unbounded, time-independent linear operator. Attention is given to Fourier methods of both Galerkin and pseudospectral method types, the Galerkin method, the pseudospectral Chebyshev and Legendre methods, the error equation, hyperbolic partial differentiation equations, and time discretization and iterative methods.
Hyperbolic geometry of Kuramoto oscillator networks
NASA Astrophysics Data System (ADS)
Chen, Bolun; Engelbrecht, Jan R.; Mirollo, Renato
2017-09-01
Kuramoto oscillator networks have the special property that their trajectories are constrained to lie on the (at most) 3D orbits of the Möbius group acting on the state space T N (the N-fold torus). This result has been used to explain the existence of the N-3 constants of motion discovered by Watanabe and Strogatz for Kuramoto oscillator networks. In this work we investigate geometric consequences of this Möbius group action. The dynamics of Kuramoto phase models can be further reduced to 2D reduced group orbits, which have a natural geometry equivalent to the unit disk \
Stability and error estimation for Component Adaptive Grid methods
NASA Technical Reports Server (NTRS)
Oliger, Joseph; Zhu, Xiaolei
1994-01-01
Component adaptive grid (CAG) methods for solving hyperbolic partial differential equations (PDE's) are discussed in this paper. Applying recent stability results for a class of numerical methods on uniform grids. The convergence of these methods for linear problems on component adaptive grids is established here. Furthermore, the computational error can be estimated on CAG's using the stability results. Using these estimates, the error can be controlled on CAG's. Thus, the solution can be computed efficiently on CAG's within a given error tolerance. Computational results for time dependent linear problems in one and two space dimensions are presented.
Some Exact Solutions of a Nonintegrable Toda-type Equation
NASA Astrophysics Data System (ADS)
Kim, Chanju
2018-05-01
We study a Toda-type equation with two scalar fields which is not integrable and construct two families of exact solutions which are expressed in terms of rational functions. The equation appears in U(1) Chern-Simons theories coupled to two nonrelativistic matter fields with opposite charges. One family of solutions is a trivial embedding of Liouville-type solutions. The other family is obtained by transforming the equation into the Taubes vortex equation on the hyperbolic space. Though the Taubes equation is not integrable, a trivial vacuum solution provides nontrivial solutions to the original Toda-type equation.
NASA Astrophysics Data System (ADS)
Lee, Euntaek; Ahn, Hyung Taek; Luo, Hong
2018-02-01
We apply a hyperbolic cell-centered finite volume method to solve a steady diffusion equation on unstructured meshes. This method, originally proposed by Nishikawa using a node-centered finite volume method, reformulates the elliptic nature of viscous fluxes into a set of augmented equations that makes the entire system hyperbolic. We introduce an efficient and accurate solution strategy for the cell-centered finite volume method. To obtain high-order accuracy for both solution and gradient variables, we use a successive order solution reconstruction: constant, linear, and quadratic (k-exact) reconstruction with an efficient reconstruction stencil, a so-called wrapping stencil. By the virtue of the cell-centered scheme, the source term evaluation was greatly simplified regardless of the solution order. For uniform schemes, we obtain the same order of accuracy, i.e., first, second, and third orders, for both the solution and its gradient variables. For hybrid schemes, recycling the gradient variable information for solution variable reconstruction makes one order of additional accuracy, i.e., second, third, and fourth orders, possible for the solution variable with less computational work than needed for uniform schemes. In general, the hyperbolic method can be an effective solution technique for diffusion problems, but instability is also observed for the discontinuous diffusion coefficient cases, which brings necessity for further investigation about the monotonicity preserving hyperbolic diffusion method.
NASA Technical Reports Server (NTRS)
Gershman, D.J.; Block, B.P.; Rubin, M.; Benna, M.; Mahaffy, P. R.; Zurbuchen, T. H.
2012-01-01
This work applies higher order auxiliary excitation techniques to two types of quadrupole mass spectrometers (QMSs): commercial systems and spaceborne instruments. The operational settings of a circular rod geometry commercial system and an engineering test-bed for a hyperbolic rod geometry spaceborne instrument were matched, with the relative performance of each sensor characterized with and without applied excitation using isotopic measurements of Kr+. Each instrument was operated at the limit of the test electronics to determine the effect of auxiliary excitation on extending instrument capabilities. For the circular rod sensor, with applied excitation, a doubling of the mass resolution at 1% of peak transmission resulted from the elimination of the low-mass side peak tail typical of such rod geometries. The mass peak stability and ion rejection efficiency were also increased by factors of 2 and 10, respectively, with voltage scan lines passing through the center of stability islands formed from auxiliary excitation. Auxiliary excitation also resulted in factors of 6 and 2 in peak stability and ion rejection efficiency, respectively, for the hyperbolic rod sensor. These results not only have significant implications for the use of circular rod quadrupoles with applied excitation as a suitable replacement for traditional hyperbolic rod sensors, but also for extending the capabilities of existing hyperbolic rod QMSs for the next generation of spaceborne instruments and low-mass commercial systems.
NASA Astrophysics Data System (ADS)
Luo, Tong; Xu, Ming; Colombo, Camilla
2018-04-01
This paper studies the dynamics and control of a spacecraft, whose area-to-mass ratio is increased by deploying a reflective orientable surface such as a solar sail or a solar panel. The dynamical system describing the motion of a non-zero attitude angle high area-to-mass ratio spacecraft under the effects of the Earth's oblateness and solar radiation pressure admits the existence of equilibrium points, whose number and the eccentricity values depend on the semi-major axis, the area-to-mass ratio and the attitude angle of the spacecraft together. When two out of three parameters are fixed, five different dynamical topologies successively occur through varying the third parameter. Two of these five topologies are critical cases characterized by the appearance of the bifurcation phenomena. A conventional Hamiltonian structure-preserving (HSP) controller and an improved HSP controller are both constructed to stabilize the hyperbolic equilibrium point. Through the use of a conventional HSP controller, a bounded trajectory around the hyperbolic equilibrium point is obtained, while an improved HSP controller allows the spacecraft to easily transfer to the hyperbolic equilibrium point and to follow varying equilibrium points. A bifurcation control using topologies and changes of behavior areas can also stabilize a spacecraft near a hyperbolic equilibrium point. Natural trajectories around stable equilibrium point and these stabilized trajectories around hyperbolic equilibrium point can all be applied to geomagnetic exploration.
Black branes and black strings in the astrophysical and cosmological context
NASA Astrophysics Data System (ADS)
Akarsu, Özgür; Chopovsky, Alexey; Zhuk, Alexander
2018-03-01
We consider Kaluza-Klein models where internal spaces are compact flat or curved Einstein spaces. This background is perturbed by a compact gravitating body with the dust-like equation of state (EoS) in the external/our space and an arbitrary EoS parameter Ω in the internal space. Without imposing any restrictions on the form of the perturbed metric and the distribution of the perturbed energy densities, we perform the general analysis of the Einstein and conservation equations in the weak-field limit. All conclusions follow from this analysis. For example, we demonstrate that the perturbed model is static and perturbed metric preserves the block-diagonal form. In a particular case Ω = - 1 / 2, the found solution corresponds to the weak-field limit of the black strings/branes. The black strings/branes are compact gravitating objects which have the topology (four-dimensional Schwarzschild spacetime) × (d-dimensional internal space) with d ≥ 1. We present the arguments in favour of these objects. First, they satisfy the gravitational tests for the parameterized post-Newtonian parameter γ at the same level of accuracy as General Relativity. Second, they are preferable from the thermodynamical point of view. Third, averaging over the Universe, they do not destroy the stabilization of the internal space. These are the astrophysical and cosmological aspects of the black strings/branes.
Orbital stability of compact three-planets systems.
NASA Astrophysics Data System (ADS)
Gavino, Sacha; Lissauer, Jack
2018-04-01
Recent discoveries unveiled a significant number of compact multi-planetary systems, where the adjacent planets orbits are much closer to those found in the Solar System. Studying the orbital stability of such compact systems provides information on how they form and how long they survive. We performed a general study of three Earth-like planets orbiting a Sun-mass star in circular and coplanar prograde orbits. The simulations were performed over a wide range of mutual Hill radii and were conducted for virtual times reaching at most 10 billion years. Both equally-spaced and unequally spaced planet systems are investigated. We recover the results of previous studies done for systems of planets spaced uniformly in mutual Hill radius and we investigate mean motion resonances and test chaos. We also study systems with different initial spacing between the adjacent inner pair of planets and the outer pair of planets and we displayed their lifetime on a grid at different resolution. Over 45000 simulations have been done. We then characterize isochrones for lifetime of systems of equivalent spacing. We find that the stability time increases significantly for values of mutual Hill radii beyond 8. We also study the affects of mean motion resonances, the degree of symmetry in the grid and test chaos.
Low energy CMOS for space applications
NASA Technical Reports Server (NTRS)
Panwar, Ramesh; Alkalaj, Leon
1992-01-01
The current focus of NASA's space flight programs reflects a new thrust towards smaller, less costly, and more frequent space missions, when compared to missions such as Galileo, Magellan, or Cassini. Recently, the concept of a microspacecraft was proposed. In this concept, a small, compact spacecraft that weighs tens of kilograms performs focused scientific objectives such as imaging. Similarly, a Mars Lander micro-rover project is under study that will allow miniature robots weighing less than seven kilograms to explore the Martian surface. To bring the microspacecraft and microrover ideas to fruition, one will have to leverage compact 3D multi-chip module-based multiprocessors (MCM) technologies. Low energy CMOS will become increasingly important because of the thermodynamic considerations in cooling compact 3D MCM implementations and also from considerations of the power budget for space applications. In this paper, we show how the operating voltage is related to the threshold voltage of the CMOS transistors for accomplishing a task in VLSI with minimal energy. We also derive expressions for the noise margins at the optimal operating point. We then look at a low voltage CMOS (LVCMOS) technology developed at Stanford University which improves the power consumption over conventional CMOS by a couple of orders of magnitude and consider the suitability of the technology for space applications by characterizing its SEU immunity.
On τ-Compactness of Products of τ-Measurable Operators
NASA Astrophysics Data System (ADS)
Bikchentaev, Airat M.
2017-12-01
Let M be a von Neumann algebra of operators on a Hilbert space H, τ be a faithful normal semifinite trace on M. We obtain some new inequalities for rearrangements of τ-measurable operators products. We also establish some sufficient τ-compactness conditions for products of selfadjoint τ-measurable operators. Next we obtain a τ-compactness criterion for product of a nonnegative τ-measurable operator with an arbitrary τ-measurable operator. We construct an example that shows importance of nonnegativity for one of the factors. The similar results are obtained also for elementary operators from M. We apply our results to symmetric spaces on (M, τ ). The results are new even for the *-algebra B(H) of all linear bounded operators on H endowed with the canonical trace τ = tr.
Bandyopadhyay, Rebanta; Selbo, Jon; Amidon, Gregory E; Hawley, Michael
2005-11-01
This study investigates the effects of crystal lattice deformation on the powder X-ray diffraction (PXRD) patterns of compressed polycrystalline specimen (compacts/tablets) made from molecular, crystalline powders. The displacement of molecules and the corresponding adjustment of interplanar distances (d-spacings) between diffracting planes of PNU-288034 and PNU-177553, which have crystal habits with a high aspect ratio favoring preferred orientation during tableting, are demonstrated by shifts in the diffracted peak positions. The direction of shift in diffracted peak positions suggests a reduction of interplanar d-spacing in the crystals of PNU-288034 and PNU-177553 following compaction. There is also a general reduction of peak intensities following compression at the different compressive loads. The lattice strain representing the reduction in d-spacing is proportional to the original d-spacing of the uncompressed sample suggesting that, as with systems that obey a simple Hooke's law relationship, the further apart the planes of atoms/molecules within the lattice are, the easier it is for them to approach each other under compressive stresses. For a third model compound comprising more equant-shaped crystals of PNU-141659, the shift in diffracted peak positions are consistent with an expansion of lattice spacing after compression. This apparent anomaly is supported by the PXRD studies of the bulk powder consisting of fractured crystals where also, the shift in peak position suggests expansion of the lattice planes. Thus the crystals of PNU-141659 may be fracturing under the compressive loads used to produce the compacts. Additional studies are underway to relate the PXRD observations with the bulk tableting properties of these model compounds.
NASA Astrophysics Data System (ADS)
Díaz-Michelena, M.; de Frutos, J.; Ordóñez, A. A.; Rivero, M. A.; Mesa, J. L.; González, L.; Lavín, C.; Aroca, C.; Sanz, M.; Maicas, M.; Prieto, J. L.; Cobos, P.; Pérez, M.; Kilian, R.; Baeza, O.; Langlais, B.; Thébault, E.; Grösser, J.; Pappusch, M.
2017-09-01
In space instrumentation, there is currently no instrument dedicated to susceptibly or complete magnetization measurements of rocks. Magnetic field instrument suites are generally vector (or scalar) magnetometers, which locally measure the magnetic field. When mounted on board rovers, the electromagnetic perturbations associated with motors and other elements make it difficult to reap the benefits from the inclusion of such instruments. However, magnetic characterization is essential to understand key aspects of the present and past history of planetary objects. The work presented here overcomes the limitations currently existing in space instrumentation by developing a new portable and compact multi-sensor instrument for ground breaking high-resolution magnetic characterization of planetary surfaces and sub-surfaces. This new technology introduces for the first time magnetic susceptometry (real and imaginary parts) as a complement to existing compact vector magnetometers for planetary exploration. This work aims to solve the limitations currently existing in space instrumentation by means of providing a new portable and compact multi-sensor instrument for use in space, science and planetary exploration to solve some of the open questions on the crustal and more generally planetary evolution within the Solar System.
NASA Technical Reports Server (NTRS)
Hahs, C. A.
1990-01-01
The potential use of a compact, battery-operated rf levitator and heating system to purify high-temperature melting materials in space is described. The wake shield now being fabricated for the Space Vacuum Epitaxy Center will provide an Ultra-high vacuum (10(exp -14) Torr hydrogen, 10(exp -14) Torr helium, 10(exp -30) Torr oxygen). The use of the wake shield to purify Nb, Ti, W, Ir, and other metals to a purity level not achievable on earth is described.
Campione, Salvatore; Marquier, Francois; Hugonin, Jean -Paul; ...
2016-10-05
The development of novel thermal sources that control the emission spectrum and the angular emission pattern is of fundamental importance. In this paper, we investigate the thermal emission properties of semiconductor hyperbolic metamaterials (SHMs). Our structure does not require the use of any periodic corrugation to provide monochromatic and directional emission properties. We show that these properties arise because of epsilon-near-zero conditions in SHMs. The thermal emission is dominated by the epsilon-near-zero effect in the doped quantum wells composing the SHM. In conclusion, different properties are observed for s and p polarizations, following the characteristics of the strong anisotropy ofmore » hyperbolic metamaterials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campione, Salvatore; Marquier, Francois; Hugonin, Jean -Paul
The development of novel thermal sources that control the emission spectrum and the angular emission pattern is of fundamental importance. In this paper, we investigate the thermal emission properties of semiconductor hyperbolic metamaterials (SHMs). Our structure does not require the use of any periodic corrugation to provide monochromatic and directional emission properties. We show that these properties arise because of epsilon-near-zero conditions in SHMs. The thermal emission is dominated by the epsilon-near-zero effect in the doped quantum wells composing the SHM. In conclusion, different properties are observed for s and p polarizations, following the characteristics of the strong anisotropy ofmore » hyperbolic metamaterials.« less
NASA Astrophysics Data System (ADS)
Yu, Jie; Liu, Yikan; Yamamoto, Masahiro
2018-04-01
In this article, we investigate the determination of the spatial component in the time-dependent second order coefficient of a hyperbolic equation from both theoretical and numerical aspects. By the Carleman estimates for general hyperbolic operators and an auxiliary Carleman estimate, we establish local Hölder stability with either partial boundary or interior measurements under certain geometrical conditions. For numerical reconstruction, we minimize a Tikhonov functional which penalizes the gradient of the unknown function. Based on the resulting variational equation, we design an iteration method which is updated by solving a Poisson equation at each step. One-dimensional prototype examples illustrate the numerical performance of the proposed iteration.
Single qubit operations using microwave hyperbolic secant pulses
NASA Astrophysics Data System (ADS)
Ku, H. S.; Long, J. L.; Wu, X.; Bal, M.; Lake, R. E.; Barnes, Edwin; Economou, Sophia E.; Pappas, D. P.
2017-10-01
It has been known since the early days of quantum mechanics that hyperbolic secant pulses possess the unique property that they can perform full-cycle Rabi oscillations on two-level quantum systems independently of the pulse detuning. More recently, it was realized that they induce detuning-controlled phases without changing state populations. Here, we experimentally demonstrate the properties of hyperbolic secant pulses on superconducting transmon qubits and contrast them with the more commonly used Gaussian and square waves. We further show that these properties can be exploited to implement phase gates, nominally without exiting the computational subspace. This enables us to demonstrate a microwave-driven Z rotation with a single control parameter, the detuning.
Near-field radiative heat transfer between graphene-covered hyperbolic metamaterials
NASA Astrophysics Data System (ADS)
Hong, Xiao-Juan; Li, Jian-Wen; Wang, Tong-Biao; Zhang, De-Jian; Liu, Wen-Xing; Liao, Qing-Hua; Yu, Tian-Bao; Liu, Nian-Hua
2018-04-01
We propose the use of graphene-covered silicon carbide (SiC) nanowire arrays (NWAs) for theoretical studies of near-field radiative heat transfer. The SiC NWAs exhibit a hyperbolic characteristic at an appropriately selected filling-volume fraction. The surface plasmon supported by graphene and the hyperbolic modes supported by SiC NWAs significantly affect radiative heat transfer. The heat-transfer coefficient (HTC) between the proposed structures is larger than that between SiC NWAs. We also find that the chemical potential of graphene plays an important role in modulating the HTC. The tunability of chemical potential through gate voltage enables flexible control of heat transfer using the graphene-covered SiC NWAs.
Automatic Control via Thermostats of a Hyperbolic Stefan Problem with Memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colli, P.; Grasselli, M.; Sprekels, J.
1999-03-15
A hyperbolic Stefan problem based on the linearized Gurtin-Pipkin heat conduction law is considered. The temperature and free boundary are controlled by a thermostat acting on the boundary. This feedback control is based on temperature measurements performed by real thermal sensors located within the domain containing the two-phase system and/or at its boundary. Three different types of thermostats are analyzed: simple switch, relay switch, and a Preisach hysteresis operator. The resulting models lead to integrodifferential hyperbolic Stefan problems with nonlinear and nonlocal boundary conditions. Existence results are proved in all the cases. Uniqueness is also shown, except in the situationmore » corresponding to the ideal switch.« less
NASA Astrophysics Data System (ADS)
Dönmez, Orhan
2004-09-01
In this paper, the general procedure to solve the general relativistic hydrodynamical (GRH) equations with adaptive-mesh refinement (AMR) is presented. In order to achieve, the GRH equations are written in the conservation form to exploit their hyperbolic character. The numerical solutions of GRH equations are obtained by high resolution shock Capturing schemes (HRSC), specifically designed to solve nonlinear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. The Marquina fluxes with MUSCL left and right states are used to solve GRH equations. First, different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations are carried out to verify the second-order convergence of the code in one, two and three dimensions. Results from uniform and AMR grid are compared. It is found that adaptive grid does a better job when the number of resolution is increased. Second, the GRH equations are tested using two different test problems which are Geodesic flow and Circular motion of particle In order to do this, the flux part of GRH equations is coupled with source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time.
Autonomous vision-based navigation for proximity operations around binary asteroids
NASA Astrophysics Data System (ADS)
Gil-Fernandez, Jesus; Ortega-Hernando, Guillermo
2018-02-01
Future missions to small bodies demand higher level of autonomy in the Guidance, Navigation and Control system for higher scientific return and lower operational costs. Different navigation strategies have been assessed for ESA's asteroid impact mission (AIM). The main objective of AIM is the detailed characterization of binary asteroid Didymos. The trajectories for the proximity operations shall be intrinsically safe, i.e., no collision in presence of failures (e.g., spacecraft entering safe mode), perturbations (e.g., non-spherical gravity field), and errors (e.g., maneuver execution error). Hyperbolic arcs with sufficient hyperbolic excess velocity are designed to fulfil the safety, scientific, and operational requirements. The trajectory relative to the asteroid is determined using visual camera images. The ground-based trajectory prediction error at some points is comparable to the camera Field Of View (FOV). Therefore, some images do not contain the entire asteroid. Autonomous navigation can update the state of the spacecraft relative to the asteroid at higher frequency. The objective of the autonomous navigation is to improve the on-board knowledge compared to the ground prediction. The algorithms shall fit in off-the-shelf, space-qualified avionics. This note presents suitable image processing and relative-state filter algorithms for autonomous navigation in proximity operations around binary asteroids.
Self-stimulation in the rat: quantitative characteristics of the reward pathway.
Gallistel, C R
1978-12-01
Quantitative characteristics of the neural pathway that carries the reinforcing signal in electrical self-stimulation of the brain were established by finding which combinations of stimulation parameters give the same performance in a runway. The reward for each run was a train of evenly spaced monophasic cathodal pulses from a monopolar electrode. With train duration and pulse frequency held constant, the required current was a hyperbolic function of pulse duration, with chronaxie c approximately 1.5 msec. With pulse duration held constant, the required strength of the train (the charge delivered per second) was a hyperbolic function of train duration, with chronaxie C approximately 500 msec. To a first approximation, the values of c and C were independent of the choice either of train duration and pulse frequency or of pulse duration, respectively. Hence, the current intensity required by any choice of train duration, pulse frequency, and pulse duration dependent on only two basic parameters, c and C, and one quantity, Qi, the required impulse charge. These may reflect, respectively, current integration by directly excited neurons; temporal integration of neural activity by synaptic processes in a neural network; and the peak of the impulse response of the network, assuming that the network has linear dynamics and that the reward depends on the peak of the output of the network.
Autonomous vision-based navigation for proximity operations around binary asteroids
NASA Astrophysics Data System (ADS)
Gil-Fernandez, Jesus; Ortega-Hernando, Guillermo
2018-06-01
Future missions to small bodies demand higher level of autonomy in the Guidance, Navigation and Control system for higher scientific return and lower operational costs. Different navigation strategies have been assessed for ESA's asteroid impact mission (AIM). The main objective of AIM is the detailed characterization of binary asteroid Didymos. The trajectories for the proximity operations shall be intrinsically safe, i.e., no collision in presence of failures (e.g., spacecraft entering safe mode), perturbations (e.g., non-spherical gravity field), and errors (e.g., maneuver execution error). Hyperbolic arcs with sufficient hyperbolic excess velocity are designed to fulfil the safety, scientific, and operational requirements. The trajectory relative to the asteroid is determined using visual camera images. The ground-based trajectory prediction error at some points is comparable to the camera Field Of View (FOV). Therefore, some images do not contain the entire asteroid. Autonomous navigation can update the state of the spacecraft relative to the asteroid at higher frequency. The objective of the autonomous navigation is to improve the on-board knowledge compared to the ground prediction. The algorithms shall fit in off-the-shelf, space-qualified avionics. This note presents suitable image processing and relative-state filter algorithms for autonomous navigation in proximity operations around binary asteroids.
NASA Astrophysics Data System (ADS)
Adib, Arash; Poorveis, Davood; Mehraban, Farid
2018-03-01
In this research, two equations are considered as examples of hyperbolic and elliptic equations. In addition, two finite element methods are applied for solving of these equations. The purpose of this research is the selection of suitable method for solving each of two equations. Burgers' equation is a hyperbolic equation. This equation is a pure advection (without diffusion) equation. This equation is one-dimensional and unsteady. A sudden shock wave is introduced to the model. This wave moves without deformation. In addition, Laplace's equation is an elliptical equation. This equation is steady and two-dimensional. The solution of Laplace's equation in an earth dam is considered. By solution of Laplace's equation, head pressure and the value of seepage in the directions X and Y are calculated in different points of earth dam. At the end, water table is shown in the earth dam. For Burgers' equation, least-square method can show movement of wave with oscillation but Galerkin method can not show it correctly (the best method for solving of the Burgers' equation is discrete space by least-square finite element method and discrete time by forward difference.). For Laplace's equation, Galerkin and least square methods can show water table correctly in earth dam.
NASA Technical Reports Server (NTRS)
Veitch, J.; Raymond, V.; Farr, B.; Farr, W.; Graff, P.; Vitale, S.; Aylott, B.; Blackburn, K.; Christensen, N.; Coughlin, M.
2015-01-01
The Advanced LIGO and Advanced Virgo gravitational wave (GW) detectors will begin operation in the coming years, with compact binary coalescence events a likely source for the first detections. The gravitational waveforms emitted directly encode information about the sources, including the masses and spins of the compact objects. Recovering the physical parameters of the sources from the GW observations is a key analysis task. This work describes the LALInference software library for Bayesian parameter estimation of compact binary signals, which builds on several previous methods to provide a well-tested toolkit which has already been used for several studies. We show that our implementation is able to correctly recover the parameters of compact binary signals from simulated data from the advanced GW detectors. We demonstrate this with a detailed comparison on three compact binary systems: a binary neutron star (BNS), a neutron star - black hole binary (NSBH) and a binary black hole (BBH), where we show a cross-comparison of results obtained using three independent sampling algorithms. These systems were analysed with non-spinning, aligned spin and generic spin configurations respectively, showing that consistent results can be obtained even with the full 15-dimensional parameter space of the generic spin configurations. We also demonstrate statistically that the Bayesian credible intervals we recover correspond to frequentist confidence intervals under correct prior assumptions by analysing a set of 100 signals drawn from the prior. We discuss the computational cost of these algorithms, and describe the general and problem-specific sampling techniques we have used to improve the efficiency of sampling the compact binary coalescence (CBC) parameter space.
A three-point backward finite-difference method has been derived for a system of mixed hyperbolic¯¯parabolic (convection¯¯diffusion) partial differential equations (mixed PDEs). The method resorts to the three-point backward differenci...
LLOFX earth orbit to lunar orbit delta V estimation program user and technical documentation
NASA Technical Reports Server (NTRS)
1988-01-01
The LLOFX computer program calculates in-plane trajectories from an Earth-orbiting space station to Lunar orbit in such a way that the journey requires only two delta V burns (one to leave Earth circular orbit and one to circularize into Lunar orbit). The program requires the user to supply the Space Station altitude and Lunar orbit altitude (in km above the surface), and the desired time of flight for the transfer (in hours). It then determines and displays the trans-Lunar injection (TLI) delta V required to achieve the transfer, the Lunar orbit insertion (LOI) delta V required to circularize the orbit around the Moon, the actual time of flight, and whether the transfer orbit is elliptical or hyperbolic. Return information is also displayed. Finally, a plot of the transfer orbit is displayed.
Infrared Sensor System for Mobile-Robot Positioning in Intelligent Spaces
Gorostiza, Ernesto Martín; Galilea, José Luis Lázaro; Meca, Franciso Javier Meca; Monzú, David Salido; Zapata, Felipe Espinosa; Puerto, Luis Pallarés
2011-01-01
The aim of this work was to position a Mobile Robot in an Intelligent Space, and this paper presents a sensorial system for measuring differential phase-shifts in a sinusoidally modulated infrared signal transmitted from the robot. Differential distances were obtained from these phase-shifts, and the position of the robot was estimated by hyperbolic trilateration. Due to the extremely severe trade-off between SNR, angle (coverage) and real-time response, a very accurate design and device selection was required to achieve good precision with wide coverage and acceptable robot speed. An I/Q demodulator was used to measure phases with one-stage synchronous demodulation to DC. A complete set of results from real measurements, both for distance and position estimations, is provided to demonstrate the validity of the system proposed, comparing it with other similar indoor positioning systems. PMID:22163907
On hyperbolicity and Gevrey well-posedness. Part two: Scalar or degenerate transitions
NASA Astrophysics Data System (ADS)
Morisse, Baptiste
2018-04-01
For first-order quasi-linear systems of partial differential equations, we formulate an assumption of a transition from initial hyperbolicity to ellipticity. This assumption bears on the principal symbol of the first-order operator. Under such an assumption, we prove a strong Hadamard instability for the associated Cauchy problem, namely an instantaneous defect of Hölder continuity of the flow from Gσ to L2, with 0 < σ <σ0, the limiting Gevrey index σ0 depending on the nature of the transition. We restrict here to scalar transitions, and non-scalar transitions in which the boundary of the hyperbolic zone satisfies a flatness condition. As in our previous work for initially elliptic Cauchy problems [B. Morisse, On hyperbolicity and Gevrey well-posedness. Part one: the elliptic case, arxiv:arXiv:1611.07225], the instability follows from a long-time Cauchy-Kovalevskaya construction for highly oscillating solutions. This extends recent work of N. Lerner, T. Nguyen, and B. Texier [The onset of instability in first-order systems, to appear in J. Eur. Math. Soc.].
NASA Astrophysics Data System (ADS)
Lafitte, Pauline; Melis, Ward; Samaey, Giovanni
2017-07-01
We present a general, high-order, fully explicit relaxation scheme which can be applied to any system of nonlinear hyperbolic conservation laws in multiple dimensions. The scheme consists of two steps. In a first (relaxation) step, the nonlinear hyperbolic conservation law is approximated by a kinetic equation with stiff BGK source term. Then, this kinetic equation is integrated in time using a projective integration method. After taking a few small (inner) steps with a simple, explicit method (such as direct forward Euler) to damp out the stiff components of the solution, the time derivative is estimated and used in an (outer) Runge-Kutta method of arbitrary order. We show that, with an appropriate choice of inner step size, the time step restriction on the outer time step is similar to the CFL condition for the hyperbolic conservation law. Moreover, the number of inner time steps is also independent of the stiffness of the BGK source term. We discuss stability and consistency, and illustrate with numerical results (linear advection, Burgers' equation and the shallow water and Euler equations) in one and two spatial dimensions.
Marcus, Leanne; Plumeri, Julia; Baker, Gary M; Miller, Jon S
2013-06-01
A previously published classroom teaching method for helping students visualize and understand Michaelis-Menten kinetics (19) was used as an anticipatory set with high school and middle school science teachers in an Illinois Math and Science Partnership Program. As part of the activity, the teachers were asked to collect data by replicating the method and to analyze and report the data. All concluded that the rate data they had collected were hyperbolic. As part of a guided inquiry plan, teachers were then prompted to reexamine the method and evaluate its efficacy as a teaching strategy for developing specific kinetic concepts. After further data collection and analysis, the teachers discovered that their data trends were not, in fact, hyperbolic, which led to several teacher-developed revisions aimed at obtaining a true hyperbolic outcome. This article outlines the inquiry process that led to these revisions and illustrates their alignment with several key concepts, such as rapid equilibrium kinetics. Instructional decisions were necessary at several key points, and these are discussed.
Compactly supported linearised observables in single-field inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fröob, Markus B.; Higuchi, Atsushi; Hack, Thomas-Paul, E-mail: mbf503@york.ac.uk, E-mail: thomas-paul.hack@itp.uni-leipzig.de, E-mail: atsushi.higuchi@york.ac.uk
We investigate the gauge-invariant observables constructed by smearing the graviton and inflaton fields by compactly supported tensors at linear order in general single-field inflation. These observables correspond to gauge-invariant quantities that can be measured locally. In particular, we show that these observables are equivalent to (smeared) local gauge-invariant observables such as the linearised Weyl tensor, which have better infrared properties than the graviton and inflaton fields. Special cases include the equivalence between the compactly supported gauge-invariant graviton observable and the smeared linearised Weyl tensor in Minkowski and de Sitter spaces. Our results indicate that the infrared divergences in the tensormore » and scalar perturbations in single-field inflation have the same status as in de Sitter space and are both a gauge artefact, in a certain technical sense, at tree level.« less
NASA Technical Reports Server (NTRS)
1997-01-01
Microcosm, Inc. produced the portable Farfield-2 laser for field applications that require high power pulsed illumination. The compact design was conceived through research at Goddard Space Flight Center on laser instruments for space missions to carry out geoscience studies of Earth. An exclusive license to the key NASA patent for the compact laser design was assigned to Microcosm. The FarField-2 is ideal for field applications, has low power consumption, does not need water cooling or gas supplies, and produces nearly ideal beam quality. The properties of the laser also make it effective over long distances, which is one reason why NASA developed the technology for laser altimeters that can be toted aboard spacecraft. Applications for the FarField-2 include medicine, biology, and materials science and processing, as well as diamond marking, semiconductor line-cutting, chromosome surgery, and fluorescence microscopy.
NASA Astrophysics Data System (ADS)
de Goeij, B. T. G.; Otter, G. C. J.; van Wakeren, J. M. O.; Veefkind, J. P.; Vlemmix, T.; Ge, X.; Levelt, P. F.; Dirks, B. P. F.; Toet, P. M.; van der Wal, L. F.; Jansen, R.
2017-09-01
In recent years TNO has investigated and developed different innovative opto-mechanical designs to realize advanced spectrometers for space applications in a more compact and cost-effective manner. This offers multiple advantages: a compact instrument can be flown on a much smaller platform or as add-on on a larger platform; a low-cost instrument opens up the possibility to fly multiple instruments in a satellite constellation, improving both global coverage and temporal sampling (e.g. multiple overpasses per day to study diurnal processes); in this way a constellation of low-cost instruments may provide added value to the larger scientific and operational satellite missions (e.g. the Copernicus Sentinel missions); a small, lightweight spectrometer can easily be mounted on a small aircraft or high-altitude UAV (offering high spatial resolution).
DECOMPOSITION OF THE PARTICLE AND CONNECTION OF PARTICLES IN THE TERMINI OF THE MOMENTUM SPACE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chernikov, N.A.
1958-01-01
>Geometric and algebraic notions and ideas are used to obtain a geometric interpretation of the kinematics of nuclear reactions. Thus, extended analytic calculations combined with the transition from one reference system to another, are replaced by simple formulas of the hyperbolic trigonometry. Let a particle move with the velocity a in a reference system which moves with the velocity o. Then the modulus of the three-dimensional impulse of the particle is p/sub 0a/ = m c sh oa-bar/c, where m is the resting miss, c is the velocity of the light, oa-bar is the distance of the points o andmore » a in the momentum space. The kinetic energy epsilon /sub oa/ of the particle in the system o is epsilon / sub oa/=m c/sup 2/STAoa-bar/c-1!. Then the ratio epsilon /sub oa/m is the area divided by 2 pi of a circle of radius oa in the momentum space. (TCO)« less
Novel Plasmonic Materials and Nanodevices for Integrated Quantum Photonics
NASA Astrophysics Data System (ADS)
Shalaginov, Mikhail Y.
Light-matter interaction is the foundation for numerous important quantum optical phenomena, which may be harnessed to build practical devices with higher efficiency and unprecedented functionality. Nanoscale engineering is seen as a fruitful avenue to significantly strengthen light-matter interaction and also make quantum optical systems ultra-compact, scalable, and energy efficient. This research focuses on color centers in diamond that share quantum properties with single atoms. These systems promise a path for the realization of practical quantum devices such as nanoscale sensors, single-photon sources, and quantum memories. In particular, we explored an intriguing methodology of utilizing nanophotonic structures, such as hyperbolic metamaterials, nanoantennae, and plasmonic waveguides, to improve the color centers performance. We observed enhancement in the color center's spontaneous emission rate, emission directionality, and cooperativity over a broad optical frequency range. Additionally, we studied the effect of plasmonic environments on the spin-readout sensitivity of color centers. The use of CMOS-compatible epitaxially grown plasmonic materials in the design of these nanophotonic structures promises a new level of performance for a variety of integrated room-temperature quantum devices based on diamond color centers.
Xu, Zhiliang; Chen, Xu-Yan; Liu, Yingjie
2014-01-01
We present a new formulation of the Runge-Kutta discontinuous Galerkin (RKDG) method [9, 8, 7, 6] for solving conservation Laws with increased CFL numbers. The new formulation requires the computed RKDG solution in a cell to satisfy additional conservation constraint in adjacent cells and does not increase the complexity or change the compactness of the RKDG method. Numerical computations for solving one-dimensional and two-dimensional scalar and systems of nonlinear hyperbolic conservation laws are performed with approximate solutions represented by piecewise quadratic and cubic polynomials, respectively. The hierarchical reconstruction [17, 33] is applied as a limiter to eliminate spurious oscillations in discontinuous solutions. From both numerical experiments and the analytic estimate of the CFL number of the newly formulated method, we find that: 1) this new formulation improves the CFL number over the original RKDG formulation by at least three times or more and thus reduces the overall computational cost; and 2) the new formulation essentially does not compromise the resolution of the numerical solutions of shock wave problems compared with ones computed by the RKDG method. PMID:25414520
Gapped pulses for frequency-swept MRI
NASA Astrophysics Data System (ADS)
Idiyatullin, Djaudat; Corum, Curt; Moeller, Steen; Garwood, Michael
2008-08-01
A recently introduced method called SWIFT (SWeep Imaging with Fourier Transform) is a fundamentally different approach to MRI which is particularly well suited to imaging objects with extremely fast spin-spin relaxation rates. The method exploits a frequency-swept excitation pulse and virtually simultaneous signal acquisition in a time-shared mode. Correlation of the spin system response with the excitation pulse function is used to extract the signals of interest. With SWIFT, image quality is highly dependent on producing uniform and broadband spin excitation. These requirements are satisfied by using frequency-modulated pulses belonging to the hyperbolic secant family (HS n pulses). This article describes the experimental steps needed to properly implement HS n pulses in SWIFT. In addition, properties of HS n pulses in the rapid passage, linear region are investigated, followed by an analysis of the pulses after inserting the "gaps" needed for time-shared excitation and acquisition. Finally, compact expressions are presented to estimate the amplitude and flip angle of the HS n pulses, as well as the relative energy deposited by the SWIFT sequence.
Method for analyzing soil structure according to the size of structural elements
NASA Astrophysics Data System (ADS)
Wieland, Ralf; Rogasik, Helmut
2015-02-01
The soil structure in situ is the result of cropping history and soil development over time. It can be assessed by the size distribution of soil structural elements such as air-filled macro-pores, aggregates and stones, which are responsible for important water and solute transport processes, gas exchange, and the stability of the soil against compacting and shearing forces exerted by agricultural machinery. A method was developed to detect structural elements of the soil in selected horizontal slices of soil core samples with different soil structures in order for them to be implemented accordingly. In the second step, a fitting tool (Eureqa) based on artificial programming was used to find a general function to describe ordered sets of detected structural elements. It was shown that all the samples obey a hyperbolic function: Y(k) = A /(B + k) , k ∈ { 0 , 1 , 2 , … }. This general behavior can be used to develop a classification method based on parameters {A and B}. An open source software program in Python was developed, which can be downloaded together with a selection of soil samples.
Chen, Juan; Cui, Baotong; Chen, YangQuan
2018-06-11
This paper presents a boundary feedback control design for a fractional reaction diffusion (FRD) system with a space-dependent (non-constant) diffusion coefficient via the backstepping method. The contribution of this paper is to generalize the results of backstepping-based boundary feedback control for a FRD system with a space-independent (constant) diffusion coefficient to the case of space-dependent diffusivity. For the boundary stabilization problem of this case, a designed integral transformation treats it as a problem of solving a hyperbolic partial differential equation (PDE) of transformation's kernel, then the well posedness of the kernel PDE is solved for the plant with non-constant diffusivity. Furthermore, by the fractional Lyapunov stability (Mittag-Leffler stability) theory and the backstepping-based boundary feedback controller, the Mittag-Leffler stability of the closed-loop FRD system with non-constant diffusivity is proved. Finally, an extensive numerical example for this closed-loop FRD system with non-constant diffusivity is presented to verify the effectiveness of our proposed controller. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
The Hantzsche-Wendt manifold in cosmic topology
NASA Astrophysics Data System (ADS)
Aurich, R.; Lustig, S.
2014-08-01
The Hantzsche-Wendt space is one of the 17 multiply connected spaces of the three-dimensional Euclidean space {{{E}}^{3}}. It is a compact and orientable manifold which can serve as a model for a spatial finite universe. Since it possesses much fewer matched back-to-back circle pairs on the cosmic microwave background (CMB) sky than the other compact flat spaces, it can escape the detection by a search for matched circle pairs. The suppression of temperature correlations C(\\vartheta ) on large angular scales on the CMB sky is studied. It is shown that the large-scale correlations are of the same order as for the three-torus topology but express a much larger variability. The Hantzsche-Wendt manifold provides a topological possibility with reduced large-angle correlations that can hide from searches for matched back-to-back circle pairs.
Factor levels for density comparisons in the split-block spacing design
Kurt H. Riitters; Brian J. Stanton; Robbert H. Walkup
1989-01-01
The split-block spacing design is a compact test of the effects of within-row and between-row spacings. But the sometimes awkward analysis of density (i.e., trees/ha) effects may deter use of the design. The analysis is simpler if the row spacings are chosen to obtain a balanced set of equally spaced density and rectangularity treatments. A spacing study in poplar (...
A Runge-Kutta discontinuous Galerkin approach to solve reactive flows: The hyperbolic operator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billet, G., E-mail: billet@onera.f; Ryan, J., E-mail: ryan@onera.f
2011-02-20
A Runge-Kutta discontinuous Galerkin method to solve the hyperbolic part of reactive Navier-Stokes equations written in conservation form is presented. Complex thermodynamics laws are taken into account. Particular care has been taken to solve the stiff gaseous interfaces correctly with no restrictive hypothesis. 1D and 2D test cases are presented.
ERIC Educational Resources Information Center
Marcovitz, Alan B., Ed.
A computer program for numeric and symbolic manipulation and the methodology underlying its development are presented. Some features of the program are: an option for implied multiplication; computation of higher-order derivatives; differentiation of 26 different trigonometric, hyperbolic, inverse trigonometric, and inverse hyperbolic functions;…
Estimation of coefficients and boundary parameters in hyperbolic systems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Murphy, K. A.
1984-01-01
Semi-discrete Galerkin approximation schemes are considered in connection with inverse problems for the estimation of spatially varying coefficients and boundary condition parameters in second order hyperbolic systems typical of those arising in 1-D surface seismic problems. Spline based algorithms are proposed for which theoretical convergence results along with a representative sample of numerical findings are given.
Modelling the growth of porous alumina matrix for creating hyperbolic media
NASA Astrophysics Data System (ADS)
Aryslanova, E. M.; Alfimov, A. V.; Chivilikhin, S. A.
2016-08-01
Porous aluminum oxide is a regular self-assembled structure. During anodization it is possible to control nano-parameters of the structure using macroscopic parameters of anodization. Porous alumina films can be used as a template for the creation of hyperbolic media. In this work we consider the anodization process, our model takes into account the influence of layers of aluminum and electrolyte on the rate of growth of aluminum oxide, as well as the effect of surface diffusion. As a result of our model we obtain the minimum distance between centers of alumina pores in the beginning of anodizing process. We also present the results obtained by numerical modelling of hyperbolic media based on porous alumina film.
Clawpack: Building an open source ecosystem for solving hyperbolic PDEs
Iverson, Richard M.; Mandli, K.T.; Ahmadia, Aron J.; Berger, M.J.; Calhoun, Donna; George, David L.; Hadjimichael, Y.; Ketcheson, David I.; Lemoine, Grady L.; LeVeque, Randall J.
2016-01-01
Clawpack is a software package designed to solve nonlinear hyperbolic partial differential equations using high-resolution finite volume methods based on Riemann solvers and limiters. The package includes a number of variants aimed at different applications and user communities. Clawpack has been actively developed as an open source project for over 20 years. The latest major release, Clawpack 5, introduces a number of new features and changes to the code base and a new development model based on GitHub and Git submodules. This article provides a summary of the most significant changes, the rationale behind some of these changes, and a description of our current development model. Clawpack: building an open source ecosystem for solving hyperbolic PDEs.
A Well-Balanced Path-Integral f-Wave Method for Hyperbolic Problems with Source Terms
2014-01-01
Systems of hyperbolic partial differential equations with source terms (balance laws) arise in many applications where it is important to compute accurate time-dependent solutions modeling small perturbations of equilibrium solutions in which the source terms balance the hyperbolic part. The f-wave version of the wave-propagation algorithm is one approach, but requires the use of a particular averaged value of the source terms at each cell interface in order to be “well balanced” and exactly maintain steady states. A general approach to choosing this average is developed using the theory of path conservative methods. A scalar advection equation with a decay or growth term is introduced as a model problem for numerical experiments. PMID:24563581
Testing the Binary Black Hole Nature of a Compact Binary Coalescence
NASA Astrophysics Data System (ADS)
Krishnendu, N. V.; Arun, K. G.; Mishra, Chandra Kant
2017-09-01
We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.
Testing the Binary Black Hole Nature of a Compact Binary Coalescence.
Krishnendu, N V; Arun, K G; Mishra, Chandra Kant
2017-09-01
We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.
A compact free space quantum key distribution system capable of daylight operation
NASA Astrophysics Data System (ADS)
Benton, David M.; Gorman, Phillip M.; Tapster, Paul R.; Taylor, David M.
2010-06-01
A free space quantum key distribution system has been demonstrated. Consideration has been given to factors such as field of view and spectral width, to cut down the deleterious effect from background light levels. Suitable optical sources such as lasers and RCLEDs have been investigated as well as optimal wavelength choices, always with a view to building a compact and robust system. The implementation of background reduction measures resulted in a system capable of operating in daylight conditions. An autonomous system was left running and generating shared key material continuously for over 7 days.
On the existence of the field line solutions of the Einstein-Maxwell equations
NASA Astrophysics Data System (ADS)
Vancea, Ion V.
The main result of this paper is the proof that there are local electric and magnetic field configurations expressed in terms of field lines on an arbitrary hyperbolic manifold. This electromagnetic field is described by (dual) solutions of the Maxwell’s equations of the Einstein-Maxwell theory. These solutions have the following important properties: (i) they are general, in the sense that the knot solutions are particular cases of them and (ii) they reduce to the electromagnetic fields in the field line representation in the flat space-time. Also, we discuss briefly the real representation of these electromagnetic configurations and write down the corresponding Einstein equations.
Cryocoolers developments at Thales Cryogenics enabling compact remote sensing
NASA Astrophysics Data System (ADS)
Benschop, A.; van de Groep, W.; Mullié, J.; Willems, D.; Clesca, O.; Griot, R.; Martin, J.-Y.
2010-10-01
Thales Cryogenics (TCBV) has an extensive background in developing and delivering long-life cryogenic coolers for military, civil and space programs. This cooler range is based on three main compressor concepts: rotary compressors (RM), linear close tolerance contact seals (UP), and linear flexure bearing (LSF/LPT) compressors. The main differences - next to the different conceptual designs - between these products are their masses and Mean Time To Failure (MTTF) and the availability prediction of a single unit. New developments at Thales Cryogenics enabling compact long lifetime coolers - with an MTTF up to 50.000 hrs - will be outlined. In addition new developments for miniature cooler drive electronics with high temperature stability and power density will be described. These new cooler developments could be of particular interest for space missions where lower costs and mass are identified as important selection criteria. The developed compressors are originally connected to Stirling cold fingers that can directly be interfaced to different sizes of available dewars. Next to linear coolers, Thales Cryogenics has compact rotary coolers in its product portfolio. Though having a higher exported vibration level and a more limited MTTF of around 8.000 to 10.000 hours, their compactness and high efficiency could provide a good alternative for compact cooling of sensors in specific space missions. In this paper an overview of lifetime parameters will be listed versus the impact in the different cooler types. Tests results from both the installed base and the Thales Cryogenics test lab will be presented as well. Next to this differences in operational use for the different types of coolers as well as the outlook for further developments will be discussed.
Spontaneous breaking of discrete symmetries in QCD on a small volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucini, B.; Patella, A.; Pica, C.
2007-11-20
In a compact space with non-trivial cycles, for sufficiently small values of the compact dimensions, charge conjugation (C), spatial reflection (P) and time reversal (J) are spontaneously broken in QCD. The order parameter for the symmetry breaking is the trace of the Wilson line wrapping around the compact dimension, which acquires an imaginary part in the broken phase. We show that a physical signature for the symmetry breaking is a persistent baryonic current wrapping in the compact directions. The existence of such a current is derived analytically at first order in perturbation theory and confirmed in the non-perturbative regime bymore » lattice simulations.« less
METHOD FOR SOLVENT-ISOSTATIC PRESSING
Archibald, P.B.
1962-09-18
This invention provides a method for producing densely compacted bodies having relatively large dimensions. The method comprises the addition of a small quantity of a suitable solvent to a powder which is to be compacted. The solvent- moistened powder is placed inside a flexible bag, and the bag is suspended in an isostatic press. The solvent is squeezed out of the powder by the isostatic pressure, and the resulting compacted body is recovered. The presence of the solvent markedly decreases the proportion of void space in the powder, thereby resulting in a denser, more homogeneous compact. Another effect of the solvent is that it allows the isostatic pressing operation to be conducted at substantially lower pressures than are conventionally employed. (AEC)
High Impact Technology Compact Combustion (HITCC) Compact Core Technologies
2016-01-01
3 2.1 Studies on the Effects of Centrifugal Force on the Performance of a High-G...characterize the performance of combustion systems. Fundamental flame studies provide insights into fluid mechanic and chemistry effects within...which capture fluid mechanic effects . Parametric studies are used to explore new design space and improve experiments. The third aspect of meeting the
An HP Adaptive Discontinuous Galerkin Method for Hyperbolic Conservation Laws. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Bey, Kim S.
1994-01-01
This dissertation addresses various issues for model classes of hyperbolic conservation laws. The basic approach developed in this work employs a new family of adaptive, hp-version, finite element methods based on a special discontinuous Galerkin formulation for hyperbolic problems. The discontinuous Galerkin formulation admits high-order local approximations on domains of quite general geometry, while providing a natural framework for finite element approximations and for theoretical developments. The use of hp-versions of the finite element method makes possible exponentially convergent schemes with very high accuracies in certain cases; the use of adaptive hp-schemes allows h-refinement in regions of low regularity and p-enrichment to deliver high accuracy, while keeping problem sizes manageable and dramatically smaller than many conventional approaches. The use of discontinuous Galerkin methods is uncommon in applications, but the methods rest on a reasonable mathematical basis for low-order cases and has local approximation features that can be exploited to produce very efficient schemes, especially in a parallel, multiprocessor environment. The place of this work is to first and primarily focus on a model class of linear hyperbolic conservation laws for which concrete mathematical results, methodologies, error estimates, convergence criteria, and parallel adaptive strategies can be developed, and to then briefly explore some extensions to more general cases. Next, we provide preliminaries to the study and a review of some aspects of the theory of hyperbolic conservation laws. We also provide a review of relevant literature on this subject and on the numerical analysis of these types of problems.
2007-12-06
high order well-balanced schemes to a class of hyperbolic systems with source terms, Boletin de la Sociedad Espanola de Matematica Aplicada, v34 (2006...schemes to a class of hyperbolic systems with source terms, Boletin de la Sociedad Espanola de Matematica Aplicada, v34 (2006), pp.69-80. 39. Y. Xu and C.-W
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cololla, P.
This review describes a structured approach to adaptivity. The Automated Mesh Refinement (ARM) algorithms developed by M Berger are described, touching on hyperbolic and parabolic applications. Adaptivity is achieved by overlaying finer grids only in areas flagged by a generalized error criterion. The author discusses some of the issues involved in abutting disparate-resolution grids, and demonstrates that suitable algorithms exist for dissipative as well as hyperbolic systems.
NASA Astrophysics Data System (ADS)
Quesne, C.
2016-02-01
The classical and quantum solutions of a nonlinear model describing harmonic oscillators on the sphere and the hyperbolic plane, derived in polar coordinates in a recent paper (Quesne, 2015) [1], are extended by the inclusion of an isotonic term.
Hyperbolic conservation laws and numerical methods
NASA Technical Reports Server (NTRS)
Leveque, Randall J.
1990-01-01
The mathematical structure of hyperbolic systems and the scalar equation case of conservation laws are discussed. Linear, nonlinear systems and the Riemann problem for the Euler equations are also studied. The numerical methods for conservation laws are presented in a nonstandard manner which leads to large time steps generalizations and computations on irregular grids. The solution of conservation laws with stiff source terms is examined.
Dynamically hot galaxies. I - Structural properties
NASA Technical Reports Server (NTRS)
Bender, Ralf; Burstein, David; Faber, S. M.
1992-01-01
Results are reported from an analysis of the structural properties of dynamically hot galaxies which combines central velocity dispersion, effective surface brightness, and effective radius into a new 3-space (k), in which the axes are parameters that are physically meaningful. Hot galaxies are found to divide into groups in k-space that closely parallel conventional morphological classifications, namely, luminous ellipticals, compacts, bulges, bright dwarfs, and dwarf spheroidals. A major sequence is defined by luminous ellipticals, bulges, and most compacts, which together constitute a smooth continuum in k-space. Several properties vary smoothly with mass along this continuum, including bulge-to-disk ratio, radio properties, rotation, degree of velocity anisotropy, and 'unrelaxed'. A second major sequence is comprised of dwarf ellipticals and dwarf spheroidals. It is suggested that mass loss is a major factor in hot dwarf galaxies, but the dwarf sequence cannot be simply a mass-loss sequence, as it has the wrong direction in k-space.
Boundary-field-driven control of discontinuous phase transitions on hyperbolic lattices
NASA Astrophysics Data System (ADS)
Lee, Yoju; Verstraete, Frank; Gendiar, Andrej
2016-08-01
The multistate Potts models on two-dimensional hyperbolic lattices are studied with respect to various boundary effects. The free energy is numerically calculated using the corner transfer matrix renormalization group method. We analyze phase transitions of the Potts models in the thermodynamic limit with respect to contracted boundary layers. A false phase transition is present even if a couple of the boundary layers are contracted. Its significance weakens, as the number of the contracted boundary layers increases, until the correct phase transition (deep inside the bulk) prevails over the false one. For this purpose, we derive a thermodynamic quantity, the so-called bulk excess free energy, which depends on the contracted boundary layers and memorizes additional boundary effects. In particular, the magnetic field is imposed on the outermost boundary layer. While the boundary magnetic field does not affect the second-order phase transition in the bulk if suppressing all the boundary effects on the hyperbolic lattices, the first-order (discontinuous) phase transition is significantly sensitive to the boundary magnetic field. Contrary to the phase transition on the Euclidean lattices, the discontinuous phase transition on the hyperbolic lattices can be continuously controlled (within a certain temperature coexistence region) by varying the boundary magnetic field.
The behavioral economics of will in recovery from addiction.
Monterosso, John; Ainslie, George
2007-09-01
Behavioral economic studies demonstrate that rewards are discounted proportionally with their delay (hyperbolic discounting). Hyperbolic discounting implies temporary preference for smaller rewards when they are imminent, and this concept has been widely considered by researchers interested in the causes of addictive behavior. Far less consideration has been given to the fact that systematic preference reversal also predicts various self-control phenomena, which may also be analyzed from a behavioral economic perspective. Here we summarize self-control phenomena predicted by hyperbolic discounting, particularly with application to the field of addiction. Of greatest interest is the phenomenon of choice bundling, an increase in motivation to wait for delayed rewards that can be expected to result from making choices in whole categories. Specifically, when a person's expectations about her own future behavior are conditional upon her current behavior, the value of these expectations is added to the contingencies for the current behavior, resulting in reduced impulsivity. Hyperbolic discounting provides a bottom-up basis for the intuitive learning of choice bundling, the properties of which match common descriptions of willpower. We suggest that the bundling effect can also be discerned in the advice of 12-step programs.
NASA Astrophysics Data System (ADS)
Patel, Ravi; Kong, Bo; Capecelatro, Jesse; Fox, Rodney; Desjardins, Olivier
2017-11-01
Particle-laden turbulent flows are important features of many environmental and industrial processes. Euler-Euler (EE) simulations of these flows are more computationally efficient than Euler-Lagrange (EL) simulations. However, traditional EE methods, such as the two-fluid model, cannot faithfully capture dilute regions of flow with finite Stokes number particles. For this purpose, the multi-valued nature of the particle velocity field must be treated with a polykinetic description. Various quadrature-based moment methods (QBMM) can be used to approximate the full kinetic description by solving for a set of moments of the particle velocity distribution function (VDF) and providing closures for the higher-order moments. Early QBMM fail to maintain the strict hyperbolicity of the kinetic equations, producing unphysical delta shocks (i.e., mass accumulation at a point). In previous work, a 2-D conditional hyperbolic quadrature method of moments (CHyQMOM) was proposed as a fourth-order QBMM closure that maintains strict hyperbolicity. Here, we present the 3-D extension of CHyQMOM. We compare results from CHyQMOM to other QBMM and EL in the context of particle trajectory crossing, cluster-induced turbulence, and particle-laden channel flow. NSF CBET-1437903.
Doubly-focused echos from spheres unfold into a hyperbolic umbilic diffraction catastrophe
NASA Astrophysics Data System (ADS)
Dzikowicz, Ben; Marston, Philip L.
2003-04-01
An underwater spherical target resides in an Airy field formed by reflection off a curved surface representing the sea floor or sea surface. In prior work [B. Dzikowicz and P. L. Marston, J. Acoust. Soc Am. 110, 2778 (2001)] direct returns of a tone burst from the surface reflection focused toward the target were shown to have a dependence on the target position described by an Airy function. The return echo can also be focused again by the surface onto the source and receive transducer. This gives the square of an Airy function for the case of a point target. With a finite sized target (as in the experiment) this goes over to a hyperbolic umbilic catastrophe with symmetric arguments. The arguments of the hyperbolic umbilic function are derived from only the relative return times of a transient pulse. Experiment confirms the predicted merging of transient echoes in the time domain, as well as the hyperbolic umbilic diffraction integral amplitudes for a tone burst. This method would allow for the observation of a target at a greater distance in the presence of a focusing surface. [Research supported by ONR.
The behavioral economics of will in recovery from addiction
Monterosso, John; Ainslie, George
2007-01-01
Behavioral economic studies demonstrate that rewards are discounted proportionally with their delay (hyperbolic discounting). Hyperbolic discounting implies temporary preference for smaller rewards when they are imminent, and this concept has been widely considered by researchers interested in the causes of addictive behavior. Far less consideration has been given to the fact that systematic preference reversal also predicts various self-control phenomena, which may also be analyzed from a behavioral economic perspective. Here we summarize self-control phenomena predicted by hyperbolic discounting, particularly with application to the field of addiction. Of greatest interest is the phenomenon of choice bundling, an increase in motivation to wait for delayed rewards that can be expected to result from making choices in whole categories. Specifically, when a person’s expectations about her own future behavior are conditional upon her current behavior, the value of these expectations is added to the contingencies for the current behavior, resulting in reduced impulsivity. Hyperbolic discounting provides a bottom-up basis for the intuitive learning of choice bundling, the properties of which match common descriptions of willpower. We suggest that the bundling effect can also be discerned in the advice of 12-step programs. PMID:17034958
Markov, A V; Korotaev, A V
2008-01-01
Among diverse models that are used to describe and interpret the changes in global biodiversity through the Phanerozoic, the exponential and logistic models (traditionally used in population biology) are the most popular. As we have recently demonstrated (Markov, Korotayev, 2007), the growth of the Phanerozoic marine biodiversity at genus level correlates better with the hyperbolic model (widely used in demography and macrosociology). Here we show that the hyperbolic model is also applicable to the Phanerozoic continental biota at genus and family levels, and to the marine biota at species, genus, and family levels. There are many common features in the evolutionary dynamics of the marine and continental biotas that imply similarity and common nature of the factors and mechanisms underlying the hyperbolic growth. Both marine and continental biotas are characterized by continuous growth of the mean longevity of taxa, by decreasing extinction and origination rates, by similar pattern of replacement of dominant groups, by stepwise accumulation of evolutionary stable, adaptable and "physiologically buffered" taxa with effective mechanisms of parental care, protection of early developmental stages, etc. At the beginning of the development of continental biota, the observed taxonomic diversity was substantially lower than that predicted by the hyperbolic model. We suggest that this is due, firstly, to the fact that, during the earliest stages of the continental biota evolution, the groups that are not preserved in the fossil record (such as soil bacteria, unicellular algae, lichens, etc.) played a fundamental role, and secondly, to the fact that the continental biota initially formed as a marginal portion of the marine biota, rather than a separate system. The hyperbolic dynamics is most prominent when both marine and continental biotas are considered together. This fact can be interpreted as a proof of the integrated nature of the biosphere. In the macrosociological models, the hyperbolic pattern of the world population growth arises from a non-linear second-order positive feedback between the demographic growth and technological development (more people - more potential inventors - faster technological growth - the carrying capacity of the Earth grows faster - faster population growth - more people - more potential inventors, and so on). Based on the analogy with macrosociological models and diverse paleontological data, we suggest that the hyperbolic character of biodiversity growth can be similarly accounted for by a non-linear second-order positive feedback between the diversity growth and community structure complexity. The feedback can work via two parallel mechanisms: 1) decreasing extinction rate (more taxa- higher alpha diversity, or mean number of taxa in a community - communities become more complex and stable - extinction rate decreases - more taxa, and so on) and 2) increasing origination rate (new taxa facilitate niche construction; newly formed niches can be occupied by the next "generation" of taxa). The latter possibility makes the mechanisms underlying the hyperbolic growth of biodiversity and human population even more similar, because the total ecospace of the biota is analogous to the "carrying capacity of the Earth" in demography. As far as new species can increase ecospace and facilitate opportunities for additional species entering the community, they are analogous to the "inventors" of the demographic models whose inventions increase the carrying capacity of the Earth. The hyperbolic growth of the Phanerozoic biodiverstiy suggests that "cooperative" interactions between taxa can play an important role in evolution, along with generally accepted competitive interactions. Due to this "cooperation", the evolution of biodiversity acquires some features of a self-accelerating process. Macroevolutionary "cooperation" reveals itself in: 1) increasing stability of communities that arises from alpha diversity growth; 2) ability of species to facilitate opportunities for additional species entering the community.
Adaptive Controller for Compact Fourier Transform Spectrometer with Space Applications
NASA Astrophysics Data System (ADS)
Keymeulen, D.; Yiu, P.; Berisford, D. F.; Hand, K. P.; Carlson, R. W.; Conroy, M.
2014-12-01
Here we present noise mitigation techniques developed as part of an adaptive controller for a very compact Compositional InfraRed Interferometric Spectrometer (CIRIS) implemented on a stand-alone field programmable gate array (FPGA) architecture with emphasis on space applications in high radiation environments such as Europa. CIRIS is a novel take on traditional Fourier Transform Spectrometers (FTS) and replaces linearly moving mirrors (characteristic of Michelson interferometers) with a constant-velocity rotating refractor to variably phase shift and alter the path length of incoming light. The design eschews a monochromatic reference laser typically used for sampling clock generation and instead utilizes constant time-sampling via internally generated clocks. This allows for a compact and robust device, making it ideal for spaceborne measurements in the near-IR to thermal-IR band (2-12 µm) on planetary exploration missions. The instrument's embedded microcontroller is implemented on a VIRTEX-5 FPGA and a PowerPC with the aim of sampling the instrument's detector and optical rotary encoder in order to construct interferograms. Subsequent onboard signal processing provides spectral immunity from the noise effects introduced by the compact design's removal of a reference laser and by the radiation encountered during space flight to destinations such as Europa. A variety of signal processing techniques including resampling, radiation peak removal, Fast Fourier Transform (FFT), spectral feature alignment, dispersion correction and calibration processes are applied to compose the sample spectrum in real-time with signal-to-noise-ratio (SNR) performance comparable to laser-based FTS designs in radiation-free environments. The instrument's FPGA controller is demonstrated with the FTS to characterize its noise mitigation techniques and highlight its suitability for implementation in space systems.
NASA Astrophysics Data System (ADS)
Bakholdin, Igor
2018-02-01
Various models of a tube with elastic walls are investigated: with controlled pressure, filled with incompressible fluid, filled with compressible gas. The non-linear theory of hyperelasticity is applied. The walls of a tube are described with complete membrane model. It is proposed to use linear model of plate in order to take the bending resistance of walls into account. The walls of the tube were treated previously as inviscid and incompressible. Compressibility of material of walls and viscosity of material, either gas or liquid are considered. Equations are solved numerically. Three-layer time and space centered reversible numerical scheme and similar two-layer space reversible numerical scheme with approximation of time derivatives by Runge-Kutta method are used. A method of correction of numerical schemes by inclusion of terms with highorder derivatives is developed. Simplified hyperbolic equations are derived.
Simulation of Earthquake-Generated Sea-Surface Deformation
NASA Astrophysics Data System (ADS)
Vogl, Chris; Leveque, Randy
2016-11-01
Earthquake-generated tsunamis can carry with them a powerful, destructive force. One of the most well-known, recent examples is the tsunami generated by the Tohoku earthquake, which was responsible for the nuclear disaster in Fukushima. Tsunami simulation and forecasting, a necessary element of emergency procedure planning and execution, is typically done using the shallow-water equations. A typical initial condition is that using the Okada solution for a homogeneous, elastic half-space. This work focuses on simulating earthquake-generated sea-surface deformations that are more true to the physics of the materials involved. In particular, a water layer is added on top of the half-space that models the seabed. Sea-surface deformations are then simulated using the Clawpack hyperbolic PDE package. Results from considering the water layer both as linearly elastic and as "nearly incompressible" are compared to that of the Okada solution.
A Numerical Approximation Framework for the Stochastic Linear Quadratic Regulator on Hilbert Spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levajković, Tijana, E-mail: tijana.levajkovic@uibk.ac.at, E-mail: t.levajkovic@sf.bg.ac.rs; Mena, Hermann, E-mail: hermann.mena@uibk.ac.at; Tuffaha, Amjad, E-mail: atufaha@aus.edu
We present an approximation framework for computing the solution of the stochastic linear quadratic control problem on Hilbert spaces. We focus on the finite horizon case and the related differential Riccati equations (DREs). Our approximation framework is concerned with the so-called “singular estimate control systems” (Lasiecka in Optimal control problems and Riccati equations for systems with unbounded controls and partially analytic generators: applications to boundary and point control problems, 2004) which model certain coupled systems of parabolic/hyperbolic mixed partial differential equations with boundary or point control. We prove that the solutions of the approximate finite-dimensional DREs converge to the solutionmore » of the infinite-dimensional DRE. In addition, we prove that the optimal state and control of the approximate finite-dimensional problem converge to the optimal state and control of the corresponding infinite-dimensional problem.« less
Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jipeng; Wang, Hengliang; Wen, Shuangchun
2016-05-28
We theoretically demonstrate the perfect absorption phenomena in the hexagonal boron nitride (hBN) crystals in the mid-infrared wavelength ranges by means of critical coupling with a one-dimensional photonic crystal spaced by the air. Different from the polymer absorbing layer composed by a metal-dielectric composite film, the hyperbolic dispersion characteristics of hBN can meet the condition of critical coupling and achieve the total absorption in the mid-infrared wavelength ranges. However, the critical coupling phenomenon can only appear in the hBN crystals with the type II dispersion. Moreover, we discuss the influence of the thickness of hBN, the incident angle, and themore » thickness and permittivity of the space dielectric on the total absorption. Ultimately, the conditions for absorption enhancement and the optimization methods of perfect absorption are proposed, and the design rules for a totally absorbing system under the different conditions are achieved.« less
A Runge-Kutta discontinuous finite element method for high speed flows
NASA Technical Reports Server (NTRS)
Bey, Kim S.; Oden, J. T.
1991-01-01
A Runge-Kutta discontinuous finite element method is developed for hyperbolic systems of conservation laws in two space variables. The discontinuous Galerkin spatial approximation to the conservation laws results in a system of ordinary differential equations which are marched in time using Runge-Kutta methods. Numerical results for the two-dimensional Burger's equation show that the method is (p+1)-order accurate in time and space, where p is the degree of the polynomial approximation of the solution within an element and is capable of capturing shocks over a single element without oscillations. Results for this problem also show that the accuracy of the solution in smooth regions is unaffected by the local projection and that the accuracy in smooth regions increases as p increases. Numerical results for the Euler equations show that the method captures shocks without oscillations and with higher resolution than a first-order scheme.
NASA Astrophysics Data System (ADS)
Rocha, Ana Maria A. C.; Costa, M. Fernanda P.; Fernandes, Edite M. G. P.
2016-12-01
This article presents a shifted hyperbolic penalty function and proposes an augmented Lagrangian-based algorithm for non-convex constrained global optimization problems. Convergence to an ?-global minimizer is proved. At each iteration k, the algorithm requires the ?-global minimization of a bound constrained optimization subproblem, where ?. The subproblems are solved by a stochastic population-based metaheuristic that relies on the artificial fish swarm paradigm and a two-swarm strategy. To enhance the speed of convergence, the algorithm invokes the Nelder-Mead local search with a dynamically defined probability. Numerical experiments with benchmark functions and engineering design problems are presented. The results show that the proposed shifted hyperbolic augmented Lagrangian compares favorably with other deterministic and stochastic penalty-based methods.
Experimental demonstration of metamaterial "multiverse" in a ferrofluid.
Smolyaninov, Igor I; Yost, Bradley; Bates, Evan; Smolyaninova, Vera N
2013-06-17
Extraordinary light rays propagating inside a hyperbolic metamaterial look similar to particle world lines in a 2 + 1 dimensional Minkowski spacetime. Magnetic nanoparticles in a ferrofluid are known to form nanocolumns aligned along the magnetic field, so that a hyperbolic metamaterial may be formed at large enough nanoparticle concentration nH. Here we investigate optical properties of such a metamaterial just below nH. While on average such a metamaterial is elliptical, thermal fluctuations of nanoparticle concentration lead to transient formation of hyperbolic regions (3D Minkowski spacetimes) inside this metamaterial. Thus, thermal fluctuations in a ferrofluid look similar to creation and disappearance of individual Minkowski spacetimes (universes) in the cosmological multiverse. This theoretical picture is supported by experimental measurements of polarization-dependent optical transmission of a cobalt based ferrofluid at 1500 nm.
NASA Technical Reports Server (NTRS)
Mazaheri, Alireza; Ricchiuto, Mario; Nishikawa, Hiroaki
2016-01-01
In this paper, we introduce a new hyperbolic first-order system for general dispersive partial differential equations (PDEs). We then extend the proposed system to general advection-diffusion-dispersion PDEs. We apply the fourth-order RD scheme of Ref. 1 to the proposed hyperbolic system, and solve time-dependent dispersive equations, including the classical two-soliton KdV and a dispersive shock case. We demonstrate that the predicted results, including the gradient and Hessian (second derivative), are in a very good agreement with the exact solutions. We then show that the RD scheme applied to the proposed system accurately captures dispersive shocks without numerical oscillations. We also verify that the solution, gradient and Hessian are predicted with equal order of accuracy.
On Another Edge of Defocusing: Hyperbolicity of Asymmetric Lemon Billiards
NASA Astrophysics Data System (ADS)
Bunimovich, Leonid; Zhang, Hong-Kun; Zhang, Pengfei
2016-02-01
Defocusing mechanism provides a way to construct chaotic (hyperbolic) billiards with focusing components by separating all regular components of the boundary of a billiard table sufficiently far away from each focusing component. If all focusing components of the boundary of the billiard table are circular arcs, then the above separation requirement reduces to that all circles obtained by completion of focusing components are contained in the billiard table. In the present paper we demonstrate that a class of convex tables— asymmetric lemons, whose boundary consists of two circular arcs, generate hyperbolic billiards. This result is quite surprising because the focusing components of the asymmetric lemon table are extremely close to each other, and because these tables are perturbations of the first convex ergodic billiard constructed more than 40 years ago.
Self-assembled tunable photonic hyper-crystals
Smolyaninova, Vera N.; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E.; Smolyaninov, Igor I.
2014-01-01
We demonstrate a novel artificial optical material, the “photonic hyper-crystal”, which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing. PMID:25027947
Self-assembled tunable photonic hyper-crystals.
Smolyaninova, Vera N; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E; Smolyaninov, Igor I
2014-07-16
We demonstrate a novel artificial optical material, the "photonic hyper-crystal", which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing.
Heat Melt Compaction as an Effective Treatment for Eliminating Microorganisms from Solid Waste
NASA Technical Reports Server (NTRS)
Hummerick, Mary P.; Strayer, Richard; McCoy, LaShelle; Richard, Jeffrey; Ruby, Anna; Wheeler, Raymond
2012-01-01
One of the technologies being tested at Ames Research Center as part of the logistics and repurposing project is heat melt compaction (HMC) of solid waste to reduce volume, remove water and render a biologically stable and safe product. Studies at Kennedy Space Center have focused on the efficacy of the heat melt compaction process for killing microorganisms in waste and specific compacter operation protocols, i.e., time and temperature, required to achieve a sterile, stable product. The work reported here includes a controlled study to examine the survival and potential re-growth of specific microorganisms over a 6-month period of storage after heating and compaction. Before heating and compaction, ersatz solid wastes were inoculated with Bacillus amyloliquefaciens and Rhodotorula mucilaginosa, previously isolated from recovered space shuttle mission food and packaging waste. Compacted HMC tiles were sampled for microbiological analysis at time points between 0 and 180 days of storage in a controlled environment chamber. In addition, biological indicator strips containing spores of Bacillus atrophaeus and Ceo bacillus stearothermophilus were imbedded in trash to assess the efficacy of the HMC process to achieve sterilization. Analysis of several tiles compacted at 180 C for times of 40 minutes to over 2 hours detected organisms in all tile samples with the exception of one exposed to 180 C for approximately 2 hours. Neither of the inoculated organisms was recovered, and the biological indicator strips were negative for growth in all tiles indicating at least local sterilization of tile areas. The findings suggest that minimum time/temperature combination is required for complete sterilization. Microbial analysis of tiles processed at lower temperatures from 130 C-150 C at varying times will be discussed, as well as analysis of the bacteria and fungi present on the compactor hardware as a result of exposure to the waste and the surrounding environment. The two organisms inoculated into the waste were among those isolated and identified from the HMC surfaces indicating the possibility of cross contamination.
BATMAN flies: a compact spectro-imager for space observation
NASA Astrophysics Data System (ADS)
Zamkotsian, Frederic; Ilbert, Olivier; Zoubian, Julien; Delsanti, Audrey; Boissier, Samuel; Lancon, Ariane
2014-08-01
BATMAN flies is a compact spectro-imager based on MOEMS for generating reconfigurable slit masks, and feeding two arms in parallel. The FOV is 25 x 12 arcmin2 for a 1m telescope, in infrared (0.85-1.7μm) and 500-1000 spectral resolution. Unique science cases for Space Observation are reachable with this deep spectroscopic multi-survey instrument: deep survey of high-z galaxies down to H=25 on 5 deg2 with continuum detection and all z>7 candidates at H=26.2 over 5 deg2; deep survey of young stellar clusters in nearby galaxies; deep survey of the Kuiper Belt of ALL known objects down to H=22. Pathfinder towards BATMAN in space is already running with ground-based demonstrators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stottmeister, Alexander, E-mail: alexander.stottmeister@gravity.fau.de; Thiemann, Thomas, E-mail: thomas.thiemann@gravity.fau.de
In this article, the second of three, we discuss and develop the basis of a Weyl quantisation for compact Lie groups aiming at loop quantum gravity-type models. This Weyl quantisation may serve as the main mathematical tool to implement the program of space adiabatic perturbation theory in such models. As we already argued in our first article, space adiabatic perturbation theory offers an ideal framework to overcome the obstacles that hinder the direct implementation of the conventional Born-Oppenheimer approach in the canonical formulation of loop quantum gravity. Additionally, we conjecture the existence of a new form of the Segal-Bargmann-Hall “coherentmore » state” transform for compact Lie groups G, which we prove for G = U(1){sup n} and support by numerical evidence for G = SU(2). The reason for conjoining this conjecture with the main topic of this article originates in the observation that the coherent state transform can be used as a basic building block of a coherent state quantisation (Berezin quantisation) for compact Lie groups G. But, as Weyl and Berezin quantisation for ℝ{sup 2d} are intimately related by heat kernel evolution, it is natural to ask whether a similar connection exists for compact Lie groups as well. Moreover, since the formulation of space adiabatic perturbation theory requires a (deformation) quantisation as minimal input, we analyse the question to what extent the coherent state quantisation, defined by the Segal-Bargmann-Hall transform, can serve as basis of the former.« less
Quantitative analysis of packed and compacted granular systems by x-ray microtomography
NASA Astrophysics Data System (ADS)
Fu, Xiaowei; Milroy, Georgina E.; Dutt, Meenakshi; Bentham, A. Craig; Hancock, Bruno C.; Elliott, James A.
2005-04-01
The packing and compaction of powders are general processes in pharmaceutical, food, ceramic and powder metallurgy industries. Understanding how particles pack in a confined space and how powders behave during compaction is crucial for producing high quality products. This paper outlines a new technique, based on modern desktop X-ray tomography and image processing, to quantitatively investigate the packing of particles in the process of powder compaction and provide great insights on how powder densify during powder compaction, which relate in terms of materials properties and processing conditions to tablet manufacture by compaction. A variety of powder systems were considered, which include glass, sugar, NaCl, with a typical particle size of 200-300 mm and binary mixtures of NaCl-Glass Spheres. The results are new and have been validated by SEM observation and numerical simulations using discrete element methods (DEM). The research demonstrates that XMT technique has the potential in further investigating of pharmaceutical processing and even verifying other physical models on complex packing.
Weak Compactness and Control Measures in the Space of Unbounded Measures
Brooks, James K.; Dinculeanu, Nicolae
1972-01-01
We present a synthesis theorem for a family of locally equivalent measures defined on a ring of sets. This theorem is then used to exhibit a control measure for weakly compact sets of unbounded measures. In addition, the existence of a local control measure for locally strongly bounded vector measures is proved by means of the synthesis theorem. PMID:16591980
Cohomologie des Groupes Localement Compacts et Produits Tensoriels Continus de Representations
ERIC Educational Resources Information Center
Guichardet, A.
1976-01-01
Contains few and sometimes incomplete proofs on continuous tensor products of Hilbert spaces and of group representations, and on the irreducibility of the latter. Theory of continuous tensor products of Hilbert Spaces is closely related to that of conditionally positive definite functions; it relies on the technique of symmetric Hilbert spaces,…
Hirsch, Jana A; Winters, Meghan; Clarke, Philippa; McKay, Heather
2014-12-12
Measuring mobility is critical for understanding neighborhood influences on older adults' health and functioning. Global Positioning Systems (GPS) may represent an important opportunity to measure, describe, and compare mobility patterns in older adults. We generated three types of activity spaces (Standard Deviation Ellipse, Minimum Convex Polygon, Daily Path Area) using GPS data from 95 older adults in Vancouver, Canada. Calculated activity space areas and compactness were compared across sociodemographic and resource characteristics. Area measures derived from the three different approaches to developing activity spaces were highly correlated. Participants who were younger, lived in less walkable neighborhoods, had a valid driver's license, had access to a vehicle, or had physical support to go outside of their homes had larger activity spaces. Mobility space compactness measures also differed by sociodemographic and resource characteristics. This research extends the literature by demonstrating that GPS tracking can be used as a valuable tool to better understand the geographic mobility patterns of older adults. This study informs potential ways to maintain older adult independence by identifying factors that influence geographic mobility.
An iterative method for systems of nonlinear hyperbolic equations
NASA Technical Reports Server (NTRS)
Scroggs, Jeffrey S.
1989-01-01
An iterative algorithm for the efficient solution of systems of nonlinear hyperbolic equations is presented. Parallelism is evident at several levels. In the formation of the iteration, the equations are decoupled, thereby providing large grain parallelism. Parallelism may also be exploited within the solves for each equation. Convergence of the interation is established via a bounding function argument. Experimental results in two-dimensions are presented.
High-resolution schemes for hyperbolic conservation laws
NASA Technical Reports Server (NTRS)
Harten, A.
1982-01-01
A class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear schemes are obtained by applying a nonoscillatory first order accurae scheme to an appropriately modified flux function. The so derived second order accurate schemes achieve high resolution while preserving the robustness of the original nonoscillatory first order accurate scheme.
Singularities and non-hyperbolic manifolds do not coincide
NASA Astrophysics Data System (ADS)
Simányi, Nándor
2013-06-01
We consider the billiard flow of elastically colliding hard balls on the flat ν-torus (ν ⩾ 2), and prove that no singularity manifold can even locally coincide with a manifold describing future non-hyperbolicity of the trajectories. As a corollary, we obtain the ergodicity (actually the Bernoulli mixing property) of all such systems, i.e. the verification of the Boltzmann-Sinai ergodic hypothesis.
A simple finite element method for linear hyperbolic problems
Mu, Lin; Ye, Xiu
2017-09-14
Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.
A simple finite element method for linear hyperbolic problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Ye, Xiu
Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.
Compact orthogonal NMR field sensor
Gerald, II, Rex E.; Rathke, Jerome W [Homer Glen, IL
2009-02-03
A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.
Characterization of low-mass deformable mirrors and ASIC drivers for high-contrast imaging
NASA Astrophysics Data System (ADS)
Mejia Prada, Camilo; Yao, Li; Wu, Yuqian; Roberts, Lewis C.; Shelton, Chris; Wu, Xingtao
2017-09-01
The development of compact, high performance Deformable Mirrors (DMs) is one of the most important technological challenges for high-contrast imaging on space missions. Microscale Inc. has fabricated and characterized piezoelectric stack actuator deformable mirrors (PZT-DMs) and Application-Specific Integrated Circuit (ASIC) drivers for direct integration. The DM-ASIC system is designed to eliminate almost all cables, enabling a very compact optical system with low mass and low power consumption. We report on the optical tests used to evaluate the performance of the DM and ASIC units. We also compare the results to the requirements for space-based high-contrast imaging of exoplanets.
Non-compact nonlinear sigma models
NASA Astrophysics Data System (ADS)
de Rham, Claudia; Tolley, Andrew J.; Zhou, Shuang-Yong
2016-09-01
The target space of a nonlinear sigma model is usually required to be positive definite to avoid ghosts. We introduce a unique class of nonlinear sigma models where the target space metric has a Lorentzian signature, thus the associated group being non-compact. We show that the would-be ghost associated with the negative direction is fully projected out by 2 second-class constraints, and there exist stable solutions in this class of models. This result also has important implications for Lorentz-invariant massive gravity: There exist stable nontrivial vacua in massive gravity that are free from any linear vDVZ-discontinuity and a Λ2 decoupling limit can be defined on these vacua.
Compact electrostatic comb actuator
Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.
2000-01-01
A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).
NASA Astrophysics Data System (ADS)
Al-Islam, Najja Shakir
In this Dissertation, the existence of pseudo almost periodic solutions to some systems of nonlinear hyperbolic second-order partial differential equations is established. For that, (Al-Islam [4]) is first studied and then obtained under some suitable assumptions. That is, the existence of pseudo almost periodic solutions to a hyperbolic second-order partial differential equation with delay. The second-order partial differential equation (1) represents a mathematical model for the dynamics of gas absorption, given by uxt+a x,tux=Cx,t,u x,t , u0,t=4 t, 1 where a : [0, L] x RR , C : [0, L] x R x RR , and ϕ : RR are (jointly) continuous functions ( t being the greatest integer function) and L > 0. The results in this Dissertation generalize those of Poorkarimi and Wiener [22]. Secondly, a generalization of the above-mentioned system consisting of the non-linear hyperbolic second-order partial differential equation uxt+a x,tux+bx,t ut+cx,tu=f x,t,u, x∈ 0,L,t∈ R, 2 equipped with the boundary conditions ux,0 =40x, u0,t=u 0t, uxx,0=y 0x, x∈0,L, t∈R, 3 where a, b, c : [0, L ] x RR and f : [0, L] x R x RR are (jointly) continuous functions is studied. Under some suitable assumptions, the existence and uniqueness of pseudo almost periodic solutions to particular cases, as well as the general case of the second-order hyperbolic partial differential equation (2) are studied. The results of all studies contained within this text extend those obtained by Aziz and Meyers [6] in the periodic setting.
NASA Astrophysics Data System (ADS)
Leigh, Roland J.; Whyte, C.; Cutter, M. A.; Lobb, D. R.; Monks, P. S.
2017-11-01
Under the first phase of the Centre for Earth Observation Instrumentation (CEOI), a breadboard demonstrator of a novel UV/VIS spectrometer has been developed. Using designs from Surrey Satellite Technology Ltd (SSTL) the demonstrator has been constructed and tested at the University of Leicester's Space Research Centre. This spectrometer provides an exceptionally compact instrument for differential optical absorption spectroscopy (DOAS) applications from LEO, GEO, HAP or ground-based platforms. Measurement of atmo spheric compounds with climate change or air quality implications is a key driver for the ground and space-based Earth Observation communities. Techniques using UV/VIS spectroscopy such as DOAS provide measurements of ozone profiles, aerosol optical depth, certain Volatile Organic Compounds, halogenated species, and key air quality parameters including tropospheric nitrogen dioxide. Compact instruments providing the necessary optical performance and spectral resolution are therefore a key enabling technology. The Compact Air Quality Spectrometer (CompAQS) features a concentric arrangement of a spherical meniscus lens, a concave spherical mirror and a suitable curved diffraction grating. This compact design provides efficiency and performance benefits over traditional concepts, improving the precision and spatial resolution available from space borne instruments with limited weight and size budgets. The breadboard spectrometer currently operating at the University of Leicester offers high throughput with a spectral range from 310 to 450 nm at 0.5nm(UV) to 1.0nm (visible) resolution, suitable for DOAS applications. The concentric design is capable of handling high relative apertures, owing to spherical aberration and coma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called `smile' - the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. In this presentation, the design of the spectrometer is detailed, with results from instrument characterisations undertaken at the University of Leicester, including demonstrations of DOAS fits for key air quality species.
NASA Astrophysics Data System (ADS)
Nezir, Veysel; Mustafa, Nizami
2017-04-01
In 2008, P.K. Lin provided the first example of a nonreflexive space that can be renormed to have fixed point property for nonexpansive mappings. This space was the Banach space of absolutely summable sequences l1 and researchers aim to generalize this to c0, Banach space of null sequences. Before P.K. Lin's intriguing result, in 1979, Goebel and Kuczumow showed that there is a large class of non-weak* compact closed, bounded, convex subsets of l1 with fixed point property for nonexpansive mappings. Then, P.K. Lin inspired by Goebel and Kuczumow's ideas to give his result. Similarly to P.K. Lin's study, Hernández-Linares worked on L1 and in his Ph.D. thesis, supervisored under Maria Japón, showed that L1 can be renormed to have fixed point property for affine nonexpansive mappings. Then, related questions for c0 have been considered by researchers. Recently, Nezir constructed several equivalent norms on c0 and showed that there are non-weakly compact closed, bounded, convex subsets of c0 with fixed point property for affine nonexpansive mappings. In this study, we construct a family of equivalent norms containing those developed by Nezir as well and show that there exists a large class of non-weakly compact closed, bounded, convex subsets of c0 with fixed point property for affine nonexpansive mappings.
Development of mechanical structure for the compact space IR camera MIRIS
NASA Astrophysics Data System (ADS)
Moon, Bongkon; Jeong, Woong-Seob; Cha, Sang-Mok; Park, Youngsik; Ree, Chang-Hee; Lee, Dae-Hee; Park, Sung-Joon; Nam, Uk-Won; Park, Jang-Hyun; Ka, Nung Hyun; Lee, Mi Hyun; Lee, Duk-Hang; Pyo, Jeonghyun; Rhee, Seung-Woo; Park, Jong-Oh; Lee, Hyung-Mok; Matsumoto, Toshio; Yang, Sun Choel; Han, Wonyong
2010-07-01
MIRIS is a compact near-infrared camera with a wide field of view of 3.67°×3.67° in the Korea Science and Technology Satellite 3 (STSAT-3). MIRIS will be launched warm and cool the telescope optics below 200K by pointing to the deep space on Sun-synchronous orbit. In order to realize the passive cooling, the mechanical structure was designed to consider thermal analysis results on orbit. Structural analysis was also conducted to ensure safety and stability in launching environments. To achieve structural and thermal requirements, we fabricated the thermal shielding parts such as Glass Fiber Reinforced Plastic (GFRP) pipe supports, a Winston cone baffle, aluminum-shield plates, a sunshade, a radiator and 30 layers of Multi Layer Insulation (MLI). These structures prevent the heat load from the spacecraft and the earth effectively, and maintain the temperature of the telescope optics within operating range. A micro cooler was installed in a cold box including a PICNIC detector and a filter-wheel, and cooled the detector down to a operating temperature range. We tested the passive cooling in the simulated space environment and confirmed that the required temperature of telescope can be achieved. Driving mechanism of the filter-wheel and the cold box structure were also developed for the compact space IR camera. Finally, we present the assembly procedures and the test result for the mechanical parts of MIRIS.
Compact atomic clocks and stabilised laser for space applications
NASA Astrophysics Data System (ADS)
Mileti, Gaetano; Affolderbach, Christoph; Matthey-de-l'Endroit, Renaud
2016-07-01
We present our developments towards next generation compact vapour-cell based atomic frequency standards using a tunable laser diode instead of a traditional discharge lamp. The realisation of two types of Rubidium clocks addressing specific applications is in progress: high performance frequency standards for demanding applications such as satellite navigation, and chip-scale atomic clocks, allowing further miniaturisation of the system. The stabilised laser source constitutes the main technological novelty of these new standards, allowing a more efficient preparation and interrogation of the atoms and hence an improvement of the clock performances. However, before this key component may be employed in a commercial and ultimately in a space-qualified instrument, further studies are necessary to demonstrate their suitability, in particular concerning their reliability and long-term operation. The talk will present our preliminary investigations on this subject. The stabilised laser diode technology developed for our atomic clocks has several other applications on ground and in space. We will conclude our talk by illustrating this for the example of a recently completed ESA project on a 1.6 microns wavelength reference for a future space-borne Lidar. This source is based on a Rubidium vapour cell providing the necessary stability and accuracy, while a second harmonic generator and a compact optical comb generated from an electro-optic modulator allow to transfer these properties from the Rubidium wavelength (780nm) to the desired spectral range.
Strong coupling of collection of emitters on hyperbolic meta-material
NASA Astrophysics Data System (ADS)
Biehs, Svend-Age; Xu, Chenran; Agarwal, Girish S.
2018-04-01
Recently, considerable effort has been devoted to the realization of a strong coupling regime of the radiation matter interaction in the context of an emitter at a meta surface. The strong interaction is well realized in cavity quantum electrodynamics, which also show that strong coupling is much easier to realize using a collection of emitters. Keeping this in mind, we study if emitters on a hyperbolic meta materials can yield a strong coupling regime. We show that strong coupling can be realized for densities of emitters exceeding a critical value. A way to detect strong coupling between emitters and hyperbolic metamaterials is to use the Kretschman-Raether configuration. The strong coupling appears as the splitting of the reflectivity dip. In the weak coupling regime, the dip position shifts. The shift and splitting can be used to sense active molecules at surfaces.
Anomalous resonances of an optical microcavity with a hyperbolic metamaterial core
NASA Astrophysics Data System (ADS)
Travkin, Evgenij; Kiel, Thomas; Sadofev, Sergey; Busch, Kurt; Benson, Oliver; Kalusniak, Sascha
2018-05-01
We embed a hyperbolic metamaterial based on stacked layer pairs of epitaxially grown ZnO/ZnO:Ga in a monolithic optical microcavity, and we investigate the arising unique resonant effects experimentally and theoretically. Unlike traditional metals, the semiconductor-based approach allows us to utilize all three permittivity regions of the hyperbolic metamaterial in the near-infrared spectral range. This configuration gives rise to modes of identical orders appearing at different frequencies, a zeroth-order resonance in an all-positive permittivity region, and a continuum of high-order modes. In addition, an unusual lower cutoff frequency is introduced to the resonator mode spectrum. The observed effects expand the possibilities for customization of optical resonators; in particular, the zeroth-order and high-order modes hold strong potential for the realization of deeply subwavelength cavity sizes.
Free vibration of laminated composite stiffened hyperbolic paraboloid shell panel with cutout
NASA Astrophysics Data System (ADS)
Sahoo, Sarmila
2016-08-01
Composite shell structures are extensively used in aerospace, civil, marine and other engineering applications. In practical civil engineering applications, the necessity of covering large column free open areas is often an issue and hyperbolic paraboloid shells are used as roofing units. Quite often, to save weight and also to provide a facility for inspection, cutouts are provided in shell panels. The paper considers free vibration characteristics of stiffened composite hyperbolic paraboloid shell panel with cutout in terms of natural frequency and mode shapes. A finite element code is developed for the purpose by combining an eight noded curved shell element with a three noded curved beam element. The size of the cutouts and their positions with respect to the shell centre are varied for different edge conditions to arrive at a set of inferences of practical engineering significances.
Subwavelength focusing of terahertz waves in silicon hyperbolic metamaterials.
Kannegulla, Akash; Cheng, Li-Jing
2016-08-01
We theoretically demonstrate the subwavelength focusing of terahertz (THz) waves in a hyperbolic metamaterial (HMM) based on a two-dimensional subwavelength silicon pillar array microstructure. The silicon microstructure with a doping concentration of at least 1017 cm-3 offers a hyperbolic dispersion at terahertz frequency range and promises the focusing of terahertz Gaussian beams. The results agree with the simulation based on effective medium theory. The focusing effect can be controlled by the doping concentration, which determines the real part of the out-of-plane permittivity and, therefore, the refraction angles in HMM. The focusing property in the HMM structure allows the propagation of terahertz wave through a subwavelength aperture. The silicon-based HMM structure can be realized using microfabrication technologies and has the potential to advance terahertz imaging with subwavelength resolution.
Exponential Boundary Observers for Pressurized Water Pipe
NASA Astrophysics Data System (ADS)
Hermine Som, Idellette Judith; Cocquempot, Vincent; Aitouche, Abdel
2015-11-01
This paper deals with state estimation on a pressurized water pipe modeled by nonlinear coupled distributed hyperbolic equations for non-conservative laws with three known boundary measures. Our objective is to estimate the fourth boundary variable, which will be useful for leakage detection. Two approaches are studied. Firstly, the distributed hyperbolic equations are discretized through a finite-difference scheme. By using the Lipschitz property of the nonlinear term and a Lyapunov function, the exponential stability of the estimation error is proven by solving Linear Matrix Inequalities (LMIs). Secondly, the distributed hyperbolic system is preserved for state estimation. After state transformations, a Luenberger-like PDE boundary observer based on backstepping mathematical tools is proposed. An exponential Lyapunov function is used to prove the stability of the resulted estimation error. The performance of the two observers are shown on a water pipe prototype simulated example.
Kelly, Priscilla; Liu, Mingzhao; Kuznetsova, Lyuba
2016-04-07
In this study, nano-layered Al:ZnO/ZnO hyperbolic dispersion metamaterial with a large number of layers was fabricated using the atomic layer deposition (ALD) technique. Experimental dielectric functions for Al:ZnO/ZnO structures are obtained by an ellipsometry technique in the visible and near-infrared spectral ranges. The theoretical modeling of the Al:ZnO/ZnO dielectric permittivity is done using effective medium approximation. A method for analysis of spectroscopic ellipsometry data is demonstrated to extract the optical permittivity for this highly anisotropic nano-layered metamaterial. The results of the ellipsometry analysis show that Al:ZnO/ZnO structures with a 1:9 ALD cycle ratio exhibit hyperbolic dispersion transition change near 1.8more » μm wavelength.« less
Tunable angle absorption of hyperbolic metamaterials based on plasma photonic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Zheng; Ning, Renxia, E-mail: nrxxiner@hsu.edu.cn; Xu, Yuan
2016-06-15
We present the design of a multilayer structure of hyperbolic metamaterials based on plasma photonic crystals which composed of two kinds of traditional dielectric and plasma. The relative permittivity of hyperbolic metamaterials has been studied at certain frequency range. The absorption and reflection of the multilayer period structure at normal and oblique incident have been investigated by the transfer matrix method. We discussed that the absorption is affected by the thickness of material and the electron collision frequency γ of the plasma. The results show that an absorption band at the low frequency can be obtained at normal incident anglemore » and another absorption band at the high frequency can be found at a large incident angle. The results may be applied by logical gate, stealth, tunable angle absorber, and large angle filter.« less
Hyperbolic reformulation of a 1D viscoelastic blood flow model and ADER finite volume schemes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montecinos, Gino I.; Müller, Lucas O.; Toro, Eleuterio F.
2014-06-01
The applicability of ADER finite volume methods to solve hyperbolic balance laws with stiff source terms in the context of well-balanced and non-conservative schemes is extended to solve a one-dimensional blood flow model for viscoelastic vessels, reformulated as a hyperbolic system, via a relaxation time. A criterion for selecting relaxation times is found and an empirical convergence rate assessment is carried out to support this result. The proposed methodology is validated by applying it to a network of viscoelastic vessels for which experimental and numerical results are available. The agreement between the results obtained in the present paper and thosemore » available in the literature is satisfactory. Key features of the present formulation and numerical methodologies, such as accuracy, efficiency and robustness, are fully discussed in the paper.« less
Analysis of generalized negative binomial distributions attached to hyperbolic Landau levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chhaiba, Hassan, E-mail: chhaiba.hassan@gmail.com; Demni, Nizar, E-mail: nizar.demni@univ-rennes1.fr; Mouayn, Zouhair, E-mail: mouayn@fstbm.ac.ma
2016-07-15
To each hyperbolic Landau level of the Poincaré disc is attached a generalized negative binomial distribution. In this paper, we compute the moment generating function of this distribution and supply its atomic decomposition as a perturbation of the negative binomial distribution by a finitely supported measure. Using the Mandel parameter, we also discuss the nonclassical nature of the associated coherent states. Next, we derive a Lévy-Khintchine-type representation of its characteristic function when the latter does not vanish and deduce that it is quasi-infinitely divisible except for the lowest hyperbolic Landau level corresponding to the negative binomial distribution. By considering themore » total variation of the obtained quasi-Lévy measure, we introduce a new infinitely divisible distribution for which we derive the characteristic function.« less
Latest developments for low-power infrared laser-based trace gas sensors for sensor networks
NASA Astrophysics Data System (ADS)
So, Stephen; Thomazy, David; Wang, Wen; Marchat, Oscar; Wysocki, Gerard
2011-09-01
Academic and industrial researchers require ultra-low power, compact laser based trace-gas sensor systems for the most demanding environmental and space-borne applications. Here the latest results from research projects addressing these applications will be discussed: 1) an ultra-compact CO2 sensor based on a continuous wave quantum cascade laser, 2) an ultra-sensitive Faraday rotation spectrometer for O2 detection, 3) a fully ruggedized compact and low-power laser spectrometer, and 4) a novel non-paraxial nonthin multipass cell. Preliminary tests and projection for performance of future sensors based on this technology is presented.
Compacted dimensions and singular plasmonic surfaces
NASA Astrophysics Data System (ADS)
Pendry, J. B.; Huidobro, Paloma Arroyo; Luo, Yu; Galiffi, Emanuele
2017-11-01
In advanced field theories, there can be more than four dimensions to space, the excess dimensions described as compacted and unobservable on everyday length scales. We report a simple model, unconnected to field theory, for a compacted dimension realized in a metallic metasurface periodically structured in the form of a grating comprising a series of singularities. An extra dimension of the grating is hidden, and the surface plasmon excitations, though localized at the surface, are characterized by three wave vectors rather than the two of typical two-dimensional metal grating. We propose an experimental realization in a doped graphene layer.
Optimal disturbance rejecting control of hyperbolic systems
NASA Technical Reports Server (NTRS)
Biswas, Saroj K.; Ahmed, N. U.
1994-01-01
Optimal regulation of hyperbolic systems in the presence of unknown disturbances is considered. Necessary conditions for determining the optimal control that tracks a desired trajectory in the presence of the worst possible perturbations are developed. The results also characterize the worst possible disturbance that the system will be able to tolerate before any degradation of the system performance. Numerical results on the control of a vibrating beam are presented.
Long-range propagation of plasmon and phonon polaritons in hyperbolic-metamaterial waveguides
NASA Astrophysics Data System (ADS)
Babicheva, Viktoriia E.
2017-12-01
We study photonic multilayer waveguides that include layers of materials and metamaterials with a hyperbolic dispersion (HMM). We consider the long-range propagation of plasmon and phonon polaritons at the dielectric-HMM interface in different waveguide geometries (single boundary or different layers of symmetric cladding). In contrast to the traditional analysis of geometrical parameters, we make an emphasis on the optical properties of constituent materials: solving dispersion equations, we analyze how dielectric and HMM permittivities affect propagation length and mode size of waveguide eigenmodes. We derive figures of merit that should be used for each waveguide in a broad range of permittivity values as well as compare them with plasmonic waveguides. We show that the conventional plasmonic quality factor, which is the ratio of real to imaginary parts of permittivity, is not applicable to the case of waveguides with complex structure. Both telecommunication wavelengths and mid-infrared spectral ranges are of interest considering recent advances in van der Waals materials, such as hexagonal boron nitride. We evaluate the performance of the waveguides with hexagonal boron nitride in the range where it possesses hyperbolic dispersion (wavelength 6.3-7.3 μm), and we show that these waveguides with natural hyperbolic properties have higher propagation lengths than metal-based HMM waveguides.
High-Order Hyperbolic Residual-Distribution Schemes on Arbitrary Triangular Grids
NASA Technical Reports Server (NTRS)
Mazaheri, Alireza; Nishikawa, Hiroaki
2015-01-01
In this paper, we construct high-order hyperbolic residual-distribution schemes for general advection-diffusion problems on arbitrary triangular grids. We demonstrate that the second-order accuracy of the hyperbolic schemes can be greatly improved by requiring the scheme to preserve exact quadratic solutions. We also show that the improved second-order scheme can be easily extended to third-order by further requiring the exactness for cubic solutions. We construct these schemes based on the LDA and the SUPG methodology formulated in the framework of the residual-distribution method. For both second- and third-order-schemes, we construct a fully implicit solver by the exact residual Jacobian of the second-order scheme, and demonstrate rapid convergence of 10-15 iterations to reduce the residuals by 10 orders of magnitude. We demonstrate also that these schemes can be constructed based on a separate treatment of the advective and diffusive terms, which paves the way for the construction of hyperbolic residual-distribution schemes for the compressible Navier-Stokes equations. Numerical results show that these schemes produce exceptionally accurate and smooth solution gradients on highly skewed and anisotropic triangular grids, including curved boundary problems, using linear elements. We also present Fourier analysis performed on the constructed linear system and show that an under-relaxation parameter is needed for stabilization of Gauss-Seidel relaxation.
Deep-Ultraviolet Hyperbolic Metacavity Laser.
Shen, Kun-Ching; Ku, Chen-Ta; Hsieh, Chiieh; Kuo, Hao-Chung; Cheng, Yuh-Jen; Tsai, Din Ping
2018-05-01
Given the high demand for miniaturized optoelectronic circuits, plasmonic devices with the capability of generating coherent radiation at deep subwavelength scales have attracted great interest for diverse applications such as nanoantennas, single photon sources, and nanosensors. However, the design of such lasing devices remains a challenging issue because of the long structure requirements for producing strong radiation feedback. Here, a plasmonic laser made by using a nanoscale hyperbolic metamaterial cube, called hyperbolic metacavity, on a multiple quantum-well (MQW), deep-ultraviolet emitter is presented. The specifically designed metacavity merges plasmon resonant modes within the cube and provides a unique resonant radiation feedback to the MQW. This unique plasmon field allows the dipoles of the MQW with various orientations into radiative emission, achieving enhancement of spontaneous emission rate by a factor of 33 and of quantum efficiency by a factor of 2.5, which is beneficial for coherent laser action. The hyperbolic metacavity laser shows a clear clamping of spontaneous emission above the threshold, which demonstrates a near complete radiation coupling of the MQW with the metacavity. This approach shown here can greatly simplify the requirements of plasmonic nanolaser with a long plasmonic structure, and the metacavity effect can be extended to many other material systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of product form, compaction, vibration and comminution on energywood bulk density
Tim P. McDonald; Bryce J. Stokes; J.F. McNeel
1995-01-01
A study was performed to examine the changes in density of stacked roundwood, chips, and chunks as affected by various compaction treatments. Density of stacked roundwood bolts was tested for the effect of stacking orientation, binding of the stack ends, and species. Stacked bolt wood occupied less than 50 percent of the total rack space for all species, giving final...
On orthogonal projectors induced by compact groups and Haar measures
NASA Astrophysics Data System (ADS)
Niezgoda, Marek
2008-02-01
We study the difference of two orthogonal projectors induced by compact groups of linear operators acting on a vector space. An upper bound for the difference is derived using the Haar measures of the groups. A particular attention is paid to finite groups. Some applications are given for complex matrices and unitarily invariant norms. Majorization inequalities of Fan and Hoffmann and of Causey are rediscovered.