Science.gov

Sample records for compact light source

  1. Compact X-ray Light Source Workshop Report

    SciTech Connect

    Thevuthasan, Suntharampillai; Evans, James E.; Terminello, Louis J.; Koppenaal, David W.; Manke, Kristin L.; Plata, Charity

    2012-12-01

    This report, produced jointly by EMSL and FCSD, is the result of a workshop held in September 2011 that examined the utility of a compact x-ray light source (CXLS) in addressing many scientific challenges critical to advancing energy science and technology.

  2. The Munich Compact Light Source: initial performance measures.

    PubMed

    Eggl, Elena; Dierolf, Martin; Achterhold, Klaus; Jud, Christoph; Günther, Benedikt; Braig, Eva; Gleich, Bernhard; Pfeiffer, Franz

    2016-09-01

    While large-scale synchrotron sources provide a highly brilliant monochromatic X-ray beam, these X-ray sources are expensive in terms of installation and maintenance, and require large amounts of space due to the size of storage rings for GeV electrons. On the other hand, laboratory X-ray tube sources can easily be implemented in laboratories or hospitals with comparatively little cost, but their performance features a lower brilliance and a polychromatic spectrum creates problems with beam hardening artifacts for imaging experiments. Over the last decade, compact synchrotron sources based on inverse Compton scattering have evolved as one of the most promising types of laboratory-scale X-ray sources: they provide a performance and brilliance that lie in between those of large-scale synchrotron sources and X-ray tube sources, with significantly reduced financial and spatial requirements. These sources produce X-rays through the collision of relativistic electrons with infrared laser photons. In this study, an analysis of the performance, such as X-ray flux, source size and spectra, of the first commercially sold compact light source, the Munich Compact Light Source, is presented. PMID:27577768

  3. The Munich Compact Light Source: initial performance measures.

    PubMed

    Eggl, Elena; Dierolf, Martin; Achterhold, Klaus; Jud, Christoph; Günther, Benedikt; Braig, Eva; Gleich, Bernhard; Pfeiffer, Franz

    2016-09-01

    While large-scale synchrotron sources provide a highly brilliant monochromatic X-ray beam, these X-ray sources are expensive in terms of installation and maintenance, and require large amounts of space due to the size of storage rings for GeV electrons. On the other hand, laboratory X-ray tube sources can easily be implemented in laboratories or hospitals with comparatively little cost, but their performance features a lower brilliance and a polychromatic spectrum creates problems with beam hardening artifacts for imaging experiments. Over the last decade, compact synchrotron sources based on inverse Compton scattering have evolved as one of the most promising types of laboratory-scale X-ray sources: they provide a performance and brilliance that lie in between those of large-scale synchrotron sources and X-ray tube sources, with significantly reduced financial and spatial requirements. These sources produce X-rays through the collision of relativistic electrons with infrared laser photons. In this study, an analysis of the performance, such as X-ray flux, source size and spectra, of the first commercially sold compact light source, the Munich Compact Light Source, is presented.

  4. Ultraviolet light output of compact fluorescent lamps: comparison to conventional incandescent and halogen residential lighting sources.

    PubMed

    Nuzum-Keim, A D; Sontheimer, R D

    2009-05-01

    Patients with photosensitive dermatologic and systemic diseases often question the ultraviolet light (UVL) output of household lighting sources. Such individuals have increasing concern about potential UVL exposure from energy-efficient compact fluorescent lamps (CFL), as little data have been presented concerning their UVL output. The objective was to compare, via pilot study, the levels of ultraviolet A (UVA) and ultraviolet B (UVB) leak between residential lighting sources. Equivalent wattage CFL, incandescent and halogen bulbs were purchased from local retailers in Oklahoma City, Oklahoma, USA. The UVA and UVB outputs of these sources were measured under controlled conditions at 10, 25, 50, 100 and 150 cm away from the light source using an IL-1700 research radiometer equipped with UVA and UVB detectors. Negligible UVB and UVA was detected at 100 and 150 cm. Therefore, data were analysed from measurements at 10, 25 and 50 cm only. The results demonstrated UVA leak highest from incandescent and halogen bulbs, and UVB leak highest from CFL. The overall UVA/UVB leak was lowest from CFL shielded during the manufacturing process. In conclusion, patients with photosensitivity have choices depending on their relative risk from different UVL wavelength spectra. UVB exposure risk may be reduced the greatest by utilising CFL with manufacturer-provided shields.

  5. Status of compact synchrotron light source work at TAC

    NASA Astrophysics Data System (ADS)

    Swenson, C. A.; Huson, F. R.; Rocha, R.; Huang, Yunxiang

    A compact electron synchrotron for x ray lithography is a design project at the Texas Accelerator Center. The design is a four super-period symmetric cell lattice that is 18.8 meters in circumference. Numerical tracking results including edge fields affect the theoretical and mechanical design of the machine. An integrated magnet and lattice design algorithm is discussed. Structural design and measurement system parameters for a prototype superferric 3 Tesla 90 degs dipole are discussed. The prototype dipole magnet is currently under construction.

  6. Report of the Basic Energy Sciences Workshop on Compact Light Sources

    SciTech Connect

    Barletta, William A.; Borland, Michael

    2010-05-11

    This report is based on a BES Workshop on Compact Light Sources, held May 11-12, 2010, to evaluated the advantages and disadvantages of compact light source approaches and compared their performance to the third generation storage rings and free-electron lasers. The workshop examined the state of the technology for compact light sources and their expected progress. The workshop evaluated the cost efficiency, user access, availability, and reliability of such sources. Working groups evaluated the advantages and disadvantages of Compact Light Source (CLS) approaches, and compared their performance to the third-generation storage rings and free-electron lasers (FELs). The primary aspects of comparison were 1) cost effectiveness, 2) technical availability v. time frame, and 3) machine reliability and availability for user access. Five categories of potential sources were analyzed: 1) inverse Compton scattering (ICS) sources, 2) mini storage rings, 3) plasma sources, 4) sources using plasma-based accelerators, and 5) laser high harmonic generation (HHG) sources. Compact light sources are not a substitute for large synchrotron and FEL light sources that typically also incorporate extensive user support facilities. Rather they offer attractive, complementary capabilities at a small fraction of the cost and size of large national user facilities. In the far term they may offer the potential for a new paradigm of future national user facility. In the course of the workshop, we identified overarching R&D topics over the next five years that would enhance the performance potential of both compact and large-scale sources: Development of infrared (IR) laser systems delivering kW-class average power with femtosecond pulses at kHz repetition rates. These have application to ICS sources, plasma sources, and HHG sources. Development of laser storage cavities for storage of 10-mJ picosecond and femtosecond pulses focused to micron beam sizes. Development of high-brightness, high

  7. A 1.5 GeV compact light source with superconducting bending magnets

    SciTech Connect

    Garren, A.A. ||; Cline, D.B.; Kolonko, J.J. |; Green, M.A.; Johnson, D.E.; Leung, E.M.; Madura, D.D.

    1995-05-01

    This paper describes the design of a compact electron synchrotron light source for producing X-rays for medical imaging, protein crystallography, nano-machining and other uses up to 35 keV. The source will provide synchrotron light from six 6.9 tesla superconducting 60{degree} bending magnet stations. In addition the ring, contains conventional quadrupoles and sextupoles. The light source has a circumference of 26 meters, which permits it to be located in a variety of industrial and medical facilities.

  8. Employing partially coherent, compact gas-discharge sources for coherent diffractive imaging with extreme ultraviolet light

    NASA Astrophysics Data System (ADS)

    Bußmann, J.; Odstrčil, M.; Bresenitz, R.; Rudolf, D.; Miao, Jianwei; Brocklesby, W. S.; Grützmacher, D.; Juschkin, L.

    2015-09-01

    Coherent diffractive imaging (CDI) and related techniques enable a new type of diffraction-limited high-resolution extreme ultraviolet (EUV) microscopy. Here, we demonstrate CDI reconstruction of a complex valued object under illumination by a compact gas-discharge EUV light source emitting at 17.3 nm (O VI spectral line). The image reconstruction method accounts for the partial spatial coherence of the radiation and allows imaging even with residual background light. These results are a first step towards laboratory-scale CDI with a gas-discharge light source for applications including mask inspection for EUV lithography, metrology and astronomy.

  9. Development of a compact 3D shape measurement unit using the light-source-stepping method

    NASA Astrophysics Data System (ADS)

    Fujigaki, Motoharu; Sakaguchi, Toshimasa; Murata, Yorinobu

    2016-10-01

    A compact 3D shape measurement unit that uses the light-source-stepping method (LSSM) is developed. The LSSM proposed by the authors is a phase-shifting fringe projection method for shape measurement. The authors also developed a linear LED device for high-speed shape measurement using the LSSM. A compact and high-speed 3D shape measurement unit can be realized using a linear LED device. However, the LSSM is difficult to utilize because the phase-shifting amount is not uniform. The phase-shifting amount depends on the distance from the grating plate. It is therefore necessary to consider carefully the locations of the linear LED device and the grating plate. In this paper, the design method for a 3D shape measurement unit that uses the LSSM is shown, and a prototype of a compact 3D shape measurement unit with a linear LED device is developed.

  10. Ptychographic imaging with a compact gas-discharge plasma extreme ultraviolet light source.

    PubMed

    Odstrcil, M; Bussmann, J; Rudolf, D; Bresenitz, R; Miao, Jianwei; Brocklesby, W S; Juschkin, L

    2015-12-01

    We report the demonstration of a scanning probe coherent diffractive imaging method (also known as ptychographic CDI) using a compact and partially coherent gas-discharge plasma source of extreme ultraviolet (EUV) radiation at a 17.3 nm wavelength. Until now, CDI has been mainly carried out with coherent, high-brightness light sources, such as third generation synchrotrons, x-ray free-electron lasers, and high harmonic generation. Here we performed ptychographic lensless imaging of an extended sample using a compact, lab-scale source. The CDI reconstructions were achieved by applying constraint relaxation to the CDI algorithm. Experimental results indicate that our method can handle the low spatial coherence and broadband nature of the EUV illumination, as well as the residual background due to visible light emitted by the gas-discharge source. The ability to conduct ptychographic imaging with lab-scale and partially coherent EUV sources is expected to significantly expand the applications of this powerful CDI method. PMID:26625054

  11. Ptychographic imaging with a compact gas-discharge plasma extreme ultraviolet light source.

    PubMed

    Odstrcil, M; Bussmann, J; Rudolf, D; Bresenitz, R; Miao, Jianwei; Brocklesby, W S; Juschkin, L

    2015-12-01

    We report the demonstration of a scanning probe coherent diffractive imaging method (also known as ptychographic CDI) using a compact and partially coherent gas-discharge plasma source of extreme ultraviolet (EUV) radiation at a 17.3 nm wavelength. Until now, CDI has been mainly carried out with coherent, high-brightness light sources, such as third generation synchrotrons, x-ray free-electron lasers, and high harmonic generation. Here we performed ptychographic lensless imaging of an extended sample using a compact, lab-scale source. The CDI reconstructions were achieved by applying constraint relaxation to the CDI algorithm. Experimental results indicate that our method can handle the low spatial coherence and broadband nature of the EUV illumination, as well as the residual background due to visible light emitted by the gas-discharge source. The ability to conduct ptychographic imaging with lab-scale and partially coherent EUV sources is expected to significantly expand the applications of this powerful CDI method.

  12. A compact frequency domain fluorometer with a directly modulated deuterium light source

    NASA Astrophysics Data System (ADS)

    Morgan, C. G.; Hua, Y.; Mitchell, A. K.; Murray, J. G.; Boardman, A. D.

    1996-01-01

    A phase fluorometer based on a low-cost and versatile high-frequency modulated light source and a fast gain-modulated photomultiplier is described. The apparatus is particularly well-suited to high-sensitivity frequency-domain fluorescence measurements requiring ultraviolet excitation. The system is very compact since it features a directly modulated light source, a miniature photomultiplier tube, and an rf synthesizer on a PC board. Equipped with a suitable fiber optic probe sensor, the device has potential as a portable unit for a wide range of remote sensing applications. The lamp can be modulated at frequencies up to 120 MHz and the phase fluorometer has been tested at up to 70 MHz with a range of fluorescent lifetime standards containing quinine sulfate quenched with sodium chloride.

  13. Compact stacking of diode lasers for pulsed light sources of high brightness.

    PubMed

    Alahautala, Taito; Lassila, Erkki; Hernberg, Rolf

    2004-07-20

    A compact stacking architecture for high-power diode-laser arrays is proposed and compared with traditional stacks. The objective of compact stacking is to achieve high brightness values without the use of microlenses. The calculated brightness for a compact stack is over 300 W mm(-2) sr(-1), which is approximately 40 times higher than that of a traditional stack made of similar laser emitters. Even higher brightness values of over 600 W mm(-2) sr(-1) were reached in practice. A laser head was manufactured in which the light from several compact laser stacks could be fiber coupled or the light could be transformed to a highly uniform beam.

  14. Two-step design method for highly compact three-dimensional freeform optical system for LED surface light source.

    PubMed

    Mao, Xianglong; Li, Hongtao; Han, Yanjun; Luo, Yi

    2014-10-20

    Designing an illumination system for a surface light source with a strict compactness requirement is quite challenging, especially for the general three-dimensional (3D) case. In accordance with the two key features of an expected illumination distribution, i.e., a well-controlled boundary and a precise illumination pattern, a two-step design method is proposed in this paper for highly compact 3D freeform illumination systems. In the first step, a target shape scaling strategy is combined with an iterative feedback modification algorithm to generate an optimized freeform optical system with a well-controlled boundary of the target distribution. In the second step, a set of selected radii of the system obtained in the first step are optimized to further improve the illuminating quality within the target region. The method is quite flexible and effective to design highly compact optical systems with almost no restriction on the shape of the desired target field. As examples, three highly compact freeform lenses with ratio of center height h of the lens and the maximum dimension D of the source ≤ 2.5:1 are designed for LED surface light sources to form a uniform illumination distribution on a rectangular, a cross-shaped and a complex cross pierced target plane respectively. High light control efficiency of η > 0.7 as well as low relative standard illumination deviation of RSD < 0.07 is obtained simultaneously for all the three design examples. PMID:25607306

  15. A compact, multi-wavelength, and high frequency response light source for diffuse optical spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Park, Kyoungsu; Lee, Minseok; Lee, Seung-ha; Cerussi, Albert E.; Chung, Phil-sang; Kim, Sehwan

    2015-03-01

    Many biomedical applications require an efficient combination and localization of multiple discrete light sources. In this paper, we present a compact six-channel combiner of optical sub-assembly type that couples the output of independent solid-state light sources into a single 400 μm diameter optical fiber. It is equipped with six discrete laser diodes, 658, 690, 705, 785, 830, and 850 nm for the measurement of the tissue optical properties from optical spectroscopy and imaging. We demonstrate coupling efficiencies ≥ 77% and output optical power ≥ 20 mW for each of the 6 laser diodes installed into the prototype. The design supports the use of continuous wave and intensity modulated laser diodes (with bandwidth ≥ 3 GHz). The developed light source could be used to construct custom multi-wavelength sources for tissue oximeters, diffuse optical imaging, and molecular imaging technologies.

  16. A two-step design method for high compact rotationally symmetric optical system for LED surface light source.

    PubMed

    Mao, Xianglong; Li, Hongtao; Han, Yanjun; Luo, Yi

    2014-03-10

    A two-step optimization method is proposed to design a compact single-surface far-field illumination system, satisfying the requirements of illuminance uniformity and light control efficiency with h/D less than 3:1. In the first step, the conventional tailored edge-ray design (TED) method is employed to generate prescribed illumination distribution for the rotationally symmetric optical system, and an optimization process is added to reach a balance between illuminance uniformity and light control efficiency. Based on the improved TED method, we can construct an initial optical system more accurate than that obtained by point source assumption. In the second step, an iterative feedback modification process is employed to optimize the initial optical system, so that the degradation of performance due to insufficient control of skew rays is mitigated. Because the initial optical system constructed in the first step is accurate enough, the second-step feedback modification can converge to a satisfactory result within several iterations. As an example, a free-form rotationally symmetric lens with the height of h = 25 mm is designed for a discoidal LED source with the diameter of D = 10 mm. Both high illuminance uniformity of 0.75 and high light control efficiency of 0.86 are obtained simultaneously. The method can be further used to achieve more complex non-uniform illumination distributions. The design of an optical system with h/D = 2.5:1 and a circular linear illumination distribution is demonstrated. PMID:24800279

  17. A two-step design method for high compact rotationally symmetric optical system for LED surface light source.

    PubMed

    Mao, Xianglong; Li, Hongtao; Han, Yanjun; Luo, Yi

    2014-03-10

    A two-step optimization method is proposed to design a compact single-surface far-field illumination system, satisfying the requirements of illuminance uniformity and light control efficiency with h/D less than 3:1. In the first step, the conventional tailored edge-ray design (TED) method is employed to generate prescribed illumination distribution for the rotationally symmetric optical system, and an optimization process is added to reach a balance between illuminance uniformity and light control efficiency. Based on the improved TED method, we can construct an initial optical system more accurate than that obtained by point source assumption. In the second step, an iterative feedback modification process is employed to optimize the initial optical system, so that the degradation of performance due to insufficient control of skew rays is mitigated. Because the initial optical system constructed in the first step is accurate enough, the second-step feedback modification can converge to a satisfactory result within several iterations. As an example, a free-form rotationally symmetric lens with the height of h = 25 mm is designed for a discoidal LED source with the diameter of D = 10 mm. Both high illuminance uniformity of 0.75 and high light control efficiency of 0.86 are obtained simultaneously. The method can be further used to achieve more complex non-uniform illumination distributions. The design of an optical system with h/D = 2.5:1 and a circular linear illumination distribution is demonstrated. PMID:24922232

  18. Light Source

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Research on food growth for long duration spacecraft has resulted in a light source for growing plants indoors known as Qbeam, a solid state light source consisting of a control unit and lamp. The light source, manufactured by Quantum Devices, Inc., is not very hot, although it generates high intensity radiation. When Ron Ignatius, an industrial partner of WCSAR, realized that terrestrial plant research lighting was not energy efficient enough for space use, he and WCSAR began to experiment with light emitting diodes. A line of LED products was developed, and QDI was formed to market the technology. An LED-based cancer treatment device is currently under development.

  19. Development of a Compact Optical-MEMS Scanner with Integrated VCSEL Light Source and Diffractive Optics

    SciTech Connect

    Krygowski, Thomas W.; Reyes, David; Rodgers, M. Steven; Smith, James H.; Warren, Mial; Sweatt, William; Blum-Spahn, Olga; Wendt, Joel R.; Asbill, Randy

    1999-06-30

    In this work the design and initial fabrication results are reported for the components of a compact optical-MEMS laser scanning system. This system integrates a silicon MEMS laser scanner, a Vertical Cavity Surface Emitting Laser (VCSEL) and passive optical components. The MEMS scanner and VCSEL are mounted onto a fused silica substrate which serves as an optical interconnect between the devices. Two Diffractive Optical Elements (DOEs) are etched into the fused silica substrate to focus the VCSEL beam and increase the scan range. The silicon MEMS scanner consists of an actuator that continuously scans the position of a large polysilicon gold-coated shuttle containing a third DOE. Interferometric measurements show that the residual stress in the 500 {micro}m x 1000 {micro}m shuttle is extremely low, with a maximum deflection of only 0.18{micro}m over an 800 {micro}m span for an unmetallized case and a deflection of 0.56{micro}m for the metallized case. A conservative estimate for the scan range is {approximately}{+-}4{degree}, with a spot size of about 0.5 mm, producing 50 resolvable spots. The basic system architecture, optical and MEMS design is reported in this paper, with an emphasis on the design and fabrication of the silicon MEMS scanner portion of the system.

  20. Design parameters for a 7.2 tesla bending magnet for a 1.5 GeV compact light source

    SciTech Connect

    Green, M.A.; Madura, D.

    1995-06-01

    This report describes the design for a 7.2 tesla superconducting dipole magnet for a compact synchrotron light source. The proposed magnet is a Vobly type modified picture frame dipole that has the flux returned through unsaturated iron. In this magnet, The iron in the pole pieces is highly saturated, Separately powered coils around the pole pieces are used to direct the flux lines until the flux can be returned through the unsaturated iron. The proposed dipole will develop a uniform field over a region that is 80 mm high by 130 mm wide over a range of central induction from 0.4 T to almost 8 T. Each dipole for the compact light source will have a magnetic length of about 0.38 meters.

  1. Design parameters for a 7.2 tesla bending magnet for a 1.5 GeV compact light source

    SciTech Connect

    Green, M.A.; Madura, D.

    1996-07-01

    This report describes the design for a 7.2 tesla superconducting dipole magnet for a compact synchrotron light source. The proposed magnet is a Vobly type modified picture frame dipole that has the flux returned through unsaturated iron. In this magnet, the iron in the pole pieces is highly saturated. Separately powered coils around the pole pieces are used to direct the flux lines until the flux can be returned through the unsaturated iron. The proposed dipole will develop a uniform field over a region that is 80 mm high by 130 mm wide over a range of central induction from 0.4 T to almost 8 T. Each dipole for the compact light source will have a magnetic length of about 0.38 meters.

  2. Compact ion accelerator source

    DOEpatents

    Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali

    2014-04-29

    An ion source includes a conductive substrate, the substrate including a plurality of conductive nanostructures with free-standing tips formed on the substrate. A conductive catalytic coating is formed on the nanostructures and substrate for dissociation of a molecular species into an atomic species, the molecular species being brought in contact with the catalytic coating. A target electrode placed apart from the substrate, the target electrode being biased relative to the substrate with a first bias voltage to ionize the atomic species in proximity to the free-standing tips and attract the ionized atomic species from the substrate in the direction of the target electrode.

  3. A compact, sample-in-atmospheric-pressure soft x-ray microscope developed at Pohang Light Source

    NASA Astrophysics Data System (ADS)

    Lim, Jun; Shin, Hyun-Joon; Chae, Keun Hwa; Hwang, Chan-Cuk; Hwang, Han-Na; Hong, Chung Ki

    2010-06-01

    A full-field transmission soft x-ray microscope (TXM) was developed at the Pohang Light Source. With a 2 mm diameter condenser zone plate and a 40 nm outermost-zone-width objective zone plate, the TXM's achieved spatial resolution is better than 50 nm at the photon energy of 500 eV (wavelength: 2.49 nm). The TXM is portable and mounted in tandem with a 7B1 spectroscopy end station. The sample position is outside the vacuum, allowing for quick sample changes and enhanced in situ experimental capability. In addition, the TXM is pinhole-free and easy to align, having commercial mounts located outside the vacuum components.

  4. A compact, sample-in-atmospheric-pressure soft x-ray microscope developed at Pohang Light Source.

    PubMed

    Lim, Jun; Shin, Hyun-Joon; Chae, Keun Hwa; Hwang, Chan-Cuk; Hwang, Han-Na; Hong, Chung Ki

    2010-06-01

    A full-field transmission soft x-ray microscope (TXM) was developed at the Pohang Light Source. With a 2 mm diameter condenser zone plate and a 40 nm outermost-zone-width objective zone plate, the TXM's achieved spatial resolution is better than 50 nm at the photon energy of 500 eV (wavelength: 2.49 nm). The TXM is portable and mounted in tandem with a 7B1 spectroscopy end station. The sample position is outside the vacuum, allowing for quick sample changes and enhanced in situ experimental capability. In addition, the TXM is pinhole-free and easy to align, having commercial mounts located outside the vacuum components. PMID:20590241

  5. A compact, sample-in-atmospheric-pressure soft x-ray microscope developed at Pohang Light Source

    SciTech Connect

    Lim, Jun; Shin, Hyun-Joon; Chae, Keun Hwa; Hwang, Chan-Cuk; Hwang, Han-Na; Hong, Chung Ki

    2010-06-15

    A full-field transmission soft x-ray microscope (TXM) was developed at the Pohang Light Source. With a 2 mm diameter condenser zone plate and a 40 nm outermost-zone-width objective zone plate, the TXM's achieved spatial resolution is better than 50 nm at the photon energy of 500 eV (wavelength: 2.49 nm). The TXM is portable and mounted in tandem with a 7B1 spectroscopy end station. The sample position is outside the vacuum, allowing for quick sample changes and enhanced in situ experimental capability. In addition, the TXM is pinhole-free and easy to align, having commercial mounts located outside the vacuum components.

  6. Generation of circularly polarized radiation from a compact plasma-based extreme ultraviolet light source for tabletop X-ray magnetic circular dichroism studies.

    PubMed

    Wilson, Daniel; Rudolf, Denis; Weier, Christian; Adam, Roman; Winkler, Gerrit; Frömter, Robert; Danylyuk, Serhiy; Bergmann, Klaus; Grützmacher, Detlev; Schneider, Claus M; Juschkin, Larissa

    2014-10-01

    Generation of circularly polarized light in the extreme ultraviolet (EUV) spectral region (about 25 eV-250 eV) is highly desirable for applications in spectroscopy and microscopy but very challenging to achieve in a small-scale laboratory. We present a compact apparatus for generation of linearly and circularly polarized EUV radiation from a gas-discharge plasma light source between 50 eV and 70 eV photon energy. In this spectral range, the 3p absorption edges of Fe (54 eV), Co (60 eV), and Ni (67 eV) offer a high magnetic contrast often employed for magneto-optical and electron spectroscopy as well as for magnetic imaging. We simulated and designed an instrument for generation of linearly and circularly polarized EUV radiation and performed polarimetric measurements of the degree of linear and circular polarization. Furthermore, we demonstrate first measurements of the X-ray magnetic circular dichroism at the Co 3p absorption edge with a plasma-based EUV light source. Our approach opens the door for laboratory-based, element-selective spectroscopy of magnetic materials and spectro-microscopy of ferromagnetic domains. PMID:25362374

  7. Generation of circularly polarized radiation from a compact plasma-based extreme ultraviolet light source for tabletop X-ray magnetic circular dichroism studies

    SciTech Connect

    Wilson, Daniel; Rudolf, Denis Juschkin, Larissa; Weier, Christian; Adam, Roman; Schneider, Claus M.; Winkler, Gerrit; Frömter, Robert; Danylyuk, Serhiy; Bergmann, Klaus; Grützmacher, Detlev

    2014-10-15

    Generation of circularly polarized light in the extreme ultraviolet (EUV) spectral region (about 25 eV–250 eV) is highly desirable for applications in spectroscopy and microscopy but very challenging to achieve in a small-scale laboratory. We present a compact apparatus for generation of linearly and circularly polarized EUV radiation from a gas-discharge plasma light source between 50 eV and 70 eV photon energy. In this spectral range, the 3p absorption edges of Fe (54 eV), Co (60 eV), and Ni (67 eV) offer a high magnetic contrast often employed for magneto-optical and electron spectroscopy as well as for magnetic imaging. We simulated and designed an instrument for generation of linearly and circularly polarized EUV radiation and performed polarimetric measurements of the degree of linear and circular polarization. Furthermore, we demonstrate first measurements of the X-ray magnetic circular dichroism at the Co 3p absorption edge with a plasma-based EUV light source. Our approach opens the door for laboratory-based, element-selective spectroscopy of magnetic materials and spectro-microscopy of ferromagnetic domains.

  8. Nanograting-based compact VUV spectrometer and beam profiler for in-situ characterization of high-order harmonic generation light sources

    SciTech Connect

    Kornilov, Oleg; Wilcox, Russell; Gessner, Oliver

    2010-07-09

    A compact, versatile device for VUV beam characterization is presented. It combines the functionalities of a VUV spectrometer and a VUV beam profiler in one unit and is entirely supported by a standard DN200 CF flange. The spectrometer employs a silicon nitride transmission nanograting in combination with a micro-channel plate based imaging detector. This enables the simultaneous recording of wavelengths ranging from 10 nm to 80 nm with a resolution of 0.25 nm to 0.13 nm. Spatial beam profiles with diameters up to 10 mm are imaged with 0.1 mm resolution. The setup is equipped with an in-vacuum translation stage that allows for in situ switching between the spectrometer and beam profiler modes and for moving the setup out of the beam. The simple, robust design of the device is well suited for non-intrusive routine characterization of emerging laboratory- and accelerator-based VUV light sources. Operation of the device is demonstrated by characterizing the output of a femtosecond high-order harmonic generation light source.

  9. Compact x-ray source and panel

    DOEpatents

    Sampayon, Stephen E.

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  10. Compact portable electric power sources

    SciTech Connect

    Fry, D.N.; Holcomb, D.E.; Munro, J.K.; Oakes, L.C.; Matson, M.J.

    1997-02-01

    This report provides an overview of recent advances in portable electric power source (PEPS) technology and an assessment of emerging PEPS technologies that may meet US Special Operations Command`s (SOCOM) needs in the next 1--2- and 3--5-year time frames. The assessment was performed through a literature search and interviews with experts in various laboratories and companies. Nineteen PEPS technologies were reviewed and characterized as (1) PEPSs that meet SOCOM requirements; (2) PEPSs that could fulfill requirements for special field conditions and locations; (3) potentially high-payoff sources that require additional R and D; and (4) sources unlikely to meet present SOCOM requirements. 6 figs., 10 tabs.

  11. Photonic crystal light source

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu; Bur, James A.

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  12. Compact sources of EUV radiation

    NASA Technical Reports Server (NTRS)

    Paresce, F.

    1977-01-01

    Contrary to classical theoretical expectations extreme ultraviolet emissions from a number of stellar objects have been recently discovered. A combined EUV and optical study of these sources has revealed a wealth of new information on stellar structure and evolution especially for what regards the transition stage between planetary nebulae and white dwarfs. The current status of research in this field is reviewed with emphasis on the impact these observations are having on our view of the later stages of stellar evolution and on the future possibility that could be awaiting a sensitive all sky survey of the EUV spectrum.

  13. Compact ion source neutron generator

    SciTech Connect

    Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali; Chang-Hasnain, Constance; Rangelow, Ivo; Kwan, Joe

    2015-10-13

    A neutron generator includes a conductive substrate comprising a plurality of conductive nanostructures with free-standing tips and a source of an atomic species to introduce the atomic species in proximity to the free-standing tips. A target placed apart from the substrate is voltage biased relative to the substrate to ionize and accelerate the ionized atomic species toward the target. The target includes an element capable of a nuclear fusion reaction with the ionized atomic species to produce a one or more neutrons as a reaction by-product.

  14. Compact Laser Technology for Compton Scattering Sources

    NASA Astrophysics Data System (ADS)

    Shverdin, M.; Albert, F.; Anderson, S. G.; Bayramian, A.; Betts, S. M.; Ebbers, C.; Gibson, D.; Messerly, M.; Hartemann, F. V.; Siders, C. W.; McNabb, D. P.; Barty, C. P. J.

    2009-11-01

    We describe compact laser technology for Mono-Energetic Gamma-Ray (MEGa-Ray) Compton scattering light source at LLNL. The high energy, 120W interaction laser utilizes chirped pulse amplification (CPA) in Nd:YAG to amplify a sub-nanometer bandwidth 20 μJ pulses from a fiber system to 1J. A novel pulse stretcher provides a dispersion of over 7000ps/nm to expand a several picosecond wide seed pulse to 6ns. After amplification, the pulse is recompressed to 10ps with a hyper-dispersive pulse compressor. We also describe a technique for over an order of magnitude increase in the generated gamma-ray flux by recirculation of the interaction laser pulse. This technique, termed Recirculation Injection by Nonlinear Gating (RING), consists of frequency doubling the incident laser pulse inside a dichroic mirror cavity. The resonator mirrors transmit at 1φ and reflect at 2φ. The 2^nd harmonic of the incident pulse then becomes trapped inside the cavity. To date, we demonstrated 14 times cavity enhancement of 180mJ, 10ps, 532nm laser pulses.

  15. SSC models for compact sources

    NASA Astrophysics Data System (ADS)

    Ghisellini, Gabriele

    A particular class of synchrotron self-Compton models are discussed, assuming that (1) a power-law distribution of relativistic electrons is continuously injected throughout the source, (2) the radiative cooling time is shorter than the escape time, and (3) the magnetic-to-radiation energy density ratio is greater than unity. Taking into account self-absorption, the Compton-to-synchrotron luminosity ratio greatly exceeds that of radiation-to-magnetic energy density, if the injected power-law electron distribution is steep. As in the model proposed, in a different context, by Zdziarski and Lamb (1986), the radiation produced by the multiple Compton process dominates the emission at all frequencies, and the overall spectrum slope is always flatter than unity.

  16. Compact light-emitting diode lighting ring for video-assisted thoracic surgery.

    PubMed

    Lu, Ming-Kuan; Chang, Feng-Chen; Wang, Wen-Zhe; Hsieh, Chih-Cheng; Kao, Fu-Jen

    2014-01-01

    In this work, a foldable ring-shaped light-emitting diode (LED) lighting assembly, designed to attach to a rubber wound retractor, is realized and tested through porcine animal experiments. Enabled by the small size and the high efficiency of LED chips, the lighting assembly is compact, flexible, and disposable while providing direct and high brightness lighting for more uniform background illumination in video-assisted thoracic surgery (VATS). When compared with a conventional fiber bundle coupled light source that is usually used in laparoscopy and endoscopy, the much broader solid angle of illumination enabled by the LED assembly allows greatly improved background lighting and imaging quality in VATS.

  17. Compact light-emitting diode lighting ring for video-assisted thoracic surgery.

    PubMed

    Lu, Ming-Kuan; Chang, Feng-Chen; Wang, Wen-Zhe; Hsieh, Chih-Cheng; Kao, Fu-Jen

    2014-01-01

    In this work, a foldable ring-shaped light-emitting diode (LED) lighting assembly, designed to attach to a rubber wound retractor, is realized and tested through porcine animal experiments. Enabled by the small size and the high efficiency of LED chips, the lighting assembly is compact, flexible, and disposable while providing direct and high brightness lighting for more uniform background illumination in video-assisted thoracic surgery (VATS). When compared with a conventional fiber bundle coupled light source that is usually used in laparoscopy and endoscopy, the much broader solid angle of illumination enabled by the LED assembly allows greatly improved background lighting and imaging quality in VATS. PMID:25291209

  18. Compact light-emitting diode lighting ring for video-assisted thoracic surgery

    NASA Astrophysics Data System (ADS)

    Lu, Ming-Kuan; Chang, Feng-Chen; Wang, Wen-Zhe; Hsieh, Chih-Cheng; Kao, Fu-Jen

    2014-10-01

    In this work, a foldable ring-shaped light-emitting diode (LED) lighting assembly, designed to attach to a rubber wound retractor, is realized and tested through porcine animal experiments. Enabled by the small size and the high efficiency of LED chips, the lighting assembly is compact, flexible, and disposable while providing direct and high brightness lighting for more uniform background illumination in video-assisted thoracic surgery (VATS). When compared with a conventional fiber bundle coupled light source that is usually used in laparoscopy and endoscopy, the much broader solid angle of illumination enabled by the LED assembly allows greatly improved background lighting and imaging quality in VATS.

  19. Compact étendue-preserving light-mixing optics.

    PubMed

    Sorgato, S; Mohedano, R; Chaves, J; Hernández, M; Cvetkovic, A; Thienpont, H; Benítez, P; Miñano, J C; Duerr, F

    2015-11-30

    We present a compact freeform optic, called "Freeform Shell-Mixer", which, when placed on top of a multicolor light source (particularly, a multi-chip LED), turns it into a virtual source in which colors are uniformly mixed. The optic, compatible with injection molding, makes use of étendue-conserving Köhler integration to provide homogeneous mixing of light. Its minimal size (just 2x larger than the source) makes the concept compatible with many luminaries, as ray tracing models show. Simulations indicate that the Freeform Shell-Mixer can reach efficiencies above 95% and both the size of the virtual source and its emission pattern are very similar to the ones of the original source, so the correct performance of the luminaire is secured. PMID:26698796

  20. Light Sources and Lighting Circuits

    NASA Astrophysics Data System (ADS)

    Honda, Hisashi; Suwa, Takumi; Yasuda, Takeo; Ohtani, Yoshihiko; Maehara, Akiyoshi; Okada, Atsunori; Komatsu, Naoki; Mannami, Tomoaki

    According to the Machinery Statistics of the Ministry of Economy, Trade and Industry, the production of incandescent lamps in Japan in 2007 was 990 million units (90.0% of the previous year's total), in which the production of incandescent lamps for general lighting was 110 million units (90.0% of the previous year's total) and of tungsten-halogen lamps was 44 million units (96.6% of the previous year's total). The production of fluorescent lamps was 927 million units (93.9% of the previous year's total), in which general fluorescent lamps, excluding those for LCD back lighting, was 320 million units (87.2% of the previous year's total). Also, the production of HID lamps was 10 million units (101.5% of the previous year's total). On the other hand, when the numbers of sales are compared with the sales of the previous year, incandescent lamps for general use was 99.8%, tungsten-halogen lamps was 96.9%, fluorescent lamps was 95.9%, and HID lamps was 98.9%. Self-ballasted fluorescent lamps alone showed an increase in sales as strong as 29 million units, or 121.7% of the previous year's sales. It is considered that the switchover of incandescent lamps to HID lamps was promoted for energy conservation and carbon dioxide reduction with the problem of global warming in the background. In regard to exhibitions, Lighting Fair 2007 was held in Tokyo in March, and LIGHTFAIR INTERNATIONAL 2007 was held in New York in May. Regarding academic conferences, LS:11 (the 11th International Symposium on the Science & Technology of Light Sources) was held in Shanghai in May, and the First International Conference on White LEDs and Solid State Lighting was held in Tokyo in November. Both conferences suggested that there are strong needs and concerns now about energy conservation, saving natural resources, and restrictions of hazardous materials. In regard to incandescent lamps, the development of products aiming at higher efficacy, electric power savings, and longer life was advanced by

  1. National Synchrotron Light Source

    ScienceCinema

    BNL

    2016-07-12

    A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

  2. Compact Gamma-ray Source Technology Development Study

    SciTech Connect

    Anderson, S G; Gibson, D J; Rusnak, B

    2009-09-25

    This study focuses on the applicability of current accelerator and laser technologies to the construction of compact, narrow bandwidth, gamma-ray sources for DHS missions in illicit materials detection. It also identifies research and development areas in which advancement will directly benefit these light sources. In particular, we review the physics of Compton scattering based light sources and emphasize the source properties most important to Nuclear Resonance Fluorescence (NRF) applications of interest. The influences of laser and electron beam properties on the light source are examined in order to evaluate the utility of different technologies for this application. Applicable bulk and fiber-based laser systems and laser recirculation technologies are discussed and Radio Frequency (RF) Linear Accelerator (linac) technologies are examined to determine the optimal frequency and pulse formats achievable.

  3. Compact Neutron Sources for Energy and Security

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Kobayashi, Hitoshi

    We choose nuclear data and nuclear material inspection for energy application, and nondestructive testing of explosive and hidden nuclear materials for security application. Low energy (˜100keV) electrostatic accelerators of deuterium are commercially available for nondestructive testing. For nuclear data measurement, electrostatic ion accelerators and L-band (1.428GHz) and S-band (2.856GHz) electron linear accelerators (linacs) are used for the neutron source. Compact or mobile X-band (9.3, 11.424GHz) electron linac neutron sources are under development. A compact proton linac neutron source is used for nondestructive testing, especially water in solids. Several efforts for more neutron intensity using proton and deuteron accelerators are also introduced.

  4. Compact Neutron Sources for Energy and Security

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Kobayashi, Hitoshi

    We choose nuclear data and nuclear material inspection for energy application, and nondestructive testing of explosive and hidden nuclear materials for security application. Low energy (~100 keV) electrostatic accelerators of deuterium are commercially available for nondestructive testing. For nuclear data measurement, electrostatic ion accelerators and L-band (1.428GHz) and S-band (2.856GHz) electron linear accelerators (linacs) are used for the neutron source. Compact or mobile X-band (9.3, 11.424GHz) electron linac neutron sources are under development. A compact proton linac neutron source is used for nondestructive testing, especially water in solids. Several efforts for more neutron intensity using proton and deuteron accelerators are also introduced.

  5. National Synchrotron Light Source

    SciTech Connect

    2009-03-10

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  6. National Synchrotron Light Source

    ScienceCinema

    None

    2016-07-12

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  7. Compact reactor/ORC power source

    SciTech Connect

    Meier, K.L.; Kirchner, W.L.; Willcutt, G.J.

    1986-01-01

    A compact power source that combines an organic Rankine Cycle (ORC) electric generator with a nuclear reactor heat source is being designed and fabricated. Incorporating existing ORC technology with proven reactor technology, the compact reactor/ORC power source offers high reliability while minimizing the need for component development. Thermal power at 125 kWt is removed from the coated particle fueled, graphite moderated reactor by heat pipes operating at 500/sup 0/C. Outside the reactor vessel and connected to the heat pipes are vaporizers in which the toluene ORC working fluid is heated to 370/sup 0/C. In the turbine-alternator-pump (TAP) combined-rotating unit, the thermal energy of the toluene is converted to 25 kWe of electric power. Lumped parameter systems analyses combined with a finite element thermal analysis have aided in the power source design. The analyses have provided assurance of reliable multiyear normal operation as well as full power operation with upset conditions, such as failed heat pipes and inoperative ORC vaporizers. Because of inherent high reliability, long life, and insensitivity to upset conditions, this power source is especially suited for use in remote, inaccessible locations where fuel delivery and maintenance costs are high. 10 refs.

  8. MEMS Incandescent Light Source

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret; King, Kevin; Kim, Lynn; Hansler, Richard; Jones, Eric; George, Thomas

    2001-01-01

    A MEMS-based, low-power, incandescent light source is being developed. This light source is fabricated using three bonded chips. The bottom chip consists of a reflector on Silicon, the middle chip contains a Tungsten filament bonded to silicon and the top layer is a transparent window. A 25-micrometer-thick spiral filament is fabricated in Tungsten using lithography and wet-etching. A proof-of-concept device has been fabricated and tested in a vacuum chamber. Results indicate that the filament is electrically heated to approximately 2650 K. The power required to drive the proof-of-concept spiral filament to incandescence is 1.25 W. The emitted optical power is expected to be approximately 1.0 W with the spectral peak at 1.1 microns. The micromachining techniques used to fabricate this light source can be applied to other MEMS devices.

  9. Special issue on compact x-ray sources

    NASA Astrophysics Data System (ADS)

    Hooker, Simon; Midorikawa, Katsumi; Rosenzweig, James

    2014-04-01

    Journal of Physics B: Atomic, Molecular and Optical Physics is delighted to announce a forthcoming special issue on compact x-ray sources, to appear in the winter of 2014, and invites you to submit a paper. The potential for high-brilliance x- and gamma-ray sources driven by advanced, compact accelerators has gained increasing attention in recent years. These novel sources—sometimes dubbed 'fifth generation sources'—will build on the revolutionary advance of the x-ray free-electron laser (FEL). New radiation sources of this type have widespread applications, including in ultra-fast imaging, diagnostic and therapeutic medicine, and studies of matter under extreme conditions. Rapid advances in compact accelerators and in FEL techniques make this an opportune moment to consider the opportunities which could be realized by bringing these two fields together. Further, the successful development of compact radiation sources driven by compact accelerators will be a significant milestone on the road to the development of high-gradient colliders able to operate at the frontiers of particle physics. Thus the time is right to publish a peer-reviewed collection of contributions concerning the state-of-the-art in: advanced and novel acceleration techniques; sophisticated physics at the frontier of FELs; and the underlying and enabling techniques of high brightness electron beam physics. Interdisciplinary research connecting two or more of these fields is also increasingly represented, as exemplified by entirely new concepts such as plasma based electron beam sources, and coherent imaging with fs-class electron beams. We hope that in producing this special edition of Journal of Physics B: Atomic, Molecular and Optical Physics (iopscience.iop.org/0953-4075/) we may help further a challenging mission and ongoing intellectual adventure: the harnessing of newly emergent, compact advanced accelerators to the creation of new, agile light sources with unprecedented capabilities

  10. Compact extreme ultraviolet source for laboratory-based photoemission spectromicroscopy

    NASA Astrophysics Data System (ADS)

    Schmitz, Christoph; Wilson, Daniel; Rudolf, Denis; Wiemann, Carsten; Plucinski, Lukasz; Riess, Sally; Schuck, Martin; Hardtdegen, Hilde; Schneider, Claus M.; Tautz, F. Stefan; Juschkin, Larissa

    2016-06-01

    We report on the combination of a state-of-the-art energy-filtering photoemission electron microscope with an intense yet compact laboratory-based gas discharge extreme ultraviolet (EUV) light source. Using a photon energy of 71.7 eV from oxygen plasma (O5+ spectral line), we demonstrate element-selective photoelectron imaging in real space and band structure mapping in reciprocal space. Additionally, the high surface sensitivity of the EUV light was used to study the surface oxidation on islands of the phase-change material Ge1Sb2Te4 . The EUV light source allows the extension of spectromicroscopy, previously only feasible at synchrotron beamlines, to laboratory-based work.

  11. Detection of compact sources with multifilters

    NASA Astrophysics Data System (ADS)

    Herranz, D.; Sanz, Jose L.; Barreiro, R. B.; Hobson, M.; Martinez-Gonzalez, Enrique; Diego, J. M.

    2002-12-01

    We present scale-adaptive filters that optimize the detection/separation of compact sources on a background. We assume that the sources have a multiquadric profile and a background modeled by an homogeneous and isotropic random field characterized by a power spectrum. We make an n-dimensional treatment but consider two interesting physical applications related to clusters of galaxies (Sunyaev-Zel'dovich effect and X-ray emission). We extend this methodology to multifrequency maps, introducing multifilters that optimize the detection on clusters on microwave maps. We apply these multifilters to small patches (corresponding to 10 frequency channels) of the sky such as the ones that will produce the future ESA Planck mission. Our method predicts a number of ≍10000 clusters in 2/3 of the sky, being the catalog complete over fluxes S > 170mJy at 300GHz.

  12. Compact solid source of hydrogen gas

    DOEpatents

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester, Alan P.; Bell, Nelson S.

    2004-06-08

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  13. COMPACT, TUNABLE COMPTON SCATTERING GAMMA-RAY SOURCES

    SciTech Connect

    Hartemann, F V; Albert, F; Anderson, G G; Anderson, S G; Bayramian, A J; Betts, S M; Chu, T S; Cross, R R; Ebbers, C A; Fisher, S E; Gibson, D J; Ladran, A S; Marsh, R A; Messerly, M J; O'Neill, K L; Semenov, V A; Shverdin, M Y; Siders, C W; McNabb, D P; Barty, C J; Vlieks, A E; Jongewaard, E N; Tantawi, S G; Raubenheimer, T O

    2009-08-20

    Recent progress in accelerator physics and laser technology have enabled the development of a new class of gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable gamma-ray source driven by a compact, high-gradient X-band linac is currently under development at LLNL. High-brightness, relativistic electron bunches produced by the linac interact with a Joule-class, 10 ps laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. The source will be used to excite nuclear resonance fluorescence lines in various isotopes; applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented.

  14. IONIZED OUTFLOWS FROM COMPACT STEEP SPECTRUM SOURCES

    SciTech Connect

    Shih, Hsin-Yi; Stockton, Alan; Kewley, Lisa E-mail: stockton@ifa.hawaii.edu

    2013-08-01

    Massive outflows are known to exist, in the form of extended emission-line regions (EELRs), around about one-third of powerful FR II radio sources. We investigate the origin of these EELRs by studying the emission-line regions around compact-steep-spectrum (CSS) radio galaxies that are younger (10{sup 3}-10{sup 5} yr old) versions of the FR II radio galaxies. We have searched for and analyzed the emission-line regions around 11 CSS sources by taking integral field spectra using Gemini Multi-Object Spectrograph on Gemini North. We fit the [O III] {lambda}5007 line and present the velocity maps for each detected emission-line region. We find, in most cases, that the emission-line regions have multi-component velocity structures with different velocity dispersions and/or flux distributions for each component. The velocity gradients of the emission-line gas are mostly well aligned with the radio axis, suggesting a direct causal link between the outflowing gas and the radio jets. The complex velocity structure may be a result of different driving mechanisms related to the onset of the radio jets. We also present the results from the line-ratio diagnostics we used to analyze the ionization mechanism of the extended gas, which supports the scenario where the emission-line regions are ionized by a combination of active galactic nucleus radiation and shock excitation.

  15. Compact neutron source development at LBNL

    SciTech Connect

    Reijonen, Jani; Lou, Tak Pui; Tolmachoff, Bryan; Leung, K.N.

    2001-07-25

    A compact neutron generator based on D-D or D-T fusion reactions is being developed at the Lawrence Berkeley National Laboratory. The deuterium or tritium ions are produced in a radio-frequency (RF) driven multicusp plasma source. Seven beamlets are extracted and are accelerated to energy of 100 keV by means of a three-electrode electrostatic accelerator column. The ion beam then impinges on a titanium coated copper target where either the 2.4 MeV D-D or 14 MeV D-T neutrons are generated by fusion reaction. The development of the neutron tube is divided into three phases. First, the accelerator column is operated at hydrogen beam intensity of 15 mA. Second phase consists of deuterium beam runs at pulsed, low duty cycle 150 mA operation. The third phase consists of deuterium or tritium operation at 1.5 A beam current. Phase one is completed and the results of hydrogen beam testing are discussed. Low duty cycle 150 mA deuterium operation is being investigated. Neutron flux will be measured. Finally the phase three operation and the advance neutron generator designs are described.

  16. Compact neutron source development at LBNL

    NASA Astrophysics Data System (ADS)

    Reijonen, Jani; Lou, Tak P.; Tolmachoff, Bryan; Leung, Ka-Ngo

    2001-12-01

    A compact neutron generator based on D-D or D-T fusion reactions is being developed at the Lawrence Berkeley National laboratory. The deuterium or tritium ions are produced in a radio-frequency (RF) driven multicusp plasma source. Seven beamlets are extracted and are accelerated to energy of 100 keV by means of a three-electrode electrostatic accelerator column. The ion beam then impinges on a titanium coated copper target where either the 2.4 MeV D-D or 13 MeV D-T neutrons are generated by fusion reaction. The development of the neutron tube is divided into three phases. First, the accelerator column is operated at hydrogen beam intensity of 15 mA. Second phase consists of deuterium beam runs at pulsed, low duty cycle 150 mA operation. The third phase consists of deuterium or tritium operation at 1.5 A beam current. Phase one is completed and the results of hydrogen beam testing are discussed. Low duty cycle 150 mA deuterium operation is being investigated. Neutron flux will be measured. Finally the phase three operation and the advance neutron generator designs are described.

  17. Light, Compact Pumper for Harbor Fires

    NASA Technical Reports Server (NTRS)

    Burns, R. A.

    1983-01-01

    Report describes development of new transportable water-pumping unit for fire-fighting. Compact, self-contained unit provides fire protection at coastal and inland ports and is lighter than standard firetruck pumper of same capacity. Used to fight fires in harbors, cities, forests, refineries, chemical plants, and offshore drilling platforms. Other possible applications include cleaning up oilspills, pumping out ships, and flood control pumping.

  18. Light Sources and Ballast Circuits

    NASA Astrophysics Data System (ADS)

    Yorifuji, Takashi; Sakai, Makoto; Yasuda, Takeo; Maehara, Akiyoshi; Okada, Atsunori; Gouriki, Takeshi; Mannami, Tomoaki

    discharge models were reported. Further, studies on ultra high-pressure mercury lamps as light sources for projectors are becoming the mainstream of HID lamp related researches. For high-pressure sodium lamps, many studies on plant growing and pest control utilizing low insect attracting aspects were also reported in 2006. Additionally, for discharge lamps, the minimum sustaining electric power for arc tubes employed in electrode-less compact fluorescent lamps was investigated. For Hg-free rare-gas fluorescent lamps, a luminance of 10,000cd/m2 was attained by a 1 meter-long external duplex spiral electrode prototype using Xe/Ne barrier discharge. As to startup circuits, the commercialization of energy saving and high value added products mainly associated with fluorescent lamps and HID lamps are becoming common. Further, the miniaturization of startup circuits for self electronic-ballasted lamps has advanced. Speaking of the overall light sources and startup circuits in 2006 and with the enforcement of RoHS in Europe in July, the momentum toward hazardous substance-free and energy saving initiatives has been enhanced from the perspective of protecting the global environment. It is anticipated that similar restrictions will be globally enforced in the future.

  19. Compact Dielectric-Rod White-Light Delay Lines

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Matsko, Andrey; Savchenkov, Anatoliy; Strekalov, Dmitry

    2008-01-01

    Optical delay lines of a proposed type would be made from rods of such dielectric materials as calcium fluoride, fused silica, or sapphire. These would offer advantages over prior optical delay lines, as summarized below. Optical delay lines are key components of opto-electronic microwave oscillators, narrow-band opto-electronic microwave filters, evanescent-field optical biochemical detectors, and some Fourier-Transform spectrum analyzers. Heretofore, optical delay lines used in such applications have been of two types: resonators and coiled long optical fibers, both of which have disadvantages: Resonators are compact, but excitation must be provided by narrow-band lasers. Wide-band (including noisy) laser light cannot be coupled efficiently to narrow-band resonators. When light is coupled into a narrowband resonator from a source of reasonably high power, a significant amount of optical energy circulates within the resonator, causing nonlinear loss and significant noise. Typically, a coil-type optical delay line is made of fused-silica fiber, which exhibits fundamental loss. To overcome the limit imposed by the optical loss in fused silica, it would be necessary to use fibers having crystalline cores. Although space is saved by winding fibers into coils, fiber-coil delay lines are still inconveniently bulky. The proposed compact dielectric-rod delay lines would exploit the special class of non-diffracting light beams that are denoted Bessel beams because their amplitudes are proportional to Bessel functions of the radii from their central axes. High-order Bessel beams can have large values of angular momentum. They can be generated with the help of whispering-gallery-mode optical resonators, as described, for example, in "Simplified Generation of High-Angular-Momentum Light Beams" (NPO-42965) NASA Tech Briefs, Vol. 31, No. 3 (March 2007), page 8a. In a delay line according to the proposal, the dielectric rod would be dimensioned to function as a multimode

  20. The Linac Coherent Light Source

    SciTech Connect

    White, William E.; Robert, Aymeric; Dunne, Mike

    2015-05-01

    The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory was the first hard X-ray free-electron laser (FEL) to operate as a user facility. After five years of operation, LCLS is now a mature FEL user facility. Our personal views about opportunities and challenges inherent to these unique light sources are discussed.

  1. The Linac Coherent Light Source

    SciTech Connect

    White, William E.; Robert, Aymeric; Dunne, Mike

    2015-04-21

    The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory was the first hard X-ray free-electron laser (FEL) to operate as a user facility. After five years of operation, LCLS is now a mature FEL user facility. Our personal views about opportunities and challenges inherent to these unique light sources are discussed.

  2. Light sources based on semiconductor current filaments

    DOEpatents

    Zutavern, Fred J.; Loubriel, Guillermo M.; Buttram, Malcolm T.; Mar, Alan; Helgeson, Wesley D.; O'Malley, Martin W.; Hjalmarson, Harold P.; Baca, Albert G.; Chow, Weng W.; Vawter, G. Allen

    2003-01-01

    The present invention provides a new type of semiconductor light source that can produce a high peak power output and is not injection, e-beam, or optically pumped. The present invention is capable of producing high quality coherent or incoherent optical emission. The present invention is based on current filaments, unlike conventional semiconductor lasers that are based on p-n junctions. The present invention provides a light source formed by an electron-hole plasma inside a current filament. The electron-hole plasma can be several hundred microns in diameter and several centimeters long. A current filament can be initiated optically or with an e-beam, but can be pumped electrically across a large insulating region. A current filament can be produced in high gain photoconductive semiconductor switches. The light source provided by the present invention has a potentially large volume and therefore a potentially large energy per pulse or peak power available from a single (coherent) semiconductor laser. Like other semiconductor lasers, these light sources will emit radiation at the wavelength near the bandgap energy (for GaAs 875 nm or near infra red). Immediate potential applications of the present invention include high energy, short pulse, compact, low cost lasers and other incoherent light sources.

  3. UV emissions from low energy artificial light sources.

    PubMed

    Fenton, Leona; Moseley, Harry

    2014-01-01

    Energy efficient light sources have been introduced across Europe and many other countries world wide. The most common of these is the Compact Fluorescent Lamp (CFL), which has been shown to emit ultraviolet (UV) radiation. Light Emitting Diodes (LEDs) are an alternative technology that has minimal UV emissions. This brief review summarises the different energy efficient light sources available on the market and compares the UV levels and the subsequent effects on the skin of normal individuals and those who suffer from photodermatoses.

  4. EDITORIAL: LED light sources (light for the future) LED light sources (light for the future)

    NASA Astrophysics Data System (ADS)

    Grandjean, N.

    2010-09-01

    Generating white light from electricity with maximum efficacy has been a long quest since the first incandescent lamp was invented by Edison at the end of the 19th century. Nowadays, semiconductors are making reality the holy grail of converting electrons into photons with 100% efficiency and with colours that can be mixed for white light illumination. The revolution in solid-state lighting (SSL) dates to 1994 when Nakamura reported the first high-brightness blue LED based on GaN semiconductors. Then, white light was produced by simply combining a blue dye with a yellow phosphor. After more than a decade of intensive research the performance of white LEDs is quite impressive, beating by far the luminous efficacy of compact fluorescent lamps. We are likely close to replacing our current lighting devices by SSL lamps. However, there are still technological and fabrication cost issues that could delay large market penetration of white LEDs. Interestingly, SSL may create novel ways of using light that could potentially limit electricity saving. Whatever the impact of SSL, it will be significant on our daily life. The purpose of this special cluster issue is to produce a snapshot of the current situation of SSL from different viewing angles. In an introductory paper, Tsao and co-workers from Sandia National Laboratories, present an energy-economics perspective of SSL considering societal changes and SSL technology evolution. In a second article, Narukawa et al working at Nichia Corporation—the pioneer and still the leading company in SSL—describe the state of the art of current research products. They demonstrate record performance with white LEDs exhibiting luminous efficacy of 183 lm W-1 at high-current injection. Then, a series of topical papers discuss in detail various aspects of the physics and technology of white LEDs Carrier localization in InGaN quantum wells has been considered the key to white LEDs' success despite the huge density of defects. A

  5. Fusion pumped light source

    DOEpatents

    Pappas, Daniel S.

    1989-01-01

    Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

  6. Biological imaging with nonlinear photothermal microscopy using a compact supercontinuum fiber laser source.

    PubMed

    He, Jinping; Miyazaki, Jun; Wang, Nan; Tsurui, Hiromichi; Kobayashi, Takayoshi

    2015-04-20

    Nonlinear photothermal microscopy is applied in the imaging of biological tissues stained with chlorophyll and hematoxylin. Experimental results show that this type of organic molecules, which absorb light but transform dominant part of the absorbed energy into heat, may be ideal probes for photothermal imaging without photochemical toxicity. Picosecond pump and probe pulses, with central wavelengths of 488 and 632 nm, respectively, are spectrally filtered from a compact supercontinuum fiber laser source. Based on the light source, a compact and sensitive super-resolution imaging system is constructed. Further more, the imaging system is much less affected by thermal blurring than photothermal microscopes with continuous-wave light sources. The spatial resolution of nonlinear photothermal microscopy is ~ 188 nm. It is ~ 23% higher than commonly utilized linear photothermal microscopy experimentally and ~43% than conventional optical microscopy theoretically. The nonlinear photothermal imaging technology can be used in the evaluation of biological tissues with high-resolution and contrast. PMID:25969015

  7. Spectroscopic Analysis of Today's Compact Fluorescent Light Bulbs

    NASA Astrophysics Data System (ADS)

    Pluhar, Edward

    2012-03-01

    In today's consumer market, there are many different light bulbs that claim to produce `natural' light. In my research, I both quantitatively and qualitatively analyzed this claim. First, utilizing a spectroscope, I compared the spectra emitted by different brands and types of compact fluorescent light (CFL) bulbs to the spectra emitted by the Sun. Once the bulbs were quantitatively analyzed, I proceeded to qualitatively analyze them by exposing subjects to the different bulbs. The subjects were asked to rate the quality of color in different pictures illuminated by each type of CFL. From these tests, I was able to determine the ``best'' CFL bulbs, and conclude whether the health risks associated with CFL bulbs outweigh the cost savings, longevity of the bulbs, and/or quality of light benefits.

  8. Nested Focusing Optics for Compact Neutron Sources

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center, the Massachusetts Institute of Technology (MIT), and the University of Alabama Huntsville (UAH) have developed novel neutron grazing incidence optics for use with small-scale portable neutron generators. The technology was developed to enable the use of commercially available neutron generators for applications requiring high flux densities, including high performance imaging and analysis. Nested grazing incidence mirror optics, with high collection efficiency, are used to produce divergent, parallel, or convergent neutron beams. Ray tracing simulations of the system (with source-object separation of 10m for 5 meV neutrons) show nearly an order of magnitude neutron flux increase on a 1-mm diameter object. The technology is a result of joint development efforts between NASA and MIT researchers seeking to maximize neutron flux from diffuse sources for imaging and testing applications.

  9. Light source modeling for automotive lighting devices

    NASA Astrophysics Data System (ADS)

    Zerhau-Dreihoefer, Harald; Haack, Uwe; Weber, Thomas; Wendt, Dierk

    2002-08-01

    Automotive lighting devices generally have to meet high standards. For example to avoid discomfort glare for the oncoming traffic, luminous intensities of a low beam headlight must decrease by more than one order of magnitude within a fraction of a degree along the horizontal cutoff-line. At the same time, a comfortable homogeneous illumination of the road requires slowly varying luminous intensities below the cutoff line. All this has to be realized taking into account both, the legal requirements and the customer's stylistic specifications. In order to be able to simulate and optimize devices with a good optical performance different light source models are required. In the early stage of e.g. reflector development simple unstructured models allow a very fast development of the reflectors shape. On the other hand the final simulation of a complex headlamp or signal light requires a sophisticated model of the spectral luminance. In addition to theoretical models based on the light source's geometry, measured luminance data can also be used in the simulation and optimization process.

  10. Synchrotron light source data book

    SciTech Connect

    Murphy, J.

    1989-01-01

    The ''Synchrotron Light Source Data Book'' is as its name implies a collection of data on existing and planned synchrotron light sources. The intention was to provide a compendium of tools for the design of electron storage rings as synchrotron radiation sources. The slant is toward the accelerator physicist as other booklets such as the X-ray Data Booklet, edited by D. Vaughan (LBL PUB-490), address the 'use' of synchrotron radiation. It is hoped that the booklet serves as a pocket sized reference to facilitate back of the envelope type calculations. It contains some useful formulae in 'practical units' and a brief description of many of the existing and planned light source lattices.

  11. Compact, fiber-based, fast-light enhanced optical gyroscope

    NASA Astrophysics Data System (ADS)

    Christensen, Caleb A.; Zavriyev, Anton; Bashkansky, Mark; Beal, A. Craig

    2013-05-01

    It has been proposed that fast-light optical phenomena can increase the sensitivity of a Ring Laser Gyroscope (RLG) of a given size by several orders of magnitude. MagiQ is developing a compact fully-fibered fast light RLG using Stimulated Brillouin Scattering (SBS) in commercial optical fiber. We will discuss our experimental results on SBS pumped lasing in commercial fibers and analyze their implications to the fast light generation. Based on these results, we envision a fast light enhanced Ring Laser Gyroscope (RLG) that will use only a few meters of fiber and require moderate pump power (only a few 100's of mW). We will present the design that is based on proven, commercially available technologies. By using photonic integrated circuits and telecom-grade fiber components, we created a design that is appropriate for mass production in the near term. We eliminated all free-space optical elements (such as atomic vapor cells), in order to enable a compact, high sensitivity RLG stable against environmental disturbances. Results of this effort will have benefits in existing applications of RLGs (such as inertial navigation units, gyrocompasses, and stabilization techniques), and will allow wider use of RLGs in spacecraft, unmanned aerial vehicles or sensors, where the current size and weight of optical gyros are prohibitive.

  12. Compact surface plasma H- ion source with geometrical focusing

    NASA Astrophysics Data System (ADS)

    Dudnikov, V.; Dudnikova, G.

    2016-02-01

    Factors limiting operating lifetime of a Compact Surface Plasma Sources (CSPS) are analyzed and possible treatments for lifetime enhancement are considered. Increased cooling permeate increased discharge power and increased beam intensity and duty factor. A design of an advanced CSPS with geometrical focusing of H- flux is presented.

  13. Characterization of multiple light sources

    NASA Astrophysics Data System (ADS)

    Casas, Jessica Marie

    The integrating cavity absorption meter (ICAM) is an instrument that utilizes the absorption of water to detect alien substances in the water. The ICAM was first proposed by Elterman in 1970 and has since been enhanced by other scientists such as Kirk, Leathers, Fry, Musser, and Gray. While others have investigated the structure of the ICAM, little research has been published regarding the most efficient light source. This thesis compares the power consumption, spectral stability, and output intensity of three different light sources to determine which should be used in the ICAM to further develop its capabilities.

  14. Magnetic Bunch Compression for a Compact Compton Source

    SciTech Connect

    Gamage, B.; Satogata, Todd J.

    2013-12-01

    A compact electron accelerator suitable for Compton source applications is in design at the Center for Accelerator Science at Old Dominion University and Jefferson Lab. Here we discuss two options for transverse magnetic bunch compression and final focus, each involving a 4-dipole chicane with M_{56} tunable over a range of 1.5-2.0m with independent tuning of final focus to interaction point $\\beta$*=5mm. One design has no net bending, while the other has net bending of 90 degrees and is suitable for compact corner placement.

  15. National Synchrotron Light Source II

    ScienceCinema

    Steve Dierker

    2016-07-12

    The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

  16. National Synchrotron Light Source II

    SciTech Connect

    Steve Dierker

    2008-03-12

    The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

  17. The Brazilian Synchrotron Light Source

    SciTech Connect

    Brum, J. A.; Tavares, P. F.

    2007-01-19

    The Brazilian Synchrotron Light Laboratory has been operating the only light source in the southern hemisphere since July 1997. During this period, approximately 28000 hours of beam time were delivered reaching more than 1000 users per year from all over Brazil as well as from 10 other countries. In this paper, we briefly recall the history of the project and describe the present configuration of the machine and associated instrumentation, focusing on improvements and upgrades of the various light source subsystems and beamlines implemented in recent years. Finally, we report on the use of the facility by the national and international scientific communities, its impact on the scientific and technological scene in Brazil and present perspectives for future improvements of the machine.

  18. A compact light readout system for longitudinally segmented shashlik calorimeters

    NASA Astrophysics Data System (ADS)

    Berra, A.; Brizzolari, C.; Cecchini, S.; Cindolo, F.; Jollet, C.; Longhin, A.; Ludovici, L.; Mandrioli, G.; Mauri, N.; Meregaglia, A.; Paoloni, A.; Pasqualini, L.; Patrizii, L.; Pozzato, M.; Pupilli, F.; Prest, M.; Sirri, G.; Terranova, F.; Vallazza, E.; Votano, L.

    2016-09-01

    The longitudinal segmentation of shashlik calorimeters is challenged by dead zones and non-uniformities introduced by the light collection and readout system. This limitation can be overcome by direct fiber-photosensor coupling, avoiding routing and bundling of the wavelength shifter fibers and embedding ultra-compact photosensors (SiPMs) in the bulk of the calorimeter. We present the first experimental test of this readout scheme performed at the CERN PS-T9 beamline in 2015 with negative particles in the 1-5 GeV energy range. In this paper, we demonstrate that the scheme does not compromise the energy resolution and linearity compared with standard light collection and readout systems. In addition, we study the performance of the calorimeter for partially contained charged hadrons to assess the e / π separation capability and the response of the photosensors to direct ionization.

  19. Miniature Incandescent Lamps as Fiber-Optic Light Sources

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret; Collura, Joe; Helvajian, Henry; Pocha, Michael; Meyer, Glenn; McConaghy, Charles F.; Olsen, Barry L.

    2008-01-01

    Miniature incandescent lamps of a special type have been invented to satisfy a need for compact, rapid-response, rugged, broadband, power-efficient, fiber-optic-coupled light sources for diverse purposes that could include calibrating spectrometers, interrogating optical sensors, spot illumination, and spot heating.

  20. Tailoring lighting reflectors to prescribed illuminance distributions: compact partial-involute designs.

    PubMed

    Ong, P T; Gordon, J M; Rabl, A

    1995-12-01

    Reflectors for lighting can be tailored to produce the desired flux maps (illuminance distributions) precisely, from extended light sources, with a calculational procedure called tailored edge-ray designs (TED's). We generalize the TED procedure, which has so far been developed only for flat sources, to tubular sources within partial-involute reflectors. The governing differential equations for the reflectors are solved analytically. We present specific results for the practical problem of producing uniform far-field illuminance in symmetric two-dimensional luminaires. It is demonstrated that, relative to flat-source TED's, these new designs can offer increased uniform core regions, more compact reflectors, and better glare control. We offer a comprehensive analysis of the flux map and geometric properties of partial-involute TED's. Further improvements are possible with hybrid combinations, as we illustrate with several design examples.

  1. Dynamical Evolution in Hickson Compact Groups using Intragroup Light

    NASA Astrophysics Data System (ADS)

    Da Rocha, C.; Ziegler, B. L.; Mendes de Oliveira, C.

    2007-05-01

    Most of the galaxies in the local universe are located in groups, in particular in small groups, and most of the transformations suffered by galaxies located in today's clusters are likely to have occurred in groups at higher redshifts. Understanding the formation and evolution of groups is essential to understand the whole picture of structures and galaxy build-up. Using multi-band photometry we studied the intragroup light component observed in compact groups of galaxies in a subsample of Hickson's catalogue. The diffuse intragroup light component observed in compact groups of galaxies represent an efficient tool for the determination of the stage of dynamical evolution of such structures and for mapping the gravitational potential of the group. This component is presumably due to stellar material tidally stripped from the member galaxies of the group, which gets trapped in the group potential. To detect this very faint component (about 1% above the sky level) we have applied the OVWAV package, a wavelet based technique particularly suitable to detect low surface brightness extended structures, down to a S/N = 0.1 per pixel, which corresponds to a 5-σ-detection level in wavelet space. This analysis technique identifies the intragroup component independently of the main contaminating effects, as stars and galaxy modelling and sky subtraction. The fraction of intragroup light in the studied objects can be as high as 46%, with surface brightness as low as 27.3 B mag arcsec-2 and the colours are compatible with matter stripped from the group member galaxies. Using the IGL, along with other dynamical evolution indicators, we could stablish a evolutionary sequence to our subsample.

  2. Directly Phase-Modulated Light Source

    NASA Astrophysics Data System (ADS)

    Yuan, Z. L.; Fröhlich, B.; Lucamarini, M.; Roberts, G. L.; Dynes, J. F.; Shields, A. J.

    2016-07-01

    The art of imparting information onto a light wave by optical signal modulation is fundamental to all forms of optical communication. Among many schemes, direct modulation of laser diodes stands out as a simple, robust, and cost-effective method. However, the simultaneous changes in intensity, frequency, and phase have prevented its application in the field of secure quantum communication. Here, we propose and experimentally demonstrate a directly phase-modulated light source which overcomes the main disadvantages associated with direct modulation and is suitable for diverse applications such as coherent communications and quantum cryptography. The source separates the tasks of phase preparation and pulse generation between a pair of semiconductor lasers leading to very pure phase states. Moreover, the cavity-enhanced electro-optic effect enables the first example of subvolt half-wave phase modulation at high signal rates. The source is compact, stable, and versatile, and we show its potential to become the standard transmitter for future quantum communication networks based on attenuated laser pulses.

  3. Compact wire array sources: power scaling and implosion physics.

    SciTech Connect

    Serrano, Jason Dimitri; Chuvatin, Alexander S.; Jones, M. C.; Vesey, Roger Alan; Waisman, Eduardo M.; Ivanov, V. V.; Esaulov, Andrey A.; Ampleford, David J.; Cuneo, Michael Edward; Kantsyrev, Victor Leonidovich; Coverdale, Christine Anne; Rudakov, L. I.; Jones, Brent Manley; Safronova, Alla S.; Vigil, Marcelino Patricio

    2008-09-01

    A series of ten shots were performed on the Saturn generator in short pulse mode in order to study planar and small-diameter cylindrical tungsten wire arrays at {approx}5 MA current levels and 50-60 ns implosion times as candidates for compact z-pinch radiation sources. A new vacuum hohlraum configuration has been proposed in which multiple z pinches are driven in parallel by a pulsed power generator. Each pinch resides in a separate return current cage, serving also as a primary hohlraum. A collection of such radiation sources surround a compact secondary hohlraum, which may potentially provide an attractive Planckian radiation source or house an inertial confinement fusion fuel capsule. Prior to studying this concept experimentally or numerically, advanced compact wire array loads must be developed and their scaling behavior understood. The 2008 Saturn planar array experiments extend the data set presented in Ref. [1], which studied planar arrays at {approx}3 MA, 100 ns in Saturn long pulse mode. Planar wire array power and yield scaling studies now include current levels directly applicable to multi-pinch experiments that could be performed on the 25 MA Z machine. A maximum total x-ray power of 15 TW (250 kJ in the main pulse, 330 kJ total yield) was observed with a 12-mm-wide planar array at 5.3 MA, 52 ns. The full data set indicates power scaling that is sub-quadratic with load current, while total and main pulse yields are closer to quadratic; these trends are similar to observations of compact cylindrical tungsten arrays on Z. We continue the investigation of energy coupling in these short pulse Saturn experiments using zero-dimensional-type implosion modeling and pinhole imaging, indicating 16 cm/?s implosion velocity in a 12-mm-wide array. The same phenomena of significant trailing mass and evidence for resistive heating are observed at 5 MA as at 3 MA. 17 kJ of Al K-shell radiation was obtained in one Al planar array fielded at 5.5 MA, 57 ns and we

  4. Intra-group Light in Hickson Compact Groups

    NASA Astrophysics Data System (ADS)

    Da Rocha, C.; Mendes de Oliveira, C.; Ziegler, B. L.

    We have analyzed the intra-group light component of 3 Hickson Compact Groups (HCG 79, HCG 88 and HCG 95) with detections in two of them: HCG 79, with 46±11% of the total B band luminosity and HCG 95 with 11±26%. HCG 88 had no component detected. This component is presumably due to tidally stripped stellar material trapped in the group potential and represents an efficient tool to determine the stage of dynamical evolution and to map its gravitational potential. To detect this low surface brightness structure we have applied the wavelet technique OV_WAV, which separates the different components of the image according to their spatial characteristic sizes.

  5. INTERMEDIATE-ENERGY LIGHT SOURCES

    SciTech Connect

    Corbett, William

    2002-11-25

    Increasingly, atomic scale information underlies scientific and technological progress in disciplines ranging from pharmaceutical development to materials synthesis to environmental remediation. While a variety of research tools are used to provide atomic scale information, synchrotron radiation has proved invaluable in this quest. The rapid growth of soft- and hard X-ray synchrotron light sources stands as stark testimony to the importance and utility of synchrotron radiation. Starting from just a handful of synchrotron light sources in the early 1970s, this burgeoning field now includes over 70 proposed, in-construction, or operating facilities in 23 countries on five continents. Along the way, synchrotron light facilities have evolved from small laboratories extracting light parasitically from storage rings designed for high-energy physics research to large, dedicated sources using the latest technology to produce extraordinarily bright photon beams. The basic layout of a multi-GeV storage ring light source employs periodic bending magnets to guide a charged particle beam around the storage ring. As the charged beam is accelerated in an arc, it produces a sweeping fan of synchrotron radiation that extends from the infrared part of the electromagnetic spectrum (<1 eV) to hard X rays (>20 keV). Quadrupole magnets keep the electrons tightly focused, and a radio-frequency acceleration system replenishes beam energy lost to radiation emission. To optimize the output radiation, a premium is placed on high current electron beams with small cross section and extreme position stability. Magnetic insertion devices are used to further enhance radiation output by a factor of 10 or more over bend magnet sources. The storage ring vacuum chamber includes exit ports to allow portions of the radiation fan to propagate down photon beam transport lines to optical systems and experimental stations. A typical storage ring features 10 or more such radiation ports. The photon beam

  6. 0108 + 388 - A compact double source with surprising properties

    NASA Technical Reports Server (NTRS)

    Baum, S. A.; O'Dea, C. P.; De Bruyn, A. G.; Murphy, D. W.

    1990-01-01

    49 cm, 6 cm, and 20 cm observations of the compact double ratio source 0108 + 388 are presented. Extended emission about 20 deg to the east of the core is detected which resembles a hot spot/lobe with a bridge of emission extending back to the core. This is the first detection of extended emission associated with such a source, and it is inconsistent with the suggestion that such sources are very young classical double radio sources. The inconsistency can be reconciled if the activity in this object is recurrent and the emission is the relic of a previous epoch of activity. Alternatively, the source may be a normal-aged radio galaxy in which most of the radio-emitting plasma is currently unable to escape the nuclear regions of the galaxy. The steep low-frequency spectrum of the core is probably related to the origin of the compact double and suggests that both components are very sharply confined on both their inner and outer edges.

  7. Measurement of neutron diffraction with compact neutron source RANS

    NASA Astrophysics Data System (ADS)

    Ikeda, Y.; Takamura, M.; Taketani, A.; Sunaga, H.; Otake, Y.; Suzuki, H.; Kumagai, M.; Oba, Y.; Hama, T.

    2016-11-01

    Diffraction is used as a measurement technique for crystal structure. X-rays or electron beam with wavelength that is close to the lattice constant of the crystal is often used for the measurement. They have sensitivity in surface (0.01mm) of heavy metals due to the mean free path for heavy ions. Neutron diffraction has the probe of the internal structure of the heavy metals because it has a longer mean free path than that of the X-rays or the electrons. However, the neutron diffraction measurement is not widely used because large facilities are required in the many neutron sources. RANS (Riken Accelerator-driven Compact Neutron Source) is developed as a neutron source which is usable easily in laboratories and factories. In RANS, fast neutrons are generated by 7MeV protons colliding on a Be target. Some fast neutrons are moderated with polyethylene to thermal neutrons. The thermal neutrons of 10meV which have wavelength of 10nm can be used for the diffraction measurement. In this study, the texture evolution in steels was measured with RANS and the validity of the compact neutron source was proved. The texture of IF steel sheets with the thickness of 1.0mm was measured with 10minutes run. The resolution is 2% and is enough to analyze a evolution in texture due to compression/tensile deformation or a volume fraction of two phases in the steel sample. These results have proven the possibility to use compact neutron source for the analysis of mesoscopic structure of metallic materials.

  8. A new compact laser source for portable LIBS applications

    NASA Astrophysics Data System (ADS)

    Goujon, J.; Musset, O.; Giakoumaki, A.; Pinon, V.; Anglos, D.; Georgiou, E.

    2008-02-01

    We present LIBS experimental results that demonstrate the use of a newly compact, versatile pulsed laser source in material analysis in view of research aiming at the development of portable LIBS instrumentation. LIBS qualitative analyses were performed on various samples and objects, and spectra were recorded in gated and non-gated modes. The latter is important because of advantages arising from size and cost reduction when using simple, compact spectrograph-CCD detection systems over the standard ICCD-based configurations. The new Nd 3+:YAG laser source exhibited very reliable performance in terms of laser pulse repeatability, autonomy and interface. Indeed, it can deliver a 45 mJ for 4.5 ns pulse and work at 1 Hz. Having the ability to work in double-pulse mode, it provided versatility in the measurements leading to increased LIBS signal intensities, improved the signal noise ratio and stabilized spectra. The first test results are encouraging and demonstrate that this new laser is suitable for integration in compact, portable and low cost LIBS sensors with a wide spectrum of materials analysis applications.

  9. Application of a compact microwave ion source to radiocarbon analysis

    SciTech Connect

    Schneider, R. J.; Reden, K. F. von; Hayes, J. M.; Wills, J. S. C.

    1999-04-26

    The compact, high current, 2.45 GHz microwave-driven plasma ion source which was built for the Chalk River TASCC facility is presently being adapted for testing as a gas ion source for accelerator mass spectrometry, at the Woods Hole Oceanographic Institution accelerator mass spectrometer. The special requirements for producing carbon-ion beams from micromole quantities of carbon dioxide produced from environmental samples will be discussed. These samples will be introduced into the ion source by means of argon carrier gas and a silicon capillary injection system. Following the extraction of positive ions from the source, negative ion formation in a charge exchange vapor will effectively remove the argon from the carbon beam. Simultaneous injection of the three carbon isotopes into the accelerator is planned.

  10. High-efficiency metal halide lighting systems for compact LCD projectors

    NASA Astrophysics Data System (ADS)

    Stewart, Charles N.; Rutan, Douglas M.; Savage, Daniel J.

    1997-05-01

    Compact LCD projectors require a high efficiency light source that has the smallest possible spatial extent. The objective of the lamp design must be to preserve the system etendue to ensure excellent screen illuminance. We present the results of the development of projection lighting systems that produce 1,500 to 3,000 lumens, have luminous efficacious of >= 1m/W and source sizes of compact efficient systems. 3D luminance results - both model and experiment - will be discussed. The result of our studies is a better understanding of the factors impacting long life, high efficiency, metal halide lamps with very small source sizes. We have identified a series of designs for lamp/ballast systems that give the user an option of performance sets. We will describe recent work on the design and characterization of a long life 50 Watt, 1.2 m arc gap metal halide lighting system that produces 3,200 lumens. A theoretical characterization of the optical efficiency of an arbitrary projection optical system through discussion of the arc efficiency and the system etendue will be presented.

  11. Compact Gamma-Beam Source for Nuclear Security Technologies

    NASA Astrophysics Data System (ADS)

    Gladkikh, P.; Urakawa, J.

    2015-10-01

    A compact gamma-beam source dedicated to the development of the nuclear security technologies by use of the nuclear resonance fluorescence is described. Besides, such source is a very promising tool for novel technologies of the express cargoes inspection to prevent nuclear terrorism. Gamma-beam with the quanta energies from 0.3MeV to 7.2MeV is generated in the Compton scattering of the "green" laser photons on the electron beam with energies from 90MeV to 430MeV. The characteristic property of the proposed gammabeam source is a narrow spectrum (less than 1%) at high average gamma-yield (of 1013γ/s) due to special operation mode.

  12. Light pollution simulations for planar ground-based light sources.

    PubMed

    Kocifaj, Miroslav

    2008-02-20

    The light pollution model is employed to analyze spatial behavior of luminance at the night sky under cloudless and overcast conditions. Enhanced light excess is particularly identified at cloudy skies, because the clouds efficiently contribute to the downward luminous flux. It is evident that size of ground-based light sources can play an important role in the case of overcast sky conditions. Nevertheless, the realistically sized light sources are rarely embedded into light pollution modeling, and rather they are replaced by simple point sources. We discuss the discrepancies between sky luminance distributions when at first the planar light sources are considered and at second the point-source approximation is accepted. The found differences are noticeable if the size of the light source, distance to the observer, and altitude of a cloudy layer are comparable one to the other. Compared with point-source approximation, an inclusion of the size factor into modeling the light sources leads to partial elimination of the steep changes of sky luminance (typical for point sources of light). The narrow and sharp light pillars normally presented on the sky illuminated by point light sources can disappear or fuse together when two or more nearby light sources are considered with their real sizes. Sky elements situated close to the horizon will glow efficiently if luminous flux originates from two-dimensional ground-based entities (such as cities or villages).

  13. A compact neutron generator using a field ionization source

    SciTech Connect

    Persaud, Arun; Waldmann, Ole; Kapadia, Rehan; Takei, Kuniharu; Javey, Ali; Schenkel, Thomas

    2012-02-15

    We study field ionization as a means to create ions for compact and rugged neutron source. Arrays of carbon nano-fibers promise the high field-enhancement factors required for efficient field ionization. We report on the fabrication of arrays of field emitters with a density up to 106 tips/cm2 and measure their performance characteristics using electron field emission. Lastly, the critical issue of uniformity is discussed, as are efforts towards coating the nano-fibers to enhance their lifetime and surface properties.

  14. Driver circuit for solid state light sources

    DOEpatents

    Palmer, Fred; Denvir, Kerry; Allen, Steven

    2016-02-16

    A driver circuit for a light source including one or more solid state light sources, a luminaire including the same, and a method of so driving the solid state light sources are provided. The driver circuit includes a rectifier circuit that receives an alternating current (AC) input voltage and provides a rectified AC voltage. The driver circuit also includes a switching converter circuit coupled to the light source. The switching converter circuit provides a direct current (DC) output to the light source in response to the rectified AC voltage. The driver circuit also includes a mixing circuit, coupled to the light source, to switch current through at least one solid state light source of the light source in response to each of a plurality of consecutive half-waves of the rectified AC voltage.

  15. Design of Beamline BL9 at Saga Light Source

    SciTech Connect

    Tanaka, Tooru; Ogawa, Hiroshi; Kamada, Masao; Nishio, Mitsuhiro; Guo, Qixin; Masuda, Masataka; Motooka, Teruaki; Kondo, Yuzi; Hayashida, Kazuki; Yoshimura, Daisuke; Setoyama, Hiroyuki; Okajima, Toshihiro

    2007-01-19

    Saga Light Source (SAGA-LS), which has been constructed at Tosu city in Saga prefecture, is a compact synchrotron light source with storage electron energy of 1.4 GeV. A new beamline for the development of advanced materials and processing has been designed, and is now under construction at BL9 of SAGA-LS. This beamline is one of the three bending magnet beamlines (BL9, BL12, and BL15) constructed by Saga Prefectural Government. In this paper, we describe the design and the expected optical performance of the beamline BL9 at SAGA-LS.

  16. Double Compact objects as the most promising gravitational wave sources

    NASA Astrophysics Data System (ADS)

    Liu, Jinzhong

    2015-08-01

    Gravitational Wave (GW) Astronomy is an emerging branch of observational astronomy which aims to collect observational data through observing the most promising GW sources such as double compact objects (DOCs: NS+WD, NS+NS, BH+NS, BH+BH binaries). DOCs not only can be observed by eLISA during the inspiral phase, but also, at some level, can be detected by ground based detectors during the merged phase. Note that these kinds of sources are also potential electromagnetic (EM) emitters. To study DCOs, a binary population synthesis approach is displayed in this poster. We discuss how to understand the relationship between EM information and GW data using multiobservation astronomy. A preliminary result in the context of GW triggers can be introduced in the poster.

  17. Compact Laser-Compton X-ray Source Development

    NASA Astrophysics Data System (ADS)

    Yeh, Po-Chun

    The state-of-the-art X-ray source based on inverse-Compton scattering between a high-brightness, relativistic electron beam produced by an X-band RF accelerator and a high-intensity laser pulse generated by chirped-pulse amplification (CPA) has been carried out by our research team at Lawrence Livermore National Laboratory. This system is called "Compact Laser-Compton X-ray Source". The applications include nuclear resonance fluorescence, medical imaging and therapy, and nuclear waste imaging and assay. One of the key factors in this system is how we know the interaction happened in the vacuum chamber, which is the spectrometer of electron beams. The other key factor is the interaction after the spectrometer, which is the outgoing X-ray. In this thesis, the work in the simulation for the result of the interaction between electrons and the laser, the calibration of spectrometer, and laser focus characterization are discussed.

  18. Electromagnetic Counterparts of Gravitational Wave Sources: Mergers of Compact Objects

    NASA Astrophysics Data System (ADS)

    Kamble, Atish; Kaplan, David L. A.

    2013-01-01

    Mergers of compact objects are considered prime sources of gravitational waves (GW) and will soon be targets of GW observatories such as the Advanced-LIGO and VIRGO. Finding electromagnetic counterparts of these GW sources will be important to understand their nature. We discuss possible electromagnetic signatures of the mergers. We show that the BH-BH mergers could have luminosities which exceed Eddington luminosity from unity to several orders of magnitude depending on the masses of the merging BHs. As a result these mergers could be explosive, release up to 1051 erg of energy and shine as radio transients. At any given time we expect about a few such transients in the sky at GHz frequencies, which could be detected to be about 300 Mpc. It has also been argued that these radio transients would look alike radio supernovae with comparable detection rates. Multi-band follow-up could, however, distinguish between the mergers and supernovae.

  19. Research opportunities with compact accelerator-driven neutron sources

    NASA Astrophysics Data System (ADS)

    Anderson, I. S.; Andreani, C.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.

    2016-10-01

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target-moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  20. Light source design for machine vision

    NASA Astrophysics Data System (ADS)

    Sieczka, Eric J.; Harding, Kevin G.

    1992-03-01

    There is a lack of commercially available white light sources for machine vision applications. Current commercial sources are typically expensive and primarily designed for workbench use. Because of their benchtop design, these light sources cannot be easily integrated into the inspection system. In most cases a light source must be custom designed and built to suit the needs of the particular machine vision application. The materials being inspected can vary from highly specular to highly diffuse, thus requiring a broad range of illumination levels. Other issues important in machine vision light sources include efficiency, light divergence, spectral content, source size, and packaging. This paper discusses the issues that must be overcome when designing a light source for machine vision applications, and describes the work done by ITI to produce an efficient white light source with computer controlled illumination level.

  1. Photoacoustic imaging of clinical metal needle by a LED light source integrated transducer

    NASA Astrophysics Data System (ADS)

    Agano, Toshitaka; Sato, Naoto; Nakatsuka, Hitoshi; Kitagawa, Kazuo; Hanaoka, Takamitsu; Morisono, Koji; Shigeta, Yusuke; Tanaka, Chizuyo

    2016-03-01

    We have achieved penetration depth of 30mm by photoacoustic imaging system using LED light source integrated transducer to image a clinical metal needle inserted into a tissue mimicking phantom. We developed the transducer that integrated near-infrared LED array light source, which was connected to a photoacoustic imaging system which drove LED array light source and controlled photoacoustic data acquisition process. Conventionally solid-state laser has been used as the light source for photoacoustic imaging system. Because LED is diffused light source, laser safety glasses is not necessary, also inflexible fibers are not used to guide light close to a transducer, and we integrated LED light source inside the transducer, which became compact and practical size for conventional ultrasound equipment users. We made LED light source unit as detachable to the transducer easily, so wave-length of light can be selectable by changing the LED light source unit.

  2. Compact, energy EFFICIENT neutron source: enabling technology for various applications

    SciTech Connect

    Hershcovitch, A.; Roser, T.

    2009-12-01

    A novel neutron source comprising of a deuterium beam (energy of about 100 KeV) injected into a tube filled with tritium gas and/or tritium plasma that generates D-T fusion reactions, whose products are 14.06 MeV neutrons and 3.52 MeV alpha particles, is described. At the opposite end of the tube, the energy of deuterium ions that did not interact is recovered. Beryllium walls of proper thickness can be utilized to absorb 14 MeV neutrons and release 2-3 low energy neutrons. Each ion source and tube forms a module. Larger systems can be formed from multiple units. Unlike currently proposed methods, where accelerator-based neutron sources are very expensive, large, and require large amounts of power for operation, this neutron source is compact, inexpensive, easy to test and to scale up. Among possible applications for this neutron source concept are sub-critical nuclear breeder reactors and transmutation of radioactive waste.

  3. Advanced Light Source control system

    SciTech Connect

    Magyary, S.; Chin, M.; Cork, C.; Fahmie, M.; Lancaster, H.; Molinari, P.; Ritchie, A.; Robb, A.; Timossi, C.

    1989-03-01

    The Advanced Light Source (ALS) is a third generation 1--2 GeV synchrotron radiation source designed to provide ports for 60 beamlines. It uses a 50 MeV electron linac and 1.5 GeV, 1 Hz, booster synchrotron for injection into a 1--2 GeV storage ring. Interesting control problems are created because of the need for dynamic closed beam orbit control to eliminate interaction between the ring tuning requirements and to minimize orbit shifts due to ground vibrations. The extremely signal sensitive nature of the experiments requires special attention to the sources of electrical noise. These requirements have led to a control system design which emphasizes connectivity at the accelerator equipment end and a large I/O bandwidth for closed loop system response. Not overlooked are user friendliness, operator response time, modeling, and expert system provisions. Portable consoles are used for local operation of machine equipment. Our solution is a massively parallel system with >120 Mbits/sec I/O bandwidth and >1500 Mips computing power. At the equipment level connections are made using over 600 powerful Intelligent Local Controllers (ILC-s) mounted in 3U size Eurocard slots using fiber-optic cables between rack locations. In the control room, personal computers control and display all machine variables at a 10 Hz rate including the scope signals which are collected though the control system. Commercially available software and industry standards are used extensively. Particular attention is paid to reliability, maintainability and upgradeability. 10 refs., 11 figs.

  4. Design of compact freeform lens for application specific Light-Emitting Diode packaging.

    PubMed

    Wang, Kai; Chen, Fei; Liu, Zongyuan; Luo, Xiaobing; Liu, Sheng

    2010-01-18

    Application specific LED packaging (ASLP) is an emerging technology for high performance LED lighting. We introduced a practical design method of compact freeform lens for extended sources used in ASLP. A new ASLP for road lighting was successfully obtained by integrating a polycarbonate compact freeform lens of small form factor with traditional LED packaging. Optical performance of the ASLP was investigated by both numerical simulation based on Monte Carlo ray tracing method and experiments. Results demonstrated that, comparing with traditional LED module integrated with secondary optics, the ASLP had advantages of much smaller size in volume (approximately 1/8), higher system lumen efficiency (approximately 8.1%), lower cost and more convenience for customers to design and assembly, enabling possible much wider applications of LED for general road lighting. Tolerance analyses were also conducted. Installation errors of horizontal and vertical deviations had more effects on the shape and uniformity of radiation pattern compared with rotational deviation. The tolerances of horizontal, vertical and rotational deviations of this lens were 0.11 mm, 0.14 mm and 2.4 degrees respectively, which were acceptable in engineering. PMID:20173861

  5. Design of compact freeform lens for application specific Light-Emitting Diode packaging.

    PubMed

    Wang, Kai; Chen, Fei; Liu, Zongyuan; Luo, Xiaobing; Liu, Sheng

    2010-01-18

    Application specific LED packaging (ASLP) is an emerging technology for high performance LED lighting. We introduced a practical design method of compact freeform lens for extended sources used in ASLP. A new ASLP for road lighting was successfully obtained by integrating a polycarbonate compact freeform lens of small form factor with traditional LED packaging. Optical performance of the ASLP was investigated by both numerical simulation based on Monte Carlo ray tracing method and experiments. Results demonstrated that, comparing with traditional LED module integrated with secondary optics, the ASLP had advantages of much smaller size in volume (approximately 1/8), higher system lumen efficiency (approximately 8.1%), lower cost and more convenience for customers to design and assembly, enabling possible much wider applications of LED for general road lighting. Tolerance analyses were also conducted. Installation errors of horizontal and vertical deviations had more effects on the shape and uniformity of radiation pattern compared with rotational deviation. The tolerances of horizontal, vertical and rotational deviations of this lens were 0.11 mm, 0.14 mm and 2.4 degrees respectively, which were acceptable in engineering.

  6. Morphology of high-luminosity compact radio sources.

    PubMed Central

    Zensus, J A; Krichbaum, T P; Lobanov, A P

    1995-01-01

    High-dynamic range imaging and monitoring with very-long-baseline interferometry reveal a rich morphology of luminous flat-spectrum radio sources. One-sided core-jet structures abound, and superluminal motion is frequently measured. In a few cases, both distinct moving features and diffuse underlying jet emission can be detected. Superluminal motion seen in such sources is typically complex, on curved trajectories or ridge lines, and with variable component velocities, including stationary features. The curved trajectories seen can be modeled by helical motion within the underlying jet flow. The very-long-baseline interferometry properties of the superluminal features in the jet of 3C 345 and other similar sources can be explained by models invoking the emission from shocks, at least within the vicinity of the compact core. Inverse-Compton calculations, constrained by x-ray observations, yield realistic estimates for the physical conditions in the parsec-scale jet. There is evidence for a transition region in this source beyond which other factors (e.g., plasma interactions and nonsynchrotron radiation processes) may become prominent. Multifrequency and polarization imaging (especially at high frequencies) are emerging as critical tools in testing model predictions. PMID:11607595

  7. Morphology of high-luminosity compact radio sources.

    PubMed

    Zensus, J A; Krichbaum, T P; Lobanov, A P

    1995-12-01

    High-dynamic range imaging and monitoring with very-long-baseline interferometry reveal a rich morphology of luminous flat-spectrum radio sources. One-sided core-jet structures abound, and superluminal motion is frequently measured. In a few cases, both distinct moving features and diffuse underlying jet emission can be detected. Superluminal motion seen in such sources is typically complex, on curved trajectories or ridge lines, and with variable component velocities, including stationary features. The curved trajectories seen can be modeled by helical motion within the underlying jet flow. The very-long-baseline interferometry properties of the superluminal features in the jet of 3C 345 and other similar sources can be explained by models invoking the emission from shocks, at least within the vicinity of the compact core. Inverse-Compton calculations, constrained by x-ray observations, yield realistic estimates for the physical conditions in the parsec-scale jet. There is evidence for a transition region in this source beyond which other factors (e.g., plasma interactions and nonsynchrotron radiation processes) may become prominent. Multifrequency and polarization imaging (especially at high frequencies) are emerging as critical tools in testing model predictions.

  8. Frequency scaling with miniature COmpact MIcrowave and Coaxial ion sources

    NASA Astrophysics Data System (ADS)

    Sortais, Pascal; André, Thomas; Angot, Julien; Bouat, Sophie; Jacob, Josua; Lamy, Thierry; Sole, Patrick

    2014-02-01

    We will present recent basic developments about possible extension of the COMIC (for COmpact MIcrowave and Coaxial) devices up to 5.8 GHz in place of the present 2.45 GHz operation [P. Sortais, T. Lamy, J. Médard, J. Angot, L. Latrasse, and T. Thuillier, Rev. Sci. Instrum. 81, 02B314 (2010)]. New applications associating multiple COMIC devices for thin film deposition will be described and we will explain why an increase of the current density delivered by each individual ion source could lead to the increase of the deposition rate. For this purpose, we will present results of about two devices working at 5.8 GHz. The first one is a tiny ion source, the world smallest microwave ion source, exactly similar to COMIC but operating at 5.8 GHz with a quarter wave cavity structure and a few watts microwave power consumption. We will show that the frequency scaling effect is effective inside such small machines. The second one is a more ambitious ion source designed around a three quarter wave structure that works with a few tens of watts at 5.8 GHz.

  9. Silicon micromachined broad band light source

    NASA Technical Reports Server (NTRS)

    George, Thomas (Inventor); Jones, Eric (Inventor); Tuma, Margaret L. (Inventor); Eastwood, Michael (Inventor); Hansler, Richard (Inventor)

    2004-01-01

    A micro electromechanical system (MEMS) broad band incandescent light source includes three layers: a top transmission window layer; a middle filament mount layer; and a bottom reflector layer. A tungsten filament with a spiral geometry is positioned over a hole in the middle layer. A portion of the broad band light from the heated filament is reflective off the bottom layer. Light from the filament and the reflected light of the filament are transmitted through the transmission window. The light source may operate at temperatures of 2500 K or above. The light source may be incorporated into an on board calibrator (OBC) for a spectrometer.

  10. Compact, high power electron beam based terahertz sources.

    SciTech Connect

    Biedron, S. G.; Lewellen, J. W.; Milton, S. V.; Gopalsami, N.; Schneider, J. F.; Skubal, L.; Li, Y. L.; Virgo, M.; Gallerano, G. P.; Doria, A.; Giovenale, E.; Messina, G.; Spasovsky, I. P.; Office of The Director-Applied Science and Technology; Univ. of Maryland; ENEA

    2007-08-01

    Although terahertz (THz) radiation was first observed about 100 years ago, this portion of the electromagnetic spectrum at the boundary between the microwaves and the infrared has been, for a long time, rather poorly explored. This situation changed with the rapid development of coherent THz sources such as solid-state oscillators, quantum cascade lasers, optically pumped solid-state devices, and novel coherent radiator devices. These in turn have stimulated a wide variety of applications from material science to telecommunications, from biology to biomedicine. Recently, there have been two related compact coherent radiation devices invented able to produce up to megawatts of peak THz power by inducing a ballistic bunching effect on the electron beam, forcing the beam to radiate coherently. An introduction to the two systems and the corresponding output photon beam characteristics will be provided.

  11. A compact and continuously driven supersonic plasma and neutral source.

    PubMed

    Asai, T; Itagaki, H; Numasawa, H; Terashima, Y; Hirano, Y; Hirose, A

    2010-10-01

    A compact and repetitively driven plasma source has been developed by utilizing a magnetized coaxial plasma gun (MCPG) for diagnostics requiring deep penetration of a large amount of neutral flux. The system consists of a MCPG 95mm in length with a DN16 ConFlat connection port and an insulated gate bipolar transistor (IGBT) inverter power unit. The power supply consists of an array of eight IGBT units and is able to switch the discharge on and off at up to 10 kV and 600 A with a maximum repetitive frequency of 10 kHz. Multiple short duration discharge pulses maximize acceleration efficiency of the plasmoid. In the case of a 10 kHz operating frequency, helium-plasmoids in the velocity range of 20 km/s can be achieved.

  12. Double planar wire array as a compact plasma radiation source

    SciTech Connect

    Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Williamson, K. M.; Yilmaz, M. F.; Shrestha, I.; Ouart, N. D.; Osborne, G. C.; Rudakov, L. I.; Chuvatin, A. S.; Coverdale, C. A.; Deeney, C.

    2008-03-15

    Magnetically compressed plasmas initiated by a double planar wire array (DPWA) are efficient radiation sources. The two rows in a DPWA implode independently and then merge together at stagnation producing soft x-ray yields and powers of up to 11.5 kJ/cm and more than 0.4 TW/cm, higher than other planar arrays or low wire-number cylindrical arrays on the 1 MA Zebra generator. DPWA, where precursors form in two stages, produce a shaped radiation pulse and radiate more energy in the main burst than estimates of implosion kinetic energy. High radiation efficiency, compact size (as small as 3-5 mm wide), and pulse shaping show that the DPWA is a potential candidate for ICF and radiation physics research.

  13. Postanalysis of the CNPS (Compact Nuclear Power Source) critical experiment

    SciTech Connect

    Palmer, R.G.

    1988-01-01

    The Compact Nuclear Power Source (CNPS) was designed to produce electric power for remote sites where fuel logistics and costs would justify a remotely sited nuclear power plant. Since the reactor was of novel design with no appropriate benchmarks, a series of critical experiments was carried out at LANL. This paper describes the methodology and reports the results of the postanalysis that was performed on the critical experiments, which included several distinct critical configurations, the measurement of the isothermal temperature coefficient of reactivity and various material worths. Comparisons with measurements indicate that current methods and cross sections are adequate for calculating at least the beginning of life conditions in low enriched /sup 235/U-graphite cores. 7 refs., 4 figs., 4 tabs.

  14. The 4 micron spectra of compact infrared sources

    NASA Technical Reports Server (NTRS)

    Hofmann, R.; Larson, H. P.; Fink, U.

    1986-01-01

    High resolution 5 arcsec spectra in the 4 micron region are presented of the central 5 arcsec of the compact near infrared sources K3-50, W51-IRS2 East, and G333.6-0.2. From measured Br-alpha/Pf-beta line ratios and previously published infrared and radio maps, it is concluded that standard recombination theory fails to explain our observations in at least two cases. It is demonstrated that the data are consistent with thermal excitation of the hydrogen lines in strong stellar winds. The Pf-beta Hu-epsilon line ratio, which is completely insensitive to differential extinction, confirms the need for the stellar wind model for the core of G333.6-0.2. From the (K III) line it is estimated that the potassium abundance in G333.6-0.2 is at least equal to the solar value, and possibly enhanced by a factor up to 10.

  15. A compact source condition for modelling focused fields using the pseudospectral time-domain method.

    PubMed

    Munro, Peter R T; Engelke, Daniel; Sampson, David D

    2014-03-10

    The pseudospectral time-domain (PSTD) method greatly extends the physical volume of biological tissue in which light scattering can be calculated, relative to the finite-difference time-domain (FDTD) method. We have developed an analogue of the total-field scattered-field source condition, as employed in FDTD, for introducing focussed illuminations into PSTD simulations. This new source condition requires knowledge of the incident field, and applies update equations, at a single plane in the PSTD grid. Numerical artifacts, usually associated with compact PSTD source conditions, are minimized by using a staggered grid. This source condition's similarity with that used by the FDTD suggests a way in which existing FDTD codes can be easily adapted to PSTD codes.

  16. Solid state light source for wavelength multiplex 3D

    NASA Astrophysics Data System (ADS)

    Huang, Junejei

    2012-10-01

    A solid state light source provided for wavelength multiplex 3D Display is proposed. The system of solid state light source includes blue laser arrays of two wavelengths, a 2-ring phosphor wheel, a multi-band filter and a TIR prism. Green and red phosphors excited by blue lasers provide the original green and red lights of wide bandwidth. By passing through or reflected by a multi-band filter, two groups of green and red lights of narrow bandwidth for left or right eyes are selected. Blue lasers of two wavelengths also provide two blue lights for left and right eyes. Instead of using a second rotated narrow band filters that synchronized with the first phosphor wheel, a wheel having two rings coated with mirrors and phosphors is used to replace the synchronization existing in the conventional two wheels method. After passing the 2-ring wheel, the light source switches between two light paths that lead to be reflected or transmitting through the multiband filter. The multi-band filter can be disposed in a telecentric optical path to secure a high efficiency for the filter. A compact spectral multiplex light source is realized and can be directly attached to any existing optical engine.

  17. Compact steep-spectrum sources and the unified scheme.

    PubMed Central

    Saikia, D J

    1995-01-01

    The compact steep-spectrum sources (CSSs) are an interesting class of objects which are of subgalactic dimensions; they occur more frequently in high-frequency surveys because their spectra often turn over at lower frequencies. We have estimated the symmetry parameters of a well-defined sample of CSSs and compared these with the larger 3CR sources of similar luminosity to understand the evolution and the consistency of CSSs with the unified scheme. We suggest that the majority of CSSs are likely to be young sources advancing outward through an asymmetric, inhomogeneous environment to form the larger ones. The radio properties of the CSSs are consistent with the unified scheme, where the axes of the quasars are seen closer to the line of sight while the radio galaxies lie closer to the plane of the sky. We discuss how radio polarization observations may be used to probe whether the physical conditions in the central regions of the CSSs are different from the larger ones. We present a simple scenario where the depolarization and high rotation measures seen in many CSSs can be consistent with the low rotation measures of cores in the more extended quasars and suggest further observations to test this scenario. PMID:11607610

  18. A compact, versatile low-energy electron beam ion source

    SciTech Connect

    Zschornack, G.; König, J.; Schmidt, M.; Thorn, A.

    2014-02-15

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  19. Beam extraction and delivery at compact neutron sources

    NASA Astrophysics Data System (ADS)

    Mezei, F.

    2016-11-01

    The beam performance of a source of radiation is primarily characterized by its brightness, which remains constant in a conservative force field along the propagation of the beam. The neutron flux at an area with direct view to a homogenous radiation emitting moderator surface will just depend on the solid angle of beam divergence as determined by the moderator size. Recently it was found that by reducing the size of neutron moderators their brightness can be enhanced by a factor in the range of up to 3-6. In direct view of such moderators from sizable distances often required in neutron scattering applications the beam divergence will become reduced. Supermirror based neutron optical guide systems allow us to deliver neutron beam divergences independently of distance from the source. Due to the low radiation fields at compact sources such systems can be placed close to the neutron emitting moderators, a specific advantage and a new design feature. Focusing type neutron guides with phase space acceptance properly matched to the phase space to be delivered over distance can provide for beam delivery with small losses of brightness within a convenient and flexible range of beam parameters.

  20. A Compact, High-Flux Cold Atom Beam Source

    NASA Technical Reports Server (NTRS)

    Kellogg, James R.; Kohel, James M.; Thompson, Robert J.; Aveline, David C.; Yu, Nan; Schlippert, Dennis

    2012-01-01

    The performance of cold atom experiments relying on three-dimensional magneto-optical trap techniques can be greatly enhanced by employing a highflux cold atom beam to obtain high atom loading rates while maintaining low background pressures in the UHV MOT (ultra-high vacuum magneto-optical trap) regions. Several techniques exist for generating slow beams of cold atoms. However, one of the technically simplest approaches is a two-dimensional (2D) MOT. Such an atom source typically employs at least two orthogonal trapping beams, plus an additional longitudinal "push" beam to yield maximum atomic flux. A 2D atom source was created with angled trapping collimators that not only traps atoms in two orthogonal directions, but also provides a longitudinal pushing component that eliminates the need for an additional push beam. This development reduces the overall package size, which in turn, makes the 2D trap simpler, and requires less total optical power. The atom source is more compact than a previously published effort, and has greater than an order of magnitude improved loading performance.

  1. Photometer for tracking a moving light source

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W. (Inventor)

    2009-01-01

    A photometer that tracks a path of a moving light source with little or no motion of the photometer components. The system includes a non-moving, truncated paraboloid of revolution, having a paraboloid axis, a paraboloid axis, a small entrance aperture, a larger exit aperture and a light-reflecting inner surface, that receives and reflects light in a direction substantially parallel to the paraboloid axis. The system also includes a light processing filter to receive and process the redirected light, and to issue the processed, redirected light as processed light, and an array of light receiving elements, at least one of which receives and measures an associated intensity of a portion of the processed light. The system tracks a light source moving along a path and produces a corresponding curvilinear image of the light source path on the array of light receiving elements. Undesired light wavelengths from the light source may be removed by coating a selected portion of the reflecting inner surface or another light receiving surface with a coating that absorbs incident light in the undesired wavelength range.

  2. Tunable light source for use in photoacoustic spectrometers

    DOEpatents

    Bisson, Scott E.; Kulp, Thomas J.; Armstrong, Karla M.

    2005-12-13

    The present invention provides a photoacoustic spectrometer that is field portable and capable of speciating complex organic molecules in the gas phase. The spectrometer has a tunable light source that has the ability to resolve the fine structure of these molecules over a large wavelength range. The inventive light source includes an optical parametric oscillator (OPO) having combined fine and coarse tuning. By pumping the OPO with the output from a doped-fiber optical amplifier pumped by a diode seed laser, the inventive spectrometer is able to speciate mixtures having parts per billion of organic compounds, with a light source that has a high efficiency and small size, allowing for portability. In an alternative embodiment, the spectrometer is scanned by controlling the laser wavelength, thus resulting in an even more compact and efficient design.

  3. Development of a circadian light source

    NASA Astrophysics Data System (ADS)

    Nicol, David B.; Ferguson, Ian T.

    2002-11-01

    Solid state lighting presents a new paradigm for lighting - controllability. Certain characteristics of the lighting environment can be manipulated, because of the possibility of using multiple LEDs of different emission wavelengths as the illumination source. This will provide a new, versatile, general illumination source due to the ability to vary the spectral power distribution. New effects beyond the visual may be achieved that are not possible with conventional light sources. Illumination has long been the primary function of lighting but as the lighting industry has matured the psychological aspects of lighting have been considered by designers; for example, choosing a particular lighting distribution or color variation in retail applications. The next step in the evolution of light is to consider the physiological effects of lighting that cause biological changes in a person within the environment. This work presents the development of a source that may have important bearing on this area of lighting. A circadian light source has been developed to provide an illumination source that works by modulating its correlated color temperature to mimic the changes in natural daylight through the day. In addition, this source can cause or control physiological effects for a person illuminated by it. The importance of this is seen in the human circadian rhythm's peak response corresponding to blue light at ~460 nm which corresponds to the primary spectral difference in increasing color temperature. The device works by adding blue light to a broadband source or mixing polychromatic light to mimic the variation of color temperature observed for the Planckian Locus on the CIE diagram. This device can have several applications including: a tool for researchers in this area, a general illumination lighting technology, and a light therapy device.

  4. The First Sources of Light

    NASA Astrophysics Data System (ADS)

    Loeb, Avi

    2011-09-01

    Looking deep into the Universe through powerful telescopes, we can see images of the Universe when it was younger because of the finite time it takes light to travel to us from distant sources. Existing data sets include an image of the Universe when it was 0.4 million years old (in the form of the cosmic microwave background), as well as images of individual galaxies when the Universe was older than a billion years. But there is a serious challenge: in between these two epochs was a period when the Universe was dark, stars had not yet formed, and the cosmic microwave background no longer traced the distribution of matter. And this is precisely the most interesting period, when the primordial soup evolved into the rich zoo of objects we now see. The observers are moving ahead along several fronts. The first involves the construction of large infrared telescopes on the ground and in space, that will provide us with new photos of the first galaxies. Current plans include ground-based telescopes which are 24-42 meter in diameter, and NASA's successor to the Hubble Space Telescope, called the James Webb Space Telescope. In addition, several observational groups around the globe are constructing radio arrays that will be capable of mapping the three-dimensional distribution of cosmic hydrogen in the infant Universe. These arrays are aiming to detect the long-wavelength (redshifted 21-cm) radio emission from hydrogen atoms. The images from these antenna arrays will reveal how the non-uniform distribution of neutral hydrogen evolved with cosmic time and eventually was extinguished by the ultra-violet radiation from the first galaxies. Theoretical research has focused in recent years on predicting the expected signals for the above instruments and motivating these ambitious observational projects.

  5. Compact Binary Mergers as Multimessenger Sources of Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Shapiro, Stuart

    2015-04-01

    On the centennial anniversary of Einstein's theory of general relativity, we are on the verge of directly detecting one of its most remarkable predictions - gravitational waves (GWs). The inspiral and merger of compact binaries - binaries with black hole, neutron star or white dwarf companions - are among the most promising sources of GWs. Many of these sources are likely to generate observable electromagnetic (EM) and/or neutrino counterparts to the GWs, constituting a major advance in multimessenger astronomy. By way of illustration, we describe recent magnetohydrodynamic simulations in general relativity (GRMHD) that show how black hole-neutron star mergers can launch jets, lending support to the idea that such mergers could be the engines that power short-hard gamma-ray bursts. We also discuss other recent GRMHD simulations that show how an inspiraling, supermassive binary black hole in a galaxy core stirs and accretes magnetized plasma that orbits the holes in a circumbinary disk. This process can generate ``precursor'' and ``aftermath'' EM radiation with respect to the peak GW emission at merger. Computer-generated movies highlighting some of these simulations will be shown. We gratefully acknowledge support from NSF Grant PHY-1300903 and NASA Grant NNX13AH44G at the University of Illinois at Urbana-Champaign.

  6. Tracking Steady Light Sources Amid Luminous Transients

    NASA Technical Reports Server (NTRS)

    Kissh, Frank; Fowski, Walter; Miklus, Kenneth; Abreu, Rene; Bolin, Kenneth; Flynn, David

    1994-01-01

    The Transient Event Rejection for Acquisition and Tracking (TERAT) algorithm governs operation of image-data-acquisition and -processing system. TERAT processes digitized image data to acquire (that is, identify) candidate steady source of light, validate candidate source, and track validated source, all in presence of real or apparent luminous transients represented in image data. Source of light tracked could be star or distant luminous beacon. Transients caused by impacts of ionizing radiation on imaging array of photodetectors or by unsteady light sources not meant to be tracked. TERAT functions with limited data-processing resources. TERAT algorithm currently operational on NASA's TOPEX mission.

  7. Collimating lens for light-emitting-diode light source based on non-imaging optics.

    PubMed

    Wang, Guangzhen; Wang, Lili; Li, Fuli; Zhang, Gongjian

    2012-04-10

    A collimating lens for a light-emitting-diode (LED) light source is an essential device widely used in lighting engineering. Lens surfaces are calculated by geometrical optics and nonimaging optics. This design progress does not rely on any software optimization and any complex iterative process. This method can be used for any type of light source not only Lambertian. The theoretical model is based on point source. But the practical LED source has a certain size. So in the simulation, an LED chip whose size is 1 mm*1 mm is used to verify the feasibility of the model. The mean results show that the lenses have a very compact structure and good collimating performance. Efficiency is defined as the ratio of the flux in the illuminated plane to the flux from LED source without considering the lens material transmission. Just investigating the loss in the designed lens surfaces, the two types of lenses have high efficiencies of more than 90% and 99%, respectively. Most lighting area (possessing 80% flux) radii are no more than 5 m when the illuminated plane is 200 m away from the light source. PMID:22505154

  8. Spectra of Three Light Sources with a CD.

    ERIC Educational Resources Information Center

    Zanetti, Vittorio; Harris, John

    1993-01-01

    Uses a compact disc (CD) as a grating in spectroscopy experiments. Suggests using the CD with fluorescent tubes, compact fluorescent light bulbs, incandescent filament light bulbs, and sodium and mercury vapor lamps. Discusses environmental and economic aspects of fluorescent lighting. (MVL)

  9. A Microfabricated Deuterium Ion Source for Compact Neutron Generators

    NASA Astrophysics Data System (ADS)

    Johnson, Benjamin Bargsten

    Active neutron interrogation is generally accepted as a reliable means of detecting the illicit transportation of special nuclear materials, in particular highly enriched uranium. The development of portable active neutron interrogation systems for field detection applications could be facilitated by the use of a new deuterium ion source which has the potential to advance many of the performance limiting aspects of exiting compact, accelerator-driven neutron generators. The ion source being investigated is a gated array of sharp metal tips that uses high electric fields to generate deuterium ion currents through the physical processes of field ionization and field desorption. The deuterium ions produced by the source are extracted and used to drive a D-D (or D-T) fusion reaction to create neutrons. The basic microstructure for the ion source array is derived from modern semiconductor microfabrication technology for field emitter arrays, though many structural modifications have been made in an attempt to reach the required operating fields of the ion generation processes. Pulsed (field desorption) and d.c. (field ionization) tests conducted with each array design type developed thus far indicate a steady improvement in array tip operating fields. Field ionization studies were conducted with arrays at source temperatures of 77 K and 293 K. Newly developed arrays have demonstrated field ionization currents upwards of ˜50 nA, which is roughly 50% of the maximum ion production possible, as presently fabricated. Neutron production by field ionization was demonstrated for the first time from the microfabricated arrays. A maximum neutron yield of 95 n/s (6300 n/s/cm2 of array active area) was observed from a 1.5 mm2 array using a D-D fusion reaction at -90 kV. Field desorption studies at 77 K and 293 K were conducted in parallel with field ionization testing. To date, the arrays have consistently demonstrated the field desorption of deuterium ions from array tip surfaces

  10. Microwave-driven ultraviolet light sources

    DOEpatents

    Manos, Dennis M.; Diggs, Jessie; Ametepe, Joseph D.

    2002-01-29

    A microwave-driven ultraviolet (UV) light source is provided. The light source comprises an over-moded microwave cavity having at least one discharge bulb disposed within the microwave cavity. At least one magnetron probe is coupled directly to the microwave cavity.

  11. Compact and high resolution virtual mouse using lens array and light sensor

    NASA Astrophysics Data System (ADS)

    Qin, Zong; Chang, Yu-Cheng; Su, Yu-Jie; Huang, Yi-Pai; Shieh, Han-Ping David

    2016-06-01

    Virtual mouse based on IR source, lens array and light sensor was designed and implemented. Optical architecture including lens amount, lens pitch, baseline length, sensor length, lens-sensor gap, focal length etc. was carefully designed to achieve low detective error, high resolution, and simultaneously, compact system volume. System volume is 3.1mm (thickness) × 4.5mm (length) × 2, which is much smaller than that of camera-based device. Relative detective error of 0.41mm and minimum resolution of 26ppi were verified in experiments, so that it can replace conventional touchpad/touchscreen. If system thickness is eased to 20mm, resolution higher than 200ppi can be achieved to replace real mouse.

  12. Compact mid-IR sources east of Galactic Center source IRS5

    NASA Astrophysics Data System (ADS)

    Perger, M.; Moultaka, J.; Eckart, A.; Viehmann, T.; Schödel, R.; Muzic, K.

    2008-01-01

    Aims:Mid-infrared observations of the Galactic Center show among the extended mini-spiral a number of compact sources. Their nature is of interest because they represent an interaction of luminous stars with the mini-spiral material or mass losing sources that are enshrouded in dust and gas shells. Characterizing their nature is necessary to obtain a complete picture of the different stellar populations and the star formation history of the cental stellar cluster in general. Prominent compact MIR sources in the Galactic Center are either clearly offset from the mini-spiral (e.g. the M2 super-giant IRS 7 and the bright dust enshrouded IRS 3) or have been identified earlier with bright bow shock sources (e.g. IRS 21, 1W, 10W and IRS 5). There are, however, four less prominent compact sources east of IRS 5, the natures of which were unclear until now. Methods: We present near-infrared K-band long slit spectroscopy of the four sources east of IRS 5 obtained with the ISAAC spectrograph at the ESO VLT in July 2005. We interpret the data in combination with high angular resolution NIR and MIR images obtained with ISAAC and NACO at the ESO VLT. Results: The K'-band images and proper motions show that the sources are multiple. For all but one source we find dominant contributions from late type stars with best overall fits to template stars with temperatures below 5000 K. Conclusions: The brightest sources contained in IRS 5NE, 5E and 5S may be asymptotic giant branch stars and a part of the MIR excess may be due to dust shells produced by the individual sources. However, in all cases an interaction with the mini-spiral cannot be excluded and their broad band infrared SEDs indicate that they could be lower luminosity counterparts of the identified bow shock sources. In fact, IRS 5SE is associated with a faint bow shock and its spectrum shows contributions from a hotter early type star which supports such a classification.

  13. Applications of laser wakefield accelerator-based light sources

    NASA Astrophysics Data System (ADS)

    Albert, Félicie; Thomas, Alec G. R.

    2016-11-01

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons in the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. We first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.

  14. A compact multi-channel fluorescence sensor with ambient light suppression

    NASA Astrophysics Data System (ADS)

    Egly, Dominik; Geörg, Daniel; Rädle, Matthias; Beuermann, Thomas

    2012-03-01

    A multi-channel fluorescence sensor has been developed for process monitoring and fluorescence diagnostics. It comprises a fiber-optic set-up with an immersion probe and an intensity-modulated high power ultraviolet light-emitting diode as a light source for fluorescence excitation. By applying an electronic lock-in procedure, fluorescence signals are selectively detectable at ambient light levels of 1000 000 times higher intensity. The sensor was designed to be compact, low cost and easily adaptable to a wide field of application. The set-up was used to simultaneously monitor three important metabolic fluorophores: NAD(P)H, flavins and porphyrins during the cultivation of a baker's yeast. Moreover, the accumulation and degradation kinetics of protoporphyrin IX induced by 5-aminolevulinic acid on the skin could be recorded by the sensor. The detection limit for protoporphyrin IX was determined to be 4 × 10-11 mol L-1. The linear signal amplification of the sensor and time courses of fluorescence signals monitored during yeast fermentations were validated using a commercial CCD spectrometer. The robust and flexible set-up of the fiber-optic measurement system promises easy implementation of this non-invasive analytical tool to fluorescence monitoring and diagnostics in R&D and production.

  15. Development of a compact, light weight magnetic bearing

    NASA Technical Reports Server (NTRS)

    Meeks, Crawford; Dirusso, Eliseo; Brown, Gerald V.

    1990-01-01

    A compact, lightweight radial-load bearing has been devised with permanent magnet bias and actively controlled radial loading. The novel design uses permanent magnets to generate a coaxial magnetic field that energizes two radial air gaps. Two electromechanical stators modulate the airgap field in order to impart stability and control. Attention is given to the implementation of this design in an application involving operation at ambient and cryogenic temperatures at loads of up to 500 lbs. Stiffnesses of up to 17,500 N/mm have been obtained.

  16. Light emitting diode-based nanosecond ultraviolet light source for fluorescence lifetime measurements

    NASA Astrophysics Data System (ADS)

    Araki, Tsutomu; Misawa, Hiroaki

    1995-12-01

    A compact pulsed-light source is devised from an InGaN/AlGaN double heterostructure light-emitting diode (LED). The LED emits a 450-nm (blue) light under conventional dc operation below 30 mA. When a current larger than 50 mA is applied, the intensity of the 450-nm light saturates, but that of the 380-nm light due to the InGaN component continues to increase. This phenomenon is utilized to realize a nanosecond ultraviolet (UV) light source. Under repetitive, large current pulsing (frequency=10 kHz, pulse width=4 ns, peak current=2 A), the peak LED emission shifts from 450 to 380 nm. Intense light pulses (peak value=40 mW) of 4-ns duration were generated. To evaluate the potential of the pulsed LED as an excitation source, the fluorescence lifetime of a quinine-sulfate solution was measured. The observed lifetime characteristics agreed well with the generally accepted behavior.

  17. DEVELOPMENT OF NEW MID-INFRARED ULTRAFAST LASER SOURCES FOR COMPACT COHERENT X-RAY SOURCES

    SciTech Connect

    Sterling Backus

    2012-05-14

    In this project, we proposed to develop laser based mid-infrared lasers as a potentially robust and reliable source of ultrafast pulses in the mid-infrared region of the spectrum, and to apply this light source to generating bright, coherent, femtosecond-to-attosecond x-ray beams.

  18. The DARPA compact superconducting x-ray lithography source features. [Defense Advanced Research Projects Agency (DARPA)

    SciTech Connect

    Heese, R. ); Kalsi, S. ); Leung, E. . Space Systems Div.)

    1991-01-01

    Under DARPA sponsorship, a compact Superconducting X-ray Lithography Source (SXLS) is being designed and built by the Brookhaven National Laboratory (BNL) with industry participation from Grumman Corporation and General Dynamics. This source is optimized for lithography work for sub-micron high density computer chips, and is about the size of a billiard table (1.5 m {times} 4.0 m). The machine has a racetrack configuration with two 180{degree} bending magnets being designed and built by General Dynamics under a subcontract with Grumman Corporation. The machine will have 18 photon ports which would deliver light peaked at a wave length of 10 Angstroms. Grumman is commercializing the SXLS device and plans to book orders for delivery of industrialized SXLS (ISXLS) versions in 1995. This paper will describe the major features of this device. The commercial machine will be equipped with a fully automated user-friendly control systems, major features of which are already working on a compact warm dipole ring at BNL. This ring has normal dipole magnets with dimensions identical to the SXLS device, and has been successfully commissioned. 4 figs., 1 tab.

  19. Advanced Compton scattering light source R&D at LLNL

    SciTech Connect

    Albert, F; Anderson, S G; Anderson, G; Betts, S M; Chu, T S; Gibson, D J; Marsh, R A; Messerly, M; Shverdin, M Y; Wu, S; Hartemann, F V; Siders, C W; Barty, C P

    2010-02-16

    We report the design and current status of a monoenergetic laser-based Compton scattering 0.5-2.5 MeV {gamma}-ray source. Previous nuclear resonance fluorescence results and future linac and laser developments for the source are presented. At MeV photon energies relevant for nuclear processes, Compton scattering light sources are attractive because of their relative compactness and improved brightness above 100 keV, compared to typical 4th generation synchrotrons. Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable Mono-Energetic Gamma-Ray (MEGa-Ray) light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A new precision, tunable gamma-ray source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. Based on the success of the previous Thomson-Radiated Extreme X-rays (T-REX) Compton scattering source at LLNL, the source will be used to excite nuclear resonance fluorescence lines in various isotopes; applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. After a brief presentation of successful nuclear resonance fluorescence (NRF) experiments done with T-REX, the new source design, key parameters, and current status are presented.

  20. Advanced Light Source Activity Report 2002

    SciTech Connect

    Duque, Theresa; Greiner, Annette; Moxon, Elizabeth; Robinson, Arthur; Tamura, Lori

    2003-06-12

    This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information.

  1. Red Shifts with Obliquely Approaching Light Sources.

    ERIC Educational Resources Information Center

    Head, C. E.; Moore-Head, M. E.

    1988-01-01

    Refutes the Doppler effect as the explanation of large red shifts in the spectra of distant galaxies and explains the relativistic effects in which the light sources approach the observer obliquely. Provides several diagrams and graphs. (YP)

  2. National Synchrotron Light Source annual report 1988

    SciTech Connect

    Hulbert, S.; Lazarz, N.; Williams, G.

    1988-01-01

    This report discusses the experiment done at the National Synchrotron Light Source. Most experiments discussed involves the use of the x-ray beams to study physical properties of solid materials. (LSP)

  3. Advanced Light Source Activity Report 2000

    SciTech Connect

    Greiner, A.; Moxon, L.; Robinson, A.; Tamura, L.

    2001-04-01

    This is an annual report, detailing activities at the Advanced Light Source for the year 2000. It includes highlights of scientific research by users of the facility as well as information about the development of the facility itself.

  4. Depolarized light source for fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Burns, W. K.; Moeller, R. P.

    1991-12-01

    An apparatus comprised of a depolarized light source for fiber optic sensors is disclosed. In a preferred embodiment, the depolarized light source of the apparatus comprises: a first laser for generating a first beam at a first frequency with the first beam having a linear polarization state; a second laser for generating a second beam at a second frequency with the second beam having a linear polarization state; a means for rotating the polarization state of the second beam so that the first and second beams have orthogonal linear polarization states with respect to each other; and a means for combining the first beam with the polarization-rotated second beam to obtain a composite beam which is depolarized. In a system operation, the apparatus comprises a source of depolarized light; an integrated optic modulator means for receiving a modulator drive signal; a first low-birefringence fiber for conveying the depolarized light beam from the depolarized light source to the integrated optic modulator means (the integrated optic modulator mean modulating only one linear polarization state in the depolarized light beam as a function of the modulator drive signal to produce a modulated beam); a photodetector; and a second low-birefringence fiber for conveying the modulated light beam to the photodetector with the photodetector being responsive to the modulated light beam for developing an electrical signal proportional to the modulator drive signal.

  5. Ideas for future synchrotron light sources

    SciTech Connect

    Jackson, A.; Hassenzahl, W.; Meddahi, M.

    1992-03-01

    Synchrotron light sources have advanced in the past two-to-three decades through three ``generations,`` from irritating parasitic sources on high-energy physics accelerators to dedicated electron and position storage rings of unprecedented low emittance, utilizing undulator and wiggler magnets. The evolution through these three generations followed a predicable, science-driven, course towards brighter beams of VUV- and x-radiation. The requirements of future light sources is not so clear. The limit on how emittance has certainly not been reached, and diffraction-limited sources at shorter wavelengths would be the natural progression from previous generations. However, scientists are now looking at other radiation characteristics that might better serve their needs, for example, more coherent power, fast switching polarization, ultra-short (sub-picosecond) time structure, and synchronized beams for pump-probe experiments. This paper discusses some current ideas that might drive the fourth-generation synchrotron light source.

  6. Ideas for future synchrotron light sources

    SciTech Connect

    Jackson, A.; Hassenzahl, W.; Meddahi, M.

    1992-03-01

    Synchrotron light sources have advanced in the past two-to-three decades through three generations,'' from irritating parasitic sources on high-energy physics accelerators to dedicated electron and position storage rings of unprecedented low emittance, utilizing undulator and wiggler magnets. The evolution through these three generations followed a predicable, science-driven, course towards brighter beams of VUV- and x-radiation. The requirements of future light sources is not so clear. The limit on how emittance has certainly not been reached, and diffraction-limited sources at shorter wavelengths would be the natural progression from previous generations. However, scientists are now looking at other radiation characteristics that might better serve their needs, for example, more coherent power, fast switching polarization, ultra-short (sub-picosecond) time structure, and synchronized beams for pump-probe experiments. This paper discusses some current ideas that might drive the fourth-generation synchrotron light source.

  7. Microelectromechanical Systems (MEMS) Broadband Light Source Developed

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.

    2003-01-01

    A miniature, low-power broadband light source has been developed for aerospace applications, including calibrating spectrometers and powering miniature optical sensors. The initial motivation for this research was based on flight tests of a Fabry-Perot fiberoptic temperature sensor system used to detect aircraft engine exhaust gas temperature. Although the feasibility of the sensor system was proven, the commercial light source optically powering the device was identified as a critical component requiring improvement. Problems with the light source included a long stabilization time (approximately 1 hr), a large amount of heat generation, and a large input electrical power (6.5 W). Thus, we developed a new light source to enable the use of broadband optical sensors in aerospace applications. Semiconductor chip-based light sources, such as lasers and light-emitting diodes, have a relatively narrow range of emission wavelengths in comparison to incandescent sources. Incandescent light sources emit broadband radiation from visible to infrared wavelengths; the intensity at each wavelength is determined by the filament temperature and the materials chosen for the filament and the lamp window. However, present commercial incandescent light sources are large in size and inefficient, requiring several watts of electrical power to obtain the desired optical power, and they emit a large percentage of the input power as heat that must be dissipated. The miniature light source, developed jointly by the NASA Glenn Research Center, the Jet Propulsion Laboratory, and the Lighting Innovations Institute, requires one-fifth the electrical input power of some commercial light sources, while providing similar output light power that is easily coupled to an optical fiber. Furthermore, it is small, rugged, and lightweight. Microfabrication technology was used to reduce the size, weight, power consumption, and potential cost-parameters critical to future aerospace applications. This chip

  8. Light emitting diodes as a plant lighting source

    NASA Technical Reports Server (NTRS)

    Bula, R. J.; Tennessen, D. J.; Morrow, R. C.; Tibbitts, T. W.

    1994-01-01

    Electroluminescence in solid materials is defined as the generation of light by the passage of an electric current through a body of solid material under an applied electric field. A specific type of electroluminescence, first noted in 1923, involves the generation of photons when electrons are passed through a p-n junction of certain solid materials (junction of a n-type semiconductor, an electron donor, and a p-type semiconductor, an electron acceptor). The development of this light emitting semiconductor technology dates back less than 30 years. During this period of time, the LED has evolved from a rare and expensive light generating device to one of the most widely used electronic components. A number of LED characteristics are of considerable importance in selecting a light source for plant lighting in a controlled environment facility. Of particular importance is the characteristic that light is generated by an LED at a rate far greater than the corresponding thermal radiation predicted by the bulk temperature of the device as defined by Plank's radiation law. This is in sharp contrast to other light sources, such as an incandescent or high intensity discharge lamp. A plant lighting system for controlled environments must provide plants with an adequate flux of photosynthetically active radiation, plus providing photons in the spectral regions that are involved in the photomorphogenic and phototropic responses that result in normal plant growth and development. Use of light sources that emit photons over a broad spectral range generally meet these two lighting requirements. Since the LED's emit over specific spectral regions, they must be carefully selected so that the levels of photsynthetically active and photomorphogenic and phototropic radiation meet these plant requirements.

  9. Light Source for Scanning Method of Size-of-Source Effect Measurement

    NASA Astrophysics Data System (ADS)

    Achmadi, Aditya; Juliastuti, Endang; Handojo, Andrianto; Zaid, Ghufron; Wiriadinata, Hidayat; Park, Seung-Nam

    2015-12-01

    A high-power light-emitting diode (HPLED) is proposed as a new light source for the measurement of the size-of-source effect (SSE) in radiation thermometers. The HPLED is a more compact, simple, and inexpensive light source and is suitable for SSE measurement by the scanning method. An experiment has been done using a 3 W HPLED with a hemispherical front lens and a peak emission wavelength of 660 nm. A linear pyrometer (Model LP4 manufactured by KE) was used for the measurements. The scanning process was carried out by using a computerized linear translation stage spanning 500 mm. To confirm the measurement result, the SSE of the LP4 was also measured by the conventional indirect method using an integrating sphere with a 65 mm diameter exit port. The same trends of the SSE value of the scanning and indirect method were found in all ranges of the indirect method measurement. The results show that the light source has enough brightness and a sufficiently wide angular distribution to provide a dynamic measurement range of up to 108 and allow the measurement of the SSE up to a radius of 500 mm. These results support the application of HPLED as an alternative light source for SSE measurements by the scanning method.

  10. High-intensity sources for light ions

    SciTech Connect

    Leung, K.N.

    1995-10-01

    The use of the multicusp plasma generator as a source of light ions is described. By employing radio-frequency induction discharge, the performance of the multicusp source is greatly improved, both in lifetime and in high brightness H{sup +} and H{sup {minus}} beam production. A new technique for generating multiply-charged ions in this type of ion source is also presented.

  11. The compact radio structure of radio-loud NLS1 galaxies and the relationship to CSS sources

    NASA Astrophysics Data System (ADS)

    Gu, M.; Chen, Y.; Komossa, S.; Yuan, W.; Shen, Z.

    2016-02-01

    Narrow-line Seyfert 1 galaxies are thought to be young AGNs with relatively small black hole masses and high accretion rates. Radio-loud narrow-line Seyfert 1 galaxies (RLNLS1s) are very special, because some of them show blazar-like characteristics, while others resemble compact steep-spectrum sources. Relativistic jets were shown to exist in a few RLNLS1s based on VLBI observations and confirmed by the gamma-ray flaring of some of them. These properties may possibly be contrary to typical radio-loud AGNs, in light of the low black-hole masses, and high accretion rates. We present the compact radio structure of fourteen RLNLS1 galaxies from Very Long Baseline Array observations at 5 GHz in 2013. Although all these sources are very radio-loud with {R > 100}, their jet properties are diverse, in terms of their milli-arcsecond (mas) scale (pc scale) morphology and their overall radio spectral shape. The core brightness temperatures of our sources are significantly lower than those of blazars, therefore, the beaming effect is generally not significant in our sources, compared to blazars. This implies that the bulk jet speed may likely be low in our sources. The relationship between RLNLS1s and compact steep-spectrum sources, and the implications on jet formation are discussed based on the pc-scale jet properties.

  12. Compact Instrument for Measuring Profile of a Light Beam

    NASA Technical Reports Server (NTRS)

    Papanyan, Valeri

    2004-01-01

    The beamviewer is an optical device designed to be attached to a charge-coupled-device (CCD) image detector for measuring the spatial distribution of intensity of a beam of light (the beam profile ) at a designated plane intersecting the beam. The beamviewer-and-CCD combination is particularly well suited for measuring the radiant- power profile (for a steady beam) or the radiant-energy profile (for a pulsed beam) impinging on the input face or emerging from the output face of a bundle of optical fibers. The beamviewer and-CCD combination could also be used as a general laboratory instrument for profiling light beams, including beams emerging through small holes and laser beams in free space.

  13. The Compact Steep-Spectrum and Gigahertz Peaked-Spectrum Radio Sources

    NASA Astrophysics Data System (ADS)

    O'Dea, Christopher P.

    1998-05-01

    I review the radio to X-ray properties of gigahertz peaked-spectrum (GPS) and compact steep-spectrum (CSS) sources, the current hypotheses for their origin, and their use to constrain the evolution of powerful radio galaxies. The GPS and CSS sources are compact, powerful radio sources with well-defined peaks in their radio spectra (near 1 GHz in the GPS and near 100 MHz in the CSS). The GPS sources are entirely contained within the extent of the narrow-line region (<~1 kpc), while the CSS sources are contained entirely within the host galaxy (<~15 kpc). The peaks in the spectra are probably due to synchrotron self-absorption, though free-free absorption through an inhomogeneous screen may also play a role. The turnover frequency varies with linear size l as nu_m~l^-0.65, suggesting a simple physical relationship between these parameters. The radio morphologies are strikingly like those of the large-scale classical doubles, though some sources can have very distorted morphologies suggestive of interactions. Radio polarization tends to be low, and in some cases the Faraday rotation measures can be extremely large. The IR properties are consistent with stellar populations and active galactic nucleus (AGN) bolometric luminosity similar to that of the 3CR classical doubles. The optical host galaxy properties (absolute magnitude, Hubble diagram, evidence for interaction) are consistent with those of the 3CR classical doubles. CSS sources at all redshifts exhibit high surface brightness optical light (most likely emission-line gas) that is aligned with the radio axis. The optical emission-line properties suggest (1) interaction of the radio source with the emission-line gas and (2) the presence of dust toward the emission-line regions. X-ray observations of high-redshift GPS quasars and a couple of GPS galaxies suggest the presence of significant columns of gas toward the nuclei. Searches for cold gas in the host galaxies have revealed large amounts of molecular gas and

  14. Infrared light sources with semimetal electron injection

    DOEpatents

    Kurtz, Steven R.; Biefeld, Robert M.; Allerman, Andrew A.

    1999-01-01

    An infrared light source is disclosed that comprises a layered semiconductor active region having a semimetal region and at least one quantum-well layer. The semimetal region, formed at an interface between a GaAsSb or GalnSb layer and an InAsSb layer, provides electrons and holes to the quantum-well layer to generate infrared light at a predetermined wavelength in the range of 2-6 .mu.m. Embodiments of the invention can be formed as electrically-activated light-emitting diodes (LEDs) or lasers, and as optically-pumped lasers. Since the active region is unipolar, multiple active regions can be stacked to form a broadband or multiple-wavelength infrared light source.

  15. Note: Compact and light displacement sensor for a precision measurement system in large motion.

    PubMed

    Lee, Sang Heon

    2015-08-01

    We developed a compact and light displacement sensor applicable to systems that require wide range motions of its sensing device. The proposed sensor utilized the optical pickup unit of the optical disk drive, which has been used applied to atomic force microscopy (AFM) because of its compactness and lightness as well as its high performance. We modified the structure of optical pickup unit and made the compact sensor driver attachable to a probe head of AFM to make large rotation. The feasibilities of the developed sensor for a general probe-moving measurement device and for probe-rotating AFM were verified. Moreover, a simple and precise measurement of alignment between centers of rotator and probe tip in probe-rotation AFM was experimentally demonstrated using the developed sensor.

  16. Note: Compact and light displacement sensor for a precision measurement system in large motion

    SciTech Connect

    Lee, Sang Heon

    2015-08-15

    We developed a compact and light displacement sensor applicable to systems that require wide range motions of its sensing device. The proposed sensor utilized the optical pickup unit of the optical disk drive, which has been used applied to atomic force microscopy (AFM) because of its compactness and lightness as well as its high performance. We modified the structure of optical pickup unit and made the compact sensor driver attachable to a probe head of AFM to make large rotation. The feasibilities of the developed sensor for a general probe-moving measurement device and for probe-rotating AFM were verified. Moreover, a simple and precise measurement of alignment between centers of rotator and probe tip in probe-rotation AFM was experimentally demonstrated using the developed sensor.

  17. Physics Challenges for ERL Light Sources

    SciTech Connect

    Lia Merminga

    2004-07-01

    We present an overview of the physics challenges encountered in the design and operation of Energy Recovering Linac (ERL) based light sources. These challenges include the generation and preservation of low emittance, high-average current beams, manipulating and preserving the transverse and longitudinal phase space, control of the multipass beam breakup instability, efficient extraction of higher order mode power and RF control and stability of the superconducting cavities. These key R&D issues drive the design and technology choices for proposed ERL light sources. Simulations and calculations of these processes will be presented and compared with experimental data obtained at the Jefferson Lab FEL Upgrade, a 10 mA ERL light source presently in commissioning, and during a 1 GeV demonstration of energy recovery at CEBAF.

  18. Solid-State Spectral Light Source System

    NASA Technical Reports Server (NTRS)

    Maffione, Robert; Dana, David

    2011-01-01

    A solid-state light source combines an array of light-emitting diodes (LEDs) with advanced electronic control and stabilization over both the spectrum and overall level of the light output. The use of LEDs provides efficient operation over a wide range of wavelengths and power levels, while electronic control permits extremely stable output and dynamic control over the output. In this innovation, LEDs are used instead of incandescent bulbs. Optical feedback and digital control are used to monitor and regulate the output of each LED. Because individual LEDs generate light within narrower ranges of wavelengths than incandescent bulbs, multiple LEDs are combined to provide a broad, continuous spectrum, or to produce light within discrete wavebands that are suitable for specific radiometric sensors.

  19. Radio properties of Compact Steep Spectrum and GHz-Peaked Spectrum radio sources

    NASA Astrophysics Data System (ADS)

    Orienti, M.

    2016-02-01

    Compact steep spectrum (CSS) and GHz-peaked spectrum (GPS) radio sources represent a large fraction of the extragalactic objects in flux density-limited samples. They are compact, powerful radio sources whose synchrotron peak frequency ranges between a few hundred MHz to several GHz. CSS and GPS radio sources are currently interpreted as objects in which the radio emission is in an early evolutionary stage. In this contribution I review the radio properties and the physical characteristics of this class of radio sources, and the interplay between their radio emission and the ambient medium of the host galaxy.

  20. Design and experimental validation of a compact collimated Knudsen source.

    PubMed

    Wouters, Steinar H W; Ten Haaf, Gijs; Mutsaers, Peter H A; Vredenbregt, Edgar J D

    2016-08-01

    In this paper, the design and performance of a collimated Knudsen source, which has the benefit of a simple design over recirculating sources, is discussed. Measurements of the flux, transverse velocity distribution, and brightness of the resulting rubidium beam at different source temperatures were conducted to evaluate the performance. The scaling of the flux and brightness with the source temperature follows the theoretical predictions. The transverse velocity distribution in the transparent operation regime also agrees with the simulated data. The source was tested up to a temperature of 433 K and was able to produce a flux in excess of 10(13) s(-1). PMID:27587111

  1. Tunable pulsed narrow bandwidth light source

    DOEpatents

    Powers, Peter E.; Kulp, Thomas J.

    2002-01-01

    A tunable pulsed narrow bandwidth light source and a method of operating a light source are provided. The light source includes a pump laser, first and second non-linear optical crystals, a tunable filter, and light pulse directing optics. The method includes the steps of operating the pump laser to generate a pulsed pump beam characterized by a nanosecond pulse duration and arranging the light pulse directing optics so as to (i) split the pulsed pump beam into primary and secondary pump beams; (ii) direct the primary pump beam through an input face of the first non-linear optical crystal such that a primary output beam exits from an output face of the first non-linear optical crystal; (iii) direct the primary output beam through the tunable filter to generate a sculpted seed beam; and direct the sculpted seed beam and the secondary pump beam through an input face of the second non-linear optical crystal such that a secondary output beam characterized by at least one spectral bandwidth on the order of about 0.1 cm.sup.-1 and below exits from an output face of the second non-linear optical crystal.

  2. Compact fluorescent lights and the impact of convenience and knowledge on household recycling rates.

    PubMed

    Wagner, Travis P

    2011-06-01

    Increased energy costs, social marketing campaigns, public subsidies, and reduced retail prices have dramatically increased the number of compact fluorescent lights (CFLs) installed worldwide. CFLs provide many benefits, but they contain a very small amount of mercury. Given the billions of CFLs in use worldwide, they represent a significant source of mercury unless CFLs are recycled and the mercury recovered in an environmentally sound manner. In the state of Maine (northeast United States), despite mandated recycling of CFLs and availability of free CFL recycling, the household CFL recycling rate is very low. A study was undertaken to identify the primary factors responsible for low recycling. The first step was to survey householders who use CFLs. The 520 survey responses indicated that insufficient knowledge regarding recycling and inconvenience of the collection system are the two primary factors for the low recycling rate. To validate these findings, the second step was an examination of the current collection system to assess (a) the knowledge requirements necessary for recycling and (b) the convenience of the collection system. The results of this examination validated that knowledge requirements were excessively difficult to fulfill and the collection system is not sufficiently convenient. Based on these results, waste managers should focus on increasing convenience and simplifying access to information when designing or improving household collection and recycling of CFLs.

  3. Mobile-phone based visible light communication using region-grow light source tracking for unstable light source.

    PubMed

    Liang, Kevin; Chow, Chi-Wai; Liu, Yang

    2016-07-25

    In order to increase the data rate of the camera-based visible light communication (VLC) system, using rolling shutter effect has been demonstrated successfully, in which the pixel rows of the complementary-metal-oxide-semiconductor (CMOS) image sensor are activated sequentially. Previous camera-based VLCs focused on using a stable LED light source, and its illumination area is positioned at the center of an image frame. In this work, we investigate the performance of a camera-based VLC with light source at different parts of an image frame. We propose and demonstrate using region-grow algorithm to track the light source. We also evaluate and discuss different scenarios when the light source is moved. Besides, a recorded > 5 kbit/s net data rate can be achieved by using only a single phosphor-based white-light LED source. Here, we demonstrate that 4.502 pixel/bit can be achieved.

  4. An Upgrade for the Advanced Light Source

    SciTech Connect

    Chemla, Daniel S.; Feinberg, Benedict; Hussain, Zahid; Kirz, Janos; Krebs, Gary F.; Padmore, Howard A.; Robin, David S.; Robinson, Arthur L.; Smith, Neville V.

    2004-09-01

    One of the first third-generation synchrotron light sources, the ALS, has been operating for almost a decade at Berkeley Lab, where experimenters have been exploiting its high brightness for forefront science. However, accelerator and insertion-device technology have significantly changed since the ALS was designed. As a result, the performance of the ALS is in danger of being eclipsed by that of newer, more advanced sources. The ALS upgrade that we are planning includes full-energy, top-off injection with higher storage-ring current and the replacement of five first-generation insertion devices with nine state-of-the art insertion devices and four new application-specific beamlines now being identified in a strategic planning process. The upgrade will help keep the ALS at the forefront of soft x-ray synchrotron light sources for the next two decades.

  5. Compact and efficient injection of light into band-edge slow-modes.

    PubMed

    Velha, P; Hugonin, J P; Lalanne, P

    2007-05-14

    We design compact (a few wavelength long) and efficient (>99%) injectors for coupling light into slow Bloch modes of periodic thin film stacks and of periodic slab waveguides. The study includes the derivation of closed-form expressions for the injection efficiency as a function of the group-velocity of injected light, and the proof that 100% coupling efficiencies for arbitrary small group velocities is possible with an injector length scaling as log(c/vg). The trade-off between the injector bandwidth and the group velocity of the injected light is also considered. PMID:19546915

  6. VizieR Online Data Catalog: Compact radio sources near Galactic center (Pynzar'+, 2014)

    NASA Astrophysics Data System (ADS)

    Pynzar', A. V.; Shishov, V. I.

    2014-07-01

    Using literature data on approximately 400 compact radio sources detected with the Very Large Array and located in the direction of the Galactic center within 2° of the compact source Sgr A*, 69 sources whose angular sizes are determined by scattering on electron density inhomogeneities were distinguished. Fifty-five of these are extragalactic, two are supercompact HII regions, ten are sources of maser emission, and two are variable Galactic sources. The excess of the apparent angular sizes of maser sources within 2° of the Galactic center above the mean size of objects of this class in other parts of the Galaxy found in many studies cannot be explained purely by the effect of scattering of their radio emission on interstellar plasma inhomogeneities. The angular sizes of these objects are increased due to scattering only within Galactic longitudes of about 0.4° and Galactic latitudes less than 0.1°. The turbulent medium responsible for scattering of radio emission of compact sources in the immediate vicinity of the Galactic center is strongly concentrated toward the compact source Sgr A* at the Galactic center. No extragalactic sources are observed within 0.4° in longitude and 0.2° in latitude of the Galactic center, because of their low brightness due to the superstrong scattering in this region. Data on scatter broadening can be used to study the distribution of turbulent plasma near the Galactic center. (3 data files).

  7. Compact fluorescent lighting in Wisconsin: elevated atmospheric emission and landfill deposition post-EISA implementation.

    PubMed

    Arendt, John D; Katers, John F

    2013-07-01

    The majority of states in the USA, including Wisconsin, have been affected by elevated air, soil and waterborne mercury levels. Health risks associated with mercury increase from the consumption of larger fish species, such as Walleye or Pike, which bio-accumulate mercury in muscle tissue. Federal legislation with the 2011 Mercury and Air Toxics Standards and the Wisconsin legislation on mercury, 2009 Wisconsin Act 44, continue to aim at lowering allowable levels of mercury emissions. Meanwhile, mercury-containing compact fluorescent lights (CFL) sales continue to grow as businesses and consumers move away from energy intensive incandescent light bulbs. An exchange in pollution media is occurring as airborne mercury emissions from coal-burning power plants, the largest anthropogenic source of mercury, are being reduced by lower energy demand and standards, while more universal solid waste containing mercury is generated each time a CFL is disposed. The treatment of CFLs as a 'universal waste' by the Environmental Protection Agency (EPA) led to the banning of non-household fluorescent bulbs from most municipal solid waste. Although the EPA encourages recycling of bulbs, industry currently recycles fluorescent lamps and CFLs at a rate of only 29%. Monitoring programs at the federal and state level have had only marginal success with industrial and business CFL recycling. The consumer recycling rate is even lower at only 2%. A projected increase in residential CFL use in Wisconsin owing to the ramifications of the Energy Independence and Security Act of 2007 will lead to elevated atmospheric mercury and landfill deposition in Wisconsin. PMID:23635464

  8. Compact fluorescent lighting in Wisconsin: elevated atmospheric emission and landfill deposition post-EISA implementation.

    PubMed

    Arendt, John D; Katers, John F

    2013-07-01

    The majority of states in the USA, including Wisconsin, have been affected by elevated air, soil and waterborne mercury levels. Health risks associated with mercury increase from the consumption of larger fish species, such as Walleye or Pike, which bio-accumulate mercury in muscle tissue. Federal legislation with the 2011 Mercury and Air Toxics Standards and the Wisconsin legislation on mercury, 2009 Wisconsin Act 44, continue to aim at lowering allowable levels of mercury emissions. Meanwhile, mercury-containing compact fluorescent lights (CFL) sales continue to grow as businesses and consumers move away from energy intensive incandescent light bulbs. An exchange in pollution media is occurring as airborne mercury emissions from coal-burning power plants, the largest anthropogenic source of mercury, are being reduced by lower energy demand and standards, while more universal solid waste containing mercury is generated each time a CFL is disposed. The treatment of CFLs as a 'universal waste' by the Environmental Protection Agency (EPA) led to the banning of non-household fluorescent bulbs from most municipal solid waste. Although the EPA encourages recycling of bulbs, industry currently recycles fluorescent lamps and CFLs at a rate of only 29%. Monitoring programs at the federal and state level have had only marginal success with industrial and business CFL recycling. The consumer recycling rate is even lower at only 2%. A projected increase in residential CFL use in Wisconsin owing to the ramifications of the Energy Independence and Security Act of 2007 will lead to elevated atmospheric mercury and landfill deposition in Wisconsin.

  9. High intensity compact Compton X-ray sources: Challenges and potential of applications

    NASA Astrophysics Data System (ADS)

    Jacquet, M.

    2014-07-01

    Thanks to the exceptional development of high power femtosecond lasers in the last 15 years, Compton based X-ray sources are in full development over the world in the recent years. Compact Compton sources are able to combine the compactness of the instrument with a beam of high intensity, high quality, tunable in energy. In various fields of applications such as biomedical science, cultural heritage preservation and material science researches, these sources should provide an easy working environment and the methods currently used at synchrotrons could be largely developed in a lab-size environment as hospitals, labs, or museums.

  10. Superluminescent Diode Light Sources for OCT

    NASA Astrophysics Data System (ADS)

    Shidlovski, Vladimir R.

    Contrary to laser diodes, the path of superluminescent diodes (SLDs) to widespread practical use was much longer. There was always a scientific interest in "superluminescent" light output from laser diode structures slightly below threshold that might be considerably enhanced by "damping" of the laser resonator. SLD design efforts were intensified in early 1980s when it was proved that they are "light sources of choice" for fiber-optic gyroscopes. The next wave of interest to SLDs as a "stand-alone" type of semiconductor emitters was related to advances in OCT technologies. Challenging OCT requirements, e.g. simultaneous high-power, high brightness and very low coherence length of a light source, resulted in the development of new generation of SLDs characterized by output power and brightness the same as that of medium-to-high power laser diodes, but with the spectral width and flatness of edge-emitting LEDs. In this chapter, the main principles of the development of powerful broadband SLDs and ultra-low-coherence SLD-based light sources in 650-1600 nm spectral range, and the main parameters reported to date, are reviewed. Important aspects of SLD use in practice are discussed.

  11. The sources of light and lighting at work.

    PubMed

    Lampi, E

    1984-01-01

    Succeeding in lighting industrial, office and other work environments is dependent on many factors. Good result is not guaranteed if only one of these factors is taken into account. It is essential to choose appropriate light sources and use them correctly for different tasks. Although the amount of light and its composition is considered satisfactory for a certain task, glare and reflected glare still cause inconvenience in the work places making the performance of visual tasks difficult. The lux and luminance levels of the work areas regulate the size of the observer's pupils. The size of the pupil determines for its part how easily and quickly eyes can be accommodated for a sight distance. The indirect disadvantages caused by poor visual conditions are often significant. For example at display work reflected glare does not only slow down reading. The effort to avoid the reflections from the screen by changing the direction of observation effects the working positions. Inconvenient posture may cause pains in the neck and back. In lighting design the problems of age vision are taken into account. We should also bear in mind the significance of the colour of light when considering these problems.

  12. IR beamline at the Swiss Light Source

    NASA Astrophysics Data System (ADS)

    Ph, Lerch; L, Quaroni; J, Wambach; J, Schneider; B, Armstrong D.; D, Rossetti; L, Mueller F.; P, Peier; V, Schlott; L, Carroll; P, Friedli; H, Sigg; S, Stutz; M, Tran

    2012-05-01

    The infrared beamline at the Swiss light source uses dipole radiation and is designed to transport light to four experimental stations, A, B, C, D. Branch A is dedicated to far IR work in vacuum; branch B is a micro-spectrometer; branch C is dedicated to high resolution spectroscopy in the gas phase; branch D is a pump and probe set-up. This contribution describes the optical layout and provides a brief survey of currently available experimental stations. The beamline is in regular user operation since 2009.

  13. Compact RF ion source for industrial electrostatic ion accelerator

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-01

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  14. Compact RF ion source for industrial electrostatic ion accelerator.

    PubMed

    Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-01

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  15. A compact picosecond pulsed laser source using a fully integrated CMOS driver circuit

    NASA Astrophysics Data System (ADS)

    He, Yuting; Li, Yuhua; Yadid-Pecht, Orly

    2016-03-01

    Picosecond pulsed laser source have applications in areas such as optical communications, biomedical imaging and supercontinuum generation. Direct modulation of a laser diode with ultrashort current pulses offers a compact and efficient approach to generate picosecond laser pulses. A fully integrated complementary metaloxide- semiconductor (CMOS) driver circuit is designed and applied to operate a 4 GHz distributed feedback laser (DFB). The CMOS driver circuit combines sub-circuits including a voltage-controlled ring oscillator, a voltagecontrolled delay line, an exclusive-or (XOR) circuit and a current source circuit. Ultrashort current pulses are generated by the XOR circuit when the delayed square wave is XOR'ed with the original square wave from the on-chip oscillator. Circuit post-layout simulation shows that output current pulses injected into an equivalent circuit load of the laser have a pulse full width at half maximum (FWHM) of 200 ps, a peak current of 80 mA and a repetition rate of 5.8 MHz. This driver circuit is designed in a 0.13 μm CMOS process and taped out on a 0.3 mm2 chip area. This CMOS chip is packaged and interconnected with the laser diode on a printed circuit board (PCB). The optical output waveform from the laser source is captured by a 5 GHz bandwidth photodiode and an 8 GHz bandwidth oscilloscope. Measured results show that the proposed laser source can output light pulses with a pulse FWHM of 151 ps, a peak power of 6.4 mW (55 mA laser peak forward current) and a repetition rate of 5.3 MHz.

  16. A Compact, Tunable Near-UV Source for Quantitative Microgravity Combustion Diagnostics

    NASA Technical Reports Server (NTRS)

    Peterson, K. A.; Oh, D. B.

    1999-01-01

    There is a need for improved optical diagnostic methods for use in microgravity combustion research. Spectroscopic methods with fast time response that can provide absolute concentrations and concentration profiles of important chemical species in flames are needed to facilitate the understanding of combustion kinetics in microgravity. Although a variety of sophisticated laser-based diagnostics (such as planar laser induced fluorescence, degenerate four wave mixing and coherent Raman methods) have been applied to the study of combustion in laboratory flames, the instrumentation associated with these methods is not well suited to microgravity drop tower or space station platforms. Important attributes of diagnostic systems for such applications include compact size, low power consumption, ruggedness, and reliability. We describe a diode laser-based near-UV source designed with the constraints of microgravity research in mind. Coherent light near 420 nm is generated by frequency doubling in a nonlinear crystal. This light source is single mode with a very narrow bandwidth suitable for gas phase diagnostics, can be tuned over several 1/cm and can be wavelength modulated at up to MHz frequencies. We demonstrate the usefulness of this source for combustion diagnostics by measuring CH radical concentration profiles in an atmospheric pressure laboratory flame. The radical concentrations are measured using wavelength modulation spectroscopy (WMS) to obtain the line-of-sight integrated absorption for different paths through the flame. Laser induced fluorescence (LIF) measurements are also demonstrated with this instrument, showing the feasibility of simultaneous WMS absorption and LIF measurements with the same light source. LIF detection perpendicular to the laser beam can be used to map relative species densities along the line-of-sight while the integrated absorption available through WMS provides a mathematical constraint on the extraction of quantitative information

  17. The upgraded scheme of Hefei Light Source

    SciTech Connect

    Li Weimin; Xu Hongliang; Wang Lin; Feng Guangyao; Zhang Shancai; Hao Hao

    2010-06-23

    To enhance the performance of Hefei Light Source, which was designed and constructed two decades ago, an upgrade project would be carried out in the near future. The detail upgrade scheme was described in this paper. Firstly, the magnet lattice of storage ring should be reconstructed with 4 DBA cells, whose advantages are lower beam emittance and more straight section available for insertion devices. Secondly, the beam diagnostics, main power supply, transverse and longitudinal multi-bunch feedback, beam control and manipulation system would be upgrade to improve the beam orbit stability. Finally, the injection system of storage ring and injector, which is composed of electron linac and beam transfer line, would be updated in order to assure smooth beam accumulation process under new low emittance lattice. With above improvement, it is hopeful to increase the brilliance of Hefei Light Source by two orders approximately. After three-year upgrade project, the performance of HLS would meet the demands of advanced SR users.

  18. Rf capacitively-coupled electrodeless light source

    DOEpatents

    Manos, Dennis M.; Diggs, Jessie; Ametepe, Joseph D.; Fugitt, Jock A.

    2000-01-01

    An rf capacitively-coupled electrodeless light source is provided. The light source comprises a hollow, elongated chamber and at least one center conductor disposed within the hollow, elongated chamber. A portion of each center conductor extends beyond the hollow, elongated chamber. At least one gas capable of forming an electronically excited molecular state is contained within each center conductor. An electrical coupler is positioned concentric to the hollow, elongated chamber and the electrical coupler surrounds the portion of each center conductor that extends beyond the hollow, elongated chamber. A rf-power supply is positioned in an operable relationship to the electrical coupler and an impedance matching network is positioned in an operable relationship to the rf power supply and the electrical coupler.

  19. Photon Science at Modern Light Sources

    NASA Astrophysics Data System (ADS)

    Arthur, John

    2009-12-01

    More than 50 large x-ray and UV light sources based on high-energy electron accelerators are in operation around the world, serving a scientific community numbering in the tens of thousands. These sources generate synchrotron radiation from accelerated electrons or positrons. The development of synchrotron light sources over the last 40 years has fueled an exponential increase in x-ray source brightness of more than 10 orders of magnitude. The next large advance in source potential is now underway, with the commissioning of the first x-ray Free-Electron Laser (FEL) sources. Using high-energy electron linear accelerators, these facilities produce sub-picosecond pulses of hard x-rays with peak brightness more than 10 orders of magnitude greater than current synchrotron facilities. FEL x-ray facilities will soon be operational in the US, Japan, and Germany. Research at modern light sources makes use of a wide range of experimental techniques. Many experiments are designed to study the structure of matter at the atomic scale using elastic x-ray scattering. This technique has been particularly effective for determining the structures of biological molecules, such as proteins, viruses, and drugs. Inelastic x-ray scattering, or x-ray absorption followed by emission of electrons or photons, can give information about the electronic structures of atoms, which can be used to deduce local environment information such as atomic species, bonding state, geometry of neighboring atoms, or magnetic state. For some techniques involving x-ray emission from a sample, cryogenic detectors with energy resolution at the ˜10 eV level or better would be very helpful. Shifts in electron energy levels associated with bonding states and magnetic states are typically several eV, while the energy structure associated with Compton inelastic scattering is typically in the range of a few tens of eV. Current energy-resolving detectors used at synchrotron light sources are hampered by either poor

  20. Invitation to the World of the Plasma for Light Source 3.Light Source Measurement 3.1 Laser Diagnostics of Plasmas for Light Sources

    NASA Astrophysics Data System (ADS)

    Motomura, Hideki; Jinno, Masafumi

    Examples and basic theories of various methods of laser diagnostics of plasmas for light sources are introduced. Most introduced papers were presented at International Symposium on the Science and Technology of Light Sources (LS), which is the only international symposium on the science and technology of light sources.

  1. Linac Coherent Light Source Monte Carlo Simulation

    2006-03-15

    This suite consists of codes to generate an initial x-ray photon distribution and to propagate the photons through various objects. The suite is designed specifically for simulating the Linac Coherent Light Source, and x-ray free electron laser (XFEL) being built at the Stanford Linear Accelerator Center. The purpose is to provide sufficiently detailed characteristics of the laser to engineers who are designing the laser diagnostics.

  2. Advanced Light Source Linac subharmonic buncher cavities

    SciTech Connect

    Lo, C.C.; Taylor, B.; Lancaster, H.; Guigli, J.

    1989-03-01

    The Linear Accelerator (Linac) in the Advanced Light Source (ALS) is designed to provide either single or multiple bunches of 50 MeV electrons for the booster synchrotron. Three bunchers are used in the Linac. The 3 GHz S band buncher has been described elsewhere. This report deals with the two lower subharmonic bunchers. One operates at 124.914 MHz while the other operates at 499.654 MHz. 12 refs., 2 figs.

  3. Modelling of a laser-pumped light source for endoscopic surgery

    NASA Astrophysics Data System (ADS)

    Nadeau, Valerie J.; Elson, Daniel S.; Hanna, George B.; Neil, Mark A. A.

    2008-09-01

    A white light source, based on illumination of a yellow phosphor with a fibre-coupled blue-violet diode laser, has been designed and built for use in endoscopic surgery. This narrow light probe can be integrated into a standard laparoscope or inserted into the patient separately via a needle. We present a Monte Carlo model of light scattering and phosphorescence within the phosphor/silicone matrix at the probe tip, and measurements of the colour, intensity, and uniformity of the illumination. Images obtained under illumination with this light source are also presented, demonstrating the improvement in illumination quality over existing endoscopic light sources. This new approach to endoscopic lighting has the advantages of compact design, improved ergonomics, and more uniform illumination in comparison with current technologies.

  4. Backscatter absorption gas imaging systems and light sources therefore

    DOEpatents

    Kulp, Thomas Jan; Kliner, Dahv A. V.; Sommers, Ricky; Goers, Uta-Barbara; Armstrong, Karla M.

    2006-12-19

    The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

  5. Large scale X-ray and radio structures associated with compact extragalactic sources

    NASA Technical Reports Server (NTRS)

    Biermann, P.; Pauliny-Toth, I. I. K.; Witzel, A.; Fricke, K.; Johnston, K. J.; Kuehr, H.; Strittmatter, P. A.; Urbanik, M.

    1982-01-01

    Knots of X-ray emission have been detected within 20 arcmin of five compact sources initially selected from the MPIfR north polar 5 GHz survey. Two of the knots have also been detected at centimeter wavelengths and probably have nonthermal spectra. They appear to be associated with the compact sources since the probability of serendipitous discovery at the observed flux levels is low. While the apparent association may be due to colocation of the sources in a distant supercluster, it is suggested on the basis of overall alignment, and possible correlations with structures in the respective central sources, that the association may be similar to that found in extended radio sources. The observed emission may thus be due to synchrotron or inverse Compton radiation, the energy being supplied by jets from the central source.

  6. Planck 2015 results. XXVI. The Second Planck Catalogue of Compact Sources

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Argüeso, F.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Beichman, C.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Böhringer, H.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clemens, M.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Negrello, M.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Sanghera, H. S.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tornikoski, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Walter, B.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogues, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalogue. The second (PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow us to increase the number of objects in the catalogue, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC).

  7. The JLab high power ERL light source

    SciTech Connect

    G.R. Neil; C. Behre; S.V. Benson; M. Bevins; G. Biallas; J. Boyce; J. Coleman; L.A. Dillon-Townes; D. Douglas; H.F. Dylla; R. Evans; A. Grippo; D. Gruber; J. Gubeli; D. Hardy; C. Hernandez-Garcia; K. Jordan; M.J. Kelley; L. Merminga; J. Mammosser; W. Moore; N. Nishimori; E. Pozdeyev; J. Preble; R. Rimmer; Michelle D. Shinn; T. Siggins; C. Tennant; R. Walker; G.P. Williams and S. Zhang

    2005-03-19

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz {approx} half cycle pulse whose average brightness is > 5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted[1]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [2]: up to 10 kW of average power in the IR from 1 to 14 microns in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 microseconds long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made

  8. X-Ray Analysis of Point Sources and Diffuse Gas in Hickson Compact Groups

    NASA Astrophysics Data System (ADS)

    Broming, Emma J.; Fuse, C.

    2010-01-01

    In an effort to determine the evolutionary state of Hickson Compact Groups (HCGs), we have performed an analysis of the sixteen HCGs in the Chandra X-Ray Observatory archives. HCGs are dense galactic systems, interacting on short time scales, which are ideal for studying galaxy mergers and interactions. We have analyzed both the diffuse gas emission of the compact groups as well as their associated individual point source populations. The total X-ray gas and total point source luminosities were used to determine the group's state of evolution. It was expected that the point source activity would allow for a clear-cut separation between compact groups in different evolutionary states. The sample groups were sorted into three evolutionary categories. Type-A groups are young systems, displaying a group dominated by spiral galaxies, active star formation, and little intragroup X-ray gas. Type-B groups are characterized by an intermediate X-ray point source population, an increased activity and interaction between group members, and intermediate diffuse gas component. HCG 97 is an example of a type-B system. It contains an intragroup gas medium, and eleven associated point sources. As the system further evolves, we expect to find a greater number of point sources. Type-C systems display an advanced stage of interaction between members, an extensive luminous point source population and a large diffuse gas reservoir. HCG 92, Stephan's Quintet, is the archetypical type-C system; it contains a large intragroup gas halo and twenty-six associated point sources. The archival HCGs investigated display a positive correlation between total point source luminosity and total diffuse gas luminosity. The results suggest X-ray point sources can be used to evaluate the evolutionary state of a group. Further research will probe the connection between fully coalesced compact groups and isolated elliptical galaxies.

  9. Superbend upgrade of the Advanced Light Source

    SciTech Connect

    Robin, D.; Krupnick, J.; Schlueter, R.; Steier, C.; Marks, S.; Wang, B.; Zbasnik, J.; Benjegerdes, R.; Biocca, A.; Bish, P.; Brown, W.; Byrne, W.; Chen, J.; Decking, W.; DeVries, J.; DeMarco, W.R.; Fahmie, M.; Geyer, A.; Harkins, J.; Henderson, T.; Hinkson, J.; Hoyer, E.; Hull, D.; Jacobson, S.; McDonald, J.; Molinari, P.; Mueller, R.; Nadolski, L.; Nishimura, H.; Nishimura, K.; Ottens, F.; Paterson, J.A.; Pipersky, P.; Portmann, G.; Richie, A.; Rossi, S.; Salvant, B.; Scarvie, T.; Schmidt,A.; Spring, J.; Taylor, C.; Thur, W.; Timossi, C.; Wandesforde, A.

    2004-05-26

    The Advanced Light Source (ALS) is a third generation synchrotron light source located at Lawrence Berkeley National Laboratory (LBNL). There was an increasing demand at the ALS for additional high brightness hard x-ray beamlines in the 7 to 40 keV range. In response to that demand, the ALS storage ring was modified in August 2001. Three 1.3 Tesla normal conducting bending magnets were removed and replaced with three 5 Tesla superconducting magnets (Superbends). The radiation produced by these Superbends is an order of magnitude higher in photon brightness and flux at 12 keV than that of the 1.3 Tesla bends, making them excellent sources of hard x-rays for protein crystallography and other hard x-ray applications. At the same time the Superbends did not compromise the performance of the facility in the VUV and soft x-ray regions of the spectrum. The Superbends will eventually feed 12 new beamlines greatly enhancing the facility's capability and capacity in the hard x-ray region. The Superbend project is the biggest upgrade to the ALS storage ring since it was commissioned in 1993. In this paper we present an overview of the Superbend project, its challenges and the resulting impact on the ALS.

  10. Plasma-based EUV light source

    DOEpatents

    Shumlak, Uri; Golingo, Raymond; Nelson, Brian A.

    2010-11-02

    Various mechanisms are provided relating to plasma-based light source that may be used for lithography as well as other applications. For example, a device is disclosed for producing extreme ultraviolet (EUV) light based on a sheared plasma flow. The device can produce a plasma pinch that can last several orders of magnitude longer than what is typically sustained in a Z-pinch, thus enabling the device to provide more power output than what has been hitherto predicted in theory or attained in practice. Such power output may be used in a lithography system for manufacturing integrated circuits, enabling the use of EUV wavelengths on the order of about 13.5 nm. Lastly, the process of manufacturing such a plasma pinch is discussed, where the process includes providing a sheared flow of plasma in order to stabilize it for long periods of time.

  11. The Advanced Light Source elliptically polarizing undulator

    SciTech Connect

    Marks, S.; Cortopassi, C.; DeVries, J.

    1997-05-01

    An elliptically polarizing undulator (EPU) for the Advanced Light Source (ALS) has been designed and is currently under construction. The magnetic design is a moveable quadrant pure permanent magnet structure featuring adjustable magnets to correct phase errors and on-axis field integrals. The device is designed with a 5.0 cm period and will produce variably polarized light of any ellipticity, including pure circular and linear. The spectral range at 1.9 GeV for typical elliptical polarization with a degree of circular polarization greater than 0.8 will be from 100 eV to 1,500 eV, using the first, third, and fifth harmonics. The device will be switchable between left and right circular modes at a frequency of up to 0.1 Hz. The 1.95 m long overall length will allow two such devices in a single ALS straight sector.

  12. Intragroup diffuse light in compact groups of galaxies - II. HCG 15, 35 and 51

    NASA Astrophysics Data System (ADS)

    Da Rocha, C.; Ziegler, B. L.; Mendes de Oliveira, C.

    2008-08-01

    This continuing study of intragroup light in compact groups of galaxies aims to establish new constraints to models of formation and evolution of galaxy groups, specially of compact groups, which are a key part in the evolution of larger structures, such as clusters. In this paper we present three additional groups (HCG 15, 35 and 51) using deep wide-field B- and R-band images observed with the LAICA camera at the 3.5-m telescope at the Calar Alto observatory (CAHA). This instrument provides us with very stable flat-fielding, a mandatory condition for reliably measuring intragroup diffuse light. The images were analysed with the OV_WAV package, a wavelet technique that allows us to uncover the intragroup component in an unprecedented way. We have detected that 19, 15 and 26 per cent of the total light of HCG 15, 35 and 51, respectively, are in the diffuse component, with colours that are compatible with old stellar populations and with mean surface brightness that can be as low as 28.4 B mag arcsec-2. Dynamical masses, crossing times and mass-to-light ratios were recalculated using the new group parameters. Also tidal features were analysed using the wavelet technique.

  13. Linac Coherent Light Source Electron Beam Collimation

    SciTech Connect

    Wu, J.; Dowell, D.; Emma, P.; Limborg-Deprey, C.; Schmerge, J.F.; /SLAC

    2007-04-27

    This paper describes the design and simulation of the electron beam collimation system in the Linac Coherent Light Source (LCLS). Dark current is expected from the gun and some of the accelerating cavities. Particle tracking of the expected dark current through the entire LCLS linac, from gun through FEL undulator, is used to estimate final particle extent in the undulator as well as expected beam loss at each collimator or aperture restriction. A table of collimators and aperture restrictions is listed along with halo particle loss results, which includes an estimate of average continuous beam power lost. In addition, the transverse wakefield alignment tolerances are calculated for each collimator.

  14. Status of the Linac Coherent Light Source

    SciTech Connect

    Galayda, John N.; /SLAC

    2011-11-04

    The Linac Coherent Light Source (LCLS) is a free electron laser facility in construction at Stanford Linear Accelerator Center. It is designed to operate in the wavelength range 0.15-1.5 nanometers. At the time of this conference, civil construction of new tunnels and buildings is complete, the necessary modifications to the SLAC linac are complete, and the undulator system and x-ray optics/diagnostics are being installed. The electron gun, 135 MeV injector linac and 250 MeV bunch compressor were commissioned in 2007. Accelerator commissioning activities are presently devoted to the achievement of performance goals for the completed 14 GeV linac.

  15. Chemical Dynamics at the Advanced Light Source

    SciTech Connect

    Baer, T.; Berrah, N.; Fadley, C.; Moore, C.B.; Neumark, D.M.; Ng, C.Y.; Ruscic, B.; Smith, N.V.; Suits, A.G.; Wodtke, A.M.

    1999-02-02

    A day-long retreat was held January 15, 1999 to chart the future directions for chemical dynamics studies at the Advanced Light Source. This represents an important period for the Chemical Dynamics Beamline, as the hardware is well-developed, most of the initial experimental objectives have been realized and the mission is now to identify the future scientific priorities for the beamline and attract users of the highest caliber. To this end, we have developed a detailed scientific program for the near term; identified and prioritized the long range scientific opportunities, identified essential new hardware, and outlined an aggressive outreach program to involve the chemical physics community.

  16. Compact permanent magnet H⁺ ECR ion source with pulse gas valve.

    PubMed

    Iwashita, Y; Tongu, H; Fuwa, Y; Ichikawa, M

    2016-02-01

    Compact H(+) ECR ion source using permanent magnets is under development. Switching the hydrogen gas flow in pulse operations can reduce the gas loads to vacuum evacuation systems. A specially designed piezo gas valve chops the gas flow quickly. A 6 GHz ECR ion source equipped with the piezo gas valve is tested. The gas flow was measured by a fast ion gauge and a few ms response time is obtained. PMID:26931936

  17. Status of the Synchrotron Light Source DELTA

    SciTech Connect

    Berges, U.; Sternemann, C.; Tolan, M.; Westphal, C.; Weis, T.; Wille, K.

    2007-01-19

    The Dortmund Electron Accelerator DELTA, a 1.5 GeV synchrotron light source located at University of Dortmund, is operated for 3000 h per year including 2000 h beam time for synchrotron radiation use and 1000 h for machine physics, optimisation and maintenance. The status of the synchrotron light source is presented with emphasis on the operation, commissioning and installation of beamlines and insertion devices. The soft X-ray undulator beamlines provide photon energies between 5 to 400 eV (U250) and 55 and 1500 eV (U55), respectively. One dipole beamline covers soft X-rays between 6 to 200 eV, and a second dipole beamline is used without a monochromator at 2.2 keV critical energy of the dipole spectrum. For photons in the hard X-ray regime, a superconducting asymmetric wiggler (SAW) with a field of 5.3 T and 7.9 keV critical energy was installed, providing circularly polarized X-rays in the range of 2 to 30 keV. Due to its broad radiation fan, three beamlines are simultaneously served. The first SAW-beamline with an energy range between 4 to 30 keV is in full operation, the second is under commissioning, serving the energy range between 2 to 30 keV. The third SAW beamline is near completion, additional dipole beamlines are under construction.

  18. Advanced Light Source: Activity report 1993

    SciTech Connect

    Not Available

    1994-11-01

    The Advanced Light Source (ALS) produces the world`s brightest light in the ultraviolet and soft x-ray regions of the spectrum. The first low-energy third-generation synchrotron source in the world, the ALS provides unprecedented opportunities for research in science and technology not possible anywhere else. This year marked the beginning of operations and the start of the user research program at the ALS, which has already produced numerous high quality results. A national user facility located at Lawrence Berkeley Laboratory of the University of California, the ALS is available to researchers from academia, industry, and government laboratories. This report contains the following: (1) director`s message; (2) operations overview; (3) user program; (4) users` executive committee; (5) industrial outreach; (6) accelerator operations; (7) beamline control system; (8) insertion devices; (9) experimental systems; (10) beamline engineering; (11) first results from user beamlines; (12) beamlines for 1994--1995; (13) special events; (14) publications; (15) advisory panels; and (16) ALS staff.

  19. Measuring color quality of light sources

    NASA Astrophysics Data System (ADS)

    Davis, Wendy

    2006-08-01

    The successful commercialization of solid-state lighting for general illumination will require an effective method to characterize the color quality of these sources. The distinctive spectral characteristics of solid-state lighting sources present both unique challenges and opportunities with regards to color quality. Color quality is difficult to define, much less measure. Several aspects of color quality, including color fidelity (rendering), chromatic discrimination, and general population preferences must be considered. In some instances, these factors are contradictory. For example, observers tend to prefer lamps that increase object color chroma (vividness), though such chroma increases are deviations from color fidelity. In addition to devising a way to balance the influence of these different dimensions of color quality, consideration must be given to ways of communicating color quality in a simple way, which permits comparison between products. At NIST we're approaching this problem by developing a computational method that takes inspiration from the Color Rendering Index (CRI), but incorporates other aspects of color quality. The output of this Color Quality Scale (CQS) is a composite score incorporating a lamp's ability to accurately render object colors, permit precise discrimination between different colors, and display object colors in a way that is visually pleasing to typical consumers. Visual experimentation will be vital to improve and validate this method, which was initially developed with colorimetric simulations. Preliminary experimentation has begun, focusing on the issues most relevant to the development of commercial standards for color quality.

  20. Ultraviolet Light Source Using Electrodeless Microwave Discharge

    NASA Astrophysics Data System (ADS)

    Nishikawa, Taku; Toyoda, Hirotaka

    2015-09-01

    Surface treatment technologies using ultraviolet (UV) light, such as organic residue removal, surface modification or sterilization, are widely used. So far, UV lamps using DC discharge with electrodes inside the lamp tube is commonly used. However, sputtering of electrode materials sometimes causes deposition on the inner tube surface as well as degradation of the electrodes, resulting in short life time of the lamp tube. In this study, we propose an electrodeless UV mercury (Hg) lamp source using microwave power. 2.45 GHz Microwave power (<4 kW) from a power supply is divided into four power lines using branch waveguides. A mercury lamp tube (diameter: 9.6 mm, length: 42 cm, Hg: 13.5 mg, Ar: 1 Torr) is inserted into the branch waveguides and microwave power is coupled to the plasma. Emission from the lamp is monitored by a monochromator and an 254 nm UV monitor. Lamp temperature is also measured by a thermography camera and tube temperature up to 900 K with good uniformity along ~ 30 cm was observed. Uniformity of the 254 nm UV light intensity was +15 % along the lamp tube. The maximum UV light intensity of 64 mW/cm2 was observed at a microwave power of 4 kW.

  1. The LBA Calibrator Survey of Southern Compact Extragalactic Radio Sources - LCS1

    NASA Technical Reports Server (NTRS)

    Petrov, Leonid; Phillips, Chris; Bertarini, Alessandra; Murphy, Tara; Sadler, Elaine M.

    2011-01-01

    We present a catalogue of accurate positions and correlated flux densities for 410 flat-spectrum, compact extragalactic radio sources previously detected in the Australia Telescope 20 GHz (AT20G) survey. The catalogue spans the declination range [-90deg, -40deg] and was constructed from four 24-h very long baseline interferometry (VLBI) observing sessions with the Australian Long Baseline Array at 8.3 GHz. The VLBI detection rate in these experiments is 97 per cent, the median uncertainty of the source positions is 2.6 mas and the median correlated flux density on projected baselines longer than 1000 km is 0.14 Jy. The goals of this work are (1) to provide a pool of southern sources with positions accurate to a few milliarcsec, which can be used for phase-referencing observations, geodetic VLBI and space navigation; (2) to extend the complete flux-limited sample of compact extragalactic sources to the Southern hemisphere; and (3) to investigate the parsec-scale properties of high-frequency selected sources from the AT20G survey. As a result of this VLBI campaign, the number of compact radio sources south of declination -40deg which have measured VLBI correlated flux densities and positions known to milliarcsec accuracy has increased by a factor of 3.5.

  2. Compact source of narrowband and tunable X-rays for radiography

    NASA Astrophysics Data System (ADS)

    Banerjee, Sudeep; Chen, Shouyuan; Powers, Nathan; Haden, Daniel; Liu, Cheng; Golovin, G.; Zhang, Jun; Zhao, Baozhen; Clarke, S.; Pozzi, S.; Silano, J.; Karwowski, H.; Umstadter, Donald

    2015-05-01

    We discuss the development of a compact X-ray source based on inverse-Compton scattering with a laser-driven electron beam. This source produces a beam of high-energy X-rays in a narrow cone angle (5-10 mrad), at a rate of 108 photons-s-1. Tunable operation of the source over a large energy range, with energy spread of ∼50%, has also been demonstrated. Photon energies >10 MeV have been obtained. The narrowband nature of the source is advantageous for radiography with low dose, low noise, and minimal shielding.

  3. A novel amblyopia treatment system based on LED light source

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqing; Chen, Qingshan; Wang, Xiaoling

    2011-05-01

    A novel LED (light emitting diode) light source of five different colors (white, red, green, blue and yellow) is adopted instead of conventional incandescent lamps for an amblyopia treatment system and seven training methods for rectifying amblyopia are incorporated so as for achieving an integrated therapy. The LED light source is designed to provide uniform illumination, adjustable light intensity and alterable colors. Experimental tests indicate that the LED light source operates steadily and fulfills the technical demand of amblyopia treatment.

  4. A novel amblyopia treatment system based on LED light source

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqing; Chen, Qingshan; Wang, Xiaoling

    2010-12-01

    A novel LED (light emitting diode) light source of five different colors (white, red, green, blue and yellow) is adopted instead of conventional incandescent lamps for an amblyopia treatment system and seven training methods for rectifying amblyopia are incorporated so as for achieving an integrated therapy. The LED light source is designed to provide uniform illumination, adjustable light intensity and alterable colors. Experimental tests indicate that the LED light source operates steadily and fulfills the technical demand of amblyopia treatment.

  5. Device characterization of the VCSEL-on-silicon as an on chip light source

    NASA Astrophysics Data System (ADS)

    Kwack, Myung-Joon; Jang, Ki-Seok; Joo, Jiho; Park, Hyundai; Oh, Jin Hyuk; Park, Jaegyu; Kim, Sanggi; Kim, Gyungock

    2016-03-01

    Advancement of silicon photonics technology can offer a new dimension in data communications with un-precedent bandwidth. Increasing the integration level in the silicon photonics is required to develop compact high-performance chip-level optical interconnects for future systems. Especially, monolithic integration of light source on a silicon wafer is important for future silicon photonic integrated circuits, since realizing a compact on-chip light source on a silicon wafer is a serious issue which impedes practical implementation of the silicon photonic interconnects. At present, due to the lack of a practical light source based on Group IV elements, flip chip-bonded or packaged lasers based on III-V semiconductor are usually being used as external light sources, to feed silicon modulators on SOI wafers to complete a photonic transmitter, except the reported silicon hybrid lasers monolithic-integrated on SOI wafers. To overcome above problem, we have proposed a compact on-chip light source, the directly monolithic-integrated VCSEL on a bulk silicon wafer (VCSEL-on-Si), based on the transplanted epitaxial film by substrate lift-off process and following device-fabrication on the bulk Si wafer. This can offer practical low-power-consumption light sources integrated on a silicon wafer, which can provide a complete chip-level I/O set when combined with monolithic-integrated vertical-illumination Ge-on-Si photodetectors on the same silicon wafer. In this work, we report the characterization of direct-modulation VCSELs-on-Si for λ ~850 nm with CW optical output power > ~2 mW and the threshold current < ~3 mA, over 10 Gb/s operations. We also discuss about the thermal characteristics of the VCSELs-on-Si.

  6. Panorama of new generation of accelerator based short wavelength coherent light sources

    NASA Astrophysics Data System (ADS)

    Couprie, M. E.

    2015-12-01

    The newly developed intense short wavelength light sources (from Extreme Ultra-Violet (EUV) to X-rays) have open the path to the exploration of matter for revealing structures and electronic processes and for following their evolution in time. After drawing the panorama of existing accelerator based short wavelength light sources, the new trends of evolution of short wavelengths FEL are described, with some illustrations with the example of the LUNEX5 (free electron Laser a New accelerator for the Exploitation of X-ray radiation of 5th generation) demonstrator project of advanced compact Free Electron Laser.

  7. Non-destructive Texture Measurement of Steel Sheets with Compact Neutron Source “RANS”

    NASA Astrophysics Data System (ADS)

    Takamura, M.; Ikeda, Y.; Sunaga, H.; Taketani, A.; Otake, Y.; Suzuki, H.; Kumagai, M.; Hama, T.; Oba, Y.

    2016-08-01

    Neutron diffraction is well known to be a useful technique for measuring a bulk texture of metallic materials taking advantage of a large penetration depth of the neutron beam. However, this technique has not been widely utilized for the texture measurement because large facilities like a reactor or a large accelerator are required in general. In contrast, RANS (Riken Accelerator-driven Compact Neutron Source) has been developed as a neutron source which can be used easily in laboratories. In this study, texture evolution in steel sheets with plastic deformation was successfully measured using RANS. The results show the capability of the compact neutron source for the analysis of the crystal structure of metallic materials, which leads us to a better understanding of plastic deformation behavior.

  8. Compact Fluorescent Lighting in America: Lessons Learned on the Way to Market

    SciTech Connect

    Sandahl, Linda J.; Gilbride, Theresa L.; Ledbetter, Marc R.; Steward, Heidi E.; Calwell, Chris

    2006-05-22

    This report describes the history of compact fluorescent lamps (CFLs) in America. CFLs were introduced in the 1970s; however, it has taken more than 20 years for them to gain widespread recognition in the U.S. residential lighting market. This report reviews the development of CFLs, efforts to increase market acceptance of them, and barriers to that acceptance. Lessons to be learned from this study of CFLs are identified in hopes of assisting future market introduction efforts for other promising energy-efficient technologies. This report was prepared by the Pacific Northwest National Laboratory for the U.S. Department of Energy’s Office of Building Technologies, Emerging Technologies Program.

  9. Experimental investigation of silicon photomultipliers as compact light readout systems for gamma-ray spectroscopy applications in fusion plasmas.

    PubMed

    Nocente, M; Fazzi, A; Tardocchi, M; Cazzaniga, C; Lorenzoli, M; Pirovano, C; Rebai, M; Uboldi, C; Varoli, V; Gorini, G

    2014-11-01

    A matrix of Silicon Photo Multipliers has been developed for light readout from a large area 1 in. × 1 in. LaBr3 crystal. The system has been characterized in the laboratory and its performance compared to that of a conventional photo multiplier tube. A pulse duration of 100 ns was achieved, which opens up to spectroscopy applications at high counting rates. The energy resolution measured using radioactive sources extrapolates to 3%-4% in the energy range Eγ = 3-5 MeV, enabling gamma-ray spectroscopy measurements at good energy resolution. The results reported here are of relevance in view of the development of compact gamma-ray detectors with spectroscopy capabilities, such as an enhanced gamma-ray camera for high power fusion plasmas, where the use of photomultiplier is impeded by space limitation and sensitivity to magnetic fields. PMID:25430287

  10. Experimental investigation of silicon photomultipliers as compact light readout systems for gamma-ray spectroscopy applications in fusion plasmas

    SciTech Connect

    Nocente, M. Gorini, G.; Fazzi, A.; Lorenzoli, M.; Pirovano, C.; Tardocchi, M.; Cazzaniga, C.; Rebai, M.; Uboldi, C.; Varoli, V.

    2014-11-15

    A matrix of Silicon Photo Multipliers has been developed for light readout from a large area 1 in. × 1 in. LaBr{sub 3} crystal. The system has been characterized in the laboratory and its performance compared to that of a conventional photo multiplier tube. A pulse duration of 100 ns was achieved, which opens up to spectroscopy applications at high counting rates. The energy resolution measured using radioactive sources extrapolates to 3%–4% in the energy range E{sub γ} = 3–5 MeV, enabling gamma-ray spectroscopy measurements at good energy resolution. The results reported here are of relevance in view of the development of compact gamma-ray detectors with spectroscopy capabilities, such as an enhanced gamma-ray camera for high power fusion plasmas, where the use of photomultiplier is impeded by space limitation and sensitivity to magnetic fields.

  11. JVLA observations of IC 348 SW: Compact radio sources and their nature

    SciTech Connect

    Rodríguez, Luis F.; Zapata, Luis A.; Palau, Aina E-mail: l.zapata@crya.unam.mx

    2014-07-20

    We present sensitive 2.1 and 3.3 cm Jansky Very Large Array radio continuum observations of the region IC 348 SW. We detect a total of 10 compact radio sources in the region, 7 of which are first reported here. One of the sources is associated with the remarkable periodic time-variable infrared source LRLL 54361, opening the possibility of monitoring this object at radio wavelengths. Four of the sources appear to be powering outflows in the region, including HH 211 and HH 797. In the case of the rotating outflow HH 797, we detect a double radio source at its center, separated by ∼3''. Two of the sources are associated with infrared stars that possibly have gyrosynchrotron emission produced in active magnetospheres. Finally, three of the sources are interpreted as background objects.

  12. Ptychographic nanotomography at the Swiss Light Source

    NASA Astrophysics Data System (ADS)

    Guizar-Sicairos, Manuel; Holler, Mirko; Diaz, Ana; da Silva, Julio C.; Tsai, Esther H. R.; Bunk, Oliver; Martinez-Perez, Carlos; Donoghue, Philip C. J.; Wellman, Charles H.; Menzel, Andreas

    2015-09-01

    Ptychography combines elements of scanning probe microscopy with coherent diffractive imaging and provides a robust high-resolution imaging technique. The extension of X-ray ptychography to 3D provides nanoscale maps with quantitative contrast of the sample complex-valued refractive index. We present here progress in reconstruction and post-processing algorithms for ptychographic nanotomography, as well as outline advances in the implementation and development of dedicated instrumentation for fast and precise 3D scanning at the Swiss Light Source. Compared to the first demonstration in 2010, such developments have allowed a dramatic improvement in resolution and measurement speed, with direct impact in the application of the technique for biology and materials science. We showcase the technique by detailing the measurement and reconstruction of a fossilized dispersed spore.

  13. Commissioning the Linac Coherent Light Source injector

    NASA Astrophysics Data System (ADS)

    Akre, R.; Dowell, D.; Emma, P.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Iverson, R.; Limborg-Deprey, C.; Loos, H.; Miahnahri, A.; Schmerge, J.; Turner, J.; Welch, J.; White, W.; Wu, J.

    2008-03-01

    The Linac Coherent Light Source is a SASE x-ray free-electron laser (FEL) project presently under construction at SLAC [J. Arthur , SLAC-R-593, 2002.]. The injector section, from drive laser and rf photocathode gun through first bunch compressor chicane, was installed in the fall of 2006. The initial system commissioning with an electron beam was completed in August of 2007, with the goal of a 1.2-micron emittance in a 1-nC bunch demonstrated. The second phase of commissioning, including second bunch compressor and full linac, is planned for 2008, with FEL commissioning in 2009. We report experimental results and experience gained in the first phase of commissioning, including the photocathode drive laser, rf gun, photocathode, S-band and X-band rf systems, first bunch compressor, and the various beam diagnostics.

  14. Status of the SAGA Light Source

    SciTech Connect

    Kaneyasu, T.; Takabayashi, Y.; Iwasaki, Y.; Koda, S.

    2010-06-23

    The SAGA Light Source (SAGA-LS) is a synchrotron radiation facility consisting of a 255 MeV injector linac and a 1.4 GeV storage ring that is 75.6 m in circumference. The SAGA-LS has been stably providing synchrotron radiation to users since it first started user operation in February 2006. Along with the user operation, various machine improvements have been made over the past years, including upgrading the injector linac control system, replacing a septum magnet and constructing a beam diagnostic system. In addition to these improvements, insertion devices have been developed and installed. An APPLE-II type variable polarization undulator was installed in 2008. To address the demand from users for high-flux hard x-rays, a superconducting 4 T class wiggler is being developed. An experimental setup for generating MeV photons by laser Compton scattering is being constructed for beam monitoring and future user experiments.

  15. ENERGY SOURCES AND LIGHT CURVES OF MACRONOVAE

    SciTech Connect

    Kisaka, Shota; Ioka, Kunihito; Takami, Hajime E-mail: takami@post.kek.jp

    2015-04-01

    A macronova (kilonova) was discovered with a short gamma-ray burst, GRB 130603B, which is widely believed to be powered by the radioactivity of r-process elements synthesized in the ejecta of a neutron star (NS)–binary merger. As an alternative, we propose that macronovae are energized by the central engine, i.e., a black hole or NS, and the injected energy is emitted after the adiabatic expansion of ejecta. This engine model is motivated by extended emission of short GRBs. In order to compare the theoretical models with observations, we develop analytical formulae for the light curves of macronovae. The engine model allows a wider parameter range, especially smaller ejecta mass, and a better fit to observations than the r-process model. Future observations of electromagnetic counterparts of gravitational waves should distinguish energy sources and constrain the activity of the central engine and the r-process nucleosynthesis.

  16. Energy Recovery Linacs for Light Source Applications

    SciTech Connect

    George Neil

    2011-04-01

    Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the status of worldwide programs and discuss the technology challenges to provide such beams for photon production.

  17. The Linac Cooherent Light Source (LCLS) Accelerator

    SciTech Connect

    Wu, Juhao; Emma, P.; /SLAC

    2007-03-21

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) based on the final kilometer of the Stanford Linear Accelerator. Such an FEL requires a high energy, high brightness electron beam to drive the FEL instability to saturation. When fed by an RF-photocathode gun, and modified to include two bunch compressor chicanes, the SLAC linac will provide such a high quality beam at 14 GeV and 1-{micro}m normalized emittance. In this paper, we report on recent linac studies, including beam stability and tolerances, longitudinal and transverse feedback systems, conventional and time-resolved diagnostics, and beam collimation systems. Construction and installation of the injector through first bunch compressor will be completed by December 2006, and electron commissioning is scheduled to begin in January of 2007.

  18. Do the compact radio sources in NGC 253 and M82 fade over time?

    NASA Technical Reports Server (NTRS)

    Ulvestad, James S.; Antonucci, Robert R. J.

    1994-01-01

    The nearby starburst galaxy NGC 253 has been observed at a third epoch at 6 cm, and a second epoch at 3.6 cm, using the highest resolution configuration of the Very Large Array (VLA). Over a total time span of 4 yr between 1987 and 1991, no new compact radio sources have appeared. The flux density limit ranges from 3 mJy (3 times the power of Cas A) for most of the main body of the source to approximately 0.3 mJy off the diffuse source surrounding the nucleus. Furthermore, there is no evidence for significant source fading over 4 yr, in contrast to the result reported by Kronberg & Sramek (1985) for M82. More recent data suggest that, except for the strongest source in that galaxy, the compact radio sources in M82 may not be fading after all. If this suggestion proves correct, supernova rates of 0.2-0.3/yr in M82, estimated based on the assumed source fading, are incorrect. More accurate limits on source fading indicate that the current rate of production of radio supernovae in M82 is no greater than 0.1/yr, while that in NGC 253 is no greater than 0.25/yr.

  19. Compact far ultraviolet emission source with rich spectral emission 1150-3100 A. [Pt hollow cathode

    NASA Technical Reports Server (NTRS)

    Mount, G. H.; Fastie, W. G.; Yamasaki, G.; Fowler, W.

    1977-01-01

    The article describes a compact hollow Pt cathode emission source for the far UV, developed for use as a high-resolution wavelength standard in laboratory work or on spacecraft (specifically, the NASA International UV Explorer - IUE). The source is small, rugged, lightweight, spectrally rich, bright in the 1150-3200 A region, features long service life, low operating voltage, and lower power drain, and stably emits a large number of very sharp lines with a spectrum lending itself to projection onto the focal plane of a spectrograph. The source has successfully passed exacting environmental tests, and serves as a transfer standard for absolute sensitivity calibration of spectrometric instruments.

  20. LED intense headband light source for fingerprint analysis

    DOEpatents

    Villa-Aleman, Eliel

    2005-03-08

    A portable, lightweight and high-intensity light source for detecting and analyzing fingerprints during field investigation. On-site field analysis requires long hours of mobile analysis. In one embodiment, the present invention comprises a plurality of light emitting diodes; a power source; and a personal attachment means; wherein the light emitting diodes are powered by the power source, and wherein the power source and the light emitting diodes are attached to the personal attachment means to produce a personal light source for on-site analysis of latent fingerprints. The present invention is available for other applications as well.

  1. ON THE CONNECTION OF THE APPARENT PROPER MOTION AND THE VLBI STRUCTURE OF COMPACT RADIO SOURCES

    SciTech Connect

    Moor, A.; Frey, S.; Lambert, S. B.; Bakos, J. E-mail: frey@sgo.fomi.hu E-mail: oleg.titov@ga.gov.au

    2011-06-15

    Many of the compact extragalactic radio sources that are used as fiducial points to define the celestial reference frame are known to have proper motions detectable with long-term geodetic/astrometric very long baseline interferometry (VLBI) measurements. These changes can be as high as several hundred microarcseconds per year for certain objects. When imaged with VLBI at milliarcsecond (mas) angular resolution, these sources (radio-loud active galactic nuclei) typically show structures dominated by a compact, often unresolved 'core' and a one-sided 'jet'. The positional instability of compact radio sources is believed to be connected with changes in their brightness distribution structure. For the first time, we test this assumption in a statistical sense on a large sample rather than on only individual objects. We investigate a sample of 62 radio sources for which reliable long-term time series of astrometric positions as well as detailed 8 GHz VLBI brightness distribution models are available. We compare the characteristic direction of their extended jet structure and the direction of their apparent proper motion. We present our data and analysis method, and conclude that there is indeed a correlation between the two characteristic directions. However, there are cases where the {approx}1-10 mas scale VLBI jet directions are significantly misaligned with respect to the apparent proper motion direction.

  2. Diamond Light Source: status and perspectives

    PubMed Central

    Materlik, Gerhard; Rayment, Trevor; Stuart, David I.

    2015-01-01

    Diamond Light Source, a third-generation synchrotron radiation (SR) facility in the UK, celebrated its 10th anniversary in 2012. A private limited company was set up in April 2002 to plan, construct and operate the new user-oriented SR facility, called in brief Diamond. It succeeded the Synchrotron Radiation Source in Daresbury, a second-generation synchrotron that opened in 1980 as the world's first dedicated X-ray-providing facility, closing finally in 2008, by which time Diamond's accelerators and first beamlines were operating and user experiments were under way. This theme issue of Philosophical Transactions of the Royal Society A gives some examples of the rich diversity of research done in the initial five years, with some glimpses of activity up to 2014. Speakers at the 10 year anniversary symposium were drawn from a small number of major thematic areas and each theme was elaborated by a few speakers whose contributions were placed into a broader context by a leading member of the UK academic community in the role of rapporteur. This introduction gives a summary of the design choices and strategic planning of Diamond as a coherent user facility, a snapshot of its present status and some consideration of future perspectives. PMID:25624517

  3. Status of the Metrology Light Source

    SciTech Connect

    Klein, R.; Ulm, G.; Feikes, J.; Hartrott, M. von; Wuestefeld, G.

    2010-06-23

    The Physikalisch-Technische Bundesanstalt (PTB), the German national metrology institute, has set up the low-energy electron storage ring Metrology Light Source (MLS) in close cooperation with the Helmholtz-Zentrum Berlin (HZB, formerly BESSY). This new storage ring has been in regular user operation since April 2008 and is dedicated to synchrotron-radiation-based metrology and technological developments in the far-IR/THz, IR, UV, VUV and EUV spectral range. The MLS has a double-bend-achromate lattice structure, injection is from a 105 MeV racetrack microtron. The electron energy can be ramped to any value from 105 MeV up to 630 MeV and the electron beam current covers the range from one stored electron (1 pA) up to 200 mA. The MLS is the first electron storage ring optimized for the generation of coherent synchrotron radiation, based on an electron bunch shortening mode. In this mode, MLS delivers coherent radiation in the far-IR/THz spectral range with enhanced intensity as compared to the normal mode of operation. Several beamlines are in operation or in construction, including one undulator beamline, bending magnet beamlines for the calibration of radiation sources and detectors and for reflectometry, an EUV metrology beamline and three IR/THz beamlines.

  4. National Synchrotron Light Source 2008 Activity Report

    SciTech Connect

    Nasta,K.

    2009-05-01

    Funded by the U.S. Department of Energy's Office of Basic Energy Sciences, the National Synchrotron Light Source (NSLS) is a national user facility that operates two electron storage rings: X-Ray (2.8 GeV, 300 mA) and Vacuum Ultraviolet (VUV) (800 mev, 1.0A). These two rings provide intense light spanning the electromagnetic spectrum -- from very long infrared rays to ultraviolet light and super-short x-rays -- to analyze very small or highly dilute samples. The properties of this light, and the specially designed experimental stations, called beamlines, allow scientists in many diverse disciplines of research to perform experiments not possible at their own laboratories. Each year, about 2,200 scientists from more than 400 universities and companies use the NSLS for research in such diverse fields as biology, physics, chemistry, geology, medicine, and environmental and materials sciences. For example, researchers have used the NSLS to examine the minute details of computer chips, decipher the structures of viruses, probe the density of bone, determine the chemical composition of moon rocks, and reveal countless other mysteries of science. The facility has 65 operating beamlines, with 51 beamlines on the X-Ray Ring and 14 beamlines on the VUV-Infrared Ring. It runs seven days a week, 24 hours a day throughout the year, except during periods of maintenance and studies. Researchers are not charged for beam time, provided that the research results are published in open literature. Proprietary research is conducted on a full-cost-recovery basis. With close to 1,000 publications per year, the NSLS is one of the most prolific scientific facilities in the world. Among the many accolades given to its users and staff, the NSLS has won nine R&D 100 Awards for innovations ranging from a closed orbit feedback system to the first device able to focus a large spread of high-energy x-rays. In addition, a visiting NSLS researcher shared the 2003 Nobel Prize in Chemistry for work

  5. The 4th Generation Light Source at Jefferson Lab

    SciTech Connect

    Stephen Benson; George Biallas; James Boyce; Donald Bullard; James Coleman; David Douglas; H. Dylla; Richard Evans; Pavel Evtushenko; Albert Grippo; Christopher Gould; Joseph Gubeli; David Hardy; Carlos Hernandez-Garcia; Kevin Jordan; John Klopf; Steven Moore; George Neil; Thomas Powers; Joseph Preble; Daniel Sexton; Michelle D. Shinn; Christopher Tennant; Richard Walker; Shukui Zhang; Gwyn Williams

    2007-04-25

    A number of "Grand Challenges" in Science have recently been identified in reports from The National Academy of Sciences, and the U.S. Dept. of Energy, Basic Energy Sciences. Many of these require a new generation of linac-based light source to study dynamical and non-linear phenomena in nanoscale samples. In this paper we present a summary of the properties of such light sources, comparing them with existing sources, and then describing in more detail a specific source at Jefferson Lab. Importantly, the JLab light source has developed some novel technology which is a critical enabler for other new light sources.

  6. Position and morphology of the compact non-thermal radio source at the Galactic Center

    NASA Technical Reports Server (NTRS)

    Marcaide, J. M.; Alberdi, A.; Bartel, N.; Clark, T. A.; Corey, B. E.; Elosegui, P.; Gorenstein, M. V.; Guirado, J. C.; Kardashev, N.; Popov, M.

    1992-01-01

    We have determined with VLBI the position of the compact nonthermal radio source at the Galactic Center, commonly referred to as SgrA*, in the J2000.0 reference frame of extragalactic radio sources. We have also determined the size of SgrA* at 1.3, 3.6, and 13 cm wavelengths and found that the apparent size of the source increases proportionally to the observing wavelength squared, as expected from source size broadening by interstellar scattering and as reported previously by other authors. We have also established an upper limit of about 8 mJy at 3.6 cm wavelength for any ultracompact component. The actual size of the source is less than 15 AU. Fourier analysis of our very sensitive 3.6 cm observations of this source shows no significant variations of correlated flux density on time scales from 12 to 700 s.

  7. Development of a compact permanent magnet helicon plasma source for ion beam bioengineering

    SciTech Connect

    Kerdtongmee, P.; Srinoum, D.; Nisoa, M.

    2011-10-15

    A compact helicon plasma source was developed as a millimeter-sized ion source for ion beam bioengineering. By employing a stacked arrangement of annular-shaped permanent magnets, a uniform axial magnetic flux density up to 2.8 kG was obtained. A cost effective 118 MHz RF generator was built for adjusting forward output power from 0 to 40 W. The load impedance and matching network were then analyzed. A single loop antenna and circuit matching elements were placed on a compact printed circuit board for 50 {Omega} impedance matching. A plasma density up to 1.1 x 10{sup 12} cm{sup -3} in the 10 mm diameter tube under the magnetic flux density was achieved with 35 W applied RF power.

  8. A compact time-of-flight mass spectrometer for ion source characterization

    SciTech Connect

    Chen, L. Wan, X.; Jin, D. Z.; Tan, X. H.; Huang, Z. X.; Tan, G. B.

    2015-03-15

    A compact time-of-flight mass spectrometer with overall dimension of about 413 × 250 × 414 mm based on orthogonal injection and angle reflection has been developed for ion source characterization. Configuration and principle of the time-of-flight mass spectrometer are introduced in this paper. The mass resolution is optimized to be about 1690 (FWHM), and the ion energy detection range is tested to be between about 3 and 163 eV with the help of electron impact ion source. High mass resolution and compact configuration make this spectrometer useful to provide a valuable diagnostic for ion spectra fundamental research and study the mass to charge composition of plasma with wide range of parameters.

  9. Development of a compact permanent magnet helicon plasma source for ion beam bioengineering.

    PubMed

    Kerdtongmee, P; Srinoum, D; Nisoa, M

    2011-10-01

    A compact helicon plasma source was developed as a millimeter-sized ion source for ion beam bioengineering. By employing a stacked arrangement of annular-shaped permanent magnets, a uniform axial magnetic flux density up to 2.8 kG was obtained. A cost effective 118 MHz RF generator was built for adjusting forward output power from 0 to 40 W. The load impedance and matching network were then analyzed. A single loop antenna and circuit matching elements were placed on a compact printed circuit board for 50 Ω impedance matching. A plasma density up to 1.1 × 10(12) cm(-3) in the 10 mm diameter tube under the magnetic flux density was achieved with 35 W applied RF power. PMID:22047290

  10. The Sun: the Earth light source

    NASA Astrophysics Data System (ADS)

    Berrilli, Francesco; Giovannelli, Luca; Del Moro, Dario; Piazzesi, Roberto; Catena, Liu` Maria; Amicucci, Giordano; Vittorio, Nicola

    2015-04-01

    We have implemented at Department of Physics of University of Rome Tor Vergata a project called "The Sun: the Earth light source". The project obtained the official endorsement from the IAU Executive Committee Working Group for the International Year of Light. The project, specifically designed for high school students, is focused on the "scientific" study of Sun light by means of a complete acquisition system based on "on the shelf" appropriately CMOS low-cost sensor with free control s/w and self-assembled telescopes. The project (hereafter stage) plan is based on a course of two weeks (60 hours in total). The course contains 20 hours of theoretical lectures, necessary to learn basics about Sun, optics, telescopes and image sensors, and 40 hours of laboratory. During the course, scientists and astronomers share with high schools students, work activities in real research laboratories. High schools teachers are intensely involved in the project. Their role is to share activities with university teachers and realize outreach actions in the home institutions. Simultaneously, they are introduced to innovative teaching methods and the project in this way is regarded as a professional development course. Sun light analysis and Sun-Earth connection through light are the main scientific topics of this project. The laboratory section of the stage is executed in two phases (weeks): First phase aims are the realization of a keplerian telescope and low-cost acquisition system. During this week students are introduced to astronomical techniques used to safety collect and acquire solar light; Second phase aims is the realization of a low-cost instrument to analyse sunlight extracting information about the solar spectrum, solar irradiance and Sun-Earth connection. The proposed stage has been already tested in Italy reached the fifth edition in 2014. Since 2010, the project has been a cornerstone outreach program of the University of Rome Tor Vergata, the Italian Ministry of

  11. Prospect for application of compact accelerator-based neutron source to neutron engineering diffraction

    NASA Astrophysics Data System (ADS)

    Ikeda, Yoshimasa; Taketani, Atsushi; Takamura, Masato; Sunaga, Hideyuki; Kumagai, Masayoshi; Oba, Yojiro; Otake, Yoshie; Suzuki, Hiroshi

    2016-10-01

    A compact accelerator-based neutron source has been lately discussed on engineering applications such as transmission imaging and small angle scattering as well as reflectometry. However, nobody considers using it for neutron diffraction experiment because of its low neutron flux. In this study, therefore, the neutron diffraction experiments are carried out using Riken Accelerator-driven Compact Neutron Source (RANS), to clarify the capability of the compact neutron source for neutron engineering diffraction. The diffraction pattern from a ferritic steel was successfully measured by suitable arrangement of the optical system to reduce the background noise, and it was confirmed that the recognizable diffraction pattern can be measured by a large sampling volume with 10 mm in cubic for an acceptable measurement time, i.e. 10 min. The minimum resolution of the 110 reflection for RANS is approximately 2.5% at 8 μs of the proton pulse width, which is insufficient to perform the strain measurement by neutron diffraction. The moderation time width at the wavelength corresponding to the 110 reflection is estimated to be approximately 30 μs, which is the most dominant factor to determine the resolution. Therefore, refinements of the moderator system to decrease the moderation time by decreasing a thickness of the moderator or by applying the decoupler system or application of the angular dispersive neutron diffraction technique are important to improve the resolution of the diffraction experiment using the compact neutron source. In contrast, the texture evolution due to plastic deformation was successfully observed by measuring a change in the diffraction peak intensity by RANS. Furthermore, the volume fraction of the austenitic phase in the dual phase mock specimen was also successfully evaluated by fitting the diffraction pattern using a Rietveld code. Consequently, RANS has been proved to be capable for neutron engineering diffraction aiming for the easy access

  12. The Jefferson Lab High Power Light Source

    SciTech Connect

    James R. Boyce

    2006-01-01

    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

  13. Intragroup diffuse light in compact groups of galaxies: HCG 79, 88 and 95

    NASA Astrophysics Data System (ADS)

    Da Rocha, C.; Mendes de Oliveira, C.

    2005-12-01

    Deep B and R images of three Hickson Compact Groups, HCG 79, 88 and 95, have been analysed using a new wavelet technique to measure possible intragroup diffuse light present in these systems. The method used, OV_WAV, is a wavelet technique particularly suitable for detecting low surface brightness extended structures, down to a signal-to-noise ratio (S/N) = 0.1 per pixel, which corresponds to a 5σ detection level in wavelet space. The three groups studied are in different evolutionary stages, as can be judged by their very different fractions of the total light contained in their intragroup haloes: 46 +/- 11 per cent for HCG 79 and 11 +/- 26 per cent for HCG 95, in the B band, and HCG 88 had no component detected down to a limiting surface brightness of 29.1B mag arcsec-2. For HCG 95, the intragroup light (IGL) is red, similar to the mean colours of the group galaxies themselves, suggesting that it is formed by an old population with no significant ongoing star formation. For HCG 79, however, the intragroup material has a significantly bluer colour than the mean colour of the group galaxies, suggesting that the diffuse light may, at least in part, come from stripping of dwarf galaxies which dissolved into the group potential well.

  14. Compact deuterium-tritium neutron generator using a novel field ionization source

    SciTech Connect

    Ellsworth, J. L. Falabella, S.; Sanchez, J.; Tang, V.; Wang, H.

    2014-11-21

    Active interrogation using neutrons is an effective method for detecting shielded nuclear material. A lightweight, lunch-box-sized, battery-operated neutron source would enable new concepts of operation in the field. We have developed at-scale components for a highly portable, completely self-contained, pulsed Deuterium-Tritium (DT) neutron source producing 14 MeV neutrons with average yields of 10{sup 7} n/s. A gated, field ionization ion source using etched electrodes has been developed that produces pulsed ion currents up to 500 nA. A compact Cockcroft-Walton high voltage source is used to accelerate deuterons into a metal hydride target for neutron production. The results of full scale DT tests using the field ionization source are presented.

  15. Science of Compact X- and Gamma-ray Sources: MAXI and GLAST

    NASA Technical Reports Server (NTRS)

    Thompson, Dave

    2008-01-01

    MAXI and GLAST will be surveying the sky simultaneously. Compact objects that may show variability will be excellent targets for coordinated multiwavelength studies. Gamma-ray bursts (and afterglows), pulsars, high-mass X-ray binaries, microquasars, and active galactic nuclei are all objects whose X- and gamma-ray relationship can be explored by such observations. Of particular interest will be variable unidentified gamma-ray sources, whose contemporaneous observations by MAXI may prove decisive in identifying the source of the high-energy emission.

  16. Status Of The Synchrotron Light Source DELTA

    SciTech Connect

    Berges, U.; Friedl, J.; Hartmann, P.; Schirmer, D.; Schmidt, G.; Sternemann, C.; Tolan, M.; Weis, T.; Westphal, C.; Wille, K.

    2004-05-12

    The Dortmund Electron Accelerator DELTA, located at the University of Dortmund, changed its scope during the last years into a 1.5 GeV synchrotron light source. DELTA is now operated for 3000 h per year including 2000 h dedicated beam time for synchrotron radiation use and 1000 h for machine physics, optimization and maintenance. The status of the accelerator complex is presented together with the beam operation, the installation and commissioning of beamlines and insertion devices. To serve user demands of photon energies up to more than 10 keV a 5.3 T superconducting asymmetric multipole wiggler (SAW) with a critical energy of 7.9 keV has been installed serving three beamlines in the hard X-ray regime with also circular polarization. Two undulator beamlines for photon energies between 5 and 400 eV (U250) and between 55 and 1500 eV (U55) and several dipole beamlines up to 200 eV are under operation. The construction and operation of the different beamlines is done by various universities and laboratories in Nordrhein-Westfalen.

  17. Linac Coherent Light Source - Status and Prospects

    SciTech Connect

    Galayda, John N.; /SLAC

    2005-11-09

    The Linac Coherent Light Source (LCLS) Project will be an x-ray free-electron laser. It is intended to produce pulses of 800-8,000 eV photons. Each pulse, produced with a repetition frequency of up to 120 Hz, will provide >10{sup 12} photons within a duration of less than 200 femtoseconds. The project employs the last kilometer of the SLAC linac to provide a low-emittance electron beam in the energy range 4-14 GeV to a single undulator. Two experiment halls, located 100m and 350m from the undulator exit, will house six experiment stations for research in atomic/molecular physics, pump-probe dynamics of materials and chemical processes, x-ray imaging of clusters and complex molecules, and plasma physics. Engineering design activities began in 2003, and the project is to be completed in March 2009. The project design permits straightforward expansion of the LCLS to multiple undulators.

  18. Sensor/amplifier for weak light sources

    NASA Technical Reports Server (NTRS)

    Desmet, D. J.; Jason, A. J.; Parr, A. C.

    1980-01-01

    Light sensor/amplifier circuit detects weak light converts it into strong electrical signal in electrically noisy environment. Circuit is relatively simple and uses inexpensive, readily available components. Device is useful in such applications as fire detection and photographic processing.

  19. Matrix light and pixel light: optical system architecture and requirements to the light source

    NASA Astrophysics Data System (ADS)

    Spinger, Benno; Timinger, Andreas L.

    2015-09-01

    Modern Automotive headlamps enable improved functionality for more driving comfort and safety. Matrix or Pixel light headlamps are not restricted to either pure low beam functionality or pure high beam. Light in direction of oncoming traffic is selectively switched of, potential hazard can be marked via an isolated beam and the illumination on the road can even follow a bend. The optical architectures that enable these advanced functionalities are diverse. Electromechanical shutters and lens units moved by electric motors were the first ways to realize these systems. Switching multiple LED light sources is a more elegant and mechanically robust solution. While many basic functionalities can already be realized with a limited number of LEDs, an increasing number of pixels will lead to more driving comfort and better visibility. The required optical system needs not only to generate a desired beam distribution with a high angular dynamic, but also needs to guarantee minimal stray light and cross talk between the different pixels. The direct projection of the LED array via a lens is a simple but not very efficient optical system. We discuss different optical elements for pre-collimating the light with minimal cross talk and improved contrast between neighboring pixels. Depending on the selected optical system, we derive the basic light source requirements: luminance, surface area, contrast, flux and color homogeneity.

  20. National Synchrotron Light Source 2010 Activity Report

    SciTech Connect

    Rowe, M.; Snyder, K. J.

    2010-12-29

    This is a very exciting period for photon sciences at Brookhaven National Laboratory. It is also a time of unprecedented growth for the Photon Sciences Directorate, which operates the National Synchrotron Light Source (NSLS) and is constructing NSLS-II, both funded by the Department of Energy's Office of Science. Reflecting the quick pace of our activities, we chose the theme 'Discovery at Light Speed' for the directorate's 2010 annual report, a fiscal year bookended by October 2009 and September 2010. The year began with the news that NSLS users Venki Ramakrishnan of Cambridge University (also a former employee in Brookhaven's biology department) and Thomas A. Steitz of Yale University were sharing the 2009 Nobel Prize in Chemistry with Ada E. Yonath of the Weizmann Institute of Science. Every research project has the potential for accolades. In 2010, NSLS users and staff published close to 900 papers, with about 170 appearing in premiere journals. Those are impressive stats for a facility nearly three decades old, testament to the highly dedicated team keeping NSLS at peak performance and the high quality of its user community. Our NSLS users come from a worldwide community of scientists using photons, or light, to carry out research in energy and environmental sciences, physics, materials science, chemistry, biology and medicine. All are looking forward to the new capabilities enabled by NSLS-II, which will offer unprecedented resolution at the nanoscale. The new facility will produce x-rays more than 10,000 times brighter than the current NSLS and host a suite of sophisticated instruments for cutting-edge science. Some of the scientific discoveries we anticipate at NSLS-II will lead to major advances in alternative energy technologies, such as hydrogen and solar. These discoveries could pave the way to: (1) catalysts that split water with sunlight for hydrogen production; (2) materials that can reversibly store large quantities of electricity or hydrogen; (3

  1. Compact quasi-monoenergetic photon sources from laser-plasma accelerators for nuclear detection and characterization

    NASA Astrophysics Data System (ADS)

    Geddes, Cameron G. R.; Rykovanov, Sergey; Matlis, Nicholas H.; Steinke, Sven; Vay, Jean-Luc; Esarey, Eric H.; Ludewigt, Bernhard; Nakamura, Kei; Quiter, Brian J.; Schroeder, Carl B.; Toth, Csaba; Leemans, Wim P.

    2015-05-01

    Near-monoenergetic photon sources at MeV energies offer improved sensitivity at greatly reduced dose for active interrogation, and new capabilities in treaty verification, nondestructive assay of spent nuclear fuel and emergency response. Thomson (also referred to as Compton) scattering sources are an established method to produce appropriate photon beams. Applications are however restricted by the size of the required high-energy electron linac, scattering (photon production) system, and shielding for disposal of the high energy electron beam. Laser-plasma accelerators (LPAs) produce GeV electron beams in centimeters, using the plasma wave driven by the radiation pressure of an intense laser. Recent LPA experiments are presented which have greatly improved beam quality and efficiency, rendering them appropriate for compact high-quality photon sources based on Thomson scattering. Designs for MeV photon sources utilizing the unique properties of LPAs are presented. It is shown that control of the scattering laser, including plasma guiding, can increase photon production efficiency. This reduces scattering laser size and/or electron beam current requirements to scale compatible with the LPA. Lastly, the plasma structure can decelerate the electron beam after photon production, reducing the size of shielding required for beam disposal. Together, these techniques provide a path to a compact photon source system.

  2. Design and construction of a compact microwave proton source for a proton linac.

    PubMed

    Hong, I S; Park, B S; Jang, J H; Kwon, H J; Cho, Y S; Hwang, Y S

    2010-02-01

    A 100 MeV, 20 mA proton linear accelerator is being developed by the Proton Engineering Frontier Project at the Korea Atomic Energy Research Institute. 20 MeV acceleration system using radio frequency quadrupole and drift tube linac was already developed and has been tested. To operate this acceleration system with a long time, more reliable proton source is needed. A compact microwave proton source was proposed and has been designed and constructed as a prototype ion source for the 100 MeV proton linear accelerator. The design of microwave power injection system is based on the microwave proton injector at LANL and CEA. The wave power from a 2.45 GHz, 2 kW magnetron source is introduced into a compact plasma chamber with 7 cm diameter and 5 cm length through a standard tapered, double-ridged waveguide (WRD250) and a quartz window. The microwave power supply is installed on high voltage platform. Axial magnetic fields up to 1 kG can be provided with a water-cooled solenoid coil. A single-hole three electrode extraction system is designed for an extraction current up to 30 mA at a 50 kV extraction voltage. The design and initial operations of the proton source are presented.

  3. Design and construction of a compact microwave proton source for a proton linac

    SciTech Connect

    Hong, I. S.; Park, B. S.; Jang, J. H.; Kwon, H. J.; Cho, Y. S.; Hwang, Y. S.

    2010-02-15

    A 100 MeV, 20 mA proton linear accelerator is being developed by the Proton Engineering Frontier Project at the Korea Atomic Energy Research Institute. 20 MeV acceleration system using radio frequency quadrupole and drift tube linac was already developed and has been tested. To operate this acceleration system with a long time, more reliable proton source is needed. A compact microwave proton source was proposed and has been designed and constructed as a prototype ion source for the 100 MeV proton linear accelerator. The design of microwave power injection system is based on the microwave proton injector at LANL and CEA. The wave power from a 2.45 GHz, 2 kW magnetron source is introduced into a compact plasma chamber with 7 cm diameter and 5 cm length through a standard tapered, double-ridged waveguide (WRD250) and a quartz window. The microwave power supply is installed on high voltage platform. Axial magnetic fields up to 1 kG can be provided with a water-cooled solenoid coil. A single-hole three electrode extraction system is designed for an extraction current up to 30 mA at a 50 kV extraction voltage. The design and initial operations of the proton source are presented.

  4. Scanning white-light interferometry with a supercontinuum source.

    PubMed

    Kassamakov, Ivan; Hanhijärvi, Kalle; Abbadi, Imad; Aaltonen, Juha; Ludvigsen, Hanne; Haeggström, Edward

    2009-05-15

    A supercontinuum light source was incorporated into a custom-built scanning white-light interferometer. This light source based on a Nd:YAG pumped microstructured optical fiber exhibits 1.21+/-0.10 microm temporal coherence length. The device operation was validated by characterizing the step height on a microelectromechanical system component. The measured step height- 7.027+/-0.020 microm-agreed with results obtained by employing traditional light sources: a halogen lamp and a white light-emitting diode. The new light source features high output intensity of 20-35 mW, which is beneficial when measuring low-reflectivity samples. As the supercontinuum light source may be modulated at frequencies exceeding 10 MHz, it holds potential for stroboscopic dynamic measurements.

  5. The bandmerged Planck Early Release Compact Source Catalogue: probing sub-structure in the molecular gas at high Galactic latitude

    NASA Astrophysics Data System (ADS)

    Chen, X.; Chary, R.; Pearson, T. J.; McGehee, P.; Fowler, J. W.; Helou, G.

    2016-06-01

    The Planck Early Release Compact Source Catalogue (ERCSC) includes nine lists of highly reliable sources, individually extracted at each of the nine Planck frequency channels. To facilitate the study of the Planck sources, especially their spectral behaviour across the radio/infrared frequencies, we provide a `bandmerged' catalogue of the ERCSC sources. This catalogue consists of 15 191 entries, with 79 sources detected in all nine frequency channels of Planck and 6818 sources detected in only one channel. We describe the bandmerging algorithm, including the various steps used to disentangle sources in confused regions. The multifrequency matching allows us to develop spectral energy distributions of sources between 30 and 857 GHz, in particular across the 100 GHz band, where the energetically important CO J = 1→0 line enters the Planck bandpass. We find ˜3σ-5σ evidence for contribution to the 100 GHz intensity from foreground CO along the line of sight to 147 sources with |b|>{30°}. The median excess contribution is 4.5 ± 0.9 per cent of their measured 100 GHz flux density which cannot be explained by calibration or beam uncertainties. This translates to 0.5 ± 0.1 K km s-1 of CO which must be clumped on the scale of the Planck 100 GHz beam, i.e. ˜10 arcmin. If this is due to a population of low-mass (˜15 M⊙) molecular gas clumps, the total mass in these clumps may be more than 2000 M⊙. Further, high-spatial-resolution, ground-based observations of the high-latitude sky will help shed light on the origin of this diffuse, clumpy CO emission.

  6. A compact ion source and accelerator based on a piezoelectric driver

    SciTech Connect

    Norgard, P.; Kovaleski, S. D.; VanGordon, J. A.; Baxter, E. A.; Gall, B. B.; Kwon, Jae Wan; Kim, Baek Hyun; Dale, G. E.

    2013-04-19

    Compact ion sources and accelerators using piezoelectric devices for the production of energetic ion beams are being evaluated. A coupled source-accelerator is being tested as a neutron source to be incorporated into oil-well logging diagnostics. Two different ion sources are being investigated, including a piezoelectric transformer-based plasma source and a silicon-based field ion source. The piezoelectric transformer plasma ion source uses a cylindrical, resonantly driven piezoelectric crystal to produce high voltage inside a confined volume filled with low pressure deuterium gas. The plasma generated in the confined chamber is ejected through a small aperture into an evacuated drift region. The silicon field ion source uses localized electric field enhancement produced by an array of sharp emitters etched into a silicon blank to produce ions through field desorption ionization. A second piezoelectric device of a different design is used to generate an accelerating potential on the order of 130 kV; this potential is applied to a deuterated target plate positioned perpendicular to the ion stream produced by either plasma source. This paper discusses the results obtained by the individual components as they relate to the final neutron source.

  7. Filter selection based on light source for multispectral imaging

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Xu, Haisong

    2016-07-01

    In multispectral imaging, it is necessary to select a reduced number of filters to balance the imaging efficiency and spectral reflectance recovery accuracy. Due to the combined effect of filters and light source on reflectance recovery, the optimal filters are influenced by the employed light source in the multispectral imaging system. By casting the filter selection as an optimization issue, the selection of optimal filters corresponding to the employed light source proceeds with respect to a set of target samples utilizing one kind of genetic algorithms, regardless of the detailed spectral characteristics of the light source, filters, and sensor. Under three light sources with distinct spectral power distributions, the proposed filter selection method was evaluated on a filter-wheel based multispectral device with a set of interference filters. It was verified that the filters derived by the proposed method achieve better spectral and colorimetric accuracy of reflectance recovery than the conventional one under different light sources.

  8. LED light source used in cultural relic illumination

    NASA Astrophysics Data System (ADS)

    Jin, Shangzhong; Zhang, Zaixuan; Zhou, Wen

    2002-09-01

    A new light source was researched and designed for cultural relic illumination. It is composed of high bright red, green, yellow, bule and white LED. A cone axes ellipse reflector is used in order to utilize light energy of LED as early possible. The light transmits in optical fiber bundle and lights the cultural relic in different angles and directions. The spectrum of the whole light source system is from 410nm to 700nm. There are not IR and UV. The light illuminance is 301x. Lighting of LEDs is controlled by rectangle waveform constant current source to make temperature lower and efficiency of light higher. Noise is avoided because a wind-cooling device is not used. Spectrum energy of different color light can be adjusted easily in order to show the important point of cultural relic.

  9. Development of a compact filament-discharge multi-cusp H- ion source.

    PubMed

    Jia, XianLu; Zhang, TianJue; Zheng, Xia; Qin, JiuChang

    2012-02-01

    A 14 MeV medical cyclotron with the external ion source has been designed and is being constructed at China Institute of Atomic Energy. The H(-) ion will be accelerated by this machine and the proton beam will be extracted by carbon strippers in dual opposite direction. The compact multi-cusp H(-) ion source has been developed for the cyclotron. The 79.5 mm long ion source is 48 mm in diameter, which is consisting of a special shape filament, ten columns of permanent magnets providing a multi-cusp field, and a three-electrode extraction system. So far, the 3 mA∕25 keV H(-) beam with an emittance of 0.3 π mm mrad has been obtained from the ion source. The paper gives the design details and the beam test results. Further experimental study is under way and an extracted beam of 5 mA is expected.

  10. Compact, highly sensitive optical gyros and sensors with fast-light

    NASA Astrophysics Data System (ADS)

    Christensen, Caleb A.; Zavriyev, Anton; Cummings, Malcolm; Beal, A. C.; Lucas, Mark; Lagasse, Michael

    2015-09-01

    Fast-light phenomena can enhance the sensitivity of an optical gyroscope of a given size by several orders of magnitude, and could be applied to other optical sensors as well. MagiQ Technologies has been developing a compact fiber-based fast light Inertial Measurement Unit (IMU) using Stimulated Brillouin Scattering in optical fibers with commercially mature technologies. We will report on our findings, including repeatable fast-light effects in the lab, numerical analysis of noise and stability given realistic optical specs, and methods for optimizing efficiency, size, and reliability with current technologies. The technology could benefit inertial navigation units, gyrocompasses, and stabilization techniques, and could allow high grade IMUs in spacecraft, unmanned aerial vehicles or sensors, where the current size and weight of precision gyros are prohibitive. By using photonic integrated circuits and telecom-grade components along with specialty fibers, we also believe that our design is appropriate for development without further advances in the state of the art of components.

  11. A compact light-sheet microscope for the study of the mammalian central nervous system

    PubMed Central

    Yang, Zhengyi; Haslehurst, Peter; Scott, Suzanne; Emptage, Nigel; Dholakia, Kishan

    2016-01-01

    Investigation of the transient processes integral to neuronal function demands rapid and high-resolution imaging techniques over a large field of view, which cannot be achieved with conventional scanning microscopes. Here we describe a compact light sheet fluorescence microscope, featuring a 45° inverted geometry and an integrated photolysis laser, that is optimized for applications in neuroscience, in particular fast imaging of sub-neuronal structures in mammalian brain slices. We demonstrate the utility of this design for three-dimensional morphological reconstruction, activation of a single synapse with localized photolysis, and fast imaging of neuronal Ca2+ signalling across a large field of view. The developed system opens up a host of novel applications for the neuroscience community. PMID:27215692

  12. Compact wavelength de-multiplexer design using slow light regime of photonic crystal waveguides.

    PubMed

    Akosman, Ahmet E; Mutlu, Mehmet; Kurt, Hamza; Ozbay, Ekmel

    2011-11-21

    We demonstrate the operation of a compact wavelength de-multiplexer using cascaded single-mode photonic crystal waveguides utilizing the slow light regime. By altering the dielectric filling factors of each waveguide segment, we numerically and experimentally show that different frequencies are separated at different locations along the waveguide. In other words, the beams of different wavelengths are spatially dropped along the transverse to the propagation direction. We numerically verified the spatial shifts of certain wavelengths by using the two-dimensional finite-difference time-domain method. The presented design can be extended to de-multiplex more wavelengths by concatenating additional photonic crystal waveguides with different filling factors. PMID:22109439

  13. A compact light-sheet microscope for the study of the mammalian central nervous system

    NASA Astrophysics Data System (ADS)

    Yang, Zhengyi; Haslehurst, Peter; Scott, Suzanne; Emptage, Nigel; Dholakia, Kishan

    2016-05-01

    Investigation of the transient processes integral to neuronal function demands rapid and high-resolution imaging techniques over a large field of view, which cannot be achieved with conventional scanning microscopes. Here we describe a compact light sheet fluorescence microscope, featuring a 45° inverted geometry and an integrated photolysis laser, that is optimized for applications in neuroscience, in particular fast imaging of sub-neuronal structures in mammalian brain slices. We demonstrate the utility of this design for three-dimensional morphological reconstruction, activation of a single synapse with localized photolysis, and fast imaging of neuronal Ca2+ signalling across a large field of view. The developed system opens up a host of novel applications for the neuroscience community.

  14. A compact light-sheet microscope for the study of the mammalian central nervous system.

    PubMed

    Yang, Zhengyi; Haslehurst, Peter; Scott, Suzanne; Emptage, Nigel; Dholakia, Kishan

    2016-01-01

    Investigation of the transient processes integral to neuronal function demands rapid and high-resolution imaging techniques over a large field of view, which cannot be achieved with conventional scanning microscopes. Here we describe a compact light sheet fluorescence microscope, featuring a 45° inverted geometry and an integrated photolysis laser, that is optimized for applications in neuroscience, in particular fast imaging of sub-neuronal structures in mammalian brain slices. We demonstrate the utility of this design for three-dimensional morphological reconstruction, activation of a single synapse with localized photolysis, and fast imaging of neuronal Ca(2+) signalling across a large field of view. The developed system opens up a host of novel applications for the neuroscience community. PMID:27215692

  15. Design of compact freeform LED flashlight capable of two different light distributions

    NASA Astrophysics Data System (ADS)

    Isaac, Annie Shalom; Neumann, Cornelius

    2016-04-01

    Free-form optical surfaces are designed for desired intensity requirements for applications ranging from general to automotive lighting. But a single compact free-form optics which satisfies two different intensity distributions is not presented so far. In this work, a compact LED flashlight fulfilling two different intensity requirements that could be used in potentially explosive atmospheres is designed and validated. The first target is selected after a study on visibility analysis in fog, dust, and smoke environments. Studies showed that a ring-like distribution (5°- 10°) have better visual recognition for short distances in smoky environments. The second target is selected to have a maximum intensity at the peak to provide visibility for longer distances. We realized these two different intensity requirements by moving the LED with respect to the optics along the optical axis. To fulfill the above- required intensity distributions, hybrid TIR optics was designed as free-form curves calculated by combining several geometric optic methods. We validated the free-form TIR hybrid optics using Monte Carlo ray trace simulation. The overall diameter of the optics is 29 mm and 10 mm in thickness. The simulated results showed an optical efficiency of about 84% to realize both target light distributions in a single optics. Then we designed a whole flashlight consisting of LED, PMMA hybrid optics, PC glass casing and a housing including the critical thermal management for explosive environments. To validate the results, a prototype for the designed optics was made. The measured results showed an overall agreement with the simulated results.

  16. Light absorption by biomass burning source emissions

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan; Engling, Guenter; Moosmüller, Hans; Arnott, W. Patrick; Chen, L.-W. Antony; Wold, Cyle E.; Hao, Wei Min; He, Ke-bin

    2016-02-01

    Black carbon (BC) aerosol has relatively short atmospheric lifetimes yet plays a unique and important role in the Earth's climate system, making it an important short-term climate mitigation target. Globally, biomass burning is the largest source of BC emissions into the atmosphere. This study investigated the mass absorption efficiency (MAE) of biomass burning BC generated by controlled combustion of various wildland fuels during the Fire Laboratory at Missoula Experiments (FLAME). MAE values derived from a photoacoustic spectrometer (∼7.8 m2/g at a wavelength of 532 nm) were in good agreement with those suggested for uncoated BC when the emission ratios of organic carbon (OC) to elemental carbon (EC) were extremely low (i.e., below 0.3). With the increase of OC/EC, two distinct types of biomass smoke were identified. For the first type, MAE exhibited a positive dependence on OC/EC, while the overestimation of the light absorption coefficient (babs) by a filter-based method was less significant and could be estimated by a nearly constant correction factor. For the second type, MAE was biased low and correlated negatively with OC/EC, while the overestimation of babs by the filter-based method was much more significant and showed an apparent OC/EC dependence. This study suggests that BC emission factors determined by the commonly used thermal-optical methods might be sustantially overestimated for some types of biomass burning emissions. Our results also indicate that biomass burning emissions may include some liquid-like organics that can significantly bias filter-based babs measurements.

  17. Achromatic lattice comparison for light sources

    SciTech Connect

    Kramer, S.L.; Crosbie, E.A.; Cho, Y.

    1988-01-01

    The next generation of synchrotron light sources are being designed to support a large number of undulators and require long dispersion-free insertion regions. With less demand for radiation from the dipole magnets, the storage ring cost per undulator beam can be reduced by decreasing the number of dipole magnets and increasing the number of dispersion free straight sections. The two simplest achromatic lattices are the Chasman-Green or double-bend achromatic (DBA) and the three-bend achromat (TBA). The DBA in its simplest form consists of a single horizontally-focussing quadrupole between the two dipole magnets. Since this quadrupole strength is fixed by the achromatic condition, the natural emittance (/var epsilon//sub n/) may vary as the beta functions in the insertion region (IR) are varied. The expanded Chasman-Green (also DBA) uses multiple quadrupoles in the dispersive section to provide emittance control independent of the beta functions in the IR. Although this provides flexibility in the ID beta functions, the horizontal phase advance is constrained to /phi/ /approx equal/ 180/degree/ between approximately the centers of the dipole magnets. If small /var epsilon//sub n/ is required, the horizontal phase advance between the dipoles will be near one and the lattice properties will be dominated by this systematic resonance. The TBA lattice places a third dipole between the DBA dipoles, eliminating the 180/degree/ horizontal phase advance constraint. However, the requirement of small /var epsilon//sub n/ limits the range of tune, since /mu//sub x/ /approx equal/ 1.29 in the dipoles alone for /var epsilon//sub n/ near its minimum value. The minimum emittance is five times smaller for the TBA than for the DBA with the same number of periods and, therefore, its phase advance can be relaxed more than the DBA for the same natural emittance. 5 refs., 4 figs., 1 tab.

  18. Fast-charging compact seed source for magnetic flux compression generators.

    PubMed

    Elsayed, M; Kristiansen, M; Neuber, A

    2008-12-01

    Flux compression generators (FCGs) are some of the most attractive sources of single-use compact pulsed power available today due to their high energy density output and mobility. Driving FCGs requires some seed energy, which is typically provided by applying a high seed current, usually in the kiloampere range for midsized helical FCGs. This initial current is supplied by a high-current seed source that is capable of driving an inductive load. High-current seed sources have typically been comprised of discharging large capacitors using spark gaps and overvoltage triggering mechanisms to provide the prime power for FCGs. This paper will discuss a recent design of a self-contained (battery powered with full charge time less than 40 s), single-use compact seed source (CSS) using solid-state components for the switching scheme. The CSS developed is a system (0.005 m(3) volume and weighing 3.9 kg) capable of delivering over 360 J ( approximately 12 kA) into a 5.20 muH load with a trigger energy of microjoules at the TTL triggering level. The newly designed solid-state switching scheme of the CSS incorporates off-the-shelf high-voltage semiconductor components that minimize system cost and size as necessary for a single-use application. A detailed evaluation of the CSS is presented primarily focusing on the switching mechanics and experimental characterization of the solid-state components used in the system.

  19. Inorganic volumetric light source excited by ultraviolet light

    DOEpatents

    Reed, S.; Walko, R.J.; Ashley, C.S.; Brinker, C.J.

    1994-04-26

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light. 4 figures.

  20. Inorganic volumetric light source excited by ultraviolet light

    DOEpatents

    Reed, Scott; Walko, Robert J.; Ashley, Carol S.; Brinker, C. Jeffrey

    1994-01-01

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light.

  1. Monolithic LED arrays, next generation smart lighting sources

    NASA Astrophysics Data System (ADS)

    Lagrange, Alexandre; Bono, Hubert; Templier, François

    2016-03-01

    LED have become the main light sources of the future as they open the path for intelligent use of light in time, intensity and color. In many usages, strong energy economy is done by adjusting these properties. The smart lighting has three dimensions, energy efficiency brought by GaN blue emitting LEDs, integration of electronics, sensors, microprocessors in the lighting system and development of new functionalities and services provided by the light. Monolithic LED arrays allow two major innovations, the spatial control of light emission and the adjustment of the electrical properties of the source.

  2. A new compact self-coherent high power microwave source based on dual beams

    SciTech Connect

    Yan, Xiaolu Zhang, Xiaoping; Li, Yangmei; Qi, Zumin; Dang, Fangchao

    2015-05-15

    In this paper, a compact self-coherent high power microwave source based on dual beams is presented. It consists of a two-cavity triaxial klystron amplifier (TKA) (noted as the outer sub-source below) and a multiwave Cerenkov generators (noted as the inner sub-source) inserted in the TKA's inner conductor. These two sub-sources share a common cathode and the magnetic field. The injected signals to the outer sub-source are leakage microwaves from the inner sub-source through the anode-cathode gap (A-K gap). Particle-in-cell simulation shows that when the diode voltage is 687 kV and the axial magnetic field is 0.8 T, two microwaves with power of 1.02 GW and 2.65 GW and the same frequency of 9.72 GHz are generated in the inner and the outer sub-source, respectively; the corresponding power efficiencies are 24% and 31%. Two sub-sources reach the phase locking at 23 ns with a phase difference fluctuation within ±3°. The fast and stable phase locking in the voltage ranging from 665 kV to 709 kV further suggests that the proposed source is promising for coherent power combination and to export a higher power of combined microwaves.

  3. Barium light source method and apparatus

    NASA Technical Reports Server (NTRS)

    Curry, John J. (Inventor); MacDonagh-Dumler, Jeffrey (Inventor); Anderson, Heidi M. (Inventor); Lawler, James E. (Inventor)

    2002-01-01

    Visible light emission is obtained from a plasma containing elemental barium including neutral barium atoms and barium ion species. Neutral barium provides a strong green light emission in the center of the visible spectrum with a highly efficient conversion of electrical energy into visible light. By the selective excitation of barium ionic species, emission of visible light at longer and shorter wavelengths can be obtained simultaneously with the green emission from neutral barium, effectively providing light that is visually perceived as white. A discharge vessel contains the elemental barium and a buffer gas fill therein, and a discharge inducer is utilized to induce a desired discharge temperature and barium vapor pressure therein to produce from the barium vapor a visible light emission. The discharge can be induced utilizing a glow discharge between electrodes in the discharge vessel as well as by inductively or capacitively coupling RF energy into the plasma within the discharge vessel.

  4. A compact fluorescence and white light imaging system for intraoperative visualization of nerves

    NASA Astrophysics Data System (ADS)

    Gray, Dan; Kim, Evgenia; Cotero, Victoria; Staudinger, Paul; Yazdanfar, Siavash; Tan Hehir, Cristina

    2012-03-01

    Fluorescence image guided surgery (FIGS) allows intraoperative visualization of critical structures, with applications spanning neurology, cardiology and oncology. An unmet clinical need is prevention of iatrogenic nerve damage, a major cause of post-surgical morbidity. Here we describe the advancement of FIGS imaging hardware, coupled with a custom nerve-labeling fluorophore (GE3082), to bring FIGS nerve imaging closer to clinical translation. The instrument is comprised of a 405nm laser and a white light LED source for excitation and illumination. A single 90 gram color CCD camera is coupled to a 10mm surgical laparoscope for image acquisition. Synchronization of the light source and camera allows for simultaneous visualization of reflected white light and fluorescence using only a single camera. The imaging hardware and contrast agent were evaluated in rats during in situ surgical procedures.

  5. Compact fluorescence and white-light imaging system for intraoperative visualization of nerves

    NASA Astrophysics Data System (ADS)

    Gray, Dan; Kim, Evgenia; Cotero, Victoria; Staudinger, Paul; Yazdanfar, Siavash; tan Hehir, Cristina

    2012-02-01

    Fluorescence image guided surgery (FIGS) allows intraoperative visualization of critical structures, with applications spanning neurology, cardiology and oncology. An unmet clinical need is prevention of iatrogenic nerve damage, a major cause of post-surgical morbidity. Here we describe the advancement of FIGS imaging hardware, coupled with a custom nerve-labeling fluorophore (GE3082), to bring FIGS nerve imaging closer to clinical translation. The instrument is comprised of a 405nm laser and a white light LED source for excitation and illumination. A single 90 gram color CCD camera is coupled to a 10mm surgical laparoscope for image acquisition. Synchronization of the light source and camera allows for simultaneous visualization of reflected white light and fluorescence using only a single camera. The imaging hardware and contrast agent were evaluated in rats during in situ surgical procedures.

  6. A compact soft X-ray microscope using an electrode-less Z-pinch source

    NASA Astrophysics Data System (ADS)

    Horne, S. F.; Silterra, J.; Holber, W.

    2009-09-01

    Soft X-rays (< 1Kev) are of medical interest both for imaging and microdosimetry applications. X-ray sources at this low energy present a technological challenge. Synchrotrons, while very powerful and flexible, are enormously expensive national research facilities. Conventional X-ray sources based on electron bombardment can be compact and inexpensive, but low x-ray production efficiencies at low electron energies restrict this approach to very low power applications. Laser-based sources tend to be expensive and unreliable. Energetiq Technology, Inc. (Woburn, MA, USA) markets a 92 eV, 10W(2pi sr) electrode-less Z-pinch source developed for advanced semiconductor lithography. A modified version of this commercial product has produced 400 mW at 430 eV (2pi sr), appropriate for water window soft X-ray microscopy. The US NIH has funded Energetiq to design and construct a demonstration microscope using this source, coupled to a condenser optic, as the illumination system. The design of the condenser optic matches the unique characteristics of the source to the illumination requirements of the microscope, which is otherwise a conventional design. A separate program is underway to develop a microbeam system, in conjunction with the RARAF facility at Columbia University, NY, USA. The objective is to develop a focused, sub-micron beam capable of delivering > 1 Gy/second to the nucleus of a living cell. While most facilities of this type are coupled to a large and expensive particle accelerator, the Z-pinch X-ray source enables a compact, stand-alone design suitable to a small laboratory. The major technical issues in this system involve development of suitable focusing X-ray optics. Current status of these programs will be reported. (Supported by NIH grants 5R44RR022488-03 and 5R44RR023753-03)

  7. Low-Γ Jets from Compact Stellar Mergers: Candidate Electromagnetic Counterparts to Gravitational Wave Sources

    NASA Astrophysics Data System (ADS)

    Lamb, Gavin P.; Kobayashi, Shiho

    2016-10-01

    Short gamma-ray bursts (GRBs) are believed to be produced by relativistic jets from mergers of neutron stars (NSs) or NSs and black-holes (BHs). If the Lorentz-factors Γ of jets from compact stellar mergers follow a similar power-law distribution to those observed for other high-energy astrophysical phenomena (e.g., blazars, active galactic nuclei), the population of jets should be dominated by low-Γ outflows. These jets will not produce prompt gamma-rays, but jet energy will be released as X-ray/optical/radio transients when they collide with the ambient medium. Using Monte Carlo simulations, we study the properties of such transients. Approximately 78% of merger jets \\lt 300 Mpc result in failed GRBs if the jet Γ follows a power-law distribution of index -1.75. X-ray/optical transients from failed GRBs will have broad distributions of their characteristics: light-curves peak {t}p˜ 0.1{--}10 days after a merger; flux peaks for X-ray {10}-6 {mJy}≲ {F}x≲ {10}-2 mJy; and optical flux peaks at 14≲ {m}g≲ 22. X-ray transients are detectable by Swift XRT, and ˜ 85 % of optical transients will be detectable by telescopes with limiting magnitude {m}g≳ 21, for well localized sources on the sky. X-ray/optical transients are followed by radio transients with peak times narrowly clustered around {t}p˜ 10 days, and peak flux of ˜10-100 mJy at 10 GHz and ˜0.1 mJy at 150 MHz. By considering the all-sky rate of short GRBs within the LIGO/Virgo range, the rate of on-axis orphan afterglows from failed GRBs should be 2.6(26) per year for NS-NS(NS-BH) mergers, respectively. Since merger jets from gravitational-wave (GW) trigger events tend to be directed to us, a significant fraction of GW events could be associated with the on-axis orphan afterglow.

  8. Observations of discrete gamma ray sources with SAS-2. [compact sources centered on Crab nebula and Vela X supernova remnant

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Bignami, G. F.

    1974-01-01

    Compact gamma ray sources centered on the Crab nebula and the Vela X supernova remnant are considered. An excess in the galactic radiation was observed in both regions. Data indicate that a large fraction of this flux is pulsed. The excess from the Vela region could reflect either a large-scale galactic feature, such as a superposition of spiral arm segments, or it could be associated with the Vela supernova remnant. Low-energy gamma ray bursts were observed in the SAS-2 anticoincidence shielding.

  9. Investigating radial wire array Z pinches as a compact x-ray source on the Saturn generator

    DOE PAGES

    Ampleford, David J.; Bland, S. N.; Jennings, Christopher A.; Lebedev, S. V.; Chittenden, J. P.; Cuneo, Michael E.; McBride, Ryan D.; Jones, Brent Manley; Hall, G. N.; Suzuki-Vidal, F.; et al

    2015-08-27

    Radial wire array z pinches, where wires are positioned radially outward from a central cathode to a concentric anode, can act as a compact bright x-ray source that could potentially be used to drive a hohlraum. Experiments were performed on the 7-MA Saturn generator using radial wire arrays. These experiments studied a number of potential risks in scaling radial wire arrays up from the 1-MA level, where they have been shown to be a promising compact X-ray source. Data indicates that at 7 MA, radial wire arrays can radiate ~9 TW with 10-ns full-width at half-maximum from a compact pinch.

  10. Unique Hg stable isotope signatures of compact fluorescent lamp-sourced Hg.

    PubMed

    Mead, Chris; Lyons, James R; Johnson, Thomas M; Anbar, Ariel D

    2013-03-19

    The recent widespread adoption of compact fluorescent lamps (CFL) has increased their importance as a source of environmental Hg. Stable isotope analysis can identify the sources of environmental Hg, but the isotopic composition of Hg from CFL is not yet known. Results from analyses of CFL with a range of hours of use show that the Hg they contain is isotopically fractionated in a unique pattern during normal CFL operation. This fractionation is large by comparison to other known fractionating processes for Hg and has a distinctive, mass-independent signature, such that CFL Hg could be uniquely identified from other sources. The fractionation process described here may also explain anomalous fractionation of Hg isotopes in precipitation. PMID:23373764

  11. Development of a Compact Ion Source with a Hot Hollow Cathode

    NASA Astrophysics Data System (ADS)

    Miyamoto, N.; Demura, Y.; Imakita, S.; Kasuya, T.; Vasquez, M. R.; Wada, M.

    2011-01-01

    A compact ion source with 14 mm diameter, 30 mm long discharge region was developed. A total size of the ion source including the beam extraction system was 60 mm in diameter and 160 mm in length. A high temperature coaxial cathode consisting of thin-wall tantalum and tungsten tubes produced a discharge plasma. A source gas was supplied through the inner W tube of the coaxial cathode. A stable plasma of H2 was maintained with the discharge current of 2.0 A at 68 A cathode heating current. The optimum H2 gas pressure for ion beam extraction was 2×10-2 Pa. Hydrogen ion beam current was 120 μA (1 mA/cm2) at 2.0 A discharge current and 3.0 kV extraction voltage.

  12. Single layer planar near-field acoustic holography for compact sources and a parallel reflector

    NASA Astrophysics Data System (ADS)

    Zea, Elias; Lopez Arteaga, Ines

    2016-10-01

    We consider the problem of planar near-field acoustic holography (PNAH) and introduce a new reconstruction method that can be used to process single layer pressure measurements performed in the presence of a reflective surface that is parallel to the measurement plane. The method is specially tailored for compact sources, or for problems in which the scattered field due to the source can be neglected. The approach consists in formulating a seismic model (WRW model) in wavenumber-space and employ it for sound source reconstructions. The proposed method is validated with numerical and experimental data, and, although the most accurate results are obtained when an estimate of the surface impedance is known beforehand, we show that it can substantially improve the reconstruction performance with respect to that of free-field PNAH.

  13. Compact solid-state laser source for 1S-2S spectroscopy in atomic hydrogen

    SciTech Connect

    Kolachevsky, N.; Alnis, J.; Bergeson, S. D.; Haensch, T. W.

    2006-02-15

    We demonstrate a compact solid-state laser source for high-resolution two-photon spectroscopy of the 1S-2S transition in atomic hydrogen. The source emits up to 20 mW at 243 nm and consists of a 972 nm diode laser, a tapered amplifier, and two doubling stages. The diode laser is actively stabilized to a high-finesse cavity. We compare the new source to the stable 486 nm dye laser used in previous experiments and record 1S-2S spectra using both systems. With the solid-state laser system, we demonstrate a resolution of the hydrogen spectrometer of 6x10{sup 11}, which is promising for a number of high-precision measurements in hydrogenlike systems.

  14. Discharge characteristics of a penning ion source for compact neutron generator

    NASA Astrophysics Data System (ADS)

    Liu, Weibo; Li, Mingjuan; Gao, Kun; Gu, Deshan

    2014-12-01

    We investigate the discharge characteristics of a penning ion source for a compact sealed neutron generator in DC mode. A measuring system consisting of console, vacuum gauges, and teslameter is established. By using the measuring system, the discharge current as a function of ion source voltage, gas pressure, and magnetic field is studied. The results show that the neutron generator can operate in a safe and steady state when the experimental parameters are as follows: ion source voltage of 1.2-2 kV, gas pressure of 4×10-2-8×10-2 Pa, and magnetic field of 0.3-0.5 T. Within these ranges, the neutron yield of the generator can reach 2×108 n/s.

  15. Search for Compact Stellar Groups in the Vicinity of Iras Sources

    NASA Astrophysics Data System (ADS)

    Azatyan, N. M.; Nikoghosyan, E. H.; Khachatryan, K. G.

    2016-09-01

    The results of a search for compact clusters in the vicinity of 19 IRAS sources based on data from the GPS UKIDSS and Spitzer GLIMPSE surveys are presented. Overall, clusters have been identified in 15 regions. Clusters are identified for the first time in 4 regions (IRAS 18151-1208, IRAS 18316-0602, 18517+0437, 19110+1045). In 5 regions (IRAS 05168+3634, 05358+3543, IRAS 18507+0121, IRAS 20188+3928, IRAS 20198+3716) the compact groups we have identified are substructures within more extended clusters. The radii of the identified groups and the surface star density are widely scattered with ranges of 0.3-2.7 pc and 4-1360 stars/pc2, respectively. In 11 of the clusters, the IRAS sources are associated with a pair or even a group of YSOs. The groups identified in the NIR range include representatives of a later II evolutionary class among the stellar objects associated with the IRAS sources.

  16. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    NASA Technical Reports Server (NTRS)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1996-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  17. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    NASA Technical Reports Server (NTRS)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1994-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  18. Occultation of compact radio sources by the ion tail of Halley's Comet

    NASA Technical Reports Server (NTRS)

    Alurkar, S. K.; Bhonsle, R. V.; Sharma, A. K.

    1987-01-01

    Enhancements of scintillations of the compact radio sources PKS 2314+03 and 1827-360 were observed at 103 MHz and 408 MHz during 18-21 December 1985 and on 29 March 1986, respectively, when the plasma tail of Halley's Comet swept across them. At 103 MHz the RMS plasma density variation along the tail was 10 and 3.3/cu cm at 0.12 AU and 0.18 AU, respectively, as measured from the comet's position. At 408 MHz it was 1.9/cu cm at 0.036 AU. Comparison of results of these two sets of observations is presented.

  19. Compact cryogenic source of periodic hydrogen and argon droplet beams for relativistic laser-plasma generation.

    PubMed

    Costa Fraga, R A; Kalinin, A; Kühnel, M; Hochhaus, D C; Schottelius, A; Polz, J; Kaluza, M C; Neumayer, P; Grisenti, R E

    2012-02-01

    We present a cryogenic source of periodic streams of micrometer-sized hydrogen and argon droplets as ideal mass-limited target systems for fundamental intense laser-driven plasma applications. The highly compact design combined with a high temporal and spatial droplet stability makes our injector ideally suited for experiments using state-of-the-art high-power lasers in which a precise synchronization between the laser pulses and the droplets is mandatory. We show this by irradiating argon droplets with multi-terawatt pulses.

  20. Analysis of Compact Fluorescent Lights for Use by Patients with Photosensitive Conditions

    PubMed Central

    Klein, Rachel S.; Werth, Victoria P.; Dowdy, John C.; Sayre, Robert M.

    2010-01-01

    Ultraviolet radiation (UVR) is hazardous to patients with photosensitive skin disorders, such as lupus erythematosus, xeroderma pigmentosum and skin cancer. As such, these patients are advised to minimize their exposure to UVR. Classically, this is accomplished through careful avoidance of sun exposure and artificial tanning booths. Indoor light bulbs, however, are generally not considered to pose significant UVR hazard. We sought to test this notion by measuring the UV emissions of 19 different compact fluorescent light bulbs. The ability to induce skin damage was assessed with the CIE erythema action spectrum, ANSI S(λ) generalized UV hazard spectrum and the CIE photocarcinogenesis action spectrum. The results indicate that there is a great deal of variation amongst different bulbs, even within the same class. Although the irradiance of any given bulb is low, the possible daily exposure time is rather lengthy. This results in potential daily UVR doses ranging from 0.1 to 625 mJ cm−2, including a daily UVB (290–320 nm) dose of 0.01 to 15 mJ cm−2. Because patients are exposed continually over long time frames, this could lead to significant cumulative damage. It would therefore be prudent for patients to use bulbs with the lowest UV irradiance. PMID:19320850

  1. Dual-wavelength digital holography with a single low-coherence light source.

    PubMed

    Jeon, Sungbin; Cho, Janghyun; Jin, Ji-Nan; Park, No-Cheol; Park, Young-Pil

    2016-08-01

    We propose a measurement system using dual-wavelength digital holography and low-coherence interferometry to measure micro- and nanostructure surface heights. To achieve an extended axial step-measurement range and better image quality, a single light-emitting diode generates two distinct light sources by filtering different center wavelengths and narrower bandwidths. The system can measure surface profile with higher step heights and lower speckle noise in a large field-of-view. Using single-source lighting and a simple configuration, the method supports compactly configured and lower-cost surface-topography measurement systems applicable in various fields. Experimental results for a standard step sample verify the system's performance. PMID:27505804

  2. Multi-source self-calibration: Unveiling the microJy population of compact radio sources

    NASA Astrophysics Data System (ADS)

    Radcliffe, J. F.; Garrett, M. A.; Beswick, R. J.; Muxlow, T. W. B.; Barthel, P. D.; Deller, A. T.; Middelberg, E.

    2016-03-01

    Context. Very long baseline interferometry (VLBI) data are extremely sensitive to the phase stability of the VLBI array. This is especially important when we reach μJy rms sensitivities. Calibration using standard phase-referencing techniques is often used to improve the phase stability of VLBI data, but the results are often not optimal. This is evident in blank fields that do not have in-beam calibrators. Aims: We present a calibration algorithm termed multi-source self-calibration (MSSC) which can be used after standard phase referencing on wide-field VLBI observations. This is tested on a 1.6 GHz wide-field VLBI data set of the Hubble Deep Field North and the Hubble Flanking Fields. Methods: MSSC uses multiple target sources that are detected in the field via standard phase referencing techniques and modifies the visibilities so that each data set approximates to a point source. These are combined to increase the signal to noise and permit self-calibration. In principle, this should allow residual phase changes caused by the troposphere and ionosphere to be corrected. By means of faceting, the technique can also be used for direction-dependent calibration. Results: Phase corrections, derived using MSSC, were applied to a wide-field VLBI data set of the HDF-N, which comprises of 699 phase centres. MSSC was found to perform considerably better than standard phase referencing and single source self-calibration. All detected sources exhibited dramatic improvements in dynamic range. Using MSSC, one source reached the detection threshold, taking the total detected sources to twenty. This means 60% of these sources can now be imaged with uniform weighting, compared to just 45% with standard phase referencing. In principle, this technique can be applied to any future VLBI observations. The Parseltongue code, which implements MSSC, has been released and made publicly available to the astronomical community (http://https://github.com/jradcliffe5/multi_self_cal).

  3. Phosphor-Free Solid State Light Sources

    SciTech Connect

    Nause, Jeff E; Ferguson, Ian; Doolittle, Alan

    2007-02-28

    The objective of this work was to demonstrate a light emitting diode that emitted white light without the aid of a phosphor. The device was based on the combination of a nitride LED and a fluorescing ZnO substrate. The early portion of the work focused on the growth of ZnO in undoped and doped form. The doped ZnO was successfully engineered to emit light at specific wavelengths by incorporating various dopants into the crystalline lattice. Thereafter, the focus of the work shifted to the epitaxial growth of nitride structures on ZnO. Initially, the epitaxy was accomplished with molecular beam epitaxy (MBE). Later in the program, metallorganic chemical vapor deposition (MOCVD) was successfully used to grow nitrides on ZnO. By combining the characteristics of the doped ZnO substrate with epitaxially grown nitride LED structures, a phosphor-free white light emitting diode was successfully demonstrated and characterized.

  4. 21 CFR 352.71 - Light source (solar simulator).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Light source (solar simulator). 352.71 Section 352... Light source (solar simulator). A solar simulator used for determining the SPF of a sunscreen drug... addition, a solar simulator should have no significant time-related fluctuations in radiation...

  5. 21 CFR 352.71 - Light source (solar simulator).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Light source (solar simulator). 352.71 Section 352... Light source (solar simulator). A solar simulator used for determining the SPF of a sunscreen drug... addition, a solar simulator should have no significant time-related fluctuations in radiation...

  6. Perception of light source distance from shading patterns.

    PubMed

    Schütt, Heiko H; Baier, Franziska; Fleming, Roland W

    2016-01-01

    Varying the distance of a light source from an object alters both the intensity and spatial distribution of surface shading patterns. We tested whether observers can use such cues to infer light source distance. Participants viewed stereoscopic renderings of rough objects with diffuse and glossy surfaces, which were illuminated by a point source at a range of distances. In one task, they adjusted the position of a small probe dot in three dimensions to report the apparent location of the light in the scene. In a second task, they adjusted the shading on one object (by moving an invisible light source) until it appeared to be illuminated from the same distance as another object. Participants' responses increased linearly with the true light source distance, suggesting that they have clear intuitions about how light source distance affects shading patterns for a variety of different surfaces. However, there were also systematic errors: Subjects overestimated light source distance in the probe adjustment task, and in both experiments, roughness and glossiness affected responses. We find the pattern of results is predicted surprisingly well by a simplistic model based only on the area of the image that exceeds a certain intensity threshold. Thus, although subjects can report light source distance, they may rely on simple--sometimes erroneous--heuristics to do so. PMID:26868887

  7. Perception of light source distance from shading patterns.

    PubMed

    Schütt, Heiko H; Baier, Franziska; Fleming, Roland W

    2016-01-01

    Varying the distance of a light source from an object alters both the intensity and spatial distribution of surface shading patterns. We tested whether observers can use such cues to infer light source distance. Participants viewed stereoscopic renderings of rough objects with diffuse and glossy surfaces, which were illuminated by a point source at a range of distances. In one task, they adjusted the position of a small probe dot in three dimensions to report the apparent location of the light in the scene. In a second task, they adjusted the shading on one object (by moving an invisible light source) until it appeared to be illuminated from the same distance as another object. Participants' responses increased linearly with the true light source distance, suggesting that they have clear intuitions about how light source distance affects shading patterns for a variety of different surfaces. However, there were also systematic errors: Subjects overestimated light source distance in the probe adjustment task, and in both experiments, roughness and glossiness affected responses. We find the pattern of results is predicted surprisingly well by a simplistic model based only on the area of the image that exceeds a certain intensity threshold. Thus, although subjects can report light source distance, they may rely on simple--sometimes erroneous--heuristics to do so.

  8. LED-array light source for medical therapy

    NASA Astrophysics Data System (ADS)

    Schlager, Kenneth J.; Ignatius, Ronald W.

    1993-07-01

    Light emitting diode (LED) array light sources currently in development offer an alternative to laser light sources in a wide range of medical applications. Previously developed as light sources for research in photosynthesis in plant growth experimentation, LED arrays have produced an average continuous output of 4 - 6 watts at a wavelength of 660 nm. This output is equivalent to the terrestrially sensed output of the sun at this wavelength at high noon. LED chips are arrayed on an alumina tile substrate that may be formed to provide optical power focused on a specified target area.

  9. Elemental mercury emission in the indoor environment due to broken compact fluorescent light (CFL) bulbs--paper

    EPA Science Inventory

    Compact fluorescent light (CFL) bulbs contain a few milligrams (mg) of elemental mercury. When a CFL breaks, some of the mercury is immediately released as elemental mercury vapor and the remainder is deposited on indoor surfaces with the bulb debris. In a controlled study design...

  10. High Power, Computer-Controlled, LED-Based Light Sources for Fluorescence Imaging and Image-Guided Surgery

    PubMed Central

    Gioux, Sylvain; Kianzad, Vida; Ciocan, Razvan; Gupta, Sunil; Oketokoun, Rafiou; Frangioni, John V.

    2009-01-01

    Optical imaging requires appropriate light sources. For image-guided surgery, and in particular fluorescence-guided surgery, high fluence rate, long working distance, computer control, and precise control of wavelength are required. In this study, we describe the development of light emitting diode (LED)-based light sources that meet these criteria. These light sources are enabled by a compact LED module that includes an integrated linear driver, heat-dissipation technology, and real-time temperature monitoring. Measuring only 27 mm W by 29 mm H, and weighing only 14.7 g, each module provides up to 6500 lx of white (400-650 nm) light and up to 157 mW of filtered fluorescence excitation light, while maintaining an operating temperature ≤ 50°C. We also describe software that can be used to design multi-module light housings, and an embedded processor that permits computer control and temperature monitoring. With these tools, we constructed a 76-module, sterilizable, 3-wavelength surgical light source capable of providing up to 40,000 lx of white light, 4.0 mW/cm2 of 670 nm near-infrared (NIR) fluorescence excitation light, and 14.0 mW/cm2 of 760 nm NIR fluorescence excitation light over a 15-cm diameter field-of-view. Using this light source, we demonstrate NIR fluorescence-guided surgery in a large animal model. PMID:19723473

  11. EFFECT OF A HIGH OPACITY ON THE LIGHT CURVES OF RADIOACTIVELY POWERED TRANSIENTS FROM COMPACT OBJECT MERGERS

    SciTech Connect

    Barnes, Jennifer; Kasen, Daniel

    2013-09-20

    The coalescence of compact objects is a promising astrophysical source of detectable gravitational wave signals. The ejection of r-process material from such mergers may lead to a radioactively powered electromagnetic counterpart signal which, if discovered, would enhance the science returns. As very little is known about the optical properties of heavy r-process elements, previous light-curve models have adopted opacities similar to those of iron group elements. Here we consider the effect of heavier elements, particularly the lanthanides, which increase the ejecta opacity by several orders of magnitude. We include these higher opacities in time-dependent, multi-wavelength radiative transport calculations to predict the broadband light curves of one-dimensional models over a range of parameters (ejecta masses {approx}10{sup -3}-10{sup -1} M{sub Sun} and velocities {approx}0.1-0.3 c). We find that the higher opacities lead to much longer duration light curves which can last a week or more. The emission is shifted toward the infrared bands due to strong optical line blanketing, and the colors at later times are representative of a blackbody near the recombination temperature of the lanthanides (T {approx} 2500 K). We further consider the case in which a second mass outflow, composed of {sup 56}Ni, is ejected from a disk wind, and show that the net result is a distinctive two component spectral energy distribution, with a bright optical peak due to {sup 56}Ni and an infrared peak due to r-process ejecta. We briefly consider the prospects for detection and identification of these transients.

  12. Synchrotron light sources: A powerful tool for science and technology

    SciTech Connect

    Schlachter, F.; Robinson, A.

    1996-01-01

    A new generation of synchrotron light sources is producing extremely bright beams of vacuum-ultraviolet and x-ray radiation, powerful new tools for research in a wide variety of basic and applied sciences. Spectromicroscopy using high spectral and spatial resolution is a new way of seeing, offering many opportunities in the study of matter. Development of a new light source provides the country or region of the world in which the light source is located many new opportunities: a focal point for research in many scientific and technological areas, a means of upgrading the technology infrastructure of the country, a means of training students, and a potential service to industry. A light source for Southeast Asia would thus be a major resource for many years. Scientists and engineers from light sources around the world look forward to providing assistance to make this a reality in Southeast Asia.

  13. Utraviolet Light Source in an Old Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Hubble Space Telescope's exquisite resolution has allowed astronomers to resolve, for the first time, hot blue stars deep inside an elliptical galaxy. The swarm of nearly 8,000 blue stars resembles a blizzard of snowflakes near the core (lower right) of the neighboring galaxy M32, located 2.5 million light-years away in the constellation Andromeda. Hubble confirms that the ultraviolet light comes from a population of extremely hot helium-burning stars at a late stage in their lives. Unlike the Sun, which burns hydrogen into helium, these old stars exhausted their central hydrogen long ago, and now burn helium into heavier elements. The observations, taken in October 1998, were made with the camera mode of the Space Telescope Imaging Spectrograph (STIS) in ultraviolet light. The STIS field of view is only a small portion of the entire galaxy, which is 20 times wider on the sky. For reference, the full moon is 70 times wider than the STIS field-of-view. Thirty years ago, the first ultraviolet observations of elliptical galaxies showed that they were surprisingly bright when viewed in ultraviolet light. Before those pioneering UV observations, old groups of stars were assumed to be relatively cool and thus extremely faint in the ultraviolet. Over the years since the initial discovery of this unexpected ultraviolet light, indirect evidence has accumulated that it originates in a population of old, but hot, helium-burning stars. Now Hubble provides the first direct visual evidence.

  14. A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator

    SciTech Connect

    Waldmann, Ole; Ludewigt, Bernhard

    2010-10-11

    We present recent work on the development of a microwave ion source that will be used in a high-yield compact neutron generator for active interrogation applications. The sealed tube generator will be capable of producing high neutron yields, 5x1011 n/s for D-T and ~;;1x1010 n/s for D-D reactions, while remaining transportable. We constructed a microwave ion source (2.45 GHz) with permanent magnets to provide the magnetic field strength of 87.5 mT necessary for satisfying the electron cyclotron resonance (ECR) condition. Microwave ion sources can produce high extracted beam currents at the low gas pressures required for sealed tube operation and at lower power levels than previously used RF-driven ion sources. A 100 mA deuterium/tritium beam will be extracted through a large slit (60x6 mm2) to spread the beam power over a larger target area. This paper describes the design of the permanent-magnet microwave ion source and discusses the impact of the magnetic field design on the source performance. The required equivalent proton beam current density of 40 mA/cm2 was extracted at a moderate microwave power of 400 W with an optimized magnetic field.

  15. Compact sources as the origin of the soft gamma-ray emission of the Milky Way.

    PubMed

    Lebrun, F; Terrier, R; Bazzano, A; Bélanger, G; Bird, A; Bouchet, L; Dean, A; Del Santo, M; Goldwurm, A; Lund, N; Morand, H; Parmar, A; Paul, J; Roques, J-P; Schönfelder, V; Strong, A W; Ubertini, P; Walter, R; Winkler, C

    2004-03-18

    The Milky Way is known to be an abundant source of gamma-ray photons, now determined to be mainly diffuse in nature and resulting from interstellar processes. In the soft gamma-ray domain, point sources are expected to dominate, but the lack of sensitive high-resolution observations did not allow for a clear estimate of the contribution from such sources. Even the best imaging experiment revealed only a few point sources, accounting for about 50% of the total Galactic flux. Theoretical studies were unable to explain the remaining intense diffuse emission. Investigating the origin of the soft gamma-rays is therefore necessary to determine the dominant particle acceleration processes and to gain insights into the physical and chemical equilibrium of the interstellar medium. Here we report observations in the soft gamma-ray domain that reveal numerous compact sources. We show that these sources account for the entirety of the Milky Way's emission in soft gamma-rays, leaving at most a minor role for diffuse processes.

  16. NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 1998.

    SciTech Connect

    ROTHMAN,E.

    1999-05-01

    thereafter for half of the running time in FY 1998. In combination with the development of narrow gap undulators this mode opens the possibility of new undulators which could produce hard X-rays in the fundamental, perhaps up to 10 keV. On 27 September 1998, a low horizontal emittance lattice became operational at 2.584 GeV. This results in approximately a 50% decrease in the horizontal beam-size on dipole bending magnet beamlines, and somewhat less of a decrease on the insertion device lines. The beam lifetime is not degraded by the low emittance lattice. This represents an important achievement, enhancing for all users the x-ray ring brightness. The reduced horizontal emittance electron beam will produce brighter x-ray beams for all the beamlines, both bending magnets and insertion devices, adding to other recent increases in the X-Ray ring brightness. During FY 1999 users will gain experience of the new running mode and plans are in place to do the same at 2.8GeV during further studies sessions. Independent evidence of the reduced emittance is shown in Figure 2. This is a pinhole camera scan showing the X-ray beam profile, obtained on the diagnostic beamline X28. Finally, work has begun to update and refine the proposal of the Phase III upgrade endorsed by the Birgeneau panel and BESAC last year. With the whole NSLS facility in teenage years and with many demonstrated enhancements available, the time has come to herald in the next stage of life at the Light Source.

  17. A Combined Multiple-SLED Broadband Light Source at 1300 nm for High Resolution Optical Coherence Tomography

    PubMed Central

    Wang, Hui; Jenkins, Michael W.; Rollins, Andrew M.

    2013-01-01

    We demonstrate a compact, inexpensive, and reliable fiber–coupled light source with broad bandwidth and sufficient power at 1300 nm for high resolution optical coherence tomography (OCT) imaging in real-time applications. By combining four superluminescent diodes (SLEDs) with different central wavelengths, the light source has a bandwidth of 145 nm centered at 1325 nm with over 10 mW of power. OCT images of an excised stage 30 embryonic chick heart acquired with our combined SLED light source (<5 μm axial resolution in tissue) are compared with images obtained with a single SLED source (~10 μm axial resolution in tissue). The high resolution OCT system with the combined SLED light source provides better image quality (smaller speckle noise) and a greater ability to observe fine structures in the embryonic heart. PMID:24347689

  18. A Combined Multiple-SLED Broadband Light Source at 1300 nm for High Resolution Optical Coherence Tomography.

    PubMed

    Wang, Hui; Jenkins, Michael W; Rollins, Andrew M

    2008-04-01

    We demonstrate a compact, inexpensive, and reliable fiber-coupled light source with broad bandwidth and sufficient power at 1300 nm for high resolution optical coherence tomography (OCT) imaging in real-time applications. By combining four superluminescent diodes (SLEDs) with different central wavelengths, the light source has a bandwidth of 145 nm centered at 1325 nm with over 10 mW of power. OCT images of an excised stage 30 embryonic chick heart acquired with our combined SLED light source (<5 μm axial resolution in tissue) are compared with images obtained with a single SLED source (~10 μm axial resolution in tissue). The high resolution OCT system with the combined SLED light source provides better image quality (smaller speckle noise) and a greater ability to observe fine structures in the embryonic heart.

  19. A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector

    NASA Astrophysics Data System (ADS)

    Banks, T. I.; Freedman, S. J.; Wallig, J.; Ybarrolaza, N.; Gando, A.; Gando, Y.; Ikeda, H.; Inoue, K.; Kishimoto, Y.; Koga, M.; Mitsui, T.; Nakamura, K.; Shimizu, I.; Shirai, J.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yoshida, H.; Yoshida, S.; Kozlov, A.; Grant, C.; Keefer, G.; Piepke, A.; Bloxham, T.; Fujikawa, B. K.; Han, K.; Ichimura, K.; Murayama, H.; O`Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D. A.; McKeown, R. D.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Sakai, M.; Horton-Smith, G. A.; Downum, K. E.; Gratta, G.; Efremenko, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.

    2015-01-01

    We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an assortment of interchangeable radioactive sources could be attached to a weight at the end of the cable. All components exposed to the radiopure liquid scintillator were made of chemically compatible UHV-cleaned materials, primarily stainless steel, in order to avoid contaminating or degrading the scintillator. To prevent radon intrusion, the apparatus was enclosed in a hermetically sealed housing inside a glove box, and both volumes were regularly flushed with purified nitrogen gas. An infrared camera attached to the side of the housing permitted real-time visual monitoring of the cable's motion, and the system was controlled via a graphical user interface.

  20. A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector

    SciTech Connect

    Banks, T. I.; Freedman, S. J.; Wallig, J.; Ybarrolaza, N.; Gando, A.; Gando, Y.; Ikeda, H.; Inoue, K.; Kishimoto, Y.; Koga, M.; Mitsui, T.; Nakamura, K.; Shimizu, I.; Shirai, J.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yoshida, H.; Yoshida, S.; Kozlov, A.; Grant, C.; Keefer, G.; Piepke, A.; Bloxham, T.; Fujikawa, B. K.; Han, K.; Ichimura, K.; Murayama, H.; O׳Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D. A.; McKeown, R. D.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Sakai, M.; Horton-Smith, G. A.; Downum, K. E.; Gratta, G.; Efremenko, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.

    2014-10-14

    We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an assortment of interchangeable radioactive sources could be attached to a weight at the end of the cable. All components exposed to the radiopure liquid scintillator were made of chemically compatible UHV-cleaned materials, primarily stainless steel, in order to avoid contaminating or degrading the scintillator. To prevent radon intrusion, the apparatus was enclosed in a hermetically sealed housing inside a glove box, and both volumes were regularly flushed with purified nitrogen gas. Finally, an infrared camera attached to the side of the housing permitted real-time visual monitoring of the cable’s motion, and the system was controlled via a graphical user interface.

  1. Research and Development of Landmine Detection System by a Compact Fusion Neutron Source

    SciTech Connect

    Yoshikawa, Kiyoshi; Masuda, Kai; Toku, Hisayuki; Nagasaki, Kazunobu; Mizutani, Toshiyuki; Takamatsu, Teruhisa; Imoto, Masaki; Yamamoto, Yasushi; Ohnishi, Masami; Osawa, Hodaka; Hotta, Eiki; Kohno, Toshiyuki; Okino, Akitoshi; Watanabe, Masato; Yamauchi, Kunihito; Yuura, Morimasa; Shiroya, Seiji; Misawa, Tsuyoshi; Mori, Takamasa

    2005-05-15

    Current results are described on the research and development of an advanced anti-personnel landmine detection system by using a compact discharge-type fusion neutron source called IECF (Inertial-Electrostatic Confinement Fusion). Landmines are to be identified through backscattering of neutrons, and specific-energy capture {gamma}-rays by hydrogen and nitrogen atoms in the landmine explosives.For this purpose, improvements in the IECF were made by various methods to achieve a drastic enhancement of neutron yields of more than 10{sup 8} n/s in pulsed operation. This required R and D on the power source, as well as analysis of envisaged detection systems with multi-sensors. The results suggest promising and practical features for humanitarian landmine detection, particularly, in Afghanistan.

  2. Time-dependent spherically symmetric accretion onto compact X-ray sources

    NASA Technical Reports Server (NTRS)

    Cowie, L. L.; Ostriker, J. P.; Stark, A. A.

    1978-01-01

    Analytical arguments and a numerical hydrodynamic code are used to investigate spherically symmetric accretion onto a compact object, in an attempt to provide some insight into gas flows heated by an outgoing X-ray flux. It is shown that preheating of spherically symmetric accretion flows by energetic radiation from an X-ray source results in time-dependent behavior for a much wider range of source parameters than was determined previously and that there are two distinct types of instability. The results are compared with observations of X-ray bursters and transients as well as with theories on quasars and active galactic nuclei that involve quasi-spherically symmetric accretion onto massive black holes. Models based on spherically symmetric accretion are found to be inconsistent with observations of bursters and transients.

  3. A new storage-ring light source

    SciTech Connect

    Chao, Alex

    2015-06-01

    A recently proposed technique in storage ring accelerators is applied to provide potential high-power sources of photon radiation. The technique is based on the steady-state microbunching (SSMB) mechanism. As examples of this application, one may consider a high-power DUV photon source for research in atomic and molecular physics or a high-power EUV radiation source for industrial lithography. A less challenging proof-of-principle test to produce IR radiation using an existing storage ring is also considered.

  4. Cathodoluminescent Source of Intense White Light

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2007-01-01

    The device described exploits cathodoluminescence to generate intense light in the visible and near-infrared regions of the spectrum. In this device, the material to be excited to luminescence is a layer of quartz or alumina powder on an electrically conductive plate exposed to a low-pressure plasma discharge. The plate is electrically biased positively to collect electron current.

  5. Rapidly pulsed, high intensity, incoherent light source

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Brandhorst, H. W., Jr. (Inventor)

    1974-01-01

    A rapid pulsing, high intensity, incoherent light is produced by selectively energizing a plurality of discharge lamps with a triggering circuit. Each lamp is connected to a capacitor, and a power supply is electrically connected to all but one of the capacitors. This last named capacitor is electrically connected to a discharge lamp which is connected to the triggering circuit.

  6. An experiment on the color rendering of different light sources

    NASA Astrophysics Data System (ADS)

    Fumagalli, Simonetta; Bonanomi, Cristian; Rizzi, Alessandro

    2013-02-01

    The color rendering index (CRI) of a light source attempts to measure how much the color appearance of objects is preserved when they are illuminated by the given light source. This problem is of great importance for various industrial and scientific fields, such as lighting architecture, design, ergonomics, etc. Usually a light source is specified through the Correlated Color Temperature or CCT. However two (or more) light sources with the same CCT but different spectral power distribution can exist. Therefore color samples viewed under two light sources with equal CCTs can appear different. Hence, the need for a method to assess the quality of a given illuminant in relation to color. Recently CRI has had a renewed interest because of the new LED-based lighting systems. They usually have a color rendering index rather low, but good preservation of color appearance and a pleasant visual appearance (visual appeal). Various attempts to develop a new color rendering index have been done so far, but still research is working for a better one. This article describes an experiment performed by human observers concerning the appearance preservation of color under some light sources, comparing it with a range of available color rendering indices.

  7. A numerical experiment on light pollution from distant sources

    NASA Astrophysics Data System (ADS)

    Kocifaj, M.

    2011-08-01

    To predict the light pollution of the night-time sky realistically over any location or measuring point on the ground presents quite a difficult calculation task. Light pollution of the local atmosphere is caused by stray light, light loss or reflection of artificially illuminated ground objects or surfaces such as streets, advertisement boards or building interiors. Thus it depends on the size, shape, spatial distribution, radiative pattern and spectral characteristics of many neighbouring light sources. The actual state of the atmospheric environment and the orography of the surrounding terrain are also relevant. All of these factors together influence the spectral sky radiance/luminance in a complex manner. Knowledge of the directional behaviour of light pollution is especially important for the correct interpretation of astronomical observations. From a mathematical point of view, the light noise or veil luminance of a specific sky element is given by a superposition of scattered light beams. Theoretical models that simulate light pollution typically take into account all ground-based light sources, thus imposing great requirements on CPU and MEM. As shown in this paper, a contribution of distant sources to the light pollution might be essential under specific conditions of low turbidity and/or Garstang-like radiative patterns. To evaluate the convergence of the theoretical model, numerical experiments are made for different light sources, spectral bands and atmospheric conditions. It is shown that in the worst case the integration limit is approximately 100 km, but it can be significantly shortened for light sources with cosine-like radiative patterns.

  8. SECULAR EVOLUTION OF COMPACT BINARIES NEAR MASSIVE BLACK HOLES: GRAVITATIONAL WAVE SOURCES AND OTHER EXOTICA

    SciTech Connect

    Antonini, Fabio; Perets, Hagai B.

    2012-09-20

    The environment near supermassive black holes (SMBHs) in galactic nuclei contains a large number of stars and compact objects. A fraction of these are likely to be members of binaries. Here we discuss the binary population of stellar black holes and neutron stars near SMBHs and focus on the secular evolution of such binaries, due to the perturbation by the SMBH. Binaries with highly inclined orbits with respect to their orbit around the SMBH are strongly affected by secular Kozai processes, which periodically change their eccentricities and inclinations (Kozai cycles). During periapsis approach, at the highest eccentricities during the Kozai cycles, gravitational wave (GW) emission becomes highly efficient. Some binaries in this environment can inspiral and coalesce at timescales much shorter than a Hubble time and much shorter than similar binaries that do not reside near an SMBH. The close environment of SMBHs could therefore serve as a catalyst for the inspiral and coalescence of binaries and strongly affect their orbital properties. Such compact binaries would be detectable as GW sources by the next generation of GW detectors (e.g., advanced-LIGO). Our analysis shows that {approx}0.5% of such nuclear merging binaries will enter the LIGO observational window while on orbits that are still very eccentric (e {approx}> 0.5). The efficient GW analysis for such systems would therefore require the use of eccentric templates. We also find that binaries very close to the SMBH could evolve through a complex dynamical (non-secular) evolution, leading to emission of several GW pulses during only a few years (though these are likely to be rare). Finally, we note that the formation of close stellar binaries, X-ray binaries, and their merger products could be induced by similar secular processes, combined with tidal friction rather than GW emission as in the case of compact object binaries.

  9. Ultra-Sensitive Elemental and Isotope Measurements with Compact Plasma Source Cavity Ring-Down Spectroscopy

    SciTech Connect

    Wang, Chuji

    2004-12-01

    The proposed research is to develop a new class of instruments for actinide isotopes and hazardous element analysis through coupling highly sensitive cavity ring-down spectroscopy to a compact microwave plasma source. The research work will combine advantages of CRDS measurement with a low power, low flow rate, tubing-type microwave plasma source to reach breakthrough sensitivity for elemental analysis and unique capability of isotope measurement. The project has several primary goals: (1) Explore the feasibility of marrying CRDS with a new microwave plasma source; (2) Provide quantitative evaluation of CMP-CRDS for ultra-trace elemental and actinide isotope analysis; (3) Approach a breakthrough detection limit of ca. 10-13 g/ml or so, which are orders of magnitude better than currently available best values; (4) Demonstrate the capability of CMP-CRD S technology for isobaric measurements, such as 238U and 238Pu isotopes. (5) Design and assemble the first compact, field portable CMP-CRDS instrument with a high-resolution diode laser for DOE/EM on-site demonstration. With all these unique capabilities and sensitivities, we expect CMPCRDS will bring a revolutionary change in instrument design and development, and will have great impact and play critical roles in supporting DOE's missions in environmental remediation, environmental emission control, waste management and characterization, and decontamination and decommissioning. The ultimate goals of the proposed project are to contribute to environmental management activities that would decrease risk for the public and workers, increase worker productivity with on-site analysis, and tremendously reduce DOE/EM operating costs.

  10. Design of compact and smooth free-form optical system with uniform illuminance for LED source.

    PubMed

    Luo, Yi; Feng, Zexin; Han, Yanjun; Li, Hongtao

    2010-04-26

    A feedback modification method based on variable separation mapping is proposed in the design of free-form optical system with uniform illuminance for LED source. In this method, the non-negligible size of LED source is taken into account, and a smooth optical system is established with single freeform surface regenerated by adding feedback to the lens design for a point light source. More rounds of feedback can improve the lens performance. As an example, a smooth free-form lens with rectangular illuminance distribution is designed, and the illuminance uniformity is improved from 18.75% to 81.08% after eight times feedback.

  11. Measurement of the speed of light from extraterrestrial sources

    NASA Astrophysics Data System (ADS)

    Wu, Jingshown; Huang, Yen-Ru; Tsao, Hen-Wai; Lee, San-Liang; Chang, Shenq-Tsong; Tsay, Ho-Lin; Young, Hong-Tsu

    2015-09-01

    The conventional measurements of the speed of light were performed before the early twentieth century. Only few used extraterrestrial sources and got the result with large uncertainty. We design a transmitter to modulate the rays from the local infrared light source and the extraterrestrial sources simultaneously into pulses. Both are received by a distant receiver. We have the white light travelling exactly along the path of the starlight pulses for calibration. It is found that the travel times of Aldebaran and Capella pulses are longer than that of Vega pulses. The results indicate that the speeds of starlights are different.

  12. An improved light source for laser ranging

    NASA Technical Reports Server (NTRS)

    Hamal, Karel; Richardson, Martin

    1993-01-01

    The development of a new laser material, Cr-doped LiSAF, makes possible the development of a laser source for satellite ranging systems that is more superior in performance capabilities than current Nd:YAG-based laser sources. This new material offers the potential of shorter pulses and more preferable wavelengths (850 and 425 nm) than multiwavelength Nd:YAG systems, leading to superior ranging resolution and greater detection sensitivity. We are embarking on a feasibility study of a two-wavelength, mode-locked laser system based on Cr:LiSAF, providing shorter pulses for improved ranging resolution.

  13. Synchronization System for Next Generation Light Sources

    SciTech Connect

    Zavriyev, Anton

    2014-03-27

    An alternative synchronization technique – one that would allow explicit control of the pulse train including its repetition rate and delay is clearly desired. We propose such a scheme. Our method is based on optical interferometry and permits synchronization of the pulse trains generated by two independent mode-locked lasers. As the next generation x-ray sources will be driven by a clock signal derived from a mode-locked optical source, our technique will provide a way to synchronize x-ray probe with the optical pump pulses.

  14. A compact Compton backscatter X-ray source for mammography and coronary angiography

    SciTech Connect

    Nguyen, D.C.; Kinross-Wright, J.M.; Weber, M.E.; Volz, S.K.; Gierman, S.M.; Hayes, K.; Vernon, W.; Goldstein, D.J.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The project objective is to generate a large flux of tunable, monochromatic x-rays for use in mammography and coronary angiography. The approach is based on Compton backscattering of an ultraviolet solid-state laser beam against the high-brightness 20-MeV electron beams from a compact linear accelerator. The direct Compton backscatter approach failed to produce a large flux of x-rays due to the low photon flux of the scattering solid-state laser. The authors have modified the design of a compact x-ray source to the new Compton backscattering geometry with use of a regenerative amplifier free-electron laser. They have successfully demonstrated the production of a large flux of infrared photons and a high-brightness electron beam focused in both dimensions for performing Compton backscattering in a regenerative amplifier geometry.

  15. Simulations of light propagation in biological tissues by considering the modeling of light sources and sensors

    NASA Astrophysics Data System (ADS)

    Klinger, David; Kraitl, Jens; Ewald, Hartmut

    2013-02-01

    Simulations of light propagation in biological tissues are a useful method in detector development for tissue spectroscopy. In practice most attention is paid to the adequate description of tissue structures and the ray trace procedure. The surrounding light source geometry, such as output window, reflector and casing is neglected. Instead, the description of the light source is usually reduced to incident beam paths. This also applies to detectors and further surrounding tissue connected sensor geometry. This paper discusses the influence of a complex and realistic description of the light source and detector geometry with the ray tracing software ASAP (Breault Research Organization). Additionally simulations include the light distribution curve in respect to light propagation through the tissue model. It was observed that the implementation of the geometric elements of the light source and the detector have direct influence on the propagation paths, average photon penetration depth, average photon path length and detected photon energy. The results show the importance of the inclusion of realistic geometric structures for various light source, tissue and sensor scenarios, especially for reflectance measurements. In reality the tissue surrounding sensor geometry has a substantial impact on surface and subsurface reflectance and transmittance due to the fact that a certain amount of photons are prevented from leaving the tissue model. Further improvement allows a determination of optimal materials and geometry for the light source and sensors to increase the number of light-tissue-interactions by the incident photons.

  16. A compact tunable polarized X-ray source based on laser-plasma helical undulators.

    PubMed

    Luo, J; Chen, M; Zeng, M; Vieira, J; Yu, L L; Weng, S M; Silva, L O; Jaroszynski, D A; Sheng, Z M; Zhang, J

    2016-01-01

    Laser wakefield accelerators have great potential as the basis for next generation compact radiation sources because of their extremely high accelerating gradients. However, X-ray radiation from such devices still lacks tunability, especially of the intensity and polarization distributions. Here we propose a tunable polarized radiation source based on a helical plasma undulator in a plasma channel guided wakefield accelerator. When a laser pulse is initially incident with a skew angle relative to the channel axis, the laser and accelerated electrons experience collective spiral motions, which leads to elliptically polarized synchrotron-like radiation with flexible tunability on radiation intensity, spectra and polarization. We demonstrate that a radiation source with millimeter size and peak brilliance of 2 × 10(19) photons/s/mm(2)/mrad(2)/0.1% bandwidth can be made with moderate laser and electron beam parameters. This brilliance is comparable with third generation synchrotron radiation facilities running at similar photon energies, suggesting that laser plasma based radiation sources are promising for advanced applications. PMID:27377126

  17. A compact tunable polarized X-ray source based on laser-plasma helical undulators

    PubMed Central

    Luo, J.; Chen, M.; Zeng, M.; Vieira, J.; Yu, L. L.; Weng, S. M.; Silva, L. O.; Jaroszynski, D. A.; Sheng, Z. M.; Zhang, J.

    2016-01-01

    Laser wakefield accelerators have great potential as the basis for next generation compact radiation sources because of their extremely high accelerating gradients. However, X-ray radiation from such devices still lacks tunability, especially of the intensity and polarization distributions. Here we propose a tunable polarized radiation source based on a helical plasma undulator in a plasma channel guided wakefield accelerator. When a laser pulse is initially incident with a skew angle relative to the channel axis, the laser and accelerated electrons experience collective spiral motions, which leads to elliptically polarized synchrotron-like radiation with flexible tunability on radiation intensity, spectra and polarization. We demonstrate that a radiation source with millimeter size and peak brilliance of 2 × 1019 photons/s/mm2/mrad2/0.1% bandwidth can be made with moderate laser and electron beam parameters. This brilliance is comparable with third generation synchrotron radiation facilities running at similar photon energies, suggesting that laser plasma based radiation sources are promising for advanced applications. PMID:27377126

  18. DNA strand breaks induced by soft X-ray pulses from a compact laser plasma source

    NASA Astrophysics Data System (ADS)

    Adjei, Daniel; Wiechec, Anna; Wachulak, Przemyslaw; Ayele, Mesfin Getachew; Lekki, Janusz; Kwiatek, Wojciech M.; Bartnik, Andrzej; Davídková, Marie; Vyšín, Luděk; Juha, Libor; Pina, Ladislav; Fiedorowicz, Henryk

    2016-03-01

    Application of a compact laser plasma source of soft X-rays in radiobiology studies is demonstrated. The source is based on a laser produced plasma as a result of irradiation of a double-stream gas puff target with nanosecond laser pulses from a commercially available Nd:YAG laser. The source allows irradiation of samples with soft X-ray pulses in the "water window" spectral range (wavelength: 2.3-4.4 nm; photon energy: 280-560 eV) in vacuum or a helium atmosphere at very high-dose rates and doses exceeding the kGy level. Single-strand breaks (SSB) and double-strand breaks (DBS) induced in DNA plasmids pBR322 and pUC19 have been measured. The different conformations of the plasmid DNA were separated by agarose gel electrophoresis. An exponential decrease in the supercoiled form with an increase in linear and relaxed forms of the plasmids has been observed as a function of increasing photon fluence. Significant difference between SSB and DSB in case of wet and dry samples was observed that is connected with the production of free radicals in the wet sample by soft X-ray photons and subsequent affecting the plasmid DNA. Therefore, the new source was validated to be useful for radiobiology experiments.

  19. Enhancement of H{sup -} extraction from a compact source by streaming neutral gas injection

    SciTech Connect

    Mendenilla, Alexander; Takahashi, Hidenori; Kasuya, Toshiro; Wada, Motoi

    2006-03-15

    A new negative ion extraction geometry with streaming neutral gas injector (SNGI) was tested in its performance to enhance negative hydrogen ion (H{sup -}) at low operational pressure. The experiments were performed using a test ion source equipped with a SNGI having the wall perpendicular to the gas emission holes. The results showed that the SNGI was capable of reducing the operating pressure of the ion source from 0.14 to 0.07 Pa. At 0.14 Pa, the operation using the SNGI produced 20% more negative ions than the operation without SNGI. A compact ion source was constructed with a smaller SNGI and having a tapered wall for the gas injection nozzles. The neutral density distribution within the central region of the SNGI within the ion source was simulated using direct simulation Monte Carlo (DSMC) method. It was realized that the neutral density distribution produced by the SNGI with the tapered wall was at most 35% lower than a SNGI structure without the taper.

  20. Open-source products for a lighting experiment device.

    PubMed

    Gildea, Kevin M; Milburn, Nelda

    2014-12-01

    The capabilities of open-source software and microcontrollers were used to construct a device for controlled lighting experiments. The device was designed to ascertain whether individuals with certain color vision deficiencies were able to discriminate between the red and white lights in fielded systems on the basis of luminous intensity. The device provided the ability to control the timing and duration of light-emitting diode (LED) and incandescent light stimulus presentations, to present the experimental sequence and verbal instructions automatically, to adjust LED and incandescent luminous intensity, and to display LED and incandescent lights with various spectral emissions. The lighting device could easily be adapted for experiments involving flashing or timed presentations of colored lights, or the components could be expanded to study areas such as threshold light perception and visual alerting systems.

  1. Interference of light from independent sources

    SciTech Connect

    Pegg, David T.

    2006-12-15

    We extend and generalize previous work on the interference of light from independent cavities that began with the suggestion of Pfleegor and Mandel [Phys. Rev. 159, 1084 (1967)] that their observed interference of laser beams should not be associated too closely with particular states of the beams but more with the detection process itself. In particular we examine how the detection of interference induces a nonrandom-phase difference between internal cavity states with initial random phases for a much broader range of such states than has previously been considered. We find that a subsequent interference measurement should give results consistent with the induced phase difference. The inclusion of more cavities in the interference measurements enables the construction in principle of a laboratory in the sense used by Aharonov and Susskind, made up of cavity fields that can serve as frames of phase reference. We also show reasonably simply how intrinsic phase coherence of a beam of light leaking from a single cavity arises for any internal cavity state, even a photon number state. Although the work presented here may have some implications for the current controversy over whether or not a typical laboratory laser produces a coherent state, it is not the purpose of this paper to enter this controversy; rather it is to examine the interesting quantum physics that arises for cavities with more general internal states.

  2. Lighting system combining daylight concentrators and an artificial source

    DOEpatents

    Bornstein, Jonathan G.; Friedman, Peter S.

    1985-01-01

    A combined lighting system for a building interior includes a stack of luminescent solar concentrators (LSC), an optical conduit made of preferably optical fibers for transmitting daylight from the LSC stack, a collimating lens set at an angle, a fixture for receiving the daylight at one end and for distributing the daylight as illumination inside the building, an artificial light source at the other end of the fixture for directing artifical light into the fixture for distribution as illumination inside the building, an automatic dimmer/brightener for the artificial light source, and a daylight sensor positioned near to the LSC stack for controlling the automatic dimmer/brightener in response to the daylight sensed. The system also has a reflector positioned behind the artificial light source and a fan for exhausting heated air out of the fixture during summer and for forcing heated air into the fixture for passage into the building interior during winter.

  3. Mapping algorithm for freeform construction using non-ideal light sources

    NASA Astrophysics Data System (ADS)

    Li, Chen; Michaelis, D.; Schreiber, P.; Dick, L.; Bräuer, A.

    2015-09-01

    the ability and limitation of the this mothed. It is also presented that a homogeneous LED-illumination system design, in where, with a strongly tilted incident direction, a homogeneous distribution is achieved with a rather compact optics system and short working distance applying a relatively large LED source. It is shown that the lighting distribution patterns from the freeform surface elements can be significantly different from the others. The generation of a structured target pattern, applying weighting factor and smoothing factor, are discussed. Finally, freeform designs for much more complex sources like clusters of LED-sources are presented.

  4. Microhollow cathode discharge excimer light sources

    SciTech Connect

    El-Habachi, A.; Moselhy, M.; El-Dakroury, A.; Schoenbach, K.H.

    1999-07-01

    Microhollow Cathode discharges are non-equilibrium, high pressure, direct current discharges. By reducing the diameter of the cathode opening in a hollow cathode discharge geometry to values in the sub millimeter range the authors were able to operate discharges in argon and xenon in a direct current mode up to atmospheric pressure. They have shown that these discharges are intense source of xenon and argon excimer radiation peaking at wavelengths of 172 nm and 130 nm, respectively. Spatially resolved measurements of the excimer source in xenon have been performed. The source was found to be cylindrical along the axis of the electrodes. Its radius increases with current and decreases with pressure. Stacking the discharges, operating them in series, holds the promise for the generation of a laser medium with sufficient length to provide the required threshold gain for a dc excimer laser. Experimental studies of the gain of the plasma column in microhollow cathode discharges are underway. Excimer efficiencies, defined as the ratio of optical to electrical power, of 6% to 9% have been achieved. Further increase of the efficiency seems to be possible; according to the modeling results, efficiencies of 30% to 40% may be obtainable. The effect of various parameters such as electrode geometry, gas flow and pulsed versus cw operation on the excimer efficiency is being studied with the goal to optimize the discharge.

  5. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOEpatents

    Sze, Robert C.; Quigley, Gerard P.

    1996-01-01

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source. A contamination-free VUV light source having a 225 cm.sup.2 emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm.sup.2 at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing.

  6. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOEpatents

    Sze, R.C.; Quigley, G.P.

    1996-12-17

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source is disclosed. A contamination-free VUV light source having a 225 cm{sup 2} emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm{sup 2} at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing. 3 figs.

  7. Motionless phase stepping in X-ray phase contrast imaging with a compact source

    PubMed Central

    Miao, Houxun; Chen, Lei; Bennett, Eric E.; Adamo, Nick M.; Gomella, Andrew A.; DeLuca, Alexa M.; Patel, Ajay; Morgan, Nicole Y.; Wen, Han

    2013-01-01

    X-ray phase contrast imaging offers a way to visualize the internal structures of an object without the need to deposit significant radiation, and thereby alleviate the main concern in X-ray diagnostic imaging procedures today. Grating-based differential phase contrast imaging techniques are compatible with compact X-ray sources, which is a key requirement for the majority of clinical X-ray modalities. However, these methods are substantially limited by the need for mechanical phase stepping. We describe an electromagnetic phase-stepping method that eliminates mechanical motion, thus removing the constraints in speed, accuracy, and flexibility. The method is broadly applicable to both projection and tomography imaging modes. The transition from mechanical to electromagnetic scanning should greatly facilitate the translation of X-ray phase contrast techniques into mainstream applications. PMID:24218599

  8. Cardassian Expansion: Constraints from Compact Radio Source Angular Size versus Redshift Data

    NASA Astrophysics Data System (ADS)

    Zhu, Zong-Hong; Fujimoto, Masa-Katsu

    2002-12-01

    The ``Cardassian Expansion Scenario'' was recently proposed by Freese & Lewis as an alternative to a cosmological constant in explaining the current accelerating universe. In this paper we investigate observational constraints on this scenario from recent measurements of the angular size of high-z compact radio sources compiled by Gurvits and coworkers. We show that the allowed intervals for n and zeq, the two parameters of the Cardassian model, are heavily dependent on the value of the mean projected linear size l. However, the best fit to the current angular size data prefers the conventional flat Λ cold dark matter model to this Cardassian expansion proposal, though the latter is cosmologically credible and compatible with the Θ-z diagram for some values of l.

  9. Diffusion filter eliminates fringe effects of coherent laser light source

    NASA Technical Reports Server (NTRS)

    Olsasky, M. J.

    1970-01-01

    Diffusion filter comprised of small particles in colloidal suspension reduces the coherence of a laser beam used as a photographic light source. Interference patterns which obscure details in photographic film are eliminated, the intensity and collimation are moderately affected.

  10. 21 CFR 352.71 - Light source (solar simulator).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) DRUGS FOR HUMAN USE SUNSCREEN DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Testing Procedures § 352.71 Light source (solar simulator). A solar simulator used for determining the SPF of a sunscreen...

  11. 21 CFR 352.71 - Light source (solar simulator).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) DRUGS FOR HUMAN USE SUNSCREEN DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Testing Procedures § 352.71 Light source (solar simulator). A solar simulator used for determining the SPF of a sunscreen...

  12. 21 CFR 352.71 - Light source (solar simulator).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) DRUGS FOR HUMAN USE SUNSCREEN DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Testing Procedures § 352.71 Light source (solar simulator). A solar simulator used for determining the SPF of a sunscreen...

  13. Status report on the Advanced Light Source control system

    SciTech Connect

    Magyary, S.; Chin, M.; Fahmie, M.; Lancaster, H.; Molinari, P.; Robb, A.; Timossi, C.; Young, J.

    1991-11-11

    This paper is a status report on the ADVANCED LIGHT SOURCE (ALS) control system. The current status, performance data, and future plans will be discussed. Manpower, scheduling, and costs issues are addressed.

  14. Light source for narrow and broadband coherent Raman scattering microspectroscopy.

    PubMed

    Brinkmann, Maximilian; Dobner, Sven; Fallnich, Carsten

    2015-12-01

    We present a light source that is well adapted to both narrow- and broadband coherent Raman scattering (CRS) methods. Based on a single oscillator, the light source delivers synchronized broadband pulses via supercontinuum generation and narrowband, frequency-tunable pulses via four-wave mixing in a photonic crystal fiber. Seeding the four-wave mixing with a spectrally filtered part of the supercontinuum yields high-pulse energies up to 8 nJ and the possibility of scanning a bandwidth of 2000  cm(-1) in 25 ms. All pulses are emitted with a repetition frequency of 1 MHz, which ensures efficient generation of CRS signals while avoiding significant damage of the samples. Consequently, the light source combines the performance of individual narrow- and broadband CRS light sources in one setup, thus enabling hyperspectral imaging and rapid single-resonance imaging in parallel. PMID:26625022

  15. Science and Technology of Future Light Sources

    SciTech Connect

    Bergmann, Uwe; Corlett, John; Dierker, Steve; Falcone, Roger; Galayda, John; Gibson, Murray; Hastings, Jerry; Hettel, Bob; Hill, John; Hussain, Zahid; Kao, Chi-Chang; Kirz, Janos; Long, Danielle; McCurdy, Bill; Raubenheimer, Tor; Sannibale, Fernando; Seeman, John; Shen, Z. -X.; Schenoy, Gopal; Schoenlein, Bob; Shen, Qun; Stephenson, Brian; Stohr, Joachim; Zholents, Alexander

    2009-01-28

    Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of

  16. Science and Technology of Future Light Sources

    SciTech Connect

    Dierker,S.; Bergmann, U.; Corlett, J.; Dierker, S.; Falcone, R.; Galayda, J.; Gibson, M.; Hastings, J.; Hettel, B.; Hill, J.; Hussain, Z.; Kao, C.-C.; Kirx, J.; Long, G.; McCurdy, B.; Raubenheimer, T.; Sannibale, F.; Seeman, J.; Shen, Z.-X.; Shenoy, g.; Schoenlein, B.; Shen, Q.; Stephenson, B.; Stohr, J.; Zholents, A.

    2008-12-01

    Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects. The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of

  17. Downscattering due to Wind Outflows in Compact X-ray Sources: Theory and Interpretation

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Shrader, Chris

    2004-01-01

    A number of recent lines of evidence point towards the presence of hot, outflowing plasma from the central regions of compact Galactic and extragalactic X-ray sources. Additionally, it has long been noted that many of these sources exhibit an "excess" continuum component, above approx. 10 keV, usually attributed to Compton Reflection from a static medium. Motivated by these facts, as well as by recent observational constraints on the Compton reflection models - specifically apparently discrepant variability timescales for line and continuum components in some cases - we consider possible of effects of out-flowing plasma on the high-energy continuum spectra of accretion powered compact objects. We present a general formulation for photon downscattering diffusion which includes recoil and Comptonization effects due to divergence of the flow. We then develop an analytical theory for the spectral formation in such systems that allows us to derive formulae for the emergent spectrum. Finally we perform the analytical model fitting on several Galactic X-ray binaries. Objects which have been modeled with high-covering-fraction Compton reflectors, such as GS1353-64 are included in our analysis. In addition, Cyg X-3, is which is widely believed to be characterized by dense circumstellar winds with temperature of order 10(exp 6) K, provides an interesting test case. Data from INTEGRAL and RXTE covering the approx. 3 - 300 keV range are used in our analysis. We further consider the possibility that the widely noted distortion of the power-law continuum above 10 keV may in some cases be explained by these spectral softening effects.

  18. New Directions in X-Ray Light Sources

    SciTech Connect

    Falcone, Roger

    2008-07-18

    July 15, 2008 Berkeley Lab lecture: Molecular movies of chemical reactions and material phase transformations need a strobe of x-rays, the penetrating light that reveals how atoms and molecules assemble in chemical and biological systems and complex materials. Roger Falcone, Director of the Advanced Light Source,will discuss a new generation of x ray sources that will enable a new science of atomic dynamics on ultrafast timescales.

  19. New Directions in X-Ray Light Sources

    ScienceCinema

    Falcone, Roger

    2016-07-12

    July 15, 2008 Berkeley Lab lecture: Molecular movies of chemical reactions and material phase transformations need a strobe of x-rays, the penetrating light that reveals how atoms and molecules assemble in chemical and biological systems and complex materials. Roger Falcone, Director of the Advanced Light Source,will discuss a new generation of x ray sources that will enable a new science of atomic dynamics on ultrafast timescales.

  20. Survey, alignment, and beam stability at the Advanced Light Source

    SciTech Connect

    Krebs, G.F.

    1997-10-01

    This paper describes survey and alignment at the Lawrence Berkeley Laboratories Advanced Light Source (ALS) accelerators from 1993 to 1997. The ALS is a third generation light source requiring magnet alignment to within 150 microns. To accomplish this, a network of monuments was established and maintained. Monthly elevation surveys show the movement of the floor over time. Inclinometers have recently been employed to give real time information about magnet, vacuum tank and magnet girder motion in the ALS storage ring.

  1. Hyperspectral microscopy to identify foodborne bacteria with optimum lighting source

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyperspectral microscopy is an emerging technology for rapid detection of foodborne pathogenic bacteria. Since scattering spectral signatures from hyperspectral microscopic images (HMI) vary with lighting sources, it is important to select optimal lights. The objective of this study is to compare t...

  2. Advanced light source, User`s Handbook, Revision 1

    SciTech Connect

    1995-07-01

    The Advanced Light Source (ALS) is a national facility for scientific research and development located at the Lawrence Berkeley National Laboratory (LBNL) of the University of California. Its purpose is to generate beams of very bright light in the ultraviolet and soft x-ray regions of the spectrum. The facility is open to researchers from industry, universities, and government laboratories.

  3. Passivation of quartz for halogen-containing light sources

    DOEpatents

    Falkenstein, Zoran

    1999-01-01

    Lifetime of halogen containing VUV, UV, visible or IR light sources can be extended by passivating the quartz or glass gas containers with halogens prior to filling the quartz with the halogen and rare gas mixtures used to produce the light.

  4. Development and evaluation of a light-emitting diode endoscopic light source

    NASA Astrophysics Data System (ADS)

    Clancy, Neil T.; Li, Rui; Rogers, Kevin; Driscoll, Paul; Excel, Peter; Yandle, Ron; Hanna, George; Copner, Nigel; Elson, Daniel S.

    2012-03-01

    Light-emitting diode (LED) based endoscopic illumination devices have been shown to have several benefits over arclamp systems. LEDs are energy-efficient, small, durable, and inexpensive, however their use in endoscopy has been limited by the difficulty in efficiently coupling enough light into the endoscopic light cable. We have demonstrated a highly homogenised lightpipe LED light source that combines the light from four Luminus LEDs emitting in the red, green, blue and violet using innovative dichroics that maximise light throughput. The light source spectrally combines light from highly divergent incoherent sources that have a Lambertian intensity profile to provide illumination matched to the acceptance numerical aperture of a liquid light guide or fibre bundle. The LED light source was coupled to a standard laparoscope and performance parameters (power, luminance, colour temperature) compared to a xenon lamp. Although the total illuminance from the endoscope was lower, adjustment of the LEDs' relative intensities enabled contrast enhancement in biological tissue imaging. The LED light engine was also evaluated in a minimally invasive surgery (MIS) box trainer and in vivo during a porcine MIS procedure where it was used to generate 'narrowband' images. Future work using the violet LED could enable photodynamic diagnosis of bladder cancer.

  5. Development of a compact ECR ion source for various ion production.

    PubMed

    Muramatsu, M; Hojo, S; Iwata, Y; Katagiri, K; Sakamoto, Y; Takahashi, N; Sasaki, N; Fukushima, K; Takahashi, K; Suzuki, T; Sasano, T; Uchida, T; Yoshida, Y; Hagino, S; Nishiokada, T; Kato, Y; Kitagawa, A

    2016-02-01

    There is a desire that a carbon-ion radiotherapy facility will produce various ion species for fundamental research. Although the present Kei2-type ion sources are dedicated for the carbon-ion production, a future ion source is expected that could provide: (1) carbon-ion production for medical use, (2) various ions with a charge-to-mass ratio of 1/3 for the existing Linac injector, and (3) low cost for modification. A prototype compact electron cyclotron resonance (ECR) ion source, named Kei3, based on the Kei series has been developed to correspond to the Kei2 type and to produce these various ions at the National Institute of Radiological Sciences (NIRS). The Kei3 has an outer diameter of 280 mm and a length of 1120 mm. The magnetic field is formed by the same permanent magnet as Kei2. The movable extraction electrode has been installed in order to optimize the beam extraction with various current densities. The gas-injection side of the vacuum chamber has enough space for an oven system. We measured dependence of microwave frequency, extraction voltage, and puller position. Charge state distributions of helium, carbon, nitrogen, oxygen, and neon were also measured. PMID:26932120

  6. Intense combined source of neutrons and photons for interrogation based on compact deuteron RF accelerator

    SciTech Connect

    Kurennoy, S. S.; Garnett, R. W.; Rybarcyk, L. J.

    2015-06-18

    Interrogation of special nuclear materials can benefit from mobile sources providing significant fluxes of neutrons (108/s at 2.5 MeV, 1010/s at 14.1 MeV) and of photons (>1012/s at 1-3 MeV). We propose a source that satisfies these requirements simultaneously plus also provides, via the reaction 11B(d,n)12C(γ15.1), a significant flux of 15-MeV photons, which are highly penetrating and optimal for inducing photo-fission in actinides. The source is based on a compact (< 5 m) deuteron RF accelerator that delivers an average current of a few mA of deuterons at 3-4 MeV to a boron target. The accelerator consists of a short RFQ followed by efficient inter-digital H-mode structures with permanent-magnet-quadrupole beam focusing [Kurennoy et al. (2012)], which suit perfectly for deuteron acceleration at low energies. Our estimates, based on recent measurements, indicate that the required fluxes of both neutrons and photons can be achieved at ~1 mA of 4-MeV deuterons. The goal of the proposed study is to confirm feasibility of the approach and develop requirements for future full system implementation.

  7. Intense combined source of neutrons and photons for interrogation based on compact deuteron RF accelerator

    DOE PAGES

    Kurennoy, S. S.; Garnett, R. W.; Rybarcyk, L. J.

    2015-06-18

    Interrogation of special nuclear materials can benefit from mobile sources providing significant fluxes of neutrons (108/s at 2.5 MeV, 1010/s at 14.1 MeV) and of photons (>1012/s at 1-3 MeV). We propose a source that satisfies these requirements simultaneously plus also provides, via the reaction 11B(d,n)12C(γ15.1), a significant flux of 15-MeV photons, which are highly penetrating and optimal for inducing photo-fission in actinides. The source is based on a compact (< 5 m) deuteron RF accelerator that delivers an average current of a few mA of deuterons at 3-4 MeV to a boron target. The accelerator consists of a shortmore » RFQ followed by efficient inter-digital H-mode structures with permanent-magnet-quadrupole beam focusing [Kurennoy et al. (2012)], which suit perfectly for deuteron acceleration at low energies. Our estimates, based on recent measurements, indicate that the required fluxes of both neutrons and photons can be achieved at ~1 mA of 4-MeV deuterons. The goal of the proposed study is to confirm feasibility of the approach and develop requirements for future full system implementation.« less

  8. Development of a compact ECR ion source for various ion production

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Hojo, S.; Iwata, Y.; Katagiri, K.; Sakamoto, Y.; Takahashi, N.; Sasaki, N.; Fukushima, K.; Takahashi, K.; Suzuki, T.; Sasano, T.; Uchida, T.; Yoshida, Y.; Hagino, S.; Nishiokada, T.; Kato, Y.; Kitagawa, A.

    2016-02-01

    There is a desire that a carbon-ion radiotherapy facility will produce various ion species for fundamental research. Although the present Kei2-type ion sources are dedicated for the carbon-ion production, a future ion source is expected that could provide: (1) carbon-ion production for medical use, (2) various ions with a charge-to-mass ratio of 1/3 for the existing Linac injector, and (3) low cost for modification. A prototype compact electron cyclotron resonance (ECR) ion source, named Kei3, based on the Kei series has been developed to correspond to the Kei2 type and to produce these various ions at the National Institute of Radiological Sciences (NIRS). The Kei3 has an outer diameter of 280 mm and a length of 1120 mm. The magnetic field is formed by the same permanent magnet as Kei2. The movable extraction electrode has been installed in order to optimize the beam extraction with various current densities. The gas-injection side of the vacuum chamber has enough space for an oven system. We measured dependence of microwave frequency, extraction voltage, and puller position. Charge state distributions of helium, carbon, nitrogen, oxygen, and neon were also measured.

  9. Intense Combined Source of Neutrons and Photons for Interrogation Based on Compact Deuteron RF Accelerator

    NASA Astrophysics Data System (ADS)

    Kurennoy, S. S.; Garnett, R. W.; Rybarcyk, L. J.

    Interrogation of special nuclear materials can benefit from mobile sources providing significant fluxes of neutrons (108/s at 2.5 MeV, 1010/s at 14.1 MeV) and of photons (>1012/s at 1-3 MeV). We propose a source that satisfies these requirements simultaneously plus also provides, via the reaction 11B(d,n)12C(γ15.1), a significant flux of 15-MeV photons, which are highly penetrating and optimal for inducing photo-fission in actinides. The source is based on a compact (< 5 m) deuteron RF accelerator that delivers an average current of a few mA of deuterons at 3-4 MeV to a boron target. The accelerator consists of a short RFQ followed by efficient inter-digital H-mode structures with permanent-magnet-quadrupole beam focusing [Kurennoy et al. (2012)], which suit perfectly for deuteron acceleration at low energies. Our estimates, based on recent measurements [Taddeucci et al. (2007)], indicate that the required fluxes of both neutrons and photons can be achieved at ∼1 mA of 4-MeV deuterons. The goal of the proposed study is to confirm feasibility of the approach and develop requirements for future full- system implementation.

  10. Modeling of non-Lambertian sources in lighting applications

    NASA Astrophysics Data System (ADS)

    Bennahmias, Mark; Arik, Engin; Yu, Kevin; Voloshenko, Dmitry; Chua, Kangbin; Pradhan, Ranjit; Forrester, Thomas; Jannson, Tomasz

    2007-09-01

    The photometric modeling of LEDs as generalized Lambertian sources (GL-Sources) is discussed. Non-Lambertian LED sources, with axial symmetry, have important real-world applications in general lighting. In particular, so-called generalized Lambertian sources, following a cosine to the nth power distribution (n>=1), can be used to describe the luminous output profiles from solid-state lighting devices like LEDs. For such sources, the knowledge of total power (in Lumens [Lms]), the knowledge of the output angular characteristics, as well as source area, is sufficient information to determine all other critical photometric quantities such as: maximum radiant intensity (in Candelas [Cd = Lm/Sr]) and maximum luminance (in nits [nts = Cd/m2]), as well as illuminance (in lux [lx = Lm/m2]). In this paper, we analyze this approach to modeling LEDs in terms of its applicability to real sources.

  11. National Synchrotron Light Source annual report 1991

    SciTech Connect

    Hulbert, S.L.; Lazarz, N.M.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

  12. Superradiant light source for atmospheric remote sensing

    NASA Astrophysics Data System (ADS)

    Voronine, Dmitri; Traverso, Andrew; Sanchez-Gonzalez, Rodrigo; Yuan, Luqi; Grubb, Michael; Wang, Kai; Zheltikov, Alexei; Dogariu, Arthur; Michael, James; Miles, Richard; Rostovtsev, Yuri; Sautenkov, Vladimir; Sokolov, Alexei; North, Simon; Scully, Marlan

    2012-02-01

    We have studied coherent emission from ambient air and demonstrated efficient generation of laser-like beams directed both forward and backward with respect to a nanosecond ultraviolet pumping laser beam. The generated optical gain is a result of two-photon photolysis of atmospheric O2, followed by two-photon excitation of atomic oxygen. We have analyzed the temporal shapes of the emitted pulses and have thereby shown that a large atomic coherence may well be responsible for the observed temporal structures. Our results suggest that the emission process is coherence brightened in its nature, and is to be compared with ordinary lasing where atomic coherence remains small on the one hand and cooperative Dicke superradiance where atomic coherence is maximized on the other. The collective coherence in this process adds insight as to the optical emission physics. The present superradiant source holds promise for remote sensing techniques employing nonlinear spectroscopy.

  13. Light source employing laser-produced plasma

    SciTech Connect

    Tao, Yezheng; Tillack, Mark S

    2013-09-17

    A system and a method of generating radiation and/or particle emissions are disclosed. In at least some embodiments, the system includes at least one laser source that generates a first pulse and a second pulse in temporal succession, and a target, where the target (or at least a portion the target) becomes a plasma upon being exposed to the first pulse. The plasma expand after the exposure to the first pulse, the expanded plasma is then exposed to the second pulse, and at least one of a radiation emission and a particle emission occurs after the exposure to the second pulse. In at least some embodiments, the target is a solid piece of material, and/or a time period between the first and second pulses is less than 1 microsecond (e.g., 840 ns).

  14. A setup for resonant inelastic soft x-ray scattering on liquids at free electron laser light sources

    SciTech Connect

    Kunnus, Kristjan; Schreck, Simon; Foehlisch, Alexander; Eckert, Sebastian; Beye, Martin; Suljoti, Edlira; Weniger, Christian; Wernet, Philippe; Kalus, Christian; Nordlund, Dennis; Zhang, Wenkai; Hartsock, Robert W.; Gaffney, Kelly J.; Schlotter, William F.; Turner, Joshua J.; Kennedy, Brian; and others

    2012-12-15

    We present a flexible and compact experimental setup that combines an in vacuum liquid jet with an x-ray emission spectrometer to enable static and femtosecond time-resolved resonant inelastic soft x-ray scattering (RIXS) measurements from liquids at free electron laser (FEL) light sources. We demonstrate the feasibility of this type of experiments with the measurements performed at the Linac Coherent Light Source FEL facility. At the FEL we observed changes in the RIXS spectra at high peak fluences which currently sets a limit to maximum attainable count rate at FELs. The setup presented here opens up new possibilities to study the structure and dynamics in liquids.

  15. A multi-source portable light emitting diode spectrofluorometer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A portable luminescence spectrofluorometer weighing only 1.5 kg that uses multiple light emitting diodes (LEDs) as excitation sources was developed and evaluated. Excitation using a sequence of seven individual broad-band LED emission sources enabled the generation of excitation-emission spectra usi...

  16. LED light sources for head-up displays

    NASA Astrophysics Data System (ADS)

    Wanninger, Mario

    2005-02-01

    The concept of Head-Up Displays is simple: move the important information a driver needs to see up into their line of sight, so they don"t have to take their eyes off the road. A projected image appears to be floating freely over the hood, at a distance of approximately two meters. Mirrors direct light from an image-generating LCD to the windshield where it is superimposed with the driver"s field of view. The LCD is lit with an appropriate light source. Requirements like long lifetime, vibration resistance, thermal stability and high luminance make LED light sources ideal for use in the automotive industry. The paper discusses the principles of the optical system design of an LED light source for Head-Up Displays.

  17. Pulsed Operation of a Compact Fusion Neutron Source Using a High-Voltage Pulse Generator Developed for Landmine Detection

    SciTech Connect

    Yamauchi, Kunihito; Watanabe, Masato; Okino, Akitoshi; Kohno, Toshiyuki; Hotta, Eiki; Yuura, Morimasa

    2005-05-15

    Preliminary experimental results of pulsed neutron source based on a discharge-type beam fusion called Inertial Electrostatic Confinement Fusion (IECF) for landmine detection are presented. In Japan, a research and development project for constructing an advanced anti-personnel landmine detection system by using IECF, which is effective not only for metal landmines but also for plastic ones, is now in progress. This project consists of some R and D topics, and one of them is R and D of a high-voltage pulse generator system specialized for landmine detection, which can be used in the severe environment such as that in the field in Afghanistan. Thus a prototype of the system for landmine detection was designed and fabricated in consideration of compactness, lightness, cooling performance, dustproof and robustness. By using this prototype pulse generator system, a conventional IECF device was operated as a preliminary experiment. As a result, it was confirmed that the suggested pulse generator system is suitable for landmine detection system, and the results follow the empirical law obtained by the previous experiments. The maximum neutron production rate of 2.0x10{sup 8} n/s was obtained at a pulsed discharge of -51 kV, 7.3 A.

  18. Fifth-Generation Free-Electron Laser Light Sources

    SciTech Connect

    Pellegrini, Claudio

    2011-03-02

    During the past few years, the Linac Coherent Light Source (LCLS) and the Free-Electron Laser in Hamburg (FLASH) have demonstrated the outstanding capability of free-electron lasers (FELs) as sources of coherent radiation in the soft and hard x-ray region. The high intensity, tens of GW, short pulses (few to less than 100 femtoseconds, and the unique transverse coherence properties are opening a new window to study the structure and dynamics of atomic and molecular systems. The LCLS, FLASH, and the other FELs now under construction are only the beginning of the development of these light sources. The next generations will reach new levels of performance: terawatt, atto-second, ultra-small line-width, high repetition rate, full longitudinal and transverse coherence. These future developments and the R&D needed to successfully build and operate the next generation of FEL light sources will be discussed.

  19. Structure and evolution of the compact radio source in NGC 1275.

    PubMed

    Romney, J D; Benson, J M; Dhawan, V; Kellermann, K I; Vermeulen, R C; Walker, R C

    1995-12-01

    Investigations of the fine-scale structure in the compact nucleus of the radio source 3C 84 in NGC 1275 (New General Catalogue number) are reported. Structural monitoring observations beginning as early as 1976, and continuing to the present, revealed subluminal motions in a jet-like relatively diffuse region extending away from a flat-spectrum core. A counterjet feature was discovered in 1993, and very recent nearly simultaneous studies have detected the same feature at five frequencies ranging from 5 to 43 GHz. The counterjet exhibits a strong low-frequency cutoff, giving this region of the source an inverted spectrum. The observations are consistent with a physical model in which the cutoff arises from free-free absorption in a volume that surrounds the core but obscures only the counterjet feature. If such a model is confirmed, very-long-baseline radio interferometry observations can then be used to probe the accretion region, outside the radio jet, on parsec scales.

  20. Structure and evolution of the compact radio source in NGC 1275.

    PubMed Central

    Romney, J D; Benson, J M; Dhawan, V; Kellermann, K I; Vermeulen, R C; Walker, R C

    1995-01-01

    Investigations of the fine-scale structure in the compact nucleus of the radio source 3C 84 in NGC 1275 (New General Catalogue number) are reported. Structural monitoring observations beginning as early as 1976, and continuing to the present, revealed subluminal motions in a jet-like relatively diffuse region extending away from a flat-spectrum core. A counterjet feature was discovered in 1993, and very recent nearly simultaneous studies have detected the same feature at five frequencies ranging from 5 to 43 GHz. The counterjet exhibits a strong low-frequency cutoff, giving this region of the source an inverted spectrum. The observations are consistent with a physical model in which the cutoff arises from free-free absorption in a volume that surrounds the core but obscures only the counterjet feature. If such a model is confirmed, very-long-baseline radio interferometry observations can then be used to probe the accretion region, outside the radio jet, on parsec scales. PMID:11607597

  1. A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector

    DOE PAGES

    Banks, T. I.; Freedman, S. J.; Wallig, J.; Ybarrolaza, N.; Gando, A.; Gando, Y.; Ikeda, H.; Inoue, K.; Kishimoto, Y.; Koga, M.; et al

    2014-10-14

    We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an assortment of interchangeable radioactive sources could be attached to a weight at the end of the cable. All components exposed to the radiopure liquid scintillator were made of chemically compatible UHV-cleaned materials, primarily stainless steel, in order to avoid contaminating or degrading the scintillator. To prevent radon intrusion, the apparatus was enclosed in a hermetically sealedmore » housing inside a glove box, and both volumes were regularly flushed with purified nitrogen gas. Finally, an infrared camera attached to the side of the housing permitted real-time visual monitoring of the cable’s motion, and the system was controlled via a graphical user interface.« less

  2. Monochromatic computed tomography with a compact laser-driven X-ray source.

    PubMed

    Achterhold, K; Bech, M; Schleede, S; Potdevin, G; Ruth, R; Loewen, R; Pfeiffer, F

    2013-01-01

    A laser-driven electron-storage ring can produce nearly monochromatic, tunable X-rays in the keV energy regime by inverse Compton scattering. The small footprint, relative low cost and excellent beam quality provide the prospect for valuable preclinical use in radiography and tomography. The monochromaticity of the beam prevents beam hardening effects that are a serious problem in quantitative determination of absorption coefficients. These values are important e.g. for osteoporosis risk assessment. Here, we report quantitative computed tomography (CT) measurements using a laser-driven compact electron-storage ring X-ray source. The experimental results obtained for quantitative CT measurements on mass absorption coefficients in a phantom sample are compared to results from a rotating anode X-ray tube generator at various peak voltages. The findings confirm that a laser-driven electron-storage ring X-ray source can indeed yield much higher CT image quality, particularly if quantitative aspects of computed tomographic imaging are considered.

  3. Development of a compact high current low emittance RF ion source

    NASA Astrophysics Data System (ADS)

    Menon, Ranjini; Nabhiraj, P. Y.

    2013-12-01

    A 13.56 MHz inductively coupled plasma based RF ion source is developed for production of high brightness focused ion beams of heavy gaseous elements for high speed milling and light ions for high speed imaging. In order to obtain ion beams with low emittance, no magnetic field of any kind is used in the ion source. However, to achieve the high plasma density, the plasma chamber volume is reduced to couple RF power as high as 8-12 W/cm3 to the plasma. Measurements show that the normalized rms emittance of 0.6 mA Ar1+ beam to be as low as 0.0075 mm-mrad while it is 0.004 mm-mrad for 1.2 mA of ion beam from hydrogen plasma. With a simple parallel plate extraction system with an aperture of 2 mm diameter, 80 mA/cm2 of ion beam from hydrogen plasma could be extracted at 3.5 kV extraction potential and 300 W of RF power. The ion source has been operated with other heavy gases and results show that more than 1 mA of xenon and krypton ion beam could easily be extracted at 5 kV extraction potential and 200 W of RF power. In this article, the capability of the ion source to produce high current, low emittance heavy as well as light ion beams is presented.

  4. The Bright Lights

    ERIC Educational Resources Information Center

    Progressive Architecture, 1976

    1976-01-01

    High intensity discharge lighting sources share the compactness and beam controllability of incandescent sources, but are far more efficient and longer-lived. They share the efficiency and long life of fluorescent sources, but are compact and optically controllable, and are available in higher wattages. (Author/MLF)

  5. Source mask optimization using 3D mask and compact resist models

    NASA Astrophysics Data System (ADS)

    El-Sewefy, Omar; Chen, Ao; Lafferty, Neal; Meiring, Jason; Chung, Angeline; Foong, Yee Mei; Adam, Kostas; Sturtevant, John

    2016-03-01

    the source profile and corresponding lithographic performance is studied in detail. Furthermore, the impact of using a compact resist model in SMO is also investigated by using the same test case.

  6. Differential mobility spectrometry with nanospray ion source as a compact detector for small organics and inorganics

    PubMed Central

    Coy, Stephen L.; Krylov, Evgeny V.; Nazarov, Erkinjon G.; Fornace, Albert J.; Kidd, Richard D.

    2013-01-01

    Electrospray ionization (ESI) is an important tool in chemical and biochemical survey and targeted analysis in many applications. For chemical detection and identification electrospray is usually used with mass spectrometry (MS). However, for screening and monitoring of chemicals of interest in light, low power field-deployable instrumentation, an alternative detection technology with chemical selectivity would be highly useful, especially since small, lightweight, chip-based gas and liquid chromatographic technologies are being developed. Our initial list of applications requiring portable instruments includes chemical surveys on Mars, medical diagnostics based on metabolites in biological samples, and water quality analysis. In this report, we evaluate ESI-Differential Mobility Spectrometry (DMS) as a compact, low-power alternative to MS detection. Use of DMS for chemically-selective detection of ESI suffers in comparison with mass spectrometry because portable MS peak capacity is greater than that of DMS by 10X or more, but the development of light, fast chip chromatography offers compensating resolution. Standalone DMS provides the chemical selectivity familiar from DMS-MS publications, and exploits the sensitivity of ion detection. We find that sub-microliter-per-minute flows and a correctly-designed interface prepare a desolvated ion stream that enables DMS to act as an effective ion filter. Results for a several small organic biomarkers and metabolites, including citric acid, azelaic acid, n-hexanoylglycine, thymidine, and caffeine, as well as compounds such as dinitrotoluene and others, have been characterized and demonstrate selective detection. Water-quality-related halogen-containing anions, fluoride through bromate, contained in liquid samples are also isolated by DMS. A reaction-chamber interface is highlighted as most practical for portable ESI-DMS instrumentation. PMID:23914140

  7. LED-based endoscopic light source for spectral imaging

    NASA Astrophysics Data System (ADS)

    Browning, Craig M.; Mayes, Samuel; Favreau, Peter; Rich, Thomas C.; Leavesley, Silas J.

    2016-03-01

    Colorectal cancer is the United States 3rd leading cancer in death rates.1 The current screening for colorectal cancer is an endoscopic procedure using white light endoscopy (WLE). There are multiple new methods testing to replace WLE, for example narrow band imaging and autofluorescence imaging.2 However, these methods do not meet the need for a higher specificity or sensitivity. The goal for this project is to modify the presently used endoscope light source to house 16 narrow wavelength LEDs for spectral imaging in real time while increasing sensitivity and specificity. The process to do such was to take an Olympus CLK-4 light source, replace the light and electronics with 16 LEDs and new circuitry. This allows control of the power and intensity of the LEDs. This required a larger enclosure to house a bracket system for the solid light guide (lightpipe), three new circuit boards, a power source and National Instruments hardware/software for computer control. The results were a successfully designed retrofit with all the new features. The LED testing resulted in the ability to control each wavelength's intensity. The measured intensity over the voltage range will provide the information needed to couple the camera for imaging. Overall the project was successful; the modifications to the light source added the controllable LEDs. This brings the research one step closer to the main goal of spectral imaging for early detection of colorectal cancer. Future goals will be to connect the camera and test the imaging process.

  8. A Review of the Reflector Compact Fluorescent Lights Technology Procurement Program: Conclusions and Results

    SciTech Connect

    Sandahl, Linda J.; Gilbride, Theresa L.; Ledbetter, Marc R.; McCullough, Jeffrey J.

    2008-05-19

    This report describes a project sponsored by the U.S. Department of Energy (DOE) and implemented by the Pacific Northwest National Laboratory (PNNL), from 2000 to 2007 to improve the performance of reflector type (R-lamp) compact fluorescent lamps (CFLs) and increase their availability throughout the United States by means of a technology development and procurement strategy. In 2000, at the request of the U.S. Department of Energy’s Emerging Technologies Program and its predecessors, the Pacific Northwest National Laboratory undertook a technology procurement seeking R-CFLs that were specifically designed for use in ICAT recessed can fixtures and that met other minimum performance criteria including minimum light output and size restrictions (to ensure they fit in standard residential recessed cans). The technology procurement included two phases. In Phase I, requests for proposals (RFPs) were issued in October 2002 and five manufacturers responded with 12 lamp models. Eight of these models met the minimum requirements and passed the 6-hour short-term test in a simulated ICAT environment. These eight models were subjected to long-term tests of 6,000 or more hours in a simulated ICAT environment. Three of these models passed the short- and long-term tests and were promoted through the program website (www.pnl.gov/rlamps), press releases, and fliers. To increase the number of qualifying models, a second RFP was issued in June 2005. In April 2007, DOE announced that 16 reflector CFL (R-CFL) models by four manufacturers had met all the minimum requirements of Phase 2 of the R-CFL Technology Innovation Competition. PNNL developed both the criteria and the test apparatus design for Elevated Temperature Life Testing (ETLT), which has been included by DOE in its draft ENERGY STAR specifications for the reflector category of CFLs. PNNL promoted the winning lamps through a program website, press releases, and fliers as well as through program partners. PNNL also helped

  9. Suboptimal Light Conditions Influence Source-Sink Metabolism during Flowering

    PubMed Central

    Christiaens, Annelies; De Keyser, Ellen; Pauwels, Els; De Riek, Jan; Gobin, Bruno; Van Labeke, Marie-Christine

    2016-01-01

    Reliance on carbohydrates during flower forcing was investigated in one early and one late flowering cultivar of azalea (Rhododendron simsii hybrids). Carbohydrate accumulation, invertase activity, and expression of a purported sucrose synthase gene (RsSUS) was monitored during flower forcing under suboptimal (natural) and optimal (supplemental light) light conditions, after a cold treatment (7°C + dark) to break flower bud dormancy. Post-production sucrose metabolism and flowering quality was also assessed. Glucose and fructose concentrations and invertase activity increased in petals during flowering, while sucrose decreased. In suboptimal light conditions RsSUS expression in leaves increased as compared to optimal light conditions, indicating that plants in suboptimal light conditions have a strong demand for carbohydrates. However, carbohydrates in leaves were markedly lower in suboptimal light conditions compared to optimal light conditions. This resulted in poor flowering of plants in suboptimal light conditions. Post-production flowering relied on the stored leaf carbon, which could be accumulated under optimal light conditions in the greenhouse. These results show that flower opening in azalea relies on carbohydrates imported from leaves and is source-limiting under suboptimal light conditions. PMID:26973689

  10. Suboptimal Light Conditions Influence Source-Sink Metabolism during Flowering.

    PubMed

    Christiaens, Annelies; De Keyser, Ellen; Pauwels, Els; De Riek, Jan; Gobin, Bruno; Van Labeke, Marie-Christine

    2016-01-01

    Reliance on carbohydrates during flower forcing was investigated in one early and one late flowering cultivar of azalea (Rhododendron simsii hybrids). Carbohydrate accumulation, invertase activity, and expression of a purported sucrose synthase gene (RsSUS) was monitored during flower forcing under suboptimal (natural) and optimal (supplemental light) light conditions, after a cold treatment (7°C + dark) to break flower bud dormancy. Post-production sucrose metabolism and flowering quality was also assessed. Glucose and fructose concentrations and invertase activity increased in petals during flowering, while sucrose decreased. In suboptimal light conditions RsSUS expression in leaves increased as compared to optimal light conditions, indicating that plants in suboptimal light conditions have a strong demand for carbohydrates. However, carbohydrates in leaves were markedly lower in suboptimal light conditions compared to optimal light conditions. This resulted in poor flowering of plants in suboptimal light conditions. Post-production flowering relied on the stored leaf carbon, which could be accumulated under optimal light conditions in the greenhouse. These results show that flower opening in azalea relies on carbohydrates imported from leaves and is source-limiting under suboptimal light conditions. PMID:26973689

  11. Picosecond supercontinuum light source for stroboscopic white-light interferometry with freely adjustable pulse repetition rate.

    PubMed

    Novotny, Steffen; Durairaj, Vasuki; Shavrin, Igor; Lipiäinen, Lauri; Kokkonen, Kimmo; Kaivola, Matti; Ludvigsen, Hanne

    2014-06-01

    We present a picosecond supercontinuum light source designed for stroboscopic white-light interferometry. This source offers a potential for high-resolution characterization of vibrational fields in electromechanical components with frequencies up to the GHz range. The light source concept combines a gain-switched laser diode, the output of which is amplified in a two-stage fiber amplifier, with supercontinuum generation in a microstructured optical fiber. Implemented in our white-light interferometer setup, optical pulses with optimized spectral properties and below 310 ps duration are used for stroboscopic illumination at freely adjustable repetition rates. The performance of the source is demonstrated by characterizing the surface vibration field of a square-plate silicon MEMS resonator at 3.37 MHz. A minimum detectable vibration amplitude of less than 100 pm is reached.

  12. Compact galactic X-ray sources; Proceedings of the Workshop, Washington, D.C., April 20, 21, 1979

    NASA Technical Reports Server (NTRS)

    Lamb, F. (Editor); Pines, D.

    1979-01-01

    The current status and future prospects regarding the study of compact galactic X-ray sources are reviewed; key questions addressable by X-ray observations are outlined, and various proposed types of missions are evaluated in terms of their ability to address these questions. Subjects discussed include degenerate dwarfs and cataclysmic variables, bursters, neutron stars, black holes, and erratic variables, transients, and patrol programs. Specific topics include future X-ray observations of magnetic binaries, the thermonuclear-flash model for X-ray burst sources, neutron star X-ray sources, prospects for experimental research on black holes in binary systems, and compact X-ray source observations after Explorer with the LAMAR.

  13. Theoretical investigation of a tunable free-electron light source

    SciTech Connect

    Liu Shenggang; Hu Min; Zhang Yaxin; Liu Weihao; Zhang Ping; Zhou Jun

    2011-06-15

    The concept and experimental results of a light source given in a recent paper by Adamo et al.[Phys. Rev. Lett. 103, 113901 (2009)] are very interesting and attractive. Our paper presents detailed theoretical investigations on such a light source, and our results confirm that the mechanism of the light radiation experimentally detected in the published paper is a special kind of diffraction radiation in a waveguide with nanoscale periodic structure excited by an electron beam. The numerical calculations based on our theory and digital simulations agree well with the experimental results. This mechanism of diffraction radiation is of significance in physics and optics, and may bring good opportunities for the generation of electromagnetic waves from terahertz to light frequency regimes.

  14. Electrodeless lighting RF power source development. Final report

    SciTech Connect

    1996-08-30

    An efficient, solid state RF power source has been developed on this NICE project for exciting low power electrodeless lamp bulbs. This project takes full advantage of concurrent advances in electrodeless lamp technology. Electrodeless lamp lighting systems utilizing the sulfur based bulb type developed by Fusion Lighting, Inc., is an emerging technology which is based on generating light in a confined plasma created and sustained by RF excitation. The bulb for such a lamp is filled with a particular element and inert gas at low pressure when cold. RF power from the RF source creates a plasma within the bulb which reaches temperatures approaching those of high pressure discharge lamp plasmas. At these temperatures the plasma radiates substantial visible light with a spectrum similar to sunlight.

  15. Data format standard for sharing light source measurements

    NASA Astrophysics Data System (ADS)

    Gregory, G. Groot; Ashdown, Ian; Brandenburg, Willi; Chabaud, Dominique; Dross, Oliver; Gangadhara, Sanjay; Garcia, Kevin; Gauvin, Michael; Hansen, Dirk; Haraguchi, Kei; Hasna, Günther; Jiao, Jianzhong; Kelley, Ryan; Koshel, John; Muschaweck, Julius

    2013-09-01

    Optical design requires accurate characterization of light sources for computer aided design (CAD) software. Various methods have been used to model sources, from accurate physical models to measurement of light output. It has become common practice for designers to include measured source data for design simulations. Typically, a measured source will contain rays which sample the output distribution of the source. The ray data must then be exported to various formats suitable for import into optical analysis or design software. Source manufacturers are also making measurements of their products and supplying CAD models along with ray data sets for designers. The increasing availability of data has been beneficial to the design community but has caused a large expansion in storage needs for the source manufacturers since each software program uses a unique format to describe the source distribution. In 2012, the Illuminating Engineering Society (IES) formed a working group to understand the data requirements for ray data and recommend a standard file format. The working group included representatives from software companies supplying the analysis and design tools, source measurement companies providing metrology, source manufacturers creating the data and users from the design community. Within one year the working group proposed a file format which was recently approved by the IES for publication as TM-25. This paper will discuss the process used to define the proposed format, highlight some of the significant decisions leading to the format and list the data to be included in the first version of the standard.

  16. Structural biology research at the National Synchroton Light Source

    SciTech Connect

    1996-05-01

    The world`s foremost facility for scientific research using x-rays and ultraviolet and infrared radiation is operated by the national synchrotron Light Source Department. This year alone, a total of 2200 guest researchers performed experiments at the world`s largest source of synchrotron light. Researchers are trying to define the three- dimensional structures of biological macromolecules to create a map of life, a guide for exploring the biological and chemical interactions of the vast variety of molecules found in living organisms. Studies in structural biology may lead to new insights into how biological systems are formed and nourished, how they survive and grow, how they are damaged and die. This document discusses some the the structural biological research done at the National Synchrotron Light Source.

  17. Development of Compact Electron Cyclotron Resonance Ion Source with Permanent Magnets for High-Energy Carbon-Ion Therapy

    SciTech Connect

    Muramatsu, M.; Kitagawa, A.; Iwata, Y.; Hojo, S.; Sakamoto, Y.; Sato, S.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Ueda, T.; Miyazaki, H.; Drentje, A. G.

    2008-11-03

    Heavy-ion cancer treatment is being carried out at the Heavy Ion Medical Accelerator in Chiba (HIMAC) with 140 to 400 MeV/n carbon ions at National Institute of Radiological Sciences (NIRS) since 1994. At NIRS, more than 4,000 patients have been treated, and the clinical efficiency of carbon ion radiotherapy has been demonstrated for many diseases. A more compact accelerator facility for cancer therapy is now being constricted at the Gunma University. In order to reduce the size of the injector (consists of ion source, low-energy beam transport and post-accelerator Linac include these power supply and cooling system), an ion source requires production of highly charged carbon ions, lower electric power for easy installation of the source on a high-voltage platform, long lifetime and easy operation. A compact Electron Cyclotron Resonance Ion Source (ECRIS) with all permanent magnets is one of the best types for this purpose. An ECRIS has advantage for production of highly charged ions. A permanent magnet is suitable for reduce the electric power and cooling system. For this, a 10 GHz compact ECRIS with all permanent magnets (Kei2-source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas-injection side, while the minimum B strength is 0.25 T. These parameters have been optimized for the production of C{sup 4+} based on experience at the 10 GHz NIRS-ECR ion source. The Kei2-source has a diameter of 320 mm and a length of 295 mm. The beam intensity of C{sup 4+} was obtained to be 618 e{mu}A under an extraction voltage of 30 kV. Outline of the heavy ion therapy and development of the compact ion source for new facility are described in this paper.

  18. Does the light source affect the repairability of composite resins?

    PubMed

    Karaman, Emel; Gönülol, Nihan

    2014-01-01

    The aim of this study was to examine the effect of the light source on the microshear bond strength of different composite resins repaired with the same substrate. Thirty cylindrical specimens of each composite resin--Filtek Silorane, Filtek Z550 (3M ESPE), Gradia Direct Anterior (GC), and Aelite Posterior (BISCO)--were prepared and light-cured with a QTH light curing unit (LCU). The specimens were aged by thermal cycling and divided into three subgroups according to the light source used--QTH, LED, or PAC (n = 10). They were repaired with the same substrate and a Clearfil Repair Kit (Kuraray). The specimens were light-cured and aged for 1 week in distilled water at 37 °C. The microshear bond strength and failure modes were assessed. There was no significant difference in the microshear bond strength values among the composite resins, except for the Filtek Silorane group that showed significantly lower bond strength values when polymerized with the PAC unit compared to the QTH or LED unit. In conclusion, previously placed dimethacrylate-based composites can be repaired with different light sources; however, if the composite to be repaired is silorane-based, then using a QTH or LED device may be the best option. PMID:25098825

  19. The Advanced Light Source (ALS) Radiation Safety System. Revised

    SciTech Connect

    Ritchie, A.L.; Oldfather, D.E.; Lindner, A.F.

    1993-08-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL) is a 1.5 Gev synchrotron light source facility consisting of a 120 kev electron gun, 50 Mev linear accelerator, 1.5 Gev booster synchrotron, 200 meter circumference electron storage ring, and many photon beamline transport systems for research. Figure 1. ALS floor plan. Pairs of neutron and gamma radiation monitors are shown as dots numbered from 1 to 12. The Radiation Safety System for the ALS has been designed and built with a primary goal of providing protection against inadvertent personnel exposure to gamma and neutron radiation and, secondarily, to enhance the electrical safety of select magnet power supplies.

  20. Laser wakefield accelerator based light sources: potential applications and requirements

    SciTech Connect

    Albert, F.; Thomas, A. G.; Mangles, S. P.D.; Banerjee, S.; Corde, S.; Flacco, A.; Litos, M.; Neely, D.; Viera, J.; Najmudin, Z.; Bingham, R.; Joshi, C.; Katsouleas, T.

    2015-01-15

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future efforts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefield accelerators for these specific applications.

  1. Electron-beam-pumped VCSEL light source for projection display

    NASA Astrophysics Data System (ADS)

    Tiberi, Michael D.; Kozlovsky, Vladimir I.

    2005-04-01

    An electron beam pumped vertical cavity laser, or an "eVCSEL", has been developed as a low-cost light source for LCOS and DLP based consumer television. 1000 lumens directed towards the spatial light modulator requires a total power of 144 watts for lasers in the three primary colors. This power surplus allows for high screen brightness for rear projection televisions of diagonals greater than 50 inches and eliminates the need for high gain screens with the benefit of larger viewing angles. Because of the high saturation of laser light, a color gamut approaching that of the human visual system is possible, creating superior image reproduction.

  2. Brazilian Synchrotron Light Source: current results and future perspectives

    NASA Astrophysics Data System (ADS)

    Roque da Silva, Antonio Jose

    2013-03-01

    The application of synchrotron radiation in a great variety of fields in general, and condensed matter in particular, has increased steadily worldwide. This, to a large extent, is a result of the availability of the much brighter third-generation light sources, which opened up new experimental techniques. Brazil gave an important contribution to science in Latin America through the development of the necessary technology and the construction of the first synchrotron in the southern hemisphere, still the only one in Latin America. The Laboratório Nacional de Luz Síncrotron - LNLS, operates this installation as an open facility since 1997, having today more than 1300 users yearly. Despite all this success, the current Brazilian light source is a second-generation machine, with relatively low electron energy, high emittance and few straight sections for insertion devices. LNLS is currently engaged in the design and construction of a new, third-generation synchrotron light source. It is being planned to be a state of the art machine, providing tools for cutting edge research that are non existent today in Brazil. In this talk an overview of the status of the current Brazilian light source will be provided, illustrated with some experimental results from users, as well as the future perspectives of the new synchrotron source.

  3. DEVELOPMENT OF A COMPACT PHOTO-INJECTOR WITH RFFOCUSING LENS FOR SHORT PULSE ELECTRON SOURCE APPLICATION

    SciTech Connect

    Grabenhofer, Alexander; Eaton, Douglas W.

    2013-09-01

    For development of compact ultrafast electron source system, we are currently designing a short-pulse RF-gun with RF focusing structure by means of a series of comprehensive modeling analysis processes. EM design of a 2.5 cell resonant cavity with input coupler, acceleration dynamics of photo-emitted electron bunch, EM design of RF-lens with input coupler, and phasespace analysis of focused electron bunch are systematically examined with multi-physics simulators. All the features of the 2.856 GHz cavity geometry were precisely engineered for acceleration energies ranging from 100 keV to 500 keV (safety limited) to be powered by our 5 MW S-band klystron. The klystron (Thales TH2163) and modulator system (ScandiNova K1 turnkey system) were successfully installed and tested. Performance tests of the klystron system show peak output power > 5 MW, as per operation specifications. At the quasi-relativistic energies, the electron source is capable of generating 100fC – 1 pC electron bunch with pulse duration close to 30 fs – 1 ps and transverse size of a few hundred microns. PIC simulations have shown that the electron bunch undergoes fast RF acceleration, rapidly reaching the desired energies, which can be controlled by tuning RF injection phase and input driving power. It has been shown that it is possible to also focus/compress the bunch longitudinally using a RF-lens, which would allow us to control the temporal resolution of the system as well. While our primary analysis has been performed on a 2.5 cell design, we are also looking into half-cell (single cavity) design that is expected to provide the same range of beam energy with a simple configuration.

  4. Development and studies on a compact electron cyclotron resonance plasma source

    NASA Astrophysics Data System (ADS)

    Ganguli, A.; Tarey, R. D.; Arora, N.; Narayanan, R.

    2016-04-01

    It is well known that electron cyclotron resonance (ECR) produced plasmas are efficient, high-density plasma sources and have many industrial applications. The concept of a portable compact ECR plasma source (CEPS) would thus become important from an application point of view. This paper gives details of such a CEPS that is both portable and easily mountable on a chamber of any size. It uses a fully integrated microwave line operating at 2.45 GHz, up to 800 W, cw. The required magnetic field is produced by a set of suitably designed NdFeB ring magnets; the device has an overall length of  ≈60 cm and weighs  ≈14 kg including the permanent magnets. The CEPS was attached to a small experimental chamber to judge its efficacy for plasma production. In the pressure range of 0.5-10 mTorr and microwave power of  ≈400-500 W the experiments indicate that the CEPS is capable of producing high-density plasma (≈9  ×  1011-1012 cm-3) with bulk electron temperature in the range  ≈2-3 eV. In addition, a warm electron population with density and temperature in the range ≈7  ×  108-109 cm-3 and  ≈45-80 eV, respectively has been detected. This warm population plays an important role at high pressures in maintaining the high-density plasma, when plasma flow from the CEPS into the test chamber is strongly affected.

  5. The ARC-EN-CIEL French 4th Generation Light Source

    NASA Astrophysics Data System (ADS)

    Bruni, C.; Couprie, M. E.; Chubar, O.; Loulergue, A.; Nahon, L.; Carré, B.; Garzella, D.; Labat, M.; Lambert, G.; Monot, P.; Jablonka, M.; Méot, F.; Mosnier, A.; Marquès, J. R.; Ortega, J. M.; Nutarelli, D.

    2007-01-01

    ARC-EN-CIEL (Accelerator-Radiation Complex for Enhanced Coherent Intense Extended Light) proposal is based on a CW 1 GeV superconducting linear accelerator delivering high charge, subpicosecond, low emittance electron bunches with a high repetition rate (1 kHz). The FEL uses High Harmonics Generation in gases in a High Gain Harmonic Generation scheme, leading to a rather compact solution. The radiation extends down to 0.8 nm with the non-linear harmonics and reproduces the good longitudinal and transverse coherence of the harmonics generated in gas. Optional beam loops, foreseen to increase the beam current or the energy, will accommodate infrared CSR source, femtosecond undulator sources in the VUV and X-ray ranges, and a FEL oscillator in the 10 nm range. An important synergy is expected between accelerator and laser communities, in particular for electron plasma acceleration tests.

  6. Coated Particles Fuel Compact-General Purpose Heat Source for Advanced Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Tournier, Jean-Michel

    2003-01-01

    Coated Particles Fuel Compacts (CPFC) have recently been shown to offer performance advantage for use in Radioisotope Heater Units (RHUs) and design flexibility for integrating at high thermal efficiency with Stirling Engine converters, currently being considered for 100 We. Advanced Radioisotope Power Systems (ARPS). The particles in the compact consist of 238PuO2 fuel kernels with 5-μm thick PyC inner coating and a strong ZrC outer coating, whose thickness depends on the maximum fuel temperature during reentry, the fuel kernel diameter, and the fraction of helium gas released from the kernels and fully contained by the ZrC coating. In addition to containing the helium generated by radioactive decay of 238Pu for up to 10 years before launch and 10-15 years mission lifetime, the kernels are intentionally sized (>= 300 μm in diameter) to prevent any adverse radiological effects on reentry. This paper investigates the advantage of replacing the four iridium-clad 238PuO2 fuel pellets, the two floating graphite membranes, and the two graphite impact shells in current State-Of-The-Art (SOA) General Purpose Heat Source (GPHS) with CPFC. The total mass, thermal power, and specific power of the CPFC-GPHS are calculated as functions of the helium release fraction from the fuel kernels and maximum fuel temperature during reentry from 1500 K to 2400 K. For the same total mass and volume as SOA GPHS, the generated thermal power by single-size particles CPFC-GPHS is 260 W at Beginning-Of-Mission (BOM), versus 231 W for the GPHS. For an additional 10% increase in total mass, the CPFC-GPHS could generate 340 W BOM; 48% higher than SOA GPHS. The corresponding specific thermal power is 214 W/kg, versus 160 W/kg for SOA GPHS; a 34% increase. Therefore, for the same thermal power, the CPFC-GPHS is lighter than SOA GPHS, while it uses the same amount of 238PuO2 fuel and same aeroshell. For the same helium release fraction and fuel temperature, binary-size particles CPFC-GPHS could

  7. High efficiency light source using solid-state emitter and down-conversion material

    DOEpatents

    Narendran, Nadarajah; Gu, Yimin; Freyssinier, Jean Paul

    2010-10-26

    A light emitting apparatus includes a source of light for emitting light; a down conversion material receiving the emitted light, and converting the emitted light into transmitted light and backward transmitted light; and an optic device configured to receive the backward transmitted light and transfer the backward transmitted light outside of the optic device. The source of light is a semiconductor light emitting diode, a laser diode (LD), or a resonant cavity light emitting diode (RCLED). The down conversion material includes one of phosphor or other material for absorbing light in one spectral region and emitting light in another spectral region. The optic device, or lens, includes light transmissive material.

  8. Shifted excitation resonance Raman difference spectroscopy using a microsystem light source at 488 nm

    NASA Astrophysics Data System (ADS)

    Maiwald, M.; Sowoidnich, K.; Schmidt, H.; Sumpf, B.; Erbert, G.; Kronfeldt, H.-D.

    2010-04-01

    Experimental results in shifted excitation resonance Raman difference spectroscopy (SERRDS) at 488 nm will be presented. A novel compact diode laser system was used as excitation light source. The device is based on a distributed feedback (DFB) diode laser as a pump light source and a nonlinear frequency doubling using a periodically poled lithium niobate (PPLN) waveguide crystal. All elements including micro-optics are fixed on a micro-optical bench with a footprint of 25 mm × 5 mm. An easy temperature management of the DFB laser and the crystal was used for wavelength tuning. The second harmonic generation (SHG) provides an additional suppression of the spontaneous emission. Raman spectra of polystyrene demonstrate that no laser bandpass filter is needed for the Raman experiments. Resonance-Raman spectra of the restricted food colorant Tartrazine (FD&C Yellow 5, E 102) in distilled water excited at 488 nm demonstrate the suitability of this light source for SERRDS. A limit of detection (LOD) of 0.4 μmol.l-1 of E102 enables SERRDS at 488 nm for trace detection in e.g. food safety control as an appropriate contactless spectroscopic technique.

  9. Broadband SLED-based light source (BeST-SLEDTM) and spectrometer

    NASA Astrophysics Data System (ADS)

    Yadid-Pecht, Orly; Dattner, Yonathan

    2016-03-01

    A small footprint, low power, cost effective single mode fiber coupled broadband light source and spectrometer is presented. It is based on Super Luminescent Diode (SLED) devices and a compact design enables coverage of the 1250 nm-1750 nm region with a total optical power of 50 mW at the output of the fiber. This Broad Spectrum Tunable Super Luminescent (BeST-SLEDTM) light source can operate at temperatures ranging from -40°C to 60°C, and resides in a custom designed 26-pin package. The fiber is a polarization maintaining fiber with a FC/APC connector at the output. Three variations of the BeST-SLEDTM were developed, BEST-SLED™ Bands, BeST-SLEDTM Tunable and BeST-SLEDTM FTNIR. In the Bands version six SLEDs were packaged allowing for one SLED on at a time or any combination of the SLEDs on. In the Tunable version an Acoustic Optical Tunable Filter (AOTF) was integrated into the package allowing the user to select one wavelength at a time to pass into the fiber with resolution of ~1 nm @1550nm. In the FTNIR version, a Silicon Photonic based interferometer (the Nano-SpecTM) was integrated into the package for a Fourier Transform Near Infrared based Spectrometer and light source. The BeST-SLEDTM is being used in process control applications such as steam quality measurements, oil in water, gas composition and air quality monitoring.

  10. Powerful DMD-based light sources with a high throughput virtual slit

    NASA Astrophysics Data System (ADS)

    Hajian, Arsen R.; Gooding, Ed; Gunn, Thomas; Bradbury, Steven

    2016-02-01

    Many DMD-based programmable light sources consist of a white light source and a pair of spectrometers operating in subtractive mode. A DMD between the two spectrometers shapes the delivered spectrum. Since both spectrometers must (1) fit within a small volume, and (2) provide significant spectral resolution, a narrow intermediary slit is required. Another approach is to use a spectrometer designed around a High Throughput Virtual Slit, which enables higher spectral resolution than is achievable with conventional spectroscopy by manipulating the beam profile in pupil space. Conventional imaging spectrograph designs image the entrance slit onto the exit focal plane after dispersing the spectrum. Most often, near 1:1 imaging optics are used in order to optimize both entrance aperture and spectral resolution. This approach limits the spectral resolution to the product of the dispersion and the slit width. Achieving high spectral resolution in a compact instrument necessarily requires a narrow entrance slit, which limits instrumental throughput (étendue). By reshaping the pupil with reflective optics, HTVS-equipped instruments create a tall, narrow image profile at the exit focal plane without altering the NA, typically delivering 5X or better spectral resolution than is achievable with a conventional design. This approach works equally well in DMD-based programmable light sources as in single stage spectrometers. Assuming a 5X improvement in étendue, a 500 W source can be replaced by a 100 W equivalent, creating a cooler, more efficient tunable light source with equal power density over the desired bandwidth without compromising output power.

  11. PREFACE: Diagnostics for electrical discharge light sources: pushing the limits Diagnostics for electrical discharge light sources: pushing the limits

    NASA Astrophysics Data System (ADS)

    Zissis, Georges; Haverlag, Marco

    2010-06-01

    Light sources play an indispensable role in the daily life of any human being. Quality of life, health and urban security related to traffic and crime prevention depend on light and on its quality. In fact, every day approximately 30 billion electric light sources operate worldwide. These electric light sources consume almost 19% of worldwide electricity production. Finding new ways to light lamps is a challenge where the stakes are scientific, technological, economic and environmental. The production of more efficient light sources is a sustainable solution for humanity. There are many opportunities for not only enhancing the efficiency and reliability of lighting systems but also for improving the quality of light as seen by the end user. This is possible through intelligent use of new technologies, deep scientific understanding of the operating principles of light sources and knowledge of the varied human requirements for different types of lighting in different settings. A revolution in the domain of light source technology is on the way: high brightness light emitting diodes arriving in the general lighting market, together with organic LEDs (OLEDs), are producing spectacular advances. However, unlike incandescence, electrical discharge lamps are far from disappearing from the market. In addition, new generations of discharge lamps based on molecular radiators are becoming a reality. There are still many scientific and technological challenges to be raised in this direction. Diagnostics are important for understanding the fundamental mechanisms taking place in the discharge plasma. This understanding is an absolute necessity for system optimization leading to more efficient and high quality light sources. The studied medium is rather complex, but new diagnostic techniques coupled to innovative ideas and powerful tools have been developed in recent years. This cluster issue of seven papers illustrates these efforts. The selected papers cover all domains, from

  12. The effect of light-activation sources on tooth bleaching

    PubMed Central

    Baroudi, Kusai; Hassan, Nadia Aly

    2014-01-01

    Vital bleaching is one of the most requested cosmetic dental procedures asked by patients who seek a more pleasing smile. This procedure consists of carbamide or hydrogen peroxide gel applications that can be applied in-office or by the patient (at-home/overnight bleaching system). Some in-office treatments utilise whitening light with the objective of speeding up the whitening process. The objective of this article is to review and summarise the current literature with regard to the effect of light-activation sources on in-office tooth bleaching. A literature search was conducted using Medline, accessed via the National Library of Medicine Pub Med from 2003 to 2013 searching for articles relating to effectiveness of light activation sources on in-office tooth bleaching. This study found conflicting evidence on whether light truly improve tooth whitening. Other factors such as, type of stain, initial tooth colour and subject age which can influence tooth bleaching outcome were discussed. Conclusions: The use of light activator sources with in-office bleaching treatment of vital teeth did not increase the efficacy of bleaching or accelerate the bleaching. PMID:25298598

  13. A mobile light source for carbon/nitrogen cameras

    NASA Astrophysics Data System (ADS)

    Trower, W. P.; Karev, A. I.; Melekhin, V. N.; Shvedunov, V. I.; Sobenin, N. P.

    1995-05-01

    The pulsed light source for carbon/nitrogen cameras developed to image concealed narcotics/explosives is described. This race-track microtron will produce 40 mA pulses of 70 MeV electrons, have minimal size and weight, and maximal ruggedness and reliability, so that it can be transported on a truck.

  14. Prospects for Next-Generation Storage Ring Light Sources

    NASA Astrophysics Data System (ADS)

    Borland, Michael

    2015-04-01

    Storage ring light sources are among the most productive large-scale scientific user facilities in existence, owing to a combination of broad tunability, mature technology, high capacity, remarkable reliability, and high performance. The most commonly-used performance measure is the photon beam brightness, which is proportional to the flux per unit volume in six-dimensional phase space. The brightness is generally maximized by minimizing the transverse phase space area, or emittance, of the electron beam that generates the photons. Since the 1990's, most storage ring light sources have used a variant of the Chasman-Green, or double-bend-achromat (DBA), lattice, which produces transverse emittances of several nanometers. Presently, several light sources are under construction based on more challenging multi-bend-achromat (MBA) concepts, which promise an order of magnitude reduction in the emittance. Somewhat larger reductions are contemplated for upgrades of the largest facilities. This talk briefly surveys the relevant concepts in light source design, then explains both the mechanism and challenge of achieving next-generation emittances. Other factors, such as improved radiation-emitting devices, are also described. Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.

  15. Research by industry at the National Synchrotron Light Source

    SciTech Connect

    1995-05-01

    The world`s foremost facility for research using x-rays and ultraviolet and infrared radiation, is operated by the National Synchrotron Light Source dept. This pamphlet described the participating research teams that built most of the beam lines, various techniques for studying materials, treatment of materials, and various industrial research (catalysis, pharmaceuticals, etc.).

  16. The light curve of a transient X-ray source

    NASA Technical Reports Server (NTRS)

    Kaluzienski, L. J.; Holt, S. S.; Boldt, E. A.; Serlemitsos, P. J.; Eadie, G.; Pounds, K. A.; Ricketts, M. J.; Watson, M.

    1975-01-01

    The Ariel-5 satellite has monitored the X-ray light curve of A1524-62 almost continuously from 40 days prior to maximum light until its disappearance below the effective experimental sensitivity. The source exhibited maximum light on Dec. 4, 1974, at a level of 0.9 the apparent magnitude of the Crab Nebula in the energy band 3-6 keV. Although similar to previously reported transient sources with a decay time constant of about 2 months, the source exhibited an extended, variable preflare on-state of about 1 month at a level of greater than 0.1 maximum light. The four bright (greater than 0.2 of the Crab Nebula) transient sources observed during the first half-year of Ariel-5 operation are indicative of a galactic disk distribution, a luminosity at maximum in excess of 10 to the 37-th power ergs/sec, a frequency of occurrence which may be as high as 100/yr, and a median decay time which is less than 1 month.

  17. Status of the National Synchrotron Light Source project

    SciTech Connect

    Heese, R.N.

    1981-01-01

    The National Synchrotron Light Source is in its final stages of construction, and as the turn-on time for the 700 MeV vuv storage ring draws near, an overview of the project is presented. Emphasis is placed on the linac and booster synchrotron performance and the status of major subsystems.

  18. Enabling instrumentation and technology for 21st century light sources

    SciTech Connect

    Byrd, J.M.; Shea, T.J.; Denes, P.; Siddons, P.; Attwood, D.; Kaertner, F.; Moog, L.; Li, Y.; Sakdinawat, A.; Schlueter, R.

    2010-06-01

    We present the summary from the Accelerator Instrumentation and Technology working group, one of the five working groups that participated in the BES-sponsored Workshop on Accelerator Physics of Future Light Sources held in Gaithersburg, MD September 15-17, 2009. We describe progress and potential in three areas: attosecond instrumentation, photon detectors for user experiments, and insertion devices.

  19. Advanced Light Source Activity Report 1997/1998

    SciTech Connect

    Greiner, Annette

    1999-03-01

    This Lawrence Berkeley National Laboratory, Advanced Light Source (ALS) activity report for 1997/98 discusses the following topics: Introduction and Overview; Science Highlights; Facility Report; Special Events; ALS Advisory Panels 1997/98; ALS Staff 1997/98 and Facts and Figures for the year.

  20. Measurement of storage ring motion at the advanced light source

    SciTech Connect

    Krebs, G.F.

    1997-05-01

    The mechanical stability of the Advanced Light Source storage ring is examined over a period of 1.5 years from the point of view of floor motion. The storage ring beam position monitor stability is examined under various operating conditions.

  1. Superconducting RF Linac Technology for ERL Light Sources

    SciTech Connect

    Tennant, Chris

    2005-08-01

    Energy Recovering Linacs (ERLs) offer an attractive alternative as drivers for light sources as they combine the desirable characteristics of both storage rings (high efficiency) and linear accelerators (superior beam quality). Using superconducting RF technology allows ERLs to operate more efficiently because of the inherent characteristics of SRF linacs, namely that they are high gradient-low impedance structures and their ability to operate in the long pulse or CW regime. We present an overview of the physics challenges encountered in the design and operation of ERL based light sources with particular emphasis on those issues related to SRF technology. These challenges include maximizing a cavity's Qo to increase cryogenic efficiency, maintaining control of the cavity field in the presence of the highest feasible loaded Q and providing adequate damping of the higher-order modes (HOMs). If not sufficiently damped, dipole HOMs can drive the multipass beam breakup (BBU) instability which ERLs are particularly susceptible to. Another challenge involves efficiently extracting the potentially large amounts of HOM power that are generated when a bunch traverses the SRF cavities and which may extend over a high range of frequencies. We present experimental data from the Jefferson Lab FEL Upgrade, a 10 mA ERL light source presently in operation, aimed at addressing some of these issues. We conclude with an outlook towards the future of ERL based light sources.

  2. Compact environmental spectroscopy using advanced semiconductor light-emitting diodes and lasers

    SciTech Connect

    Fritz, I.J.; Klem, J.F.; Hafich, M.J.

    1997-04-01

    This report summarizes research completed under a Laboratory Directed Research and Development program funded for part of FY94, FY95 and FY96. The main goals were (1) to develop novel, compound-semiconductor based optical sources to enable field-based detection of environmentally important chemical species using miniaturized, low-power, rugged, moderate cost spectroscopic equipment, and (2) to demonstrate the utility of near-infrared spectroscopy to quantitatively measure contaminants. Potential applications would include monitoring process and effluent streams for volatile organic compound detection and sensing head-space gasses in storage vessels for waste management. Sensing is based on absorption in the 1.3-1.9 {mu}m band from overtones of the C-H, N-H and O-H stretch resonances. We describe work in developing novel broadband light-emitting diodes emitting over the entire 1.4-1.9 {mu}m wavelength range, first using InGaAs quantum wells, and second using a novel technique for growing digital-alloy materials in the InAlGaAs material system. Next we demonstrate the utility of near-infrared spectroscopy for quantitatively determining contamination of soil by motor oil. Finally we discuss the separability of different classes of organic compounds using near-infrared spectroscopic techniques.

  3. A compact Airy beam light sheet microscope with a tilted cylindrical lens.

    PubMed

    Yang, Zhengyi; Prokopas, Martynas; Nylk, Jonathan; Coll-Lladó, Clara; Gunn-Moore, Frank J; Ferrier, David E K; Vettenburg, Tom; Dholakia, Kishan

    2014-10-01

    Light-sheet imaging is rapidly gaining importance for imaging intact biological specimens. Many of the latest innovations rely on the propagation-invariant Bessel or Airy beams to form an extended light sheet to provide high resolution across a large field of view. Shaping light to realize propagation-invariant beams often relies on complex programming of spatial light modulators or specialized, custom made, optical elements. Here we present a straightforward and low-cost modification to the traditional light-sheet setup, based on the open-access light-sheet microscope OpenSPIM, to achieve Airy light-sheet illumination. This brings wide field single-photon light-sheet imaging to a broader range of endusers. Fluorescent microspheres embedded in agarose and a zebrafish larva were imaged to demonstrate how such a microscope can have a minimal footprint and cost without compromising on imaging quality.

  4. A compact Airy beam light sheet microscope with a tilted cylindrical lens

    PubMed Central

    Yang, Zhengyi; Prokopas, Martynas; Nylk, Jonathan; Coll-Lladó, Clara; Gunn-Moore, Frank J.; Ferrier, David E. K.; Vettenburg, Tom; Dholakia, Kishan

    2014-01-01

    Light-sheet imaging is rapidly gaining importance for imaging intact biological specimens. Many of the latest innovations rely on the propagation-invariant Bessel or Airy beams to form an extended light sheet to provide high resolution across a large field of view. Shaping light to realize propagation-invariant beams often relies on complex programming of spatial light modulators or specialized, custom made, optical elements. Here we present a straightforward and low-cost modification to the traditional light-sheet setup, based on the open-access light-sheet microscope OpenSPIM, to achieve Airy light-sheet illumination. This brings wide field single-photon light-sheet imaging to a broader range of endusers. Fluorescent microspheres embedded in agarose and a zebrafish larva were imaged to demonstrate how such a microscope can have a minimal footprint and cost without compromising on imaging quality. PMID:25360362

  5. A compact Airy beam light sheet microscope with a tilted cylindrical lens.

    PubMed

    Yang, Zhengyi; Prokopas, Martynas; Nylk, Jonathan; Coll-Lladó, Clara; Gunn-Moore, Frank J; Ferrier, David E K; Vettenburg, Tom; Dholakia, Kishan

    2014-10-01

    Light-sheet imaging is rapidly gaining importance for imaging intact biological specimens. Many of the latest innovations rely on the propagation-invariant Bessel or Airy beams to form an extended light sheet to provide high resolution across a large field of view. Shaping light to realize propagation-invariant beams often relies on complex programming of spatial light modulators or specialized, custom made, optical elements. Here we present a straightforward and low-cost modification to the traditional light-sheet setup, based on the open-access light-sheet microscope OpenSPIM, to achieve Airy light-sheet illumination. This brings wide field single-photon light-sheet imaging to a broader range of endusers. Fluorescent microspheres embedded in agarose and a zebrafish larva were imaged to demonstrate how such a microscope can have a minimal footprint and cost without compromising on imaging quality. PMID:25360362

  6. Towards monolithic integration of germanium light sources on silicon chips

    NASA Astrophysics Data System (ADS)

    Saito, Shinichi; Zaher Al-Attili, Abdelrahman; Oda, Katsuya; Ishikawa, Yasuhiko

    2016-04-01

    Germanium (Ge) is a group-IV indirect band gap semiconductor, and therefore bulk Ge cannot emit light efficiently. However, the direct band gap energy is close to the indirect one, and significant engineering efforts are being made to convert Ge into an efficient gain material monolithically integrated on a Si chip. In this article, we will review the engineering challenges of developing Ge light sources fabricated using nano-fabrication technologies compatible with complementary metal-oxide-semiconductor processes. In particular, we review recent progress in applying high-tensile strain to Ge to reduce the direct band gap. Another important technique is doping Ge with donor impurities to fill the indirect band gap valleys in the conduction band. Realization of carrier confinement structures and suitable optical cavities will be discussed. Finally, we will discuss possible applications of Ge light sources in potential photonics-electronics convergent systems.

  7. Compact Short-Pulsed Electron Linac Based Neutron Sources for Precise Nuclear Material Analysis

    NASA Astrophysics Data System (ADS)

    Uesaka, M.; Tagi, K.; Matsuyama, D.; Fujiwara, T.; Dobashi, K.; Yamamoto, M.; Harada, H.

    2015-10-01

    An X-band (11.424GHz) electron linac as a neutron source for nuclear data study for the melted fuel debris analysis and nuclear security in Fukushima is under development. Originally we developed the linac for Compton scattering X-ray source. Quantitative material analysis and forensics for nuclear security will start several years later after the safe settlement of the accident is established. For the purpose, we should now accumulate more precise nuclear data of U, Pu, etc., especially in epithermal (0.1-10 eV) neutrons. Therefore, we have decided to modify and install the linac in the core space of the experimental nuclear reactor "Yayoi" which is now under the decommission procedure. Due to the compactness of the X-band linac, an electron gun, accelerating tube and other components can be installed in a small space in the core. First we plan to perform the time-of-flight (TOF) transmission measurement for study of total cross sections of the nuclei for 0.1-10 eV energy neutrons. Therefore, if we adopt a TOF line of less than 10m, the o-pulse length of generated neutrons should be shorter than 100 ns. Electronenergy, o-pulse length, power, and neutron yield are ~30 MeV, 100 ns - 1 micros, ~0.4 kW, and ~1011 n/s (~103 n/cm2/s at samples), respectively. Optimization of the design of a neutron target (Ta, W, 238U), TOF line and neutron detector (Ce:LiCAF) of high sensitivity and fast response is underway. We are upgrading the electron gun and a buncher to realize higher current and beam power with a reasonable beam size in order to avoid damage of the neutron target. Although the neutron flux is limited in case of the X-band electron linac based source, we take advantage of its short pulse aspect and availability for nuclear data measurement with a short TOF system. First, we form a tentative configuration in the current experimental room for Compton scattering in 2014. Then, after the decommissioning has been finished, we move it to the "Yayoi" room and perform

  8. The Materials Science beamline upgrade at the Swiss Light Source

    PubMed Central

    Willmott, P. R.; Meister, D.; Leake, S. J.; Lange, M.; Bergamaschi, A.; Böge, M.; Calvi, M.; Cancellieri, C.; Casati, N.; Cervellino, A.; Chen, Q.; David, C.; Flechsig, U.; Gozzo, F.; Henrich, B.; Jäggi-Spielmann, S.; Jakob, B.; Kalichava, I.; Karvinen, P.; Krempasky, J.; Lüdeke, A.; Lüscher, R.; Maag, S.; Quitmann, C.; Reinle-Schmitt, M. L.; Schmidt, T.; Schmitt, B.; Streun, A.; Vartiainen, I.; Vitins, M.; Wang, X.; Wullschleger, R.

    2013-01-01

    The Materials Science beamline at the Swiss Light Source has been operational since 2001. In late 2010, the original wiggler source was replaced with a novel insertion device, which allows unprecedented access to high photon energies from an undulator installed in a medium-energy storage ring. In order to best exploit the increased brilliance of this new source, the entire front-end and optics had to be redesigned. In this work, the upgrade of the beamline is described in detail. The tone is didactic, from which it is hoped the reader can adapt the concepts and ideas to his or her needs. PMID:23955029

  9. Improving the Efficiency of Solid State Light Sources

    SciTech Connect

    Joanna McKittrick

    2003-03-31

    This proposal addresses the national need to develop a high efficiency light source for general illumination applications. The goal is to perform research that would lead to the fabrication of a unique solid state, white-emitting light source. This source is based on an InGaN/GaN UV-emitting chip that activates a luminescent material (phosphor) to produce white light. White-light LEDs are commercially available which use UV from a GaN chip to excite a phosphor suspended in epoxy around the chip. Currently, these devices are relatively inefficient. This research will target one technical barrier that presently limits the efficiency of GaN based devices. Improvements in efficiencies will be achieved by improving the internal conversion efficiency of the LED die, by improving the coupling between the die and phosphor(s) to reduce losses at the surfaces, and by selecting phosphors to maximize the emissions from the LEDs in conversion to white light. The UCSD research team proposes for this project to develop new phosphors that have high quantum efficiencies that can be activated by the UV-blue (360-410 nm) light emitted by the GaN device. The main goal for the UCSD team was to develop new phosphor materials with a very specific property: phosphors that could be excited at long UV-wavelengths ({lambda}=350-410 nm). The photoluminescence of these new phosphors must be activated with photons emitted from GaN based dies. The GaN diodes can be designed to emit UV-light in the same range ({lambda}=350-410 nm). A second objective, which is also very important, is to search for alternate methods to fabricate these phosphors with special emphasis in saving energy and time and reduce pollution.

  10. The influence of diffuse scattered light. II. Observations of galaxy haloes and thick discs and hosts of blue compact galaxies

    NASA Astrophysics Data System (ADS)

    Sandin, Christer

    2015-05-01

    Studies of deep photometry of galaxies have presented discoveries of excess light in surface-brightness and colour profiles at large radii in the form of diffuse faint haloes and thick discs. In a majority of the cases, it has seemed necessary to use exotic stellar populations or alternative physical solutions to explain the excess. Few studies have carefully scrutinized the role of scattered light in this context. I explore the influence of scattered light on ground-based observations of haloes and thick discs around edge-on galaxies, haloes around face-on disc galaxies, host galaxies around blue compact galaxies (BCGs), and haloes around elliptical galaxies. Surface-brightness structures of all considered types of galaxies are modelled and analysed to compare scattered-light haloes and thick discs with measurements. I simulate the influence of scattered light and accurate sky subtraction on simplified Sérsic-type and face-on disc galaxy models. All galaxy models are convolved with both lower-limit and brighter point spread functions (PSFs); for a few galaxies it was possible to use dedicated PSFs. The results show bright scattered-light haloes and high amounts of red excess at large radii and faint surface brightnesses for nearly all types of galaxies; exceptions are the largest elliptical-type galaxies where the influence of scattered light is smaller. Studies have underestimated the role of scattered light to explain their surface-brightness profiles. My analysis shows surface-brightness profiles that include scattered light that are very similar to and overlap measurements at all radii. The derivation of physical properties of haloes, thick discs, and BCG hosts from diffuse data is misleading since accurate and radially extended PSFs are non-existent. Significantly improved analyses that include new measurements of PSFs are required to study diffuse faint structures further.

  11. DEVELOPMENT OF A PRECISION TUNABLE GAMMA-RAY SOURCE DRIVEN BY A COMPACT X-BAND LINAC

    SciTech Connect

    Hartemann, F V; Albert, F; Anderson, G G; Anderson, S G; Bayramian, A J; Betts, S M; Chu, T S; Cross, R R; Ebbers, C A; Fisher, S E; Gibson, D J; Ladran, A S; Messerly, M J; Semenov, V A; Shverdin, M Y; Siders, C W; McNabb, D P; Barty, C J; Vlieks, A E; Jongewaard, E N; Tantawi, S G

    2009-04-30

    A precision, tunable gamma-ray source driven by a compact, high-gradient X-band linac is currently under development at LLNL. High-brightness, relativistic electron bunches produced by the linac interact with a Joule-class, 10 ps laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. The source will be used to excite nuclear resonance fluorescence lines in various isotopes; applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented.

  12. Lithography imaging control by enhanced monitoring of light source performance

    NASA Astrophysics Data System (ADS)

    Alagna, Paolo; Zurita, Omar; Lalovic, Ivan; Seong, Nakgeuon; Rechsteiner, Gregory; Thornes, Joshua; D'havé, Koen; Van Look, Lieve; Bekaert, Joost

    2013-04-01

    Reducing lithography pattern variability has become a critical enabler of ArF immersion scaling and is required to ensure consistent lithography process yield for sub-30nm device technologies. As DUV multi-patterning requirements continue to shrink, it is imperative that all sources of lithography variability are controlled throughout the product life-cycle, from technology development to high volume manufacturing. Recent developments of new ArF light-source metrology and monitoring capabilities have been introduced in order to improve lithography patterning control.[1] These technologies enable performance monitoring of new light-source properties, relating to illumination stability, and enable new reporting and analysis of in-line performance.

  13. Performance characteristics of white light sources consisting of multiple light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Li, Yun-Li; Shah, Jay M.; Leung, P.-H.; Gessmann, Thomas; Schubert, E. F.

    2004-01-01

    The performance characteristics of white light sources based on a multiple-LED approach, in particular dichromatic and trichromatic sources are analyzed in detail. Figures of merit such as the luminous efficacy, color temperature, and color rendering capabilities are provided for a wide range of primary emission wavelengths. Spectral power density functions of LEDs are assumed to be thermally and inhomogeneously broadened to a full width at half maximum of several kT, in agreement with experimental results. A gaussian line shape is assumed for each of the emission bands. It is shown that multi-LED white light sources have the potential for luminous efficacies greater than 400 lm/W (dichromatic source) and color rendering indices of greater than 90 (trichromatic source). Contour maps for the color rendering indices and luminous efficacies versus three wavelengths are given.

  14. Light-pollution model for cloudy and cloudless night skies with ground-based light sources.

    PubMed

    Kocifaj, Miroslav

    2007-05-20

    The scalable theoretical model of light pollution for ground sources is presented. The model is successfully employed for simulation of angular behavior of the spectral and integral sky radiance and/or luminance during nighttime. There is no restriction on the number of ground-based light sources or on the spatial distribution of these sources in the vicinity of the measuring point (i.e., both distances and azimuth angles of the light sources are configurable). The model is applicable for real finite-dimensional surface sources with defined spectral and angular radiating properties contrary to frequently used point-source approximations. The influence of the atmosphere on the transmitted radiation is formulated in terms of aerosol and molecular optical properties. Altitude and spectral reflectance of a cloud layer are the main factors introduced for simulation of cloudy and/or overcast conditions. The derived equations are translated into numerically fast code, and it is possible to repeat the entire set of calculations in real time. The parametric character of the model enables its efficient usage by illuminating engineers and/or astronomers in the study of various light-pollution situations. Some examples of numerical runs in the form of graphical results are presented. PMID:17514252

  15. Relativistic blast-wave model for the rapid flux variations of AO 0235+164 and other compact radio sources

    NASA Technical Reports Server (NTRS)

    Marscher, A. P.

    1978-01-01

    A relativistic blast-wave version of a signal-screen model is developed which can adequately explain the details of the flux-density and structural variations of compact extragalactic radio sources. The relativistic motion implied by flux variations is analyzed with respect to the synchrotron spectrum of the BL Lac object AO 0235+164 observed during outbursts, and a signal-screen model for rapidly expanding shells produced by ultrarelativistic blast waves is examined. The approximate observed structure of the blast wave at three stages in its evolution is illustrated, each stage is described, and the model is applied to the flux density outburst in AO 0235+164 observed in late 1975. The results show that a relativistic blast-wave model can in general reproduce the main features of the observed flux variations in compact sources. Some problems with the proposed model are briefly discussed.

  16. Towards novel compact laser sources for non-invasive diagnostics and treatment

    NASA Astrophysics Data System (ADS)

    Rafailov, Edik U.; Litvinova, Karina S.; Sokolovski, Sergei G.

    2015-08-01

    An important field of application of lasers is biomedical optics. Here, they offer great utility for diagnosis, therapy and surgery. For the development of novel methods of laser-based biomedical diagnostics careful study of light propagation in biological tissues is necessary to enhance our understanding of the optical measurements undertaken, increase research and development capacity and the diagnostic reliability of optical technologies. Ultimately, fulfilling these requirements will increase uptake in clinical applications of laser based diagnostics and therapeutics. To address these challenges informative biomarkers relevant to the biological and physiological function or disease state of the organism must be selected. These indicators are the results of the analysis of tissues and cells, such as blood. For non-invasive diagnostics peripheral blood, cells and tissue can potentially provide comprehensive information on the condition of the human organism. A detailed study of the light scattering and absorption characteristics can quickly detect physiological and morphological changes in the cells due to thermal, chemical, antibiotic treatments, etc [1-5]. The selection of a laser source to study the structure of biological particles also benefits from the fact that gross pathological changes are not induced and diagnostics make effective use of the monochromatic directional coherence properties of laser radiation.

  17. Developing electron beam bunching technology for improving light sources

    SciTech Connect

    Carlsten, B.E.; Chan, K.C.D.; Feldman, D.W.

    1997-08-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to develop a new electron bunch compression technology, experimentally demonstrate subpicosecond compression of bunches with charges on the order of 1 nC, and to theoretically investigate fundamental limitations to electron bunch compression. All of these goals were achieved, and in addition, the compression system built for this project was used to generate 22 nm light in a plasma-radiator light source.

  18. High power visible light emitting diodes as pulsed excitation sources for biomedical photoacoustics.

    PubMed

    Allen, Thomas J; Beard, Paul C

    2016-04-01

    The use of visible light emitting diodes (LEDs) as an alternative to Q-switched lasers conventionally used as photoacoustic excitation sources has been explored. In common with laser diodes, LEDs offer the advantages of compact size, low cost and high efficiency. However, laser diodes suitable for pulsed photoacoustic generation are typically available only at wavelengths greater than 750nm. By contrast, LEDs are readily available at visible wavelengths below 650nm where haemoglobin absorption is significantly higher, offering the prospect of increased SNR for superficial vascular imaging applications. To demonstrate feasibility, a range of low cost commercially available LEDs operating in the 420-620nm spectral range were used to generate photoacoustic signals in physiologically realistic vascular phantoms. Overdriving with 200ns pulses and operating at a low duty cycle enabled pulse energies up to 10µJ to be obtained with a 620nm LED. By operating at a high pulse repetition frequency (PRF) in order to rapidly signal average over many acquisitions, this pulse energy was sufficient to generate detectable signals in a blood filled tube immersed in an Intralipid suspension (µs' = 1mm(-1)) at a depth of 15mm using widefield illumination. In addition, a compact four-wavelength LED (460nm, 530nm, 590nm, 620nm) in conjunction with a coded excitation scheme was used to illustrate rapid multiwavelength signal acquisition for spectroscopic applications. This study demonstrates that LEDs could find application as inexpensive and compact multiwavelength photoacoustic excitation sources for imaging superficial vascular anatomy. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. PMID:27446652

  19. High power visible light emitting diodes as pulsed excitation sources for biomedical photoacoustics

    PubMed Central

    Allen, Thomas J.; Beard, Paul C.

    2016-01-01

    The use of visible light emitting diodes (LEDs) as an alternative to Q-switched lasers conventionally used as photoacoustic excitation sources has been explored. In common with laser diodes, LEDs offer the advantages of compact size, low cost and high efficiency. However, laser diodes suitable for pulsed photoacoustic generation are typically available only at wavelengths greater than 750nm. By contrast, LEDs are readily available at visible wavelengths below 650nm where haemoglobin absorption is significantly higher, offering the prospect of increased SNR for superficial vascular imaging applications. To demonstrate feasibility, a range of low cost commercially available LEDs operating in the 420-620nm spectral range were used to generate photoacoustic signals in physiologically realistic vascular phantoms. Overdriving with 200ns pulses and operating at a low duty cycle enabled pulse energies up to 10µJ to be obtained with a 620nm LED. By operating at a high pulse repetition frequency (PRF) in order to rapidly signal average over many acquisitions, this pulse energy was sufficient to generate detectable signals in a blood filled tube immersed in an Intralipid suspension (µs’ = 1mm−1) at a depth of 15mm using widefield illumination. In addition, a compact four-wavelength LED (460nm, 530nm, 590nm, 620nm) in conjunction with a coded excitation scheme was used to illustrate rapid multiwavelength signal acquisition for spectroscopic applications. This study demonstrates that LEDs could find application as inexpensive and compact multiwavelength photoacoustic excitation sources for imaging superficial vascular anatomy. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. PMID:27446652

  20. High power visible light emitting diodes as pulsed excitation sources for biomedical photoacoustics.

    PubMed

    Allen, Thomas J; Beard, Paul C

    2016-04-01

    The use of visible light emitting diodes (LEDs) as an alternative to Q-switched lasers conventionally used as photoacoustic excitation sources has been explored. In common with laser diodes, LEDs offer the advantages of compact size, low cost and high efficiency. However, laser diodes suitable for pulsed photoacoustic generation are typically available only at wavelengths greater than 750nm. By contrast, LEDs are readily available at visible wavelengths below 650nm where haemoglobin absorption is significantly higher, offering the prospect of increased SNR for superficial vascular imaging applications. To demonstrate feasibility, a range of low cost commercially available LEDs operating in the 420-620nm spectral range were used to generate photoacoustic signals in physiologically realistic vascular phantoms. Overdriving with 200ns pulses and operating at a low duty cycle enabled pulse energies up to 10µJ to be obtained with a 620nm LED. By operating at a high pulse repetition frequency (PRF) in order to rapidly signal average over many acquisitions, this pulse energy was sufficient to generate detectable signals in a blood filled tube immersed in an Intralipid suspension (µs' = 1mm(-1)) at a depth of 15mm using widefield illumination. In addition, a compact four-wavelength LED (460nm, 530nm, 590nm, 620nm) in conjunction with a coded excitation scheme was used to illustrate rapid multiwavelength signal acquisition for spectroscopic applications. This study demonstrates that LEDs could find application as inexpensive and compact multiwavelength photoacoustic excitation sources for imaging superficial vascular anatomy. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

  1. Dual Frequency VLBI Monitoring of a Large Sample of Compact Extragalactic Sources at 8 and 32 GHz

    NASA Astrophysics Data System (ADS)

    Jacobs, Christopher S.; Majid, W. A.; Romero-Wolf, A.; Snedeker, L.; García-Miró, C.; Sotuela, I.; Horiuchi, S.

    2012-01-01

    We are carrying out regular monitoring of 400+ compact extragalactic sources using large DSN (Deep Space Network) antennas over intercontinental baselines at 8, and 32 GHz simultaneously. This program provides precision astrometric measurements of AGN compact cores, used to maintain the JPL extragalactic reference frame. In addition to astrometric observables, this program has the potential to provide regular flux density measurements at each of these observing frequencies with precision at the level of 10-20%. Such monitoring of compact radio emission serves as a direct measure of AGN core activity, probing intrinsic jet parameters and providing the opportunity for discriminating between different models of the high-energy emission in these objects by cross-correlating the radio and gamma-ray flux densities. Simultaneous multi-frequency observations will provide high precision spectral information of AGN compact emission regions at the parsec-scale unaffected by the errors often introduced when combining multi-frequency data obtained at different epochs. The spectral index can be used to compare the relativistic electron energy distribution with the photon spectral index seen in gamma-rays. For instance, if Compton up-scattering by the radio synchrotron electron population is the basic process producing the gamma-rays, the spectra in both spectral regions should be directly related. By providing measurements on both East-West and North-South baselines with large antennas and Gbit/s recording capability, our program can probe sources at the 30 mJy flux limit (10-sigma), potentially increasing the sample to a fainter population of sources. In these regards, our program complements well existing northern and southern hemisphere VLBI monitoring programs, by providing flux measurements at 32 GHz, covering a fainter population sample, and by filling the gap for sources in the [-20:-40] degree declination range. Further, our program also provides additional flexibility

  2. The advanced light source: America`s brightest light for science and industry

    SciTech Connect

    Cross, J.; Lawler, G.

    1994-03-01

    America`s brightest light comes from the Advanced Light Source (ALS), a national facility for scientific research, product development, and manufacturing. Completed in 1993, the ALS produces light in the ultraviolet and x-ray regions of the spectrum. Its extreme brightness provides opportunities for scientific and technical progress not possible anywhere else. Technology is poised on the brink of a major revolution - one in which vital machine components and industrial processes will be drastically miniaturized. Industrialized nations are vying for leadership in this revolution - and the huge economic rewards the leaders will reap.

  3. LLNL's Precision Compton Scattering Light Source: Status & Applications

    NASA Astrophysics Data System (ADS)

    Hartemann, F. V.; Albert, F.; Anderson, S. G.; Bayramian, A. J.; Cross, R. R.; Ebbers, C. A.; Gibson, D. J.; Houck, T. L.; Marsh, R. A.; Messerly, M. J.; Shverdin, M. Y.; Wu, S. S.; Scarpetti, R. D.; Siders, C. W.; McNabb, D. P.; Bonanno, R. E.; Barty, C. P. J.; Adolphsen, C. E.; Chu, T. S.; Jongewaard, E. N.; Li, Z.; Tantawi, S. G.; Vlieks, A. E.; Wang, J. W.; Raubenheimer, T. O.

    2010-11-01

    A precision, tunable, monochromatic (< 0.4% rms spectral width) source driven by a compact, high-gradient X-band linac designed in collaboration with SLAC is under construction at LLNL. High-brightness (250 pC, 3.5 ps, 0.4 mm.mrad), relativistic electron bunches will interact with a Joule-class, 10 ps, diode-pumped laser pulse to generate tunable >=-rays in the 0.5-2.5 MeV photon energy range. This >=-ray source will be used to excite nuclear resonance fluorescence (NRF) in various isotopes, of interest for homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source current status will be discussed, along with important applications, including NRF and in situ ps thermal measurements. This work performed under the auspices of the U.S. DoE by LLNL under Contract DE-AC52-07NA27344, and funded by the DHS DNDO.

  4. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    NASA Astrophysics Data System (ADS)

    Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.; Li, Zhengyan; Arefiev, Alexey V.; Zhang, Xi; Zgadzaj, Rafal; Henderson, Watson; Khudik, V.; Shvets, G.; Downer, M. C.

    2015-02-01

    We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a0 ˜ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jet exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic "denting" of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75-200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (˜6 × 10-12) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements.

  5. Method and apparatus for acquisition and tracking of light sources in a transient event rich environment

    NASA Technical Reports Server (NTRS)

    Kissh, Frank (Inventor); Flynn, David (Inventor); Fowski, Walter (Inventor); Abreu, Rene (Inventor); Miklus, Kenneth (Inventor); Bolin, Kenneth (Inventor)

    1993-01-01

    A method and apparatus for tracking a light source in a transient event rich environment locks on to a light source incident on a field-of-view 1 of a charge-coupled-device (CCD) array 6, validates the permanence of said light source and transmits data relating to the brilliance and location of said light source if said light source is determined to be permanent.

  6. OLEDs as prospective light sources for microstructured photoreactors.

    PubMed

    Ziegenbalg, Dirk; Kreisel, Günter; Weiß, Dieter; Kralisch, Dana

    2014-07-01

    In this work, the use of OLEDs as light sources to initiate photochemical reactions is presented for the first time. A newly developed modular photoreactor system utilising microstructured reactors was equipped with commercially available OLED panels. The technical feature of being a surface emitter, the low thickness and the potentially high luminescent efficiency give reason to expect this kind of light source to be well suited for photochemical reactions. The reactor system was investigated by using photooxygenations as benchmark reactions. In detail, photosensitised [4 + 2]-cycloadditions and [2 + 2]-cycloadditions of (1)O2 were examined as well as Schenck-ene-reactions. It was demonstrated that OLEDs can be successfully used for conducting photochemical reactions. Moreover the equilibrium concentration of (1)O2 can be increased by varying the process conditions. Based on the experimental investigations, a reactor comparison showed that, with respect to productivity and efficiency, the investigated microstructured photoreactor is currently not outperforming conventional batch reactors.

  7. Hyperspectral retinal imaging with a spectrally tunable light source

    NASA Astrophysics Data System (ADS)

    Francis, Robert P.; Zuzak, Karel J.; Ufret-Vincenty, Rafael

    2011-03-01

    Hyperspectral retinal imaging can measure oxygenation and identify areas of ischemia in human patients, but the devices used by current researchers are inflexible in spatial and spectral resolution. We have developed a flexible research prototype consisting of a DLP®-based spectrally tunable light source coupled to a fundus camera to quickly explore the effects of spatial resolution, spectral resolution, and spectral range on hyperspectral imaging of the retina. The goal of this prototype is to (1) identify spectral and spatial regions of interest for early diagnosis of diseases such as glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR); and (2) define required specifications for commercial products. In this paper, we describe the challenges and advantages of using a spectrally tunable light source for hyperspectral retinal imaging, present clinical results of initial imaging sessions, and describe how this research can be leveraged into specifying a commercial product.

  8. X-ray detectors at the Linac Coherent Light Source

    SciTech Connect

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; Herrmann, Sven; Kenney, Chris; Markovic, Bojan; Nishimura, Kurtis; Osier, Shawn; Pines, Jack; Reese, Benjamin; Segal, Julie; Tomada, Astrid; Weaver, Matt

    2015-04-21

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced.

  9. Cathode R&D for future light sources.

    SciTech Connect

    Dowell, D. H.; Bazarov, I.; Dunham, B.; Harkay, K.; Hernandez-Garcia, C.; Legg, R.; Padmore, H.; Rao, T.; Smedley, J.; Wan, W.; Accelerator Systems Division; SLAC National Accelerator Lab.; Cornell Univ.; Thomas Jefferson Lab.; Univ. of Wisconsin; LBNL; BNL

    2010-03-18

    This paper reviews the requirements and current status of cathodes for accelerator applications, and proposes a research and development plan for advancing cathode technology. Accelerator cathodes need to have long operational lifetimes and produce electron beams with a very low emittance. The two principal emission processes to be considered are thermionic and photoemission with the photocathodes being further subdivided into metal and semi-conductors. Field emission cathodes are not included in this analysis. The thermal emittance is derived and the formulas used to compare the various cathode materials. To date, there is no cathode which provides all the requirements needed for the proposed future light sources. Therefore a three part research plan is described to develop cathodes for these future light source applications.

  10. Cathode R&D for Future Light Sources

    SciTech Connect

    Dowell, D.H.; Bazarov, I.; Dunham, B.; Harkay, K.; Hernandez-Garcia; Legg, R.; Padmore, H.; Rao, T.; Smedley, J.; Wan, W.; /LBL, Berkeley

    2010-05-26

    This paper reviews the requirements and current status of cathodes for accelerator applications, and proposes a research and development plan for advancing cathode technology. Accelerator cathodes need to have long operational lifetimes and produce electron beams with a very low emittance. The two principal emission processes to be considered are thermionic and photoemission with the photocathodes being further subdivided into metal and semi-conductors. Field emission cathodes are not included in this analysis. The thermal emittance is derived and the formulas used to compare the various cathode materials. To date, there is no cathode which provides all the requirements needed for the proposed future light sources. Therefore a three part research plan is described to develop cathodes for these future light source applications.

  11. X-ray detectors at the Linac Coherent Light Source

    PubMed Central

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; Herrmann, Sven; Kenney, Chris; Markovic, Bojan; Nishimura, Kurtis; Osier, Shawn; Pines, Jack; Reese, Benjamin; Segal, Julie; Tomada, Astrid; Weaver, Matt

    2015-01-01

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced. PMID:25931071

  12. X-ray detectors at the Linac Coherent Light Source

    DOE PAGES

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; et al

    2015-04-21

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a newmore » generation of cameras under development at SLAC, is introduced.« less

  13. Insertion devices for the Advanced Light Source at LBL

    SciTech Connect

    Hassenzahl, W.; Chin, J.; Halbach, K.; Hoyer, E.; Humphries, D.; Kincaid, B.; Savoy, R.

    1989-03-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory will be the first of the new generation of dedicated synchrotron light sources to be put into operation. Specially designed insertion devices will be required to realize the high brightness photon beams made possible by the low emittance of the electron beam. The complement of insertion devices on the ALS will include undulators with periods as short as 3.9 cm and one or more high field wigglers. The first device to be designed is a 5 m long, 5 cm period, hybrid undulator. The goal of very high brightness and high harmonic output imposes unusually tight tolerances on the magnetic field quality and thus on the mechanical structure. The design process, using a generic structure for all undulators, is described. 5 refs., 4 figs., 1 tab.

  14. Ultraminiature broadband light source with spiral shaped filament

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L. (Inventor); Collura, Joseph S. (Inventor); Helvajian, Henry (Inventor); Pocha, Michael D. (Inventor); Meyer, Glenn A. (Inventor); McConaghy, Charles F. (Inventor); Olsen, Barry L. (Inventor); Hansen, William W (Inventor)

    2012-01-01

    An ultraminiature light source using a double-spiral shaped tungsten filament includes end contact portions which are separated to allow for radial and length-wise unwinding of the spiral. The double-spiral filament is spaced relatively far apart at the end portions thereof so that contact between portions of the filament upon expansion is avoided. The light source is made by fabricating a double-spiral ultraminiature tungsten filament from tungsten foil and housing the filament in a ceramic package having a reflective bottom and a well wherein the filament is suspended. A vacuum furnace brazing process attaches the filament to contacts of the ceramic package. Finally, a cover with a transparent window is attached onto the top of the ceramic package by solder reflow in a second vacuum furnace process to form a complete hermetically sealed package.

  15. Electron Beam Collimation for the Next Generation Light Source

    SciTech Connect

    Steier, C.; Emma, P.; Nishimura, H.; Papadopoulos, C.; Sannibale, F.

    2013-05-20

    The Next Generation Light Source will deliver high (MHz) repetition rate electron beams to an array of free electron lasers. Because of the significant average current in such a facility, effective beam collimation is extremely important to minimize radiation damage to undulators, prevent quenches of superconducting cavities, limit dose rates outside of the accelerator tunnel and prevent equipment damage. This paper describes the early conceptual design of a collimation system, as well as initial results of simulations to test its effectiveness.

  16. MOPA configuration light source with 5 W output power

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Pawel; Soboń, Grzegorz; WÄ Ż, Adam; Dudzik, Grzegorz; Antończak, Arkadiusz; Abramski, Krzysztof

    2013-01-01

    In this paper we present a device - fiber based coherent light source operating at 1550 nm wavelength and 5 W of the output power. It is made completely of the fiber elements without any bulk optics therefore it is stable and resistant to the environmental conditions. The main idea was to use so called MOPA (Master Oscillator Power Amplifier) configuration to obtain universal design. Thus the device can be easily configured to work in couple different operation regimes.

  17. Recent Developments in Impact and Application to Future Light Sources

    SciTech Connect

    Pogorelov, I.; Qiang, J.; Ryne, R.; Venturini, M.; Zholents, A.; Warnock, R.; /SLAC

    2008-02-13

    This paper discusses two recently added capabilities of the IMPACT suite that are relevant to modeling electron linacs, namely the new 1D coherent synchrotron radiation (CSR) modeling capability and the integrated Green's function (IFG) algorithm for modeling high aspect ratio beams. In addition, we present initial results of application of the enhanced version of IMPACT-Z to high-fidelity modeling of the microbunching instability in a realistic light source lattice.

  18. Fiber-Based Lasers as an Option for GRACE Follow-On Light Source

    NASA Technical Reports Server (NTRS)

    Camp, Jordan

    2010-01-01

    Fiber based lasers offer a number of attractive characteristics for space application: state of the art laser technology, leverage of design and reliability from the substantial investments of the telecon industry, and convenient redundancy of higher risk components through fiber splicing. At NASA/Goddard we are currently investigating three GFO fiber-based laser options: a fiber oscillator built in our laboratory; an effort to space qualify a commercial design that uses a proprietary high-gain fiber cavity; and the space qualification of a promising new commercial external cavity laser, notable for its low-mass, compact design. In my talk I will outline these efforts, and suggest that the GFO Project may soon have the option of a US laser vendor for its light source.

  19. Smart LED light source driver for machine vision system

    NASA Astrophysics Data System (ADS)

    Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan

    2008-02-01

    The unique properties of LEDs offer significant advantages in terms of lifetime, intensity and color control, response time and efficiency, all of which are very important for illumination in machine vision applications. However, there are some drawbacks of LEDs, such as the high thermal dependency and temporal degradation of the intensity and color. Dealing with these drawbacks requires complex LED drivers, which are able to compensate for the abovementioned changes in the intensity and color, thereby maintaining higher stability over a wide range of ambient temperature throughout the lifetime of a LED light source. Moreover, state-of-the-art machine vision systems usually consist of a large number of independent LED light sources that enable real-time switching between different illumination setups at frequencies of up to 100 kHz. In this paper, we discuss the concepts of smart LED drivers with the emphasis on the flexibility and applicability. All the most important characteristics are being considered and discussed in detail: the accurate generation of high frequency waveforms, the efficiency of the current driver, thermal and temporal stabilization of the LED intensity and color, communication with a camera and personal computer or embedded system, and practicalities of implementing a large number of independent drive channels. Finally, a practical solution addressing all of the abovementioned issues is proposed with the aim of providing a flexible and highly stable smart LED light source driver for state-of-the-art machine vision systems.

  20. Stray light in cone beam optical computed tomography: II. Reduction using a convergent light source

    NASA Astrophysics Data System (ADS)

    Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.

    2016-04-01

    Optical cone beam computed tomography (CBCT) using a broad beam and CCD camera is a fast method for densitometry of 3D optical gel dosimeters. However, diffuse light sources introduce considerable stray light into the imaging system, leading to underestimation of attenuation coefficients and non-uniformities in CT images unless corrections are applied to each projection image. In this study, the light source of a commercial optical CT scanner is replaced with a convergent cone beam source consisting of almost exclusively image forming primary rays. The convergent source is achieved using a small isotropic source and a Fresnel lens. To characterize stray light effects, full-field cone beam CT imaging is compared to fan beam CT (FBCT) using a 1 cm high fan beam aperture centered on the optic axis of the system. Attenuating liquids are scanned within a large 96 mm diameter uniform phantom and in a small 13.5 mm diameter finger phantom. For the uniform phantom, cone and fan beam CT attenuation coefficients agree within a maximum deviation of (1  ±  2)% between mean values over a wide range from 0.036 to 0.43 cm-1. For the finger phantom, agreement is found with a maximum deviation of (4  ±  2)% between mean values over a range of 0.1-0.47 cm-1. With the convergent source, artifacts associated with refractive index mismatch and vessel optical features are more pronounced. Further optimization of the source size to achieve a balance between quantitative accuracy and artifact reduction should enable practical, accurate 3D dosimetry, avoiding time consuming 3D scatter measurements.

  1. Sole-Source Lighting for Controlled-Environment Agriculture

    NASA Technical Reports Server (NTRS)

    Mitchell.Cary; Stutte, Gary W.

    2015-01-01

    Since plants on Earth evolved under broad-spectrum solar radiation, anytime they are grown exclusively under electric lighting that does not contain all wavelengths in similar proportion to those in sunlight, plant appearance and size could be uniquely different. Nevertheless, plants have been grown for decades under fluorescent (FL) (1) + incandescent (IN) (2) lamps as a sole source of lighting (SSL), and researchers have become comfortable that, in certain proportions of FL + IN for a given species, plants can appear "normal" relative to their growth outdoors. The problem with using such traditional SSLs for commercial production typically is short lamp lifespans and not obtaining enough photosynthetically active radiation (PAR, 400-700 nm) when desired. These limitations led to supplementation of FL + IN lamp outputs with longer-lived, high-intensity discharge (HID) lamps in growth chambers (3). As researchers became comfortable that mixes of orange-biased high-pressure sodium (HPS) and blue-biased metal halide (MH) HIDs together also could give normal plant growth at higher intensities, growth chambers and phytotrons subsequently were equipped mainly with HID lamps, with their intense thermal output filtered out by ventilated light caps or thermal-controlled water barriers. For the most part, IN and HID lamps have found a home in commercial protected horticulture, usually for night-break photoperiod lighting (IN) or for seasonal supplemental lighting (mostly HPS) in greenhouses. However, lack of economically viable options for SSL have held back aspects of year-round indoor agriculture from taking off commercially.

  2. Applications of compact accelerator-driven neutron sources: An updated assessment from the perspective of materials research in Italy

    DOE PAGES

    Andreani, C.; Anderson, I. S.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C. -K.; Senesi, R.

    2014-12-24

    In 2005 the International Atomic Energy Agency (IAEA) in Vienna published a report [1] on ‘Development Opportunities of Small and Medium Scale Accelerator Driven Neutron Sources’ which summarized the prospect of smaller sources in supporting the large spallation neutron sources for materials characterization and instrumentation, a theme advocated by Bauer, Clausen, Mank, and Mulhauser in previous publications [2-4]. In 2010 the Union for Compact Accelerator-driven Neutron Sources (UCANS) was established [5], galvanizing cross-disciplinary collaborations on new source and neutronics development and expanded applications based on both slow-neutron scattering and other neutron-matter interactions of neutron energies ranging from 10⁻⁶ to 10²more » MeV [6]. Here, we first cover the recent development of ongoing and prospective projects of compact accelerator-driven neutron sources (CANS) but concentrate on prospective accelerators currently proposed in Italy. Two active R&D topics, irradiation effects on electronics and cultural heritage studies, are chosen to illustrate the impact of state-of-the-art CANS on these programs with respect to the characteristics and complementarity of the accelerator and neutronics systems as well as instrumentation development.« less

  3. Applications of compact accelerator-driven neutron sources: An updated assessment from the perspective of materials research in Italy

    SciTech Connect

    Andreani, C.; Anderson, I. S.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C. -K.; Senesi, R.

    2014-12-24

    In 2005 the International Atomic Energy Agency (IAEA) in Vienna published a report [1] on ‘Development Opportunities of Small and Medium Scale Accelerator Driven Neutron Sources’ which summarized the prospect of smaller sources in supporting the large spallation neutron sources for materials characterization and instrumentation, a theme advocated by Bauer, Clausen, Mank, and Mulhauser in previous publications [2-4]. In 2010 the Union for Compact Accelerator-driven Neutron Sources (UCANS) was established [5], galvanizing cross-disciplinary collaborations on new source and neutronics development and expanded applications based on both slow-neutron scattering and other neutron-matter interactions of neutron energies ranging from 10⁻⁶ to 10² MeV [6]. Here, we first cover the recent development of ongoing and prospective projects of compact accelerator-driven neutron sources (CANS) but concentrate on prospective accelerators currently proposed in Italy. Two active R&D topics, irradiation effects on electronics and cultural heritage studies, are chosen to illustrate the impact of state-of-the-art CANS on these programs with respect to the characteristics and complementarity of the accelerator and neutronics systems as well as instrumentation development.

  4. 2.53 kW all-fiberized superfluorescent fiber source based on a compact single-stage power-scaling scheme

    NASA Astrophysics Data System (ADS)

    Xu, Jiangming; Xiao, Hu; Leng, Jinyong; Zhang, Hanwei; Zhou, Pu; Chen, Jinbao

    2016-10-01

    In this paper we demonstrate an all-fiberized superfluorescent fiber source that has a maximal output power of 2.53 kW and is based on a single-stage power amplification configuration. The seed source is a broadband-amplified spontaneous emission source with a full output power of 27.6 W. A single-stage dual-clad fiber amplifier is used, in which the maximal optical-to-optical conversion efficiency is 81.47%. A beam quality of M 2  =  1.53 is measured at an output power of 1 kW. At maximum output power, the central wavelength and full width at half maximum linewidth of the amplified light are 1082.08 nm and 6.32 nm, respectively. No conspicuous spike was observed at the stimulated Raman scattering wavelength. The corresponding power fluctuation is 2.97%, which indicates the good power stability of the broadband high-power superfluorescent fiber source (SFS) system. This kilowatt-class high-power all-fiberized SFS system which has high conversion efficiency and good power stability and is based on a compact single-stage power-scaling scheme, is an alternative and competitive solution for industrial precision processes and special stabilized pumping. To the best of our knowledge, this is the highest power SFS ever reported, and the first demonstration of a high-power SFS with a kW-level output power in a compact single-stage power-scaling scheme.

  5. Effect of different light sources on reproductive anatomy and physiology of Japanese quail (Coturnix coturnix japonica).

    PubMed

    Bobadilla-Mendez, M F; Rojas-Granados, C P; Andrade, E F; Retes, P L; Ferreira, L G; Alvarenga, R R; Rodriguez-Gil, J E; Fassani, E J; Zangeronimo, M G

    2016-05-01

    Artificial lights are essential for controlling the reproductive tract development of birds during puberty and therefore influence reproductive quality. The aim of this study was to evaluate the effect of different light sources on reproductive anatomic and physiological characteristics of female Japanese quail (Coturnix coturnix japonica). A total of 270 birds from one day of age were housed in a masonry shed divided into six rooms with light isolation. Each room was equipped with a different type of light bulb and contained seven cages with five birds in each. The light bulbs tested were: incandescent; compact fluorescent; and light-emitting diode (LED) in the colors white, blue, red and green. The experimental design was completely randomized with six treatments and seven replications of individual birds each. The anatomic and physiological condition of the birds was evaluated at four, eight and 12 weeks of age. The white LED bulb advanced (P<0.05) the sexual maturity by one week, resulted (P<0.05) in higher live weights and greater weight and relative percentage of ovarian stroma, oviduct and ovarian tissue at eight weeks of age. Higher plasma concentrations of estradiol and lipids were also observed (P<0.05) at eight weeks under the white LED bulb. At 12 weeks of age, the magnum and isthmus folding characteristics were better (P<0.05) with the red LED bulb. In conclusion, the photostimulation with the white LED bulb was more efficient at activating the reproductive cycle, hastening the onset of sexual maturity and increasing the development of reproductive organs after puberty. PMID:26949140

  6. Beacon system based on light-emitting diode sources for runways lighting

    NASA Astrophysics Data System (ADS)

    Montes, Mario González; Vázquez, Daniel; Fernandez-Balbuena, Antonio A.; Bernabeu, Eusebio

    2014-06-01

    New aeronautical ground lighting techniques are becoming increasingly important to ensure the safety and reduce the maintenance costs of the plane's tracks. Until recently, tracks had embedded lighting systems whose sources were based on incandescent lamps. But incandescent lamps have several disadvantages: high energy consumption and frequent breakdowns that result in high maintenance costs (lamp average life-time is ˜1500 operating hours) and the lamp's technology has a lack of new lighting functions, such as signal handling and modification. To solve these problems, the industry has developed systems based on light-emitting diode (LED) technology with improved features: (1) LED lighting consumes one tenth the power, (2) it improves preventive maintenance (an LED's lifetime range is between 25,000 and 100,000 hours), and (3) LED lighting technology can be controlled remotely according to the needs of the track configuration. LEDs have been in use for more than three decades, but only recently, around 2002, have they begun to be used as visual aids, representing the greatest potential change for airport lighting since their inception in the 1920s. Currently, embedded LED systems are not being broadly used due to the specific constraints of the rules and regulations of airports (beacon dimensions, power system technology, etc.). The fundamental requirements applied to embedded lighting systems are to be hosted on a volume where the dimensions are usually critical and also to integrate all the essential components for operation. An embedded architecture that meets the lighting regulations for airport runways is presented. The present work is divided into three main tasks: development of an optical system to optimize lighting according to International Civil Aviation Organization, manufacturing prototype, and model validation.

  7. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    SciTech Connect

    Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.; Li, Zhengyan; Zgadzaj, Rafal; Henderson, Watson; Downer, M. C.; Arefiev, Alexey V.; Zhang, Xi; Khudik, V.; Shvets, G.

    2015-02-15

    We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a{sub 0} ∼ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jet exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic “denting” of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75–200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (∼6 × 10{sup −12}) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements.

  8. Multifrequency light curves of low-frequency variable radio sources

    NASA Technical Reports Server (NTRS)

    Altschuler, D. R.; Broderick, J. J.; Dennison, B.; Mitchell, K. J.; Odell, S. L.; Condon, J. J.; Payne, H. E.

    1984-01-01

    Light curves for the low-frequency variable sources AO 0235 + 16, NRAO 140, PKS 1117 + 14, DA 406, CTA 102, and 3C 454.3, obtained in monthly observations at 318, 430, and 606 MHz using the 305-m telescope at Arecibo and in bimonthly observations at 880 MHz and 1.4 GHz using the 91-m Green Bank transit telescope during 1980-1983, are presented and analyzed. AO 0235 + 16 is found to have basically canonical variability which is attributed to relativistically moving evolving synchrotron components; but in the other sources, strong simultaneous variations at 318, 430, and 606 MHz are observed to be greatly diminished in amplitude at 880 MHz and 1.4 GHz, confirming the existence of the intermediate-frequency gap at about 1 GHz proposed by Spangler and Cotton (1981). The possibility that a second variability mechanism is active in these sources is explored.

  9. Linac Coherent Light Source: The first five years

    NASA Astrophysics Data System (ADS)

    Bostedt, Christoph; Boutet, Sébastien; Fritz, David M.; Huang, Zhirong; Lee, Hae Ja; Lemke, Henrik T.; Robert, Aymeric; Schlotter, William F.; Turner, Joshua J.; Williams, Garth J.

    2016-01-01

    A new scientific frontier opened in 2009 with the start of operations of the world's first x-ray free-electron laser (FEL), the Linac Coherent Light Source (LCLS), at SLAC National Accelerator Laboratory. LCLS provides femtosecond pulses of x rays (270 eV to 11.2 keV) with very high peak brightness to access new domains of ultrafast x-ray science. This article presents the fundamental FEL physics and outlines the LCLS source characteristics along with the experimental challenges, strategies, and instrumentation that accompany this novel type of x-ray source. The main part of the article reviews the scientific achievements since the inception of LCLS in the five primary areas it serves: atomic, molecular, and optical physics; condensed matter physics; matter in extreme conditions; chemistry and soft matter, and biology.

  10. Far-Infrared Beamline at the Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Billinghurst, Brant E.; May, Tim E.

    2014-06-01

    The far-infrared beamline at the Canadian Light Source is a state of the art user facility, which offers significantly more far-infrared brightness than conventional globar sources. The infrared radiation is collected from a bending magnet through a 55 X 37 mrad2 port to a Bruker IFS 125 HR spectrometer, which is equipped with a nine compartment scanning arm, allowing it to achieve spectral resolution better than 0.001 cm-1. Currently the beamline can achieve signal to noise ratios up to 8 times that which can be achieved using a traditional thermal source. This talk will provide an overview of the the beamline, and the capabilities available to users, recent and planned improvements including the addition of a Glow Discharge cell and advances in Coherent Synchrotron Radiation. Furthermore, the process of acquiring access to the facility will be covered.

  11. The linac coherent light source single particle imaging road map

    PubMed Central

    Aquila, A.; Barty, A.; Bostedt, C.; Boutet, S.; Carini, G.; dePonte, D.; Drell, P.; Doniach, S.; Downing, K. H.; Earnest, T.; Elmlund, H.; Elser, V.; Gühr, M.; Hajdu, J.; Hastings, J.; Hau-Riege, S. P.; Huang, Z.; Lattman, E. E.; Maia, F. R. N. C.; Marchesini, S.; Ourmazd, A.; Pellegrini, C.; Santra, R.; Schlichting, I.; Schroer, C.; Spence, J. C. H.; Vartanyants, I. A.; Wakatsuki, S.; Weis, W. I.; Williams, G. J.

    2015-01-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources. PMID:26798801

  12. The linac coherent light source single particle imaging road map

    SciTech Connect

    Aquila, A.; Barty, A.; Bostedt, C.; Boutet, S.; Carini, G.; dePonte, D.; Drell, P.; Doniach, S.; Downing, K. H.; Earnest, T.; Elmlund, H.; Elser, V.; Gühr, M.; Hajdu, J.; Hastings, J.; Hau-Riege, S. P.; Huang, Z.; Lattman, E. E.; Maia, F. R.N.C.; Marchesini, S.; Ourmazd, A.; Pellegrini, C.; Schlichting, I.; Schroer, C.; Spence, J. C. H.; Vartanyants, I. A.; Wakatsuki, S.; Weis, W. I.; Williams, G. J.

    2015-07-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources.

  13. The linac coherent light source single particle imaging road map

    DOE PAGES

    Aquila, A.; Barty, A.; Bostedt, C.; Boutet, S.; Carini, G.; dePonte, D.; Drell, P.; Doniach, S.; Downing, K. H.; Earnest, T.; et al

    2015-07-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electronmore » laser sources.« less

  14. The linac coherent light source single particle imaging road map.

    PubMed

    Aquila, A; Barty, A; Bostedt, C; Boutet, S; Carini, G; dePonte, D; Drell, P; Doniach, S; Downing, K H; Earnest, T; Elmlund, H; Elser, V; Gühr, M; Hajdu, J; Hastings, J; Hau-Riege, S P; Huang, Z; Lattman, E E; Maia, F R N C; Marchesini, S; Ourmazd, A; Pellegrini, C; Santra, R; Schlichting, I; Schroer, C; Spence, J C H; Vartanyants, I A; Wakatsuki, S; Weis, W I; Williams, G J

    2015-07-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources.

  15. The linac coherent light source single particle imaging road map.

    PubMed

    Aquila, A; Barty, A; Bostedt, C; Boutet, S; Carini, G; dePonte, D; Drell, P; Doniach, S; Downing, K H; Earnest, T; Elmlund, H; Elser, V; Gühr, M; Hajdu, J; Hastings, J; Hau-Riege, S P; Huang, Z; Lattman, E E; Maia, F R N C; Marchesini, S; Ourmazd, A; Pellegrini, C; Santra, R; Schlichting, I; Schroer, C; Spence, J C H; Vartanyants, I A; Wakatsuki, S; Weis, W I; Williams, G J

    2015-07-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources. PMID:26798801

  16. Design and performance of a compact collimator on GM/CA-CAT at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Xu, S.; Fischetti, R. F.

    2007-09-01

    A new macromolecular crystallographic facility developed by The General Medicine and Cancer Institutes Collaborative Access Team (GM/CA-CAT) at the Advanced Photon Source (APS) is a part of the Biosciences Division (BIO), Argonne National Laboratory (ANL). The facility consists of three beamlines: two lines based on the first "hard" dual canted undulators and one bending magnet beamline [1]. Several compact collimator systems have been developed for the purpose of background reduction in macromolecular crystallography experiments. The apparatus consists of a tube collimator, pinhole and kinematics mount. This paper will present a series of compact collimator designs and crystallographic applications based on experimental requirements [2]. We also describe the magnet-based kinematic mounting structures [3] developed as a collimator holder.

  17. Status of a compact electron cyclotron resonance ion source for National Institute of Radiological Sciences-930 cyclotron.

    PubMed

    Hojo, S; Katagiri, K; Nakao, M; Sugiura, A; Muramatsu, M; Noda, A; Okada, T; Takahashi, Y; Komiyama, A; Honma, T; Noda, K

    2014-02-01

    The Kei-source is a compact electron cyclotron resonance ion source using only permanent magnets and a frequency of 10 GHz. It was developed at the National Institute of Radiological Sciences (NIRS) for producing C(4+) ions oriented for high-energy carbon therapy. It has also been used as an ion source for the NIRS-930 cyclotron. Its microwave band region for the traveling-wave-tube amplifier and maximum output power are 8-10 GHz and 350 W, respectively. Since 2006, it has provided various ion beams such as proton, deuteron, carbon, oxygen, and neon with sufficient intensity (200 μA for proton and deuteron, 50 μA for C(4+), for example) and good stability for radioisotope production, tests of radiation damage, and basic research experiments. Its horizontal and vertical emittances were measured using a screen monitor and waist-scan. The present paper reports the current status of the Kei-source.

  18. Status of a compact electron cyclotron resonance ion source for National Institute of Radiological Sciences-930 cyclotron

    NASA Astrophysics Data System (ADS)

    Hojo, S.; Katagiri, K.; Nakao, M.; Sugiura, A.; Muramatsu, M.; Noda, A.; Okada, T.; Takahashi, Y.; Komiyama, A.; Honma, T.; Noda, K.

    2014-02-01

    The Kei-source is a compact electron cyclotron resonance ion source using only permanent magnets and a frequency of 10 GHz. It was developed at the National Institute of Radiological Sciences (NIRS) for producing C4+ ions oriented for high-energy carbon therapy. It has also been used as an ion source for the NIRS-930 cyclotron. Its microwave band region for the traveling-wave-tube amplifier and maximum output power are 8-10 GHz and 350 W, respectively. Since 2006, it has provided various ion beams such as proton, deuteron, carbon, oxygen, and neon with sufficient intensity (200 μA for proton and deuteron, 50 μA for C4+, for example) and good stability for radioisotope production, tests of radiation damage, and basic research experiments. Its horizontal and vertical emittances were measured using a screen monitor and waist-scan. The present paper reports the current status of the Kei-source.

  19. Status of a compact electron cyclotron resonance ion source for National Institute of Radiological Sciences-930 cyclotron.

    PubMed

    Hojo, S; Katagiri, K; Nakao, M; Sugiura, A; Muramatsu, M; Noda, A; Okada, T; Takahashi, Y; Komiyama, A; Honma, T; Noda, K

    2014-02-01

    The Kei-source is a compact electron cyclotron resonance ion source using only permanent magnets and a frequency of 10 GHz. It was developed at the National Institute of Radiological Sciences (NIRS) for producing C(4+) ions oriented for high-energy carbon therapy. It has also been used as an ion source for the NIRS-930 cyclotron. Its microwave band region for the traveling-wave-tube amplifier and maximum output power are 8-10 GHz and 350 W, respectively. Since 2006, it has provided various ion beams such as proton, deuteron, carbon, oxygen, and neon with sufficient intensity (200 μA for proton and deuteron, 50 μA for C(4+), for example) and good stability for radioisotope production, tests of radiation damage, and basic research experiments. Its horizontal and vertical emittances were measured using a screen monitor and waist-scan. The present paper reports the current status of the Kei-source. PMID:24593538

  20. Compact steady-state and high-flux Falcon ion source for tests of plasma-facing materials

    SciTech Connect

    Girka, O.; Bizyukov, I.; Sereda, K.; Bizyukov, A.; Gutkin, M.; Sleptsov, V.

    2012-08-15

    This paper describes the design and operation of the Falcon ion source. It is based on conventional design of anode layer thrusters. This ion source is a versatile, compact, affordable, and highly functional in the research field of the fusion materials. The reversed magnetic field configuration of the source allows precise focusing of the ion beam into small spot of Almost-Equal-To 3 mm and also provides the limited capabilities for impurity mass-separation. As the result, the source generates steady-state ion beam, which irradiates surface with high heat (0.3 - 21 MW m{sup -2}) and particle fluxes (4 Multiplication-Sign 10{sup 21}- 3 Multiplication-Sign 10{sup 23} m{sup -2}s{sup -1}), which approaches the upper limit for the flux range expected in ITER.

  1. Light source comprising a common substrate, a first led device and a second led device

    SciTech Connect

    Choong, Vi-En

    2010-02-23

    At least one stacked organic or polymeric light emitting diode (PLEDs) devices to comprise a light source is disclosed. At least one of the PLEDs includes a patterned cathode which has regions which transmit light. The patterned cathodes enable light emission from the PLEDs to combine together. The light source may be top or bottom emitting or both.

  2. The Use of Light-Emitting Diodes (LEDs) as Green and Red/Far-Red Light Sources in Plant Physiology.

    ERIC Educational Resources Information Center

    Jackson, David L.; And Others

    1985-01-01

    The use of green, red, and far-red light-emitting diodes (LEDs) as light sources for plant physiological studies is outlined and evaluated. Indicates that LED lamps have the advantage over conventional light sources in that they are lightweight, low-cost, portable, easily constructed, and do not require color filters. (Author/DH)

  3. A lighting assembly based on red and blue light-emitting diodes as a lighting source for space agriculture

    NASA Astrophysics Data System (ADS)

    Avercheva, Olga; Berkovich, Yuliy A.; Smolyanina, Svetlana; Bassarskaya, Elizaveta; Zhigalova, Tatiana; Ptushenko, Vasiliy; Erokhin, Alexei

    Light-emitting diodes (LEDs) are a promising lighting source for space agriculture due to their high efficiency, longevity, safety, and other factors. Assemblies based on red and blue LEDs have been recommended in literature, although not all plants show sufficient productivity in such lighting conditions. Adding of green LEDs proposed in some works was aimed at psychological support for the crew, and not at the improvement of plant growth. We studied the growth and the state of the photosynthetic apparatus in Chinese cabbage (Brassica chinensis L.) plants grown under red (650 nm) and blue (470 nm) light-emitting diodes (LEDs). Plants grown under a high-pressure sodium lamp (HPS lamp) were used as a control. The plants were illuminated with two photosynthetic photon flux levels: nearly 400 µE and about 100 µE. Plants grown under LEDs with 400 µE level, as compared to control plants, showed lower fresh weight, edible biomass, growth rate, and sugar content. The difference in fresh weight and edible biomass was even more pronounced in plants grown with 100 µE level; the data indicate that the adaptability of the test plants to insufficient lighting decreased. Under LEDs, we observed the decreasing of root growth and the absence of transition to the flowering stage, which points to a change in the hormonal balance in plants grown in such lighting conditions. We also found differences in the functioning of the photosynthetic apparatus and its reaction to a low lighting level. We have concluded that a lighting assembly with red and blue LEDs only is insufficient for the plant growth and productivity, and can bring about alterations in their adaptive and regulatory mechanisms. Further studies are needed to optimize the lighting spectrum for space agriculture, taking into account the photosynthetic, phototropic and regulatory roles of light. Using white LEDs or adding far-red and green LEDs might be a promising approach.

  4. An Optically Stabilized Fast-Switching Light Emitting Diode as a Light Source for Functional Neuroimaging

    PubMed Central

    Wagenaar, Daniel A.

    2012-01-01

    Neuroscience research increasingly relies on optical methods for evoking neuronal activity as well as for measuring it, making bright and stable light sources critical building blocks of modern experimental setups. This paper presents a method to control the brightness of a high-power light emitting diode (LED) light source to an unprecedented level of stability. By continuously monitoring the actual light output of the LED with a photodiode and feeding the result back to the LED's driver by way of a proportional-integral controller, drift was reduced to as little as 0.007% per hour over a 12-h period, and short-term fluctuations to 0.005% root-mean-square over 10 seconds. The LED can be switched on and off completely within 100 s, a feature that is crucial when visual stimuli and light for optical recording need to be interleaved to obtain artifact-free recordings. The utility of the system is demonstrated by recording visual responses in the central nervous system of the medicinal leech Hirudo verbana using voltage-sensitive dyes. PMID:22238663

  5. A slim apparatus of transferring discrete LEDs' light into an ultra-collimated planar light source.

    PubMed

    Teng, Tun-Chien; Sun, Wen-Shing; Tseng, Li-Wei; Chang, Wei-Chung

    2013-11-01

    In this paper, we proposed a novel apparatus, which has very slim volume and can transfer light emitted from discrete LEDs into a uniform and ultra-collimated planar light source (UCPLS). This apparatus adopts the two-layer folded frame and two-stage CPC design so that thickness of the entire apparatus can be minimized; especially the feeder in the two-stage CPC design can greatly reduce the thickness of the CPC and make the light passing through the second-stage CPC become much more collimated. In addition, by side-by-side arrangement, a large-sized UCPLS can also be obtained. In our embodiment with an emitting area of the upper LGP of 280 mmX80 mm and a LED with optical flux of 8 lumens used as the light source, the performance according to the related simulation results shows as follows: angular FWHM of the resultant light emitted from the apparatus in the vertical and horizontal is 4.87 degrees and 24 degrees, respectively; spatial uniformity and total energy efficiency reach 84% and 69%, respectively; the average head-on luminance reaches up 5600 nit, yet this apparatus consumes just 60 mW. Furthermore, the results also demonstrate this design has potential to be applied to the product of 23 inches above while thickness of the entire apparatus is only 2.2 mm. PMID:24216920

  6. Applications of compact laser-driven EUV/XUV plasma sources

    NASA Astrophysics Data System (ADS)

    Barkusky, Frank; Bayer, Armin; Döring, Stefan; Flöter, Bernhard; Großmann, Peter; Peth, Christian; Reese, Michael; Mann, Klaus

    2009-05-01

    In recent years, technological developments in the area of extreme ultraviolet lithography (EUVL) have experienced great improvements. So far, intense light sources based on discharge or laser plasmas, beam steering and imaging optics as well as sensitive detectors are available. Currently, applications of EUV radiation apart from microlithography, such as metrology, high-resolution microscopy, or surface analysis come more and more into focus. In this contribution we present an overview on the EUV/XUV activities of the Laser-Laboratorium Göttingen based on table-top laser-produced plasma (LPP) sources. As target materials gaseous or liquid jets of noble gases or solid Gold are employed. Depending on the applications, the very clean but low intense gaseous targets are mainly used for metrology, whereas the targets for high brilliances (liquid, solid) are used for microscopy and direct structuring. For the determination of interaction mechanisms between EUV radiation and matter, currently the solid Gold target is used. In order to obtain a small focal spot resulting in high EUV fluence, a modified Schwarzschild objective consisting of two spherical mirrors with Mo/Si multilayer coatings is adapted to this source. By demagnified (10x) imaging of the Au plasma an EUV spot of 3 μm diameter with a maximum energy density of ~1.3 J/cm2 is generated (pulse duration 8.8 ns). First applications of this integrated source and optics system reveal its potential for high-resolution modification and direct structuring of solid surfaces. For chemical analysis of various samples a NEXAFS setup was developed. It consists of a LPP, using gaseous Krypton as a broadband emitter in the water-window range, as well as a flat field spectrograph. The laboratory system is set to the XUV spectral range around the carbon K-edge (4.4 nm). The table-top setup allows measurements with spectral accuracy comparable to synchrotron experiments. NEXAFS-experiments in transmission and reflection are

  7. Revised accident source terms for light-water reactors

    SciTech Connect

    Soffer, L.

    1995-02-01

    This paper presents revised accident source terms for light-water reactors incorporating the severe accident research insights gained in this area over the last 15 years. Current LWR reactor accident source terms used for licensing date from 1962 and are contained in Regulatory Guides 1.3 and 1.4. These specify that 100% of the core inventory of noble gases and 25% of the iodine fission products are assumed to be instantaneously available for release from the containment. The chemical form of the iodine fission products is also assumed to be predominantly elemental iodine. These assumptions have strongly affected present nuclear air cleaning requirements by emphasizing rapid actuation of spray systems and filtration systems optimized to retain elemental iodine. A proposed revision of reactor accident source terms and some im implications for nuclear air cleaning requirements was presented at the 22nd DOE/NRC Nuclear Air Cleaning Conference. A draft report was issued by the NRC for comment in July 1992. Extensive comments were received, with the most significant comments involving (a) release fractions for both volatile and non-volatile species in the early in-vessel release phase, (b) gap release fractions of the noble gases, iodine and cesium, and (c) the timing and duration for the release phases. The final source term report is expected to be issued in late 1994. Although the revised source terms are intended primarily for future plants, current nuclear power plants may request use of revised accident source term insights as well in licensing. This paper emphasizes additional information obtained since the 22nd Conference, including studies on fission product removal mechanisms, results obtained from improved severe accident code calculations and resolution of major comments, and their impact upon the revised accident source terms. Revised accident source terms for both BWRS and PWRS are presented.

  8. Boron-Containing Red Light-Emitting Phosphors And Light Sources Incorporating The Same

    DOEpatents

    Srivastava, Alok Mani; Comanzo, Holly Ann; Manivannan, Venkatesan

    2006-03-28

    A boron-containing phosphor comprises a material having a formula of AD1-xEuxB9O16, wherein A is an element selected from the group consisting of Ba, Sr, Ca, Mg, and combinations thereof; D is at least an element selected from the group consisting of rare-earth metals other than europium; and x is in the range from about 0.005 to about 0.5. The phosphor is used in a blend with other phosphors in a light source for generating visible light with a high color rendering index.

  9. Concepts for the PEP-X Light Source

    SciTech Connect

    Hettel, Robert; Bane, Karl; Bertsche, Kirk; Cai, Yunhai; Chao, Alex; Dolgashev, Valery; Fox, John; Huang, Xiaobiao; Huang, Zhirong; Mastorides, Themistoklis; Ng, Cho; Nosochkov, Yuri; Novokhatski, Alexander; Rabedeau, Thomas; Rivetta, Claudio; Safranek, James; Seeman, John; Stohr, Joachim; Stupakov, Gennady; Tantawi, Sami G.; Wang, Lanfa; /SLAC /Stanford U. /UCLA

    2010-08-26

    SSRL and SLAC groups are developing a long-range plan to transfer its evolving scientific programs from the SPEAR3 light source to a much higher performing photon source that would be housed in the 2.2-km PEP-II tunnel. While various concepts for the PEP-X light source are under consideration, including ultimate storage ring and ERL configurations, the present baseline design is a very low-emittance storage ring. A hybrid lattice has double bend achromat (DBA) cells in two of the six arcs that provide a total 30 straight sections for insertion device (ID) beam lines extending into two new experimental halls. The remaining arcs contain TME cells. Using 90 m of damping wigglers the horizontal emittance at 4.5 GeV would be 100 pm-rad with 1.5-A stored beam. PEP-X will produce photon beams having brightnesses near 10{sup 22} (ph/s/mm{sup 2}/mrad{sup 2}/0.1% BW) at 10 keV. Studies indicate that a 90-m undulator could have FEL gain and brightness enhancement at soft x-ray wavelengths with the stored beam. Crab cavities or other beam manipulation systems could be used to reduce bunch length or otherwise enhance photon emission properties. The present status of the design of PEP-X as a storage ring is presented.

  10. Operating synchrotron light sources with a high gain free electron laser

    NASA Astrophysics Data System (ADS)

    Di Mitri, S.; Cornacchia, M.

    2015-11-01

    Since the 1980s synchrotron light sources have been considered as drivers of a high repetition rate (RR), high gain free electron laser (FEL) inserted in a by-pass line or in the ring itself. As of today, the high peak current required by the laser is not deemed to be compatible with the standard multi-bunch filling pattern of synchrotrons, and in particular with the operation of insertion device (ID) beamlines. We show that this problem can be overcome by virtue of magnetic bunch length compression in a ring section, and that, after lasing, the beam returns to equilibrium conditions without beam quality disruption. Bunch length compression brings a double advantage: the high peak current stimulates a high gain FEL emission, while the large energy spread makes the beam less sensitive to the FEL heating and to the microwave instability in the ring. The beam’s large energy spread at the undulator is matched to the FEL energy bandwidth through a transverse gradient undulator. Feasibility of lasing at 25 nm is shown for the Elettra synchrotron light source at 1 GeV, and scaling to shorter wavelengths as a function of momentum compaction, beam energy and transverse emittance in higher energy, larger rings is discussed. For the Elettra case study, a low (100 Hz) and a high (463 kHz) FEL RR are considered, corresponding to an average FEL output power at the level of ∼1 W (∼1013 photons per pulse) and ∼300 W (∼1011 photons per pulse), respectively. We also find that, as a by-product of compression, the ∼5 W Renieri’s limit on the average FEL power can be overcome. Our conclusion is that existing and planned synchrotron light sources may be made compatible with this new hybrid IDs-plus-FEL operational mode, with little impact on the standard beamlines functionality.

  11. Ultraminiature Broadband Light Source and Method of Manufacturing Same

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L. (Inventor); Collura, Joseph S. (Inventor); Helvajian, Henry (Inventor); Pocha, Michael D. (Inventor); Meyer, Glenn A. (Inventor); McConaghy, Charles F. (Inventor); Olsen, Barry L. (Inventor); Hansen, William W. (Inventor)

    2010-01-01

    An ultraminiature light source using a double-spiral shaped tungsten filament includes end contact portions which are separated to allow for radial and length-wise unwinding of the spiral. The double-spiral filament is spaced relatively far apart at the end portions thereof so that contact between portions of the filament upon expansion is avoided. The light ource is made by fabricating a double-spiral ultraminiature tungsten filament from tungsten foil and housing the filament in a ceramic package having a reflective bottom and a well wherein the filament is suspended. A vacuum furnace brazing process attaches the filament to contacts of the ceramic package. Finally, a cover with a transparent window is attached onto the top of the ceramic package by solder reflow in a second vacuum furnace process to form a complete hermetically sealed package.

  12. Testing a Light-weight Compact Gamma Ray Detector for Measuring Snow Water Equivalent

    NASA Astrophysics Data System (ADS)

    Saiet, E., II; Solie, D. J.; Sturm, M.

    2014-12-01

    The use of gamma ray to measure snow water equivalent (SWE) trace back to the 1970s during the Soviet Union hydrology program. Over the years research has shown that gamma detectors could be used to monitor SWE, and their use significantly expanded. In the 1980s several airborne campaigns were launched in North America to measure SWR; these gamma flights are still in use today. However, these airborne flights require a twin-engine aircraft and a detector with a computer that weighs 250 kg, which is unsuitable for use with unmanned airborne systems (UAS), our primary interest. Here we describe results of tests of a compact gamma detector weighing 2 kg. The envisioned deployment of this detector is on a small quad-copter UAS that can hover low over remote clearings in the boreal forest of interior Alaska. Such a technique may allow SWE estimates in places that otherwise would be difficult to measure. We tested the detector over snow and water bodies and found for SWE between 0 and 50 cm a sensitivity of ± 2 cm SWE, which is sufficient to resolve any significant snowfall in the region. In this presentation we will discuss our preliminary results and our future strategy for deploying the sensor on a UAS.

  13. Estimating locations and total magnetization vectors of compact magnetic sources from scalar, vector, or tensor magnetic measurements through combined Helbig and Euler analysis

    USGS Publications Warehouse

    Phillips, J.D.; Nabighian, M.N.; Smith, D.V.; Li, Y.

    2007-01-01

    The Helbig method for estimating total magnetization directions of compact sources from magnetic vector components is extended so that tensor magnetic gradient components can be used instead. Depths of the compact sources can be estimated using the Euler equation, and their dipole moment magnitudes can be estimated using a least squares fit to the vector component or tensor gradient component data. ?? 2007 Society of Exploration Geophysicists.

  14. JLab CW Cryomodules for 4th Generation Light Sources

    SciTech Connect

    Rimmer, Robert; Bundy, Richard; Cheng, Guangfeng; Ciovati, Gianluigi; Clemens, William; Daly, Edward; Henry, James; Hicks, William; Kneisel, Peter; Manning, Stephen; Manus, Robert; Marhauser, Frank; Preble, Joseph; Reece, Charles; Smith, Karl; Stirbet, Mircea; Turlington, Larry; Wang, Haipeng; Wilson, Katherine

    2008-01-23

    Fourth generation light sources hold the prospect of unprecedented brightness and optical beam quality for a wide range of scientific applications. Many of the proposed new facilities will rely on large superconducting radio frequency (SRF) based linacs to provide high energy, low emittance CW electron beams. For high average power applications there is a growing acceptance of energy recovery linac (ERL) technology as the way to support large recirculating currents with modest RF power requirements. CW SRF and high current ERLs are two core competencies at Jefferson Lab. JLab has designed and built a number of CW cryomodules of several different types starting with the original CEBAF design, with variations for higher current in the two generations of JLab’s free-electron laser (FEL), through two intermediate prototypes to the final high-performance module for the 12 GeV upgrade. Each of these represent fully engineered and tested configurations with a variety of specifications that could be considered for possible use in fourth generation light sources. Furthermore JLab has been actively pursuing advanced concepts for highcurrent high-efficiency cryomodules for next generation ERL based FEL’s. These existing and proposed designs span the range from about 1mA single-pass to over 100 mA energy recovered current capability. Specialized configurations also exist for high-current non-energy recovered sections such as the injector region where very high RF power is required. We discuss the performance parameters of these existing and proposed designs and their suitability to different classes of fourth generation light sources.

  15. Limit of concentration for cylindrical concentrators under extended light sources.

    PubMed

    Miñano, J C; Luque, A

    1983-08-15

    Cylindrical concentrators illuminated by an extended source with an arbitrary distribution of radiance are analyzed taking into account basic properties derived from the Fermat principle and not from the specific concentrator shape. The upper limit of concentration achievable with this type of concentrator is obtained and it is found to be lower than that of general (3-D) concentrators. Cylindrical compound parabolic concentrators are analyzed in the light of this theory, and it is shown that they achieve the highest optical concentration possible for a cylindrical concentrator. PMID:18196152

  16. Billion particle linac simulations for future light sources

    SciTech Connect

    Ryne, R. D.; Venturini, M.; Zholents, A. A.; Qiang, J.

    2008-09-25

    In this paper we report on multi-physics, multi-billion macroparticle simulation of beam transport in a free electron laser (FEL) linac for future light source applications. The simulation includes a self-consistent calculation of 3D space-charge effects, short-range geometry wakefields, longitudinal coherent synchrotron radiation (CSR) wakefields, and detailed modeling of RF acceleration and focusing. We discuss the need for and the challenges associated with such large-scale simulation. Applications to the study of the microbunching instability in an FEL linac are also presented.

  17. Optical laser systems at the Linac Coherent Light Source

    DOE PAGES

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; Edstrom, Steve; Gilevich, Sasha; Glownia, James M.; Granados, Eduardo; Hering, Philippe; Hoffmann, Matthias C.; Miahnahri, Alan; et al

    2015-04-22

    Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  18. Ultrabright Laser-based MeV-class Light Source

    SciTech Connect

    Albert, F; Anderson, G; Anderson, S; Bayramian, A; Berry, B; Betts, S; Dawson, J; Ebbers, C; Gibson, D; Hagmann, C; Hall, J; Hartemann, F; Hartouni, E; Heebner, J; Hernandez, J; Johnson, M; Messerly, M; McNabb, D; Phan, H; Pruet, J; Semenov, V; Shverdin, M; Sridharan, A; Tremaine, A; Siders, C W; Barty, C J

    2008-04-02

    We report first light from a novel, new source of 10-ps 0.776-MeV gamma-ray pulses known as T-REX (Thomson-Radiated Extreme X-rays). The MeV-class radiation produced by TREX is unique in the world with respect to its brightness, spectral purity, tunability, pulse duration and laser-like beam character. With T-REX, one can use photons to efficiently probe and excite the isotope-dependent resonant structure of atomic nucleus. This ability will be enabling to an entirely new class of isotope-specific, high resolution imaging and detection capabilities.

  19. Spectral confocal reflection microscopy using a white light source

    NASA Astrophysics Data System (ADS)

    Booth, M.; Juškaitis, R.; Wilson, T.

    2008-08-01

    We present a reflection confocal microscope incorporating a white light supercontinuum source and spectral detection. The microscope provides images resolved spatially in three-dimensions, in addition to spectral resolution covering the wavelength range 450-650nm. Images and reflection spectra of artificial and natural specimens are presented, showing features that are not normally revealed in conventional microscopes or confocal microscopes using discrete line lasers. The specimens include thin film structures on semiconductor chips, iridescent structures in Papilio blumei butterfly scales, nacre from abalone shells and opal gemstones. Quantitative size and refractive index measurements of transparent beads are derived from spectral interference bands.

  20. Producing terahertz coherent synchrotron radiation at the Hefei Light Source

    NASA Astrophysics Data System (ADS)

    Xu, De-Rong; Xu, Hong-Liang; Shao, Yan

    2015-07-01

    This paper theoretically proves that an electron storage ring can generate coherent radiation in the THz region using a quick kicker magnet and an AC sextupole magnet. When the vertical chromaticity is modulated by the AC sextupole magnet, the vertical beam collective motion excited by the kicker produces a wavy spatial structure after a number of longitudinal oscillation periods. The radiation spectral distribution was calculated from the wavy bunch parameters at the Hefei Light Source (HLS). When the electron energy is reduced to 400 MeV, extremely strong coherent synchrotron radiation (CSR) at 0.115 THz should be produced. Supported by National Natural Science Foundation of China (11375176)

  1. Optical laser systems at the Linac Coherent Light Source

    PubMed Central

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; Edstrom, Steve; Gilevich, Sasha; Glownia, James M.; Granados, Eduardo; Hering, Philippe; Hoffmann, Matthias C.; Miahnahri, Alan; Milathianaki, Despina; Polzin, Wayne; Ratner, Daniel; Tavella, Franz; Vetter, Sharon; Welch, Marc; White, William E.; Fry, Alan R.

    2015-01-01

    Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS. PMID:25931064

  2. Status report on the Advanced Light Source control system, 1993

    SciTech Connect

    Young, J.; Brown, W. Jr.; Cork, C.

    1993-10-01

    The Advanced Light Source (ALS), under construction for the past seven years, has become operational. The accelerator has been successfully commissioned using a control system based on hundreds of controllers of our own design and high performance personal computers which are the operator interface. The first beamlines are being commissioned using a control system based on VME hardware and the Experimental Physics and Industrial Control System (EPICS) software. The two systems are being integrated, and this paper reports on the current work being done.

  3. Optical laser systems at the Linac Coherent Light Source.

    PubMed

    Minitti, Michael P; Robinson, Joseph S; Coffee, Ryan N; Edstrom, Steve; Gilevich, Sasha; Glownia, James M; Granados, Eduardo; Hering, Philippe; Hoffmann, Matthias C; Miahnahri, Alan; Milathianaki, Despina; Polzin, Wayne; Ratner, Daniel; Tavella, Franz; Vetter, Sharon; Welch, Marc; White, William E; Fry, Alan R

    2015-05-01

    Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump-probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump-probe experiments to be performed at LCLS.

  4. The Advanced Light Source (ALS) Slicing Undulator Beamline

    SciTech Connect

    Heimann, P. A.; Glover, T. E.; Plate, D.; Brown, V. C.; Padmore, H. A.; Lee, H. J.; Schoenlein, R. W.

    2007-01-19

    A beamline optimized for the bunch slicing technique has been construction at the Advanced Light Source (ALS). This beamline includes an in-vacuum undulator, soft and hard x-ray beamlines and a femtosecond laser system. The soft x-ray beamline may operate in spectrometer mode, where an entire absorption spectrum is accumulated at one time, or in monochromator mode. The femtosecond laser system has a high repetition rate of 20 kHz to improve the average slicing flux. The performance of the soft x-ray branch of the ALS slicing undulator beamline will be presented.

  5. Compact transmission system using single-sideband modulation of light for quantum cryptography.

    PubMed

    Duraffourg, L; Merolla, J M; Goedgebuer, J P; Mazurenko, Y; Rhodes, W T

    2001-09-15

    We report a new transmission that can be used for quantum key distribution. The system uses single-sideband-modulated light in an implementation of the BB84 quantum cryptography protocol. The system is formed by two integrated unbalanced Mach-Zehnder interferometers and is based on interference between phase-modulated sidebands in the spectral domain. Experiments show that high interference visibility can be obtained.

  6. Compact transmission system using single-sideband modulation of light for quantum cryptography.

    PubMed

    Duraffourg, L; Merolla, J M; Goedgebuer, J P; Mazurenko, Y; Rhodes, W T

    2001-09-15

    We report a new transmission that can be used for quantum key distribution. The system uses single-sideband-modulated light in an implementation of the BB84 quantum cryptography protocol. The system is formed by two integrated unbalanced Mach-Zehnder interferometers and is based on interference between phase-modulated sidebands in the spectral domain. Experiments show that high interference visibility can be obtained. PMID:18049627

  7. Detection of a Compact Radio Source near the Center of a Gravitational Lens: Quasar Image or Galactic Core?

    PubMed

    Gorenstein, M V; Shapiro, I I; Cohen, N L; Corey, B E; Falco, E E; Marcaide, J M; Rogers, A E; Whitney, A R; Porcas, R W; Preston, R A; Rius, A

    1983-01-01

    By use of a new, very sensitive interferometric system, a faint, compact radio source has been detected near the center of the galaxy that acts as the main part of a gravitational lens. This lens forms two previously discovered images of the quasar Q09S7+561, which lies in the direction of the constellation Ursa Major. The newly detected source has a core smaller than 0.002 arc second in diameter with a flux density of 0.6 +/- 0.1 millijansky at the 13-centimeter wavelength of the radio observations. This source could be the predicted third image of the transparent gravitational lens, the central core of the galaxy, or some combination of the two. It is not yet possible to choose reliably between these alternatives.

  8. Broadband visible light source based on AllnGaN light emitting diodes

    DOEpatents

    Crawford, Mary H.; Nelson, Jeffrey S.

    2003-12-16

    A visible light source device is described based on a light emitting diode and a nanocluster-based film. The light emitting diode utilizes a semiconductor quantum well structure between n-type and p-type semiconductor materials on the top surface a substrate such as sapphire. The nanocluster-based film is deposited on the bottom surface of the substrate and can be derived from a solution of MoS.sub.2, MoSe.sub.2, WS.sub.2, and WSe.sub.2 particles of size greater than approximately 2 nm in diameter and less than approximately 15 nm in diameter, having an absorption wavelength greater than approximately 300 nm and less than approximately 650 nm.

  9. Explosive Vessel for Dynamic Experiments at Advanced Light Sources

    NASA Astrophysics Data System (ADS)

    Owens, Charles; Sorensen, Christian; Armstrong, Christopher; Sanchez, Nathaniel; Jensen, Brian

    2015-06-01

    There has been significant effort in coupling dynamic loading platforms to advanced light sources such as the Advanced Photon Source (APS) to take advantage of X-ray diagnostics for examining material physics at extremes. Although the focus of these efforts has been on using gun systems for dynamic compression experiments, there are many experiments that require explosive loading capabilities including studies related to detonator dynamics, small angle X-ray scattering on explosives, and ejecta formation, for example. To this end, an explosive vessel and positioning stage was designed specifically for use at a synchrotron with requirements to confine up to 15 grams of explosives, couple the vessel to the X-ray beam line, and reliably position samples in the X-ray beam remotely with micrometer spatial accuracy. In this work, a description of the system will be provided along with explosive testing results for the robust, reusable positioning system.

  10. The risk of retina damage from high intensity light sources.

    PubMed

    Pollak, V A; Romanchuk, K G

    1980-05-01

    The risk of thermal damage to the retina of the eye by exposure to excessive light intensities from continuous and pulsed man-made sources is discussed. The probability of injury increases, the larger the radiant power absorbed by the retina and the smaller the size of the retinal image of the source. A mehtod of estimating the temperature increase of the immediately affected area of the retina is presented. The time constants involved are also briefly considered. Using numerical values from literature for the relevant parameters of the eye, threshold values for a variety of conditions can be established. Below these values little risk of retina damage should exist. The degree of hazard when these values are exceeded depends upon the circumstances. A case study of a welding accident showed good agreement between the conclusions of the theoretical analysis and clinical findings.

  11. Source apportionment of light absorbing WSOC in South Asian outflow

    NASA Astrophysics Data System (ADS)

    Bosch, Carme; Kirillova, Elena; Andersson, August; Kruså, Martin; Budhavant, Krishnakant; Tiwari, Suresh; Gustafsson, Örjan

    2013-04-01

    Carbonaceous aerosols (CA) formed over South Asia are of special concern for human health and regional climate impacts. Anthropogenic emissions forming CA are generally high throughout the region and particularly over the Indo-Gangetic Plain. The net effects of CA on radiative climate forcing are still uncertain. One of the components of CA is black carbon (BC), dominated by soot-like elemental carbon, a strong absorber of solar radiation. Another component is organic carbon (OC), traditionally considered as a light scattering particle. However, recent field studies have shown OC to absorb at lower wavelengths. Thus OC, in addition to BC, may also contribute to light absorption and have a positive direct radiative effect on climate. Light absorbing organic aerosol is usually termed brown carbon (BrC). A significant fraction of BrC is water-soluble, therefore its dissolution into clouds could result in absorbing droplets that affect the cloud absorption and thus contributing to the indirect aerosol climate effects. In this study, light absorption and δ13C + Δ14C isotopic measurements of WSOC were studied in fine aerosols (PM 2.5) at two sites during early pre-monsoon season. New Delhi, one of the most densely populated and industrialized urban megacities in South Asia, was chosen to represent a strong source and Maldives Climate Observatory at Hanimaadhoo (MCOH) was chosen as a regional receptor which in wintertime is located downwind of the Indian subcontinent. Sampling in Delhi was done from mid-February to mid-March 2011 and in MCOH during March 2012. WSOC concentrations were 12±4.5 and 0.71±0.30 μg m-3 in Delhi and MCOH respectively. Whereas in Delhi WSOC contributed 31±4% of total organic carbon, this contribution was slightly higher in MCOH (40±12%). Light absorption by WSOC exhibited strong wavelength (?) dependence. In Maldives, WSOC Absorption Ångström Exponent (AAE) was found to be 6.9±0.4 and Mass Absorption Efficiency (MAE) measured at 365 nm

  12. Radioactivity and Thermalization in the Ejecta of Compact Object Mergers and Their Impact on Kilonova Light Curves

    NASA Astrophysics Data System (ADS)

    Barnes, Jennifer; Kasen, Daniel; Wu, Meng-Ru; Martínez-Pinedo, Gabriel

    2016-10-01

    One promising electromagnetic signature of compact object mergers are kilonovae: approximately isotropic radioactively powered transients that peak days to weeks post-merger. Key uncertainties in kilonova modeling include the emission profiles of the radioactive decay products—non-thermal β -particles, α -particles, fission fragments, and γ -rays—and the efficiency with which their kinetic energy is absorbed by the ejecta. The radioactive energy emitted, along with its thermalization efficiency, sets the luminosity budget and is therefore crucial for predicting kilonova light curves. We outline uncertainties in the radioactivity, describe the processes by which the decay products transfer energy to the ejecta, and calculate time-dependent thermalization efficiencies for each particle type. We determine the net thermalization efficiency and explore its dependence on r-process yields—in particular, the production of α -decaying translead nuclei—and on ejecta mass, velocity, and magnetic fields. We incorporate our results into detailed radiation transport simulations, and calculate updated kilonova light curve predictions. Thermalization effects reduce kilonova luminosities by a factor of roughly 2 at peak, and by an order of magnitude at later times (15 days or more after explosion). We present analytic fits to time-dependent thermalization efficiencies, which can be used to improve light curve models. We revisit the putative kilonova that accompanied gamma-ray burst 130603B, and estimate the mass ejected in that event. We find later time kilonova light curves can be significantly impacted by α -decay from translead isotopes; data at these times may therefore be diagnostic of ejecta abundances.

  13. Monitoring of Metallic-atom-density in Plasma Processes by Light Source for Absorption Spectroscopy using Micro Hollow Cathode Discharge

    NASA Astrophysics Data System (ADS)

    Ohta, Takayuki; Ito, Masafumi

    It is important to monitor the density of species in plasma or sputtering processes for controlling the process precisely because both composition and property of films are affected by the density of species such as radicals and ions. Absorption spectroscopy is a powerful method to monitor the density of species in the plasma. We have developed a multi-micro hollow cathode lamp (multi-MHCL) for monitoring densities of multi-metallic-atoms in the plasma or sputtering processes. The multi-MHCL is a compact light source in compared with the conventional light sources, and can emit multi-atomic lines simultaneously. The multi-MHCL was applied to an absorption spectroscopy for measuring densities of Zn and In atoms in a radio frequency magnetron sputtering process using IZO (Indium Zinc Oxide) target. The densities of Zn and In atoms were successfully measured in the range of 109 to 1010cm-3.

  14. Penning plasma based simultaneous light emission source of visible and VUV lights

    NASA Astrophysics Data System (ADS)

    Vyas, G. L.; Prakash, R.; Pal, U. N.; Manchanda, R.; Halder, N.

    2016-06-01

    In this paper, a laboratory-based penning plasma discharge source is reported which has been developed in two anode configurations and is able to produce visible and VUV lights simultaneously. The developed source has simultaneous diagnostics facility using Langmuir probe and optical emission spectroscopy. The two anode configurations, namely, double ring and rectangular configurations, have been studied and compared for optimum use of the geometry for efficient light emissions and recording. The plasma is produced using helium gas and admixture of three noble gases including helium, neon, and argon. The source is capable to produce eight spectral lines for pure helium in the VUV range from 20 to 60 nm and total 24 spectral lines covering the wavelength range 20-106 nm for the admixture of gases. The large range of VUV lines is generated from gaseous admixture rather from the sputtered materials. The recorded spectrum shows that the plasma light radiations in both visible and VUV range are larger in double ring configuration than that of the rectangular configurations at the same discharge operating conditions. To clearly understand the difference, the imaging of the discharge using ICCD camera and particle-in-cell simulation using VORPAL have also been carried out. The effect of ion diffusion, metastable collision with the anode wall and the nonlinear effects are correlated to explain the results.

  15. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles.

    PubMed

    Neumann, Oara; Feronti, Curtis; Neumann, Albert D; Dong, Anjie; Schell, Kevin; Lu, Benjamin; Kim, Eric; Quinn, Mary; Thompson, Shea; Grady, Nathaniel; Nordlander, Peter; Oden, Maria; Halas, Naomi J

    2013-07-16

    The lack of readily available sterilization processes for medicine and dentistry practices in the developing world is a major risk factor for the propagation of disease. Modern medical facilities in the developed world often use autoclave systems to sterilize medical instruments and equipment and process waste that could contain harmful contagions. Here, we show the use of broadband light-absorbing nanoparticles as solar photothermal heaters, which generate high-temperature steam for a standalone, efficient solar autoclave useful for sanitation of instruments or materials in resource-limited, remote locations. Sterilization was verified using a standard Geobacillus stearothermophilus-based biological indicator.

  16. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles

    PubMed Central

    Neumann, Oara; Feronti, Curtis; Neumann, Albert D.; Dong, Anjie; Schell, Kevin; Lu, Benjamin; Kim, Eric; Quinn, Mary; Thompson, Shea; Grady, Nathaniel; Nordlander, Peter; Oden, Maria; Halas, Naomi J.

    2013-01-01

    The lack of readily available sterilization processes for medicine and dentistry practices in the developing world is a major risk factor for the propagation of disease. Modern medical facilities in the developed world often use autoclave systems to sterilize medical instruments and equipment and process waste that could contain harmful contagions. Here, we show the use of broadband light-absorbing nanoparticles as solar photothermal heaters, which generate high-temperature steam for a standalone, efficient solar autoclave useful for sanitation of instruments or materials in resource-limited, remote locations. Sterilization was verified using a standard Geobacillus stearothermophilus-based biological indicator. PMID:23836642

  17. A squeezed light source operated under high vacuum.

    PubMed

    Wade, Andrew R; Mansell, Georgia L; Chua, Sheon S Y; Ward, Robert L; Slagmolen, Bram J J; Shaddock, Daniel A; McClelland, David E

    2015-01-01

    Non-classical squeezed states of light are becoming increasingly important to a range of metrology and other quantum optics applications in cryptography, quantum computation and biophysics. Applications such as improving the sensitivity of advanced gravitational wave detectors and the development of space-based metrology and quantum networks will require robust deployable vacuum-compatible sources. To date non-linear photonics devices operated under high vacuum have been simple single pass systems, testing harmonic generation and the production of classically correlated photon pairs for space-based applications. Here we demonstrate the production under high-vacuum conditions of non-classical squeezed light with an observed 8.6 dB of quantum noise reduction down to 10 Hz. Demonstration of a resonant non-linear optical device, for the generation of squeezed light under vacuum, paves the way to fully exploit the advantages of in-vacuum operations, adapting this technology for deployment into new extreme environments.

  18. A squeezed light source operated under high vacuum.

    PubMed

    Wade, Andrew R; Mansell, Georgia L; Chua, Sheon S Y; Ward, Robert L; Slagmolen, Bram J J; Shaddock, Daniel A; McClelland, David E

    2015-01-01

    Non-classical squeezed states of light are becoming increasingly important to a range of metrology and other quantum optics applications in cryptography, quantum computation and biophysics. Applications such as improving the sensitivity of advanced gravitational wave detectors and the development of space-based metrology and quantum networks will require robust deployable vacuum-compatible sources. To date non-linear photonics devices operated under high vacuum have been simple single pass systems, testing harmonic generation and the production of classically correlated photon pairs for space-based applications. Here we demonstrate the production under high-vacuum conditions of non-classical squeezed light with an observed 8.6 dB of quantum noise reduction down to 10 Hz. Demonstration of a resonant non-linear optical device, for the generation of squeezed light under vacuum, paves the way to fully exploit the advantages of in-vacuum operations, adapting this technology for deployment into new extreme environments. PMID:26657616

  19. Breast tumor detection using continuous wave light source

    NASA Astrophysics Data System (ADS)

    Zhao, Shiyin; O'Leary, Maureen A.; Nioka, Shoko; Chance, Britton

    1995-05-01

    The detection of small amounts of indocyanine green (ICG) in small volumes would suggest its potential use in the detection of early breast tumors. While phased array has already shown its ability to sharply localize small amounts of ICG in the picomole region, the question has arisen, what would be the comparable sensitivity of continous light systems for the same purpose? If this were a comparable sensitivity, the advantages of the simplest of opto- electronic systems and the use of light intensity not limited to those available under FDA regulations for laser diodes could be realized. In this research work, we investigate two methods of enhancing the contrast agent between diseased and healthy tissue using low frequency amplitude modulated light sources. The first method exploits the symmetry between the left and right breast and the second exploits the cylindrical symmetry of the breast. Both effect are enhanced by the use of an injected contrast agent (ICG). Based on the theory and model study, several human subjects cases were studied in the Hospital of the University of Pennsylvania. The results show that the peak signal can get about 60 seconds after ICG injection through the vein and then will take few minutes to get back to the baseline. The half decay time and maximum (Delta) OD are dependent of the characteristics of the breast tissue.

  20. A squeezed light source operated under high vacuum

    NASA Astrophysics Data System (ADS)

    Wade, Andrew R.; Mansell, Georgia L.; Chua, Sheon S. Y.; Ward, Robert L.; Slagmolen, Bram J. J.; Shaddock, Daniel A.; McClelland, David E.

    2015-12-01

    Non-classical squeezed states of light are becoming increasingly important to a range of metrology and other quantum optics applications in cryptography, quantum computation and biophysics. Applications such as improving the sensitivity of advanced gravitational wave detectors and the development of space-based metrology and quantum networks will require robust deployable vacuum-compatible sources. To date non-linear photonics devices operated under high vacuum have been simple single pass systems, testing harmonic generation and the production of classically correlated photon pairs for space-based applications. Here we demonstrate the production under high-vacuum conditions of non-classical squeezed light with an observed 8.6 dB of quantum noise reduction down to 10 Hz. Demonstration of a resonant non-linear optical device, for the generation of squeezed light under vacuum, paves the way to fully exploit the advantages of in-vacuum operations, adapting this technology for deployment into new extreme environments.