Sample records for compact lightweight electromagnetic

  1. Compact and lightweight support platform with electromagnetic disturbance elimination for interferometer on reversed field pinch Keda Torus eXperiment

    NASA Astrophysics Data System (ADS)

    Mao, Wenzhe; Yuan, Peng; Zheng, Jian; Ding, Weixing; Li, Hong; Lan, Tao; Liu, Adi; Liu, Wandong; Xie, Jinlin

    2016-11-01

    A compact and lightweight support platform has been used as a holder for the interferometer system on the Keda Torus eXperiment (KTX), which is a reversed field pinch device. The vibration caused by the interaction between the time-varying magnetic field and the induced current driven in the metal optical components has been measured and, following comparison with the mechanical vibration of the KTX device and the refraction effect of the ambient turbulent air flow, has been identified as the primary vibration source in this case. To eliminate this electromagnetic disturbance, nonmetallic epoxy resin has been selected as the material for the support platform and the commercially available metal optical mounts are replaced. Following these optimization steps and mechanical reinforcements, the stability of the interferometer platform has improved significantly. The phase shift caused by the vibration has been reduced to the level of background noise.

  2. Development of a miniature Stirling cryocooler for LWIR small satellite applications

    NASA Astrophysics Data System (ADS)

    Kirkconnell, C. S.; Hon, R. C.; Perella, M. D.; Crittenden, T. M.; Ghiaasiaan, S. M.

    2017-05-01

    The optimum small satellite (SmallSat) cryocooler system must be extremely compact and lightweight, achieved in this paper by operating a linear cryocooler at a frequency of approximately 300 Hz. Operation at this frequency, which is well in excess of the 100-150 Hz reported in recent papers on related efforts, requires an evolution beyond the traditional Oxford-class, flexure-based methods of setting the mechanical resonance. A novel approach that optimizes the electromagnetic design and the mechanical design together to simultaneously achieve the required dynamic and thermodynamic performances is described. Since highly miniaturized pulse tube coolers are fundamentally ill-suited for the sub-80K temperature range of interest because the boundary layer losses inside the pulse tube become dominant at the associated very small pulse tube size, a moving displacer Stirling cryocooler architecture is used. Compact compressor mechanisms developed on a previous program are reused for this design, and they have been adapted to yield an extremely compact Stirling warm end motor mechanism. Supporting thermodynamic and electromagnetic analysis results are reported.

  3. Fiber-Optic/Photoelastic Flow Sensors

    NASA Technical Reports Server (NTRS)

    Wesson, Laurence N.; Cabato, Nellie L.; Brooks, Edward F.

    1995-01-01

    Simple, rugged, lightweight transducers detect periodic vortices. Fiber-optic-coupled transducers developed to measure flows over wide dynamic ranges and over wide temperature ranges in severe environments. Used to measure flows of fuel in advanced aircraft engines. Feasibility of sensors demonstrated in tests of prototype sensor in water flowing at various temperatures and speeds. Particularly attractive for aircraft applications because optical fibers compact and make possible transmission of sensor signals at high rates with immunity from electromagnetic interference at suboptical frequencies. Sensors utilize optical-to-optical conversion via photoelastic effect.

  4. A Magnetically Suspended Wheel for a Miniature Gyro Made Using Planar Fabrication Technologies

    NASA Technical Reports Server (NTRS)

    Dauwalter, Charles R.

    1996-01-01

    The technical feasibility of a magnetically suspended rotating wheel for miniature gyro applications was investigated under a NASA SBIR contract. A concept for a configuration for a system of compact, lightweight magnetic actuators capable of generating the necessary suspension forces and fabrication using millimachining planar fabrication technologies was developed. Both capacitive and electromagnetic position sensing concepts were developed for implementing a closed loop control system for supporting the wheel. A finite difference technique, implemented in a spreadsheet environment, for analyzing the force characteristics of the actuator was used and the results verified with Finite Element Analysis.

  5. Lightweight Phase-Change Material For Solar Power

    NASA Technical Reports Server (NTRS)

    Stark, Philip

    1993-01-01

    Lightweight panels containing phase-change materials developed for use as heat-storage elements of compact, lightweight, advanced solar dynamic power system. During high insolation, heat stored in panels via latent heat of fusion of phase-change material; during low insolation, heat withdrawn from panels. Storage elements consist mainly of porous carbon-fiber structures imbued with germanium. Developed for use aboard space station in orbit around Earth, also adapted to lightweight, compact, portable solar-power systems for use on Earth.

  6. Compact, Lightweight Electromagnetic Pump for Liquid Metal

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas; Palzin, Kurt

    2010-01-01

    A proposed direct-current electromagnetic pump for circulating a molten alkali metal alloy would be smaller and lighter and would demand less input power, relative to currently available pumps of this type. (Molten alkali metals are used as heat-transfer fluids in high-temperature stages of some nuclear reactors.) The principle of operation of this or any such pump involves exploitation of the electrical conductivity of the molten metal: An electric current is made to pass through the liquid metal along an axis perpendicular to the longitudinal axis of the flow channel, and a magnetic field perpendicular to both the longitudinal axis and the electric current is superimposed on the flowchannel region containing the electric current. The interaction between the electric current and the magnetic field produces the pumping force along the longitudinal axis. The advantages of the proposed pump over other such pumps would accrue from design features that address overlapping thermal and magnetic issues.

  7. Assembly and Testing of a Compact, Lightweight Homopolar Generator Power Supply

    DTIC Science & Technology

    1983-06-01

    ASSEMBLY AND TESTING OF A COMPACT, LIGHTWEIGHT HOMOPOLAR GENERATOR POWER SUPPLY J. H. Gully Center for Electromechanics The University of Texas...portable systems. The initial step in developing the power supply was to design, fabricate and test a prototype homopolar generator, attempting to...levels. SUPPORT STRUCTURE HYDRAULIC Fig. 1. Section through compact homopolar generator ~1 l-oot!:__ __ 63.80 ----~ (25. 12) ~------ 85.88

  8. Design of a bistable electromagnetic coupling mechanism for underactuated manipulators

    NASA Astrophysics Data System (ADS)

    Miyuranga Kaluarachchi, Malaka; Ho, Jee-Hou; Yahya, Samer; Teh, Sze-Hong

    2018-07-01

    Electromagnetic clutches have been widely used in underactuated lightweight manipulator designs as a coupling mechanism due to their advantages of fast activation and electrical controllability. However, an electromagnetic clutch consumes electrical energy continuously during its operation. Furthermore, conventional electromagnetic clutches are not fail-safe in unexpected power failure conditions. These factors have a significant impact on the energy efficiency and the safety of the design, and these are vital aspects for underactuated lightweight manipulators. This paper introduces a bistable electromagnetic coupling mechanism design, with reduced energy consumption and with a fail-safe mechanism. The concept of a bistable electromagnetic mechanism consists of an electromagnet with two permanent magnets. The design has the capability to maintain stable mechanism states, either engaged or disengaged, without a continuous electrical power supply, thus enhancing fail-safety and efficiency. Moreover, the design incorporates the advantages of conventional electromagnetic clutches such as rapid activation and electrical controllability. The experimental results highlight the effectiveness of the proposed mechanism in reducing electric energy consumption. Besides this, a theoretical model is developed and a good correlation is achieved between the theoretical and experimental results. The reduced electric energy consumption and fail-safe design make the bistable electromagnetic mechanism a promising concept for underactuated lightweight manipulators.

  9. Power Electronics Packaging Reliability | Transportation Research | NREL

    Science.gov Websites

    interface materials, are a key enabling technology for compact, lightweight, low-cost, and reliable power , reliability, and cost. High-temperature bonded interface materials are an important facilitating technology for compact, lightweight, low-cost, reliable power electronics packaging that fully utilizes the

  10. Compact, Lightweight Servo-Controllable Brakes

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher S.; Townsend, William; Guertin, Jeffrey; Matsuoka, Yoky

    2010-01-01

    Compact, lightweight servo-controllable brakes capable of high torques are being developed for incorporation into robot joints. A brake of this type is based partly on the capstan effect of tension elements. In a brake of the type under development, a controllable intermediate state of torque is reached through on/off switching at a high frequency.

  11. Space Station Freedom power supply commonality via modular design

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Gangal, M. D.; Das, R.

    1990-01-01

    At mature operations, Space Station Freedom will need more than 2000 power supplies to feed housekeeping and user loads. Advanced technology power supplies from 20 to 250 W have been hybridized for terrestrial, aerospace, and industry applications in compact, efficient, reliable, lightweight packages compatible with electromagnetic interference requirements. The use of these hybridized packages as modules, either singly or in parallel, to satisfy the wide range of user power supply needs for all elements of the station is proposed. Proposed characteristics for the power supplies include common mechanical packaging, digital control, self-protection, high efficiency at full and partial loads, synchronization capability to reduce electromagnetic interference, redundancy, and soft-start capability. The inherent reliability is improved compared with conventional discrete component power supplies because the hybrid circuits use high-reliability components such as ceramic capacitors. Reliability is further improved over conventional supplies because the hybrid packages, which may be treated as a single part, reduce the parts count in the power supply.

  12. An inexpensive and reliable monitoring station design for use with lightweight, compact data loggers

    Treesearch

    Ronald S., Jr. Zalesny; Adam H. Wiese; Edmund O. Bauer; William L., Jr. Headlee; Richard B. Hall; A. Assibi Mahama; Jill A. Zalesny

    2007-01-01

    We designed, constructed, and field-tested an inexpensive and reliable monitoring station that can be used with lightweight, compact data loggers. We feel this design, improved three times over 6 yr, could benefit anyone in nursery or field settings interested in acquiring environmental data. We provide step-by-step instructions on the construction of the monitoring...

  13. Combining Sense and Intelligence for Smart Structures

    NASA Technical Reports Server (NTRS)

    2002-01-01

    IFOS developed the I*Sense technology with assistance from a NASA Langley Research Center SBIR contract. NASA and IFOS collaborated to create sensing network designs that have high sensitivity, low power consumption, and significant potential for mass production. The joint- research effort led to the development of a module that is rugged, compact and light-weight, and immune to electromagnetic interference. These features make the I*Sense multisensor arrays favorable for smart structure applications, including smart buildings, bridges, highways, dams, power plants, ships, and oil tankers, as well as space vehicles, space stations, and other space structures. For instance, the system can be used as an early warning and detection device, with alarms being set to monitor the maximum allowable strain and stress values at various points of a given structure.

  14. Compact, Lightweight Dual-Frequency Microstrip Antenna Feed for Future Soil Moisture and Sea Surface Salinity Missions

    NASA Technical Reports Server (NTRS)

    Yueh, Simon; Wilson, William J.; Njoku, Eni; Dinardo, Steve; Hunter, Don; Rahmat-Samii, Yahya; Kona, Keerti S.; Manteghi, Majid

    2006-01-01

    The development of a compact, lightweight, dual-frequency antenna feed for future soil moisture and sea surface salinity (SSS) missions is described. The design is based on the microstrip stacked-patch array (MSPA) to be used to feed a large lightweight deployable rotating mesh antenna for spaceborne L-band (approx.1 GHz) passive and active sensing systems. The design features will also enable applications to airborne soil moisture and salinity remote sensing sensors operating on small aircrafts. This paper describes the design of stacked patch elements and 16-element array configuration. The results from the return loss, antenna pattern measurements and sky tests are also described.

  15. Compact, Lightweight Dual- Frequency Microstrip Antenna Feed for Future Soil Moisture and Sea Surface Salinity Missions

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Wilson, William J.; Njoku, Eni; Hunter, Don; Dinardo, Steve; Kona, Keerti S.; Manteghi, Majid; Gies, Dennis; Rahmat-Samii, Yahya

    2004-01-01

    The development of a compact, lightweight, dual frequency antenna feed for future soil moisture and sea surface salinity (SSS) missions is described. The design is based on the microstrip stacked-patch array (MSPA) to be used to feed a large lightweight deployable rotating mesh antenna for spaceborne L-band (approx. 1 GHz) passive and active sensing systems. The design features will also enable applications to airborne sensors operating on small aircrafts. This paper describes the design of stacked patch elements, 16-element array configuration and power-divider beam forming network The test results from the fabrication of stacked patches and power divider were also described.

  16. Shoulder-Mounted Robot for MRI-guided arthrography: Accuracy and mounting study.

    PubMed

    Monfaredi, R; Wilson, E; Sze, R; Sharma, K; Azizi, B; Iordachita, I; Cleary, K

    2015-08-01

    A new version of our compact and lightweight patient-mounted MRI-compatible 4 degree-of-freedom (DOF) robot for MRI-guided arthrography procedures is introduced. This robot could convert the traditional two-stage arthrography procedure (fluoroscopy-guided needle insertion followed by a diagnostic MRI scan) to a one-stage procedure, all in the MRI suite. The results of a recent accuracy study are reported. A new mounting technique is proposed and the mounting stability is investigated using optical and electromagnetic tracking on an anthropomorphic phantom. Five volunteer subjects including 2 radiologists were asked to conduct needle insertion in 4 different random positions and orientations within the robot's workspace and the displacement of the base of the robot was investigated during robot motion and needle insertion. Experimental results show that the proposed mounting method is stable and promising for clinical application.

  17. On the possibility to use semiconductive hybrid pixel detectors for study of radiation belt of the Earth.

    NASA Astrophysics Data System (ADS)

    Guskov, A.; Shelkov, G.; Smolyanskiy, P.; Zhemchugov, A.

    2016-02-01

    The scientific apparatus GAMMA-400 designed for study of electromagnetic and hadron components of cosmic rays will be launched to an elliptic orbit with the apogee of about 300 000 km and the perigee of about 500 km. Such a configuration of the orbit allows it to cross periodically the radiation belt and the outer part of magnetosphere. We discuss the possibility to use hybrid pixel detecters based on the Timepix chip and semiconductive sensors on board the GAMMA-400 apparatus. Due to high granularity of the sensor (pixel size is 55 mum) and possibility to measure independently an energy deposition in each pixel, such compact and lightweight detector could be a unique instrument for study of spatial, energy and time structure of electron and proton components of the radiation belt.

  18. Field-portable lensfree tomographic microscope†

    PubMed Central

    Isikman, Serhan O.; Bishara, Waheb; Sikora, Uzair; Yaglidere, Oguzhan; Yeah, John; Ozcan, Aydogan

    2011-01-01

    We present a field-portable lensfree tomographic microscope, which can achieve sectional imaging of a large volume (~20 mm3) on a chip with an axial resolution of <7 μm. In this compact tomographic imaging platform (weighing only ~110 grams), 24 light-emitting diodes (LEDs) that are each butt-coupled to a fibre-optic waveguide are controlled through a cost-effective micro-processor to sequentially illuminate the sample from different angles to record lensfree holograms of the sample that is placed on the top of a digital sensor array. In order to generate pixel super-resolved (SR) lensfree holograms and hence digitally improve the achievable lateral resolution, multiple sub-pixel shifted holograms are recorded at each illumination angle by electromagnetically actuating the fibre-optic waveguides using compact coils and magnets. These SR projection holograms obtained over an angular range of ~50° are rapidly reconstructed to yield projection images of the sample, which can then be back-projected to compute tomograms of the objects on the sensor-chip. The performance of this compact and light-weight lensfree tomographic microscope is validated by imaging micro-beads of different dimensions as well as a Hymenolepis nana egg, which is an infectious parasitic flatworm. Achieving a decent three-dimensional spatial resolution, this field-portable on-chip optical tomographic microscope might provide a useful toolset for telemedicine and high-throughput imaging applications in resource-poor settings. PMID:21573311

  19. Standardizing lightweight deflectometer modulus measurements for compaction quality assurance

    DOT National Transportation Integrated Search

    2017-09-01

    To evaluate the compaction of unbound geomaterials under unsaturated conditions and replace the conventional methods with a practical modulus-based specification using LWD, this study examined three different LWDs, the Zorn ZFG 3000 LWD, Dynatest 303...

  20. Structurally Integrated Antenna Concepts for HALE UAVs

    NASA Technical Reports Server (NTRS)

    Cravey, Robin L.; Vedeler, Erik; Goins, Larry; Young, W. Robert; Lawrence, Roland W.

    2006-01-01

    This technical memorandum describes work done in support of the Multifunctional Structures and Materials Team under the Vehicle Systems Program's ITAS (Integrated Tailored Aero Structures) Project during FY 2005. The Electromagnetics and Sensors Branch (ESB) developed three ultra lightweight antenna concepts compatible with HALE UAVs (High Altitude Long Endurance Unmanned Aerial Vehicles). ESB also developed antenna elements that minimize the interaction between elements and the vehicle to minimize the impact of wing flexure on the EM (electromagnetic) performance of the integrated array. In addition, computer models were developed to perform phase correction for antenna arrays whose elements are moving relative to each other due to wing deformations expected in HALE vehicle concepts. Development of lightweight, conformal or structurally integrated antenna elements and compensating for the impact of a lightweight, flexible structure on a large antenna array are important steps in the realization of HALE UAVs for microwave applications such as passive remote sensing and communications.

  1. Construction of three-dimensional graphene interfaces into carbon fiber textiles for increasing deposition of nickel nanoparticles: flexible hierarchical magnetic textile composites for strong electromagnetic shielding

    NASA Astrophysics Data System (ADS)

    Bian, Xing-Ming; Liu, Lin; Li, Hai-Bing; Wang, Chan-Yuan; Xie, Qing; Zhao, Quan-Liang; Bi, Song; Hou, Zhi-Ling

    2017-01-01

    Since manipulating electromagnetic waves with electromagnetic active materials for environmental and electric engineering is a significant task, here a novel prototype is reported by introducing reduced graphene oxide (RGO) interfaces in carbon fiber (CF) networks for a hierarchical carbon fiber/reduced graphene oxide/nickel (CF-RGO-Ni) composite textile. Upon charaterizations of the microscopic morphologies, electrical and magnetic properties, the presence of three-dimensional RGO interfaces and bifunctional nickel nanoparticles substantially influences the related physical properties in the resulting hierarchical composite textiles. Eletromagnetic interference (EMI) shielding performance suggests that the hierarchical composite textiles hold a strong shielding effectiveness greater than 61 dB, showing greater advantages than conventional polymeric and foamy shielding composites. As a polymer-free lightweight structure, flexible CF-RGO-Ni composites of all electromagnetic active components offer unique understanding of the multi-scale and multiple mechanisms in electromagnetic energy consumption. Such a novel prototype of shielding structures along with convenient technology highlight a strategy to achieve high-performance EMI shielding, coupled with a universal approach for preparing advanced lightweight composites with graphene interfaces.

  2. Construction of three-dimensional graphene interfaces into carbon fiber textiles for increasing deposition of nickel nanoparticles: flexible hierarchical magnetic textile composites for strong electromagnetic shielding.

    PubMed

    Bian, Xing-Ming; Liu, Lin; Li, Hai-Bing; Wang, Chan-Yuan; Xie, Qing; Zhao, Quan-Liang; Bi, Song; Hou, Zhi-Ling

    2017-01-27

    Since manipulating electromagnetic waves with electromagnetic active materials for environmental and electric engineering is a significant task, here a novel prototype is reported by introducing reduced graphene oxide (RGO) interfaces in carbon fiber (CF) networks for a hierarchical carbon fiber/reduced graphene oxide/nickel (CF-RGO-Ni) composite textile. Upon charaterizations of the microscopic morphologies, electrical and magnetic properties, the presence of three-dimensional RGO interfaces and bifunctional nickel nanoparticles substantially influences the related physical properties in the resulting hierarchical composite textiles. Eletromagnetic interference (EMI) shielding performance suggests that the hierarchical composite textiles hold a strong shielding effectiveness greater than 61 dB, showing greater advantages than conventional polymeric and foamy shielding composites. As a polymer-free lightweight structure, flexible CF-RGO-Ni composites of all electromagnetic active components offer unique understanding of the multi-scale and multiple mechanisms in electromagnetic energy consumption. Such a novel prototype of shielding structures along with convenient technology highlight a strategy to achieve high-performance EMI shielding, coupled with a universal approach for preparing advanced lightweight composites with graphene interfaces.

  3. Lightweight, Thermally Insulating Structural Panels

    NASA Technical Reports Server (NTRS)

    Eisen, Howard J.; Hickey, Gregory; Wen, Liang-Chi; Layman, William E.; Rainen, Richard A.; Birur, Gajanana C.

    1996-01-01

    Lightweight, thermally insulating panels that also serve as structural members developed. Honeycomb-core panel filled with low-thermal-conductivity, opacified silica aerogel preventing convection and minimizes internal radiation. Copper coating on face sheets reduces radiation. Overall thermal conductivities of panels smaller than state-of-art commercial non-structurally-supporting foam and fibrous insulations. On Earth, panels suitable for use in low-air-pressure environments in which lightweight, compact, structurally supporting insulation needed; for example, aboard high-altitude aircraft or in partially evacuated panels in refrigerators.

  4. The microwave properties of composites including lightweight core-shell ellipsoids

    NASA Astrophysics Data System (ADS)

    Yuan, Liming; Xu, Yonggang; Dai, Fei; Liao, Yi; Zhang, Deyuan

    2016-12-01

    In order to study the microwave properties of suspensions including lightweight core-shell ellipsoids, the calculation formula was obtained by substituting an equivalent ellipsoid for the original core-shell ellipsoid. Simulations for Fe-coated diatomite/paraffin suspensions were performed. Results reveal that the calculated results fitted the measured results very well when the inclusion concentration was no more than 15 vol%, but there was an obvious deviation when the inclusion concentration reached 24 vol%. By comparisons, the formula for less diluted suspensions was more suitable for calculating the electromagnetic parameter of suspensions especially when the ratio was smaller between the electromagnetic parameter of the inclusion and that of the host medium.

  5. Compact rotating cup anemometer

    NASA Technical Reports Server (NTRS)

    Wellman, J. B.

    1968-01-01

    Compact, collapsible rotating cup anemometer is used in remote locations where portability and durability are factors in the choice of equipment. This lightweight instrument has a low wind-velocity threshold, is capable of withstanding large mechanical shocks while in its stowed configuration, and has fast response to wind fluctuations.

  6. Bulk Superconductors in Mobile Application

    NASA Astrophysics Data System (ADS)

    Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.

    We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.

  7. Compact orthogonal NMR field sensor

    DOEpatents

    Gerald, II, Rex E.; Rathke, Jerome W [Homer Glen, IL

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  8. Compact and light-weight automated semen analysis platform using lensfree on-chip microscopy.

    PubMed

    Su, Ting-Wei; Erlinger, Anthony; Tseng, Derek; Ozcan, Aydogan

    2010-10-01

    We demonstrate a compact and lightweight platform to conduct automated semen analysis using a lensfree on-chip microscope. This holographic on-chip imaging platform weighs ∼46 g, measures ∼4.2 × 4.2 × 5.8 cm, and does not require any lenses, lasers or other bulky optical components to achieve phase and amplitude imaging of sperms over ∼24 mm(2) field-of-view with an effective numerical aperture of ∼0.2. Using this wide-field lensfree on-chip microscope, semen samples are imaged for ∼10 s, capturing a total of ∼20 holographic frames. Digital subtraction of these consecutive lensfree frames, followed by appropriate processing of the reconstructed images, enables automated quantification of the count, the speed and the dynamic trajectories of motile sperms, while summation of the same frames permits counting of immotile sperms. Such a compact and lightweight automated semen analysis platform running on a wide-field lensfree on-chip microscope could be especially important for fertility clinics, personal male fertility tests, as well as for field use in veterinary medicine such as in stud farming and animal breeding applications.

  9. Field-portable lensfree tomographic microscope.

    PubMed

    Isikman, Serhan O; Bishara, Waheb; Sikora, Uzair; Yaglidere, Oguzhan; Yeah, John; Ozcan, Aydogan

    2011-07-07

    We present a field-portable lensfree tomographic microscope, which can achieve sectional imaging of a large volume (∼20 mm(3)) on a chip with an axial resolution of <7 μm. In this compact tomographic imaging platform (weighing only ∼110 grams), 24 light-emitting diodes (LEDs) that are each butt-coupled to a fibre-optic waveguide are controlled through a cost-effective micro-processor to sequentially illuminate the sample from different angles to record lensfree holograms of the sample that is placed on the top of a digital sensor array. In order to generate pixel super-resolved (SR) lensfree holograms and hence digitally improve the achievable lateral resolution, multiple sub-pixel shifted holograms are recorded at each illumination angle by electromagnetically actuating the fibre-optic waveguides using compact coils and magnets. These SR projection holograms obtained over an angular range of ±50° are rapidly reconstructed to yield projection images of the sample, which can then be back-projected to compute tomograms of the objects on the sensor-chip. The performance of this compact and light-weight lensfree tomographic microscope is validated by imaging micro-beads of different dimensions as well as a Hymenolepis nana egg, which is an infectious parasitic flatworm. Achieving a decent three-dimensional spatial resolution, this field-portable on-chip optical tomographic microscope might provide a useful toolset for telemedicine and high-throughput imaging applications in resource-poor settings. This journal is © The Royal Society of Chemistry 2011

  10. An amorphous alloy core medium frequency magnetic-link for medium voltage photovoltaic inverters

    NASA Astrophysics Data System (ADS)

    Rabiul Islam, Md.; Guo, Youguang; Wei Lin, Zhi; Zhu, Jianguo

    2014-05-01

    The advanced magnetic materials with high saturation flux density and low specific core loss have led to the development of an efficient, compact, and lightweight multiple-input multiple-output medium frequency magnetic-link. It offers a new route to eliminate some critical limitations of recently proposed medium voltage photovoltaic inverters. In this paper, a medium frequency magnetic-link is developed with Metglas amorphous alloy 2605S3A. The common magnetic-link generates isolated and balanced multiple DC supplies for all of the H-bridge inverter cells of the medium voltage inverter. The design and implementation of the prototype, test platform, and the experimental test results are analyzed and discussed. The medium frequency non-sinusoidal excitation electromagnetic characteristics of alloy 2605S3A are also compared with that of alloy 2605SA1. It is expected that the proposed new technology will have great potential for future renewable power generation systems and smart grid applications.

  11. The effectiveness of stone ash and volcanic ash of mount Sinabung as a filler on the initial strength of self-compacting concrete

    NASA Astrophysics Data System (ADS)

    Karolina, R.; Muhammad, W.; Saragih, M. D. S. M.; Mustaqa, T.

    2018-02-01

    Self Compacting Concrete is a concrete variant that has a high degree of workability and also has great initial strength, but low water cement factor. It is also self-flowable that can be molded on formwork with a very little or no compacted use of compactors. This concrete, using a variety of aggregate sizes, aggregate portions and superplasticizer admixture to achieve a special viscosity that allows it to flow on its own without the aid of a compactor. Lightweight concrete brick is a type of brick made from cement, sand, water, and developers. Lightweight concrete bricks are divided into 2 based on the developed materials used are AAC (Autoclave Aerated Concrete) using aluminum paste and CLC (Cellular Lightweight Concrete) that use Foaming Agent from BASF as a developer material. In this experiment, the lightweight bricks that will be made are CLC type which uses Foaming Agent as the developer material by mixing the Ash Stone produced by Stone Crusher machine which has the density of 2666 kg / m3 as Partial Pair Substitution. In this study the variation of Ash Stone used is 10%, 15%, and 20% of the planned amount of sand. After doing the tasting the result is obtained for 10% variation. Compressive Strength and Absorption Increase will decrease by 25.07% and 39.005% and Variation of 15% compressive strength will decrease by 65,8% and decrease of absorbtion equal to 17,441% and variation of 20% compressive strength will decreased by 67,4 and absorption increase equal to 17,956%.

  12. [A Compact Source of Terahertz Radiation Based on Interaction of Electrons in à Quantum Well with an Electromagnetic Wave of a Corrugated Waveguide].

    PubMed

    Shchurova, L Yu; Namiot, V A; Sarkisyan, D R

    2015-01-01

    Coherent sources of electromagnetic waves in the terahertz frequency range are very promising for various applications, including biology and medicine. In this paper we propose a scheme of a compact terahertz source, in which terahertz radiation is generated due to effective interaction of electrons in a quantum well with an electromagnetic wave of a corrugated waveguide. We have shown that the generation of electromagnetic waves with a frequency of 1012 sec(-1) and an output power of up to 25. mW is possible in the proposed scheme.

  13. Compact Power Conditioning and RF Systems for a High Power RF Source

    DTIC Science & Technology

    2008-12-01

    RF systems have increasing potential for application by the Army. High power RF, or high power microwave ( HPM ), systems can disrupt or disable...that are small, lightweight, portable, and use an independent energy source. The resulting system will be able to produce HPM from a compact package...The consortium was formed to advance the technology of the components required for a compact HPM source with the final goal of full system

  14. Compact Focal Plane Assembly for Planetary Science

    NASA Technical Reports Server (NTRS)

    Brown, Ari; Aslam, Shahid; Huang, Wei-Chung; Steptoe-Jackson, Rosalind

    2013-01-01

    A compact radiometric focal plane assembly (FPA) has been designed in which the filters are individually co-registered over compact thermopile pixels. This allows for construction of an ultralightweight and compact radiometric instrument. The FPA also incorporates micromachined baffles in order to mitigate crosstalk and low-pass filter windows in order to eliminate high-frequency radiation. Compact metal mesh bandpass filters were fabricated for the far infrared (FIR) spectral range (17 to 100 microns), a game-changing technology for future planetary FIR instruments. This fabrication approach allows the dimensions of individual metal mesh filters to be tailored with better than 10- micron precision. In contrast, conventional compact filters employed in recent missions and in near-term instruments consist of large filter sheets manually cut into much smaller pieces, which is a much less precise and much more labor-intensive, expensive, and difficult process. Filter performance was validated by integrating them with thermopile arrays. Demonstration of the FPA will require the integration of two technologies. The first technology is compact, lightweight, robust against cryogenic thermal cycling, and radiation-hard micromachined bandpass filters. They consist of a copper mesh supported on a deep reactive ion-etched silicon frame. This design architecture is advantageous when constructing a lightweight and compact instrument because (1) the frame acts like a jig and facilitates filter integration with the FPA, (2) the frame can be designed so as to maximize the FPA field of view, (3) the frame can be simultaneously used as a baffle for mitigating crosstalk, and (4) micron-scale alignment features can be patterned so as to permit high-precision filter stacking and, consequently, increase the filter bandwidth and sharpen the out-of-band rolloff. The second technology consists of leveraging, from another project, compact and lightweight Bi0.87Sb0.13/Sb arrayed thermopiles. These detectors consist of 30-layer thermopiles deposited in series upon a silicon nitride membrane. At 300 K, the thermopile arrays are highly linear over many orders of magnitude of incident IR power, and have a reported specific detectivity that exceeds the requirements imposed on future mission concepts. The bandpass filter array board is integrated with a thermopile array board by mounting both boards on a machined aluminum jig.

  15. A compact high-resolution 3-D imaging spectrometer for discovering Oases on Mars

    USGS Publications Warehouse

    Ge, J.; Ren, D.; Lunine, J.I.; Brown, R.H.; Yelle, R.V.; Soderblom, L.A.; ,

    2002-01-01

    A new design for a very lightweight, very high throughput reflectance sectrometer enabled by two new technologies being developed is presented. These new technologies include integral field unit optics to enable simultaneous imaging and spectroscopy at high spatial resolution with an infrared (IR) array, and silicon grisms to enable compact and high-resolution spectroscopy.

  16. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications.

    PubMed

    Mudanyali, Onur; Tseng, Derek; Oh, Chulwoo; Isikman, Serhan O; Sencan, Ikbal; Bishara, Waheb; Oztoprak, Cetin; Seo, Sungkyu; Khademhosseini, Bahar; Ozcan, Aydogan

    2010-06-07

    Despite the rapid progress in optical imaging, most of the advanced microscopy modalities still require complex and costly set-ups that unfortunately limit their use beyond well equipped laboratories. In the meantime, microscopy in resource-limited settings has requirements significantly different from those encountered in advanced laboratories, and such imaging devices should be cost-effective, compact, light-weight and appropriately accurate and simple to be usable by minimally trained personnel. Furthermore, these portable microscopes should ideally be digitally integrated as part of a telemedicine network that connects various mobile health-care providers to a central laboratory or hospital. Toward this end, here we demonstrate a lensless on-chip microscope weighing approximately 46 grams with dimensions smaller than 4.2 cm x 4.2 cm x 5.8 cm that achieves sub-cellular resolution over a large field of view of approximately 24 mm(2). This compact and light-weight microscope is based on digital in-line holography and does not need any lenses, bulky optical/mechanical components or coherent sources such as lasers. Instead, it utilizes a simple light-emitting-diode (LED) and a compact opto-electronic sensor-array to record lensless holograms of the objects, which then permits rapid digital reconstruction of regular transmission or differential interference contrast (DIC) images of the objects. Because this lensless incoherent holographic microscope has orders-of-magnitude improved light collection efficiency and is very robust to mechanical misalignments it may offer a cost-effective tool especially for telemedicine applications involving various global health problems in resource limited settings.

  17. Shock Response of Lightweight Adobe Masonry

    NASA Astrophysics Data System (ADS)

    Sauer, C.; Bagusat, F.; Heine, A.; Riedel, W.

    2018-06-01

    The behavior of a low density and low-strength building material under shock loading is investigated. The considered material is lightweight adobe masonry characterized by a density of 1.2 g/cm3 and a quasi-static uniaxial compressive strength of 2.8 MPa. Planar-plate-impact (PPI) tests with velocities in between 295 and 950 m/s are performed in order to obtain Hugoniot data and to derive parameters for an equation of state (EOS) that captures the occurring phenomenology of porous compaction and subsequent unloading. The resulting EOS description is validated by comparing the experimental free surface velocity time curves with those obtained by numerical simulations of the performed PPI tests. The non-linear compression behavior, including the pore compaction mechanism, constitutes a main ingredient for modelling the response of adobe to blast and high-velocity impact loading. We hence present a modeling approach for lightweight adobe which can be applied to such high rate loading scenarios in future studies. In general, this work shows that PPI tests on lightweight and low-strength geological materials can be used to extract Hugoniot data despite significant material inhomogeneity. Furthermore, we demonstrate that a homogenous material model is able to numerically describe such a material under shock compression and release with a reasonable accuracy.

  18. Shock Response of Lightweight Adobe Masonry

    NASA Astrophysics Data System (ADS)

    Sauer, C.; Bagusat, F.; Heine, A.; Riedel, W.

    2018-04-01

    The behavior of a low density and low-strength building material under shock loading is investigated. The considered material is lightweight adobe masonry characterized by a density of 1.2 g/cm3 and a quasi-static uniaxial compressive strength of 2.8 MPa. Planar-plate-impact (PPI) tests with velocities in between 295 and 950 m/s are performed in order to obtain Hugoniot data and to derive parameters for an equation of state (EOS) that captures the occurring phenomenology of porous compaction and subsequent unloading. The resulting EOS description is validated by comparing the experimental free surface velocity time curves with those obtained by numerical simulations of the performed PPI tests. The non-linear compression behavior, including the pore compaction mechanism, constitutes a main ingredient for modelling the response of adobe to blast and high-velocity impact loading. We hence present a modeling approach for lightweight adobe which can be applied to such high rate loading scenarios in future studies. In general, this work shows that PPI tests on lightweight and low-strength geological materials can be used to extract Hugoniot data despite significant material inhomogeneity. Furthermore, we demonstrate that a homogenous material model is able to numerically describe such a material under shock compression and release with a reasonable accuracy.

  19. Stiff, Thermally Stable and Highly Anisotropic Wood-Derived Carbon Composite Monoliths for Electromagnetic Interference Shielding.

    PubMed

    Yuan, Ye; Sun, Xianxian; Yang, Minglong; Xu, Fan; Lin, Zaishan; Zhao, Xu; Ding, Yujie; Li, Jianjun; Yin, Weilong; Peng, Qingyu; He, Xiaodong; Li, Yibin

    2017-06-28

    Electromagnetic interference (EMI) shielding materials for electronic devices in aviation and aerospace not only need lightweight and high shielding effectiveness, but also should withstand harsh environments. Traditional EMI shielding materials often show heavy weight, poor thermal stability, short lifetime, poor tolerance to chemicals, and are hard-to-manufacture. Searching for high-efficiency EMI shielding materials overcoming the above weaknesses is still a great challenge. Herein, inspired by the unique structure of natural wood, lightweight and highly anisotropic wood-derived carbon composite EMI shielding materials have been prepared which possess not only high EMI shielding performance and mechanical stable characteristics, but also possess thermally stable properties, outperforming those metals, conductive polymers, and their composites. The newly developed low-cost materials are promising for specific applications in aerospace electronic devices, especially regarding extreme temperatures.

  20. Laser surface modification of electrically conductive fabrics: Material performance improvement and design effects

    NASA Astrophysics Data System (ADS)

    Tunakova, Veronika; Hrubosova, Zuzana; Tunak, Maros; Kasparova, Marie; Mullerova, Jana

    2018-01-01

    Development of lightweight flexible materials for electromagnetic interference shielding has obtained increased attention in recent years particularly for clothing, textiles in-house use and technical applications especially in areas of aircraft, aerospace, automobiles and flexible electronics such as portable electronics and wearable devices. There are many references in the literature concerning development and investigation of electromagnetic shielding lightweight flexible materials especially textile based with different electrically conductive additives. However, only little attention is paid to designing and enhancing the properties of these special fabrics by textile finishing processes. Laser technology applied as a physical treatment method is becoming very popular and can be used in different applications to make improvement and even overcome drawbacks of some of the traditional processes. The main purpose of this study is firstly to analyze the possibilities of transferring design onto the surface of electrically conductive fabrics by laser beam and secondly to study of effect of surface modification degree on performance of conductive fabric including electromagnetic shielding ability and mechanical properties. Woven fabric made of yarns containing 10% of extremely thin stainless steel fiber was used as a conductive substrate.

  1. Experimental Realization of a Reflections-Free Compact Delay Line Based on a Photonic Topological Insulator

    PubMed Central

    Lai, Kueifu; Ma, Tsuhsuang; Bo, Xiao; Anlage, Steven; Shvets, Gennady

    2016-01-01

    Electromagnetic (EM) waves propagating through an inhomogeneous medium are generally scattered whenever the medium’s electromagnetic properties change on the scale of a single wavelength. This fundamental phenomenon constrains how optical structures are designed and interfaced with each other. Recent theoretical work indicates that electromagnetic structures collectively known as photonic topological insulators (PTIs) can be employed to overcome this fundamental limitation, thereby paving the way for ultra-compact photonic structures that no longer have to be wavelength-scale smooth. Here we present the first experimental demonstration of a photonic delay line based on topologically protected surface electromagnetic waves (TPSWs) between two PTIs which are the EM counterparts of the quantum spin-Hall topological insulators in condensed matter. Unlike conventional guided EM waves that do not benefit from topological protection, TPSWs are shown to experience multi-wavelength reflection-free time delays when detoured around sharply-curved paths, thus offering a unique paradigm for compact and efficient wave buffers and other devices. PMID:27345575

  2. Broadband electromagnetic analysis of compacted kaolin

    NASA Astrophysics Data System (ADS)

    Bore, Thierry; Wagner, Norman; Cai, Caifang; Scheuermann, Alexander

    2017-01-01

    The mechanical compaction of soil influences not only the mechanical strength and compressibility but also the hydraulic behavior in terms of hydraulic conductivity and soil suction. At the same time, electric and dielectric parameters are increasingly used to characterize soil and to relate them with mechanic and hydraulic parameters. In the presented study electromagnetic soil properties and suction were measured under defined conditions of standardized compaction tests. The impact of external mechanical stress conditions of nearly pure kaolinite was analyzed on soil suction and broadband electromagnetic soil properties. An experimental procedure was developed and validated to simultaneously determine mechanical, hydraulic and broadband (1 MHz-3 GHz) electromagnetic properties of the porous material. The frequency dependent electromagnetic properties were modeled with a classical mixture equation (advanced Lichtenecker and Rother model, ALRM) and a hydraulic-mechanical-electromagnetic coupling approach was introduced considering water saturation, soil structure (bulk density, porosity), soil suction (pore size distribution, water sorption) as well as electrical conductivity of the aqueous pore solution. Moreover, the relaxation behavior was analyzed with a generalized fractional relaxation model concerning a high-frequency water process and two interface processes extended with an apparent direct current conductivity contribution. The different modeling approaches provide a satisfactory agreement with experimental data for the real part. These results show the potential of broadband electromagnetic approaches for quantitative estimation of the hydraulic state of the soil during densification.

  3. Fuel-Cell Structure Prevents Membrane Drying

    NASA Technical Reports Server (NTRS)

    Mcelroy, J.

    1986-01-01

    Embossed plates direct flows of reactants and coolant. Membrane-type fuel-cell battery has improved reactant flow and heat removal. Compact, lightweight battery produces high current and power without drying of membranes.

  4. The design, development and qualification of a lightweight antenna pointing mechanism

    NASA Technical Reports Server (NTRS)

    Shmulevitz, M.; Halsband, A.

    1996-01-01

    This paper describes the design, development, and qualification of a new lightweight and compact Antenna Pointing Mechanism (APM). The APM was specially designed to meet the stringent mass, envelope, and environmental requirements of OFFEQ experimental satellite. During the development phase, some problems were encountered with the brushless DC motors, slip ring contact resistance, and bearing drag torque. All of these problems were resolved, and two APM units have been operating successfully in orbit since April, 1995.

  5. Electromagnetic miniactuators using thin magnetic layers

    NASA Astrophysics Data System (ADS)

    Kube, H.; Zoeppig, V.; Hermann, R.; Hoffmann, A.; Kallenbach, E.

    2000-06-01

    This paper presents two examples of miniactuators based on the electromagnetic and electrodynamic force generation principle respectively. They use modern high-energy polymer-bonded permanent magnetic layers basing on NdFeB. The first example is a linear drive with an integrated magnetic bearing. It generates electrodynamic forces to lift and move a lightweight platen. The position of the platen is measured and controlled. The second example is a miniature pneumatic valve with a fully integrated polarized electromagnetic actuator. The valve consumes power only when the armature position is changed. The holding force is generated without consumption of power.

  6. IMAS Pulse Tube Cooler Development and Testing

    NASA Technical Reports Server (NTRS)

    Ross, R.; Johnson, D.; Chan, C.; Nguyen, T.; Colbert, R.; Raab, J.

    1998-01-01

    An Integrated Multispectral Atmospheric Sounder (IMAS) cryocooler has been developed over the past two years for providing on the order of 0.5-watt cooling at 55K in a lightweight compact configuration.

  7. A method to optimize the shield compact and lightweight combining the structure with components together by genetic algorithm and MCNP code.

    PubMed

    Cai, Yao; Hu, Huasi; Pan, Ziheng; Hu, Guang; Zhang, Tao

    2018-05-17

    To optimize the shield for neutrons and gamma rays compact and lightweight, a method combining the structure and components together was established employing genetic algorithms and MCNP code. As a typical case, the fission energy spectrum of 235 U which mixed neutrons and gamma rays was adopted in this study. Six types of materials were presented and optimized by the method. Spherical geometry was adopted in the optimization after checking the geometry effect. Simulations have made to verify the reliability of the optimization method and the efficiency of the optimized materials. To compare the materials visually and conveniently, the volume and weight needed to build a shield are employed. The results showed that, the composite multilayer material has the best performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Compact, Robust Chips Integrate Optical Functions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Located in Bozeman, Montana, AdvR Inc. has been an active partner in NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs. Langley Research Center engineers partnered with AdvR through the SBIR program to develop new, compact, lightweight electro-optic components for remote sensing systems. While the primary customer for this technology will be NASA, AdvR foresees additional uses for its NASA-derived circuit chip in the fields of academic and industrial research anywhere that compact, low-cost, stabilized single-frequency lasers are needed.

  9. Experimental Demonstration and Circuitry for a Very Compact Coil-Only Pulse Echo EMAT

    PubMed Central

    Rueter, Dirk

    2017-01-01

    This experimental study demonstrates for the first time a solid-state circuitry and design for a simple compact copper coil (without an additional bulky permanent magnet or bulky electromagnet) as a contactless electromagnetic acoustic transducer (EMAT) for pulse echo operation at MHz frequencies. A pulsed ultrasound emission into a metallic test object is electromagnetically excited by an intense MHz burst at up to 500 A through the 0.15 mm filaments of the transducer. Immediately thereafter, a smoother and quasi “DC-like” current of 100 A is applied for about 1 ms and allows an echo detection. The ultrasonic pulse echo operation for a simple, compact, non-contacting copper coil is new. Application scenarios for compact transducer techniques include very narrow and hostile environments, in which, e.g., quickly moving metal parts must be tested with only one, non-contacting ultrasound shot. The small transducer coil can be operated remotely with a cable connection, separate from the much bulkier supply circuitry. Several options for more technical and fundamental progress are discussed. PMID:28441722

  10. Modeling of laser cladding with application to fuel cell manufacturing.

    DOT National Transportation Integrated Search

    2010-01-01

    Polymer electrolyte membrane (PEM) fuel cells have many advantages such as compactness, : lightweight, high power density, low temperature operation and near zero emissions. Although : many research organizations have intensified their efforts toward...

  11. Standardizing lightweight deflectometer modulus measurements for compaction quality assurance : research summary.

    DOT National Transportation Integrated Search

    2017-09-01

    The mechanistic-empirical pavement design method requires the elastic resilient modulus as the key input for characterization of geomaterials. Current density-based QA procedures do not measure resilient modulus. Additionally, the density-based metho...

  12. Low-Shock Pyrotechnic Actuator

    NASA Technical Reports Server (NTRS)

    Lucy, M. H.

    1984-01-01

    Miniature 1-ampere, 1-watt pyrotechnic actuator enclosed in flexible metal bellows. Bellows confines outgassing products, and pyrotechnic shock reduction achieved by action of bellows, gas cushion within device, and minimum use of pyrotechnic material. Actuator inexpensive, compact, and lightweight.

  13. Temperature transducer has high output, is time stable

    NASA Technical Reports Server (NTRS)

    Follett, W. H.

    1965-01-01

    Compact, lightweight temperature transducer requires no amplification of its output signal and is time stable. It uses the temperature-dependent characteristics of a silicon transistor to provide a zero-to-five-volt signal proportional to temperature.

  14. Electromagnetic interference of power conditioners for solar electric propulsion

    NASA Technical Reports Server (NTRS)

    Whittlesey, A. C.; Macie, T. W.

    1973-01-01

    Electrical, multikilowatt power conditioning (PC) equipment needed on board a spacecraft utilizing solar electric propulsion creates an electromagnetic environment that is potentially deterimental to the science, navigation, and radio communication hardware. Within the scope of the solar electric propulsion system technology program, three lightweight, 2.5-kW PCs were evaluated in terms of their electromagnetic characteristics. It was found that the levels of radiated and conducted interference exceeded the levels anticipated for a solar electric propulsion mission. These noise emissions, however, were the result of deficient interference design in these models, rather than a basic inability to control interference in this type of PC.

  15. Analysis of Technology for Compact Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    1997-01-01

    In view of the recent advances in the area of solid state and semiconductor lasers has created new possibilities for the development of compact and reliable coherent lidars for a wide range of applications. These applications include: Automated Rendezvous and Capture, wind shear and clear air turbulence detection, aircraft wake vortex detection, and automobile collision avoidance. The work performed by the UAH personnel under this Delivery Order, concentrated on design and analyses of a compact coherent lidar system capable of measuring range and velocity of hard targets, and providing air mass velocity data. The following is the scope of this work. a. Investigate various laser sources and optical signal detection configurations in support of a compact and lightweight coherent laser radar to be developed for precision range and velocity measurements of hard and fuzzy targets. Through interaction with MSFC engineers, the most suitable laser source and signal detection technique that can provide a reliable compact and lightweight laser radar design will be selected. b. Analyze and specify the coherent laser radar system configuration and assist with its optical and electronic design efforts. Develop a system design including its optical layout design. Specify all optical components and provide the general requirements of the electronic subsystems including laser beam modulator and demodulator drivers, detector electronic interface, and the signal processor. c. Perform a thorough performance analysis to predict the system measurement range and accuracy. This analysis will utilize various coherent laser radar sensitivity formulations and different target models.

  16. Package Holds Five Monolithic Microwave Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Decker, D. Richard; Olson, Hilding M.

    1996-01-01

    Packages protect and hold monolithic microwave integrated circuit (MMIC) chips while providing dc and radio-frequency (RF) electrical connections for chips undergoing development. Required to be compact, lightweight, and rugged. Designed to minimize undesired resonances, reflections, losses, and impedance mismatches.

  17. Porous CNTs/Co Composite Derived from Zeolitic Imidazolate Framework: A Lightweight, Ultrathin, and Highly Efficient Electromagnetic Wave Absorber.

    PubMed

    Yin, Yichao; Liu, Xiaofang; Wei, Xiaojun; Yu, Ronghai; Shui, Jianglan

    2016-12-21

    Porous carbon nanotubes/cobalt nanoparticles (CNTs/Co) composite with dodecahedron morphology was synthesized by in situ pyrolysis of the Co-based zeolitic imidazolate framework in a reducing atmosphere. The morphology and microstructure of the composite can be well tuned by controlling the pyrolysis conditions. At lower pyrolysis temperature, the CNTs/Co composite is composed of well-dispersed Co nanoparticles and short CNT clusters with low graphitic degree. The increase of pyrolysis temperature/time promotes the growth and graphitization of CNTs and leads to the aggregation of Co nanoparticles. The optimized CNTs/Co composite exhibits strong dielectric and magnetic losses as well as a good impedance matching property. Interestingly, the CNTs/Co composite displays extremely strong electromagnetic wave absorption with a maximum reflection loss of -60.4 dB. More importantly, the matching thickness of the absorber is as thin as 1.81 mm, and the filler loading of composite in the matrix is only 20 wt %. The highly efficient absorption is closely related to the well-designed structure and the synergistic effect between CNTs and Co nanoparticles. The excellent absorbing performance together with lightweight and ultrathin thickness endows the CNTs/Co composite with the potential for application in the electromagnetic wave absorbing field.

  18. Development of a Tendon-Actuated Lightweight In-Space MANipulator (TALISMAN)

    NASA Technical Reports Server (NTRS)

    Doggett, William R.; Dorsey, John T.; Jones, Thomas C.; King, Bruce

    2014-01-01

    An invention of a new and novel space robotic manipulator is described. By using a combination of lightweight truss links, a novel hinge joint, tendon-articulation and passive tension stiffening, this new robotic manipulator architecture achieves compact packaging, high strength, stiffness and dexterity while being very lightweight compared to conventional manipulators. The manipulator is also very modular; easy to scale for different reach, load and stiffness requirements; enabling customization for a diverse set of applications. Novel features of the new manipulator concept are described as well as some of the approaches to implement these design features. Two diverse applications are presented to show the versatility of the concept. First generation prototype hardware was designed, manufactured and has been assembled into a working manipulator that is being used to refine and extend development efforts.

  19. Compressed air demand-type firefighter's breathing system, volume 1. [design analysis and performance tests

    NASA Technical Reports Server (NTRS)

    Sullivan, J. L.

    1975-01-01

    The commercial availability of lightweight high pressure compressed air vessels has resulted in a lightweight firefighter's breathing apparatus. The improved apparatus, and details of its design and development are described. The apparatus includes a compact harness assembly, a backplate mounted pressure reducer assembly, a lightweight bubble-type facemask with a mask mounted demand breathing regulator. Incorporated in the breathing regulator is exhalation valve, a purge valve and a whistle-type low pressure warning that sounds only during inhalation. The pressure reducer assembly includes two pressure reducers, an automatic transfer valve and a signaling device for the low pressure warning. Twenty systems were fabricated, tested, refined through an alternating development and test sequence, and extensively examined in a field evaluation program. Photographs of the apparatus are included.

  20. Moisture and Thermal Conductivity of Lightweight Block Walls

    NASA Astrophysics Data System (ADS)

    Joosep, R.

    2015-11-01

    This article examines thermal properties of lightweight block walls and their changes over the course of time. Three different types of lightweight blocks and two types of heat insulation are used in construction. Aeroc aerated concrete blocks are in use, as well as compacted LECA (Lightweight Expanded Clay Aggregate) Fibo blocks made from burned clay and Silbet blocks produced from oil shale ash. Expanded Thermisol EPS60F polystyrene plates and glass wool Isover OL-P plates are used for thermal insulation. The actual and computational values of thermal conductivity and the water draining properties of walls over time are compared in this article. Water draining from glass wool walls is relatively fast. Water-draining can take over a year in polystyrene insulated walls. All four wall constructions can be used as external walls, but care must be taken regarding the moisture content of the blocks during construction (the construction should be handled with care to minimise the moisture in the blocks), especially in polystyrene board-insulated walls.

  1. Numerical simulation of compact intracloud discharge and generated electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.

    2015-06-01

    Using the concept of the relativistic runaway electron avalanche, numerical simulation of compact intracloud discharge as a generator of powerful natural electromagnetic pulses (EMPs) in the HF-UHF range was conducted. We evaluated the numbers of electrons initiating the avalanche, with which the calculated EMP characteristics are consistent with measured ones. The discharge capable of generating EMPs produces runaway electrons in numbers close to those in the source of terrestrial γ-flashes (TGF) registered in the nearest space, which may be an argument for a joint EMP and TGF source.

  2. Probing extra dimension through gravitational wave observations of compact binaries and their electromagnetic counterparts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hao; Gu, Bao-Min; Wang, Yong-Qiang

    The future gravitational wave (GW) observations of compact binaries and their possible electromagnetic counterparts may be used to probe the nature of the extra dimension. It is widely accepted that gravitons and photons are the only two completely confirmed objects that can travel along null geodesics in our four-dimensional space-time. However, if there exist extra dimensions and only GWs can propagate freely in the bulk, the causal propagations of GWs and electromagnetic waves (EMWs) are in general different. In this paper, we study null geodesics of GWs and EMWs in a five-dimensional anti-de Sitter space-time in the presence of themore » curvature of the universe. We show that for general cases the horizon radius of GW is longer than EMW within equal time. Taking the GW150914 event detected by the Advanced Laser Interferometer Gravitational-Wave Observatory and the X-ray event detected by the Fermi Gamma-ray Burst Monitor as an example, we study how the curvature k and the constant curvature radius l affect the horizon radii of GW and EMW in the de Sitter and Einstein-de Sitter models of the universe. This provides an alternative method for probing extra dimension through future GW observations of compact binaries and their electromagnetic counterparts.« less

  3. Apparatus Induces And Fixes Small Aquatic Organisms

    NASA Technical Reports Server (NTRS)

    Todd, Christopher

    1992-01-01

    Syringe-and-bag assembly compact, lightweight self-contained, portable apparatus introducing liquids to aquatic organisms. Isolates organisms from toxic substances until time of introduction. Includes plastic syringes, each containing inner, sealed, burstable bag. Adaptable to use in biological tests and experiments at remote locations on Earth.

  4. FACT, Mega-ROSA, SOLAROSA

    NASA Technical Reports Server (NTRS)

    Spence, Brian; White, Steve; Schmid, Kevin; Douglas Mark

    2012-01-01

    The Flexible Array Concentrator Technology (FACT) is a lightweight, high-performance reflective concentrator blanket assembly that can be used on flexible solar array blankets. The FACT concentrator replaces every other row of solar cells on a solar array blanket, significantly reducing the cost of the array. The modular design is highly scalable for the array system designer, and exhibits compact stowage, good off-pointing acceptance, and mass/cost savings. The assembly s relatively low concentration ratio, accompanied by a large radiative area, provides for a low cell operating temperature, and eliminates many of the thermal problems inherent in high-concentration-ratio designs. Unlike other reflector technologies, the FACT concentrator modules function on both z-fold and rolled flexible solar array blankets, as well as rigid array systems. Mega-ROSA (Mega Roll-Out Solar Array) is a new, highly modularized and extremely scalable version of ROSA that provides immense power level range capability from 100 kW to several MW in size. Mega-ROSA will enable extremely high-power spacecraft and SEP-powered missions, including space-tug and largescale planetary science and lunar/asteroid exploration missions. Mega-ROSA's inherent broad power scalability is achieved while retaining ROSA s solar array performance metrics and missionenabling features for lightweight, compact stowage volume and affordability. This innovation will enable future ultra-high-power missions through lowcost (25 to 50% cost savings, depending on PV and blanket technology), lightweight, high specific power (greater than 200 to 400 Watts per kilogram BOL (beginning-of-life) at the wing level depending on PV and blanket technology), compact stowage volume (greater than 50 kilowatts per cubic meter for very large arrays), high reliability, platform simplicity (low failure modes), high deployed strength/stiffness when scaled to huge sizes, and high-voltage operation capability. Mega-ROSA is adaptable to all photovoltaic and concentrator flexible blanket technologies, and can readily accommodate standard multijunction and emerging ultra-lightweight IMM (inverted metamorphic) photovoltaic flexible blanket assemblies, as well as ENTECHs Stretched Lens Array (SLA) and DSSs (Deployable Space Systems) FACT, which allows for cost reduction at the array level.

  5. The Intermodal Bike: multi-modal integration of cycling mobility through product and process innovations in bicycle design.

    PubMed

    Tosi, Francesca; Belli, Alessandro; Rinaldi, Alessandra; Tucci, Grazia

    2012-01-01

    The paper presents the early results of the UE-FP7 project "The Intermodal Bike". The research aim is to provide a super-compactable, super-lightweight folding bicycle as a realistic solution to graft the cycling mode onto the root of the public or private transportation systems. The folding bikes now on the international market reach weighs between 12-15 kg, with a variable footprint but occupying -when compacted- an average volume of about 100 liters. To encourage the use of this vehicle and to extend it to a larger number of users with different characteristics, the research project has set its goal in increasing as possible compactness and light weight, creating a bicycle with a volume when compacted of 20 liters (reduction factor =5), with a shape of 48 × 36 × 12 cm and a weight of 5 kg. max., ensuring stability and improving vehicle usability and efficiency, during the ride and in the phase of bike folding. To achieve this goal ergonomic and usability tests have been carried out. The tests allowed to find a posture that would ensure efficiency and comfort in the ride to as many users as possible. Parallel tests were made on the vehicle usability in the urban transport system and intermodal. The need for light weight has required special studies on the optimization of the vehicle's architecture and research on super-lightweight materials.

  6. Magnetic antenna using metallic glass

    NASA Technical Reports Server (NTRS)

    Desch, Michael D. (Inventor); Farrell, William M. (Inventor); Houser, Jeffrey G. (Inventor)

    1996-01-01

    A lightweight search-coil antenna or sensor assembly for detecting magnetic fields and including a multi-turn electromagnetic induction coil wound on a spool type coil form through which is inserted an elongated coil loading member comprised of metallic glass material wrapped around a dielectric rod. The dielectric rod consists of a plastic or a wooden dowel having a length which is relatively larger than its thickness so as to provide a large length-to-diameter ratio. A tri-axial configuration includes a housing in which is located three substantially identical mutually orthogonal electromagnetic induction coil assemblies of the type described above wherein each of the assemblies include an electromagnetic coil wound on a dielectric spool with an elongated metallic glass coil loading member projecting therethrough.

  7. Compact stars in the non-minimally coupled electromagnetic fields to gravity

    NASA Astrophysics Data System (ADS)

    Sert, Özcan

    2018-03-01

    We investigate the gravitational models with the non-minimal Y(R)F^2 coupled electromagnetic fields to gravity, in order to describe charged compact stars, where Y( R) denotes a function of the Ricci curvature scalar R and F^2 denotes the Maxwell invariant term. We determine two parameter family of exact spherically symmetric static solutions and the corresponding non-minimal model without assuming any relation between energy density of matter and pressure. We give the mass-radius, electric charge-radius ratios and surface gravitational redshift which are obtained by the boundary conditions. We reach a wide range of possibilities for the parameters k and α in these solutions. Lastly we show that the models can describe the compact stars even in the more simple case α =3.

  8. First-Principles evaluation of the Chevrel phase intercalated with Be, Mg, Ca, Sr, and Ba

    NASA Astrophysics Data System (ADS)

    Juran, Taylor; Smeu, Manuel

    Li ion batteries are extremely useful when an item requires portability and compactness, such as laptops and cell phones; due to the lightweight/compact nature of Li ion batteries. The lightweight and compact nature of Li ion batteries comes at a high cost. It is sensible to consider Li ion battery alternatives, which are more cost effective and useable when portability is not a priority. An option for a less expensive battery source is the Ca ion battery. The Ca ion battery is interesting as many researchers overlook the potential battery source due to the perplexity of finding suitable anode materials and electrolytes. In order for this technology to work, cathodes that allow for the reversible intercalation of Ca2+ ions and also provide a preferred voltage must be identified. We investigate the Chevrel phase compounds of Mo6X8 (X = S, Se, Te) which can intercalate various ions. The concentration of the ion intercalated with the Chevrel cathode is studied. We consider doped versions of the Chevrel phase, using various dopants to substitute Mo. We use density functional theory to calculate the voltage of several intercalation ions with the Chevrel material. The resulting electronic properties of the aforementioned materials will be investigated.

  9. High-frequency vibration energy harvesting from impulsive excitation utilizing intentional dynamic instability caused by strong nonlinearity

    NASA Astrophysics Data System (ADS)

    Remick, Kevin; Dane Quinn, D.; Michael McFarland, D.; Bergman, Lawrence; Vakakis, Alexander

    2016-05-01

    The authors investigate a vibration-based energy harvesting system utilizing essential (nonlinearizable) nonlinearities and electromagnetic coupling elements. The system consists of a grounded, weakly damped linear oscillator (primary system) subjected to a single impulsive load. This primary system is coupled to a lightweight, damped oscillating attachment (denoted as nonlinear energy sink, NES) via a neodymium magnet and an inductance coil, and a piano wire, which generates an essential geometric cubic stiffness nonlinearity. Under impulsive input, the transient damped dynamics of this system exhibit transient resonance captures (TRCs) causing intentional large-amplitude and high-frequency instabilities in the response of the NES. These TRCs result in strong energy transfer from the directly excited primary system to the light-weight attachment. The energy is harvested by the electromagnetic elements in the coupling and, in the present case, dissipated in a resistive element in the electrical circuit. The primary goal of this work is to numerically, analytically, and experimentally demonstrate the efficacy of employing this type of intentional high-frequency dynamic instability to achieve enhanced vibration energy harvesting under impulsive excitation.

  10. Combined static-dynamic compaction of metal powder and ceramic materials

    NASA Astrophysics Data System (ADS)

    Mironovs, V.; Korjakins, A.; Tatarinov, A.; Barone, E.; Glushchenkov, V.

    2017-10-01

    Combined static-dynamic compaction of powder material presents advantages for achievement of a higher degree of powder compaction for in dry conditions. One of possible realizations is the use of pulsed electromagnetic compaction (MPC) applied in addition to the static pre-compaction carried out by a hydraulic press. Experimental MPC equipment was used for compaction powders of SiC and Al-B with W fibers at different stages of grinding. The degree of compaction was evaluated by shock plate’s displacement at different levels and regimes of dynamic loading. The paper demonstrates feasibility of the method for compaction of the selected ceramic and metal powders and presents some quantitative data for practices.

  11. 76 FR 20953 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ...., 9700 South Cass Ave., Lemont, IL 60439. Instrument: Mythen 1K Detector System. Manufacturer: Dectris... (RIXS) to study the electronic structure of highly correlated systems. This instrument is unique in that... dynamic range; and a small, lightweight and compact design. Justification for Duty-Free Entry: There are...

  12. Megavolt, Multigigawatt Pulsed Plasma Switch

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.; Choi, Sang H.; Song, Kyo D.

    1996-01-01

    Plasma switch proposed for use in high-voltage, high-current pulse power system. Designed not only to out-perform conventional spark-gap switch but also relatively compact and lightweight. Features inverse-pinch configuration to prevent constriction of current sheets into filaments, plus multiple-ring-electrode structure to resist high-voltage breakdown.

  13. Solid-state power controller

    NASA Technical Reports Server (NTRS)

    Fox, D. A.; Fullemann, J. S.

    1980-01-01

    Compact, solid state, electric-power controller switches power on and off at remote load, limits current drawn by load, and shuts off (with 2- to 3- second trip time) in case of short circuit. Lightweight efficient hybrid unit operates at 28 volts dc and at maximum currents of from 3 to 2 amperes.

  14. Users Manual for the Federal Aviation Administration Research and Development Electromagnetic Database (FRED) For Windows: Version 2.0

    DOT National Transportation Integrated Search

    1998-02-01

    This document provides instructional guidelines to users of the Federal Aviation Administration (FAA) Research and Development Electromagnetic Database (FRED) Version 2.0. Instructions are provided on how to access FRED from a compact disk (CD) and h...

  15. Electromagnetic fields of slowly rotating magnetized compact stars in conformal gravity

    NASA Astrophysics Data System (ADS)

    Turimov, Bobur; Ahmedov, Bobomurat; Abdujabbarov, Ahmadjon; Bambi, Cosimo

    2018-06-01

    In this paper we investigate the exterior vacuum electromagnetic fields of slow-rotating magnetized compact stars in conformal gravity. Assuming the dipolar magnetic field configuration, we obtain an analytical solution of the Maxwell equations for the magnetic and the electric fields outside a slowly rotating magnetized star in conformal gravity. Furthermore, we study the dipolar electromagnetic radiation and energy losses from a rotating magnetized star in conformal gravity. In order to get constraints on the L parameter of conformal gravity, the theoretical results for the magnetic field of a magnetized star in conformal gravity are combined with the precise observational data of radio pulsar period slowdown, and it is found that the maximum value of the parameter of conformal gravity is less than L ≲9.5 ×105 cm (L /M ≲5 ).

  16. Nuclear powerplants for mobile applications.

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1972-01-01

    Mobile nuclear powerplants for applications other than large ships and submarines will require compact, lightweight reactors with especially stringent impact-safety design. This paper examines the technical and economic feasibility that the broadening role of civilian nuclear power, in general, (land-based nuclear electric generating plants and nuclear ships) can extend to lightweight, safe mobile nuclear powerplants. The paper discusses technical experience, identifies potential sources of technology for advanced concepts, cites the results of economic studies of mobile nuclear powerplants, and surveys future technical capabilities needed by examining the current use and projected needs for vehicles, machines, and habitats that could effectively use mobile nuclear reactor powerplants.

  17. Nuclear power plants for mobile applications

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1972-01-01

    Mobile nuclear powerplants for applications other than large ships and submarines will require compact, lightweight reactors with especially stringent impact-safety design. The technical and economic feasibility that the broadening role of civilian nuclear power, in general, (land-based nuclear electric generating plants and nuclear ships) can extend to lightweight, safe mobile nuclear powerplants are examined. The paper discusses technical experience, identifies potential sources of technology for advanced concepts, cites the results of economic studies of mobile nuclear powerplants, and surveys future technical capabilities needed by examining the current use and projected needs for vehicles, machines, and habitats that could effectively use mobile nuclear reactor powerplants.

  18. Application of Glass Fiber Waste Polypropylene Aggregate in Lightweight Concrete – thermal properties

    NASA Astrophysics Data System (ADS)

    Citek, D.; Rehacek, S.; Pavlik, Z.; Kolisko, J.; Dobias, D.; Pavlikova, M.

    2018-03-01

    Actual paper focus on thermal properties of a sustainable lightweight concrete incorporating high volume of waste polypropylene aggregate as partial substitution of natural aggregate. In presented experiments a glass fiber reinforced polypropylene (GFPP) which is a by-product of PP tubes production, partially substituted fine natural silica aggregate in 10, 20, 30, 40 and 50 mass %. Results were compared with a reference concrete mix without plastic waste in order to quantify the effect of GFPP use on concrete properties. Main material physical parameters were studied (bulk density, matrix density without air content, and particle size distribution). Especially a thermal transport and storage properties of GFPP were examined in dependence on compaction time. For the developed lightweight concrete, thermal properties were accessed using transient impulse technique, where the measurement was done in dependence on moisture content (from the fully water saturated state to dry state). It was found that the tested lightweight concrete should be prospective construction material possessing improved thermal insulation function and the reuse of waste plastics in concrete composition was beneficial both from the environmental and financial point of view.

  19. Vibration behaviour of foamed concrete floor with polypropylene and rise husk ash fibre

    NASA Astrophysics Data System (ADS)

    Azaman, N. A. Mohd; Ghafar, N. H. Abd; Ayub, N.; Ibrahim, M. Z.

    2017-11-01

    In the history of the construction industry, lightweight concrete or foamed concrete is a special concrete which can very useful in the construction sector because it is very lightweight and it can compact by itself at each angle of foamwork. Foamed concrete is one of lightweight concrete which widely used for floor construction due to its light weight and economic. The significant challenges in the floor design process are considering the vibration that needs improvements for the poor dynamic behaviour insulation. An alternative material to replace sand with certain amount of rice husk ash (RHA) and polypropylene was introduced. Research was determine the dynamic behavior of foam-polypropylene and foam-RHA concrete by using impact hammer test. The natural frequency for normal foamed concrete, 0.5 % of Polypropylene and 15% of RHA is 29.8 Hz, 29.3 Hz and 29.5 Hz respectively.

  20. Electromagnet Weight Reduction in a Magnetic Levitation System for Contactless Delivery Applications

    PubMed Central

    Hong, Do-Kwan; Woo, Byung-Chul; Koo, Dae-Hyun; Lee, Ki-Chang

    2010-01-01

    This paper presents an optimum design of a lightweight vehicle levitation electromagnet, which also provides a passive guide force in a magnetic levitation system for contactless delivery applications. The split alignment of C-shaped electromagnets about C-shaped rails has a bad effect on the lateral deviation force, therefore, no-split positioning of electromagnets is better for lateral performance. This is verified by simulations and experiments. This paper presents a statistically optimized design with a high number of the design variables to reduce the weight of the electromagnet under the constraint of normal force using response surface methodology (RSM) and the kriging interpolation method. 2D and 3D magnetostatic analysis of the electromagnet are performed using ANSYS. The most effective design variables are extracted by a Pareto chart. The most desirable set is determined and the influence of each design variable on the objective function can be obtained. The generalized reduced gradient (GRG) algorithm is adopted in the kriging model. This paper’s procedure is validated by a comparison between experimental and calculation results, which shows that the predicted performance of the electromagnet designed by RSM is in good agreement with the simulation results. PMID:22163572

  1. Compact and lightweight VLF/LF magnetic antenna with femtotesla noise level

    NASA Astrophysics Data System (ADS)

    Marusenkov, Andriy

    2016-04-01

    The measurements of the electromagnetic field in the frequency band 3-300 kHz are widely used for subsurface geophysical surveys, investigations of the various phenomena in the Earth-ionosphere cavity, in the ionosphere and in the magnetosphere, including those connected with seismic and lightning activity. The instrumental noise has to be as low as possible in order to reliably detect the weakest electromagnetic signals, which magnitude could be only a few femtoteslas. In order to decrease magnetic antenna noises the size and mass of the probe has to be increased. However, such approach could be hardly applied for development of mobile sensors. In this report the efforts to achieve the minimal possible noise level at the restricted weight and size of the magnetic antenna are presented. Applying the minimal mass criteria the noise level of the induction coil with a high permeability magnetic core, used as a probe, was optimized. The new pre-amplifier, based on the ultra low noise field effect transistor, was developed. The special attention was paid to the design of the electrostatic screen, which has to generate negligible magnetic noise. As a result, the 300 mm long, 25 mm diameter antenna has the noise level approximately 1 fT/sqrt(Hz) in the frequency band 50 - 200 kHz and <5 fT/sqrt(Hz) in the band 3 - 500 kHz. The mass of the antenna is equal to 0.27 kg for the weather protected version and 0.15 kg for the indoor version. The possibilities to achieve even lower noise level at the same size of the instrument will be also discussed.

  2. Water Filters

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A compact, lightweight electrolytic water filter generates silver ions in concentrations of 50 to 100 parts per billion in the water flow system. Silver ions serve as effective bactericide/deodorizers. Ray Ward requested and received from NASA a technical information package on the Shuttle filter, and used it as basis for his own initial development, a home use filter.

  3. 21. VIEW OF THE SUPERCOMPACTOR. THE SUPERCOMPACTOR WAS USED TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. VIEW OF THE SUPERCOMPACTOR. THE SUPERCOMPACTOR WAS USED TO REDUCE THE VOLUME OF MISCELLANEOUS PLUTONIUM CONTAMINATED MATERIALS SUCH AS GLOVES, PAPER, AND LIGHTWEIGHT METALS. THESE MATERIALS WERE COMPACTED INTO A DRUM FOR DISPOSAL. (4/4/91) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO

  4. Regolith Advanced Surface Systems Operations Robot Excavator

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Smith, Jonathan D.; Ebert, Thomas; Cox, Rachel; Rahmatian, Laila; Wood, James; Schuler, Jason; Nick, Andrew

    2013-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) excavator robot is a teleoperated mobility platform with a space regolith excavation capability. This more compact, lightweight design (<50 kg) has counterrotating bucket drums, which results in a net-zero reaction horizontal force due to the self-cancellation of the symmetrical, equal but opposing, digging forces.

  5. A compact lightweight Earth horizon sensor using an uncooled infrared bolometer

    NASA Astrophysics Data System (ADS)

    Marchese, Linda E.; Thomas, Paul; Pope, Timothy D.; Asselin, Daniel; Jerominek, Hubert

    2007-06-01

    A compact, lightweight Earth horizon sensor has been designed based on uncooled infrared microbolometer array technology developed at INO. The design has been optimized for use on small satellites in Low Earth Orbits. The sensor may be used either as an attitude sensor or as an atmospheric limb detector. Various configurations may be implemented for both spinning and 3-axis stabilized satellites. The core of the sensor is the microbolometer focal plane array equipped with 256 x 1 VO x thermistor pixels with a pitch of 52 μm. The optics consists of a single Zinc Selenide lens with a focal length of 39.7 mm. The system's F-number is 3.8 and the detector limited Noise Equivalent Temperature Difference is estimated to be 0.75 K at 300 K for the 14 - 16 μm wavelength range. A single-sensor configuration will have a mass of less than 300g, a volume of 125 cm 3 and a power consumption of 600 mW, making it well-suited for small satellite missions.

  6. Optimization of radiation shielding material aiming at compactness, lightweight, and low activation for a vehicle-mounted accelerator-driven D-T neutron source.

    PubMed

    Cai, Yao; Hu, Huasi; Lu, Shuangying; Jia, Qinggang

    2018-05-01

    To minimize the size and weight of a vehicle-mounted accelerator-driven D-T neutron source and protect workers from unnecessary irradiation after the equipment shutdown, a method to optimize radiation shielding material aiming at compactness, lightweight, and low activation for the fast neutrons was developed. The method employed genetic algorithm, combining MCNP and ORIGEN codes. A series of composite shielding material samples were obtained by the method step by step. The volume and weight needed to build a shield (assumed as a coaxial tapered cylinder) were adopted to compare the performance of the materials visually and conveniently. The results showed that the optimized materials have excellent performance in comparison with the conventional materials. The "MCNP6-ACT" method and the "rigorous two steps" (R2S) method were used to verify the activation grade of the shield irradiated by D-T neutrons. The types of radionuclide, the energy spectrum of corresponding decay gamma source, and the variation in decay gamma dose rate were also computed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. A compact and lightweight off-axis lightguide prism in near to eye display

    NASA Astrophysics Data System (ADS)

    Zhuang, Zhenfeng; Cheng, Qijia; Surman, Phil; Zheng, Yuanjin; Sun, Xiao Wei

    2017-06-01

    We propose a method to improve the design of an off-axis lightguide configuration for near to eye displays (NED) using freeform optics technology. The advantage of this modified optical system, which includes an organic light-emitting diode (OLED), a doublet lens, an imaging lightguide prism and a compensation prism, is that it increases optical length path, offers a smaller size, as well as avoids the obstructed views, and matches the user's head shape. In this system, the light emitted from the OLED passes through the doublet lens and is refracted/reflected by the imaging lightguide prism, which is used to magnify the image from the microdisplay, while the compensation prism is utilized to correct the light ray shift so that a low-distortion image can be observed in a real-world setting. A NED with a 4 mm diameter exit pupil, 21.5° diagonal full field of view (FoV), 23 mm eye relief, and a size of 33 mm by 9.3 mm by 16 mm is designed. The developed system is compact, lightweight and suitable for entertainment and education application.

  8. The shape of cars to come

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashley, S.

    1991-05-01

    Ford's new concept car achieves weight, size, and cost savings with an innovative lightweight aluminum space frame composed of simple extrusions that are fitted together like Lego blocks and adhesively bonded. On the outside, the design is a blend of art and technology that is a modern restatement of a large luxury car. The other major focus of the design is the Contour's compact T-drive powertrain configuration (also shared by the Mystique). This consists of a transversely mounted engine stuffed into the front of the chassis with a longitudinally positioned transmission right behind it. The T-drive arrangement shrinks the car'smore » engine bay and overall length while expanding the passenger compartment. In addition, powerplants with from four to eight cylinders as well as front-wheel-, rear-wheel-, and four-wheel-drive transmission systems can all be incorporated into the T-drive. Other technical innovations on the Contour include an unusual ducted cooling system, a compact brake assembly, a lightweight high-efficiency air conditioner, centralized single-source lighting, and simple but effective suspension technology.« less

  9. Passive Vaporizing Heat Sink

    NASA Technical Reports Server (NTRS)

    Knowles, TImothy R.; Ashford, Victor A.; Carpenter, Michael G.; Bier, Thomas M.

    2011-01-01

    A passive vaporizing heat sink has been developed as a relatively lightweight, compact alternative to related prior heat sinks based, variously, on evaporation of sprayed liquids or on sublimation of solids. This heat sink is designed for short-term dissipation of a large amount of heat and was originally intended for use in regulating the temperature of spacecraft equipment during launch or re-entry. It could also be useful in a terrestrial setting in which there is a requirement for a lightweight, compact means of short-term cooling. This heat sink includes a hermetic package closed with a pressure-relief valve and containing an expendable and rechargeable coolant liquid (e.g., water) and a conductive carbon-fiber wick. The vapor of the liquid escapes when the temperature exceeds the boiling point corresponding to the vapor pressure determined by the setting of the pressure-relief valve. The great advantage of this heat sink over a melting-paraffin or similar phase-change heat sink of equal capacity is that by virtue of the =10x greater latent heat of vaporization, a coolant-liquid volume equal to =1/10 of the paraffin volume can suffice.

  10. Application of a zero-latency whitening filter to compact binary coalescence gravitational-wave searches

    NASA Astrophysics Data System (ADS)

    Tsukada, Leo; Cannon, Kipp; Hanna, Chad; Keppel, Drew; Meacher, Duncan; Messick, Cody

    2018-05-01

    Joint electromagnetic and gravitational-wave (GW) observation is a major goal of both the GW astronomy and electromagnetic astronomy communities for the coming decade. One way to accomplish this goal is to direct follow-up of GW candidates. Prompt electromagnetic emission may fade quickly, therefore it is desirable to have GW detection happen as quickly as possible. A leading source of latency in GW detection is the whitening of the data. We examine the performance of a zero-latency whitening filter in a detection pipeline for compact binary coalescence (CBC) GW signals. We find that the filter reproduces signal-to-noise ratio (SNR) sufficiently consistent with the results of the original high-latency and phase-preserving filter for both noise and artificial GW signals (called "injections"). Additionally, we demonstrate that these two whitening filters show excellent agreement in χ2 value, a discriminator for GW signals.

  11. Numerical simulation of magnetic field for compact electromagnet consisting of REBCO coils and iron yoke

    NASA Astrophysics Data System (ADS)

    You, Shuangrong; Chi, Changxin; Guo, Yanqun; Bai, Chuanyi; Liu, Zhiyong; Lu, Yuming; Cai, Chuanbing

    2018-07-01

    This paper presents the numerical simulation of a high-temperature superconductor electromagnet consisting of REBCO (RE-Ba2Cu3O7‑x, RE: rare earth) superconducting tapes and a ferromagnetic iron yoke. The REBCO coils with multi-width design are operating at 77 K, with the iron yoke at room temperature, providing a magnetic space with a 32 mm gap between two poles. The finite element method is applied to compute the 3D model of the studied magnet. Simulated results show that the magnet generates a 1.5 T magnetic field at an operating current of 38.7 A, and the spatial inhomogeneity of the field is 0.8% in a Φ–20 mm diameter sphere volume. Compared with the conventional iron electromagnet, the present compact design is more suitable for practical application.

  12. A Compact and Low Power RO PUF with High Resilience to the EM Side-Channel Attack and the SVM Modelling Attack of Wireless Sensor Networks

    PubMed Central

    Cao, Yuan; Ye, Wenbin; Han, Qingbang; Pan, Xiaofang

    2018-01-01

    Authentication is a crucial security service for the wireless sensor networks (WSNs) in versatile domains. The deployment of WSN devices in the untrusted open environment and the resource-constrained nature make the on-chip authentication an open challenge. The strong physical unclonable function (PUF) came in handy as light-weight authentication security primitive. In this paper, we present the first ring oscillator (RO) based strong physical unclonable function (PUF) with high resilience to both the electromagnetic (EM) side-channel attack and the support vector machine (SVM) modelling attack. By employing an RO based PUF architecture with the current starved inverter as the delay cell, the oscillation power is significantly reduced to minimize the emitted EM signal, leading to greatly enhanced immunity to the EM side-channel analysis attack. In addition, featuring superior reconfigurability due to the conspicuously simplified circuitries, the proposed implementation is capable of withstanding the SVM modelling attack by generating and comparing a large number of RO frequency pairs. The reported experimental results validate the prototype of a 9-stage RO PUF fabricated using standard 65 nm complementary-metal-oxide-semiconductor (CMOS) process. Operating at the supply voltage of 1.2 V and the frequency of 100 KHz, the fabricated RO PUF occupies a compact silicon area of 250 μm2 and consumes a power as low as 5.16 μW per challenge-response pair (CRP). Furthermore, the uniqueness and the worst-case reliability are measured to be 50.17% and 98.30% for the working temperature range of −40∼120 ∘C and the supply voltage variation of ±2%, respectively. Thus, the proposed PUF is applicable for the low power, low cost and secure WSN communications. PMID:29360790

  13. A Compact and Low Power RO PUF with High Resilience to the EM Side-Channel Attack and the SVM Modelling Attack of Wireless Sensor Networks.

    PubMed

    Cao, Yuan; Zhao, Xiaojin; Ye, Wenbin; Han, Qingbang; Pan, Xiaofang

    2018-01-23

    Authentication is a crucial security service for the wireless sensor networks (WSNs) in versatile domains. The deployment of WSN devices in the untrusted open environment and the resource-constrained nature make the on-chip authentication an open challenge. The strong physical unclonable function (PUF) came in handy as light-weight authentication security primitive. In this paper, we present the first ring oscillator (RO) based strong physical unclonable function (PUF) with high resilience to both the electromagnetic (EM) side-channel attack and the support vector machine (SVM) modelling attack. By employing an RO based PUF architecture with the current starved inverter as the delay cell, the oscillation power is significantly reduced to minimize the emitted EM signal, leading to greatly enhanced immunity to the EM side-channel analysis attack. In addition, featuring superior reconfigurability due to the conspicuously simplified circuitries, the proposed implementation is capable of withstanding the SVM modelling attack by generating and comparing a large number of RO frequency pairs. The reported experimental results validate the prototype of a 9-stage RO PUF fabricated using standard 65 nm complementary-metal-oxide-semiconductor (CMOS) process. Operating at the supply voltage of 1.2 V and the frequency of 100 KHz, the fabricated RO PUF occupies a compact silicon area of 250 μ m 2 and consumes a power as low as 5.16 μ W per challenge-response pair (CRP). Furthermore, the uniqueness and the worst-case reliability are measured to be 50.17% and 98.30% for the working temperature range of -40∼120 ∘ C and the supply voltage variation of ±2%, respectively. Thus, the proposed PUF is applicable for the low power, low cost and secure WSN communications.

  14. Sintering Behavior of Hypereutectic Aluminum-Silicon Metal Matrix Composites Powder

    NASA Astrophysics Data System (ADS)

    Rudianto, Haris; Sun, Yang Sang; Jin, Kim Yong; Woo, Nam Ki

    Lightweight materials of Aluminum-Silicon P/M alloys offer the advantage of high-wear resistance, high strength, good temperature resistance, and a low coefficient of thermal expansion. An A359 MMC alloy was mixed together with Alumix 231 in this research. Powders were compacted with compaction pressure up to 700 MPa. Particle size and compaction pressure influenced green density. Compacted powders were sintered in a tube furnace under a flowing nitrogen gas. Sintering temperature, heating rate and sintering time were verified to determine best sintering conditions of the alloys. Chemical composition also contributed to gain higher sintered density. Precipitation strengthening method was used to improve mechanical properties of this materials.T6 heat treatment was carried out to produce fine precipitates to impede movement of dislocation. The chemical composition of this materials allow for the potential formation of several strengthening precipitates including θ (Al2Cu) and β (Mg2Si).

  15. Preparation of Reduced Graphene Oxide/MnO Composite and Its Electromagnetic Wave Absorption Performance

    NASA Astrophysics Data System (ADS)

    Yuan, Jiangtao; Li, Kunzhen; Liu, Zhongfei; Jin, Shaowei; Li, Shikuo; Zhang, Hui

    2018-02-01

    The composite containing reduced graphene oxide and MnO nanoparticles (RGO/MnO) has been prepared via a one step pyrolysis method. The MnO nanoparticles were uniformly dispersed on the surface of RGO nanosheets forming MnO/RGO composite. The composite displays a maximum absorption of ‒38.9 dB at 13.5 GHz and the bandwidth of reflection loss corresponding to -10 dB can reach 4.9 GHz (from 11.5 to 16.4 GHz) with a coating layer thickness of only 2 mm. Therefore, the obtained RGO/MnO composite a perfect lightweight and high-performance electromagnetic wave absorbent.

  16. Advanced Hypervelocity Aerophysics Facility Workshop

    NASA Technical Reports Server (NTRS)

    Witcofski, Robert D. (Compiler); Scallion, William I. (Compiler)

    1989-01-01

    The primary objective of the workshop was to obtain a critical assessment of a concept for a large, advanced hypervelocity ballistic range test facility powered by an electromagnetic launcher, which was proposed by the Langley Research Center. It was concluded that the subject large-scale facility was feasible and would provide the required ground-based capability for performing tests at entry flight conditions (velocity and density) on large, complex, instrumented models. It was also concluded that advances in remote measurement techniques and particularly onboard model instrumentation, light-weight model construction techniques, and model electromagnetic launcher (EML) systems must be made before any commitment for the construction of such a facility can be made.

  17. Development of a novel fiber-optic sensor to measure radon in the deep ocean

    NASA Astrophysics Data System (ADS)

    Monteiro, Catarina; Guimarães, Diana; Jorge, Pedro; Barbosa, Susana

    2017-04-01

    The radon concentration in the deep ocean has gained increasing interest in the last decades. The underwater monitoring of this natural radioactive gas can give important information about submarine groundwater discharges, groundwater migration and contamination. Radon concentration has also been studied as a possible indicator of earthquake events which can have devastating consequences when the epicenter is located at the sea. In contrast with radon monitoring studies in caves, mines, and underground soil, there is an utter lack of information about radon in deep-sea. These measurements are particularly difficult to attain due to the challenges that marine-like environments post to electronic sensing devices and their maintenance over time. Gamma rays emitted by radon's progeny can be easily detected when interacting with a scintillator material. Recently, optical fiber doped with scintillating material has emerged has an alternative for gamma ray detection. The lightweight, low transmission loss, immunity to electromagnetic interference and the cost effectiveness makes optical fiber a compelling solution for radiation detection when compared to conventional sensors. In this work a compact all-fiber optical sensor is developed for continuous gamma ray detection in the deep sea. This sensor is composed by a scintillating optical fiber coupled to a polymeric optical fiber that allows the detection of low levels of radiation.

  18. A practical multilayered conducting polymer actuator with scalable work output

    NASA Astrophysics Data System (ADS)

    Ikushima, Kimiya; John, Stephen; Yokoyama, Kazuo; Nagamitsu, Sachio

    2009-09-01

    Household assistance robots are expected to become more prominent in the future and will require inherently safe design. Conducting polymer-based artificial muscle actuators are one potential option for achieving this safety, as they are flexible, lightweight and can be driven using low input voltages, unlike electromagnetic motors; however, practical implementation also requires a scalable structure and stability in air. In this paper we propose and practically implement a multilayer conducting polymer actuator which could achieve these targets using polypyrrole film and ionic liquid-soaked separators. The practical work density of a nine-layer multilayer actuator was 1.4 kJ m-3 at 0.5 Hz, when the volumes of the electrolyte and counter electrodes were included, which approaches the performance of mammalian muscle. To achieve air stability, we analyzed the effect of air-stable ionic liquid gels on actuator displacement using finite element simulation and it was found that the majority of strain could be retained when the elastic modulus of the gel was kept below 3 kPa. As a result of this work, we have shown that multilayered conducting polymer actuators are a feasible idea for household robotics, as they provide a substantial practical work density in a compact structure and can be easily scaled as required.

  19. Rapid Charged Geosynchronous Debris Perturbation Modeling of Electrodynamic Disturbances

    NASA Astrophysics Data System (ADS)

    Hughes, Joseph; Schaub, Hanspeter

    2018-06-01

    Charged space objects experience small perturbative torques and forces from their interaction with Earth's magnetic field. These small perturbations can change the orbits of lightweight, uncontrolled debris objects dramatically even over short periods. This paper investigates the effects of the isolated Lorentz force, the effects of including or neglecting this and other electromagnetic perturbations in a full propagation, and then analyzes for which objects electromagnetic effects have the most impact. It is found that electromagnetic forces have a negligible impact on their own. However, if the center of charge is not collocated with the center of mass, electromagnetic torques are produced which do impact the attitude, and thus the position by affecting the direction and magnitude of the solar radiation pressure force. The objects for which electrostatic torques have the most influence are charged above the kilovolt level, have a difference between their center of mass and center of charge, have highly attitude-dependent cross-sectional area, and are not spinning stably about an axis of maximum inertia. Fully coupled numerical simulation illustrate the impact of electromagnetic disturbances through the solar radiation pressure coupling.

  20. Rapid Charged Geosynchronous Debris Perturbation Modeling of Electrodynamic Disturbances

    NASA Astrophysics Data System (ADS)

    Hughes, Joseph; Schaub, Hanspeter

    2018-04-01

    Charged space objects experience small perturbative torques and forces from their interaction with Earth's magnetic field. These small perturbations can change the orbits of lightweight, uncontrolled debris objects dramatically even over short periods. This paper investigates the effects of the isolated Lorentz force, the effects of including or neglecting this and other electromagnetic perturbations in a full propagation, and then analyzes for which objects electromagnetic effects have the most impact. It is found that electromagnetic forces have a negligible impact on their own. However, if the center of charge is not collocated with the center of mass, electromagnetic torques are produced which do impact the attitude, and thus the position by affecting the direction and magnitude of the solar radiation pressure force. The objects for which electrostatic torques have the most influence are charged above the kilovolt level, have a difference between their center of mass and center of charge, have highly attitude-dependent cross-sectional area, and are not spinning stably about an axis of maximum inertia. Fully coupled numerical simulation illustrate the impact of electromagnetic disturbances through the solar radiation pressure coupling.

  1. Light-Weight Low-Loss Dielectric Polymer Composites Containing Carbon Nanostructure

    DTIC Science & Technology

    2014-10-17

    increases in temperature. Subsequent thermal breakdown and carbonization of the polyurethane coating and polyimide substrate significantly reduced the RF...measurements through HD-GNR films. For the highly uniform films produced in separate experiments on a glass substrate with sufficient thermal conductivity ...further carbonized the polyurethane- coated polyimide substrate. This was attributed to the electromagnetic and the resulting thermal energy

  2. Suspended Patch Antenna Array With Electromagnetically Coupled Inverted Microstrip Feed

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2000-01-01

    The paper demonstrates a four-element suspended patch antenna array, with a parasitic patch layer and an electromagnetically coupled inverted microstrip feed, for linear polarization at K-Band frequencies. This antenna has the following advantages over conventional microstrip antennas: First, the inverted microstrip has lower attenuation than conventional microstrip; hence, conductor loss associated with the antenna corporate feed is lower resulting in higher gain and efficiency. Second, conventional proximity coupled patch antennas require a substrate for the feed and a superstrate for the patch. However, the inverted microstrip fed patch antenna makes use of a single substrate, and hence, is lightweight and low cost. Third, electromagnetic coupling results in wider bandwidth. Details regarding the design and fabrication will be presented as well as measured results including return loss, radiation patterns and cross-polarization levels.

  3. Compactness and robustness: Applications in the solution of integral equations for chemical kinetics and electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Zhou, Yajun

    This thesis employs the topological concept of compactness to deduce robust solutions to two integral equations arising from chemistry and physics: the inverse Laplace problem in chemical kinetics and the vector wave scattering problem in dielectric optics. The inverse Laplace problem occurs in the quantitative understanding of biological processes that exhibit complex kinetic behavior: different subpopulations of transition events from the "reactant" state to the "product" state follow distinct reaction rate constants, which results in a weighted superposition of exponential decay modes. Reconstruction of the rate constant distribution from kinetic data is often critical for mechanistic understandings of chemical reactions related to biological macromolecules. We devise a "phase function approach" to recover the probability distribution of rate constants from decay data in the time domain. The robustness (numerical stability) of this reconstruction algorithm builds upon the continuity of the transformations connecting the relevant function spaces that are compact metric spaces. The robust "phase function approach" not only is useful for the analysis of heterogeneous subpopulations of exponential decays within a single transition step, but also is generalizable to the kinetic analysis of complex chemical reactions that involve multiple intermediate steps. A quantitative characterization of the light scattering is central to many meteoro-logical, optical, and medical applications. We give a rigorous treatment to electromagnetic scattering on arbitrarily shaped dielectric media via the Born equation: an integral equation with a strongly singular convolution kernel that corresponds to a non-compact Green operator. By constructing a quadratic polynomial of the Green operator that cancels out the kernel singularity and satisfies the compactness criterion, we reveal the universality of a real resonance mode in dielectric optics. Meanwhile, exploiting the properties of compact operators, we outline the geometric and physical conditions that guarantee a robust solution to the light scattering problem, and devise an asymptotic solution to the Born equation of electromagnetic scattering for arbitrarily shaped dielectric in a non-perturbative manner.

  4. A 65-kV insulated gate bipolar transistor switch applied in damped AC voltages partial discharge detection system.

    PubMed

    Jiang, J; Ma, G M; Luo, D P; Li, C R; Li, Q M; Wang, W

    2014-02-01

    Damped AC voltages detection system (DAC) is a productive way to detect the faults in power cables. To solve the problems of large volume, complicated structure and electromagnetic interference in existing switches, this paper developed a compact solid state switch based on electromagnetic trigger, which is suitable for DAC test system. Synchronous electromagnetic trigger of 32 Insulated Gate Bipolar Transistors (IGBTs) in series was realized by the topological structure of single line based on pulse width modulation control technology. In this way, external extension was easily achieved. Electromagnetic trigger and resistor-capacitor-diode snubber circuit were optimized to reduce the switch turn-on time and circular layout. Epoxy encapsulating was chosen to enhance the level of partial discharge initial voltage (PDIV). The combination of synchronous trigger and power supply is proposed to reduce the switch volume. Moreover, we have overcome the drawback of the electromagnetic interference and improved the detection sensitivity of DAC by using capacitor storage energy to maintain IGBT gate driving voltage. The experimental results demonstrated that the solid-state switch, with compact size, whose turn-on time was less than 400 ns and PDIV was more than 65 kV, was able to meet the actual demands of 35 kV DAC test system.

  5. Self-Alining Quick-Connect Joint

    NASA Technical Reports Server (NTRS)

    Lucy, M. H.

    1983-01-01

    Quick connect tapered joint used with minimum manipulation and force. Split ring retainer holds locking ring in place. Minimal force required to position male in female joint, at which time split-ring retainers are triggered to release split locking rings. Originally developed to assemble large space structures, joint is simple, compact, strong, lightweight, self alining, and has no loose parts.

  6. Small X-Band Oscillator Antennas

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Miranda, Felix A.; Clark, Eric B.; Wilt, David M.; Mueller, Carl H.; Kory, Carol L.; Lambert, Kevin M.

    2009-01-01

    A small, segmented microstrip patch antenna integrated with an X-band feedback oscillator on a high-permittivity substrate has been built and tested. This oscillator antenna is a prototype for demonstrating the feasibility of such devices as compact, low-power-consumption building blocks of advanced, lightweight, phased antenna arrays that would generate steerable beams for communication and remotesensing applications.

  7. Thermal properties of light-weight concrete with waste polypropylene aggregate

    NASA Astrophysics Data System (ADS)

    Záleská, Martina; Pokorný, Jaroslav; Pavlíková, Milena; Pavlík, Zbyšek

    2017-07-01

    Thermal properties of a sustainable light-weight concrete incorporating high volume of waste polypropylene as partial substitution of natural aggregate were studied in the paper. Glass fiber reinforced polypropylene (GFPP), a by-product of PP tubes production, partially substituted fine natural silica aggregate in 10, 20, 30, 40, and 50 mass%. In order to quantify the effect of GFPP use on concrete properties, a reference concrete mix without plastic waste was studied as well. For the applied GFPP, bulk density, matrix density, and particle size distribution were measured. Specific attention was paid to thermal transport and storage properties of GFPP that were examined in dependence on compaction time. For the developed light-weight concrete, thermal properties were accessed using transient impulse technique, whereas the measurement was done in dependence on moisture content, from the dry state to fully water saturated state. Additionally, the investigated thermal properties were plotted as function of porosity. The tested light-weight concrete was found to be prospective construction material possessing improved thermal insulation function. Moreover, the reuse of waste plastics in concrete composition was beneficial both from the environmental and financial point of view considering plastics low biodegradability and safe disposal.

  8. Experimental Investigation of the Effect of Manufactured Sand and Lightweight Sand on the Properties of Fresh and Hardened Self-Compacting Lightweight Concretes.

    PubMed

    Zhu, Yiyun; Cui, Hongzhi; Tang, Waiching

    2016-08-29

    Self-compacting lightweight concrete (SCLC) is a promising construction material for building applications, but most SCLCs today are made with river sand (RS). There is an increasing demand for environmental protection, as well as materials with a high strength/density ratio. The manufactured sand (MS) and lightweight sand (LS) as fine aggregates in cement-based composite materials have been receiving more attention among researchers. However, there is not much information about the effects of MS and LS on the properties of the fresh and hardened SCLCs. In this paper, the properties of fresh and hardened SCLC made with MS and LS were investigated by a series of experiments. SCLCs made with RS served as the control in this study. The test results show that increasing the sand ratio (from 0.40-0.50) decreased the filling ability and led to an increased T 50 time, which is the time spent for the concrete to reach the 500 mm spread circle, for all of the fresh SCLCs. Although the passing ability of MS-SCLCs and LS-SCLCs is not as good as RS-SCLCs, their results are still within an acceptable range. The ratio of mechanical properties to density was found to increase with an increase of the sand ratio for all of the hardened SCLCs. MS-SCLCs presented the highest compressive strength among all of the SCLCs studied. Although the mean compressive strength of LS-SCLCs is lower than those of the other two SCLCs by 8%, their strength to density ratio is higher than others by 15%, and the ratio increases remarkably with the increase of the sand ratio. Permeability test results showed that the permeability coefficient of MS-SCLC is remarkably lower than that of LS-SCLC, but slightly higher than that of RS-SCLC.

  9. Experimental Investigation of the Effect of Manufactured Sand and Lightweight Sand on the Properties of Fresh and Hardened Self-Compacting Lightweight Concretes

    PubMed Central

    Zhu, Yiyun; Cui, Hongzhi; Tang, Waiching

    2016-01-01

    Self-compacting lightweight concrete (SCLC) is a promising construction material for building applications, but most SCLCs today are made with river sand (RS). There is an increasing demand for environmental protection, as well as materials with a high strength/density ratio. The manufactured sand (MS) and lightweight sand (LS) as fine aggregates in cement-based composite materials have been receiving more attention among researchers. However, there is not much information about the effects of MS and LS on the properties of the fresh and hardened SCLCs. In this paper, the properties of fresh and hardened SCLC made with MS and LS were investigated by a series of experiments. SCLCs made with RS served as the control in this study. The test results show that increasing the sand ratio (from 0.40–0.50) decreased the filling ability and led to an increased T50 time, which is the time spent for the concrete to reach the 500 mm spread circle, for all of the fresh SCLCs. Although the passing ability of MS-SCLCs and LS-SCLCs is not as good as RS-SCLCs, their results are still within an acceptable range. The ratio of mechanical properties to density was found to increase with an increase of the sand ratio for all of the hardened SCLCs. MS-SCLCs presented the highest compressive strength among all of the SCLCs studied. Although the mean compressive strength of LS-SCLCs is lower than those of the other two SCLCs by 8%, their strength to density ratio is higher than others by 15%, and the ratio increases remarkably with the increase of the sand ratio. Permeability test results showed that the permeability coefficient of MS-SCLC is remarkably lower than that of LS-SCLC, but slightly higher than that of RS-SCLC. PMID:28773857

  10. High-Permeability Magnetic Polymer Additives for Lightweight Electromagnetic Shielding

    DTIC Science & Technology

    2015-08-01

    organometallic complexes containing Fe2+ cations. [Cp] = cyclopentadiene; [Py] = pyrrole ; [Imid] = imidazole. ΔEmag values calculated with DFT using the...27 Table A-6 Energy difference between high- and low-spin magnetic states in transition metal ion- pyrrole (Py) complexes...2-],52 pyrrole (C4NH5),53 and other heterocyclic ligands.36,54 The cyclopentadienyl ligand, in particular, is ubiquitous in organometallic chemistry

  11. Investigation of a high power electromagnetic pulse source.

    PubMed

    Wang, Yuwei; Chen, Dongqun; Zhang, Jiande; Cao, Shengguang; Li, Da; Liu, Chebo

    2012-09-01

    A high power electromagnetic pulse source with a resonant antenna driven by a compact power supply was investigated in this paper. To match the impedance of the resonant antenna and initial power source, a compact power conditioning circuit based on electro exploding opening switch (EEOS) and pulsed transformer was adopted. In the preliminary experiments, an impulse capacitor was used to drive the system. With the opening of the EEOS at the current of 15 kA flowing trough the primary of the transformer, the resonant antenna was rapidly charged to about -370 kV within a time of about 100 ns. When the switch in the resonant antenna closed at the charging voltage of about -202 kV, the peak intensity of the detected electric field at a distance of about 10 m from the center of the source was 7.2 kV∕m. The corresponding peak power of the radiated electromagnetic field reached 76 MW, while the total radiated electromagnetic energy was about 0.65 J. The total energy efficiency of the resonant antenna was about 22% which can be improved by increasing the closing rapidity of the switch in the antenna.

  12. RF beam transmission of x-band PAA system utilizing large-area, polymer-based true-time-delay module developed using imprinting and inkjet printing

    NASA Astrophysics Data System (ADS)

    Pan, Zeyu; Subbaraman, Harish; Zhang, Cheng; Li, Qiaochu; Xu, Xiaochuan; Chen, Xiangning; Zhang, Xingyu; Zou, Yi; Panday, Ashwin; Guo, L. Jay; Chen, Ray T.

    2016-02-01

    Phased-array antenna (PAA) technology plays a significant role in modern day radar and communication networks. Truetime- delay (TTD) enabled beam steering networks provide several advantages over their electronic counterparts, including squint-free beam steering, low RF loss, immunity to electromagnetic interference (EMI), and large bandwidth control of PAAs. Chip-scale and integrated TTD modules promise a miniaturized, light-weight system; however, the modules are still rigid and they require complex packaging solutions. Moreover, the total achievable time delay is still restricted by the wafer size. In this work, we propose a light-weight and large-area, true-time-delay beamforming network that can be fabricated on light-weight and flexible/rigid surfaces utilizing low-cost "printing" techniques. In order to prove the feasibility of the approach, a 2-bit thermo-optic polymer TTD network is developed using a combination of imprinting and ink-jet printing. RF beam steering of a 1×4 X-band PAA up to 60° is demonstrated. The development of such active components on large area, light-weight, and low-cost substrates promises significant improvement in size, weight, and power (SWaP) requirements over the state-of-the-art.

  13. Compact Plasma Accelerator for Micropropulsion Applications

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2001-01-01

    There is a need for a low power, light-weight (compact), high specific impulse electric propulsion device to satisfy mission requirements for microsatellite (1 to 20 kg) class missions. Satisfying these requirements entails addressing the general problem of generating a sufficiently dense plasma within a relatively small volume and then accelerating it. In the work presented here, the feasibility of utilizing a magnetic cusp to generate a dense plasma over small length scales of order 1 mm is investigated. This approach could potentially mitigate scaling issues associated with conventional ion thruster plasma containment schemes. Plume and discharge characteristics were documented using a Faraday probe and a retarding potential analyzer.

  14. Compact Radiometers Expand Climate Knowledge

    NASA Technical Reports Server (NTRS)

    2010-01-01

    To gain a better understanding of Earth's water, energy, and carbon cycles, NASA plans to embark on the Soil Moisture Active and Passive mission in 2015. To prepare, Goddard Space Flight Center provided Small Business Innovation Research (SBIR) funding to ProSensing Inc., of Amherst, Massachusetts, to develop a compact ultrastable radiometer for sea surface salinity and soil moisture mapping. ProSensing incorporated small, low-cost, high-performance elements into just a few circuit boards and now offers two lightweight radiometers commercially. Government research agencies, university research groups, and large corporations around the world are using the devices for mapping soil moisture, ocean salinity, and wind speed.

  15. Fresnel Concentrators for Space Solar Power and Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Bradford, Rodney; Parks, Robert W.; Craig, Harry B. (Technical Monitor)

    2001-01-01

    Large deployable Fresnel concentrators are applicable to solar thermal propulsion and multiple space solar power generation concepts. These concentrators can be used with thermophotovoltaic, solar thermionic, and solar dynamic conversion systems. Thin polyimide Fresnel lenses and reflectors can provide tailored flux distribution and concentration ratios matched to receiver requirements. Thin, preformed polyimide film structure components assembled into support structures for Fresnel concentrators provide the capability to produce large inflation-deployed concentrator assemblies. The polyimide film is resistant to the space environment and allows large lightweight assemblies to be fabricated that can be compactly stowed for launch. This work addressed design and fabrication of lightweight polyimide film Fresnel concentrators, alternate materials evaluation, and data management functions for space solar power concepts, architectures, and supporting technology development.

  16. Heart Sonar Images

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Stanford University cardiologists, with the help of Ames engineers, have validated the operation of the echo-cardioscope to monitor cardiac functions of astronauts in flight. This device forms images of internal structures using high-frequency sound. The instrument is compact, lightweight, portable, and DC powered for safety. The battery powered ultrasonic device, being isolated from its electrical environment, has an inherent safety advantage especially with infants.

  17. Thermal Weapon Sight (TWS) AN/PAS-13 diffractive optics designed for producibility

    NASA Technical Reports Server (NTRS)

    Anderson, J. Steven; Chen, Chungte W.; Spande, Robert A.

    1993-01-01

    The Thermal Weapon Sight (TWS) program is a manportable 3-5 micrometer forward-looking-infrared (FLIR) rifle sight. The manportable nature requires that the optics modules be lightweight, low cost and compact while maximizing performance. These objectives were met with diffractive optics. TWS promises to be the first FLIR sensor to incorporate kinoform surfaces in full scale production.

  18. High-resolution deployable telescope for satellite applications

    NASA Astrophysics Data System (ADS)

    Pica, Giulia; Ciofaniello, Luca; Mattei, Stefania; Santovito, Maria Rosaria; Gardi, Roberto

    2004-02-01

    CO.RI.S.T.A. is involved in a research project funded by ASI (Italian Space Agency), named MITAR, to realise a very compact, lightweight deployable telescope in visible wavelength range to get earth images from microsatellite. The satellite considered for the study is SMART, an Italian academic multi-mission microsatellite operating on circular sun-synchronous orbits. The telescope has a Cassegrain configuration with a parabolic primary mirror and an hyperbolic secondary mirror. This configuration guaranties the best aberrations corrections and the best compactness. The primary and the secondary mirror are 40 cm and 10 cm in diameter respectively, while their relative distance is 52cm. Mirrors will be realised with innovative composite material to obtain lightweight optical elements. Thanks to its limited size and light weight, the system can be easily deployed. The deployable structure will keep the secondary mirror close to the primary one during launch phases. Once in orbit, a system of lenticular tape springs and dumpers will extend the structure. The structure will be enclosed in multilayer blankets that will shield the sensor from light and will thermally stabilize the structure, preventing excessive thermal deformation. The images will be detected by a very high resolution CCD camera installed onboard the satellite.

  19. Compact and Light-Weight Solar Spaceflight Instrument Designs Utilizing Newly Developed Miniature Free-Standing Zone Plates: EUV Radiometer and Limb-Scanning Monochromator

    NASA Astrophysics Data System (ADS)

    Seely, J. F.; McMullin, D. R.; Bremer, J.; Chang, C.; Sakdinawat, A.; Jones, A. R.; Vest, R.

    2014-12-01

    Two solar instrument designs are presented that utilize newly developed miniature free-standing zone plates having interconnected Au opaque bars and no support membrane resulting in excellent long-term stability in space. Both instruments are based on a zone plate having 4 mm outer diameter and 1 to 2 degree field of view. The zone plate collects EUV radiation and focuses a narrow bandpass through a pinhole aperture and onto a silicon photodiode detector. As a miniature radiometer, EUV irradiance is accurately determined from the zone plate efficiency and the photodiode responsivity that are calibrated at the NIST SURF synchrotron facility. The EUV radiometer is pointed to the Sun and measures the absolute solar EUV irradiance in high time cadence suitable for solar physics and space weather applications. As a limb-scanning instrument in low earth orbit, a miniature zone-plate monochromator measures the extinction of solar EUV radiation by scattering through the upper atmosphere which is a measure of the variability of the ionosphere. Both instruments are compact and light-weight and are attractive for CubeSats and other missions where resources are extremely limited.

  20. Design of band-notched antenna with DG-CEBG

    NASA Astrophysics Data System (ADS)

    Jaglan, Naveen; Kanaujia, Binod Kumar; Gupta, Samir Dev; Srivastava, Shweta

    2018-01-01

    Ultra-wideband (UWB) disc monopole antenna with crescent shaped slot for double band-notched features is presented. Planned antenna discards worldwide interoperability for microwave access (WiMAX) band (3.3-3.6 GHz) and wireless local area network (WLAN) band (5-6 GHz). Defected ground compact electromagnetic band gap (DG-CEBG) designs are used to accomplish band notches in WiMAX and WLAN bands. Defected ground planes are utilised to achieve compactness in electromagnetic band gap (EBG) structures. The proposed WiMAX and WLAN DG-CEBG designs show a compactness of around 46% and 50%, respectively, over mushroom EBG structures. Parametric analyses of DG-CEBG design factors are carried out to control the notched frequencies. Stepwise notch transition from upper to lower frequencies is presented with incremental inductance augmentation. The proposed antenna is made-up on low-cost FR-4 substrate of complete extents as (42 × 50 × 1.6) mm3.Fabricated sample antenna shows excellent consistency in simulated and measured outcomes.

  1. Design of compact electromagnetic impulse radiating antenna for melanoma treatment.

    PubMed

    Arockiasamy, Petrishia; Mohan, Sasikala

    2016-01-01

    Cancer therapy is one of the several new applications which use nanosecond and subnanosecond high voltage pulses. New treatment based on electromagnetic (EM) fields have been developed as non-surgical and minimally invasive treatments of tumors. In particular, subnanosecond pulses can introduce important non-thermal changes in cell biology, especially the permeabilization of the cell membrane. The motivation behind this work is to launch intense subnanosecond pulses to the target (tumors) non-invasively. This works focuses on the design of a compact intense pulsed EM radiating antenna. In tense EM waves radiated at the first focal point of the Prolate Spheroidal Reflector (PSR) are focused at the second focal point where the target (tumor) is present. Two antennas with PSR but fed with different compact wave radiator are designed to focus pulsed field at the second focal point. The PSR with modified bicone antenna feed and PSR with elliptically tapered horn antenna feed are designed. The design parameters and radiation performance are discussed.

  2. Experimental demonstration of subwavelength domino plasmon devices for compact high-frequency circuit.

    PubMed

    Ma, Y G; Lan, L; Zhong, S M; Ong, C K

    2011-10-24

    In optical frequency, surface plasmons of metal provide us a prominent way to build compact photonic devices or circuits with non-diffraction limit. It is attributed by their extraordinary electromagnetic confining effect. But in the counterpart of lower frequencies, plasmonics behavior of metal is screened by eddy current induced in a certain skin depth. To amend this, spoof plasmons engineered by artificial structures have been introduced to mimic surface plasmons in these frequencies. But it is less useful for practical application due to their weak field confinement as manifested by large field decaying length in the upper dielectric space. Recently, a new type of engineered plasmons, domino plasmon was theoretically proposed to produce unusual field confinement and waveguiding capabilities that make them very attractive for ultra-compact device applications [Opt. Exp. 18, 754-764 (2010)]. In this work, we implemented these ideas and built three waveguiding devices based on domino plasmons. Their strong capabilities to produce versatile and ultra-compact devices with multiple electromagnetic functions have been experimentally verified in microwaves. And that can be extended to THz regime to pave the way for a new class of integrated wave circuits. © 2011 Optical Society of America

  3. Lightweight graphene nanoplatelet/boron carbide composite with high EMI shielding effectiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Yongqiang; Luo, Heng; Zhang, Haibin, E-mail: hbzhang@caep.cn, E-mail: pengshuming@caep.cn

    2016-03-15

    Lightweight graphene nanoplatelet (GNP)/boron carbide (B{sub 4}C) composites were prepared and the effect of GNPs loading on the electromagnetic interference (EMI) shielding effectiveness (SE) has been evaluated in the X-band frequency range. Results have shown that the EMI SE of GNP/B{sub 4}C composite increases with increasing the GNPs loading. An EMI SE as high as 37 ∼ 39 dB has been achieved in composite with 5 vol% GNPs. The high EMI SE is mainly attributed to the high electrical conductivity, high dielectric loss as well as multiple reflections by aligned GNPs inside the composite. The GNP/B{sub 4}C composite is demonstratedmore » to be promising candidate of high-temperature microwave EMI shielding material.« less

  4. Electromagnetic and thermal properties of three-dimensional printed multilayered nano-carbon/poly(lactic) acid structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paddubskaya, A.; Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius; Valynets, N.

    A new type of light-weight material produced by 3D printing consisting of nano-carbon doped polymer layer followed by a dielectric polymer layer is proposed. We performed temperature dependent characterization and measured the electromagnetic (EM) response of the samples in the GHz and THz range. The temperature dependent structural characteristics, crystallization, and melting were observed to be strongly affected by the presence and the number of nano-carbon doped layers in the sandwich structure. The electromagnetic measurements show a great potential of such a type of periodic material for electromagnetic compatibility applications in microwave frequency range. Sandwich structures containing only two nano-carbonmore » layers already become not transparent to the microwaves, giving an electromagnetic interference shielding efficiency at the level of 8–15 dB. A sandwich consisting of one nano-carbon doped and one polymer layer is opaque for THz radiation, because of 80% of absorption. These studies serve as a basis for design and realization of specific optimal geometries of meta-surface type with the 3D printing technique, in order to reach a high level of electromagnetic interference shielding performance for real world EM cloaking and EM ecology applications.« less

  5. First aircraft test results of a compact, low cost hyperspectral imager for earth observation from space

    NASA Astrophysics Data System (ADS)

    de Goeij, B. T. G.; Otter, G. C. J.; van Wakeren, J. M. O.; Veefkind, J. P.; Vlemmix, T.; Ge, X.; Levelt, P. F.; Dirks, B. P. F.; Toet, P. M.; van der Wal, L. F.; Jansen, R.

    2017-09-01

    In recent years TNO has investigated and developed different innovative opto-mechanical designs to realize advanced spectrometers for space applications in a more compact and cost-effective manner. This offers multiple advantages: a compact instrument can be flown on a much smaller platform or as add-on on a larger platform; a low-cost instrument opens up the possibility to fly multiple instruments in a satellite constellation, improving both global coverage and temporal sampling (e.g. multiple overpasses per day to study diurnal processes); in this way a constellation of low-cost instruments may provide added value to the larger scientific and operational satellite missions (e.g. the Copernicus Sentinel missions); a small, lightweight spectrometer can easily be mounted on a small aircraft or high-altitude UAV (offering high spatial resolution).

  6. Lightweight Payload for High Altitude Balloons

    DTIC Science & Technology

    1991-05-21

    common at microwave frequencies. Examples of such transponders are DSCS-fl, DSCS-Ill, NATO- III, Nato-IV, and Skynet-4.I Rx Translation Tx Wideband BPF ...Narrowband Limiter BPF Bank BankI Figure 2.4-2. Channelized Transponder ArchitectureI The disadvantage of channelization is the hardware complexity. We...excessive electromagnetic interference (EMI), either conducted or radiated, from one part of the circuit to another. There are three major guidelines

  7. Shallow Water UXO Technology Demonstration Site Scoring Record No. 5 (NAEVA/XTECH, EM61 MKII)

    DTIC Science & Technology

    2008-04-01

    been fired or degaussed. Clutter items fit into one of three categories: ferrous, nonferrous , and mixed metals . The ferrous and nonferrous ...electromagnetic (EM) metal detectors . The system was relatively lightweight, requiring a small aluminum boat for towing. This configuration should...composed of ordnance components; however, industrial scrap metal and cultural items are present as well. The mixed- metals clutter is composed of

  8. Carbon Nanotube-Multilayered Graphene Edge Plane Core-Shell Hybrid Foams for Ultrahigh-Performance Electromagnetic-Interference Shielding.

    PubMed

    Song, Qiang; Ye, Fang; Yin, Xiaowei; Li, Wei; Li, Hejun; Liu, Yongsheng; Li, Kezhi; Xie, Keyu; Li, Xuanhua; Fu, Qiangang; Cheng, Laifei; Zhang, Litong; Wei, Bingqing

    2017-08-01

    Materials with an ultralow density and ultrahigh electromagnetic-interference (EMI)-shielding performance are highly desirable in fields of aerospace, portable electronics, and so on. Theoretical work predicts that 3D carbon nanotube (CNT)/graphene hybrids are one of the most promising lightweight EMI shielding materials, owing to their unique nanostructures and extraordinary electronic properties. Herein, for the first time, a lightweight, flexible, and conductive CNT-multilayered graphene edge plane (MLGEP) core-shell hybrid foam is fabricated using chemical vapor deposition. MLGEPs are seamlessly grown on the CNTs, and the hybrid foam exhibits excellent EMI shielding effectiveness which exceeds 38.4 or 47.5 dB in X-band at 1.6 mm, while the density is merely 0.0058 or 0.0089 g cm -3 , respectively, which far surpasses the best values of reported carbon-based composite materials. The grafted MLGEPs on CNTs can obviously enhance the penetration losses of microwaves in foams, leading to a greatly improved EMI shielding performance. In addition, the CNT-MLGEP hybrids also exhibit a great potential as nano-reinforcements for fabricating high-strength polymer-based composites. The results provide an alternative approach to fully explore the potentials of CNT and graphene, for developing advanced multifunctional materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Potential of scrap tire rubber as lightweight aggregate in flowable fill.

    PubMed

    Pierce, C E; Blackwell, M C

    2003-01-01

    Flowable fill is a self-leveling and self-compacting material that is rapidly gaining acceptance and application in construction, particularly in transportation and utility earthworks. When mixed with concrete sand, standard flowable fill produces a mass density ranging from 1.8 to 2.3 g/cm(3) (115-145 pcf). Scrap tires can be granulated to produce crumb rubber, which has a granular texture and ranges in size from very fine powder to coarse sand-sized particles. Due to its low specific gravity, crumb rubber can be considered a lightweight aggregate. This paper describes an experimental study on replacing sand with crumb rubber in flowable fill to produce a lightweight material. To assess the technical feasibility of using crumb rubber, the fluid- and hardened-state properties of nine flowable fill mixtures were measured. Mixture proportions were varied to investigate the effects of water-to-cement ratio and crumb rubber content on fill properties. Experimental results indicate that crumb rubber can be successfully used to produce a lightweight flowable fill (1.2-1.6 g/cm(3) [73-98 pcf]) with excavatable 28-day compressive strengths ranging from 269 to 1194 kPa (39-173 psi). Using a lightweight fill reduces the applied stress on underlying soils, thereby reducing the potential for bearing capacity failure and minimizing soil settlement. Based on these results, a crumb rubber-based flowable fill can be used in a substantial number of construction applications, such as bridge abutment fills, trench fills, and foundation support fills.

  10. Decorating MOF-Derived Nanoporous Co/C in Chain-Like Polypyrrole (PPy) Aerogel: A Lightweight Material with Excellent Electromagnetic Absorption

    PubMed Central

    Sun, Xiaodong; Lv, Xuliang; Sui, Mingxu; Weng, Xiaodi; Li, Xiaopeng; Wang, Jijun

    2018-01-01

    To clear away the harmful effects of the increment of electromagnetic pollution, high performance absorbers with appropriate impedance matching and strong attenuation capacity are strongly desired. In this study, a chain-like PPy aerogel decorated with MOF-derived nanoporous Co/C (Co/C@PPy) has been successfully prepared by a self-assembled polymerization method. With a filler loading ratio of 10 wt %, the composite of Co/C@PPy could achieve a promising electromagnetic absorption performance both in intensity and bandwidth. An optimal reflection loss value of −44.76 dB is achieved, and the effective bandwidth (reflection loss lower than −10 dB) is as large as 6.56 GHz. Furthermore, a composite only loaded with 5 wt % Co/C@PPy also achieves an effective bandwidth of 5.20 GHz, which is even better than numerous reported electromagnetic absorption (EA) materials. The result reveals that the as-fabricated Co/C@PPy—with high absorption intensity, broad bandwidth, and light weight properties—can be utilized as a competitive absorber. PMID:29751650

  11. Fabrication process and electromagnetic wave absorption characterization of a CNT/Ni/epoxy nanocomposite.

    PubMed

    Ryu, Seongwoo; Mo, Chan Bin; Lee, Haeshin; Hong, Soon Hyung

    2013-11-01

    Since carbon nanotube (CNT) was first discovered in 1991, it has been considered as a viable type of conductive filler for electromagnetic wave absorption materials in the GHz range. In this paper, pearl-necklace-structure CNT/Ni nano-powders were fabricated by a polyol process as conductive fillers. Compared to synthesized CNT, pearl-necklace Ni-decorated CNT increased the electrical conductivity by an order of 1 due to the enhancement of the Ni-conductive network. Moreover, the decorated Ni particles prevented the agglomeration of CNTs by counterbalancing the Van der Walls interaction between the CNTs. A CNT/Ni nanocomposite showed a homogeneous dispersion in an epoxy-based matrix. This enhanced physical morphology and electrical properties lead to an increase in the loss tangent and reflection loss in the CNT/Ni/Epoxy nanocomposite compared to these characteristics of a CNT/Epoxy nanocomposite in range of 8-12 GHz. The electromagnetic wave absorption properties of CNT/Ni/epoxy nanocomposites will provide enormous opportunities for electronic applications where lightweight EMI shielding or electro-magnetic wave absorption properties are necessary.

  12. Decorating MOF-Derived Nanoporous Co/C in Chain-Like Polypyrrole (PPy) Aerogel: A Lightweight Material with Excellent Electromagnetic Absorption.

    PubMed

    Sun, Xiaodong; Lv, Xuliang; Sui, Mingxu; Weng, Xiaodi; Li, Xiaopeng; Wang, Jijun

    2018-05-11

    To clear away the harmful effects of the increment of electromagnetic pollution, high performance absorbers with appropriate impedance matching and strong attenuation capacity are strongly desired. In this study, a chain-like PPy aerogel decorated with MOF-derived nanoporous Co/C (Co/C@PPy) has been successfully prepared by a self-assembled polymerization method. With a filler loading ratio of 10 wt %, the composite of Co/C@PPy could achieve a promising electromagnetic absorption performance both in intensity and bandwidth. An optimal reflection loss value of −44.76 dB is achieved, and the effective bandwidth (reflection loss lower than −10 dB) is as large as 6.56 GHz. Furthermore, a composite only loaded with 5 wt % Co/C@PPy also achieves an effective bandwidth of 5.20 GHz, which is even better than numerous reported electromagnetic absorption (EA) materials. The result reveals that the as-fabricated Co/C@PPy—with high absorption intensity, broad bandwidth, and light weight properties—can be utilized as a competitive absorber.

  13. Power and Energy Considerations at Forward Operating Bases (FOBs)

    DTIC Science & Technology

    2010-06-16

    systems • Anticipated additional plug loads by users – Personal Computers and Gaming Devices – Coffee Pots – Refrigerators – Lights – Personal Heaters...effort was made to account for the significant amount of equipment that consumes power not on the unit’s MTOE (printers, plotters, coffee pots, etc...50 Warfighters including billeting, kitchen, laundry, shower, latrines, and new wastewater treatment system Capability/impact: Compact, lightweight

  14. Analysis of Lightweight Materials for the AM2 System

    DTIC Science & Technology

    2014-06-01

    and fatigue behavior in magnesium alloys . Materials Science & Engineering A (Structural Materials: Properties , Microstructure and Processing ), v 434...Table 7. Tensile properties of the alloys AA2024 or the T3 and T81 temper designations (Kuo et al . 2005...using a powder metallurgy technique, such as a standard cold compacting press and sintering process . However, the fatigue life of the liquid-based

  15. The ARC (Astrophysical Research Consortium) telescope project.

    NASA Astrophysics Data System (ADS)

    Anderson, K. S.

    A consortium of universities intends to construct a 3.5 meter optical-infrared telescope at a site in south-central New Mexico. The use of innovative mirror technology, a fast primary, and an alt-azimuth mounting results in a compact and lightweight instrument. This telescope will be uniquely well-suited for addressing certain observational programs by virtue of its capability for fully remote operation and rapid instrument changes.

  16. Self-excitation of microwave oscillations in plasma-assisted slow-wave oscillators by an electron beam with a movable focus

    NASA Astrophysics Data System (ADS)

    Bliokh, Yu. P.; Nusinovich, G. S.; Shkvarunets, A. G.; Carmel, Y.

    2004-10-01

    Plasma-assisted slow-wave oscillators (pasotrons) operate without external magnetic fields, which makes these devices quite compact and lightweight. Beam focusing in pasotrons is provided by ions, which appear in the device due to the impact ionization of a neutral gas by beam electrons. Typically, the ionization time is on the order of the rise time of the beam current. This means that, during the rise of the current, beam focusing by ions becomes stronger. Correspondingly, a beam of electrons, which was initially diverging radially due to the self-electric field, starts to be focused by ions, and this focus moves towards the gun as the ion density increases. This feature makes the self-excitation of electromagnetic (em) oscillations in pasotrons quite different from practically all other microwave sources where em oscillations are excited by a stationary electron beam. The process of self-excitation of em oscillations has been studied both theoretically and experimentally. It is shown that in pasotrons, during the beam current rise the amount of current entering the interaction space and the beam coupling to the em field vary. As a result, the self-excitation can proceed faster than in conventional microwave sources with similar operating parameters such as the operating frequency, cavity quality-factor and the beam current and voltage.

  17. Design studies of large aperture, high-resolution Earth science microwave radiometers compatible with small launch vehicles

    NASA Technical Reports Server (NTRS)

    Schroeder, Lyle C.; Bailey, M. C.; Harrington, Richard F.; Kendall, Bruce M.; Campbell, Thomas G.

    1994-01-01

    High-spatial-resolution microwave radiometer sensing from space with reasonable swath widths and revisit times favors large aperture systems. However, with traditional precision antenna design, the size and weight requirements for such systems are in conflict with the need to emphasize small launch vehicles. This paper describes tradeoffs between the science requirements, basic operational parameters, and expected sensor performance for selected satellite radiometer concepts utilizing novel lightweight compactly packaged real apertures. Antenna, feed, and radiometer subsystem design and calibration are presented. Preliminary results show that novel lightweight real aperture coupled with state-of-the-art radiometer designs are compatible with small launch systems, and hold promise for high-resolution earth science measurements of sea ice, precipitation, soil moisture, sea surface temperature, and ocean wind speeds.

  18. Development of Planar Optics for an Optical Tracking Sensor

    NASA Astrophysics Data System (ADS)

    Kawano, Hiroyuki; Sasagawa, Tomohiro

    1998-10-01

    An optical tracking sensor for large-capacity flexible disk drive (FDD) is demonstrated. The passive optics is compact and lightweight (5.4 mm length×3.6 mm width×1.2 mm height in size and 18 mg weight). It comprises all passive optical elements necessary for optical tracking, e.g., a focusing lens, a three-beam grating, an aperture and a beam splitter grating. Three beams were focused to a predetermined spot size of 13 µm at designed intervals of 110 µm on a disk surface and the reflected beams were successfully guided to photodiodes. This confirms that the application of the planar optical technique is very useful for realizing a compact and light optical sensor.

  19. A fast and compact electromagnetic calorimeter for the PANDA detector at FAIR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilms, Andrea

    2005-10-26

    In this presentation we report on the electromagnetic calorimeter of the 4{pi} detector PANDA to be installed at the antiproton storage ring of the proposed Facility for Antiproton and Ion Research (FAIR). We present details of the R and D work with two scintillator materials, PbWO4 (PWO) and BGO, and the new developed large area avalanche photodiodes (LAAPDs) as detector readout.

  20. An Electromagnetically Actuated Vacuum Circuit Breaker Developed by Electromagnetic Analysis Coupled with Motion

    NASA Astrophysics Data System (ADS)

    Takeuchi, Toshie; Nakagawa, Takafumi; Tsukima, Mitsuru; Koyama, Kenichi; Tohya, Nobumoto; Yano, Tomotaka

    A new electromagnetically actuated vacuum circuit breaker (VCB) has been designed and developed on the basis of the transient electromagnetic analysis coupled with motion. The VCB has three advanced bi-stable electromagnetic actuators, which control each phase independently. The VCB serves as a synchronous circuit breaker as well as a standard circuit breaker. In this work, the flux delay due to the eddy current is analytically formulated using the delay time constant of the actuator coil current, thereby leading to accurate driving behavior. With this analytical method, the electromagnetic mechanism for a 24kV rated VCB has been optimized; and as a result, the driving energy is reduced to one fifth of that of a conventional VCB employing spring mechanism, and the number of parts is significantly decreased. Therefore, the developed VCB becomes compact, highly reliable and highly durable.

  1. Multistage Passive Cooler for Spaceborne Instruments

    NASA Technical Reports Server (NTRS)

    Rodriquez, Jose I.

    2007-01-01

    A document describes a three-stage passive radiative cooler for a cryogenic spectrometer to be launched into a low orbit around the Moon. This cooler is relatively lightweight and compact, and its basic design is scalable and otherwise adaptable to other applications in which there are requirements for cooling instrumentation in orbit about planets. The cooler includes multiple lightweight flat radiator blades alternating with cylindrical parabolic infrared reflectors. The radiator blades are oriented at an angle chosen to prevent infrared loading from the Moon limb at the intended orbital altitude and attitude. The reflectors are shaped and oriented to position their foci outside the radiator surfaces. There are six radiator-blade/reflector pairs - two pairs for each stage of cooling. The radiator blades and reflectors are coated on their front and back surfaces with materials having various infrared emissivities, infrared reflectivities, and solar reflectivities so as to maximize infrared radiation to cold outer space and minimize inadvertent solar heating. The radiator blades and reflectors are held in place by a lightweight support structure, the components of which are designed to satisfy a complex combination of thermal and mechanical requirements.

  2. Compact optical duplicate system for satellite-ground laser communications: application of averaging effects

    NASA Astrophysics Data System (ADS)

    Nakayama, Tomoko; Takayama, Yoshihisa; Fujikawa, Chiemi; Watanabe, Eriko; Kodate, Kashiko

    2014-09-01

    In recent years, there has been considerable interest in satellite-ground laser communication due to an increase in the quantity of data exchanged between satellites and the ground. However, improving the quality of this data communication is necessary as laser communication is vulnerable to air fluctuation. We first verify the spatial and temporal averaging effects using light beam intensity images acquired from middle-range transmission experiments between two ground positions and the superposition of these images using simulations. Based on these results, we propose a compact and lightweight optical duplicate system as a multi-beam generation device with which it is easy to apply the spatial averaging effect. Although an optical duplicate system is already used for optical correlation operations, we present optimum design solutions, design a compact optical duplicate system for satellite-ground laser communications, and demonstrate the efficacy of this system using simulations.

  3. Compact injector with alternating phase focusing-interdigital H-mode linac and superconducting electron cyclotron resonance ion source for heavy ion cancer therapy

    NASA Astrophysics Data System (ADS)

    Hayashizaki, Noriyosu; Hattori, Toshiyuki; Matsui, Shinjiro; Tomizawa, Hiromitsu; Yoshida, Toru; Isokawa, Katsushi; Kitagawa, Atsushi; Muramatsu, Masayuki; Yamada, Satoru; Okamura, Masahiro

    2000-02-01

    We have researched a compact medical accelerator with low investment and running cost for the popularization of heavy ion cancer therapy. As the first step, the compact injector system has been investigated for a Heavy Ion Medical Accelerator in Chiba at National Institute of Radiological Sciences. The proposed new injector system consists of a 6 MeV/u interdigital H-mode (IH) linac of 3.1 m long and a 18 GHz superconducting electron cyclotron resonance (ECR) (SC-ECR) ion source. The IH linac with high power efficiency is appropriate to a medical and industrial injector system. Its beam trajectory was simulated and a prototype has been constructed. The SC-ECR ion source has been designed to realize lightweight and low power consumption and the mirror field distribution was estimated.

  4. Metal-Matrix/Hollow-Ceramic-Sphere Composites

    NASA Technical Reports Server (NTRS)

    Baker, Dean M.

    2011-01-01

    A family of metal/ceramic composite materials has been developed that are relatively inexpensive, lightweight alternatives to structural materials that are typified by beryllium, aluminum, and graphite/epoxy composites. These metal/ceramic composites were originally intended to replace beryllium (which is toxic and expensive) as a structural material for lightweight mirrors for aerospace applications. These materials also have potential utility in automotive and many other terrestrial applications in which there are requirements for lightweight materials that have high strengths and other tailorable properties as described below. The ceramic component of a material in this family consists of hollow ceramic spheres that have been formulated to be lightweight (0.5 g/cm3) and have high crush strength [40.80 ksi (.276.552 MPa)]. The hollow spheres are coated with a metal to enhance a specific performance . such as shielding against radiation (cosmic rays or x rays) or against electromagnetic interference at radio and lower frequencies, or a material to reduce the coefficient of thermal expansion (CTE) of the final composite material, and/or materials to mitigate any mismatch between the spheres and the matrix metal. Because of the high crush strength of the spheres, the initial composite workpiece can be forged or extruded into a high-strength part. The total time taken in processing from the raw ingredients to a finished part is typically 10 to 14 days depending on machining required.

  5. Development of Fluidic Guidance for KEW (Kinetic Energy Weapon) Projectiles

    DTIC Science & Technology

    1988-12-30

    commanded to a hit-to-kill on a hostile ICBK booster. A novel application of-the photo-acoustic effect is used for laser detection. An acoustic wave...Hughes High Endo-Atmospheric Interceptor Concept.. 2 3 Conceptual SDI KE projectile ........................ 3 4 Schematic of photo-acoustic effect ...practical, KEWs must be lightweight, able to withstand high "g" forces, and insensitive to nuclear and electro-magnetic effects . Laser command guidance can

  6. A Way to Select Electrical Sheets of the Segment Stator Core Motors.

    NASA Astrophysics Data System (ADS)

    Enomoto, Yuji; Kitamura, Masashi; Sakai, Toshihiko; Ohara, Kouichiro

    The segment stator core, high density winding coil, high-energy-product permanent magnet are indispensable technologies in the development of a compact and also high efficient motors. The conventional design method for the segment stator core mostly depended on experienced knowledge of selecting a suitable electromagnetic material, far from optimized design. Therefore, we have developed a novel design method in the selection of a suitable electromagnetic material based on the correlation evaluation between the material characteristics and motor performance. It enables the selection of suitable electromagnetic material that will meet the motor specification.

  7. Compact electromagnetic bandgap structures for notch band in ultra-wideband applications.

    PubMed

    Rotaru, Mihai; Sykulski, Jan

    2010-01-01

    This paper introduces a novel approach to create notch band filters in the front-end of ultra-wideband (UWB) communication systems based on electromagnetic bandgap (EBG) structures. The concept presented here can be implemented in any structure that has a microstrip in its configuration. The EBG structure is first analyzed using a full wave electromagnetic solver and then optimized to work at WLAN band (5.15-5.825 GHz). Two UWB passband filters are used to demonstrate the applicability and effectiveness of the novel EBG notch band feature. Simulation results are provided for two cases studied.

  8. Compact Electromagnetic Bandgap Structures for Notch Band in Ultra-Wideband Applications

    PubMed Central

    Rotaru, Mihai; Sykulski, Jan

    2010-01-01

    This paper introduces a novel approach to create notch band filters in the front-end of ultra-wideband (UWB) communication systems based on electromagnetic bandgap (EBG) structures. The concept presented here can be implemented in any structure that has a microstrip in its configuration. The EBG structure is first analyzed using a full wave electromagnetic solver and then optimized to work at WLAN band (5.15–5.825 GHz). Two UWB passband filters are used to demonstrate the applicability and effectiveness of the novel EBG notch band feature. Simulation results are provided for two cases studied. PMID:22163430

  9. Ponderomotive forces in electrodynamics of moving media: The Minkowski and Abraham approaches

    NASA Astrophysics Data System (ADS)

    Nesterenko, V. V.; Nesterenko, A. V.

    2016-09-01

    In the general setting of the problem, the explicit compact formulae are derived for the ponderomotive forces in the macroscopic electrodynamics of moving media in the Minkowski and Abraham approaches. Taking account of the Minkowski constitutive relations and making use of a special representation for the Abraham energy-momentum tensor enable one to obtain a compact expression for the Abraham force in the case of arbitrary dependence of the medium velocity on spatial coordinates and the time and for nonstationary external electromagnetic field. We term the difference between the ponderomotive forces in the Abraham and Minkowski approaches as the Abraham force not only under consideration of media at rest but also in the case of moving media. The Lorentz force is found which is exerted by external electromagnetic field on the conduction current in a medium, the covariant Ohm law, and the constitutive Minkowski relations being taken into account. The physical argumentation is traced for the definition of the 4-vector of the ponderomotive force as the 4-divergence of the energy-momentum tensor of electromagnetic field in a medium.

  10. Firefighting module development

    NASA Technical Reports Server (NTRS)

    Burns, R. A.

    1981-01-01

    The firefighting module is a lightweight, compact, self contained, helicopter-transportable unit for fighting harbor and other specialty fires as well as for use in emergency water pumping applications. Units were fabricated and tested. A production type unit is undergoing an inservice evaluation and demonstration program at the port of St Louis. The primary purpose is to promote enhanced harbor fire protection at inland and coastal ports. The module and its development are described.

  11. Lightweight, Self-Deployable Wheels

    NASA Technical Reports Server (NTRS)

    Chmielewski, Artur; Sokolowski, Witold; Rand, Peter

    2003-01-01

    Ultra-lightweight, self-deployable wheels made of polymer foams have been demonstrated. These wheels are an addition to the roster of cold hibernated elastic memory (CHEM) structural applications. Intended originally for use on nanorovers (very small planetary-exploration robotic vehicles), CHEM wheels could also be used for many commercial applications, such as in toys. The CHEM concept was reported in "Cold Hibernated Elastic Memory (CHEM) Expandable Structures" (NPO-20394), NASA Tech Briefs, Vol. 23, No. 2 (February 1999), page 56. To recapitulate: A CHEM structure is fabricated from a shape-memory polymer (SMP) foam. The structure is compressed to a very small volume while in its rubbery state above its glass-transition temperature (Tg). Once compressed, the structure can be cooled below Tg to its glassy state. As long as the temperature remains

  12. Compact, Lightweight, Ceramic Matrix Composite (CMC) Based Acoustic Liners for Reducing Subsonic Jet Aircraft Engine Noise

    NASA Technical Reports Server (NTRS)

    Kiser, J. Douglas; Grady, Joseph E.; Miller, Christopher J.; Hultgren, Lennart S.; Jones, Michael G.

    2016-01-01

    Recent developments have reduced fan and jet noise contributions to overall subsonic aircraft jet-engine noise. Now, aircraft designers are turning their attention toward reducing engine core noise. The NASA Glenn Research Center and NASA Langley Research Center have teamed to investigate the development of a compact, lightweight acoustic liner based on oxide/oxide ceramic matrix composite (CMC) materials. The NASA team has built upon an existing oxide/oxide CMC sandwich structure concept that provides monotonal noise reduction. Oxide/oxide composites have good high temperature strength and oxidation resistance, which could allow them to perform as core liners at temperatures up to 1000C (1832F), and even higher depending on the selection of the composite constituents. NASA has initiated the evaluation of CMC-based liners that use cells of different lengths (variable-depth channels) or effective lengths to achieve broadband noise reduction. Reducing the overall liner thickness is also a major goal, to minimize the volume occupied by the liner. As a first step toward demonstrating the feasibility of our concepts, an oxide/oxide CMC acoustic testing article with different channel lengths was tested. Our approach, summary of test results, current status, and goals for the future are reported.

  13. Motionless phase stepping in X-ray phase contrast imaging with a compact source

    PubMed Central

    Miao, Houxun; Chen, Lei; Bennett, Eric E.; Adamo, Nick M.; Gomella, Andrew A.; DeLuca, Alexa M.; Patel, Ajay; Morgan, Nicole Y.; Wen, Han

    2013-01-01

    X-ray phase contrast imaging offers a way to visualize the internal structures of an object without the need to deposit significant radiation, and thereby alleviate the main concern in X-ray diagnostic imaging procedures today. Grating-based differential phase contrast imaging techniques are compatible with compact X-ray sources, which is a key requirement for the majority of clinical X-ray modalities. However, these methods are substantially limited by the need for mechanical phase stepping. We describe an electromagnetic phase-stepping method that eliminates mechanical motion, thus removing the constraints in speed, accuracy, and flexibility. The method is broadly applicable to both projection and tomography imaging modes. The transition from mechanical to electromagnetic scanning should greatly facilitate the translation of X-ray phase contrast techniques into mainstream applications. PMID:24218599

  14. Development of a compact portable driver for a pneumatic ventricular assist device.

    PubMed

    Nishinaka, Tomohiro; Taenaka, Yoshiyuki; Tatsumi, Eisuke; Ohnishi, Hiroyuki; Homma, Akihiko; Shioya, Kyoko; Mizuno, Toshihide; Tsukiya, Tomonori; Mushika, Sadahiko; Hashiguchi, Yasuhiro; Suzuki, Akira; Kitamura, Soichiro

    2007-01-01

    The Toyobo-National Cardiovascular Center pneumatic ventricular assist device (Toyobo-NCVC VAD) is widely used in Japan; however, the current pneumatic drivers have some drawbacks, including their large size, heavy weight, and high power consumption. These issues cause difficulty with mobility and contribute to an unsatisfactory quality of life for patients. Because it is urgently necessary to improve patients' safety and quality of life, we have developed a compact, low-noise, portable VAD driver by utilizing an electrohydraulic actuator consisting of a brushless DC motor and a regenerative pump. This unit can be actuated for as long as 2 h with two rechargeable lightweight batteries as well as with external AC power. It is compact in size (33 x 25 x 43 cm) and light in weight (13 kg), and the unit is carried on a mobile wheeled cart. In vitro testing with a Toyobo-NCVC VAD demonstrated a sufficient pumping capacity of up to 8 l/min. We conclude that this newly-developed compact portable driver can provide a better quality of life and improved safety for patients using protracted pneumatic VAD support.

  15. Anticorrosive, Ultralight, and Flexible Carbon-Wrapped Metallic Nanowire Hybrid Sponges for Highly Efficient Electromagnetic Interference Shielding.

    PubMed

    Wan, Yan-Jun; Zhu, Peng-Li; Yu, Shu-Hui; Sun, Rong; Wong, Ching-Ping; Liao, Wei-Hsin

    2018-05-30

    Metal-based materials with exceptional intrinsic conductivity own excellent electromagnetic interference (EMI) shielding performance. However, high density, corrosion susceptibility, and poor flexibility of the metal severely restrict their further applications in the areas of aircraft/aerospace, portable and wearable smart electronics. Herein, a lightweight, flexible, and anticorrosive silver nanowire wrapped carbon hybrid sponge (Ag@C) is fabricated and employed as ultrahigh efficiency EMI shielding material. The interconnected Ag@C hybrid sponges provide an effective way for electron transport, leading to a remarkable conductivity of 363.1 S m -1 and superb EMI shielding effectiveness of around 70.1 dB in the frequency range of 8.2-18 GHz, while the density is as low as 0.00382 g cm -3 , which are among the best performances for electrically conductive sponges/aerogels/foams by far. More importantly, the Ag@C sponge surprisingly exhibits super-hydrophobicity and strong corrosion resistance. In addition, the hybrid sponges possess excellent mechanical resilience even with a large strain (90% reversible compressibility) and an outstanding cycling stability, which is far better than the bare metallic aerogels, such as silver nanowire aerogels and copper nanowire foams. This strategy provides a facile methodology to fabricate lightweight, flexible, and anticorrosive metal-based sponge for highly efficient EMI shielding applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Opto-mechanical design and development of a 460mm diffractive transmissive telescope

    NASA Astrophysics Data System (ADS)

    Qi, Bo; Wang, Lihua; Cui, Zhangang; Bian, Jiang; Xiang, Sihua; Ma, Haotong; Fan, Bin

    2018-01-01

    Using lightweight, replicated diffractive optics, we can construct extremely large aperture telescopes in space.The transmissive primary significantly reduces the sensitivities to out of plane motion as compared to reflective systems while reducing the manufacturing time and costs. This paper focuses on the design, fabrication and ground demonstration of a 460mm diffractive transmissive telescope the primary F/# is 6, optical field of view is 0.2° imagine bandwidth is 486nm 656nm.The design method of diffractive optical system was verified, the ability to capture a high-quality image using diffractive telescope collection optics was tested.The results show that the limit resolution is 94lp/mm, the diffractive system has a good imagine performance with broad bandwidths. This technology is particularly promising as a means to achieve extremely large optical primaries from compact, lightweight packages.

  17. Radiation Protection of New Lightweight Electromagnetic Interference Shielding Materials Determined

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Weight savings as high as 80 percent could be achieved by simply switching from aluminum electromagnetic interference (EMI) shielding covers for spacecraft power systems to EMI covers made from intercalated graphite fiber composites. Because EMI covers typically make up about one-fifth of the power system mass, this change would decrease the mass of a spacecraft power system by more than 15 percent. Intercalated graphite fibers are made by diffusing guest atoms or molecules, such as bromine, between the carbon planes of the graphite fibers. The resulting bromine-intercalated fibers have mechanical and thermal properties nearly identical to pristine graphite fibers, but their resistivity is lower by a factor of 5, giving them better electrical conductivity than stainless steel and making these composites suitable for EMI shielding.

  18. A review on the effect of welding on the corrosion of magnesium alloys

    NASA Astrophysics Data System (ADS)

    Mohamed, N. S.; Alias, J.

    2017-10-01

    Welding is an important joining technique for lightweight alloys with their increasing applications in aerospace, aircraft, automotive, electronics and other industries. The applications of lightweight alloys particularly magnesium alloys increased rapidly due to their beneficial properties such as low density, high strength-to-mass ratio, good dimensional stability, electromagnetic shielding and good recyclability. The effect of welding on the corrosion of magnesium alloys are reviewed in this paper, which closely related to the developed microstructure by the welding process. The paper focuses particularly on friction stir and laser welding. The basic principles of friction stir and laser welding are discussed, to present the likelihood of defects which significantly affect the corrosion of magnesium alloy. The finding in corrosion demonstrated the morphology of corrosion occurrence on each welded region, and observation on the potential and current values are also included.

  19. Electromagnetic duality and the electric memory effect

    NASA Astrophysics Data System (ADS)

    Hamada, Yuta; Seo, Min-Seok; Shiu, Gary

    2018-02-01

    We study large gauge transformations for soft photons in quantum electrodynamics which, together with the helicity operator, form an ISO(2) algebra. We show that the two non-compact generators of the ISO(2) algebra correspond respectively to the residual gauge symmetry and its electromagnetic dual gauge symmetry that emerge at null infinity. The former is helicity universal (electric in nature) while the latter is helicity distinguishing (magnetic in nature). Thus, the conventional large gauge transformation is electric in nature, and is naturally associated with a scalar potential. We suggest that the electric Aharonov-Bohm effect is a direct measure for the electromagnetic memory arising from large gauge transformations.

  20. Radar cross section studies/compact range research

    NASA Technical Reports Server (NTRS)

    Burnside, W. D.; Dominek, A. K.; Gupta, I. J.; Newman, E. H.; Pathak, P. H.; Peters, L., Jr.

    1989-01-01

    Achievements in advancing the state-of-the-art in the measurement, control, and analysis of electromagnetic scattering from general aerodynamic targets are summarized. The major topics associated with this study include: (1) electromagnetic scattering analysis; (2) indoor scattering measurement systems; (3) RCS control; (4) waveform processing techniques; (5) material scattering and design studies; (6) design and evaluation of standard targets; and (7) antenna studies. Progress in each of these areas is reported and related publications are listed.

  1. Electromagnetic Performances Analysis of an Ultra-wideband and Flexible Material Antenna in Microwave Breast Imaging: To Implement A Wearable Medical Bra.

    PubMed

    Rahman, Ashiqur; Islam, Mohammad Tariqul; Singh, Mandeep Jit; Kibria, Salehin; Akhtaruzzaman, Md

    2016-12-23

    In this paper, we report a compact and ultra-wide band antenna on a flexible substrate using the 5-(4-(perfluorohexyl)phenyl)thiophene-2-carbaldehyde compound for microwave imaging. In contrast to other microwave based imaging systems, such as an array of 16 antennas, we proposed a bi-static radar based imaging system consisting of two omnidirectional antennas, which reduces complexity and the overall dimension. The proposed compact antennas are 20 × 14 mm 2 and designed for operating at frequencies from 4 to 6 GHz. To allow for implantation into a bra, the electromagnetic performances of the antennas must be considered in bending conditions. In comparison with the recently reported flexible antennas, we demonstrated both electromagnetic performance and imaging reconstruction for bending conditions. For the proof of concept, the electromagnetic performances both at flat and bending conditions have been verified using a homogeneous multilayer model of the human breast phantom. Our results demonstrate that the antenna, even at bending conditions, exhibits an excellent omni-directional radiation pattern with an average efficiency above 70% and average gain above 1 dBi, within the operational frequency band. The comprehensive aim of the realized antenna is to design a biodegradable and wearable antenna-based bra for early breast cancer detection in the future.

  2. Electromagnetic Performances Analysis of an Ultra-wideband and Flexible Material Antenna in Microwave Breast Imaging: To Implement A Wearable Medical Bra

    NASA Astrophysics Data System (ADS)

    Rahman, Ashiqur; Islam, Mohammad Tariqul; Singh, Mandeep Jit; Kibria, Salehin; Akhtaruzzaman, Md.

    2016-12-01

    In this paper, we report a compact and ultra-wide band antenna on a flexible substrate using the 5-(4-(perfluorohexyl)phenyl)thiophene-2-carbaldehyde compound for microwave imaging. In contrast to other microwave based imaging systems, such as an array of 16 antennas, we proposed a bi-static radar based imaging system consisting of two omnidirectional antennas, which reduces complexity and the overall dimension. The proposed compact antennas are 20 × 14 mm2 and designed for operating at frequencies from 4 to 6 GHz. To allow for implantation into a bra, the electromagnetic performances of the antennas must be considered in bending conditions. In comparison with the recently reported flexible antennas, we demonstrated both electromagnetic performance and imaging reconstruction for bending conditions. For the proof of concept, the electromagnetic performances both at flat and bending conditions have been verified using a homogeneous multilayer model of the human breast phantom. Our results demonstrate that the antenna, even at bending conditions, exhibits an excellent omni-directional radiation pattern with an average efficiency above 70% and average gain above 1 dBi, within the operational frequency band. The comprehensive aim of the realized antenna is to design a biodegradable and wearable antenna-based bra for early breast cancer detection in the future.

  3. Portable Hydraulic Powerpack

    NASA Technical Reports Server (NTRS)

    Anderson, L. A.; Henry, R. L.; Fedor, O. H.; Owens, L. J.

    1986-01-01

    Rechargeable hydraulic powerpack functions as lightweight, compact source of mechanical energy. Self-contained hydraulic powerpack derives energy from solid chemical charge. Combustion of charge initiated by small hammer, and revolving feeder replaces charges expended. Combustion gases cool during expansion in turbine and not too hot for release to atmosphere. Unit has applications driving wheelchairs and operating drills, winches, and other equipment in remote areas. Also replaces electric motors and internal-combustion engines as source of power in explosive atmospheres.

  4. Brake Stops Both Rotation And Translation

    NASA Technical Reports Server (NTRS)

    Allred, Johnny W.; Fleck, Vincent J., Jr.

    1995-01-01

    Combination of braking and positioning mechanisms allows both rotation and translation before brake engaged. Designed for use in positioning model airplane in wind tunnel. Modified version used to position camera on tripod. Brake fast and convenient to use; contains single actuator energizing braking actions against both rotation and translation. Braking actuator electric, but pneumatic actuator could be used instead. Compact and lightweight, applies locking forces close to load, and presents minimal cross section to airflow.

  5. High-pressure portable pneumatic drive unit.

    PubMed

    Hete, B F; Savage, M; Batur, C; Smith, W A; Golding, L A; Nosé, Y

    1989-12-01

    The left ventricular assist device (LVAD) of the Cleveland Clinic Foundation (CCF) is a single-chamber assist pump, driven by a high-pressure pneumatic cylinder. A low-cost, portable driver that will allow cardiac care patients, with a high-pressure pneumatic ventricle assist, more freedom of movement has been developed. The compact and light-weight configuration can provide periods of 2 h of freedom from a fixed position driver and does not use exotic technology.

  6. Flow Distribution Control Characteristics in Marine Gas Turbine Waste- Heat Recovery Systems. Phase 2. Flow Distribution Control in Waste-Heat Steam Generators

    DTIC Science & Technology

    1982-07-01

    waste-heat steam generators. The applicable steam generator design concepts and general design consideration were reviewed and critical problems...a once-through forced-circulation steam generator design should be selected because of stability, reliability, compact- ness and lightweight...consists of three sections and one appendix. In Section I, the applicable steam generator design conccpts and general design * considerations are reviewed

  7. Lightweight, compact, and high-performance 3T MR system for imaging the brain and extremities.

    PubMed

    Foo, Thomas K F; Laskaris, Evangelos; Vermilyea, Mark; Xu, Minfeng; Thompson, Paul; Conte, Gene; Van Epps, Christopher; Immer, Christopher; Lee, Seung-Kyun; Tan, Ek T; Graziani, Dominic; Mathieu, Jean-Baptise; Hardy, Christopher J; Schenck, John F; Fiveland, Eric; Stautner, Wolfgang; Ricci, Justin; Piel, Joseph; Park, Keith; Hua, Yihe; Bai, Ye; Kagan, Alex; Stanley, David; Weavers, Paul T; Gray, Erin; Shu, Yunhong; Frick, Matthew A; Campeau, Norbert G; Trzasko, Joshua; Huston, John; Bernstein, Matt A

    2018-03-13

    To build and evaluate a small-footprint, lightweight, high-performance 3T MRI scanner for advanced brain imaging with image quality that is equal to or better than conventional whole-body clinical 3T MRI scanners, while achieving substantial reductions in installation costs. A conduction-cooled magnet was developed that uses less than 12 liters of liquid helium in a gas-charged sealed system, and standard NbTi wire, and weighs approximately 2000 kg. A 42-cm inner-diameter gradient coil with asymmetric transverse axes was developed to provide patient access for head and extremity exams, while minimizing magnet-gradient interactions that adversely affect image quality. The gradient coil was designed to achieve simultaneous operation of 80-mT/m peak gradient amplitude at a slew rate of 700 T/m/s on each gradient axis using readily available 1-MVA gradient drivers. In a comparison of anatomical imaging in 16 patients using T 2 -weighted 3D fluid-attenuated inversion recovery (FLAIR) between the compact 3T and whole-body 3T, image quality was assessed as equivalent to or better across several metrics. The ability to fully use a high slew rate of 700 T/m/s simultaneously with 80-mT/m maximum gradient amplitude resulted in improvements in image quality across EPI, DWI, and anatomical imaging of the brain. The compact 3T MRI system has been in continuous operation at the Mayo Clinic since March 2016. To date, over 200 patient studies have been completed, including 96 comparison studies with a clinical 3T whole-body MRI. The increased gradient performance has reliably resulted in consistently improved image quality. © 2018 International Society for Magnetic Resonance in Medicine.

  8. Computational electronics and electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, C. C.

    The Computational Electronics and Electromagnetics thrust area at Lawrence Livermore National Laboratory serves as the focal point for engineering R&D activities for developing computer-based design, analysis, and tools for theory. Key representative applications include design of particle accelerator cells and beamline components; engineering analysis and design of high-power components, photonics, and optoelectronics circuit design; EMI susceptibility analysis; and antenna synthesis. The FY-96 technology-base effort focused code development on (1) accelerator design codes; (2) 3-D massively parallel, object-oriented time-domain EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; (5) 3-D spectral-domainmore » CEM tools; and (6) enhancement of laser drilling codes. Joint efforts with the Power Conversion Technologies thrust area include development of antenna systems for compact, high-performance radar, in addition to novel, compact Marx generators. 18 refs., 25 figs., 1 tab.« less

  9. Electromagnetic radiation in a semi-compact space

    NASA Astrophysics Data System (ADS)

    Iso, Satoshi; Kitazawa, Noriaki; Yokoo, Sumito

    2018-02-01

    In this note, we investigate the electromagnetic radiation emitted from a revolving point charge in a compact space. If the point charge is circulating with an angular frequency ω0 on the (x , y)-plane at z = 0 with boundary conditions, x ∼ x + 2 πR and y ∼ y + 2 πR, it emits radiation into the z-direction of z ∈ [ - ∞ , + ∞ ]. We find that the radiation shows discontinuities as a function of ω0 R at which a new propagating mode with a different Fourier component appears. For a small radius limit ω0 R ≪ 1, all the Fourier modes except the zero mode on (x , y)-plane are killed, but an effect of squeezing the electric field totally enhances the radiation. In the large volume limit ω0 R → ∞, the energy flux of the radiation reduces to the expected Larmor formula.

  10. The GALAXIE all-optical FEL project

    NASA Astrophysics Data System (ADS)

    Rosenzweig, J. B.; Arab, E.; Andonian, G.; Cahill, A.; Fitzmorris, K.; Fukusawa, A.; Hoang, P.; Jovanovic, I.; Marcus, G.; Marinelli, A.; Murokh, A.; Musumeci, P.; Naranjo, B.; O'Shea, B.; O'Shea, F.; Ovodenko, A.; Pogorelsky, I.; Putterman, S.; Roberts, K.; Shumail, M.; Tantawi, S.; Valloni, A.; Yakimenko, V.; Xu, G.

    2012-12-01

    We describe a comprehensive project, funded under the DARPA AXiS program, to develop an all-optical table-top X-ray FEL based on dielectric acceleration and electromagnetic undulators, yielding a compact source of coherent X-rays for medical and related applications. The compactness of this source demands that high field (>GV/m) acceleration and undulation-inducing fields be employed, thus giving rise to the project's acronym: GV/m AcceLerator And X-ray Integrated Experiment (GALAXIE). There are numerous physics and technical hurdles to surmount in this ambitious scenario, and the integrated solutions include: a biharmonic photonic TW structure, 200 micron wavelength electromagnetic undulators, 5 μm laser development, ultra-high brighness magnetized/asymmetric emittance electron beam generation, and SASE FEL operation. We describe the overall design philosophy of the project, the innovative approaches to addressing the challenges presented by the design, and the significant progress towards realization of these approaches in the nine months since project initialization.

  11. Uncertainty principles for inverse source problems for electromagnetic and elastic waves

    NASA Astrophysics Data System (ADS)

    Griesmaier, Roland; Sylvester, John

    2018-06-01

    In isotropic homogeneous media, far fields of time-harmonic electromagnetic waves radiated by compactly supported volume currents, and elastic waves radiated by compactly supported body force densities can be modelled in very similar fashions. Both are projected restricted Fourier transforms of vector-valued source terms. In this work we generalize two types of uncertainty principles recently developed for far fields of scalar-valued time-harmonic waves in Griesmaier and Sylvester (2017 SIAM J. Appl. Math. 77 154–80) to this vector-valued setting. These uncertainty principles yield stability criteria and algorithms for splitting far fields radiated by collections of well-separated sources into the far fields radiated by individual source components, and for the restoration of missing data segments. We discuss proper regularization strategies for these inverse problems, provide stability estimates based on the new uncertainty principles, and comment on reconstruction schemes. A numerical example illustrates our theoretical findings.

  12. State of the art in electromagnetic modeling for the Compact Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, Arno; Kabel, Andreas; Lee, Lie-Quan

    SLAC's Advanced Computations Department (ACD) has developed the parallel 3D electromagnetic time-domain code T3P for simulations of wakefields and transients in complex accelerator structures. T3P is based on state-of-the-art Finite Element methods on unstructured grids and features unconditional stability, quadratic surface approximation and up to 6th-order vector basis functions for unprecedented simulation accuracy. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with fast turn-around times, aiding the design of the next generation of accelerator facilities. Applications include simulations of the proposed two-beam accelerator structures for the Compact Linear Collider (CLIC) - wakefieldmore » damping in the Power Extraction and Transfer Structure (PETS) and power transfer to the main beam accelerating structures are investigated.« less

  13. Characterization of printed planar electromagnetic coils using digital extrusion and roll-to-roll flexographic processes

    NASA Astrophysics Data System (ADS)

    Rickard, Scott

    Electromagnets are a crucial component in a wide range of more complex electrical devices due to their ability to turn electrical energy into mechanical energy and vice versa. The trend for electronics becoming smaller and lighter has led to increased interest in using flat, planar electromagnetic coils, which have been shown to perform better at scaled down sizes. The two-dimensional geometry of a planar electromagnetic coil yields itself to be produced by a roll-to-roll additive manufacturing process. The emergence of the printed electronics field, which uses traditional printing processes to pattern functional inks, has led to new methods of mass-producing basic electrical components. The ability to print a planar electromagnetic coil using printed electronics could rival the traditional subtractive and semi-subtractive PCB process of manufacturing. The ability to print lightweight planar electromagnetic coils on flexible substrates could lead to their inclusion into intelligent packaging applications and could have specific use in actuating devices, transformers, and electromagnetic induction applications such as energy harvesting or wireless charging. In attempts to better understand the limitations of printing planar electromagnetic coils, the effect that the design parameters of the planar coils have on the achievable magnetic field strength were researched. A comparison between prototyping methods of digital extrusion and manufacturing scale flexographic printing are presented, discussing consistency in the printed coils and their performance in generating magnetic fields. A method to predict the performance of these planar coils is introduced to allow for design within required needs of an application. Results from the research include a demonstration of a printed coil being used in a flat speaker design, working off of actuating principles.

  14. Fiber optic accelerometer

    NASA Technical Reports Server (NTRS)

    August, R. R.

    1981-01-01

    Low-cost, rugged lightweight accelerometer has been developed that converts mechanical motion into digitized optical outputs and is immune to electromagnetic and electrostatic interferences. Instrument can be placed in hostile environment, such as engine under test, and output led out through miscellany of electrical fields, high temperatures, etc., by optic fiber cables to benign environment of test panel. There, digitized optical signals can be converted to electrical signals for use in standard electrical equipment or used directly in optical devices, such as optical digital computer.

  15. Hermetic Packages For Millimeter-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Herman, Martin I.; Lee, Karen A.; Lowry, Lynn E.; Carpenter, Alain; Wamhof, Paul

    1994-01-01

    Advanced hermetic packages developed to house electronic circuits operating at frequencies from 1 to 100 gigahertz and beyond. Signals coupled into and out of packages electromagnetically. Provides circuit packages small, lightweight, rugged, and inexpensive in mass production. Packages embedded in planar microstrip and coplanar waveguide circuits, in waveguide-to-planar and planar-to-waveguide circuitry, in waveguide-to-waveguide circuitry, between radiating (antenna) elements, and between planar transmission lines and radiating elements. Other applications in automotive, communication, radar, remote sensing, and biomedical electronic systems foreseen.

  16. Electromagnetic deformable mirror for space applications

    NASA Astrophysics Data System (ADS)

    Kuiper, S.; Doelman, N.; Overtoom, T.; Nieuwkoop, E.; Russchenberg, T.; van Riel, M.; Wildschut, J.; Baeten, M.; Spruit, H.; Brinkers, S.; Human, J.

    2017-09-01

    To increase the collecting power and to improve the angular imaging resolution, space telescopes are evolving towards larger primary mirrors. The aerial density of the telescope mirrors needs to be kept low, however, to be compatible with the launch requirements. A light-weight (primary) mirror will introduce additional optical aberrations to the system. These may be caused by for instance manufacturing errors, gravity release and thermo-elastic effects. Active Optics (AO) is a key candidate technology to correct for the resultant wave front aberrations [1].

  17. Multiband rectenna for microwave applications

    NASA Astrophysics Data System (ADS)

    Okba, Abderrahim; Takacs, Alexandru; Aubert, Hervé; Charlot, Samuel; Calmon, Pierre-François

    2017-02-01

    This paper reports a multiband rectenna (rectifier + antenna) suitable for the electromagnetic energy harvesting of the spill-over loss of microwave antennas placed on board of geostationary satellites. Such rectenna is used for powering autonomous wireless sensors for satellite health monitoring. The topology of the rectenna is presented. The experimental results demonstrate that the proposed compact rectenna can harvest efficiently the incident electromagnetic energy at three different frequencies that are close to the resonant frequencies of the cross-dipoles implemented in the antenna array. xml:lang="fr"

  18. Electromagnetic effects on the light hadron spectrum

    DOE PAGES

    Basak, S.; Bazavov, A.; Bernard, C.; ...

    2015-09-28

    Calculations studying electromagnetic effects on light mesons are reported. The calculations use fully dynamical QCD, but only quenched photons, which suffices to NLO in χPT; that is, the sea quarks are electrically neutral, while the valence quarks carry charge. The non-compact formalism is used for photons. New results are obtained with lattice spacing as small as 0.045 fm and a large range of volumes. The success of chiral perturbation theory in describing these results and the implications for light quark masses are considered.

  19. Creating a Canonical Scientific and Technical Information Classification System for NCSTRL+

    NASA Technical Reports Server (NTRS)

    Tiffany, Melissa E.; Nelson, Michael L.

    1998-01-01

    The purpose of this paper is to describe the new subject classification system for the NCSTRL+ project. NCSTRL+ is a canonical digital library (DL) based on the Networked Computer Science Technical Report Library (NCSTRL). The current NCSTRL+ classification system uses the NASA Scientific and Technical (STI) subject classifications, which has a bias towards the aerospace, aeronautics, and engineering disciplines. Examination of other scientific and technical information classification systems showed similar discipline-centric weaknesses. Traditional, library-oriented classification systems represented all disciplines, but were too generalized to serve the needs of a scientific and technically oriented digital library. Lack of a suitable existing classification system led to the creation of a lightweight, balanced, general classification system that allows the mapping of more specialized classification schemes into the new framework. We have developed the following classification system to give equal weight to all STI disciplines, while being compact and lightweight.

  20. Lightweight mid-infrared methane sensor for unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Golston, Levi M.; Tao, Lei; Brosy, Caroline; Schäfer, Klaus; Wolf, Benjamin; McSpiritt, James; Buchholz, Bernhard; Caulton, Dana R.; Pan, Da; Zondlo, Mark A.; Yoel, David; Kunstmann, Harald; McGregor, Marty

    2017-06-01

    The design and field performance of a compact diode laser-based instrument for measuring methane on unmanned aerial systems (UAS) is described. The system is based on open-path, wavelength modulation spectroscopy with a 3.27 µm GaSb laser. We design two versions of the sensor for a long-endurance fixed wing UAS and a rotary wing hexacopter, with instrument masses of 4.6 and 1.6 kg, respectively. The long-endurance platform was used to measure vertical profiles of methane up to 600 m in altitude and showed repeatability of 13 ppbv between multiple profiles. Additionally, the hexacopter system was used to evaluate the evolution of methane in the nocturnal boundary layer during the ScaleX field campaign in Germany, where measured data is consistent with supporting ground-based methane and meteorological measurements. Testing results on both platforms demonstrated our lightweight methane sensor had an in-flight precision of 5-10 ppbv Hz-1/2.

  1. Aerocapture Inflatable Decelerator for Planetary Entry

    NASA Technical Reports Server (NTRS)

    Reza, Sajjad; Hund, Richard; Kustas, Frank; Willcockson, William; Songer, Jarvis; Brown, Glen

    2007-01-01

    Forward Attached Inflatable Decelerators, more commonly known as inflatable aeroshells, provide an effective, cost efficient means of decelerating spacecrafts by using atmospheric drag for aerocapture or planetary entry instead of conventional liquid propulsion deceleration systems. Entry into planetary atmospheres results in significant heating and aerodynamic pressures which stress aeroshell systems to their useful limits. Incorporation of lightweight inflatable decelerator surfaces with increased surface-area footprints provides the opportunity to reduce heat flux and induced temperatures, while increasing the payload mass fraction. Furthermore, inflatable aeroshell decelerators provide the needed deceleration at considerably higher altitudes and Mach numbers when compared with conventional rigid aeroshell entry systems. Inflatable aeroshells also provide for stowage in a compact space, with subsequent deployment of a large-area, lightweight heatshield to survive entry heating. Use of a deployable heatshield decelerator enables an increase in the spacecraft payload mass fraction and may eliminate the need for a spacecraft backshell.

  2. Laser Transmitter Aims At Laser Beacon

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Lesh, James R.

    1993-01-01

    Transmitter part of developmental optical communication system. Compact, lightweight, partially-self-aiming laser transmitter built to verify some capabilities of developmental free-space optical communication system. Design capable of providing 0.5 Mbps data return over range equal to Moon-Earth distance. Breadboard of transmitting terminal constructed and tested in laboratory. Prototype transmitter includes receiving circuitry that keeps it aimed at beacon, once brought into initial alignment within about 1.7 degrees of line of sight to beacon.

  3. Low-temperature Spin Spray Deposited Ferrite/piezoelectric Thin Film Magnetoelectric Heterostructures with Strong Magnetoelectric Coupling

    DTIC Science & Technology

    2014-01-08

    more energy efficient, lightweight, compact, and less noisy. Studies on ME heterostructures are mostly based on complex oxide piezoelectric ceramic or...except for a recent demonstration of a spin spray deposited ZnO films [17, 18]. ZnO is a typical piezoelectric material , which makes it a good...erties which makes it applicable in a wide variety of electron, optoelectronic, spintronics and nanodevices [17, 18]. The piezoelectric properties of

  4. Toward the Realization of a Compact Chemical Sensor Platform using Quantum Cascade Lasers

    DTIC Science & Technology

    2015-09-01

    bromide (KBr) beamsplitter and a mercury cadmium telluride ( MCT )-A (narrow band – 650 cm-1 cutoff) detector . Each spectrum was acquired at a resolution...focuses on increasing speed, sensitivity, and selectivity, while reducing size and cost. Although the current state-of-the-art vapor detector (Joint...Chemical Agent Detector (JCAD)) is lightweight, handheld, and easily attaches to a belt, it still provides added bulk to a soldier on foot patrol. Both

  5. Microencapsulated Phase-Change Materials For Storage Of Heat

    NASA Technical Reports Server (NTRS)

    Colvin, David P.

    1989-01-01

    Report describes research on engineering issues related to storage and transport of heat in slurries containing phase-change materials in microscopic capsules. Specific goal of project to develop lightweight, compact, heat-management systems used safely in inhabited areas of spacecraft. Further development of obvious potential of technology expected to lead to commercialization and use in aircraft, electronic equipment, machinery, industrial processes, and other sytems in which requirements for management of heat compete with severe restrictions on weight or volume.

  6. Development of a pulsed UV laser system for laser-desorption mass spectrometry on Mars

    NASA Astrophysics Data System (ADS)

    Kolleck, C.; Büttner, A.; Ernst, M.; Hülsenbusch, T.; Lang, T.; Marwah, R.; Mebben, S.; Priehs, M.; Kracht, D.; Neumann, J.

    2017-11-01

    A near-flight prototype of a pulsed UV laser has been developed for the Mars Organic Molecule Analyzer (MOMA) of the ExoMars mission. The laser head is based on a Nd:YAG oscillator with subsequent frequency quadrupling and emits nanosecond pulses with an energy of > 300 μJ at a wavelength of 266 nm. The design is compact and lightweight. Tests in relevant environment regarding temperature, vibration, and radiation have been performed.

  7. Gravitational Waves and Time Domain Astronomy

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Nissanke, Samaya; Williams, Roy

    2012-01-01

    The gravitational wave window onto the universe will open in roughly five years, when Advanced LIGO and Virgo achieve the first detections of high frequency gravitational waves, most likely coming from compact binary mergers. Electromagnetic follow-up of these triggers, using radio, optical, and high energy telescopes, promises exciting opportunities in multi-messenger time domain astronomy. In the decade, space-based observations of low frequency gravitational waves from massive black hole mergers, and their electromagnetic counterparts, will open up further vistas for discovery. This two-part workshop featured brief presentations and stimulating discussions on the challenges and opportunities presented by gravitational wave astronomy. Highlights from the workshop, with the emphasis on strategies for electromagnetic follow-up, are presented in this report.

  8. High-power lightweight external-cavity quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Day, Timothy; Takeuchi, Eric B.; Weida, Miles; Arnone, David; Pushkarsky, Michael; Boyden, David; Caffey, David

    2009-05-01

    Commercially available quantum cascade gain media has been integrated with advanced coating and die attach technologies, mid-IR micro-optics and telecom-style assembly and packaging to yield cutting edge performance. When combined into Daylight's external-cavity quantum cascade laser (ECqcL) platform, multi-Watt output power has been obtained. Daylight will describe their most recent results obtained from this platform, including high cw power from compact hermetically sealed packages and narrow spectral linewidth devices. Fiber-coupling and direct amplitude modulation from such multi-Watt lasers will also be described. In addition, Daylight will present the most recent results from their compact, portable, battery-operated "thermal laser pointers" that are being used for illumination and aiming applications. When combined with thermal imaging technology, such devices provide significant benefits in contrast and identification.

  9. Compact Micromachined Infrared Bandpass Filters for Planetary Spectroscopy

    NASA Technical Reports Server (NTRS)

    Merrell, Willie C., II; Aslam, Shahid; Brown, Ari D.; Chervenak, James A.; Huang, Wei-Chung; Quijada, Manuel; Wollack, Edward

    2011-01-01

    The future needs of space based observational planetary and astronomy missions include low mass and small volume radiometric instruments that can operate in high radiation and low temperature environments. Here we focus on a central spectroscopic component, the bandpass filter. We model the bandpass response of the filters to target the wavelength of the resonance peaks at 20, 40, and 60 micrometers and report good agreement between the modeled and measured response. We present a technique of using common micromachining processes for semiconductor fabrication to make compact, free standing resonant metal mesh filter arrays with silicon support frames. The process can accommodate multiple detector array architectures and the silicon frame provides lightweight mechanical support with low form factor. We also present a conceptual hybridization of the filters with a detector array.

  10. [Development of a portable ambulatory ECG monitor based on embedded microprocessor unit].

    PubMed

    Wang, Da-xiong; Wang, Guo-jun

    2005-06-01

    To develop a new kind of portable ambulatory ECG monitor. The hardware and software were designed based on RCA-CDP1802. New methods of ECG data compression and feature extraction of QRS complexes were applied to software design. A model for automatic arrhythmia analysis was established for real-time ambulatory ECG Data analysis. Compact, low power consumption and low cost were emphasized in the hardware design. This compact and light-weight monitor with low power consumption and high intelligence was capable of real-time monitoring arrhythmia for more than 48 h. More than ten types of arrhythmia could be detected, only the compressed abnormal ECG data was recorded and could be transmitted to the host if required. The monitor meets the design requirements and can be used for ambulatory ECG monitoring.

  11. Power electromagnetic strike machine for engineering-geological surveys

    NASA Astrophysics Data System (ADS)

    Usanov, K. M.; Volgin, A. V.; Chetverikov, E. A.; Kargin, V. A.; Moiseev, A. P.; Ivanova, Z. I.

    2017-10-01

    When implementing the processes of dynamic sensing of soils and pulsed nonexplosive seismic exploration, the most common and effective method is the strike one, which is provided by a variety of structure and parameters of pneumatic, hydraulic, electrical machines of strike action. The creation of compact portable strike machines which do not require transportation and use of mechanized means is important. A promising direction in the development of strike machines is the use of pulsed electromagnetic actuator characterized by relatively low energy consumption, relatively high specific performance and efficiency, and providing direct conversion of electrical energy into mechanical work of strike mass with linear movement trajectory. The results of these studies allowed establishing on the basis of linear electromagnetic motors the electromagnetic pulse machines with portable performance for dynamic sensing of soils and land seismic pulse of small depths.

  12. Not Your Ordinary GEM

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Through Small Business Innovation Research (SBIR) funding from NASA's Stennis Space Center, Geophex devised a new design for broadband electromagnetic sensors. Geophex developed a patented sensing technology, capable not only of coastal monitoring, but also a variety of other functions, including environmental pollution characterization, groundwater contamination detection, archaeological study, and mineral detection. The new technology is offered in several of the company's products the GEM-2, GEM-2A, and the GEM-3. The Geophex products consist of two primary electromagnetic coils, which are stimulated by alternating currents that generate a magnetic field in the object targeted for investigation. GEM-2 is a handheld, lightweight, programmable, digital device. GEM-2A is an airborne version of the sensor. Suspended from a helicopter, the GEM-2A is used to search for mineral deposits and to survey large tracts of land. The GEM-3 is capable of detecting buried landmines and other active munitions. GEM-3 identifies landmines by their brand names. Because each landmine has its own unique electromagnetic response to the broad frequency band emitted by the GEM-3, bomb identification and disposal strategies are made easier.

  13. Structure and Electromagnetic Properties of Cellular Glassy Carbon Monoliths with Controlled Cell Size

    PubMed Central

    Szczurek, Andrzej; Plyushch, Artyom; Macutkevic, Jan

    2018-01-01

    Electromagnetic shielding is a topic of high importance for which lightweight materials are highly sought. Porous carbon materials can meet this goal, but their structure needs to be controlled as much as possible. In this work, cellular carbon monoliths of well-defined porosity and cell size were prepared by a template method, using sacrificial paraffin spheres as the porogen and resorcinol-formaldehyde (RF) resin as the carbon precursor. Physicochemical studies were carried out for investigating the conversion of RF resin into carbon, and the final cellular monoliths were investigated in terms of elemental composition, total porosity, surface area, micropore volumes, and micro/macropore size distributions. Electrical and electromagnetic (EM) properties were investigated in the static regime and in the Ka-band, respectively. Due to the phenolic nature of the resin, the resultant carbon was glasslike, and the special preparation protocol that was used led to cellular materials whose cell size increased with density. The materials were shown to be relevant for EM shielding, and the relationships between those properties and the density/cell size of those cellular monoliths were elucidated. PMID:29723961

  14. Feasibility study of a synthesis procedure for array feeds to improve radiation performance of large distorted reflector antennas

    NASA Technical Reports Server (NTRS)

    Stutzman, W. L.; Smith, W. T.

    1990-01-01

    Surface errors on parabolic reflector antennas degrade the overall performance of the antenna. Space antenna structures are difficult to build, deploy and control. They must maintain a nearly perfect parabolic shape in a harsh environment and must be lightweight. Electromagnetic compensation for surface errors in large space reflector antennas can be used to supplement mechanical compensation. Electromagnetic compensation for surface errors in large space reflector antennas has been the topic of several research studies. Most of these studies try to correct the focal plane fields of the reflector near the focal point and, hence, compensate for the distortions over the whole radiation pattern. An alternative approach to electromagnetic compensation is presented. The proposed technique uses pattern synthesis to compensate for the surface errors. The pattern synthesis approach uses a localized algorithm in which pattern corrections are directed specifically towards portions of the pattern requiring improvement. The pattern synthesis technique does not require knowledge of the reflector surface. It uses radiation pattern data to perform the compensation.

  15. A 16 MJ compact pulsed power system for electromagnetic launch

    NASA Astrophysics Data System (ADS)

    Dai, Ling; Zhang, Qin; Zhong, Heqing; Lin, Fuchang; Li, Hua; Wang, Yan; Su, Cheng; Huang, Qinghua; Chen, Xu

    2015-07-01

    This paper has established a compact pulsed power system (PPS) of 16 MJ for electromagnetic rail gun. The PPS consists of pulsed forming network (PFN), chargers, monitoring system, and current junction. The PFN is composed of 156 pulse forming units (PFUs). Every PFU can be triggered simultaneously or sequentially in order to obtain different total current waveforms. The whole device except general control table is divided into two frameworks with size of 7.5 m × 2.2 m × 2.3 m. It is important to estimate the discharge current of PFU accurately for the design of the whole electromagnetic launch system. In this paper, the on-state characteristics of pulse thyristor have been researched to improve the estimation accuracy. The on-state characteristics of pulse thyristor are expressed as a logarithmic function based on experimental data. The circuit current waveform of the single PFU agrees with the simulating one. On the other hand, the coaxial discharge cable is a quick wear part in PFU because the discharge current will be up to dozens of kA even hundreds of kA. In this article, the electromagnetic field existing in the coaxial cable is calculated by finite element method. On basis of the calculation results, the structure of cable is optimized in order to improve the limit current value of the cable. At the end of the paper, the experiment current wave of the PPS with the load of rail gun is provided.

  16. A 16 MJ compact pulsed power system for electromagnetic launch.

    PubMed

    Dai, Ling; Zhang, Qin; Zhong, Heqing; Lin, Fuchang; Li, Hua; Wang, Yan; Su, Cheng; Huang, Qinghua; Chen, Xu

    2015-07-01

    This paper has established a compact pulsed power system (PPS) of 16 MJ for electromagnetic rail gun. The PPS consists of pulsed forming network (PFN), chargers, monitoring system, and current junction. The PFN is composed of 156 pulse forming units (PFUs). Every PFU can be triggered simultaneously or sequentially in order to obtain different total current waveforms. The whole device except general control table is divided into two frameworks with size of 7.5 m × 2.2 m × 2.3 m. It is important to estimate the discharge current of PFU accurately for the design of the whole electromagnetic launch system. In this paper, the on-state characteristics of pulse thyristor have been researched to improve the estimation accuracy. The on-state characteristics of pulse thyristor are expressed as a logarithmic function based on experimental data. The circuit current waveform of the single PFU agrees with the simulating one. On the other hand, the coaxial discharge cable is a quick wear part in PFU because the discharge current will be up to dozens of kA even hundreds of kA. In this article, the electromagnetic field existing in the coaxial cable is calculated by finite element method. On basis of the calculation results, the structure of cable is optimized in order to improve the limit current value of the cable. At the end of the paper, the experiment current wave of the PPS with the load of rail gun is provided.

  17. Design, prototyping, and testing of a compact superconducting double quarter wave crab cavity

    NASA Astrophysics Data System (ADS)

    Xiao, Binping; Alberty, Luis; Belomestnykh, Sergey; Ben-Zvi, Ilan; Calaga, Rama; Cullen, Chris; Capatina, Ofelia; Hammons, Lee; Li, Zenghai; Marques, Carlos; Skaritka, John; Verdu-Andres, Silvia; Wu, Qiong

    2015-04-01

    We proposed a novel design for a compact superconducting crab cavity with a double quarter wave (DQWCC) shape. After fabrication and surface treatments, this niobium proof-of-principle cavity was tested cryogenically in a vertical cryostat. The cavity is extremely compact yet has a low frequency of 400 MHz, an essential property for service in the Large Hadron Collider luminosity upgrade. The cavity's electromagnetic properties are well suited for this demanding task. The demonstrated deflecting voltage of 4.6 MV is well above the required 3.34 MV for a crab cavity in the future High Luminosity LHC. In this paper, we present the design, prototyping, and results from testing the DQWCC.

  18. Relativistically strong electromagnetic radiation in a plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulanov, S. V., E-mail: svbulanov@gmail.com, E-mail: bulanov.sergei@jaea.go.jp; Esirkepov, T. Zh.; Kando, M.

    Physical processes in a plasma under the action of relativistically strong electromagnetic waves generated by high-power lasers have been briefly reviewed. These processes are of interest in view of the development of new methods for acceleration of charged particles, creation of sources of bright hard electromagnetic radiation, and investigation of macroscopic quantum-electrodynamical processes. Attention is focused on nonlinear waves in a laser plasma for the creation of compact electron accelerators. The acceleration of plasma bunches by the radiation pressure of light is the most efficient regime of ion acceleration. Coherent hard electromagnetic radiation in the relativistic plasma is generated inmore » the form of higher harmonics and/or electromagnetic pulses, which are compressed and intensified after reflection from relativistic mirrors created by nonlinear waves. In the limit of extremely strong electromagnetic waves, radiation friction, which accompanies the conversion of radiation from the optical range to the gamma range, fundamentally changes the behavior of the plasma. This process is accompanied by the production of electron–positron pairs, which is described within quantum electrodynamics theory.« less

  19. Packing for the journey. Character traits for transcultural care.

    PubMed

    Grypma, S; Taylor, S

    1999-01-01

    Eight-four pounds," the seaplane attendant announced approvingly. As two nursing students and an instructor, we were on our way to a remote First Nations village in northern Canada as part of a transcultural clinical course at a Canadian Christian university. Our groceries for three weeks were boxed up and weighed to ensure that the carrying capacity of the seaplane was not exceeded. We had packed carefully, giving priority to items that were nutritious, lightweight and compact. We hoped we had the essentials. We felt prepared.

  20. Pocket radiation dosimeter: dosimeter charger assembly

    DOEpatents

    Manning, F.W.

    1982-03-17

    This invention is a novel pocket-type radiation dosimeter comprising an electrometric radiation dosimeter and a charging circuit therefor. The instrument is especially designed to be amenable to mass production, to have a long shelf life, and to be compact, lightweight, and usable by the layman. The dosimeter proper may be of conventional design. The charging circuit includes a shake-type electrostatic generator, a voltage doubler for integrating generator output voltages of one polarity, and a switch operated by an external permanent magnet.

  1. A 10-MJ compact homopolar generator

    NASA Astrophysics Data System (ADS)

    McKee, B. D.; McNab, I. R.

    1986-11-01

    The design and initial testing of a lightweight (5 kJ/kg) iron-cored homopolar generator is described. The machine employs an external power supply to motor up to operating speed (12,500 rpm) at which point 10 MJ of energy is stored in the steel rotor. Copper-graphite brushes in the stator, actuated by pneumatic actuators, make contact with the rotor surface and permit the inertial energy to be transferred to a load circuit at current levels up to 1.5 MA and voltages up to 60 V.

  2. Pocket radiation dosimeter--dosimeter charger assembly

    DOEpatents

    Manning, Frank W.

    1984-01-01

    This invention is a novel pocket-type radiation dosimeter comprising an electrometric radiation dosimeter and a charging circuit therefor. The instrument is especially designed to be amenable to mass production, to have a long shelf life, and to be compact, lightweight, and usable by the layman. The dosimeter proper may be of conventional design. The charging circuit includes a shake-type electrostatic generator, a voltage doubler for integrating generator output voltages of one polarity, and a switch operated by an external permanent magnet.

  3. Emerging needs for mobile nuclear powerplants

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1972-01-01

    Incentives for broadening the present role of civilian nuclear power to include mobile nuclear power plants that are compact, lightweight, and safe are examined. Specifically discussed is the growing importance of: (1) a new international cargo transportation capability, and (2) the capability for development of resources in previously remote regions of the earth including the oceans and the Arctic. This report surveys present and potential systems (vehicles, remote stations, and machines) that would both provide these capabilities and require enough power to justify using mobile nuclear reactor power plants.

  4. A low cost hermetic packaging for high power industry fiber lasers

    NASA Astrophysics Data System (ADS)

    Ding, Jianwu; Liu, Jinhui

    2018-02-01

    For water-cooled fiber lasers, humidity and the resulting water-condensation has always been the biggest threat for laser reliability or power degradation, especially when used in harsh industrial environment. Here we present an innovative fiber laser packaging method featuring cast aluminum frame and an almost screw-free exterior packaging. A CW fiber laser with 1.5KW laser output power in such a compact and light-weight package has been demonstrated with an excellent beam quality and power stability for industry applications.

  5. Compact antenna arrays with wide bandwidth and low sidelobe levels

    DOEpatents

    Strassner, II, Bernd H.

    2014-09-09

    Highly efficient, low cost, easily manufactured SAR antenna arrays with lightweight low profiles, large instantaneous bandwidths and low SLL are disclosed. The array topology provides all necessary circuitry within the available antenna aperture space and between the layers of material that comprise the aperture. Bandwidths of 15.2 GHz to 18.2 GHz, with 30 dB SLLs azimuthally and elevationally, and radiation efficiencies above 40% may be achieved. Operation over much larger bandwidths is possible as well.

  6. Design of a miniature solid state NIR spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, Hanyi; Wang, Xiaolu L.; Soos, Jolanta I.; Crisp, Joy A.

    1995-06-01

    For aerospace applications a miniature, solid-state near infrared (NIR) spectrometer based on an acousto-optic tunable filter (AOTF) has been developed and built at Brimrose Corp. of America. In this spectrometer a light emitting diode (LED) array as light source, a set of optical fibers as the lightwave transmission route, and a miniature AOTF as a tunable filter were adopted. This approach makes the spectrometer very compact, light-weight, rugged and reliable, with low operating power and long lifetime.

  7. Cryogenic scanning tunneling microscope with a magnetic coarse approach

    NASA Astrophysics Data System (ADS)

    Davydov, D. N.; Deltour, R.; Horii, N.; Timofeev, V. A.; Grokholski, A. S.

    1993-11-01

    A compact, rigid, and reliable cryogenic scanning tunneling microscope (CSTM) with a vertical electromagnetic coarse approach system was developed. This device can be used for topographic and local tunneling spectroscopy studies at liquid nitrogen and helium temperatures. Minimal step sizes of 28 nm for the electromagnetic translation device were achieved. The additional possibility of a coarse approach operation in the inertial slip-stick mode, without electromagnets, was successfully tested, making this STM compatible with external magnetic fields. A simple technique for characterizing the STM rigidity has been developed. Preliminary data, taken with this instrument are presented, demonstrating the achievement, at liquid helium temperature, of atomic resolution for topographic studies, and also the possibility of measuring simultaneously superconducting energy gap spectra.

  8. Multifunctional Stiff Carbon Foam Derived from Bread.

    PubMed

    Yuan, Ye; Ding, Yujie; Wang, Chunhui; Xu, Fan; Lin, Zaishan; Qin, Yuyang; Li, Ying; Yang, Minglong; He, Xiaodong; Peng, Qingyu; Li, Yibin

    2016-07-06

    The creation of stiff yet multifunctional three-dimensional porous carbon architecture at very low cost is still challenging. In this work, lightweight and stiff carbon foam (CF) with adjustable pore structure was prepared by using flour as the basic element via a simple fermentation and carbonization process. The compressive strength of CF exhibits a high value of 3.6 MPa whereas its density is 0.29 g/cm(3) (compressive modulus can be 121 MPa). The electromagnetic interference (EMI) shielding effectiveness measurements (specific EMI shielding effectiveness can be 78.18 dB·cm(3)·g(-1)) indicate that CF can be used as lightweight, effective shielding material. Unlike ordinary foam structure materials, the low thermal conductivity (lowest is 0.06 W/m·K) with high resistance to fire makes CF a good candidate for commercial thermal insulation material. These results demonstrate a promising method to fabricate an economical, robust carbon material for applications in industry as well as topics regarding environmental protection and improvement of energy efficiency.

  9. Nano ZnO enhanced 3D porous reduced graphene oxide (RGO) for light-weight superior electromagnetic interference shielding

    NASA Astrophysics Data System (ADS)

    Dai, Xiaoqing

    2017-02-01

    Nano ZnO enhanced 3D porous reduced graphene oxide (RGO) with superior electromagnetic interferece (EMI) shielding efficiency (SE) was fabricated through a UV enhanced hydrothermal process. In this study, a composite with 10 wt% of 3D-RGO/ZnO was tested in a broadband frequency range from 2 to 18 GHz. Under the whole test conditions, the ratio of SEA/SET is higher than 50% and the maximum value can reach to 94%, indicating the shielding mechanism mainly attributes to absorption. The EMI SE showed that the thinnest thicknesses to shield different frequency range are 0.7 mm for 10 dB, 1.6 mm for 20 dB and 3.7 mm for 30 dB, which suggests 3D-RGO/ZnO could meet the requirement of new generate EMI shielding material.

  10. Origami-Based Reconfigurable Metamaterials for Tunable Chirality.

    PubMed

    Wang, Zuojia; Jing, Liqiao; Yao, Kan; Yang, Yihao; Zheng, Bin; Soukoulis, Costas M; Chen, Hongsheng; Liu, Yongmin

    2017-07-01

    Origami is the art of folding two-dimensional (2D) materials, such as a flat sheet of paper, into complex and elaborate three-dimensional (3D) objects. This study reports origami-based metamaterials whose electromagnetic responses are dynamically controllable via switching the folding state of Miura-ori split-ring resonators. The deformation of the Miura-ori unit along the third dimension induces net electric and magnetic dipoles of split-ring resonators parallel or anti-parallel to each other, leading to the strong chiral responses. Circular dichroism as high as 0.6 is experimentally observed while the chirality switching is realized by controlling the deformation direction and kinematics. In addition, the relative density of the origami metamaterials can be dramatically reduced to only 2% of that of the unfolded structure. These results open a new avenue toward lightweight, reconfigurable, and deployable metadevices with simultaneously customized electromagnetic and mechanical properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Terahertz technology and applications

    NASA Technical Reports Server (NTRS)

    Siegel, P.

    2002-01-01

    Despite great scientific interest since at least the 1920's, the THz frequency range remains on e of the least tapped regions of the electromagnetic spectrum. Sandwiched between traditional microwave and optical technologies where there is a limited atmospheric propagation path, little commercial emphasis has been placed on THz systems. This has, perhaps fortunately, preserved some unique science and applications for tomorrow's technologies. For over 25 years the sole niche for THz technology has been in the high resolution spectroscopy and remote sensing areas where heterodyne and Fourier transform techniques have allowed astronomers, chemists, Earth, planetary and space scientists to measure, catalog and map thermal emission lines for a wide variety of lightweight molecules. As it turns out, no where else in the electromagnetic spectrum do we receive so much information about these chemical species. In fact, the universe is bathed in THz energy, most of it going unnoticed and undetected.

  12. The influence of partial replacement of hemp shives by expanded perlite on physical properties of hemp-lime composite

    NASA Astrophysics Data System (ADS)

    Brzyski, Przemysław; Widomski, Marcin

    2017-07-01

    The use of waste plants in building materials production is consistent with the principles of sustainable development, including waste management, CO2 balance, biodegradability of the material e.g. after building demolition. The porous structure of plant materials determines their usability as the insulation materials. An example of plant applicable in the construction industry is the industrial hemp. The shives are produced from the wooden core of the hemp stem as lightweight insulating filler in the composite based on lime binder. The discussed hemp-lime composite, due to the presence of lightweight, porous organic aggregates exhibits satisfactory thermal insulation properties and is used as filling and insulation of walls (as well as roofs and floors) in buildings of the wooden frame construction. The irregular shape of shives and their low density causes nonhomogenous compaction of composite and the formation of voids between the randomly arranged shives. In this paper the series of hemp-lime composites were tested. Apart from hemp shives, an additional aggregate - expanded perlite was used as a fine, lightweight, thermal insulating filler. Application of the additional aggregate was aimed to fill the voids between hemp shives and to investigate its influence on the physical properties of composite: apparent density, total porosity, water absorption and thermal conductivity.

  13. A novel lightweight Fizeau infrared interferometric imaging system

    NASA Astrophysics Data System (ADS)

    Hope, Douglas A.; Hart, Michael; Warner, Steve; Durney, Oli; Romeo, Robert

    2016-05-01

    Aperture synthesis imaging techniques using an interferometer provide a means to achieve imagery with spatial resolution equivalent to a conventional filled aperture telescope at a significantly reduced size, weight and cost, an important implication for air- and space-borne persistent observing platforms. These concepts have been realized in SIRII (Space-based IR-imaging interferometer), a new light-weight, compact SWIR and MWIR imaging interferometer designed for space-based surveillance. The sensor design is configured as a six-element Fizeau interferometer; it is scalable, light-weight, and uses structural components and main optics made of carbon fiber replicated polymer (CFRP) that are easy to fabricate and inexpensive. A three-element prototype of the SIRII imager has been constructed. The optics, detectors, and interferometric signal processing principles draw on experience developed in ground-based astronomical applications designed to yield the highest sensitivity and resolution with cost-effective optical solutions. SIRII is being designed for technical intelligence from geo-stationary orbit. It has an instantaneous 6 x 6 mrad FOV and the ability to rapidly scan a 6x6 deg FOV, with a minimal SNR. The interferometric design can be scaled to larger equivalent filled aperture, while minimizing weight and costs when compared to a filled aperture telescope with equivalent resolution. This scalability in SIRII allows it address a range of IR-imaging scenarios.

  14. A Multi-Environment Thermal Control System With Freeze-Tolerant Radiator

    NASA Technical Reports Server (NTRS)

    Chen, Weibo; Fogg, David; Mancini, Nick; Steele, John; Quinn, Gregory; Bue, Grant; Littibridge, Sean

    2013-01-01

    Future space exploration missions require advanced thermal control systems (TCS) to dissipate heat from spacecraft, rovers, or habitats operating in environments that can vary from extremely hot to extremely cold. A lightweight, reliable TCS is being developed to effectively control cabin and equipment temperatures under widely varying heat loads and ambient temperatures. The system uses freeze-tolerant radiators, which eliminate the need for a secondary circulation loop or heat pipe systems. Each radiator has a self-regulating variable thermal conductance to its ambient environment. The TCS uses a nontoxic, water-based working fluid that is compatible with existing lightweight aluminum heat exchangers. The TCS is lightweight, compact, and requires very little pumping power. The critical characteristics of the core enabling technologies were demonstrated. Functional testing with condenser tubes demonstrated the key operating characteristics required for a reliable, freeze-tolerant TCS, namely (1) self-regulating thermal conductance with short transient responses to varying thermal loads, (2) repeatable performance through freeze-thaw cycles, and (3) fast start-up from a fully frozen state. Preliminary coolant tests demonstrated that the corrosion inhibitor in the water-based coolant can reduce the corrosion rate on aluminum by an order of magnitude. Performance comparison with state-of-the-art designs shows significant mass and power saving benefits of this technology.

  15. Roller Locking Brake

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1993-01-01

    Roller locking brake is normally braking rotary mechanism allowing free rotation when electromagnet in mechanism energized. Well suited to robots and other machinery which automatic braking upon removal of electrical power required. More compact and reliable. Requires little electrical power to maintain free rotation and exhibits minimal buildup of heat.

  16. Current Physics Research. Part II.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1980-01-01

    Discussed are two current physics research areas. Solar cell efficiencies are discussed relating to present and future conversion efficiencies. Topics discussed in Astrophysics include the observation of astronomical bodies at different wavelengths, in terms of electromagnetic spectrum, tools of astronomy, compact stars, pulsars X-ray binaries,…

  17. The GALAXIE all-optical FEL project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenzweig, J. B.; Arab, E.; Andonian, G.

    2012-12-21

    We describe a comprehensive project, funded under the DARPA AXiS program, to develop an all-optical table-top X-ray FEL based on dielectric acceleration and electromagnetic undulators, yielding a compact source of coherent X-rays for medical and related applications. The compactness of this source demands that high field (>GV/m) acceleration and undulation-inducing fields be employed, thus giving rise to the project's acronym: GV/m AcceLerator And X-ray Integrated Experiment (GALAXIE). There are numerous physics and technical hurdles to surmount in this ambitious scenario, and the integrated solutions include: a biharmonic photonic TW structure, 200 micron wavelength electromagnetic undulators, 5 {mu}m laser development, ultra-highmore » brightness magnetized/asymmetric emittance electron beam generation, and SASE FEL operation. We describe the overall design philosophy of the project, the innovative approaches to addressing the challenges presented by the design, and the significant progress towards realization of these approaches in the nine months since project initialization.« less

  18. High performance infrared fast cooled detectors for missile applications

    NASA Astrophysics Data System (ADS)

    Reibel, Yann; Espuno, Laurent; Taalat, Rachid; Sultan, Ahmad; Cassaigne, Pierre; Matallah, Noura

    2016-05-01

    SOFRADIR was selected in the late 90's for the production of 320×256 MW detectors for major European missile programs. This experience has established our company as a key player in the field of missile programs. SOFRADIR has since developed a vast portfolio of lightweight, compact and high performance JT-based solutions for missiles. ALTAN is a 384x288 Mid Wave infrared detector with 15μm pixel pitch, and is offered in a miniature ultra-fast Joule- Thomson cooled Dewar. Since Sofradir offers both Indium Antimonide (InSb) and Mercury Cadmium Telluride technologies (MCT), we are able to deliver the detectors best suited to customers' needs. In this paper we are discussing different figures of merit for very compact and innovative JT-cooled detectors and are highlighting the challenges for infrared detection technologies.

  19. A prototype fully polarimetric 160-GHz bistatic ISAR compact radar range

    NASA Astrophysics Data System (ADS)

    Beaudoin, C. J.; Horgan, T.; DeMartinis, G.; Coulombe, M. J.; Goyette, T.; Gatesman, A. J.; Nixon, William E.

    2017-05-01

    We present a prototype bistatic compact radar range operating at 160 GHz and capable of collecting fullypolarimetric radar cross-section and electromagnetic scattering measurements in a true far-field facility. The bistatic ISAR system incorporates two 90-inch focal length, 27-inch-diameter diamond-turned mirrors fed by 160 GHz transmit and receive horns to establish the compact range. The prototype radar range with its modest sized quiet zone serves as a precursor to a fully developed compact radar range incorporating a larger quiet zone capable of collecting X-band bistatic RCS data and 3D imagery using 1/16th scale objects. The millimeter-wave transmitter provides 20 GHz of swept bandwidth in the single linear (Horizontal/Vertical) polarization while the millimeter-wave receiver, that is sensitive to linear Horizontal and Vertical polarization, possesses a 7 dB noise figure. We present the design of the compact radar range and report on test results collected to validate the system's performance.

  20. Design, prototyping, and testing of a compact superconducting double quarter wave crab cavity

    DOE PAGES

    Xiao, Binping; Alberty, Luis; Belomestnykh, Sergey; ...

    2015-04-01

    We proposed a novel design for a compact superconducting crab cavity with a double quarter wave (DQWCC) shape. After fabrication and surface treatments, this niobium proof-of-principle cavity was tested cryogenically in a vertical cryostat. The cavity is extremely compact yet has a low frequency of 400 MHz, an essential property for service in the Large Hadron Collider luminosity upgrade. The cavity’s electromagnetic properties are well suited for this demanding task. The demonstrated deflecting voltage of 4.6 MV is well above the required 3.34 MV for a crab cavity in the future High Luminosity LHC. In this paper, we present themore » design, prototyping, and results from testing the DQWCC.« less

  1. Image overlay solution based on threshold detection for a compact near infrared fluorescence goggle system

    NASA Astrophysics Data System (ADS)

    Gao, Shengkui; Mondal, Suman B.; Zhu, Nan; Liang, RongGuang; Achilefu, Samuel; Gruev, Viktor

    2015-01-01

    Near infrared (NIR) fluorescence imaging has shown great potential for various clinical procedures, including intraoperative image guidance. However, existing NIR fluorescence imaging systems either have a large footprint or are handheld, which limits their usage in intraoperative applications. We present a compact NIR fluorescence imaging system (NFIS) with an image overlay solution based on threshold detection, which can be easily integrated with a goggle display system for intraoperative guidance. The proposed NFIS achieves compactness, light weight, hands-free operation, high-precision superimposition, and a real-time frame rate. In addition, the miniature and ultra-lightweight light-emitting diode tracking pod is easy to incorporate with NIR fluorescence imaging. Based on experimental evaluation, the proposed NFIS solution has a lower detection limit of 25 nM of indocyanine green at 27 fps and realizes a highly precise image overlay of NIR and visible images of mice in vivo. The overlay error is limited within a 2-mm scale at a 65-cm working distance, which is highly reliable for clinical study and surgical use.

  2. Design of a Compact Actuation and Control System for Flexible Medical Robots.

    PubMed

    Morimoto, Tania K; Hawkes, Elliot Wright; Okamura, Allison M

    2017-07-01

    Flexible medical robots can improve surgical procedures by decreasing invasiveness and increasing accessibility within the body. Using preoperative images, these robots can be designed to optimize a procedure for a particular patient. To minimize invasiveness and maximize biocompatibility, the actuation units of flexible medical robots should be placed fully outside the patient's body. In this letter, we present a novel, compact, lightweight, modular actuation, and control system for driving a class of these flexible robots, known as concentric tube robots. A key feature of the design is the use of three-dimensional printed waffle gears to enable compact control of two degrees of freedom within each module. We measure the precision and accuracy of a single actuation module and demonstrate the ability of an integrated set of three actuation modules to control six degrees of freedom. The integrated system drives a three-tube concentric tube robot to reach a final tip position that is on average less than 2 mm from a given target. In addition, we show a handheld manifestation of the device and present its potential applications.

  3. Multifunctional smart composites with integrated carbon nanotube yarn and sheet

    NASA Astrophysics Data System (ADS)

    Chauhan, Devika; Hou, Guangfeng; Ng, Vianessa; Chaudhary, Sumeet; Paine, Michael; Moinuddin, Khwaja; Rabiee, Massoud; Cahay, Marc; Lalley, Nicholas; Shanov, Vesselin; Mast, David; Liu, Yijun; Yin, Zhangzhang; Song, Yi; Schulz, Mark

    2017-04-01

    Multifunctional smart composites (MSCs) are materials that combine the good electrical and thermal conductivity, high tensile and shear strength, good impact toughness, and high stiffness properties of metals; the light weight and corrosion resistance properties of composites; and the sensing or actuation properties of smart materials. The basic concept for MSCs was first conceived by Daniel Inman and others about 25 years ago. Current laminated carbon and glass fiber polymeric composite materials have high tensile strength and are light in weight, but they still lack good electrical and thermal conductivity, and they are sensitive to delamination. Carbon nanotube yarn and sheets are lightweight, electrically and thermally conductive materials that can be integrated into laminated composite materials to form MSCs. This paper describes the manufacturing of high quality carbon nanotube yarn and sheet used to form MSCs, and integrating the nanotube yarn and sheet into composites at low volume fractions. Various up and coming technical applications of MSCs are discussed including composite toughening for impact and delamination resistance; structural health monitoring; and structural power conduction. The global carbon nanotube overall market size is estimated to grow from 2 Billion in 2015 to 5 Billion by 2020 at a CAGR of 20%. Nanotube yarn and sheet products are predicted to be used in aircraft, wind machines, automobiles, electric machines, textiles, acoustic attenuators, light absorption, electrical wire, sporting equipment, tires, athletic apparel, thermoelectric devices, biomedical devices, lightweight transformers, and electromagnets. In the future, due to the high maximum current density of nanotube conductors, nanotube electromagnetic devices may also become competitive with traditional smart materials in terms of power density.

  4. Aerocapture Inflatable Decelerator (AID)

    NASA Technical Reports Server (NTRS)

    Reza, Sajjad

    2007-01-01

    Forward Attached Inflatable Decelerators, more commonly known as inflatable aeroshells, provide an effective, cost efficient means of decelerating spacecrafts by using atmospheric drag for aerocapture or planetary entry instead of conventional liquid propulsion deceleration systems. Entry into planetary atmospheres results in significant heating and aerodynamic pressures which stress aeroshell systems to their useful limits. Incorporation of lightweight inflatable decelerator surfaces with increased surface-area footprints provides the opportunity to reduce heat flux and induced temperatures, while increasing the payload mass fraction. Furthermore, inflatable aeroshell decelerators provide the needed deceleration at considerably higher altitudes and Mach numbers when compared with conventional rigid aeroshell entry systems. Inflatable aeroshells also provide for stowage in a compact space, with subsequent deployment of a large-area, lightweight heatshield to survive entry heating. Use of a deployable heatshield decelerator not only enables an increase in the spacecraft payload mass fraction and but may also eliminate the need for a spacecraft backshell and cruise stage. This document is the viewgraph slides for the paper's presentation.

  5. Lightweight compact 2D/3D autostereoscopic LCD backlight for games, monitor, and notebook applications

    NASA Astrophysics Data System (ADS)

    Eichenlaub, Jesse B.

    1998-04-01

    At the 1997 conference DTI first reported on a low cost, thin, lightweight backlight for LCDs that generates a special illumination pattern to create autostereoscopic 3D images and can switch to conventional diffuse illumination for 2D images. The backlight is thin and efficient enough for use in portable computer and hand held games, as well as thin desktop displays. The system has been embodied in 5' (13 cm) diagonal backlights for gambling machines, and in the 12.1' (31 cm) diagonal DTI Virtual Window(TM) desktop product. During the past year, DTI has improved the technology considerably, reducing crosstalk, increasing efficiency, improving components for mass production, and developing prototypes that move the 3D viewing zones in response to the observer's head position. The paper will describe the 2D/3D backlights, improvements that have been made to their function, and their embodiments within the latest display products and prototypes.

  6. Developments in Nano-Satellite Structural Subsystem Design at NASA-GSFC

    NASA Technical Reports Server (NTRS)

    Rossoni, Peter; Panetta, Peter V.

    1999-01-01

    The NASA-GSFC Nano-satellite Technology Development Program will enable flying constellations of tens to hundreds of nano-satellites for future NASA Space and Earth Science missions. Advanced technology components must be developed to make these future spacecraft compact, lightweight, low-power, low-cost, and survivable to a radiation environment over a two-year mission lifetime. This paper describes the efforts underway to develop lightweight, low cost, and multi-functional structures, serviceable designs, and robust mechanisms. As designs shrink, the integration of various subsystems becomes a vital necessity. This paper also addresses structurally integrated electrical power, attitude control, and thermal systems. These innovations bring associated fabrication, integration, and test challenges. Candidate structural materials and processes are examined and the merits of each are discussed. Design and fabrication processes include flat stock composite construction, cast aluminum-beryllium alloy, and an injection molded fiber-reinforced plastic. A viable constellation deployment scenario is described as well as a Phase-A Nano-satellite Pathfinder study.

  7. A compact, inexpensive infrared laser system for continuous-wave optical stimulation of the rat prostate cavernous nerves

    NASA Astrophysics Data System (ADS)

    Perkins, William C.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2014-03-01

    Optical nerve stimulation (ONS) has been commonly performed in the laboratory using high-power, pulsed, infrared (IR) lasers including Holmium:YAG, diode, and Thulium fiber lasers. However, the relatively high cost of these lasers in comparison with conventional electrical nerve stimulation (ENS) equipment may represent a significant barrier to widespread adoption of ONS. Optical stimulation of the prostate cavernous nerves (CN's) has recently been reported using lower cost, continuous-wave (CW), all-fiber-based diode lasers. This preliminary study describes further miniaturization and cost reduction of the ONS system in the form of a compact, lightweight, cordless, and inexpensive IR laser. A 140-mW, 1560-nm diode laser was integrated with a green aiming beam and delivery optics into a compact ONS system. Surface and subsurface ONS was performed in a total of 5 rats, in vivo, with measurement of an intracavernous pressure (ICP) response during CW laser irradiation for 30 s with a spot diameter of 0.7 mm. Short-term, CW ONS of the prostate CN's is feasible using a compact, inexpensive, batterypowered IR laser diode system. This ONS system may represent an alternative to ENS for laboratory studies, and with further development, a handheld option for ONS in the clinic to identify and preserve the CN's during prostate cancer surgery.

  8. Vibration and shape control of hinged light structures using electromagnetic forces

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Yuji; Miyachi, Shigenobu; Sasaki, Toshiyuki

    2003-08-01

    This paper describes a new electromagnetic device for vibration control of a light-weighted deployable/retractable structure which consists of many small units connected with mechanical hinges. A typical example of such a structure is a solar cell paddle of an artificial satellite which is composed of many thin flexible blankets connected in series. Vibration and shape control of the paddle is not easy, because control force and energy do not transmit well between the blankets which are discretely connected by hinges with each other. The new device consists of a permanent magnet glued along an edge of a blanket and an electric current-conducting coil glued along an adjoining edge of another adjacent blanket. Conduction of the electric current in a magnetic field from the magnet generates an electromagnetic force on the coil. By changing the current in the coil, therefore, we may control the vibration and shape of the blankets. To confirm the effectiveness of the new device, constructing a simple paddle model consisting eight hinge- panels, we have carried out a model experiment of vibration and shape control of the paddle. In addition, a numerical simulation of vibration control of the hinge structure is performed to compare with measured data.

  9. A Compact, Pi-Mode Extraction Scheme for the Axial B-Field Recirculating Planar Magnetron

    DTIC Science & Technology

    2012-07-23

    Figure 4). Thus, in a planar magnetron, the minimum phase velocity, vph , to stay above cutoff in the rectangular waveguide is ℎ = ...as magnetrons, electrons must be accelerated such that they are in synchronism with the phase velocity, vph , of the electromagnetic wave for an

  10. Compact tunable and reconfigurable microwave photonic filter for satellite payloads

    NASA Astrophysics Data System (ADS)

    Santos, M. C.; Yoosefi, O.

    2017-11-01

    The trend towards the photonic processing of electrical signals at microwave frequencies for satellite payloads is increasing at a breathtaking pace, mainly spurred by prospects of wide electrical bandwidth operation, low mass and volume, reduced electrical noise levels, immunity to electromagnetic interferences and resistance to both temperature and radiation.

  11. Bilayer avalanche spin-diode logic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, Joseph S., E-mail: joseph.friedman@u-psud.fr; Querlioz, Damien; Fadel, Eric R.

    2015-11-15

    A novel spintronic computing paradigm is proposed and analyzed in which InSb p-n bilayer avalanche spin-diodes are cascaded to efficiently perform complex logic operations. This spin-diode logic family uses control wires to generate magnetic fields that modulate the resistance of the spin-diodes, and currents through these devices control the resistance of cascaded devices. Electromagnetic simulations are performed to demonstrate the cascading mechanism, and guidelines are provided for the development of this innovative computing technology. This cascading scheme permits compact logic circuits with switching speeds determined by electromagnetic wave propagation rather than electron motion, enabling high-performance spintronic computing.

  12. Methods for Human Dehydration Measurement

    NASA Astrophysics Data System (ADS)

    Trenz, Florian; Weigel, Robert; Hagelauer, Amelie

    2018-03-01

    The aim of this article is to give a broad overview of current methods for the identification and quantification of the human dehydration level. Starting off from most common clinical setups, including vital parameters and general patients' appearance, more quantifiable results from chemical laboratory and electromagnetic measurement methods will be reviewed. Different analysis methods throughout the electromagnetic spectrum, ranging from direct current (DC) conductivity measurements up to neutron activation analysis (NAA), are discussed on the base of published results. Finally, promising technologies, which allow for an integration of a dehydration assessment system in a compact and portable way, will be spotted.

  13. The 5000 GPM firefighting module evaluation test

    NASA Technical Reports Server (NTRS)

    Burns, Ralph A.

    1986-01-01

    The 5000 GPM Firefighting Module development was sponsored and shared by the Navy Facilities Engineering Command. It is a lightweight, compact, self-contained, helicopter-transportable unit for fighting harbor and other specialty fires as well as for use in emergency and shipboard water pumping applications. This unit is a more advanced model of the original 1500 GPM module developed for the U.S. Coast Guard. The module and an evaluation test program conducted at the North Island Naval Air Station, San Diego, California, by NASA and the U.S. Navy, are described.

  14. Compact, Lightweight, Smart Battery Charger

    DTIC Science & Technology

    2005-10-26

    with MIL-l- 45208A, ANSI/NCSL Z540-1-1994 and ISO / IEC 17025 :1999. I... lii i ... ...... , .00 0z .E 0 cc z0 E -𔃺’ 200-076 Temperature Honeywell...Institute of Standards and Technology, and in accordance with MIL-I- 45208A, ANSI/NCSL Z540-1-1994 and ISO / IEC 17025 :1999. Recorder 200-202 Temperature JO...1994 and ISO / IEC 17025 :1999. Recorder 200-214 Temperature Watlow F4 7/17/2003 7/18/2005 -200 to +80~0°C Controller 500-061 Thermal Cincinnati VTS-3.3

  15. Temperature Sensing for Oil, Gas, and Structural Analysis

    NASA Technical Reports Server (NTRS)

    2006-01-01

    In 1996, Systems and Processes Engineering Corporation (SPEC), of Austin, Texas, undertook a NASA Small Business Innovation Research (SBIR) contract with Langley Research Center to develop a compact and lightweight digital thermal sensing (DTS) system for monitoring the cryogenic tanks on the X-33 prototype aircraft. That technology, along with a processor developed by SPEC for Goddard Space Flight Center, was space-qualified and integrated into several NASA missions. SPEC formed an ancillary organization, SensorTran, Inc., to continue work developing the DTS technology for a variety of commercial and industrial applications.

  16. Real time workload classification from an ambulatory wireless EEG system using hybrid EEG electrodes.

    PubMed

    Matthews, R; Turner, P J; McDonald, N J; Ermolaev, K; Manus, T; Shelby, R A; Steindorf, M

    2008-01-01

    This paper describes a compact, lightweight and ultra-low power ambulatory wireless EEG system based upon QUASAR's innovative noninvasive bioelectric sensor technologies. The sensors operate through hair without skin preparation or conductive gels. Mechanical isolation built into the harness permits the recording of high quality EEG data during ambulation. Advanced algorithms developed for this system permit real time classification of workload during subject motion. Measurements made using the EEG system during ambulation are presented, including results for real time classification of subject workload.

  17. Development of a Compact, Efficient Cooling Pump for Space Suit Life Support Systems

    NASA Technical Reports Server (NTRS)

    van Boeyen, Roger; Reeh, Jonathan; Trevino, Luis

    2009-01-01

    A compact, low-power electrochemically-driven fluid cooling pump is currently being developed by Lynntech, Inc. With no electric motor and minimal lightweight components, the pump is significantly lighter than conventional rotodynamic and displacement pumps. Reliability and robustness is achieved with the absence of rotating or moving components (apart from the bellows). By employing sulfonated polystyrene-based proton exchange membranes, rather than conventional Nafion membranes, a significant reduction in the actuator power consumption was demonstrated. Lynntech also demonstrated that these membranes possess the necessary mechanical strength, durability, and temperature range for long life space operation. The preliminary design for a Phase II prototype pump compares very favorably to the fluid cooling pumps currently used in space suit primary life support systems (PLSSs). Characteristics of the electrochemically-driven pump are described and the benefits of the technology as a replacement for electric motor pumps in mechanically pumped single-phase fluid loops is discussed.

  18. A Closer Look at Quality Control

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Spectrometers, which are durable, lightweight, and compact instruments, are a requirement for NASA deep space science missions, especially as NASA strives to conduct these missions with smaller spacecraft. NASA s Jet Propulsion Laboratory (JPL) awarded the Brimrose Corporation of America a Small Business Innovation Research (SBIR) contract to develop a compact, rugged, near-infrared spectrometer for possible future missions. Spectrometers are of particular importance on NASA missions because they help scientists to identify the make-up of a planet s surface and analyze the molecules in the atmosphere. Minerals and molecules emit light of various colors. The light, identified as spectra, is difficult to see, and spectrometers, which are essentially special cameras that collect the separate colors of light in an object, allow scientists to identify the different materials. For example, spectrometers can help scientists determine whether soil was created from lava flows or from meteorites.

  19. LIGO Triggered Search for Coincidence with High Energy Photon Survey Missions

    NASA Technical Reports Server (NTRS)

    Camp, Jordan

    2009-01-01

    LIGO is about to begin a new, higher sensitivity science run, where gravitational detection is plausible. A possible candidate for detection is a compact binary merger, which would also be likely to emit a high energy electromagnetic signal. Coincident observation of the gw signal from a compact merger with an x-ray or gamma-ray signal would add considerable weight to the claim for gw detection. In this talk I will consider the possibility of using LIGO triggers with time and sky position to perform a coincident analysis of EM signals from the RXTE, SWIFT, and FERMI missions.

  20. Compact and cost-effective multi-channel optical spectrometer for fine FBG sensing in IoT technology

    NASA Astrophysics Data System (ADS)

    Konishi, Tsuyoshi; Yamasaki, Yu

    2018-02-01

    Optical fiber sensor networks have attracted much attention in IoT technology and a fiber Bragg grating is one of key sensor devices there because of their advantages in a high affinity for optical fiber networks, compactness, immunity to electromagnetic interference and so on. Nevertheless, its sensitivity is not always satisfactory so as to be usable together with widespread cost-effective multi-channel spectrometers. In this paper, we introduce a new cost-effective approach for a portable multi-channel spectrometer with high spectral resolution and demonstrates some preliminary experimental results for fine FBG sensing.

  1. The Micro-Instrumentation Package: A Solution to Lightweight Ballooning

    NASA Astrophysics Data System (ADS)

    Juneau, Jill

    This paper discusses the design and testing of an over the horizon (OTH) light weight telemetry and termination system that can be used for small ballooning payloads. Currently, the Columbia Scientific Balloon Facility (CSBF) provides telemetry for the science payload by integrating one of two types of support packages. The type of support package integrated depends on whether the flight will stay in range of line of sight (LOS) or will exceed LOS requiring the use of over the horizon (OTH) telemetry. The weights of these systems range from 100 pounds to 350 pounds depending upon the use of redundant systems, equipment for high data rates, and batteries and/or solar panels for power requirements. These weight values are not as significant for larger payloads but can be crippling for smaller payloads. In addition, these support package systems are fairly expensive, placing a high importance on recovery. A lightweight and inexpensive telemetry system could be beneficial for various reasons. First, it would allow scientists to fly lightweight payloads on large balloons reaching even higher altitudes. Second, scientists could fly lightweight payloads on less expensive balloons such as meteorological balloons. Depending on the payload, these flights could be fairly inexpensive and even disposable. Third, a compact telemetry system on any balloon will free up more room for the science portion of the payload. In response, a compact telemetry/termination system called the Micro-Instrumentation Package (MIP) was developed. The MIP provides uplink and downlink communications, an interface to the science, housekeeping information including global positioning system (GPS) position, and relays. Instead of a power-hungry microprocessor, the MIP's central consists of a microcontroller. Microcontrollers are lower power, easily programmed, and can be purchased for less than ten dollars. For uplink and downlink telemetry, the MIP uses an LOS serial transceiver and an Iridium unit for OTH flights. A relay deck is also included for powering subsystems and for flight termination. Furthermore, the science will be able to interface to the MIP through a serial connection, although the data rates for the science interface will be limited compared to those of standard telemetry support packages. Overall, the MIP provides the basic necessities for the safe operation of a balloon flight without the weight and the expense of the current CSBF telemetry support packages. This paper will explain more about CSBF operations and delve further into the MIP development, testing and capabilities.

  2. Development of Electromagnetically Actuated Vacuum Circuit Breaker for 72kV Rated Switchgear

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Hyun; Tsukima, Mitsuru; Maruyama, Akihiko; Takahara, Osamu; Haruna, Kazushi; Yano, Tomotaka; Matsunaga, Toshihiro; Imamura, Kazuaki; Arioka, Masahiro; Takeuchi, Toshie

    A new electromagnetically actuated vacuum circuit breaker (VCB) has been developed for a 72kV rated switchgear. Each phase of this VCB has a plurality of compact electromagnetic actuators linked mechanically providing the required driving energy. The mechanical linkage working as a lever magnifies an actuator stroke to the required stroke of a 72kV rated vacuum interrupter. An electromagnetic analysis coupled with motion, which considers the mechanical linkage of the plural actuators, has been developed for designing the driving behavior of this VCB. Using this analytical method and a quality engineering method known as the Taguchi method, we have clarified effective parameters to reduce the time difference of the driving behavior for tolerance specifications. Moreover, analyzing the oscillatory behavior closing the contacts, a structure of this VCB has been designed to reduce the bounce duration. The developed new VCB has been confirmed that a time difference is short enough and bounce duration is reduced. This VCB is highly reliable against variations in manufacturing and environment.

  3. Carbon Nanotubes: Present and Future Commercial Applications

    NASA Astrophysics Data System (ADS)

    De Volder, Michael F. L.; Tawfick, Sameh H.; Baughman, Ray H.; Hart, A. John

    2013-02-01

    Worldwide commercial interest in carbon nanotubes (CNTs) is reflected in a production capacity that presently exceeds several thousand tons per year. Currently, bulk CNT powders are incorporated in diverse commercial products ranging from rechargeable batteries, automotive parts, and sporting goods to boat hulls and water filters. Advances in CNT synthesis, purification, and chemical modification are enabling integration of CNTs in thin-film electronics and large-area coatings. Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.

  4. Preparation and electromagnetic wave absorption of RGO/Cu nanocomposite

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Tian, Xingyou; Zhang, Xian; Li, Shikuo; Shen, Yuhua; Xie, Anjian

    2017-09-01

    We use a facile pyrolysis method to prepare reduced graphene oxide and copper nanocomposite (RGO/Cu) based on it. The product shows an outstanding wave absorption properties. The maximum reflection loss is up to-50.7 dB at 3.8 GHz. The reflection loss of-10 dB (90% power absorption) corresponds to a bandwidth of 11.2 GHz (3.4-14.6 GHz range) for the layer thickness of 2-5 mm. Therefore, it is suggested that the RGO/Cu nanocomposite is also a new kind of lightweight and high-performance EM wave absorbing material.

  5. Hollow carbon spheres in microwaves: Bio inspired absorbing coating

    NASA Astrophysics Data System (ADS)

    Bychanok, D.; Li, S.; Sanchez-Sanchez, A.; Gorokhov, G.; Kuzhir, P.; Ogrin, F. Y.; Pasc, A.; Ballweg, T.; Mandel, K.; Szczurek, A.; Fierro, V.; Celzard, A.

    2016-01-01

    The electromagnetic response of a heterostructure based on a monolayer of hollow glassy carbon spheres packed in 2D was experimentally surveyed with respect to its response to microwaves, namely, the Ka-band (26-37 GHz) frequency range. Such an ordered monolayer of spheres mimics the well-known "moth-eye"-like coating structures, which are widely used for designing anti-reflective surfaces, and was modelled with the long-wave approximation. Based on the experimental and modelling results, we demonstrate that carbon hollow spheres may be used for building an extremely lightweight, almost perfectly absorbing, coating for Ka-band applications.

  6. Carbon nanotubes: present and future commercial applications.

    PubMed

    De Volder, Michael F L; Tawfick, Sameh H; Baughman, Ray H; Hart, A John

    2013-02-01

    Worldwide commercial interest in carbon nanotubes (CNTs) is reflected in a production capacity that presently exceeds several thousand tons per year. Currently, bulk CNT powders are incorporated in diverse commercial products ranging from rechargeable batteries, automotive parts, and sporting goods to boat hulls and water filters. Advances in CNT synthesis, purification, and chemical modification are enabling integration of CNTs in thin-film electronics and large-area coatings. Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.

  7. Super Ball Bot - Structures for Planetary Landing and Exploration, NIAC Phase 2 Final Report

    NASA Technical Reports Server (NTRS)

    SunSpiral, Vytas; Agogino, Adrian; Atkinson, David

    2015-01-01

    Small, light-weight and low-cost missions will become increasingly important to NASA's exploration goals. Ideally teams of small, collapsible, light weight robots, will be conveniently packed during launch and would reliably separate and unpack at their destination. Such robots will allow rapid, reliable in-situ exploration of hazardous destination such as Titan, where imprecise terrain knowledge and unstable precipitation cycles make single-robot exploration problematic. Unfortunately landing lightweight conventional robots is difficult with current technology. Current robot designs are delicate, requiring a complex combination of devices such as parachutes, retrorockets and impact balloons to minimize impact forces and to place a robot in a proper orientation. Instead we are developing a radically different robot based on a "tensegrity" structure and built purely with tensile and compression elements. Such robots can be both a landing and a mobility platform allowing for dramatically simpler mission profile and reduced costs. These multi-purpose robots can be light-weight, compactly stored and deployed, absorb strong impacts, are redundant against single-point failures, can recover from different landing orientations and can provide surface mobility. These properties allow for unique mission profiles that can be carried out with low cost and high reliability and which minimizes the inefficient dependance on "use once and discard" mass associated with traditional landing systems. We believe tensegrity robot technology can play a critical role in future planetary exploration.

  8. Inflatable Tubular Structures Rigidized with Foams

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.; Schnell, Andrew R.

    2010-01-01

    Inflatable tubular structures that have annular cross sections rigidized with foams, and the means of erecting such structures in the field, are undergoing development. Although the development effort has focused on lightweight structural booms to be transported in compact form and deployed in outer space, the principles of design and fabrication are also potentially applicable to terrestrial structures, including components of ultralightweight aircraft, lightweight storage buildings and shelters, lightweight insulation, and sales displays. The use of foams to deploy and harden inflatable structures was first proposed as early as the 1960s, and has been investigated in recent years by NASA, the U.S. Air Force Research Laboratory, industry, and academia. In cases of deployable booms, most of the investigation in recent years has focused on solid cross sections, because they can be constructed relatively easily. However, solid-section foam-filled booms can be much too heavy for some applications. In contrast, booms with annular cross sections according to the present innovation can be tailored to obtain desired combinations of stiffness and weight through choice of diameters, wall thicknesses, and foam densities. By far the most compelling advantage afforded by this innovation is the possibility of drastically reducing weights while retaining or increasing the stiffnesses, relative to comparable booms that have solid foamfilled cross sections. A typical boom according to this innovation includes inner and outer polyimide film sleeves to contain foam that is injected between them during deployment.

  9. Autonomous exoskeleton reduces metabolic cost of human walking.

    PubMed

    Mooney, Luke M; Rouse, Elliott J; Herr, Hugh M

    2014-11-03

    Passive exoskeletons that assist with human locomotion are often lightweight and compact, but are unable to provide net mechanical power to the exoskeletal wearer. In contrast, powered exoskeletons often provide biologically appropriate levels of mechanical power, but the size and mass of their actuator/power source designs often lead to heavy and unwieldy devices. In this study, we extend the design and evaluation of a lightweight and powerful autonomous exoskeleton evaluated for loaded walking in (J Neuroeng Rehab 11:80, 2014) to the case of unloaded walking conditions. The metabolic energy consumption of seven study participants (85 ± 12 kg body mass) was measured while walking on a level treadmill at 1.4 m/s. Testing conditions included not wearing the exoskeleton and wearing the exoskeleton, in both powered and unpowered modes. When averaged across the gait cycle, the autonomous exoskeleton applied a mean positive mechanical power of 26 ± 1 W (13 W per ankle) with 2.12 kg of added exoskeletal foot-shank mass (1.06 kg per leg). Use of the leg exoskeleton significantly reduced the metabolic cost of walking by 35 ± 13 W, which was an improvement of 10 ± 3% (p = 0.023) relative to the control condition of not wearing the exoskeleton. The results of this study highlight the advantages of developing lightweight and powerful exoskeletons that can comfortably assist the body during walking.

  10. Precision cosmology from future lensed gravitational wave and electromagnetic signals.

    PubMed

    Liao, Kai; Fan, Xi-Long; Ding, Xuheng; Biesiada, Marek; Zhu, Zong-Hong

    2017-10-27

    The standard siren approach of gravitational wave cosmology appeals to the direct luminosity distance estimation through the waveform signals from inspiralling double compact binaries, especially those with electromagnetic counterparts providing redshifts. It is limited by the calibration uncertainties in strain amplitude and relies on the fine details of the waveform. The Einstein telescope is expected to produce 10 4 -10 5 gravitational wave detections per year, 50-100 of which will be lensed. Here, we report a waveform-independent strategy to achieve precise cosmography by combining the accurately measured time delays from strongly lensed gravitational wave signals with the images and redshifts observed in the electromagnetic domain. We demonstrate that just 10 such systems can provide a Hubble constant uncertainty of 0.68% for a flat lambda cold dark matter universe in the era of third-generation ground-based detectors.

  11. High permittivity patch radiator for single and multi-element hyperthermia applicators.

    PubMed

    Andreuccetti, D; Bini, M; Ignesti, A; Olmi, R; Priori, S; Vanni, R

    1993-07-01

    This paper describes a compact, low-profile patch radiator which is the base element for efficient, small-size applicators suitable for superficial hyperthermia. The design criteria and the technological processes involved are presented. The electromagnetic characteristics of the patch element are outlined, and possible application of the radiator are discussed.

  12. Particle beam and crabbing and deflecting structure

    DOEpatents

    Delayen, Jean [Yorktown, VA

    2011-02-08

    A new type of structure for the deflection and crabbing of particle bunches in particle accelerators comprising a number of parallel transverse electromagnetic (TEM)-resonant) lines operating in opposite phase from each other. Such a structure is significantly more compact than conventional crabbing cavities operating the transverse magnetic TM mode, thus allowing low frequency designs.

  13. A compact, multichannel, and low noise arbitrary waveform generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govorkov, S.; Ivanov, B. I.; Novosibirsk State Technical University, K.Marx-Ave. 20, Novosibirsk 630092

    2014-05-15

    A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analogmore » compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation.« less

  14. Laser-based fast-neutron spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pomerantz, Ishay; Kishon, Itay; Kleinschmidt, Annika; Schanz, Victor A.; Tebartz, Alexandra; Fernández, Juan Carlos; Gautier, Donald C.; Johnson, Randall Philip; Shimada, Tsutomu; Wurden, Glen Anthony; Roth, Markus

    2017-05-01

    Great progress has been made in recent years in realizing compact, laser-based neutron generators. These devices, however, are inapplicable for conducting energy-resolved fast-neutron radiography because of the electromagnetic noise produced by the interaction of a strong laser field with matter. To overcome this limitation, we developed a novel neutron time-of-flight detector, largely immune to electromagnetic noise. The detector is based on plastic scintillator, only a few mm in size, which is coupled to a silicon photo-multiplier by a long optical fiber. I will present results we obtained at the Trident Laser Facility at Los Alamos National Laboratory during the summer of 2016. Using this detector, we recorded high resolution, low-background fast neutron spectra generated by the interaction of laser accelerated deuterons with Beryllium. The quality of these spectra was sufficient to resolve the unique neutron absorption spectra of different elements and thus it is the first demonstration of laser-based fast neutron spectroscopy. I will discuss how this achievement paves the way to realizing compact neutron radiography systems for research, security, and commercial applications.

  15. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  16. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  17. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  18. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  19. First TSI observations of the new Compact Lightweight Absolute Radiometer (CLARA)

    NASA Astrophysics Data System (ADS)

    Walter, B.; Finsterle, W.; Koller, S.; Levesque, P. L.; Pfiffner, D.; Schmutz, W. K.

    2017-12-01

    Continuous and precise Total Solar Irradiance (TSI) measurements are indispensable to evaluate the influence of short- and long-term solar radiative emission variations on the Earth's energy budget. The existence of a potentially long-term trend in the suns activity and whether or not such a trend could be climate effective is still a matter of debate. The Compact Lightweight Absolute Radiometer (CLARA) is one of PMOD/WRC's future contributions to the almost seamless series of space borne TSI measurements since 1978. CLARA is one of three payloads of the Norwegian micro satellite NORSAT-1, along with Langmuir probes for space plasma research and an Automatic Identification System (AIS) receiver to monitor maritime traffic in Norwegian waters. NORSAT-1 was launched July 14th 2017 and the nominal operation of CLARA will start after the instrument commissioning beginning August 21st2017. We present the design, calibration and first TSI observations of CLARA, a new generation of active cavity Electrical Substitution Radiometers (ESR) comprising the latest radiometer developments of PMOD/WRC: i) A three-cavity design for degradation tracking and redundancy, ii) a digital control loop with feed forward system allowing for measurement cadences of 30s, iii) an aperture arrangement to reduce internal scattered light and iv) a new cavity and heatsink design to minimize non-equivalence, size and weight of the instrument. CLARA was end-to-end calibrated against the SI traceable cryogenic radiometer of the TSI Radiometer Facility (TRF) in Boulder (Colorado). The absolute measurement uncertainties for the three SI-traceable TSI detectors of CLARA are 567, 576 and 912 ppm (k = 1).

  20. MITEE-B: A Compact Ultra Lightweight Bi-Modal Nuclear Propulsion Engine for Robotic Planetary Science Missions

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Paniagua, John; Borowski, Stanley

    2003-01-01

    Nuclear thermal propulsion (NTP) enables unique new robotic planetary science missions that are impossible with chemical or nuclear electric propulsion systems. A compact and ultra lightweight bi-modal nuclear engine, termed MITEE-B (MInature ReacTor EnginE - Bi-Modal) can deliver 1000's of kilograms of propulsive thrust when it operates in the NTP mode, and many kilowatts of continuous electric power when it operates in the electric generation mode. The high propulsive thrust NTP mode enables spacecraft to land and takeoff from the surface of a planet or moon, to hop to multiple widely separated sites on the surface, and virtually unlimited flight in planetary atmospheres. The continuous electric generation mode enables a spacecraft to replenish its propellant by processing in-situ resources, provide power for controls, instruments, and communications while in space and on the surface, and operate electric propulsion units. Six examples of unique and important missions enabled by the MITEE-B engine are described, including: (1) Pluto lander and sample return; (2) Europa lander and ocean explorer; (3) Mars Hopper; (4) Jupiter atmospheric flyer; (5) SunBurn hypervelocity spacecraft; and (6) He3 mining from Uranus. Many additional important missions are enabled by MITEE-B. A strong technology base for MITEE-B already exists. With a vigorous development program, it could be ready for initial robotic science and exploration missions by 2010 AD. Potential mission benefits include much shorter in-space times, reduced IMLEO requirements, and replenishment of supplies from in-situ resources.

  1. Microstructure investigation of 13Cr-2Mo ODS steel components obtained by high voltage electric discharge compaction technique

    DOE PAGES

    Bogachev, Igor; Yudin, Artem; Grigoryev, Evgeniy; ...

    2015-11-02

    Refractory oxide dispersion strengthened 13Cr-2Mo steel powder was successfully consolidated to near theoretical density using high voltage electric discharge compaction. Cylindrical samples with relative density from 90% to 97% and dimensions of 10 mm in diameter and 10–15 mm in height were obtained. Consolidation conditions such as pressure and voltage were varied in some ranges to determine the optimal compaction regime. Three different concentrations of yttria were used to identify its effect on the properties of the samples. It is shown that the utilized ultra-rapid consolidation process in combination with high transmitted energy allows obtaining high density compacts, retaining themore » initial structure with minimal grain growth. The experimental results indicate some heterogeneity of the structure which may occur in the external layers of the tested samples due to various thermal and electromagnetic in-processing effects. As a result, the choice of the optimal parameters of the consolidation enables obtaining samples of acceptable quality.« less

  2. Microstructure Investigation of 13Cr-2Mo ODS Steel Components Obtained by High Voltage Electric Discharge Compaction Technique.

    PubMed

    Bogachev, Igor; Yudin, Artem; Grigoryev, Evgeniy; Chernov, Ivan; Staltsov, Maxim; Khasanov, Oleg; Olevsky, Eugene

    2015-11-02

    Refractory oxide dispersion strengthened 13Cr-2Mo steel powder was successfully consolidated to near theoretical density using high voltage electric discharge compaction. Cylindrical samples with relative density from 90% to 97% and dimensions of 10 mm in diameter and 10-15 mm in height were obtained. Consolidation conditions such as pressure and voltage were varied in some ranges to determine the optimal compaction regime. Three different concentrations of yttria were used to identify its effect on the properties of the samples. It is shown that the utilized ultra-rapid consolidation process in combination with high transmitted energy allows obtaining high density compacts, retaining the initial structure with minimal grain growth. The experimental results indicate some heterogeneity of the structure which may occur in the external layers of the tested samples due to various thermal and electromagnetic in-processing effects. The choice of the optimal parameters of the consolidation enables obtaining samples of acceptable quality.

  3. Experimental and numerical analysis on aluminum/steel pipe using magnetic pulse welding

    NASA Astrophysics Data System (ADS)

    Shim, J. Y.; Kim, I. S.; Lee, K. J.; Kang, B. Y.

    2011-12-01

    Recently, there has been a trend in the automotive industry to focus on the improvement of lightweight materials, such as aluminum and magnesium because the welding of dissimilar metals causes many welding defects. Magnetic pulse welding (MPW), one of the solid state welding technologies, uses electromagnetic force from current discharged through a working coil which develops a repulsive force between the induced currents flowing parallel and in the opposite direction in the tube to be welded. The objective of this paper is to develop a numerical model for analysis of the interaction between the outer pipe and the working coil using a finite element method (FEM) in the MPW process. Four Maxwell equations are solved using a general electromagnetic mechanics computer program, ANSYS/EMAG code. Experiments were also carried out with a W-MPW60 machine manufactured by WELMATE CO., LTD. with the Al1070 and SM45C for Al pipe and steel bar respectively. The calculated and measured results were compared to verify the proposed model.

  4. Study of a novel electromagnetic liquid argon calorimeter — the TGT

    NASA Astrophysics Data System (ADS)

    Berger, C.; Braunschweig, W.; Geulig, E.; Schöntag, M.; Siedling, R.; Wlochal, M.; Putzer, A.; Wotschack, J.; Cheplakov, A.; Feshchenko, A.; Kazarinov, M.; Kukhtin, V.; Ladygin, E.; Obudovskij, V.; Geweniger, C.; Hanke, P.; Kluge, E.-E.; Krause, J.; Schmidt, M.; Stenzel, H.; Tittel, K.; Wunsch, M.; Zerwas, D.; Bruncko, D.; Jusko, A.; Kocper, B.; Lupták, M.; Aderholz, M.; Bán, J.; Brettel, H.; Dydak, F.; Fent, J.; Frey, H.; Huber, J.; Jakobs, K.; Kiesling, C.; Kiryunin, A. E.; Oberlack, H.; Ribarics, P.; Schacht, P.; Stiegler, U.; Bogolyubsky, M. Y.; Buyanov, O. V.; Chekulaev, S. V.; Kurchaninov, L. L.; Levitsky, M. S.; Maximov, V. V.; Minaenko, A. A.; Moiseev, A. M.; Semenov, P. A.; Tikhonov, V. V.; Straumann, U.

    1995-02-01

    The concept and the basic design of a fast, highly granular and compact electromagnetic liquid argon calorimeter are described. This novel calorimeter offers uniform energy response and constant energy resolution independent of the production angle of an impinging particle and of its impact position at the calorimeter. An example of a calorimeter with full rapidity coverage in an application in a collider detector is given. An important aspect of the concept is the electronics for fast signal processing matched to the short charge collection time. We report on the experience with the realization of a prototype calorimeter module and on its performance in a testbeam exposure.

  5. The Electromagnetic Calorimeter of the future PANDA Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novotny, Rainer

    2006-10-27

    Experiments with a cooled antiproton beam at the future accelerator facility FAIR at GSI, Darmstadt, will be performed with the 4{pi} detector PANDA comprising a high resolution, compact and fast homogeneous electromagnetic calorimeter to detect photons between 10MeV and 10GeV energy inside a superconducting solenoid (2T). The target calorimeter comprises more than 20,000 PbWO4 crystals of significantly enhanced quality read-out with large area avalanche photodiodes at an operating temperature of -25 degree sign C. The paper describes the quality of PWO-II and illustrates the future performance based on response measurements with high-energy photons.

  6. The First Unambiguous Electromagnetic Counterpart to a Gravitational-Wave Signal: GRB 170817A and GW170817

    NASA Astrophysics Data System (ADS)

    Goldstein, Adam

    2018-01-01

    On 2017 August 17 at 12:41:06 UTC the Fermi Gamma-ray Burst Monitor (GBM) detected and triggered on the short gamma-ray burst (GRB) 170817A. Approximately 2 s prior to this GRB, the LIGO gravitational-wave observatory triggered on a binary compact merger candidate associated with the GRB. This is the first unambiguous coincident observation of gravitational waves and electromagnetic radiation from a single astrophysical source and marks the start of gravitational-wave multi-messenger astronomy. We report the GBM observations and analysis of this short GRB and the joint science that results from this discovery.

  7. Development of Stiff and Extendible Electromagnetic Sensors for Space Missions

    NASA Astrophysics Data System (ADS)

    Kasaba, Y.; Kumamoto, A.; Ishisaka, K.; Kojima, H.; Higuchi, K.; Watanabe, A.; Watanabe, K.

    2010-05-01

    We developed three types of stiff and extendible electromagnetic sensors in rigid monopole antenna, loop antenna, and Yagi-Uda antenna for future space missions. They are based on carbon fiber reinforced plastic (CFRP) technologies, in order to fulfill severe requirements, i.e. enough stiffness, light mass, compact storage, safe extension, and reasonable test efforts. One of them, rigid monopole antennas, coupled with an inflatable actuator system, was successfully used in the JAXA S-520-23 sounding rocket experiment in September 2007. Applications of those antennas are expected in space plasma missions including the SCOPE program, sounding rocket experiments, planetary radar remote sensing, and landing radio measurements.

  8. A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Dong; Wu, Jiutao; Zhang, Shuangyou

    2014-03-17

    We demonstrate an approach to create a stable erbium-fiber-based frequency comb at communication band by directly locking the combs to two rubidium atomic transitions resonances (electromagnetically induced transparency absorption and two-photon absorption), respectively. This approach directly transfers the precision and stability of the atomic transitions to the comb. With its distinguishing feature of compactness by removing the conventional octave-spanning spectrum and f-to-2f beating facilities and the ability to directly control the comb's frequency at the atomic transition frequency, this stable optical comb can be widely used in optical communication, frequency standard, and optical spectroscopy and microscopy.

  9. Short-Duration Gamma-Ray Burst in the Multi-Messenger Era

    NASA Astrophysics Data System (ADS)

    Lazzati, Davide

    2016-12-01

    The detection of gravitational waves (GW) from binary black hole mergers has been an historical, transformative event in physics and astronomy, heralded by most as the beginning of multi-messenger astronomy. With the increase of sensitivity over the next few years, LIGO and Virgo are predicted to detect mergers from neutron-star (NS) binaries. These are expected to be the first true multi-messenger sources, being the progenitors of short-duration gamma-ray burst (SGRB). The simultaneous detection of a gravitational, electromagnetic, and possibly neutrino signals from the same source would dramatically enhance the scientific output of each individual detection. Important details of the connection between SGRBs and NS binary mergers are however poorly known. These include the nature of the merging compact objects, their equation of state, the physics of SGRB jets - such as their Lorentz factors and opening angles, and the possibility of small temporal delays among the GW, n! eutrino, and gamma-ray signals. In view of the expected increased sensitivity of LIGO during the upcoming observing period and beyond, there is urgent need of improving our understanding of the physics of SGRBs to support the detection of GWs (and possibly neutrinos) and to develop a context in which the expected multi-messenger signal can be properly interpreted and its potential fully exploited. To achieve such goals, we propose to carry out a comprehensive study of relativistic jets from compact binary mergers, exploiting the most recent advances in numerical techniques developed within this research group. The ansatz of this study will be that within a short time after a compact merger a relativistic jet is created. Subsequently, the jet interacts with the merger environment, imprinting a signature that can be detected in the temporal and spectral properties of the prompt radiation, both in its electromagnetic and neutrino components. Analogous dynamical effects have been observed and studied extensively for long-duration GRBs. Since different progenitors produce different environments and physical conditions, the properties of the gamma-ray and neutrino signals will be a proxy to the physics of the merger and, ultimately, to the expected GW signal. We will perform a combination of state-of-the-art numerical simulations covering all different phases of the event,! including the coalescence and merger of the progenitor compact binary system, the small to large scale jet dynamics, and the radiation transfer physics leading to electromagnetic and neutrino signals. Our products will include multi messenger predictions not only for on-axis bursts, those pointing directly at earth, but also for off-axis events, those with jets that point away from our detectors. Off-axis bursts are expected to have a dim electromagnetic signature but they constitute the dominant population of LIGO detected NS binary mergers.

  10. Ultra-compact switchable SLO/OCT handheld probe design

    NASA Astrophysics Data System (ADS)

    LaRocca, Francesco; Nankivil, Derek; DuBose, Theodore; Farsiu, Sina; Izatt, Joseph A.

    2015-03-01

    Handheld scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) systems facilitate imaging of young children and subjects that have difficulty fixating. More compact and lightweight probes allow for better portability and increased comfort for the operator of the handheld probe. We describe a very compact, novel SLO and OCT handheld probe design. A single 2D microelectromechanical systems (MEMS) scanner and a custom optical design using a converging beam prior to the scanner permitted significant reduction in the system size. Our design utilized a combination of commercial and custom optics that were optimized in Zemax to achieve near diffraction-limited resolution of 8 μm over a 7° field of view. The handheld probe has a form factor of 7 x 6 x 2.5 cm and a weight of only 94 g, which is over an order of magnitude lighter than prior SLO-OCT handheld probes. Images were acquired from a normal subject with an incident power on the eye under the ANSI limit. With this device, which is the world's lightest and smallest SLO-OCT system, we were able to visualize parafoveal cone photoreceptors and nerve fiber bundles without the use of adaptive optics.

  11. Pure-iron/iron-based-alloy hybrid soft magnetic powder cores compacted at ultra-high pressure

    NASA Astrophysics Data System (ADS)

    Saito, Tatsuya; Tsuruta, Hijiri; Watanabe, Asako; Ishimine, Tomoyuki; Ueno, Tomoyuki

    2018-04-01

    We developed Fe/FeSiAl soft magnetic powder cores (SMCs) for realizing the miniaturization and high efficiency of an electromagnetic conversion coil in the high-frequency range (˜20 kHz). We found that Fe/FeSiAl SMCs can be formed with a higher density under higher compaction pressure than pure-iron SMCs. These SMCs delivered a saturation magnetic flux density of 1.7 T and iron loss (W1/20k) of 158 kW/m3. The proposed SMCs exhibited similar excellent characteristics even in block shapes, which are closer to the product shapes.

  12. Studies on omnidirectional enhancement of giga-hertz radiation by sub-wavelength plasma modulation

    NASA Astrophysics Data System (ADS)

    Fanrong, KONG; Qiuyue, NIE; Shu, LIN; Zhibin, WANG; Bowen, LI; Shulei, ZHENG; Binhao, JIANG

    2018-01-01

    The technology of radio frequency (RF) radiation intensification for radio compact antennas based on modulation and enhancement effects of sub-wavelength plasma structures represents an innovative developing strategy. It exhibits important scientific significance and promising potential of broad applications in various areas of national strategic demands, such as electrical information network and microwave communication, detection and control technology. In this paper, laboratory experiments and corresponding analyses have been carried out to investigate the modulation and enhancement technology of sub-wavelength plasma structure on the RF electromagnetic radiation. An application focused sub-wavelength plasma-added intensification up to ∼7 dB higher than the free-space radiation is observed experimentally in giga-hertz (GHz) RF band. The effective radiation enhancement bandwidth covers from 0.85 to 1.17 GHz, while the enhanced electromagnetic signals transmitted by sub-wavelength plasma structures maintain good communication quality. Particularly, differing from the traditional RF electromagnetic radiation enhancement method characterized by focusing the radiation field of antenna in a specific direction, the sub-wavelength plasma-added intensification of the antenna radiation presents an omnidirectional enhancement, which is reported experimentally for the first time. Corresponding performance characteristics and enhancement mechanism analyses are also conducted in this paper. The results have demonstrated the feasibility and promising potential of sub-wavelength plasma modulation in application focused RF communication, and provided the scientific basis for further research and development of sub-wavelength plasma enhanced compact antennas with wide-range requests and good quality for communication.

  13. 2D scanning Rotman lens structure for smart collision avoidance sensors

    NASA Astrophysics Data System (ADS)

    Hall, Leonard T.; Hansen, Hedley J.; Abbott, Derek

    2004-03-01

    Although electronically scanned antenna arrays can provide effective mm-wave search radar sensors, their high cost and complexity are leading to the consideration of alternative beam-forming arrangements. Rotman lenses offer a compact, rugged, reliable, alternative solution. This paper considers the design of a microstrip based Rotman lens for high-resolution, frequency-controlled scanning applications. Its implementation in microstrip is attractive because this technology is low-cost, conformal, and lightweight. A sensor designed for operation at 77 GHz is presented and an ~80° azimuthal scan over a 30 GHz bandwidth is demonstrated.

  14. Focus drive mechanism for the IUE scientific instrument

    NASA Technical Reports Server (NTRS)

    Devine, E. J.; Dennis, T. B., Jr.

    1977-01-01

    A compact, lightweight mechanism was developed for in-orbit adjustment of the position of the secondary mirror (focusing) of the International Ultraviolet Explored telescope. This device is a linear drive with small (.0004 in.) and highly repeatable step increments. Extremely close tolerances are also held in tilt and decentering. The unique mechanization is described with attention to the design details that contribute to positional accuracy. Lubrication, materials, thermal considerations, sealing, detenting against launch loads, and other features peculiar to flight hardware are discussed. The methods employed for mounting the low expansion quartz mirror with minimum distortion are also given.

  15. 5-inch-size liquid crystal flat panel display evaluation test by flight simulator

    NASA Astrophysics Data System (ADS)

    Kawahara, Hiroyasu; Watanabe, Akira; Wakairo, Kaoru; Udagawa, Tomoyuki; Kurihara, Yoichiro

    An evaluation test is conducted on the function, performance, and display format of a 5x5 inch flat panel display (FPD) in a flight simulator. The FPD utilizes a color liquid crystal panel that is compact and lightweight and has excellent visibility. The simulator evaluation test is carried out in sequence with the conventional takeoff and landing to altitude, and then conversion to STOL procedures for flight path and subsequent approach and landing. It is shown that the liquid crystal display could be employed as a satisfactory indicator for aircraft instrumentation.

  16. The CareFlight Stretcher Bridge: a compact mobile intensive care unit.

    PubMed

    Wishaw, K J; Munford, B J; Roby, H P

    1990-05-01

    A mobile intensive care module has been developed for aeromedical transport of the critical care patient. It incorporates monitoring, ventilator, oxygen and suction, and infusion pumps. The device clips to a lightweight stretcher, over the patient at hip to knee level. This system is compatible with nearly all patient transport vehicles and allows monitors to be run from vehicle power. An assessment of the system after more than 500 transports is that it represents a significant advance over systems used previously. The advantages and disadvantages of the system compared with unmounted or vehicle-mounted equipment are discussed.

  17. Integration of a 6LilnSe 2 thermal neutron detector into a CubeSat instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egner, Joanna C.; Groza, Michael; Burger, Arnold

    This paper describes the development of a preliminary compact and lightweight neutron detection system that uses the low power consuming CubeSat platform and will be especially effective for space-based applications. This is made possible using the novel 6LiInSe 2 scintillator crystal and a silicon avalanche photodiode (Si-APD). The schematics of this instrument are presented as well as the response of the instrument to initial testing under alpha radiation. The entire system weighs 670 grams and requires 5 volts direct current at 3 watts.

  18. Integration of a 6LilnSe 2 thermal neutron detector into a CubeSat instrument

    DOE PAGES

    Egner, Joanna C.; Groza, Michael; Burger, Arnold; ...

    2016-11-08

    This paper describes the development of a preliminary compact and lightweight neutron detection system that uses the low power consuming CubeSat platform and will be especially effective for space-based applications. This is made possible using the novel 6LiInSe 2 scintillator crystal and a silicon avalanche photodiode (Si-APD). The schematics of this instrument are presented as well as the response of the instrument to initial testing under alpha radiation. The entire system weighs 670 grams and requires 5 volts direct current at 3 watts.

  19. Pointing system for the balloon-borne astronomical payloads

    NASA Astrophysics Data System (ADS)

    Nirmal, Kaipacheri; Sreejith, Aickara Gopinathan; Mathew, Joice; Sarpotdar, Mayuresh; Ambily, Suresh; Prakash, Ajin; Safonova, Margarita; Murthy, Jayant

    2016-10-01

    We describe the development and implementation of a light-weight, fully autonomous 2-axis pointing and stabilization system designed for balloon-borne astronomical payloads. The system is developed using off-the-shelf components such as Arduino Uno controller, HMC 5883L magnetometer, MPU-9150 inertial measurement unit, and iWave GPS receiver unit. It is a compact and rugged system which can also be used to take images/video in a moving vehicle or in real photography. The system performance is evaluated from the ground, as well as in conditions simulated to imitate the actual flight by using a tethered launch.

  20. 640 x 480 PtSi infrared engine

    NASA Astrophysics Data System (ADS)

    Lang, Frank B.; Coyle, Peter J.; Stabile, Paul J.; Tower, John R.; Zubalsky, I.; Ornstein, Itzhak

    1996-06-01

    The design and performance of a compact, light-weight, low power infrared engine is presented. The 3 - 5 micron MWIR imaging subsystem consists of a Stirling-cooled, 640 (H) by 480 (V) staring PtSi infrared focal plane array (IRFPA) with associated drive and analog video processing electronics. The IR engine provides user-selectable integration time control. This infrared imaging subsystem is designed to be gimbal-mounted, and has been qualified to be operated in minus 10 Celsius to plus 50 Celsius environments. The infrared engine is also designed to meet the requirements of demanding shock and vibration environments.

  1. Design of the forward straw tube tracker for the PANDA experiment

    NASA Astrophysics Data System (ADS)

    Smyrski, J.; Apostolou, A.; Biernat, J.; Czyżycki, W.; Filo, G.; Fioravanti, E.; Fiutowski, T.; Gianotti, P.; Idzik, M.; Korcyl, G.; Korcyl, K.; Lisowski, E.; Lisowski, F.; Płażek, J.; Przyborowski, D.; Przygoda, W.; Ritman, J.; Salabura, P.; Savrie, M.; Strzempek, P.; Swientek, K.; Wintz, P.; Wrońska, A.

    2017-06-01

    The design of the Forward Tracker for the Forward Spectrometer of the PANDA experiment is described. The tracker consists of 6 tracking stations, each comprising 4 planar double layers of straw tube detectors, and has a total material budget of only 2% X0. The straws are made self-supporting by a 1 bar over-pressure of the working gas mixture (Ar/CO2). This allows to use lightweight and compact rectangular support frames for the double layers and to split the frames into pairs of C-shaped half-frames for an easier installation on the beam line.

  2. The IASI cold box subsystem (CBS) a passive cryocooler for cryogenic detectors and optics

    NASA Astrophysics Data System (ADS)

    Bailly, B.; Courteau, P.; Maciaszek, T.

    2017-11-01

    In space, cooling down Infra Red detectors and optics to cryogenic temperature raises always the same issue : what is the best way to manage simultaneously thermal cooling, stability, mechanical discoupling and accurate focal plane components location, in a lightweight and compact solution? The passive cryocooler developed by Alcatel SPace Industries under CNES contract in the frame of the IASI instrument (Infrared Atmospheric Sounding Interferometer), offers an efficient solution for 90K to 100K temperature levels. We intend you to present the architecture and performance validation plan of the CBS.

  3. Deployable and retractable telescoping tubular structure development

    NASA Astrophysics Data System (ADS)

    Thomson, M. W.

    1993-02-01

    The paper describes the design and the structural performance of a new type of deployable and retractable telescoping mast, which can be used for flight systems that require a deployable beam with superaccurate positioning characteristics or for short to medium highly loaded structural applications. The mast employs a Bi-STEM (a two-piece Storable Tubular Extendible Member) boom as an actuator and stabilizer, which alleviates the need for the deployed telescoping mast segments to overlap. Due to this feature and because the segments can be fully overlapped when stowed, the mast enables an unusually lightweight and compact launch configuration.

  4. Putting the Pressure On

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Langley Research Center's interest in hypersonic flight led to a SBIR contract with IAP Research, Inc. to develop an electromagnetic launcher. The launcher technology was the basis for IAP's Magnepress process which manufactures high-density parts at rapid rates. The powder compaction technology can be used in the automotive industry and has also been sold to ice cream dispenser manufacturers.

  5. Improved battery charger for electric vehicles

    NASA Technical Reports Server (NTRS)

    Rippel, W. E.

    1981-01-01

    Polyphase version of single-phase "boost chopper" significantly reduces ripple and electromagnetic interference (EMI). Drive circuit of n-phase boost chopper incorporates n-phase duty-cycle generator; inductor, transistor, and diode compose chopper which can run on single-phase or three-phase alternating current or on direct current. Device retains compactness and power factors approaching unity, while improving efficiency.

  6. High-Temperature Hall-Effect Apparatus

    NASA Technical Reports Server (NTRS)

    Wood, C.; Lockwood, R. A.; Chemielewski, A. B.; Parker, J. B.; Zoltan, A.

    1985-01-01

    Compact furnace minimizes thermal gradients and electrical noise. Semiautomatic Hall-effect apparatus takes measurements on refractory semiconductors at temperatures as high as 1,100 degrees C. Intended especially for use with samples of high conductivity and low chargecarrier mobility that exhibit low signal-to-noise ratios, apparatus carefully constructed to avoid spurious electromagnetic and thermoelectric effects that further degrade measurements.

  7. Highly conductive and flexible nano-structured carbon-based polymer nanocomposites with improved electromagnetic-interference-shielding performance

    NASA Astrophysics Data System (ADS)

    Mondal, Subhadip; Ghosh, Sabyasachi; Ganguly, Sayan; Das, Poushali; Ravindren, Revathy; Sit, Subhashis; Chakraborty, Goutam; Das, Narayan Ch

    2017-10-01

    Widespread usage and development of electrical/electronic devices can create severe problems for various other devices and in our everyday lives due to harmful exposure to electromagnetic (EM) radiation. Herein, we report on the electromagnetic interference (EMI)-shielding performance of highly flexible and conductive chlorinated polyethylene (CPE)/carbon nanofiber (CNF) nanocomposites fabricated by a probe-sonication-assisted simple solution-mixing process. The dispersion of CNF nanofillers inside the CPE matrix has been studied by electron micrographs. This dispersion is reflected in the formation of continuous conductive networks at a low percolation-threshold value of 2.87 wt% and promising EMI-shielding performance of 41.5 dB for 25 wt% CNF in the X-band frequency (8.2-12.4 GHz). Such an intriguing performance mainly depends on the unique filler-filler or filler-polymer networks in CPE nanocomposites. In addition, the composite material displays a superior EMI efficiency of 47.5 dB for 2.0 mm thickness at 8.2 GHz. However, we have been encouraged by the promotion of highly flexible and lightweight CPE/CNF nanocomposite as a superior EMI shield, which can protect electronic devices against harm caused by EM radiation and offers an adaptable solution in advanced EMI-shield applications.

  8. A theory of electrical conductivity, dielectric constant, and electromagnetic interference shielding for lightweight graphene composite foams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Xiaodong; Department of Mechanical and Aerospace Engineering, Rutgers University, New Brunswick, New Jersey 08903; Wang, Yang

    This work was driven by the need to understand the electromagnetic interference (EMI) shielding effectiveness (SE) of light weight, flexible, and high performance graphene composite foams, but as EMI SE of a material depends on its electrical conductivity, dielectric permittivity, and magnetic permeability, the investigation of these three properties also became a priority. In this paper, we first present a continuum theory to determine these three electromagnetic properties, and then use the obtained properties to evaluate the EMI SE of the foam. A two-scale composite model is conceived to evaluate these three properties, with the large one being the skeleton-voidmore » composite and the small one being the graphene-polymer composite that serves as the skeleton of the foam. To evaluate the properties of the skeleton, the effective-medium approach is taken as the starting point. Subsequently, the effect of an imperfect interface and the contributions of electron tunneling to the interfacial conductivity and Maxwell-Wagner-Sillars polarization mechanism to the dielectric constant are also implemented. The derived skeleton properties are then utilized on the large scale to determine the three properties of the composite foam at a given porosity. Then a uniform plane electromagnetic wave is considered to evaluate the EMI SE of the foam. It is demonstrated that the electrical conductivity, dielectric constant, and EMI SE of the foam calculated from the developed theory are in general agreement with the reported experimental data of graphene/PDMS composite foams. The theory is further proven to be valid for the EMI SE of solid graphene/epoxy and solid carbon nanotube/epoxy nanocomposites. It is also shown that, among the three electromagnetic properties, electrical conductivity has the strongest influence on the EMI shielding effectiveness.« less

  9. Hydrometry's classical and Innovative methods and tools comparison for Stara river flows at Agios Germanos monitoring station in north-west Greece.

    NASA Astrophysics Data System (ADS)

    Filintas, Agathos, , Dr; Hatzigiannakis, Evagellos, , Dr; Arampatzis, George, , Dr; Ilias, Andreas; Panagopoulos, Andreas, , Dr; Hatzispiroglou, Ioannis

    2015-04-01

    The aim of the present study is a thorough comparison of hydrometry's conventional and innovative methods-tools for river flow monitoring. A case study was conducted in Stara river at Agios Germanos monitoring station (northwest Greece), in order to investigate possible deviations between conventional and innovative methods-tools on river flow velocity and discharge. For this study, two flowmeters were used, which manufac-tured in 2013 (OTT Messtechnik Gmbh, 2013), as follows: a) A conventional propeller flow velocity meter (OTT-Model C2) which is a me-chanical current flow meter with a certification of calibration BARGO, operated with a rod and a relocating device, along with a digital measuring device including an elec-tronic flow calculator, data logger and real time control display unit. The flowmeter has a measurement velocity range 0.025-4.000 m/s. b) An innovative electromagnetic flowmeter (OTT-Model MF pro) which it is con-sisted of a compact and light-weight sensor and a robust handheld unit. Both system components are designed to be attached to conventional wading rods. The electromag-netic flowmeter uses Faraday's Law of electromagnetic induction to measure the process flow. When an electrically conductive fluid flows along the meter, an electrode voltage is induced between a pair of electrodes placed at right angles to the direction of mag-netic field. The electrode voltage is directly proportional to the average fluid velocity. The electromagnetic flowmeter was operated with a rod and relocating device, along with a digital measuring device with various logging and graphical capabilities and vari-ous methods of velocity measurement (ISO/USGS standards). The flowmeter has a measurement velocity range 0.000-6.000 m/s. The river flow data were averaged over a pair measurement of 60+60 seconds and the measured river water flow velocity, depths and widths of the segments were used for the estimation of cross-section's mean flow velocity in each measured segment. Then it was used the mid-section method for the overall discharge calculation of all segments flow area. The cross-section characteristics, the river flow velocity of segments and the mean water flow velocity and discharge total profile were measured, calculated and an-notated respectively. A series of concurrent conventional and innovative (electromag-netic) flow measurements were performed during 2014. The results and statistical analysis showed that Froude number during the measurement period in all cases was Fr<1 which means that the water flow of the Stara river is classified as subcritical flow. The 12 months' study showed various advantages for the elec-tromagnetic sensor that is virtually maintenance-free because there are no moving parts, no calibration was required in practice, and it can be used even in the lowest water ve-locities from 0.000 m/s. Moreover, based on the concurrent hydromeasurements of the Stara River, on the velocity and discharge modelling and the statistical analysis, it was found that there was not a significant statistical difference (α=0.05) between mean velocity measured with a) conventional and b) electromagnetic method which seems to be more accurate in low velocities where a significant statistical difference was found. Acknowledgments Data in this study are collected in the framework of the elaboration of the national water resources monitoring network, supervised by the Special Secretariat for Water-Hellenic Ministry for the Environment and Climate Change. This project is elaborated in the framework of the operational program "Environment and Sustainable Development" which is co-funded by the National Strategic Reference Framework (NSRF) and the Public Investment Program (PIP).

  10. A Wireless Optogenetic Headstage with Multichannel Electrophysiological Recording Capability

    PubMed Central

    Gagnon-Turcotte, Gabriel; Avakh Kisomi, Alireza; Ameli, Reza; Dufresne Camaro, Charles-Olivier; LeChasseur, Yoan; Néron, Jean-Luc; Brule Bareil, Paul; Fortier, Paul; Bories, Cyril; de Koninck, Yves; Gosselin, Benoit

    2015-01-01

    We present a small and lightweight fully wireless optogenetic headstage capable of optical neural stimulation and electrophysiological recording. The headstage is suitable for conducting experiments with small transgenic rodents, and features two implantable fiber-coupled light-emitting diode (LED) and two electrophysiological recording channels. This system is powered by a small lithium-ion battery and is entirely built using low-cost commercial off-the-shelf components for better flexibility, reduced development time and lower cost. Light stimulation uses customizable stimulation patterns of varying frequency and duty cycle. The optical power that is sourced from the LED is delivered to target light-sensitive neurons using implantable optical fibers, which provide a measured optical power density of 70 mW/mm2 at the tip. The headstage is using a novel foldable rigid-flex printed circuit board design, which results into a lightweight and compact device. Recording experiments performed in the cerebral cortex of transgenic ChR2 mice under anesthetized conditions show that the proposed headstage can trigger neuronal activity using optical stimulation, while recording microvolt amplitude electrophysiological signals. PMID:26371006

  11. Robotic hand with locking mechanism using TCP muscles for applications in prosthetic hand and humanoids

    NASA Astrophysics Data System (ADS)

    Saharan, Lokesh; Tadesse, Yonas

    2016-04-01

    This paper presents a biomimetic, lightweight, 3D printed and customizable robotic hand with locking mechanism consisting of Twisted and Coiled Polymer (TCP) muscles based on nylon precursor fibers as artificial muscles. Previously, we have presented a small-sized biomimetic hand using nylon based artificial muscles and fishing line muscles as actuators. The current study focuses on an adult-sized prosthetic hand with improved design and a position/force locking system. Energy efficiency is always a matter of concern to make compact, lightweight, durable and cost effective devices. In natural human hand, if we keep holding objects for long time, we get tired because of continuous use of energy for keeping the fingers in certain positions. Similarly, in prosthetic hands we also need to provide energy continuously to artificial muscles to hold the object for a certain period of time, which is certainly not energy efficient. In this work we, describe the design of the robotic hand and locking mechanism along with the experimental results on the performance of the locking mechanism.

  12. Lightweight Radiator System for a Spacecraft

    NASA Technical Reports Server (NTRS)

    Copeland, Robert J.; Mason, Georgia; Weislogel, Mark M.

    2005-01-01

    Three documents describe various aspects of a proposed lightweight, deployable radiator system for dissipating excess heat from the life-support system of a habitable spacecraft. The first document focuses on a radiator tube that would include a thin metal liner surrounded and supported by a thicker carbon-fiber-reinforced composite tubular structure that, in turn, would be formed as part of a unitary composite radiator-fin structure consisting mostly of a sheet of reticulated vitreous carbon laminated between carbon-fiber-reinforced face sheets. The thermal and mechanical properties, including the anisotropies, of the component materials are taken into account in the design. The second document describes thermo-structural bumpers, in the form of exterior multiple-ply carbon-fiber sheets enclosing hollows on opposite sides of a radiator fin, which would protect the radiator tube against impinging micrometeors and orbital debris. The third document describes a radiator system that would include multiple panels containing the aforementioned components, among others. The system would also include mechanisms for deploying the panels from compact stowage. Deployment would not involve breaking and remaking of fluid connections to the radiator panels.

  13. Flexible Composite-Material Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Brown, Glen; Haggard, Roy; Harris, Paul A.

    2003-01-01

    A proposed lightweight pressure vessel would be made of a composite of high-tenacity continuous fibers and a flexible matrix material. The flexibility of this pressure vessel would render it (1) compactly stowable for transport and (2) more able to withstand impacts, relative to lightweight pressure vessels made of rigid composite materials. The vessel would be designed as a structural shell wherein the fibers would be predominantly bias-oriented, the orientations being optimized to make the fibers bear the tensile loads in the structure. Such efficient use of tension-bearing fibers would minimize or eliminate the need for stitching and fill (weft) fibers for strength. The vessel could be fabricated by techniques adapted from filament winding of prior composite-material vessels, perhaps in conjunction with the use of dry film adhesives. In addition to the high-bias main-body substructure described above, the vessel would include a low-bias end substructure to complete coverage and react peak loads. Axial elements would be overlaid to contain damage and to control fiber orientation around side openings. Fiber ring structures would be used as interfaces for connection to ancillary hardware.

  14. Design and optimization of an ultra wideband and compact microwave antenna for radiometric monitoring of brain temperature.

    PubMed

    Rodrigues, Dario B; Maccarini, Paolo F; Salahi, Sara; Oliveira, Tiago R; Pereira, Pedro J S; Limao-Vieira, Paulo; Snow, Brent W; Reudink, Doug; Stauffer, Paul R

    2014-07-01

    We present the modeling efforts on antenna design and frequency selection to monitor brain temperature during prolonged surgery using noninvasive microwave radiometry. A tapered log-spiral antenna design is chosen for its wideband characteristics that allow higher power collection from deep brain. Parametric analysis with the software HFSS is used to optimize antenna performance for deep brain temperature sensing. Radiometric antenna efficiency (η) is evaluated in terms of the ratio of power collected from brain to total power received by the antenna. Anatomical information extracted from several adult computed tomography scans is used to establish design parameters for constructing an accurate layered 3-D tissue phantom. This head phantom includes separate brain and scalp regions, with tissue equivalent liquids circulating at independent temperatures on either side of an intact skull. The optimized frequency band is 1.1-1.6 GHz producing an average antenna efficiency of 50.3% from a two turn log-spiral antenna. The entire sensor package is contained in a lightweight and low-profile 2.8 cm diameter by 1.5 cm high assembly that can be held in place over the skin with an electromagnetic interference shielding adhesive patch. The calculated radiometric equivalent brain temperature tracks within 0.4 °C of the measured brain phantom temperature when the brain phantom is lowered 10 °C and then returned to the original temperature (37 °C) over a 4.6-h experiment. The numerical and experimental results demonstrate that the optimized 2.5-cm log-spiral antenna is well suited for the noninvasive radiometric sensing of deep brain temperature.

  15. Conducting nanotubes or nanostructures based composites, method of making them and applications

    NASA Technical Reports Server (NTRS)

    Gupta, Mool C. (Inventor); Yang, Yonglai (Inventor); Dudley, Kenneth L. (Inventor); Lawrence, Roland W. (Inventor)

    2013-01-01

    An electromagnetic interference (EMI) shielding material includes a matrix of a dielectric or partially conducting polymer, such as foamed polystyrene, with carbon nanotubes or other nanostructures dispersed therein in sufficient concentration to make the material electrically conducting. The composite is formed by dispersing the nanotube material in a solvent in which the dielectric or partially conducting polymer is soluble and mixing the resulting suspension with the dielectric or partially conducting polymer. A foaming agent can be added to produce a lightweight foamed material. An organometallic compound can be added to enhance the conductivity further by decomposition into a metal phase.

  16. Two-dimensional QR-coded metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Sui, Sai; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Zhang, Jieqiu; Qu, Shaobo

    2016-01-01

    In this paper, the design of metamaterial absorbers is proposed based on QR coding and topology optimization. Such absorbers look like QR codes and can be recognized by decoding softwares as well as mobile phones. To verify the design, two lightweight wideband absorbers are designed, which can achieve wideband absorption above 90 % in 6.68-19.30 and 7.00-19.70 GHz, respectively. More importantly, polarization-independent absorption over 90 % can be maintained under incident angle within 55°. The QR code absorber not only can achieve wideband absorption, but also can carry information such as texts and Web sites. They are of important values in applications such identification and electromagnetic protection.

  17. Dark energy, non-minimal couplings and the origin of cosmic magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiménez, Jose Beltrán; Maroto, Antonio L., E-mail: jobeltra@fis.ucm.es, E-mail: maroto@fis.ucm.es

    2010-12-01

    In this work we consider the most general electromagnetic theory in curved space-time leading to linear second order differential equations, including non-minimal couplings to the space-time curvature. We assume the presence of a temporal electromagnetic background whose energy density plays the role of dark energy, as has been recently suggested. Imposing the consistency of the theory in the weak-field limit, we show that it reduces to standard electromagnetism in the presence of an effective electromagnetic current which is generated by the momentum density of the matter/energy distribution, even for neutral sources. This implies that in the presence of dark energy,more » the motion of large-scale structures generates magnetic fields. Estimates of the present amplitude of the generated seed fields for typical spiral galaxies could reach 10{sup −9} G without any amplification. In the case of compact rotating objects, the theory predicts their magnetic moments to be related to their angular momenta in the way suggested by the so called Schuster-Blackett conjecture.« less

  18. Mobility of lightweight robots over snow

    NASA Astrophysics Data System (ADS)

    Lever, James H.; Shoop, Sally A.

    2006-05-01

    Snowfields are challenging terrain for lightweight (<50 kg) unmanned ground vehicles. Deep sinkage, high snowcompaction resistance, traction loss while turning and ingestion of snow into the drive train can cause immobility within a few meters of travel. However, for suitably designed vehicles, deep snow offers a smooth, uniform surface that can obliterate obstacles. Key requirements for good over-snow mobility are low ground pressure, large clearance relative to vehicle size and a drive system that tolerates cohesive snow. A small robot will invariably encounter deep snow relative to its ground clearance. Because a single snowstorm can easily deposit 30 cm of fresh snow, robots with ground clearance less than about 10 cm must travel over the snow rather than gain support from the underlying ground. This can be accomplished using low-pressure tracks (< 1.5 kPa). Even still, snow-compaction resistance can exceed 20% of vehicle weight. Also, despite relatively high traction coefficients for low track pressures, differential or skid steering is difficult because the outboard track can easily break traction as the vehicle attempts to turn against the snow. Short track lengths (relative to track separation) or coupled articulated robots offer steering solutions for deep snow. This paper presents preliminary guidance to design lightweight robots for good mobility over snow based on mobility theory and tests of PackBot, Talon and SnoBot, a custom-designed research robot. Because many other considerations constrain robot designs, this guidance can help with development of winterization kits to improve the over-snow performance of existing robots.

  19. What's new in well logging and formation evaluation

    USGS Publications Warehouse

    Prensky, S.

    2011-01-01

    A number of significant new developments is emerging in well logging and formation evaluation. Some of the new developments include an ultrasonic wireline imager, an electromagnetic free-point indicator, wired and fiber-optic coiled tubing systems, and extreme-temperature logging-while-drilling (LWD) tools. The continued consolidation of logging and petrophysical service providers in 2010 means that these innovations are increasingly being provided by a few large companies. Weatherford International has launched a slimhole cross-dipole tool as part of the company's line of compact logging tools. The 26-ft-long Compact Cross-Dipole Sonic (CXD) tool can be run as part of a quad-combo compact logging string. Halliburton has introduced a version of its circumferential acoustic scanning tool (CAST) that runs on monoconductor cable (CAST-M) to provide high-resolution images in open hole and in cased hole for casing and cement evaluation.

  20. Embedded Spherical Localization for Micro Underwater Vehicles Based on Attenuation of Electro-Magnetic Carrier Signals

    PubMed Central

    Duecker, Daniel-André; Geist, A. René; Hengeler, Michael; Kreuzer, Edwin; Pick, Marc-André; Rausch, Viktor; Solowjow, Eugen

    2017-01-01

    Self-localization is one of the most challenging problems for deploying micro autonomous underwater vehicles (μAUV) in confined underwater environments. This paper extends a recently-developed self-localization method that is based on the attenuation of electro-magnetic waves, to the μAUV domain. We demonstrate a compact, low-cost architecture that is able to perform all signal processing steps present in the original method. The system is passive with one-way signal transmission and scales to possibly large μAUV fleets. It is based on the spherical localization concept. We present results from static and dynamic position estimation experiments and discuss the tradeoffs of the system. PMID:28445419

  1. A current-carrying coil design with improved liquid cooling arrangement

    NASA Astrophysics Data System (ADS)

    Ricci, Leonardo; Martini, Luca Matteo; Franchi, Matteo; Bertoldi, Andrea

    2013-06-01

    The design of an electromagnet requires the compliance with a number of constraints such as power supply characteristics, coil inductance and resistance, and, above all, heat dissipation, which poses the limit to the maximum achievable magnetic field. A common solution consists in using copper tubes in which a coolant flows. This approach, however, introduces further hydrodynamic concerns. To overcome these difficulties, we developed a new kind of electromagnet in which the pipe concept is replaced by a duct formed by the windings. Here we report on the realization and characterization of a compact model system in which the conductors carry a current that is one order of magnitude higher than the current allowable with conventional designs.

  2. Embedded Spherical Localization for Micro Underwater Vehicles Based on Attenuation of Electro-Magnetic Carrier Signals.

    PubMed

    Duecker, Daniel-André; Geist, A René; Hengeler, Michael; Kreuzer, Edwin; Pick, Marc-André; Rausch, Viktor; Solowjow, Eugen

    2017-04-26

    Self-localization is one of the most challenging problems for deploying micro autonomous underwater vehicles ( μ AUV) in confined underwater environments. This paper extends a recently-developed self-localization method that is based on the attenuation of electro-magnetic waves, to the μ AUV domain. We demonstrate a compact, low-cost architecture that is able to perform all signal processing steps present in the original method. The system is passive with one-way signal transmission and scales to possibly large μ AUV fleets. It is based on the spherical localization concept. We present results from static and dynamic position estimation experiments and discuss the tradeoffs of the system.

  3. Seminal magnetic fields from inflato-electromagnetic inflation

    NASA Astrophysics Data System (ADS)

    Membiela, Federico Agustín; Bellini, Mauricio

    2012-10-01

    We extend some previous attempts to explain the origin and evolution of primordial magnetic fields during inflation induced from a 5D vacuum. We show that the usual quantum fluctuations of a generalized 5D electromagnetic field cannot provide us with the desired magnetic seeds. We show that special fields without propagation on the extra non-compact dimension are needed to arrive at appreciable magnetic strengths. We also identify a new magnetic tensor field B ij in this kind of extra dimensional theory. Our results are in very good agreement with observational requirements, in particular from TeV blazars and CMB radiation limits we see that primordial cosmological magnetic fields should be close to scale invariance.

  4. Scattering from Artificial Piezoelectriclike Meta-Atoms and Molecules

    NASA Astrophysics Data System (ADS)

    Goltcman, Leonid; Hadad, Yakir

    2018-01-01

    Inspired by natural piezoelectricity, we introduce hybrid-wave electromechanical meta-atoms and metamolecules that consist of coupled electrical and mechanical oscillators with similar resonance frequencies. We explore the linearized electromechanical scattering process and demonstrate that by exploiting the hybrid-wave interaction one may enable functionalities that are forbidden otherwise. For example, we study a dimer metamolecule that is highly directional for electromagnetic waves, although it is electrically deep subwavelength. This unique behavior is a consequence of the fact that, while the metamolecule is electrically small, it is acoustically large. This idea opens vistas for a plethora of exciting dynamics and phenomena in electromagnetics and acoustics, with implications for miniaturized sensors, superresolution imaging, compact nonreciprocal antennas, and more.

  5. Compact and Lightweight Sabatier Reactor for Carbon Dioxide Reduction

    NASA Technical Reports Server (NTRS)

    Junaedi, Christian; Hawley, Kyle; Walsh, Dennis; Roychoudhury, Subir; Abney, Morgan B.; Perry, Jay L.

    2011-01-01

    The utilization of CO2 to produce life support consumables, such as O2 and H2O, via the Sabatier reaction is an important aspect of NASA s cabin Atmosphere Revitalization System and In-Situ Resource Utilization architectures for both low-earth orbit and long-term manned space missions. In the current International Space Station (ISS) and other low orbit missions, metabolically-generated CO2 is removed from the cabin air and vented into space, resulting in a net loss of O2. This requires a continuous resupply of O2 via water electrolysis, and thus highlights the need for large water storage capacity. For long-duration space missions, the amount of life support consumables is limited and resupply options are practically nonexistent, thus atmosphere resource management and recycle becomes crucial to significantly reduce necessary O2 and H2O storage. Additionally, the potential use of the Martian CO2-rich atmosphere and Lunar regolith to generate life support consumables and propellant fuels is of interest to NASA. Precision Combustion, Inc. (PCI) has developed a compact, lightweight Microlith(Registered TradeMark)-based Sabatier (CO2 methanation) reactor which demonstrates the capability of achieving high CO2 conversion and near 100% CH4 selectivity at space velocities of 30,000-60,000 hr-1. The combination of the Microlith(Registered TradeMark) substrates and durable, novel catalyst coating permitted efficient Sabatier reactor operation that favors high reactant conversion, high selectivity, and long-term durability. This paper presents the reactor development and performance results at various operating conditions. Additionally, results from 100-hr durability tests and mechanical vibration tests are discussed.

  6. Compact drilling and sample system

    NASA Technical Reports Server (NTRS)

    Gillis-Smith, Greg R.; Petercsak, Doug

    1998-01-01

    The Compact Drilling and Sample System (CDSS) was developed to drill into terrestrial, cometary, and asteroid material in a cryogenic, vacuum environment in order to acquire subsurface samples. Although drills were used by the Apollo astronauts some 20 years ago, this drill is a fraction of the mass and power and operates completely autonomously, able to drill, acquire, transport, dock, and release sample containers in science instruments. The CDSS has incorporated into its control system the ability to gather science data about the material being drilled by measuring drilling rate per force applied and torque. This drill will be able to optimize rotation and thrust in order to achieve the highest drilling rate possible in any given sample. The drill can be commanded to drill at a specified force, so that force imparted on the rover or lander is limited. This paper will discuss the cryo dc brush motors, carbide gears, cryogenic lubrication, quick-release interchangeable sampling drill bits, percussion drilling and the control system developed to achieve autonomous, cryogenic, vacuum, lightweight drilling.

  7. Development of a new linearly variable edge filter (LVEF)-based compact slit-less mini-spectrometer

    NASA Astrophysics Data System (ADS)

    Mahmoud, Khaled; Park, Seongchong; Lee, Dong-Hoon

    2018-02-01

    This paper presents the development of a compact charge-coupled detector (CCD) spectrometer. We describe the design, concept and characterization of VNIR linear variable edge filter (LVEF)- based mini-spectrometer. The new instrument has been realized for operation in the 300 nm to 850 nm wavelength range. The instrument consists of a linear variable edge filter in front of CCD array. Low-size, light-weight and low-cost could be achieved using the linearly variable filters with no need to use any moving parts for wavelength selection as in the case of commercial spectrometers available in the market. This overview discusses the main components characteristics, the main concept with the main advantages and limitations reported. Experimental characteristics of the LVEFs are described. The mathematical approach to get the position-dependent slit function of the presented prototype spectrometer and its numerical de-convolution solution for a spectrum reconstruction is described. The performance of our prototype instrument is demonstrated by measuring the spectrum of a reference light source.

  8. Fast-Neutron Survey With Compact Plastic Scintillation Detectors.

    PubMed

    Preston, Rhys M; Tickner, James R

    2017-07-01

    With the rise of the Silicon Photomultiplier (SiPM), it is now practical to build compact scintillation detectors well suited to portable use. A prototype survey meter for fast-neutrons and gamma-rays, based around an EJ-299-34 plastic scintillator with SiPM readout, has been developed and tested. A custom digital pulse processor was used to perform pulse shape discrimination on-the-fly. Ambient dose equivalent H*(10) was calculated by means of two energy-dependent 'G-functions'. The sensitivity was calculated to be between 0.10 and 0.22 cps/(µSv/hr) for fast-neutrons with energies above 2.5 MeV. The prototype was used to survey various laboratory radiation fields, with the readings compared with commercial survey meters. The high sensitivity and lightweight nature of this detector makes it promising for rapid survey of the mixed neutron/gamma-ray fields encountered in industry and homeland security. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Permanent magnets as biasing mechanism for improving the performance of circular dielectric elastomer out-of-plane actuators

    NASA Astrophysics Data System (ADS)

    Loew, P.; Rizzello, G.; Seelecke, S.

    2017-04-01

    Dielectric Elastomers (DE) represent an attractive technology for the realization of mechatronic actuators, due to their lightweight, high energy density, high energy efficiency, scalability, and low noise features. In order to produce a stroke, a DE membrane needs to be pre-loaded with a mechanical biasing mechanism. In our previous works, we compared the stroke achieved with different biasing mechanisms for a circular out-of-plane DE Actuator (DEA), i.e., hanging masses, linear and bi-stable springs. The novel contribution of this paper is the investigation of a biasing design approach based on permanent magnets. The resulting magnet-based actuators are usually more compact than the spring-based ones, allowing to obtain more compact systems. Two design solutions are proposed and compared, namely a first one characterized by a stable actuation, and a second one which permits to achieve a higher stroke, but it is intrinsically unstable. The effectiveness of the novel design solution is assessed by means of several experiments.

  10. Laminated grid and web magnetic cores

    DOEpatents

    Sefko, John; Pavlik, Norman M.

    1984-01-01

    A laminated magnetic core characterized by an electromagnetic core having core legs which comprise elongated apertures and edge notches disposed transversely to the longitudinal axis of the legs, such as high reluctance cores with linear magnetization characteristics for high voltage shunt reactors. In one embodiment the apertures include compact bodies of microlaminations for more flexibility and control in adjusting permeability and/or core reluctance.

  11. Compact, Low-Noise Magnetic Sensor with Fluxgate (DC) and Induction (AC) Modes of Operation

    DTIC Science & Technology

    2009-07-01

    induction sensor and the fluxgate magnetometer . ......................................... 2 Figure 3.1 - Impulse response of a 4” long coil (#6...Block diagram of the Year 2, Task 2 fluxgate magnetometer . ................................... 6 Figure 3.3 - FIS-prototype magnetic-field...and demonstrated an innovative dual-mode, fluxgate -induction sensor (FIS) that combines a fluxgate magnetometer and an electromagnetic (EM) induction

  12. An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi -GBM Detection of GRB 170817A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, A.; Roberts, O. J.; Connaughton, V.

    On 2017 August 17 at 12:41:06 UTC the Fermi Gamma-ray Burst Monitor (GBM) detected and triggered on the short gamma-ray burst (GRB) 170817A. Approximately 1.7 s prior to this GRB, the Laser Interferometer Gravitational-wave Observatory triggered on a binary compact merger candidate associated with the GRB. This is the first unambiguous coincident observation of gravitational waves and electromagnetic radiation from a single astrophysical source and marks the start of gravitational-wave multi-messenger astronomy. We report the GBM observations and analysis of this ordinary short GRB, which extraordinarily confirms that at least some short GRBs are produced by binary compact mergers.

  13. An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A

    NASA Astrophysics Data System (ADS)

    Goldstein, A.; Veres, P.; Burns, E.; Briggs, M. S.; Hamburg, R.; Kocevski, D.; Wilson-Hodge, C. A.; Preece, R. D.; Poolakkil, S.; Roberts, O. J.; Hui, C. M.; Connaughton, V.; Racusin, J.; von Kienlin, A.; Dal Canton, T.; Christensen, N.; Littenberg, T.; Siellez, K.; Blackburn, L.; Broida, J.; Bissaldi, E.; Cleveland, W. H.; Gibby, M. H.; Giles, M. M.; Kippen, R. M.; McBreen, S.; McEnery, J.; Meegan, C. A.; Paciesas, W. S.; Stanbro, M.

    2017-10-01

    On 2017 August 17 at 12:41:06 UTC the Fermi Gamma-ray Burst Monitor (GBM) detected and triggered on the short gamma-ray burst (GRB) 170817A. Approximately 1.7 s prior to this GRB, the Laser Interferometer Gravitational-wave Observatory triggered on a binary compact merger candidate associated with the GRB. This is the first unambiguous coincident observation of gravitational waves and electromagnetic radiation from a single astrophysical source and marks the start of gravitational-wave multi-messenger astronomy. We report the GBM observations and analysis of this ordinary short GRB, which extraordinarily confirms that at least some short GRBs are produced by binary compact mergers.

  14. Numerical Investigation for Strengthening Heat Transfer Mechanism of the Tube-Row Heat Exchanger in a Compact Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Chen, Zijian; Liu, Hongwu; Yue, Hao; Chen, Dongbo; Qin, Delei

    2018-04-01

    According to the basic principle of heat transfer enhancement, a 1-kW compact thermoelectric generator (TEG) is proposed that is suitable for use at high temperatures and high flow speeds. The associated heat exchanger has a tube-row structure with a guide-plate to control the thermal current. The heat exchanger has a volume of 7 L, and the TEG has a mass of 8 kg (excluding the thermoelectric modules (TEMs)). In this paper, the heat transfer process of the tube-row exchanger is modeled and analyzed numerically; and the influences of its structure on the heat transfer and temperature status of the TEMs are investigated. The results show that use of the thin - wall pipes and increase of surface roughness inside the pipes are effective ways to improve the heat transfer efficiency, obtain the rated surface temperature, and make the TEG compact and lightweight. Furthermore, under the same conditions, the calculated results are compared with the data of a fin heat exchanger. The comparison results show that the volume and mass of the tube-row heat exchanger are 19% and 33% lower than those of the fin type unit, and that the pressure drop is reduced by 16%. In addition, the average temperature in the tube-row heat exchanger is increased by 15°C and the average temperature difference is increased by 19°C; the tube-row TEG has a more compact volume and better temperature characteristics.

  15. Numerical Investigation for Strengthening Heat Transfer Mechanism of the Tube-Row Heat Exchanger in a Compact Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Chen, Zijian; Liu, Hongwu; Yue, Hao; Chen, Dongbo; Qin, Delei

    2018-06-01

    According to the basic principle of heat transfer enhancement, a 1-kW compact thermoelectric generator (TEG) is proposed that is suitable for use at high temperatures and high flow speeds. The associated heat exchanger has a tube-row structure with a guide-plate to control the thermal current. The heat exchanger has a volume of 7 L, and the TEG has a mass of 8 kg (excluding the thermoelectric modules (TEMs)). In this paper, the heat transfer process of the tube-row exchanger is modeled and analyzed numerically; and the influences of its structure on the heat transfer and temperature status of the TEMs are investigated. The results show that use of the thin - wall pipes and increase of surface roughness inside the pipes are effective ways to improve the heat transfer efficiency, obtain the rated surface temperature, and make the TEG compact and lightweight. Furthermore, under the same conditions, the calculated results are compared with the data of a fin heat exchanger. The comparison results show that the volume and mass of the tube-row heat exchanger are 19% and 33% lower than those of the fin type unit, and that the pressure drop is reduced by 16%. In addition, the average temperature in the tube-row heat exchanger is increased by 15°C and the average temperature difference is increased by 19°C; the tube-row TEG has a more compact volume and better temperature characteristics.

  16. Compact Hyperspectral Imaging System (cosi) for Small Remotely Piloted Aircraft Systems (rpas) - System Overview and First Performance Evaluation Results

    NASA Astrophysics Data System (ADS)

    Sima, A. A.; Baeck, P.; Nuyts, D.; Delalieux, S.; Livens, S.; Blommaert, J.; Delauré, B.; Boonen, M.

    2016-06-01

    This paper gives an overview of the new COmpact hyperSpectral Imaging (COSI) system recently developed at the Flemish Institute for Technological Research (VITO, Belgium) and suitable for remotely piloted aircraft systems. A hyperspectral dataset captured from a multirotor platform over a strawberry field is presented and explored in order to assess spectral bands co-registration quality. Thanks to application of line based interference filters deposited directly on the detector wafer the COSI camera is compact and lightweight (total mass of 500g), and captures 72 narrow (FWHM: 5nm to 10 nm) bands in the spectral range of 600-900 nm. Covering the region of red edge (680 nm to 730 nm) allows for deriving plant chlorophyll content, biomass and hydric status indicators, making the camera suitable for agriculture purposes. Additionally to the orthorectified hypercube digital terrain model can be derived enabling various analyses requiring object height, e.g. plant height in vegetation growth monitoring. Geometric data quality assessment proves that the COSI camera and the dedicated data processing chain are capable to deliver very high resolution data (centimetre level) where spectral information can be correctly derived. Obtained results are comparable or better than results reported in similar studies for an alternative system based on the Fabry-Pérot interferometer.

  17. 3D wide field-of-view Gabor-domain optical coherence microscopy advancing real-time in-vivo imaging and metrology

    NASA Astrophysics Data System (ADS)

    Canavesi, Cristina; Cogliati, Andrea; Hayes, Adam; Tankam, Patrice; Santhanam, Anand; Rolland, Jannick P.

    2017-02-01

    Real-time volumetric high-definition wide-field-of-view in-vivo cellular imaging requires micron-scale resolution in 3D. Compactness of the handheld device and distortion-free images with cellular resolution are also critically required for onsite use in clinical applications. By integrating a custom liquid lens-based microscope and a dual-axis MEMS scanner in a compact handheld probe, Gabor-domain optical coherence microscopy (GD-OCM) breaks the lateral resolution limit of optical coherence tomography through depth, overcoming the tradeoff between numerical aperture and depth of focus, enabling advances in biotechnology. Furthermore, distortion-free imaging with no post-processing is achieved with a compact, lightweight handheld MEMS scanner that obtained a 12-fold reduction in volume and 17-fold reduction in weight over a previous dual-mirror galvanometer-based scanner. Approaching the holy grail of medical imaging - noninvasive real-time imaging with histologic resolution - GD-OCM demonstrates invariant resolution of 2 μm throughout a volume of 1 x 1 x 0.6 mm3, acquired and visualized in less than 2 minutes with parallel processing on graphics processing units. Results on the metrology of manufactured materials and imaging of human tissue with GD-OCM are presented.

  18. Focus drive mechanism for the IUE scientific instrument

    NASA Technical Reports Server (NTRS)

    Devine, E. J.; Dennis, T. B., Jr.

    1977-01-01

    A compact, lightweight mechanism was developed for in-orbit adjustment of the position of the secondary mirror (focusing) of the International Ultraviolet Explorer telescope. This device is a linear drive with small and highly repeatable step increments. Extremely close tolerances are also held in tilt and decentering. The unique mechanization is described with attention to the design details that contribute to positional accuracy. Lubrication, materials, thermal considerations, sealing, detenting against launch loads, and other features peculiar to flight hardware are discussed. The methods employed for mounting the low expansion quartz mirror with minimum distortion are also given. Results of qualification and acceptance testing, are included.

  19. Tool and process for miniature explosive joining of tubes

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J. (Inventor); Bailey, James W. (Inventor)

    1987-01-01

    A tool and process to be used in the explosive joining of tubes is disclosed. The tool consists of an initiator, a tool form, and a ribbon explosive. The assembled tool is a compact, storable, and safe device suitable for explosive joining of small, lightweight tubes down to 0.20 inch in diameter. The invention is inserted into either another tube or a tube plate. A shim or standoff between the two surfaces to be welded is necessary. Initiation of the explosive inside the tube results in a high velocity, angular collision between the mating surfaces. This collision creates surface melts and collision bonding wherein electron-sharing linkups are formed.

  20. High-Performance Power-Semiconductor Packages

    NASA Technical Reports Server (NTRS)

    Renz, David; Hansen, Irving; Berman, Albert

    1989-01-01

    A 600-V, 50-A transistor and 1,200-V, 50-A diode in rugged, compact, lightweight packages intended for use in inverter-type power supplies having switching frequencies up to 20 kHz. Packages provide low-inductance connections, low loss, electrical isolation, and long-life hermetic seal. Low inductance achieved by making all electrical connections to each package on same plane. Also reduces high-frequency losses by reducing coupling into inherent shorted turns in packaging material around conductor axes. Stranded internal power conductors aid conduction at high frequencies, where skin effect predominates. Design of packages solves historical problem of separation of electrical interface from thermal interface of high-power semiconductor device.

  1. Water Filter

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A compact, lightweight electrolytic water sterilizer available through Ambassador Marketing, generates silver ions in concentrations of 50 to 100 parts per billion in water flow system. The silver ions serve as an effective bactericide/deodorizer. Tap water passes through filtering element of silver that has been chemically plated onto activated carbon. The silver inhibits bacterial growth and the activated carbon removes objectionable tastes and odors caused by addition of chlorine and other chemicals in municipal water supply. The three models available are a kitchen unit, a "Tourister" unit for portable use while traveling and a refrigerator unit that attaches to the ice cube water line. A filter will treat 5,000 to 10,000 gallons of water.

  2. On-Orbit Autonomous Assembly from Nanosatellites

    NASA Technical Reports Server (NTRS)

    Murchison, Luke S.; Martinez, Andres; Petro, Andrew

    2015-01-01

    The On-Orbit Autonomous Assembly from Nanosatellites (OAAN) project will demonstrate autonomous control algorithms for rendezvous and docking maneuvers; low-power reconfigurable magnetic docking technology; and compact, lightweight and inexpensive precision relative navigation using carrier-phase differential (CD) GPS with a three-degree of freedom ground demonstration. CDGPS is a specific relative position determination method that measures the phase of the GPS carrier wave to yield relative position data accurate to.4 inch (1 centimeter). CDGPS is a technology commonly found in the surveying industry. The development and demonstration of these technologies will fill a current gap in the availability of proven autonomous rendezvous and docking systems for small satellites.

  3. Field of view of limitations in see-through HMD using geometric waveguides.

    PubMed

    DeHoog, Edward; Holmstedt, Jason; Aye, Tin

    2016-08-01

    Geometric waveguides are being integrated into head-mounted display (HMD) systems, where having see-through capability in a compact, lightweight form factor is required. We developed methods for determining the field of view (FOV) of such waveguide HMD systems and have analytically derived the FOV for waveguides using planar and curved geometries. By using real ray-tracing methods, we are able to show how the geometry and index of refraction of the waveguide, as well as the properties of the coupling optics, impact the FOV. Use of this analysis allows one to determine the maximum theoretical FOV of a planar or curved waveguide-based system.

  4. Fixed-focus camera objective for small remote sensing satellites

    NASA Astrophysics Data System (ADS)

    Topaz, Jeremy M.; Braun, Ofer; Freiman, Dov

    1993-09-01

    An athermalized objective has been designed for a compact, lightweight push-broom camera which is under development at El-Op Ltd. for use in small remote-sensing satellites. The high performance objective has a fixed focus setting, but maintains focus passively over the full range of temperatures encountered in small satellites. The lens is an F/5.0, 320 mm focal length Tessar type, operating over the range 0.5 - 0.9 micrometers . It has a 16 degree(s) field of view and accommodates various state-of-the-art silicon detector arrays. The design and performance of the objective is described in this paper.

  5. Nuclear power systems for lunar and Mars exploration

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.; Bozek, J. M.

    1990-01-01

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems whether solar, chemical or nuclear to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems have been identified as critical needs for these missions. These mission scenarios, the concomitant power system requirements, and power system options considered are discussed. The significant potential benefits of nuclear power are identified for meeting the power needs of the above applications.

  6. A miniature fuel reformer system for portable power sources

    NASA Astrophysics Data System (ADS)

    Dolanc, Gregor; Belavič, Darko; Hrovat, Marko; Hočevar, Stanko; Pohar, Andrej; Petrovčič, Janko; Musizza, Bojan

    2014-12-01

    A miniature methanol reformer system has been designed and built to technology readiness level exceeding a laboratory prototype. It is intended to feed fuel cells with electric power up to 100 W and contains a complete setup of the technological elements: catalytic reforming and PROX reactors, a combustor, evaporators, actuation and sensing elements, and a control unit. The system is engineered not only for performance and quality of the reformate, but also for its lightweight and compact design, seamless integration of elements, low internal electric consumption, and safety. In the paper, the design of the system is presented by focussing on its miniaturisation, integration, and process control.

  7. Development and Testing of the Contaminant Insensitive Sublimator

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Stephan, Ryan A.; Westheimer, David T.

    2006-01-01

    Sublimators have been used for heat rejection for a variety of space applications including the Apollo Lunar Module and the Extravehicular Mobility Unit (EMU). Some of the attractive features of sublimators are that they are compact, lightweight, and self-regulating. One of the drawbacks of previous designs has been sensitivity to non-volatile contamination in the feedwater, which can clog relatively small pores (approx.3-6 microns) in the porous plates where ice forms and sublimates. A new design that is less sensitive to contaminants is being developed at the Johnson Space Center. This paper describes the design, fabrication, and testing of the Contaminant Insensitive Sublimator (CIS) Engineering Development Unit (EDU).

  8. Numerical investigation of electromagnetic pulse welded interfaces between dissimilar metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wei; Sun, Xin

    Electromagnetic pulse welding (EMPW), an innovative high-speed joining technique, is a potential method for the automotive industry in joining and assembly of dissimilar lightweight metals with drastically different melting temperatures and other thermal physical properties, such as thermal conductivity and thermal expansion coefficients. The weld quality of EMPW is significantly affected by a variety of interacting physical phenomena including large plastic deformation, materials mixing, localized heating and rapid cooling, possible localized melting and subsequent diffusion and solidification, micro-cracking and void, etc. In the present study, a thermo-mechanically coupled dynamic model has been developed to quantitatively resolve the high-speed impact joiningmore » interface characteristics as well as the process-induced interface temperature evolution, defect formation and possible microstructural composition variation. Reasonably good agreement has been obtained between the predicted results and experimental measurements in terms of interfacial morphology characteristics. The modeling framework is expected to provide further understanding of the hierarchical interfacial features of the non-equilibrium material joining process and weld formation mechanisms involved in the EMPW operation, thus accelerating future development and deployment of this advanced joining technology.« less

  9. Absorption and Reflection Contributions to the High Performance of Electromagnetic Waves Shielding Materials Fabricated by Compositing Leather Matrix with Metal Nanoparticles.

    PubMed

    Liu, Chang; Wang, Xiaoling; Huang, Xin; Liao, Xuepin; Shi, Bi

    2018-04-25

    Leather matrix (LM), a natural dielectric material, features a hierarchically suprafibrillar structure and abundant dipoles, which provides the possibility to dissipate electromagnetic waves (EW) energy via dipole relaxation combined with multiple diffuse reflections. Conventionally, metal-based materials are used as EW shielding materials due to that their high conductivity can reflect EW effectively. Herein, a lightweight and high-performance EW shielding composite with both absorption and reflection ability to EW was developed by coating metal nanoparticles (MNPs) onto LM. The as-prepared metal/LM membrane with only 4.58 wt % of coated MNPs showed excellent EW shielding effectiveness of ∼76.0 dB and specific shielding effectiveness of ∼200.0 dB cm 3 g -1 in the frequency range of 0.01-3.0 GHz, implying that more than 99.98% of EW was shielded. Further investigations indicated that the high shielding performances of the metal/LM membrane were attributed to the cooperative shielding mechanism between LM and the coating of MNPs.

  10. Symposium on Electromagnetic Launcher Technology, 5th, Sandestin, FL, Apr. 3-5, 1990, Proceedings

    NASA Astrophysics Data System (ADS)

    Gooden, Clarence E.

    1991-01-01

    The present conference on electromagnetic accelerators (EMAs) and railguns (RGs) discusses active-current management for four-rail RGs, the design of a compulsator-drive 60-caliber RG, EMA studies with augmented rails, muzzle-shunt augmentation of conventional RGs, effect of in-bore gas on RG performance, the distributed-energy store RG, plasma diagnostics for high power ignitron development, a review of EMA armature research, RG hybrid armatures, a new solid-armature design concept, and the electrodynamics of RG plasma armatures. Also discussed is RG modeling at speed using three-dimensional finite elements, power supply technology for EMAs, rotating machine power supplies for next-generation EMAs, advanced EMA power supplies with magnetic-flux compression, metal-to-metal switches for large currents, lightweight high-effiency energy-storage transformers, hypervelocity projectile development for EMAs, structural design issues for EMA projectiles, stiff RGs, a reinforced Al conductor for cryogenic applications, mass-stabilized projectile designs for EMA launch, indictively-commutated coilguns, an actively switched pulsed induction accelerator, a plasma gun-augmented electrothermal accelerator, a symmetrical rail accelerator, and a travelling-wave synchronous coil gun.

  11. Sandwich-structured C/C-SiC composites fabricated by electromagnetic-coupling chemical vapor infiltration.

    PubMed

    Hu, Chenglong; Hong, Wenhu; Xu, Xiaojing; Tang, Sufang; Du, Shanyi; Cheng, Hui-Ming

    2017-10-13

    Carbon fiber (CF) reinforced carbon-silicon carbide (C/C-SiC) composites are one of the most promising lightweight materials for re-entry thermal protection, rocket nozzles and brake discs applications. In this paper, a novel sandwich-structured C/C-SiC composite, containing two exterior C/SiC layers, two gradient C/C-SiC layers and a C/C core, has been designed and fabricated by two-step electromagnetic-coupling chemical vapor infiltration (E-CVI) for a 20-hour deposition time. The cross-section morphologies, interface microstructures and SiC-matrix growth characteristics and compositions of the composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), respectively. Microstructure characterization indicates that the SiC growth includes an initial amorphous SiC zone, a gradual crystallization of SiC and grow-up of nano-crystal, and a columnar grain region. The sandwich structure, rapid deposition rate and growth characteristics are attributed to the formation of thermal gradient and the establishment of electromagnetic field in the E-CVI process. The composite possesses low density of 1.84 g/cm 3 , high flexural strength of 325 MPa, and low linear ablation rate of 0.38 μm/s under exposure to 5-cycle oxyacetylene flame for 1000 s at ~1700 °C.

  12. Optical Fibre Pressure Sensors in Medical Applications.

    PubMed

    Poeggel, Sven; Tosi, Daniele; Duraibabu, DineshBabu; Leen, Gabriel; McGrath, Deirdre; Lewis, Elfed

    2015-07-15

    This article is focused on reviewing the current state-of-the-art of optical fibre pressure sensors for medical applications. Optical fibres have inherent advantages due to their small size, immunity to electromagnetic interferences and their suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based pressure sensors, together with being lightweight and flexible, mean that they are minimally invasive for many medical applications and, thus, particularly suited to in vivo measurement. This means that the sensor can be placed directly inside a patient, e.g., for urodynamic and cardiovascular assessment. This paper presents an overview of the recent developments in optical fibre-based pressure measurements with particular reference to these application areas.

  13. Active Collision Avoidance for Planetary Landers

    NASA Technical Reports Server (NTRS)

    Rickman, Doug; Hannan, Mike; Srinivasan, Karthik

    2015-01-01

    The use of automotive radar systems are being evaluated for collision avoidance in planetary landers. Our focus is to develop a low-cost, light-weight collision avoidance system that overcomes the drawbacks identified with optical-based systems. We also seek to complement the Autonomous Landing and Hazard Avoidance Technology system by providing mission planners an alternative system that can be used on low-cost, small robotic missions and in close approach. Our approach takes advantage of how electromagnetic radiation interacts with solids. As the wavelength increases, the sensitivity of the radiation to isolated solids of a specific particle size decreases. Thus, rocket exhaust-blown dust particles, which have major significance in visible wavelengths, have much less significance at radar wavelengths.

  14. Optical Fibre Pressure Sensors in Medical Applications

    PubMed Central

    Poeggel, Sven; Tosi, Daniele; Duraibabu, DineshBabu; Leen, Gabriel; McGrath, Deirdre; Lewis, Elfed

    2015-01-01

    This article is focused on reviewing the current state-of-the-art of optical fibre pressure sensors for medical applications. Optical fibres have inherent advantages due to their small size, immunity to electromagnetic interferences and their suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based pressure sensors, together with being lightweight and flexible, mean that they are minimally invasive for many medical applications and, thus, particularly suited to in vivo measurement. This means that the sensor can be placed directly inside a patient, e.g., for urodynamic and cardiovascular assessment. This paper presents an overview of the recent developments in optical fibre-based pressure measurements with particular reference to these application areas. PMID:26184228

  15. Mechanical strain energy shuttle for aircraft morphing via wing twist or structural deformation

    NASA Astrophysics Data System (ADS)

    Clingman, Dan J.; Ruggeri, Robert T.

    2004-07-01

    Direct structural deformation to achieve aerodynamic benefit is difficult because large actuators must supply energy for structural strain and aerodynamic loads. This ppaer presents a mechanism that allows most of the energy required to twist or deform a wing to be stored in descrete springs. When this device is used, only sufficient energy is provided to control the position of the wing. This concept allows lightweight actuators to perform wing twisting and other structural distortions, and it reduces the onboard mass of the wing-twist system. The energy shuttle can be used with any actuator and it has been adapted for used with shape memory alloy, piezoelectric, and electromagnetic actuators.

  16. Waveguides for performing enzymatic reactions

    DOEpatents

    Levene; Michael J. , Korlach; Jonas , Turner; Stephen W. , Craighead; Harold G. , Webb; Watt W.

    2007-11-06

    The present invention is directed to a method and an apparatus for analysis of an analyte. The method involves providing a zero-mode waveguide which includes a cladding surrounding a core where the cladding is configured to preclude propagation of electromagnetic energy of a frequency less than a cutoff frequency longitudinally through the core of the zero-mode waveguide. The analyte is positioned in the core of the zero-mode waveguide and is then subjected, in the core of the zero-mode wave guide, to activating electromagnetic radiation of a frequency less than the cut-off frequency under conditions effective to permit analysis of the analyte in an effective observation volume which is more compact than if the analysis were carried out in the absence of the zero-mode waveguide.

  17. Zero-mode waveguides

    DOEpatents

    Levene, Michael J.; Korlach, Jonas; Turner, Stephen W.; Craighead, Harold G.; Webb, Watt W.

    2007-02-20

    The present invention is directed to a method and an apparatus for analysis of an analyte. The method involves providing a zero-mode waveguide which includes a cladding surrounding a core where the cladding is configured to preclude propagation of electromagnetic energy of a frequency less than a cutoff frequency longitudinally through the core of the zero-mode waveguide. The analyte is positioned in the core of the zero-mode waveguide and is then subjected, in the core of the zero-mode waveguide, to activating electromagnetic radiation of a frequency less than the cut-off frequency under conditions effective to permit analysis of the analyte in an effective observation volume which is more compact than if the analysis were carried out in the absence of the zero-mode waveguide.

  18. Prospects for a precision timing upgrade of the CMS PbWO crystal electromagnetic calorimeter for the HL-LHC

    NASA Astrophysics Data System (ADS)

    Massironi, A.

    2018-04-01

    The upgrade of the Compact Muon Solenoid (CMS) crystal electromagnetic calorimeter (ECAL), which will operate at the High Luminosity Large Hadron Collider (HL-LHC), will achieve a timing resolution of around 30 ps for high energy photons and electrons. In this talk we will discuss the benefits of precision timing for the ECAL event reconstruction at HL-LHC. Simulation studies focused on the timing properties of PbWO4 crystals, as well as the impact of the photosensors and the readout electronics on the timing performance, will be presented. Test beam studies intended to measure the timing performance of the PbWO4 crystals with different photosensors and readout electronics will be shown.

  19. Giant collimated gamma-ray flashes

    NASA Astrophysics Data System (ADS)

    Benedetti, Alberto; Tamburini, Matteo; Keitel, Christoph H.

    2018-06-01

    Bright sources of high-energy electromagnetic radiation are widely employed in fundamental research, industry and medicine1,2. This motivated the construction of Compton-based facilities planned to yield bright gamma-ray pulses with energies up to3 20 MeV. Here, we demonstrate a novel mechanism based on the strongly amplified synchrotron emission that occurs when a sufficiently dense ultra-relativistic electron beam interacts with a millimetre-thickness conductor. For electron beam densities exceeding approximately 3 × 1019 cm-3, electromagnetic instabilities occur, and the ultra-relativistic electrons travel through self-generated electromagnetic fields as large as 107-108 gauss. This results in the production of a collimated gamma-ray pulse with peak brilliance above 1025 photons s-1 mrad-2 mm-2 per 0.1% bandwidth, photon energies ranging from 200 keV to gigaelectronvolts and up to 60% electron-to-photon energy conversion efficiency. These findings pave the way to compact, high-repetition-rate (kilohertz) sources of short (≲30 fs), collimated (milliradian) and high-flux (>1012 photons s-1) gamma-ray pulses.

  20. Lab Demonstration of the Hybrid Doppler Wind Lidar (HDWL) Transceiver

    NASA Technical Reports Server (NTRS)

    Marx, Catherine T.; Gentry, Bruce; Jordan, Patrick; Dogoda, Peter; Faust, Ed; Kavaya, Michael

    2013-01-01

    The recommended design approach for the 3D Tropospheric Winds mission is a hybrid Doppler lidar which combines the best elements of both a coherent aerosol Doppler lidar operating at 2 micron and a direct detection molecular Doppler lidar operating at 0.355 micron. In support of the mission, we built a novel, compact, light-weighted multi-field of view transceiver where multiple telescopes are used to cover the required four fields of view. A small mechanism sequentially selects both the "transmit" and "receive" fields of view. The four fields are combined to stimulate both the 0.355 micron receiver and the 2 micron receiver. This version is scaled (0.2 micron diameter aperture) from the space-based version but still demonstrates the feasibility of the hybrid approach. The primary mirrors were conventionally light-weighted and coated with dielectric, high reflectivity coatings with high laser damage thresholds at both 2 micron and 0.355 micron. The mechanical structure and mounts were fabricated from composites to achieve dimensional stability while significantly reducing the mass. In the laboratory, we demonstrated the system level functionality at 0.355 micron and at 2 micron raising the Technology Readiness Level (TRL) from 2 to 4.

  1. Lab Demonstration of the Hybrid Doppler Wind Lidar (HDWL) Transceiver

    NASA Technical Reports Server (NTRS)

    Marx, Catherine T.; Gentry, Bruce; Jordan, Patrick; Dogoda, Peter; Faust, Ed; Kavaya, Michael

    2013-01-01

    The recommended design approach for the 3D Tropospheric Winds mission is a hybrid Doppler lidar which combines the best elements of both a coherent aerosol Doppler lidar operating at 2 microns and a direct detection molecular Doppler lidar operating at 0.355 microns. In support of the mission, we built a novel, compact, light-weighted multi-field of view transceiver where multiple telescopes are used to cover the required four fields of view. A small mechanism sequentially selects both the "transmit" and "receive" fields of view. The four fields are combined to stimulate both the 0.355 micron receiver and the 2 micron receiver. This version is scaled (0.2 m diameter aperture) from the space-based version but still demonstrates the feasibility of the hybrid approach. The primary mirrors were conventionally light-weighted and coated with dielectric, high reflectivity coatings with high laser damage thresholds at both 2 microns and 0.355 microns. The mechanical structure and mounts were fabricated from composites to achieve dimensional stability while significantly reducing the mass. In the laboratory, we demonstrated the system level functionality at 0.355 microns and at 2 microns, raising the Technology Readiness Level (TRL) from 2 to 4.

  2. Compact E x B mass separator for heavy ion beams.

    PubMed

    Wada, M; Hashino, T; Hirata, F; Kasuya, T; Sakamoto, Y; Nishiura, M

    2008-02-01

    A compact E x B mass separator that deflects beam by 30 degrees has been designed and built to prove its principle of operation. The main part of the separator is contained in a shielding box of 11 cm long, 9 cm wide, and 1.5 cm high. An electromagnet of 7 cm pole diameter produced variable magnetic field in the mass separation region instead of a couple of permanent magnets which is to be used in the final design. The experimental result agreed well with the theoretical prediction, and larger mass ions is bent with less magnetic field with the aid of the deflection electric field. The reduction in resolving power for mass separation due to the deflection electric field has been investigated experimentally.

  3. Compact terahertz wave polarization beam splitter using photonic crystal.

    PubMed

    Mo, Guo-Qiang; Li, Jiu-Sheng

    2016-09-01

    Electromagnetic polarization conveys valuable information for signal processing. Manipulation of a terahertz wave polarization state exhibits tremendous potential in developing applications of terahertz science and technology. We propose an approach to efficiently split transverse-electric and transverse-magnetic polarized terahertz waves into different propagation directions over the frequency range from 0.9998 to 1.0007 THz. Both the plane wave expansion method and the finite-difference time-domain method are used to calculate and analyze the transmission characteristics of the proposed device. The present device is very compact and the total size is 1.02  mm×0.99  mm. This polarization beam splitter performance indicates that the structure has a potential application for forthcoming terahertz-wave integrated circuit fields.

  4. Electromagnetic power of merging and collapsing compact objects

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim

    2011-06-01

    Understanding possible electromagnetic signatures of merging and collapsing compact objects is important for identifying possible sources of the LIGO signal. Electromagnetic emission can be produced as a precursor to the merger, as a prompt emission during the collapse of a neutron star and at the spin-down stage of the resulting Kerr-Newman black hole. For the neutron star-neutron star mergers, the precursor power scales as L≈BNS2GMNSRNS8/(Rorb7c), while for the neutron star-black hole mergers, it is (GM/(c2RNS))2 times smaller. We demonstrate that the time evolution of the axisymmetric force-free magnetic fields can be expressed in terms of the hyperbolic Grad-Shafranov equation, and we formulate the generalization of Ferraro’s law of isorotation to time-dependent angular velocity. We find an exact nonlinear time-dependent Michel-type (split-monopole) structure of magnetospheres driven by spinning and collapsing neutron stars in Schwarzschild geometry. Based on this solution, we argue that the collapse of a neutron star into a black hole happens smoothly, without the natural formation of current sheets or other dissipative structures on the open field lines; thus, it does not allow the magnetic field to become disconnected from the star and escape to infinity. Therefore, as long as an isolated Kerr black hole can produce plasma and currents, it does not lose its open magnetic field lines. Its magnetospheric structure evolves towards a split monopole, and the black hole spins down electromagnetically (the closed field lines get absorbed by the hole). The “no-hair theorem,” which assumes that the outside medium is a vacuum, is not applicable in this case: highly conducting plasma introduces a topological constraint forbidding the disconnection of the magnetic field lines from the black hole. Eventually, a single random large scale spontaneous reconnection event will lead to magnetic field release, shutting down the electromagnetic black hole engine forever. Overall, the electromagnetic power in all the above cases is expected to be relatively small. We also discuss the nature of short gamma-ray bursts and suggest that if the magnetic field is amplified to ˜1014G during the merger or the core collapse, the similarity of the early afterglow properties of long and short gamma-ray bursts can be related to the fact that in both cases a spinning black hole can retain a magnetic field for a sufficiently long time to extract a large fraction of its rotational energy and produce high energy emission via the internal dissipation in the wind.

  5. Nonlocal homogenization theory in metamaterials: Effective electromagnetic spatial dispersion and artificial chirality

    NASA Astrophysics Data System (ADS)

    Ciattoni, Alessandro; Rizza, Carlo

    2015-05-01

    We develop, from first principles, a general and compact formalism for predicting the electromagnetic response of a metamaterial with nonmagnetic inclusions in the long-wavelength limit, including spatial dispersion up to the second order. Specifically, by resorting to a suitable multiscale technique, we show that the effective medium permittivity tensor and the first- and second-order tensors describing spatial dispersion can be evaluated by averaging suitable spatially rapidly varying fields, each satisfying electrostatic-like equations within the metamaterial unit cell. For metamaterials with negligible second-order spatial dispersion, we exploit the equivalence of first-order spatial dispersion and reciprocal bianisotropic electromagnetic response to deduce a simple expression for the metamaterial chirality tensor. Such an expression allows us to systematically analyze the effect of the composite spatial symmetry properties on electromagnetic chirality. We find that even if a metamaterial is geometrically achiral, i.e., it is indistinguishable from its mirror image, it shows pseudo-chiral-omega electromagnetic chirality if the rotation needed to restore the dielectric profile after the reflection is either a 0∘ or 90∘ rotation around an axis orthogonal to the reflection plane. These two symmetric situations encompass two-dimensional and one-dimensional metamaterials with chiral response. As an example admitting full analytical description, we discuss one-dimensional metamaterials whose single chirality parameter is shown to be directly related to the metamaterial dielectric profile by quadratures.

  6. Research of an electromagnetically actuated spark gap switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Tianyang; Chen, Dongqun, E-mail: csycdq@163.com; Liu, Jinliang

    2013-11-15

    As an important part of pulsed power systems, high-voltage and high-current triggered spark gap switch and its trigger system are expected to achieve a compact structure. In this paper, a high-voltage, high-current, and compact electromagnetically actuated spark gap switch is put forward, and it can be applied as a part of an intense electron-beam accelerator (IEBA). A 24 V DC power supply is used to trigger the switch. The characteristics of the switch were measured for N{sub 2} when the gas pressure is 0.10–0.30 MPa. The experimental results showed that the voltage/pressure (V/p) curve of the switch was linear relationship.more » The operating ranges of the switch were 21%–96%, 21%–95%, 21%–95%, 19%–95%, 17%–95%, and 16%–96% of the switch's self-breakdown voltage when the gas pressures were 0.10, 0.14, 0.18, 0.22, 0.26, and 0.30 MPa, respectively. The switch and its trigger system worked steadily and reliably with a peak voltage of 30 kV, a peak current of 60 kA in the IEBA when the pressure of N{sub 2} in the switch was 0.30 MPa.« less

  7. A Linear Electromagnetic Piston Pump

    NASA Astrophysics Data System (ADS)

    Hogan, Paul H.

    Advancements in mobile hydraulics for human-scale applications have increased demand for a compact hydraulic power supply. Conventional designs couple a rotating electric motor to a hydraulic pump, which increases the package volume and requires several energy conversions. This thesis investigates the use of a free piston as the moving element in a linear motor to eliminate multiple energy conversions and decrease the overall package volume. A coupled model used a quasi-static magnetic equivalent circuit to calculate the motor inductance and the electromagnetic force acting on the piston. The force was an input to a time domain model to evaluate the mechanical and pressure dynamics. The magnetic circuit model was validated with finite element analysis and an experimental prototype linear motor. The coupled model was optimized using a multi-objective genetic algorithm to explore the parameter space and maximize power density and efficiency. An experimental prototype linear pump coupled pistons to an off-the-shelf linear motor to validate the mechanical and pressure dynamics models. The magnetic circuit force calculation agreed within 3% of finite element analysis, and within 8% of experimental data from the unoptimized prototype linear motor. The optimized motor geometry also had good agreement with FEA; at zero piston displacement, the magnetic circuit calculates optimized motor force within 10% of FEA in less than 1/1000 the computational time. This makes it well suited to genetic optimization algorithms. The mechanical model agrees very well with the experimental piston pump position data when tuned for additional unmodeled mechanical friction. Optimized results suggest that an improvement of 400% of the state of the art power density is attainable with as high as 85% net efficiency. This demonstrates that a linear electromagnetic piston pump has potential to serve as a more compact and efficient supply of fluid power for the human scale.

  8. Thermal signature characteristics of vehicle/terrain interaction disturbances: implications for battlefield vehicle classification.

    PubMed

    Eastes, John W; Mason, George L; Kusinger, Alan E

    2004-05-01

    Thermal emissivity spectra (8-14 microm) of track impressions/background were determined in conjunction with operation of six military vehicle types, T-72 and M1 Tanks, an M2 Bradley Fighting Vehicle, a 5-ton truck, a D7 tractor, and a High Mobility Multipurpose Wheeled Vehicle (HMMWV), over diverse soil surfaces to determine if vehicle type could be related to track thermal signatures. Results suggest soil compaction and fragmentation/pulverization are primary parameters affecting track signatures and that soil and vehicle/terrain-contact type determine which parameter dominates. Steel-tracked vehicles exert relatively low ground-contact pressure but tend to fragment/pulverize soil more so than do rubber-tired vehicles, which tend mainly to compact. In quartz-rich, lean clay soil tracked vehicles produced impressions with spectral contrast of the quartz reststrahlen features decreased from that of the background. At the same time, 5-ton truck tracks exhibited increased contrast on the same surface, suggesting that steel tracks fragmented soil while rubber tires mainly produced compaction. The structure of materials such as sand and moist clay-rich river sediment makes them less subject to further fragmentation/pulverization; thus, compaction was the main factor affecting signatures in these media, and both tracked and wheeled vehicles created impressions with increased spectral contrast on these surfaces. These results suggest that remotely sensed thermal signatures could differentiate tracked and wheeled vehicles on terrain in many areas of the world of strategic interest. Significant applications include distinguishing visually/spectrally identical lightweight decoys from actual threat vehicles.

  9. The Science and Technology Case for High-Field Fusion

    NASA Astrophysics Data System (ADS)

    Whyte, D.

    2017-10-01

    This review will focus on the origin, development and new opportunities of a strategy for fusion energy based on the high-field approach. In this approach confinement devices are designed at the maximum possible value of vacuum magnetic field strength, B. The integrated electrical, mechanical and cooling engineering challenges of high-field on coil (Bcoil) , large-bore electromagnets are examined for both copper and superconductor materials. These engineering challenges are confronted because of the profound science advantages provided by high-B, which are derived and reviewed: high fusion power density, B4, in compact devices, thermonuclear plasmas with significant stability margin, and, in tokamaks, access to higher plasma density. Two distinct high-field strategies emerged in the 1980's. The first was compact, cryogenically-cooled copper devices (BPX, IGNITOR, FIRE) with Bcoil>20 T, while the second was a large-volume, Nb3Sn superconductor device with Bcoil <12 T; with the second path exclusively chosen ca. 2000 with the ITER construction decision. The reasoning, advantages and challenges of that decision are discussed. Yet since that decision, a new opportunity has arisen: compact, Rare Earth Barium Copper Oxide (REBCO) superconductor-based devices with Bcoil >20 T; a strategy that essentially combines the best components of the two previous strategies. Recent activities examining the technology and science implications of this new strategy are reviewed. On the technology side, REBCO superconductors have now been used to produce Bcoil>40 T in small-bore electromagnets, enabled by rapid progress in manufactured REBCO conductor quality, coil modularity and flexible operating temperature range. Specific tokamak designs, over a range of aspect ratios, have been developed to take scientific advantage of these features in various ways, and will be described.

  10. Microwave Radiometers from 0.6 to 22 GHz for Juno, A Polar Orbiter Around Jupiter

    NASA Technical Reports Server (NTRS)

    Pingree, P.; Janssen, M.; Oswald, J.; Brown, S.; Chen, J.; Hurst, K.; Kitiyakara, A.; Maiwald, F.; Smith, S.

    2008-01-01

    A compact instrument called the MWR (MicroWave Radiometer) is under development at JPL for Juno, the next NASA New Frontiers mission, scheduled to launch in 2011. It's purpose is to measure the thermal emission from Jupiter's atmosphere at six selected frequencies from 0.6 to 22 GHz, operating in direct detection mode, in order to quantify the distributions and abundances of water and ammonia in Jupiter's atmosphere. The goal is to understand the previously unobserved dynamics of the sub-cloud atmosphere, and to discriminate among models for planetary formation in our solar system. As part of a deep space mission aboard a solar-powered spacecraft, MWR is designed to be compact, lightweight, and low power. The receivers and control electronics are protected by a radiation-shielding enclosure on the Juno spacecraft that would provide a benign and stable operating temperature environment. All antennas and RF transmission lines outside the vault must withstand low temperatures and the harsh radiation environment surrounding Jupiter. This paper describes the concept of the MWR instrument and presents results of one breadboard receiver channel.

  11. Microwave Radiometers from 0.6 to 22 GHz for Juno, a Polar Orbiter around Jupiter

    NASA Technical Reports Server (NTRS)

    Pingree, Paula J.; Janssen, M.; Oswald, J.; Brown, S.; Chen, J.; Hurst, K.; Kitiyakara, A.; Maiwald, F.; Smith, S.

    2008-01-01

    A compact instrument called the MWR (microwave radiometer) is under development at JPL for Juno, the next NASA new frontiers mission, scheduled to launch in 2011. It's purpose is to measure the thermal emission from Jupiter's atmosphere at six selected frequencies from 0.6 to 22 GHz, operating in direct detection mode, in order to quantify the distributions and abundances of water and ammonia in Jupiter's atmosphere. The goal is to understand the previously unobserved dynamics of the sub-cloud atmosphere, and to discriminate among models for planetary formation in our solar system. as part of a deep space mission aboard a solar-powered spacecraft, MWR is designed to be compact, lightweight, and low power. The receivers and control electronics are protected by a radiation-shielding enclosure on the Juno spacecraft that also provides for a benign and stable operating temperature environment. All antennas and RF transmission lines outside the vault must withstand low temperatures and the harsh radiation environment surrounding Jupiter. This paper describes the concept of the MWR instrument and presents results of one breadboard receiver channel.

  12. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array.

    PubMed

    Bishara, Waheb; Sikora, Uzair; Mudanyali, Onur; Su, Ting-Wei; Yaglidere, Oguzhan; Luckhart, Shirley; Ozcan, Aydogan

    2011-04-07

    We report a portable lensless on-chip microscope that can achieve <1 µm resolution over a wide field-of-view of ∼ 24 mm(2) without the use of any mechanical scanning. This compact on-chip microscope weighs ∼ 95 g and is based on partially coherent digital in-line holography. Multiple fiber-optic waveguides are butt-coupled to light emitting diodes, which are controlled by a low-cost micro-controller to sequentially illuminate the sample. The resulting lensfree holograms are then captured by a digital sensor-array and are rapidly processed using a pixel super-resolution algorithm to generate much higher resolution holographic images (both phase and amplitude) of the objects. This wide-field and high-resolution on-chip microscope, being compact and light-weight, would be important for global health problems such as diagnosis of infectious diseases in remote locations. Toward this end, we validate the performance of this field-portable microscope by imaging human malaria parasites (Plasmodium falciparum) in thin blood smears. Our results constitute the first-time that a lensfree on-chip microscope has successfully imaged malaria parasites.

  13. Compact Instruments Measure Helium-Leak Rates

    NASA Technical Reports Server (NTRS)

    Stout, Stephen; Immer, Christopher

    2003-01-01

    Compact, lightweight instruments have been developed for measuring small flows of helium and/or detecting helium leaks in solenoid valves when the valves are nominally closed. These instruments do not impede the flows when the valves are nominally open. They can be integrated into newly fabricated valves or retrofitted to previously fabricated valves. Each instrument includes an upstream and a downstream thermistor separated by a heater, plus associated analog and digital heater-control, signal- conditioning, and data-processing circuits. The thermistors and heater are off-the-shelf surface mount components mounted on a circuit board in the flow path. The operation of the instrument is based on a well-established thermal mass-flow-measurement technique: Convection by the flow that one seeks to measure gives rise to transfer of heat from the heater to the downstream thermistor. The temperature difference measured by the thermistors is directly related to the rate of flow. The calibration curve from temperature gradient to helium flow is closely approximated via fifth-order polynomial. A microprocessor that is part of the electronic circuitry implements the calibration curve to compute the flow rate from the thermistor readings.

  14. LFT foam - Lightweight potential for semi-structural components through the use of long-glass-fiber-reinforced thermoplastic foams

    NASA Astrophysics Data System (ADS)

    Roch, A.; Huber, T.; Henning, F.; Elsner, P.

    2014-05-01

    Investigations on PP-LGF30 foam sandwiches have been carried out using different manufacturing processes: standard injection molding, MuCell® and LFT-D foam. Both chemical and physical blowing agents were applied. Precision mold opening (breathing mold technology) was selected for the foaming process. The integral foam design, which can be conceived as a sandwich structure, helps to save material in the neutral axis area and maintains a distance between load-bearing, unfoamed skin layers. The experiments showed that, at a constant mass per unit area, integral foams have a significantly higher flexural rigidity than compact components, due to their greater area moment of inertia after foaming: with an increase of the wall thickness from 3.6 mm to 4.4 mm compared to compact construction, the flexural rigidity increased by 75 %. With a final wall thickness of 5.8 mm an increase of 300 % was measured. Compared to non-reinforced components that show significant embrittlement during foaming, the energy absorption capacity (impact strength) of LFT foam components remains almost constant.

  15. Electron trapping data storage system and applications

    NASA Technical Reports Server (NTRS)

    Brower, Daniel; Earman, Allen; Chaffin, M. H.

    1993-01-01

    The advent of digital information storage and retrieval has led to explosive growth in data transmission techniques, data compression alternatives, and the need for high capacity random access data storage. Advances in data storage technologies are limiting the utilization of digitally based systems. New storage technologies will be required which can provide higher data capacities and faster transfer rates in a more compact format. Magnetic disk/tape and current optical data storage technologies do not provide these higher performance requirements for all digital data applications. A new technology developed at the Optex Corporation out-performs all other existing data storage technologies. The Electron Trapping Optical Memory (ETOM) media is capable of storing as much as 14 gigabytes of uncompressed data on a single, double-sided 54 inch disk with a data transfer rate of up to 12 megabits per second. The disk is removable, compact, lightweight, environmentally stable, and robust. Since the Write/Read/Erase (W/R/E) processes are carried out 100 percent photonically, no heating of the recording media is required. Therefore, the storage media suffers no deleterious effects from repeated Write/Read/Erase cycling.

  16. A portable eBook reader for the blind.

    PubMed

    Velazquez, Ramiro; Hernandez, Hermes; Preza, Enrique

    2010-01-01

    This paper presents the design and first prototype of the TactoBook system, a novel concept of reading assistive device that aims to make eBooks accessible to the blind. The TactoBook consists of a computer-based software translator that converts fast and automatically any eBook into Braille. The Braille version of the eBook is then encrypted as a file and stored in a USB memory drive which is later inserted and reproduced in a compact, lightweight, and highly-portable tactile terminal. Braille readers can store multiple eBooks in the same USB and access/reproduce them in the tactile terminal without this being plugged to a computer. The first Braille terminal developed is a 10-cell prototype based on a piezoelectric ultrasonic actuation approach. Its overall performance is quite similar to the one obtained with traditional Braille terminals. However, unlike them, the full device is only 1 kg mass and its compact dimensions (20 × 15 × 10 cm) make it easily carried by the user. A technical overview of all subsystems is presented and discussed.

  17. Towards an Imaging Mid-Infrared Heterodyne Spectrometer

    NASA Technical Reports Server (NTRS)

    Hewagama, T.; Aslam, S.; Jones, H.; Kostiuk, T.; Villanueva, G.; Roman, P.; Shaw, G. B.; Livengood, T.; Allen, J. E.

    2012-01-01

    We are developing a concept for a compact, low-mass, low-power, mid-infrared (MIR; 5- 12 microns) imaging heterodyne spectrometer that incorporates fiber optic coupling, Quantum Cascade Laser (QCL) local oscillator, photomixer array, and Radio Frequency Software Defined Readout (RFSDR) for spectral analysis. Planetary Decadal Surveys have highlighted the need for miniaturized, robust, low-mass, and minimal power remote sensing technologies for flight missions. The drive for miniaturization of remote sensing spectroscopy and radiometry techniques has been a continuing process. The advent of MIR fibers, and MEMS techniques for producing waveguides has proven to be an important recent advancement for miniaturization of infrared spectrometers. In conjunction with well-established photonics techniques, the miniaturization of spectrometers is transitioning from classic free space optical systems to waveguide/fiber-based structures for light transport and producing interference effects. By their very nature, these new devices are compact and lightweight. Mercury-Cadmium-Telluride (MCT) and Quantum Well Infrared Photodiodes (QWIP) arrays for heterodyne applications are also being developed. Bulky electronics is another barrier that precluded the extension of heterodyne systems into imaging applications, and our RFSDR will address this aspect.

  18. Differential-damper topologies for actuators in rehabilitation robotics.

    PubMed

    Tucker, Michael R; Gassert, Roger

    2012-01-01

    Differential-damper (DD) elements can provide a high bandwidth means for decoupling a high inertia, high friction, non-backdrivable actuator from its output and can enable high fidelity force control. In this paper, a port-based decomposition is used to analyze the energetic behavior of such actuators in various physical domains. The general concepts are then applied to a prototype DD actuator for illustration and discussion. It is shown that, within physical bounds, the output torque from a DD actuator can be controlled independently from the input speed. This concept holds the potential to be scaled up and integrated in a compact and lightweight package powerful enough for incorporation with a portable lower limb orthotic or prosthetic device.

  19. Bulk and integrated acousto-optic spectrometers for radio astronomy

    NASA Technical Reports Server (NTRS)

    Chin, G.; Buhl, D.; Florez, J. M.

    1981-01-01

    The development of sensitive heterodyne receivers (front end) in the centimeter and millimeter range, and the construction of sensitive RF spectrometers (back end) enable the spectral lines of interstellar molecules to be detected and identified. A technique was developed which combines acoustic bending of a collimated coherent light beam by a Bragg cell followed by detection by a sensitive array of photodetectors (thus forming an RF acousto-optic spectrometer (AOS). An AOS has wide bandwidth, large number of channels, and high resolution, and is compact, lightweight, and energy efficient. The thrust of receiver development is towards high frequency heterodyne systems, particularly in the millimeter, submillimeter, far infrared, and 10 micron spectral ranges.

  20. Cryogenic hydrogen-induced air-liquefaction technologies for combined-cycle propulsion applications

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1992-01-01

    Given here is a technical assessment of the realization of cryogenic hydrogen induced air liquefaction technologies in a prospective onboard aerospace vehicle process setting. The technical findings related to the status of air liquefaction technologies are reviewed. Compact lightweight cryogenic heat exchangers, heat exchanger atmospheric constituent fouling alleviation measures, para/ortho-hydrogen shift-conversion catalysts, cryogenic air compressors and liquid air pumps, hydrogen recycling using slush hydrogen as a heat sink, liquid hydrogen/liquid air rocket-type combustion devices, and technically related engine concepts are discussed. Much of the LACE work is related to aerospaceplane propulsion concepts that were developed in the 1960's. Emphasis is placed on the Liquid Air Cycle Engine (LACE).

  1. Design and Performance of AN Electrostrictive-Polymer Acoustic Actuator

    NASA Astrophysics Data System (ADS)

    Heydt, R.; Kornbluh, R.; Pelrine, R.; Mason, V.

    1998-08-01

    This paper discusses a novel electroacoustic transducer that uses the electrostrictive response of a polymer film. The active element of the transducer is a thin silicone-rubber film, with graphite powder electrodes on each side, that forms an array of bubble-like radiating elements. In experiments, radiated acoustic pressure and harmonic distortion of the electrostrictive-film actuator were measured in the frequency band 50-2000 Hz. A simple acoustic model was also developed to study the effect of various design and operating parameters on the actuator performance. Preliminary results from the experiments and simulations show that the electrostrictive-polymer-film actuator has the potential to be an efficient, compact, and lightweight electroacoustic transducer.

  2. A portable W-band radar system for enhancement of infrared vision in fire fighting operations

    NASA Astrophysics Data System (ADS)

    Klenner, Mathias; Zech, Christian; Hülsmann, Axel; Kühn, Jutta; Schlechtweg, Michael; Hahmann, Konstantin; Kleiner, Bernhard; Ulrich, Michael; Ambacher, Oliver

    2016-10-01

    In this paper, we present a millimeter wave radar system which will enhance the performance of infrared cameras used for fire-fighting applications. The radar module is compact and lightweight such that the system can be combined with inertial sensors and integrated in a hand-held infrared camera. This allows for precise distance measurements in harsh environmental conditions, such as tunnel or industrial fires, where optical sensors are unreliable or fail. We discuss the design of the RF front-end, the antenna and a quasi-optical lens for beam shaping as well as signal processing and demonstrate the performance of the system by in situ measurements in a smoke filled environment.

  3. Development and Testing of the Contaminant Insensitive Sublimator

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Stephan, Ryan A.

    2007-01-01

    Sublimators have been used for heat rejection for a variety of space applications including the Apollo Lunar Module and the Extravehicular Mobility Unit (EMU). Some of the attractive features of sublimators are that they are compact, lightweight, and self-regulating. One of the drawbacks of previous designs has been sensitivity to non-volatile contamination in the feedwater, which can clog relatively small pores (approx. 3-6 micrometers) in the porous plates where ice forms and sublimates. A new design that is less sensitive to contaminants is being developed at the Johnson Space Center (JSC). This paper describes the design, fabrication, and testing of the Contaminant Insensitive Sublimator (CIS) Engineering Development Unit (EDU).

  4. Zero-mode clad waveguides for performing spectroscopy with confined effective observation volumes

    DOEpatents

    Levene, Michael J.; Korlach, Jonas; Turner, Stephen W.; Craighead, Harold G.; Webb, Watt W.

    2005-07-12

    The present invention is directed to a method and an apparatus for analysis of an analyte. The method involves providing a zero-mode waveguide which includes a cladding surrounding a core where the cladding is configured to preclude propagation of electromagnetic energy of a frequency less than a cutoff frequency longitudinally through the core of the zero-mode waveguide. The analyte is positioned in the core of the zero-mode waveguide and is then subjected, in the core of the zero-mode waveguide, to activating electromagnetic radiation of a frequency less than the cut-off frequency under conditions effective to permit analysis of the analyte in an effective observation volume which is more compact than if the analysis were carried out in the absence of the zero-mode waveguide.

  5. Waveguides for performing spectroscopy with confined effective observation volumes

    DOEpatents

    Levene, Michael J.; Korlach, Jonas; Turner, Stephen W.; Craighead, Harold G.; Webb, Watt W.

    2006-03-14

    The present invention is directed to a method and an apparatus for analysis of an analyte. The method involves providing a zero-mode waveguide which includes a cladding surrounding a core where the cladding is configured to preclude propagation of electromagnetic energy of a frequency less than a cutoff frequency longitudinally through the core of the zero-mode waveguide. The analyte is positioned in the core of the zero-mode waveguide and is then subjected, in the core of the zero-mode waveguide, to activating electromagnetic radiation of a frequency less than the cut-off frequency under conditions effective to permit analysis of the analyte in an effective observation volume which is more compact than if the analysis were carried out in the absence of the zero-mode waveguide.

  6. A phased antenna array for surface plasmons

    PubMed Central

    Dikken, Dirk Jan W.; Korterik, Jeroen P.; Segerink, Frans B.; Herek, Jennifer L.; Prangsma, Jord C.

    2016-01-01

    Surface plasmon polaritons are electromagnetic waves that propagate tightly bound to metal surfaces. The concentration of the electromagnetic field at the surface as well as the short wavelength of surface plasmons enable sensitive detection methods and miniaturization of optics. We present an optical frequency plasmonic analog to the phased antenna array as it is well known in radar technology and radio astronomy. Individual holes in a thick gold film act as dipolar emitters of surface plasmon polaritons whose phase is controlled individually using a digital spatial light modulator. We show experimentally, using a phase sensitive near-field microscope, that this optical system allows accurate directional emission of surface waves. This compact and flexible method allows for dynamically shaping the propagation of plasmons and holds promise for nanophotonic applications employing propagating surface plasmons. PMID:27121099

  7. Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields

    DOEpatents

    Clark, M. Collins; Coleman, P. Dale; Marder, Barry M.

    1993-01-01

    A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.

  8. Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields

    DOEpatents

    Clark, M.C.; Coleman, P.D.; Marder, B.M.

    1993-08-10

    A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.

  9. Numerical simulation of narrow bipolar electromagnetic pulses generated by thunderstorm discharges

    NASA Astrophysics Data System (ADS)

    Bochkov, E. I.; Babich, L. P.; Kutsyk, I. M.

    2013-07-01

    Using the concept of avalanche relativistic runaway electrons (REs), we perform numerical simulations of compact intracloud discharge (CID) as a generator of powerful natural electromagnetic pulses (EMPs) in the HF-VHF range, called narrow bipolar pulses (NBPs). For several values of the field overvoltage and altitude at which the discharge develops, the numbers of seed electrons initiating the avalanche are evaluated, with which the calculated EMP characteristics are consistent with the measured NBP parameters. We note shortcomings in the hypothesis assuming participation of cosmic ray air showers in avalanche initiation. The discharge capable of generating NBPs produces REs in numbers close to those in the source of terrestrial γ-ray flashes (TGFs), which can be an argument in favor of a unified NBP and TGF source.

  10. Innovative compact focal plane array for wide field vis and ir orbiting telescopes

    NASA Astrophysics Data System (ADS)

    Hugot, Emmanuel; Vives, Sébastien; Ferrari, Marc; Gaeremynck, Yann; Jahn, Wilfried

    2017-11-01

    The future generation of high angular resolution space telescopes will require breakthrough technologies to combine large diameters and large focal plane arrays with compactness and lightweight mirrors and structures. Considering the allocated volume medium-size launchers, short focal lengths are mandatory, implying complex optical relays to obtain diffraction limited images on large focal planes. In this paper we present preliminary studies to obtain compact focal plane arrays (FPA) for earth observations on low earth orbits at high angular resolution. Based on the principle of image slicers, we present an optical concept to arrange a 1D FPA into a 2D FPA, allowing the use of 2D detector matrices. This solution is particularly attractive for IR imaging requiring a cryostat, which volume could be considerably reduced as well as the relay optics complexity. Enabling the use of 2D matrices for such an application offers new possibilities. Recent developments on curved FPA allows optimization without concerns on the field curvature. This innovative approach also reduces the complexity of the telescope optical combination, specifically for fast telescopes. This paper will describe the concept and optical design of an F/5 - 1.5m telescope equipped with such a FPA, the performances and the impact on the system with a comparison with an equivalent 1.5m wide field Korsch telescope.

  11. Continuous-wave deep ultraviolet sources for resonance Raman explosive sensing

    NASA Astrophysics Data System (ADS)

    Yellampalle, Balakishore; Martin, Robert; Sluch, Mikhail; McCormick, William; Ice, Robert; Lemoff, Brian

    2015-05-01

    A promising approach to stand-off detection of explosive traces is using resonance Raman spectroscopy with Deepultraviolet (DUV) light. The DUV region offers two main advantages: strong explosive signatures due to resonant and λ- 4 enhancement of Raman cross-section, and lack of fluorescence and solar background. For DUV Raman spectroscopy, continuous-wave (CW) or quasi-CW lasers are preferable to high peak powered pulsed lasers because Raman saturation phenomena and sample damage can be avoided. In this work we present a very compact DUV source that produces greater than 1 mw of CW optical power. The source has high optical-to-optical conversion efficiency, greater than 5 %, as it is based on second harmonic generation (SHG) of a blue/green laser source using a nonlinear crystal placed in an external resonant enhancement cavity. The laser system is extremely compact, lightweight, and can be battery powered. Using two such sources, one each at 236.5 nm and 257.5 nm, we are building a second generation explosive detection system called Dual-Excitation-Wavelength Resonance-Raman Detector (DEWRRED-II). The DEWRRED-II system also includes a compact dual-band high throughput DUV spectrometer, and a highly-sensitive detection algorithm. The DEWRRED technique exploits the DUV excitation wavelength dependence of Raman signal strength, arising from complex interplay of resonant enhancement, self-absorption and laser penetration depth. We show sensor measurements from explosives/precursor materials at different standoff distances.

  12. A compact field fluorometer and its application to dye tracing in karst environments

    NASA Astrophysics Data System (ADS)

    Poulain, Amaël; Rochez, Gaëtan; Van Roy, Jean-Pierre; Dewaide, Lorraine; Hallet, Vincent; De Sadelaer, Geert

    2017-08-01

    Dye tracing is a classic technique in hydrogeology to investigate surface-water or groundwater flow characteristics, and it is useful for many applications including natural or industrial issues. The Fluo-Green field fluorometer has been successfully tested in a karst environment and is specifically suitable for in-cave karst water monitoring. Karst research often uses dyes to obtain information about groundwater flow in unexplored cave passages. The compact device, alternatively named Fluo-G, meets the requirements of cave media: small (10 × 16 × 21 cm), lightweight (0.75 kg without ballast) and simple in conception. It is easy for cavers to set up and handle compared to other sampling methods. The fluorometer records uranine, turbidity and temperature with a user-defined time-step (1 min - 1 day). Very low energy consumption allows 9,000 measurements with six AA batteries. The device was calibrated and tested in the laboratory and in field conditions in Belgian karst systems. Results are in good fit with other sampling methods: in-situ fluorometers and automatic water sampling plus laboratory analysis. Recording high quality data (breakthrough curves) in karst with in-cave monitoring is valuable to improve knowledge of karst systems. Many hydrological and hydrogeological applications can benefit from such a low-cost and compact device, and finding the best compromise between resources and quality data is essential. Several improvements are possible but preliminary field tests are very promising.

  13. Self-Deploying Trusses Containing Shape-Memory Polymers

    NASA Technical Reports Server (NTRS)

    Schueler, Robert M.

    2008-01-01

    Composite truss structures are being developed that can be compacted for stowage and later deploy themselves to full size and shape. In the target applications, these smart structures will precisely self-deploy and support a large, lightweight space-based antenna. Self-deploying trusses offer a simple, light, and affordable alternative to articulated mechanisms or inflatable structures. The trusses may also be useful in such terrestrial applications as variable-geometry aircraft components or shelters that can be compacted, transported, and deployed quickly in hostile environments. The truss technology uses high-performance shape-memory-polymer (SMP) thermoset resin reinforced with fibers to form a helical composite structure. At normal operating temperatures, the truss material has the structural properties of a conventional composite. This enables truss designs with required torsion, bending, and compression stiffness. However, when heated to its designed glass transition temperature (Tg), the SMP matrix acquires the flexibility of an elastomer. In this state, the truss can be compressed telescopically to a configuration encompassing a fraction of its original volume. When cooled below Tg, the SMP reverts to a rigid state and holds the truss in the stowed configuration without external constraint. Heating the materials above Tg activates truss deployment as the composite material releases strain energy, driving the truss to its original memorized configuration without the need for further actuation. Laboratory prototype trusses have demonstrated repeatable self-deployment cycles following linear compaction exceeding an 11:1 ratio (see figure).

  14. Inflatable Antenna Microwave Radiometer for Soil Moisture Measurement

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.; Kendall, Bruce M.; Schroeder, Lyle C.; Harrington, Richard F.

    1993-01-01

    Microwave measurements of soil moisture are not being obtained at the required spatial Earth resolution with current technology. Recently, new novel designs for lightweight reflector systems have been developed using deployable inflatable antenna structures which could enable lightweight real-aperture radiometers. In consideration of this, a study was conducted at the NASA Langley Research Center (LaRC) to determine the feasibility of developing a microwave radiometer system using inflatable reflector antenna technology to obtain high spatial resolution radiometric measurements of soil moisture from low Earth orbit and which could be used with a small and cost effective launch vehicle. The required high resolution with reasonable swath width coupled with the L-band measurement frequency for soil moisture dictated the use of a large (30 meter class) real aperture antenna in conjunction with a pushbroom antenna beam configuration and noise-injection type radiometer designs at 1.4 and 4.3 GHz to produce a 370 kilometer cross-track swath with a 10 kilometer resolution that could be packaged for launch with a Titan 2 class vehicle. This study includes design of the inflatable structure, control analysis, structural and thermal analysis, antenna and feed design, radiometer design, payload packaging, orbital analysis, and electromagnetic losses in the thin membrane inflatable materials.

  15. The Optical Harness: a light-weight EMI-immune replacement for legacy electrical wiring harnesses

    NASA Astrophysics Data System (ADS)

    Stark, Jason B.; Jackson, B. Scott; Trethewey, William

    2006-05-01

    Electrical wiring harnesses have been used to interconnect control and communication equipment in mobile platforms for over a century. Although they have served this function successfully, they have three problems that are inherent in their design: they are mechanically heavy and stiff, and they are prone to electrical faults, including arcing and Electro-Magnetic Interference (EMI), and they are difficult to maintain when faults occur. These properties are all aspects of the metallic conductors used to build the harnesses. The Optical Harness TM is a photonic replacement for the legacy electrical wiring harness. The Optical Harness TM uses light-weight optical fiber to replace signal wires in an electrical harness. The original electrical connections to the equipment remain, making the Optical Harness TM a direct replacement for the legacy wiring harness. In the backshell of each connector, the electrical signals are converted to optical, and transported on optical fiber, by a deterministic, redundant and fault-tolerant optical network. The Optical Harness TM: * Provides weight savings of 40-50% and unsurpassed flexibility, relative to legacy signal wiring harnesses; * Carries its signals on optical fiber that is free from arcing, EMI, RFI and susceptibility to HPM weapons; * Is self-monitoring during operation, providing non-intrusive predictive and diagnostic capabilities.

  16. Drone based measurement system for radiofrequency exposure assessment.

    PubMed

    Joseph, Wout; Aerts, Sam; Vandenbossche, Matthias; Thielens, Arno; Martens, Luc

    2016-03-10

    For the first time, a method to assess radiofrequency (RF) electromagnetic field (EMF) exposure of the general public in real environments with a true free-space antenna system is presented. Using lightweight electronics and multiple antennas placed on a drone, it is possible to perform exposure measurements. This technique will enable researchers to measure three-dimensional RF-EMF exposure patterns accurately in the future and at locations currently difficult to access. A measurement procedure and appropriate measurement settings have been developed. As an application, outdoor measurements are performed as a function of height up to 60 m for Global System for Mobile Communications (GSM) 900 MHz base station exposure. Bioelectromagnetics. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Incident angle insensitive tunable multichannel perfect absorber consisting of nonlinear plasma and matching metamaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Xiang-kun; Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science and Technology, Nanjing 210044; Liu, Shao-Bin, E-mail: plrg@nuaa.edu.cn

    2014-12-15

    A novel, compact, and multichannel nonreciprocal absorber through a wave tunneling mechanism in epsilon-negative and matching metamaterials is theoretically proposed. Nonreciprocal absorption properties are acquired via the coupling together of evanescent and propagating waves in an asymmetric configuration, constituted of nonlinear plasma alternated with matching metamaterial. The absorption channel number can be adjusted by changing the periodic number. Due to the positive feedback between nonlinear permittivity of plasma and the inner electric field, bistable absorption and reflection are achieved. Moreover, compared with some truncated photonic crystal or multilayered designs proposed before, our design is more compact and independent of incidentmore » angle or polarization. This kind of multilayer structure offers additional opportunities to design novel omnidirectional electromagnetic wave absorbers.« less

  18. Collective Deceleration: Toward a Compact Beam Dump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, H.-C.; /Munich, Max Planck Inst. Quantenopt.; Tajima, T.

    With the increasing development of laser accelerators, the electron energy is already beyond GeV and even higher in near future. Conventional beam dump based on ionization or radiation loss mechanism is cumbersome and costly, also has radiological hazards. We revisit the stopping power of high-energy charged particles in matter and discuss the associated problem of beam dump from the point of view of collective deceleration. The collective stopping length in an ionized gas can be several orders of magnitude shorter than the Bethe-Bloch and multiple electromagnetic cascades stopping length in solid. At the mean time, the tenuous density of themore » gas makes the radioactivation negligible. Such a compact and non-radioactivating beam dump works well for short and dense bunches, which is typically generated from laser wakefield accelerator.« less

  19. Compact microwave re-entrant cavity applicator for plasma-assisted combustion.

    PubMed

    Hemawan, Kadek W; Wichman, Indrek S; Lee, Tonghun; Grotjohn, Timothy A; Asmussen, Jes

    2009-05-01

    The design and experimental operation of a compact microwave/rf applicator is described. This applicator operates at atmospheric pressure and couples electromagnetic energy into a premixed CH(4)/O(2) flame. The addition of only 2-15 W of microwave power to a premixed combustion flame with a flame power of 10-40 W serves to extend the flammability limits for fuel lean conditions, increases the flame length and intensity, and increases the number density and mixture of excited radical species in the flame vicinity. The downstream gas temperature also increases. Optical emission spectroscopy measurements show gas rotational temperatures in the range of 2500-3600 K. At the higher input power of > or = 10 W microplasma discharges can be produced in the high electric field region of the applicator.

  20. Compact microwave re-entrant cavity applicator for plasma-assisted combustion

    NASA Astrophysics Data System (ADS)

    Hemawan, Kadek W.; Wichman, Indrek S.; Lee, Tonghun; Grotjohn, Timothy A.; Asmussen, Jes

    2009-05-01

    The design and experimental operation of a compact microwave/rf applicator is described. This applicator operates at atmospheric pressure and couples electromagnetic energy into a premixed CH4/O2 flame. The addition of only 2-15 W of microwave power to a premixed combustion flame with a flame power of 10-40 W serves to extend the flammability limits for fuel lean conditions, increases the flame length and intensity, and increases the number density and mixture of excited radical species in the flame vicinity. The downstream gas temperature also increases. Optical emission spectroscopy measurements show gas rotational temperatures in the range of 2500-3600 K. At the higher input power of ≥10 W microplasma discharges can be produced in the high electric field region of the applicator.

  1. Design of transmission-type phase holograms for a compact radar-cross-section measurement range at 650 GHz.

    PubMed

    Noponen, Eero; Tamminen, Aleksi; Vaaja, Matti

    2007-07-10

    A design formalism is presented for transmission-type phase holograms for use in a submillimeter-wave compact radar-cross-section (RCS) measurement range. The design method is based on rigorous electromagnetic grating theory combined with conventional hologram synthesis. Hologram structures consisting of a curved groove pattern on a 320 mmx280 mm Teflon plate are designed to transform an incoming spherical wave at 650 GHz into an output wave generating a 100 mm diameter planar field region (quiet zone) at a distance of 1 m. The reconstructed quiet-zone field is evaluated by a numerical simulation method. The uniformity of the quiet-zone field is further improved by reoptimizing the goal field. Measurement results are given for a test hologram fabricated on Teflon.

  2. Probing the Milky Way electron density using multi-messenger astronomy

    NASA Astrophysics Data System (ADS)

    Breivik, Katelyn; Larson, Shane

    2015-04-01

    Multi-messenger observations of ultra-compact binaries in both gravitational waves and electromagnetic radiation supply highly complementary information, providing new ways of characterizing the internal dynamics of these systems, as well as new probes of the galaxy itself. Electron density models, used in pulsar distance measurements via the electron dispersion measure, are currently not well constrained. Simultaneous radio and gravitational wave observations of pulsars in binaries provide a method of measuring the average electron density along the line of sight to the pulsar, thus giving a new method for constraining current electron density models. We present this method and assess its viability with simulations of the compact binary component of the Milky Way using the public domain binary evolution code, BSE. This work is supported by NASA Award NNX13AM10G.

  3. Luminous Blue Compact Galaxies: Probes of galaxy assembly

    NASA Astrophysics Data System (ADS)

    Newton, Cassidy Louann

    The life cycles of galaxies over cosmic time is yet to be fully understood. How did galaxies evolve from their formative stages to the structures we observe today? This dissertation details the identification and analysis of a sample of Luminous Blue Compact Galaxies (LBCGs), a class of galaxy in the local (z < 0.05) universe exhibiting blue colors, high surface brightness, and high star formation rates. These systems appear to be very similar in their global properties to the early evolutionary phases of most galaxies, however their locality permits detailed investigation over a broad range of the electromagnetic spectrum in contrast to the smaller angular sizes and extreme faintness of distant galaxies. We use a combination of optical, ultraviolet, and infrared data to investigate a sample of LBCGs utilizing space and ground-based data.

  4. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.

    2001-01-01

    A biaxially textured alloy article comprises Ni powder and at least one powder selected from the group consisting of Cr, W, V, Mo, Cu, Al, Ce, YSZ, Y, Rare Earths, (RE), MgO, CeO.sub.2, and Y.sub.2 O.sub.3 ; compacted and heat treated, then rapidly recrystallized to produce a biaxial texture on the article. In some embodiments the alloy article further comprises electromagnetic or electro-optical devices and possesses superconducting properties.

  5. Patent Abstract Digest. Volume I.

    DTIC Science & Technology

    1979-04-30

    compact. self -contained transducer unit for 151) Field of Stucek............... 73/71 5 US, 67.5 R. electromagnetic generation and detection of...BSTRACT SPONSORED PROGRAMS FROM THE AIR FORCE SYSTEMS COMMAND United States Patent 1191 (111 4,115,616 Heitz et &1. (45 Sep. 19, 1978 154) SELF -SEALING...ioseph E. Rutz; Wiliam J.O’Brien (221 Filed: F . (57 ABSTRACT A self -sealing multi-laminated fuel line composite mate. rial composed of (a) a plastic

  6. Effects of Space Weather on Geosynchronous Electromagnetic Spacecraft Perturbations Using Statistical Fluxes

    NASA Astrophysics Data System (ADS)

    Hughes, J.; Schaub, H.

    2017-12-01

    Spacecraft can charge to very negative voltages at GEO due to interactions with the space plasma. This can cause arcing which can damage spacecraft electronics or solar panels. Recently, it has been suggested that spacecraft charging may lead to orbital perturbations which change the orbits of lightweight uncontrolled debris orbits significantly. The motions of High Area to Mass Ratio objects are not well explained with just perturbations from Solar Radiation Pressure (SRP) and earth, moon, and sun gravity. A charged spacecraft will experience a Lorentz force as the spacecraft moves relative to Earth's magnetic field, as well as a Lorentz torque and eddy current torques if the object is rotating. Prior work assuming a constant "worst case" voltage has shown that Lorentz and eddy torques can cause quite large orbital changes by rotating the object to experience more or less SRP. For some objects, including or neglecting these electromagnetic torques can lead to differences of thousands of kilometers after only two orbits. This paper will further investigate the effects of electromagnetic perturbations by using a charging model that uses measured flux distributions to better simulate natural charging. This differs from prior work which used a constant voltage or Maxwellian distributions. This is done to a calm space weather case of Kp = 2 and a stormy case where Kp = 8. Preliminary analysis suggests that electrostatics will still cause large orbital changes even with the more realistic charging model.

  7. Photonic Bandgap (PBG) Shielding Technology

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.

    2007-01-01

    Photonic Bandgap (PBG) shielding technology is a new approach to designing electromagnetic shielding materials for mitigating Electromagnetic Interference (EM!) with small, light-weight shielding materials. It focuses on ground planes of printed wiring boards (PWBs), rather than on components. Modem PSG materials also are emerging based on planar materials, in place of earlier, bulkier, 3-dimensional PBG structures. Planar PBG designs especially show great promise in mitigating and suppressing EMI and crosstalk for aerospace designs, such as needed for NASA's Constellation Program, for returning humans to the moon and for use by our first human visitors traveling to and from Mars. Photonic Bandgap (PBG) materials are also known as artificial dielectrics, meta-materials, and photonic crystals. General PBG materials are fundamentally periodic slow-wave structures in I, 2, or 3 dimensions. By adjusting the choice of structure periodicities in terms of size and recurring structure spacings, multiple scatterings of surface waves can be created that act as a forbidden energy gap (i.e., a range of frequencies) over which nominally-conductive metallic conductors cease to be a conductor and become dielectrics. Equivalently, PBG materials can be regarded as giving rise to forbidden energy gaps in metals without chemical doping, analogous to electron bandgap properties that previously gave rise to the modem semiconductor industry 60 years ago. Electromagnetic waves cannot propagate over bandgap regions that are created with PBG materials, that is, over frequencies for which a bandgap is artificially created through introducing periodic defects

  8. Passive Wearable Skin Patch Sensor Measures Limb Hemodynamics Based on Electromagnetic Resonance.

    PubMed

    Cluff, Kim; Becker, Ryan; Jayakumar, Balakumar; Han, Kiyun; Condon, Ernie; Dudley, Kenneth; Szatkowski, George; Pipinos, Iraklis I; Amick, Ryan Z; Patterson, Jeremy

    2018-04-01

    The objectives of this study were to design and develop an open-circuit electromagnetic resonant skin patch sensor, characterize the fluid volume and resonant frequency relationship, and investigate the sensor's ability to measure limb hemodynamics and pulse volume waveform features. The skin patch was designed from an open-circuit electromagnetic resonant sensor comprised of a single baseline trace of copper configured into a square planar spiral which had a self-resonating response when excited by an external radio frequency sweep. Using a human arm phantom with a realistic vascular network, the sensor's performance to measure limb hemodynamics was evaluated. The sensor was able to measure pulsatile blood flow which registered as shifts in the sensor's resonant frequencies. The time-varying waveform pattern of the resonant frequency displayed a systolic upstroke, a systolic peak, a dicrotic notch, and a diastolic down stroke. The resonant frequency waveform features and peak systolic time were validated against ultrasound pulse wave Doppler. A statistical correlation analysis revealed a strong correlation () between the resonant sensor peak systolic time and the pulse wave Doppler peak systolic time. The sensor was able to detect pulsatile flow, identify hemodynamic waveform features, and measure heart rate with 98% accuracy. The open-circuit resonant sensor design leverages the architecture of a thin planar spiral which is passive (does not require batteries), robust and lightweight (does not have electrical components or electrical connections), and may be able to wirelessly monitor cardiovascular health and limb hemodynamics.

  9. Scalable High Performance Computing: Direct and Large-Eddy Turbulent Flow Simulations Using Massively Parallel Computers

    NASA Technical Reports Server (NTRS)

    Morgan, Philip E.

    2004-01-01

    This final report contains reports of research related to the tasks "Scalable High Performance Computing: Direct and Lark-Eddy Turbulent FLow Simulations Using Massively Parallel Computers" and "Devleop High-Performance Time-Domain Computational Electromagnetics Capability for RCS Prediction, Wave Propagation in Dispersive Media, and Dual-Use Applications. The discussion of Scalable High Performance Computing reports on three objectives: validate, access scalability, and apply two parallel flow solvers for three-dimensional Navier-Stokes flows; develop and validate a high-order parallel solver for Direct Numerical Simulations (DNS) and Large Eddy Simulation (LES) problems; and Investigate and develop a high-order Reynolds averaged Navier-Stokes turbulence model. The discussion of High-Performance Time-Domain Computational Electromagnetics reports on five objectives: enhancement of an electromagnetics code (CHARGE) to be able to effectively model antenna problems; utilize lessons learned in high-order/spectral solution of swirling 3D jets to apply to solving electromagnetics project; transition a high-order fluids code, FDL3DI, to be able to solve Maxwell's Equations using compact-differencing; develop and demonstrate improved radiation absorbing boundary conditions for high-order CEM; and extend high-order CEM solver to address variable material properties. The report also contains a review of work done by the systems engineer.

  10. Progress towards an Optimization Methodology for Combustion-Driven Portable Thermoelectric Power Generation Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Shankar; Karri, Naveen K.; Gogna, Pawan K.

    2012-03-13

    Enormous military and commercial interests exist in developing quiet, lightweight, and compact thermoelectric (TE) power generation systems. This paper investigates design integration and analysis of an advanced TE power generation system implementing JP-8 fueled combustion and thermal recuperation. Design and development of a portable TE power system using a JP-8 combustor as a high temperature heat source and optimal process flows depend on efficient heat generation, transfer, and recovery within the system are explored. Design optimization of the system required considering the combustion system efficiency and TE conversion efficiency simultaneously. The combustor performance and TE sub-system performance were coupled directlymore » through exhaust temperatures, fuel and air mass flow rates, heat exchanger performance, subsequent hot-side temperatures, and cold-side cooling techniques and temperatures. Systematic investigation of this system relied on accurate thermodynamic modeling of complex, high-temperature combustion processes concomitantly with detailed thermoelectric converter thermal/mechanical modeling. To this end, this work reports on design integration of systemlevel process flow simulations using commercial software CHEMCADTM with in-house thermoelectric converter and module optimization, and heat exchanger analyses using COMSOLTM software. High-performance, high-temperature TE materials and segmented TE element designs are incorporated in coupled design analyses to achieve predicted TE subsystem level conversion efficiencies exceeding 10%. These TE advances are integrated with a high performance microtechnology combustion reactor based on recent advances at the Pacific Northwest National Laboratory (PNNL). Predictions from this coupled simulation established a basis for optimal selection of fuel and air flow rates, thermoelectric module design and operating conditions, and microtechnology heat-exchanger design criteria. This paper will discuss this simulation process that leads directly to system efficiency power maps defining potentially available optimal system operating conditions and regimes. This coupled simulation approach enables pathways for integrated use of high-performance combustor components, high performance TE devices, and microtechnologies to produce a compact, lightweight, combustion driven TE power system prototype that operates on common fuels.« less

  11. Ultra-broad polypyrrole (PPy) nano-ribbons seeded by racemic surfactants aggregates and their high-performance electromagnetic radiation elimination.

    PubMed

    Jiao, Yingzhi; Wu, Fan; Zhang, Kun; Sun, Mengxiao; Xie, Aming; Dong, Wei

    2017-08-04

    Ribbon-like nano-structures possess high aspect ratios, and thus have great potential in the development of high-performance microwave absorption (MA) materials that can effectively eliminate adverse electromagnetic radiation. However, these nano-structures have been scarcely constructed in the field of MA, because of the lack of efficient synthetic routes. Herein, we developed an efficient method to successfully construct polypyrrole (PPy) nano-ribbons using the self-assembly aggregates of a racemic surfactant as the seeds. The frequency range with a reflection loss value of lower than -10 dB reached 7.68 GHz in the frequency range of 10.32-18.00 GHz, and surpassed all the currently reported PPy nano-structures, as well as most other MA nano-materials. Through changing the amount of surfactant, both the nano-structures and MA performance can be effectively regulated. Furthermore, the reason behind the high-performance MA of PPy nano-ribbons has been deeply explored. It opens up the opportunity for the application of conducting polymer nano-ribbons as a lightweight and tunable high-performance MA material, especially in applications of special aircraft and flexible electronics.

  12. Ultra-broad polypyrrole (PPy) nano-ribbons seeded by racemic surfactants aggregates and their high-performance electromagnetic radiation elimination

    NASA Astrophysics Data System (ADS)

    Jiao, Yingzhi; Wu, Fan; Zhang, Kun; Sun, Mengxiao; Xie, Aming; Dong, Wei

    2017-08-01

    Ribbon-like nano-structures possess high aspect ratios, and thus have great potential in the development of high-performance microwave absorption (MA) materials that can effectively eliminate adverse electromagnetic radiation. However, these nano-structures have been scarcely constructed in the field of MA, because of the lack of efficient synthetic routes. Herein, we developed an efficient method to successfully construct polypyrrole (PPy) nano-ribbons using the self-assembly aggregates of a racemic surfactant as the seeds. The frequency range with a reflection loss value of lower than -10 dB reached 7.68 GHz in the frequency range of 10.32-18.00 GHz, and surpassed all the currently reported PPy nano-structures, as well as most other MA nano-materials. Through changing the amount of surfactant, both the nano-structures and MA performance can be effectively regulated. Furthermore, the reason behind the high-performance MA of PPy nano-ribbons has been deeply explored. It opens up the opportunity for the application of conducting polymer nano-ribbons as a lightweight and tunable high-performance MA material, especially in applications of special aircraft and flexible electronics.

  13. Electromagnetic Pumps for Conductive-Propellant Feed Systems

    NASA Technical Reports Server (NTRS)

    Markusic, Thomas E.; Polzin, Kurt A.; Dehoyos, Amado

    2005-01-01

    Prototype electromagnetic pumps for use with lithium and bismuth propellants were constructed and tested. Such pumps may be used to pressurize future electric propulsion liquid metal feed systems, with the primary advantages being the compactness and simplicity versus alternative pressurization technologies. Design details for two different pumps are described: the first was designed to withstand (highly corrosive) lithium propellant, and t he second was designed to tolerate the high temperature required to pump liquid bismuth. Both qualitative and quantitative test results are presented. Open-loop tests demonstrated the capability of each device to electromagnetically pump its design propellant (lithium or bismuth). A second set of tests accurately quantified the pump pressure developed as a function of current. These experiments, which utilized a more easily handled material (gallium), demonstrated continuously-adjustable pump pressure levels ranging from 0-100 Torr for corresponding input current levels of 0-75 A. While the analysis and testing in this study specifically targeted lithium and bismuth propellants, the underlying design principles should be useful in implementing liquid metal pumps in any conductive-propellant feed system.

  14. Lightweight uncooled TWS equipped with catadioptric optics and microscan mechanism

    NASA Astrophysics Data System (ADS)

    Bergeron, A.; Jerominek, H.; Doucet, M.; Lagacé, F.; Desnoyers, N.; Bernier, S.; Mercier, L.; Boucher, M.-A.; Jacob, M.; Alain, C.; Pope, T. D.; Laou, P.

    2006-05-01

    A rugged lightweight thermal weapon sight (TWS) prototype was developed at INO in collaboration with DRDC-Valcartier. This TWS model is based on uncooled bolometer technology, ultralight catadioptric optics, ruggedized mechanics and electronics, and extensive onboard processing capabilities. The TWS prototype operates in a single 8-12 μm infrared (IR) band. It is equipped with a unique lightweight athermalized catadioptric objective and a bolometric IR imager with an INO focal plane array (FPA). Microscan technology allows the use of a 160 x 120 pixel FPA with a pitch of 50 μm to achieve a 320 × 240 pixel resolution image thereby avoiding the size (larger optics) and cost (expensive IR optical components) penalties associated with the use of larger format arrays. The TWS is equipped with a miniature shutter for automatic offset calibration. Based on the operation of the FPA at 100 frames per second (fps), real-time imaging with 320 x 240 pixel resolution at 25 fps is available. This TWS is also equipped with a high resolution (857 x 600 pixels) OLED color microdisplay and an integrated wireless digital RF link. The sight has an adjustable and selectable electronic reticule or crosshair (five possible reticules) and a manual focus from 5 m to infinity standoff distance. Processing capabilities are added to introduce specific functionalities such as image inversion (black hot and white hot), image enhancement, and pixel smoothing. This TWS prototype is very lightweight (~ 1100 grams) and compact (volume of 93 cubic inches). It offers human size target detection at 800 m and recognition at 200 m (Johnson criteria). With 6 Li AA batteries, it operates continuously for 5 hours and 20 minutes at room temperature. It can operate over the temperature range of -30 °C to +40 °C and its housing is completely sealed. The TWS is adapted to weaver or Picatinny rail mounting. The overall design of the TWS prototype is based on feedbacks of users to achieve improved user-friendly (e.g. no pull-down menus and no electronic focusing) and ergonomic (e.g. locations of buttons) features.

  15. Field Performance of Recycled Plastic Foundation for Pipeline

    PubMed Central

    Kim, Seongkyum; Lee, Kwanho

    2015-01-01

    The incidence of failure of embedded pipelines has increased in Korea due to the increasing applied load and the improper compaction of bedding and backfill materials. To overcome these problems, a prefabricated lightweight plastic foundation using recycled plastic was developed for sewer pipelines. A small scale laboratory chamber test and two field tests were conducted to verify its construction workability and performance. From the small scale laboratory chamber test, the applied loads at 2.5% and 5.0% of deformation were 3.45 kgf/cm2 and 5.85 kgf/cm2 for Case S1, and 4.42 kgf/cm2 and 6.43 kgf/cm2 for Case S2, respectively. From the first field test, the vertical deformation of the recycled plastic foundation (Case A2) was very small. According to the analysis based on the PE pipe deformation at the connection (CN) and at the center (CT), the pipe deformation at each part for Case A1 was larger than that for Case A2, which adopted the recycled lightweight plastic foundation. From the second field test, the measured maximum settlements of Case B1 and Case B2 were 1.05 cm and 0.54 cm, respectively. The use of a plastic foundation can reduce the settlement of an embedded pipeline and be an alternative construction method.

  16. Reconfigurable water-substrate based antennas with temperature control

    NASA Astrophysics Data System (ADS)

    Mobashsher, Ahmed Toaha; Abbosh, Amin

    2017-06-01

    We report an unexplored reconfigurable antenna development technique utilizing the concept of temperature variable electromagnetic properties of water. By applying this physical phenomena, we present highly efficient water-substrate based antennas whose operating frequencies can be continuously tuned. While taking the advantage of cost-effectiveness of liquid water, this dynamic tuning technique also alleviates the roadblocks to widespread use of reconfigurable liquid-based antennas for VHF and UHF bands. The dynamic reconfigurability is controlled merely via external thermal stimulus and does not require any physical change of the resonating structure. We demonstrate dynamic control of omnidirectional and directional antennas covering more than 14 and 12% fractional bandwidths accordingly, with more than 85% radiation efficiency. Our temperature control approach paves the intriguing way of exploring dynamic reconfigurability of water-based compact electromagnetic devices for non-static, in-motion and low-cost real-world applications.

  17. High Energy Follow-up Study of Gravitational Wave Transients

    NASA Astrophysics Data System (ADS)

    Barker, Brandon L.; Patricelli, Barbara

    2018-01-01

    As second-generation gravitational wave interferometers, such as Advanced Virgo and Advanced LIGO, reach their design sensitivities, a new lens into our universe will become available. Many of the most violent and energetic events in the cosmos, in particular the merger of compact objects and core collapse supernovae, are sources of gravitational waves and are also believed to be connected with Gamma Ray Bursts. Joint observations of electromagnetic and gravitational wave signals will provide an ideal opportunity to study the physics of these transient events and their progenitors. In particular, gamma ray observatories such as Fermi, coupled with precise sky lo- calization, will be crucial to observe the high energy electromagnetic counterparts to gravitational wave signals. We constructed joint binary neutron star and gamma ray burst detection rate estimates using an analysis pipeline and report on the results of this analysis.

  18. Investigation of the vibration and EMC characteristics of miniature Stirling electric coolers for space applications

    NASA Astrophysics Data System (ADS)

    Kondratjev, V.; Gostilo, V.; Owens, anb A.

    2017-08-01

    We present the results of an investigation into the detrimental effects that electromechanical coolers can have on the spectral performance of compact, large volume HPGe spectrometers for space applications. Both mechanical vibration and electromagnetic pickup effects were considered, as well as a comparative assessment between three miniature Stirling cycle coolers—two Ricor model K508 coolers and one Thales model RM3 cooler. In spite of the limited number of coolers tested, the following conclusions can be made. There are significant differences in the vibration characteristics not only between the various types of cooler but also between coolers of the same type. It was also found that compared to the noise induced by mechanical vibrations, electromagnetic interference emanating from the embedded controllers does not significantly impact the energy resolution of detectors.

  19. Photon merging and splitting in electromagnetic field inhomogeneities

    NASA Astrophysics Data System (ADS)

    Gies, Holger; Karbstein, Felix; Seegert, Nico

    2016-04-01

    We investigate photon merging and splitting processes in inhomogeneous, slowly varying electromagnetic fields. Our study is based on the three-photon polarization tensor following from the Heisenberg-Euler effective action. We put special emphasis on deviations from the well-known constant field results, also revisiting the selection rules for these processes. In the context of high-intensity laser facilities, we analytically determine compact expressions for the number of merged/split photons as obtained in the focal spots of intense laser beams. For the parameter range of typical petawatt class laser systems as pump and probe, we provide estimates for the numbers of signal photons attainable in an actual experiment. The combination of frequency upshifting, polarization dependence and scattering off the inhomogeneities renders photon merging an ideal signature for the experimental exploration of nonlinear quantum vacuum properties.

  20. Interconnection requirements in avionic systems

    NASA Astrophysics Data System (ADS)

    Vergnolle, Claude; Houssay, Bruno

    1991-04-01

    The future aircraft generation will have thousand smart electromagnetic sensors distributed allover. Each sensor is connected with fibers links to the main-frame computer in charge of the real time signal''s correlation. Such a computer must be compactly built and massively parallel: it needs the use of 3 D optical free-space interconnect between neighbouring boards and reconfigurable interconnects via holographic backplane. The optical interconnect facilities will be also used to build fault-tolerant computer through large redundancy.

  1. Search for Gravitational Wave Counterparts with Fermi GBM

    NASA Technical Reports Server (NTRS)

    Hui, C. M.

    2017-01-01

    The progenitor of short gamma-ray bursts (GRBs) is believed to be the merger of two compact objects. This type of events will also produce gravitational waves. Since the gravitational waves discovery by LIGO, the search for a joint detection with an electromagnetic counterpart has been ongoing. Fermi GBM detects approximately 40 short GRBs per year, and we have been expanding our search looking for faint events in the GBM data that did not trigger onboard.

  2. Compact and broadband antenna based on a step-shaped metasurface.

    PubMed

    Li, Ximing; Yang, Jingjing; Feng, Yun; Yang, Meixia; Huang, Ming

    2017-08-07

    A metasurface (MS) is highly useful for improving the performance of patch antennae and reducing their size due to their inherent and unique electromagnetic properties. In this paper, a compact and broadband antenna based on a step-shaped metasurface (SMS) at an operating frequency of 4.3 GHz is presented, which is fed by a planar monopole and enabled by selecting an SMS with high selectivity. The SMS consists of an array of metallic step-shaped unit cells underneath the monopole, which provide footprint miniaturization and bandwidth expansion. Numerical results show that the SMS-based antenna with a maximum size of 0.42λ02 (where λ 0 is the operating wavelength in free space) exhibits a 22.3% impedance bandwidth (S11 < -10 dB) and a high gain of more than 7.15 dBi within the passband. Experimental results at microwave frequencies verify the performance of the proposed antenna, demonstrating substantial consistency with the simulation results. The compact and broadband antenna therefore predicts numerous potential applications within modern wireless communication systems.

  3. GPU-accelerated low-latency real-time searches for gravitational waves from compact binary coalescence

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Du, Zhihui; Chung, Shin Kee; Hooper, Shaun; Blair, David; Wen, Linqing

    2012-12-01

    We present a graphics processing unit (GPU)-accelerated time-domain low-latency algorithm to search for gravitational waves (GWs) from coalescing binaries of compact objects based on the summed parallel infinite impulse response (SPIIR) filtering technique. The aim is to facilitate fast detection of GWs with a minimum delay to allow prompt electromagnetic follow-up observations. To maximize the GPU acceleration, we apply an efficient batched parallel computing model that significantly reduces the number of synchronizations in SPIIR and optimizes the usage of the memory and hardware resource. Our code is tested on the CUDA ‘Fermi’ architecture in a GTX 480 graphics card and its performance is compared with a single core of Intel Core i7 920 (2.67 GHz). A 58-fold speedup is achieved while giving results in close agreement with the CPU implementation. Our result indicates that it is possible to conduct a full search for GWs from compact binary coalescence in real time with only one desktop computer equipped with a Fermi GPU card for the initial LIGO detectors which in the past required more than 100 CPUs.

  4. Multi-messenger studies of compact binary mergers in the in the ngVLA era

    NASA Astrophysics Data System (ADS)

    Corsi, Alessandra

    2018-01-01

    We explore some of the scientific opportunities that the next generation Very Large Array (ngVLA) will open in the field of multi-messenger time-domain astronomy. We focus on compact binary mergers, golden astrophysical targets of ground-based gravitational wave (GW) detectors such as advanced LIGO. A decade from now, a large number of these mergers is likely to be discovered by a world-wide network of GW detectors. We discuss how a radio array with 10 times the sensitivity of the current Karl G. Jansky VLA and 10 times the resolution, would enable resolved radio continuum studies of binary merger hosts, probing regions of the galaxy undergoing star formation (which can be heavily obscured by dust and gas), AGN components, and mapping the offset distribution of the mergers with respect to the host galaxy light. For compact binary mergers containing at least one neutron star (NS), from which electromagnetic counterparts are expected to exist, we show how the ngVLA would enable direct size measurements of the relativistic merger ejecta and probe, for the first time directly, their dynamics.

  5. Nano-Fabrication Methods for Micro-Miniature Optical Thermometers Suited to High Temperatures and Harsh Environments

    NASA Astrophysics Data System (ADS)

    DePew, K. A.; Ma, C.; Schiffbauer, J. D.; Wang, J.; Dong, B.; Lally, E.; Wang, A.

    2012-12-01

    The Center for Photonics Technology (CPT) at Virginia Tech is engaged in cutting edge research of fiber optic sensing technologies. One current research area is the design of fiber optic temperature sensors for harsh environments. Fiber optic temperature sensing offers significant advantages over electronic sensing in terms of size and insensitivity to harsh environmental conditions and electromagnetic interference. In the field, fiber optic thermometers have been used in recent snow cover studies as well as fluvial temperature profiling projects. The extended capabilities of CPT optical sensors open further possibilities for application in additional geologic realms requiring high temperature sensing in corrosive environments. Significant strides have been made in developing single-crystal sapphire based fiber optic sensing elements for high temperature environments which are otherwise difficult to instrument. Utilization of strain insensitive designs and optical sapphire materials allow for thermometers capable of operation above 1500°C with reduced sensitivity to chemical corrosion and mechanical interference. Current efforts in fabrication techniques are reducing the footprint of temperature sensors below the millimeter scale while maintaining high resolution and operating range. The FEI Helios 600 NanoLab workstation at the Virginia Tech Institute for Critical Technologies and Applied Science has been employed, providing the capabilities necessary to reduce the footprint of sensing elements to the dimensions of standard optical communication fiber using a Ga+ focused ion beam (FIB). The capability of semi-distributed multi-point sensing can also be accomplished at this scale using similar FIB milling techniques. The fiber optic thermometer designs resulting from these methods are compact, lightweight, and able to provide remote sensing without need for electrical power at the measurement point. These traits make them an ideal sensing platform for laboratory applications with minimal instrumentation egress as well as field deployment in areas where traditional electronic technologies cannot survive.

  6. Dielectric elastomer generators that stack up

    NASA Astrophysics Data System (ADS)

    McKay, T. G.; Rosset, S.; Anderson, I. A.; Shea, H.

    2015-01-01

    This paper reports the design, fabrication, and testing of a soft dielectric elastomer power generator with a volume of less than 1 cm3. The generator is well suited to harvest energy from ambient and from human body motion as it can harvest from low frequency (sub-Hz) motions, and is compact and lightweight. Dielectric elastomers are highly stretchable variable capacitors. Electrical energy is produced when the deformation of a stretched, charged dielectric elastomer is relaxed; like-charges are compressed together and opposite-charges are pushed apart, resulting in an increased voltage. This technology provides an opportunity to produce soft, high energy density generators with unparalleled robustness. Two major issues block this goal: current configurations require rigid frames that maintain the dielectric elastomer in a prestretched state, and high energy densities have come at the expense of short lifetime. This paper presents a self-supporting stacked generator configuration which does not require rigid frames. The generator consists of 48 generator films stacked on top of each other, resulting in a structure that fits within an 11 mm diameter footprint while containing enough active material to produce useful power. To ensure sustainable power production, we also present a mathematical model for designing the electronic control of the generator which optimizes energy production while limiting the electrical stress on the generator below failure limits. When cyclically compressed at 1.6 Hz, our generator produced 1.8 mW of power, which is sufficient for many low-power wireless sensor nodes. This performance compares favorably with similarly scaled electromagnetic, piezoelectric, and electrostatic generators. The generator’s small form factor and ability to harvest useful energy from low frequency motions such as tree swaying or shoe impact provides an opportunity to deliver power to remote wireless sensor nodes or to distributed points in the human body without the need for costly periodic battery replacement.

  7. Multipurpose Fiber Injected-micro-spherical LIDAR System

    NASA Technical Reports Server (NTRS)

    Abdelayem, Hossin; Jamison, Tracee

    2005-01-01

    A technological revolution is occurring in the field of fiber lasers. Over the past two years, the level of power has increased from approx. 100 watts to nearly 1 kilowatt. We are developing a novel fiber laser system, which is a satellite-based LIDAR transmitter of multi-lines. The system is made of a hollow fiber filled with micro-spheres doped with lasing materials. Each sphere has its inherent optical cavity, which makes the system a cavity free and in the same time, emits multi-laser lines for simultaneous multi-task operations. The system is also rugged, compact, lightweight, and durable. Our earlier studies on micro-spheres doped with different laser dyes demonstrated the emission of extremely fine laser lines of less than 3 A line-width, which are of interest for spectroscopic applications, sensing, imaging, and optical communications. Individual dye-doped micro-spheres demonstrated a lasing resonance peaks phenomenon in their fluorescence spectra of linear and nonlinear features that do not exist in the bulk dye solutions. Each individual micro-sphere acts as a laser system with inherent cavity, where the fluorescence line suffers multiple internal reflections within the micro-sphere and gains enough energy to become a laser line. Such resonance peaks are dependent on the sphere's morphology, size, shape, and its refractive index. These resonance peaks are named structural resonance, whispering modes or whispering gallery modes, creeping waves, circumferential waves, surfaces modes, and virtual modes. All of these names refer to the same phenomenon of morphology dependent resonance (MDR), which has already been described and predicted precisely by electromagnetic theory and Lorentz-Mie theory since 1908. The resonance peaks become more obvious when the particle size approaches and exceeds the wavelength of the laser used and the relative index of the particle is greater than that of the surrounding medium. Additional information is included in the original extended abstract.

  8. TwinFocus CPV system

    NASA Astrophysics Data System (ADS)

    Nardello, Marco; Centro, Sandro

    2017-09-01

    TwinFocus® is a CPV solution that adopts quasi-parabolic, off axis mirrors, to obtain a concentration of 760× on 3J solar cells (Azur space technology) with 44% efficiency. The adoption of this optical solution allows for a cheap, lightweight and space efficient system. In particular, the addition of a secondary optics to the mirror, grants an efficient use of space, with very low thicknesses and a compact modular design. Materials are recyclable and allow for reduction of weights to a minimum level. The product is realized through the cooperation of leading edge industries active in automotive lighting and plastic materials molding. The produced prototypes provide up to 27.6% efficiency according to tests operated on the field with non-optimal spectral conditions.

  9. Fighting Ebola with novel spore decontamination technologies for the military

    DOE PAGES

    Doona, Christopher J.; Feeherry, Florence E.; Kustin, Kenneth; ...

    2015-08-12

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). Here, the basis for effectuating sterilization with FDKs is chlorine dioxide (ClO 2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercializedmore » as a dry mixed-chemical for bacterial spore decontamination.« less

  10. Cryocoolers for Space

    NASA Technical Reports Server (NTRS)

    Kittel, Peter; Feller, Jeff; Roach, Pat; Kashani, Ali; Helvensteijn, Ben

    2004-01-01

    Many planetary and Earth science missions require cooling to increase sensitivity and reduce thermal noise of detectors, for preserving high Isp propellants, or for protecting instruments from hostile environments. For space applications, such cooling requires reliable, efficient, long-life coolers that are relatively compact, lightweight, and have low vibration. We have developed and are developing coolers that meet these requirements over a wide range of temperatures. These include pulse tube coolers cooling from 300 K to below 6 K, a magnetic cooler cooling from 10 K to 2 K, a 3He sorption cooler cooling from 2 K to 0.3 K and a helium dilution cooler cooling from 0.3 K to 0.05 K. Details of these coolers and their advantages are presented.

  11. Sun and aureole spectrometer for airborne measurements to derive aerosol optical properties.

    PubMed

    Asseng, Hagen; Ruhtz, Thomas; Fischer, Jürgen

    2004-04-01

    We have designed an airborne spectrometer system for the simultaneous measurement of the direct Sun irradiance and aureole radiance. The instrument is based on diffraction grating spectrometers with linear image sensors. It is robust, lightweight, compact, and reliable, characteristics that are important for airborne applications. The multispectral radiation measurements are used to derive optical properties of tropospheric aerosols. We extract the altitude dependence of the aerosol volume scattering function and of the aerosol optical depth by using flight patterns with descents and ascents ranging from the surface level to the top of the boundary layer. The extinction coefficient and the product of single scattering albedo and phase function of separate layers can be derived from the airborne measurements.

  12. High-Resolution Large Field-of-View FUV Compact Camera

    NASA Technical Reports Server (NTRS)

    Spann, James F.

    2006-01-01

    The need for a high resolution camera with a large field of view and capable to image dim emissions in the far-ultraviolet is driven by the widely varying intensities of FUV emissions and spatial/temporal scales of phenomena of interest in the Earth% ionosphere. In this paper, the concept of a camera is presented that is designed to achieve these goals in a lightweight package with sufficient visible light rejection to be useful for dayside and nightside emissions. The camera employs the concept of self-filtering to achieve good spectral resolution tuned to specific wavelengths. The large field of view is sufficient to image the Earth's disk at Geosynchronous altitudes and capable of a spatial resolution of >20 km. The optics and filters are emphasized.

  13. Environment Monitor

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Viking landers touched down on Mars equipped with a variety of systems to conduct automated research, each carrying a compact but highly sophisticated instrument for analyzing Martian soil and atmosphere. Instrument called a Gas Chromatography/Mass Spectrometer (GC/MS) had to be small, lightweight, shock resistant, highly automated and extremely sensitive, yet require minimal electrical power. Viking Instruments Corporation commercialized this technology and targeted their primary market as environmental monitoring, especially toxic and hazardous waste site monitoring. Waste sites often contain chemicals in complex mixtures, and the conventional method of site characterization, taking samples on-site and sending them to a laboratory for analysis is time consuming and expensive. Other terrestrial applications are explosive detection in airports, drug detection, industrial air monitoring, medical metabolic monitoring and for military, chemical warfare agents.

  14. Green Liquid Monopropellant Thruster

    NASA Technical Reports Server (NTRS)

    Joshi, Prakash B.

    2015-01-01

    Physical Sciences, Inc. (PSI), and Orbital Technologies Corporation (ORBITEC) are developing a unique chemical propulsion system for next-generation NASA science spacecraft and missions. The system is compact, lightweight, and can operate with high reliability over extended periods of time and under a wide range of thermal environments. The system uses a new storable, low-toxicity liquid monopropellant as its working fluid. In Phase I, the team demonstrated experimentally the critical ignition and combustion processes for the propellant and used the data to develop thruster design concepts. In Phase II, the team developed and demonstrated in the laboratory a proof-of-concept prototype thruster. A Phase III project is envisioned to develop a full-scale protoflight propulsion system applicable to a class of NASA missions.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Liang; Au-Yeung, Ka Yan; Yang, Min

    Damping of low frequency vibration by lightweight and compact devices has been a serious challenge in various areas of engineering science. Here we report the experimental realization of a type of miniature low frequency vibration dampers based on decorated membrane resonators. At frequency around 150 Hz, two dampers, each with outer dimensions of 28 mm in diameter and 5 mm in height, and a total mass of 1.78 g which is less than 0.6% of the host structure (a nearly free-standing aluminum beam), can reduce its vibrational amplitude by a factor of 1400, or limit its maximum resonance quality factormore » to 18. Furthermore, the conceptual design of the dampers lays the foundation and demonstrates the potential of further miniaturization of low frequency dampers.« less

  16. Comparison of Analysis with Test for Static Loading of Two Hypersonic Inflatable Aerodynamic Decelerator Concepts

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.

    2015-01-01

    Acceptance of new spacecraft structural architectures and concepts requires validated design methods to minimize the expense involved with technology demonstration via flight-testing. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) architectures are attractive for spacecraft deceleration because they are lightweight, store compactly, and utilize the atmosphere to decelerate a spacecraft during entry. However, designers are hesitant to include these inflatable approaches for large payloads or spacecraft because of the lack of flight validation. This publication summarizes results comparing analytical results with test data for two concepts subjected to representative entry, static loading. The level of agreement and ability to predict the load distribution is considered sufficient to enable analytical predictions to be used in the design process.

  17. Integrated optics interferometer for high precision displacement measurement

    NASA Astrophysics Data System (ADS)

    Persegol, Dominique; Collomb, Virginie; Minier, Vincent

    2017-11-01

    We present the design and fabrication aspects of an integrated optics interferometer used in the optical head of a compact and lightweight displacement sensor developed for spatial applications. The process for fabricating the waveguides of the optical chip is a double thermal ion exchange of silver and sodium in a silicate glass. This two step process is adapted for the fabrication of high numerical aperture buried waveguides having negligible losses for bending radius as low as 10 mm. The optical head of the sensor is composed of a reference arm, a sensing arm and an interferometer which generates a one dimensional fringe pattern allowing a multiphase detection. Four waveguides placed at the output of the interferometer deliver four ideally 90° phase shifted signals.

  18. Fighting Ebola with novel spore decontamination technologies for the military

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doona, Christopher J.; Feeherry, Florence E.; Kustin, Kenneth

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). Here, the basis for effectuating sterilization with FDKs is chlorine dioxide (ClO 2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercializedmore » as a dry mixed-chemical for bacterial spore decontamination.« less

  19. A Data Acquisition System (DAS) for marine and ecological research from aerospace technology

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.

    1972-01-01

    The efforts of researchers at Mississippi State University to utilize space-age technology in the development of a self-contained, portable data acquisition system for use in marine and ecological research are presented. The compact, lightweight data acquisition system is capable of recording 14 variables in its present configuration and is suitable for use in either a boat, pickup truck, or light aircraft. This system will provide the acquisition of reliable data on the structure of the environment and the effect of man-made and natural activities on the observed phenomenon. Utilizing both self-contained analog recording and a telemetry transmitter for real-time digital readout and recording, the prototype system has undergone extensive testing.

  20. NASA TechPort Entry for Coiled Brine Recovery Assembly (CoBRA) CL IR&D Project

    NASA Technical Reports Server (NTRS)

    Pensinger, Stuart

    2014-01-01

    The Coiled Brine Recovery Assembly (CoBRA) project will result in a proof-of-concept demonstration for a lightweight, compact, affordable, regenerable and disposable solution to brine water recovery. The heart of CoBRA is an evaporator that produces water vapor from brine. This evaporator leverages a novel design that enables passive transport of brine from place to place within the system. While it will be necessary to build or modify a system for testing the CoBRA concept, the emphasis of this project will be on developing the evaporator itself. This project will utilize a “test early, test often” approach, building at least one trial evaporator to guide the design of the final product.

  1. Mode-locked thin-disk lasers and their potential application for high-power terahertz generation

    NASA Astrophysics Data System (ADS)

    Saraceno, Clara J.

    2018-04-01

    The progress achieved in the last few decades in the performance of ultrafast laser systems with high average power has been tremendous, and continues to provide momentum to new exciting applications, both in scientific research and technology. Among the various technological advances that have shaped this progress, mode-locked thin-disk oscillators have attracted significant attention as a unique technology capable of providing ultrashort pulses with high energy (tens to hundreds of microjoules) and at very high repetition rates (in the megahertz regime) from a single table-top oscillator. This technology opens the door to compact high repetition rate ultrafast sources spanning the entire electromagnetic spectrum from the XUV to the terahertz regime, opening various new application fields. In this article, we focus on their unexplored potential as compact driving sources for high average power terahertz generation.

  2. Compact four-channel terahertz demultiplexer based on directional coupling photonic crystal

    NASA Astrophysics Data System (ADS)

    Jiu-Sheng, Li; Han, Liu; Le, Zhang

    2015-09-01

    Electromagnetic polarization conveys valuable information for signal processing. Manipulation of terahertz wavelength demultiplexer exhibits tremendous potential in developing application of terahertz science and technology. We propose an approach to separate efficiently four frequencies terahertz waves based on three cascaded directional coupling two-dimensional photonic crystal waveguides. Both plane wave expansion method and finite-difference time-domain method are used to calculate and analyze the characteristics of the proposed device. The simulation results show that the designed terahertz wavelength demultiplexer can split four different wavelengths of terahertz wave into different propagation directions with high transmittance and low crosstalk. The present device is very compact and the total size is 6.8×10.6 mm2. This enables the terahertz wavelength demultiplexer to be used in terahertz wave system and terahertz wave integrated circuit fields.

  3. The compact Erlangen Active Simulator for Interventional Endoscopy: a prospective comparison in structured team-training courses on "endoscopic hemostasis" for doctors and nurses to the "Endo-Trainer" model.

    PubMed

    Hochberger, J; Euler, K; Naegel, A; Hahn, E G; Maiss, J

    2004-09-01

    In 1997 Hochberger and Neumann presented the "Erlangen Biosimulation Model" (commercialized as the "Erlangen Endo-Trainer") at various national and international meetings. The new compactEASIE is a simplified version of the original "Biosimulation Model" (Endo-Trainer) and is specially designed for easy handling. CompactEASIE is reduced in its features, focusing exclusively on flexible endoscopy training. The acceptance of training in endoscopic hemostasis is accepted by workshop participants, as evaluated by a questionnaire on both models. Eleven structured courses on endoscopic hemostasis for doctors and nurses organized by the same endoscopists from 3/1998 to 5/1999 were evaluated using one of both models. The questionnaires were filled in by 207/291 trainees (71%). The Endo-Trainer was used in 4 (n = 103) and the compactEASIE in 7 courses (n = 104). Both simulators were equipped with identical types of specially prepared pig-organ packages consisting of esophagus, stomach and duodenum, including artificial sewn-in vessels, polyps and varices. Blood perfusion was done with a roller pump connected to the sewn-in vessels and blood surrogate. All workshops were identical concerning the course structure: a 30-min theoretical introduction on ulcer bleeding was followed by 2 h of practical training in injection techniques and hemoclip application. The second part of variceal therapy consisted of a 30-min theoretical introduction prior to 2 h of practical training on sclerotherapy, band ligation and cyanoacrylate application. Finally, a questionnaire on the trainees' pre-experience and their rating of the different workshop sections was handed out to each participant. Previous endoscopic experience was comparable in both groups. The training in both simulators was highly accepted by the trainees (compactEASIE 95% excellent and good versus EASIE (Endo-Trainer) 97%) and did not show any significant difference (P = 0.493). Even in the assessment of the single techniques, no statistical difference was observed. Furthermore, the assessments of the closeness to reality and the endoscopic environment in both simulators were identical. Both simulators (Endo-Trainer, compactEASIE) are excellent educational tools for interventional endoscopy with a high level of acceptance. The easy-to-handle, "lightweight" compactEASIE is a significant, progress tool for the future.

  4. Piezoelectric pushers for active vibration control of rotating machinery

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan B.; Kascak, Albert F.

    1988-01-01

    The active control of rotordynamic vibrations and stability by magnetic bearings and electromagnetic shakers have been discussed extensively in the literature. These devices, though effective, are usually large in volume and add significant weight to the stator. The use of piezoelectric pushers may provide similar degrees of effectiveness in light, compact packages. Tests are currently being conducted with piezoelectric pusher-based active vibration control. Results from tests performed on NASA test rigs as preliminary verification of the related theory are presented.

  5. Piezoelectric pushers for active vibration control of rotating machinery

    NASA Technical Reports Server (NTRS)

    Palazzolo, A. B.; Lin, R. R.; Alexander, R. M.; Kascak, A. F.; Montague, J.

    1989-01-01

    The active control of rotordynamic vibrations and stability by magnetic bearings and electromagnetic shakers have been discussed extensively in the literature. These devices, though effective, are usually large in volume and add significant weight to the stator. The use of piezoelectric pushers may provide similar degrees of effectiveness in light, compact packages. Tests are currently being conducted with piezoelectric pusher-based active vibration control. Results from tests performed on NASA test rigs as preliminary verification of the related theory are presented.

  6. High temperature metal purification using a compact portable rf heating and levitation system on the wake shield

    NASA Technical Reports Server (NTRS)

    Hahs, C. A.

    1990-01-01

    The Wake Shield Facility (WSF) can provide an ideal vacuum environment for the purification of high temperature metals in space. The Modular Electromagnetic Levitator (MEL), will provide the opportunity to study undercooling of metals in space and allow to determine material properties in space. The battery powered rf levitation and heating system developed for the MEL demonstrated efficiency of 36 percent. This system is being considered to purify metals at temperatures below 3000 C.

  7. Radial electron-beam-breakup transit-time oscillator

    DOEpatents

    Kwan, Thomas J. T.; Mostrom, Michael A.

    1998-01-01

    A radial electron-beam-breakup transit-time oscillator (RBTO) provides a compact high power microwave generator. The RBTO includes a coaxial vacuum transmission line having an outer conductor and an inner conductor. The inner conductor defines an annular cavity with dimensions effective to support an electromagnetic field in a TEM.sub.00m mode. A radial field emission cathode is formed on the outer conductor for providing an electron beam directed toward the annular cavity electrode. Microwave energy is then extracted from the annular cavity electrode.

  8. Electromagnetically driven radiative shocks and their measurements

    NASA Astrophysics Data System (ADS)

    Kondo, K.; Nakajima, M.; Kawamura, T.; Horioka, K.

    2006-06-01

    Experimental results on a generation of strong shocks in a compact pulse power device are reported. To make a strong and plain shock wave, electrodes are tapered and an acrylic guiding tube is located on the top of the electrodes. It drives a quasi-one-dimensional strong shock in the guiding tube. When the front speed is more than the critical speed Drad, an interesting structure is confirmed at the shock front, which indicate a phenomenon proceeded by the radiative transport.

  9. Influence of winding construction on starter-generator thermal processes

    NASA Astrophysics Data System (ADS)

    Grachev, P. Yu; Bazarov, A. A.; Tabachinskiy, A. S.

    2018-01-01

    Dynamic processes in starter-generators features high winding are overcurrent. It can lead to insulation overheating and fault operation mode. For hybrid and electric vehicles, new high efficiency construction of induction machines windings is proposed. Stator thermal processes need be considered in the most difficult operation modes. The article describes construction features of new compact stator windings, electromagnetic and thermal models of processes in stator windings and explains the influence of innovative construction on thermal processes. Models are based on finite element method.

  10. Non-hermetic fiber optic transceivers for space applications

    NASA Astrophysics Data System (ADS)

    Tabbert, Chuck

    2017-11-01

    There is a commercial trend in high data-rate systems to place optical components in close proximity to the data source/sink. This trend forgoes the traditional module packaging approach to create compact components that are embedded near or within the package of high-performance ASICs. This approach reduces the power consumption and electro-magnetic interference (EMI) effects by reducing the length of copper interconnect signal paths. We present an overview of commercial trends and methods for fielding this technology within spacecraft.

  11. Radar Cross Section Studies/Compact Range Research

    NASA Technical Reports Server (NTRS)

    Burnside, W. D.; Dominek, A. K.; Gupta, I. J.; Newman, E. H.; Pathak, P. H.; Peters, L., Jr.

    1988-01-01

    A summary is given of the achievements of NASA Grant NsG-1613 by Ohio State University from May 1, 1987 to April 30, 1988. The major topics covered are as follows: (1) electromagnetic scattering analysis; (2) indoor scattering measurement systems; (3) RCS control; (4) waveform processing techniques; (5) material scattering and design studies; (6) design and evaluation of design studies; and (7) antenna studies. Major progress has been made in each of these areas as verified by the numerous publications produced.

  12. Wakefield Simulation of CLIC PETS Structure Using Parallel 3D Finite Element Time-Domain Solver T3P

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, A.; Kabel, A.; Lee, L.

    In recent years, SLAC's Advanced Computations Department (ACD) has developed the parallel 3D Finite Element electromagnetic time-domain code T3P. Higher-order Finite Element methods on conformal unstructured meshes and massively parallel processing allow unprecedented simulation accuracy for wakefield computations and simulations of transient effects in realistic accelerator structures. Applications include simulation of wakefield damping in the Compact Linear Collider (CLIC) power extraction and transfer structure (PETS).

  13. Fabrication of an inexpensive, implantable cooling device for reversible brain deactivation in animals ranging from rodents to primates

    PubMed Central

    Cooke, Dylan F.; Goldring, Adam B.; Yamayoshi, Itsukyo; Tsourkas, Phillippos; Recanzone, Gregg H.; Tiriac, Alex; Pan, Tingrui; Simon, Scott I.

    2012-01-01

    We have developed a compact and lightweight microfluidic cooling device to reversibly deactivate one or more areas of the neocortex to examine its functional macrocircuitry as well as behavioral and cortical plasticity. The device, which we term the “cooling chip,” consists of thin silicone tubing (through which chilled ethanol is circulated) embedded in mechanically compliant polydimethylsiloxane (PDMS). PDMS is tailored to compact device dimensions (as small as 21 mm3) that precisely accommodate the geometry of the targeted cortical area. The biocompatible design makes it suitable for both acute preparations and chronic implantation for long-term behavioral studies. The cooling chip accommodates an in-cortex microthermocouple measuring local cortical temperature. A microelectrode may be used to record simultaneous neural responses at the same location. Cortex temperature is controlled by computer regulation of the coolant flow, which can achieve a localized cortical temperature drop from 37 to 20°C in less than 3 min and maintain target temperature to within ±0.3°C indefinitely. Here we describe cooling chip fabrication and performance in mediating cessation of neural signaling in acute preparations of rodents, ferrets, and primates. PMID:22402651

  14. Achieving the interfacial polarization on C/Fe3C heterojunction structures for highly efficient lightweight microwave absorption.

    PubMed

    Zhang, Yanan; Liu, Wei; Quan, Bin; Ji, Guangbin; Ma, Jianna; Li, Daoran; Meng, Wei

    2017-12-15

    Design of dielectric/magnetic heterostructure and multiple interfaces is a challenge for the microwave absorption. Thus, in this study, a novel C/Fe 3 C nanocomposites have been fabricated by annealing the precursors obtained by the facile chemical blowing of polyvinyl pyrrolidone (PVP) and Fe(NO 3 ) 3 ·9H 2 O. By changing the content of Fe(NO 3 ) 3 ·9H 2 O, the honeycomb-like structure with scads of pores and electromagnetic parameters could be successfully tailored. When the addition of Fe(NO 3 ) 3 ·9H 2 O is ranging from 1 to 2g, honeycomb-structured nanocomposites possess high performance microwave absorption when mixed with 90wt% paraffin. The minimal reflection loss is -37.4dB at 13.6GHz and effective bandwidth can reach to 5.6GHz when the thickness is 2.0mm, indicating its great potential in microwave absorbing field. Its outstanding microwave performance is tightly related to the porous structure and substantial interface such as carbon/air and carbon/Fe 3 C, which are in favor of the impedance matching and interfacial polarization. Thus, our study may provide a good reference for the facile synthesis of light-weight carbon-based nanocomposites with effective interfacial polarization. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Autonomous collection of dynamically-cued multi-sensor imagery

    NASA Astrophysics Data System (ADS)

    Daniel, Brian; Wilson, Michael L.; Edelberg, Jason; Jensen, Mark; Johnson, Troy; Anderson, Scott

    2011-05-01

    The availability of imagery simultaneously collected from sensors of disparate modalities enhances an image analyst's situational awareness and expands the overall detection capability to a larger array of target classes. Dynamic cooperation between sensors is increasingly important for the collection of coincident data from multiple sensors either on the same or on different platforms suitable for UAV deployment. Of particular interest is autonomous collaboration between wide area survey detection, high-resolution inspection, and RF sensors that span large segments of the electromagnetic spectrum. The Naval Research Laboratory (NRL) in conjunction with the Space Dynamics Laboratory (SDL) is building sensors with such networked communications capability and is conducting field tests to demonstrate the feasibility of collaborative sensor data collection and exploitation. Example survey / detection sensors include: NuSAR (NRL Unmanned SAR), a UAV compatible synthetic aperture radar system; microHSI, an NRL developed lightweight hyper-spectral imager; RASAR (Real-time Autonomous SAR), a lightweight podded synthetic aperture radar; and N-WAPSS-16 (Nighttime Wide-Area Persistent Surveillance Sensor-16Mpix), a MWIR large array gimbaled system. From these sensors, detected target cues are automatically sent to the NRL/SDL developed EyePod, a high-resolution, narrow FOV EO/IR sensor, for target inspection. In addition to this cooperative data collection, EyePod's real-time, autonomous target tracking capabilities will be demonstrated. Preliminary results and target analysis will be presented.

  16. Electromagnetic Design of a Magnetically Coupled Spatial Power Combiner

    NASA Astrophysics Data System (ADS)

    Bulcha, B. T.; Cataldo, G.; Stevenson, T. R.; U-Yen, K.; Moseley, S. H.; Wollack, E. J.

    2018-04-01

    The design of a two-dimensional spatial beam-combining network employing a parallel-plate superconducting waveguide filled with a monocrystalline silicon dielectric substrate is presented. This component uses arrays of magnetically coupled antenna elements to achieve high coupling efficiency and full sampling of the intensity distribution while avoiding diffractive losses in the multimode waveguide region. These attributes enable the structure's use in realizing compact far-infrared spectrometers for astrophysical and instrumentation applications. If unterminated, reflections within a finite-sized spatial beam combiner can potentially lead to spurious couplings between elements. A planar meta-material electromagnetic absorber is implemented to control this response within the device. This broadband termination absorbs greater than 0.99 of the power over the 1.7:1 operational band at angles ranging from normal to near-parallel incidence. The design approach, simulations and applications of the spatial power combiner and meta-material termination structure are presented.

  17. A novel reconfigurable electromagnetically induced transparency based on S-PINs

    NASA Astrophysics Data System (ADS)

    Xue, Feng; Liu, Shao-Bin; Zhang, Hai-Feng; Wen, Yong-Diao; Kong, Xiang-Kun; Li, Hai-Ming

    2018-02-01

    In this paper, a tunable electromagnetically induced transparency (EIT) based on S-PINs is theoretically analyzed. Unit cell of the structure consists of a cutwire (CW), split ring resonator (SRR), and solid state plasma (SS plasma) patches which are composed of S-PIN array. The destructive interference between the CW and SRR results in a narrowband transparency window accompanied with strong phase dispersion. The proposed design can obtain a tunable EIT with different frequencies range from 12.8 GHz to 16.5 GHz in a simple method by switching these S-PINs on or off selectively. The related parameters of the S-PIN such as the size, carrier concentration, and volt-ampere characteristics have been studied theoretically. The interaction and coupling between two resonators are investigated in detail by the analysis of the current distribution and E-field strength as well. The research results provide an effective way to realize reconfigurable compact slow-light devices.

  18. Optical circulation in a multimode optomechanical resonator.

    PubMed

    Ruesink, Freek; Mathew, John P; Miri, Mohammad-Ali; Alù, Andrea; Verhagen, Ewold

    2018-05-04

    Breaking the symmetry of electromagnetic wave propagation enables important technological functionality. In particular, circulators are nonreciprocal components that can route photons directionally in classical or quantum photonic circuits and offer prospects for fundamental research on electromagnetic transport. Developing highly efficient circulators thus presents an important challenge, especially to realise compact reconfigurable implementations that do not rely on magnetic fields to break reciprocity. We demonstrate optical circulation utilising radiation pressure interactions in an on-chip multimode optomechanical system. Mechanically mediated optical mode conversion in a silica microtoroid provides a synthetic gauge bias for light, enabling four-port circulation that exploits tailored interference between appropriate light paths. We identify two sideband conditions under which ideal circulation is approached. This allows to experimentally demonstrate ~10 dB isolation and <3 dB insertion loss in all relevant channels. We show the possibility of actively controlling the circulator properties, enabling ideal opportunities for reconfigurable integrated nanophotonic circuits.

  19. Electromagnetic evidence that SSS17a is the result of a binary neutron star merger

    NASA Astrophysics Data System (ADS)

    Kilpatrick, C. D.; Foley, R. J.; Kasen, D.; Murguia-Berthier, A.; Ramirez-Ruiz, E.; Coulter, D. A.; Drout, M. R.; Piro, A. L.; Shappee, B. J.; Boutsia, K.; Contreras, C.; Di Mille, F.; Madore, B. F.; Morrell, N.; Pan, Y.-C.; Prochaska, J. X.; Rest, A.; Rojas-Bravo, C.; Siebert, M. R.; Simon, J. D.; Ulloa, N.

    2017-12-01

    Eleven hours after the detection of gravitational wave source GW170817 by the Laser Interferometer Gravitational-Wave Observatory and Virgo Interferometers, an associated optical transient, SSS17a, was identified in the galaxy NGC 4993. Although the gravitational wave data indicate that GW170817 is consistent with the merger of two compact objects, the electromagnetic observations provide independent constraints on the nature of that system. We synthesize the optical to near-infrared photometry and spectroscopy of SSS17a collected by the One-Meter Two-Hemisphere collaboration, finding that SSS17a is unlike other known transients. The source is best described by theoretical models of a kilonova consisting of radioactive elements produced by rapid neutron capture (the r-process). We conclude that SSS17a was the result of a binary neutron star merger, reinforcing the gravitational wave result.

  20. Detection of Double White Dwarf Binaries with Gaia, LSST and eLISA

    NASA Astrophysics Data System (ADS)

    Korol, V.; Rossi, E. M.; Groot, P. J.

    2017-03-01

    According to simulations around 108 double degenerate white dwarf binaries are expected to be present in the Milky Way. Due to their intrinsic faintness, the detection of these systems is a challenge, and the total number of detected sources so far amounts only to a few tens. This will change in the next two decades with the advent of Gaia, the LSST and eLISA. We present an estimation of how many compact DWDs with orbital periods less than a few hours we will be able to detect 1) through electromagnetic radiation with Gaia and LSST and 2) through gravitational wave radiation with eLISA. We find that the sample of simultaneous electromagnetic and gravitational waves detections is expected to be substantial, and will provide us a powerful tool for probing the white dwarf astrophysics and the structure of the Milky Way, letting us into the era of multi-messenger astronomy for these sources.

  1. E-Textile Embroidered Metamaterial Transmission Line for Signal Propagation Control.

    PubMed

    Moradi, Bahareh; Fernández-García, Raul; Gil, Ignacio

    2018-06-05

    In this paper, the utilization of common fabrics for the manufacturing of e-textile metamaterial transmission lines is investigated. In order to filter and control the signal propagation in the ultra-high frequency (UHF) range along the e-textile, a conventional metamaterial transmission line was compared with embroidered metamaterial particles. The proposed design was based on a transmission line loaded with one or several split-ring resonators (SRR) on a felt substrate. To explore the relations between physical parameters and filter performance characteristics, theoretical models based on transmission matrices' description of the filter constituent components were proposed. Excellent agreement between theoretical prediction, electromagnetic simulations, and measurement were found. Experimental results showed stop-band levels higher than -30 dB for compact embroidered metamaterial e-textiles. The validated results confirmed embroidery as a useful technique to obtain customized electromagnetic properties, such as filtering, on wearable applications.

  2. Electromagnetic evidence that SSS17a is the result of a binary neutron star merger.

    PubMed

    Kilpatrick, C D; Foley, R J; Kasen, D; Murguia-Berthier, A; Ramirez-Ruiz, E; Coulter, D A; Drout, M R; Piro, A L; Shappee, B J; Boutsia, K; Contreras, C; Di Mille, F; Madore, B F; Morrell, N; Pan, Y-C; Prochaska, J X; Rest, A; Rojas-Bravo, C; Siebert, M R; Simon, J D; Ulloa, N

    2017-12-22

    Eleven hours after the detection of gravitational wave source GW170817 by the Laser Interferometer Gravitational-Wave Observatory and Virgo Interferometers, an associated optical transient, SSS17a, was identified in the galaxy NGC 4993. Although the gravitational wave data indicate that GW170817 is consistent with the merger of two compact objects, the electromagnetic observations provide independent constraints on the nature of that system. We synthesize the optical to near-infrared photometry and spectroscopy of SSS17a collected by the One-Meter Two-Hemisphere collaboration, finding that SSS17a is unlike other known transients. The source is best described by theoretical models of a kilonova consisting of radioactive elements produced by rapid neutron capture (the r-process). We conclude that SSS17a was the result of a binary neutron star merger, reinforcing the gravitational wave result. Copyright © 2017, American Association for the Advancement of Science.

  3. High-gradient low-β accelerating structure using the first negative spatial harmonic of the fundamental mode

    NASA Astrophysics Data System (ADS)

    Kutsaev, Sergey V.; Agustsson, Ronald; Boucher, Salime; Fischer, Richard; Murokh, Alex; Mustapha, Brahim; Nassiri, Alireza; Ostroumov, Peter N.; Plastun, Alexander; Savin, Evgeny; Smirnov, Alexander Yu.

    2017-12-01

    The development of high-gradient accelerating structures for low-β particles is the key for compact hadron linear accelerators. A particular example of such a machine is a hadron therapy linac, which is a promising alternative to cyclic machines, traditionally used for cancer treatment. Currently, the practical utilization of linear accelerators in radiation therapy is limited by the requirement to be under 50 m in length. A usable device for cancer therapy should produce 200-250 MeV protons and/or 400 - 450 MeV /u carbon ions, which sets the requirement of having 35 MV /m average "real-estate gradient" or gradient per unit of actual accelerator length, including different accelerating sections, focusing elements and beam transport lines, and at least 50 MV /m accelerating gradients in the high-energy section of the linac. Such high accelerating gradients for ion linacs have recently become feasible for operations at S-band frequencies. However, the reasonable application of traditional S-band structures is practically limited to β =v /c >0.4 . However, the simulations show that for lower phase velocities, these structures have either high surface fields (>200 MV /m ) or low shunt impedances (<35 M Ω /m ). At the same time, a significant (˜10 % ) reduction in the linac length can be achieved by using the 50 MV /m structures starting from β ˜0.3 . To address this issue, we have designed a novel radio frequency structure where the beam is synchronous with the higher spatial harmonic of the electromagnetic field. In this paper, we discuss the principles of this approach, the related beam dynamics and especially the electromagnetic and thermomechanical designs of this novel structure. Besides the application to ion therapy, the technology described in this paper can be applied to future high gradient normal conducting ion linacs and high energy physics machines, such as a compact hadron collider. This approach preserves linac compactness in settings with limited space availability.

  4. Multipolar electromagnetic fields around neutron stars: general-relativistic vacuum solutions

    NASA Astrophysics Data System (ADS)

    Pétri, J.

    2017-12-01

    Magnetic fields inside and around neutron stars are at the heart of pulsar magnetospheric activity. Strong magnetic fields are responsible for quantum effects, an essential ingredient to produce leptonic pairs and the subsequent broad-band radiation. The variety of electromagnetic field topologies could lead to the observed diversity of neutron star classes. Thus, it is important to include multipolar components to a presumably dominant dipolar magnetic field. Exact analytical solutions for these multipoles in Newtonian gravity have been computed in recent literature. However, flat space-time is not adequate to describe physics in the immediate surroundings of neutron stars. We generalize the multipole expressions to the strong gravity regime by using a slowly rotating metric approximation such as the one expected around neutron stars. Approximate formulae for the electromagnetic field including frame dragging are computed from which we estimate the Poynting flux and the braking index. Corrections to leading order in compactness and spin parameter are presented. As far as spin-down luminosity is concerned, it is shown that frame dragging remains irrelevant. For high-order multipoles starting from the quadrupole, the electric part can radiate more efficiently than the magnetic part. Both analytical and numerical tools are employed.

  5. A fully implicit numerical integration of the relativistic particle equation of motion

    NASA Astrophysics Data System (ADS)

    Pétri, J.

    2017-04-01

    Relativistic strongly magnetized plasmas are produced in laboratories thanks to state-of-the-art laser technology but can naturally be found around compact objects such as neutron stars and black holes. Detailed studies of the behaviour of relativistic plasmas require accurate computations able to catch the full spatial and temporal dynamics of the system. Numerical simulations of ultra-relativistic plasmas face severe restrictions due to limitations in the maximum possible Lorentz factors that current algorithms can reproduce to good accuracy. In order to circumvent this flaw and repel the limit to 9$ , we design a new fully implicit scheme to solve the relativistic particle equation of motion in an external electromagnetic field using a three-dimensional Cartesian geometry. We show some examples of numerical integrations in constant electromagnetic fields to prove the efficiency of our algorithm. The code is also able to follow the electric drift motion for high Lorentz factors. In the most general case of spatially and temporally varying electromagnetic fields, the code performs extremely well, as shown by comparison with exact analytical solutions for the relativistic electrostatic Kepler problem as well as for linearly and circularly polarized plane waves.

  6. Optical connections on flexible substrates

    NASA Astrophysics Data System (ADS)

    Bosman, Erwin; Geerinck, Peter; Christiaens, Wim; Van Steenberge, Geert; Vanfleteren, Jan; Van Daele, Peter

    2006-04-01

    Optical interconnections integrated on a flexible substrate combine the advantages of optical data transmissions (high bandwidth, no electromagnetic disturbance and low power consumption) and those of flexible substrates (compact, ease of assembly...). Especially the flexible character of the substrates can significantly lower the assembly cost and leads to more compact modules. Especially in automotive-, avionic-, biomedical and sensing applications there is a great potential for these flexible optical interconnections because of the increasing data-rates, increasing use of optical sensors and requirement for smaller size and weight. The research concentrates on the integration of commercially available polymer optical layers (Truemode Backplane TM Polymer, Ormocer®) on a flexible Polyimide film, the fabrication of waveguides and out-of plane deflecting 45° mirrors, the characterization of the optical losses due to the bending of the substrate, and the fabrication of a proof-of-principal demonstrator. The resulting optical structures should be compatible with the standard fabrication of flexible printed circuit boards.

  7. Compact Feeding Network for Array Radiations of Spoof Surface Plasmon Polaritons

    NASA Astrophysics Data System (ADS)

    Xu, Jun Jun; Yin, Jia Yuan; Zhang, Hao Chi; Cui, Tie Jun

    2016-03-01

    We propose a splitter feeding network for array radiations of spoof surface plasmon polaritons (SPPs), which are guided by ultrathin corrugated metallic strips. Based on the coupled mode theory, SPP fields along a single waveguide in a certain frequency range can be readily coupled into two adjacent branch waveguides with the same propagation constants. We propose to load U-shaped particles anti-symmetrically at the ends of such two branch waveguides, showing a high integration degree of the feeding network. By controlling linear phase modulations produced by the U-shaped particle chain, we demonstrate theoretically and experimentally that the SPP fields based on bound modes can be efficiently radiated to far fields in broadside direction. The proposed method shows that the symmetry of electromagnetic field modes can be exploited to the SPP transmission network, providing potential solutions to compact power dividers and combiners for microwave and optical devices and systems.

  8. Novel configuration for an enhanced and compact all-fiber Faraday rotator with matched birefringence.

    PubMed

    Asraf, Sagie; Sintov, Yoav; Zalevsky, Zeev

    2017-08-07

    We propose a novel configuration for an improved and compact all fiber Faraday rotator based on phase matching between the Faraday rotation and bend-induced birefringence. The device utilizes a coiled fiber within two electro-magnetic toroids, such that the fiber length required for getting the beat length is quite long and several rounds of fiber are needed. Analysis of the capabilities of the proposed device and its sensitivity to different parameters is presented. Faraday rotation of 13° was experimentally measured in six meters of single mode silica fiber, with a magnetic field of about 0.06T at a wavelength of 1064nm. We show that phase matching between the two phenomena significantly improves the polarization rotation by a factor of 4-10. In addition, we demonstrate the ability to achieve higher rotation by using Fabry Perot resonator in low terbium doped glass.

  9. Cost efficient PMMA/NG nanocomposites for electromagnetic interference shielding applications

    NASA Astrophysics Data System (ADS)

    Yadav, Prachi; Rattan, Sunita; Tripathi, Ambuj; Kumar, Sandeep

    2017-06-01

    Cost-efficient polymethylmethacrylate/exfoliated nanographite (PMMA/NG) nanocomposites were prepared through the melt blending technique. The crystalline size of NG in nanocomposites was estimated using Scherrer’s formula and was found to be in the range of 42.4-50.6 nm. Scanning electron micrographs showed the homogeneous dispersion of NG in the PMMA matrix. The thermal degradation temperature (T d) of nanocomposites was found to rise monotonically with increase in the loading of NG. Differential scanning calorimetry measurement showed a significant improvement in glass transition temperature (T g) from 97.2 °C for neat PMMA to 106.4 °C for 4.0 wt% PMMA/NG nanocomposites. DC electrical conductivity measurement revealed that the prepared nanocomposites exhibited a low percolation threshold of 0.45 vol%. The s-parameters (S 11 and S 21) were measured through vector network analyser and were explored in the estimation of electromagnetic interference (EMI) shielding effectiveness (SE). The EMI SE of 19.2 dB (~ 99% attenuation of incoming microwave (MW) power) was attained in the 4.0 wt% PMMA/NG nanocomposite at 12.7 GHz MW frequency. Moreover, the observed broadband EMI SE spectra indicate that the prepared nanocomposites can be employed in lightweight and low-cost commercial EMI shielding applications.

  10. Final Results for the GRC Supporting Technology Development Project for the 110-Watt Stirling Radioisotope Generator (SRG110)

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.; Thieme, Lanny G.

    2007-01-01

    From 1999 to 2006, the NASA Glenn Research Center (GRC) supported the development of a high-efficiency, nominal 110-We Stirling Radioisotope Generator (SRG110) for potential use on NASA missions, including deep space missions, Mars rovers, and lunar applications. Lockheed Martin (LM) was the system integrator for the SRG110, under contract to the Department of Energy (DOE). Infinia Corporation (formerly Stirling Technology Company) developed the Stirling convertor, first as a contractor to DOE and then under subcontract to LM. The SRG110 development has been redirected, and recent program changes have been made to significantly increase the specific power of the generator. System development of an Advanced Stirling Radioisotope Generator (ASRG) has now begun, using a lightweight, advanced convertor from Sunpower, Inc. This paper summarizes the results of the supporting technology effort that GRC completed for the SRG110. GRC tasks included convertor extended-duration testing in air and thermal vacuum environments, heater head life assessment, materials studies, permanent magnet aging characterization, linear alternator evaluations, structural dynamics testing, electromagnetic interference (EMI) and electromagnetic compatibility (EMC) characterization, organic materials evaluations, reliability studies, and development of an end-to-end system dynamic model. Related efforts are now continuing in many of these areas to support ASRG development.

  11. Final Results for the GRC Supporting Technology Development Project for the 110-Watt Stirling Radioisotope Generator (SRG110)

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.; Thieme, Lanny G.

    2007-01-01

    From 1999-2006, the NASA Glenn Research Center (GRC) supported the development of a high-efficiency, nominal 110-We Stirling Radioisotope Generator (SRG110) for potential use on NASA missions, including deep space missions, Mars rovers, and lunar applications. Lockheed Martin (LM) was the system integrator for the SRG110, under contract to the Department of Energy (DOE). Infinia Corporation (formerly Stirling Technology Company) developed the Stirling convertor, first as a contractor to DOE and then under subcontract to LM. The SRG110 development has been redirected, and recent program changes have been made to significantly increase the specific power of the generator. System development of an Advanced Stirling Radioisotope Generator (ASRG) has now begun, using a lightweight, advanced convertor from Sunpower, Inc. This paper summarizes the results of the supporting technology effort that GRC completed for the SRG110. GRC tasks included convertor extended-duration testing in air and thermal vacuum environments, heater head life assessment, materials studies, permanent magnet aging characterization, linear alternator evaluations, structural dynamics testing, electromagnetic interference (EMI) and electromagnetic compatibility (EMC) characterization, organic materials evaluations, reliability studies, and development of an end-to-end system dynamic model. Related efforts are now continuing in many of these areas to support ASRG development.

  12. Using Pot-Magnets to Enable Stable and Scalable Electromagnetic Tactile Displays.

    PubMed

    Zarate, Juan Jose; Shea, Herbert

    2017-01-01

    We present the design, fabrication, characterization, and psychophysical testing of a scalable haptic display based on electromagnetic (EM) actuators. The display consists of a 4 × 4 array of taxels, each of which can be in a raised or a lowered position, thus generating different static configurations. One of the most challenging aspects when designing densely-packed arrays of EM actuators is obtaining large actuation forces while simultaneously generating only weak interactions between neighboring taxels. In this work, we introduce a lightweight and effective magnetic shielding architecture. The moving part of each taxel is a cylindrical permanent magnet embedded in a ferromagnetic pot, forming a pot-magnet. An array of planar microcoils attracts or repels each pot-magnet. This configuration reduces the interaction between neighboring magnets by more than one order of magnitude, while the coil/magnet interaction is only reduced by 10 percent. For 4 mm diameter pins on an 8 mm pitch, we obtained displacements of 0.55 mm and forces of 40 mN using 1.7 W. We measured the accuracy of human perception under two actuation configurations which differed in the force versus displacement curve. We obtained 91 percent of correct answers in pulling configuration and 100 percent in pushing configuration.

  13. Applications of the superconducting lossless resistor in electric power systems

    NASA Astrophysics Data System (ADS)

    Qian, Ping; Chen, Ji-yan; Hua, Rong; Chen, Zhongming

    2003-04-01

    The main features and some very useful applications of the superconducting lossless resistor (LLR) in electric power systems are introduced in this paper. According our opinion, there are two different kinds of LLR, i.e., the time-variant LLR (Tv-LLR) and the time-invariant LLR (Ti-LLR). First, Tv-LLR is well suited for developing new type of the fault-current limiter (FCL) since it has no heat energy dissipated from its superconducting element during current-limiting process. Second, it may be used to produce the high voltage circuit breaker with current limiting ability. While Ti-LLR may be used to manufacture a new type of the superconducting transformer, with compact volume, lightweight and with continuously regulated turn-ratio (so it familiarized as time-variable transformer, TVT).

  14. Radiation detection system for portable gamma-ray spectroscopy

    DOEpatents

    Rowland, Mark S [Alamo, CA; Howard, Douglas E [Livermore, CA; Wong, James L [Dublin, CA; Jessup, James L [Tracy, CA; Bianchini, Greg M [Livermore, CA; Miller, Wayne O [Livermore, CA

    2006-06-20

    A portable gamma ray detection apparatus having a gamma ray detector encapsulated by a compact isolation structure having at least two volumetrically-nested enclosures where at least one is a thermal shield. The enclosures are suspension-mounted to each other to successively encapsulate the detector without structural penetrations through the thermal shields. A low power cooler is also provided capable of cooling the detector to cryogenic temperatures without consuming cryogens, due to the heat load reduction by the isolation structure and the reduction in the power requirements of the cooler. The apparatus also includes a lightweight portable power source for supplying power to the apparatus, including to the cooler and the processing means, and reducing the weight of the apparatus to enable handheld operation or toting on a user's person.

  15. KSC-97PC1537

    NASA Image and Video Library

    1997-10-10

    At Launch Complex 40 on Cape Canaveral Air Station, workers are installing three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical power systems that have flown successfully on 23 previous U.S. missions over the past 37 years. These generators produce power by converting heat into electrical energy; the heat is provided by the natural radioactive decay of plutonium-238 dioxide, a non-weapons-grade material. RTGs enable spacecraft to operate at significant distances from the Sun where solar power systems would not be feasible. Cassini will travel two billion miles to reach Saturn and another 1.1 billion miles while in orbit around Saturn. Cassini is undergoing final preparations for liftoff on a Titan IVB/Centaur launch vehicle, with the launch window opening at 4:55 a.m. EDT, Oct. 13

  16. KSC-97PC1535

    NASA Image and Video Library

    1997-10-10

    At Launch Complex 40 on Cape Canaveral Air Station, workers are installing three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical power systems that have flown successfully on 23 previous U.S. missions over the past 37 years. These generators produce power by converting heat into electrical energy; the heat is provided by the natural radioactive decay of plutonium-238 dioxide, a non-weapons-grade material. RTGs enable spacecraft to operate at significant distances from the Sun where solar power systems would not be feasible. Cassini will travel two billion miles to reach Saturn and another 1.1 billion miles while in orbit around Saturn. Cassini is undergoing final preparations for liftoff on a Titan IVB/Centaur launch vehicle, with the launch window opening at 4:55 a.m. EDT, Oct. 13

  17. KSC-97PC1533

    NASA Image and Video Library

    1997-10-10

    At Launch Complex 40 on Cape Canaveral Air Station, workers are installing three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical power systems that have flown successfully on 23 previous U.S. missions over the past 37 years. These generators produce power by converting heat into electrical energy; the heat is provided by the natural radioactive decay of plutonium-238 dioxide, a non-weapons-grade material. RTGs enable spacecraft to operate at significant distances from the Sun where solar power systems would not be feasible. Cassini will travel two billion miles to reach Saturn and another 1.1 billion miles while in orbit around Saturn. Cassini is undergoing final preparations for liftoff on a Titan IVB/Centaur launch vehicle, with the launch window opening at 4:55 a.m. EDT, Oct. 13

  18. KSC-97PC1538

    NASA Image and Video Library

    1997-10-10

    At Launch Complex 40 on Cape Canaveral Air Station, workers are installing three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical power systems that have flown successfully on 23 previous U.S. missions over the past 37 years. These generators produce power by converting heat into electrical energy; the heat is provided by the natural radioactive decay of plutonium-238 dioxide, a non-weapons-grade material. RTGs enable spacecraft to operate at significant distances from the Sun where solar power systems would not be feasible. Cassini will travel two billion miles to reach Saturn and another 1.1 billion miles while in orbit around Saturn. Cassini is undergoing final preparations for liftoff on a Titan IVB/Centaur launch vehicle, with the launch window opening at 4:55 a.m. EDT, Oct. 13

  19. Preliminary design method for deployable spacecraft beams

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.; Cassapakis, Costas

    1995-01-01

    There is currently considerable interest in low-cost, lightweight, compactly packageable deployable elements for various future missions involving small spacecraft. These elements must also have a simple and reliable deployment scheme and possess zero or very small free-play. Although most small spacecraft do not experience large disturbances, very low stiffness appendages or free-play can couple with even small disturbances and lead to unacceptably large attitude errors which may involve the introduction of a flexible-body control system. A class of structures referred to as 'rigidized structures' offers significant promise in providing deployable elements that will meet these needs for small spacecraft. The purpose of this paper is to introduce several rigidizable concepts and to develop a design methodology which permits a rational comparison of these elements to be made with alternate concepts.

  20. Development of shape memory metal as the actuator of a fail safe mechanism

    NASA Technical Reports Server (NTRS)

    Ford, V. G.; Johnson, M. R.; Orlosky, S. D.

    1990-01-01

    A small, compact, lightweight device was developed using shape memory alloy (SMA) in wire form to actuate a pin-puller that decouples the flanges of two shafts. When the SMA is heated it contracts producing a useful force and stroke. As it cools, it can be reset (elongated in this case) by applying a relatively small force. Resistive heating is accomplished by running a current through the SMA wire for a controlled length of time. The electronics to drive the device are not elaborate or complicated, consisting of a timed current source. The total available contraction is 3 percent of the length of the wire. This device, the engineering properties of the SMA, and the tests performed to verify the design concept are described.

  1. A data acquisition system for marine and ecological research.

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.

    1971-01-01

    Description of a self-contained portable data acquisition system for use in marine and ecological research. The compact lightweight data acquisition system is capable of recording 14 variables in its present configuration and is suitable for use in either a boat, pickup truck, or light aircraft. This system will provide the acquisition of reliable data on the structure of the environment and the effect of man-made and natural activities on the observed phenomenon. Utilizing both self-contained analog recording and a telemetry transmitter for real-time digital readout and recording, the prototype system has undergone extensive testing. Currently undergoing component performance upgrading, the prototype system has been utilized in several environmental science investigations associated with air pollution investigations and weather modification and is currently being used for marine data acquisition.

  2. Design of a power-asymmetric actuator for a transtibial prosthesis.

    PubMed

    Bartlett, Harrison L; Lawson, Brian E; Goldfarb, Michael

    2017-07-01

    This paper presents the design and characterization of a power-asymmetric actuator for a transtibial prosthesis. The device is designed to provide the combination of: 1) joint locking, 2) high power dissipation, and 3) low power generation. This actuator functionality allows for a prosthesis to be designed with minimal mass and power consumption relative to a fully-powered robotic prosthesis while maintaining much of the functionality necessary for activities of daily living. The actuator achieves these design characteristics while maintaining a small form factor by leveraging a combination of electromechanical and hydraulic components. The design of the actuator is described herein, and results of an experimental characterization are provided that indicate that the actuator is capable of providing the functional capabilities required of an ankle prosthesis in a compact and lightweight package.

  3. GaN-Based Laser Wireless Power Transfer System.

    PubMed

    De Santi, Carlo; Meneghini, Matteo; Caria, Alessandro; Dogmus, Ezgi; Zegaoui, Malek; Medjdoub, Farid; Kalinic, Boris; Cesca, Tiziana; Meneghesso, Gaudenzio; Zanoni, Enrico

    2018-01-17

    The aim of this work is to present a potential application of gallium nitride-based optoelectronic devices. By using a laser diode and a photodetector, we designed and demonstrated a free-space compact and lightweight wireless power transfer system, whose efficiency is limited by the efficiency of the receiver. We analyzed the effect of the electrical load, temperature, partial absorption and optical excitation distribution on the efficiency, by identifying heating and band-filling as the most impactful processes. By comparing the final demonstrator with a commercial RF-based Qi system, we conclude that the efficiency is still low at close range, but is promising in medium to long range applications. Efficiency may not be a limiting factor, since this concept can enable entirely new possibilities and designs, especially relevant for space applications.

  4. GaN-Based Laser Wireless Power Transfer System

    PubMed Central

    Meneghini, Matteo; Caria, Alessandro; Dogmus, Ezgi; Zegaoui, Malek; Medjdoub, Farid; Kalinic, Boris; Meneghesso, Gaudenzio; Zanoni, Enrico

    2018-01-01

    The aim of this work is to present a potential application of gallium nitride-based optoelectronic devices. By using a laser diode and a photodetector, we designed and demonstrated a free-space compact and lightweight wireless power transfer system, whose efficiency is limited by the efficiency of the receiver. We analyzed the effect of the electrical load, temperature, partial absorption and optical excitation distribution on the efficiency, by identifying heating and band-filling as the most impactful processes. By comparing the final demonstrator with a commercial RF-based Qi system, we conclude that the efficiency is still low at close range, but is promising in medium to long range applications. Efficiency may not be a limiting factor, since this concept can enable entirely new possibilities and designs, especially relevant for space applications. PMID:29342114

  5. A Cryogenic Half-Wave Plate Module to Measure Polarization at Multiple FIR Passbands

    NASA Technical Reports Server (NTRS)

    Rennick, Timothy S.; Vaillancourt, John E.; Hildebrand, Roger H.; Heimsath, Stephen J.

    2002-01-01

    One of the key components in a far-infrared polarimeter that is being designed at the University of Chicago is a locally-powered half-wave plate module. This compact, lightweight, and reliable module will operate at cryogenic temperatures, rotating a half-wave plate about its axis within the optical path. By doing so, polarization measurements can be made. Further, by utilizing multiple half-wave plate modules within the polarimeter, multiple wavelengths or passbands can be studied. In this paper, we describe the design and performance of a relatively inexpensive prototype module that was assembled and tested successfully, outline the difficulties that had to be overcome, and recommend improvements to future modules. This effort now lays some of the groundwork for a next-generation polarimeter for far-infrared astronomy.

  6. Cascaded face alignment via intimacy definition feature

    NASA Astrophysics Data System (ADS)

    Li, Hailiang; Lam, Kin-Man; Chiu, Man-Yau; Wu, Kangheng; Lei, Zhibin

    2017-09-01

    Recent years have witnessed the emerging popularity of regression-based face aligners, which directly learn mappings between facial appearance and shape-increment manifolds. We propose a random-forest based, cascaded regression model for face alignment by using a locally lightweight feature, namely intimacy definition feature. This feature is more discriminative than the pose-indexed feature, more efficient than the histogram of oriented gradients feature and the scale-invariant feature transform feature, and more compact than the local binary feature (LBF). Experimental validation of our algorithm shows that our approach achieves state-of-the-art performance when testing on some challenging datasets. Compared with the LBF-based algorithm, our method achieves about twice the speed, 20% improvement in terms of alignment accuracy and saves an order of magnitude on memory requirement.

  7. Cryogenic hydrogen-induced air liquefaction technologies

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1990-01-01

    Extensively utilizing a special advanced airbreathing propulsion archives database, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen-induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented. The resulting assessment report is summarized. Technical findings are presented relating the status of air liquefaction technology, both as a singular technical area, and also that of a cluster of collateral technical areas including: compact lightweight cryogenic heat exchangers; heat exchanger atmospheric constituents fouling alleviation; para/ortho hydrogen shift conversion catalysts; hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; hydrogen recycling using slush hydrogen as heat sink; liquid hydrogen/liquid air rocket-type combustion devices; air collection and enrichment systems (ACES); and technically related engine concepts.

  8. Benefit from NASA

    NASA Image and Video Library

    2001-08-01

    Apollo-era technology spurred the development of cordless products that we take for granted everyday. In the 1960s, NASA asked Black Decker to develop a special drill that would be powerful enough to cut through hard layers of the lunar surface and be lightweight, compact, and operate under its own power source, allowing Apollo astronauts to collect lunar samples further away from the Lunar Experiment Module. In response, Black Decker developed a computer program that analyzed and optimized drill motor operations. From their analysis, engineers were able to design a motor that was powerful yet required minimal battery power to operate. Since those first days of cordless products, Black Decker has continued to refine this technology and they now sell their rechargeable products worldwide (i.e. the Dustbuster, cordless tools for home and industrial use, and medical tools.)

  9. Transparent active matrix organic light-emitting diode displays driven by nanowire transistor circuitry.

    PubMed

    Ju, Sanghyun; Li, Jianfeng; Liu, Jun; Chen, Po-Chiang; Ha, Young-Geun; Ishikawa, Fumiaki; Chang, Hsiaokang; Zhou, Chongwu; Facchetti, Antonio; Janes, David B; Marks, Tobin J

    2008-04-01

    Optically transparent, mechanically flexible displays are attractive for next-generation visual technologies and portable electronics. In principle, organic light-emitting diodes (OLEDs) satisfy key requirements for this application-transparency, lightweight, flexibility, and low-temperature fabrication. However, to realize transparent, flexible active-matrix OLED (AMOLED) displays requires suitable thin-film transistor (TFT) drive electronics. Nanowire transistors (NWTs) are ideal candidates for this role due to their outstanding electrical characteristics, potential for compact size, fast switching, low-temperature fabrication, and transparency. Here we report the first demonstration of AMOLED displays driven exclusively by NW electronics and show that such displays can be optically transparent. The displays use pixel dimensions suitable for hand-held applications, exhibit 300 cd/m2 brightness, and are fabricated at temperatures suitable for integration on plastic substrates.

  10. Cordless Products

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Apollo-era technology spurred the development of cordless products that we take for granted everyday. In the 1960s, NASA asked Black Decker to develop a special drill that would be powerful enough to cut through hard layers of the lunar surface and be lightweight, compact, and operate under its own power source, allowing Apollo astronauts to collect lunar samples further away from the Lunar Experiment Module. In response, Black Decker developed a computer program that analyzed and optimized drill motor operations. From their analysis, engineers were able to design a motor that was powerful yet required minimal battery power to operate. Since those first days of cordless products, Black Decker has continued to refine this technology and they now sell their rechargeable products worldwide (i.e. the Dustbuster, cordless tools for home and industrial use, and medical tools.)

  11. Lightweight Modular Instrumentation for Planetary Applications

    NASA Technical Reports Server (NTRS)

    Joshi, P. B.

    1993-01-01

    An instrumentation, called Space Active Modular Materials ExperimentS (SAMMES), is developed for monitoring the spacecraft environment and for accurately measuring the degradation of space materials in low earth orbit (LEO). The SAMMES architecture concept can be extended to instrumentation for planetary exploration, both on spacecraft and in situ. The operating environment for planetary application will be substantially different, with temperature extremes and harsh solar wind and cosmic ray flux on lunar surfaces and temperature extremes and high winds on venusian and Martian surfaces. Moreover, instruments for surface deployment, which will be packaged in a small lander/rover (as in MESUR, for example), must be extremely compact with ultralow power and weight. With these requirements in mind, the SAMMES concept was extended to a sensor/instrumentation scheme for the lunar and Martian surface environment.

  12. NIAC Phase I Study Final Report on Large Ultra-Lightweight Photonic Muscle Space Structures

    NASA Technical Reports Server (NTRS)

    Ritter, Joe

    2016-01-01

    The research goal is to develop new tools support NASA's mission of understanding of the Cosmos by developing cost effective solutions that yield a leap in performance and science data. 'Maikalani' in Hawaiian translates to, "knowledge we gain from the cosmos." Missions like Hubble have fundamentally changed humanity's view of the cosmos. Last year's Nobel prize in physics was a result of astronomical discoveries. $9B class JWST size (6.5 meter diameter) space telescopes, when launched are anticipated to rewrite our knowledge of physics. Here we report on a neoteric meta-material telescope mirror technology designed to enable a factor of 100 or more reduction in areal density, a factor of 100 reduction in telescope production and launch costs as well as other advantages; a leap to enable missions to image the cosmos in unprecedented detail, with the associated gain in knowledge. Whether terahertz, visible or X-ray, reflectors used for high quality electromagnetic imaging require shape accuracy (surface figure) to far better than 1 wavelength (lambda) of the incident photons, more typically lambda/10 or better. Imaging visible light therefore requires mirror surfaces that approximate a desired curve (e.g. a sphere or paraboloid) with smooth shape deviation of th less than approximately 1/1000 the diameter of a human hair. This requires either thick high modulus material like glass or metal, or actuators to control mirror shape. During Phase I our team studied a novel solution to this systems level design mass/shape tradespace requirement both to advance the innovative space technology concept and also to help NASA and other agencies meet current operational and future mission requirements. Extreme and revolutionary NASA imaging missions such as Terrestrial Planet Imager (TPI) require lightweight mirrors with minimum diameters of 20 to 40 meters. For reference, NASA's great achievement; the Hubble space telescope, is only 2.4 meters in diameter. What is required is a way to make large inexpensive deployable mirrors where the cost is measured in millions, not billions like current efforts. For example we seek an interim goal within 10 years of a Hubble size (2.4m) primary mirror weighing 1 pound at a cost of 10K in materials. Described here is a technology using thin ultra lightweight materials where shape can be controlled simply with a beam of light, allowing imaging with incredibly low mass yet precisely shaped mirrors. These " Photonic Muscle" substrates will eventually make precision control of giant s p a c e apertures (mirrors) possible. OCCAM substrates make precision control of giant ultra light-weight mirror apertures possible. This technology is posed to create a revolution in remote sensing by making large ultra lightweight space telescopes a fiscal and material reality over the next decade.

  13. Structural aspects of cold-formed steel section designed as U-shape composite beam

    NASA Astrophysics Data System (ADS)

    Saggaff, Anis; Tahir, Mahmood Md.; Azimi, Mohammadamin; Alhajri, T. M.

    2017-11-01

    Composite beam construction usually associated with old-style Hot-Rolled Steel Section (HRSS) has proven to act much better in compare with Cold-Formed Steel Section (CFSS) sections due to thicker section. Due, it's getting popular to replace HRSS with CFSS in some aspects as a composite beam. The advantages such as lightweight, cost effective and easy to install have contributed to the apply CFSS as a preferred construction material for composite beam. There is a few technical data available regarding the application of the usage of CFSS as a composite system, despite the potentials use for residential and light-weight industrial constructions. This paper presents an experimental tests results which have been conducted using CFSS as composite beam. Composite action of CFSS arranged as double beam with Self-Compacting Concrete (SCC) slab are integrated together with bolted shear connectors were used. A full-scale test comprised of 3 proposed composite beam specimens with bolted shear connector spaced at 300 mm interval of grade 8.8 was using single nut with washer on flange of CFS, cast to the slab and loaded until failed. The test show that the bolted shear connector yielded better capacity of ultimate strength and ultimate moment for the proposed composite beam. It can be concluded that, bolted shear connectors of 16 mm in diameter performed better than the other diameter size of bolted shear connectors.

  14. Regolith Advanced Surface Systems Operations Robot (RASSOR)

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Smith, Jonathan D.; Cox, Rachel E.; Schuler, Jason M.; Ebert, Tom; Nick, Andrew J.

    2012-01-01

    Regolith is abundant on extra-terrestrial surfaces and is the source of many resources such as oxygen, hydrogen, titanium, aluminum, iron, silica and other valuable materials, which can be used to make rocket propellant, consumables for life support, radiation protection barrier shields, landing pads, blast protection berms, roads, habitats and other structures and devices. Recent data from the Moon also indicates that there are substantial deposits of water ice in permanently shadowed crater regions and possibly under an over burden of regolith. The key to being able to use this regolith and acquire the resources, is being able to manipulate it with robotic excavation and hauling machinery that can survive and operate in these very extreme extra-terrestrial surface environments. In addition, the reduced gravity on the Moon, Mars, comets and asteroids poses a significant challenge in that the necessary reaction force for digging cannot be provided by the robot's weight as is typically done on Earth. Space transportation is expensive and limited in capacity, so small, lightweight payloads are desirable, which means large traditional excavation machines are not a viable option. A novel, compact and lightweight excavation robot prototype for manipulating, excavating, acquiring, hauling and dumping regolith on extra-terrestrial surfaces has been developed and tested. Lessons learned and test results will be presented including digging in a variety of lunar regolith simulant conditions including frozen regolith mixed with water ice.

  15. Microstrip Antenna for Remote Sensing of Soil Moisture and Sea Surface Salinity

    NASA Technical Reports Server (NTRS)

    Ramhat-Samii, Yahya; Kona, Keerti; Manteghi, Majid; Dinardo, Steven; Hunter, Don; Njoku, Eni; Wilson, Wiliam; Yueh, Simon

    2009-01-01

    This compact, lightweight, dual-frequency antenna feed developed for future soil moisture and sea surface salinity (SSS) missions can benefit future soil and ocean studies by lowering mass, volume, and cost of the antenna system. It also allows for airborne soil moisture and salinity remote sensors operating on small aircraft. While microstrip antenna technology has been developed for radio communications, it has yet to be applied to combined radar and radiometer for Earth remote sensing. The antenna feed provides a key instrument element enabling high-resolution radiometric observations with large, deployable antennas. The design is based on the microstrip stacked-patch array (MSPA) used to feed a large, lightweight, deployable, rotating mesh antenna for spaceborne L-band (approximately equal to 1 GHz) passive and active sensing systems. The array consists of stacked patches to provide dual-frequency capability and suitable radiation patterns. The stacked-patch microstrip element was designed to cover the required L-band center frequencies at 1.26 GHz (lower patch) and 1.413 GHz (upper patch), with dual-linear polarization capabilities. The dimension of patches produces the required frequencies. To achieve excellent polarization isolation and control of antenna sidelobes for the MSPA, the orientation of each stacked-patch element within the array is optimized to reduce the cross-polarization. A specialized feed-distribution network was designed to achieve the required excitation amplitude and phase for each stacked-patch element.

  16. A Mass Computation Model for Lightweight Brayton Cycle Regenerator Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2010-01-01

    Based on a theoretical analysis of convective heat transfer across large internal surface areas, this paper discusses the design implications for generating lightweight gas-gas heat exchanger designs by packaging such areas into compact three-dimensional shapes. Allowances are made for hot and cold inlet and outlet headers for assembly of completed regenerator (or recuperator) heat exchanger units into closed cycle gas turbine flow ducting. Surface area and resulting volume and mass requirements are computed for a range of heat exchanger effectiveness values and internal heat transfer coefficients. Benefit cost curves show the effect of increasing heat exchanger effectiveness on Brayton cycle thermodynamic efficiency on the plus side, while also illustrating the cost in heat exchanger required surface area, volume, and mass requirements as effectiveness is increased. The equations derived for counterflow and crossflow configurations show that as effectiveness values approach unity, or 100 percent, the required surface area, and hence heat exchanger volume and mass tend toward infinity, since the implication is that heat is transferred at a zero temperature difference. To verify the dimensional accuracy of the regenerator mass computational procedure, calculation of a regenerator specific mass, that is, heat exchanger weight per unit working fluid mass flow, is performed in both English and SI units. Identical numerical values for the specific mass parameter, whether expressed in lb/(lb/sec) or kg/(kg/sec), show the dimensional consistency of overall results.

  17. A Mass Computation Model for Lightweight Brayton Cycle Regenerator Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2010-01-01

    Based on a theoretical analysis of convective heat transfer across large internal surface areas, this paper discusses the design implications for generating lightweight gas-gas heat exchanger designs by packaging such areas into compact three-dimensional shapes. Allowances are made for hot and cold inlet and outlet headers for assembly of completed regenerator (or recuperator) heat exchanger units into closed cycle gas turbine flow ducting. Surface area and resulting volume and mass requirements are computed for a range of heat exchanger effectiveness values and internal heat transfer coefficients. Benefit cost curves show the effect of increasing heat exchanger effectiveness on Brayton cycle thermodynamic efficiency on the plus side, while also illustrating the cost in heat exchanger required surface area, volume, and mass requirements as effectiveness is increased. The equations derived for counterflow and crossflow configurations show that as effectiveness values approach unity, or 100 percent, the required surface area, and hence heat exchanger volume and mass tend toward infinity, since the implication is that heat is transferred at a zero temperature difference. To verify the dimensional accuracy of the regenerator mass computational procedure, calculation of a regenerator specific mass, that is, heat exchanger weight per unit working fluid mass flow, is performed in both English and SI units. Identical numerical values for the specific mass parameter, whether expressed in lb/(lb/sec) or kg/ (kg/sec), show the dimensional consistency of overall results.

  18. NEWTON - NEW portable multi-sensor scienTific instrument for non-invasive ON-site characterization of rock from planetary surface and sub-surfaces

    NASA Astrophysics Data System (ADS)

    Díaz-Michelena, M.; de Frutos, J.; Ordóñez, A. A.; Rivero, M. A.; Mesa, J. L.; González, L.; Lavín, C.; Aroca, C.; Sanz, M.; Maicas, M.; Prieto, J. L.; Cobos, P.; Pérez, M.; Kilian, R.; Baeza, O.; Langlais, B.; Thébault, E.; Grösser, J.; Pappusch, M.

    2017-09-01

    In space instrumentation, there is currently no instrument dedicated to susceptibly or complete magnetization measurements of rocks. Magnetic field instrument suites are generally vector (or scalar) magnetometers, which locally measure the magnetic field. When mounted on board rovers, the electromagnetic perturbations associated with motors and other elements make it difficult to reap the benefits from the inclusion of such instruments. However, magnetic characterization is essential to understand key aspects of the present and past history of planetary objects. The work presented here overcomes the limitations currently existing in space instrumentation by developing a new portable and compact multi-sensor instrument for ground breaking high-resolution magnetic characterization of planetary surfaces and sub-surfaces. This new technology introduces for the first time magnetic susceptometry (real and imaginary parts) as a complement to existing compact vector magnetometers for planetary exploration. This work aims to solve the limitations currently existing in space instrumentation by means of providing a new portable and compact multi-sensor instrument for use in space, science and planetary exploration to solve some of the open questions on the crustal and more generally planetary evolution within the Solar System.

  19. Inverse design of an ultra-compact broadband optical diode based on asymmetric spatial mode conversion

    PubMed Central

    Callewaert, Francois; Butun, Serkan; Li, Zhongyang; Aydin, Koray

    2016-01-01

    The objective-first inverse-design algorithm is used to design an ultra-compact optical diode. Based on silicon and air only, this optical diode relies on asymmetric spatial mode conversion between the left and right ports. The first even mode incident from the left port is transmitted to the right port after being converted into an odd mode. On the other hand, same mode incident from the right port is reflected back by the optical diode dielectric structure. The convergence and performance of the algorithm are studied, along with a transform method that converts continuous permittivity medium into a binary material design. The optimal device is studied with full-wave electromagnetic simulations to compare its behavior under right and left incidences, in 2D and 3D settings as well. A parametric study is designed to understand the impact of the design space size and initial conditions on the optimized devices performance. A broadband optical diode behavior is observed after optimization, with a large rejection ratio between the two transmission directions. This illustrates the potential of the objective-first inverse-design method to design ultra-compact broadband photonic devices. PMID:27586852

  20. Study of a heat rejection system using capillary pumping

    NASA Technical Reports Server (NTRS)

    Neal, L. G.; Wanous, D. J.; Clausen, O. W.

    1971-01-01

    Results of an analytical study investigating the application of capillary pumping to the heat rejection loop of an advanced Rankine cycle power conversion system are presented. The feasibility of the concept of capillary pumping as an alternate to electromagnetic pumping is analytically demonstrated. Capillary pumping is shown to provide a potential for weight and electrical power saving and reliability through the use of redundant systems. A screen wick pump design with arterial feed lines was analytically developed. Advantages of this design are high thermodynamic and hydrodynamic efficiency, which provide a lightweight easily packaged system. Operational problems were identified which must be solved for successful application of capillary pumping. The most important are the development of start up and shutdown procedures, and development of a means of keeping noncondensibles from the system and of earth-bound testing procedures.

  1. Free-piston regenerative hot gas hydraulic engine

    NASA Technical Reports Server (NTRS)

    Beremand, D. G. (Inventor)

    1980-01-01

    A displacer piston which is driven pneumatically by a high-pressure or low-pressure gas is included in a free-piston regenerative hydraulic engine. Actuation of the displacer piston circulates the working fluid through a heater, a regenerator and a cooler. The present invention includes an inertial mass such as a piston or a hydraulic fluid column to effectively store and supply energy during portions of the cycle. Power is transmitted from the working fluid to a hydraulic fluid across a diaphragm or lightweight piston to achieve a hydraulic power out-put. The displacer piston of the present invention may be driven pneumatically, hydraulically or electromagnetically. In addition, the displacer piston and the inertial mass of the present invention may be positioned on the same side of the diaphragm member or may be separated by the diaphragm member.

  2. Geometric Calibration and Radiometric Correction of the Maia Multispectral Camera

    NASA Astrophysics Data System (ADS)

    Nocerino, E.; Dubbini, M.; Menna, F.; Remondino, F.; Gattelli, M.; Covi, D.

    2017-10-01

    Multispectral imaging is a widely used remote sensing technique, whose applications range from agriculture to environmental monitoring, from food quality check to cultural heritage diagnostic. A variety of multispectral imaging sensors are available on the market, many of them designed to be mounted on different platform, especially small drones. This work focuses on the geometric and radiometric characterization of a brand-new, lightweight, low-cost multispectral camera, called MAIA. The MAIA camera is equipped with nine sensors, allowing for the acquisition of images in the visible and near infrared parts of the electromagnetic spectrum. Two versions are available, characterised by different set of band-pass filters, inspired by the sensors mounted on the WorlView-2 and Sentinel2 satellites, respectively. The camera details and the developed procedures for the geometric calibrations and radiometric correction are presented in the paper.

  3. Flat Terahertz Reflective Focusing Metasurface with Scanning Ability.

    PubMed

    Yi, Huan; Qu, Shi-Wei; Chen, Bao-Jie; Bai, Xue; Ng, Kung Bo; Chan, Chi Hou

    2017-06-14

    The ability to manipulate the propagation properties of electromagnetic waves, e.g., divergence, focusing, holography or deflection, is very significant in terahertz applications. Metasurfaces with flat structures are attractive for achieving such manipulations in terahertz band, as they feature low profile, lightweight, and ease of design and installation. Several types of terahertz reflective or transmitting metasurfaces with focusing function have been implemented recently, but none of them can provide scanning ability with controllable focus. Here, a flat reflective metasurface featuring controllable focal shift is proposed and experimentally demonstrated. Furthermore, the principle of designing a focus scanning reflective metasurface is presented and the focusing characteristics are discussed, including focus scanning along a line parallel or orthogonal to the metasurface with a large bandwidth. These interesting properties indicate that this flat reflective metasurface could play a key role in many terahertz imaging and detection systems.

  4. The Hunt for a Counterpart to GW150914

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    On 14 September 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) in a pre-operative testing state at the time detected its first sign of gravitational-waves. The LIGO team sprang into action, performing data-quality checks on this unexpected signal. Within two days, they had sent a notification to 63 observing teams at observatories representing the entire electromagnetic spectrum, from radio to gamma-ray wavelengths.Illustration of a binary neutron star merger. The neutron stars 1) inspiral, 2) can produce a short gamma-ray burst, 3) can fling out hot, radioactive material in the form of a kilonova, and 4) form a massive neutron star or black hole with a possible remnant debris disk around it. [NASA/ESA/A. Feild (STScI)]Thus began the very first hunt for an electromagnetic counterpart to a detected gravitational wave signal.What were they looking for?As two compact objects in a binary system merge, the system is expected to emit energy in the form of gravitational waves. If both of the compact objects are black holes, were unlikely to see any electromagnetic radiation in the process, unless the merger is occurring in an (improbable) environment filled with gas and dust.But if one or both of the two compact objects is a neutron star, then there are a number of electromagnetic signatures that could occur due to energetic outflows. If a relativistic jet forms, we could see a short gamma-ray burst and X-ray, optical, and radio afterglows. Sub-relativistic outflows could produce optical and near-infrared signals, or a radio blast wave.Timeline of observations of GW150914, separated by wavelength band, and relative to the time of the gravitational-wave trigger. The top row shows LIGO information releases. The bottom four rows show high-energy, optical, near-infrared, and radio observations, respectively. Click for a closer look! [Abbott et al. 2016]Surprise SignalSince LIGO and Virgo (LIGOs European counterpart), wereprimarily expecting to detect binaries involving neutron stars, they set up a notification system to be able to quickly alert electromagnetic observatories of a gravitational-wave detection. Those observatories would then be able to follow up on the gravitational-wave detectorsrough localization, with the goal of detecting the source by its electromagnetic signature.Given that LIGO had only just come online for testing when GW150914 was detected, its impressive that the pipeline was ready and there were observatories able to follow up so quickly! When the alert went out, 25 teams responded, mobilizing satellites and ground-based telescopes spanning 19 orders of magnitude in electromagnetic wavelength.The Search PartyThe only information the teams were initially given was the localization of the signal to roughly 600 square degrees on the sky. With this starting point, over the next three months, these 25 facilities carefully observed the entirety of the estimated localization area.Footprints of observations in comparison with the initial LIGO localization of GW150914 (black contours). Shown are radio fields (red), optical/infrared fields (green), and X-ray fields (blue circles); not shown are the all-sky Fermi GBM, LAT, INTEGRAL SPI-ACS, and MAXI observations. [Abbott et al. 2016]Some high-energy observatories, like Fermi and INTEGRAL, covered the whole sky. Many optical facilities used a tiling strategy, together covering about 900 square degrees. Still other observatories used a targeted approach, specifically looking at fields that contained a high density of nearby galaxies, in the hopes of detecting signs of a neutron-star merger or a core-collapse supernova.For the transient sources that were found, follow-up spectroscopy and further photometry was performed, to determine if the transient could have been the source of the detected gravitational waves.What Was the Outcome?No electromagnetic counterpart to GW150914 was found. It turns out this isnt surprising; GW150914 was later determined to have been the merger of two black holes, which should not generate an electromagnetic signature.So why report on this? In the publication prepared jointly by LIGO, Virgo, and these 25 teams (with one of the longer author lists youre likely to encounter!), the authors emphasize not the conclusion, but the process leading to it.In spite of the fact that LIGO had not yet even begun its first observing run, the alert system worked, and the community mobilized to cover the entire 600 square degrees of sky with observations and follow-up characterization of candidate sources. If all this can be accomplished for an unexpected signal, imagine how well the system will work for future detections during actual science runs! With any luck, well be identifying the electromagnetic counterparts to gravitational-wave sources soon.CitationB. P. Abbott et al 2016 ApJ 826 L13. doi:10.3847/2041-8205/826/1/L13

  5. Design of a simple, lightweight, passive-elastic ankle exoskeleton supporting ankle joint stiffness.

    PubMed

    Kim, Seyoung; Son, Youngsu; Choi, Sangkyu; Ham, Sangyong; Park, Cheolhoon

    2015-09-01

    In this study, a passive-elastic ankle exoskeleton (PEAX) with a one-way clutch mechanism was developed and then pilot-tested with vertical jumping to determine whether the PEAX is sufficiently lightweight and comfortable to be used in further biomechanical studies. The PEAX was designed to supplement the function of the Achilles tendon and ligaments as they passively support the ankle torque with their inherent stiffness. The main frame of the PEAX consists of upper and lower parts connected to each other by tension springs (N = 3) and lubricated hinge joints. The upper part has an offset angle of 5° with respect to the vertical line when the springs are in their resting state. Each spring has a slack length of 8 cm and connects the upper part to the tailrod of the lower part in the neutral position. The tailrod freely rotates with low friction but has a limited range of motion due to the stop pin working as a one-way clutch. Because of the one-way clutch system, the tension springs store the elastic energy only due to an ankle dorsiflexion when triggered by the stop pin. This clutch mechanism also has the advantage of preventing any inconvenience during ankle plantarflexion because it does not limit the ankle joint motion during the plantarflexion phase. In pilot jumping tests, all of the subjects reported that the PEAX was comfortable for jumping due to its lightweight (approximately 1 kg) and compact (firmly integrated with shoes) design, and subjects were able to nearly reach their maximum vertical jump heights while wearing the PEAX. During the countermovement jump, elastic energy was stored during dorsiflexion by spring extension and released during plantarflexion by spring restoration, indicating that the passive spring torque (i.e., supportive torque) generated by the ankle exoskeleton partially supported the ankle joint torque throughout the process.

  6. Design of a simple, lightweight, passive-elastic ankle exoskeleton supporting ankle joint stiffness

    NASA Astrophysics Data System (ADS)

    Kim, Seyoung; Son, Youngsu; Choi, Sangkyu; Ham, Sangyong; Park, Cheolhoon

    2015-09-01

    In this study, a passive-elastic ankle exoskeleton (PEAX) with a one-way clutch mechanism was developed and then pilot-tested with vertical jumping to determine whether the PEAX is sufficiently lightweight and comfortable to be used in further biomechanical studies. The PEAX was designed to supplement the function of the Achilles tendon and ligaments as they passively support the ankle torque with their inherent stiffness. The main frame of the PEAX consists of upper and lower parts connected to each other by tension springs (N = 3) and lubricated hinge joints. The upper part has an offset angle of 5° with respect to the vertical line when the springs are in their resting state. Each spring has a slack length of 8 cm and connects the upper part to the tailrod of the lower part in the neutral position. The tailrod freely rotates with low friction but has a limited range of motion due to the stop pin working as a one-way clutch. Because of the one-way clutch system, the tension springs store the elastic energy only due to an ankle dorsiflexion when triggered by the stop pin. This clutch mechanism also has the advantage of preventing any inconvenience during ankle plantarflexion because it does not limit the ankle joint motion during the plantarflexion phase. In pilot jumping tests, all of the subjects reported that the PEAX was comfortable for jumping due to its lightweight (approximately 1 kg) and compact (firmly integrated with shoes) design, and subjects were able to nearly reach their maximum vertical jump heights while wearing the PEAX. During the countermovement jump, elastic energy was stored during dorsiflexion by spring extension and released during plantarflexion by spring restoration, indicating that the passive spring torque (i.e., supportive torque) generated by the ankle exoskeleton partially supported the ankle joint torque throughout the process.

  7. Electromagnetic transients as triggers in searches for gravitational waves from compact binary mergers

    NASA Astrophysics Data System (ADS)

    Kelley, Luke Zoltan; Mandel, Ilya; Ramirez-Ruiz, Enrico

    2013-06-01

    The detection of an electromagnetic transient which may originate from a binary neutron star merger can increase the probability that a given segment of data from the LIGO-Virgo ground-based gravitational-wave detector network contains a signal from a binary coalescence. Additional information contained in the electromagnetic signal, such as the sky location or distance to the source, can help rule out false alarms and thus lower the necessary threshold for a detection. Here, we develop a framework for determining how much sensitivity is added to a gravitational-wave search by triggering on an electromagnetic transient. We apply this framework to a variety of relevant electromagnetic transients, from short gamma-ray bursts (GRBs) to signatures of r-process heating to optical and radio orphan afterglows. We compute the expected rates of multimessenger observations in the advanced detector era and find that searches triggered on short GRBs—with current high-energy instruments, such as Fermi—and nucleosynthetic “kilonovae”—with future optical surveys, like the Large Synoptic Survey Telescope—can boost the number of multimessenger detections by 15% and 40%, respectively, for a binary neutron star progenitor model. Short GRB triggers offer precise merger timing but suffer from detection rates decreased by beaming and the high a priori probability that the source is outside the LIGO-Virgo sensitive volume. Isotropic kilonovae, on the other hand, could be commonly observed within the LIGO-Virgo sensitive volume with an instrument roughly an order of magnitude more sensitive than current optical surveys. We propose that the most productive strategy for making multimessenger gravitational-wave observations is using triggers from future deep, optical all-sky surveys, with characteristics comparable to the Large Synoptic Survey Telescope, which could make as many as ten such coincident observations a year.

  8. Construction of CHESS compact undulator magnets at Kyma

    NASA Astrophysics Data System (ADS)

    Temnykh, Alexander B.; Lyndaker, Aaron; Kokole, Mirko; Milharcic, Tadej; Pockar, Jure; Geometrante, Raffaella

    2015-05-01

    In 2014 KYMA S.r.l. has built two CHESS Compact Undulator (CCU) magnets that are at present installed and successfully operate at the Cornell Electron Storage Ring. This type of undulator was developed for upgrade of Cornell High Energy Synchrotron Source beam-lines, but it can be used elsewhere as well. CCU magnets are compact, lightweight, cost efficient and in-vacuum compatible. They are linearly polarized undulators and have a fixed gap. Magnetic field tuning is achieved by phasing (shifting) top magnetic array relative bottom. Two CCUs constructed by KYMA S.r.l. have 28.4 mm period, 6.5 mm gap, 0.93 T peak field. Magnetic structure is of PPM type, made with NdFeB (40UH grade) permanent magnet material. Transitioning from the laboratory to industrial environment for a novel design required additional evaluation, design adjusting and extensive testing. Particular attention was given to the soldering technique used for fastening of the magnetic blocks to holders. This technique had thus far never been used before for undulator magnet construction by industry. The evaluation included tests of different types of soldering paste, measurements of strength of solder and determining the deformations of the soldered magnet and holder under simulated loading forces. This paper focuses on critical features of the CCU design, results of the soldering technique testing and the data regarding permanent magnets magnetization change due to soldering. In addition it deals with optimization-assisted assembly and the performance of the assembled devices and assesses some of the results of the CCU magnets operation at CESR.

  9. A compact and high efficiency GAGG well counter for radiocesium concentration measurements

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Ogata, Yoshimune

    2014-07-01

    After the Fukushima nuclear disaster, social concern about radiocesium (137Cs and 134Cs) contamination in food increased. However, highly efficient instruments that can measure low level radioactivity are quite expensive and heavy. A compact, lightweight, and reliable radiation detector that can inexpensively monitor low level radiocesium is highly desired. We developed a compact and highly efficient radiocesium detector to detect ~32 keV X-rays from radiocesium instead of high energy gamma photons. A 1-mm thick GAGG scintillator was selected to effectively detect ~32 keV X-rays from 137Cs to reduce the influence of ambient radiation. Four sets of 25 mm×25 mm×1 mm GAGG plates, each of which was optically coupled to a triangular-shaped light guide, were optically coupled to a photomultiplier tube (PMT) to form a square-shaped well counter. Another GAGG plate was directly optically coupled to the PMT to form its bottom detector. The energy resolution of the GAGG well counter was 22.3% FWHM for 122 keV gamma rays and 32% FWHM for ~32 keV X-rays. The counting efficiency for the X-rays from radiocesium (mixture of 137Cs and 134Cs) was 4.5%. In measurements of the low level radiocesium mixture, a photo-peak of ~32 keV X-rays can clearly be distinguished from the background. The minimum detectable activity (MDA) was estimated to be ~100 Bq/kg for 1000 s measurement. The results show that our developed GAGG well counter is promising for the detection of radiocesium in food.

  10. Compact 2100 nm laser diode module for next-generation DIRCM

    NASA Astrophysics Data System (ADS)

    Dvinelis, Edgaras; Greibus, Mindaugas; TrinkÅ«nas, Augustinas; NaujokaitÄ--, Greta; Vizbaras, Augustinas; Vizbaras, Dominykas; Vizbaras, Kristijonas

    2017-10-01

    Compact high-power 2100 nm laser diode module for next-generation directional infrared countermeasure (DIRCM) systems is presented. Next-generation DIRCM systems require compact, light-weight and robust laser modules which could provide intense IR light emission capable of disrupting the tracking sensor of heat-seeking missile. Currently used solid-state and fiber laser solutions for mid-IR band are bulky and heavy making them difficult to implement in smaller form-factor DIRCM systems. Recent development of GaSb laser diode technology greatly improved optical output powers and efficiencies of laser diodes working in 1900 - 2450 nm band [1] while also maintaining very attractive size, weight, power consumption and cost characteristics. 2100 nm laser diode module presented in this work performance is based on high-efficiency broad emitting area GaSb laser diode technology. Each laser diode emitter is able to provide 1 W of CW output optical power with working point efficiency up to 20% at temperature of 20 °C. For output beam collimation custom designed fast-axis collimator and slow-axis collimator lenses were used. These lenses were actively aligned and attached using UV epoxy curing. Total 2 emitters stacked vertically were used in 2100 nm laser diode module. Final optical output power of the module goes up to 2 W at temperature of 20 °C. Total dimensions of the laser diode module are 35 x 25 x 16 mm (L x W x H) with a weight of 28 grams. Finally output beam is bore-sighted to mechanical axes of the module housing allowing for easy integration into next-generation DIRCM systems.

  11. Evolution of the Mobile Information SysTem (MIST)

    NASA Technical Reports Server (NTRS)

    Litaker, Harry L., Jr.; Thompson, Shelby; Archer, Ronald D.

    2008-01-01

    The Mobile Information SysTem (MIST) had its origins in the need to determine whether commercial off the shelf (COTS) technologies could improve intervehicular activities (IVA) on International Space Station (ISS) crew maintenance productivity. It began with an exploration of head mounted displays (HMDs), but quickly evolved to include voice recognition, mobile personal computing, and data collection. The unique characteristic of the MIST lies within its mobility, in which a vest is worn that contains a mini-computer and supporting equipment, and a headband with attachments for a HMD, lipstick camera, and microphone. Data is then captured directly by the computer running Morae(TM) or similar software for analysis. To date, the MIST system has been tested in numerous environments such as two parabolic flights on NASA's C-9 microgravity aircraft and several mockup facilities ranging from ISS to the Altair Lunar Sortie Lander. Functional capabilities have included its lightweight and compact design, commonality across systems and environments, and usefulness in remote collaboration. Human Factors evaluations of the system have proven the MIST's ability to be worn for long durations of time (approximately four continuous hours) with no adverse physical deficits, moderate operator compensation, and low workload being reported as measured by Corlett Bishop Discomfort Scale, Cooper-Harper Ratings, and the NASA Total Workload Index (TLX), respectively. Additionally, through development of the system, it has spawned several new applications useful in research. For example, by only employing the lipstick camera, microphone, and a compact digital video recorder (DVR), we created a portable, lightweight data collection device. Video is recorded from the participants point of view (POV) through the use of the camera mounted on the side of the head. Both the video and audio is recorded directly into the DVR located on a belt around the waist. This data is then transferred to another computer for video editing and analysis. Another application has been discovered using simulated flight, in which, a kneeboard is replaced with mini-computer and the HMD to project flight paths and glide slopes for lunar ascent. As technologies evolve, so will the system and its application for research and space system operations.

  12. Holographic Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Andersen, G.

    For the last two decades adaptive optics has been used as a technique for correcting imaging applications and directed energy/laser targeting and laser communications systems affected by atmospheric turbulence. Typically these systems are bulky and limited to <10 kHz due to large computing overhead and limited photon efficiencies. Moreover most use zonal wavefront sensors which cannot easily handle extreme scintillation or unexpected obscuration of a pre-set aperture. Here we present a compact, lightweight adaptive optics system with the potential to operate at speeds of MHz. The system utilizes a hologram to perform an all-optical wavefront analysis that removes the need for any computer. Finally, the sensing is made on a modal basis so it is largely insensitive to scintillation and obscuration. We have constructed a prototype device and will present experimental results from our research. The holographic adaptive optics system begins with the creation of a multiplexed hologram. This hologram is created by recording the maximum and minimum response functions of every actuator in the deformable mirror against a unique focused reference beam. When a wavefront of some arbitrary phase is incident on the processed hologram, a number of focal spots are created -- one pair for each actuator in the DM. The absolute phase error at each particular actuator location is simply related to the ratio of the intensity of each pair of spots. In this way we can use an array of photodetectors to give a direct readout of phase error without the need for any calculations. The advantages of holographic adaptive optics are many. To begin with, the measurement of phase error is made all optically, so the wavefront sensor directly controls the actuators in the DM without any computers. Using fast, photon counting photodetectors allows for closed loop correction limited only by the speed of the deformable mirror which in the case of MEMS devices can be 100 kHz or more. All this can be achieved in an extremely compact and lightweight package making it perfectly suited to applications such as UAV surveillance imagery and free space optical communications systems. Lastly, since the correction is made on a modal basis instead of zonal, it is virtually insensitive to scintillation and obscuration.

  13. Analysis of the Hessian for Inverse Scattering Problems. Part 3. Inverse Medium Scattering of Electromagnetic Waves in Three Dimensions

    DTIC Science & Technology

    2012-08-01

    small data noise and model error, the discrete Hessian can be approximated by a low-rank matrix. This in turn enables fast solution of an appropriately...implication of the compactness of the Hessian is that for small data noise and model error, the discrete Hessian can be approximated by a low-rank matrix. This...probability distribution is given by the inverse of the Hessian of the negative log likelihood function. For Gaussian data noise and model error, this

  14. High efficiency SPS klystron design

    NASA Technical Reports Server (NTRS)

    Nalos, E. J.

    1980-01-01

    The most likely compact configuration to realize both high efficiency and high gain (approx. 40 dB) is a 5-6 cavity design focused by an electromagnet. The basic klystron efficiency cannot be expected to exceed 70-75% without collector depression. It was estimated that the net benefit of a 5 stage collector over a 2 stage collector is between 1.5 and 3.5 kW per tube. A modulating anode is incorporated in the design to enable rapid shutoff of the beam current in case the r.f. drive should be removed.

  15. Method for forming biaxially textured articles by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2002-01-01

    A method of preparing a biaxially textured alloy article comprises the steps of preparing a mixture comprising Ni powder and at least one powder selected from the group consisting of Cr, W, V, Mo, Cu, Al, Ce, YSZ, Y, Rare Earths, (RE), MgO, CeO.sub.2, and Y.sub.2 O.sub.3 ; compacting the mixture, followed by heat treating and rapidly recrystallizing to produce a biaxial texture on the article. In some embodiments the alloy article further comprises electromagnetic or electro-optical devices and possesses superconducting properties.

  16. Inverse medium scattering from periodic structures with fixed-direction incoming waves

    NASA Astrophysics Data System (ADS)

    Gibson, Peter; Hu, Guanghui; Zhao, Yue

    2018-07-01

    This paper is concerned with inverse time-harmonic acoustic and electromagnetic scattering from an infinite biperiodic medium (diffraction grating) in three dimensions. In the acoustic case, we prove that the near-field data of fixed-direction plane waves incited at multiple frequencies uniquely determine a refractive index function which depends on two variables. An analogous uniqueness result holds for time-harmonic Maxwell’s system if the inhomogeneity is periodic in one direction and remains invariant along the other two directions. Uniqueness for recovering (non-periodic) compactly supported contrast functions are also presented.

  17. Tests of the gravitational redshift effect in space-born and ground-based experiments

    NASA Astrophysics Data System (ADS)

    Vavilova, I. B.

    2018-02-01

    This paper provides a brief overview of experiments as concerns with the tests of the gravitational redshift (GRS) effect in ground-based and space-born experiments. In particular, we consider the GRS effects in the gravitational field of the Earth, the major planets of the Solar system, compact stars (white dwarfs and neutron stars) where this effect is confirmed with a higher accuracy. We discuss availabilities to confirm the GRS effect for galaxies and galaxy clusters in visible and X-ray ranges of the electromagnetic spectrum.

  18. Effects of electromagnetic fields on the nonlinear optical properties of asymmetric double quantum well under intense laser field

    NASA Astrophysics Data System (ADS)

    Yesilgul, U.; Sari, H.; Ungan, F.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.; Sökmen, I.

    2017-03-01

    In this study, the effects of electric and magnetic fields on the optical rectification and second and third harmonic generation in asymmetric double quantum well under the intense non-resonant laser field is theoretically investigated. We calculate the optical rectification and second and third harmonic generation within the compact density-matrix approach. The theoretical findings show that the influence of electric, magnetic, and intense laser fields leads to significant changes in the coefficients of nonlinear optical rectification, second and third harmonic generation.

  19. Radar cross section studies

    NASA Technical Reports Server (NTRS)

    Burnside, W. D.; Dominek, A. K.; Gupta, I. J.; Newman, E. H.; Pathak, P. H.; Peters, L., Jr.

    1987-01-01

    The ultimate goal is to generate experimental techniques and computer codes of rather general capability that would enable the aerospace industry to evaluate the scattering properties of aerodynamic shapes. Another goal involves developing an understanding of scattering mechanisms so that modification of the vehicular structure could be introduced within constraints set by aerodynamics. The development of indoor scattering measurement systems with special attention given to the compact range is another goal. There has been considerable progress in advancing state-of-the-art scattering measurements and control and analysis of the electromagnetic scattering from general targets.

  20. Mechanical and electromagnetic properties of 3D printed hot pressed nanocarbon/poly(lactic) acid thin films

    NASA Astrophysics Data System (ADS)

    Kotsilkova, R.; Ivanov, E.; Todorov, P.; Petrova, I.; Volynets, N.; Paddubskaya, A.; Kuzhir, P.; Uglov, V.; Biró, I.; Kertész, K.; Márk, G. I.; Biró, L. P.

    2017-02-01

    We constructed a new type of light-weight, nanocarbon based thin film material having good mechanical properties, thermal stability, and electromagnetic shielding efficiency. Our method, 3D printing combined with hot pressing, is a cheap and industrially upscalable process. First a sandwich structure was created by layer-to-layer deposition of alternating 100 μm thick nanocarbon containing plastic layers and 100 μm thick pristine plastic layers, repeated as building blocks. The 3D printed samples were hot pressed to obtain thin films of 10-30 μm thickness. We used a commercial nanocarbon 3D printing filament (Black Magic). TEM investigations revealed the nanocarbon filler to be a mixture of graphene sheets, short carbon nanotubes, fishbone nanotubes, graphitic nanoparticles, and carbon black. Small-angle X-ray scattering and X-ray diffraction studies showed some amorphization of the nanocarbon filler as a consequence of the hot pressing. The nanoindentation hardness, nanoscratch hardness, and Young's modulus increase gradually by increasing the number of layers in the films, due to an increase of the amount of nanocarbon filler. Microwave absorption also increases continuously with the number of nanocarbon layers, reaching 40% for 3 nanocarbon layers. We demonstrate that unlike most conventional composites loaded with nanocarbons having pronounced dielectric properties, when the real part of permittivity Re(ɛ) is much higher than its imaginary part Im(ɛ) at high frequencies, a combination of 3D printing and hot pressing allows the fabrication of composites with Re ɛ ≈ Im ɛ in a very broad frequency range (0.2-0.6 THz). Our new 3D printed—hot pressed thin films may compete with the CVD graphene sandwiches in electromagnetic shielding applications because of their easier processability and low cost.

Top