Sample records for compact mems-based adaptive

  1. Compact MEMS-based adaptive optics: optical coherence tomography for clinical use

    NASA Astrophysics Data System (ADS)

    Chen, Diana C.; Olivier, Scot S.; Jones, Steven M.; Zawadzki, Robert J.; Evans, Julia W.; Choi, Stacey S.; Werner, John S.

    2008-02-01

    We describe a compact MEMS-based adaptive optics (AO) optical coherence tomography (OCT) system with improved AO performance and ease of clinical use. A typical AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror that measures and corrects the ocular and system aberrations. Because of limitations on current deformable mirror technologies, the amount of real-time ocular-aberration compensation is restricted and small in previous AO-OCT instruments. In this instrument, we incorporate an optical apparatus to correct the spectacle aberrations of the patients such as myopia, hyperopia and astigmatism. This eliminates the tedious process of using trial lenses in clinical imaging. Different amount of spectacle aberration compensation was achieved by motorized stages and automated with the AO computer for ease of clinical use. In addition, the compact AO-OCT was optimized to have minimum system aberrations to reduce AO registration errors and improve AO performance.

  2. MEMS- and LC-adaptive optics at the Naval Research Laboratory

    NASA Astrophysics Data System (ADS)

    Restaino, S. R.; Wilcox, C. C.; Martinez, T.; Andrews, J. R.; Santiago, F.; Payne, D. M.

    2012-06-01

    Adaptive Optics (AO) is an ensemble of techniques that aims at the remedial of the deleterious effects that the Earth's turbulent atmosphere induces on both imagery and signal gathering in real time. It has been over four decades since the first AO system was developed and tested. During this time important technological advances have changed profoundly the way that we think and develop AO systems. The use of Micro-Electro-Mechanical-Systems (MEMS) devices and Liquid Crystal Devices (LCD) has revolutionized these technologies making possible to go from very expensive, very large and power consuming systems to very compact and inexpensive systems. These changes have rendered AO systems useful and applicable in other fields ranging from medical imaging to industry. In this paper we will review the research efforts at the Naval research Laboratory (NRL) to develop AO systems based on both MEMs and LCD in order to produce more compact and light weight AO systems.

  3. Compact MEMS-based Adaptive Optics Optical Coherence Tomography for Clinical Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, D; Olivier, S; Jones, S

    2008-02-04

    We describe a compact MEMS-based adaptive optics (AO) optical coherence tomography system with improved AO performance and ease of clinical use. A typical AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror that measures and corrects the ocular and system aberrations. Because of the limitation on the current deformable mirror technologies, the amount of real-time ocular-aberration compensation is restricted and small in the previous AO-OCT instruments. In this instrument, we proposed to add an optical apparatus to correct the spectacle aberrations of the patients such as myopia, hyperopia and astigmatism. This eliminated the tedious process of themore » trial lenses in clinical imaging. Different amount of spectacle aberration compensation was achieved by motorized stages and automated with the AO computer for ease of clinical use. In addition, the compact AO-OCT was optimized to have minimum system aberrations to reduce AO registration errors and improve AO performance.« less

  4. A multi-conjugate adaptive optics testbed using two MEMS deformable mirrors

    NASA Astrophysics Data System (ADS)

    Andrews, Jonathan R.; Martinez, Ty; Teare, Scott W.; Restaino, Sergio R.; Wilcox, Christopher C.; Santiago, Freddie; Payne, Don M.

    2011-03-01

    Adaptive optics (AO) systems are well demonstrated in the literature with both laboratory and real-world systems being developed. Some of these systems have employed MEMS deformable mirrors as their active corrective element. More recent work in AO for astronomical applications has focused on providing correction in more than one conjugate plane. Additionally, horizontal path AO systems are exploring correction in multiple conjugate planes. This provides challenges for a laboratory system as the aberrations need to be generated and corrected in more than one plane in the optical system. Our work with compact AO systems employing MEMS technology in addition to liquid crystal spatial light modulator (SLM) driven aberration generators has been scaled up to a two conjugate plane testbed. Using two SLM based aberration generators and two separate wavefront sensors, the system can apply correction with two MEMS deformable mirrors. The challenges in such a system are to properly match non-identical components and weight the correction algorithm for correcting in two planes. This paper demonstrates preliminary results and analysis with this system with wavefront data and residual error measurements.

  5. Using two MEMS deformable mirrors in an adaptive optics test bed for multiconjugate correction

    NASA Astrophysics Data System (ADS)

    Andrews, Jonathan R.; Martinez, Ty; Teare, Scott W.; Restaino, Sergio R.; Wilcox, Christopher C.; Santiago, Freddie; Payne, Don M.

    2010-02-01

    Adaptive optics systems have advanced considerably over the past decade and have become common tools for optical engineers. The most recent advances in adaptive optics technology have lead to significant reductions in the cost of most of the key components. Most significantly, the cost of deformable elements and wavefront sensor components have dropped to the point where multiple deformable mirrors and Shack- Hartmann array based wavefront sensor cameras can be included in a single system. Matched with the appropriate hardware and software, formidable systems can be operating in nearly any sized research laboratory. The significant advancement of MEMS deformable mirrors has made them very popular for use as the active corrective element in multi-conjugate adaptive optics systems so that, in particular for astronomical applications, this allows correction in more than one plane. The NRL compact AO system and atmospheric simulation systems has now been expanded to support Multi Conjugate Adaptive Optics (MCAO), taking advantage of using the liquid crystal spatial light modulator (SLM) driven aberration generators in two conjugate planes that are well separated spatially. Thus, by using two SLM based aberration generators and two separate wavefront sensors, the system can measure and apply wavefront correction with two MEMS deformable mirrors. This paper describes the multi-conjugate adaptive optics system and the testing and calibration of the system and demonstrates preliminary results with this system.

  6. FPGA platform for MEMS Disc Resonance Gyroscope (DRG) control

    NASA Astrophysics Data System (ADS)

    Keymeulen, Didier; Peay, Chris; Foor, David; Trung, Tran; Bakhshi, Alireza; Withington, Phil; Yee, Karl; Terrile, Rich

    2008-04-01

    Inertial navigation systems based upon optical gyroscopes tend to be expensive, large, power consumptive, and are not long lived. Micro-Electromechanical Systems (MEMS) based gyros do not have these shortcomings; however, until recently, the performance of MEMS based gyros had been below navigation grade. Boeing and JPL have been cooperating since 1997 to develop high performance MEMS gyroscopes for miniature, low power space Inertial Reference Unit applications. The efforts resulted in demonstration of a Post Resonator Gyroscope (PRG). This experience led to the more compact Disc Resonator Gyroscope (DRG) for further reduced size and power with potentially increased performance. Currently, the mass, volume and power of the DRG are dominated by the size of the electronics. This paper will detail the FPGA based digital electronics architecture and its implementation for the DRG which will allow reduction of size and power and will increase performance through a reduction in electronics noise. Using the digital control based on FPGA, we can program and modify in real-time the control loop to adapt to the specificity of each particular gyro and the change of the mechanical characteristic of the gyro during its life time.

  7. Development, characterization and application of compact spectrometers based on MEMS with in-plane capacitive drives

    NASA Astrophysics Data System (ADS)

    Kenda, A.; Kraft, M.; Tortschanoff, A.; Scherf, Werner; Sandner, T.; Schenk, Harald; Luettjohann, Stephan; Simon, A.

    2014-05-01

    With a trend towards the use of spectroscopic systems in various fields of science and industry, there is an increasing demand for compact spectrometers. For UV/VIS to the shortwave near-infrared spectral range, compact hand-held polychromator type devices are widely used and have replaced larger conventional instruments in many applications. Still, for longer wavelengths this type of compact spectrometers is lacking suitable and affordable detector arrays. In perennial development Carinthian Tech Research AG together with the Fraunhofer Institute for Photonic Microsystems endeavor to close this gap by developing spectrometer systems based on photonic MEMS. Here, we review on two different spectrometer developments, a scanning grating spectrometer working in the NIR and a FT-spectrometer accessing the mid-IR range up to 14 μm. Both systems are using photonic MEMS devices actuated by in-plane comb drive structures. This principle allows for high mechanical amplitudes at low driving voltages but results in gratings respectively mirrors oscillating harmonically. Both systems feature special MEMS structures as well as aspects in terms of system integration which shall tease out the best possible overall performance on the basis of this technology. However, the advantages of MEMS as enabling technology for high scanning speed, miniaturization, energy efficiency, etc. are pointed out. Whereas the scanning grating spectrometer has already evolved to a product for the point of sale analysis of traditional Chinese medicine products, the purpose of the FT-spectrometer as presented is to demonstrate what is achievable in terms of performance. Current developments topics address MEMS packaging issues towards long term stability, further miniaturization and usability.

  8. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    NASA Astrophysics Data System (ADS)

    Persaud, A.; Seidl, P. A.; Ji, Q.; Feinberg, E.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Vinayakumar, K. B.; Lal, A.

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3 × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.

  9. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    DOE PAGES

    Persaud, A.; Seidl, P. A.; Ji, Q.; ...

    2017-10-26

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3more » × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.« less

  10. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persaud, A.; Seidl, P. A.; Ji, Q.

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3more » × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.« less

  11. AOSLO: from benchtop to clinic

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhua; Poonja, Siddharth; Roorda, Austin

    2006-08-01

    We present a clinically deployable adaptive optics scanning laser ophthalmoscope (AOSLO) that features micro-electro-mechanical (MEMS) deformable mirror (DM) based adaptive optics (AO) and low coherent light sources. With the miniaturized optical aperture of a μDMS-Multi TM MEMS DM (Boston Micromachines Corporation, Watertown, MA), we were able to develop a compact and robust AOSLO optical system that occupies a 50 cm X 50 cm area on a mobile optical table. We introduced low coherent light sources, which are superluminescent laser diodes (SLD) at 680 nm with 9 nm bandwidth and 840 nm with 50 nm bandwidth, in confocal scanning ophthalmoscopy to eliminate interference artifacts in the images. We selected a photo multiplier tube (PMT) for photon signal detection and designed low noise video signal conditioning circuits. We employed an acoustic-optical (AOM) spatial light modulator to modulate the light beam so that we could avoid unnecessary exposure to the retina or project a specific stimulus pattern onto the retina. The MEMS DM based AO system demonstrated robust performance. The use of low coherent light sources effectively mitigated the interference artifacts in the images and yielded high-fidelity retinal images of contiguous cone mosaic. We imaged patients with inherited retinal degenerations including cone-rod dystrophy (CRD) and retinitis pigmentosa (RP). We have produced high-fidelity, real-time, microscopic views of the living human retina for healthy and diseased eyes.

  12. Design, fabrication and characterization of MEMS deformable mirrors for ocular adaptive optics

    NASA Astrophysics Data System (ADS)

    Park, Hyunkyu

    This dissertation describes the design and modeling of MEMS-based bimorph deformable mirrors for adaptive optics as well as the characterization of fabricated devices. The objective of this research is to create a compact and low-cost deformable mirror that can be used as a phase corrector particularly for vision science applications. A fundamental theory of adaptive optics is reviewed, paying attention to the phase corrector which is a key component of the adaptive optics system. Several types of phase corrector are presented and the minimization of their size and cost using micro electromechanical systems (MEMS) technology is also discussed. Since this research is targeted towards the ophthalmic applications of adaptive optics, aberrations of the human eye are illustrated and the benefits of corrections by adaptive optics are explained. A couple of actuator types of the phase corrector that can be used in vision science are introduced and discussed their suitability for the purpose. The requirements to be an ideal deformable mirror for ocular adaptive optics are presented. The characteristics of bimorph deformable mirrors originally developed for laser communications are investigated in an effort to understand their suitability for ophthalmological adaptive optics applications. A Phase shifting interferometer setup is developed for optical characterization and fundamental theory of interferogram analysis is described along with wavefront reconstruction. The theoretical analysis of the bimorph deformable mirror begins with developing an analytical model of the laminated structure. The finite element models are also developed using COMSOL Multiphysics. Using the FEM results, the performance of deformable mirrors under various structure dimensions and operating conditions is analyzed for optimization. A basic theory of piezoelectricity is explained, followed by introduction of applications to MEMS devices. The material properties of single crystal PMN-PT adopted in this research are described and characterized. The fabrication process of the optimized deformable mirror is presented and advanced techniques used in the process are described in detail. The fabricated deformable mirrors are characterized and the comparison with FEM is described. Finally, the dissertation ends up with suggestions for further developments and tests for the mirror.

  13. Compact multichannel MEMS based spectrometer for FBG sensing

    NASA Astrophysics Data System (ADS)

    Ganziy, D.; Rose, B.; Bang, O.

    2017-04-01

    We propose a novel type of compact multichannel MEMS based spectrometer, where we replace the linear detector with a Digital Micromirror Device (DMD). The DMD is typically cheaper and has better pixel sampling than an InGaAs detector used in the 1550 nm range, which leads to cost reduction and better performance. Moreover, the DMD is a 2D array, which means that multichannel systems can be implemented without any additional optical components in the spectrometer. This makes the proposed interrogator highly cost-effective. The digital nature of the DMD also provides opportunities for advanced programmable spectroscopy.

  14. HALOS: fast, autonomous, holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Andersen, Geoff P.; Gelsinger-Austin, Paul; Gaddipati, Ravi; Gaddipati, Phani; Ghebremichael, Fassil

    2014-08-01

    We present progress on our holographic adaptive laser optics system (HALOS): a compact, closed-loop aberration correction system that uses a multiplexed hologram to deconvolve the phase aberrations in an input beam. The wavefront characterization is based on simple, parallel measurements of the intensity of fixed focal spots and does not require any complex calculations. As such, the system does not require a computer and is thus much cheaper, less complex than conventional approaches. We present details of a fully functional, closed-loop prototype incorporating a 32-element MEMS mirror, operating at a bandwidth of over 10kHz. Additionally, since the all-optical sensing is made in parallel, the speed is independent of actuator number - running at the same bandwidth for one actuator as for a million.

  15. Robust control of electrostatic torsional micromirrors using adaptive sliding-mode control

    NASA Astrophysics Data System (ADS)

    Sane, Harshad S.; Yazdi, Navid; Mastrangelo, Carlos H.

    2005-01-01

    This paper presents high-resolution control of torsional electrostatic micromirrors beyond their inherent pull-in instability using robust sliding-mode control (SMC). The objectives of this paper are two-fold - firstly, to demonstrate the applicability of SMC for MEMS devices; secondly - to present a modified SMC algorithm that yields improved control accuracy. SMC enables compact realization of a robust controller tolerant of device characteristic variations and nonlinearities. Robustness of the control loop is demonstrated through extensive simulations and measurements on MEMS with a wide range in their characteristics. Control of two-axis gimbaled micromirrors beyond their pull-in instability with overall 10-bit pointing accuracy is confirmed experimentally. In addition, this paper presents an analysis of the sources of errors in discrete-time implementation of the control algorithm. To minimize these errors, we present an adaptive version of the SMC algorithm that yields substantial performance improvement without considerably increasing implementation complexity.

  16. Investigation of improved designs for rotational micromirrors using multiuser MEMS processes

    NASA Astrophysics Data System (ADS)

    Lin, Julianna E.; Michael, Feras S. J.; Kirk, Andrew G.

    2001-04-01

    In recent years, the design of rotational micromirrors for use in optical cross connects has received much attention. Although several companies have already produced and marketed a number of torsional mirror devices, more work is still needed to determine how these mirrors can be integrated into optical systems to form compact optical switches. However, recently several commercial MEMS foundry services have become available. Thus, due to the low cost of these prototyping services, new devices can be fabricated in short amounts of time and the designs adapted to meet the needs of different applications. The purpose of this work is to investigate the fabrication of new micromirror designs using the Multi-User MEMS Processes (MUMPs) foundry service available from Cronos Integrated Microsystems, located in North Carolina, USA). Several sets of mirror designs were submitted for fabrication and the resulting structures characterized using a phase-shifting Mirau interferometer. The results of these devices are presented.

  17. Selected papers from the 12th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2012) (Atlanta, GA, USA, 2-5 December 2012)

    NASA Astrophysics Data System (ADS)

    Allen, Mark G.; Lang, Jeffrey

    2013-11-01

    Welcome to this special section of the Journal of Micromechanics and Microengineering (JMM). This section, co-edited by myself and by Professor Jeffrey Lang of the Massachusetts Institute of Technology, contains expanded versions of selected papers presented at the Power MEMS meeting held in Atlanta, GA, USA, in December of 2012. Professor Lang and I had the privilege of co-chairing Power MEMS 2012, the 12th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications. The scope of the PowerMEMS series of workshops ranges from basic principles, to materials and fabrication, to devices and systems, to applications. The many applications of power MEMS (microelectromehcanical systems) range from MEMS-enabled energy harvesting, storage, conversion and conditioning, to integrated systems that manage these processes. Why is the power MEMS field growing in importance? Smaller-scale power and power supplies (microwatts to tens of watts) are gaining in prominence due to many factors, including the ubiquity of low power portable electronic equipment and the proliferation of wireless sensor nodes that require extraction of energy from their embedding environment in order to function. MEMS manufacturing methods can be utilized to improve the performance of traditional power supply elements, such as allowing batteries to charge faster or shrinking the physical size of passive elements in small-scale power supplies. MEMS technologies can be used to fabricate energy harvesters that extract energy from an embedding environment to power wireless sensor nodes, in-body medical implants and other devices, in which the harvesters are on the small scales that are appropriately matched to the overall size of these microsystems. MEMS can enable the manufacturing of energy storage elements from nontraditional materials by bringing appropriate structure and surface morphology to these materials as well as fabricating the electrical interfaces required for their operation and interconnection. Clearly, the marriage of MEMS technologies and energy conversion is a vital application space; and we are pleased to bring you some of the latest results from that space in this special section. Approximately 130 papers were presented at the Power MEMS 2012 conference. From these, the 20 papers you have before you were selected based on paper quality and topical balance. As you can see, papers representing many of the important areas of power MEMS are included: energy harvesters using multiple transduction schemes; MEMS-based fabrication of compact passive elements (inductors, supercapacitors, transformers); MEMS-enabled power diagnostics; MEMS-based batteries; and low power circuitry adapted to interfacing MEMS-based harvesters to overall systems. All of the papers you will read in this special section comprise substantial expansion from the proceedings articles and were reviewed through JMM's normal reviewing process. Both Professor Lang and I hope that you will share our enthusiasm for the field of power MEMS and that you will find this special section of JMM exciting, interesting and useful.  Sincerely,  Mark G Allen

  18. Tunable photonic cavities for in-situ spectroscopic trace gas detection

    DOEpatents

    Bond, Tiziana; Cole, Garrett; Goddard, Lynford

    2012-11-13

    Compact tunable optical cavities are provided for in-situ NIR spectroscopy. MEMS-tunable VCSEL platforms represents a solid foundation for a new class of compact, sensitive and fiber compatible sensors for fieldable, real-time, multiplexed gas detection systems. Detection limits for gases with NIR cross-sections such as O.sub.2, CH.sub.4, CO.sub.x and NO.sub.x have been predicted to approximately span from 10.sup.ths to 10s of parts per million. Exemplary oxygen detection design and a process for 760 nm continuously tunable VCSELS is provided. This technology enables in-situ self-calibrating platforms with adaptive monitoring by exploiting Photonic FPGAs.

  19. A Compact and Low-Cost MEMS Loudspeaker for Digital Hearing Aids.

    PubMed

    Sang-Soo Je; Rivas, F; Diaz, R E; Jiuk Kwon; Jeonghwan Kim; Bakkaloglu, B; Kiaei, S; Junseok Chae

    2009-10-01

    A microelectromechanical-systems (MEMS)-based electromagnetically actuated loudspeaker to reduce form factor, cost, and power consumption, and increase energy efficiency in hearing-aid applications is presented. The MEMS loudspeaker has multilayer copper coils, an NiFe soft magnet on a thin polyimide diaphragm, and an NdFeB permanent magnet on the perimeter. The coil impedance is measured at 1.5 Omega, and the resonant frequency of the diaphragm is located far from the audio frequency range. The device is driven by a power-scalable, 0.25-mum complementary metal-oxide semiconductor class-D SigmaDelta amplifier stage. The class-D amplifier is formed by a differential H-bridge driven by a single bit, pulse-density-modulated SigmaDelta bitstream at a 1.2-MHz clock rate. The fabricated MEMS loudspeaker generates more than 0.8-mum displacement, equivalent to 106-dB sound pressure level (SPL), with 0.13-mW power consumption. Driven by the SigmaDelta class-D amplifier, the MEMS loudspeaker achieves measured 65-dB total harmonic distortion (THD) with a measurement uncertainty of less than 10%. Energy-efficient and cost-effective advanced hearing aids would benefit from further miniaturization via MEMS technology. The results from this study appear very promising for developing a compact, mass-producible, low-power loudspeaker with sufficient sound generation for hearing-aid applications.

  20. MEMS tunable grating micro-spectrometer

    NASA Astrophysics Data System (ADS)

    Tormen, Maurizio; Lockhart, R.; Niedermann, P.; Overstolz, T.; Hoogerwerf, A.; Mayor, J.-M.; Pierer, J.; Bosshard, C.; Ischer, R.; Voirin, G.; Stanley, R. P.

    2017-11-01

    The interest in MEMS based Micro-Spectrometers is increasing due to their potential in terms of flexibility as well as cost, low mass, small volume and power savings. This interest, especially in the Near-Infrared and Mid- Infrared, ranges from planetary exploration missions to astronomy, e.g. the search for extra solar planets, as well as to many other terrestrial fields of application such as, industrial quality and surface control, chemical analysis of soil and water, detection of chemical pollutants, exhausted gas analysis, food quality control, process control in pharmaceuticals, to name a few. A compact MEMS-based Spectrometer for Near- Infrared and Mid-InfraRed operation have been conceived, designed and demonstrated. The design based on tunable MEMS blazed grating, developed in the past at CSEM [1], achieves state of the art results in terms of spectral resolution, operational wavelength range, light throughput, overall dimensions, and power consumption.

  1. System Modeling of a MEMS Vibratory Gyroscope and Integration to Circuit Simulation.

    PubMed

    Kwon, Hyukjin J; Seok, Seyeong; Lim, Geunbae

    2017-11-18

    Recently, consumer applications have dramatically created the demand for low-cost and compact gyroscopes. Therefore, on the basis of microelectromechanical systems (MEMS) technology, many gyroscopes have been developed and successfully commercialized. A MEMS gyroscope consists of a MEMS device and an electrical circuit for self-oscillation and angular-rate detection. Since the MEMS device and circuit are interactively related, the entire system should be analyzed together to design or test the gyroscope. In this study, a MEMS vibratory gyroscope is analyzed based on the system dynamic modeling; thus, it can be mathematically expressed and integrated into a circuit simulator. A behavioral simulation of the entire system was conducted to prove the self-oscillation and angular-rate detection and to determine the circuit parameters to be optimized. From the simulation, the operating characteristic according to the vacuum pressure and scale factor was obtained, which indicated similar trends compared with those of the experimental results. The simulation method presented in this paper can be generalized to a wide range of MEMS devices.

  2. MEMS-based tunable gratings and their applications

    NASA Astrophysics Data System (ADS)

    Yu, Yiting; Yuan, Weizheng; Qiao, Dayong

    2015-03-01

    The marriage of optics and MEMS has resulted in a new category of optical devices and systems that have unprecedented advantages compared with their traditional counterparts. As an important spatial light modulating technology, diffractive optical MEMS obtains a wide variety of successful commercial applications, e.g. projection displays, optical communication and spectral analysis, due to its features of highly compact, low-cost, IC-compatible, excellent performance, and providing possibilities for developing totally new, yet smart devices and systems. Three most successful MEMS diffraction gratings (GLVs, Polychromator and DMDs) are briefly introduced and their potential applications are analyzed. Then, three different MEMS tunable gratings developed by our group, named as micro programmable blazed gratings (μPBGs) and micro pitch-tunable gratings (μPTGs) working in either digital or analog mode, are demonstrated. The strategies to largely enhance the maximum blazed angle and grating period are described. Some preliminary application explorations based on the developed grating devices are also shown. For our ongoing research focus, we will further improve the device performance to meet the engineering application requirements.

  3. Meso-scale controlled motion for a microfluidic drop ejector.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galambos, Paul C.; Givler, Richard C.; Pohl, Kenneth Roy

    2004-12-01

    The objective of this LDRD was to develop a uniquely capable, novel droplet solution based manufacturing system built around a new MEMS drop ejector. The development all the working subsystems required was completed, leaving the integration of these subsystems into a working prototype still left to accomplish. This LDRD report will focus on the three main subsystems: (1) MEMS drop ejector--the MEMS ''sideshooter'' effectively ejected 0.25 pl drops at 10 m/s, (2) packaging--a compact ejector package based on a modified EMDIP (Electro-Microfluidic Dual In-line Package--SAND2002-1941) was fabricated, and (3) a vision/stage system allowing precise ejector package positioning in 3 dimensionsmore » above a target was developed.« less

  4. HIGH-RESOLUTION LINEAR POLARIMETRIC IMAGING FOR THE EVENT HORIZON TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chael, Andrew A.; Johnson, Michael D.; Narayan, Ramesh

    Images of the linear polarizations of synchrotron radiation around active galactic nuclei (AGNs) highlight their projected magnetic field lines and provide key data for understanding the physics of accretion and outflow from supermassive black holes. The highest-resolution polarimetric images of AGNs are produced with Very Long Baseline Interferometry (VLBI). Because VLBI incompletely samples the Fourier transform of the source image, any image reconstruction that fills in unmeasured spatial frequencies will not be unique and reconstruction algorithms are required. In this paper, we explore some extensions of the Maximum Entropy Method (MEM) to linear polarimetric VLBI imaging. In contrast to previousmore » work, our polarimetric MEM algorithm combines a Stokes I imager that only uses bispectrum measurements that are immune to atmospheric phase corruption, with a joint Stokes Q and U imager that operates on robust polarimetric ratios. We demonstrate the effectiveness of our technique on 7 and 3 mm wavelength quasar observations from the VLBA and simulated 1.3 mm Event Horizon Telescope observations of Sgr A* and M87. Consistent with past studies, we find that polarimetric MEM can produce superior resolution compared to the standard CLEAN algorithm, when imaging smooth and compact source distributions. As an imaging framework, MEM is highly adaptable, allowing a range of constraints on polarization structure. Polarimetric MEM is thus an attractive choice for image reconstruction with the EHT.« less

  5. High-resolution Linear Polarimetric Imaging for the Event Horizon Telescope

    NASA Astrophysics Data System (ADS)

    Chael, Andrew A.; Johnson, Michael D.; Narayan, Ramesh; Doeleman, Sheperd S.; Wardle, John F. C.; Bouman, Katherine L.

    2016-09-01

    Images of the linear polarizations of synchrotron radiation around active galactic nuclei (AGNs) highlight their projected magnetic field lines and provide key data for understanding the physics of accretion and outflow from supermassive black holes. The highest-resolution polarimetric images of AGNs are produced with Very Long Baseline Interferometry (VLBI). Because VLBI incompletely samples the Fourier transform of the source image, any image reconstruction that fills in unmeasured spatial frequencies will not be unique and reconstruction algorithms are required. In this paper, we explore some extensions of the Maximum Entropy Method (MEM) to linear polarimetric VLBI imaging. In contrast to previous work, our polarimetric MEM algorithm combines a Stokes I imager that only uses bispectrum measurements that are immune to atmospheric phase corruption, with a joint Stokes Q and U imager that operates on robust polarimetric ratios. We demonstrate the effectiveness of our technique on 7 and 3 mm wavelength quasar observations from the VLBA and simulated 1.3 mm Event Horizon Telescope observations of Sgr A* and M87. Consistent with past studies, we find that polarimetric MEM can produce superior resolution compared to the standard CLEAN algorithm, when imaging smooth and compact source distributions. As an imaging framework, MEM is highly adaptable, allowing a range of constraints on polarization structure. Polarimetric MEM is thus an attractive choice for image reconstruction with the EHT.

  6. Compact MEMS external cavity tunable laser with ultra-narrow linewidth for coherent detection.

    PubMed

    Zhang, Di; Zhao, Jianyi; Yang, Qi; Liu, Wen; Fu, Yanfeng; Li, Chao; Luo, Ming; Hu, Shenglei; Hu, Qianggao; Wang, Lei

    2012-08-27

    A compact and ultra-narrow linewidth tunable laser with an external cavity based on a simple single-axis-MEMS mirror is presented in this paper. We discuss the simulation of this tunable laser using a two-step hybrid analysis method to obtain an optimal design of the device. A wide wavelength tuning range about 40 nm in C-band with a narrow linewidth of less than 50 kHz and wavelength accuracy of ± 1 GHz over the entire tuning range can be achieved experimentally. We also conduct several experiments under different conditions to test the tunable laser. This device shows an excellent performance in both single-carrier polarization-multiplexed quadrature phase-shift keying (PM-QPSK) and multi-carrier orthogonal frequency division multiplexing (OFDM) coherent systems.

  7. Ultra-compact imaging plate scanner module using a MEMS mirror and specially designed MPPC

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yuichi; Sasaki, Kensuke; Takasaka, Masaomi; Fujimoto, Masatoshi; Yamamoto, Koei

    2017-02-01

    Computed radiography (CR), which is one of the most useful methods for dental imaging and nondestructive testing, uses a phosphor imaging plate (IP) because it is flexible, reusable, and inexpensive. Conventional IP scanners utilize a galvanometer or a polygon mirror as a scanning device and a photomultiplier as an optical sensor. Microelectromechanical systems (MEMS) technology currently provides silicon-based devices and has the potential to replace such discrete devices and sensors. Using these devices, we constructed an ultra-compact IP scanner. Our extremely compact plate scanner utilizes a module that is composed of a one-dimensional MEMS mirror and a long multi-pixel photon counter (MPPC) that is combined with a specially designed wavelength filter and a rod lens. The MEMS mirror, which is a non-resonant electromagnetic type, is 2.6 mm in diameter with a recommended optical scanning angle up to +/-15°. The CR's wide dynamic range is maintained using a newly developed MPPC. The MPPC is a sort of silicon photomultiplier and is a high-sensitivity photon-counting device. To achieve such a wide dynamic range, we developed a long MPPC that has over 10,000 pixels. For size reduction and high optical efficiency, we set the MPPC close to an IP across the rod lens. To prevent the MPPC from detecting excitation light, which is much more intense than photo-stimulated light, we produced a sharp-cut wavelength filter that has a wide angle (+/-60°) of tolerance. We evaluated our constructed scanner module through gray chart and resolution chart images.

  8. Fast tunable blazed MEMS grating for external cavity lasers

    NASA Astrophysics Data System (ADS)

    Tormen, Maurizio; Niedermann, Philippe; Hoogerwerf, Arno; Shea, Herbert; Stanley, Ross

    2017-11-01

    Diffractive MEMS are interesting for a wide range of applications, including displays, scanners or switching elements. Their advantages are compactness, potentially high actuation speed and in the ability to deflect light at large angles. We have designed and fabricated deformable diffractive MEMS grating to be used as tuning elements for external cavity lasers. The resulting device is compact, has wide tunability and a high operating speed. The initial design is a planar grating where the beams are free-standing and attached to each other using leaf springs. Actuation is achieved through two electrostatic comb drives at either end of the grating. To prevent deformation of the free-standing grating, the device is 10 μm thick made from a Silicon on Insulator (SOI) wafer in a single mask process. At 100V a periodicity tuning of 3% has been measured. The first resonant mode of the grating is measured at 13.8 kHz, allowing high speed actuation. This combination of wide tunability and high operating speed represents state of the art in the domain of tunable MEMS filters. In order to improve diffraction efficiency and to expand the usable wavelength range, a blazed version of the deformable MEMS grating has been designed. A key issue is maintaining the mechanical properties of the original device while providing optically smooth blazed beams. Using a process based on anisotropic KOH etching, blazed gratings have been obtained and preliminary characterization is promising.

  9. Study of a MEMS-based Shack-Hartmann wavefront sensor with adjustable pupil sampling for astronomical adaptive optics.

    PubMed

    Baranec, Christoph; Dekany, Richard

    2008-10-01

    We introduce a Shack-Hartmann wavefront sensor for adaptive optics that enables dynamic control of the spatial sampling of an incoming wavefront using a segmented mirror microelectrical mechanical systems (MEMS) device. Unlike a conventional lenslet array, subapertures are defined by either segments or groups of segments of a mirror array, with the ability to change spatial pupil sampling arbitrarily by redefining the segment grouping. Control over the spatial sampling of the wavefront allows for the minimization of wavefront reconstruction error for different intensities of guide source and different atmospheric conditions, which in turn maximizes an adaptive optics system's delivered Strehl ratio. Requirements for the MEMS devices needed in this Shack-Hartmann wavefront sensor are also presented.

  10. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges.

    PubMed

    Herrera-May, Agustín Leobardo; Soler-Balcazar, Juan Carlos; Vázquez-Leal, Héctor; Martínez-Castillo, Jaime; Vigueras-Zuñiga, Marco Osvaldo; Aguilera-Cortés, Luz Antonio

    2016-08-24

    Microelectromechanical systems (MEMS) resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases).

  11. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges

    PubMed Central

    Herrera-May, Agustín Leobardo; Soler-Balcazar, Juan Carlos; Vázquez-Leal, Héctor; Martínez-Castillo, Jaime; Vigueras-Zuñiga, Marco Osvaldo; Aguilera-Cortés, Luz Antonio

    2016-01-01

    Microelectromechanical systems (MEMS) resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases). PMID:27563912

  12. Development of a compact optical MEMS scanner with integrated VCSEL light source and diffractive optics

    NASA Astrophysics Data System (ADS)

    Krygowski, Thomas W.; Reyes, David; Rodgers, M. Steven; Smith, James H.; Warren, Mial E.; Sweatt, William C.; Blum-Spahn, Olga; Wendt, Joel R.; Asbill, Randolph E.

    1999-09-01

    In this work the design and initial fabrication results are reported for the components of a compact optical-MEMS laser scanning system. This system integrates a silicon MEMS laser scanner, a Vertical Cavity Surface Emitting Laser (VCSEL) and passive optical components. The MEMS scanner and VCSEL are mounted onto a fused silica substrate which serves as an optical interconnect between the devices. Two Diffractive Optical Elements (DOE's) are etched into the fused silica substrate to focus the VCSEL beam and increase the scan range. The silicon MEMS scanner consists of an actuator that continuously scans the position of a large polysilicon gold- coated shuttle containing a third DOE. Interferometric measurements show that the residual stress in the 50 micrometer X 1000 micrometer shuttle is extremely low, with a maximum deflection of only 0.18 micrometer over an 800 micrometer span for an unmetallized case and a deflection of 0.56 micrometer for the metallized case. A conservative estimate for the scan range is approximately plus or minus 4 degrees, with a spot size of about 0.5 mm, producing 50 resolvable spots. The basic system architecture, optical and MEMS design is reported in this paper, with an emphasis on the design and fabrication of the silicon MEMS scanner portion of the system.

  13. Holographic Adaptive Laser Optics System

    NASA Astrophysics Data System (ADS)

    Andersen, G.; Ghebremichael, F.

    2011-09-01

    We have created a new adaptive optics system using a holographic modal wavefront sensing method with the autonomous (computer-free) closed-loop control of a MEMS deformable mirror (DM). A multiplexed hologram is recorded using the maximum and minimum actuator positions on the deformable mirror as the “modes”. On reconstruction, an input beam is diffracted into pairs of focal spots and the ratio of the intensities of certain pairs determines the absolute wavefront phase at a particular actuator location. The wavefront measurement is made using fast, sensitive silicon photomultiplier arrays with the parallel outputs directly controlling individual actuators in the MEMS DM. In this talk, we will present the results from an all-optical, ultra-compact system that runs in closed-loop without the need for a computer. The speed is limited only by the response time of any given DM actuator and not the number of actuators. In our case, our 32-actuator prototype device already operates at 10 kHz and our next generation system is being designed for > 100 kHz. As a modal system, it is largely insensitive to scintillation and obscuration and is thus ideal for extreme adaptive optics applications. We will present information on how HALOS can be used for image correction and beam propagation as well as several other novel applications.

  14. EDITORIAL: Special issue for papers selected from The 8th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2008) Special issue for papers selected from The 8th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2008)

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuji

    2009-09-01

    This special issue of the Journal of Micromechanics and Microengineering features papers selected from The 8th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2008) with the 2nd Symposium on Micro Environmental Machine Systems (μMEMS 2008). The workshop was held in Sendai, Japan on 9-12 November 2008 by Tohoku University. This is the second time that the PowerMEMS workshop has been held in Sendai, following the first workshop in 2000. Power MEMS is one of the newest categories of MEMS, which encompasses microdevices and microsystems for power generation, energy conversion and propulsion. The first concept of Power MEMS was born in the late 1990's from a MEMS-based gas turbine project at Massachusetts Institute of Technology. After that, the research and development of Power MEMS have been promoted by the strong need for compact power sources with high energy and/or power density. Since its inception, Power MEMS has expanded to include not only various MEMS-based power generators but also small energy machines and microdevices for macro power generators. Previously, the main topics of the PowerMEMS workshop were miniaturized gas turbines and micro fuel cells, but recently, energy harvesting has been the hottest topic. In 2008, energy harvesting had a 41% share in the 118 accepted regular papers. This special issue includes 19 papers on various topics. Finally, I would like to express my sincere appreciation to the members of the International Steering Committee, the Technical Program Committee, the Local Organizing Committee and financial supporters. This special issue was edited in collaboration with the staff of IOP Publishing.

  15. Broadly tunable thin-film intereference coatings: active thin films for telecom applications

    NASA Astrophysics Data System (ADS)

    Domash, Lawrence H.; Ma, Eugene Y.; Lourie, Mark T.; Sharfin, Wayne F.; Wagner, Matthias

    2003-06-01

    Thin film interference coatings (TFIC) are the most widely used optical technology for telecom filtering, but until recently no tunable versions have been known except for mechanically rotated filters. We describe a new approach to broadly tunable TFIC components based on the thermo-optic properties of semiconductor thin films with large thermo-optic coefficients 3.6X10[-4]/K. The technology is based on amorphous silicon thin films deposited by plasma-enhanced chemical vapor deposition (PECVD), a process adapted for telecom applications from its origins in the flat-panel display and solar cell industries. Unlike MEMS devices, tunable TFIC can be designed as sophisticated multi-cavity, multi-layer optical designs. Applications include flat-top passband filters for add-drop multiplexing, tunable dispersion compensators, tunable gain equalizers and variable optical attenuators. Extremely compact tunable devices may be integrated into modules such as optical channel monitors, tunable lasers, gain-equalized amplifiers, and tunable detectors.

  16. Development of a Compact Optical-MEMS Scanner with Integrated VCSEL Light Source and Diffractive Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krygowski, Thomas W.; Reyes, David; Rodgers, M. Steven

    1999-06-30

    In this work the design and initial fabrication results are reported for the components of a compact optical-MEMS laser scanning system. This system integrates a silicon MEMS laser scanner, a Vertical Cavity Surface Emitting Laser (VCSEL) and passive optical components. The MEMS scanner and VCSEL are mounted onto a fused silica substrate which serves as an optical interconnect between the devices. Two Diffractive Optical Elements (DOEs) are etched into the fused silica substrate to focus the VCSEL beam and increase the scan range. The silicon MEMS scanner consists of an actuator that continuously scans the position of a large polysiliconmore » gold-coated shuttle containing a third DOE. Interferometric measurements show that the residual stress in the 500 {micro}m x 1000 {micro}m shuttle is extremely low, with a maximum deflection of only 0.18{micro}m over an 800 {micro}m span for an unmetallized case and a deflection of 0.56{micro}m for the metallized case. A conservative estimate for the scan range is {approximately}{+-}4{degree}, with a spot size of about 0.5 mm, producing 50 resolvable spots. The basic system architecture, optical and MEMS design is reported in this paper, with an emphasis on the design and fabrication of the silicon MEMS scanner portion of the system.« less

  17. A High Isolation Series-Shunt RF MEMS Switch

    PubMed Central

    Yu, Yuan-Wei; Zhu, Jian; Jia, Shi-Xing; Shi, Yi

    2009-01-01

    This paper presents a wide band compact high isolation microelectromechanical systems (MEMS) switch implemented on a coplanar waveguide (CPW) with three ohmic switch cells, which is based on the series-shunt switch design. The ohmic switch shows a low intrinsic loss of 0.1 dB and an isolation of 24.8 dB at 6 GHz. The measured average pull-in voltage is 28 V and switching time is 47 μs. In order to shorten design period of the high isolation switch, a structure-based small-signal model for the 3-port ohmic MEMS switch is developed and parameters are extracted from the measured results. Then a high isolation switch has been developed where each 3-port ohmic MEMS switch is closely located. The agreement of the measured and modeled radio frequency (RF) performance demonstrates the validity of the electrical equivalent model. Measurements of the series-shunt switch indicate an outstanding isolation of more than 40 dB and a low insertion loss of 0.35 dB from DC to 12 GHz with total chip size of 1 mm × 1.2 mm. PMID:22408535

  18. Fast-steering solutions for cubesat-scale optical communications

    NASA Astrophysics Data System (ADS)

    Kingsbury, R. W.; Nguyen, T.; Riesing, K.; Cahoy, K.

    2017-11-01

    We describe the design of a compact free-space optical communications module for use on a nanosatellite and present results from a detailed trade study to select an optical fine steering mechanism compatible with our stringent size, weight and power (SWaP) constraints. This mechanism is an integral component of the compact free-space optical communications system that is under development at the MIT Space Systems Laboratory [1]. The overall goal of this project is to develop a laser communications (lasercom) payload that fits within the SWaP constraints of a typical ``3U'' CubeSat. The SWaP constraints for the entire lasercom payload are 5 cm × 10 cm × 10 cm, 600 g and 10W. Although other efforts are underway to qualify MEMS deformable mirrors for use in CubeSats [2], there has been very little work towards qualifying tip-tilt MEMS mirrors [3]. Sec. II provides additional information on how the fast steering mechanism is used in our lasercom system. Performance requirements and desirable traits of the mechanism are given. In Sec. III we describe the various types of compact tip-tilt mirrors that are commercially available as well as the justification for selecting a MEMS-based device for our application. Sec. IV presents an analysis of the device's transfer function characteristics and ways of predicting this behavior that are suitable for use in the control processor. This analysis is based upon manufacturer-provided test data which was collected at standard room conditions. In the final section, we describe on-going work to build a testbed that will be used to measure device performance in a thermal chamber.

  19. 3D wide field-of-view Gabor-domain optical coherence microscopy advancing real-time in-vivo imaging and metrology

    NASA Astrophysics Data System (ADS)

    Canavesi, Cristina; Cogliati, Andrea; Hayes, Adam; Tankam, Patrice; Santhanam, Anand; Rolland, Jannick P.

    2017-02-01

    Real-time volumetric high-definition wide-field-of-view in-vivo cellular imaging requires micron-scale resolution in 3D. Compactness of the handheld device and distortion-free images with cellular resolution are also critically required for onsite use in clinical applications. By integrating a custom liquid lens-based microscope and a dual-axis MEMS scanner in a compact handheld probe, Gabor-domain optical coherence microscopy (GD-OCM) breaks the lateral resolution limit of optical coherence tomography through depth, overcoming the tradeoff between numerical aperture and depth of focus, enabling advances in biotechnology. Furthermore, distortion-free imaging with no post-processing is achieved with a compact, lightweight handheld MEMS scanner that obtained a 12-fold reduction in volume and 17-fold reduction in weight over a previous dual-mirror galvanometer-based scanner. Approaching the holy grail of medical imaging - noninvasive real-time imaging with histologic resolution - GD-OCM demonstrates invariant resolution of 2 μm throughout a volume of 1 x 1 x 0.6 mm3, acquired and visualized in less than 2 minutes with parallel processing on graphics processing units. Results on the metrology of manufactured materials and imaging of human tissue with GD-OCM are presented.

  20. MEMS-based IR-sources

    NASA Astrophysics Data System (ADS)

    Weise, Sebastian; Steinbach, Bastian; Biermann, Steffen

    2016-03-01

    The series JSIR350 sources are MEMS based infrared emitters. These IR sources are characterized by a high radiation output. Thus, they are excellent for NDIR gas analysis and are ideally suited for using with our pyro-electric or thermopile detectors. The MEMS chips used in Micro-Hybrid's infrared emitters consist of nano-amorphous carbon (NAC). The MEMS chips are produced in the USA. All Micro-Hybrid Emitter are designed and specified to operate up to 850°C. The improvements we have made in the source's packaging enable us to provide IR sources with the best performance on the market. This new technology enables us to seal the housings of infrared radiation sources with soldered infrared filters or windows and thus cause the parts to be impenetrable to gases. Micro-Hybrid provide various ways of adapting our MEMS based infrared emitter JSIR350 to customer specifications, like specific burn-in parameters/characteristic, different industrial standard housings, producible with customized cap, reflector or pin-out.

  1. An Application of UAV Attitude Estimation Using a Low-Cost Inertial Navigation System

    NASA Technical Reports Server (NTRS)

    Eure, Kenneth W.; Quach, Cuong Chi; Vazquez, Sixto L.; Hogge, Edward F.; Hill, Boyd L.

    2013-01-01

    Unmanned Aerial Vehicles (UAV) are playing an increasing role in aviation. Various methods exist for the computation of UAV attitude based on low cost microelectromechanical systems (MEMS) and Global Positioning System (GPS) receivers. There has been a recent increase in UAV autonomy as sensors are becoming more compact and onboard processing power has increased significantly. Correct UAV attitude estimation will play a critical role in navigation and separation assurance as UAVs share airspace with civil air traffic. This paper describes attitude estimation derived by post-processing data from a small low cost Inertial Navigation System (INS) recorded during the flight of a subscale commercial off the shelf (COTS) UAV. Two discrete time attitude estimation schemes are presented here in detail. The first is an adaptation of the Kalman Filter to accommodate nonlinear systems, the Extended Kalman Filter (EKF). The EKF returns quaternion estimates of the UAV attitude based on MEMS gyro, magnetometer, accelerometer, and pitot tube inputs. The second scheme is the complementary filter which is a simpler algorithm that splits the sensor frequency spectrum based on noise characteristics. The necessity to correct both filters for gravity measurement errors during turning maneuvers is demonstrated. It is shown that the proposed algorithms may be used to estimate UAV attitude. The effects of vibration on sensor measurements are discussed. Heuristic tuning comments pertaining to sensor filtering and gain selection to achieve acceptable performance during flight are given. Comparisons of attitude estimation performance are made between the EKF and the complementary filter.

  2. Surface micromachined MEMS deformable mirror based on hexagonal parallel-plate electrostatic actuator

    NASA Astrophysics Data System (ADS)

    Ma, Wenying; Ma, Changwei; Wang, Weimin

    2018-03-01

    Deformable mirrors (DM) based on microelectromechanical system (MEMS) technology are being applied in adaptive optics (AO) system for astronomical telescopes and human eyes more and more. In this paper a MEMS DM with hexagonal actuator is proposed and designed. The relationship between structural design and performance parameters, mainly actuator coupling, is analyzed carefully and calculated. The optimum value of actuator coupling is obtained. A 7-element DM prototype is fabricated using a commercial available standard three-layer polysilicon surface multi-user-MEMS-processes (PolyMUMPs). Some key performances, including surface figure and voltage-displacement curve, are measured through a 3D white light profiler. The measured performances are very consistent with the theoretical values. The proposed DM will benefit the miniaturization of AO systems and lower their cost.

  3. High brightness MEMS mirror based head-up display (HUD) modules with wireless data streaming capability

    NASA Astrophysics Data System (ADS)

    Milanovic, Veljko; Kasturi, Abhishek; Hachtel, Volker

    2015-02-01

    A high brightness Head-Up Display (HUD) module was demonstrated with a fast, dual-axis MEMS mirror that displays vector images and text, utilizing its ~8kHz bandwidth on both axes. Two methodologies were evaluated: in one, the mirror steers a laser at wide angles of <48° on transparent multi-color fluorescent emissive film and displays content directly on the windshield, and in the other the mirror displays content on reflective multi-color emissive phosphor plates reflected off the windshield to create a virtual image for the driver. The display module is compact, consisting of a single laser diode, off-the-shelf lenses and a MEMS mirror in combination with a MEMS controller to enable precise movement of the mirror's X- and Y-axis. The MEMS controller offers both USB and wireless streaming capability and we utilize a library of functions on a host computer for creating content and controlling the mirror. Integration with smart phone applications is demonstrated, utilizing the mobile device both for content generation based on various messages or data, and for content streaming to the MEMS controller via Bluetooth interface. The display unit is highly resistant to vibrations and shock, and requires only ~1.5W to operate, even with content readable in sunlit outdoor conditions. The low power requirement is in part due to a vector graphics approach, allowing the efficient use of laser power, and also due to the use of a single, relatively high efficiency laser and simple optics.

  4. Chip based MEMS Ion Thruster to significantly enhance Cold Gas Thruster Lifetime for LISA

    NASA Astrophysics Data System (ADS)

    Tajmar, M.; Laufer, P.; Bock, D.

    2017-05-01

    Micropropulsion is a key component for ultraprecise attitude and orbit control required by the eLISA mission. LISA pathfinder uses cold gas micro thrusters that are accurate but require large tanks due to their very low specific impulse, which in turn limits the possible mission duration of the follow up eLISA mission. Recently, we developed a compact MEMS ion thruster on the chip with a size of only 1cm2 that can be simply attached to a gas feeding line like the one used for cold gas thrusters. It provides a specific impulse greater than 1000 s and only requires a single DC voltage. Since the operating principle is based on field emission, very low thrust noises similar to FEEP thrusters are expected but with gas propellants. The MEMS ion thruster chip could be mounted in parallel to the existing gold gas system providing high Isp and therefore long mission durations while leaving the cold gas system in place. To enable a possible mission extension, the MEMS ion thruster could take over from the cold gas system as a backup while maintaining the existing micropropulsion thruster system with its heritage therefore minimum risk.

  5. H∞ Robust Control of a Large-Piston MEMS Micromirror for Compact Fourier Transform Spectrometer Systems.

    PubMed

    Chen, Huipeng; Li, Mengyuan; Zhang, Yi; Xie, Huikai; Chen, Chang; Peng, Zhangming; Su, Shaohui

    2018-02-08

    Incorporating linear-scanning micro-electro-mechanical systems (MEMS) micromirrors into Fourier transform spectral acquisition systems can greatly reduce the size of the spectrometer equipment, making portable Fourier transform spectrometers (FTS) possible. How to minimize the tilting of the MEMS mirror plate during its large linear scan is a major problem in this application. In this work, an FTS system has been constructed based on a biaxial MEMS micromirror with a large-piston displacement of 180 μm, and a biaxial H∞ robust controller is designed. Compared with open-loop control and proportional-integral-derivative (PID) closed-loop control, H∞ robust control has good stability and robustness. The experimental results show that the stable scanning displacement reaches 110.9 μm under the H∞ robust control, and the tilting angle of the MEMS mirror plate in that full scanning range falls within ±0.0014°. Without control, the FTS system cannot generate meaningful spectra. In contrast, the FTS yields a clean spectrum with a full width at half maximum (FWHM) spectral linewidth of 96 cm -1 under the H∞ robust control. Moreover, the FTS system can maintain good stability and robustness under various driving conditions.

  6. H∞ Robust Control of a Large-Piston MEMS Micromirror for Compact Fourier Transform Spectrometer Systems

    PubMed Central

    Li, Mengyuan; Zhang, Yi; Chen, Chang; Peng, Zhangming; Su, Shaohui

    2018-01-01

    Incorporating linear-scanning micro-electro-mechanical systems (MEMS) micromirrors into Fourier transform spectral acquisition systems can greatly reduce the size of the spectrometer equipment, making portable Fourier transform spectrometers (FTS) possible. How to minimize the tilting of the MEMS mirror plate during its large linear scan is a major problem in this application. In this work, an FTS system has been constructed based on a biaxial MEMS micromirror with a large-piston displacement of 180 μm, and a biaxial H∞ robust controller is designed. Compared with open-loop control and proportional-integral-derivative (PID) closed-loop control, H∞ robust control has good stability and robustness. The experimental results show that the stable scanning displacement reaches 110.9 μm under the H∞ robust control, and the tilting angle of the MEMS mirror plate in that full scanning range falls within ±0.0014°. Without control, the FTS system cannot generate meaningful spectra. In contrast, the FTS yields a clean spectrum with a full width at half maximum (FWHM) spectral linewidth of 96 cm−1 under the H∞ robust control. Moreover, the FTS system can maintain good stability and robustness under various driving conditions. PMID:29419765

  7. Mid-Infrared Tunable Resonant Cavity Enhanced Detectors

    PubMed Central

    Quack, Niels; Blunier, Stefan; Dual, Jurg; Felder, Ferdinand; Arnold, Martin; Zogg, Hans

    2008-01-01

    Mid-infrared detectors that are sensitive only in a tunable narrow spectral band are presented. They are based on the Resonant Cavity Enhanced Detector (RCED) principle and employing a thin active region using IV-VI narrow gap semiconductor layers. A Fabry-Pérot cavity is formed by two mirrors. The active layer is grown onto one mirror, while the second mirror can be displaced. This changes the cavity length thus shifting the resonances where the detector is sensitive. Using electrostatically actuated MEMS micromirrors, a very compact tunable detector system has been fabricated. Mirror movements of more than 3 μm at 30V are obtained. With these mirrors, detectors with a wavelength tuning range of about 0.7 μm have been realized. Single detectors can be used in mid-infrared micro spectrometers, while a detector arrangement in an array makes it possible to realize Adaptive Focal Plane Arrays (AFPA). PMID:27873824

  8. MEMS-tunable dielectric metasurface lens.

    PubMed

    Arbabi, Ehsan; Arbabi, Amir; Kamali, Seyedeh Mahsa; Horie, Yu; Faraji-Dana, MohammadSadegh; Faraon, Andrei

    2018-02-23

    Varifocal lenses, conventionally implemented by changing the axial distance between multiple optical elements, have a wide range of applications in imaging and optical beam scanning. The use of conventional bulky refractive elements makes these varifocal lenses large, slow, and limits their tunability. Metasurfaces, a new category of lithographically defined diffractive devices, enable thin and lightweight optical elements with precisely engineered phase profiles. Here we demonstrate tunable metasurface doublets, based on microelectromechanical systems (MEMS), with more than 60 diopters (about 4%) change in the optical power upon a 1-μm movement of one metasurface, and a scanning frequency that can potentially reach a few kHz. They can also be integrated with a third metasurface to make compact microscopes (~1 mm thick) with a large corrected field of view (~500 μm or 40 degrees) and fast axial scanning for 3D imaging. This paves the way towards MEMS-integrated metasurfaces as a platform for tunable and reconfigurable optics.

  9. RF MEMS devices for multifunctional integrated circuits and antennas

    NASA Astrophysics Data System (ADS)

    Peroulis, Dimitrios

    Micromachining and RF Micro-Electro-Mechanical Systems (RF MEMS) have been identified as two of the most significant enabling technologies in developing miniaturized low-cost communications systems and sensor networks. The key components in these MEMS-based architectures are the RF MEMS switches and varactors. The first part of this thesis focuses on three novel RF MEMS components with state-of-the-art performance. In particular, a broadband 6 V capacitive MEMS switch is presented with insertion loss of only 0.04 and 0.17 dB at 10 and 40 GHz respectively. Special consideration is given to particularly challenging issues, such as residual stress, planarity, power handling capability and switching speed. The need for switches operating below 1 GHz is also identified and a spring-loaded metal-to-metal contact switch is developed. The measured on-state contact resistance and off-state series capacitance are 0.5 O and 10 fF respectively for this switch. An analog millimeter-wave variable capacitor is the third MEMS component presented in this thesis. This variable capacitor shows an ultra high measured tuning range of nearly 4:1, which is the highest reported value for the millimeter-wave region. The second part of this thesis primarily concentrates on MEMS-based reconfigurable systems and their potential to revolutionize the design of future RF/microwave multifunctional systems. High-isolation switches and switch packets with isolation of more than 60 dB are designed and implemented. Furthermore, lowpass and bandpass tunable filters with 3:1 and 2:1 tuning ratios respectively are demonstrated. Similar methods have been also applied to the field of slot antennas and a novel design technique for compact reconfigurable antennas has been developed. The main advantage of these antennas is that they essentially preserve their impedance, radiation pattern, polarization, gain and efficiency for all operating frequencies. The thesis concludes by discussing the future challenges of RF MEMS, such as packaging and reliability.

  10. Low-cost compact MEMS scanning ladar system for robotic applications

    NASA Astrophysics Data System (ADS)

    Moss, Robert; Yuan, Ping; Bai, Xiaogang; Quesada, Emilio; Sudharsanan, Rengarajan; Stann, Barry L.; Dammann, John F.; Giza, Mark M.; Lawler, William B.

    2012-06-01

    Future robots and autonomous vehicles require compact low-cost Laser Detection and Ranging (LADAR) systems for autonomous navigation. Army Research Laboratory (ARL) had recently demonstrated a brass-board short-range eye-safe MEMS scanning LADAR system for robotic applications. Boeing Spectrolab is doing a tech-transfer (CRADA) of this system and has built a compact MEMS scanning LADAR system with additional improvements in receiver sensitivity, laser system, and data processing system. Improved system sensitivity, low-cost, miniaturization, and low power consumption are the main goals for the commercialization of this LADAR system. The receiver sensitivity has been improved by 2x using large-area InGaAs PIN detectors with low-noise amplifiers. The FPGA code has been updated to extend the range to 50 meters and detect up to 3 targets per pixel. Range accuracy has been improved through the implementation of an optical T-Zero input line. A compact commercially available erbium fiber laser operating at 1550 nm wavelength is used as a transmitter, thus reducing the size of the LADAR system considerably from the ARL brassboard system. The computer interface has been consolidated to allow image data and configuration data (configuration settings and system status) to pass through a single Ethernet port. In this presentation we will discuss the system architecture and future improvements to receiver sensitivity using avalanche photodiodes.

  11. Characterizing the reliability of a bioMEMS-based cantilever sensor

    NASA Astrophysics Data System (ADS)

    Bhalerao, Kaustubh D.

    2004-12-01

    The cantilever-based BioMEMS sensor represents one instance from many competing ideas of biosensor technology based on Micro Electro Mechanical Systems. The advancement of BioMEMS from laboratory-scale experiments to applications in the field will require standardization of their components and manufacturing procedures as well as frameworks to evaluate their performance. Reliability, the likelihood with which a system performs its intended task, is a compact mathematical description of its performance. The mathematical and statistical foundation of systems-reliability has been applied to the cantilever-based BioMEMS sensor. The sensor is designed to detect one aspect of human ovarian cancer, namely the over-expression of the folate receptor surface protein (FR-alpha). Even as the application chosen is clinically motivated, the objective of this study was to demonstrate the underlying systems-based methodology used to design, develop and evaluate the sensor. The framework development can be readily extended to other BioMEMS-based devices for disease detection and will have an impact in the rapidly growing $30 bn industry. The Unified Modeling Language (UML) is a systems-based framework for design and development of object-oriented information systems which has potential application for use in systems designed to interact with biological environments. The UML has been used to abstract and describe the application of the biosensor, to identify key components of the biosensor, and the technology needed to link them together in a coherent manner. The use of the framework is also demonstrated in computation of system reliability from first principles as a function of the structure and materials of the biosensor. The outcomes of applying the systems-based framework to the study are the following: (1) Characterizing the cantilever-based MEMS device for disease (cell) detection. (2) Development of a novel chemical interface between the analyte and the sensor that provides a degree of selectivity towards the disease. (3) Demonstrating the performance and measuring the reliability of the biosensor prototype, and (4) Identification of opportunities in technological development in order to further refine the proposed biosensor. Application of the methodology to design develop and evaluate the reliability of BioMEMS devices will be beneficial in the streamlining the growth of the BioMEMS industry, while providing a decision-support tool in comparing and adopting suitable technologies from available competing options.

  12. Toward the realization of a compact chemical sensor platform using quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Holthoff, Ellen L.; Marcus, Logan S.; Pellegrino, Paul M.

    2015-05-01

    The Army is investigating several spectroscopic techniques (e.g., infrared spectroscopy) that could allow for an adaptable sensor platform. Traditionally, chemical sensing platforms have been hampered by the opposing concerns of increasing sensor capability while maintaining a minimal package size. Current sensors, although reasonably sized, are geared to more classical chemical threats, and the ability to expand their capabilities to a broader range of emerging threats is uncertain. Recently, photoacoustic spectroscopy, employed in a sensor format, has shown enormous potential to address these ever-changing threats, while maintaining a compact sensor design. In order to realize the advantage of photoacoustic sensor miniaturization, light sources of comparable size are required. Recent research has employed quantum cascade lasers (QCLs) in combination with MEMS-scale photoacoustic cell designs. The continuous tuning capability of QCLs over a broad wavelength range in the mid-infrared spectral region greatly expands the number of compounds that can be identified. Results have demonstrated that utilizing a tunable QCL with a MEMS-scale photoacoustic cell produces favorable detection limits (ppb levels) for chemical targets (e.g., dimethyl methyl phosphonate (DMMP), vinyl acetate, 1,4-dioxane). Although our chemical sensing research has benefitted from the broad tuning capabilities of QCLs, the limitations of these sources must be considered. Current commercially available tunable systems are still expensive and obviously geared more toward laboratory operation, not fielding. Although the laser element itself is quite small, the packaging, power supply, and controller remain logistical burdens. Additionally, operational features such as continuous wave (CW) modulation and laser output powers while maintaining wide tunability are not yet ideal for a variety of sensing applications. In this paper, we will discuss our continuing evaluation of QCL technology as it matures in relation to our ultimate goal of a universal compact chemical sensor platform.

  13. A Wafer Transfer Technology for MEMS Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Wiberg, Dean V.

    2001-01-01

    Adaptive optics systems require the combination of several advanced technologies such as precision optics, wavefront sensors, deformable mirrors, and lasers with high-speed control systems. The deformable mirror with a continuous membrane is a key component of these systems. This paper describes a new technique for transferring an entire wafer-level silicon membrane from one substrate to another. This technology is developed for the fabrication of a compact deformable mirror with a continuous facet. A 1 (mu)m thick silicon membrane, 100 mm in diameter, has been successfully transferred without using adhesives or polymers (i.e. wax, epoxy, or photoresist). Smaller or larger diameter membranes can also be transferred using this technique. The fabricated actuator membrane with an electrode gap of 1.5 (mu)m shows a vertical deflection of 0.37 (mu)m at 55 V.

  14. Rapid Transfer Alignment of MEMS SINS Based on Adaptive Incremental Kalman Filter.

    PubMed

    Chu, Hairong; Sun, Tingting; Zhang, Baiqiang; Zhang, Hongwei; Chen, Yang

    2017-01-14

    In airborne MEMS SINS transfer alignment, the error of MEMS IMU is highly environment-dependent and the parameters of the system model are also uncertain, which may lead to large error and bad convergence of the Kalman filter. In order to solve this problem, an improved adaptive incremental Kalman filter (AIKF) algorithm is proposed. First, the model of SINS transfer alignment is defined based on the "Velocity and Attitude" matching method. Then the detailed algorithm progress of AIKF and its recurrence formulas are presented. The performance and calculation amount of AKF and AIKF are also compared. Finally, a simulation test is designed to verify the accuracy and the rapidity of the AIKF algorithm by comparing it with KF and AKF. The results show that the AIKF algorithm has better estimation accuracy and shorter convergence time, especially for the bias of the gyroscope and the accelerometer, which can meet the accuracy and rapidity requirement of transfer alignment.

  15. Rapid Transfer Alignment of MEMS SINS Based on Adaptive Incremental Kalman Filter

    PubMed Central

    Chu, Hairong; Sun, Tingting; Zhang, Baiqiang; Zhang, Hongwei; Chen, Yang

    2017-01-01

    In airborne MEMS SINS transfer alignment, the error of MEMS IMU is highly environment-dependent and the parameters of the system model are also uncertain, which may lead to large error and bad convergence of the Kalman filter. In order to solve this problem, an improved adaptive incremental Kalman filter (AIKF) algorithm is proposed. First, the model of SINS transfer alignment is defined based on the “Velocity and Attitude” matching method. Then the detailed algorithm progress of AIKF and its recurrence formulas are presented. The performance and calculation amount of AKF and AIKF are also compared. Finally, a simulation test is designed to verify the accuracy and the rapidity of the AIKF algorithm by comparing it with KF and AKF. The results show that the AIKF algorithm has better estimation accuracy and shorter convergence time, especially for the bias of the gyroscope and the accelerometer, which can meet the accuracy and rapidity requirement of transfer alignment. PMID:28098829

  16. Deformable Mirrors Correct Optical Distortions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    By combining the high sensitivity of space telescopes with revolutionary imaging technologies consisting primarily of adaptive optics, the Terrestrial Planet Finder is slated to have imaging power 100 times greater than the Hubble Space Telescope. To this end, Boston Micromachines Corporation, of Cambridge, Massachusetts, received Small Business Innovation Research (SBIR) contracts from the Jet Propulsion Laboratory for space-based adaptive optical technology. The work resulted in a microelectromechanical systems (MEMS) deformable mirror (DM) called the Kilo-DM. The company now offers a full line of MEMS DMs, which are being used in observatories across the world, in laser communication, and microscopy.

  17. EDITORIAL: The Fourth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2004)

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuji; Toriyama, Toshiyuki

    2005-09-01

    This special issue of the Journal of Micromechanics and Microengineering features papers selected from the Fourth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2004). The workshop was held in Kyoto, Japan, on 28-30 November 2004, by The Ritsumeikan Research Institute of Micro System Technology in cooperation with The Global Emerging Technology Institute, The Institute of Electrical Engineers of Japan, The Sensors and Micromachines Society, The Micromachine Center and The Kyoto Nanotech Cluster. Power MEMS is one of the newest categories of MEMS, which encompasses microdevices and microsystems for power generation, energy conversion and propulsion. The first concept of power MEMS was proposed in the late 1990s by Epstein's group at the Massachusetts Institute of Technology, where they continue to study MEMS-based gas turbine generators. Since then, the research and development of power MEMS have been promoted by the need for compact power sources with high energy and power density. Since its inception, power MEMS has expanded to include not only various MEMS-based power generators but also small energy machines and microdevices for macro power generators. At the last workshop, various devices and systems, such as portable fuel cells and their peripherals, micro and small turbo machinery, energy harvesting microdevices, and microthrusters, were presented. Their power levels vary from ten nanowatts to hundreds of watts, spanning ten orders of magnitude. The first PowerMEMS workshop was held in 2000 in Sendai, Japan, and consisted of only seven invited presentations. The workshop has grown since then, and in 2004 there were 5 invited, 20 oral and 29 poster presentations. From the 54 papers in the proceedings, 12 papers have been selected for this special issue. I would like to express my appreciation to the members of the Organizing Committee and Technical Program Committee. This special issue was edited in collaboration with Professor Toshiyuki Toriyama (Ritsumeikan University), Co-chair of the Technical Program Committee, and the Institute of Physics Publishing staff.

  18. Hybrid power systems for autonomous MEMS

    NASA Astrophysics Data System (ADS)

    Bennett, Daniel M.; Selfridge, Richard H.; Humble, Paul; Harb, John N.

    2001-08-01

    This paper describes the design of a hybrid power system for use with autonomous MEMS and other microdevices. This hybrid power system includes energy conversion and storage along with an electronic system for managing the collection and distribution of power. It offers flexibility and longevity in a compact package. The hybrid power system couples a silicon solar cell with a microbattery specially designed for MEMS applications. We have designed a control/interface charging circuit to be compatible with a MEMS duty cycle. The design permits short pulses of 'high' power while taking care to avoid excessive charging or discharging of the battery. Charging is carefully controlled to provide a balance between acceptably small charging times and a charging profile that extends battery life. Our report describes the charging of our Ni/Zn microbatteries using solar cells. To date we have demonstrated thousands of charge/discharge cycles of a simulated MEMS duty cycle.

  19. Performance of MEMS Silicon Oscillator, ASFLM1, under Wide Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2008-01-01

    Over the last few years, MEMS (Micro-Electro-Mechanical Systems) resonator-based oscillators began to be offered as commercial-off-the-shelf (COTS) parts by a few companies [1-2]. These quartz-free, miniature silicon devices could compete with the traditional crystal oscillators in providing the timing (clock function) for many digital and analog electronic circuits. They provide stable output frequency, offer great tolerance to shock and vibration, and are immune to electro-static discharge [1-2]. In addition, they are encapsulated in compact lead-free packages, cover a wide frequency range (1 MHz to 125 MHz), and are specified, depending on the grade, for extended temperature operation from -40 C to +85 C. The small size of the MEMS oscillators along with their reliability and thermal stability make them candidates for use in space exploration missions. Limited data, however, exist on the performance and reliability of these devices under operation in applications where extreme temperatures or thermal cycling swings, which are typical of space missions, are encountered. This report presents the results of the work obtained on the evaluation of an ABRACON Corporation MEMS silicon oscillator chip, type ASFLM1, under extreme temperatures.

  20. Ultra-compact switchable SLO/OCT handheld probe design

    NASA Astrophysics Data System (ADS)

    LaRocca, Francesco; Nankivil, Derek; DuBose, Theodore; Farsiu, Sina; Izatt, Joseph A.

    2015-03-01

    Handheld scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) systems facilitate imaging of young children and subjects that have difficulty fixating. More compact and lightweight probes allow for better portability and increased comfort for the operator of the handheld probe. We describe a very compact, novel SLO and OCT handheld probe design. A single 2D microelectromechanical systems (MEMS) scanner and a custom optical design using a converging beam prior to the scanner permitted significant reduction in the system size. Our design utilized a combination of commercial and custom optics that were optimized in Zemax to achieve near diffraction-limited resolution of 8 μm over a 7° field of view. The handheld probe has a form factor of 7 x 6 x 2.5 cm and a weight of only 94 g, which is over an order of magnitude lighter than prior SLO-OCT handheld probes. Images were acquired from a normal subject with an incident power on the eye under the ANSI limit. With this device, which is the world's lightest and smallest SLO-OCT system, we were able to visualize parafoveal cone photoreceptors and nerve fiber bundles without the use of adaptive optics.

  1. A large-scan-angle piezoelectric MEMS optical scanner actuated by a Nb-doped PZT thin film

    NASA Astrophysics Data System (ADS)

    Naono, Takayuki; Fujii, Takamichi; Esashi, Masayoshi; Tanaka, Shuji

    2014-01-01

    Resonant 1D microelectromechanical systems (MEMS) optical scanners actuated by piezoelectric unimorph actuators with a Nb-doped lead zirconate titanate (PNZT) thin film were developed for endoscopic optical coherence tomography (OCT) application. The MEMS scanners were designed as the resonance frequency was less than 125 Hz to obtain enough pixels per frame in OCT images. The device size was within 3.4 mm × 2.5 mm, which is compact enough to be installed in a side-imaging probe with 4 mm inner diameter. The fabrication process started with a silicon-on-insulator wafer, followed by PNZT deposition by the Rf sputtering and Si bulk micromachining process. The fabricated MEMS scanners showed maximum optical scan angles of 146° at 90 Hz, 148° at 124 Hz, 162° at 180 Hz, and 152° at 394 Hz at resonance in atmospheric pressure. Such wide scan angles were obtained by a drive voltage below 1.3 Vpp, ensuring intrinsic safety in in vivo uses. The scanner with the unpoled PNZT film showed three times as large a scan angle as that with a poled PZT films. A swept-source OCT system was constructed using the fabricated MEMS scanner, and cross-sectional images of a fingertip with image widths of 4.6 and 2.3 mm were acquired. In addition, a PNZT-based angle sensor was studied for feedback operation.

  2. Modeling of biaxial gimbal-less MEMS scanning mirrors

    NASA Astrophysics Data System (ADS)

    von Wantoch, Thomas; Gu-Stoppel, Shanshan; Senger, Frank; Mallas, Christian; Hofmann, Ulrich; Meurer, Thomas; Benecke, Wolfgang

    2016-03-01

    One- and two-dimensional MEMS scanning mirrors for resonant or quasi-stationary beam deflection are primarily known as tiny micromirror devices with aperture sizes up to a few Millimeters and usually address low power applications in high volume markets, e.g. laser beam scanning pico-projectors or gesture recognition systems. In contrast, recently reported vacuum packaged MEMS scanners feature mirror diameters up to 20 mm and integrated high-reflectivity dielectric coatings. These mirrors enable MEMS based scanning for applications that require large apertures due to optical constraints like 3D sensing or microscopy as well as for high power laser applications like laser phosphor displays, automotive lighting and displays, 3D printing and general laser material processing. This work presents modelling, control design and experimental characterization of gimbal-less MEMS mirrors with large aperture size. As an example a resonant biaxial Quadpod scanner with 7 mm mirror diameter and four integrated PZT (lead zirconate titanate) actuators is analyzed. The finite element method (FEM) model developed and computed in COMSOL Multiphysics is used for calculating the eigenmodes of the mirror as well as for extracting a high order (n < 10000) state space representation of the mirror dynamics with actuation voltages as system inputs and scanner displacement as system output. By applying model order reduction techniques using MATLABR a compact state space system approximation of order n = 6 is computed. Based on this reduced order model feedforward control inputs for different, properly chosen scanner displacement trajectories are derived and tested using the original FEM model as well as the micromirror.

  3. Sensing magnetic flux density of artificial neurons with a MEMS device.

    PubMed

    Tapia, Jesus A; Herrera-May, Agustin L; García-Ramírez, Pedro J; Martinez-Castillo, Jaime; Figueras, Eduard; Flores, Amira; Manjarrez, Elías

    2011-04-01

    We describe a simple procedure to characterize a magnetic field sensor based on microelectromechanical systems (MEMS) technology, which exploits the Lorentz force principle. This sensor is designed to detect, in future applications, the spiking activity of neurons or muscle cells. This procedure is based on the well-known capability that a magnetic MEMS device can be used to sense a small magnetic flux density. In this work, an electronic neuron (FitzHugh-Nagumo) is used to generate controlled spike-like magnetic fields. We show that the magnetic flux density generated by the hardware of this neuron can be detected with a new MEMS magnetic field sensor. This microdevice has a compact resonant structure (700 × 600 × 5 μm) integrated by an array of silicon beams and p-type piezoresistive sensing elements, which need an easy fabrication process. The proposed microsensor has a resolution of 80 nT, a sensitivity of 1.2 V.T(-1), a resonant frequency of 13.87 kHz, low power consumption (2.05 mW), quality factor of 93 at atmospheric pressure, and requires a simple signal processing circuit. The importance of our study is twofold. First, because the artificial neuron can generate well-controlled magnetic flux density, we suggest it could be used to analyze the resolution and performance of different magnetic field sensors intended for neurobiological applications. Second, the introduced MEMS magnetic field sensor may be used as a prototype to develop new high-resolution biomedical microdevices to sense magnetic fields from cardiac tissue, nerves, spinal cord, or the brain.

  4. Wafer-level vacuum packaged resonant micro-scanning mirrors for compact laser projection displays

    NASA Astrophysics Data System (ADS)

    Hofmann, Ulrich; Oldsen, Marten; Quenzer, Hans-Joachim; Janes, Joachim; Heller, Martin; Weiss, Manfred; Fakas, Georgios; Ratzmann, Lars; Marchetti, Eleonora; D'Ascoli, Francesco; Melani, Massimiliano; Bacciarelli, Luca; Volpi, Emilio; Battini, Francesco; Mostardini, Luca; Sechi, Francesco; De Marinis, Marco; Wagner, Bernd

    2008-02-01

    Scanning laser projection using resonant actuated MEMS scanning mirrors is expected to overcome the current limitation of small display size of mobile devices like cell phones, digital cameras and PDAs. Recent progress in the development of compact modulated RGB laser sources enables to set up very small laser projection systems that become attractive not only for consumer products but also for automotive applications like head-up and dash-board displays. Within the last years continuous progress was made in increasing MEMS scanner performance. However, only little is reported on how mass-produceability of these devices and stable functionality even under harsh environmental conditions can be guaranteed. Automotive application requires stable MEMS scanner operation over a wide temperature range from -40° to +85°Celsius. Therefore, hermetic packaging of electrostatically actuated MEMS scanning mirrors becomes essential to protect the sensitive device against particle contamination and condensing moisture. This paper reports on design, fabrication and test of a resonant actuated two-dimensional micro scanning mirror that is hermetically sealed on wafer level. With resonant frequencies of 30kHz and 1kHz, an achievable Theta-D-product of 13mm.deg and low dynamic deformation <20nm RMS it targets Lissajous projection with SVGA-resolution. Inevitable reflexes at the vacuum package surface can be seperated from the projection field by permanent inclination of the micromirror.

  5. New Magnetic Microactuator Design Based on PDMS Elastomer and MEMS Technologies for Tactile Display.

    PubMed

    Streque, Jeremy; Talbi, Abdelkrim; Pernod, Philippe; Preobrazhensky, Vladimir

    2010-01-01

    Highly efficient tactile display devices must fulfill technical requirements for tactile stimulation, all the while preserving the lightness and compactness needed for handheld operation. This paper focuses on the elaboration of highly integrated magnetic microactuators for tactile display devices. FEM simulation, conception, fabrication, and characterization of these microactuators are presented in this paper. The current demonstrator offers a 4 × 4 flexible microactuator array with a resolution of 2 mm. Each actuator is composed of a Poly (Dimethyl-Siloxane) (PDMS) elastomeric membrane, magnetically actuated by coil-magnet interaction. It represents a proof of concept for fully integrated MEMS tactile devices, with fair actuation forces provided for a power consumption up to 100 mW per microactuator. The prototypes are destined to provide both static and dynamic tactile sensations, with an optimized membrane geometry for actuation frequencies between DC and 350 Hz. On the basis of preliminary experiments, this display device can offer skin stimulations for various tactile stimuli for applications in the fields of Virtual Reality or Human-Computer Interaction (HCI). Moreover, the elastomeric material used in this device and its global compactness offer great advantages in matter of comfort of use and capabilities of integration in haptic devices.

  6. Assessment of Operation of EMK21 MEMS Silicon Oscillator Over Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2009-01-01

    Electronic control systems, data-acquisition instrumentation, and microprocessors require accurate timing signals for proper operation. Traditionally, ceramic resonators and crystal oscillators provided this clock function for the majority of these systems. Over the last few years, MEMS (Micro-Electro-Mechanical Systems) resonator-based oscillators began to surface as commercial-off-the-shelf (COTS) parts by a few companies. These quartz-free, miniature silicon devices could easily replace the traditional crystal oscillators in providing the timing/clock function for many digital and analog circuits. They are reported to provide stable output frequency, offer great tolerance to shock and vibration, and are immune to electro-static discharge [ 1-2]. In addition, they are encapsulated in compact lead-free packages and cover a wide frequency range (1 MHz to 125 MHz). The small size of the MEMS oscillators along with their thermal stability make them ideal candidates for use in space exploration missions. Limited data, however, exist on the performance and reliability of these devices under operation in applications where extreme temperatures or thermal cycling swings, which are typical of space missions, are encountered. This report presents the results of the work obtained on the evaluation of an Ecliptek Corporation MEMS silicon oscillator chip under extreme temperatures.

  7. Design of a MEMS-based retina scanning system for biometric authentication

    NASA Astrophysics Data System (ADS)

    Woittennek, Franziska; Knobbe, Jens; Pügner, Tino; Schelinski, Uwe; Grüger, Heinrich

    2014-05-01

    There is an increasing need for reliable authentication for a number of applications such as e commerce. Common authentication methods based on ownership (ID card) or knowledge factors (password, PIN) are often prone to manipulations and may therefore be not safe enough. Various inherence factor based methods like fingerprint, retinal pattern or voice identifications are considered more secure. Retina scanning in particular offers both low false rejection rate (FRR) and low false acceptance rate (FAR) with about one in a million. Images of the retina with its characteristic pattern of blood vessels can be made with either a fundus camera or laser scanning methods. The present work describes the optical design of a new compact retina laser scanner which is based on MEMS (Micro Electric Mechanical System) technology. The use of a dual axis micro scanning mirror for laser beam deflection enables a more compact and robust design compared to classical systems. The scanner exhibits a full field of view of 10° which corresponds to an area of 4 mm2 on the retinal surface surrounding the optical disc. The system works in the near infrared and is designed for use under ambient light conditions, which implies a pupil diameter of 1.5 mm. Furthermore it features a long eye relief of 30 mm so that it can be conveniently used by persons wearing glasses. The optical design requirements and the optical performance are discussed in terms of spot diagrams and ray fan plots.

  8. Advanced Sensor and Packaging Technologies for Intelligent Adaptive Engine Controls (Preprint)

    DTIC Science & Technology

    2013-05-01

    combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high - temperature electronics, and advanced harsh...with simultaneous pressure measurements up to 1,000 psi. The combination of a high - temperature , high -pressure-ratio compressor system, and adaptive...combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high temperature electronics, and advanced harsh

  9. BioMEMS for biosensors and closed-loop drug delivery.

    PubMed

    Coffel, Joel; Nuxoll, Eric

    2018-06-15

    The efficacy of pharmaceutical treatments can be greatly enhanced by physiological feedback from the patient using biosensors, though this is often invasive or infeasible. By adapting microelectromechanical systems (MEMS) technology to miniaturize such biosensors, previously inaccessible signals can be obtained, often from inside the patient. This is enabled by the device's extremely small footprint which minimizes both power consumption and implantation trauma, as well as the transport time for chemical analytes, in turn decreasing the sensor's response time. MEMS fabrication also allows mass production which can be easily scaled without sacrificing its high reproducibility and reliability, and allows seamless integration with control circuitry and telemetry which is already produced using the same materials and fabrication steps. By integrating these systems with drug delivery devices, many of which are also MEMS-based, closed loop drug delivery can be achieved. This paper surveys the types of signal transduction devices available for biosensing-primarily electrochemical, optical, and mechanical-looking at their implementation via MEMS technology. The impact of MEMS technology on the challenges of biosensor development, particularly safety, power consumption, degradation, fouling, and foreign body response, are also discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Characterization of oscillator circuits for monitoring the density-viscosity of liquids by means of piezoelectric MEMS microresonators

    NASA Astrophysics Data System (ADS)

    Toledo, J.; Ruiz-Díez, V.; Pfusterschmied, G.; Schmid, U.; Sánchez-Rojas, J. L.

    2017-06-01

    Real-time monitoring of the physical properties of liquids, such as lubricants, is a very important issue for the automotive industry. For example, contamination of lubricating oil by diesel soot has a significant impact on engine wear. Resonant microstructures are regarded as a precise and compact solution for tracking the viscosity and density of lubricant oils. In this work, we report a piezoelectric resonator, designed to resonate with the 4th order out-of-plane modal vibration, 15-mode, and the interface circuit and calibration process for the monitoring of oil dilution with diesel fuel. In order to determine the resonance parameters of interest, i.e. resonant frequency and quality factor, an interface circuit was implemented and included within a closed-loop scheme. Two types of oscillator circuits were tested, a Phase-Locked Loop based on instrumentation, and a more compact version based on discrete electronics, showing similar resolution. Another objective of this work is the assessment of a calibration method for piezoelectric MEMS resonators in simultaneous density and viscosity sensing. An advanced calibration model, based on a Taylor series of the hydrodynamic function, was established as a suitable method for determining the density and viscosity with the lowest calibration error. Our results demonstrate the performance of the resonator in different oil samples with viscosities up to 90 mPa•s. At the highest value, the quality factor measured at 25°C was around 22. The best resolution obtained was 2.4•10-6 g/ml for the density and 2.7•10-3 mPa•s for the viscosity, in pure lubricant oil SAE 0W30 at 90°C. Furthermore, the estimated density and viscosity values with the MEMS resonator were compared to those obtained with a commercial density-viscosity meter, reaching a mean calibration error in the best scenario of around 0.08% for the density and 3.8% for the viscosity.

  11. Signal Quality Improvement Algorithms for MEMS Gyroscope-Based Human Motion Analysis Systems: A Systematic Review.

    PubMed

    Du, Jiaying; Gerdtman, Christer; Lindén, Maria

    2018-04-06

    Motion sensors such as MEMS gyroscopes and accelerometers are characterized by a small size, light weight, high sensitivity, and low cost. They are used in an increasing number of applications. However, they are easily influenced by environmental effects such as temperature change, shock, and vibration. Thus, signal processing is essential for minimizing errors and improving signal quality and system stability. The aim of this work is to investigate and present a systematic review of different signal error reduction algorithms that are used for MEMS gyroscope-based motion analysis systems for human motion analysis or have the potential to be used in this area. A systematic search was performed with the search engines/databases of the ACM Digital Library, IEEE Xplore, PubMed, and Scopus. Sixteen papers that focus on MEMS gyroscope-related signal processing and were published in journals or conference proceedings in the past 10 years were found and fully reviewed. Seventeen algorithms were categorized into four main groups: Kalman-filter-based algorithms, adaptive-based algorithms, simple filter algorithms, and compensation-based algorithms. The algorithms were analyzed and presented along with their characteristics such as advantages, disadvantages, and time limitations. A user guide to the most suitable signal processing algorithms within this area is presented.

  12. Signal Quality Improvement Algorithms for MEMS Gyroscope-Based Human Motion Analysis Systems: A Systematic Review

    PubMed Central

    Gerdtman, Christer

    2018-01-01

    Motion sensors such as MEMS gyroscopes and accelerometers are characterized by a small size, light weight, high sensitivity, and low cost. They are used in an increasing number of applications. However, they are easily influenced by environmental effects such as temperature change, shock, and vibration. Thus, signal processing is essential for minimizing errors and improving signal quality and system stability. The aim of this work is to investigate and present a systematic review of different signal error reduction algorithms that are used for MEMS gyroscope-based motion analysis systems for human motion analysis or have the potential to be used in this area. A systematic search was performed with the search engines/databases of the ACM Digital Library, IEEE Xplore, PubMed, and Scopus. Sixteen papers that focus on MEMS gyroscope-related signal processing and were published in journals or conference proceedings in the past 10 years were found and fully reviewed. Seventeen algorithms were categorized into four main groups: Kalman-filter-based algorithms, adaptive-based algorithms, simple filter algorithms, and compensation-based algorithms. The algorithms were analyzed and presented along with their characteristics such as advantages, disadvantages, and time limitations. A user guide to the most suitable signal processing algorithms within this area is presented. PMID:29642412

  13. High Isolation Single-Pole Four-Throw RF MEMS Switch Based on Series-Shunt Configuration

    PubMed Central

    Khaira, Navjot

    2014-01-01

    This paper presents a novel design of single-pole four-throw (SP4T) RF-MEMS switch employing both capacitive and ohmic switches. It is designed on high-resistivity silicon substrate and has a compact area of 1.06 mm2. The series or ohmic switches have been designed to provide low insertion loss with good ohmic contact. The pull-in voltage for ohmic switches is calculated to be 7.19 V. Shunt or capacitive switches have been used in each port to improve the isolation for higher frequencies. The proposed SP4T switch provides excellent RF performances with isolation better than 70.64 dB and insertion loss less than 0.72 dB for X-band between the input port and each output port. PMID:24711730

  14. Development of a high hertz-stress contact for conventional batch production using a unique scribing technology

    NASA Astrophysics Data System (ADS)

    Bhuiyan, M. M. I.; Alamgir, T.; Bhuiyan, M.; Kajihara, M.

    2013-12-01

    Gradually the electronic devices are getting more compact dimension with respect to the width and thickness. As a result, the contacts are becoming thinner and which leads the contact to be loose and unstable contact. In comercial stamping methode, connector tip diameter should be more than 300μm due to its size limitation. Consequently, the connector contact resistance is becoming higher due to weak contact force. To overcome this problem there were few more basic research using MEMS and Electro Fine Forming (EFF) technology to make high Hertz-Stress Contact (5μm) due to the limitation in the commercial stamping process and the result was in satisfactory level. However, since the MEMS and EFF fabrication is costly therefore, a new method is introduced in this paper using the commercial Phosphor Bronze stamping method to reduce the production cost. Moreover, scribing method is used to make tip on the contact. Accordingly, more compact fine pitch contact is successfully fabricated and tested with 5μm High Hertz Stress without using the MEMS and EFF technology. Hence the manufactured contact resistance becomes less than 20mΩ ±5mΩ.

  15. An adaptive compensation algorithm for temperature drift of micro-electro-mechanical systems gyroscopes using a strong tracking Kalman filter.

    PubMed

    Feng, Yibo; Li, Xisheng; Zhang, Xiaojuan

    2015-05-13

    We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS) gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF), the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to -2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation.

  16. Hippocampal atrophy in people with memory deficits: results from the population-based IPREA study.

    PubMed

    Ferrarini, Luca; van Lew, Baldur; Reiber, Johan H C; Gandin, Claudia; Galluzzo, Lucia; Scafato, Emanuele; Frisoni, Giovanni B; Milles, Julien; Pievani, Michela

    2014-07-01

    Clinical studies have shown that hippocampal atrophy is present before dementia in people with memory deficits and can predict dementia development. The question remains whether this association holds in the general population. This is of interest for the possible use of hippocampal atrophy to screen population for preventive interventions. The aim of this study was to assess hippocampal volume and shape abnormalities in elderly adults with memory deficits in a cross-sectional population-based study. We included individuals participating in the Italian Project on the Epidemiology of Alzheimer Disease (IPREA) study: 75 cognitively normal individuals (HC), 31 individuals with memory deficits (MEM), and 31 individuals with memory deficits not otherwise specified (MEMnos). Hippocampal volumes and shape were extracted through manual tracing and the growing and adaptive meshes (GAMEs) shape-modeling algorithm. We investigated between-group differences in hippocampal volume and shape, and correlations with memory deficits. In MEM participants, hippocampal volumes were significantly smaller than in HC and were mildly associated with worse memory scores. Memory-associated shape changes mapped to the anterior hippocampus. Shape-based analysis detected no significant difference between MEM and HC, while MEMnos showed shape changes in the posterior hippocampus compared with HC and MEM groups. These findings support the discriminant validity of hippocampal volumetry as a biomarker of memory impairment in the general population. The detection of shape changes in MEMnos but not in MEM participants suggests that shape-based biomarkers might lack sensitivity to detect Alzheimer's-like pathology in the general population.

  17. Integrated multidisciplinary CAD/CAE environment for micro-electro-mechanical systems (MEMS)

    NASA Astrophysics Data System (ADS)

    Przekwas, Andrzej J.

    1999-03-01

    Computational design of MEMS involves several strongly coupled physical disciplines, including fluid mechanics, heat transfer, stress/deformation dynamics, electronics, electro/magneto statics, calorics, biochemistry and others. CFDRC is developing a new generation multi-disciplinary CAD systems for MEMS using high-fidelity field solvers on unstructured, solution-adaptive grids for a full range of disciplines. The software system, ACE + MEMS, includes all essential CAD tools; geometry/grid generation for multi- discipline, multi-equation solvers, GUI, tightly coupled configurable 3D field solvers for FVM, FEM and BEM and a 3D visualization/animation tool. The flow/heat transfer/calorics/chemistry equations are solved with unstructured adaptive FVM solver, stress/deformation are computed with a FEM STRESS solver and a FAST BEM solver is used to solve linear heat transfer, electro/magnetostatics and elastostatics equations on adaptive polygonal surface grids. Tight multidisciplinary coupling and automatic interoperability between the tools was achieved by designing a comprehensive database structure and APIs for complete model definition. The virtual model definition is implemented in data transfer facility, a publicly available tool described in this paper. The paper presents overall description of the software architecture and MEMS design flow in ACE + MEMS. It describes current status, ongoing effort and future plans for the software. The paper also discusses new concepts of mixed-level and mixed- dimensionality capability in which 1D microfluidic networks are simulated concurrently with 3D high-fidelity models of discrete components.

  18. A novel Gravity-FREAK feature extraction and Gravity-KLT tracking registration algorithm based on iPhone MEMS mobile sensor in mobile environment

    PubMed Central

    Lin, Fan; Xiao, Bin

    2017-01-01

    Based on the traditional Fast Retina Keypoint (FREAK) feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS) sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT) algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment. PMID:29088228

  19. A novel Gravity-FREAK feature extraction and Gravity-KLT tracking registration algorithm based on iPhone MEMS mobile sensor in mobile environment.

    PubMed

    Hong, Zhiling; Lin, Fan; Xiao, Bin

    2017-01-01

    Based on the traditional Fast Retina Keypoint (FREAK) feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS) sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT) algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment.

  20. NASA Tech Briefs, July 2008

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Topics covered include: Torque Sensor Based on Tunnel-Diode Oscillator; Shaft-Angle Sensor Based on Tunnel-Diode Oscillator; Ground Facility for Vicarious Calibration of Skyborne Sensors; Optical Pressure-Temperature Sensor for a Combustion Chamber; Impact-Locator Sensor Panels; Low-Loss Waveguides for Terahertz Frequencies; MEMS/ECD Method for Making Bi(2-x)Sb(x)Te3 Thermoelectric Devices; Low-Temperature Supercapacitors; Making a Back-Illuminated Imager with Back-Side Contact and Alignment Markers; Compact, Single-Stage MMIC InP HEMT Amplifier; Nb(x)Ti(1-x)N Superconducting-Nanowire Single-Photon Detectors; Improved Sand-Compaction Method for Lost-Foam Metal Casting; Improved Probe for Evaluating Compaction of Mold Sand; Polymer-Based Composite Catholytes for Li Thin-Film Cells; Using ALD To Bond CNTs to Substrates and Matrices; Alternating-Composition Layered Ceramic Barrier Coatings; Variable-Structure Control of a Model Glider Airplane; Axial Halbach Magnetic Bearings; Compact, Non-Pneumatic Rock-Powder Samplers; Biochips Containing Arrays of Carbon-Nanotube Electrodes; Nb(x)Ti(1-x)N Superconducting-Nanowire Single-Photon Detectors; Neon as a Buffer Gas for a Mercury-Ion Clock; Miniature Incandescent Lamps as Fiber-Optic Light Sources; Bidirectional Pressure-Regulator System; and Prism Window for Optical Alignment. Single-Grid-Pair Fourier Telescope for Imaging in Hard-X Rays and gamma Rays Range-Gated Metrology with Compact Optical Head Lossless, Multi-Spectral Data Compressor for Improved Compression for Pushbroom-Typetruments.

  1. Closed-loop control of gimbal-less MEMS mirrors for increased bandwidth in LiDAR applications

    NASA Astrophysics Data System (ADS)

    Milanović, Veljko; Kasturi, Abhishek; Yang, James; Hu, Frank

    2017-05-01

    In 2016, we presented a low SWaP wirelessly controlled MEMS mirror-based LiDAR prototype which utilized an OEM laser rangefinder for distance measurement [1]. The MEMS mirror was run in open loop based on its exceptionally fast design and high repeatability performance. However, to further extend the bandwidth and incorporate necessary eyesafety features, we recently focused on providing mirror position feedback and running the system in closed loop control. Multiple configurations of optical position sensors, mounted on both the front- and the back-side of the MEMS mirror, have been developed and will be presented. In all cases, they include a light source (LED or laser) and a 2D photosensor. The most compact version is mounted on the backside of the MEMS mirror ceramic package and can "view" the mirror's backside through openings in the mirror's PCB and its ceramic carrier. This version increases the overall size of the MEMS mirror submodule from 12mm x 12mm x 4mm to 15mm x 15mm x 7mm. The sensors also include optical and electronic filtering to reduce effects of any interference from the application laser illumination. With relatively simple FPGA-based PID control running at the sample rate of 100 kHz, we could configure the overall response of the system to fully utilize the MEMS mirror's native bandwidth which extends well beyond its first resonance. When compared to the simple open loop method of suppressing overshoot and ringing which significantly limits bandwidth utilization, running the mirrors in closed loop control increased the bandwidth to nearly 3.7 times. A 2.0mm diameter integrated MEMS mirror with a resonant frequency of 1300 Hz was limited to 500Hz bandwidth in open loop driving but was increased to 3kHz bandwidth with the closed loop controller. With that bandwidth it is capable of very sharply defined uniform-velocity scans (sawtooth or triangle waveforms) which are highly desired in scanned mirror LiDAR systems. A 2.4mm diameter mirror with +/-12° of scan angle achieves over 1.3kHz of flat response, allowing sharp triangle waveforms even at 300Hz (600 uniform velocity lines per second). The same methodology is demonstrated with larger, bonded mirrors. Here closed loop control is more challenging due to the additional resonance and a more complex system dynamic. Nevertheless, results are similar - a 5mm diameter mirror bandwidth was increased from 150Hz to 500Hz.

  2. Centimeter-scale MEMS scanning mirrors for high power laser application

    NASA Astrophysics Data System (ADS)

    Senger, F.; Hofmann, U.; v. Wantoch, T.; Mallas, C.; Janes, J.; Benecke, W.; Herwig, Patrick; Gawlitza, P.; Ortega-Delgado, M.; Grune, C.; Hannweber, J.; Wetzig, A.

    2015-02-01

    A higher achievable scan speed and the capability to integrate two scan axes in a very compact device are fundamental advantages of MEMS scanning mirrors over conventional galvanometric scanners. There is a growing demand for biaxial high speed scanning systems complementing the rapid progress of high power lasers for enabling the development of new high throughput manufacturing processes. This paper presents concept, design, fabrication and test of biaxial large aperture MEMS scanning mirrors (LAMM) with aperture sizes up to 20 mm for use in high-power laser applications. To keep static and dynamic deformation of the mirror acceptably low all MEMS mirrors exhibit full substrate thickness of 725 μm. The LAMM-scanners are being vacuum packaged on wafer-level based on a stack of 4 wafers. Scanners with aperture sizes up to 12 mm are designed as a 4-DOF-oscillator with amplitude magnification applying electrostatic actuation for driving a motor-frame. As an example a 7-mm-scanner is presented that achieves an optical scan angle of 32 degrees at 3.2 kHz. LAMM-scanners with apertures sizes of 20 mm are designed as passive high-Q-resonators to be externally excited by low-cost electromagnetic or piezoelectric drives. Multi-layer dielectric coatings with a reflectivity higher than 99.9 % have enabled to apply cw-laser power loads of more than 600 W without damaging the MEMS mirror. Finally, a new excitation concept for resonant scanners is presented providing advantageous shaping of intensity profiles of projected laser patterns without modulating the laser. This is of interest in lighting applications such as automotive laser headlights.

  3. Film-Evaporation MEMS Tunable Array for Picosat Propulsion and Thermal Control

    NASA Technical Reports Server (NTRS)

    Alexeenko, Alina; Cardiff, Eric; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Film-Evaporation MEMS Tunable Array (FEMTA) concept for propulsion and thermal control of picosats exploits microscale surface tension effect in conjunction with temperature- dependent vapor pressure to realize compact, tunable and low-power thermal valving system. The FEMTA is intended to be a self-contained propulsion unit requiring only a low-voltage DC power source to operate. The microfabricated thermal valving and very-high-integration level enables fast high-capacity cooling and high-resolution, low-power micropropulsion for picosats that is superior to existing smallsat micropropulsion and thermal management alternatives.

  4. MEMS micromirrors for optical switching in multichannel spectrophotometers

    NASA Astrophysics Data System (ADS)

    Tuantranont, Adisorn; Lomas, Tanom; Bright, Victor M.

    2004-04-01

    This paper reports for the first time that a novel MEMS-based micromirror switch has successfully demonstrated for optical switching in a multi-channel fiber optics spectrophotometer system. The conventional optomechanical fiber optic switches for multi-channel spectrophotometers available in market are bulky, slow, low numbers of channels and expensive. Our foundry MEMS-based micromirror switch designed for integrating with commercially available spectrophotometers offers more compact devices, increased number of probing channels, higher performance and cheaper. Our MEMS-based micromirror switch is a surface micromachined mirror fabricated through MUMPs foundry. The 280 μm x 280 μm gold coated mirror is suspended by the double-gimbal structure for X and Y axis scanning. Self-assembly by solders is used to elevate the torsion mirror 30 μm over the substrate to achieve large scan angle. The solder self-assembly approach dramatically reduces the time to assembly the switch. The scan mirror is electrostatically controlled by applying voltages. The individual probing signal from each probing head is guided by fibers with collimated lenses and incidents on the center of the mirror. The operating scan angle is in the range of 3.5 degrees with driving voltage of 0-100 V. The fastest switching time of 4 millisecond (1 ms rise time and 3 ms fall time) is measured corresponding to the maximum speed of the mirror of 0.25 kHz when the mirror is scanning at +/- 1.5 degrees. The micromirror switch is packaged with a multi-mode fiber bundle using active alignment technique. A centered fiber is the output fiber that is connected to spectrophotometer. Maximum insertion loss of 5 dB has been obtained. The accuracy of measured spectral data is equivalent to the single channel spectrophotometer with a small degradation on probing signal due to fiber coupling.

  5. Optimization of biogas production using MEMS based near infrared inline-sensor

    NASA Astrophysics Data System (ADS)

    Saupe, Ray; Seider, Thomas; Stock, Volker; Kujawski, Olaf; Otto, Thomas; Gessner, Thomas

    2013-03-01

    Due to climate protection and increasing oil prices, renewable energy is becoming extremely important. Anaerobic digestion is a particular environmental and resource-saving way of heat and power production in biogas plants. These plants can be operated decentralized and independent of weather conditions and allow peak load operation. To maximize energy production, plants should be operated at a high efficiency. That means the entire installed power production capacity (e.g. CHP) and biogas production have to be used. However, current plant utilization in many areas is significantly lower, which is economically and environmentally inefficient, since the biochemical process responds to fluctuations in boundary conditions, e.g. mixing in the conditions and substrate composition. At present only a few easily accessible parameters such as fill level, flow rates and temperature are determined on-line. Monitoring of substrate composition occurs only sporadically with the help of laboratory methods. Direct acquisition of substrate composition combined with a smart control and regulation concept enables significant improvement in plant efficiency. This requires a compact, reliable and cost-efficient sensor. It is for this reason that a MEMS sensor system based on NIR spectroscopy has been developed. Requirements are high accuracy, which is the basic condition for exact chemometric evaluation of the sample as well as optimized MEMS design and packaging in order to work in poor environmental conditions. Another issue is sample presentation, which needs an exact adopted optical-mechanical system. In this paper, the development and application of a MEMS-based analyzer for biogas plants will be explained. The above mentioned problems and challenges will be discussed. Measurement results will be shown to demonstrate its performance.

  6. Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging.

    PubMed

    Strathman, Matthew; Liu, Yunbo; Li, Xingde; Lin, Lih Y

    2013-10-07

    We demonstrate a 3-D scanning micromirror device that combines 2-D beam scanning with focus control in the same device using micro-electro-mechanical-systems (MEMS) technology. 2-D beam scanning is achieved with a biaxial gimbal structure and focus control is obtained with a deformable mirror membrane surface. The micromirror with 800 micrometer diameter is designed to be sufficiently compact and efficient so that it can be incorporated into an endoscopic imaging probe in the future. The design, fabrication and characterization of the device are described in this paper. Using the focus-tracking MEMS scanning mirror, we achieved an optical scanning range of >16 degrees with <40 V actuation voltage at resonance and a tunable focal length between infinity and 25 mm with <100V applied bias.

  7. Raman and photothermal spectroscopies for explosive detection

    NASA Astrophysics Data System (ADS)

    Finot, Eric; Brulé, Thibault; Rai, Padmnabh; Griffart, Aurélien; Bouhélier, Alexandre; Thundat, Thomas

    2013-06-01

    Detection of explosive residues using portable devices for locating landmine and terrorist weapons must sat- isfy the application criteria of high reproducibility, specificity, sensitivity and fast response time. Vibrational spectroscopies such as Raman and infrared spectroscopies have demonstrated their potential to distinguish the members of the chemical family of more than 30 explosive materials. The characteristic chemical fingerprints in the spectra of these explosives stem from the unique bond structure of each compound. However, these spectroscopies, developed in the early sixties, suffer from a poor sensitivity. On the contrary, MEMS-based chemical sensors have shown to have very high sensitivity lowering the detection limit down to less than 1 picogram, (namely 10 part per trillion) using sensor platforms based on microcantilevers, plasmonics, or surface acoustic waves. The minimum amount of molecules that can be detected depends actually on the transducer size. The selectivity in MEMS sensors is usually realized using chemical modification of the active surface. However, the lack of sufficiently selective receptors that can be immobilized on MEMS sensors remains one of the most critical issues. Microcantilever based sensors offer an excellent opportunity to combine both the infrared photothermal spectroscopy in their static mode and the unique mass sensitivity in their dynamic mode. Optical sensors based on localized plasmon resonance can also take up the challenge of addressing the selectivity by monitoring the Surface Enhanced Raman spectrum down to few molecules. The operating conditions of these promising localized spectroscopies will be discussed in terms of reliability, compactness, data analysis and potential for mass deployment.

  8. High energy microelectromechanical oscillator based on the electrostatic microactuator

    NASA Astrophysics Data System (ADS)

    Baginsky, I.; Kostsov, Edvard; Sobolev, Victor

    2008-03-01

    Electrostatic high energy micromotor based on the ferroelectric films is studied as applied to microelectromechanical devices operating in vibrational mode. It is shown that the micromotor can be efficiently used in high frequency micromechanical vibrators that are used in high energy MEMS devices, such as micropumps, microvalves, microinjectors, adaptive microoptic devices etc.

  9. Scanning laser beam displays based on a 2D MEMS

    NASA Astrophysics Data System (ADS)

    Niesten, Maarten; Masood, Taha; Miller, Josh; Tauscher, Jason

    2010-05-01

    The combination of laser light sources and MEMS technology enables a range of display systems such as ultra small projectors for mobile devices, head-up displays for vehicles, wearable near-eye displays and projection systems for 3D imaging. Images are created by scanning red, green and blue lasers horizontally and vertically with a single two-dimensional MEMS. Due to the excellent beam quality of laser beams, the optical designs are efficient and compact. In addition, the laser illumination enables saturated display colors that are desirable for augmented reality applications where a virtual image is used. With this technology, the smallest projector engine for high volume manufacturing to date has been developed. This projector module has a height of 7 mm and a volume of 5 cc. The resolution of this projector is WVGA. No additional projection optics is required, resulting in an infinite focus depth. Unlike with micro-display projection displays, an increase in resolution will not lead to an increase in size or a decrease in efficiency. Therefore future projectors can be developed that combine a higher resolution in an even smaller and thinner form factor with increased efficiencies that will lead to lower power consumption.

  10. Analysis of dual-frequency MEMS antenna using H-MRTD method

    NASA Astrophysics Data System (ADS)

    Yu, Wenge; Zhong, Xianxin; Chen, Yu; Wu, Zhengzhong

    2004-10-01

    For applying micro/nano technologies and Micro-Electro-Mechanical System (MEMS) technologies in the Radio Frequency (RF) field to manufacture miniature microstrip antennas. A novel MEMS dual-band patch antenna designed using slot-loaded and short-circuited size-reduction techniques is presented in this paper. By controlling the short-plane width, the two resonant frequencies, f10 and f30, can be significantly reduced and the frequency ratio (f30/f10) is tunable in the range 1.7~2.3. The Haar-Wavelet-Based multiresolution time domain (H-MRTD) with compactly supported scaling function for a full three-dimensional (3-D) wave to Yee's staggered cell is used for modeling and analyzing the antenna for the first time. Associated with practical model, an uniaxial perfectly matched layer (UPML) absorbing boundary conditions was developed, In addition , extending the mathematical formulae to an inhomogenous media. Numerical simulation results are compared with those using the conventional 3-D finite-difference time-domain (FDTD) method and measured. It has been demonstrated that, with this technique, space discretization with only a few cells per wavelength gives accurate results, leading to a reduction of both memory requirement and computation time.

  11. Widely tunable Fabry-Perot filter based MWIR and LWIR microspectrometers

    NASA Astrophysics Data System (ADS)

    Ebermann, Martin; Neumann, Norbert; Hiller, Karla; Gittler, Elvira; Meinig, Marco; Kurth, Steffen

    2012-06-01

    As is generally known, miniature infrared spectrometers have great potential, e. g. for process and environmental analytics or in medical applications. Many efforts are being made to shrink conventional spectrometers, such as FTIR or grating based devices. A more rigorous approach for miniaturization is the use of MEMS technologies. Based on an established design for the MWIR new MEMS Fabry-Perot filters and sensors with expanded spectral ranges in the LWIR have been developed. The range 5.5 - 8 μm is particularly suited for the analysis of liquids. A dual-band sensor, which can be simultaneously tuned from 4 - 5 μm and 8 - 11 μm for the measurement of anesthetics and carbon dioxide has also been developed. A new material system is used to reduce internal stress in the reflector layer stack. Good results in terms of finesse (<= 60) and transmittance (<= 80 %) could be demonstrated. The hybrid integration of the filter in a pyroelectric detector results in very compact, robust and cost effective microspectrometers. FP filters with two moveable reflectors instead of only one reduce significantly the acceleration sensitivity and actuation voltage.

  12. Systematic characterization of a 1550 nm microelectromechanical (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) with 7.92 THz tuning range for terahertz photomixing systems

    NASA Astrophysics Data System (ADS)

    Haidar, M. T.; Preu, S.; Cesar, J.; Paul, S.; Hajo, A. S.; Neumeyr, C.; Maune, H.; Küppers, F.

    2018-01-01

    Continuous-wave (CW) terahertz (THz) photomixing requires compact, widely tunable, mode-hop-free driving lasers. We present a single-mode microelectromechanical system (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) featuring an electrothermal tuning range of 64 nm (7.92 THz) that exceeds the tuning range of commercially available distributed-feedback laser (DFB) diodes (˜4.8 nm) by a factor of about 13. We first review the underlying theory and perform a systematic characterization of the MEMS-VCSEL, with particular focus on the parameters relevant for THz photomixing. These parameters include mode-hop-free CW tuning with a side-mode-suppression-ratio >50 dB, a linewidth as narrow as 46.1 MHz, and wavelength and polarization stability. We conclude with a demonstration of a CW THz photomixing setup by subjecting the MEMS-VCSEL to optical beating with a DFB diode driving commercial photomixers. The achievable THz bandwidth is limited only by the employed photomixers. Once improved photomixers become available, electrothermally actuated MEMS-VCSELs should allow for a tuning range covering almost the whole THz domain with a single system.

  13. Vibration nullification of MEMS device using input shaping

    NASA Astrophysics Data System (ADS)

    Jordan, Scott; Lawrence, Eric M.

    2003-07-01

    The active silicon microstructures known as Micro-Electromechanical Systems (MEMS) are improving many existing technologies through simplification and cost reduction. Many industries have already capitalized on MEMS technology such as those in fields as diverse as telecommunications, computing, projection displays, automotive safety, defense and biotechnology. As they grow in sophistication and complexity, the familiar pressures to further reduce costs and increase performance grow for those who design and manufacture MEMS devices and the engineers who specify them for their end applications. One example is MEMS optical switches that have evolved from simple, bistable on/off elements to microscopic, freelypositionable beam steering optics. These can be actuated to discrete angular positions or to continuously-variable angular states through applied command signals. Unfortunately, elaborate closed-loop actuation schemes are often necessitated in order to stabilize the actuation. Furthermore, preventing one actuated micro-element from vibrationally cross-coupling with its neighbors is another reason costly closed-loop approaches are thought to be necessary. The Laser Doppler Vibrometer (LDV) is a valuable tool for MEMS characterization that provides non-contact, real-time measurements of velocity and/or displacement response. The LDV is a proven technology for production metrology to determine dynamical behaviors of MEMS elements, which can be a sensitive indicator of manufacturing variables such as film thickness, etch depth, feature tolerances, handling damage and particulate contamination. They are also important for characterizing the actuation dynamics of MEMS elements for implementation of a patented controls technique called Input Shaping«, which we show here can virtually eliminate the vibratory resonant response of MEMS elements even when subjected to the most severe actuation profiles. In this paper, we will demonstrate the use of the LDV to determine how the application of this compact, efficient algorithm can improve the performance of both open- and closed-loop MEMS devices, eliminating the need for costly closed-loop approaches. This can greatly reduce the complexity, cost and yield of MEMS design and manufacture.

  14. Ultra-compact MEMS FTIR spectrometer

    NASA Astrophysics Data System (ADS)

    Sabry, Yasser M.; Hassan, Khaled; Anwar, Momen; Alharon, Mohamed H.; Medhat, Mostafa; Adib, George A.; Dumont, Rich; Saadany, Bassam; Khalil, Diaa

    2017-05-01

    Portable and handheld spectrometers are being developed and commercialized in the late few years leveraging the rapidly-progressing technology and triggering new markets in the field of on-site spectroscopic analysis. Although handheld devices were commercialized for the near-infrared spectroscopy (NIRS), their size and cost stand as an obstacle against the deployment of the spectrometer as spectral sensing components needed for the smart phone industry and the IoT applications. In this work we report a chip-sized microelectromechanical system (MEMS)-based FTIR spectrometer. The core optical engine of the solution is built using a passive-alignment integration technique for a selfaligned MEMS chip; self-aligned microoptics and a single detector in a tiny package sized about 1 cm3. The MEMS chip is a monolithic, high-throughput scanning Michelson interferometer fabricated using deep reactive ion etching technology of silicon-on-insulator substrate. The micro-optical part is used for conditioning the input/output light to/from the MEMS and for further light direction to the detector. Thanks to the all-reflective design of the conditioning microoptics, the performance is free of chromatic aberration. Complemented by the excellent transmission properties of the silicon in the infrared region, the integrated solution allows very wide spectral range of operation. The reported sensor's spectral resolution is about 33 cm-1 and working in the range of 1270 nm to 2700 nm; upper limited by the extended InGaAs detector. The presented solution provides a low cost, low power, tiny size, wide wavelength range NIR spectral sensor that can be manufactured with extremely high volumes. All these features promise the compatibility of this technology with the forthcoming demand of smart portable and IoT devices.

  15. Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging

    PubMed Central

    Strathman, Matthew; Liu, Yunbo; Li, Xingde; Lin, Lih Y.

    2013-01-01

    We demonstrate a 3-D scanning micromirror device that combines 2-D beam scanning with focus control in the same device using micro-electro-mechanical-systems (MEMS) technology. 2-D beam scanning is achieved with a biaxial gimbal structure and focus control is obtained with a deformable mirror membrane surface. The micromirror with 800 micrometer diameter is designed to be sufficiently compact and efficient so that it can be incorporated into an endoscopic imaging probe in the future. The design, fabrication and characterization of the device are described in this paper. Using the focus-tracking MEMS scanning mirror, we achieved an optical scanning range of >16 degrees with <40 V actuation voltage at resonance and a tunable focal length between infinity and 25 mm with <100V applied bias. PMID:24104304

  16. Adaptive UAV Attitude Estimation Employing Unscented Kalman Filter, FOAM and Low-Cost MEMS Sensors

    PubMed Central

    de Marina, Héctor García; Espinosa, Felipe; Santos, Carlos

    2012-01-01

    Navigation employing low cost MicroElectroMechanical Systems (MEMS) sensors in Unmanned Aerial Vehicles (UAVs) is an uprising challenge. One important part of this navigation is the right estimation of the attitude angles. Most of the existent algorithms handle the sensor readings in a fixed way, leading to large errors in different mission stages like take-off aerobatic maneuvers. This paper presents an adaptive method to estimate these angles using off-the-shelf components. This paper introduces an Attitude Heading Reference System (AHRS) based on the Unscented Kalman Filter (UKF) using the Fast Optimal Attitude Matrix (FOAM) algorithm as the observation model. The performance of the method is assessed through simulations. Moreover, field experiments are presented using a real fixed-wing UAV. The proposed low cost solution, implemented in a microcontroller, shows a satisfactory real time performance. PMID:23012559

  17. Poly-SiGe MEMS actuators for adaptive optics

    NASA Astrophysics Data System (ADS)

    Lin, Blake C.; King, Tsu-Jae; Muller, Richard S.

    2006-01-01

    Many adaptive optics (AO) applications require mirror arrays with hundreds to thousands of segments, necessitating a CMOS-compatible MEMS process to integrate the mirrors with their driving electronics. This paper proposes a MEMS actuator that is fabricated using low-temperature polycrystalline silicon-germanium (poly-SiGe) surface-micromaching technology (total thermal budget is 6 hours at or below 425°C). The MEMS actuator consists of three flexures and a hexagonal platform, on which a micromirror is to be assembled. The flexures are made of single-layer poly-SiGe with stress gradient across thickness of the film, making them bend out-of-plane after sacrificial-layer release to create a large nominal gap. The platform, on the other hand, has an additional stress-balancing SiGe layer deposited on top, making the dual-layer stack stay flat after release. Using this process, we have successfully fabricated the MEMS actuator which is lifted 14.6 μm out-of-plane by 290-μm-long flexures. The 2-μm-thick hexagonal mirror-platform exhibits a strain gradient of -5.5×10 -5 μm -1 (equivalent to 18 mm radius-of-curvature), which would be further reduced once the micromirror is assembled.

  18. Intelligent MEMS spectral sensor for NIR applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kantojärvi, Uula; Antila, Jarkko E.; Mäkynen, Jussi; Suhonen, Janne

    2017-05-01

    Near Infrared (NIR) spectrometers have been widely used in many material inspection applications, but mainly in central laboratories. The role of miniaturization, robustness of spectrometer and portability are really crucial when field inspection tools should be developed. We present an advanced spectral sensor based on a tunable Microelectromechanical (MEMS) Fabry-Perot Interferometer which will meet these requirements. We describe the wireless device design, operation principle and easy-to-use algorithms to adapt the sensor to number of applications. Multiple devices can be operated simultaneously and seamlessly through cloud connectivity. We also present some practical NIR applications carried out with truly portable NIR device.

  19. Through-wafer interrogation of microstructure motion for MEMS feedback control

    NASA Astrophysics Data System (ADS)

    Dawson, Jeremy M.; Chen, Jingdong; Brown, Kolin S.; Famouri, Parviz F.; Hornak, Lawrence A.

    1999-09-01

    Closed-loop MEMS control enables mechanical microsystems to adapt to the demands of the environment which they are actuating opening a new window of opportunity for future MEMS applications. Planar diffractive optical microsystems have the potential to enable the integrated optical interrogation of MEMS microstructure position fully decoupled from the means of mechanical actuation which is central to realization of feedback control. This paper presents the results of initial research evaluating through-wafer optical microsystems for MEMS integrated optical monitoring. Positional monitoring results obtained from a 1.3 micrometer wavelength through- wafer free-space optical probe of a lateral comb resonator fabricated using the Multi-User MEMS Process Service (MUMPS) are presented. Given the availability of positional information via probe signal feedback, a simulation of the application of nonlinear sliding control is presented illustrating position control of the lateral comb resonator structure.

  20. In vitro corrosion study by EIS of a nickel-free stainless steel for orthopaedic applications.

    PubMed

    Rondelli, G; Torricelli, P; Fini, M; Giardino, R

    2005-03-01

    The electrochemical impedance spectroscopy (EIS) technique was used for the study of the electrochemical behaviour of Ni-free austenitic stainless steel for orthopaedic applications. Experiments were carried out using four different test solutions: (i) phosphate-buffered saline (PBS), (ii) minimum essential medium (MEM), (iii) MEM + 10% fetal calf serum (FCS), (iv) MEM + 10% fetal calf serum + L929 fibroblast cell line (Cell). Bode-phase spectra showed the presence of two maxima and were fitted with an equivalent circuit characterized by two parallel combinations (Resistance, Constant Phase Element). The (R(1), CPE(1)) branch was assigned to the inner compact passive film and the (R(2), CPE(2)) branch to the external porous film. The resistance of the inner film R(1), here directly related to the material's uniform corrosion resistance, raised with the immersion time and increased in the following order: PBS

  1. MEMS for optical switching: technologies, applications, and perspectives

    NASA Astrophysics Data System (ADS)

    Lin, Lih-Y.; Goldstein, Evan L.

    1999-09-01

    Micro-electro-mechanical-systems (MEMS), due to their unique ability to integrate electrical, mechanical, and optical elements on a single chip, have recently begun to exhibit great potential for realizing optical components and subsystems in compact, lowcost form. Recently, this technology has been applied to wavelength-division-multiplexed (WDM) networks, and resulted in advances in several network elements, including switches, filters, modulators, and wavelength-add/drop multiplexers. Due largely to the exploding capacity demand arising from data traffic, the transmission capacity demanded of and available from WDM networks is anticipated to increase rapidly. For managing such networks, optical switching is of particular interest due to the fact that its complexity is essentially immune to steady advances in the per-channel bit-rate. We will review various micromachined optical-switching technologies, emphasizing studies of their reliability. We then summarizing recent progress in the free-space MEMS optical switch we have demonstrated.

  2. MEMS for optical switching: technologies, applications, and perspectives

    NASA Astrophysics Data System (ADS)

    Lin, Lih-Yuan; Goldstein, Evan L.

    1999-09-01

    Micro-electro-mechanical-systems (MEMS), due to their unique ability to integrate electrical, mechanical, and optical elements on a single chip, have recently begun to exhibit great potential for realizing optical components and subsystems in compact, low-cost form. Recently, this technology has been applied to wavelength-division-multiplexed (WDM) networks, and resulted in advances in several network elements, including switches, filters, modulators, and wavelength-add/drop multiplexers. Due largely to the exploding capacity demand arising from data traffic, the transmission capacity demanded of and available from WDM networks is anticipated to increase rapidly. For managing such networks, optical switching is of particular interest due to the fact that its complexity is essentially immune to steady advances in the per-channel bit-rate. We will review various micromachined optical-switching technologies, emphasizing studies of their reliability. We then summarizing recent progress in the free-space MEMS optical switch we have demonstrated.

  3. MOEMs-based new functionalities for future instrumentation in space

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean; Hinglais, Emmanuel; Villenave, Michel

    2017-11-01

    Micro-Opto-Electro-Mechanical Systems (MOEMS) could be key components in future generation of space instruments. In Earth Observation, Universe Observation and Planet Exploration, scientific return of the instruments must be optimized in future missions. MOEMS devices are based on the mature micro-electronics technology and in addition to their compactness, scalability, and specific task customization, they could generate new functions not available with current technologies. CNES has initiated a study with LAM and TAS for listing the new functions associated with several types of MEMS (programmable slits, programmable micro-diffraction gratings, micro-deformable mirrors). Instrumental applications are then derived and promising concepts are described.

  4. Fabrication and analysis of radiofrequency MEMS series capacitive single-pole double-throw switch

    NASA Astrophysics Data System (ADS)

    Bansal, Deepak; Bajpai, Anuroop; Kumar, Prem; Kaur, Maninder; Rangra, Kamaljit

    2016-10-01

    A compact radiofrequency (RF) MEMS single-pole double-throw (SPDT) switch based on series capacitive configuration is proposed. The critical process parameters are analyzed to improve the fabrication process. A technique of cold-hot thermal shock for lift-off method is explored. The residual stress in the structure is quantified by lancet test structures that come out to be 51 MPa. Effect of residual stress on actuation voltage is explored, which changes its value from 24 to 22 V. Resonance frequency and switching speed of the switch are 11 kHz and 44 μs, respectively, measured using laser Doppler vibrometer. Measured bandwidth of the SPDT switch is 20 GHz (5 to 25 GHz), which is verified with finite element method simulations in high frequency structure simulator©; and an equivalent LCR circuit in advanced design system©;. Insertion loss of the switch lies in -0.1 to -0.5 dB with isolation better than -20 dB for the above-mentioned bandwidth.

  5. Calibration of High Frequency MEMS Microphones

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Humphreys, William M.; Bartram, Scott M.; Zuckewar, Allan J.

    2007-01-01

    Understanding and controlling aircraft noise is one of the major research topics of the NASA Fundamental Aeronautics Program. One of the measurement technologies used to acquire noise data is the microphone directional array (DA). Traditional direction array hardware, consisting of commercially available condenser microphones and preamplifiers can be too expensive and their installation in hard-walled wind tunnel test sections too complicated. An emerging micro-machining technology coupled with the latest cutting edge technologies for smaller and faster systems have opened the way for development of MEMS microphones. The MEMS microphone devices are available in the market but suffer from certain important shortcomings. Based on early experiments with array prototypes, it has been found that both the bandwidth and the sound pressure level dynamic range of the microphones should be increased significantly to improve the performance and flexibility of the overall array. Thus, in collaboration with an outside MEMS design vendor, NASA Langley modified commercially available MEMS microphone as shown in Figure 1 to meet the new requirements. Coupled with the design of the enhanced MEMS microphones was the development of a new calibration method for simultaneously obtaining the sensitivity and phase response of the devices over their entire broadband frequency range. Over the years, several methods have been used for microphone calibration. Some of the common methods of microphone calibration are Coupler (Reciprocity, Substitution, and Simultaneous), Pistonphone, Electrostatic actuator, and Free-field calibration (Reciprocity, Substitution, and Simultaneous). Traditionally, electrostatic actuators (EA) have been used to characterize air-condenser microphones for wideband frequency ranges; however, MEMS microphones are not adaptable to the EA method due to their construction and very small diaphragm size. Hence a substitution-based, free-field method was developed to calibrate these microphones at frequencies up to 80 kHz. The technique relied on the use of a random, ultrasonic broadband centrifugal sound source located in a small anechoic chamber. Phase calibrations of the MEMS microphones were derived from cross spectral phase comparisons between the reference and test substitution microphones and an adjacent and invariant grazing-incidence 1/8-inch standard microphone.

  6. MMI-based MOEMS FT spectrometer for visible and IR spectral ranges

    NASA Astrophysics Data System (ADS)

    Al-Demerdash, Bassem M.; Medhat, Mostafa; Sabry, Yasser M.; Saadany, Bassam; Khalil, Diaa

    2014-03-01

    MEMS spectrometers have very strong potential in future healthcare and environmental monitoring applications, where Michelson interferometers are the core optical engine. Recently, MEMS Michelson interferometers based on using silicon interface as a beam splitter (BS) has been proposed [7, 8]. This allows having a monolithically-integrated on-chip FTIR spectrometer. However silicon BS exhibits high absorption loss in the visible range and high material dispersion in the near infrared (NIR) range. For this reason, we propose in this work a novel MOEMS interferometer allowing operation over wider spectral range covering both the infrared (IR) and the visible ranges. The proposed architecture is based on spatial splitting and combining of optical beams using the imaging properties of Multi-Mode Interference MMI waveguide. The proposed structure includes an optical splitter for spatial splitting an input beam into two beams and a combiner for spatial combining the two interferometer beams. A MEMS moveable mirror is provided to produce an optical path difference between the two beams. The new interferometer is fabricated using DRIE technology on an SOI wafer. The movable mirror is metalized and attached to a comb-drive actuator fabricated in the same lithography step in a self-aligned manner on chip. The novel interferometer is tested as a Fourier transform spectrometer. Red laser, IR laser and absorption spectra of different materials are measured with a resolution of 2.5 nm at 635-nm wavelength. The structure is a very compact one that allows its integration and fabrication on a large scale with very low cost.

  7. Targeted sections in either XY or XZ plane with dual-axes confocal endomicroscope (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Gaoming; Li, Haijun; Duan, Xiyu; Zhou, Quan; Zhou, Juan; Oldham, Kenn R.; Wang, Thomas D.

    2017-02-01

    We demonstrate a dual axes confocal architecture, which can be used to collect horizontal(XY-plane) or vertical cross-sectional(XZ-plane) images for tissue. This scanner head is 5.5mm in outer diameter(OD), and integrates a 3D MEMS scanner with a compact chip size of 3.2×2.9mm2. To realize the miniaturization, there are some obstacles of the small size of 3D MEMS scanner, MEMS wire bundle, the air pressure effect for MEMS motion, the processing of parabolic mirror, and optical alignment to come over. In our probe, separation mechanical structure for optical alignment was adopted and a step shape MEMS holder was designed to deal with the difficult of MEMS wire bundle. Peptides have been demonstrated tremendous potential for in vivo use to detect colonic dysplasia. This class of in vivo molecular probe can be labeled with near-infrared (NIR) dyes for visualizing the full depth of the epithelium in small animals. To confirm our probe performance, we take use of USAF 1951 resolution target to test its lateral and axial resolution. It has lateral and axial resolution of 2.49um and 4.98um, respectively. When we collect the fluorescence imaging of colon, it shows that the field of view are 1000um×1000um (horizontal) and 1000um×430um (vertical). The horizontal and vertical cross-sectional images of fresh mouse colonic mucosa demonstrate imaging performance with this miniature instrument.

  8. Modeling of Adaptive Optics-Based Free-Space Communications Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilks, S C; Morris, J R; Brase, J M

    2002-08-06

    We introduce a wave-optics based simulation code written for air-optic laser communications links, that includes a detailed model of an adaptive optics compensation system. We present the results obtained by this model, where the phase of a communications laser beam is corrected, after it propagates through a turbulent atmosphere. The phase of the received laser beam is measured using a Shack-Hartmann wavefront sensor, and the correction method utilizes a MEMS mirror. Strehl improvement and amount of power coupled to the receiving fiber for both 1 km horizontal and 28 km slant paths are presented.

  9. Design and analysis of a MEMS-based bifurcate-shape piezoelectric energy harvester

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yuan; Gan, Ruyi, E-mail: 2471390146@qq.com; Wan, Shalang

    This paper presents a novel piezoelectric energy harvester, which is a MEMS-based device. This piezoelectric energy harvester uses a bifurcate-shape. The derivation of the mathematical modeling is based on the Euler-Bernoulli beam theory, and the main mechanical and electrical parameters of this energy harvester are analyzed and simulated. The experiment result shows that the maximum output voltage can achieve 3.3 V under an acceleration of 1 g at 292.11 Hz of frequency, and the output power can be up to 0.155 mW under the load of 0.4 MΩ. The power density is calculated as 496.79 μWmm{sup −3}. Besides that, itmore » is demonstrated efficiently at output power and voltage and adaptively in practical vibration circumstance. This energy harvester could be used for low-power electronic devices.« less

  10. Repeatable Manufacture of Wings for Flapping Wing Micro Air Vehicles Using Microelectromechanical System (MEMS) Fabrication Techniques

    DTIC Science & Technology

    2011-03-01

    properties, but would be very difficult to adapt to a MEMS fabrication process. Nitinol was also considered as a structural material for its...such as iron, carbon, hydrogen and oxygen(13). Nitinol was also considered for these wings, but the expense and lead time was too great. Aside

  11. Wearable Wireless Telemetry System for Implantable BioMEMS Sensors

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Miranda, Felix A.; Wilson, Jeffrey D.; Simons, Renita E.

    2008-01-01

    Telemetry systems of a type that have been proposed for the monitoring of physiological functions in humans would include the following subsystems: Surgically implanted or ingested units that would comprise combinations of microelectromechanical systems (MEMS)- based sensors [bioMEMS sensors] and passive radio-frequency (RF) readout circuits that would include miniature loop antennas. Compact radio transceiver units integrated into external garments for wirelessly powering and interrogating the implanted or ingested units. The basic principles of operation of these systems are the same as those of the bioMEMS-sensor-unit/external-RFpowering- and-interrogating-unit systems described in "Printed Multi-Turn Loop Antennas for Biotelemetry" (LEW-17879-1) NASA Tech Briefs, Vol. 31, No. 6 (June 2007), page 48, and in the immediately preceding article, "Hand-Held Units for Short-Range Wireless Biotelemetry" (LEW-17483-1). The differences between what is reported here and what was reported in the cited prior articles lie in proposed design features and a proposed mode of operation. In a specific system of the type now proposed, the sensor unit would comprise mainly a capacitive MEMS pressure sensor located in the annular region of a loop antenna (more specifically, a square spiral inductor/ antenna), all fabricated as an integral unit on a high-resistivity silicon chip. The capacitor electrodes, the spiral inductor/antenna, and the conductor lines interconnecting them would all be made of gold. The dimensions of the sensor unit have been estimated to be about 110.4 mm. The external garment-mounted powering/ interrogating unit would include a multi-turn loop antenna and signal-processing circuits. During operation, this external unit would be positioned in proximity to the implanted or ingested unit to provide for near-field, inductive coupling between the loop antennas, which we have as the primary and secondary windings of an electrical transformer.

  12. Microfabricated Ion Beam Drivers for Magnetized Target Fusion

    NASA Astrophysics Data System (ADS)

    Persaud, Arun; Seidl, Peter; Ji, Qing; Ardanuc, Serhan; Miller, Joseph; Lal, Amit; Schenkel, Thomas

    2015-11-01

    Efficient, low-cost drivers are important for Magnetized Target Fusion (MTF). Ion beams offer a high degree of control to deliver the required mega joules of driver energy for MTF and they can be matched to several types of magnetized fuel targets, including compact toroids and solid targets. We describe an ion beam driver approach based on the MEQALAC concept (Multiple Electrostatic Quadrupole Array Linear Accelerator) with many beamlets in an array of micro-fabricated channels. The channels consist of a lattice of electrostatic quadrupoles (ESQ) for focusing and of radio-frequency (RF) electrodes for ion acceleration. Simulations with particle-in-cell and beam envelope codes predict >10x higher current densities compared to state-of-the-art ion accelerators. This increase results from dividing the total ion beam current up into many beamlets to control space charge forces. Focusing elements can be biased taking advantage of high breakdown electric fields in sub-mm structures formed using MEMS techniques (Micro-Electro-Mechanical Systems). We will present results on ion beam transport and acceleration in MEMS based beamlets. Acknowledgments: This work is supported by the U.S. DOE under Contract No. DE-AC02-05CH11231.

  13. Holographic Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Andersen, G.

    For the last two decades adaptive optics has been used as a technique for correcting imaging applications and directed energy/laser targeting and laser communications systems affected by atmospheric turbulence. Typically these systems are bulky and limited to <10 kHz due to large computing overhead and limited photon efficiencies. Moreover most use zonal wavefront sensors which cannot easily handle extreme scintillation or unexpected obscuration of a pre-set aperture. Here we present a compact, lightweight adaptive optics system with the potential to operate at speeds of MHz. The system utilizes a hologram to perform an all-optical wavefront analysis that removes the need for any computer. Finally, the sensing is made on a modal basis so it is largely insensitive to scintillation and obscuration. We have constructed a prototype device and will present experimental results from our research. The holographic adaptive optics system begins with the creation of a multiplexed hologram. This hologram is created by recording the maximum and minimum response functions of every actuator in the deformable mirror against a unique focused reference beam. When a wavefront of some arbitrary phase is incident on the processed hologram, a number of focal spots are created -- one pair for each actuator in the DM. The absolute phase error at each particular actuator location is simply related to the ratio of the intensity of each pair of spots. In this way we can use an array of photodetectors to give a direct readout of phase error without the need for any calculations. The advantages of holographic adaptive optics are many. To begin with, the measurement of phase error is made all optically, so the wavefront sensor directly controls the actuators in the DM without any computers. Using fast, photon counting photodetectors allows for closed loop correction limited only by the speed of the deformable mirror which in the case of MEMS devices can be 100 kHz or more. All this can be achieved in an extremely compact and lightweight package making it perfectly suited to applications such as UAV surveillance imagery and free space optical communications systems. Lastly, since the correction is made on a modal basis instead of zonal, it is virtually insensitive to scintillation and obscuration.

  14. Experimental verification of a novel MEMS multi-modal vibration energy harvester for ultra-low power remote sensing nodes

    NASA Astrophysics Data System (ADS)

    Iannacci, J.; Sordo, G.; Serra, E.; Kucera, M.; Schmid, U.

    2015-05-01

    In this work, we discuss the verification and preliminary experimental characterization of a MEMS-based vibration Energy Harvester (EH) design. The device, named Four-Leaf Clover (FLC), is based on a circular-shaped mechanical resonator with four petal-like mass-spring cascaded systems. This solution introduces several mechanical Degrees of Freedom (DOFs), and therefore enables multiple resonant modes and deformation shapes in the vibrations frequency range of interest. The target is to realize a wideband multi-modal EH-MEMS device, that overcomes the typical narrowband working characteristics of standard cantilevered EHs, by ensuring flexible and adaptable power source to ultra-low power electronics for integrated remote sensing nodes (e.g. Wireless Sensor Networks - WSNs) in the Internet of Things (IoT) scenario, aiming to self-powered and energy autonomous smart systems. Finite Element Method simulations of the FLC EH-MEMS show the presence of several resonant modes for vibrations up to 4-5 kHz, and level of converted power up to a few μW at resonance and in closed-loop conditions (i.e. with resistive load). On the other hand, the first experimental tests of FLC fabricated samples, conducted with a Laser Doppler Vibrometer (LDV), proved the presence of several resonant modes, and allowed to validate the accuracy of the FEM modeling method. Such a good accordance holds validity for what concerns the coupled field behavior of the FLC EH-MEMS, as well. Both measurements and simulations performed at 190 Hz (i.e. out of resonance) showed the generation of power in the range of nW (Root Mean Square - RMS values). Further steps of this work will include the experimental characterization in a full range of vibrations, aiming to prove the whole functionality of the FLC EH-MEMS proposed design concept.

  15. Design of a Class of Antennas Utilizing MEMS, EBG and Septum Polarizers including Near-field Coupling Analysis

    NASA Astrophysics Data System (ADS)

    Kim, Ilkyu

    Recent developments in mobile communications have led to an increased appearance of short-range communications and high data-rate signal transmission. New technologies provides the need for an accurate near-field coupling analysis and novel antenna designs. An ability to effectively estimate the coupling within the near-field region is required to realize short-range communications. Currently, two common techniques that are applicable to the near-field coupling problem are 1) integral form of coupling formula and 2) generalized Friis formula. These formulas are investigated with an emphasis on straightforward calculation and accuracy for various distances between the two antennas. The coupling formulas are computed for a variety of antennas, and several antenna configurations are evaluated through full-wave simulation and indoor measurement in order to validate these techniques. In addition, this research aims to design multi-functional and high performance antennas based on MEMS (Microelectromechanical Systems) switches, EBG (Electromagnetic Bandgap) structures, and septum polarizers. A MEMS switch is incorporated into a slot loaded patch antenna to attain frequency reconfigurability. The resonant frequency of the patch antenna can be shifted using the MEM switch, which is actuated by the integrated bias networks. Furthermore, a high gain base-station antenna utilizing beam-tilting is designed to maximize gain for tilted beam applications. To realize this base-station antenna, an array of four dipole-EBG elements is constructed to implement a fixed down-tilt main beam with application in base station arrays. An improvement of the operating range with the EBG-dipole array is evaluated using a simple linkbudget analysis. The septum polarizer has been widely used in circularly polarized antenna systems due to its simple and compact design and high quality of circularity. In this research, the sigmoid function is used to smoothen the edge in the septum design, which makes it suitable for HPM systems. The PSO (Particle Swarm Optimization) technique is applied to the septum design to achieve a high performance antenna design. The electric field intensity above the septum is evaluated through the simulation and its properties are compared to simple half-plane scattering phenomena.

  16. Nanotechnology and MEMS-based systems for civil infrastructure safety and security: Opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Robinson, Nidia; Saafi, Mohamed

    2006-03-01

    Critical civil infrastructure systems such as bridges, high rises, dams, nuclear power plants and pipelines present a major investment and the health of the United States' economy and the lifestyle of its citizens both depend on their safety and security. The challenge for engineers is to maintain the safety and security of these large structures in the face of terrorism threats, natural disasters and long-term deterioration, as well as to meet the demands of emergency response times. With the significant negative impact that these threats can have on the structural environment, health monitoring of civil infrastructure holds promise as a way to provide information for near real-time condition assessment of the structure's safety and security. This information can be used to assess the integrity of the structure for post-earthquake and terrorist attacks rescue and recovery, and to safely and rapidly remove the debris and to temporary shore specific structural elements. This information can also be used for identification of incipient damage in structures experiencing long-term deterioration. However, one of the major obstacles preventing sensor-based monitoring is the lack of reliable, easy-to-install, cost-effective and harsh environment resistant sensors that can be densely embedded into large-scale civil infrastructure systems. Nanotechnology and MEMS-based systems which have matured in recent years represent an innovative solution to current damage detection systems, leading to wireless, inexpensive, durable, compact, and high-density information collection. In this paper, ongoing research activities at Alabama A&M University (AAMU) Center for Transportation Infrastructure Safety and Security on the application of nanotechnology and MEMS to Civil Infrastructure for health monitoring will presented. To date, research showed that nanotechnology and MEMS-based systems can be used to wirelessly detect and monitor different damage mechanisms in concrete structures as well as monitor critical structures' stability during floods and barge impact. However, some technical issues that needs to be addressed before full implementation of these new systems and will also be discussed in this paper.

  17. Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence

    PubMed Central

    Sinefeld, David; Paudel, Hari P.; Ouzounov, Dimitre G.; Bifano, Thomas G.; Xu, Chris

    2015-01-01

    We demonstrate adaptive optics system based on nonlinear feedback from 3- and 4-photon fluorescence. The system is based on femtosecond pulses created by soliton self-frequency shift of a 1550-nm fiber-based femtosecond laser together with micro-electro-mechanical system (MEMS) phase spatial light modulator (SLM). We perturb the 1020-segment SLM using an orthogonal Walsh sequence basis set with a modified version of three-point phase shifting interferometry. We show the improvement after aberrations correction in 3-photon signal from fluorescent beads. In addition, we compare the improvement obtained in the same adaptive optical system for 2-, 3- and 4-photon fluorescence using dye pool. We show that signal improvement resulting from aberration correction grows exponentially as a function of the order of nonlinearity. PMID:26698772

  18. An integrated MEMS infrastructure for fuel processing: hydrogen generation and separation for portable power generation

    NASA Astrophysics Data System (ADS)

    Varady, M. J.; McLeod, L.; Meacham, J. M.; Degertekin, F. L.; Fedorov, A. G.

    2007-09-01

    Portable fuel cells are an enabling technology for high efficiency and ultra-high density distributed power generation, which is essential for many terrestrial and aerospace applications. A key element of fuel cell power sources is the fuel processor, which should have the capability to efficiently reform liquid fuels and produce high purity hydrogen that is consumed by the fuel cells. To this end, we are reporting on the development of two novel MEMS hydrogen generators with improved functionality achieved through an innovative process organization and system integration approach that exploits the advantages of transport and catalysis on the micro/nano scale. One fuel processor design utilizes transient, reverse-flow operation of an autothermal MEMS microreactor with an intimately integrated, micromachined ultrasonic fuel atomizer and a Pd/Ag membrane for in situ hydrogen separation from the product stream. The other design features a simpler, more compact planar structure with the atomized fuel ejected directly onto the catalyst layer, which is coupled to an integrated hydrogen selective membrane.

  19. MEMS based hair flow-sensors as model systems for acoustic perception studies

    NASA Astrophysics Data System (ADS)

    Krijnen, Gijs J. M.; Dijkstra, Marcel; van Baar, John J.; Shankar, Siripurapu S.; Kuipers, Winfred J.; de Boer, Rik J. H.; Altpeter, Dominique; Lammerink, Theo S. J.; Wiegerink, Remco

    2006-02-01

    Arrays of MEMS fabricated flow sensors inspired by the acoustic flow-sensitive hairs found on the cerci of crickets have been designed, fabricated and characterized. The hairs consist of up to 1 mm long SU-8 structures mounted on suspended membranes with normal translational and rotational degrees of freedom. Electrodes on the membrane and on the substrate form variable capacitors, allowing for capacitive read-out. Capacitance versus voltage, frequency dependence and directional sensitivity measurements have been successfully carried out on fabricated sensor arrays, showing the viability of the concept. The sensors form a model system allowing for investigations on sensory acoustics by their arrayed nature, their adaptivity via electrostatic interaction (frequency tuning and parametric amplification) and their susceptibility to noise (stochastic resonance).

  20. Adaptive optics ophthalmologic systems using dual deformable mirrors

    NASA Astrophysics Data System (ADS)

    Jones, S. M.; Olivier, S.; Chen, D.; Joeres, S.; Sadda, S.; Zawadzki, R. J.; Werner, J. S.; Miller, D. T.

    2007-02-01

    Adaptive Optics (AO) have been increasingly combined with a variety of ophthalmic instruments over the last decade to provide cellular-level, in-vivo images of the eye. The use of MEMS deformable mirrors in these instruments has recently been demonstrated to reduce system size and cost while improving performance. However, currently available MEMS mirrors lack the required range of motion for correcting large ocular aberrations, such as defocus and astigmatism. In order to address this problem, we have developed an AO system architecture that uses two deformable mirrors, in a woofer / tweeter arrangement, with a bimorph mirror as the woofer and a MEMS mirror as the tweeter. This setup provides several advantages, including extended aberration correction range, due to the large stroke of the bimorph mirror, high order aberration correction using the MEMS mirror, and additionally, the ability to 'focus' through the retina. This AO system architecture is currently being used in four instruments, including an Optical Coherence Tomography (OCT) system and a retinal flood-illuminated imaging system at the UC Davis Medical Center, a Scanning Laser Ophthalmoscope (SLO) at the Doheny Eye Institute, and an OCT system at Indiana University. The design, operation and evaluation of this type of AO system architecture will be presented.

  1. Integrative Bioengineering Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eddington, David; Magin,L,Richard; Hetling, John

    2009-01-09

    Microfabrication enables many exciting experimental possibilities for medicine and biology that are not attainable through traditional methods. However, in order for microfabricated devices to have an impact they must not only provide a robust solution to a current unmet need, but also be simple enough to seamlessly integrate into standard protocols. Broad dissemination of bioMEMS has been stymied by the common aim of replacing established and well accepted protocols with equally or more complex devices, methods, or materials. The marriage of a complex, difficult to fabricate bioMEMS device with a highly variable biological system is rarely successful. Instead, the designmore » philosophy of my lab aims to leverage a beneficial microscale phenomena (e.g. fast diffusion at the microscale) within a bioMEMS device and adapt to established methods (e.g. multiwell plate cell culture) and demonstrate a new paradigm for the field (adapt instead of replace). In order for the field of bioMEMS to mature beyond novel proof-of-concept demonstrations, researchers must focus on developing systems leveraging these phenomena and integrating into standard labs, which have largely been ignored. Towards this aim, the Integrative Bioengineering Institute has been established.« less

  2. ViLLaGEs: opto-mechanical design of an on-sky visible-light MEMS-based AO system

    NASA Astrophysics Data System (ADS)

    Grigsby, Bryant; Lockwood, Chris; Baumann, Brian; Gavel, Don; Johnson, Jess; Ammons, S. Mark; Dillon, Daren; Morzinski, Katie; Reinig, Marc; Palmer, Dave; Severson, Scott; Gates, Elinor

    2008-07-01

    Visible Light Laser Guidestar Experiments (ViLLaGEs) is a new Micro-Electro Mechanical Systems (MEMS) based visible-wavelength adaptive optics (AO) testbed on the Nickel 1-meter telescope at Lick Observatory. Closed loop Natural Guide Star (NGS) experiments were successfully carried out during engineering during the fall of 2007. This is a major evolutionary step, signaling the movement of AO technologies into visible light with a MEMS mirror. With on-sky Strehls in I-band of greater than 20% during second light tests, the science possibilities have become evident. Described here is the advanced engineering used in the design and construction of the ViLLaGEs system, comparing it to the LickAO infrared system, and a discussion of Nickel dome infrastructural improvements necessary for this system. A significant portion of the engineering discussion revolves around the sizable effort that went towards eliminating flexure. Then, we detail upgrades to ViLLaGEs to make it a facility class instrument. These upgrades will focus on Nyquist sampling the diffraction limited point spread function during open loop operations, motorization and automation for technician level alignments, adding dithering capabilities and changes for near infrared science.

  3. Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes

    NASA Technical Reports Server (NTRS)

    Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak

    2004-01-01

    High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel Benchmarks (NPB). In this paper, we present some interesting performance results of ow OpenMP parallel implementation on different architectures such as the SGI Origin2000, SGI Altix, and Cray MTA-2.

  4. Large Field of View, Modular, Stabilized, Adaptive-Optics-Based Scanning Laser Ophthalmoscope

    PubMed Central

    Burns, Stephen A.; Tumbar, Remy; Elsner, Ann E.; Ferguson, Daniel; Hammer, Daniel X.

    2007-01-01

    We describe the design and performance of an adaptive optics retinal imager that is optimized for use during dynamic correction for eye movements. The system incorporates a retinal tracker and stabilizer, a wide field line scan Scanning Laser Ophthalmocsope (SLO), and a high resolution MEMS based adaptive optics SLO. The detection system incorporates selection and positioning of confocal apertures, allowing measurement of images arising from different portions of the double pass retinal point spread function (psf). System performance was excellent. The adaptive optics increased the brightness and contrast for small confocal apertures by more than 2x, and decreased the brightness of images obtained with displaced apertures, confirming the ability of the adaptive optics system to improve the pointspread function. The retinal image was stabilized to within 18 microns 90% of the time. Stabilization was sufficient for cross-correlation techniques to automatically align the images. PMID:17429477

  5. Modelling MEMS deformable mirrors for astronomical adaptive optics

    NASA Astrophysics Data System (ADS)

    Blain, Celia

    As of July 2012, 777 exoplanets have been discovered utilizing mainly indirect detection techniques. The direct imaging of exoplanets is the next goal for astronomers, because it will reveal the diversity of planets and planetary systems, and will give access to the exoplanet's chemical composition via spectroscopy. With this spectroscopic knowledge, astronomers will be able to know, if a planet is terrestrial and, possibly, even find evidence of life. With so much potential, this branch of astronomy has also captivated the general public attention. The direct imaging of exoplanets remains a challenging task, due to (i) the extremely high contrast between the parent star and the orbiting exoplanet and (ii) their small angular separation. For ground-based observatories, this task is made even more difficult, due to the presence of atmospheric turbulence. High Contrast Imaging (HCI) instruments have been designed to meet this challenge. HCI instruments are usually composed of a coronagraph coupled with the full onaxis corrective capability of an Extreme Adaptive Optics (ExAO) system. An efficient coronagraph separates the faint planet's light from the much brighter starlight, but the dynamic boiling speckles, created by the stellar image, make exoplanet detection impossible without the help of a wavefront correction device. The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system is a high performance HCI instrument developed at Subaru Telescope. The wavefront control system of SCExAO consists of three wavefront sensors (WFS) coupled with a 1024- actuator Micro-Electro-Mechanical-System (MEMS) deformable mirror (DM). MEMS DMs offer a large actuator density, allowing high count DMs to be deployed in small size beams. Therefore, MEMS DMs are an attractive technology for Adaptive Optics (AO) systems and are particularly well suited for HCI instruments employing ExAO technologies. SCExAO uses coherent light modulation in the focal plane introduced by the DM, for both wavefront sensing and correction. In this scheme, the DM is used to introduce known aberrations (speckles in the focal plane), which interfere with existing speckles. By monitoring the interference between the pre-existing speckles and the speckles added deliberately by the DM, it is possible to reconstruct the complex amplitude (amplitude and phase) of the focal plane speckles. Thus, the DM is used for wavefront sensing, in a scheme akin to phase diversity. For SCExAO and other HCI systems using phase diversity, the wavefront compensation is a mix of closed-loop and open-loop control of the DM. The successful implementation of MEMS DMs open-loop control relies on a thorough modelling of the DM response to the control system commands. The work presented in this thesis, motivated by the need to provide accurate DM control for the wavefront control system of SCExAO, was centred around the development of MEMS DM models. This dissertation reports the characterization of MEMS DMs and the development of two efficient modelling approaches. The open-loop performance of both approaches has been investigated. The model providing the best result has been implemented within the SCExAO wavefront control software. Within SCExAO, the model was used to command the DM to create focal plane speckles. The work is now focused on using the model within a full speckle nulling process and on increasing the execution speed to make the model suitable for on-sky operation.

  6. COTS MEMS Flow-Measurement Probes

    NASA Technical Reports Server (NTRS)

    Redding, Chip; Smith, Floyd A.; Blank, Greg; Cruzan, Charles

    2004-01-01

    As an alternative to conventional tubing instrumentation for measuring airflow, designers and technicians at Glenn Research Center have been fabricating packaging components and assembling a set of unique probes that contain commercial off-the-shelf (COTS) microelectromechanical systems (MEMS) sensor chips. MEMS sensor chips offer some compelling advantages over standard macroscopic measurement devices. MEMS sensor technology has matured through mass production and use in the automotive and aircraft industries. At present, MEMS are the devices of choice for sensors in such applications as tire-pressure monitors, altimeters, pneumatic controls, cable leak detectors, and consumer appliances. Compactness, minimality of power demand, rugged construction, and moderate cost all contribute to making MEMS sensors attractive for instrumentation for future research. Conventional macroscopic flow-measurement instrumentation includes tubes buried beneath the aerodynamic surfaces of wind-tunnel models or in wind-tunnel walls. Pressure is introduced at the opening of each such tube. The pressure must then travel along the tube before reaching a transducer that generates an electronic signal. The lengths of such tubes typically range from 20 ft (approx.= 6 m) to hundreds of feet (of the order of 100 m). The propagation of pressure signals in the tubes damps the signals considerably and makes it necessary to delay measurements until after test rigs have reached steady-state operation. In contrast, a MEMS pressure sensor that generates electronic output can take readings continuously under dynamic conditions in nearly real time. In order to use stainless-steel tubing for pressure measurements, it is necessary to clean many tubes, cut them to length, carefully install them, delicately deburr them, and splice them. A cluster of a few hundred 1/16-in.- (approx.=1.6-mm-) diameter tubes (such clusters are common in research testing facilities) can be several inches (of the order of 10 cm) in diameter and could weigh enough that two technicians are needed to handle it. Replacing hard tubing with electronic chips can eliminate much of the bulk. Each sensor would fit on the tip of a 1/16-in. tube with room to spare. The Lucas NovaSensor P592 piezoresistive silicon pressure sensor was chosen for this project because of its cost, availability, and tolerance to extreme ambient conditions. The sensor chip is 1 mm square by 0.6 mm thick (about 0.039 by 0.039 by 0.024 in.) and includes 0.12-mm (approx.=0.005-in.) wire connection tabs. The figure shows a flow-angularity probe that was built by use of three such MEMS chips. It is planned to demonstrate this MEMS probe as an alternative to a standard tube-type "Cobra" probe now used routinely in wind tunnels and aeronautical hardware. This MEMS probe could be translated across a flow field by use of a suitable actuator, so that its accuracy and the shortness of its response time could be exploited to obtain precise dynamic measurements of a sort that cannot be made by use of conventional tubing-based instrumentation.

  7. Evaluation of Air Coupled Ultrasound for Composite Aerospace Structure

    NASA Astrophysics Data System (ADS)

    Tat, H.; Georgeson, G.; Bossi, R.

    2009-03-01

    Non-contact air coupled ultrasound suffers from the high acoustic impedance mismatch characteristics of air to solid interfaces. Advances in transducer technology, particularly MEMS, have improved the acoustic impedance match at the transmission stage and the signal to noise at the reception stage. Comparisons of through transmission (TTU) scanning of laminate and honeycomb test samples using conventional piezoelectric air coupled transducers, new MEMS air coupled transducers, and standard water coupled inspections have been performed to assess the capability. An additional issue for air coupled UT inspection is the need for a lean implementation for both manufacturing and in-service operations. Concepts and applications utilizing magnetic coupling of transducers have been developed that allows air coupled inspection operations in compact low cost configurations.

  8. Programmable wide field spectrograph for earth observation

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean

    2017-11-01

    In Earth Observation, Universe Observation and Planet Exploration, scientific return of the instruments must be optimized in future missions. Micro-Opto-Electro-Mechanical Systems (MOEMS) could be key components in future generation of space instruments. These devices are based on the mature micro-electronics technology and in addition to their compactness, scalability, and specific task customization, they could generate new functions not available with current technologies. French and European space agencies, the Centre National d'Etudes Spatiales (CNES) and the European Space Agency (ESA) have initiated several studies with LAM and TAS for listing the new functions associated with several types of MEMS, and developing new ideas of instruments.

  9. Compact silicon-based optrode with integrated laser diode chips, SU-8 waveguides and platinum electrodes for optogenetic applications

    NASA Astrophysics Data System (ADS)

    Schwaerzle, M.; Paul, O.; Ruther, P.

    2017-06-01

    We report on a compact optrode, i.e. a MEMS-based, invasive, bidirectional neural interface allowing to control neural activity using light while neural signals are recorded nearby. The optrode consists of a silicon (Si) base carrying two pairs of bare laser diodes (LDs) emitting at 650 nm and of two 8 mm-long, 250 µm-wide and down to 50 µm-thick shanks extending from the base. Each LD is efficiently coupled to one of four 15 or 20 µm-wide and 13 µm-high SU-8 waveguides (WGs) running in pairs along the shanks. In addition, each shank comprises four 20 µm-diameter platinum electrodes for neural recording near the WG end facets. After encapsulation of the LDs with a Si cover chip blocking stray light and protecting the LDs from the harsh environment to which the probe is destined, the compact base measures only 4  ×  4  ×  0.43 mm3. The time averaged radiant emittance at the WG end facet is 96.9 mW mm-2 for an LD current of 35 mA at a duty cycle of 5%. The absolute electrode impedance at 1 kHz is 1.54  ±  0.06 MΩ. Using infrared thermography, the temperature increase of the probe during LD operation was determined to be about 1 K under neuroscientifically relevant operating conditions.

  10. NASA Tech Briefs, February 2008

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Topics discussed include: Optical Measurement of Mass Flow of a Two-Phase Fluid; Selectable-Tip Corrosion-Testing Electrochemical Cell; Piezoelectric Bolt Breakers and Bolt Fatigue Testers; Improved Measurement of B(sub 22) of Macromolecules in a Flow Cell; Measurements by a Vector Network Analyzer at 325 to 508 GHz; Using Light to Treat Mucositis and Help Wounds Heal; Increasing Discharge Capacities of Li-(CF)(sub n) Cells; Dot-in-Well Quantum-Dot Infrared Photodetectors; Integrated Microbatteries for Implantable Medical Devices; Oxidation Behavior of Carbon Fiber-Reinforced Composites; GIDEP Batching Tool; Generic Spacecraft Model for Real-Time Simulation; Parallel-Processing Software for Creating Mosaic Images; Software for Verifying Image-Correlation Tie Points; Flexcam Image Capture Viewing and Spot Tracking; Low-Pt-Content Anode Catalyst for Direct Methanol Fuel Cells; Graphite/Cyanate Ester Face Sheets for Adaptive Optics; Atomized BaF2-CaF7 for Better-Flowing Plasma-Spray Feedstock; Nanophase Nickel-Zirconium Alloys for Fuel Cells; Vacuum Packaging of MEMS With Multiple Internal Seal Rings; Compact Two-Dimensional Spectrometer Optics; and Fault-Tolerant Coding for State Machines.

  11. Stroke saturation on a MEMS deformable mirror for woofer-tweeter adaptive optics.

    PubMed

    Morzinski, Katie; Macintosh, Bruce; Gavel, Donald; Dillon, Daren

    2009-03-30

    High-contrast imaging of extrasolar planet candidates around a main-sequence star has recently been realized from the ground using current adaptive optics (AO) systems. Advancing such observations will be a task for the Gemini Planet Imager, an upcoming "extreme" AO instrument. High-order "tweeter" and low-order "woofer" deformable mirrors (DMs) will supply a >90%-Strehl correction, a specialized coronagraph will suppress the stellar flux, and any planets can then be imaged in the "dark hole" region. Residual wavefront error scatters light into the DM-controlled dark hole, making planets difficult to image above the noise. It is crucial in this regard that the high-density tweeter, a micro-electrical mechanical systems (MEMS) DM, have sufficient stroke to deform to the shapes required by atmospheric turbulence. Laboratory experiments were conducted to determine the rate and circumstance of saturation, i.e. stroke insufficiency. A 1024-actuator 1.5-microm-stroke MEMS device was empirically tested with software Kolmogorov-turbulence screens of r(0) =10-15 cm. The MEMS when solitary suffered saturation approximately 4% of the time. Simulating a woofer DM with approximately 5-10 actuators across a 5-m primary mitigated MEMS saturation occurrence to a fraction of a percent. While no adjacent actuators were saturated at opposing positions, mid-to-high-spatial-frequency stroke did saturate more frequently than expected, implying that correlations through the influence functions are important. Analytical models underpredict the stroke requirements, so empirical studies are important.

  12. Development of a Self-Calibrated MEMS Gyrocompass for North-Finding and Tracking

    NASA Astrophysics Data System (ADS)

    Prikhodko, Igor P.

    This Ph.D. dissertation presents development of a microelectromechanical (MEMS) gyrocompass for north-finding and north-tracking applications. The central part of this work enabling these applications is control and self-calibration architectures for drift mitigation over thermal environments, validated using a MEMS quadruple mass gyroscope. The thesis contributions are the following: • Adapted and implemented bias and scale-factor drifts compensation algorithm relying on temperature self-sensing for MEMS gyroscopes with high quality factors. The real-time self-compensation reduced a total bias error to 2 °/hr and a scale-factor error to 500 ppm over temperature range of 25 °C to 55 °C (on par with the state-of-the-art). • Adapted and implemented a scale-factor self-calibration algorithm previously employed for macroscale hemispherical resonator gyroscope to MEMS Coriolis vibratory gyroscopes. An accuracy of 100 ppm was demonstrated by simultaneously measuring the true and estimated scale-factors over temperature variations (on par with the state-of-the art). • Demonstrated north-finding accuracy satisfying a typical mission requirement of 4 meter target location error at 1 kilometer stand-off distance (on par with a GPS accuracy). Analyzed north-finding mechanizations trade-offs for MEMS vibratory gyroscopes and demonstrated measurements of the Earth's rotation (15 °/hr). • Demonstrated, for the first time, an angle measuring MEMS gyroscope operation for north-tracking applications in a +/-500 °/s rate range and 100 Hz bandwidth, eliminating both bandwidth and range constraints of conventional open-loop Coriolis vibratory gyroscopes. • Investigated hypothesis that surface-tension driven glass-blowing microfabrication can create highly spherical shells for 3-D MEMS. Without any trimming or tuning of the natural frequencies, a 1 MHz glass-blown 3-D microshell resonator demonstrated a 0.63 % frequency mismatch between two degenerate 4-node wineglass modes. • Multi-axis rotation detection for nuclear magnetic resonance (NMR) gyroscope was proposed and developed. The analysis of cross-axis sensitivities for NMR gyroscope was performed. The framework for the analysis of NMR gyroscope dynamics for both open loop and closed loop modes of operation was developed.

  13. Thin Film Transistor Control Circuitry for MEMS Acoustic Transducers

    NASA Astrophysics Data System (ADS)

    Daugherty, Robin

    This work seeks to develop a practical solution for short range ultrasonic communications and produce an integrated array of acoustic transmitters on a flexible substrate. This is done using flexible thin film transistor (TFT) and micro electromechanical systems (MEMS). The goal is to develop a flexible system capable of communicating in the ultrasonic frequency range at a distance of 10-100 meters. This requires a great deal of innovation on the part of the FDC team developing the TFT driving circuitry and the MEMS team adapting the technology for fabrication on a flexible substrate. The technologies required for this research are independently developed. The TFT development is driven primarily by research into flexible displays. The MEMS development is driving by research in biosensors and micro actuators. This project involves the integration of TFT flexible circuit capabilities with MEMS micro actuators in the novel area of flexible acoustic transmitter arrays. This thesis focuses on the design, testing and analysis of the circuit components required for this project.

  14. [Current status and prospects of portable NIR spectrometer].

    PubMed

    Yu, Xin-Yang; Lu, Qi-Peng; Gao, Hong-Zhi; Peng, Zhong-Qi

    2013-11-01

    Near-infrared spectroscopy (NIRS) is a reliable, rapid, and non-destructive analytical method widely applied in as a number of fields such as agriculture, food, chemical and oil industry. In order to suit different applications, near-infrared spectrometers are now varied. Portable near-infrared spectrometers are needed for rapid on-site identification and analysis. Instruments of this kind are rugged, compact and easy to be transported. In this paper, the current states of portable near-infrared spectrometers are reviewed. Portable near-infrared spectrometers are built of different monochromator systems: filter, grating, Fourier-transform methods, acousto-optic tunable filter (AOTF) and a large number of new methods based on micro-electro-mechanical systems (MEMS). The first part focuses on working principles of different monochromator systems. Advantages and disadvantages of different systems are also briefly mentioned. Descriptions of each method are given in turn. Typical spectrometers of each kind are introduced, and some parameters of these instruments are listed. In the next part we discuss sampling adapters, display, power supply and some other parts, which are designed to make the spectrometer more portable and easier to use. In the end, the current states of portable near-infrared spectrometers are summarized. Future trends of development of portable near-infrared spectrometers in China and abroad are discussed.

  15. Electrical Design and Evaluation of Asynchronous Serial Bus Communication Network of 48 Sensor Platform LSIs with Single-Ended I/O for Integrated MEMS-LSI Sensors.

    PubMed

    Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Muroyama, Masanori

    2018-01-15

    For installing many sensors in a limited space with a limited computing resource, the digitization of the sensor output at the site of sensation has advantages such as a small amount of wiring, low signal interference and high scalability. For this purpose, we have developed a dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) (referred to as "sensor platform LSI") for bus-networked Micro-Electro-Mechanical-Systems (MEMS)-LSI integrated sensors. In this LSI, collision avoidance, adaptation and event-driven functions are simply implemented to relieve data collision and congestion in asynchronous serial bus communication. In this study, we developed a network system with 48 sensor platform LSIs based on Printed Circuit Board (PCB) in a backbone bus topology with the bus length being 2.4 m. We evaluated the serial communication performance when 48 LSIs operated simultaneously with the adaptation function. The number of data packets received from each LSI was almost identical, and the average sampling frequency of 384 capacitance channels (eight for each LSI) was 73.66 Hz.

  16. Compact electrostatic comb actuator

    DOEpatents

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  17. Very compact, high-stability electrostatic actuator featuring contact-free self-limiting displacement

    DOEpatents

    Rodgers, M. Steven; Miller, Samuel L.

    2003-01-01

    A compact electrostatic actuator is disclosed for microelectromechanical (MEM) applications. The actuator utilizes stationary and moveable electrodes, with the stationary electrodes being formed on a substrate and the moveable electrodes being supported above the substrate on a frame. The frame provides a rigid structure which allows the electrostatic actuator to be operated at high voltages (up to 190 Volts) to provide a relatively large actuation force compared to conventional electrostatic comb actuators which are much larger in size. For operation at its maximum displacement, the electrostatic actuator is relatively insensitive to the exact value of the applied voltage and provides a self-limiting displacement.

  18. Application of RF-MEMS-Based Split Ring Resonators (SRRs) to the Implementation of Reconfigurable Stopband Filters: A Review

    PubMed Central

    Martín, Ferran; Bonache, Jordi

    2014-01-01

    In this review paper, several strategies for the implementation of reconfigurable split ring resonators (SRRs) based on RF-MEMS switches are presented. Essentially three types of RF-MEMS combined with split rings are considered: (i) bridge-type RF-MEMS on top of complementary split ring resonators CSRRs; (ii) cantilever-type RF-MEMS on top of SRRs; and (iii) cantilever-type RF-MEMS integrated with SRRs (or RF-MEMS SRRs). Advantages and limitations of these different configurations from the point of view of their potential applications for reconfigurable stopband filter design are discussed, and several prototype devices are presented. PMID:25474378

  19. Development of a MEMS-Scale Turbomachinery Based Vacuum Pump

    DTIC Science & Technology

    2012-06-01

    MEMS -SCALE TURBOMACHINERY BASED VACUUM PUMP by Michael J. Shea June 2012 Thesis Advisor: Anthony J. Gannon Second Reader...June 2012 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Development of a MEMS -Scale Turbomachinery Based Vacuum Pump 5...to develop a MEMS scale turbomachinery based vacuum pump. This would allow very high vacuum to be drawn for handheld mass spectroscopy. This

  20. Adaptive optics for high-contrast imaging of faint substellar companions

    NASA Astrophysics Data System (ADS)

    Morzinski, Katie M.

    Direct imaging of faint objects around bright stars is challenging because the primary star's diffracted light can overwhelm low-mass companions. Nevertheless, advances in adaptive optics (AO) and high-contrast imaging have revealed the first pictures of extrasolar planets. In this dissertation I employ today's high-contrast AO techniques to image brown dwarfs around stars in the nearby Hyades cluster. Furthermore, I prepare for the next generation of high-contrast AO instrumentation, by qualifying MEMS deformable mirrors for wavefront control in the Gemini Planet Imager. In Part I, I present discovery of 3 new brown dwarfs and 36 low-mass stellar companions to 85 stars in the Hyades, imaged with AO at Keck and Lick Observatories. The "locally-optimized combination of images" (LOCI) image-diversity technique filters out the primary star to reveal faint companions. This survey is complete to the hydrogen-burning limit at separations beyond 20 AU. In the complete sample, multiplicity increases as primary star mass decreases. Additionally, the brown dwarfs are at wide >150 AU separations. Finding this preference for low binding-energy systems is an unexpected result, as the Hyades is 625 Myr old and dynamically relaxed. Future work will continue to explore this trend to understand the dynamical and star formation history of the Hyades. The brown dwarfs are near interesting transition regimes for low-mass objects; therefore, characterizing their atmospheres with spectrophotometry will serve as an important benchmark for our understanding of these cool objects. In Part II, I demonstrate micro-electro-mechanical systems (MEMS) deformable mirrors for high-order wavefront control in the Gemini Planet Imager (GPI). MEMS micromirrors have thousands of degrees of freedom and represent a significant cost efficiency over conventional glass deformable mirrors, making them ideal for high-contrast AO. In Chapter 7, I present experimental evidence that MEMS actuators function well and are stable and repeatable at the sub-nm level over the course of an hour. In Chapter 8, I prove MEMS ability to correct high-order Kolmogorov turbulence and maintain the high-contrast "dark hole" in the GPI woofer-tweeter architecture. Finally, in Chapter 9, I analyze MEMS performance on sky with Villages, a telescope testbed for MEMS technology, visible-light AO, and open-loop control. The MEMS remains repeatably flat and controllable over ˜4 years and ˜800 hours of operation. Open loop control of the hysteresis-free MEMS produces a diffraction-limited core in I-band, while internal static errors dominate the on-sky error budget. This work establishes MEMS deformable mirrors as excellent wavefront correctors for high-order AO. The MEMS in GPI will produce a deeper, broader dark hole, allowing for detection and characterization of directly-imaged planets in a fainter, wider search space.

  1. MEMS-based, RF-driven, compact accelerators

    NASA Astrophysics Data System (ADS)

    Persaud, A.; Seidl, P. A.; Ji, Q.; Breinyn, I.; Waldron, W. L.; Schenkel, T.; Vinayakumar, K. B.; Ni, D.; Lal, A.

    2017-10-01

    Shrinking existing accelerators in size can reduce their cost by orders of magnitude. Furthermore, by using radio frequency (RF) technology and accelerating ions in several stages, the applied voltages can be kept low paving the way to new ion beam applications. We make use of the concept of a Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) and have previously shown the implementation of its basic components using printed circuit boards, thereby reducing the size of earlier MEQALACs by an order of magnitude. We now demonstrate the combined integration of these components to form a basic accelerator structure, including an initial beam-matching section. In this presentation, we will discuss the results from the integrated multi-beam ion accelerator and also ion acceleration using RF voltages generated on-board. Furthermore, we will show results from Micro-Electro-Mechanical Systems (MEMS) fabricated focusing wafers, which can shrink the dimension of the system to the sub-mm regime and lead to cheaper fabrication. Based on these proof-of-concept results we outline a scaling path to high beam power for applications in plasma heating in magnetized target fusion and in neutral beam injectors for future Tokamaks. This work was supported by the Office of Science of the US Department of Energy through the ARPA-e ALPHA program under contracts DE-AC02-05CH11231.

  2. Electronic monitoring of treatment adherence and validation of alternative adherence measures in tuberculosis patients: a pilot study.

    PubMed

    van den Boogaard, Jossy; Lyimo, Ramsey A; Boeree, Martin J; Kibiki, Gibson S; Aarnoutse, Rob E

    2011-09-01

    To assess adherence to community-based directly observed treatment (DOT) among Tanzanian tuberculosis patients using the Medication Event Monitoring System (MEMS) and to validate alternative adherence measures for resource-limited settings using MEMS as a gold standard. This was a longitudinal pilot study of 50 patients recruited consecutively from one rural hospital, one urban hospital and two urban health centres. Treatment adherence was monitored with MEMS and the validity of the following adherence measures was assessed: isoniazid urine test, urine colour test, Morisky scale, Brief Medication Questionnaire, adapted AIDS Clinical Trials Group (ACTG) adherence questionnaire, pill counts and medication refill visits. The mean adherence rate in the study population was 96.3% (standard deviation, SD: 7.7). Adherence was less than 100% in 70% of the patients, less than 95% in 21% of them, and less than 80% in 2%. The ACTG adherence questionnaire and urine colour test had the highest sensitivities but lowest specificities. The Morisky scale and refill visits had the highest specificities but lowest sensitivities. Pill counts and refill visits combined, used in routine practice, yielded moderate sensitivity and specificity, but sensitivity improved when the ACTG adherence questionnaire was added. Patients on community-based DOT showed good adherence in this study. The combination of pill counts, refill visits and the ACTG adherence questionnaire could be used to monitor adherence in settings where MEMS is not affordable. The findings with regard to adherence and to the validity of simple adherence measures should be confirmed in larger populations with wider variability in adherence rates.

  3. Miniaturized optical wavelength sensors

    NASA Astrophysics Data System (ADS)

    Kung, Helen Ling-Ning

    Recently semiconductor processing technology has been applied to the miniaturization of optical wavelength sensors. Compact sensors enable new applications such as integrated diode-laser wavelength monitors and frequency lockers, portable chemical and biological detection, and portable and adaptive hyperspectral imaging arrays. Small sensing systems have trade-offs between resolution, operating range, throughput, multiplexing and complexity. We have developed a new wavelength sensing architecture that balances these parameters for applications involving hyperspectral imaging spectrometer arrays. In this thesis we discuss and demonstrate two new wavelength-sensing architectures whose single-pixel designs can easily be extended into spectrometer arrays. The first class of devices is based on sampling a standing wave. These devices are based on measuring the wavelength-dependent period of optical standing waves formed by the interference of forward and reflected waves at a mirror. We fabricated two different devices based on this principle. The first device is a wavelength monitor, which measures the wavelength and power of a monochromatic source. The second device is a spectrometer that can also act as a selective spectral coherence sensor. The spectrometer contains a large displacement piston-motion MEMS mirror and a thin GaAs photodiode flip-chip bonded to a quartz substrate. The performance of this spectrometer is similar to that of a Michelson in resolution, operating range, throughput and multiplexing but with the added advantages of fewer components and one-dimensional architecture. The second class of devices is based on the Talbot self-imaging effect. The Talbot effect occurs when a periodic object is illuminated with a spatially coherent wave. Periodically spaced self-images are formed behind the object. The spacing of the self-images is proportional to wavelength of the incident light. We discuss and demonstrate how this effect can be used for spectroscopy. In the conclusion we compare these two new miniaturized spectrometer architectures to existing miniaturized spectrometers. We believe that the combination of miniaturized wavelength sensors and smart processing should facilitate the development real-time, adaptive and portable sensing systems.

  4. Phase Calibration of Microphones by Measurement in the Free-field

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Bartram, Scott M.; Humphreys, William M.; Zuckewar, Allan J.

    2006-01-01

    Over the past several years, significant effort has been expended at NASA Langley developing new Micro-Electro-Mechanical System (MEMS)-based microphone directional array instrumentation for high-frequency aeroacoustic measurements in wind tunnels. This new type of array construction solves two challenges which have limited the widespread use of large channel-count arrays, namely by providing a lower cost-per-channel and a simpler method for mounting microphones in wind tunnels and in field-deployable arrays. The current generation of array instrumentation is capable of extracting accurate noise source location and directivity on a variety of airframe components using sophisticated data reduction algorithms [1-2]. Commercially-available MEMS microphones are condenser-type devices and have some desirable characteristics when compared with conventional condenser-type microphones. The most important advantages of MEMS microphones are their size, price, and power consumption. However, the commercially-available units suffer from certain important shortcomings. Based on experiments with array prototypes, it was found that both the bandwidth and the sound pressure limit of the microphones should be increased significantly to improve the performance and flexibility of the microphone array [3]. It was also desired to modify the packaging to eliminate unwanted Helmholtz resonance s exhibited by the commercial devices. Thus, new requirements were defined as follows: Frequency response: 100 Hz to 100 KHz (+/-3dB) Upper sound pressure limit: Design 1: 130 dB SPL (THD less than 5%) Design 2: 150-160 dB SPL (THD less than 5%) Packaging: 3.73 x 6.13 x 1.3 mm can with laser-etched lid. In collaboration with Novusonic Acoustic Innovation, NASA modified a Knowles SiSonic MEMS design to meet these new requirements. Coupled with the design of the enhanced MEMS microphones was the development of a new calibration method for simultaneously obtaining the sensitivity and phase response of the devices over their entire broadband frequency range. Traditionally, electrostatic actuators (EA) have been used to characterize air-condenser microphones; however, MEMS microphones are not adaptable to the EA method due to their construction and very small diaphragm size [4]. Hence a substitution based, free-field method was developed to calibrate these microphones at frequencies up to 80 kHz. The technique relied on the use of a random, ultrasonic broadband centrifugal sound source located in a small anechoic chamber. The free-field sensitivity (voltage per unit sound pressure) was obtained using the procedure outlined in reference 4. Phase calibrations of the MEMS microphones were derived from cross spectral phase comparisons between the reference and test substitution microphones and an adjacent and invariant grazing-incidence 1/8-inch standard microphone. The free-field calibration procedure along with representative sensitivity and phase responses for the new high-frequency MEMS microphones are presented here.

  5. Piezoelectric polymer gated OFET: Cutting-edge electro-mechanical transducer for organic MEMS-based sensors

    PubMed Central

    Thuau, Damien; Abbas, Mamatimin; Wantz, Guillaume; Hirsch, Lionel; Dufour, Isabelle; Ayela, Cédric

    2016-01-01

    The growth of micro electro-mechanical system (MEMS) based sensors on the electronic market is forecast to be invigorated soon by the development of a new branch of MEMS-based sensors made of organic materials. Organic MEMS have the potential to revolutionize sensor products due to their light weight, low-cost and mechanical flexibility. However, their sensitivity and stability in comparison to inorganic MEMS-based sensors have been the major concerns. In the present work, an organic MEMS sensor with a cutting-edge electro-mechanical transducer based on an active organic field effect transistor (OFET) has been demonstrated. Using poly(vinylidenefluoride/trifluoroethylene) (P(VDF-TrFE)) piezoelectric polymer as active gate dielectric in the transistor mounted on a polymeric micro-cantilever, unique electro-mechanical properties were observed. Such an advanced scheme enables highly efficient integrated electro-mechanical transduction for physical and chemical sensing applications. Record relative sensitivity over 600 in the low strain regime (<0.3%) was demonstrated, which represents a key-step for the development of highly sensitive all organic MEMS-based sensors. PMID:27924853

  6. Piezoelectric polymer gated OFET: Cutting-edge electro-mechanical transducer for organic MEMS-based sensors.

    PubMed

    Thuau, Damien; Abbas, Mamatimin; Wantz, Guillaume; Hirsch, Lionel; Dufour, Isabelle; Ayela, Cédric

    2016-12-07

    The growth of micro electro-mechanical system (MEMS) based sensors on the electronic market is forecast to be invigorated soon by the development of a new branch of MEMS-based sensors made of organic materials. Organic MEMS have the potential to revolutionize sensor products due to their light weight, low-cost and mechanical flexibility. However, their sensitivity and stability in comparison to inorganic MEMS-based sensors have been the major concerns. In the present work, an organic MEMS sensor with a cutting-edge electro-mechanical transducer based on an active organic field effect transistor (OFET) has been demonstrated. Using poly(vinylidenefluoride/trifluoroethylene) (P(VDF-TrFE)) piezoelectric polymer as active gate dielectric in the transistor mounted on a polymeric micro-cantilever, unique electro-mechanical properties were observed. Such an advanced scheme enables highly efficient integrated electro-mechanical transduction for physical and chemical sensing applications. Record relative sensitivity over 600 in the low strain regime (<0.3%) was demonstrated, which represents a key-step for the development of highly sensitive all organic MEMS-based sensors.

  7. Initial performance results for high-aspect ratio gold MEMS deformable mirrors

    NASA Astrophysics Data System (ADS)

    Fernández, Bautista; Kubby, Joel

    2009-02-01

    The fabrication and initial performance results of high-aspect ratio 3-dimensional Micro-Electro-Mechanical System (MEMS) Deformable Mirrors (DM) for Adaptive Optics (AO) will be discussed. The DM systems were fabricated out of gold, and consist of actuators bonded to a continuous face sheet, with different boundary conditions. DM mirror displacements vs. voltage have been measured with a white light interferometer and the corresponding results compared to Finite Element Analysis (FEA) simulations. Interferometer scans of a DM have shown that ~9.4um of stroke can be achieved with low voltage, thus showing that this fabrication process holds promise in the manufacturing of future MEMS DM's for the next generation of extremely large telescopes.

  8. KAPAO: a MEMS-based natural guide star adaptive optics system

    NASA Astrophysics Data System (ADS)

    Severson, Scott A.; Choi, Philip I.; Contreras, Daniel S.; Gilbreth, Blaine N.; Littleton, Erik; McGonigle, Lorcan P.; Morrison, William A.; Rudy, Alex R.; Wong, Jonathan R.; Xue, Andrew; Spjut, Erik; Baranec, Christoph; Riddle, Reed

    2013-03-01

    We describe KAPAO, our project to develop and deploy a low-cost, remote-access, natural guide star adaptive optics (AO) system for the Pomona College Table Mountain Observatory (TMO) 1-meter telescope. We use a commercially available 140-actuator BMC MEMS deformable mirror and a version of the Robo-AO control software developed by Caltech and IUCAA. We have structured our development around the rapid building and testing of a prototype system, KAPAO-Alpha, while simultaneously designing our more capable final system, KAPAO-Prime. The main differences between these systems are the prototype's reliance on off-the-shelf optics and a single visible-light science camera versus the final design's improved throughput and capabilities due to the use of custom optics and dual-band, visible and near-infrared imaging. In this paper, we present the instrument design and on-sky closed-loop testing of KAPAO-Alpha as well as our plans for KAPAO-Prime. The primarily undergraduate-education nature of our partner institutions, both public (Sonoma State University) and private (Pomona and Harvey Mudd Colleges), has enabled us to engage physics, astronomy, and engineering undergraduates in all phases of this project. This material is based upon work supported by the National Science Foundation under Grant No. 0960343.

  9. Advanced adaptive optics technology development

    NASA Astrophysics Data System (ADS)

    Olivier, Scot S.

    2002-02-01

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  10. Adaptive filtering and maximum entropy spectra with application to changes in atmospheric angular momentum

    NASA Technical Reports Server (NTRS)

    Penland, Cecile; Ghil, Michael; Weickmann, Klaus M.

    1991-01-01

    The spectral resolution and statistical significance of a harmonic analysis obtained by low-order MEM can be improved by subjecting the data to an adaptive filter. This adaptive filter consists of projecting the data onto the leading temporal empirical orthogonal functions obtained from singular spectrum analysis (SSA). The combined SSA-MEM method is applied both to a synthetic time series and a time series of AAM data. The procedure is very effective when the background noise is white and less so when the background noise is red. The latter case obtains in the AAM data. Nevertheless, reliable evidence for intraseasonal and interannual oscillations in AAM is detected. The interannual periods include a quasi-biennial one and an LF one, of 5 years, both related to the El Nino/Southern Oscillation. In the intraseasonal band, separate oscillations of about 48.5 and 51 days are ascertained.

  11. LAO web page

    Science.gov Websites

    of adaptive optics systems for the next generation of high resolution astronomy instrumentation. The largest telescopes in support of UC Astronomy, including those at the Keck, Gemini, and Lick Observatories optics for astronomy: MEMS and fiber lasers lead the way. In Adaptive Optics: Analysis, Methods and

  12. Simulation Studies on Energy Harvesting Characterisitcs and Storage Analysis Through Microcantilever Vibration

    NASA Astrophysics Data System (ADS)

    Solleti, Ravi Teja; Harikrishna, Kyatham; Velmurugan, V.

    Vibrations can be a good source of energy and can be harvested and utilized by simple design and fabrication using the MEMS technology. Energy harvesting provides unending sources of energy for low-power electronics devices where the use of batteries is not feasible. Piezoelectric energy harvesters are widely considered because of their compact design, compatibility to MEMS devices and ability to respond to a wide range of frequencies freely available in the environment. In this project, a rectangular model for cantilever-based piezoelectric energy harvester is proposed with different designs like two layer, two layer with proof mass, four layer and four layer with proof mass designed with dimensions as 50μm×50μm×1μm for each layer using COMSOL Multiphysics 5.0. Simulation results were obtained using silicon as substrate, aluminium as electrodes and PZT-5H and ZnO as piezoelectric materials and the respective stress and voltages were obtained by applying a force acting on foot, train, roller coaster and a general value of 10N/m2 on top of the cantilever. The effects of varying geometrical dimensions of the device were also investigated.

  13. Biomimetic MEMS to assist, enhance, and expand human sensory perceptions: a survey on state-of-the-art developments

    NASA Astrophysics Data System (ADS)

    Makarczuk, Teresa; Matin, Tina R.; Karman, Salmah B.; Diah, S. Zaleha M.; Davaji, Benyamin; Macqueen, Mark O.; Mueller, Jeanette; Schmid, Ulrich; Gebeshuber, Ille C.

    2011-06-01

    The human senses are of extraordinary value but we cannot change them even if this proves to be a disadvantage in modern times. However, we can assist, enhance and expand these senses via MEMS. Current MEMS cover the range of the human sensory system, and additionally provide data about signals that are too weak for the human sensory system (in terms of signal strength) and signal types that are not covered by the human sensory system. Biomimetics deals with knowledge transfer from biology to technology. In our interdisciplinary approach existing MEMS sensor designs shall be modified and adapted (to keep costs at bay), via biomimetic knowledge transfer of outstanding sensory perception in 'best practice' organisms (e.g. thermoreception, UV sensing, electromagnetic sense). The MEMS shall then be linked to the human body (mainly ex corpore to avoid ethics conflicts), to assist, enhance and expand human sensory perception. This paper gives an overview of senses in humans and animals, respective MEMS sensors that are already on the market and gives a list of possible applications of such devices including sensors that vibrate when a blind person approaches a kerb stone edge and devices that allow divers better orientation under water (echolocation, ultrasound).

  14. Nondestructive surface profiling of hidden MEMS using an infrared low-coherence interferometric microscope

    NASA Astrophysics Data System (ADS)

    Krauter, Johann; Osten, Wolfgang

    2018-03-01

    There are a wide range of applications for micro-electro-mechanical systems (MEMS). The automotive and consumer market is the strongest driver for the growing MEMS industry. A 100 % test of MEMS is particularly necessary since these are often used for safety-related purposes such as the ESP (Electronic Stability Program) system. The production of MEMS is a fully automated process that generates 90 % of the costs during the packaging and dicing steps. Nowadays, an electrical test is carried out on each individual MEMS component before these steps. However, after encapsulation, MEMS are opaque to visible light and other defects cannot be detected. Therefore, we apply an infrared low-coherence interferometer for the topography measurement of those hidden structures. A lock-in algorithm-based method is shown to calculate the object height and to reduce ghost steps due to the 2π -unambiguity. Finally, measurements of different MEMS-based sensors are presented.

  15. Visualizing Epithelial Expression in Vertical and Horizontal Planes With Dual Axes Confocal Endomicroscope Using Compact Distal Scanner.

    PubMed

    Li, Gaoming; Li, Haijun; Duan, Xiyu; Zhou, Quan; Zhou, Juan; Oldham, Kenn R; Wang, Thomas D

    2017-07-01

    The epithelium is a thin layer of tissue that lines hollow organs, such as colon. Visualizing in vertical cross sections with sub-cellular resolution is essential to understanding early disease mechanisms that progress naturally in the plane perpendicular to the tissue surface. The dual axes confocal architecture collects optical sections in tissue by directing light at an angle incident to the surface using separate illumination and collection beams to reduce effects of scattering, enhance dynamic range, and increase imaging depth. This configuration allows for images to be collected in the vertical as well as horizontal planes. We designed a fast, compact monolithic scanner based on the principle of parametric resonance. The mirrors were fabricated using microelectromechanical systems (MEMS) technology and were coated with aluminum to maximize near-infrared reflectivity. We achieved large axial displacements [Formula: see text] and wide lateral deflections >20°. The MEMS chip has a 3.2×2.9 mm 2 form factor that allows for efficient packaging in the distal end of an endomicroscope. Imaging can be performed in either the vertical or horizontal planes with [Formula: see text] depth or 1 ×1 mm 2 area, respectively, at 5 frames/s. We systemically administered a Cy5.5-labeled peptide that is specific for EGFR, and collected near-infrared fluorescence images ex vivo from pre-malignant mouse colonic epithelium to reveal the spatial distribution of this molecular target. Here, we demonstrate a novel scanning mechanism in a dual axes confocal endomicroscope that collects optical sections of near-infrared fluorescence in either vertical or horizontal planes to visualize molecular expression in the epithelium.

  16. Electrical Design and Evaluation of Asynchronous Serial Bus Communication Network of 48 Sensor Platform LSIs with Single-Ended I/O for Integrated MEMS-LSI Sensors

    PubMed Central

    Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki

    2018-01-01

    For installing many sensors in a limited space with a limited computing resource, the digitization of the sensor output at the site of sensation has advantages such as a small amount of wiring, low signal interference and high scalability. For this purpose, we have developed a dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) (referred to as “sensor platform LSI”) for bus-networked Micro-Electro-Mechanical-Systems (MEMS)-LSI integrated sensors. In this LSI, collision avoidance, adaptation and event-driven functions are simply implemented to relieve data collision and congestion in asynchronous serial bus communication. In this study, we developed a network system with 48 sensor platform LSIs based on Printed Circuit Board (PCB) in a backbone bus topology with the bus length being 2.4 m. We evaluated the serial communication performance when 48 LSIs operated simultaneously with the adaptation function. The number of data packets received from each LSI was almost identical, and the average sampling frequency of 384 capacitance channels (eight for each LSI) was 73.66 Hz. PMID:29342923

  17. Adaptive optics using a MEMS deformable mirror for a segmented mirror telescope

    NASA Astrophysics Data System (ADS)

    Miyamura, Norihide

    2017-09-01

    For small satellite remote sensing missions, a large aperture telescope more than 400mm is required to realize less than 1m GSD observations. However, it is difficult or expensive to realize the large aperture telescope using a monolithic primary mirror with high surface accuracy. A segmented mirror telescope should be studied especially for small satellite missions. Generally, not only high accuracy of optical surface but also high accuracy of optical alignment is required for large aperture telescopes. For segmented mirror telescopes, the alignment is more difficult and more important. For conventional systems, the optical alignment is adjusted before launch to achieve desired imaging performance. However, it is difficult to adjust the alignment for large sized optics in high accuracy. Furthermore, thermal environment in orbit and vibration in a launch vehicle cause the misalignments of the optics. We are developing an adaptive optics system using a MEMS deformable mirror for an earth observing remote sensing sensor. An image based adaptive optics system compensates the misalignments and wavefront aberrations of optical elements using the deformable mirror by feedback of observed images. We propose the control algorithm of the deformable mirror for a segmented mirror telescope by using of observed image. The numerical simulation results and experimental results show that misalignment and wavefront aberration of the segmented mirror telescope are corrected and image quality is improved.

  18. Micro Electro-Mechanical System (MEMS) Pressure Sensor for Footwear

    DOEpatents

    Kholwadwala, Deepesh K.; Rohrer, Brandon R.; Spletzer, Barry L.; Galambos, Paul C.; Wheeler, Jason W.; Hobart, Clinton G.; Givler, Richard C.

    2008-09-23

    Footwear comprises a sole and a plurality of sealed cavities contained within the sole. The sealed cavities can be incorporated as deformable containers within an elastic medium, comprising the sole. A plurality of micro electro-mechanical system (MEMS) pressure sensors are respectively contained within the sealed cavity plurality, and can be adapted to measure static and dynamic pressure within each of the sealed cavities. The pressure measurements can provide information relating to the contact pressure distribution between the sole of the footwear and the wearer's environment.

  19. Dynamic metasurface lens based on MEMS technology

    NASA Astrophysics Data System (ADS)

    Roy, Tapashree; Zhang, Shuyan; Jung, Il Woong; Troccoli, Mariano; Capasso, Federico; Lopez, Daniel

    2018-02-01

    In the recent years, metasurfaces, being flat and lightweight, have been designed to replace bulky optical components with various functions. We demonstrate a monolithic Micro-Electro-Mechanical System (MEMS) integrated with a metasurface-based flat lens that focuses light in the mid-infrared spectrum. A two-dimensional scanning MEMS platform controls the angle of the lens along two orthogonal axes by ±9°, thus enabling dynamic beam steering. The device could be used to compensate for off-axis incident light and thus correct for aberrations such as coma. We show that for low angular displacements, the integrated lens-on-MEMS system does not affect the mechanical performance of the MEMS actuators and preserves the focused beam profile as well as the measured full width at half maximum. We envision a new class of flat optical devices with active control provided by the combination of metasurfaces and MEMS for a wide range of applications, such as miniaturized MEMS-based microscope systems, LIDAR scanners, and projection systems.

  20. GPS/MEMS IMU/Microprocessor Board for Navigation

    NASA Technical Reports Server (NTRS)

    Gender, Thomas K.; Chow, James; Ott, William E.

    2009-01-01

    A miniaturized instrumentation package comprising a (1) Global Positioning System (GPS) receiver, (2) an inertial measurement unit (IMU) consisting largely of surface-micromachined sensors of the microelectromechanical systems (MEMS) type, and (3) a microprocessor, all residing on a single circuit board, is part of the navigation system of a compact robotic spacecraft intended to be released from a larger spacecraft [e.g., the International Space Station (ISS)] for exterior visual inspection of the larger spacecraft. Variants of the package may also be useful in terrestrial collision-detection and -avoidance applications. The navigation solution obtained by integrating the IMU outputs is fed back to a correlator in the GPS receiver to aid in tracking GPS signals. The raw GPS and IMU data are blended in a Kalman filter to obtain an optimal navigation solution, which can be supplemented by range and velocity data obtained by use of (l) a stereoscopic pair of electronic cameras aboard the robotic spacecraft and/or (2) a laser dynamic range imager aboard the ISS. The novelty of the package lies mostly in those aspects of the design of the MEMS IMU that pertain to controlling mechanical resonances and stabilizing scale factors and biases.

  1. Through-wafer optical probe characterization for microelectromechanical systems positional state monitoring and feedback control

    NASA Astrophysics Data System (ADS)

    Dawson, Jeremy M.; Chen, Jingdong; Brown, Kolin S.; Famouri, Parviz F.; Hornak, Lawrence A.

    2000-12-01

    Implementation of closed-loop microelectromechanical system (MEMS) control enables mechanical microsystems to adapt to the demands of the environment that they are actuating, opening a broad range of new opportunities for future MEMS applications. Integrated optical microsystems have the potential to enable continuous in situ optical interrogation of MEMS microstructure position fully decoupled from the means of mechanical actuation that is necessary for realization of feedback control. We present the results of initial research evaluating through-wafer optical microprobes for surface micromachined MEMS integrated optical position monitoring. Results from the through-wafer free-space optical probe of a lateral comb resonator fabricated using the multiuser MEMS process service (MUMPS) indicate significant positional information content with an achievable return probe signal dynamic range of up to 80% arising from film transmission contrast. Static and dynamic deflection analysis and experimental results indicate a through-wafer probe positional signal sensitivity of 40 mV/micrometers for the present setup or 10% signal change per micrometer. A simulation of the application of nonlinear sliding control is presented illustrating position control of the lateral comb resonator structure given the availability of positional state information.

  2. Hardware platforms for MEMS gyroscope tuning based on evolutionary computation using open-loop and closed -loop frequency response

    NASA Technical Reports Server (NTRS)

    Keymeulen, Didier; Ferguson, Michael I.; Fink, Wolfgang; Oks, Boris; Peay, Chris; Terrile, Richard; Cheng, Yen; Kim, Dennis; MacDonald, Eric; Foor, David

    2005-01-01

    We propose a tuning method for MEMS gyroscopes based on evolutionary computation to efficiently increase the sensitivity of MEMS gyroscopes through tuning. The tuning method was tested for the second generation JPL/Boeing Post-resonator MEMS gyroscope using the measurement of the frequency response of the MEMS device in open-loop operation. We also report on the development of a hardware platform for integrated tuning and closed loop operation of MEMS gyroscopes. The control of this device is implemented through a digital design on a Field Programmable Gate Array (FPGA). The hardware platform easily transitions to an embedded solution that allows for the miniaturization of the system to a single chip.

  3. System and method for reproducibly mounting an optical element

    DOEpatents

    Eisenbies, Stephen; Haney, Steven

    2005-05-31

    The present invention provides a two-piece apparatus for holding and aligning the MEMS deformable mirror. The two-piece apparatus comprises a holding plate for fixedly holding an adaptive optics element in an overall optical system and a base spatially fixed with respect to the optical system and adapted for mounting and containing the holding plate. The invention further relates to a means for configuring the holding plate through adjustments to each of a number of off-set pads touching each of three orthogonal plane surfaces on the base, wherein through the adjustments the orientation of the holding plate, and the adaptive optics element attached thereto, can be aligned with respect to the optical system with six degrees of freedom when aligning the plane surface of the optical element. The mounting system thus described also enables an operator to repeatedly remove and restore the adaptive element in the optical system without the need to realign the system once that element has been aligned.

  4. A Cost-Effective Vehicle Localization Solution Using an Interacting Multiple Model−Unscented Kalman Filters (IMM-UKF) Algorithm and Grey Neural Network

    PubMed Central

    Xu, Qimin; Li, Xu; Chan, Ching-Yao

    2017-01-01

    In this paper, we propose a cost-effective localization solution for land vehicles, which can simultaneously adapt to the uncertain noise of inertial sensors and bridge Global Positioning System (GPS) outages. First, three Unscented Kalman filters (UKFs) with different noise covariances are introduced into the framework of Interacting Multiple Model (IMM) algorithm to form the proposed IMM-based UKF, termed as IMM-UKF. The IMM algorithm can provide a soft switching among the three UKFs and therefore adapt to different noise characteristics. Further, two IMM-UKFs are executed in parallel when GPS is available. One fuses the information of low-cost GPS, in-vehicle sensors, and micro electromechanical system (MEMS)-based reduced inertial sensor systems (RISS), while the other fuses only in-vehicle sensors and MEMS-RISS. The differences between the state vectors of the two IMM-UKFs are considered as training data of a Grey Neural Network (GNN) module, which is known for its high prediction accuracy with a limited amount of samples. The GNN module can predict and compensate position errors when GPS signals are blocked. To verify the feasibility and effectiveness of the proposed solution, road-test experiments with various driving scenarios were performed. The experimental results indicate that the proposed solution outperforms all the compared methods. PMID:28629165

  5. Real-time computational photon-counting LiDAR

    NASA Astrophysics Data System (ADS)

    Edgar, Matthew; Johnson, Steven; Phillips, David; Padgett, Miles

    2018-03-01

    The availability of compact, low-cost, and high-speed MEMS-based spatial light modulators has generated widespread interest in alternative sampling strategies for imaging systems utilizing single-pixel detectors. The development of compressed sensing schemes for real-time computational imaging may have promising commercial applications for high-performance detectors, where the availability of focal plane arrays is expensive or otherwise limited. We discuss the research and development of a prototype light detection and ranging (LiDAR) system via direct time of flight, which utilizes a single high-sensitivity photon-counting detector and fast-timing electronics to recover millimeter accuracy three-dimensional images in real time. The development of low-cost real time computational LiDAR systems could have importance for applications in security, defense, and autonomous vehicles.

  6. Inertial measurement unit using rotatable MEMS sensors

    DOEpatents

    Kohler, Stewart M [Albuquerque, NM; Allen, James J [Albuquerque, NM

    2007-05-01

    A MEM inertial sensor (e.g. accelerometer, gyroscope) having integral rotational means for providing static and dynamic bias compensation is disclosed. A bias compensated MEM inertial sensor is described comprising a MEM inertial sense element disposed on a rotatable MEM stage. A MEM actuator drives the rotation of the stage between at least two predetermined rotational positions. Measuring and comparing the output of the MEM inertial sensor in the at least two rotational positions allows for both static and dynamic bias compensation in inertial calculations based on the sensor's output. An inertial measurement unit (IMU) comprising a plurality of independently rotatable MEM inertial sensors and methods for making bias compensated inertial measurements are disclosed.

  7. Inertial measurement unit using rotatable MEMS sensors

    DOEpatents

    Kohler, Stewart M.; Allen, James J.

    2006-06-27

    A MEM inertial sensor (e.g. accelerometer, gyroscope) having integral rotational means for providing static and dynamic bias compensation is disclosed. A bias compensated MEM inertial sensor is described comprising a MEM inertial sense element disposed on a rotatable MEM stage. A MEM actuator for drives the rotation of the stage between at least two predetermined rotational positions. Measuring and comparing the output of the MEM inertial sensor in the at least two rotational positions allows, for both static and dynamic bias compensation in inertial calculations based on the sensor's output. An inertial measurement unit (IMU) comprising a plurality of independently rotatable MEM inertial sensors and methods for making bias compensated inertial measurements are disclosed.

  8. MEMS microdisplays: overview and markets

    NASA Astrophysics Data System (ADS)

    Bouchaud, Jérémie; Nowak, Olivier

    2006-04-01

    MEMS based microdisplays have been given a lot of attention recently since the DLP based products have started to generate substantial revenues for Texas Instrument. Other companies are trying to enter this promising market with similar or alternative concepts. How will he MEMS-based microdisplay market develop until the end of the decade? May other mass markets emerge such as displays for cell phones? Is anyone in the position to challenge TI? This paper presents the results of the analysis of MEMS microdisplay applications and markets in the NEXUS III study.

  9. MEMS microdisplays: overview and markets

    NASA Astrophysics Data System (ADS)

    Bouchaud, Jérémie; Wicht, Henning

    2006-01-01

    MEMS based microdisplays have been given a lot of attention recently since the DLP based products have started to generate substantial revenues for Texas Instrument. Other companies are trying to enter this promising market with similar or alternative concepts. How will he MEMS-based microdisplay market develop until the end of the decade? May other mass markets emerge such as displays for cell phones? Is anyone in the position to challenge TI? This paper presents the results of the analysis of MEMS microdisplay applications and markets in the NEXUS III study.

  10. Towards an Imaging Mid-Infrared Heterodyne Spectrometer

    NASA Technical Reports Server (NTRS)

    Hewagama, T.; Aslam, S.; Jones, H.; Kostiuk, T.; Villanueva, G.; Roman, P.; Shaw, G. B.; Livengood, T.; Allen, J. E.

    2012-01-01

    We are developing a concept for a compact, low-mass, low-power, mid-infrared (MIR; 5- 12 microns) imaging heterodyne spectrometer that incorporates fiber optic coupling, Quantum Cascade Laser (QCL) local oscillator, photomixer array, and Radio Frequency Software Defined Readout (RFSDR) for spectral analysis. Planetary Decadal Surveys have highlighted the need for miniaturized, robust, low-mass, and minimal power remote sensing technologies for flight missions. The drive for miniaturization of remote sensing spectroscopy and radiometry techniques has been a continuing process. The advent of MIR fibers, and MEMS techniques for producing waveguides has proven to be an important recent advancement for miniaturization of infrared spectrometers. In conjunction with well-established photonics techniques, the miniaturization of spectrometers is transitioning from classic free space optical systems to waveguide/fiber-based structures for light transport and producing interference effects. By their very nature, these new devices are compact and lightweight. Mercury-Cadmium-Telluride (MCT) and Quantum Well Infrared Photodiodes (QWIP) arrays for heterodyne applications are also being developed. Bulky electronics is another barrier that precluded the extension of heterodyne systems into imaging applications, and our RFSDR will address this aspect.

  11. An Adaptive Low-Cost GNSS/MEMS-IMU Tightly-Coupled Integration System with Aiding Measurement in a GNSS Signal-Challenged Environment

    PubMed Central

    Zhou, Qifan; Zhang, Hai; Li, You; Li, Zheng

    2015-01-01

    The main aim of this paper is to develop a low-cost GNSS/MEMS-IMU tightly-coupled integration system with aiding information that can provide reliable position solutions when the GNSS signal is challenged such that less than four satellites are visible in a harsh environment. To achieve this goal, we introduce an adaptive tightly-coupled integration system with height and heading aiding (ATCA). This approach adopts a novel redundant measurement noise estimation method for an adaptive Kalman filter application and also augments external measurements in the filter to aid the position solutions, as well as uses different filters to deal with various situations. On the one hand, the adaptive Kalman filter makes use of the redundant measurement system’s difference sequence to estimate and tune noise variance instead of employing a traditional innovation sequence to avoid coupling with the state vector error. On the other hand, this method uses the external height and heading angle as auxiliary references and establishes a model for the measurement equation in the filter. In the meantime, it also changes the effective filter online based on the number of tracked satellites. These measures have increasingly enhanced the position constraints and the system observability, improved the computational efficiency and have led to a good result. Both simulated and practical experiments have been carried out, and the results demonstrate that the proposed method is effective at limiting the system errors when there are less than four visible satellites, providing a satisfactory navigation solution. PMID:26393605

  12. An Adaptive Low-Cost GNSS/MEMS-IMU Tightly-Coupled Integration System with Aiding Measurement in a GNSS Signal-Challenged Environment.

    PubMed

    Zhou, Qifan; Zhang, Hai; Li, You; Li, Zheng

    2015-09-18

    The main aim of this paper is to develop a low-cost GNSS/MEMS-IMU tightly-coupled integration system with aiding information that can provide reliable position solutions when the GNSS signal is challenged such that less than four satellites are visible in a harsh environment. To achieve this goal, we introduce an adaptive tightly-coupled integration system with height and heading aiding (ATCA). This approach adopts a novel redundant measurement noise estimation method for an adaptive Kalman filter application and also augments external measurements in the filter to aid the position solutions, as well as uses different filters to deal with various situations. On the one hand, the adaptive Kalman filter makes use of the redundant measurement system's difference sequence to estimate and tune noise variance instead of employing a traditional innovation sequence to avoid coupling with the state vector error. On the other hand, this method uses the external height and heading angle as auxiliary references and establishes a model for the measurement equation in the filter. In the meantime, it also changes the effective filter online based on the number of tracked satellites. These measures have increasingly enhanced the position constraints and the system observability, improved the computational efficiency and have led to a good result. Both simulated and practical experiments have been carried out, and the results demonstrate that the proposed method is effective at limiting the system errors when there are less than four visible satellites, providing a satisfactory navigation solution.

  13. Micromachined integrated self-adaptive nonlinear stops for mechanical shock protection of MEMS

    NASA Astrophysics Data System (ADS)

    Xu, Kaisi; Jiang, Fushuai; Zhang, Wei; Hao, Yilong

    2018-06-01

    This paper presents a novel concept of self-adaptive nonlinear stops (SANS) for the generic in-plane shock protection of microelectromechanical systems (MEMS) suspensions. This new shock protection strategy decouples the reliability design from the device design and is compatible with wafer-level MEMS batch fabrication without the requirement of additional processes or materials. SANS increase shock reliability by limiting the travel of the suspension in a compliant manner with efficient energy dissipation. Using numerical simulation, we analyzed the energy dissipation and the impact force between suspensions and shock stops under a half-sine shock impulse (3000 g (1 g  ≈  9.8 m s‑2), 0.15 ms). The simulation results indicate that SANS can reduce approximately 89.4% of the impact force compared with hard stops, and additionally, dissipate more than 22.7% of the total mechanical energy in a round trip of the proof mass. To prove the improvement in shock protection, we designed and fabricated model test specimens of both SANS and conventional hard stops. The experimental results demonstrate that test specimens of SANS achieved twice the robustness compared with those of hard stops.

  14. Charge-pump voltage converter

    DOEpatents

    Brainard, John P [Albuquerque, NM; Christenson, Todd R [Albuquerque, NM

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  15. A MEMS-based, wireless, biometric-like security system

    NASA Astrophysics Data System (ADS)

    Cross, Joshua D.; Schneiter, John L.; Leiby, Grant A.; McCarter, Steven; Smith, Jeremiah; Budka, Thomas P.

    2010-04-01

    We present a system for secure identification applications that is based upon biometric-like MEMS chips. The MEMS chips have unique frequency signatures resulting from fabrication process variations. The MEMS chips possess something analogous to a "voiceprint". The chips are vacuum encapsulated, rugged, and suitable for low-cost, highvolume mass production. Furthermore, the fabrication process is fully integrated with standard CMOS fabrication methods. One is able to operate the MEMS-based identification system similarly to a conventional RFID system: the reader (essentially a custom network analyzer) detects the power reflected across a frequency spectrum from a MEMS chip in its vicinity. We demonstrate prototype "tags" - MEMS chips placed on a credit card-like substrate - to show how the system could be used in standard identification or authentication applications. We have integrated power scavenging to provide DC bias for the MEMS chips through the use of a 915 MHz source in the reader and a RF-DC conversion circuit on the tag. The system enables a high level of protection against typical RFID hacking attacks. There is no need for signal encryption, so back-end infrastructure is minimal. We believe this system would make a viable low-cost, high-security system for a variety of identification and authentication applications.

  16. MEMS Lens Scanners for Free-Space Optical Interconnects

    DTIC Science & Technology

    2011-12-15

    22] D. C. O ? Brien , G. E. Faulkner, T. D. Wilkinson, B. Robertson, and D. G. Leyva, “Design and Analysis of an Adaptive Board-to-Board Dynamic...trenches on 20 µm device layer. (c-d) Deposit and pattern low-stress nitride and polysilicon for electrical isolation. (e) DRIE for MEMS structures...Telecentric Lateral Shift Board Translation (mm) D is p la c e m e n t o f S p o t (  m ) 0 0.5 1 1.5 2 0 100 200 300 400 Tilt Error Board Tilt (deg) D

  17. Experimental Analysis of Diffraction Effects from a Segmented MEMS Deformable Mirror for a Closed Loop Adaptive Optics System

    DTIC Science & Technology

    2010-06-01

    different approaches were used to model MEMS OM as a grating in Zemax software. First, a 2D grating was directly modeled as a combination of two ID...method of modeling ~IEMS DM in Zemax was implemented by combining two ID gratings. Due to the fact that ZEl\\’IAX allows to easily use ID physical...optics shows thc far field diffractioll pattcrn, which in Zemax geometrical model shows up as distinct spots. each one corresponding to a specific

  18. Large-Scale Integration of Solid-State Microfluidic Valves With No Moving Parts

    DTIC Science & Technology

    2005-01-01

    compact and diffuse layer is called outer Helmholtz plane ( OHP ). Potential drop across the diffusion layer is called the zeta potential, ζ. As the...Gouy-Chapman model. This is shown in Fig. 3. The plane at x2 is called the outer Helmholtz plane ( OHP ). Then the total double layer capacitance Cd...Enhanced Electro-Osmotic Pumping With Liquid Bridge and Field Effect Flow Rectification, ” Presented in IEEE MEMS 2004 Conference, Maastricht, The

  19. A Fourier Transform Spectrometer Based on an Electrothermal MEMS Mirror with Improved Linear Scan Range

    PubMed Central

    Wang, Wei; Chen, Jiapin; Zivkovic, Aleksandar. S.; Xie, Huikai

    2016-01-01

    A Fourier transform spectrometer (FTS) that incorporates a closed-loop controlled, electrothermally actuated microelectromechanical systems (MEMS) micromirror is proposed and experimentally verified. The scan range and the tilting angle of the mirror plate are the two critical parameters for MEMS-based FTS. In this work, the MEMS mirror with a footprint of 4.3 mm × 3.1 mm is based on a modified lateral-shift-free (LSF) bimorph actuator design with large piston and reduced tilting. Combined with a position-sensitive device (PSD) for tilt angle sensing, the feedback controlled MEMS mirror generates a 430 µm stable linear piston scan with the mirror plate tilting angle less than ±0.002°. The usable piston scan range is increased to 78% of the MEMS mirror’s full scan capability, and a spectral resolution of 0.55 nm at 531.9 nm wavelength, has been achieved. It is a significant improvement compared to the prior work. PMID:27690047

  20. Surface-micromachined and high-aspect ratio electrostatic actuators for aeronautic and space applications: design and lifetime considerations

    NASA Astrophysics Data System (ADS)

    Vescovo, P.; Joseph, E.; Bourbon, G.; Le Moal, P.; Minotti, P.; Hibert, C.; Pont, G.

    2003-09-01

    This paper focuses on recent advances in the field of MEMS-based actuators and distributed microelectromechanical systems (MEMS). IC-processed actuators (e.g. actuators that are machined using integrated circuit batch processes) are expected to open a wide range of industrial applications on the near term. The most promising investigations deal with high-aspect ratio electric field driven microactuators suitable for use in numerous technical fields such as aeronautics and space industry. Because the silicon micromachining technology have the potential to integrate both mechanical components and control circuits within a single process, MEMS-based active control of microscopic and macroscopic structures appears to be one of the most promising challenges for the next decade. As a first step towards new generations of MEMS-based smart structures, recent investigations dealing with silicon mechanisms involving MEMS-based actuators are briefly discussed in this paper.

  1. Overview of MEMS/NEMS technology development for space applications at NASA/JPL

    NASA Astrophysics Data System (ADS)

    George, Thomas

    2003-04-01

    This paper highlights the current technology development activities of the MEMS Technology Group at JPL. A diverse range of MEMS/NEMS technologies are under development, that are primarily applicable to NASA"s needs in the area of robotic planetary exploration. MEMS/NEMS technologies have obvious advantages for space applications, since they offer the promise of highly capable devices with ultra low mass, size and power consumption. However, the key challenge appears to be in finding efficient means to transition these technologies into "customer" applications. A brief description of this problem is presented along with the Group"s innovative approach to rapidly advance the maturity of technologies via insertion into space missions. Also described are some of the major capabilities of the MEMS Technology Group. A few important examples from among the broad classes of technologies being developed are discussed, these include the "Spider Web Bolometer", High-Performance Miniature Gyroscopes, an Electron Luminescence X-ray Spectrometer, a MEMS-based "Knudsen" Thermal Transpiration pump, MEMS Inchworm Actuators, and Nanowire-based Biological/Chemical Sensors.

  2. A non-resonant fiber scanner based on an electrothermally-actuated MEMS stage

    PubMed Central

    Zhang, Xiaoyang; Duan, Can; Liu, Lin; Li, Xingde; Xie, Huikai

    2015-01-01

    Scanning fiber tips provides the most convenient way for forward-viewing fiber-optic microendoscopy. In this paper, a distal fiber scanning method based on a large-displacement MEMS actuator is presented. A single-mode fiber is glued on the micro-platform of an electrothermal MEMS stage to realize large range non-resonantscanning. The micro-platform has a large piston scan range of up to 800 µm at only 6V. The tip deflection of the fiber can be further amplified by placing the MEMS stage at a proper location along the fiber. A quasi-static model of the fiber-MEMS assembly has been developed and validated experimentally. The frequency response has also been studied and measured. A fiber tip deflection of up to 1650 µm for the 45 mm-long movable fiber portion has been achieved when the MEMS electrothermal stage was placed 25 mm away from the free end. The electrothermally-actuated MEMS stage shows a great potential for forward viewing fiber scanning and optical applications. PMID:26347583

  3. Portable, stand-off spectral imaging camera for detection of effluents and residues

    NASA Astrophysics Data System (ADS)

    Goldstein, Neil; St. Peter, Benjamin; Grot, Jonathan; Kogan, Michael; Fox, Marsha; Vujkovic-Cvijin, Pajo; Penny, Ryan; Cline, Jason

    2015-06-01

    A new, compact and portable spectral imaging camera, employing a MEMs-based encoded imaging approach, has been built and demonstrated for detection of hazardous contaminants including gaseous effluents and solid-liquid residues on surfaces. The camera is called the Thermal infrared Reconfigurable Analysis Camera for Effluents and Residues (TRACER). TRACER operates in the long wave infrared and has the potential to detect a wide variety of materials with characteristic spectral signatures in that region. The 30 lb. camera is tripod mounted and battery powered. A touch screen control panel provides a simple user interface for most operations. The MEMS spatial light modulator is a Texas Instruments Digital Microarray Array with custom electronics and firmware control. Simultaneous 1D-spatial and 1Dspectral dimensions are collected, with the second spatial dimension obtained by scanning the internal spectrometer slit. The sensor can be configured to collect data in several modes including full hyperspectral imagery using Hadamard multiplexing, panchromatic thermal imagery, and chemical-specific contrast imagery, switched with simple user commands. Matched filters and other analog filters can be generated internally on-the-fly and applied in hardware, substantially reducing detection time and improving SNR over HSI software processing, while reducing storage requirements. Results of preliminary instrument evaluation and measurements of flame exhaust are presented.

  4. Structural integrated sensor and actuator systems for active flow control

    NASA Astrophysics Data System (ADS)

    Behr, Christian; Schwerter, Martin; Leester-Schädel, Monika; Wierach, Peter; Dietzel, Andreas; Sinapius, Michael

    2016-04-01

    An adaptive flow separation control system is designed and implemented as an essential part of a novel high-lift device for future aircraft. The system consists of MEMS pressure sensors to determine the flow conditions and adaptive lips to regulate the mass flow and the velocity of a wall near stream over the internally blown Coanda flap. By the oscillating lip the mass flow in the blowing slot changes dynamically, consequently the momentum exchange of the boundary layer over a high lift flap required mass flow can be reduced. These new compact and highly integrated systems provide a real-time monitoring and manipulation of the flow conditions. In this context the integration of pressure sensors into flow sensing airfoils of composite material is investigated. Mechanical and electrical properties of the integrated sensors are investigated under mechanical loads during tensile tests. The sensors contain a reference pressure chamber isolated to the ambient by a deformable membrane with integrated piezoresistors connected as a Wheatstone bridge, which outputs voltage signals depending on the ambient pressure. The composite material in which the sensors are embedded consists of 22 individual layers of unidirectional glass fiber reinforced plastic (GFRP) prepreg. The results of the experiments are used for adapting the design of the sensors and the layout of the laminate to ensure an optimized flux of force in highly loaded structures primarily for future aeronautical applications. It can be shown that the pressure sensor withstands the embedding process into fiber composites with full functional capability and predictable behavior under stress.

  5. Evaluation of MEMS-Based Wireless Accelerometer Sensors in Detecting Gear Tooth Faults in Helicopter Transmissions

    NASA Technical Reports Server (NTRS)

    Lewicki, David George; Lambert, Nicholas A.; Wagoner, Robert S.

    2015-01-01

    The diagnostics capability of micro-electro-mechanical systems (MEMS) based rotating accelerometer sensors in detecting gear tooth crack failures in helicopter main-rotor transmissions was evaluated. MEMS sensors were installed on a pre-notched OH-58C spiral-bevel pinion gear. Endurance tests were performed and the gear was run to tooth fracture failure. Results from the MEMS sensor were compared to conventional accelerometers mounted on the transmission housing. Most of the four stationary accelerometers mounted on the gear box housing and most of the CI's used gave indications of failure at the end of the test. The MEMS system performed well and lasted the entire test. All MEMS accelerometers gave an indication of failure at the end of the test. The MEMS systems performed as well, if not better, than the stationary accelerometers mounted on the gear box housing with regards to gear tooth fault detection. For both the MEMS sensors and stationary sensors, the fault detection time was not much sooner than the actual tooth fracture time. The MEMS sensor spectrum data showed large first order shaft frequency sidebands due to the measurement rotating frame of reference. The method of constructing a pseudo tach signal from periodic characteristics of the vibration data was successful in deriving a TSA signal without an actual tach and proved as an effective way to improve fault detection for the MEMS.

  6. Track Detection in Railway Sidings Based on MEMS Gyroscope Sensors

    PubMed Central

    Broquetas, Antoni; Comerón, Adolf; Gelonch, Antoni; Fuertes, Josep M.; Castro, J. Antonio; Felip, Damià; López, Miguel A.; Pulido, José A.

    2012-01-01

    The paper presents a two-step technique for real-time track detection in single-track railway sidings using low-cost MEMS gyroscopes. The objective is to reliably know the path the train has taken in a switch, diverted or main road, immediately after the train head leaves the switch. The signal delivered by the gyroscope is first processed by an adaptive low-pass filter that rejects noise and converts the temporal turn rate data in degree/second units into spatial turn rate data in degree/meter. The conversion is based on the travelled distance taken from odometer data. The filter is implemented to achieve a speed-dependent cut-off frequency to maximize the signal-to-noise ratio. Although direct comparison of the filtered turn rate signal with a predetermined threshold is possible, the paper shows that better detection performance can be achieved by processing the turn rate signal with a filter matched to the rail switch curvature parameters. Implementation aspects of the track detector have been optimized for real-time operation. The detector has been tested with both simulated data and real data acquired in railway campaigns. PMID:23443376

  7. Forecasting tidal marsh elevation and habitat change through fusion of Earth observations and a process model

    USGS Publications Warehouse

    Byrd, Kristin B.; Windham-Myers, Lisamarie; Leeuw, Thomas; Downing, Bryan D.; Morris, James T.; Ferner, Matthew C.

    2016-01-01

    Reducing uncertainty in data inputs at relevant spatial scales can improve tidal marsh forecasting models, and their usefulness in coastal climate change adaptation decisions. The Marsh Equilibrium Model (MEM), a one-dimensional mechanistic elevation model, incorporates feedbacks of organic and inorganic inputs to project elevations under sea-level rise scenarios. We tested the feasibility of deriving two key MEM inputs—average annual suspended sediment concentration (SSC) and aboveground peak biomass—from remote sensing data in order to apply MEM across a broader geographic region. We analyzed the precision and representativeness (spatial distribution) of these remote sensing inputs to improve understanding of our study region, a brackish tidal marsh in San Francisco Bay, and to test the applicable spatial extent for coastal modeling. We compared biomass and SSC models derived from Landsat 8, DigitalGlobe WorldView-2, and hyperspectral airborne imagery. Landsat 8-derived inputs were evaluated in a MEM sensitivity analysis. Biomass models were comparable although peak biomass from Landsat 8 best matched field-measured values. The Portable Remote Imaging Spectrometer SSC model was most accurate, although a Landsat 8 time series provided annual average SSC estimates. Landsat 8-measured peak biomass values were randomly distributed, and annual average SSC (30 mg/L) was well represented in the main channels (IQR: 29–32 mg/L), illustrating the suitability of these inputs across the model domain. Trend response surface analysis identified significant diversion between field and remote sensing-based model runs at 60 yr due to model sensitivity at the marsh edge (80–140 cm NAVD88), although at 100 yr, elevation forecasts differed less than 10 cm across 97% of the marsh surface (150–200 cm NAVD88). Results demonstrate the utility of Landsat 8 for landscape-scale tidal marsh elevation projections due to its comparable performance with the other sensors, temporal frequency, and cost. Integration of remote sensing data with MEM should advance regional projections of marsh vegetation change by better parameterizing MEM inputs spatially. Improving information for coastal modeling will support planning for ecosystem services, including habitat, carbon storage, and flood protection.

  8. Heading Estimation for Pedestrian Dead Reckoning Based on Robust Adaptive Kalman Filtering.

    PubMed

    Wu, Dongjin; Xia, Linyuan; Geng, Jijun

    2018-06-19

    Pedestrian dead reckoning (PDR) using smart phone-embedded micro-electro-mechanical system (MEMS) sensors plays a key role in ubiquitous localization indoors and outdoors. However, as a relative localization method, it suffers from the problem of error accumulation which prevents it from long term independent running. Heading estimation error is one of the main location error sources, and therefore, in order to improve the location tracking performance of the PDR method in complex environments, an approach based on robust adaptive Kalman filtering (RAKF) for estimating accurate headings is proposed. In our approach, outputs from gyroscope, accelerometer, and magnetometer sensors are fused using the solution of Kalman filtering (KF) that the heading measurements derived from accelerations and magnetic field data are used to correct the states integrated from angular rates. In order to identify and control measurement outliers, a maximum likelihood-type estimator (M-estimator)-based model is used. Moreover, an adaptive factor is applied to resist the negative effects of state model disturbances. Extensive experiments under static and dynamic conditions were conducted in indoor environments. The experimental results demonstrate the proposed approach provides more accurate heading estimates and supports more robust and dynamic adaptive location tracking, compared with methods based on conventional KF.

  9. Method for spatially modulating X-ray pulses using MEMS-based X-ray optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin

    A method and apparatus are provided for spatially modulating X-rays or X-ray pulses using microelectromechanical systems (MEMS) based X-ray optics. A torsionally-oscillating MEMS micromirror and a method of leveraging the grazing-angle reflection property are provided to modulate X-ray pulses with a high-degree of controllability.

  10. Characterization of contour shapes achievable with a MEMS deformable mirror

    NASA Astrophysics Data System (ADS)

    Zhou, Yaopeng; Bifano, Thomas

    2006-01-01

    An important consideration in the design of an adaptive optics controller is the range of physical shapes required by the DM to compensate the existing aberrations. Conversely, if the range of surface shapes achievable with a DM is known, its suitability for a particular AO application can be determined. In this paper, we characterize one MEMS DM that was recently developed for vision science applications. The device has 140 actuators supporting a continuous face sheet deformable mirror having 4mm square aperture. The total range of actuation is about 4μm, achieved using electrostatic actuation in an architecture that has been described previously. We incorporated the MEMS mirror into an adaptive optics (AO) testbed to measure its capacity to transform an initially planar wavefront into a wavefront having one of thirty-six orthogonal shapes corresponding to the first seven orders of Zernike polynomials. The testbed included a superluminescent diode source emitting light with a wavelength 630nm, a MEMS DM, and a Shack Hartmann wavefront sensor (SHWS). The DM was positioned in a plane conjugate to the SHWS lenslets, using a pair of relay lenses. Wavefront slope measurements provided by the SHWS were used in an integral controller to regulate DM shape. The control software used the difference between the the wavefront measured by the SHWS and the desired (reference) wavefront as feedback for the DM. The DM is able to produce all 36 terms with a wavefront height root mean square (RMS) from 1.35μm for the lower order Zernike shapes to 0.2μm for the 7th order.

  11. Pervasive brain monitoring and data sharing based on multi-tier distributed computing and linked data technology

    PubMed Central

    Zao, John K.; Gan, Tchin-Tze; You, Chun-Kai; Chung, Cheng-En; Wang, Yu-Te; Rodríguez Méndez, Sergio José; Mullen, Tim; Yu, Chieh; Kothe, Christian; Hsiao, Ching-Teng; Chu, San-Liang; Shieh, Ce-Kuen; Jung, Tzyy-Ping

    2014-01-01

    EEG-based Brain-computer interfaces (BCI) are facing basic challenges in real-world applications. The technical difficulties in developing truly wearable BCI systems that are capable of making reliable real-time prediction of users' cognitive states in dynamic real-life situations may seem almost insurmountable at times. Fortunately, recent advances in miniature sensors, wireless communication and distributed computing technologies offered promising ways to bridge these chasms. In this paper, we report an attempt to develop a pervasive on-line EEG-BCI system using state-of-art technologies including multi-tier Fog and Cloud Computing, semantic Linked Data search, and adaptive prediction/classification models. To verify our approach, we implement a pilot system by employing wireless dry-electrode EEG headsets and MEMS motion sensors as the front-end devices, Android mobile phones as the personal user interfaces, compact personal computers as the near-end Fog Servers and the computer clusters hosted by the Taiwan National Center for High-performance Computing (NCHC) as the far-end Cloud Servers. We succeeded in conducting synchronous multi-modal global data streaming in March and then running a multi-player on-line EEG-BCI game in September, 2013. We are currently working with the ARL Translational Neuroscience Branch to use our system in real-life personal stress monitoring and the UCSD Movement Disorder Center to conduct in-home Parkinson's disease patient monitoring experiments. We shall proceed to develop the necessary BCI ontology and introduce automatic semantic annotation and progressive model refinement capability to our system. PMID:24917804

  12. Pervasive brain monitoring and data sharing based on multi-tier distributed computing and linked data technology.

    PubMed

    Zao, John K; Gan, Tchin-Tze; You, Chun-Kai; Chung, Cheng-En; Wang, Yu-Te; Rodríguez Méndez, Sergio José; Mullen, Tim; Yu, Chieh; Kothe, Christian; Hsiao, Ching-Teng; Chu, San-Liang; Shieh, Ce-Kuen; Jung, Tzyy-Ping

    2014-01-01

    EEG-based Brain-computer interfaces (BCI) are facing basic challenges in real-world applications. The technical difficulties in developing truly wearable BCI systems that are capable of making reliable real-time prediction of users' cognitive states in dynamic real-life situations may seem almost insurmountable at times. Fortunately, recent advances in miniature sensors, wireless communication and distributed computing technologies offered promising ways to bridge these chasms. In this paper, we report an attempt to develop a pervasive on-line EEG-BCI system using state-of-art technologies including multi-tier Fog and Cloud Computing, semantic Linked Data search, and adaptive prediction/classification models. To verify our approach, we implement a pilot system by employing wireless dry-electrode EEG headsets and MEMS motion sensors as the front-end devices, Android mobile phones as the personal user interfaces, compact personal computers as the near-end Fog Servers and the computer clusters hosted by the Taiwan National Center for High-performance Computing (NCHC) as the far-end Cloud Servers. We succeeded in conducting synchronous multi-modal global data streaming in March and then running a multi-player on-line EEG-BCI game in September, 2013. We are currently working with the ARL Translational Neuroscience Branch to use our system in real-life personal stress monitoring and the UCSD Movement Disorder Center to conduct in-home Parkinson's disease patient monitoring experiments. We shall proceed to develop the necessary BCI ontology and introduce automatic semantic annotation and progressive model refinement capability to our system.

  13. The Impact of Emerging MEMS-Based Microsystems on US Defense Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    STAPLE,BEVAN D.; JAKUBCZAK II,JEROME F.

    2000-01-20

    This paper examines the impact of inserting Micro-Electro-Mechanical Systems (MEMS) into US defense applications. As specific examples, the impacts of micro Inertial Measurement Units (IMUs), radio frequency MEMS (RF MEMS), and Micro-Opto-Electro-Mechanical Systems (MOEMS) to provide integrated intelligence, communication, and control to the defense infrastructure with increased affordability, functionality, and performance are highlighted.

  14. Managing design for manufacture and assembly in the development of MEMS-based products

    NASA Astrophysics Data System (ADS)

    Hsu, Hung-Yao; Narasimhan, Nachchinarkkinian; Hariz, Alex J.

    2006-12-01

    Design for manufacturability, assembly and reliability of MEMS products is being applied to a multitude of novel MEMS products to make up for the lack of "Standard Process for MEMS" concept. The latter has proved a major handicap in commercialization of MEMS devices when compared to integrated circuits products. Furthermore, an examination of recent engineering literature seems to suggest convergence towards the development of the design for manufacturability and reliability of MEMS products. This paper will highlight the advantages and disadvantages of conventional techniques that have been pursued up to this point to achieve commercialization of MEMS products, identify some of the problems slowing down development, and explore measures that could be taken to try to address those problems. Successful commercialization critically depends on packaging and assembly, manufacturability, and reliability for micro scale products. However, a methodology that appropriately shadows next generation knowledge management will undoubtedly address most of the critical problems that are hampering development of MEMS industries. Finally this paper will also identify contemporary issues that are challenging the industry in regards to product commercialization and will recommend appropriate measures based on knowledge flow to address those shortcomings and lay out plans to expedient and successful paths to market.

  15. Semiautonomous Avionics-and-Sensors System for a UAV

    NASA Technical Reports Server (NTRS)

    Shams, Qamar

    2006-01-01

    Unmanned Aerial Vehicles (UAVs) autonomous or remotely controlled pilotless aircraft have been recently thrust into the spotlight for military applications, for homeland security, and as test beds for research. In addition to these functions, there are many space applications in which lightweight, inexpensive, small UAVS can be used e.g., to determine the chemical composition and other qualities of the atmospheres of remote planets. Moreover, on Earth, such UAVs can be used to obtain information about weather in various regions; in particular, they can be used to analyze wide-band acoustic signals to aid in determining the complex dynamics of movement of hurricanes. The Advanced Sensors and Electronics group at Langley Research Center has developed an inexpensive, small, integrated avionics-and-sensors system to be installed in a UAV that serves two purposes. The first purpose is to provide flight data to an AI (Artificial Intelligence) controller as part of an autonomous flight-control system. The second purpose is to store data from a subsystem of distributed MEMS (microelectromechanical systems) sensors. Examples of these MEMS sensors include humidity, temperature, and acoustic sensors, plus chemical sensors for detecting various vapors and other gases in the environment. The critical sensors used for flight control are a differential- pressure sensor that is part of an apparatus for determining airspeed, an absolute-pressure sensor for determining altitude, three orthogonal accelerometers for determining tilt and acceleration, and three orthogonal angular-rate detectors (gyroscopes). By using these eight sensors, it is possible to determine the orientation, height, speed, and rates of roll, pitch, and yaw of the UAV. This avionics-and-sensors system is shown in the figure. During the last few years, there has been rapid growth and advancement in the technological disciplines of MEMS, of onboard artificial-intelligence systems, and of smaller, faster, and smarter wireless telemetry systems. The major attraction of MEMS lies in orders-of-magnitude reductions of power requirements relative to traditional electronic components that perform equivalent functions. In addition, the compactness of MEMS, relative to functionally equivalent traditional electronics systems, makes MEMS attractive for UAV applications. Recent advances in MEMS have made it possible to produce pressure, acceleration, humidity, and temperature sensors having masses in subgram range and possessing sensitivities and accuracies comparable to those of larger devices.

  16. Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Gao, Xiu-Jie; Turner, Travis L.; Burton, Deborah; Brinson, L. Catherine

    2005-01-01

    The usage of shape memory materials has extended rapidly to many fields, including medical devices, actuators, composites, structures and MEMS devices. For these various applications, shape memory alloys (SMAs) are available in various forms: bulk, wire, ribbon, thin film, and porous. In this work, the focus is on SMA hybrid composites with adaptive-stiffening or morphing functions. These composites are created by using SMA ribbons or wires embedded in a polymeric based composite panel/beam. Adaptive stiffening or morphing is activated via selective resistance heating or uniform thermal loads. To simulate the thermomechanical behavior of these composites, a SMA model was implemented using ABAQUS user element interface and finite element simulations of the systems were studied. Several examples are presented which show that the implemented model can be a very useful design and simulation tool for SMA hybrid composites.

  17. Cooperative Mission Concepts Using Biomorphic Explorers

    NASA Technical Reports Server (NTRS)

    Thakoor, S.; Miralles, C.; Martin, T.; Kahn, R.; Zurek, R.

    2000-01-01

    Inspired by the immense variety of naturally curious explorers (insects, animals, and birds), their wellintegrated biological sensor-processor suites, efficiently packaged in compact but highly dexterous forms, and their complex, intriguing, cooperative behavior, this paper focuses on "Biomorphic Explorers", their defination/classification, their designs, and presents planetary exploration scenarios based on the designs. Judicious blend of bio-inspired concepts and recent advances in micro-air vehicles, microsensors, microinstruments, MEMS, and microprocessors clearly suggests that the time of small, dedicated, low cost explorers that capture some of the key features of biological systems has arrived. Just as even small insects like ants, termites, honey bees etc working cooperatively in colonies can achieve big tasks, the biomorphic explorers hold the potential for obtaining science in-accessible by current large singular exploration platforms.

  18. Manufacturing process and material selection in concurrent collaborative design of MEMS devices

    NASA Astrophysics Data System (ADS)

    Zha, Xuan F.; Du, H.

    2003-09-01

    In this paper we present knowledge of an intensive approach and system for selecting suitable manufacturing processes and materials for microelectromechanical systems (MEMS) devices in concurrent collaborative design environment. In the paper, fundamental issues on MEMS manufacturing process and material selection such as concurrent design framework, manufacturing process and material hierarchies, and selection strategy are first addressed. Then, a fuzzy decision support scheme for a multi-criteria decision-making problem is proposed for estimating, ranking and selecting possible manufacturing processes, materials and their combinations. A Web-based prototype advisory system for the MEMS manufacturing process and material selection, WebMEMS-MASS, is developed based on the client-knowledge server architecture and framework to help the designer find good processes and materials for MEMS devices. The system, as one of the important parts of an advanced simulation and modeling tool for MEMS design, is a concept level process and material selection tool, which can be used as a standalone application or a Java applet via the Web. The running sessions of the system are inter-linked with webpages of tutorials and reference pages to explain the facets, fabrication processes and material choices, and calculations and reasoning in selection are performed using process capability and material property data from a remote Web-based database and interactive knowledge base that can be maintained and updated via the Internet. The use of the developed system including operation scenario, use support, and integration with an MEMS collaborative design system is presented. Finally, an illustration example is provided.

  19. Self-Alignment MEMS IMU Method Based on the Rotation Modulation Technique on a Swing Base

    PubMed Central

    Chen, Zhiyong; Yang, Haotian; Wang, Chengbin; Lin, Zhihui; Guo, Meifeng

    2018-01-01

    The micro-electro-mechanical-system (MEMS) inertial measurement unit (IMU) has been widely used in the field of inertial navigation due to its small size, low cost, and light weight, but aligning MEMS IMUs remains a challenge for researchers. MEMS IMUs have been conventionally aligned on a static base, requiring other sensors, such as magnetometers or satellites, to provide auxiliary information, which limits its application range to some extent. Therefore, improving the alignment accuracy of MEMS IMU as much as possible under swing conditions is of considerable value. This paper proposes an alignment method based on the rotation modulation technique (RMT), which is completely self-aligned, unlike the existing alignment techniques. The effect of the inertial sensor errors is mitigated by rotating the IMU. Then, inertial frame-based alignment using the rotation modulation technique (RMT-IFBA) achieved coarse alignment on the swing base. The strong tracking filter (STF) further improved the alignment accuracy. The performance of the proposed method was validated with a physical experiment, and the results of the alignment showed that the standard deviations of pitch, roll, and heading angle were 0.0140°, 0.0097°, and 0.91°, respectively, which verified the practicality and efficacy of the proposed method for the self-alignment of the MEMS IMU on a swing base. PMID:29649150

  20. Recent advancements in system design for miniaturized MEMS-based laser projectors

    NASA Astrophysics Data System (ADS)

    Scholles, M.; Frommhagen, K.; Gerwig, Ch.; Knobbe, J.; Lakner, H.; Schlebusch, D.; Schwarzenberg, M.; Vogel, U.

    2008-02-01

    Laser projection systems that use the flying spot principle and which are based on a single MEMS micro scanning mirrors are a very promising way to build ultra-compact projectors that may fit into mobile devices. First demonstrators that show the feasibility of this approach and the applicability of the micro scanning mirror developed by Fraunhofer IPMS for these systems have already been presented. However, a number of items still have to be resolved until miniaturized laser projectors are ready for the market. This contribution describes progress on several different items, each of them of major importance for laser projection systems. First of all, the overall performance of the system has been increased from VGA resolution to SVGA (800×600 pixels) with easy connection to a PC via DVI interface or by using the projector as embedded system with direct camera interface. Secondly, the degree of integration of the electronics has been enhanced by design of an application specific analog front end IC for the micro scanning mirror. It has been fabricated in a special high voltage technology and does not only allow to generate driving signals for the scanning mirror with amplitudes of up to 200V but also integrates position detection of the mirror by several methods. Thirdly, first results concerning Speckle reduction have been achieved, which is necessary for generation of images with high quality. Other aspects include laser modulation and solutions regarding projection on tilted screens which is possible because of the unlimited depth of focus.

  1. Diffraction-Based Optical Switching with MEMS

    DOE PAGES

    Blanche, Pierre-Alexandre; LaComb, Lloyd; Wang, Youmin; ...

    2017-04-19

    In this article, we are presenting an overview of MEMS-based (Micro-Electro-Mechanical System) optical switch technology starting from the reflective two-dimensional (2D) and three-dimensional (3D) MEMS implementations. To further increase the speed of the MEMS from these devices, the mirror size needs to be reduced. Small mirror size prevents efficient reflection but favors a diffraction-based approach. Two implementations have been demonstrated, one using the Texas Instruments DLP (Digital Light Processing), and the other an LCoS-based (Liquid Crystal on Silicon) SLM (Spatial Light Modulator). These switches demonstrated the benefit of diffraction, by independently achieving high speed, efficiency, and high number of ports.more » We also demonstrated for the first time that PSK (Phase Shift Keying) modulation format can be used with diffraction-based devices. To be truly effective in diffraction mode, the MEMS pixels should modulate the phase of the incident light. We are presenting our past and current efforts to manufacture a new type of MEMS where the pixels are moving in the vertical direction. The original structure is a 32 x 32 phase modulator array with high contrast grating pixels, and we are introducing a new sub-wavelength linear array capable of a 310 kHz modulation rate« less

  2. Diffraction-Based Optical Switching with MEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanche, Pierre-Alexandre; LaComb, Lloyd; Wang, Youmin

    In this article, we are presenting an overview of MEMS-based (Micro-Electro-Mechanical System) optical switch technology starting from the reflective two-dimensional (2D) and three-dimensional (3D) MEMS implementations. To further increase the speed of the MEMS from these devices, the mirror size needs to be reduced. Small mirror size prevents efficient reflection but favors a diffraction-based approach. Two implementations have been demonstrated, one using the Texas Instruments DLP (Digital Light Processing), and the other an LCoS-based (Liquid Crystal on Silicon) SLM (Spatial Light Modulator). These switches demonstrated the benefit of diffraction, by independently achieving high speed, efficiency, and high number of ports.more » We also demonstrated for the first time that PSK (Phase Shift Keying) modulation format can be used with diffraction-based devices. To be truly effective in diffraction mode, the MEMS pixels should modulate the phase of the incident light. We are presenting our past and current efforts to manufacture a new type of MEMS where the pixels are moving in the vertical direction. The original structure is a 32 x 32 phase modulator array with high contrast grating pixels, and we are introducing a new sub-wavelength linear array capable of a 310 kHz modulation rate« less

  3. A MEMS scanner with lateral and axial scanning capability for dual axes confocal endomicroscopic in-vivo imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Haijun; Li, Gaoming; Duan, Xiyu; Wang, Thomas D.

    2017-02-01

    Aimed to build a dual-axes confocal endomicroscope with an outer diameter of 5.5mm for in-vivo imaging applications, an electrostatic MEMS scanner has been developed to enable two dimensional (2D) light scanning in either horizontal plane or vertical cross-sectional plane. The device has a compact structure design to match the dual axes confocal architecture in the probe without blocking the collimated light beams of excitation and collection, and a cutting-free silicon-on-insulator(SOI) micromachining process is used for the fabrication. A novel lever-based gimbal-like mechanism is employed to enable three degrees of freedom motions for lateral and axial light scanning, and its geometry is optimized for achieving large deflection with high scanning speed. Based on parametric excitation, the device can work in resonant modes. Testing result shows that, up to +/-27° optical deflection angle for inner axis torsion motion with a frequency of 4.9kHz, up to +/-28.5° optical deflection angle for outer axis torsion motion with a frequency of 0.65kHz and 360μm stroke for out-of-plane translation motion with a frequency of 0.53kHz are achieved with <60V driving voltage. Based on these results, 2D imaging with frame rate of 5 10Hz and large field of view (1000μm x 1000μm in horizontal plane and 1000μm x 400μm in vertical plane) can be enabled by this scanner.

  4. Fabrication of Microhotplates Based on Laser Micromachining of Zirconium Oxide

    NASA Astrophysics Data System (ADS)

    Oblov, Konstantin; Ivanova, Anastasia; Soloviev, Sergey; Samotaev, Nikolay; Lipilin, Alexandr; Vasiliev, Alexey; Sokolov, Andrey

    We present a novel approach to the fabrication of MEMS devices, which can be used for gas sensors operating in harsh environment in wireless and autonomous information systems. MEMS platforms based on ZrO2/Y2O3 (YSZ) are applied in these devices. The methods of ceramic MEMS devices fabrication with laser micromachining are considered. It is shown that the application of YSZ membranes permits a decrease in MEMS power consumption at 4500C down to ∼75 mW at continuous heating and down to ∼ 1 mW at pulse heating mode. The application of the platforms is not restricted by gas sensors: they can be used for fast thermometers, bolometric matrices, flowmeteres and other MEMS devices working under harsh environmental conditions.

  5. Photoacoustic spectroscopy for trace vapor detection and standoff detection of explosives

    NASA Astrophysics Data System (ADS)

    Holthoff, Ellen L.; Marcus, Logan S.; Pellegrino, Paul M.

    2016-05-01

    The Army is investigating several spectroscopic techniques (e.g., infrared spectroscopy) that could allow for an adaptable sensor platform. Current sensor technologies, although reasonably sized, are geared to more classical chemical threats, and the ability to expand their capabilities to a broader range of emerging threats is uncertain. Recently, photoacoustic spectroscopy (PAS), employed in a sensor format, has shown enormous potential to address these ever-changing threats. PAS is one of the more flexible IR spectroscopy variants, and that flexibility allows for the construction of sensors that are designed for specific tasks. PAS is well suited for trace detection of gaseous and condensed media. Recent research has employed quantum cascade lasers (QCLs) in combination with MEMS-scale photoacoustic cell designs. The continuous tuning capability of QCLs over a broad wavelength range in the mid-infrared spectral region greatly expands the number of compounds that can be identified. We will discuss our continuing evaluation of QCL technology as it matures in relation to our ultimate goal of a universal compact chemical sensor platform. Finally, expanding on our previously reported photoacoustic detection of condensed phase samples, we are investigating standoff photoacoustic chemical detection of these materials. We will discuss the evaluation of a PAS sensor that has been designed around increasing operator safety during detection and identification of explosive materials by performing sensing operations at a standoff distance. We investigate a standoff variant of PAS based upon an interferometric sensor by examining the characteristic absorption spectra of explosive hazards collected at 1 m.

  6. MEMS/ECD Method for Making Bi(2-x)Sb(x)Te3 Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Lim, James; Huang, Chen-Kuo; Ryan, Margaret; Snyder, G. Jeffrey; Herman, Jennifer; Fleurial, Jean-Pierre

    2008-01-01

    A method of fabricating Bi(2-x)Sb(x)Te3-based thermoelectric microdevices involves a combination of (1) techniques used previously in the fabrication of integrated circuits and of microelectromechanical systems (MEMS) and (2) a relatively inexpensive MEMS-oriented electrochemical-deposition (ECD) technique. The present method overcomes the limitations of prior MEMS fabrication techniques and makes it possible to satisfy requirements.

  7. Miniaturized GPS/MEMS IMU integrated board

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang (Inventor)

    2012-01-01

    This invention documents the efforts on the research and development of a miniaturized GPS/MEMS IMU integrated navigation system. A miniaturized GPS/MEMS IMU integrated navigation system is presented; Laser Dynamic Range Imager (LDRI) based alignment algorithm for space applications is discussed. Two navigation cameras are also included to measure the range and range rate which can be integrated into the GPS/MEMS IMU system to enhance the navigation solution.

  8. Complete Fabrication of a Traversable 3 µm Thick NbN Film Superconducting Coil with Cu plated layer of 42m in Length in a Spiral Three-Storied Trench Engraved in a Si Wafer of 76.2 mm in Diameter Formed by MEMS Technology for a Compact SMES with High Energy Storage Volume Density

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasuhiro; Iguchi, Nobuhiro; Adachi, Kazuhiro; Ichiki, Akihisa; Hioki, Tatsumi; Hsu, Che-Wei; Sato, Ryoto; Kumagai, Shinya; Sasaki, Minoru; Noh, Joo-Hyong; Sakurahara, Yuuske; Okabe, Kyohei; Takai, Osamu; Honma, Hideo; Watanabe, Hideo; Sakoda, Hitoshi; Sasagawa, Hiroaki; Doy, Hideyuki; Zhou, Shuliang; Hori, H.; Nishikawa, Shigeaki; Nozaki, Toshihiro; Sugimoto, Noriaki; Motohiro, Tomoyoshi

    2017-09-01

    Based on the concept of a novel approach to make a compact SMES unit composed of a stack of Si wafers using MEMS process proposed previously, a complete fabrication of a traversable 3 µam thick NbN film superconducting coil lined with Cu plated layer of 42m in length in a spiral three-storied trench engraved in and extended over a whole Si-wafer of 76.2 mm in diameter was attained for the first time. With decrease in temperature, the DC resistivity showed a metallic decrease indicating the current pass was in the Cu plated layer and then made a sudden fall to residual contact resistance indicating the shift of current pass from the Cu plated layer to the NbN film at the critical temperature Tc of 15.5K by superconducting transition. The temperature dependence of I-V curve showed the increase in the critical current with decrease in the temperature and the highest critical current measured was 220 mA at 4K which is five times as large as that obtained in the test fabrication as the experimental proof of concept presented in the previous report. This completion of a one wafer superconducting NbN coil is an indispensable step for the next proof of concept of fabrication of series-connected two wafer coils via superconductive joint which will read to series connected 600 wafer coils finally, and for replacement of NbN by high Tc superconductor such as YBa2Cu3O7-x for operation under the cold energy of liquid hydrogen or liquid nitrogen.

  9. Fuzzy adaptive integration scheme for low-cost SINS/GPS navigation system

    NASA Astrophysics Data System (ADS)

    Nourmohammadi, Hossein; Keighobadi, Jafar

    2018-01-01

    Due to weak stand-alone accuracy as well as poor run-to-run stability of micro-electro mechanical system (MEMS)-based inertial sensors, special approaches are required to integrate low-cost strap-down inertial navigation system (SINS) with global positioning system (GPS), particularly in long-term applications. This paper aims to enhance long-term performance of conventional SINS/GPS navigation systems using a fuzzy adaptive integration scheme. The main concept behind the proposed adaptive integration is the good performance of attitude-heading reference system (AHRS) in low-accelerated motions and its degradation in maneuvered or accelerated motions. Depending on vehicle maneuvers, gravity-based attitude angles can be intelligently utilized to improve orientation estimation in the SINS. Knowledge-based fuzzy inference system is developed for decision-making between the AHRS and the SINS according to vehicle maneuvering conditions. Inertial measurements are the main input data of the fuzzy system to determine the maneuvering level during the vehicle motions. Accordingly, appropriate weighting coefficients are produced to combine the SINS/GPS and the AHRS, efficiently. The assessment of the proposed integrated navigation system is conducted via real data in airborne tests.

  10. A phononic crystal strip based on silicon for support tether applications in silicon-based MEMS resonators and effects of temperature and dopant on its band gap characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Thi Dep, E-mail: hathidep@yahoo.com; Faculty of Electronic Technology, Industrial University of Ho Chi Minh City, Hochiminh City; Bao, JingFu, E-mail: baojingfu@uestc.edu.cn

    Phononic crystals (PnCs) and n-type doped silicon technique have been widely employed in silicon-based MEMS resonators to obtain high quality factor (Q) as well as temperature-induced frequency stability. For the PnCs, their band gaps play an important role in the acoustic wave propagation. Also, the temperature and dopant doped into silicon can cause the change in its material properties such as elastic constants, Young’s modulus. Therefore, in order to design the simultaneous high Q and frequency stability silicon-based MEMS resonators by two these techniques, a careful design should study effects of temperature and dopant on the band gap characteristics tomore » examine the acoustic wave propagation in the PnC. Based on these, this paper presents (1) a proposed silicon-based PnC strip structure for support tether applications in low frequency silicon-based MEMS resonators, (2) influences of temperature and dopant on band gap characteristics of the PnC strips. The simulation results show that the largest band gap can achieve up to 33.56 at 57.59 MHz and increase 1280.13 % (also increase 131.89 % for ratio of the widest gaps) compared with the counterpart without hole. The band gap properties of the PnC strips is insignificantly effected by temperature and electron doping concentration. Also, the quality factor of two designed length extensional mode MEMS resonators with proposed PnC strip based support tethers is up to 1084.59% and 43846.36% over the same resonators with PnC strip without hole and circled corners, respectively. This theoretical study uses the finite element analysis in COMSOL Multiphysics and MATLAB softwares as simulation tools. This findings provides a background in combination of PnC and dopant techniques for high performance silicon-based MEMS resonators as well as PnC-based MEMS devices.« less

  11. Wavelength tunable MEMS VCSELs for OCT imaging

    NASA Astrophysics Data System (ADS)

    Sahoo, Hitesh Kumar; Ansbæk, Thor; Ottaviano, Luisa; Semenova, Elizaveta; Hansen, Ole; Yvind, Kresten

    2018-02-01

    MEMS VCSELs are one of the most promising swept source (SS) lasers for optical coherence tomography (OCT) and one of the best candidates for future integration with endoscopes, surgical probes and achieving an integrated OCT system. However, the current MEMS-based SS are processed on the III-V wafers, which are small, expensive and challenging to work with. Furthermore, the actuating part, i.e., the MEMS, is on the top of the structure which causes a strong dependence on packaging to decrease its sensitivity to the operating environment. This work addresses these design drawbacks and proposes a novel design framework. The proposed device uses a high contrast grating mirror on a Si MEMS stage as the bottom mirror, all of which is defined in an SOI wafer. The SOI wafer is then bonded to an InP III-V wafer with the desired active layers, thereby sealing the MEMS. Finally, the top mirror, a dielectric DBR (7 pairs of TiO2 - SiO2), is deposited on top. The new device is based on a silicon substrate with MEMS defined on a silicon membrane in an enclosed cavity. Thus the device is much more robust than the existing MEMS VCSELs. This design also enables either a two-way actuation on the MEMS or a smaller optical cavity (pull-away design), i.e., wider FSR (Free Spectral Range) to increase the wavelength sweep. Fabrication of the proposed device is outlined and the results of device characterization are reported.

  12. Microelectromechanical Systems and Nephrology: The Next Frontier in Renal Replacement Technology

    PubMed Central

    Kim, Steven; Roy, Shuvo

    2013-01-01

    Microelectromechanical systems (MEMS) is playing a prominent role in the development of many new and innovative biomedical devices, but remains a relatively underutilized technology in nephrology. The future landscape of clinical medicine and research will only see further expansion of MEMS based technologies in device designs and applications. The enthusiasm stems from the ability to create small-scale device features with high precision in a cost effective manner. MEMS also offers the possibility to integrate multiple components into a single device. The adoption of MEMS has the potential to revolutionize how nephrologists manage kidney disease by improving the delivery of renal replacement therapies and enhancing the monitoring of physiologic parameters. To introduce nephrologists to MEMS, this review will first define relevant terms and describe the basic processes used to fabricate MEMS devices. Next, a survey of MEMS devices being developed for various biomedical applications will be illustrated with current examples. Finally, MEMS technology specific to nephrology will be highlighted and future applications will be examined. The adoption of MEMS offers novel avenues to improve the care of kidney disease patients and assist nephrologists in clinical practice. This review will serve as an introduction for nephrologists to the exciting world of MEMS. PMID:24206604

  13. MEMS cantilever sensor for THz photoacoustic chemical sensing and pectroscopy

    NASA Astrophysics Data System (ADS)

    Glauvitz, Nathan E.

    Sensitive Microelectromechanical System (MEMS) cantilever designs were modeled, fabricated, and tested to measure the photoacoustic (PA) response of gasses to terahertz (THz) radiation. Surface and bulk micromachining technologies were employed to create the extremely sensitive devices that could detect very small changes in pressure. Fabricated devices were then tested in a custom made THz PA vacuum test chamber where the cantilever deflections caused by the photoacoustic effect were measured with a laser interferometer and iris beam clipped methods. The sensitive cantilever designs achieved a normalized noise equivalent absorption coefficient of 2.83x10-10 cm-1 W Hz-½ using a 25 microW radiation source power and a 1 s sampling time. Traditional gas phase molecular spectroscopy absorption cells are large and bulky. The outcome of this research resulted was a photoacoustic detection method that was virtually independent of the absorption path-length, which allowed the chamber dimensions to be greatly reduced, leading to the possibility of a compact, portable chemical detection and spectroscopy system

  14. Printed Antennas Made Reconfigurable by Use of MEMS Switches

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2005-01-01

    A class of reconfigurable microwave antennas now undergoing development comprise fairly conventional printed-circuit feed elements and radiating patches integrated with novel switches containing actuators of the microelectromechanical systems (MEMS) type. In comparison with solid-state electronic control devices incorporated into some prior printed microwave antennas, the MEMS-based switches in these antennas impose lower insertion losses and consume less power. Because the radio-frequency responses of the MEMS switches are more nearly linear, they introduce less signal distortion. In addition, construction and operation are simplified because only a single DC bias line is needed to control each MEMS actuator.

  15. Packaging of MEMS/MOEMS and nanodevices: reliability, testing, and characterization aspects

    NASA Astrophysics Data System (ADS)

    Tekin, Tolga; Ngo, Ha-Duong; Wittler, Olaf; Bouhlal, Bouchaib; Lang, Klaus-Dieter

    2011-02-01

    The last decade witnessed an explosive growth in research and development efforts devoted to MEMS devices and packaging. The successfully developed MEMS devices are, for example inkjet, pressure sensors, silicon microphones, accelerometers, gyroscopes, MOEMS, micro fuel cells and emerging MEMS. For the next decade, MEMS/MOEMS and nanodevice based products will penetrate into IT, telecommunications, automotive, defense, life sciences, medical and implantable applications. Forecasts say the MEMS market to be $14 billion by 2012. The packaging cost of MEMS/MOEMS products in general is about 70 percent. Unlike today's electronics IC packaging, their packaging are custom-built and difficult due to the moving structural elements. In order for the moving elements of a MEMS device to move effectively in a well-controlled atmosphere, hermetic sealing of the MEMS device in a cap is necessary. For some MEMS devices, such as resonators and gyroscopes, vacuum packaging is required. Usually, the cap is processed at the wafer level, and thus MEMS packaging is truly a wafer level packaging. In terms of MEMS/MOEMS and nanodevice packaging, there are still many critical issues need to be addressed due to the increasing integration density supported by 3D heterogeneous integration of multi-physic components/layers consisting of photonics, electronics, rf, plasmonics, and wireless. The infrastructure of MEMS/MOEMS and nanodevices and their packaging is not well established yet. Generic packaging platform technologies are not available. Some of critical issues have been studied intensively in the last years. In this paper we will discuss about processes, reliability, testing and characterization of MEMS/MOEMS and nanodevice packaging.

  16. A Rigorous Temperature-Dependent Stochastic Modelling and Testing for MEMS-Based Inertial Sensor Errors.

    PubMed

    El-Diasty, Mohammed; Pagiatakis, Spiros

    2009-01-01

    In this paper, we examine the effect of changing the temperature points on MEMS-based inertial sensor random error. We collect static data under different temperature points using a MEMS-based inertial sensor mounted inside a thermal chamber. Rigorous stochastic models, namely Autoregressive-based Gauss-Markov (AR-based GM) models are developed to describe the random error behaviour. The proposed AR-based GM model is initially applied to short stationary inertial data to develop the stochastic model parameters (correlation times). It is shown that the stochastic model parameters of a MEMS-based inertial unit, namely the ADIS16364, are temperature dependent. In addition, field kinematic test data collected at about 17 °C are used to test the performance of the stochastic models at different temperature points in the filtering stage using Unscented Kalman Filter (UKF). It is shown that the stochastic model developed at 20 °C provides a more accurate inertial navigation solution than the ones obtained from the stochastic models developed at -40 °C, -20 °C, 0 °C, +40 °C, and +60 °C. The temperature dependence of the stochastic model is significant and should be considered at all times to obtain optimal navigation solution for MEMS-based INS/GPS integration.

  17. Optical MEMS for Earth observation

    NASA Astrophysics Data System (ADS)

    Liotard, Arnaud; Viard, Thierry; Noell, Wilfried; Zamkotsian, Frédéric; Freire, Marco; Guldimann, Benedikt; Kraft, Stefan

    2017-11-01

    Due to the relatively large number of optical Earth Observation missions at ESA, this area is interesting for new space technology developments. In addition to their compactness, scalability and specific task customization, optical MEMS could generate new functions not available with current technologies and are thus candidates for the design of future space instruments. Most mature components for space applications are the digital mirror arrays, the micro-deformable mirrors, the programmable micro diffraction gratings and tiltable micromirrors. A first selection of market-pull and techno-push concepts is done. In addition, some concepts are coming from outside Earth Observation. Finally two concepts are more deeply analyzed. The first concept is a programmable slit for straylight control for space spectro-imagers. This instrument is a push-broom spectroimager for which some images cannot be exploited because of bright sources in the field-of-view. The proposed concept consists in replacing the current entrance spectrometer slit by an active row of micro-mirrors. The MEMS will permit to dynamically remove the bright sources and then to obtain a field-of-view with an optically enhanced signal-to-noise ratio. The second concept is a push-broom imager for which the acquired spectrum can be tuned by optical MEMS. This system is composed of two diffractive elements and a digital mirror array. The first diffractive element spreads the spectrum. A micromirror array is set at the location of the spectral focal plane. By putting the micro-mirrors ON or OFF, we can select parts of field-of-view or spectrum. The second diffractive element then recombines the light on a push-broom detector. Dichroics filters, strip filter, band-pass filter could be replaced by a unique instrument.

  18. Design of active temperature compensated composite free-free beam MEMS resonators in a standard process

    NASA Astrophysics Data System (ADS)

    Xereas, George; Chodavarapu, Vamsy P.

    2014-03-01

    Frequency references are used in almost every modern electronic device including mobile phones, personal computers, and scientific and medical instrumentation. With modern consumer mobile devices imposing stringent requirements of low cost, low complexity, compact system integration and low power consumption, there has been significant interest to develop batch-manufactured MEMS resonators. An important challenge for MEMS resonators is to match the frequency and temperature stability of quartz resonators. We present 1MHz and 20MHz temperature compensated Free-Free beam MEMS resonators developed using PolyMUMPS, which is a commercial multi-user process available from MEMSCAP. We introduce a novel temperature compensation technique that enables high frequency stability over a wide temperature range. We used three strategies: passive compensation by using a structural gold (Au) layer on the resonator, active compensation through using a heater element, and a Free-Free beam design that minimizes the effects of thermal mismatch between the vibrating structure and the substrate. Detailed electro-mechanical simulations were performed to evaluate the frequency response and Quality Factor (Q). Specifically, for the 20MHz device, a Q of 10,000 was obtained for the passive compensated design. Finite Element Modeling (FEM) simulations were used to evaluate the Temperature Coefficient of frequency (TCf) of the resonators between -50°C and 125°C which yielded +0.638 ppm/°C for the active compensated, compared to -1.66 ppm/°C for the passively compensated design and -8.48 ppm/°C for uncompensated design for the 20MHz device. Electro-thermo-mechanical simulations showed that the heater element was capable of increasing the temperature of the resonators by approximately 53°C with an applied voltage of 10V and power consumption of 8.42 mW.

  19. KAPAO first light: the design, construction and operation of a low-cost natural guide star adaptive optics system

    NASA Astrophysics Data System (ADS)

    Severson, Scott A.; Choi, Philip I.; Badham, Katherine E.; Bolger, Dalton; Contreras, Daniel S.; Gilbreth, Blaine N.; Guerrero, Christian; Littleton, Erik; Long, Joseph; McGonigle, Lorcan P.; Morrison, William A.; Ortega, Fernando; Rudy, Alex R.; Wong, Jonathan R.; Spjut, Erik; Baranec, Christoph; Riddle, Reed

    2014-07-01

    We present the instrument design and first light observations of KAPAO, a natural guide star adaptive optics (AO) system for the Pomona College Table Mountain Observatory (TMO) 1-meter telescope. The KAPAO system has dual science channels with visible and near-infrared cameras, a Shack-Hartmann wavefront sensor, and a commercially available 140-actuator MEMS deformable mirror. The pupil relays are two pairs of custom off-axis parabolas and the control system is based on a version of the Robo-AO control software. The AO system and telescope are remotely operable, and KAPAO is designed to share the Cassegrain focus with the existing TMO polarimeter. We discuss the extensive integration of undergraduate students in the program including the multiple senior theses/capstones and summer assistantships amongst our partner institutions. This material is based upon work supported by the National Science Foundation under Grant No. 0960343.

  20. Recent advances in design and fabrication of on-chip micro-supercapacitors

    NASA Astrophysics Data System (ADS)

    Beidaghi, Majid; Wang, Chunlei

    2012-06-01

    Recent development in miniaturized electronic devices has increased the demand for power sources that are sufficiently compact and can potentially be integrated on a chip with other electronic components. Miniaturized electrochemical capacitors (EC) or micro-supercapacitors have great potential to complement or replace batteries and electrolytic capacitors in a variety of applications. Recently, we have developed several types of micro-supercapacitors with different structural designs and active materials. Carbon-Microelectromechanical Systems (C-MEMS) with three dimensional (3D) interdigital structures are employed both as electrode material for electric double layer capacitor (EDLC) or as three dimensional (3D) current collectors of pseudo-capacitive materials. More recently, we have also developed microsupercapacitor based on hybrid graphene and carbon nanotube interdigital structures. In this paper, the recent advances in design and fabrication of on-chip micro-supercapacitors are reviewed.

  1. Nano/micro-electro mechanical systems: a patent view

    NASA Astrophysics Data System (ADS)

    Hu, Guangyuan; Liu, Weishu

    2015-12-01

    Combining both bibliometrics and citation network analysis, this research evaluates the global development of micro-electro mechanical systems (MEMS) research based on the Derwent Innovations Index database. We found that worldwide, the growth trajectory of MEMS patents demonstrates an approximate S shape, with United States, Japan, China, and Korea leading the global MEMS race. Evidenced by Derwent class codes, the technology structure of global MEMS patents remains steady over time. Yet there does exist a national competitiveness component among the top country players. The latecomer China has become the second most prolific country filing MEMS patents, but its patent quality still lags behind the global average.

  2. Nanotwinned metal MEMS films with unprecedented strength and stability

    PubMed Central

    Sim, Gi-Dong; Krogstad, Jessica A.; Reddy, K. Madhav; Xie, Kelvin Y.; Valentino, Gianna M.; Weihs, Timothy P.; Hemker, Kevin J.

    2017-01-01

    Silicon-based microelectromechanical systems (MEMS) sensors have become ubiquitous in consumer-based products, but realization of an interconnected network of MEMS devices that allows components to be remotely monitored and controlled, a concept often described as the “Internet of Things,” will require a suite of MEMS materials and properties that are not currently available. We report on the synthesis of metallic nickel-molybdenum-tungsten films with direct current sputter deposition, which results in fully dense crystallographically textured films that are filled with nanotwins. These films exhibit linear elastic mechanical behavior and tensile strengths exceeding 3 GPa, which is unprecedented for materials that are compatible with wafer-level device fabrication processes. The ultrahigh strength is attributed to a combination of solid solution strengthening and the presence of dense nanotwins. These films also have excellent thermal and mechanical stability, high density, and electrical properties that are attractive for next-generation metal MEMS applications. PMID:28782015

  3. MEMS FPI-based smartphone hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Rissanen, Anna; Saari, Heikki; Rainio, Kari; Stuns, Ingmar; Viherkanto, Kai; Holmlund, Christer; Näkki, Ismo; Ojanen, Harri

    2016-05-01

    This paper demonstrates a mobile phone- compatible hyperspectral imager based on a tunable MEMS Fabry-Perot interferometer. The realized iPhone 5s hyperspectral imager (HSI) demonstrator utilizes MEMS FPI tunable filter for visible-range, which consist of atomic layer deposited (ALD) Al2O3/TiO2-thin film Bragg reflectors. Characterization results for the mobile phone hyperspectral imager utilizing MEMS FPI chip optimized for 500 nm is presented; the operation range is λ = 450 - 550 nm with FWHM between 8 - 15 nm. Also a configuration of two cascaded FPIs (λ = 500 nm and λ = 650 nm) combined with an RGB colour camera is presented. With this tandem configuration, the overall wavelength tuning range of MEMS hyperspectral imagers can be extended to cover a larger range than with a single FPI chip. The potential applications of mobile hyperspectral imagers in the vis-NIR range include authentication, counterfeit detection and potential health/wellness and food sensing applications.

  4. Mini and micro spectrometers pave the way to on-field advanced analytics

    NASA Astrophysics Data System (ADS)

    Bouyé, Clémentine; Kolb, Hugo; d'Humières, Benoît.

    2016-03-01

    First introduced in the 1990's, miniature optical spectrometers were compact, portable devices brought on the market by the desire to move from time-consuming lab-based analyses to on-field and in situ measurements. This goal of getting spectroscopy into the hands of non-specialists is driving current technical and application developments, the ultimate goal being, in a far future, the integration of a spectrometer into a smartphone or any other smart device (tablet, watch, …). In this article, we present the results of our study on the evolution of the compact spectrometers market towards widespread industrial use and consumer applications. Presently, the main market of compact spectrometers remains academic labs. However, they have been adopted on some industrial applications such as optical source characterization (mainly laser and LEDs). In a near future, manufacturers of compact spectrometers target the following industrial applications: agriculture crop monitoring, food process control or pharmaceuticals quality control. Next steps will be to get closer to the consumer market with point-of-care applications such as glucose detection for diabetics, for example. To reach these objectives, technological breakthroughs will be necessary. Recent progresses have already allowed the release of micro-spectrometers. They take advantage of new micro-technologies such as MEMS (MicroElectroMechanical Systems), MOEMS (Micro-Opto-Electro-Mechanical Systems), micro-mirrors arrays to reduce cost and size while allowing good performance and high volume manufacturability. Integrated photonics is being investigated for future developments. It will also require new business models and new market approaches. Indeed, spreading spectroscopy to more industrial and consumer applications will require spectrometers manufacturers to get closer to the end-users and develop application-oriented products.

  5. MEMS-based thermoelectric infrared sensors: A review

    NASA Astrophysics Data System (ADS)

    Xu, Dehui; Wang, Yuelin; Xiong, Bin; Li, Tie

    2017-12-01

    In the past decade, micro-electromechanical systems (MEMS)-based thermoelectric infrared (IR) sensors have received considerable attention because of the advances in micromachining technology. This paper presents a review of MEMS-based thermoelectric IR sensors. The first part describes the physics of the device and discusses the figures of merit. The second part discusses the sensing materials, thermal isolation microstructures, absorber designs, and packaging methods for these sensors and provides examples. Moreover, the status of sensor implementation technology is examined from a historical perspective by presenting findings from the early years to the most recent findings.

  6. Research on the attitude of small UAV based on MEMS devices

    NASA Astrophysics Data System (ADS)

    Shi, Xiaojie; Lu, Libin; Jin, Guodong; Tan, Lining

    2017-05-01

    This paper mainly introduces the research principle and implementation method of the small UAV navigation attitude system based on MEMS devices. The Gauss - Newton method based on least squares is used to calibrate the MEMS accelerometer and gyroscope for calibration. Improve the accuracy of the attitude by using the modified complementary filtering to correct the attitude angle error. The experimental data show that the design of the attitude and attitude system in this paper to meet the requirements of small UAV attitude accuracy to achieve a small, low cost.

  7. A review of microelectromechanical systems for nanoscale mechanical characterization

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Chang, Tzu-Hsuan

    2015-09-01

    A plethora of nanostructures with outstanding properties have emerged over the past decades. Measuring their mechanical properties and understanding their deformation mechanisms is of paramount importance for many of their device applications. To address this need innovative experimental techniques have been developed, among which a promising one is based upon microelectromechanical systems (MEMS). This article reviews the recent advances in MEMS platforms for the mechanical characterization of one-dimensional (1D) nanostructures over the past decade. A large number of MEMS platforms and related nanomechanics studies are presented to demonstrate the unprecedented capabilities of MEMS for nanoscale mechanical characterization. Focusing on key design considerations, this article aims to provide useful guidelines for developing MEMS platforms. Finally, some of the challenges and future directions in the area of MEMS-enabled nanomechanical characterization are discussed.

  8. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    DOEpatents

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  9. MEMS-based fuel cells with integrated catalytic fuel processor and method thereof

    DOEpatents

    Jankowski, Alan F [Livermore, CA; Morse, Jeffrey D [Martinez, CA; Upadhye, Ravindra S [Pleasanton, CA; Havstad, Mark A [Davis, CA

    2011-08-09

    Described herein is a means to incorporate catalytic materials into the fuel flow field structures of MEMS-based fuel cells, which enable catalytic reforming of a hydrocarbon based fuel, such as methane, methanol, or butane. Methods of fabrication are also disclosed.

  10. Development of the micro pixel chamber based on MEMS technology

    NASA Astrophysics Data System (ADS)

    Takemura, T.; Takada, A.; Kishimoto, T.; Komura, S.; Kubo, H.; Matsuoka, Y.; Miuchi, K.; Miyamoto, S.; Mizumoto, T.; Mizumura, Y.; Motomura, T.; Nakamasu, Y.; Nakamura, K.; Oda, M.; Ohta, K.; Parker, J. D.; Sawano, T.; Sonoda, S.; Tanimori, T.; Tomono, D.; Yoshikawa, K.

    2018-02-01

    Micro pixel chambers (μ-PIC) are gaseous two-dimensional imaging detectors originally manufactured using printed circuit board (PCB) technology. They are used in MeV gamma-ray astronomy, medicalimaging, neutron imaging, the search for dark matter, and dose monitoring. The position resolution of the present μ-PIC is approximately 120 μm (RMS), however some applications require a fine position resolution of less than 100 μm. To this end, we have started to develop a μ-PIC based on micro electro mechanical system (MEMS) technology, which provides better manufacturing accuracy than PCB technology. Our simulation predicted the gains of MEMS μ-PICs to be twice those of PCB μ-PICs at the same anode voltage. We manufactured two MEMS μ-PICs and tested them to study their behavior. In these experiments, we successfully operated the fabricatedMEMS μ-PICs and we achieved a maximum gain of approximately 7×103 and collected their energy spectra under irradiation of X-rays from 55Fe. However, the measured gains of the MEMS μ-PICs were less than half of the values predicted in the simulations. We postulated that the gains of the MEMS μ-PICs are diminished by the effect of the silicon used as a semiconducting substrate.

  11. A Study on the Performance of Low Cost MEMS Sensors in Strong Motion Studies

    NASA Astrophysics Data System (ADS)

    Tanırcan, Gulum; Alçık, Hakan; Kaya, Yavuz; Beyen, Kemal

    2017-04-01

    Recent advances in sensors have helped the growth of local networks. In recent years, many Micro Electro Mechanical System (MEMS)-based accelerometers have been successfully used in seismology and earthquake engineering projects. This is basically due to the increased precision obtained in these downsized instruments. Moreover, they are cheaper alternatives to force-balance type accelerometers. In Turkey, though MEMS-based accelerometers have been used in various individual applications such as magnitude and location determination of earthquakes, structural health monitoring, earthquake early warning systems, MEMS-based strong motion networks are not currently available in other populated areas of the country. Motivation of this study comes from the fact that, if MEMS sensors are qualified to record strong motion parameters of large earthquakes, a dense network can be formed in an affordable price at highly populated areas. The goals of this study are 1) to test the performance of MEMS sensors, which are available in the inventory of the Institute through shake table tests, and 2) to setup a small scale network for observing online data transfer speed to a trusted in-house routine. In order to evaluate the suitability of sensors in strong motion related studies, MEMS sensors and a reference sensor are tested under excitations of sweeping waves as well as scaled earthquake recordings. Amplitude response and correlation coefficients versus frequencies are compared. As for earthquake recordings, comparisons are carried out in terms of strong motion(SM) parameters (PGA, PGV, AI, CAV) and elastic response of structures (Sa). Furthermore, this paper also focuses on sensitivity and selectivity for sensor performances in time-frequency domain to compare different sensing characteristics and analyzes the basic strong motion parameters that influence the design majors. Results show that the cheapest MEMS sensors under investigation are able to record the mid-frequency dominant SM parameters PGV and CAV with high correlation. PGA and AI, the high frequency components of the ground motion, are underestimated. Such a difference, on the other hand, does not manifest itself on intensity estimations. PGV and CAV values from the reference and MEMS sensors converge to the same seismic intensity level. Hence a strong motion network with MEMS sensors could be a modest option to produce PGV-based damage impact of an urban area under large magnitude earthquake threats in the immediate vicinity.

  12. Compact Ocean Models Enable Onboard AUV Autonomy and Decentralized Adaptive Sampling

    DTIC Science & Technology

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Compact Ocean Models Enable Onboard AUV Autonomy and...transmitted onboard an AUV . 3. Develop algorithms for adaptive planning of AUV surveys. 4. Demonstrate use of compact ocean models onboard a long...range AUV during a field deployment. Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of

  13. Powering a leadless pacemaker using a PiezoMEMS energy harvester

    NASA Astrophysics Data System (ADS)

    Jackson, Nathan; Olszewski, Oskar; O'Murchu, Cian; Mathewson, Alan

    2017-06-01

    MEMS based vibrational energy harvesting devices have been a highly researched topic over the past decade. The application targeted in this paper focuses on a leadless pacemaker that will be implanted in the right ventricle of the heart. A leadless pacemaker requires the same functionality as a normal pacemaker, but with significantly reduced volume. The reduced volume limits the space for a battery; therefore an energy harvesting device is required. This paper compares varying the dimensions of a linear MEMS based piezoelectric energy harvester that can harvest energy from the mechanical vibrations of the heart due to shock induced vibration. Typical MEMS linear energy harvesting devices operate at high frequency (<50 Hz) with low acceleration (< 1g). The force generated from the heart acts as a series of impulses as opposed to traditional sinusoidal vibration force with high acceleration (1-4 g). Therefore the design of a MEMS harvester that is based on shock-induced vibration is necessary. PiezoMEMS energy harvesting devices consisting of a silicon substrate and mass with aluminium nitride piezoelectric material were developed and characterized using acceleration forces that mimic the heartbeat. Peak powers of up to 25μW were obtained at 1 g acceleration with a powder density of approximately 1.5 mW cm-3.

  14. A multi-block adaptive solving technique based on lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Xie, Jiahua; Li, Xiaoyue; Ma, Zhenghai; Zou, Jianfeng; Zheng, Yao

    2018-05-01

    In this paper, a CFD parallel adaptive algorithm is self-developed by combining the multi-block Lattice Boltzmann Method (LBM) with Adaptive Mesh Refinement (AMR). The mesh refinement criterion of this algorithm is based on the density, velocity and vortices of the flow field. The refined grid boundary is obtained by extending outward half a ghost cell from the coarse grid boundary, which makes the adaptive mesh more compact and the boundary treatment more convenient. Two numerical examples of the backward step flow separation and the unsteady flow around circular cylinder demonstrate the vortex structure of the cold flow field accurately and specifically.

  15. NASA Tech Briefs, May 2008

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Topics covered inclde: Deployable Wireless Camera Penetrators; Hand-Held Units for Short-Range Wireless Biotelemetry; Wearable Wireless Telemetry System for Implantable BioMEMS Sensors; Electronic Escape Trails for Firefighters; Architecture for a High-to-Medium-Voltage Power Converter; 24-Way Radial Power Combiner/Divider for 31 to 36 GHz; Three-Stage InP Submillimeter-Wave MMIC Amplifier; Fast Electromechanical Switches Based on Carbon Nanotubes; Solid-State High-Temperature Power Cells; Fast Offset Laser Phase-Locking System; Fabricating High-Resolution X-Ray Collimators; Embossed Teflon AF Laminate Membrane Microfluidic Diaphragm Valves; Flipperons for Improved Aerodynamic Performance; System Estimates Radius of Curvature of a Segmented Mirror; Refractory Ceramic Foams for Novel Applications; Self-Deploying Trusses Containing Shape-Memory Polymers; Fuel-Cell Electrolytes Based on Organosilica Hybrid Proton Conductors; Molecules for Fluorescence Detection of Specific Chemicals; Cell-Detection Technique for Automated Patch Clamping; Redesigned Human Metabolic Simulator; Compact, Highly Stable Ion Atomic Clock; LiGa(OTf)(sub 4) as an Electrolyte Salt for Li-Ion Cells; Compact Dielectric-Rod White-Light Delay Lines; Single-Mode WGM Resonators Fabricated by Diamond Turning; Mitigating Photon Jitter in Optical PPM Communication; MACOS Version 3.31; Fiber-Optic Determination of N2, O2, and Fuel Vapor in the Ullage of Liquid-Fuel Tanks; Spiking Neurons for Analysis of Patterns; Symmetric Phase-Only Filtering in Particle-Image Velocimetry; Efficient Coupler for a Bessel Beam Dispersive Element; and Attitude and Translation Control of a Solar Sail Vehicle.

  16. Optical Characterization of Lorentz Force Based CMOS-MEMS Magnetic Field Sensor

    PubMed Central

    Dennis, John Ojur; Ahmad, Farooq; Khir, M. Haris Bin Md; Hamid, Nor Hisham Bin

    2015-01-01

    Magnetic field sensors are becoming an essential part of everyday life due to the improvements in their sensitivities and resolutions, while at the same time they have become compact, smaller in size and economical. In the work presented herein a Lorentz force based CMOS-MEMS magnetic field sensor is designed, fabricated and optically characterized. The sensor is fabricated by using CMOS thin layers and dry post micromachining is used to release the device structure and finally the sensor chip is packaged in DIP. The sensor consists of a shuttle which is designed to resonate in the lateral direction (first mode of resonance). In the presence of an external magnetic field, the Lorentz force actuates the shuttle in the lateral direction and the amplitude of resonance is measured using an optical method. The differential change in the amplitude of the resonating shuttle shows the strength of the external magnetic field. The resonance frequency of the shuttle is determined to be 8164 Hz experimentally and from the resonance curve, the quality factor and damping ratio are obtained. In an open environment, the quality factor and damping ratio are found to be 51.34 and 0.00973 respectively. The sensitivity of the sensor is determined in static mode to be 0.034 µm/mT when a current of 10 mA passes through the shuttle, while it is found to be higher at resonance with a value of 1.35 µm/mT at 8 mA current. Finally, the resolution of the sensor is found to be 370.37 µT. PMID:26225972

  17. Optical Characterization of Lorentz Force Based CMOS-MEMS Magnetic Field Sensor.

    PubMed

    Dennis, John Ojur; Ahmad, Farooq; Khir, M Haris Bin Md; Bin Hamid, Nor Hisham

    2015-07-27

    Magnetic field sensors are becoming an essential part of everyday life due to the improvements in their sensitivities and resolutions, while at the same time they have become compact, smaller in size and economical. In the work presented herein a Lorentz force based CMOS-MEMS magnetic field sensor is designed, fabricated and optically characterized. The sensor is fabricated by using CMOS thin layers and dry post micromachining is used to release the device structure and finally the sensor chip is packaged in DIP. The sensor consists of a shuttle which is designed to resonate in the lateral direction (first mode of resonance). In the presence of an external magnetic field, the Lorentz force actuates the shuttle in the lateral direction and the amplitude of resonance is measured using an optical method. The differential change in the amplitude of the resonating shuttle shows the strength of the external magnetic field. The resonance frequency of the shuttle is determined to be 8164 Hz experimentally and from the resonance curve, the quality factor and damping ratio are obtained. In an open environment, the quality factor and damping ratio are found to be 51.34 and 0.00973 respectively. The sensitivity of the sensor is determined in static mode to be 0.034 µm/mT when a current of 10 mA passes through the shuttle, while it is found to be higher at resonance with a value of 1.35 µm/mT at 8 mA current. Finally, the resolution of the sensor is found to be 370.37 µT.

  18. An adaptive cubature formula for efficient reliability assessment of nonlinear structural dynamic systems

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Kong, Fan

    2018-05-01

    Extreme value distribution (EVD) evaluation is a critical topic in reliability analysis of nonlinear structural dynamic systems. In this paper, a new method is proposed to obtain the EVD. The maximum entropy method (MEM) with fractional moments as constraints is employed to derive the entire range of EVD. Then, an adaptive cubature formula is proposed for fractional moments assessment involved in MEM, which is closely related to the efficiency and accuracy for reliability analysis. Three point sets, which include a total of 2d2 + 1 integration points in the dimension d, are generated in the proposed formula. In this regard, the efficiency of the proposed formula is ensured. Besides, a "free" parameter is introduced, which makes the proposed formula adaptive with the dimension. The "free" parameter is determined by arranging one point set adjacent to the boundary of the hyper-sphere which contains the bulk of total probability. In this regard, the tail distribution may be better reproduced and the fractional moments could be evaluated with accuracy. Finally, the proposed method is applied to a ten-storey shear frame structure under seismic excitations, which exhibits strong nonlinearity. The numerical results demonstrate the efficacy of the proposed method.

  19. Novel Micro ElectroMechanical Systems (MEMS) Packaging for the Skin of the Satellite

    NASA Technical Reports Server (NTRS)

    Darrin, M. Ann; Osiander, Robert; Lehtonen, John; Farrar, Dawnielle; Douglas, Donya; Swanson, Ted

    2004-01-01

    This paper includes a discussion of the novel packaging techniques that are needed to place MEMS based thermal control devices on the skin of various satellites, eliminating the concern associated with potential particulates &om integration and test or the launch environment. Protection of this MEMS based thermal device is achieved using a novel polymer that is both IR transmissive and electrically conductive. This polymer was originally developed and qualified for space flight application by NASA at the Langley Research Center. The polymer material, commercially known as CPI, is coated with a thin layer of ITO and sandwiched between two window-like frames. The packaging of the MEMS based radiator assembly offers the benefits of micro-scale devices in a chip on board fashion, with the level of protection generally found in packaged parts.

  20. A Model for Speedup of Parallel Programs

    DTIC Science & Technology

    1997-01-01

    Sanjeev. K Setia . The interaction between mem- ory allocation and adaptive partitioning in message- passing multicomputers. In IPPS 󈨣 Workshop on Job...Scheduling Strategies for Parallel Processing, pages 89{99, 1995. [15] Sanjeev K. Setia and Satish K. Tripathi. A compar- ative analysis of static

  1. Micro-masonry for 3D additive micromanufacturing.

    PubMed

    Keum, Hohyun; Kim, Seok

    2014-08-01

    Transfer printing is a method to transfer solid micro/nanoscale materials (herein called 'inks') from a substrate where they are generated to a different substrate by utilizing elastomeric stamps. Transfer printing enables the integration of heterogeneous materials to fabricate unexampled structures or functional systems that are found in recent advanced devices such as flexible and stretchable solar cells and LED arrays. While transfer printing exhibits unique features in material assembly capability, the use of adhesive layers or the surface modification such as deposition of self-assembled monolayer (SAM) on substrates for enhancing printing processes hinders its wide adaptation in microassembly of microelectromechanical system (MEMS) structures and devices. To overcome this shortcoming, we developed an advanced mode of transfer printing which deterministically assembles individual microscale objects solely through controlling surface contact area without any surface alteration. The absence of an adhesive layer or other modification and the subsequent material bonding processes ensure not only mechanical bonding, but also thermal and electrical connection between assembled materials, which further opens various applications in adaptation in building unusual MEMS devices.

  2. UAV-borne lidar with MEMS mirror-based scanning capability

    NASA Astrophysics Data System (ADS)

    Kasturi, Abhishek; Milanovic, Veljko; Atwood, Bryan H.; Yang, James

    2016-05-01

    Firstly, we demonstrated a wirelessly controlled MEMS scan module with imaging and laser tracking capability which can be mounted and flown on a small UAV quadcopter. The MEMS scan module was reduced down to a small volume of <90mm x 60mm x 40mm, weighing less than 40g and consuming less than 750mW of power using a ~5mW laser. This MEMS scan module was controlled by a smartphone via Bluetooth while flying on a drone, and could project vector content, text, and perform laser based tracking. Also, a "point-and-range" LiDAR module was developed for UAV applications based on low SWaP (Size, Weight and Power) gimbal-less MEMS mirror beam-steering technology and off-the-shelf OEM LRF modules. For demonstration purposes of an integrated laser range finder module, we used a simple off-the-shelf OEM laser range finder (LRF) with a 100m range, +/-1.5mm accuracy, and 4Hz ranging capability. The LRFs receiver optics were modified to accept 20° of angle, matching the transmitter's FoR. A relatively large (5.0mm) diameter MEMS mirror with +/-10° optical scanning angle was utilized in the demonstration to maintain the small beam divergence of the module. The complete LiDAR prototype can fit into a small volume of <70mm x 60mm x 60mm, and weigh <50g when powered by the UAV's battery. The MEMS mirror based LiDAR system allows for ondemand ranging of points or areas within the FoR without altering the UAV's position. Increasing the LRF ranging frequency and stabilizing the pointing of the laser beam by utilizing the onboard inertial sensors and the camera are additional goals of the next design.

  3. Oxidative stress detection by MEMS cantilever sensor array based electronic nose

    NASA Astrophysics Data System (ADS)

    Gupta, Anurag; Singh, T. Sonamani; Singh, Priyanka; Yadava, R. D. S.

    2018-05-01

    This paper is concerned with analyzing the role of polymer swelling induced surface stress in MEMS chemical sensors. The objective is to determine the impact of surface stress on the chemical discrimination ability of MEMS resonator sensors. We considered a case study of hypoxia detection by MEMS sensor array and performed several types of simulation experiments for detection of oxidative stress volatile organic markers in human breath. Both types of sensor response models that account for the surface stress effect and that did not were considered for the analyses in comparison. It is found that the surface stress (hence the polymer swelling) provides better chemical discrimination ability to polymer coated MEMS sensors.

  4. Microelectromechanical Systems for Aerodynamics Applications

    NASA Technical Reports Server (NTRS)

    Mehregany, Mehran; DeAnna, Russell G.; Reshotko, Eli

    1996-01-01

    Microelectromechanical systems (MEMS) embody the integration of sensors, actuators, and electronics on a single substrate using integrated circuit fabrication techniques and compatible micromachining processes. Silicon and its derivatives form the material base for the MEMS technology. MEMS devices, including micro-sensors and micro-actuators, are attractive because they can be made small (characteristic dimension about microns), be produced in large numbers with uniform performance, include electronics for high performance and sophisticated functionality, and be inexpensive. MEMS pressure sensors, wall-shear-stress sensors, and micromachined hot-wires are nearing application in aeronautics. MEMS actuators face a tougher challenge since they have to be scaled (up) to the physical phenomena that are being controlled. MEMS actuators are proposed, for example, for controlling the small structures in a turbulent boundary layer, for aircraft control, for cooling, and for mixing enhancement. Data acquisition or control logistics require integration of electronics along with the transducer elements with appropriate consideration of analog-to-digital conversion, multiplexing, and telemetry. Altogether, MEMS technology offers exciting opportunities for aerodynamics applications both in wind tunnels and in flight

  5. Thermal Hysteresis of MEMS Packaged Capacitive Pressure Sensor (CPS) Based 3C-SiC

    NASA Astrophysics Data System (ADS)

    Marsi, N.; Majlis, B. Y.; Mohd-Yasin, F.; Hamzah, A. A.; Mohd Rus, A. Z.

    2016-11-01

    Presented herein are the effects of thermal hysteresis analyses of the MEMS packaged capacitive pressure sensor (CPS). The MEMS CPS was employed on Si-on-3C-SiC wafer that was performed using the hot wall low-pressure chemical vapour deposition (LPCVD) reactors at the Queensland Micro and Nanotechnology Center (QMNC), Griffith University and fabricated using the bulk-micromachining process. The MEMS CPS was operated at an extreme temperature up to 500°C and high external pressure at 5.0 MPa. The thermal hysteresis phenomenon that causes the deflection, strain and stress on the 3C-SiC diaphragm spontaneously influence the MEMS CPS performances. The differences of temperature, hysteresis, and repeatability test were presented to demonstrate the functionality of the MEMS packaged CPS. As expected, the output hysteresis has a low hysteresis (less than 0.05%) which has the hardness greater than the traditional silicon. By utilizing this low hysteresis, it was revealed that the MEMS packaged CPS has high repeatability and stability of the sensor.

  6. MEMS-based beam-steerable free-space optical communication link for reconfigurable wireless data center

    NASA Astrophysics Data System (ADS)

    Deng, Peng; Kavehrad, Mohsen; Lou, Yan

    2017-01-01

    Flexible wireless datacenter networks based on free space optical communication (FSO) links are being considered as promising solutions to meet the future datacenter demands of high throughput, robustness to dynamic traffic patterns, cabling complexity and energy efficiency. Robust and precise steerable FSO links over dynamic traffic play a key role in the reconfigurable optical wireless datacenter inter-rack network. In this work, we propose and demonstrate a reconfigurable 10Gbps FSO system incorporated with smart beam acquisition and tracking mechanism based on gimballess two-axis MEMS micro-mirror and retro-reflective film marked aperture. The fast MEMS-based beam acquisition switches laser beam of FSO terminal from one rack to the next for reconfigurable networks, and the precise beam tracking makes FSO device auto-correct the misalignment in real-time. We evaluate the optical power loss and bit error rate performance of steerable FSO links at various directions. Experimental results suggest that the MEMS based beam steerable FSO links hold considerable promise for the future reconfigurable wireless datacenter networks.

  7. Towards a biomimetic gyroscope inspired by the fly's haltere using microelectromechanical systems technology

    PubMed Central

    Droogendijk, H.; Brookhuis, R. A.; de Boer, M. J.; Sanders, R. G. P.; Krijnen, G. J. M.

    2014-01-01

    Flies use so-called halteres to sense body rotation based on Coriolis forces for supporting equilibrium reflexes. Inspired by these halteres, a biomimetic gimbal-suspended gyroscope has been developed using microelectromechanical systems (MEMS) technology. Design rules for this type of gyroscope are derived, in which the haltere-inspired MEMS gyroscope is geared towards a large measurement bandwidth and a fast response, rather than towards a high responsivity. Measurements for the biomimetic gyroscope indicate a (drive mode) resonance frequency of about 550 Hz and a damping ratio of 0.9. Further, the theoretical performance of the fly's gyroscopic system and the developed MEMS haltere-based gyroscope is assessed and the potential of this MEMS gyroscope is discussed. PMID:25100317

  8. MEMS based digital transform spectrometers

    NASA Astrophysics Data System (ADS)

    Geller, Yariv; Ramani, Mouli

    2005-09-01

    Earlier this year, a new breed of Spectrometers based on Micro-Electro-Mechanical-System (MEMS) engines has been introduced to the commercial market. The use of these engines combined with transform mathematics, produces powerful spectrometers at unprecedented low cost in various spectral regions.

  9. Progress and prospects of silicon-based design for optical phased array

    NASA Astrophysics Data System (ADS)

    Hu, Weiwei; Peng, Chao; Chang-Hasnain, Connie

    2016-03-01

    The high-speed, high-efficient, compact phase modulator array is indispensable in the Optical-phased array (OPA) which has been considered as a promising technology for realizing flexible and efficient beam steering. In our research, two methods are presented to utilize high-contrast grating (HCG) as high-efficient phase modulator. One is that HCG possesses high-Q resonances that origins from the cancellation of leaky waves. As a result, sharp resonance peaks appear on the reflection spectrum thus HCGs can be utilized as efficient phase shifters. Another is that low-Q mode HCG is utilized as ultra-lightweight mirror. With MEMS technology, small HCG displacement (~50 nm) leads to large phase change (~1.7π). Effective beam steering is achieved in Connie Chang-Hasnian's group. On the other hand, we theoretically and experimentally investigate the system design for silicon-based optical phased array, including the star coupler, phased array, emission elements and far-field patterns. Further, the non-uniform optical phased array is presented.

  10. A Micro Fluorescent Activated Cell Sorter for Astrobiology Applications

    NASA Technical Reports Server (NTRS)

    Platt, Donald W.; Hoover, Richard B.

    2009-01-01

    A micro-scale Fluorescent Activated Cell Sorter (microFACS) for astrobiology applications is under development. This device is designed to have a footprint of 7 cm x 7 cm x 4 cm and allow live-dead counts and sorting of cells that have fluorescent characteristics from staining. The FACS system takes advantage of microfluidics to create a cell sorter that can fit in the palm of the hand. A micron-scale channel allows cells to pass by a blue diode which causes emission of marker-expressed cells which are detected by a filtered photodetector. A small microcontroller then counts cells and operates high speed valves to select which chamber the cell is collected in (a collection chamber or a waste chamber). Cells with the expressed characteristic will be collected in the collection chamber. This system has been built and is currently being tested. We are also designing a system with integrated MEMS-based pumps and valves for a small and compact unit to fly on small satellite-based biology experiments.

  11. Manufacturing of Liquid-Embedded Elastomers for Stretchable Electronics

    NASA Astrophysics Data System (ADS)

    Kramer, Rebecca; Majidi, Carmel; Weaver, James; Wood, Robert

    2013-03-01

    Future generations of robots, electronics, and assistive medical devices will include systems that are soft, elastically deformable, and may adapt their functionality in unstructured environments. This will require soft active materials for power circuits and sensing of deformation and contact pressure. As the demand for increased elasticity of electrical components heightens, the challenges for functionality revert to basic questions of fabrication, materials, and design. Several designs for soft sensory skins (including strain, pressure and curvature sensors) based on a liquid-embedded-elastomer approach have been developed. This talk will highlight new ``soft MEMS'' manufacturing techniques based on wetting behavior between gallium-indium alloys and elastomers with varying microtextured surface topography. Supported by Harvard MRSEC and the Wyss Institute

  12. Thermo-optically tunable thin film devices

    NASA Astrophysics Data System (ADS)

    Domash, Lawrence H.

    2003-10-01

    We report advances in tunable thin film technology and demonstration of multi-cavity tunable filters. Thin film interference coatings are the most widely used optical technology for telecom filtering, but until recently no tunable versions have been known except for mechanically rotated filters. We describe a new approach to broadly tunable components based on the properties of semiconductor thin films with large thermo-optic coefficients. The technology is based on amorphous silicon deposited by plasma-enhanced chemical vapor deposition (PECVD), a process adapted for telecom applications from its origins in the flat-panel display and solar cell industries. Unlike MEMS devices, tunable thin films can be constructed in sophisticated multi-cavity, multi-layer optical designs.

  13. Miniaturization of components and systems for space using MEMS-technology

    NASA Astrophysics Data System (ADS)

    Grönland, Tor-Arne; Rangsten, Pelle; Nese, Martin; Lang, Martin

    2007-06-01

    Development of MEMS-based (micro electro mechanical system) components and subsystems for space applications has been pursued by various research groups and organizations around the world for at least two decades. The main driver for developing MEMS-based components for space is the miniaturization that can be achieved. Miniaturization can not only save orders of magnitude in mass and volume of individual components, but it can also allow increased redundancy, and enable novel spacecraft designs and mission scenarios. However, the commercial breakthrough of MEMS has not occurred within the space business as it has within other branches such as the IT/telecom or automotive industries, or as it has in biotech or life science applications. A main explanation to this is the highly conservative attitude to new technology within the space community. This conservatism is in many senses motivated by a very low risk acceptance in the few and costly space projects that actually ends with a space flight. To overcome this threshold there is a strong need for flight opportunities where reasonable risks can be accepted. Currently there are a few flight opportunities allowing extensive use of new technology in space, but one of the exceptions is the PRISMA program. PRISMA is an international (Sweden, Germany, France, Denmark, Norway, Greece) technology demonstration program with focus on rendezvous and formation flying. It is a two satellite LEO mission with a launch scheduled for the first half of 2009. On PRISMA, a number of novel technologies e.g. RF metrology sensor for Darwin, autonomous formation flying based on GPS and vision-based sensors, ADN-based "green propulsion" will be demonstrated in space for the first time. One of the satellites will also have a miniaturized propulsion system onboard based on MEMS-technology. This novel propulsion system includes two microthruster modules, each including four thrusters with micro- to milli-Newton thrust capability. The novelty of this micropropulsion system is that all critical components such as thrust chamber/nozzle assembly including internal heaters, valves and filters are manufactured using MEMS technology. Moreover, miniaturized pressure sensors, relying on MEMS technology, is also part of the system as a self-standing component. The flight opportunity on PRISMA represents one of the few and thus important opportunities to demonstrate MEMS technology in space. The present paper aims at describing this development effort and highlights the benefits of miniaturized components and systems for space using MEMS technology.

  14. A low-noise MEMS accelerometer for unattended ground sensor applications

    NASA Astrophysics Data System (ADS)

    Speller, Kevin E.; Yu, Duli

    2004-09-01

    A low-noise micro-machined servo accelerometer has been developed for use in Unattended Ground Sensors (UGS). Compared to conventional coil-and-magnet based velocity transducers, this Micro-Electro-Mechanical System (MEMS) accelerometer offers several key benefits for battlefield monitoring. Many UGS require a compass to determine deployment orientation with respect to magnetic North. This orientation information is critical for determining the bearing of incoming signals. Conventional sensors with sensing technology based on a permanent magnet can cause interference with a compass when used in close proximity. This problem is solved with a MEMS accelerometer which does not require any magnetic materials. Frequency information below 10 Hz is valuable for identification of signal sources. Conventional seismometers used in UGS are typically limited in frequency response from 20 to 200 Hz. The MEMS accelerometer has a flat frequency response from DC to 5 kHz. The wider spectrum of signals received improves detection, classification and monitoring on the battlefield. The DC-coupled output of the MEMS accelerometer also has the added benefit of providing tilt orientation data for the deployed UGS. Other performance parameters of the MEMS accelerometer that are important to UGS such as size, weight, shock survivability, phase response, distortion, and cross-axis rejection will be discussed. Additionally, field test data from human footsteps recorded with the MEMS accelerometer will be presented.

  15. A novel approach to the analysis of squeezed-film air damping in microelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Yang, Weilin; Li, Hongxia; Chatterjee, Aveek N.; Elfadel, Ibrahim (Abe M.; Ender Ocak, Ilker; Zhang, TieJun

    2017-01-01

    Squeezed-film damping (SFD) is a phenomenon that significantly affects the performance of micro-electro-mechanical systems (MEMS). The total damping force in MEMS mainly include the viscous damping force and elastic damping force. Quality factor (Q factor) is usually used to evaluate the damping in MEMS. In this work, we measure the Q factor of a resonator through experiments in a wide range of pressure levels. In fact, experimental characterizations of MEMS have some limitations because it is difficult to conduct experiments at very high vacuum and also hard to differentiate the damping mechanisms from the overall Q factor measurements. On the other hand, classical theoretical analysis of SFD is restricted to strong assumptions and simple geometries. In this paper, a novel numerical approach, which is based on lattice Boltzmann simulations, is proposed to investigate SFD in MEMS. Our method considers the dynamics of squeezed air flow as well as fluid-solid interactions in MEMS. It is demonstrated that Q factor can be directly predicted by numerical simulation, and our simulation results agree well with experimental data. Factors that influence SFD, such as pressure, oscillating amplitude, and driving frequency, are investigated separately. Furthermore, viscous damping and elastic damping forces are quantitatively compared based on comprehensive simulation. The proposed numerical approach as well as experimental characterization enables us to reveal the insightful physics of squeezed-film air damping in MEMS.

  16. Micromirror-based manipulation of synchrotron x-ray beams

    NASA Astrophysics Data System (ADS)

    Walko, D. A.; Chen, Pice; Jung, I. W.; Lopez, D.; Schwartz, C. P.; Shenoy, G. K.; Wang, Jin

    2017-08-01

    Synchrotron beamlines typically use macroscopic, quasi-static optics to manipulate x-ray beams. We present the use of dynamic microelectromechanical systems-based optics (MEMS) to temporally modulate synchrotron x-ray beams. We demonstrate this concept using single-crystal torsional MEMS micromirrors oscillating at frequencies of 75 kHz. Such a MEMS micromirror, with lateral dimensions of a few hundred micrometers, can interact with x rays by operating in grazing-incidence reflection geometry; x rays are deflected only when an x-ray pulse is incident on the rotating micromirror under appropriate conditions, i.e., at an angle less than the critical angle for reflectivity. The time window for such deflections depends on the frequency and amplitude of the MEMS rotation. We demonstrate that reflection geometry can produce a time window of a few microseconds. We further demonstrate that MEMS optics can isolate x rays from a selected synchrotron bunch or group of bunches. With ray-trace simulations we explain the currently achievable time windows and suggest a path toward improvements.

  17. Gas detection with microelectromechanical Fabry-Perot interferometer technology in cell phone

    NASA Astrophysics Data System (ADS)

    Mannila, Rami; Hyypiö, Risto; Korkalainen, Marko; Blomberg, Martti; Kattelus, Hannu; Rissanen, Anna

    2015-06-01

    VTT Technical Research Centre of Finland has developed a miniaturized optical sensor for gas detection in a cell phone. The sensor is based on a microelectromechanical (MEMS) Fabry-Perot interferometer, which is a structure with two highly reflective surfaces separated by a tunable air gap. The MEMS FPI is a monolithic device, i.e. it is made entirely on one substrate in a batch process, without assembling separate pieces together. The gap is adjusted by moving the upper mirror with electrostatic force, so there are no actual moving parts. VTT has designed and manufactured a MEMS FPI based carbon dioxide sensor demonstrator which is integrated to a cell phone shield cover. The demonstrator contains light source, gas cell, MEMS FPI, detector, control electronics and two coin cell batteries as a power source. It is connected to the cell phone by Bluetooth. By adjusting the wavelength range and customizing the MEMS FPI structure, it is possible to selectively sense multiple gases.

  18. A geometrical defect detection method for non-silicon MEMS part based on HU moment invariants of skeleton image

    NASA Astrophysics Data System (ADS)

    Cheng, Xu; Jin, Xin; Zhang, Zhijing; Lu, Jun

    2014-01-01

    In order to improve the accuracy of geometrical defect detection, this paper presented a method based on HU moment invariants of skeleton image. This method have four steps: first of all, grayscale images of non-silicon MEMS parts are collected and converted into binary images, secondly, skeletons of binary images are extracted using medialaxis- transform method, and then HU moment invariants of skeleton images are calculated, finally, differences of HU moment invariants between measured parts and qualified parts are obtained to determine whether there are geometrical defects. To demonstrate the availability of this method, experiments were carried out between skeleton images and grayscale images, and results show that: when defects of non-silicon MEMS part are the same, HU moment invariants of skeleton images are more sensitive than that of grayscale images, and detection accuracy is higher. Therefore, this method can more accurately determine whether non-silicon MEMS parts qualified or not, and can be applied to nonsilicon MEMS part detection system.

  19. MEMS-Based Communications Systems for Space-Based Applications

    NASA Technical Reports Server (NTRS)

    DeLosSantos, Hector J.; Brunner, Robert A.; Lam, Juan F.; Hackett, Le Roy H.; Lohr, Ross F., Jr.; Larson, Lawrence E.; Loo, Robert Y.; Matloubian, Mehran; Tangonan, Gregory L.

    1995-01-01

    As user demand for higher capacity and flexibility in communications satellites increases, new ways to cope with the inherent limitations posed by the prohibitive mass and power consumption, needed to satisfy those requirements, are under investigation. Recent studies suggest that while new satellite architectures are necessary to enable multi-user, multi-data rate, multi-location satellite links, these new architectures will inevitably increase power consumption, and in turn, spacecraft mass, to such an extent that their successful implementation will demand novel lightweight/low power hardware approaches. In this paper, following a brief introduction to the fundamentals of communications satellites, we address the impact of micro-electro-mechanical systems (MEMS) technology, in particular micro-electro-mechanical (MEM) switches to mitigate the above mentioned problems and show that low-loss/wide bandwidth MEM switches will go a long way towards enabling higher capacity and flexibility space-based communications systems.

  20. A MEMS-based super fast dew point hygrometer—construction and medical applications

    NASA Astrophysics Data System (ADS)

    Jachowicz, Ryszard S.; Weremczuk, Jerzy; Paczesny, Daniel; Tarapata, Grzegorz

    2009-12-01

    The paper shows how MEMS (micro-electro-mechanical system) technology and a modified principle of fast temperature control (by heat injection instead of careful control of cooling) can considerably improve the dynamic parameters of dew point hygrometers. Some aspects of MEMS-type integrated sensor construction and technology, whole measurement system design, the control algorithm to run the system as well as empirical dynamic parameters from the tests are discussed too. The hygrometer can easily obtain five to six measurements per second with an uncertainty of less than 0.3 K. The meter range is between -10 °C and 40 °C dew point. In the second part of the paper (section 2), two different successful applications in medicine based on fast humidity measurements have been discussed. Some specific constructions of these super fast dew point hygrometers based on a MEMS sensor as well as limited empirical results from clinical tests have been reported too.

  1. 1.65 mm diameter forward-viewing confocal endomicroscopic catheter using a flip-chip bonded electrothermal MEMS fiber scanner.

    PubMed

    Seo, Yeong-Hyeon; Hwang, Kyungmin; Jeong, Ki-Hun

    2018-02-19

    We report a 1.65 mm diameter forward-viewing confocal endomicroscopic catheter using a flip-chip bonded electrothermal MEMS fiber scanner. Lissajous scanning was implemented by the electrothermal MEMS fiber scanner. The Lissajous scanned MEMS fiber scanner was precisely fabricated to facilitate flip-chip connection, and bonded with a printed circuit board. The scanner was successfully combined with a fiber-based confocal imaging system. A two-dimensional reflectance image of the metal pattern 'OPTICS' was successfully obtained with the scanner. The flip-chip bonded scanner minimizes electrical packaging dimensions. The inner diameter of the flip-chip bonded MEMS fiber scanner is 1.3 mm. The flip-chip bonded MEMS fiber scanner is fully packaged with a 1.65 mm diameter housing tube, 1 mm diameter GRIN lens, and a single mode optical fiber. The packaged confocal endomicroscopic catheter can provide a new breakthrough for diverse in-vivo endomicroscopic applications.

  2. Modeling nonlinearities in MEMS oscillators.

    PubMed

    Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A

    2013-08-01

    We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.

  3. Compact Micromachined Bandpass Filters for Infrared Planetary Spectroscopy

    NASA Technical Reports Server (NTRS)

    Brown, Ari D.; Aslam, Shahid; Chervenak, James A.; Huang, Wei-Chung; Merrell, Willie; Quijada, Manuel

    2011-01-01

    The thermal instrument strawman payload of the Jupiter Europa Orbiter on the Europa Jupiter Science Mission will map out thermal anomalies, the structure, and atmospheric conditions of Europa and Jupiter within the 7-100 micron spectral range. One key requirement for the payload is that the mass cannot exceed 3.7 kg. Consequently, a new generation of light-weight miniaturized spectrometers needs to be developed. On the path toward developing these spectrometers is development of ancillary miniaturized spectroscopic components. In this paper, we present a strategy for making radiation hard and low mass FIR band pass metal mesh filters. Our strategy involves using MEMS-based fabrication techniques, which will permit the quasi-optical filter structures to be made with micron-scale precision. This will enable us to achieve tight control over both the pass band of the filter and the micromachined silicon support structure architecture, which will facilitate integration of the filters for a variety of applications.

  4. Vision sensor and dual MEMS gyroscope integrated system for attitude determination on moving base

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoting; Sun, Changku; Wang, Peng; Huang, Lu

    2018-01-01

    To determine the relative attitude between the objects on a moving base and the base reference system by a MEMS (Micro-Electro-Mechanical Systems) gyroscope, the motion information of the base is redundant, which must be removed from the gyroscope. Our strategy is to add an auxiliary gyroscope attached to the reference system. The master gyroscope is to sense the total motion, and the auxiliary gyroscope is to sense the motion of the moving base. By a generalized difference method, relative attitude in a non-inertial frame can be determined by dual gyroscopes. With the vision sensor suppressing accumulative drift of the MEMS gyroscope, the vision and dual MEMS gyroscope integration system is formed. Coordinate system definitions and spatial transform are executed in order to fuse inertial and visual data from different coordinate systems together. And a nonlinear filter algorithm, Cubature Kalman filter, is used to fuse slow visual data and fast inertial data together. A practical experimental setup is built up and used to validate feasibility and effectiveness of our proposed attitude determination system in the non-inertial frame on the moving base.

  5. Simulation, prediction, and genetic analyses of daily methane emissions in dairy cattle.

    PubMed

    Yin, T; Pinent, T; Brügemann, K; Simianer, H; König, S

    2015-08-01

    This study presents an approach combining phenotypes from novel traits, deterministic equations from cattle nutrition, and stochastic simulation techniques from animal breeding to generate test-day methane emissions (MEm) of dairy cows. Data included test-day production traits (milk yield, fat percentage, protein percentage, milk urea nitrogen), conformation traits (wither height, hip width, body condition score), female fertility traits (days open, calving interval, stillbirth), and health traits (clinical mastitis) from 961 first lactation Brown Swiss cows kept on 41 low-input farms in Switzerland. Test-day MEm were predicted based on the traits from the current data set and 2 deterministic prediction equations, resulting in the traits labeled MEm1 and MEm2. Stochastic simulations were used to assign individual concentrate intake in dependency of farm-type specifications (requirement when calculating MEm2). Genetic parameters for MEm1 and MEm2 were estimated using random regression models. Predicted MEm had moderate heritabilities over lactation and ranged from 0.15 to 0.37, with highest heritabilities around DIM 100. Genetic correlations between MEm1 and MEm2 ranged between 0.91 and 0.94. Antagonistic genetic correlations in the range from 0.70 to 0.92 were found for the associations between MEm2 and milk yield. Genetic correlations between MEm with days open and with calving interval increased from 0.10 at the beginning to 0.90 at the end of lactation. Genetic relationships between MEm2 and stillbirth were negative (0 to -0.24) from the beginning to the peak phase of lactation. Positive genetic relationships in the range from 0.02 to 0.49 were found between MEm2 with clinical mastitis. Interpretation of genetic (co)variance components should also consider the limitations when using data generated by prediction equations. Prediction functions only describe that part of MEm which is dependent on the factors and effects included in the function. With high probability, there are more important effects contributing to variations of MEm that are not explained or are independent from these functions. Furthermore, autocorrelations exist between indicator traits and predicted MEm. Nevertheless, this integrative approach, combining information from dairy cattle nutrition with dairy cattle genetics, generated novel traits which are difficult to record on a large scale. The simulated data basis for MEm was used to determine the size of a cow calibration group for genomic selection. A calibration group including 2,581 cows with MEm phenotypes was competitive with conventional breeding strategies. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. A MEMS Condenser Microphone-Based Intracochlear Acoustic Receiver.

    PubMed

    Pfiffner, Flurin; Prochazka, Lukas; Peus, Dominik; Dobrev, Ivo; Dalbert, Adrian; Sim, Jae Hoon; Kesterke, Rahel; Walraevens, Joris; Harris, Francesca; Roosli, Christof; Obrist, Dominik; Huber, Alexander

    2017-10-01

    Intracochlear sound pressure (ICSP) measurements are limited by the small dimensions of the human inner ear and the requirements imposed by the liquid medium. A robust intracochlear acoustic receiver (ICAR) for repeated use with a simple data acquisition system that provides the required high sensitivity and small dimensions does not yet exist. The work described in this report aims to fill this gap and presents a new microelectromechanical systems (MEMS) condenser microphone (CMIC)-based ICAR concept suitable for ICSP measurements in human temporal bones. The ICAR head consisted of a passive protective diaphragm (PD) sealing the MEMS CMIC against the liquid medium, enabling insertion into the inner ear. The components of the MEMS CMIC-based ICAR were expressed by a lumped element model (LEM) and compared to the performance of successfully fabricated ICARs. Good agreement was achieved between the LEM and the measurements with different sizes of the PD. The ICSP measurements in a human cadaver temporal bone yielded data in agreement with the literature. Our results confirm that the presented MEMS CMIC-based ICAR is a promising technology for measuring ICSP in human temporal bones in the audible frequency range. A sensor for evaluation of the biomechanical hearing process by quantification of ICSP is presented. The concept has potential as an acoustic receiver in totally implantable cochlear implants.

  7. MEMS analog light processing: an enabling technology for adaptive optical phase control

    NASA Astrophysics Data System (ADS)

    Gehner, Andreas; Wildenhain, Michael; Neumann, Hannes; Knobbe, Jens; Komenda, Ondrej

    2006-01-01

    Various applications in modern optics are demanding for Spatial Light Modulators (SLM) with a true analog light processing capability, e.g. the generation of arbitrary analog phase patterns for an adaptive optical phase control. For that purpose the Fraunhofer IPMS has developed a high-resolution MEMS Micro Mirror Array (MMA) with an integrated active-matrix CMOS address circuitry. The device provides 240 x 200 piston-type mirror elements with 40 μm pixel size, where each of them can be addressed and deflected independently at an 8bit height resolution with a vertical analog deflection range of up to 400 nm suitable for a 2pi phase modulation in the visible. Full user programmability and control is provided by a newly developed comfortable driver software for Windows XP based PCs supporting both a Graphical User Interface (GUI) for stand-alone operation with pre-defined data patterns as well as an open ActiveX programming interface for a direct data feed-through within a closed-loop environment. High-speed data communication is established by an IEEE1394a FireWire interface together with an electronic driving board performing the actual MMA programming and control at a maximum frame rate of up to 500 Hz. Successful application demonstrations have been given in eye aberration correction, coupling efficiency optimization into a monomode fiber, ultra-short laser pulse modulation and diffractive beam shaping. Besides a presentation of the basic device concept the paper will give an overview of the obtained results from these applications.

  8. Benefits Assessment for Tactical Runway Configuration Management Tool

    NASA Technical Reports Server (NTRS)

    Oseguera-Lohr, Rosa; Phojanamongkolkij, Nipa; Lohr, Gary; Fenbert, James W.

    2013-01-01

    The Tactical Runway Configuration Management (TRCM) software tool was developed to provide air traffic flow managers and supervisors with recommendations for airport configuration changes and runway usage. The objective for this study is to conduct a benefits assessment at Memphis (MEM), Dallas Fort-Worth (DFW) and New York's John F. Kennedy (JFK) airports using the TRCM tool. Results from simulations using the TRCM-generated runway configuration schedule are compared with results using historical schedules. For the 12 days of data used in this analysis, the transit time (arrival fix to spot on airport movement area for arrivals, or spot to departure fix for departures) for MEM departures is greater (7%) than for arrivals (3%); for JFK, there is a benefit for arrivals (9%) but not for departures (-2%); for DFW, arrivals show a slight benefit (1%), but this is offset by departures (-2%). Departure queue length benefits show fewer aircraft in queue for JFK (29%) and MEM (11%), but not for DFW (-13%). Fuel savings for surface operations at MEM are seen for both arrivals and departures. At JFK there are fuel savings for arrivals, but these are offset by increased fuel use for departures. In this study, no surface fuel benefits resulted for DFW. Results suggest that the TRCM algorithm requires modifications for complex surface traffic operations that can cause taxi delays. For all three airports, the average number of changes in flow direction (runway configuration) recommended by TRCM was many times greater than the historical data; TRCM would need to be adapted to a particular airport's needs, to limit the number of changes to acceptable levels. The results from this analysis indicate the TRCM tool can provide benefits at some high-capacity airports. The magnitude of these benefits depends on many airport-specific factors and would require adaptation of the TRCM tool; a detailed assessment is needed prior to determining suitability for a particular airport.

  9. Temperature variation effects on stochastic characteristics for low-cost MEMS-based inertial sensor error

    NASA Astrophysics Data System (ADS)

    El-Diasty, M.; El-Rabbany, A.; Pagiatakis, S.

    2007-11-01

    We examine the effect of varying the temperature points on MEMS inertial sensors' noise models using Allan variance and least-squares spectral analysis (LSSA). Allan variance is a method of representing root-mean-square random drift error as a function of averaging times. LSSA is an alternative to the classical Fourier methods and has been applied successfully by a number of researchers in the study of the noise characteristics of experimental series. Static data sets are collected at different temperature points using two MEMS-based IMUs, namely MotionPakII and Crossbow AHRS300CC. The performance of the two MEMS inertial sensors is predicted from the Allan variance estimation results at different temperature points and the LSSA is used to study the noise characteristics and define the sensors' stochastic model parameters. It is shown that the stochastic characteristics of MEMS-based inertial sensors can be identified using Allan variance estimation and LSSA and the sensors' stochastic model parameters are temperature dependent. Also, the Kaiser window FIR low-pass filter is used to investigate the effect of de-noising stage on the stochastic model. It is shown that the stochastic model is also dependent on the chosen cut-off frequency.

  10. CNES reliability approach for the qualification of MEMS for space

    NASA Astrophysics Data System (ADS)

    Pressecq, Francis; Lafontan, Xavier; Perez, Guy; Fortea, Jean-Pierre

    2001-10-01

    This paper describes the reliability approach performs at CNES to evaluate MEMS for space application. After an introduction and a detailed state of the art on the space requirements and on the use of MEMS for space, different approaches for taking into account MEMS in the qualification phases are presented. CNES proposes improvement to theses approaches in term of failure mechanisms identification. Our approach is based on a design and test phase deeply linked with a technology study. This workflow is illustrated with an example: the case of a variable capacitance processed with MUMPS process is presented.

  11. Nanoionics-Based Switches for Radio-Frequency Applications

    NASA Technical Reports Server (NTRS)

    Nessel, James; Lee, Richard

    2010-01-01

    Nanoionics-based devices have shown promise as alternatives to microelectromechanical systems (MEMS) and semiconductor diode devices for switching radio-frequency (RF) signals in diverse systems. Examples of systems that utilize RF switches include phase shifters for electronically steerable phased-array antennas, multiplexers, cellular telephones and other radio transceivers, and other portable electronic devices. Semiconductor diode switches can operate at low potentials (about 1 to 3 V) and high speeds (switching times of the order of nanoseconds) but are characterized by significant insertion loss, high DC power consumption, low isolation, and generation of third-order harmonics and intermodulation distortion (IMD). MEMS-based switches feature low insertion loss (of the order of 0.2 dB), low DC power consumption (picowatts), high isolation (>30 dB), and low IMD, but contain moving parts, are not highly reliable, and must be operated at high actuation potentials (20 to 60 V) generated and applied by use of complex circuitry. In addition, fabrication of MEMS is complex, involving many processing steps. Nanoionics-based switches offer the superior RF performance and low power consumption of MEMS switches, without need for the high potentials and complex circuitry necessary for operation of MEMS switches. At the same time, nanoionics-based switches offer the high switching speed of semiconductor devices. Also, like semiconductor devices, nanoionics-based switches can be fabricated relatively inexpensively by use of conventional integrated-circuit fabrication techniques. More over, nanoionics-based switches have simple planar structures that can easily be integrated into RF power-distribution circuits.

  12. Method for integrating microelectromechanical devices with electronic circuitry

    DOEpatents

    Barron, Carole C.; Fleming, James G.; Montague, Stephen

    1999-01-01

    A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry on a common substrate. The MEM device can be fabricated within a substrate cavity and encapsulated with a sacrificial material. This allows the MEM device to be annealed and the substrate planarized prior to forming electronic circuitry on the substrate using a series of standard processing steps. After fabrication of the electronic circuitry, the electronic circuitry can be protected by a two-ply protection layer of titanium nitride (TiN) and tungsten (W) during an etch release process whereby the MEM device is released for operation by etching away a portion of a sacrificial material (e.g. silicon dioxide or a silicate glass) that encapsulates the MEM device. The etch release process is preferably performed using a mixture of hydrofluoric acid (HF) and hydrochloric acid (HCI) which reduces the time for releasing the MEM device compared to use of a buffered oxide etchant. After release of the MEM device, the TiN:W protection layer can be removed with a peroxide-based etchant without damaging the electronic circuitry.

  13. Miniaturized diffraction based interferometric distance measurement sensor

    NASA Astrophysics Data System (ADS)

    Kim, Byungki

    In this thesis, new metrology hardware is designed, fabricated, and tested to provide improvements over current MEMS metrology. The metrology system is a micromachined scanning interferometer (muSI) having a sub-nm resolution in a compact design. The proposed microinterferometer forms a phase sensitive diffraction grating with interferomeric sensitivity, while adding the capability of better lateral resolution by focusing the laser to a smaller spot size. A detailed diffraction model of the microinterferometer was developed to simulate the device performance and to suggest the location of photo detectors for integrated optoelectronics. A particular device is fabricated on a fused silica substrate using aluminum to form the deformable diffraction grating fingers and AZ P4620 photo resist (PR) for the microlens. The details of the fabrication processes are presented. The structure also enables optoelectronics to be integrated so that the interferometer with photo detectors can fit in an area that is 1 mm x 1 mm. The scanning results using a fixed grating muSI demonstrated that it could measure vibration profile as well as static vertical (less than a half wave length) and lateral dimension of MEMS. The muSI, which is integrated with photo diodes, demonstrated its operation by scanning a cMUT. The PID control has been tested and resulted in improvement in scanned images. The integrated muSI demonstrated that the deformable grating could be used to tune the measurement keep the interferometer in quadrature for highest sensitivity.

  14. Active Hearing Mechanisms Inspire Adaptive Amplification in an Acoustic Sensor System.

    PubMed

    Guerreiro, Jose; Reid, Andrew; Jackson, Joseph C; Windmill, James F C

    2018-06-01

    Over many millions of years of evolution, nature has developed some of the most adaptable sensors and sensory systems possible, capable of sensing, conditioning and processing signals in a very power- and size-effective manner. By looking into biological sensors and systems as a source of inspiration, this paper presents the study of a bioinspired concept of signal processing at the sensor level. By exploiting a feedback control mechanism between a front-end acoustic receiver and back-end neuronal based computation, a nonlinear amplification with hysteretic behavior is created. Moreover, the transient response of the front-end acoustic receiver can also be controlled and enhanced. A theoretical model is proposed and the concept is prototyped experimentally through an embedded system setup that can provide dynamic adaptations of a sensory system comprising a MEMS microphone placed in a closed-loop feedback system. It faithfully mimics the mosquito's active hearing response as a function of the input sound intensity. This is an adaptive acoustic sensor system concept that can be exploited by sensor and system designers within acoustics and ultrasonic engineering fields.

  15. Physics and evolution of thermophilic adaptation.

    PubMed

    Berezovsky, Igor N; Shakhnovich, Eugene I

    2005-09-06

    Analysis of structures and sequences of several hyperthermostable proteins from various sources reveals two major physical mechanisms of their thermostabilization. The first mechanism is "structure-based," whereby some hyperthermostable proteins are significantly more compact than their mesophilic homologues, while no particular interaction type appears to cause stabilization; rather, a sheer number of interactions is responsible for thermostability. Other hyperthermostable proteins employ an alternative, "sequence-based" mechanism of their thermal stabilization. They do not show pronounced structural differences from mesophilic homologues. Rather, a small number of apparently strong interactions is responsible for high thermal stability of these proteins. High-throughput comparative analysis of structures and complete genomes of several hyperthermophilic archaea and bacteria revealed that organisms develop diverse strategies of thermophilic adaptation by using, to a varying degree, two fundamental physical mechanisms of thermostability. The choice of a particular strategy depends on the evolutionary history of an organism. Proteins from organisms that originated in an extreme environment, such as hyperthermophilic archaea (Pyrococcus furiosus), are significantly more compact and more hydrophobic than their mesophilic counterparts. Alternatively, organisms that evolved as mesophiles but later recolonized a hot environment (Thermotoga maritima) relied in their evolutionary strategy of thermophilic adaptation on "sequence-based" mechanism of thermostability. We propose an evolutionary explanation of these differences based on physical concepts of protein designability.

  16. Development of a wireless MEMS multifunction sensor system and field demonstration of embedded sensors for monitoring concrete pavements : tech transfer summary.

    DOT National Transportation Integrated Search

    2016-08-01

    Micro-electromechanical sensors and systems- (MEMS)-based and : wireless-based smart-sensing technologies have, until now, rarely : been used for monitoring pavement response in the field, and the : requirements for using such smart sensing technolog...

  17. Holographic Adaptive Laser Optics System (HALOS): Fast, Autonomous Aberration Correction

    NASA Astrophysics Data System (ADS)

    Andersen, G.; MacDonald, K.; Gelsinger-Austin, P.

    2013-09-01

    We present an adaptive optics system which uses a multiplexed hologram to deconvolve the phase aberrations in an input beam. This wavefront characterization is extremely fast as it is based on simple measurements of the intensity of focal spots and does not require any computations. Furthermore, the system does not require a computer in the loop and is thus much cheaper, less complex and more robust as well. A fully functional, closed-loop prototype incorporating a 32-element MEMS mirror has been constructed. The unit has a footprint no larger than a laptop but runs at a bandwidth of 100kHz over an order of magnitude faster than comparable, conventional systems occupying a significantly larger volume. Additionally, since the sensing is based on parallel, all-optical processing, the speed is independent of actuator number running at the same bandwidth for one actuator as for a million. We are developing the HALOS technology with a view towards next-generation surveillance systems for extreme adaptive optics applications. These include imaging, lidar and free-space optical communications for unmanned aerial vehicles and SSA. The small volume is ideal for UAVs, while the high speed and high resolution will be of great benefit to the ground-based observation of space-based objects.

  18. Ball driven type MEMS SAD for artillery fuse

    NASA Astrophysics Data System (ADS)

    Seok, Jin Oh; Jeong, Ji-hun; Eom, Junseong; Lee, Seung S.; Lee, Chun Jae; Ryu, Sung Moon; Oh, Jong Soo

    2017-01-01

    The SAD (safety and arming device) is an indispensable fuse component that ensures safe and reliable performance during the use of ammunition. Because the application of electronic devices for smart munitions is increasing, miniaturization of the SAD has become one of the key issues for next-generation artillery fuses. Based on MEMS technology, various types of miniaturized SADs have been proposed and fabricated. However, none of them have been reported to have been used in actual munitions due to their lack of high impact endurance and complicated explosive train arrangements. In this research, a new MEMS SAD using a ball driven mechanism, is successfully demonstrated based on a UV LIGA (lithography, electroplating and molding) process. Unlike other MEMS SADs, both high impact endurance and simple structure were achieved by using a ball driven mechanism. The simple structural design also simplified the fabrication process and increased the processing yield. The ball driven type MEMS SAD performed successfully under the desired safe and arming conditions of a spin test and showed fine agreement with the FEM simulation result, conducted prior to its fabrication. A field test was also performed with a grenade launcher to evaluate the SAD performance in the firing environment. All 30 of the grenade samples equipped with the proposed MEMS SAD operated successfully under the high-G setback condition.

  19. Evaluation of the MEMS based portable respiratory training system with a tactile sensor for respiratory-gated radiotherapy

    NASA Astrophysics Data System (ADS)

    Moon, Sun Young; Yoon, Myonggeun; Chung, Mijoo; Chung, Weon Kuu; Kim, Dong Wook

    2017-10-01

    In respiratory-gated radiotherapy, it is important to maintain the regular respiratory cycles of patients. If patients undergo respiration training, their regular breathing pattern is affected. Therefore, we developed a respiratory training system based on a micro electromechanical system (MEMS) and evaluated the feasibility of the MEMS in radiotherapy. By comparing the measured signal before and after radiation exposure, we confirmed the effects of radiation. By evaluating the period of the electric signal emitted by a tactile sensor and its constancy, the performance of the tactile sensor was confirmed. Moreover, by comparing the delay between the motion of the MEMS and the electric signal from the tactile sensor, we confirmed the reaction time of the tactile sensor. The results showed that a baseline shift occurred for an accumulated dose of 400 Gy in the sensor, and both the amplitude and period changed. The period of the signal released by the tactile sensor was 5.39 and its standard deviation was 0.06. Considering the errors from the motion phantom, a standard deviation of 0.06 was desirable. The delay time was within 0.5 s and not distinguishable by a patient. We confirmed the performance of the MEMS and concluded that MEMS could be applied to patients for respiratory-gated radiotherapy.

  20. Design, fabrication, and evaluation of on-chip micro-supercapacitors

    NASA Astrophysics Data System (ADS)

    Beidaghi, Majid; Chen, Wei; Wang, Chunlei

    2011-06-01

    Development of miniaturized electronic systems has stimulated the demand for miniaturized power sources that can be integrated into such systems. Among the different micro power sources micro electrochemical energy storage and conversion devices are particularly attractive because of their high efficiency and relatively high energy density. Electrochemical micro-capacitors or micro-supercapacitors offer higher power density compared to micro-batteries and micro-fuel cells. In this paper, development of on-chip micro-supercapacitors based on interdigitated C-MEMS electrode microarrays is introduced. C-MEMS electrodes are employed both as electrode material for electric double layer capacitor (EDLC) or as three dimensional (3D) current collectors of EDLC or pseudo-capacitive materials. Recent advancements in fabrication methods of C-MEMS based micro-supercapacitors are discussed and electrochemical properties of C-MEMS electrodes and it composites are reviewed.

  1. MemStar: a one-shot Escherichia coli-based approach for high-level bacterial membrane protein production.

    PubMed

    Lee, Chiara; Kang, Hae Joo; Hjelm, Anna; Qureshi, Abdul Aziz; Nji, Emmanuel; Choudhury, Hassanul; Beis, Konstantinos; de Gier, Jan-Willem; Drew, David

    2014-10-16

    Optimising membrane protein production yields in Escherichiacoli can be time- and resource-consuming. Here, we present a simple and effective Membrane protein Single shot amplification recipe: MemStar. This one-shot amplification recipe is based on the E. coli strain Lemo21(DE3), the PASM-5052 auto-induction medium and, contradictorily, an IPTG induction step. Using MemStar, production yields for most bacterial membrane proteins tested were improved to reach an average of 5 mg L(-1) per OD600 unit, which is significantly higher than yields obtained with other common production strategies. With MemStar, we have been able to obtain new structural information for several transporters, including the sodium/proton antiporter NapA. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Feasibility of Frequency-Modulated Wireless Transmission for a Multi-Purpose MEMS-Based Accelerometer

    PubMed Central

    Sabato, Alessandro; Feng, Maria Q.

    2014-01-01

    Recent advances in the Micro Electro-Mechanical System (MEMS) technology have made wireless MEMS accelerometers an attractive tool for Structural Health Monitoring (SHM) of civil engineering structures. To date, sensors' low sensitivity and accuracy—especially at very low frequencies—have imposed serious limitations for their application in monitoring large-sized structures. Conventionally, the MEMS sensor's analog signals are converted to digital signals before radio-frequency (RF) wireless transmission. The conversion can cause a low sensitivity to the important low-frequency and low-amplitude signals. To overcome this difficulty, the authors have developed a MEMS accelerometer system, which converts the sensor output voltage to a frequency-modulated signal before RF transmission. This is achieved by using a Voltage to Frequency Conversion (V/F) instead of the conventional Analog to Digital Conversion (ADC). In this paper, a prototype MEMS accelerometer system is presented, which consists of a transmitter and receiver circuit boards. The former is equipped with a MEMS accelerometer, a V/F converter and a wireless RF transmitter, while the latter contains an RF receiver and a F/V converter for demodulating the signal. The efficacy of the MEMS accelerometer system in measuring low-frequency and low-amplitude dynamic responses is demonstrated through extensive laboratory tests and experiments on a flow-loop pipeline. PMID:25198003

  3. MemBrain: An Easy-to-Use Online Webserver for Transmembrane Protein Structure Prediction

    NASA Astrophysics Data System (ADS)

    Yin, Xi; Yang, Jing; Xiao, Feng; Yang, Yang; Shen, Hong-Bin

    2018-03-01

    Membrane proteins are an important kind of proteins embedded in the membranes of cells and play crucial roles in living organisms, such as ion channels, transporters, receptors. Because it is difficult to determinate the membrane protein's structure by wet-lab experiments, accurate and fast amino acid sequence-based computational methods are highly desired. In this paper, we report an online prediction tool called MemBrain, whose input is the amino acid sequence. MemBrain consists of specialized modules for predicting transmembrane helices, residue-residue contacts and relative accessible surface area of α-helical membrane proteins. MemBrain achieves a prediction accuracy of 97.9% of A TMH, 87.1% of A P, 3.2 ± 3.0 of N-score, 3.1 ± 2.8 of C-score. MemBrain-Contact obtains 62%/64.1% prediction accuracy on training and independent dataset on top L/5 contact prediction, respectively. And MemBrain-Rasa achieves Pearson correlation coefficient of 0.733 and its mean absolute error of 13.593. These prediction results provide valuable hints for revealing the structure and function of membrane proteins. MemBrain web server is free for academic use and available at www.csbio.sjtu.edu.cn/bioinf/MemBrain/. [Figure not available: see fulltext.

  4. Feasibility of frequency-modulated wireless transmission for a multi-purpose MEMS-based accelerometer.

    PubMed

    Sabato, Alessandro; Feng, Maria Q

    2014-09-05

    Recent advances in the Micro Electro-Mechanical System (MEMS) technology have made wireless MEMS accelerometers an attractive tool for Structural Health Monitoring (SHM) of civil engineering structures. To date, sensors' low sensitivity and accuracy--especially at very low frequencies--have imposed serious limitations for their application in monitoring large-sized structures. Conventionally, the MEMS sensor's analog signals are converted to digital signals before radio-frequency (RF) wireless transmission. The conversion can cause a low sensitivity to the important low-frequency and low-amplitude signals. To overcome this difficulty, the authors have developed a MEMS accelerometer system, which converts the sensor output voltage to a frequency-modulated signal before RF transmission. This is achieved by using a Voltage to Frequency Conversion (V/F) instead of the conventional Analog to Digital Conversion (ADC). In this paper, a prototype MEMS accelerometer system is presented, which consists of a transmitter and receiver circuit boards. The former is equipped with a MEMS accelerometer, a V/F converter and a wireless RF transmitter, while the latter contains an RF receiver and a F/V converter for demodulating the signal. The efficacy of the MEMS accelerometer system in measuring low-frequency and low-amplitude dynamic responses is demonstrated through extensive laboratory tests and experiments on a flow-loop pipeline.

  5. Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation

    PubMed Central

    MANEL, STÉPHANIE; GUGERLI, FELIX; THUILLER, WILFRIED; ALVAREZ, NADIR; LEGENDRE, PIERRE; HOLDEREGGER, ROLF; GIELLY, LUDOVIC; TABERLET, PIERRE

    2014-01-01

    Identifying adaptive genetic variation is a challenging task, in particular in non-model species for which genomic information is still limited or absent. Here, we studied distribution patterns of amplified fragment length polymorphisms (AFLPs) in response to environmental variation, in 13 alpine plant species consistently sampled across the entire European Alps. Multiple linear regressions were performed between AFLP allele frequencies per site as dependent variables and two categories of independent variables, namely Moran’s eigenvector map MEM variables (to account for spatial and unaccounted environmental variation, and historical demographic processes) and environmental variables. These associations allowed the identification of 153 loci of ecological relevance. Univariate regressions between allele frequency and each environmental factor further showed that loci of ecological relevance were mainly correlated with MEM variables. We found that precipitation and temperature were the best environmental predictors, whereas topographic factors were rarely involved in environmental associations. Climatic factors, subject to rapid variation as a result of the current global warming, are known to strongly influence the fate of alpine plants. Our study shows, for the first time for a large number of species, that the same environmental variables are drivers of plant adaptation at the scale of a whole biome, here the European Alps. PMID:22680783

  6. Multi-Dimensional Sensors and Sensing Systems

    NASA Technical Reports Server (NTRS)

    Stetter, Joseph R. (Inventor); Shirke, Amol G. (Inventor)

    2014-01-01

    A universal microelectromechanical (MEMS) nano-sensor platform having a substrate and conductive layer deposited in a pattern on the surface to make several devices at the same time, a patterned insulation layer, wherein the insulation layer is configured to expose one or more portions of the conductive layer, and one or more functionalization layers deposited on the exposed portions of the conductive layer to make multiple sensing capability on a single MEMS fabricated device. The functionalization layers are adapted to provide one or more transducer sensor classes selected from the group consisting of: radiant, electrochemical, electronic, mechanical, magnetic, and thermal sensors for chemical and physical variables and producing more than one type of sensor for one or more significant parameters that need to be monitored.

  7. Design and simulation of MEMS vector hydrophone with reduced cross section based meander beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Manoj; Dutta, S.; Pal, Ramjay

    MEMS based vector hydrophone is being one of the key device in the underwater communications. In this paper, we presented a bio-inspired MEMS vector hydrophone. The hydrophone structure consists of a proof mass suspended by four meander type beams with reduced cross-section. Modal patterns of the structure were studied. First three modal frequencies of the hydrophone structure were found to be 420 Hz, 420 Hz and 1646 Hz respectively. The deflection and stress of the hydrophone is found have linear behavior in the 1 µPa – 1Pa pressure range.

  8. Measurements of True Leak Rates of MEMS Packages

    PubMed Central

    Han, Bongtae

    2012-01-01

    Gas transport mechanisms that characterize the hermetic behavior of MEMS packages are fundamentally different depending upon which sealing materials are used in the packages. In metallic seals, gas transport occurs through a few nanoscale leak channels (gas conduction) that are produced randomly during the solder reflow process, while gas transport in polymeric seals occurs through the bulk material (gas diffusion). In this review article, the techniques to measure true leak rates of MEMS packages with the two sealing materials are described and discussed: a Helium mass spectrometer based technique for metallic sealing and a gas diffusion based model for polymeric sealing. PMID:22736994

  9. Design of a Novel MEMS Microgripper with Rotatory Electrostatic Comb-Drive Actuators for Biomedical Applications.

    PubMed

    Velosa-Moncada, Luis A; Aguilera-Cortés, Luz Antonio; González-Palacios, Max A; Raskin, Jean-Pierre; Herrera-May, Agustin L

    2018-05-22

    Primary tumors of patients can release circulating tumor cells (CTCs) to flow inside of their blood. The CTCs have different mechanical properties in comparison with red and white blood cells, and their detection may be employed to study the efficiency of medical treatments against cancer. We present the design of a novel MEMS microgripper with rotatory electrostatic comb-drive actuators for mechanical properties characterization of cells. The microgripper has a compact structural configuration of four polysilicon layers and a simple performance that control the opening and closing displacements of the microgripper tips. The microgripper has a mobile arm, a fixed arm, two different actuators and two serpentine springs, which are designed based on the SUMMiT V surface micromachining process from Sandia National Laboratories. The proposed microgripper operates at its first rotational resonant frequency and its mobile arm has a controlled displacement of 40 µm at both opening and closing directions using dc and ac bias voltages. Analytical models are developed to predict the stiffness, damping forces and first torsional resonant frequency of the microgripper. In addition, finite element method (FEM) models are obtained to estimate the mechanical behavior of the microgripper. The results of the analytical models agree very well respect to FEM simulations. The microgripper has a first rotational resonant frequency of 463.8 Hz without gripped cell and it can operate up to with maximum dc and ac voltages of 23.4 V and 129.2 V, respectively. Based on the results of the analytical and FEM models about the performance of the proposed microgripper, it could be used as a dispositive for mechanical properties characterization of circulating tumor cells (CTCs).

  10. Design of a Novel MEMS Microgripper with Rotatory Electrostatic Comb-Drive Actuators for Biomedical Applications

    PubMed Central

    Velosa-Moncada, Luis A.; Aguilera-Cortés, Luz Antonio; Raskin, Jean-Pierre

    2018-01-01

    Primary tumors of patients can release circulating tumor cells (CTCs) to flow inside of their blood. The CTCs have different mechanical properties in comparison with red and white blood cells, and their detection may be employed to study the efficiency of medical treatments against cancer. We present the design of a novel MEMS microgripper with rotatory electrostatic comb-drive actuators for mechanical properties characterization of cells. The microgripper has a compact structural configuration of four polysilicon layers and a simple performance that control the opening and closing displacements of the microgripper tips. The microgripper has a mobile arm, a fixed arm, two different actuators and two serpentine springs, which are designed based on the SUMMiT V surface micromachining process from Sandia National Laboratories. The proposed microgripper operates at its first rotational resonant frequency and its mobile arm has a controlled displacement of 40 µm at both opening and closing directions using dc and ac bias voltages. Analytical models are developed to predict the stiffness, damping forces and first torsional resonant frequency of the microgripper. In addition, finite element method (FEM) models are obtained to estimate the mechanical behavior of the microgripper. The results of the analytical models agree very well respect to FEM simulations. The microgripper has a first rotational resonant frequency of 463.8 Hz without gripped cell and it can operate up to with maximum dc and ac voltages of 23.4 V and 129.2 V, respectively. Based on the results of the analytical and FEM models about the performance of the proposed microgripper, it could be used as a dispositive for mechanical properties characterization of circulating tumor cells (CTCs). PMID:29789474

  11. Frequency adjustable MEMS vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Podder, P.; Constantinou, P.; Amann, A.; Roy, S.

    2016-10-01

    Ambient mechanical vibrations offer an attractive solution for powering the wireless sensor nodes of the emerging “Internet-of-Things”. However, the wide-ranging variability of the ambient vibration frequencies pose a significant challenge to the efficient transduction of vibration into usable electrical energy. This work reports the development of a MEMS electromagnetic vibration energy harvester where the resonance frequency of the oscillator can be adjusted or tuned to adapt to the ambient vibrational frequency. Micro-fabricated silicon spring and double layer planar micro-coils along with sintered NdFeB micro-magnets are used to construct the electromagnetic transduction mechanism. Furthermore, another NdFeB magnet is adjustably assembled to induce variable magnetic interaction with the transducing magnet, leading to significant change in the spring stiffness and resonance frequency. Finite element analysis and numerical simulations exhibit substantial frequency tuning range (25% of natural resonance frequency) by appropriate adjustment of the repulsive magnetic interaction between the tuning and transducing magnet pair. This demonstrated method of frequency adjustment or tuning have potential applications in other MEMS vibration energy harvesters and micromechanical oscillators.

  12. Fatty acid metabolism in CD8+ T cell memory: Challenging current concepts.

    PubMed

    Raud, Brenda; McGuire, Peter J; Jones, Russell G; Sparwasser, Tim; Berod, Luciana

    2018-05-01

    CD8 + T cells are key members of the adaptive immune response against infections and cancer. As we discuss in this review, these cells can present diverse metabolic requirements, which have been intensely studied during the past few years. Our current understanding suggests that aerobic glycolysis is a hallmark of activated CD8 + T cells, while naive and memory (T mem ) cells often rely on oxidative phosphorylation, and thus mitochondrial metabolism is a crucial determinant of CD8 + T mem cell development. Moreover, it has been proposed that CD8 + T mem cells have a specific requirement for the oxidation of long-chain fatty acids (LC-FAO), a process modulated in lymphocytes by the enzyme CPT1A. However, this notion relies heavily on the metabolic analysis of in vitro cultures and on chemical inhibition of CPT1A. Therefore, we introduce more recent studies using genetic models to demonstrate that CPT1A-mediated LC-FAO is dispensable for the development of CD8 + T cell memory and protective immunity, and question the use of chemical inhibitors to target this enzyme. We discuss insights obtained from those and other studies analyzing the metabolic characteristics of CD8 + T mem cells, and emphasize how T cells exhibit flexibility in their choice of metabolic fuel. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. MEMS-based thin-film fuel cells

    DOEpatents

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2003-10-28

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  14. NASA Tech Briefs, June 2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics covered include: COTS MEMS Flow-Measurement Probes; Measurement of an Evaporating Drop on a Reflective Substrate; Airplane Ice Detector Based on a Microwave Transmission Line; Microwave/Sonic Apparatus Measures Flow and Density in Pipe; Reducing Errors by Use of Redundancy in Gravity Measurements; Membrane-Based Water Evaporator for a Space Suit; Compact Microscope Imaging System with Intelligent Controls; Chirped-Superlattice, Blocked-Intersubband QWIP; Charge-Dissipative Electrical Cables; Deep-Sea Video Cameras Without Pressure Housings; RFID and Memory Devices Fabricated Integrally on Substrates; Analyzing Dynamics of Cooperating Spacecraft; Spacecraft Attitude Maneuver Planning Using Genetic Algorithms; Forensic Analysis of Compromised Computers; Document Concurrence System; Managing an Archive of Images; MPT Prediction of Aircraft-Engine Fan Noise; Improving Control of Two Motor Controllers; Electro-deionization Using Micro-separated Bipolar Membranes; Safer Electrolytes for Lithium-Ion Cells; Rotating Reverse-Osmosis for Water Purification; Making Precise Resonators for Mesoscale Vibratory Gyroscopes; Robotic End Effectors for Hard-Rock Climbing; Improved Nutation Damper for a Spin-Stabilized Spacecraft; Exhaust Nozzle for a Multitube Detonative Combustion Engine; Arc-Second Pointer for Balloon-Borne Astronomical Instrument; Compact, Automated Centrifugal Slide-Staining System; Two-Armed, Mobile, Sensate Research Robot; Compensating for Effects of Humidity on Electronic Noses; Brush/Fin Thermal Interfaces; Multispectral Scanner for Monitoring Plants; Coding for Communication Channels with Dead-Time Constraints; System for Better Spacing of Airplanes En Route; Algorithm for Training a Recurrent Multilayer Perceptron; Orbiter Interface Unit and Early Communication System; White-Light Nulling Interferometers for Detecting Planets; and Development of Methodology for Programming Autonomous Agents.

  15. Micro-masonry for 3D Additive Micromanufacturing

    PubMed Central

    Keum, Hohyun; Kim, Seok

    2014-01-01

    Transfer printing is a method to transfer solid micro/nanoscale materials (herein called ‘inks’) from a substrate where they are generated to a different substrate by utilizing elastomeric stamps. Transfer printing enables the integration of heterogeneous materials to fabricate unexampled structures or functional systems that are found in recent advanced devices such as flexible and stretchable solar cells and LED arrays. While transfer printing exhibits unique features in material assembly capability, the use of adhesive layers or the surface modification such as deposition of self-assembled monolayer (SAM) on substrates for enhancing printing processes hinders its wide adaptation in microassembly of microelectromechanical system (MEMS) structures and devices. To overcome this shortcoming, we developed an advanced mode of transfer printing which deterministically assembles individual microscale objects solely through controlling surface contact area without any surface alteration. The absence of an adhesive layer or other modification and the subsequent material bonding processes ensure not only mechanical bonding, but also thermal and electrical connection between assembled materials, which further opens various applications in adaptation in building unusual MEMS devices. PMID:25146178

  16. Breast Cancer and Estrogen Biosynthesis in Adipose Tissue

    DTIC Science & Technology

    1998-10-01

    transferred to a nitrocellulose mem - brane. The transferred proteins were subjected to a denaturation/rena- turation process and hybridized to the 32P...aromatase expression in adipose tissue has been recently observed to be regulated by mem - bers of the interleukin-6 (IL-6) cytokine family. Based on...shown in human adipose stromal cells that the stimulatory effects of serum on aromatase expression can be mimicked by mem - bers of the interleukin-6

  17. Dual Mode Thin Film Bulk Acoustic Resonators (FBARs) Based on AlN, ZnO and GaN Films with Tilted c-Axis Orientation

    DTIC Science & Technology

    2010-01-01

    TERMS MEMS , acoustic wave devices, acoustic wave sensors Qing-Ming Wang University of Pittsburgh 123 University Place University Club Pittsburgh, PA...resonators,” Proc. SPIE Vol. 6223, 62230I, Micro ( MEMS ) and Nanotechnologies for Space Applications; Thomas George, Zhong-Yang Cheng; Eds. (May...microelectromechanical resonators has been recognized as a technological challenge in the current microelectronics and MEMS development. The

  18. An Accurate and Fault-Tolerant Target Positioning System for Buildings Using Laser Rangefinders and Low-Cost MEMS-Based MARG Sensors

    PubMed Central

    Zhao, Lin; Guan, Dongxue; Landry, René Jr.; Cheng, Jianhua; Sydorenko, Kostyantyn

    2015-01-01

    Target positioning systems based on MEMS gyros and laser rangefinders (LRs) have extensive prospects due to their advantages of low cost, small size and easy realization. The target positioning accuracy is mainly determined by the LR’s attitude derived by the gyros. However, the attitude error is large due to the inherent noises from isolated MEMS gyros. In this paper, both accelerometer/magnetometer and LR attitude aiding systems are introduced to aid MEMS gyros. A no-reset Federated Kalman Filter (FKF) is employed, which consists of two local Kalman Filters (KF) and a Master Filter (MF). The local KFs are designed by using the Direction Cosine Matrix (DCM)-based dynamic equations and the measurements from the two aiding systems. The KFs can estimate the attitude simultaneously to limit the attitude errors resulting from the gyros. Then, the MF fuses the redundant attitude estimates to yield globally optimal estimates. Simulation and experimental results demonstrate that the FKF-based system can improve the target positioning accuracy effectively and allow for good fault-tolerant capability. PMID:26512672

  19. Study of condensation of refrigerants in a micro-channel for development of future compact micro-channel condensers

    NASA Astrophysics Data System (ADS)

    Chowdhury, Sourav

    2009-12-01

    Mini- and micro-channel technology has gained considerable ground in the recent years in industry and is favored due to its several advantages stemming from its high surface to volume ratio and high values of proof pressure it can withstand. Micro-channel technology has paved the way to development of highly compact heat exchangers with low cost and mass penalties. In the present work, the issues related to the sizing of compact micro-channel condensers have been explored. The considered designs encompass both the conventional and MEMS fabrication techniques. In case of MEMS-fabricated micro-channel condenser, wet etching of the micro-channel structures, followed by bonding of two such wafers with silicon nitride layers at the interface was attempted. It was concluded that the silicon nitride bonding requires great care in terms of high degree of surface flatness and absence of roughness and also high degree of surface purity and thus cannot be recommended for mass fabrication. Following this investigation, a carefully prepared experimental setup and test micro-channel with hydraulic diameter 700 mum and aspect ratio 7:1 was fabricated and overall heat transfer and pressure drop aspects of two condensing refrigerants, R134a and R245fa were studied at a variety of test conditions. To the best of author's knowledge, so far no data has been reported in the literature on condensation in such high aspect ratio micro-channels. Most of the published experimental works on condensation of refrigerants are concerning conventional hydraulic diameter channels (> 3mm) and only recently some experimental data has been reported in the sub-millimeter scale channels for which the surface tension and viscosity effects play a dominant role and the effect of gravity is diminished. It is found that both experimental data and empirically-derived correlations tend to under-predict the present data by an average of 25%. The reason for this deviation could be because a high aspect ratio channel tends to collect the condensate in the corners of its cross-section leaving only a thin liquid film on the flat side surfaces for better heat transfer than in circular or low aspect ratio channels.

  20. High-speed wavefront control using MEMS micromirrors

    NASA Astrophysics Data System (ADS)

    Bifano, T. G.; Stewart, J. B.

    2005-08-01

    Over the past decade, a number of electrostatically-actuated MEMS deformable mirror devices have been used for adaptive control in beam-forming and imaging applications. One architecture that has been widely used is the silicon device developed by Boston University, consisting of a continuous or segmented mirror supported by post attachments to an array of parallel plate electrostatic actuators. MEMS deformable mirrors and segmented mirrors with up to 1024 of these actuators have been used in open loop and closed loop control systems to control wavefront errors. Frame rates as high as 11kHz have been demonstrated. Mechanically, the actuators used in this device exhibit a first-mode resonant frequency that is in the range of many tens of kilohertz up to a few hundred kilohertz. Viscous air damping has been found to limit operation at such high frequencies in air at standard pressure. Some applications in high-speed tracking and beam-forming could benefit from increased speed. In this paper, several approaches to achieving critically-damped performance with such MEMS DMs are detailed, and theoretical and experimental results are presented. One approach is to seal the MEMS DM in a full or partial vacuum environment, thereby affecting air damping. After vacuum sealing the device's predicted resonant behavior at tens of kilohertz was observed. In vacuum, the actuator's intrinsic material damping is quite small, resulting in considerable oscillation in step response. To alleviate this problem, a two-step actuation algorithm was employed. Precise control of a single actuator frequencies up to 100kHz without overshoot was demonstrated using this approach. Another approach to increasing actuation speed was to design actuators that reduce air damping effects. This is also demonstrated in the paper.

  1. Anti-ulcer and ulcer healing potentials of Musa sapientum peel extract in the laboratory rodents.

    PubMed

    Onasanwo, Samuel Adetunji; Emikpe, Benjamin Obukowho; Ajah, Austin Azubuike; Elufioye, Taiwo Olayemi

    2013-07-01

    This study investigated the anti-ulcer and ulcer healing potentials of the methanol extract of Musa sapientum peel in the laboratory rats. Methanol extract of the peels on Musa sapientum (MEMS) was evaluated for its anti-ulcer using alcohol-induced, aspirin-induced, and pyloric ligation-induced models, and for its ulcer healing employing acetic acid-induced ulcer models in rats. The findings from this experiment showed that MEMS (50, 100 and 200 mg/kg, b.w.) anti-ulcer and ulcer healing activity (P ≤ 0.05) is dose-dependent. Also, MEMS exhibited healing of the ulcer base in all the treated groups when compared with the control group. The outcomes of this experiment revealed that the anti-ulcer effect of MEMS may be due to its anti-secretory and cyto-protective activity. The healing of the ulcer base might not be unconnected with basic fibroblast growth factors responsible for epithelial regeneration.

  2. A novel multi-level IC-compatible surface microfabrication technology for MEMS with independently controlled lateral and vertical submicron transduction gaps

    NASA Astrophysics Data System (ADS)

    Cicek, Paul-Vahe; Elsayed, Mohannad; Nabki, Frederic; El-Gamal, Mourad

    2017-11-01

    An above-IC compatible multi-level MEMS surface microfabrication technology based on a silicon carbide structural layer is presented. The fabrication process flow provides optimal electrostatic transduction by allowing the creation of independently controlled submicron vertical and lateral gaps without the need for high resolution lithography. Adopting silicon carbide as the structural material, the technology ensures material, chemical and thermal compatibility with modern semiconductor nodes, reporting the lowest peak processing temperature (i.e. 200 °C) of all comparable works. This makes this process ideally suited for integrating capacitive-based MEMS directly above standard CMOS substrates. Process flow design and optimization are presented in the context of bulk-mode disk resonators, devices that are shown to exhibit improved performance with respect to previous generation flexural beam resonators, and that represent relatively complex MEMS structures. The impact of impending improvements to the fabrication technology is discussed.

  3. U.S. Army Corrosion Office's storage and quality requirements for military MEMS program

    NASA Astrophysics Data System (ADS)

    Zunino, J. L., III; Skelton, D. R.

    2007-04-01

    As the Army transforms into a more lethal, lighter and agile force, the technologies that support these systems must decrease in size while increasing in intelligence. Micro-electromechanical systems (MEMS) are one such technology that the Army and DOD will rely on heavily to accomplish these objectives. Conditions for utilization of MEMS by the military are unique. Operational and storage environments for the military are significantly different than those found in the commercial sector. Issues unique to the military include; high G-forces during gun launch, extreme temperature and humidity ranges, extended periods of inactivity (20 years plus) and interaction with explosives and propellants. The military operational environments in which MEMS will be stored or required to function are extreme and far surpass any commercial operating conditions. Security and encryption are a must for all MEMS communication, tracking, or data reporting devices employed by the military. Current and future military applications of MEMS devices include safety and arming devices, fuzing devices, various guidance systems, sensors/detectors, inertial measurement units, tracking devices, radio frequency devices, wireless Radio Frequency Identifications (RFIDs) and network systems, GPS's, radar systems, mobile base systems and information technology. MEMS embedded into these weapons systems will provide the military with new levels of speed, awareness, lethality, and information dissemination. The system capabilities enhanced by MEMS will translate directly into tactical and strategic military advantages.

  4. Modeling and Compensation of Random Drift of MEMS Gyroscopes Based on Least Squares Support Vector Machine Optimized by Chaotic Particle Swarm Optimization.

    PubMed

    Xing, Haifeng; Hou, Bo; Lin, Zhihui; Guo, Meifeng

    2017-10-13

    MEMS (Micro Electro Mechanical System) gyroscopes have been widely applied to various fields, but MEMS gyroscope random drift has nonlinear and non-stationary characteristics. It has attracted much attention to model and compensate the random drift because it can improve the precision of inertial devices. This paper has proposed to use wavelet filtering to reduce noise in the original data of MEMS gyroscopes, then reconstruct the random drift data with PSR (phase space reconstruction), and establish the model for the reconstructed data by LSSVM (least squares support vector machine), of which the parameters were optimized using CPSO (chaotic particle swarm optimization). Comparing the effect of modeling the MEMS gyroscope random drift with BP-ANN (back propagation artificial neural network) and the proposed method, the results showed that the latter had a better prediction accuracy. Using the compensation of three groups of MEMS gyroscope random drift data, the standard deviation of three groups of experimental data dropped from 0.00354°/s, 0.00412°/s, and 0.00328°/s to 0.00065°/s, 0.00072°/s and 0.00061°/s, respectively, which demonstrated that the proposed method can reduce the influence of MEMS gyroscope random drift and verified the effectiveness of this method for modeling MEMS gyroscope random drift.

  5. MEMS-based platforms for mechanical manipulation and characterization of cells

    NASA Astrophysics Data System (ADS)

    Pan, Peng; Wang, Wenhui; Ru, Changhai; Sun, Yu; Liu, Xinyu

    2017-12-01

    Mechanical manipulation and characterization of single cells are important experimental techniques in biological and medical research. Because of the microscale sizes and highly fragile structures of cells, conventional cell manipulation and characterization techniques are not accurate and/or efficient enough or even cannot meet the more and more demanding needs in different types of cell-based studies. To this end, novel microelectromechanical systems (MEMS)-based technologies have been developed to improve the accuracy, efficiency, and consistency of various cell manipulation and characterization tasks, and enable new types of cell research. This article summarizes existing MEMS-based platforms developed for cell mechanical manipulation and characterization, highlights their specific design considerations making them suitable for their designated tasks, and discuss their advantages and limitations. In closing, an outlook into future trends is also provided.

  6. Power Mems Development

    DTIC Science & Technology

    2010-12-31

    laboratories. Task 1.2 Contributors: Sunny Kedia, Shinzo Onishi , Scott Samson, Drew Hanser Task 1.2 Deliverable: Functional MEMS-based DC-DC...Shinzo Onishi , Drew Hanser, Weidong Wang, Sunny Kedia, John Bumgarner Deliverable: Prototype device fabricated on a thin-film diamond heat spreader

  7. Electrostatic micromembrane actuator arrays as motion generator

    NASA Astrophysics Data System (ADS)

    Wu, X. T.; Hui, J.; Young, M.; Kayatta, P.; Wong, J.; Kennith, D.; Zhe, J.; Warde, C.

    2004-05-01

    A rigid-body motion generator based on an array of micromembrane actuators is described. Unlike previous microelectromechanical systems (MEMS) techniques, the architecture employs a large number (typically greater than 1000) of micron-sized (10-200 μm) membrane actuators to simultaneously generate the displacement of a large rigid body, such as a conventional optical mirror. For optical applications, the approach provides optical design freedom of MEMS mirrors by enabling large-aperture mirrors to be driven electrostatically by MEMS actuators. The micromembrane actuator arrays have been built using a stacked architecture similar to that employed in the Multiuser MEMS Process (MUMPS), and the motion transfer from the arrayed micron-sized actuators to macro-sized components was demonstrated.

  8. Method for fabricating five-level microelectromechanical structures and microelectromechanical transmission formed

    DOEpatents

    Rodgers, M. Steven; Sniegowski, Jeffry J.; Miller, Samuel L.; McWhorter, Paul J.

    2000-01-01

    A process for forming complex microelectromechanical (MEM) devices having five layers or levels of polysilicon, including four structural polysilicon layers wherein mechanical elements can be formed, and an underlying polysilicon layer forming a voltage reference plane. A particular type of MEM device that can be formed with the five-level polysilicon process is a MEM transmission for controlling or interlocking mechanical power transfer between an electrostatic motor and a self-assembling structure (e.g. a hinged pop-up mirror for use with an incident laser beam). The MEM transmission is based on an incomplete gear train and a bridging set of gears that can be moved into place to complete the gear train to enable power transfer. The MEM transmission has particular applications as a safety component for surety, and for this purpose can incorporate a pin-in-maze discriminator responsive to a coded input signal.

  9. Micromechanical Devices to Reduce 1/f Noise in Magnetic Field and Electric Charge Sensors

    NASA Astrophysics Data System (ADS)

    Jaramillo, Gerardo

    1/f noise is present in every aspect of nature. Sensors and read-out electronics have the ultimate detection limit set by the noise floor of the white noise. In order to increase signal-to-noise ratio (SNR) of low frequency signals buried by high 1/f noise, the signal can be up-converted to a high frequency signal that lies in the lower white noise regime of the sensing device. Mechanical modulation can be employed to move low frequency electronic signals to higher frequency region through the use of microresonators. This thesis has two goals: (1) develop and fabricate a hybrid micromechanical-magnetoresistive magnetic field sensor; and (2) design an electrometer to measure currents collected from air streams containing ionized nano-particles. First, we designed magnetoresistive-microelectromechanical systems (MR-MEMS) hybrid devices based on the monolithic integration of magnetic thin films and silicon-on-insulator (SOI) MEMS fabrication techniques. We used MgO-based magnetic tunnel junctions (MTJ) placed on a bulk micromachined silicon MEMS device to form a hybrid sensing device. The MEMS device was used to mechanically modulate the magnetic field signal detected by the MTJ, thereby reducing the effects of 1/f noise on the MTJ's output. Two actuator designs were investigated: cantilever and electrostatic comb-drive. The second component of the thesis presents a MEMS-based electrometer for the detection of small currents from ionized particles in a particle detection system for air-quality monitoring. One method of particle detection ionizes particles and then feeds a stream of charged particles into a Faraday cup electrometer. We replaced the Faraday cup with a filtering porous mesh sensing-electrode coupled to a MEMS electrometer with a noise floor below 1 fA rms. Experiments were conducted with fA level currents produced by 10 nm diameter particles within an airflow of 1.0 L/min. The MEMS electrometer was compared and calibrated using commercial electrometers and particle counters.

  10. Failure of Anisotropic Unstructured Mesh Adaption Based on Multidimensional Residual Minimization

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Kleb, William L.

    2003-01-01

    An automated anisotropic unstructured mesh adaptation strategy is proposed, implemented, and assessed for the discretization of viscous flows. The adaption criteria is based upon the minimization of the residual fluctuations of a multidimensional upwind viscous flow solver. For scalar advection, this adaption strategy has been shown to use fewer grid points than gradient based adaption, naturally aligning mesh edges with discontinuities and characteristic lines. The adaption utilizes a compact stencil and is local in scope, with four fundamental operations: point insertion, point deletion, edge swapping, and nodal displacement. Evaluation of the solution-adaptive strategy is performed for a two-dimensional blunt body laminar wind tunnel case at Mach 10. The results demonstrate that the strategy suffers from a lack of robustness, particularly with regard to alignment of the bow shock in the vicinity of the stagnation streamline. In general, constraining the adaption to such a degree as to maintain robustness results in negligible improvement to the solution. Because the present method fails to consistently or significantly improve the flow solution, it is rejected in favor of simple uniform mesh refinement.

  11. Numerical Simulation of Liquid Metal RF MEMS Switch Based on EWOD

    NASA Astrophysics Data System (ADS)

    Liu, Tingting; Gao, Yang; Yang, Tao; Guo, Huihui

    2018-03-01

    Conventional RF MEMS switches rely on metal-to-dielectric or metal-to-metal contacts. Some problems in the “solid-solid” contact, such as contact degradation, signal bounce and poor reliability, can be solved by using “liquid-solid” contact. The RF MEMS switch based on liquid metal is characterized by small contact resistance, no moving parts, high reliability and long life. Using electrowetting-on-dielectric (EWOD) way to control the movement of liquid metal in the RF MEMS switch, to achieve the “on” and “off” of the switch. In this paper, the electrical characteristics and RF characteristics of RF MEMS switches are simulated by fluid mechanics software FLUENT and electromagnetic simulation software HFSS. The effects of driving voltage, switching time, dielectric layer, hydrophobic layer material and thickness, switching channel height on the RF characteristics are studied. The results show that to increase the external voltage to the threshold voltage of 58V, the liquid metal began to move, and the switching time from “off” state to “on” state is 16ms. In the 0~20GHz frequency range, the switch insertion loss is less than 0.28dB, isolation is better than 23.32dB.

  12. A dynamic fuzzy genetic algorithm for natural image segmentation using adaptive mean shift

    NASA Astrophysics Data System (ADS)

    Arfan Jaffar, M.

    2017-01-01

    In this paper, a colour image segmentation approach based on hybridisation of adaptive mean shift (AMS), fuzzy c-mean and genetic algorithms (GAs) is presented. Image segmentation is the perceptual faction of pixels based on some likeness measure. GA with fuzzy behaviour is adapted to maximise the fuzzy separation and minimise the global compactness among the clusters or segments in spatial fuzzy c-mean (sFCM). It adds diversity to the search process to find the global optima. A simple fusion method has been used to combine the clusters to overcome the problem of over segmentation. The results show that our technique outperforms state-of-the-art methods.

  13. 2007 Precision Strike Annual Programs Review

    DTIC Science & Technology

    2007-04-25

    Adapting our methods • Remaining a flexible combined-arms force • Enabling a generation of combat- experienced decision-makers by distributing...Sustain Propulsion Network RadioMEMS IMU Flexible Engagement Options Requirements Capabilities Precision Attack Missile (PAM) 67” (with Canister...Aimpoint 6 PAM Seeker Modes PAM’s Multiple Targeting Modes Increase Flexibility , Improve Lethality PAM’s Multiple Targeting Modes Increase Flexibility

  14. Novel Vertical Interconnects With 180 Degree Phase Shift for Amplifiers, Filters, and Integrated Antennas

    NASA Technical Reports Server (NTRS)

    Goverdhanam, Kavita; Simons, Rainee N.; Katehi, Linda P. B.; Burke, Thomas P. (Technical Monitor)

    2001-01-01

    In this paper, novel low loss, wide-band coplanar stripline technology for RF/microwave integrated circuits is demonstrated on high resistivity silicon wafer. In particular, the fabrication process for the deposition of spin-on-glass (SOG) as a dielectric layer, the etching of microvias for the vertical interconnects, the design methodology for the multiport circuits and their measured/simulated characteristics are graphically illustrated. The study shows that circuits with very low loss, large bandwidth and compact size are feasible using this technology. This multilayer planar technology has potential to significantly enhance RF/microwave IC performance when combined with semiconductor devices and microelectromechanical systems (MEMS).

  15. Initial animal studies of a wireless, batteryless, MEMS implant for cardiovascular applications.

    PubMed

    Najafi, Nader; Ludomirsky, Achiau

    2004-03-01

    This paper reports the results of the initial animal studies of a wireless, batteryless, implantable pressure sensor using microelectromechanical systems (MEMS) technology. The animal studies were acute and proved the functional feasibility of using MEMS technology for wireless bio sensing. The results are very encouraging and surpassed the majority of the application's requirements, including high sampling speed and high resolution. Based on the lessons learned, second generation wireless sensors are being developed that will provide total system solution.

  16. Uncovering the Fundamental Nature of Tribological Interfaces: High Resolution Tribology and Spectroscopy of Ultrahard Nanostructured Diamond Films for MEMS and Beyond

    DTIC Science & Technology

    2007-12-31

    Wisconsin-Madison) for 2? ol !> o "S \\ % M 31 Statement of Objectives The original objectives of the proposal were as follows: 1. Obtain high-quality...performed multiple PEEM experiments on wear tracks on carbon-based films and polysilicon micro-electro mechanical systems (MEMS) devices, a comprehensive... polysilicon MEMS device known as the "nanotractor", and studies of the structure and composition of UNCD, ta-C, and nanocrystalline diamond (NCD) films. They

  17. Sputtered highly oriented PZT thin films for MEMS applications

    NASA Astrophysics Data System (ADS)

    Kalpat, Sriram S.

    Recently there has been an explosion of interest in the field of micro-electro-mechanical systems (MEMS). MEMS device technology has become critical in the growth of various fields like medical, automotive, chemical, and space technology. Among the many applications of ferroelectric thin films in MEMS devices, microfluidics is a field that has drawn considerable amount of research from bio-technology industries as well as chemical and semiconductor manufacturing industries. PZT thin films have been identified as best suited materials for micro-actuators and micro-sensors used in MEMS devices. A promising application for piezoelectric thin film based MEMS devices is disposable drug delivery systems that are capable of sensing biological parameters, mixing and delivering minute and precise amounts of drugs using micro-pumps or micro mixers. These devices call for low driving voltages, so that they can be battery operated. Improving the performance of the actuator material is critical in achieving battery operated disposal drug delivery systems. The device geometry and power consumption in MEMS devices largely depends upon the piezoelectric constant of the films, since they are most commonly used to convert electrical energy into a mechanical response of a membrane or cantilever and vice versa. Phenomenological calculation on the crystal orientation dependence of piezoelectric coefficients for PZT single crystal have reported a significant enhancement of the piezoelectric d33 constant by more than 3 times along [001] in the rhombohedral phase as compared to the conventionally used orientation PZT(111) since [111] is the along the spontaneous polarization direction. This could mean considerable improvement in the MEMS device performance and help drive the operating voltages lower. The motivation of this study is to investigate the crystal orientation dependence of both dielectric and piezoelectric coefficients of PZT thin films in order to select the appropriate orientation that could improve the MEMS device performance. Potential application of these devices is as battery operated disposable drug delivery systems. This work will also investigate the fabrication of a flexural plate wave based microfluidic device using the PZT thin film of appropriate orientation that would enhance the device performance. (Abstract shortened by UMI.)

  18. High-resolution adaptive optics scanning laser ophthalmoscope with multiple deformable mirrors

    DOEpatents

    Chen, Diana C.; Olivier, Scot S.; Jones; Steven M.

    2010-02-23

    An adaptive optics scanning laser ophthalmoscopes is introduced to produce non-invasive views of the human retina. The use of dual deformable mirrors improved the dynamic range for correction of the wavefront aberrations compared with the use of the MEMS mirror alone, and improved the quality of the wavefront correction compared with the use of the bimorph mirror alone. The large-stroke bimorph deformable mirror improved the capability for axial sectioning with the confocal imaging system by providing an easier way to move the focus axially through different layers of the retina.

  19. Characterization of shape and deformation of MEMS by quantitative optoelectronic metrology techniques

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    2002-06-01

    Recent technological trends based on miniaturization of mechanical, electro-mechanical, and photonic devices to the microscopic scale, have led to the development of microelectromechanical systems (MEMS). Effective development of MEMS components requires the synergism of advanced design, analysis, and fabrication methodologies, and also of quantitative metrology techniques for characterizing their performance, reliability, and integrity during the electronic packaging cycle. In this paper, we describe opto-electronic techniques for measuring, with sub-micrometer accuracy, shape and changes in states of deformation of MEMS strictures. With the described opto-electronic techniques, it is possible to characterize MEMS components using the display and data modes. In the display mode, interferometric information related to shape and deformation is displayed at video frame rates, providing the capability for adjusting and setting experimental conditions. In the data mode, interferometric information related to shape and deformation is recorded as high-spatial and high-digital resolution images, which are further processed to provide quantitative 3D information. Furthermore, the quantitative 3D data are exported to computer-aided design (CAD) environments and utilized for analysis and optimization of MEMS devices. Capabilities of opto- electronic techniques are illustrated with representative applications demonstrating their applicability to provide indispensable quantitative information for the effective development and optimization of MEMS devices.

  20. Research and Development of Non-Spectroscopic MEMS-Based Sensor Arrays for Targeted Gas Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loui, A; McCall, S K

    2011-10-24

    The ability to monitor the integrity of gas volumes is of interest to the stockpile surveillance community. Specifically, the leak detection of noble gases, at relevant concentration ranges and distinguished from other chemical species that may be simultaneously present, is particularly challenging. Aside from the laboratory-based method of gas chromatography-mass spectrometry (GC-MS), where samples may be collected by solid-phase microextraction (SPME) or cryofocusing, the other major approaches for gas-phase detection employ lasers typically operating in the mid-infrared wavelength region. While mass spectrometry can readily detect noble gases - the helium leak detector is an obvious example - laser-based methods suchmore » as infrared (IR) or Raman spectroscopy are completely insensitive to them as their monatomic nature precludes a non-zero dipole moment or changes in polarizability upon excitation. Therefore, noble gases can only be detected by one of two methods: (1) atomic emission spectroscopies which require the generation of plasmas through laser-induced breakdown, electrical arcing, or similar means; (2) non-spectroscopic methods which measure one or more physical properties (e.g., mass, thermal conductivity, density). In this report, we present our progress during Fiscal Year 2011 (FY11) in the research and development of a non-spectroscopic method for noble gas detection. During Fiscal Year 2010 (FY10), we demonstrated via proof-of-concept experiments that the combination of thermal conductivity detection (TCD) and coating-free damped resonance detection (CFDRD) using micro-electromechanical systems (MEMS) could provide selective sensing of these inert species. Since the MEMS-based TCD technology was directly adapted from a brassboard prototype commissioned by a previous chemical sensing project, FY11 efforts focused on advancing the state of the newer CFDRD method. This work, guided by observations previously reported in the open literature, has not only resulted in a substantially measureable increase in selectivity but has also revealed a potential method for mitigating or eliminating thermal drift that does not require a secondary reference sensor. The design of an apparatus to test this drift compensation scheme will be described. We will conclude this report with a discussion of planned efforts in Fiscal Year 2012 (FY12).« less

  1. Solid oxide MEMS-based fuel cells

    DOEpatents

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2007-03-13

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  2. Solid polymer MEMS-based fuel cells

    DOEpatents

    Jankowski, Alan F [Livermore, CA; Morse, Jeffrey D [Pleasant Hill, CA

    2008-04-22

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  3. Integrated MEMS-based variable optical attenuator and 10Gb/s receiver

    NASA Astrophysics Data System (ADS)

    Aberson, James; Cusin, Pierre; Fettig, H.; Hickey, Ryan; Wylde, James

    2005-03-01

    MEMS devices can be successfully commercialized in favour of competing technologies only if they offer an advantage to the customer in terms of lower cost or increased functionality. There are limited markets where MEMS can be manufactured cheaper than similar technologies due to large volumes: automotive, printing technology, wireless communications, etc. However, success in the marketplace can also be realized by adding significant value to a system at minimal cost or leverging MEMS technology when other solutions simply will not work. This paper describes a thermally actuated, MEMS based, variable optical attenuator that is co-packaged with existing opto-electronic devices to develop an integrated 10Gb/s SONET/SDH receiver. The configuration of the receiver opto-electronics and relatively low voltage availability (12V max) in optical systems bar the use of LCD, EO, and electro-chromic style attenuators. The device was designed and fabricated using a silicon-on-insulator (SOI) starting material. The design and performance of the device (displacement, power consumption, reliability, physical geometry) was defined by the receiver parameters geometry. This paper will describe how these design parameters (hence final device geometry) were determined in light of both the MEMS device fabrication process and the receiver performance. Reference will be made to the design tools used and the design flow which was a joint effort between the MEMS vendor and the end customer. The SOI technology offered a robust, manufacturable solution that gave the required performance in a cost-effective process. However, the singulation of the devices required the development of a new singulation technique that allowed large volumes of silicon to be removed during fabrication yet still offer high singulation yields.

  4. A Silicon Disk with Sandwiched Piezoelectric Springs for Ultra-low Frequency Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Lu, J.; Zhang, L.; Yamashita, T.; Takei, R.; Makimoto, N.; Kobayashi, T.

    2015-12-01

    Exploiting the sporadic availability of energy by energy harvesting devices is an attractive solution to power wireless sensor nodes and many other distributed modules for much longer operation duration and much lower maintenance cost after they are deployed. MEMS energy harvesting devices exhibit unique advantageous of super-compact size, mass productivity, and easy-integration with sensors, actuators and other integrated circuits. However, MEMS vibration energy harvesting devices are rather difficult to be used practically due to their poor response to most of the ambient vibrations at ultra-low frequency range. In this paper, a micromachined silicon disk with sandwiched piezoelectric springs was successfully developed with resonant frequency of 15.36∼42.42 Hz and quality factor of 39∼55 for energy harvesting. Footprint size of the device was 6 mm × 6 mm, which is less than half of the piezoelectric cantilevers, while the device can scavenge reasonably high power of 0.57 μW at the acceleration of 0.1 g. The evaluation results also suggested that the device was quite sensitive as a sensor for selective monitoring of vibrations at a certain frequency.

  5. Testing of Piezo-Actuated Glass Micro-Membranes by Optical Low-Coherence Reflectometry.

    PubMed

    Merlo, Sabina; Poma, Paolo; Crisà, Eleonora; Faralli, Dino; Soldo, Marco

    2017-02-25

    In this work, we have applied optical low-coherence reflectometry (OLCR), implemented with infra-red light propagating in fiberoptic paths, to perform static and dynamic analyses on piezo-actuated glass micro-membranes. The actuator was fabricated by means of thin-film piezoelectric MEMS technology and was employed for modifying the micro-membrane curvature, in view of its application in micro-optic devices, such as variable focus micro-lenses. We are here showing that OLCR incorporating a near-infrared superluminescent light emitting diode as the read-out source is suitable for measuring various parameters such as the micro-membrane optical path-length, the membrane displacement as a function of the applied voltage (yielding the piezo-actuator hysteresis) as well as the resonance curve of the fundamental vibration mode. The use of an optical source with short coherence-time allows performing interferometric measurements without spurious resonance effects due to multiple parallel interfaces of highly planar slabs, furthermore selecting the plane/layer to be monitored. We demonstrate that the same compact and flexible setup can be successfully employed to perform spot optical measurements for static and dynamic characterization of piezo-MEMS in real time.

  6. Testing of Piezo-Actuated Glass Micro-Membranes by Optical Low-Coherence Reflectometry

    PubMed Central

    Merlo, Sabina; Poma, Paolo; Crisà, Eleonora; Faralli, Dino; Soldo, Marco

    2017-01-01

    In this work, we have applied optical low-coherence reflectometry (OLCR), implemented with infra-red light propagating in fiberoptic paths, to perform static and dynamic analyses on piezo-actuated glass micro-membranes. The actuator was fabricated by means of thin-film piezoelectric MEMS technology and was employed for modifying the micro-membrane curvature, in view of its application in micro-optic devices, such as variable focus micro-lenses. We are here showing that OLCR incorporating a near-infrared superluminescent light emitting diode as the read-out source is suitable for measuring various parameters such as the micro-membrane optical path-length, the membrane displacement as a function of the applied voltage (yielding the piezo-actuator hysteresis) as well as the resonance curve of the fundamental vibration mode. The use of an optical source with short coherence-time allows performing interferometric measurements without spurious resonance effects due to multiple parallel interfaces of highly planar slabs, furthermore selecting the plane/layer to be monitored. We demonstrate that the same compact and flexible setup can be successfully employed to perform spot optical measurements for static and dynamic characterization of piezo-MEMS in real time. PMID:28245603

  7. Alignment Jig for the Precise Measurement of THz Radiation

    NASA Technical Reports Server (NTRS)

    Javadi, Hamid H.

    2009-01-01

    A miniaturized instrumentation package comprising a (1) Global Positioning System (GPS) receiver, (2) an inertial measurement unit (IMU) consisting largely of surface-micromachined sensors of the microelectromechanical systems (MEMS) type, and (3) a microprocessor, all residing on a single circuit board, is part of the navigation system of a compact robotic spacecraft intended to be released from a larger spacecraft [e.g., the International Space Station (ISS)] for exterior visual inspection of the larger spacecraft. Variants of the package may also be useful in terrestrial collision-detection and -avoidance applications. The navigation solution obtained by integrating the IMU outputs is fed back to a correlator in the GPS receiver to aid in tracking GPS signals. The raw GPS and IMU data are blended in a Kalman filter to obtain an optimal navigation solution, which can be supplemented by range and velocity data obtained by use of (l) a stereoscopic pair of electronic cameras aboard the robotic spacecraft and/or (2) a laser dynamic range imager aboard the ISS. The novelty of the package lies mostly in those aspects of the design of the MEMS IMU that pertain to controlling mechanical resonances and stabilizing scale factors and biases.

  8. Development of a MEMS dual-axis differential capacitance floating element shear stress sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnard, Casey; Griffin, Benjamin

    A single-axis MEMS wall shear stress sensor with differential capacitive transduction method is produced. Using a synchronous modulation and demodulation interface circuit, the system is capable of making real time measurements of both mean and fluctuating wall shear stress. A sensitivity of 3.44 mV/Pa is achieved, with linearity in response demonstrated up to testing limit of 2 Pa. Minimum detectable signals of 340 μPa at 100 Hz and 120 μPa at 1 kHz are indicated, with a resonance of 3.5 kHz. Multiple full scale wind tunnel tests are performed, producing spectral measurements of turbulent boundary layers in wind speeds rangingmore » up to 0.5 Ma (18 Pa of mean wall shear stress). The compact packaging allows for minimally invasive installation, and has proven relatively robust over multiple testing events. Temperature sensitivity, likely due to poor CTE matching of packaged materials, is an ongoing concern being addressed. These successes are being directly leveraged into a development plan for a dual-axis wall shear stress sensor, capable of producing true vector estimates at the wall.« less

  9. MEMS-based power generation techniques for implantable biosensing applications.

    PubMed

    Lueke, Jonathan; Moussa, Walied A

    2011-01-01

    Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient.

  10. An approach to optimal semi-active control of vibration energy harvesting based on MEMS

    NASA Astrophysics Data System (ADS)

    Rojas, Rafael A.; Carcaterra, Antonio

    2018-07-01

    In this paper the energy harvesting problem involving typical MEMS technology is reduced to an optimal control problem, where the objective function is the absorption of the maximum amount of energy in a given time interval from a vibrating environment. The interest here is to identify a physical upper bound for this energy storage. The mathematical tool is a new optimal control called Krotov's method, that has not yet been applied to engineering problems, except in quantum dynamics. This approach leads to identify new maximum bounds to the energy harvesting performance. Novel MEMS-based device control configurations for vibration energy harvesting are proposed with particular emphasis to piezoelectric, electromagnetic and capacitive circuits.

  11. Internal Model-Based Robust Tracking Control Design for the MEMS Electromagnetic Micromirror.

    PubMed

    Tan, Jiazheng; Sun, Weijie; Yeow, John T W

    2017-05-26

    The micromirror based on micro-electro-mechanical systems (MEMS) technology is widely employed in different areas, such as scanning, imaging and optical switching. This paper studies the MEMS electromagnetic micromirror for scanning or imaging application. In these application scenarios, the micromirror is required to track the command sinusoidal signal, which can be converted to an output regulation problem theoretically. In this paper, based on the internal model principle, the output regulation problem is solved by designing a robust controller that is able to force the micromirror to track the command signal accurately. The proposed controller relies little on the accuracy of the model. Further, the proposed controller is implemented, and its effectiveness is examined by experiments. The experimental results demonstrate that the performance of the proposed controller is satisfying.

  12. Internal Model-Based Robust Tracking Control Design for the MEMS Electromagnetic Micromirror

    PubMed Central

    Tan, Jiazheng; Sun, Weijie; Yeow, John T. W.

    2017-01-01

    The micromirror based on micro-electro-mechanical systems (MEMS) technology is widely employed in different areas, such as scanning, imaging and optical switching. This paper studies the MEMS electromagnetic micromirror for scanning or imaging application. In these application scenarios, the micromirror is required to track the command sinusoidal signal, which can be converted to an output regulation problem theoretically. In this paper, based on the internal model principle, the output regulation problem is solved by designing a robust controller that is able to force the micromirror to track the command signal accurately. The proposed controller relies little on the accuracy of the model. Further, the proposed controller is implemented, and its effectiveness is examined by experiments. The experimental results demonstrate that the performance of the proposed controller is satisfying. PMID:28587105

  13. The MEMS Knudsen Compressor as a Vacuum Pump for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Vargo, S. E.; Muntz, E. P.; Tang, W. C.

    2000-01-01

    Several lander, probe and rover missions currently under study at the Jet Propulsion Laboratory (JPL) and especially in the Microdevices Laboratory (MDL) Center for Space Microelectronics Technology, focus on utilizing microelectromechanical systems (MEMS) based instruments for science data gathering. These small instruments and NASA's commitment to "faster, better, cheaper" type missions has brought about the need for novel approaches to satisfying mission requirements. Existing in-situ instrument systems clearly lack novel and integrated methods for satisfying their vacuum needs. One attractive candidate for a MEMS vacuum pump is the Knudsen Compressor, which operates based on thermal transpiration. Thermal transpiration describes gas flows induced by temperature differences maintained across orifices, porous membranes or capillary tubes under rarefied conditions. This device has two overwhelmingly attractive features as a MEMS vacuum pump - no moving parts and no fluids. An initial estimate of a Knudsen Compressor's pumping power requirements for a surface atmospheric sampling task on Mars is less than 80 mW, significantly below than alternative pumps. Due to the relatively low energy use for this task and the applicability of the Knudsen Compressor to other applications, the development of a Knudsen Compressor utilizing MEMS fabrication techniques has been initiated. This paper discusses the initial fabrication of a single-stage MEMS Knudsen Compressor vacuum pump, provides performance criteria such as pumping speed, size, energy use and ultimate pressure and details vacuum pump applications in several MDL related in-situ instruments.

  14. A Generalized Polynomial Chaos-Based Approach to Analyze the Impacts of Process Deviations on MEMS Beams.

    PubMed

    Gao, Lili; Zhou, Zai-Fa; Huang, Qing-An

    2017-11-08

    A microstructure beam is one of the fundamental elements in MEMS devices like cantilever sensors, RF/optical switches, varactors, resonators, etc. It is still difficult to precisely predict the performance of MEMS beams with the current available simulators due to the inevitable process deviations. Feasible numerical methods are required and can be used to improve the yield and profits of the MEMS devices. In this work, process deviations are considered to be stochastic variables, and a newly-developed numerical method, i.e., generalized polynomial chaos (GPC), is applied for the simulation of the MEMS beam. The doubly-clamped polybeam has been utilized to verify the accuracy of GPC, compared with our Monte Carlo (MC) approaches. Performance predictions have been made on the residual stress by achieving its distributions in GaAs Monolithic Microwave Integrated Circuit (MMIC)-based MEMS beams. The results show that errors are within 1% for the results of GPC approximations compared with the MC simulations. Appropriate choices of the 4-order GPC expansions with orthogonal terms have also succeeded in reducing the MC simulation labor. The mean value of the residual stress, concluded from experimental tests, shares an error about 1.1% with that of the 4-order GPC method. It takes a probability around 54.3% for the 4-order GPC approximation to attain the mean test value of the residual stress. The corresponding yield occupies over 90 percent around the mean within the twofold standard deviations.

  15. A Generalized Polynomial Chaos-Based Approach to Analyze the Impacts of Process Deviations on MEMS Beams

    PubMed Central

    Gao, Lili

    2017-01-01

    A microstructure beam is one of the fundamental elements in MEMS devices like cantilever sensors, RF/optical switches, varactors, resonators, etc. It is still difficult to precisely predict the performance of MEMS beams with the current available simulators due to the inevitable process deviations. Feasible numerical methods are required and can be used to improve the yield and profits of the MEMS devices. In this work, process deviations are considered to be stochastic variables, and a newly-developed numerical method, i.e., generalized polynomial chaos (GPC), is applied for the simulation of the MEMS beam. The doubly-clamped polybeam has been utilized to verify the accuracy of GPC, compared with our Monte Carlo (MC) approaches. Performance predictions have been made on the residual stress by achieving its distributions in GaAs Monolithic Microwave Integrated Circuit (MMIC)-based MEMS beams. The results show that errors are within 1% for the results of GPC approximations compared with the MC simulations. Appropriate choices of the 4-order GPC expansions with orthogonal terms have also succeeded in reducing the MC simulation labor. The mean value of the residual stress, concluded from experimental tests, shares an error about 1.1% with that of the 4-order GPC method. It takes a probability around 54.3% for the 4-order GPC approximation to attain the mean test value of the residual stress. The corresponding yield occupies over 90 percent around the mean within the twofold standard deviations. PMID:29117096

  16. Wavelet methods in multi-conjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Helin, T.; Yudytskiy, M.

    2013-08-01

    The next generation ground-based telescopes rely heavily on adaptive optics for overcoming the limitation of atmospheric turbulence. In the future adaptive optics modalities, like multi-conjugate adaptive optics (MCAO), atmospheric tomography is the major mathematical and computational challenge. In this severely ill-posed problem, a fast and stable reconstruction algorithm is needed that can take into account many real-life phenomena of telescope imaging. We introduce a novel reconstruction method for the atmospheric tomography problem and demonstrate its performance and flexibility in the context of MCAO. Our method is based on using locality properties of compactly supported wavelets, both in the spatial and frequency domains. The reconstruction in the atmospheric tomography problem is obtained by solving the Bayesian MAP estimator with a conjugate-gradient-based algorithm. An accelerated algorithm with preconditioning is also introduced. Numerical performance is demonstrated on the official end-to-end simulation tool OCTOPUS of European Southern Observatory.

  17. Performance assessment of MEMS adaptive optics in tactical airborne systems

    NASA Astrophysics Data System (ADS)

    Tyson, Robert K.

    1999-09-01

    Tactical airborne electro-optical systems are severely constrained by weight, volume, power, and cost. Micro- electrical-mechanical adaptive optics provide a solution that addresses the engineering realities without compromising spatial and temporal compensation requirements. Through modeling and analysis, we determined that substantial benefits could be gained for laser designators, ladar, countermeasures, and missile seekers. The developments potential exists for improving seeker imagery resolution 20 percent, extending countermeasures keep-out range by a factor of 5, doubling the range for ladar detection and identification, and compensating for supersonic and hypersonic aircraft boundary layers. Innovative concepts are required for atmospheric pat hand boundary layer compensation. We have developed design that perform these tasks using high speed scene-based wavefront sensing, IR aerosol laser guide stars, and extended-object wavefront beacons. We have developed a number of adaptive optics system configurations that met the spatial resolution requirements and we have determined that sensing and signal processing requirements can be met. With the help of micromachined deformable mirrors and sensor, we will be able to integrate the systems into existing airborne pods and missiles as well as next generation electro-optical systems.

  18. The Effect of Contralateral Acoustic Stimulation on Spontaneous Otoacoustic Emissions

    PubMed Central

    Dhar, Sumitrajit

    2009-01-01

    Evoked otoacoustic emissions are often used to study the medial olivocochlear (MOC) efferents in humans. There has been concern that the emission-evoking stimulus may itself elicit efferent activity and alter the evoked otoacoustic emission. Spontaneous otoacoustic emissions (SOAEs) are hence advantageous as no external stimulation is necessary to record the response in the test ear. Contralateral acoustic stimulation (CAS) has been shown to suppress SOAE level and elevate SOAE frequency, but the time course of these effects is largely unknown. By utilizing the Choi–Williams distribution, here we report a gradual adaptation during the presence of CAS and an overshoot following CAS offset in both SOAE magnitude and frequency from six normal-hearing female human subjects. Furthermore, we have quantified the time constants of both magnitude and frequency shifts at the onset, presence, and offset of four levels of CAS. Most studies using contralateral elicitors do not stringently control the middle-ear muscle (MEM) reflex, leaving the results difficult to interpret. In addition to clinically available measures of the MEM reflex, we have incorporated a sensitive laboratory technique to monitor the MEM reflex in our subjects, allowing us to interpret the results with greater confidence. PMID:19798532

  19. Anti-ulcer and ulcer healing potentials of Musa sapientum peel extract in the laboratory rodents

    PubMed Central

    Onasanwo, Samuel Adetunji; Emikpe, Benjamin Obukowho; Ajah, Austin Azubuike; Elufioye, Taiwo Olayemi

    2013-01-01

    Background: This study investigated the anti-ulcer and ulcer healing potentials of the methanol extract of Musa sapientum peel in the laboratory rats. Materials and Methods: Methanol extract of the peels on Musa sapientum (MEMS) was evaluated for its anti-ulcer using alcohol-induced, aspirin-induced, and pyloric ligation-induced models, and for its ulcer healing employing acetic acid-induced ulcer models in rats. Results: The findings from this experiment showed that MEMS (50, 100 and 200 mg/kg, b.w.) anti-ulcer and ulcer healing activity (P ≤ 0.05) is dose-dependent. Also, MEMS exhibited healing of the ulcer base in all the treated groups when compared with the control group. Conclusion: The outcomes of this experiment revealed that the anti-ulcer effect of MEMS may be due to its anti-secretory and cyto-protective activity. The healing of the ulcer base might not be unconnected with basic fibroblast growth factors responsible for epithelial regeneration. PMID:23900937

  20. Ceramic MEMS Designed for Wireless Pressure Monitoring in the Industrial Environment

    PubMed Central

    Pavlin, Marko; Belavic, Darko; Novak, Franc

    2012-01-01

    This paper presents the design of a wireless pressure-monitoring system for harsh-environment applications. Two types of ceramic pressure sensors made with a low-temperature cofired ceramic (LTCC) were considered. The first type is a piezoresistive strain gauge pressure sensor. The second type is a capacitive pressure sensor, which is based on changes of the capacitance values between two electrodes: one electrode is fixed and the other is movable under an applied pressure. The design was primarily focused on low power consumption. Reliable operation in the presence of disturbances, like electromagnetic interference, parasitic capacitances, etc., proved to be contradictory constraints. A piezoresistive ceramic pressure sensor with a high bridge impedance was chosen for use in a wireless pressure-monitoring system and an acceptable solution using energy-harvesting techniques has been achieved. The described solution allows for the integration of a sensor element with an energy harvester that has a printed thick-film battery and complete electronics in a single substrate packaged inside a compact housing. PMID:22368471

  1. On the Ck-embedding of Lorentzian manifolds in Ricci-flat spaces

    NASA Astrophysics Data System (ADS)

    Avalos, R.; Dahia, F.; Romero, C.

    2018-05-01

    In this paper, we investigate the problem of non-analytic embeddings of Lorentzian manifolds in Ricci-flat semi-Riemannian spaces. In order to do this, we first review some relevant results in the area and then motivate both the mathematical and physical interests in this problem. We show that any n-dimensional compact Lorentzian manifold (Mn, g), with g in the Sobolev space Hs+3, s >n/2 , admits an isometric embedding in a (2n + 2)-dimensional Ricci-flat semi-Riemannian manifold. The sharpest result available for these types of embeddings, in the general setting, comes as a corollary of Greene's remarkable embedding theorems R. Greene [Mem. Am. Math. Soc. 97, 1 (1970)], which guarantee the embedding of a compact n-dimensional semi-Riemannian manifold into an n(n + 5)-dimensional semi-Euclidean space, thereby guaranteeing the embedding into a Ricci-flat space with the same dimension. The theorem presented here improves this corollary in n2 + 3n - 2 codimensions by replacing the Riemann-flat condition with the Ricci-flat one from the beginning. Finally, we will present a corollary of this theorem, which shows that a compact strip in an n-dimensional globally hyperbolic space-time can be embedded in a (2n + 2)-dimensional Ricci-flat semi-Riemannian manifold.

  2. Meteoroid Environment Modeling: the Meteoroid Engineering Model and Shower Forecasting

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea V.

    2017-01-01

    The meteoroid environment is often divided conceptually into meteor showers plus a sporadic background component. The sporadic complex poses the bulk of the risk to spacecraft, but showers can produce significant short-term enhancements of the meteoroid flux. The Meteoroid Environment Office (MEO) has produced two environment models to handle these cases: the Meteoroid Engineering Model (MEM) and an annual meteor shower forecast. Both MEM and the forecast are used by multiple manned spaceflight projects in their meteoroid risk evaluation, and both tools are being revised to incorporate recent meteor velocity, density, and timing measurements. MEM describes the sporadic meteoroid complex and calculates the flux, speed, and directionality of the meteoroid environment relative to a user-supplied spacecraft trajectory, taking the spacecraft's motion into account. MEM is valid in the inner solar system and offers near-Earth and cis-lunar environments. While the current version of MEM offers a nominal meteoroid environment corresponding to a single meteoroid bulk density, the next version of MEMR3 will offer both flux uncertainties and a density distribution in addition to a revised near-Earth environment. We have updated the near-Earth meteor speed distribution and have made the first determination of uncertainty in this distribution. We have also derived a meteor density distribution from the work of Kikwaya et al. (2011). The annual meteor shower forecast takes the form of a report and data tables that can be used in conjunction with an existing MEM assessment. Fluxes are typically quoted to a constant limiting kinetic energy in order to comport with commonly used ballistic limit equations. For the 2017 annual forecast, the MEO substantially revised the list of showers and their characteristics using 14 years of meteor flux measurements from the Canadian Meteor Orbit Radar (CMOR). Defunct or insignificant showers were removed and the temporal profiles of many showers were improved. In 2016 the MEO also adapted the forecast to the cislunar environment for the first time. We plan to make additional improvements to the model in the next two years using optical meteor flux measurements and mass indices.

  3. Generation of Controllable Time-Mean Microvortices to Mimic Insect Flights

    DTIC Science & Technology

    2010-01-01

    force to drive the suspended MEMs-based microplate to in-plane resonance. 15. SUBJECT TERMS Fluid Mechanics, Micro Air Vehicles (MAVs), Microvortices...suspended MEMS-based microplate to in-plane resonance. Briefly, AC current flows through suspended beam-like microelectrode structure – a microplate ... microplate . As a result, the observed flow features are time-mean microvortices. Computational effort centers around optimization of a range of

  4. Membrane adaptive optics

    NASA Astrophysics Data System (ADS)

    Marker, Dan K.; Wilkes, James M.; Ruggiero, Eric J.; Inman, Daniel J.

    2005-08-01

    An innovative adaptive optic is discussed that provides a range of capabilities unavailable with either existing, or newly reported, research devices. It is believed that this device will be inexpensive and uncomplicated to construct and operate, with a large correction range that should dramatically relax the static and dynamic structural tolerances of a telescope. As the areal density of a telescope primary is reduced, the optimal optical figure and the structural stiffness are inherently compromised and this phenomenon will require a responsive, range-enhanced wavefront corrector. In addition to correcting for the aberrations in such innovative primary mirrors, sufficient throw remains to provide non-mechanical steering to dramatically improve the Field of regard. Time dependent changes such as thermal disturbances can also be accommodated. The proposed adaptive optic will overcome some of the issues facing conventional deformable mirrors, as well as current and proposed MEMS-based deformable mirrors and liquid crystal based adaptive optics. Such a device is scalable to meter diameter apertures, eliminates high actuation voltages with minimal power consumption, provides long throw optical path correction, provides polychromatic dispersion free operation, dramatically reduces the effects of adjacent actuator influence, and provides a nearly 100% useful aperture. This article will reveal top-level details of the proposed construction and include portions of a static, dynamic, and residual aberration analysis. This device will enable certain designs previously conceived by visionaries in the optical community.

  5. Fast autonomous holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Andersen, G.

    2010-07-01

    We have created a new adaptive optics system using a holographic modal wavefront sensing method capable of autonomous (computer-free) closed-loop control of a MEMS deformable mirror. A multiplexed hologram is recorded using the maximum and minimum actuator positions on the deformable mirror as the "modes". On reconstruction, an input beam will be diffracted into pairs of focal spots - the ratio of particular pairs determines the absolute wavefront phase at a particular actuator location. The wavefront measurement is made using a fast, sensitive photo-detector array such as a multi-pixel photon counters. This information is then used to directly control each actuator in the MEMS DM without the need for any computer in the loop. We present initial results of a 32-actuator prototype device. We further demonstrate that being an all-optical, parallel processing scheme, the speed is independent of the number of actuators. In fact, the limitations on speed are ultimately determined by the maximum driving speed of the DM actuators themselves. Finally, being modal in nature, the system is largely insensitive to both obscuration and scintillation. This should make it ideal for laser beam transmission or imaging under highly turbulent conditions.

  6. Gamma-ray irradiation of ohmic MEMS switches

    NASA Astrophysics Data System (ADS)

    Maciel, John J.; Lampen, James L.; Taylor, Edward W.

    2012-10-01

    Radio Frequency (RF) Microelectromechanical System (MEMS) switches are becoming important building blocks for a variety of military and commercial applications including switch matrices, phase shifters, electronically scanned antennas, switched filters, Automatic Test Equipment, instrumentation, cell phones and smart antennas. Low power consumption, large ratio of off-impedance to on-impedance, extreme linearity, low mass, small volume and the ability to be integrated with other electronics makes MEMS switches an attractive alternative to other mechanical and solid-state switches for a variety of space applications. Radant MEMS, Inc. has developed an electrostatically actuated broadband ohmic microswitch that has applications from DC through the microwave region. Despite the extensive earth based testing, little is known about the performance and reliability of these devices in space environments. To help fill this void, we have irradiated our commercial-off-the-shelf SPST, DC to 40 GHz MEMS switches with gamma-rays as an initial step to assessing static impact on RF performance. Results of Co-60 gamma-ray irradiation of the MEMS switches at photon energies ≥ 1.0 MeV to a total dose of ~ 118 krad(Si) did not show a statistically significant post-irradiation change in measured broadband, RF insertion loss, insertion phase, return loss and isolation.

  7. Design and Optimization of AlN based RF MEMS Switches

    NASA Astrophysics Data System (ADS)

    Hasan Ziko, Mehadi; Koel, Ants

    2018-05-01

    Radio frequency microelectromechanical system (RF MEMS) switch technology might have potential to replace the semiconductor technology in future communication systems as well as communication satellites, wireless and mobile phones. This study is to explore the possibilities of RF MEMS switch design and optimization with aluminium nitride (AlN) thin film as the piezoelectric actuation material. Achieving low actuation voltage and high contact force with optimal geometry using the principle of piezoelectric effect is the main motivation for this research. Analytical and numerical modelling of single beam type RF MEMS switch used to analyse the design parameters and optimize them for the minimum actuation voltage and high contact force. An analytical model using isotropic AlN material properties used to obtain the optimal parameters. The optimized geometry of the device length, width and thickness are 2000 µm, 500 µm and 0.6 µm respectively obtained for the single beam RF MEMS switch. Low actuation voltage and high contact force with optimal geometry are less than 2 Vand 100 µN obtained by analytical analysis. Additionally, the single beam RF MEMS switch are optimized and validated by comparing the analytical and finite element modelling (FEM) analysis.

  8. A low-loss, single-pole, four-throw RF MEMS switch driven by a double stop comb drive

    NASA Astrophysics Data System (ADS)

    Kang, S.; Kim, H. C.; Chun, K.

    2009-03-01

    Our goal was to develop a single-pole four-throw (SP4T) radio frequency microelectromechanical system (RF MEMS) switch for band selection in a multi-band, multi-mode, front-end module of a wireless transceiver system. The SP4T RF MEMS switch was based on an arrangement of four single-pole single-throw (SPST) RF MEMS switches. The SP4T RF MEMS switch was driven by a double stop (DS) comb drive, with a lateral resistive contact, and composed of single crystalline silicon (SCS) on glass. A large contact force at a low-drive voltage was achieved by electrostatic actuation of the DS comb drive. Good RF characteristics were achieved by the large contact force and the lateral resistive Au-to-Au contact. Mechanical reliability was achieved by using SCS which has no residual stress as a structure material. The developed SP4T RF MEMS switch has a drive voltage of 15 V, an insertion loss below 0.31 dB at 6 GHz after more than one million cycles under a 10 mW signal, a return loss above 20 dB and an isolation value above 36 dB.

  9. Pilot study to harmonize the reported influenza intensity levels within the Spanish Influenza Sentinel Surveillance System (SISSS) using the Moving Epidemic Method (MEM).

    PubMed

    Bangert, M; Gil, H; Oliva, J; Delgado, C; Vega, T; DE Mateo, S; Larrauri, A

    2017-03-01

    The intensity of annual Spanish influenza activity is currently estimated from historical data of the Spanish Influenza Sentinel Surveillance System (SISSS) using qualitative indicators from the European Influenza Surveillance Network. However, these indicators are subjective, based on qualitative comparison with historical data of influenza-like illness rates. This pilot study assesses the implementation of Moving Epidemic Method (MEM) intensity levels during the 2014-2015 influenza season within the 17 sentinel networks covered by SISSS, comparing them to historically reported indicators. Intensity levels reported and those obtained with MEM at the epidemic peak of the influenza wave, and at national and regional levels did not show statistical difference (P = 0·74, Wilcoxon signed-rank test), suggesting that the implementation of MEM would have limited disrupting effects on the dynamic of notification within the surveillance system. MEM allows objective influenza surveillance monitoring and standardization of criteria for comparing the intensity of influenza epidemics in regions in Spain. Following this pilot study, MEM has been adopted to harmonize the reporting of intensity levels of influenza activity in Spain, starting in the 2015-2016 season.

  10. Evolution from MEMS-based Linear Drives to Bio-based Nano Drives

    NASA Astrophysics Data System (ADS)

    Fujita, Hiroyuki

    The successful extension of semiconductor technology to fabricate mechanical parts of the sizes from 10 to 100 micrometers opened wide ranges of possibilities for micromechanical devices and systems. The fabrication technique is called micromachining. Micromachining processes are based on silicon integrated circuits (IC) technology and used to build three-dimensional structures and movable parts by the combination of lithography, etching, film deposition, and wafer bonding. Microactuators are the key devices allowing MEMS to perform physical functions. Some of them are driven by electric, magnetic, and fluidic forces. Some others utilize actuator materials including piezoelectric (PZT, ZnO, quartz) and magnetostrictive materials (TbFe), shape memory alloy (TiNi) and bio molecular motors. This paper deals with the development of MEMS based microactuators, especially linear drives, following my own research experience. They include an electrostatic actuator, a superconductive levitated actuator, arrayed actuators, and a bio-motor-driven actuator.

  11. PolyMUMPs MEMS device to measure mechanical stiffness of single cells in aqueous media

    NASA Astrophysics Data System (ADS)

    Warnat, S.; King, H.; Forbrigger, C.; Hubbard, T.

    2015-02-01

    A method of experimentally determining the mechanical stiffness of single cells by using differential displacement measurements in a two stage spring system is presented. The spring system consists of a known MEMS reference spring and an unknown cellular stiffness: the ratio of displacements is related to the ratio of stiffness. A polyMUMPs implementation for aqueous media is presented and displacement measurements made from optical microphotographs using a FFT based displacement method with a repeatability of ~20 nm. The approach was first validated on a MEMS two stage spring system of known stiffness. The measured stiffness ratios of control structures (i) MEMS spring systems and (ii) polystyrene microspheres were found to agree with theoretical values. Mechanical tests were then performed on Saccharomyces cerevisiae (Baker’s yeast) in aqueous media. Cells were placed (using a micropipette) inside MEMS measuring structures and compressed between two jaws using an electrostatic actuator and displacements measured. Tested cells showed stiffness values between 5.4 and 8.4 N m-1 with an uncertainty of 11%. In addition, non-viable cells were tested by exposing viable cells to methanol. The resultant mean cell stiffness dropped by factor of 3 × and an explicit discrimination between viable and non-viable cells based on mechanical stiffness was seen.

  12. Adaptive Optics for Industry and Medicine

    NASA Astrophysics Data System (ADS)

    Dainty, Christopher

    2008-01-01

    pt. 1. Wavefront correctors and control. Liquid crystal lenses for correction of presbyopia (Invited Paper) / Guoqiang Li and Nasser Peyghambarian. Converging and diverging liquid crystal lenses (oral paper) / Andrew X. Kirby, Philip J. W. Hands, and Gordon D. Love. Liquid lens technology for miniature imaging systems: status of the technology, performance of existing products and future trends (invited paper) / Bruno Berge. Carbon fiber reinforced polymer deformable mirrors for high energy laser applications (oral paper) / S. R. Restaino ... [et al.]. Tiny multilayer deformable mirrors (oral paper) / Tatiana Cherezova ... [et al.]. Performance analysis of piezoelectric deformable mirrors (oral paper) / Oleg Soloviev, Mikhail Loktev and Gleb Vdovin. Deformable membrane mirror with high actuator density and distributed control (oral paper) / Roger Hamelinck ... [et al.]. Characterization and closed-loop demonstration of a novel electrostatic membrane mirror using COTS membranes (oral paper) / David Dayton ... [et al.]. Electrostatic micro-deformable mirror based on polymer materials (oral paper) / Frederic Zamkotsian ... [et al.]. Recent progress in CMOS integrated MEMS A0 mirror development (oral paper) / A. Gehner ... [et al.]. Compact large-stroke piston-tip-tilt actuator and mirror (oral paper) / W. Noell ... [et al.]. MEMS deformable mirrors for high performance AO applications (oral paper) / Paul Bierden, Thomas Bifano and Steven Cornelissen. A versatile interferometric test-rig for the investigation and evaluation of ophthalmic AO systems (poster paper) / Steve Gruppetta, Jiang Jian Zhong and Luis Diaz-Santana. Woofer-tweeter adaptive optics (poster paper) / Thomas Farrell and Chris Dainty. Deformable mirrors based on transversal piezoeffect (poster paper) / Gleb Vdovin, Mikhail Loktev and Oleg Soloviev. Low-cost spatial light modulators for ophthalmic applications (poster paper) / Vincente Durán ... [et al.]. Latest MEMS DM developments and the path ahead at Iris AO (poster paper) / Michael A. Helmbrecht ... [et al.]. Electrostatic push pull mirror improvernents in visual optics (poster paper) / S. Bonora and L. Poletto. 25cm bimorph mirror for petawatt laser / S. Bonora ... [et al.]. Hysteresis compensation for piezo deformable mirror (poster paper) / H. Song ... [et al.]. Static and dynamic responses of an adaptive optics ferrofluidic mirror (poster paper) / A. Seaman ... [et al.]. New HDTV (1920 x 1080) phase-only SLM (poster paper) / Stefan Osten and Sven Krueger. Monomorph large aperture deformable mirror for laser applications (poster paper) / J-C Sinquin, J-M Lurcon, C. Guillemard. Low cost, high speed for adaptive optics control (oral paper) / Christopher D. Saunter and Gordon D. Love. Open loop woofer-tweeter adaptive control on the LAO multi-conjugate adaptive optics testbed (oral paper) / Edward Laag, Don Gavel and Mark Ammons -- pt. 2. Wavefront sensors. Wave front sensorless adaptive optics for imaging and microscopy (invited paper) / Martin J. Booth, Delphine Débarre and Tony Wilson. A fundamental limit for wavefront sensing (oral paper) / Carl Paterson. Coherent fibre-bundle wavefront sensor (oral paper) / Brian Vohnsen, I. Iglesias and Pablo Artal. Maximum-likelihood methods in wave-front sensing: nuisance parameters (oral paper) / David Lara, Harrison H. Barrett, and Chris Dainty. Real-time wavefront sensing for ultrafast high-power laser beams (oral paper) / Juan M. Bueno ... [et al.]. Wavefront sensing using a random phase screen (oral paper) / M. Loktev, G. Vdovin and O. Soloviev. Quadri-Wave Lateral Shearing Interferometry: a new mature technique for wave front sensing in adaptive optics (oral paper) / Benoit Wattellier ... [et al.]. In vivo measurement of ocular aberrations with a distorted grating wavefront sensor (oral paper) / P. Harrison ... [et al.]. Position-sensitive detector designed with unusual CMOS layout strategies for a Hartman-Shack wavefront sensor (oral Paper) / Davies W. de Lima Monteiro ... [et al.]. Adaptive optics system to compensate complex-shaped wavefronts (oral paper) / Miguel Ares, and Santiago Royo. A kind of novel linear phase retrieval wavefront sensor and its application in close-loop adaptive optics system (oral paper) / Xinyang Li ... [et al.]. Ophthalmic Shack-Hatmann wavefront sensor applications (oral paper) / Daniel R. Neal. Wave front sensing of an optical vortex and its correction with the help of bimorph mirror (poster paper) / F. A. Starikov ... [et al.]. Recent advances in laser metrology and correction of high numerical aperture laser beams using quadri-wave lateral shearing-interferometry (poster paper) / Benoit Wattellier, Ivan Doudet and William Boucher. Thin film optical metrology using principles of wavefront sensing and interference (poster paper) / D. M. Faichnie, A. H. Greenaway and I. Bain. Direct diffractive image simulation (poster paper) / A. P. Maryasov, N. P. Maryasov, A. P. Layko. High speed smart CMOS sensor for adaptive optics (poster paper) / T. D. Raymond ... [et al.]. Traceable astigmatism measurements for wavefront sensors (poster paper) / S. R. G. Hall, S. D. Knox, R. F. Stevens -- pt. 3. Adaptive optics in vision science. Dual-conjugate adaptive optics instrument for wide-field retinal imaging (oral paper) / Jörgen Thaung, Mette-Owner Petersen and Zoran Popovic. Visual simulation using electromagnetic adaptive-optics (oral paper) / Laurent Vabre ... [et al.]. High-resolution field-of-view widening in human eye retina imaging (oral paper) / Alexander V. Dubinin, Tatyana Yu. Cherezova, Alexis V. Kudryashov. Psychophysical experiments on visual performance with an ocular adaptive optics system (oral paper) / E. Dalimier, J. C. Dainty and J. Barbur. Does the accommodative mechanism of the eye calibrate itself using aberration dynamics? (oral paper) / K. M. Hampson, S. S. Chin and E. A. H. Mallen. A study of field aberrations in the human eye (oral paper) / Alexander V. Goncharov ... [et al.]. Dual wavefront corrector ophthalmic adaptive optics: design and alignment (oral paper) / Alfredo Dubra and David Williams. High speed simultaneous SLO/OCT imaging of the human retina with adaptive optics (oral paper) / M. Pircher ... [et al.]. Characterization of an AO-OCT system (oral paper) / Julia W. Evans ... [et al.]. Adaptive optics optical coherence tomography for retina imaging (oral paper) / Guohua Shi ... [et al.]. Development, calibration and performance of an electromagnetic-mirror-based adaptive optics system for visual optics (oral paper) / Enrique Gambra ... [et al.]. Adaptive eye model (poster paper) / Sergey O. Galetskzy and Alexty V. Kudryashov. Adaptive optics system for retinal imaging based on a pyramid wavefront sensor (poster paper) / Sabine Chiesa ... [et al.]. Modeling of non-stationary dynamic ocular aberrations (poster paper) / Conor Leahy and Chris Dainty. High-order aberrations and accommodation of human eye (poster paper) / Lixia Xue ... [et al.]. Electromagnetic deformable mirror: experimental assessment and first ophthalmic applications (poster paper) / L. Vabre ... [et al.]. Correcting ocular aberrations in optical coherence tomography (poster paper) / Simon Tuohy ... [et al.] -- pt. 4. Adaptive optics in optical storage and microscopy. The application of liquid crystal aberration compensator for the optical disc systems (invited paper) / Masakazu Ogasawara. Commercialization of the adaptive scanning optical microscope (ASOM) (oral paper) / Benjamin Potsaid ... [et al.]. A practical implementation of adaptive optics for aberration compensation in optical microscopy (oral paper) / A. J. Wright ... [et al.]. Active focus locking in an optically sectioning microscope using adaptive optics (poster paper) / S. Poland, A. J. Wright, J. M. Girkin. Towards four dimensional particle tracking for biological applications / Heather I. Campbell ... [et al.]. Adaptive optics for microscopy (poster paper) / Xavier Levecq -- pt. 5. Adaptive optics in lasers. Improved beam quality of a high power Yb: YAG laser (oral paper) / Dennis G. Harris ... [et al.]. Intracavity adaptive optics optimization of an end-pumped Nd:YVO4 laser (oral paper) / Petra Welp, Ulrich Wittrock. New results in high power lasers beam correction (oral paper) / Alexis Kudryashov ... [et al.]. Adaptive optical systems for the Shenguang-III prototype facility (oral paper) / Zeping Yang ... [et al.]. Adaptive optics control of solid-state lasers (poster paper) / Walter Lubeigt ... [et al.]. Gerchberg-Saxton algorithm for multimode beam reshaping (poster paper) / Inna V. Ilyina, Tatyana Yu. Cherezova. New algorithm of combining for spatial coherent beams (poster paper) / Ruofu Yang ... [et al.]. Intracavity mode control of a solid-state laser using a 19-element deformable mirror (poster paper) / Ping Yang ... [et al.] -- pt. 6. Adaptive optics in communication and atmospheric compensation. Fourier image sharpness sensor for laser communications (oral paper) / Kristin N. Walker and Robert K. Tyson. Fast closed-loop adaptive optics system for imaging through strong turbulence layers (oral paper) / Ivo Buske and Wolfgang Riede. Correction of wavefront aberrations and optical communication using aperture synthesis (oral paper) / R. J. Eastwood ... [et al.]. Adaptive optics system for a small telescope (oral paper) / G. Vdovin, M. Loktev and O. Soloviev. Fast correction of atmospheric turbulence using a membrane deformable mirror (poster paper) / Ivan Capraro, Stefano Bonora, Paolo Villoresi. Atmospheric turbulence measurements over a 3km horizontal path with a Shack-Hartmann wavefront sensor (poster paper) / Ruth Mackey, K. Murphy and Chris Dainty. Field-oriented wavefront sensor for laser guide stars (poster paper) / Lidija Bolbasova, Alexander Goncharov and Vladimir Lukin.

  13. Review of Polyimides Used in the Manufacturing of Micro Systems

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2007-01-01

    Since their invention, polyimides have found numerous uses in MicroElectroMechanical Systems (MEMS) technology. Polyimides can act as photoresist, sacrificial layers, structural layers, and even as a replacement for silicon as the substrate during MEMS fabrication. They enable fabrication of both low and high aspect ratio devices. Polyimides have been used to fabricate expendable molds and reusable flexible molds. Development of a variety of devices that employ polyimides for sensor applications has occurred. Micro-robotic actuator applications include hinges, thermal actuators and residual stress actuators. Currently, polyimides are being used to create new sensors and devices for aerospace applications. This paper presents a review of some of the many uses of polyimides in the development of MEMS devices, including a new polyimide based MEMS fabrication process.

  14. Development of a MEMS acoustic emission sensor system

    NASA Astrophysics Data System (ADS)

    Greve, David W.; Oppenheim, Irving J.; Wu, Wei; Wright, Amelia P.

    2007-04-01

    An improved multi-channel MEMS chip for acoustic emission sensing has been designed and fabricated in 2006 to create a device that is smaller in size, superior in sensitivity, and more practical to manufacture than earlier designs. The device, fabricated in the MUMPS process, contains four resonant-type capacitive transducers in the frequency range between 100 kHz and 500 kHz on a chip with an area smaller than 2.5 sq. mm. The completed device, with its circuit board, electronics, housing, and connectors, possesses a square footprint measuring 25 mm x 25 mm. The small footprint is an important attribute for an acoustic emission sensor, because multiple sensors must typically be arrayed around a crack location. Superior sensitivity was achieved by a combination of four factors: the reduction of squeeze film damping, a resonant frequency approximating a rigid body mode rather than a bending mode, a ceramic package providing direct acoustic coupling to the structural medium, and high-gain amplifiers implemented on a small circuit board. Manufacture of the system is more practical because of higher yield (lower unit costs) in the MUMPS fabrication task and because of a printed circuit board matching the pin array of the MEMS chip ceramic package for easy assembly and compactness. The transducers on the MEMS chip incorporate two major mechanical improvements, one involving squeeze film damping and one involving the separation of resonance modes. For equal proportions of hole area to plate area, a triangular layout of etch holes reduces squeeze film damping as compared to the conventional square layout. The effect is modeled analytically, and is verified experimentally by characterization experiments on the new transducers. Structurally, the transducers are plates with spring supports; a rigid plate would be the most sensitive transducer, and bending decreases the sensitivity. In this chip, the structure was designed for an order-of-magnitude separation between the first and the second mode frequency, strongly approximating the desirable rigid plate limit. The effect is modeled analytically and is verified experimentally by measurement of the resonance frequencies in the new transducers. Another improvement arises from the use of a pin grid array ceramic package, in which the MEMS chip is acoustically coupled to the structure with only two interfaces, through a ceramic medium that is negligible in thickness when compared to wavelengths of interest. Like other acoustic emission sensors, those on the 2006 MEMS chip are sensitive only to displacements normal to the surface on which the device is mounted. To overcome that long-standing limitation, a new MEMS sensor sensitive to in-plane motion has been designed, featuring a different spring-mass mechanism and creating the signal by the change in capacitance between stationary and moving fingers. Predicted damping is much lower for the case of the in-plane sensor, and squeeze-film damping is used selectively to isolate the desired in-plane mechanical response from any unwanted out-of-plane response. The new spring-mass mechanism satisfies the design rules for the PolyMUMPS fabrication (foundry) process. A 3-D MEMS sensor system is presently being fabricated, collocating two in-plane sensors and one out-of-plane sensor at the mm scale, which is very short compared to the acoustic wavelength of interest for stress waves created by acoustic emission events.

  15. Design of a MEMS-Based Oscillator Using 180nm CMOS Technology.

    PubMed

    Roy, Sukanta; Ramiah, Harikrishnan; Reza, Ahmed Wasif; Lim, Chee Cheow; Ferrer, Eloi Marigo

    2016-01-01

    Micro-electro mechanical system (MEMS) based oscillators are revolutionizing the timing industry as a cost effective solution, enhanced with more features, superior performance and better reliability. The design of a sustaining amplifier was triggered primarily to replenish MEMS resonator's high motion losses due to the possibility of their 'system-on-chip' integrated circuit solution. The design of a sustaining amplifier observing high gain and adequate phase shift for an electrostatic clamp-clamp (C-C) beam MEMS resonator, involves the use of an 180nm CMOS process with an unloaded Q of 1000 in realizing a fixed frequency oscillator. A net 122dBΩ transimpedance gain with adequate phase shift has ensured 17.22MHz resonant frequency oscillation with a layout area consumption of 0.121 mm2 in the integrated chip solution, the sustaining amplifier draws 6.3mW with a respective phase noise of -84dBc/Hz at 1kHz offset is achieved within a noise floor of -103dBC/Hz. In this work, a comparison is drawn among similar design studies on the basis of a defined figure of merit (FOM). A low phase noise of 1kHz, high figure of merit and the smaller size of the chip has accredited to the design's applicability towards in the implementation of a clock generative integrated circuit. In addition to that, this complete silicon based MEMS oscillator in a monolithic solution has offered a cost effective solution for industrial or biomedical electronic applications.

  16. Flexible Packaging by Film-Assisted Molding for Microintegration of Inertia Sensors

    PubMed Central

    Hera, Daniel; Berndt, Armin; Günther, Thomas; Schmiel, Stephan; Harendt, Christine; Zimmermann, André

    2017-01-01

    Packaging represents an important part in the microintegration of sensors based on microelectromechanical system (MEMS). Besides miniaturization and integration density, functionality and reliability in combination with flexibility in packaging design at moderate costs and consequently high-mix, low-volume production are the main requirements for future solutions in packaging. This study investigates possibilities employing printed circuit board (PCB-)based assemblies to provide high flexibility for circuit designs together with film-assisted transfer molding (FAM) to package sensors. The feasibility of FAM in combination with PCB and MEMS as a packaging technology for highly sensitive inertia sensors is being demonstrated. The results prove the technology to be a viable method for damage-free packaging of stress- and pressure-sensitive MEMS. PMID:28653992

  17. MEMS-Based Waste Vibrational Energy Harvesters

    DTIC Science & Technology

    2013-06-01

    7 1. Lead Zirconium Titanate ( PZT ) .........................................................7 2. Aluminum...Laboratory PiezoMUMPS Piezoelectric Multi-User MEMS Processes PZT Lead Zirconate Titanate SEM Scanning Electron Microscopy SiO2 Silicon...titanate ( PZT ) possess high 4 coupling between the electrical and mechanical domains [11]. The output voltage, V, is related to the z-component

  18. MEMS Applications in Aerodynamic Measurement Technology

    NASA Technical Reports Server (NTRS)

    Reshotko, E.; Mehregany, M.; Bang, C.

    1998-01-01

    Microelectromechanical systems (MEMS) embodies the integration of sensors, actuators, and electronics on a single substrate using integrated circuit fabrication techniques and compatible bulk and surface micromachining processes. Silicon and its derivatives form the material base for the MEMS technology. MEMS devices, including microsensors and microactuators, are attractive because they can be made small (characteristic dimension about 100 microns), be produced in large numbers with uniform performance, include electronics for high performance and sophisticated functionality, and be inexpensive. For aerodynamic measurements, it is preferred that sensors be small so as to approximate measurement at a point, and in fact, MEMS pressure sensors, wall shear-stress sensors, heat flux sensors and micromachined hot wires are nearing application. For the envisioned application to wind tunnel models, MEMS sensors can be placed on the surface or in very shallow grooves. MEMS devices have often been fabricated on stiff, flat silicon substrates, about 0.5 mm thick, and therefore were not easily mounted on curved surfaces. However, flexible substrates are now available and heat-flux sensor arrays have been wrapped around a curved turbine blade. Electrical leads can also be built into the flexible substrate. Thus MEMS instrumented wind tunnel models do not require deep spanwise grooves for tubes and leads that compromise the strength of conventionally instrumented models. With MEMS, even the electrical leads can potentially be eliminated if telemetry of the signals to an appropriate receiver can be implemented. While semiconductor silicon is well known for its electronic properties, it is also an excellent mechanical material for MEMS applications. However, silicon electronics are limited to operations below about 200 C, and silicon's mechanical properties start to diminish above 400 C. In recent years, silicon carbide (SiC) has emerged as the leading material candidate for applications in high temperature environments and can be used for high-temperature MEMS applications. With SiC, diodes and more complex electronics have been shown to operate to about 600 C, while the mechanical properties of SiC are maintained to much higher temperatures. Even when MEMS devices show benefits in the laboratory, there are many packaging challenges for any aeronautics application. Incorporating MEMS into these applications requires new approaches to packaging that goes beyond traditional integrated circuit (IC) packaging technologies. MEMS must interact mechanically, as well as electrically with their environment, making most traditional chip packaging and mounting techniques inadequate. Wind tunnels operate over wide temperature ranges in an environment that is far from being a 'clean-room.' In flight, aircraft are exposed to natural elements (e.g. rain, sun, ice, insects and dirt) and operational interferences(e.g. cleaning and deicing fluids, and maintenance crews). In propulsion systems applications, MEMS devices will have to operate in environments containing gases with very high temperatures, abrasive particles and combustion products. Hence deployment and packaging that maintains the integrity of the MEMS system is crucial. This paper presents an overview of MEMS fabrication and materials, descriptions of available sensors with more details on those being developed in our laboratories, and a discussion of sensor deployment options for wind tunnel and flight applications.

  19. MEMS-Based Power Generation Techniques for Implantable Biosensing Applications

    PubMed Central

    Lueke, Jonathan; Moussa, Walied A.

    2011-01-01

    Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient. PMID:22319362

  20. High Volume Manufacturing and Field Stability of MEMS Products

    NASA Astrophysics Data System (ADS)

    Martin, Jack

    Low volume MEMS/NEMS production is practical when an attractive concept is implemented with business, manufacturing, packaging, and test support. Moving beyond this to high volume production adds requirements on design, process control, quality, product stability, market size, market maturity, capital investment, and business systems. In a broad sense, this chapter uses a case study approach: It describes and compares the silicon-based MEMS accelerometers, pressure sensors, image projection systems, and gyroscopes that are in high volume production. Although they serve several markets, these businesses have common characteristics. For example, the manufacturing lines use automated semiconductor equipment and standard material sets to make consistent products in large quantities. Standard, well controlled processes are sometimes modified for a MEMS product. However, novel processes that cannot run with standard equipment and material sets are avoided when possible. This reliance on semiconductor tools, as well as the organizational practices required to manufacture clean, particle-free products partially explains why the MEMS market leaders are integrated circuit manufacturers. There are other factors. MEMS and NEMS are enabling technologies, so it can take several years for high volume applications to develop. Indeed, market size is usually a strong function of price. This becomes a vicious circle, because low price requires low cost - a result that is normally achieved only after a product is in high volume production. During the early years, IC companies reduced cost and financial risk by using existing facilities for low volume MEMS production. As a result, product architectures are partially determined by capabilities developed for previous products. This chapter includes a discussion of MEMS product architecture with particular attention to the impact of electronic integration, packaging, and surfaces. Packaging and testing are critical, because they are significant factors in MEMS product cost. These devices have extremelyhigh surface/volume ratios, so performance and stability may depend on the control of surface characteristics after packaging. Looking into the future, the competitive advantage of IC suppliers will decrease as small companies learn to integrate MEMS/NEMS devices on CMOS foundry wafers. Packaging challenges still remain, because most MEMS/NEMS products must interact with the environment without degrading stability or reliability. Generic packaging solutions are unlikely. However, packaging subcontractors recognize that MEMS/NEMS is a growth opportunity. They will spread the overhead burden of high-capital-cost-facilities by developing flexible processes in order to package several types of moderate volume integrated MEMS/NEMS products on the same equipment.

  1. High Volume Manufacturing and Field Stability of MEMS Products

    NASA Astrophysics Data System (ADS)

    Martin, Jack

    Low volume MEMS/NEMS production is practical when an attractive concept is implemented with business, manufacturing, packaging, and test support. Moving beyond this to high volume production adds requirements on design, process control, quality, product stability, market size, market maturity, capital investment, and business systems. In a broad sense, this chapter uses a case study approach: It describes and compares the silicon-based MEMS accelerometers, pressure sensors, image projection systems, and gyroscopes that are in high volume production. Although they serve several markets, these businesses have common characteristics. For example, the manufacturing lines use automated semiconductor equipment and standard material sets to make consistent products in large quantities. Standard, well controlled processes are sometimes modified for a MEMS product. However, novel processes that cannot run with standard equipment and material sets are avoided when possible. This reliance on semiconductor tools, as well as the organizational practices required to manufacture clean, particle-free products partially explains why the MEMS market leaders are integrated circuit manufacturers. There are other factors. MEMS and NEMS are enabling technologies, so it can take several years for high volume applications to develop. Indeed, market size is usually a strong function of price. This becomes a vicious circle, because low price requires low cost - a result that is normally achieved only after a product is in high volume production. During the early years, IC companies reduced cost and financial risk by using existing facilities for low volume MEMS production. As a result, product architectures are partially determined by capabilities developed for previous products. This chapter includes a discussion of MEMS product architecture with particular attention to the impact of electronic integration, packaging, and surfaces. Packaging and testing are critical, because they are significant factors in MEMS product cost. These devices have extremely high surface/volume ratios, so performance and stability may depend on the control of surface characteristics after packaging. Looking into the future, the competitive advantage of IC suppliers will decrease as small companies learn to integrate MEMS/NEMS devices on CMOS foundry wafers. Packaging challenges still remain, because most MEMS/NEMS products must interact with the environment without degrading stability or reliability. Generic packaging solutions are unlikely. However, packaging subcontractors recognize that MEMS/NEMS is a growth opportunity. They will spread the overhead burden of high-capital-cost-facilities by developing flexible processes in order to package several types of moderate volume integrated MEMS/NEMS products on the same equipment.

  2. Novel Low Loss Wide-Band Multi-Port Integrated Circuit Technology for RF/Microwave Applications

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Goverdhanam, Kavita; Katehi, Linda P. B.; Burke, Thomas P. (Technical Monitor)

    2001-01-01

    In this paper, novel low loss, wide-band coplanar stripline technology for radio frequency (RF)/microwave integrated circuits is demonstrated on high resistivity silicon wafer. In particular, the fabrication process for the deposition of spin-on-glass (SOG) as a dielectric layer, the etching of microvias for the vertical interconnects, the design methodology for the multiport circuits and their measured/simulated characteristics are graphically illustrated. The study shows that circuits with very low loss, large bandwidth, and compact size are feasible using this technology. This multilayer planar technology has potential to significantly enhance RF/microwave IC performance when combined with semi-conductor devices and microelectromechanical systems (MEMS).

  3. Self-assembly micro optical filter

    NASA Astrophysics Data System (ADS)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Optical communication and sensor industry face critical challenges in manufacturing for system integration. Due to the assembly complexity and integration platform variety, micro optical components require costly alignment and assembly procedures, in which many required manual efforts. Consequently, self-assembly device architectures have become a great interest and could provide major advantages over the conventional optical devices. In this paper, we discussed a self-assembly integration platform for micro optical components. To demonstrate the adaptability and flexibility of the proposed optical device architectures, we chose a commercially available MEMS fabrication foundry service - MUMPs (Multi-User MEMS Process). In this work, polysilicon layers of MUMPS are used as the 3-D structural material for construction of micro component framework and actuators. However, because the polysilicon has high absorption in the visible and near infrared wavelength ranges, it is not suitable for optical interaction. To demonstrate the required optical performance, hybrid integration of materials was proposed and implemented. Organic compound materials were applied on the silicon-based framework to form the required optical interfaces. Organic compounds provide good optical transparency, flexibility to form filters or lens and inexpensive manufacturing procedures. In this paper, we have demonstrated a micro optical filter integrated with self-assembly structures. We will discuss the self-assembly mechanism, optical filter designs, fabrication issues and results.

  4. Application of neural based estimation algorithm for gait phases of above knee prosthesis.

    PubMed

    Tileylioğlu, E; Yilmaz, A

    2015-01-01

    In this study, two gait phase estimation methods which utilize a rule based quantization and an artificial neural network model respectively are developed and applied for the microcontroller based semi-active knee prosthesis in order to respond user demands and adapt environmental conditions. In this context, an experimental environment in which gait data collected synchronously from both inertial and image based measurement systems has been set up. The inertial measurement system that incorporates MEM accelerometers and gyroscopes is used to perform direct motion measurement through the microcontroller, while the image based measurement system is employed for producing the verification data and assessing the success of the prosthesis. Embedded algorithms dynamically normalize the input data prior to gait phase estimation. The real time analyses of two methods revealed that embedded ANN based approach performs slightly better in comparison with the rule based algorithm and has advantage of being easily-scalable, thus able to accommodate additional input parameters considering the microcontroller constraints.

  5. SmallSat Precision Navigation with Low-Cost MEMS IMU Swarms

    NASA Technical Reports Server (NTRS)

    Christian, John; Bishop, Robert; Martinez, Andres; Petro, Andrew

    2015-01-01

    The continued advancement of small satellite-based science missions requires the solution to a number of important technical challenges. Of particular note is that small satellite missions are characterized by tight constraints on cost, mass, power, and volume that make them unable to fly the high-quality Inertial Measurement Units (IMUs) required for orbital missions demanding precise orientation and positioning. Instead, small satellite missions typically fly low-cost Micro-Electro-Mechanical System (MEMS) IMUs. Unfortunately, the performance characteristics of these MEMS IMUs make them ineffectual in many spaceflight applications when employed in a single IMU system configuration.

  6. Respiratory Magnetogram Detected with a MEMS Device

    PubMed Central

    Dominguez-Nicolas, Saul M.; Juarez-Aguirre, Raul; Herrera-May, Agustin L.; Garcia-Ramirez, Pedro; Figueras, Eduard; Gutierrez-D., Edmundo A.; Tapia, Jesus A.; Trejo, Argelia; Manjarrez, Elias

    2013-01-01

    Magnetic fields generated by the brain or the heart are very useful in clinical diagnostics. Therefore, magnetic signals produced by other organs are also of considerable interest. Here we show first evidence that thoracic muscles can produce a strong magnetic flux density during respiratory activity, that we name respiratory magnetogram. We used a small magnetometer based on microelectromechanical systems (MEMS), which was positioned inside the open thoracic cage of anaesthetized and ventilated rats. With this new MEMS sensor of about 20 nT resolution, we recorded a strong and rhythmic respiratory magnetogram of about 600 nT. PMID:24046516

  7. Thermo-optical characterization of fluorescent rhodamine B based temperature-sensitive nanosensors using a CMOS MEMS micro-hotplate☆

    PubMed Central

    Chauhan, Veeren M.; Hopper, Richard H.; Ali, Syed Z.; King, Emma M.; Udrea, Florin; Oxley, Chris H.; Aylott, Jonathan W.

    2014-01-01

    A custom designed microelectromechanical systems (MEMS) micro-hotplate, capable of operating at high temperatures (up to 700 °C), was used to thermo-optically characterize fluorescent temperature-sensitive nanosensors. The nanosensors, 550 nm in diameter, are composed of temperature-sensitive rhodamine B (RhB) fluorophore which was conjugated to an inert silica sol–gel matrix. Temperature-sensitive nanosensors were dispersed and dried across the surface of the MEMS micro-hotplate, which was mounted in the slide holder of a fluorescence confocal microscope. Through electrical control of the MEMS micro-hotplate, temperature induced changes in fluorescence intensity of the nanosensors was measured over a wide temperature range. The fluorescence response of all nanosensors dispersed across the surface of the MEMS device was found to decrease in an exponential manner by 94%, when the temperature was increased from 25 °C to 145 °C. The fluorescence response of all dispersed nanosensors across the whole surface of the MEMS device and individual nanosensors, using line profile analysis, were not statistically different (p < 0.05). The MEMS device used for this study could prove to be a reliable, low cost, low power and high temperature micro-hotplate for the thermo-optical characterisation of sub-micron sized particles. The temperature-sensitive nanosensors could find potential application in the measurement of temperature in biological and micro-electrical systems. PMID:25844025

  8. Infrastructure for the design and fabrication of MEMS for RF/microwave and millimeter wave applications

    NASA Astrophysics Data System (ADS)

    Nerguizian, Vahe; Rafaf, Mustapha

    2004-08-01

    This article describes and provides valuable information for companies and universities with strategies to start fabricating MEMS for RF/Microwave and millimeter wave applications. The present work shows the infrastructure developed for RF/Microwave and millimeter wave MEMS platforms, which helps the identification, evaluation and selection of design tools and fabrication foundries taking into account packaging and testing. The selected and implemented simple infrastructure models, based on surface and bulk micromachining, yield inexpensive and innovative approaches for distributed choices of MEMS operating tools. With different educational or industrial institution needs, these models may be modified for specific resource changes using a careful analyzed iteration process. The inputs of the project are evaluation selection criteria and information sources such as financial, technical, availability, accessibility, simplicity, versatility and practical considerations. The outputs of the project are the selection of different MEMS design tools or software (solid modeling, electrostatic/electromagnetic and others, compatible with existing standard RF/Microwave design tools) and different MEMS manufacturing foundries. Typical RF/Microwave and millimeter wave MEMS solutions are introduced on the platform during the evaluation and development phases of the project for the validation of realistic results and operational decision making choices. The encountered challenges during the investigation and the development steps are identified and the dynamic behavior of the infrastructure is emphasized. The inputs (resources) and the outputs (demonstrated solutions) are presented in tables and flow chart mode diagrams.

  9. Tribo-functionalizing Si and SU8 materials by surface modification for application in MEMS/NEMS actuator-based devices

    NASA Astrophysics Data System (ADS)

    Singh, R. A.; Satyanarayana, N.; Kustandi, T. S.; Sinha, S. K.

    2011-01-01

    Micro/nano-electro-mechanical-systems (MEMS/NEMS) are miniaturized devices built at micro/nanoscales. At these scales, the surface/interfacial forces are extremely strong and they adversely affect the smooth operation and the useful operating lifetimes of such devices. When these forces manifest in severe forms, they lead to material removal and thereby reduce the wear durability of the devices. In this paper, we present a simple, yet robust, two-step surface modification method to significantly enhance the tribological performance of MEMS/NEMS materials. The two-step method involves oxygen plasma treatment of polymeric films and the application of a nanolubricant, namely perfluoropolyether. We apply the two-step method to the two most important MEMS/NEMS structural materials, namely silicon and SU8 polymer. On applying surface modification to these materials, their initial coefficient of friction reduces by ~4-7 times and the steady-state coefficient of friction reduces by ~2.5-3.5 times. Simultaneously, the wear durability of both the materials increases by >1000 times. The two-step method is time effective as each of the steps takes the time duration of approximately 1 min. It is also cost effective as the oxygen plasma treatment is a part of the MEMS/NEMS fabrication process. The two-step method can be readily and easily integrated into MEMS/NEMS fabrication processes. It is anticipated that this method will work for any kind of structural material from which MEMS/NEMS are or can be made.

  10. Fabricating micro-instruments in surface-micromachined polycrystalline silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comtois, J.H.; Michalicek, M.A.; Barron, C.C.

    1997-04-01

    Smaller, lighter instruments can be fabricated as Micro-Electro-Mechanical Systems (MEMS), having micron scale moving parts packaged together with associated control and measurement electronics. Batch fabrication of these devices will make economical applications such as condition-based machine maintenance and remote sensing. The choice of instrumentation is limited only by the designer`s imagination. This paper presents one genre of MEMS fabrication, surface-micromachined polycrystalline silicon (polysilicon). Two currently available but slightly different polysilicon processes are presented. One is the ARPA-sponsored ``Multi-User MEMS ProcesS`` (MUMPS), available commercially through MCNC; the other is the Sandia National Laboratories ``Sandia Ultra-planar Multilevel MEMS Technology`` (SUMMiT). Example componentsmore » created in both processes will be presented, with an emphasis on actuators, actuator force testing instruments, and incorporating actuators into larger instruments.« less

  11. Reliability modelling and analysis of thermal MEMS

    NASA Astrophysics Data System (ADS)

    Muratet, Sylvaine; Lavu, Srikanth; Fourniols, Jean-Yves; Bell, George; Desmulliez, Marc P. Y.

    2006-04-01

    This paper presents a MEMS reliability study methodology based on the novel concept of 'virtual prototyping'. This methodology can be used for the development of reliable sensors or actuators and also to characterize their behaviour in specific use conditions and applications. The methodology is demonstrated on the U-shaped micro electro thermal actuator used as test vehicle. To demonstrate this approach, a 'virtual prototype' has been developed with the modeling tools MatLab and VHDL-AMS. A best practice FMEA (Failure Mode and Effect Analysis) is applied on the thermal MEMS to investigate and assess the failure mechanisms. Reliability study is performed by injecting the identified defaults into the 'virtual prototype'. The reliability characterization methodology predicts the evolution of the behavior of these MEMS as a function of the number of cycles of operation and specific operational conditions.

  12. Power Conditioning for MEMS-Based Waste Vibrational Energy Harvester

    DTIC Science & Technology

    2015-06-01

    circuits ...........................................................................................18 Figure 18. Full-wave passive MOSFET rectifier...ABBREVIATIONS AC Alternative Current AlN Aluminum Nitride DC Direct Current LIA Lock-In Amplifier MEMS Microelectromechanical Systems MOSFET ...efficiency is achieved when input voltage is over 2–3 V [14]. Using metal-oxide-semiconductor field-effect transistors ( MOSFETs ) in a rectifier instead of

  13. Advancing MEMS Technology Usage through the MUMPS (Multi-User MEMS Processes) Program

    NASA Technical Reports Server (NTRS)

    Koester, D. A.; Markus, K. W.; Dhuler, V.; Mahadevan, R.; Cowen, A.

    1995-01-01

    In order to help provide access to advanced micro-electro-mechanical systems (MEMS) technologies and lower the barriers for both industry and academia, the Microelectronic Center of North Carolina (MCNC) and ARPA have developed a program which provides users with access to both MEMS processes and advanced electronic integration techniques. The four distinct aspects of this program, the multi-user MEMS processes (MUMP's), the consolidated micro-mechanical element library, smart MEMS, and the MEMS technology network are described in this paper. MUMP's is an ARPA-supported program created to provide inexpensive access to MEMS technology in a multi-user environment. It is both a proof-of-concept and educational tool that aids in the development of MEMS in the domestic community. MUMP's technologies currently include a 3-layer poly-silicon surface micromachining process and LIGA (lithography, electroforming, and injection molding) processes that provide reasonable design flexibility within set guidelines. The consolidated micromechanical element library (CaMEL) is a library of active and passive MEMS structures that can be downloaded by the MEMS community via the internet. Smart MEMS is the development of advanced electronics integration techniques for MEMS through the application of flip chip technology. The MEMS technology network (TechNet) is a menu of standard substrates and MEMS fabrication processes that can be purchased and combined to create unique process flows. TechNet provides the MEMS community greater flexibility and enhanced technology accessibility.

  14. Automatic classification of singular elements for the electrostatic analysis of microelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Su, Y.; Ong, E. T.; Lee, K. H.

    2002-05-01

    The past decade has seen an accelerated growth of technology in the field of microelectromechanical systems (MEMS). The development of MEMS products has generated the need for efficient analytical and simulation methods for minimizing the requirement for actual prototyping. The boundary element method is widely used in the electrostatic analysis for MEMS devices. However, singular elements are needed to accurately capture the behavior at singular regions, such as sharp corners and edges, where standard elements fail to give an accurate result. The manual classification of boundary elements based on their singularity conditions is an immensely laborious task, especially when the boundary element model is large. This process can be automated by querying the geometric model of the MEMS device for convex edges based on geometric information of the model. The associated nodes of the boundary elements on these edges can then be retrieved. The whole process is implemented in the MSC/PATRAN platform using the Patran Command Language (the source code is available as supplementary data in the electronic version of this journal issue).

  15. Urban MEMS based seismic network for post-earthquakes rapid disaster assessment

    NASA Astrophysics Data System (ADS)

    D'Alessandro, A.; Luzio, D.; D'Anna, G.

    2014-09-01

    In this paper, we introduce a project for the realization of the first European real-time urban seismic network based on Micro Electro-Mechanical Systems (MEMS) technology. MEMS accelerometers are a highly enabling technology, and nowadays, the sensitivity and the dynamic range of these sensors are such as to allow the recording of earthquakes of moderate magnitude even at a distance of several tens of kilometers. Moreover, thanks to their low cost and smaller size, MEMS accelerometers can be easily installed in urban areas in order to achieve an urban seismic network constituted by high density of observation points. The network is being implemented in the Acireale Municipality (Sicily, Italy), an area among those with the highest hazard, vulnerability and exposure to the earthquake of the Italian territory. The main objective of the implemented urban network will be to achieve an effective system for post-earthquake rapid disaster assessment. The earthquake recorded, also that with moderate magnitude will be used for the effective seismic microzonation of the area covered by the network. The implemented system will be also used to realize a site-specific earthquakes early warning system.

  16. Resonant Magnetic Field Sensors Based On MEMS Technology.

    PubMed

    Herrera-May, Agustín L; Aguilera-Cortés, Luz A; García-Ramírez, Pedro J; Manjarrez, Elías

    2009-01-01

    Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration.

  17. Resonant Magnetic Field Sensors Based On MEMS Technology

    PubMed Central

    Herrera-May, Agustín L.; Aguilera-Cortés, Luz A.; García-Ramírez, Pedro J.; Manjarrez, Elías

    2009-01-01

    Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration. PMID:22408480

  18. Localization Accuracy of Distributed Inverse Solutions for Electric and Magnetic Source Imaging of Interictal Epileptic Discharges in Patients with Focal Epilepsy.

    PubMed

    Heers, Marcel; Chowdhury, Rasheda A; Hedrich, Tanguy; Dubeau, François; Hall, Jeffery A; Lina, Jean-Marc; Grova, Christophe; Kobayashi, Eliane

    2016-01-01

    Distributed inverse solutions aim to realistically reconstruct the origin of interictal epileptic discharges (IEDs) from noninvasively recorded electroencephalography (EEG) and magnetoencephalography (MEG) signals. Our aim was to compare the performance of different distributed inverse solutions in localizing IEDs: coherent maximum entropy on the mean (cMEM), hierarchical Bayesian implementations of independent identically distributed sources (IID, minimum norm prior) and spatially coherent sources (COH, spatial smoothness prior). Source maxima (i.e., the vertex with the maximum source amplitude) of IEDs in 14 EEG and 19 MEG studies from 15 patients with focal epilepsy were analyzed. We visually compared their concordance with intracranial EEG (iEEG) based on 17 cortical regions of interest and their spatial dispersion around source maxima. Magnetic source imaging (MSI) maxima from cMEM were most often confirmed by iEEG (cMEM: 14/19, COH: 9/19, IID: 8/19 studies). COH electric source imaging (ESI) maxima co-localized best with iEEG (cMEM: 8/14, COH: 11/14, IID: 10/14 studies). In addition, cMEM was less spatially spread than COH and IID for ESI and MSI (p < 0.001 Bonferroni-corrected post hoc t test). Highest positive predictive values for cortical regions with IEDs in iEEG could be obtained with cMEM for MSI and with COH for ESI. Additional realistic EEG/MEG simulations confirmed our findings. Accurate spatially extended sources, as found in cMEM (ESI and MSI) and COH (ESI) are desirable for source imaging of IEDs because this might influence surgical decision. Our simulations suggest that COH and IID overestimate the spatial extent of the generators compared to cMEM.

  19. Multi-scale Modeling and Analysis of Nano-RFID Systems on HPC Setup

    NASA Astrophysics Data System (ADS)

    Pathak, Rohit; Joshi, Satyadhar

    In this paper we have worked out on some the complex modeling aspects such as Multi Scale modeling, MATLAB Sugar based modeling and have shown the complexities involved in the analysis of Nano RFID (Radio Frequency Identification) systems. We have shown the modeling and simulation and demonstrated some novel ideas and library development for Nano RFID. Multi scale modeling plays a very important role in nanotech enabled devices properties of which cannot be explained sometimes by abstraction level theories. Reliability and packaging still remains one the major hindrances in practical implementation of Nano RFID based devices. And to work on them modeling and simulation will play a very important role. CNTs is the future low power material that will replace CMOS and its integration with CMOS, MEMS circuitry will play an important role in realizing the true power in Nano RFID systems. RFID based on innovations in nanotechnology has been shown. MEMS modeling of Antenna, sensors and its integration in the circuitry has been shown. Thus incorporating this we can design a Nano-RFID which can be used in areas like human implantation and complex banking applications. We have proposed modeling of RFID using the concept of multi scale modeling to accurately predict its properties. Also we give the modeling of MEMS devices that are proposed recently that can see possible application in RFID. We have also covered the applications and the advantages of Nano RFID in various areas. RF MEMS has been matured and its devices are being successfully commercialized but taking it to limits of nano domains and integration with singly chip RFID needs a novel approach which is being proposed. We have modeled MEMS based transponder and shown the distribution for multi scale modeling for Nano RFID.

  20. Impact of radiations on the electromechanical properties of materials and on the piezoresistive and capacitive transduction mechanisms used in microsystems

    NASA Astrophysics Data System (ADS)

    Francis, Laurent A.; Gkotsis, Petros; Kilchytska, Valeriya; Tang, Xiaohui; Druart, Sylvain; Raskin, Jean-Pierre; Flandre, Denis

    2013-03-01

    The impact of different types of radiation on the electromechanical properties of materials used in microfabrication and on the capacitive and piezoresistive transduction mechanisms of MEMS is investigated. MEMS technologies could revolutionize avionics, satellite and space applications provided that the stress conditions which can compromise the reliability of microsystems in these environments are well understood. Initial tests with MEMS revealed a vulnerability of some types of devices to radiation induced dielectric charging, a physical mechanism which also affects microelectronics, however integration of novel functional materials in microfabrication and the current trend to substitute SiO2 with high-k dielectrics in ICs pose new questions regarding reliability in radiation environments. The performance of MEMS devices with moving parts could also degrade due to radiation induced changes in the mechanical properties of the materials. It is thus necessary to investigate the effects of radiation on the properties of thin films used in microfabrication and here we report on tests with γ, high energy protons and fast neutrons radiation. Prototype SOI based MEMS magnetometers which were developed in UCL are also used as test vehicles to investigate radiation effects on the reliability of magnetically actuated and capacitively coupled MEMS.

  1. Concept for a Micro Autonomous Ultrasonic Instrument (MAUI)

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2002-01-01

    We investigate a concept for the construction a mobile Micro Optical ElectroMechanical Systems (MOEMS) based laser ultrasonic instrument to serve as a Micro Autonomous Ultrasonic Instrument (MAUI). The system will consist of a laser ultrasonic instrument fabricated using Micro Electro-Mechanical Systems (MEMS) technology, and a MEMS based walking platform like those developed by Pister et al. at Berkeley. This small system will allow for automated remote Non-Destructive Evaluation (NDE) of aerospace vehicles.

  2. Novel On-wafer Radiation Pattern Measurement Technique for MEMS Actuator Based Reconfigurable Patch Antennas

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2002-01-01

    The paper presents a novel on-wafer, antenna far field pattern measurement technique for microelectromechanical systems (MEMS) based reconfigurable patch antennas. The measurement technique significantly reduces the time and the cost associated with the characterization of printed antennas, fabricated on a semiconductor wafer or dielectric substrate. To measure the radiation patterns, the RF probe station is modified to accommodate an open-ended rectangular waveguide as the rotating linearly polarized sampling antenna. The open-ended waveguide is attached through a coaxial rotary joint to a Plexiglas(Trademark) arm and is driven along an arc by a stepper motor. Thus, the spinning open-ended waveguide can sample the relative field intensity of the patch as a function of the angle from bore sight. The experimental results include the measured linearly polarized and circularly polarized radiation patterns for MEMS-based frequency reconfigurable rectangular and polarization reconfigurable nearly square patch antennas, respectively.

  3. MEMS-Based Satellite Micropropulsion Via Catalyzed Hydrogen Peroxide Decomposition

    NASA Technical Reports Server (NTRS)

    Hitt, Darren L.; Zakrzwski, Charles M.; Thomas, Michael A.; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    Micro-electromechanical systems (MEMS) techniques offer great potential in satisfying the mission requirements for the next generation of "micro-scale" satellites being designed by NASA and Department of Defense agencies. More commonly referred to as "nanosats", these miniature satellites feature masses in the range of 10-100 kg and therefore have unique propulsion requirements. The propulsion systems must be capable of providing extremely low levels of thrust and impulse while also satisfying stringent demands on size, mass, power consumption and cost. We begin with an overview of micropropulsion requirements and some current MEMS-based strategies being developed to meet these needs. The remainder of the article focuses the progress being made at NASA Goddard Space Flight Center towards the development of a prototype monopropellant MEMS thruster which uses the catalyzed chemical decomposition of high concentration hydrogen peroxide as a propulsion mechanism. The products of decomposition are delivered to a micro-scale converging/diverging supersonic nozzle which produces the thrust vector; the targeted thrust level approximately 500 N with a specific impulse of 140-180 seconds. Macro-scale hydrogen peroxide thrusters have been used for satellite propulsion for decades; however, the implementation of traditional thruster designs on a MEMS scale has uncovered new challenges in fabrication, materials compatibility, and combustion and hydrodynamic modeling. A summary of the achievements of the project to date is given, as is a discussion of remaining challenges and future prospects.

  4. Data fusion algorithm for rapid multi-mode dust concentration measurement system based on MEMS

    NASA Astrophysics Data System (ADS)

    Liao, Maohao; Lou, Wenzhong; Wang, Jinkui; Zhang, Yan

    2018-03-01

    As single measurement method cannot fully meet the technical requirements of dust concentration measurement, the multi-mode detection method is put forward, as well as the new requirements for data processing. This paper presents a new dust concentration measurement system which contains MEMS ultrasonic sensor and MEMS capacitance sensor, and presents a new data fusion algorithm for this multi-mode dust concentration measurement system. After analyzing the relation between the data of the composite measurement method, the data fusion algorithm based on Kalman filtering is established, which effectively improve the measurement accuracy, and ultimately forms a rapid data fusion model of dust concentration measurement. Test results show that the data fusion algorithm is able to realize the rapid and exact concentration detection.

  5. A readout integrated circuit based on DBI-CTIA and cyclic ADC for MEMS-array-based focal plane

    NASA Astrophysics Data System (ADS)

    Miao, Liu; Dong, Wu; Zheyao, Wang

    2016-11-01

    A readout integrated circuit (ROIC) for a MEMS (microelectromechanical system)-array-based focal plane (MAFP) intended for imaging applications is presented. The ROIC incorporates current sources for diode detectors, scanners, timing sequence controllers, differential buffered injection-capacitive trans-impedance amplifier (DBI-CTIA) and 10-bit cyclic ADCs, and is integrated with MAFP using 3-D integration technology. A small-signal equivalent model is built to include thermal detectors into circuit simulations. The biasing current is optimized in terms of signal-to-noise ratio and power consumption. Layout design is tailored to fulfill the requirements of 3-D integration and to adapt to the size of MAFP elements, with not all but only the 2 bottom metal layers to complete nearly all the interconnections in DBI-CTIA and ADC in a 40 μm wide column. Experimental chips are designed and fabricated in a 0.35 μm CMOS mixed signal process, and verified in a code density test of which the results indicate a (0.29/-0.31) LSB differential nonlinearity (DNL) and a (0.61/-0.45) LSB integral nonlinearity (INL). Spectrum analysis shows that the effective number of bits (ENOB) is 9.09. The ROIC consumes 248 mW of power at most if not to cut off quiescent current paths when not needed. Project supported by by National Natural Science Foundation of China (No. 61271130), the Beijing Municipal Science and Tech Project (No. D13110100290000), the Tsinghua University Initiative Scientific Research Program (No. 20131089225), and the Shenzhen Science and Technology Development Fund (No. CXZZ20130322170740736).

  6. Optical design of MEMS-based infrared multi-object spectrograph concept for the Gemini South Telescope

    NASA Astrophysics Data System (ADS)

    Chen, Shaojie; Sivanandam, Suresh; Moon, Dae-Sik

    2016-08-01

    We discuss the optical design of an infrared multi-object spectrograph (MOS) concept that is designed to take advantage of the multi-conjugate adaptive optics (MCAO) corrected field at the Gemini South telescope. This design employs a unique, cryogenic MEMS-based focal plane mask to select target objects for spectroscopy by utilizing the Micro-Shutter Array (MSA) technology originally developed for the Near Infrared Spectrometer (NIRSpec) of the James Webb Space Telescope (JWST). The optical design is based on all spherical refractive optics, which serves both imaging and spectroscopic modes across the wavelength range of 0.9-2.5 μm. The optical system consists of a reimaging system, MSA, collimator, volume phase holographic (VPH) grisms, and spectrograph camera optics. The VPH grisms, which are VPH gratings sandwiched between two prisms, provide high dispersing efficiencies, and a set of several VPH grisms provide the broad spectral coverage at high throughputs. The imaging mode is implemented by removing the MSA and the dispersing unit out of the beam. We optimize both the imaging and spectrographic modes simultaneously, while paying special attention to the performance of the pupil imaging at the cold stop. Our current design provides a 1' ♢ 1' and a 0.5' ♢ 1' field of views for imaging and spectroscopic modes, respectively, on a 2048 × 2048 pixel HAWAII-2RG detector array. The spectrograph's slit width and spectral resolving power are 0.18'' and 3,000, respectively, and spectra of up to 100 objects can be obtained simultaneously. We present the overall results of simulated performance using optical model we designed.

  7. Scalable fabrication of carbon-based MEMS/NEMS and their applications: a review

    NASA Astrophysics Data System (ADS)

    Jiang, Shulan; Shi, Tielin; Zhan, Xiaobin; Xi, Shuang; Long, Hu; Gong, Bo; Li, Junjie; Cheng, Siyi; Huang, Yuanyuan; Tang, Zirong

    2015-11-01

    The carbon-based micro/nano electromechanical system (MEMS/NEMS) technique provides a powerful approach to large-scale manufacture of high-aspect-ratio carbon structures for wafer-level processing. The fabricated three-dimensional (3D) carbon structures have the advantages of excellent electrical and electrochemical properties, and superior biocompatibility. In order to improve their performance for applications in micro energy storage devices and microsensors, an increase in the footprint surface area is of great importance. Various approaches have been proposed for fabricating large surface area carbon-based structures, including the integration of nanostructures such as carbon nanotubes (CNTs), graphene, nanowires, nanofilms and nanowrinkles onto 3D structures, which has been proved to be effective and productive. Moreover, by etching the 3D photoresist microstructures through oxygen plasma or modifying the photoresist with specific materials which can be etched in the following pyrolysis process, micro/nano hierarchical carbon structures have been fabricated. These improved structures show excellent performance in various applications, especially in the fields of biological sensors, surface-enhanced Raman scattering, and energy storage devices such as micro-supercapacitors and fuel cells. With the rapid development of microelectronic devices, the carbon-based MEMS/NEMS technique could make more aggressive moves into microelectronics, sensors, miniaturized power systems, etc. In this review, the recent advances in the fabrication of micro/nano hierarchical carbon-based structures are introduced and the technical challenges and future outlook of the carbon-based MEMS/NEMS techniques are also analyzed.

  8. Adaptive optics vision simulation and perceptual learning system based on a 35-element bimorph deformable mirror.

    PubMed

    Dai, Yun; Zhao, Lina; Xiao, Fei; Zhao, Haoxin; Bao, Hua; Zhou, Hong; Zhou, Yifeng; Zhang, Yudong

    2015-02-10

    An adaptive optics visual simulation combined with a perceptual learning (PL) system based on a 35-element bimorph deformable mirror (DM) was established. The larger stroke and smaller size of the bimorph DM made the system have larger aberration correction or superposition ability and be more compact. By simply modifying the control matrix or the reference matrix, select correction or superposition of aberrations was realized in real time similar to a conventional adaptive optics closed-loop correction. PL function was first integrated in addition to conventional adaptive optics visual simulation. PL training undertaken with high-order aberrations correction obviously improved the visual function of adult anisometropic amblyopia. The preliminary application of high-order aberrations correction with PL training on amblyopia treatment was being validated with a large scale population, which might have great potential in amblyopia treatment and visual performance maintenance.

  9. Load dissipation by corn residue on tilled soil in laboratory and field-wheeling conditions.

    PubMed

    Reichert, José M; Brandt, André A; Rodrigues, Miriam F; Reinert, Dalvan J; Braida, João A

    2016-06-01

    Crop residues may partially dissipate applied loads and reduce soil compaction. We evaluated the effect of corn residue on energy-applied dissipation during wheeling. The experiment consisted of a preliminary laboratory test and a confirmatory field test on a Paleaudalf soil. In the laboratory, an adapted Proctor test was performed with three energy levels, with and without corn residue. Field treatments consisted of three 5.1 Mg tractor wheeling intensities (0, 2, and 6), with and without 12 Mg ha(-1) corn residue on the soil surface. Corn residue on the soil surface reduced soil bulk density in the adapted Proctor test. By applying energy of 52.6 kN m m(-3) , soil dissipated 2.98% of applied energy, whereas with 175.4 kN m m(-3) a dissipation of 8.60% was obtained. This result confirms the hypothesis that surface mulch absorbs part of the compaction effort. Residue effects on soil compaction observed in the adapted Proctor test was not replicated under subsoiled soil field conditions, because of differences in applied pressure and soil conditions (structure, moisture and volume confinement). Nevertheless, this negative result does not mean that straw has no effect in the field. Such effects should be measured via stress transmission and compared to soil load-bearing capacity, rather than on bulk deformations. Wheeling by heavy tractor on subsoiled soil increased compaction, independently of surface residue. Two wheelings produced a significantly increase, but six wheelings did not further increase compaction. Reduced traffic intensity on recently tilled soil is necessary to minimize soil compaction, since traffic intensity show a greater effect than surface mulch on soil protection from excessive compaction. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  10. STEAM: a software tool based on empirical analysis for micro electro mechanical systems

    NASA Astrophysics Data System (ADS)

    Devasia, Archana; Pasupuleti, Ajay; Sahin, Ferat

    2006-03-01

    In this research a generalized software framework that enables accurate computer aided design of MEMS devices is developed. The proposed simulation engine utilizes a novel material property estimation technique that generates effective material properties at the microscopic level. The material property models were developed based on empirical analysis and the behavior extraction of standard test structures. A literature review is provided on the physical phenomena that govern the mechanical behavior of thin films materials. This survey indicates that the present day models operate under a wide range of assumptions that may not be applicable to the micro-world. Thus, this methodology is foreseen to be an essential tool for MEMS designers as it would develop empirical models that relate the loading parameters, material properties, and the geometry of the microstructures with its performance characteristics. This process involves learning the relationship between the above parameters using non-parametric learning algorithms such as radial basis function networks and genetic algorithms. The proposed simulation engine has a graphical user interface (GUI) which is very adaptable, flexible, and transparent. The GUI is able to encompass all parameters associated with the determination of the desired material property so as to create models that provide an accurate estimation of the desired property. This technique was verified by fabricating and simulating bilayer cantilevers consisting of aluminum and glass (TEOS oxide) in our previous work. The results obtained were found to be very encouraging.

  11. Design of a MEMS-Based Oscillator Using 180nm CMOS Technology

    PubMed Central

    Roy, Sukanta; Ramiah, Harikrishnan; Reza, Ahmed Wasif; Lim, Chee Cheow; Ferrer, Eloi Marigo

    2016-01-01

    Micro-electro mechanical system (MEMS) based oscillators are revolutionizing the timing industry as a cost effective solution, enhanced with more features, superior performance and better reliability. The design of a sustaining amplifier was triggered primarily to replenish MEMS resonator’s high motion losses due to the possibility of their ‘system-on-chip’ integrated circuit solution. The design of a sustaining amplifier observing high gain and adequate phase shift for an electrostatic clamp-clamp (C-C) beam MEMS resonator, involves the use of an 180nm CMOS process with an unloaded Q of 1000 in realizing a fixed frequency oscillator. A net 122dBΩ transimpedance gain with adequate phase shift has ensured 17.22MHz resonant frequency oscillation with a layout area consumption of 0.121 mm2 in the integrated chip solution, the sustaining amplifier draws 6.3mW with a respective phase noise of -84dBc/Hz at 1kHz offset is achieved within a noise floor of -103dBC/Hz. In this work, a comparison is drawn among similar design studies on the basis of a defined figure of merit (FOM). A low phase noise of 1kHz, high figure of merit and the smaller size of the chip has accredited to the design’s applicability towards in the implementation of a clock generative integrated circuit. In addition to that, this complete silicon based MEMS oscillator in a monolithic solution has offered a cost effective solution for industrial or biomedical electronic applications. PMID:27391136

  12. Neural-Network-Based Adaptive Decentralized Fault-Tolerant Control for a Class of Interconnected Nonlinear Systems.

    PubMed

    Li, Xiao-Jian; Yang, Guang-Hong

    2018-01-01

    This paper is concerned with the adaptive decentralized fault-tolerant tracking control problem for a class of uncertain interconnected nonlinear systems with unknown strong interconnections. An algebraic graph theory result is introduced to address the considered interconnections. In addition, to achieve the desirable tracking performance, a neural-network-based robust adaptive decentralized fault-tolerant control (FTC) scheme is given to compensate the actuator faults and system uncertainties. Furthermore, via the Lyapunov analysis method, it is proven that all the signals of the resulting closed-loop system are semiglobally bounded, and the tracking errors of each subsystem exponentially converge to a compact set, whose radius is adjustable by choosing different controller design parameters. Finally, the effectiveness and advantages of the proposed FTC approach are illustrated with two simulated examples.

  13. MEMS Integrated Submount Alignment for Optoelectronics

    NASA Astrophysics Data System (ADS)

    Shakespeare, W. Jeffrey; Pearson, Raymond A.; Grenestedt, Joachim L.; Hutapea, Parsaoran; Gupta, Vikas

    2005-02-01

    One of the most expensive and time-consuming production processes for single-mode fiber-optic components is the alignment of the photonic chip or waveguide to the fiber. The alignment equipment is capital intensive and usually requires trained technicians to achieve desired results. Current technology requires active alignment since tolerances are only ~0.2 μ m or less for a typical laser diode. This is accomplished using piezoelectric actuated stages and active optical feedback. Joining technologies such as soldering, epoxy bonding, or laser welding may contribute significant postbond shift, and final coupling efficiencies are often less than 80%. This paper presents a method of adaptive optical alignment to freeze in place directly on an optical submount using a microelectromechanical system (MEMS) shape memory alloy (SMA) actuation technology. Postbond shift is eliminated since the phase change is the alignment actuation. This technology is not limited to optical alignment but can be applied to a variety of MEMS actuations, including nano-actuation and nano-alignment for biomedical applications. Experimental proof-of-concept results are discussed, and a simple analytical model is proposed to predict the stress strain behavior of the optical submount. Optical coupling efficiencies and alignment times are compared with traditional processes. The feasibility of this technique in high-volume production is discussed.

  14. A new type of tri-axial accelerometers with high dynamic range MEMS for earthquake early warning

    NASA Astrophysics Data System (ADS)

    Peng, Chaoyong; Chen, Yang; Chen, Quansheng; Yang, Jiansi; Wang, Hongti; Zhu, Xiaoyi; Xu, Zhiqiang; Zheng, Yu

    2017-03-01

    Earthquake Early Warning System (EEWS) has shown its efficiency for earthquake damage mitigation. As the progress of low-cost Micro Electro Mechanical System (MEMS), many types of MEMS-based accelerometers have been developed and widely used in deploying large-scale, dense seismic networks for EEWS. However, the noise performance of these commercially available MEMS is still insufficient for weak seismic signals, leading to the large scatter of early-warning parameters estimation. In this study, we developed a new type of tri-axial accelerometer based on high dynamic range MEMS with low noise level using for EEWS. It is a MEMS-integrated data logger with built-in seismological processing. The device is built on a custom-tailored Linux 2.6.27 operating system and the method for automatic detecting seismic events is STA/LTA algorithms. When a seismic event is detected, peak ground parameters of all data components will be calculated at an interval of 1 s, and τc-Pd values will be evaluated using the initial 3 s of P wave. These values will then be organized as a trigger packet actively sent to the processing center for event combining detection. The output data of all three components are calibrated to sensitivity 500 counts/cm/s2. Several tests and a real field test deployment were performed to obtain the performances of this device. The results show that the dynamic range can reach 98 dB for the vertical component and 99 dB for the horizontal components, and majority of bias temperature coefficients are lower than 200 μg/°C. In addition, the results of event detection and real field deployment have shown its capabilities for EEWS and rapid intensity reporting.

  15. Microspectroscopy with Terahertz bioMEMS

    NASA Astrophysics Data System (ADS)

    Akalin, Tahsin; Treizebré, Anthony

    2006-04-01

    Biological applications require more and more compact, sensitive and reliable microsystems. We will present solutions in order to realize a "microspectroscopy" up to Terahertz frequencies of various biological entities (living cell, neurons, proteins...). We investigate these entities in liquid phase. In a recent work, we have demonstrated a solution to excite efficiently a single wire transmission line [1]. The propagation mode is similar to a surface plasmon and known as a Goubau-mode [2]. The wire we used is extremely thin compared to other recent solutions at terahertz frequencies. There are three orders of magnitude in the size of the wire used by K. Wang and D.M. Mittleman. Typically the wire's width is 1μm compared to the 900μm diameter metal wire in [3]. Moreover our solution is in a planar configuration which is more suitable for microfluidic applications. We benefit from the high confinement of the electromagnetic field around this very thin gold wire to optimize the sensitivity of these Terahertz BioMEMS. Microfluidic channels are placed below the strip in a perpendicular direction. We will first present some properties of the Planar Goubau-Line (PGL) [4] and the measurements results obtained with structures fabricated on glass and quartz substrates. In a last part resonant structures and Mach-Zehnder type interferometers will also be presented.

  16. Microelectronic device package with an integral window

    DOEpatents

    Peterson, Kenneth A.; Watson, Robert D.

    2002-01-01

    An apparatus for packaging of microelectronic devices, including an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can include a cofired ceramic frame or body. The package can have an internal stepped structure made of one or more plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. Multiple chips can be located within a single package. The cover lid can include a window. The apparatus is particularly suited for packaging of MEMS devices, since the number of handling steps is greatly reduced, thereby reducing the potential for contamination.

  17. Modeling the Performance of MEMS Based Directional Microphones

    DTIC Science & Technology

    2008-12-01

    5 B. KARUNASIRI’S BIOMIMICRY WORK ................................................ 8... biomimicry efforts involving the fly’s ear. To show the motivation behind the design of an acoustics MEMS device, it includes a brief description of the...system (From: Miles et al., 1995) B. KARUNASIRI’S BIOMIMICRY WORK Two NPS thesis students working under the mentorship of Professor Gamani Karunasiri

  18. INS/GNSS Integration for Aerobatic Flight Applications and Aircraft Motion Surveying.

    PubMed

    V Hinüber, Edgar L; Reimer, Christian; Schneider, Tim; Stock, Michael

    2017-04-26

    This paper presents field tests of challenging flight applications obtained with a new family of lightweight low-power INS/GNSS ( inertial navigation system/global satellite navigation system ) solutions based on MEMS ( micro-electro-mechanical- sensor ) machined sensors, being used for UAV ( unmanned aerial vehicle ) navigation and control as well as for aircraft motion dynamics analysis and trajectory surveying. One key is a 42+ state extended Kalman-filter-based powerful data fusion, which also allows the estimation and correction of parameters that are typically affected by sensor aging, especially when applying MEMS-based inertial sensors, and which is not yet deeply considered in the literature. The paper presents the general system architecture, which allows iMAR Navigation the integration of all classes of inertial sensors and GNSS ( global navigation satellite system ) receivers from very-low-cost MEMS and high performance MEMS over FOG ( fiber optical gyro ) and RLG ( ring laser gyro ) up to HRG ( hemispherical resonator gyro ) technology, and presents detailed flight test results obtained under extreme flight conditions. As a real-world example, the aerobatic maneuvers of the World Champion 2016 (Red Bull Air Race) are presented. Short consideration is also given to surveying applications, where the ultimate performance of the same data fusion, but applied on gravimetric surveying, is discussed.

  19. INS/GNSS Integration for Aerobatic Flight Applications and Aircraft Motion Surveying

    PubMed Central

    v. Hinüber, Edgar L.; Reimer, Christian; Schneider, Tim; Stock, Michael

    2017-01-01

    This paper presents field tests of challenging flight applications obtained with a new family of lightweight low-power INS/GNSS (inertial navigation system/global satellite navigation system) solutions based on MEMS (micro-electro-mechanical- sensor) machined sensors, being used for UAV (unmanned aerial vehicle) navigation and control as well as for aircraft motion dynamics analysis and trajectory surveying. One key is a 42+ state extended Kalman-filter-based powerful data fusion, which also allows the estimation and correction of parameters that are typically affected by sensor aging, especially when applying MEMS-based inertial sensors, and which is not yet deeply considered in the literature. The paper presents the general system architecture, which allows iMAR Navigation the integration of all classes of inertial sensors and GNSS (global navigation satellite system) receivers from very-low-cost MEMS and high performance MEMS over FOG (fiber optical gyro) and RLG (ring laser gyro) up to HRG (hemispherical resonator gyro) technology, and presents detailed flight test results obtained under extreme flight conditions. As a real-world example, the aerobatic maneuvers of the World Champion 2016 (Red Bull Air Race) are presented. Short consideration is also given to surveying applications, where the ultimate performance of the same data fusion, but applied on gravimetric surveying, is discussed. PMID:28445417

  20. An Enhanced MEMS Error Modeling Approach Based on Nu-Support Vector Regression

    PubMed Central

    Bhatt, Deepak; Aggarwal, Priyanka; Bhattacharya, Prabir; Devabhaktuni, Vijay

    2012-01-01

    Micro Electro Mechanical System (MEMS)-based inertial sensors have made possible the development of a civilian land vehicle navigation system by offering a low-cost solution. However, the accurate modeling of the MEMS sensor errors is one of the most challenging tasks in the design of low-cost navigation systems. These sensors exhibit significant errors like biases, drift, noises; which are negligible for higher grade units. Different conventional techniques utilizing the Gauss Markov model and neural network method have been previously utilized to model the errors. However, Gauss Markov model works unsatisfactorily in the case of MEMS units due to the presence of high inherent sensor errors. On the other hand, modeling the random drift utilizing Neural Network (NN) is time consuming, thereby affecting its real-time implementation. We overcome these existing drawbacks by developing an enhanced Support Vector Machine (SVM) based error model. Unlike NN, SVMs do not suffer from local minimisation or over-fitting problems and delivers a reliable global solution. Experimental results proved that the proposed SVM approach reduced the noise standard deviation by 10–35% for gyroscopes and 61–76% for accelerometers. Further, positional error drifts under static conditions improved by 41% and 80% in comparison to NN and GM approaches. PMID:23012552

  1. Model-Based Angular Scan Error Correction of an Electrothermally-Actuated MEMS Mirror

    PubMed Central

    Zhang, Hao; Xu, Dacheng; Zhang, Xiaoyang; Chen, Qiao; Xie, Huikai; Li, Suiqiong

    2015-01-01

    In this paper, the actuation behavior of a two-axis electrothermal MEMS (Microelectromechanical Systems) mirror typically used in miniature optical scanning probes and optical switches is investigated. The MEMS mirror consists of four thermal bimorph actuators symmetrically located at the four sides of a central mirror plate. Experiments show that an actuation characteristics difference of as much as 4.0% exists among the four actuators due to process variations, which leads to an average angular scan error of 0.03°. A mathematical model between the actuator input voltage and the mirror-plate position has been developed to predict the actuation behavior of the mirror. It is a four-input, four-output model that takes into account the thermal-mechanical coupling and the differences among the four actuators; the vertical positions of the ends of the four actuators are also monitored. Based on this model, an open-loop control method is established to achieve accurate angular scanning. This model-based open loop control has been experimentally verified and is useful for the accurate control of the mirror. With this control method, the precise actuation of the mirror solely depends on the model prediction and does not need the real-time mirror position monitoring and feedback, greatly simplifying the MEMS control system. PMID:26690432

  2. Release Resistant Electrical Interconnections For Mems Devices

    DOEpatents

    Peterson, Kenneth A.; Garrett, Stephen E.; Reber, Cathleen A.

    2005-02-22

    A release resistant electrical interconnection comprising a gold-based electrical conductor compression bonded directly to a highly-doped polysilicon bonding pad in a MEMS, IMEMS, or MOEMS device, without using any intermediate layers of aluminum, titanium, solder, or conductive adhesive disposed in-between the conductor and polysilicon pad. After the initial compression bond has been formed, subsequent heat treatment of the joint above 363 C creates a liquid eutectic phase at the bondline comprising gold plus approximately 3 wt % silicon, which, upon re-solidification, significantly improves the bond strength by reforming and enhancing the initial bond. This type of electrical interconnection is resistant to chemical attack from acids used for releasing MEMS elements (HF, HCL), thereby enabling the use of a "package-first, release-second" sequence for fabricating MEMS devices. Likewise, the bond strength of an Au--Ge compression bond may be increased by forming a transient liquid eutectic phase comprising Au-12 wt % Ge.

  3. MEMS capacitive pressure sensor monolithically integrated with CMOS readout circuit by using post CMOS processes

    NASA Astrophysics Data System (ADS)

    Jang, Munseon; Yun, Kwang-Seok

    2017-12-01

    In this paper, we presents a MEMS pressure sensor integrated with a readout circuit on a chip for an on-chip signal processing. The capacitive pressure sensor is formed on a CMOS chip by using a post-CMOS MEMS processes. The proposed device consists of a sensing capacitor that is square in shape, a reference capacitor and a readout circuitry based on a switched-capacitor scheme to detect capacitance change at various environmental pressures. The readout circuit was implemented by using a commercial 0.35 μm CMOS process with 2 polysilicon and 4 metal layers. Then, the pressure sensor was formed by wet etching of metal 2 layer through via hole structures. Experimental results show that the MEMS pressure sensor has a sensitivity of 11 mV/100 kPa at the pressure range of 100-400 kPa.

  4. Thermoelectric microdevice fabricated by a MEMS-like electrochemical process

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey; Lim, James R.; Huang, Chen-Kuo; Fleurial, Jean-Pierre

    2003-01-01

    Microelectromechanical systems (MEMS) are the basis of many rapidly growing technologies, because they combine miniature sensors and actuators with communications and electronics at low cost. Commercial MEMS fabrication processes are limited to silicon-based materials or two-dimensional structures. Here we show an inexpensive, electrochemical technique to build MEMS-like structures that contain several different metals and semiconductors with three-dimensional bridging structures. We demonstrate this technique by building a working microthermoelectric device. Using repeated exposure and development of multiple photoresist layers, several different metals and thermoelectric materials are fabricated in a three-dimensional structure. A device containing 126 n-type and p-type (Bi, Sb)2Te3 thermoelectric elements, 20 microm tall and 60 microm in diameter with bridging metal interconnects, was fabricated and cooling demonstrated. Such a device should be of technological importance for precise thermal control when operating as a cooler, and for portable power when operating as a micro power generator.

  5. Evaluation of a Programmable Voltage-Controlled MEMS Oscillator, Type SiT3701, Over a Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2009-01-01

    Semiconductor chips based on MEMS (Micro-Electro-Mechanical Systems) technology, such as sensors, transducers, and actuators, are becoming widely used in today s electronics due to their high performance, low power consumption, tolerance to shock and vibration, and immunity to electro-static discharge. In addition, the MEMS fabrication process allows for the miniaturization of individual chips as well as the integration of various electronic circuits into one module, such as system-on-a-chip. These measures would simplify overall system design, reduce parts count and interface, improve reliability, and reduce cost; and they would meet requirements of systems destined for use in space exploration missions. In this work, the performance of a recently-developed MEMS voltage-controlled oscillator was evaluated under a wide temperature range. Operation of this new commercial-off-the-shelf (COTS) device was also assessed under thermal cycling to address some operational conditions of the space environment

  6. New Research on MEMS Acoustic Vector Sensors Used in Pipeline Ground Markers

    PubMed Central

    Song, Xiaopeng; Jian, Zeming; Zhang, Guojun; Liu, Mengran; Guo, Nan; Zhang, Wendong

    2015-01-01

    According to the demands of current pipeline detection systems, the above-ground marker (AGM) system based on sound detection principle has been a major development trend in pipeline technology. A novel MEMS acoustic vector sensor for AGM systems which has advantages of high sensitivity, high signal-to-noise ratio (SNR), and good low frequency performance has been put forward. Firstly, it is presented that the frequency of the detected sound signal is concentrated in a lower frequency range, and the sound attenuation is relatively low in soil. Secondly, the MEMS acoustic vector sensor structure and basic principles are introduced. Finally, experimental tests are conducted and the results show that in the range of 0°∼90°, when r = 5 m, the proposed MEMS acoustic vector sensor can effectively detect sound signals in soil. The measurement errors of all angles are less than 5°. PMID:25609046

  7. Design and analysis of a high Q MEMS passive RF filter

    NASA Astrophysics Data System (ADS)

    Rathee, Vishal; Pande, Rajesh

    2016-04-01

    Over the past few years, significant growth has been observed in using MEMS based passive components in the RF microelectronics domain, especially in transceiver system. This is due to some excellent properties of the MEMS devices like low loss, low cost and excellent isolation. This paper presents a design of high performance MEMS passive band pass filter, consisting of L and C with improved quality factor and insertion loss less than the reported filters. In this paper we have presented a design of 2nd order band pass filter with 2.4GHz centre frequency and 83MHz bandwidth for Bluetooth application. The simulation results showed improved Q-factor of 34 and Insertion loss of 1.7dB to 1.9dB. The simulation results needs to be validated by fabricating the device, fabrication flow of which is also presented in the paper.

  8. Utilizing Microelectromechanical Systems (MEMS) Micro-Shutter Designs for Adaptive Coded Aperture Imaging (ACAI) Technologies

    DTIC Science & Technology

    2009-03-01

    52 Figure 4-1: Applied voltage versus deflection curve for Poly1/Poly2 stacked 300-μm single hot-arm actuator (shown on right...58 Figure 4-2: Applied voltage versus deflection curve for Poly1/Poly2 stacked 300-μm double hot-arm actuator (shown on...61 Figure 4-5: Deflection vs. power curves for an individual wedge from

  9. Microelectromechanical mirrors and electrically-programmable diffraction gratings based on two-stage actuation

    DOEpatents

    Allen, James J.; Sinclair, Michael B.; Dohner, Jeffrey L.

    2005-11-22

    A microelectromechanical (MEM) device for redirecting incident light is disclosed. The MEM device utilizes a pair of electrostatic actuators formed one above the other from different stacked and interconnected layers of polysilicon to move or tilt an overlying light-reflective plate (i.e. a mirror) to provide a reflected component of the incident light which can be shifted in phase or propagation angle. The MEM device, which utilizes leveraged bending to provide a relatively-large vertical displacement up to several microns for the light-reflective plate, has applications for forming an electrically-programmable diffraction grating (i.e. a polychromator) or a micromirror array.

  10. Liquid Tunable Microlenses based on MEMS techniques

    PubMed Central

    Zeng, Xuefeng; Jiang, Hongrui

    2013-01-01

    The recent rapid development in microlens technology has provided many opportunities for miniaturized optical systems, and has found a wide range of applications. Of these microlenses, tunable-focus microlenses are of special interest as their focal lengths can be tuned using micro-scale actuators integrated with the lens structure. Realization of such tunable microlens generally relies on the microelectromechanical system (MEMS) technologies. Here, we review the recent progress in tunable liquid microlenses. The underlying physics relevant to these microlenses are first discussed, followed by description of three main categories of tunable microlenses involving MEMS techniques, mechanically driven, electrically driven, and those integrated within microfluidic systems. PMID:24163480

  11. A capacitive CMOS-MEMS sensor designed by multi-physics simulation for integrated CMOS-MEMS technology

    NASA Astrophysics Data System (ADS)

    Konishi, Toshifumi; Yamane, Daisuke; Matsushima, Takaaki; Masu, Kazuya; Machida, Katsuyuki; Toshiyoshi, Hiroshi

    2014-01-01

    This paper reports the design and evaluation results of a capacitive CMOS-MEMS sensor that consists of the proposed sensor circuit and a capacitive MEMS device implemented on the circuit. To design a capacitive CMOS-MEMS sensor, a multi-physics simulation of the electromechanical behavior of both the MEMS structure and the sensing LSI was carried out simultaneously. In order to verify the validity of the design, we applied the capacitive CMOS-MEMS sensor to a MEMS accelerometer implemented by the post-CMOS process onto a 0.35-µm CMOS circuit. The experimental results of the CMOS-MEMS accelerometer exhibited good agreement with the simulation results within the input acceleration range between 0.5 and 6 G (1 G = 9.8 m/s2), corresponding to the output voltages between 908.6 and 915.4 mV, respectively. Therefore, we have confirmed that our capacitive CMOS-MEMS sensor and the multi-physics simulation will be beneficial method to realize integrated CMOS-MEMS technology.

  12. Biomimetic micromechanical adaptive flow-sensor arrays

    NASA Astrophysics Data System (ADS)

    Krijnen, Gijs; Floris, Arjan; Dijkstra, Marcel; Lammerink, Theo; Wiegerink, Remco

    2007-05-01

    We report current developments in biomimetic flow-sensors based on flow sensitive mechano-sensors of crickets. Crickets have one form of acoustic sensing evolved in the form of mechanoreceptive sensory hairs. These filiform hairs are highly perceptive to low-frequency sound with energy sensitivities close to thermal threshold. In this work we describe hair-sensors fabricated by a combination of sacrificial poly-silicon technology, to form silicon-nitride suspended membranes, and SU8 polymer processing for fabrication of hairs with diameters of about 50 μm and up to 1 mm length. The membranes have thin chromium electrodes on top forming variable capacitors with the substrate that allow for capacitive read-out. Previously these sensors have been shown to exhibit acoustic sensitivity. Like for the crickets, the MEMS hair-sensors are positioned on elongated structures, resembling the cercus of crickets. In this work we present optical measurements on acoustically and electrostatically excited hair-sensors. We present adaptive control of flow-sensitivity and resonance frequency by electrostatic spring stiffness softening. Experimental data and simple analytical models derived from transduction theory are shown to exhibit good correspondence, both confirming theory and the applicability of the presented approach towards adaptation.

  13. Microstereolithography for polymer-based based MEMS

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Xie, Jining

    2003-07-01

    Microfabrication techniques such as bulk micromachining and surface micromachining currently employed to conceive MEMS are largely derived from the standard IC and microelectronics technology. Even though many MEMS devices with integrated electronics have been achieved by using the traditional micromachining techniques, some limitations have nevertheless to be underlined: 1) these techniques are very expensive and need specific installations as well as a cleanroom environment, 2) the materials that can be used up to now are restricted to silicon and metals, 3) the manufacture of 3D parts having curved surfaces or an important number of layers is not possible. Moreover, for some biological applications, the materials used for sensors must be compatible with human body and the actuators need to have high strain and displacement which the current silicon based MEMS do not provide. It is thus natural for the researchers to 'look' for alternative methods such as Microstereolithography (MSL) to make 3D sensors and actuators using polymeric based materials. For MSL techniques to be successful as their silicon counterparts, one has to come up with multifunctional polymers with electrical properties comparable to silicon. These multifunctional polymers should not only have a high sensing capability but also a high strain and actuation performance. A novel UV-curable polymer uniformly bonded with functionalized nanotubes was synthesized via a modified three-step in-situ polymerization. Purified multi-walled nanotubes, gained from the microwave chemical vapor deposition method, were functionalized by oxidation. The UV curable polymer was prepared from toluene diisocyanate (TDI), functionalized nanotubes, and 2-hydroxyethyl methacrylate (HEMA). The chemical bonds between -NCO groups of TDI and -OH, -COOH groups of functionalized nanotubes help for conceiving polymeric based MEMS devices. A cost effective fabrication techniques was presented using Micro Stereo Lithography and an example of a micropump was also described. The wireless concept of the device has many applications including implanted medical delivery systems, chemical and biological instruments, fluid delivery in engines, pump coolants and refrigerants for local cooling of electronic components.

  14. Respiration detection chip with integrated temperature-insensitive MEMS sensors and CMOS signal processing circuits.

    PubMed

    Wei, Chia-Ling; Lin, Yu-Chen; Chen, Tse-An; Lin, Ren-Yi; Liu, Tin-Hao

    2015-02-01

    An airflow sensing chip, which integrates MEMS sensors with their CMOS signal processing circuits into a single chip, is proposed for respiration detection. Three micro-cantilever-based airflow sensors were designed and fabricated using a 0.35 μm CMOS/MEMS 2P4M mixed-signal polycide process. Two main differences were present among these three designs: they were either metal-covered or metal-free structures, and had either bridge-type or fixed-type reference resistors. The performances of these sensors were measured and compared, including temperature sensitivity and airflow sensitivity. Based on the measured results, the metal-free structure with fixed-type reference resistors is recommended for use, because it has the highest airflow sensitivity and also can effectively reduce the output voltage drift caused by temperature change.

  15. A novel optimal configuration form redundant MEMS inertial sensors based on the orthogonal rotation method.

    PubMed

    Cheng, Jianhua; Dong, Jinlu; Landry, Rene; Chen, Daidai

    2014-07-29

    In order to improve the accuracy and reliability of micro-electro mechanical systems (MEMS) navigation systems, an orthogonal rotation method-based nine-gyro redundant MEMS configuration is presented. By analyzing the accuracy and reliability characteristics of an inertial navigation system (INS), criteria for redundant configuration design are introduced. Then the orthogonal rotation configuration is formed through a two-rotation of a set of orthogonal inertial sensors around a space vector. A feasible installation method is given for the real engineering realization of this proposed configuration. The performances of the novel configuration and another six configurations are comprehensively compared and analyzed. Simulation and experimentation are also conducted, and the results show that the orthogonal rotation configuration has the best reliability, accuracy and fault detection and isolation (FDI) performance when the number of gyros is nine.

  16. A new linear structured light module based on the MEMS micromirror

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Shen, Wenjiang; Yu, Huijun

    2017-10-01

    A new linear structured light module based on the Micro-Electro-Mechanical System (MEMS) two-dimensional scanning micromirror was designed and created. This module consists of a laser diode, a convex lens, and the MEMS micromirror. The laser diode generates the light and the convex lens control the laser beam to converge on a single point with large depth of focus. The fast scan in horizontal direction of the micromirror will turn the laser spot into a homogenous laser line. Meanwhile, the slow scan in vertical direction of the micromirror will move the laser line in the vertical direction. The width of the line generated by this module is 300μm and the length is 120mm and the moving distance is 100mm at 30cm away from the module. It will promote the development of industrial detection.

  17. Modeling and simulation of blazed grating based on MEMS scanning micro-mirror for NIR micro-spectrometer

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Wen, Zhiyu; Yang, Tingyan; Lei, Hongjie

    2015-11-01

    Near infrared micro-spectrometer (NIRMS) as a vital detection equipment for various elements has been investigated over the last few years. Traditional MEMS NIRMS employs CCD array detectors for NIR spectrum collection and this leads to higher fabrication cost. In this paper, to ensure the higher diffraction efficiency as well as lower fabrication cost, a novel blazed grating based on MEMS scanning micro-mirror (SMM) is proposed. By our design method, the NIRMS needs only one single InGaAs detector photo diode to collect NIR spectrum and ensure the high diffraction efficiency. Our results show that the diffraction efficiency of the blazed grating is almost 50% and the peak value reaches to 90% in the range of 900-2,100 nm while the optical scanning angle is 14.2°.

  18. Application of the thermoelectric MEMS microwave power sensor in a power radiation monitoring system

    NASA Astrophysics Data System (ADS)

    Bo, Gao; Jing, Yang; Si, Jiang; Debo, Wang

    2016-08-01

    A power radiation monitoring system based on thermoelectric MEMS microwave power sensors is studied. This monitoring system consists of three modules: a data acquisition module, a data processing and display module, and a data sharing module. It can detect the power radiation in the environment and the date information can be processed and shared. The measured results show that the thermoelectric MEMS microwave power sensor and the power radiation monitoring system both have a relatively good linearity. The sensitivity of the thermoelectric MEMS microwave power sensor is about 0.101 mV/mW, and the sensitivity of the monitoring system is about 0.038 V/mW. The voltage gain of the monitoring system is about 380 times, which is relatively consistent with the theoretical value. In addition, the low-frequency and low-power module in the monitoring system is adopted in order to reduce the electromagnetic pollution and the power consumption, and this work will extend the application of the thermoelectric MEMS microwave power sensor in more areas. Project supported by the National Natural Science Foundation of China (No. 11304158), the Province Natural Science Foundation of Jiangsu (No. BK20140890), the Open Research Fund of the Key Laboratory of MEMS of Ministry of Education, Southeast University (No. 3206005302), and the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (Nos. NY213024, NY215139).

  19. Efficient coupling of starlight into single mode photonics using Adaptive Injection (AI)

    NASA Astrophysics Data System (ADS)

    Norris, Barnaby; Cvetojevic, Nick; Gross, Simon; Arriola, Alexander; Tuthill, Peter; Lawrence, Jon; Richards, Samuel; Goodwin, Michael; Zheng, Jessica

    2016-08-01

    Using single-mode fibres in astronomy enables revolutionary techniques including single-mode interferometry and spectroscopy. However, injection of seeing-limited starlight into single mode photonics is extremely difficult. One solution is Adaptive Injection (AI). The telescope pupil is segmented into a number of smaller subapertures each with size r0, such that seeing can be approximated as a single tip / tilt / piston term for each subaperture, and then injected into a separate fibre via a facet of a segmented MEMS deformable mirror. The injection problem is then reduced to a set of individual tip tilt loops, resulting in high overall coupling efficiency.

  20. MEMS packaging with etching and thinning of lid wafer to form lids and expose device wafer bond pads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chanchani, Rajen; Nordquist, Christopher; Olsson, Roy H

    In wafer-level packaging of microelectromechanical (MEMS) devices a lid wafer is bonded to a MEMS wafer in a predermined aligned relationship. Portions of the lid wafer are removed to separate the lid wafer into lid portions that respectively correspond in alignment with MEMS devices on the MEMS wafer, and to expose areas of the MEMS wafer that respectively contain sets of bond pads respectively coupled to the MEMS devices.

  1. Commissioning an in-room mobile CT for adaptive proton therapy with a compact proton system.

    PubMed

    Oliver, Jasmine A; Zeidan, Omar; Meeks, Sanford L; Shah, Amish P; Pukala, Jason; Kelly, Patrick; Ramakrishna, Naren R; Willoughby, Twyla R

    2018-05-01

    To describe the commissioning of AIRO mobile CT system (AIRO) for adaptive proton therapy on a compact double scattering proton therapy system. A Gammex phantom was scanned with varying plug patterns, table heights, and mAs on a CT simulator (CT Sim) and on the AIRO. AIRO-specific CT-stopping power ratio (SPR) curves were created with a commonly used stoichiometric method using the Gammex phantom. A RANDO anthropomorphic thorax, pelvis, and head phantom, and a CIRS thorax and head phantom were scanned on the CT Sim and AIRO. Clinically realistic treatment plans and nonclinical plans were generated on the CT Sim images and subsequently copied onto the AIRO CT scans for dose recalculation and comparison for various AIRO SPR curves. Gamma analysis was used to evaluate dosimetric deviation between both plans. AIRO CT values skewed toward solid water when plugs were scanned surrounded by other plugs in phantom. Low-density materials demonstrated largest differences. Dose calculated on AIRO CT scans with stoichiometric-based SPR curves produced over-ranged proton beams when large volumes of low-density material were in the path of the beam. To create equivalent dose distributions on both data sets, the AIRO SPR curve's low-density data points were iteratively adjusted to yield better proton beam range agreement based on isodose lines. Comparison of the stoichiometric-based AIRO SPR curve and the "dose-adjusted" SPR curve showed slight improvement on gamma analysis between the treatment plan and the AIRO plan for single-field plans at the 1%, 1 mm level, but did not affect clinical plans indicating that HU number differences between the CT Sim and AIRO did not affect dose calculations for robust clinical beam arrangements. Based on this study, we believe the AIRO can be used offline for adaptive proton therapy on a compact double scattering proton therapy system. © 2018 Orlando Health UF Health Cancer Center. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  2. A goal-based angular adaptivity method for thermal radiation modelling in non grey media

    NASA Astrophysics Data System (ADS)

    Soucasse, Laurent; Dargaville, Steven; Buchan, Andrew G.; Pain, Christopher C.

    2017-10-01

    This paper investigates for the first time a goal-based angular adaptivity method for thermal radiation transport, suitable for non grey media when the radiation field is coupled with an unsteady flow field through an energy balance. Anisotropic angular adaptivity is achieved by using a Haar wavelet finite element expansion that forms a hierarchical angular basis with compact support and does not require any angular interpolation in space. The novelty of this work lies in (1) the definition of a target functional to compute the goal-based error measure equal to the radiative source term of the energy balance, which is the quantity of interest in the context of coupled flow-radiation calculations; (2) the use of different optimal angular resolutions for each absorption coefficient class, built from a global model of the radiative properties of the medium. The accuracy and efficiency of the goal-based angular adaptivity method is assessed in a coupled flow-radiation problem relevant for air pollution modelling in street canyons. Compared to a uniform Haar wavelet expansion, the adapted resolution uses 5 times fewer angular basis functions and is 6.5 times quicker, given the same accuracy in the radiative source term.

  3. Studying the Effect of Deposition Conditions on the Performance and Reliability of MEMS Gas Sensors

    PubMed Central

    Sadek, Khaled; Moussa, Walied

    2007-01-01

    In this paper, the reliability of a micro-electro-mechanical system (MEMS)-based gas sensor has been investigated using Three Dimensional (3D) coupled multiphysics Finite Element (FE) analysis. The coupled field analysis involved a two-way sequential electrothermal fields coupling and a one-way sequential thermal-structural fields coupling. An automated substructuring code was developed to reduce the computational cost involved in simulating this complicated coupled multiphysics FE analysis by up to 76 percent. The substructured multiphysics model was then used to conduct a parametric study of the MEMS-based gas sensor performance in response to the variations expected in the thermal and mechanical characteristics of thin films layers composing the sensing MEMS device generated at various stages of the microfabrication process. Whenever possible, the appropriate deposition variables were correlated in the current work to the design parameters, with good accuracy, for optimum operation conditions of the gas sensor. This is used to establish a set of design rules, using linear and nonlinear empirical relations, which can be utilized in real-time at the design and development decision-making stages of similar gas sensors to enable the microfabrication of these sensors with reliable operation.

  4. Development of amorphous SiC for MEMS-based microbridges

    NASA Astrophysics Data System (ADS)

    Summers, James B.; Scardelletti, Maximilian; Parro, Rocco; Zorman, Christian A.

    2007-02-01

    This paper reports our effort to develop amorphous hydrogenated silicon carbide (a-SiC:H) films specifically designed for MEMS-based microbridges using methane and silane as the precursor gases. In our work, the a-SiC:H films were deposited in a simple, commercial PECVD system at a fixed temperature of 300°C. Films with thicknesses from 100 nm to 1000 nm, a typical range for many MEMS applications, were deposited. Deposition parameters such as deposition pressure and methane-to-silane ratio were varied in order to obtain films with suitable residual stresses. Average residual stress in the as-deposited films selected for device fabrication was found by wafer curvature measurements to be -658 +/- 22 MPa, which could be converted to 177 +/- 40 MPa after thermal annealing at 450°C, making them suitable for micromachined bridges, membranes and other anchored structures. Bulk micromachined membranes were constructed to determine the Young's modulus of the annealed films, which was found to be 205 +/- 6 GPa. Chemical inertness was tested in aggressive solutions such as KOH and HF. Prototype microbridge actuators were fabricated using a simple surface micromachining process to assess the potential of the a-SiC:H films as structural layers for MEMS applications.

  5. Design, modeling and simulation of MEMS-based silicon Microneedles

    NASA Astrophysics Data System (ADS)

    Amin, F.; Ahmed, S.

    2013-06-01

    The advancement in semiconductor process engineering and nano-scale fabrication technology has made it convenient to transport specific biological fluid into or out of human skin with minimum discomfort. Fluid transdermal delivery systems such as Microneedle arrays are one such emerging and exciting Micro-Electro Mechanical System (MEMS) application which could lead to a total painless fluid delivery into skin with controllability and desirable yield. In this study, we aimed to revisit the problem with modeling, design and simulations carried out for MEMS based silicon hollow out of plane microneedle arrays for biomedical applications particularly for transdermal drug delivery. An approximate 200 μm length of microneedle with 40 μm diameter of lumen has been successfully shown formed by isotropic and anisotropic etching techniques using MEMS Pro design tool. These microneedles are arranged in size of 2 × 4 matrix array with center to center spacing of 750 μm. Furthermore, comparisons for fluid flow characteristics through these microneedle channels have been modeled with and without the contribution of the gravitational forces using mathematical models derived from Bernoulli Equation. Physical Process simulations have also been performed on TCAD SILVACO to optimize the design of these microneedles aligned with the standard Si-Fabrication lines.

  6. Application of MEMS-based x-ray optics as tuneable nanosecond choppers

    NASA Astrophysics Data System (ADS)

    Chen, Pice; Walko, Donald A.; Jung, Il Woong; Li, Zhilong; Gao, Ya; Shenoy, Gopal K.; Lopez, Daniel; Wang, Jin

    2017-08-01

    Time-resolved synchrotron x-ray measurements often rely on using a mechanical chopper to isolate a set of x-ray pulses. We have started the development of micro electromechanical systems (MEMS)-based x-ray optics, as an alternate method to manipulate x-ray beams. In the application of x-ray pulse isolation, we recently achieved a pulse-picking time window of half a nanosecond, which is more than 100 times faster than mechanical choppers can achieve. The MEMS device consists of a comb-drive silicon micromirror, designed for efficiently diffracting an x-ray beam during oscillation. The MEMS devices were operated in Bragg geometry and their oscillation was synchronized to x-ray pulses, with a frequency matching subharmonics of the cycling frequency of x-ray pulses. The microscale structure of the silicon mirror in terms of the curvature and the quality of crystallinity ensures a narrow angular spread of the Bragg reflection. With the discussion of factors determining the diffractive time window, this report showed our approaches to narrow down the time window to half a nanosecond. The short diffractive time window will allow us to select single x-ray pulse out of a train of pulses from synchrotron radiation facilities.

  7. A Novel MEMS Gyro North Finder Design Based on the Rotation Modulation Technique

    PubMed Central

    Zhang, Yongjian; Zhou, Bin; Song, Mingliang; Hou, Bo; Xing, Haifeng; Zhang, Rong

    2017-01-01

    Gyro north finders have been widely used in maneuvering weapon orientation, oil drilling and other areas. This paper proposes a novel Micro-Electro-Mechanical System (MEMS) gyroscope north finder based on the rotation modulation (RM) technique. Two rotation modulation modes (static and dynamic modulation) are applied. Compared to the traditional gyro north finders, only one single MEMS gyroscope and one MEMS accelerometer are needed, reducing the total cost since high-precision gyroscopes and accelerometers are the most expensive components in gyro north finders. To reduce the volume and enhance the reliability, wireless power and wireless data transmission technique are introduced into the rotation modulation system for the first time. To enhance the system robustness, the robust least square method (RLSM) and robust Kalman filter (RKF) are applied in the static and dynamic north finding methods, respectively. Experimental characterization resulted in a static accuracy of 0.66° and a dynamic repeatability accuracy of 1°, respectively, confirming the excellent potential of the novel north finding system. The proposed single gyro and single accelerometer north finding scheme is universal, and can be an important reference to both scientific research and industrial applications. PMID:28452936

  8. MemAxes: Visualization and Analytics for Characterizing Complex Memory Performance Behaviors.

    PubMed

    Gimenez, Alfredo; Gamblin, Todd; Jusufi, Ilir; Bhatele, Abhinav; Schulz, Martin; Bremer, Peer-Timo; Hamann, Bernd

    2018-07-01

    Memory performance is often a major bottleneck for high-performance computing (HPC) applications. Deepening memory hierarchies, complex memory management, and non-uniform access times have made memory performance behavior difficult to characterize, and users require novel, sophisticated tools to analyze and optimize this aspect of their codes. Existing tools target only specific factors of memory performance, such as hardware layout, allocations, or access instructions. However, today's tools do not suffice to characterize the complex relationships between these factors. Further, they require advanced expertise to be used effectively. We present MemAxes, a tool based on a novel approach for analytic-driven visualization of memory performance data. MemAxes uniquely allows users to analyze the different aspects related to memory performance by providing multiple visual contexts for a centralized dataset. We define mappings of sampled memory access data to new and existing visual metaphors, each of which enabling a user to perform different analysis tasks. We present methods to guide user interaction by scoring subsets of the data based on known performance problems. This scoring is used to provide visual cues and automatically extract clusters of interest. We designed MemAxes in collaboration with experts in HPC and demonstrate its effectiveness in case studies.

  9. GaAs-based resonant tunneling diode (RTD) epitaxy on Si for highly sensitive strain gauge applications.

    PubMed

    Li, Jie; Guo, Hao; Liu, Jun; Tang, Jun; Ni, Haiqiao; Shi, Yunbo; Xue, Chenyang; Niu, Zhichuan; Zhang, Wendong; Li, Mifeng; Yu, Ying

    2013-05-08

    As a highly sensitive strain gauge element, GaAs-based resonant tunneling diode (RTD) has already been applied in microelectromechanical system (MEMS) sensors. Due to poor mechanical properties and high cost, GaAs-based material has been limited in applications as the substrate for MEMS. In this work, we present a method to fabricate the GaAs-based RTD on Si substrate. From the experimental results, it can be concluded that the piezoresistive coefficient achieved with this method reached 3.42 × 10-9 m2/N, which is about an order of magnitude higher than the Si-based semiconductor piezoresistors.

  10. Miniaturized video-rate epi-third-harmonic-generation fiber-microscope.

    PubMed

    Chia, Shih-Hsuan; Yu, Che-Hang; Lin, Chih-Han; Cheng, Nai-Chia; Liu, Tzu-Ming; Chan, Ming-Che; Chen, I-Hsiu; Sun, Chi-Kuang

    2010-08-02

    With a micro-electro-mechanical system (MEMS) mirror, we successfully developed a miniaturized epi-third-harmonic-generation (epi-THG) fiber-microscope with a video frame rate (31 Hz), which was designed for in vivo optical biopsy of human skin. With a large-mode-area (LMA) photonic crystal fiber (PCF) and a regular microscopic objective, the nonlinear distortion of the ultrafast pulses delivery could be much reduced while still achieving a 0.4 microm lateral resolution for epi-THG signals. In vivo real time virtual biopsy of the Asian skin with a video rate (31 Hz) and a sub-micron resolution was obtained. The result indicates that this miniaturized system was compact enough for the least invasive hand-held clinical use.

  11. Sealed symmetric multilayered microelectronic device package with integral windows

    DOEpatents

    Peterson, Kenneth A.; Watson, Robert D.

    2002-01-01

    A sealed symmetric multilayered package with integral windows for housing one or more microelectronic devices. The devices can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The multilayered package can be formed of a low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the windows being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. The microelectronic devices can be flip-chip bonded and oriented so that the light-sensitive sides are optically accessible through the windows. The result is a compact, low-profile, sealed symmetric package, having integral windows that can be hermetically-sealed.

  12. Compact, Low-Profile Power Converters: Highly-Laminated, High-Saturation-Flux-Density, Magnetic Cores for On-Chip Inductors in Power Converter Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-09-01

    ADEPT Project: Georgia Tech is creating compact, low-profile power adapters and power bricks using materials and tools adapted from other industries and from grid-scale power applications. Adapters and bricks convert electrical energy into useable power for many types of electronic devices, including laptop computers and mobile phones. These converters are often called wall warts because they are big, bulky, and sometimes cover up an adjacent wall socket that could be used to power another electronic device. The magnetic components traditionally used to make adapters and bricks have reached their limits; they can't be made any smaller without sacrificing performance. Georgiamore » Tech is taking a cue from grid-scale power converters that use iron alloys as magnetic cores. These low-cost alloys can handle more power than other materials, but the iron must be stacked in insulated plates to maximize energy efficiency. In order to create compact, low-profile power adapters and bricks, these stacked iron plates must be extremely thin-only hundreds of nanometers in thickness, in fact. To make plates this thin, Georgia Tech is using manufacturing tools used in microelectromechanics and other small-scale industries.« less

  13. The conical conformal MEMS quasi-end-fire array antenna

    NASA Astrophysics Data System (ADS)

    Cong, Lin; Xu, Lixin; Li, Jianhua; Wang, Ting; Han, Qi

    2017-03-01

    The microelectromechanical system (MEMS) quasi-end-fire array antenna based on a liquid crystal polymer (LCP) substrate is designed and fabricated in this paper. The maximum radiation direction of the antenna tends to the cone axis forming an angle less than 90∘, which satisfies the proximity detection system applied at the forward target detection. Furthermore, the proposed antenna is fed at the ended side in order to save internal space. Moreover, the proposed antenna takes small covering area of the proximity detection system. The proposed antenna is fabricated by using the flexible MEMS process, and the measurement results agree well with the simulation results. This is the first time that a conical conformal array antenna is fabricated by the flexible MEMS process to realize the quasi-end-fire radiation. A pair of conformal MEMS array antennas resonates at 14.2 GHz with its mainlobes tending to the cone axis forming a 30∘ angle and a 31∘ angle separately, and the gains achieved are 1.82 dB in two directions, respectively. The proposed antenna meets the performance requirements for the proximity detection system which has vast application prospects.

  14. Disposable cartridge biosensor platform for portable diagnostics

    NASA Astrophysics Data System (ADS)

    Yaras, Yusuf S.; Cakmak, Onur; Gunduz, Ali B.; Saglam, Gokhan; Olcer, Selim; Mostafazadeh, Aref; Baris, Ibrahim; Civitci, Fehmi; Yaralioglu, Goksen G.; Urey, Hakan

    2017-03-01

    We developed two types of cantilever-based biosensors for portable diagnostics applications. One sensor is based on MEMS cantilever chip mounted in a microfluidic channel and the other sensor is based on a movable optical fiber placed across a microfluidic channel. Both types of sensors were aimed at direct mechanical measurement of coagulation time in a disposable cartridge using plasma or whole blood samples. There are several similarities and also some important differences between the MEMS based and the optical fiber based solutions. The aim of this paper is to provide a comparison between the two solutions and the results. For both types of sensors, actuation of the cantilever or the moving fiber is achieved using an electro coil and the readout is optical. Since both the actuation and sensing are remote, no electrical connections are required for the cartridge. Therefore it is possible to build low cost disposable cartridges. The reader unit for the cartridge contains light sources, photodetectors, the electro coil, a heater, analog electronics, and a microprocessor. The reader unit has different optical interfaces for the cartridges that have MEMS cantilevers and moving fibers. MEMS based platform has better sensitivity but optomechanical alignment is a challenge and measurements with whole blood were not possible due to high scattering of light by the red blood cells. Fiber sensor based platform has relaxed optomechanical tolerances, ease of manufacturing, and it allows measurements in whole blood. Both sensors were tested using control plasma samples for activated-Partial-Thromboplastin-Time (aPTT) measurements. Control plasma test results matched with the manufacturer's datasheet. Optical fiber based system was tested for aPTT tests with human whole blood samples and the proposed platform provided repeatable test results making the system method of choice for portable diagnostics.

  15. Adaptive focus for deep tissue using diffuse backscatter

    NASA Astrophysics Data System (ADS)

    Kress, Jeremy; Pourrezaei, Kambiz

    2014-02-01

    A system integrating high density diffuse optical imaging with adaptive optics using MEMS for deep tissue interaction is presented. In this system, a laser source is scanned over a high density fiber bundle using Digital Micromirror Device (DMD) and channeled to a tissue phantom. Backscatter is then collected from the tissue phantom by a high density fiber array of different fiber type and channeled to CMOS sensor for image acquisition. Intensity focus is directly verified using a second CMOS sensor which measures intensity transmitted though the tissue phantom. A set of training patterns are displayed on the DMD and backscatter is numerically fit to the transmission intensity. After the training patterns are displayed, adaptive focus is performed using only the backscatter and fitting functions. Additionally, tissue reconstruction and prediction of interference focusing by photoacoustic and optical tomographic methods is discussed. Finally, potential NIR applications such as in-vivo adaptive neural photostimulation and cancer targeting are discussed.

  16. Modeling of an 8-12 GHz receiver front-end based on an in-line MEMS frequency discriminator

    NASA Astrophysics Data System (ADS)

    Chu, Chenlei; Liao, Xiaoping

    2018-06-01

    This paper focuses on the modeling of an 8-12 GHz RF (radio frequency) receiver front-end based on an in-line MEMS (microelectromechanical systems) frequency discriminator. Actually, the frequency detection is realized by measuring the output dc thermal voltage generated by the MEMS thermoelectric power sensor. Based on this thermal voltage, it has a great potential to tune the resonant frequency of the VCO (voltage controlled oscillator) in the RF receiver front-end application. The equivalent circuit model of the in-line frequency discriminator is established and the measurement verification is also implemented. Measurement and simulation results show that the output dc thermal voltage has a nearly linear relation with frequency. A new construction of RF receiver front-end is then obtained by connecting the in-line frequency discriminator with the voltage controlling port of VCO. Lastly, a systemic simulation is processed by computer-aided software and the real-time simulation waveform at each key point is observed clearly.

  17. MEMS-based liquid lens for capsule endoscope

    NASA Astrophysics Data System (ADS)

    Seo, S. W.; Han, S.; Seo, J. H.; Kim, Y. M.; Kang, M. S.; Min, N. G.; Choi, W. B.; Sung, M. Y.

    2008-03-01

    The capsule endoscope, a new application area of digital imaging, is growing rapidly but needs the versatile imaging capabilities such as auto-focusing and zoom-in to be an active diagnostic tool. The liquid lens based on MEMS technology can be a strong candidate because it is able to be small enough. In this paper, a cylinder-type liquid lens was designed based on Young-Lippmann model and then fabricated with MEMS technology combining the silicon thin-film process and the wafer bonding process. The focal length of the lens module including the fabricated liquid lens was changed reproducibly as a function of the applied voltage. With the change of 30V in the applied bias, the focal length of the constructed lens module could be tuned in the range of about 42cm. The fabricated liquid lens was also proven to be small enough to be adopted in the capsule endoscope, which means the liquid lens can be utilized for the imaging capability improvement of the capsule endoscope.

  18. Dual-beam laser autofocusing system based on liquid lens

    NASA Astrophysics Data System (ADS)

    Zhang, Fumin; Yao, Yannan; Qu, Xinghua; Zhang, Tong; Pei, Bing

    2017-02-01

    A dual-beam laser autofocusing system is designed in this paper. The autofocusing system is based on a liquid lens with less moving parts and fast response time, which makes the system simple, reliable, compact and fast. A novel scheme ;Time-sharing focus, fast conversion; is innovatively proposed. The scheme effectively solves the problem that the guiding laser and the working laser cannot focus at the same target point because of the existence of chromatic aberration. This scheme not only makes both guiding laser and working laser achieve optimal focusing in guiding stage and working stage respectively, but also greatly reduces the system complexity and simplifies the focusing process as well as makes autofocusing time of the working laser reduce to about 10 ms. In the distance range of 1 m to 30 m, the autofocusing spot size is kept under 4.3 mm at 30 m and just 0.18 mm at 1 m. The spot size is much less influenced by the target distance compared with the collimated laser with a micro divergence angle for its self-adaptivity. The dual-beam laser autofocusing system based on liquid lens is fully automatic, compact and efficient. It is fully meet the need of dynamicity and adaptivity and it will play an important role in a number of long-range control applications.

  19. A programmable and portable NMES device for drop foot correction and blood flow assist applications.

    PubMed

    Breen, Paul P; Corley, Gavin J; O'Keeffe, Derek T; Conway, Richard; Olaighin, Gearóid

    2009-04-01

    The Duo-STIM, a new, programmable and portable neuromuscular stimulation system for drop foot correction and blood flow assist applications is presented. The system consists of a programmer unit and a portable, programmable stimulator unit. The portable stimulator features fully programmable, sensor-controlled, constant-voltage, dual-channel stimulation and accommodates a range of customized stimulation profiles. Trapezoidal and free-form adaptive stimulation intensity envelope algorithms are provided for drop foot correction applications, while time dependent and activity dependent algorithms are provided for blood flow assist applications. A variety of sensor types can be used with the portable unit, including force sensitive resistor-based foot switches and MEMS-based accelerometer and gyroscope devices. The paper provides a detailed description of the hardware and block-level system design for both units. The programming and operating procedures for the system are also presented. Finally, functional bench test results for the system are presented.

  20. Novel packaging approaches for increased robustness and overall performance of gimbal-less MEMS mirrors

    NASA Astrophysics Data System (ADS)

    Milanović, Veljko; Kasturi, Abhishek; Yang, James; Su, Yu Roger; Hu, Frank

    2017-02-01

    2D quasistatic (point-to-point) gimbal-less MEMS mirrors enable programmable, arbitrary control of laser beam position and velocity - up to their maximum limits. Hence, they provide the ability to track targets, point lasercom beams, and to scan uniform velocity lines over objects in laser imaging. They are becoming increasingly established in applications including 3D scanning, laser marking and 3D printing, biomedical imaging, communications, and LiDAR. With the increased utility in applications that demand larger mirror sizes and larger overall angle*diameter (θ*D) figures of merit, the technology is continuously pushed against its limit. As a result we have implemented mirrors with larger diameters including 5.0mm, 6.4mm, and 7.5mm, and have designed actuators with larger torque and angles to match the Θ*D demand. While the results have been very positive in certain application cases, a limitation for their more wide-spread use has been the relatively high susceptibility of large- θ*D mirrors to shock and vibrations. On the other hand, one of the challenges of MEMS mirrors of small diameters is their lower optical power tolerance simply due to their smaller area and heat removal ability. Although they can be operated at up to 2-3W of CW laser power, new developments in dynamic solid state lighting in e.g. headlights demand operation at up to 10W or beyond. In this work we study and present several package-level approaches to increase mechanical damping, shock robustness, and laser power tolerance. Specifically, we study back-filling of MEMS packages with different gases as well as with different (increased) pressures to control damping and in turn increase robustness and useable bandwidth. Additionally, we study the effects of specialized mechanical structures which were designed and fabricated to modify packages to significantly reduce volumes of space around moving structures. In their standard form and packaging the MEMS mirrors tested in this study typically measure quality factors of 75-100. Increases of pressure up to 50psi have shown relatively modest reductions of the overall quality factor to the 40-50 range. Backfilling of packages with heavier inert gasses such as Ar and SF6 results in lowering of the quality factor down to 20-30 range. Mechanical modifications of the package with special structures and reduced air-gap to the window yielded the best results, reducing the quality factor to 9-14. Combination of specialized packaging structures and gas backfill and pressure control could provide a very efficient heat transfer from the mirror and the desired near-critical damping, but has not been demonstrated yet. The increased performance does not change the compactness and low power consumption - the improved MEMS mirrors still consume <1mW. So far, designs with mirror sizes through 3.0mm diameter with increased damping have passed 500G shock tests. In terms of improved heat removal we have found that the packaging improvement greatly increased optical power tolerance of MEMS mirrors from few Watts of CW laser power to <10 Watts. The exact numbers for the upper limit are not yet available - in samples where the heat removing structure was added and air was replaced with Helium, our setup with 3 combined lasers was not able to damage any samples.

  1. Miniature fiber-optic multiphoton microscopy system using frequency-doubled femtosecond Er-doped fiber laser

    PubMed Central

    Huang, Lin; Mills, Arthur K.; Zhao, Yuan; Jones, David J.; Tang, Shuo

    2016-01-01

    We report on a miniature fiber-optic multiphoton microscopy (MPM) system based on a frequency-doubled femtosecond Er-doped fiber laser. The femtosecond pulses from the laser source are delivered to the miniature fiber-optic probe at 1.58 µm wavelength, where a standard single mode fiber is used for delivery without the need of free-space dispersion compensation components. The beam is frequency-doubled inside the probe by a periodically poled MgO:LiNbO3 crystal. Frequency-doubled pulses at 786 nm with a maximum power of 80 mW and a pulsewidth of 150 fs are obtained and applied to excite intrinsic signals from tissues. A MEMS scanner, a miniature objective, and a multimode collection fiber are further used to make the probe compact. The miniature fiber-optic MPM system is highly portable and robust. Ex vivo multiphoton imaging of mammalian skins demonstrates the capability of the system in imaging biological tissues. The results show that the miniature fiber-optic MPM system using frequency-doubled femtosecond fiber laser can potentially bring the MPM imaging for clinical applications. PMID:27231633

  2. Recent progress in MEMS technology development for military applications

    NASA Astrophysics Data System (ADS)

    Ruffin, Paul B.; Burgett, Sherrie J.

    2001-08-01

    The recent progress of ongoing efforts at the Army Aviation and Missile Command (AMCOM) to develop microelectromechanical systems (MEMS) technology for military applications is discussed in this paper. The current maturity level of low cost, low power, micro devices in industry, which range from simple temperature and pressure sensors to accelerometers in airbags, provides a viable foundation for the development of rugged MEMS devices for dual-use applications. Early MEMS technology development efforts at AMCOM emphasized inertial MEMS sensors. An Army Science and Technology Objective (STO) project was initiated to develop low cost inertial components with moderate angular rate sensor resolution for measuring pitch and yaw of missile attitude and rotational roll rate. Leveraging the Defense Advanced Research Projects Agency and other Government agencies has resulted in the development of breadboard inertial MEMS devices with improved robustness. During the past two years, MEMS research at AMCOM has been expanded to include environmental MEMS sensors for missile health monitoring, RF-MEMS, optical MEMS devices for beam steering, and micro-optic 'benches' for opto-electronics miniaturization. Additionally, MEMS packaging and integration issues have come into focus and are being addressed. Selected ongoing research efforts in these areas are presented, and some horizon MEMS sensors requirements for Army and law enforcement are presented for consideration.

  3. EDITORIAL: International MEMS Conference 2006

    NASA Astrophysics Data System (ADS)

    Tay, Francis E. H.; Jianmin, Miao; Iliescu, Ciprian

    2006-04-01

    The International MEMS conference (iMEMS2006) organized by the Institute of Bioengineering and Nanotechnology and Nanyang Technological University aims to provide a platform for academicians, professionals and industrialists in various related fields from all over the world to share and learn from each other. Of great interest is the incorporation of the theme of life sciences application using MEMS. It is the desire of this conference to initiate collaboration and form network of cooperation. This has continued to be the objective of iMEMS since its inception in 1997. The technological advance of MEMS over the past few decades has been truly exciting in terms of development and applications. In order to participate in this rapid development, a conference involving delegates from within the MEMS community and outside the community is very meaningful and timely. With the receipt of over 200 articles, delegates related to MEMS field from all over the world will share their perspectives on topics such as MEMS/MST Design, MEMS Teaching and Education, MEMS/MST Packaging, MEMS/MST Fabrication, Microsystems Applications, System Integration, Wearable Devices, MEMSWear and BioMEMS. Invited speakers and delegates from outside the field have also been involved to provide challenges, especially in the life sciences field, for the MEMS community to potentially address. The proceedings of the conference will be published as an issue in the online Journal of Physics: Conference Series and this can reach a wider audience and will facilitate the reference and citation of the work presented in the conference. We wish to express our deep gratitude to the International Scientific Committee members and the organizing committee members for contributing to the success of this conference. We would like to thank all the delegates, speakers and sponsors from all over the world for presenting and sharing their perspectives on topics related to MEMS and the challenges that MEMS can potentially address.

  4. Partial characterization of normal and Haemophilus influenzae-infected mucosal complementary DNA libraries in chinchilla middle ear mucosa.

    PubMed

    Kerschner, Joseph E; Erdos, Geza; Hu, Fen Ze; Burrows, Amy; Cioffi, Joseph; Khampang, Pawjai; Dahlgren, Margaret; Hayes, Jay; Keefe, Randy; Janto, Benjamin; Post, J Christopher; Ehrlich, Garth D

    2010-04-01

    We sought to construct and partially characterize complementary DNA (cDNA) libraries prepared from the middle ear mucosa (MEM) of chinchillas to better understand pathogenic aspects of infection and inflammation, particularly with respect to leukotriene biogenesis and response. Chinchilla MEM was harvested from controls and after middle ear inoculation with nontypeable Haemophilus influenzae. RNA was extracted to generate cDNA libraries. Randomly selected clones were subjected to sequence analysis to characterize the libraries and to provide DNA sequence for phylogenetic analyses. Reverse transcription-polymerase chain reaction of the RNA pools was used to generate cDNA sequences corresponding to genes associated with leukotriene biosynthesis and metabolism. Sequence analysis of 921 randomly selected clones from the uninfected MEM cDNA library produced approximately 250,000 nucleotides of almost entirely novel sequence data. Searches of the GenBank database with the Basic Local Alignment Search Tool provided for identification of 515 unique genes expressed in the MEM and not previously described in chinchillas. In almost all cases, the chinchilla cDNA sequences displayed much greater homology to human or other primate genes than with rodent species. Genes associated with leukotriene metabolism were present in both normal and infected MEM. Based on both phylogenetic comparisons and gene expression similarities with humans, chinchilla MEM appears to be an excellent model for the study of middle ear inflammation and infection. The higher degree of sequence similarity between chinchillas and humans compared to chinchillas and rodents was unexpected. The cDNA libraries from normal and infected chinchilla MEM will serve as useful molecular tools in the study of otitis media and should yield important information with respect to middle ear pathogenesis.

  5. Partial Characterization of Normal and Haemophilus influenzae–Infected Mucosal Complementary DNA Libraries in Chinchilla Middle Ear Mucosa

    PubMed Central

    Kerschner, Joseph E.; Erdos, Geza; Hu, Fen Ze; Burrows, Amy; Cioffi, Joseph; Khampang, Pawjai; Dahlgren, Margaret; Hayes, Jay; Keefe, Randy; Janto, Benjamin; Post, J. Christopher; Ehrlich, Garth D.

    2010-01-01

    Objectives We sought to construct and partially characterize complementary DNA (cDNA) libraries prepared from the middle ear mucosa (MEM) of chinchillas to better understand pathogenic aspects of infection and inflammation, particularly with respect to leukotriene biogenesis and response. Methods Chinchilla MEM was harvested from controls and after middle ear inoculation with nontypeable Haemophilus influenzae. RNA was extracted to generate cDNA libraries. Randomly selected clones were subjected to sequence analysis to characterize the libraries and to provide DNA sequence for phylogenetic analyses. Reverse transcription–polymerase chain reaction of the RNA pools was used to generate cDNA sequences corresponding to genes associated with leukotriene biosynthesis and metabolism. Results Sequence analysis of 921 randomly selected clones from the uninfected MEM cDNA library produced approximately 250,000 nucleotides of almost entirely novel sequence data. Searches of the GenBank database with the Basic Local Alignment Search Tool provided for identification of 515 unique genes expressed in the MEM and not previously described in chinchillas. In almost all cases, the chinchilla cDNA sequences displayed much greater homology to human or other primate genes than with rodent species. Genes associated with leukotriene metabolism were present in both normal and infected MEM. Conclusions Based on both phylogenetic comparisons and gene expression similarities with humans, chinchilla MEM appears to be an excellent model for the study of middle ear inflammation and infection. The higher degree of sequence similarity between chinchillas and humans compared to chinchillas and rodents was unexpected. The cDNA libraries from normal and infected chinchilla MEM will serve as useful molecular tools in the study of otitis media and should yield important information with respect to middle ear pathogenesis. PMID:20433028

  6. On the feasibility to integrate low-cost MEMS accelerometers and GNSS receivers

    NASA Astrophysics Data System (ADS)

    Benedetti, Elisa; Dermanis, Athanasios; Crespi, Mattia

    2017-06-01

    The aim of this research was to investigate the feasibility of merging the benefits offered by low-cost GNSS and MEMS accelerometers technology, in order to promote the diffusion of low-cost monitoring solutions. A merging approach was set up at the level of the combination of kinematic results (velocities and displacements) coming from the two kinds of sensors, whose observations were separately processed, following to the so called loose integration, which sounds much more simple and flexible thinking about the possibility of an easy change of the combined sensors. At first, the issues related to the difference in reference systems, time systems and measurement rate and epochs for the two sensors were faced with. An approach was designed and tested to transform into unique reference and time systems the outcomes from GPS and MEMS and to interpolate the usually (much) more dense MEMS observation to common (GPS) epochs. The proposed approach was limited to time-independent (constant) orientation of the MEMS reference system with respect to the GPS one. Then, a data fusion approach based on the use of Discrete Fourier Transform and cubic splines interpolation was proposed both for velocities and displacements: MEMS and GPS derived solutions are firstly separated by a rectangular filter in spectral domain, and secondly back-transformed and combined through a cubic spline interpolation. Accuracies around 5 mm for slow and fast displacements and better than 2 mm/s for velocities were assessed. The obtained solution paves the way to a powerful and appealing use of low-cost single frequency GNSS receivers and MEMS accelerometers for structural and ground monitoring applications. Some additional remarks and prospects for future investigations complete the paper.

  7. Demodulation of an optical fiber MEMS pressure sensor based on single bandpass microwave photonic filter.

    PubMed

    Wang, Yiping; Ni, Xiaoqi; Wang, Ming; Cui, Yifeng; Shi, Qingyun

    2017-01-23

    In this paper, a demodulation method for optic fiber micro-electromechanical systems (MEMS) extrinsic Fabry-Perot interferometer (EFPI) pressure sensor exploiting microwave photonics filter technique is firstly proposed and experimentally demonstrated. A single bandpass microwave photonic filter (MPF) which mainly consists of a spectrum-sliced light source, a pressurized optical fiber MEMS EFPI, a phase modulator (PM) and a length of dispersion compensating fiber (DCF) is demonstrated. The frequency response of the filter with respect to the pressure is studied. By detecting the resonance frequency shifts of the MPF, the pressure can be determined. The theoretical and experimental results show that the proposed EFPI pressure demodulation method has a higher resolution and higher speed than traditional methods based on optical spectrum analysis. The sensitivity of the sensor is measured to be as high as 86 MHz/MPa in the range of 0-4Mpa. Moreover, the sensitivity can be easily adjusted.

  8. Predicting the random drift of MEMS gyroscope based on K-means clustering and OLS RBF Neural Network

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-yu; Zhang, Li-jie

    2017-10-01

    Measure error of the sensor can be effectively compensated with prediction. Aiming at large random drift error of MEMS(Micro Electro Mechanical System))gyroscope, an improved learning algorithm of Radial Basis Function(RBF) Neural Network(NN) based on K-means clustering and Orthogonal Least-Squares (OLS) is proposed in this paper. The algorithm selects the typical samples as the initial cluster centers of RBF NN firstly, candidates centers with K-means algorithm secondly, and optimizes the candidate centers with OLS algorithm thirdly, which makes the network structure simpler and makes the prediction performance better. Experimental results show that the proposed K-means clustering OLS learning algorithm can predict the random drift of MEMS gyroscope effectively, the prediction error of which is 9.8019e-007°/s and the prediction time of which is 2.4169e-006s

  9. Impact of excitation waveform on the frequency stability of electrostatically-actuated micro-electromechanical oscillators

    NASA Astrophysics Data System (ADS)

    Juillard, J.; Brenes, A.

    2018-05-01

    In this paper, the frequency stability of high-Q electrostatically-actuated MEMS oscillators with cubic restoring forces, and its relation with the amplitude, the phase and the shape of the excitation waveform, is studied. The influence on close-to-the carrier frequency noise of additive processes (such as thermomechanical noise) or parametric processes (bias voltage fluctuations, feedback phase fluctuations, feedback level fluctuations) is taken into account. It is shown that the optimal operating conditions of electrostatically-actuated MEMS oscillators are highly waveform-dependent, a factor that is largely overlooked in the existing literature. This simulation-based study covers the cases of harmonic and pulsed excitation of a parallel-plate capacitive MEMS resonator.

  10. Gain-Scheduled Complementary Filter Design for a MEMS Based Attitude and Heading Reference System

    PubMed Central

    Yoo, Tae Suk; Hong, Sung Kyung; Yoon, Hyok Min; Park, Sungsu

    2011-01-01

    This paper describes a robust and simple algorithm for an attitude and heading reference system (AHRS) based on low-cost MEMS inertial and magnetic sensors. The proposed approach relies on a gain-scheduled complementary filter, augmented by an acceleration-based switching architecture to yield robust performance, even when the vehicle is subject to strong accelerations. Experimental results are provided for a road captive test during which the vehicle dynamics are in high-acceleration mode and the performance of the proposed filter is evaluated against the output from a conventional linear complementary filter. PMID:22163824

  11. Modular reservoir concept for MEMS-based transdermal drug delivery systems

    NASA Astrophysics Data System (ADS)

    Cantwell, Cara T.; Wei, Pinghung; Ziaie, Babak; Rao, Masaru P.

    2014-11-01

    While MEMS-based transdermal drug delivery device development efforts have typically focused on tightly-integrated solutions, we propose an alternate conception based upon a novel, modular drug reservoir approach. By decoupling the drug storage functionality from the rest of the delivery system, this approach seeks to minimize cold chain storage volume, enhance compatibility with conventional pharmaceutical practices, and allow independent optimization of reservoir device design, materials, and fabrication. Herein, we report the design, fabrication, and preliminary characterization of modular reservoirs that demonstrate the virtue of this approach within the application context of transdermal insulin administration for diabetes management.

  12. Human Location Detection System Using Micro-Electromechanical Sensor for Intelligent Fan

    NASA Astrophysics Data System (ADS)

    Parnin, S.; Rahman, M. M.

    2017-03-01

    This paper presented the development of sensory system for detection of both the presence and the location of human in a room spaces using MEMS Thermal sensor. The system is able to detect the surface temperature of occupants by a non-contact detection at the maximum of 6 meters far. It can be integrated to any swing type of electrical appliances such as standing fan or a similar devices. Differentiating human from other moving and or static object by heat variable is nearly impossible since human, animals and electrical appliances produce heat. The uncontrollable heat properties which can change and transfer will add to the detection issue. Integrating the low cost MEMS based thermal sensor can solve the first of human sensing problem by its ability to detect human in stationary. Further discrimination and analysis must therefore be made to the measured temperature data to distinguish human from other objects. In this project, the fan is properly designed and program in such a way that it can adapt to different events starting from the human sensing stage to its dynamic and mechanical moving parts. Up to this stage initial testing to the Omron D6T microelectromechanical thermal sensor is currently under several experimental stages. Experimental result of the sensor tested on stationary and motion state of human are behaviorally differentiable and successfully locate the human position by detecting the maximum temperature of each sensor reading.

  13. Flexible MEMS: A novel technology to fabricate flexible sensors and electronics

    NASA Astrophysics Data System (ADS)

    Tu, Hongen

    This dissertation presents the design and fabrication techniques used to fabricate flexible MEMS (Micro Electro Mechanical Systems) devices. MEMS devices and CMOS(Complementary Metal-Oxide-Semiconductor) circuits are traditionally fabricated on rigid substrates with inorganic semiconductor materials such as Silicon. However, it is highly desirable that functional elements like sensors, actuators or micro fluidic components to be fabricated on flexible substrates for a wide variety of applications. Due to the fact that flexible substrate is temperature sensitive, typically only low temperature materials, such as polymers, metals, and organic semiconductor materials, can be directly fabricated on flexible substrates. A novel technology based on XeF2(xenon difluoride) isotropic silicon etching and parylene conformal coating, which is able to monolithically incorporate high temperature materials and fluidic channels, was developed at Wayne State University. The technology was first implemented in the development of out-of-plane parylene microneedle arrays that can be individually addressed by integrated flexible micro-channels. These devices enable the delivery of chemicals with controlled temporal and spatial patterns and allow us to study neurotransmitter-based retinal prosthesis. The technology was further explored by adopting the conventional SOI-CMOS processes. High performance and high density CMOS circuits can be first fabricated on SOI wafers, and then be integrated into flexible substrates. Flexible p-channel MOSFETs (Metal-Oxide-Semiconductor Field-Effect-Transistors) were successfully integrated and tested. Integration of pressure sensors and flow sensors based on single crystal silicon has also been demonstrated. A novel smart yarn technology that enables the invisible integration of sensors and electronics into fabrics has been developed. The most significant advantage of this technology is its post-MEMS and post-CMOS compatibility. Various high-performance MEMS devices and electronics can be integrated into flexible substrates. The potential of our technology is enormous. Many wearable and implantable devices can be developed based on this technology.

  14. Numerical Simulation of Chemically Reacting Flows

    DTIC Science & Technology

    2015-09-03

    62 (1986) 1-25. 6. O.L. Burchett, M.R. Birnbaum, and C.T. Oien, “ Compaction studies of palladium/aluminum powder ,” Sandia National Laboratories...interest to the Air Force. 15. SUBJECT TERMS Numerical methods, Diffusion Flames, Adaptive Gridding, Velocity-Vorticity, Compact Methods 16...discussed ab ot require th sure mass c mputational city formula e spectrum soot forma formulation lent agreem ing MC-Sm ork will lik ith compact iled

  15. A polymer-based Fabry-Perot filter integrated with 3-D MEMS structures

    NASA Astrophysics Data System (ADS)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Polymers have been considered as one of the most versatile materials in making optical devices for communication and sensor applications. They provide good optical transparency to form filters, lenses and many optical components with ease of fabrication. They are scalable and compatible in dimensions with requirements in optics and can be fabricated on inorganic substrates, such as silicon and quartz. Recent polymer synthesis also made great progresses on conductive and nonlinear polymers, opening opportunities for new applications. In this paper, we discussed hybrid-material integration of polymers on silicon-based microelectromechanical system (MEMS) devices. The motivation is to combine the advantages of demonstrated silicon-based MEMS actuators and excellent optical performance of polymers. We demonstrated the idea with a polymer-based out-of-plane Fabry-Perot filter that can be self-assembled by scratch drive actuators. We utilized a fabrication foundry service, MUMPS (Multi-User MEMS Process), to demonstrate the feasibility and flexibility of integration. The polysilicon, used as the structural material for construction of 3-D framework and actuators, has high absorption in the visible and near infrared ranges. Therefore, previous efforts using a polysilicon layer as optical interfaces suffer from high losses. We applied the organic compound materials on the silicon-based framework within the optical signal propagation path to form the optical interfaces. In this paper, we have shown low losses in the optical signal processing and feasibility of building a thin-film Fabry-Perot filter. We discussed the optical filter designs, mechanical design, actuation mechanism, fabrication issues, optical measurements, and results.

  16. Compact instrument for fluorescence image-guided surgery

    NASA Astrophysics Data System (ADS)

    Wang, Xinghua; Bhaumik, Srabani; Li, Qing; Staudinger, V. Paul; Yazdanfar, Siavash

    2010-03-01

    Fluorescence image-guided surgery (FIGS) is an emerging technique in oncology, neurology, and cardiology. To adapt intraoperative imaging for various surgical applications, increasingly flexible and compact FIGS instruments are necessary. We present a compact, portable FIGS system and demonstrate its use in cardiovascular mapping in a preclinical model of myocardial ischemia. Our system uses fiber optic delivery of laser diode excitation, custom optics with high collection efficiency, and compact consumer-grade cameras as a low-cost and compact alternative to open surgical FIGS systems. Dramatic size and weight reduction increases flexibility and access, and allows for handheld use or unobtrusive positioning over the surgical field.

  17. Development and application of the maximum entropy method and other spectral estimation techniques

    NASA Astrophysics Data System (ADS)

    King, W. R.

    1980-09-01

    This summary report is a collection of four separate progress reports prepared under three contracts, which are all sponsored by the Office of Naval Research in Arlington, Virginia. This report contains the results of investigations into the application of the maximum entropy method (MEM), a high resolution, frequency and wavenumber estimation technique. The report also contains a description of two, new, stable, high resolution spectral estimation techniques that is provided in the final report section. Many examples of wavenumber spectral patterns for all investigated techniques are included throughout the report. The maximum entropy method is also known as the maximum entropy spectral analysis (MESA) technique, and both names are used in the report. Many MEM wavenumber spectral patterns are demonstrated using both simulated and measured radar signal and noise data. Methods for obtaining stable MEM wavenumber spectra are discussed, broadband signal detection using the MEM prediction error transform (PET) is discussed, and Doppler radar narrowband signal detection is demonstrated using the MEM technique. It is also shown that MEM cannot be applied to randomly sampled data. The two new, stable, high resolution, spectral estimation techniques discussed in the final report section, are named the Wiener-King and the Fourier spectral estimation techniques. The two new techniques have a similar derivation based upon the Wiener prediction filter, but the two techniques are otherwise quite different. Further development of the techniques and measurement of the technique spectral characteristics is recommended for subsequent investigation.

  18. Maximum Entropy Method applied to Real-time Time-Dependent Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Zempo, Yasunari; Toogoshi, Mitsuki; Kano, Satoru S.

    Maximum Entropy Method (MEM) is widely used for the analysis of a time-series data such as an earthquake, which has fairly long-periodicity but short observable data. We have examined MEM to apply to the optical analysis of the time-series data from the real-time TDDFT. In the analysis, usually Fourier Transform (FT) is used, and we have to pay our attention to the lower energy part such as the band gap, which requires the long time evolution. The computational cost naturally becomes quite expensive. Since MEM is based on the autocorrelation of the signal, in which the periodicity can be described as the difference of time-lags, its value in the lower energy naturally gets small compared to that in the higher energy. To improve the difficulty, our MEM has the two features: the raw data is repeated it many times and concatenated, which provides the lower energy resolution in high resolution; together with the repeated data, an appropriate phase for the target frequency is introduced to reduce the side effect of the artificial periodicity. We have compared our improved MEM and FT spectrum using small-to-medium size molecules. We can see the clear spectrum of MEM, compared to that of FT. Our new technique provides higher resolution in fewer steps, compared to that of FT. This work was partially supported by JSPS Grants-in-Aid for Scientific Research (C) Grant number 16K05047, Sumitomo Chemical, Co. Ltd., and Simulatio Corp.

  19. Characterization of assembled MEMS

    NASA Astrophysics Data System (ADS)

    Jandric, Zoran; Randall, John N.; Saini, Rahul; Nolan, Michael; Skidmore, George

    2004-12-01

    Zyvex is developing a low-cost high-precision method for manufacturing MEMS-based three-dimensional structures/assemblies. The assembly process relies on compliant properties of the interconnecting components. The sockets and connectors are designed to benefit from their compliant nature by allowing the mechanical component to self-align, i.e. reposition themselves to their designed, stable position, independent of the initial placement of the part by the external robot. Thus, the self-aligning property guarantees the precision of the assembled structure to be very close to, or the same, as the precision of the lithography process itself. A three-dimensional (3D) structure is achieved by inserting the connectors into the sockets through the use of a passive end-effector. We have developed the automated, high-yield, assembly procedure which permits connectors to be picked up from any location within the same die, or a separate die. This general procedure allows for the possibility to assemble parts of dissimilar materials. We have built many 3D MEMS structures, including several 3D MEMS devices such as a scanning electron microscope (SEM) micro column, mass-spectrometer column, variable optical attenuator. For these 3D MEMS structures we characterize their mechanical strength through finite element simulation, dynamic properties by finite-element analysis and experimentally with UMECH"s MEMS motion analyzer (MMA), alignment accuracy by using an in-house developed dihedral angle measurement laser autocollimator, and impact properties by performing drop tests. The details of the experimental set-ups, the measurement procedures, and the experimental data are presented in this paper.

  20. Characterization of assembled MEMS

    NASA Astrophysics Data System (ADS)

    Jandric, Zoran; Randall, John N.; Saini, Rahul; Nolan, Michael; Skidmore, George

    2005-01-01

    Zyvex is developing a low-cost high-precision method for manufacturing MEMS-based three-dimensional structures/assemblies. The assembly process relies on compliant properties of the interconnecting components. The sockets and connectors are designed to benefit from their compliant nature by allowing the mechanical component to self-align, i.e. reposition themselves to their designed, stable position, independent of the initial placement of the part by the external robot. Thus, the self-aligning property guarantees the precision of the assembled structure to be very close to, or the same, as the precision of the lithography process itself. A three-dimensional (3D) structure is achieved by inserting the connectors into the sockets through the use of a passive end-effector. We have developed the automated, high-yield, assembly procedure which permits connectors to be picked up from any location within the same die, or a separate die. This general procedure allows for the possibility to assemble parts of dissimilar materials. We have built many 3D MEMS structures, including several 3D MEMS devices such as a scanning electron microscope (SEM) micro column, mass-spectrometer column, variable optical attenuator. For these 3D MEMS structures we characterize their mechanical strength through finite element simulation, dynamic properties by finite-element analysis and experimentally with UMECH"s MEMS motion analyzer (MMA), alignment accuracy by using an in-house developed dihedral angle measurement laser autocollimator, and impact properties by performing drop tests. The details of the experimental set-ups, the measurement procedures, and the experimental data are presented in this paper.

  1. Memantine transport across the mouse blood-brain barrier is mediated by a cationic influx H+ antiporter.

    PubMed

    Mehta, Dharmini C; Short, Jennifer L; Nicolazzo, Joseph A

    2013-12-02

    Memantine (MEM) is prescribed in mono and combination therapies for treating the symptoms of moderate to severe Alzheimer's disease (AD). Despite MEM being widely prescribed with other AD and non-AD medicines, very little is known about its mechanism of transport across the blood-brain barrier (BBB), and whether the nature of this transport lends MEM to a potential for drug-drug interactions at the BBB. Therefore, the purpose of this study was to characterize the mechanisms facilitating MEM brain uptake in Swiss Outbred mice using an in situ transcardiac perfusion technique, and identify the putative transporter involved in MEM disposition into the brain. Following transcardiac perfusion of MEM with increasing concentrations, the brain uptake of MEM was observed to be saturable. Furthermore, MEM brain uptake was reduced (up to 55%) by various cationic transporter inhibitors (amantadine, quinine, tetraethylammonium, choline and carnitine) and was dependent on extracellular pH, while being independent of membrane depolarization and the presence of Na(+) in the perfusate. In addition, MEM brain uptake was observed to be sensitive to changes in intracellular pH, hence, likely to be driven by H(+)/MEM antiport mechanisms. Taken together, these findings implicate the involvement of an organic cation transporter regulated by proton antiport mechanisms in the transport of MEM across the mouse BBB, possibly the organic cation/carnitine transporter, OCTN1. These studies also clearly demonstrate the brain uptake of MEM is significantly reduced by other cationic compounds, highlighting the need to consider the possibility of drug interactions with MEM at the BBB, potentially leading to reduced brain uptake and, therefore, altered efficacy of MEM when used in patients on multidrug regimens.

  2. High-power visible laser effect on a Boston Micromachines' MEMS deformable mirror

    NASA Astrophysics Data System (ADS)

    Norton, Andrew; Gavel, Donald; Dillon, Daren; Cornelissen, Steven

    2010-07-01

    Continuous-facesheet and segmented Boston Micromachines Corporations' (BMC) Micro-Electrical Mechanical Systems (MEMS) Deformable Mirrors (DM) have been tested for their response to high-power visible-wavelength laser light. The deformable mirrors, coated with either protected silver or bare aluminum, were subjected to a maximum of 2 Watt laser-light at a wavelength of 532 nanometers. The laser light was incident on a ~ 3.5×3.5 cm area for time periods from minutes to 7 continuous hours. Spot heating from the laser-light is measured to induce a local bulge in the surface of each DM. For the aluminum-coated continuous facesheet DM, the induced spot heating changes the surface figure by 16 nm rms. The silver-coated continuous-facesheet and segmented (spatial light modulator) DMs experience a 6 and 8 nm surface rms change in surface quality with the laser at 2 Watts. For spatial frequencies less than the actuator spacing (300 mm), the laser induced surface bulge is shown to be removable, as the DMs continued to be fully functional during and after their exposure. Over the full 10 mm aperture one could expect the same results with a 15 Watt laser guide star (LGS). These results are very promising for use of the MEMS DM to pre-correct the outgoing laser light in the Laboratory for Adaptive Optics' (LAO) laser uplink application.

  3. Finite Element Modeling of Micromachined MEMS Photon Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datskos, P.G.; Evans, B.M.; Schonberger, D.

    1999-09-20

    The technology of microelectronics that has evolved over the past half century is one of great power and sophistication and can now be extended to many applications (MEMS and MOEMS) other than electronics. An interesting application of MEMS quantum devices is the detection of electromagnetic radiation. The operation principle of MEMS quantum devices is based on the photoinduced stress in semiconductors, and the photon detection results from the measurement of the photoinduced bending. These devices can be described as micromechanical photon detectors. In this work, we have developed a technique for simulating electronic stresses using finite element analysis. We havemore » used our technique to model the response of micromechanical photon devices to external stimuli and compared these results with experimental data. Material properties, geometry, and bimaterial design play an important role in the performance of micromechanical photon detectors. We have modeled these effects using finite element analysis and included the effects of bimaterial thickness coating, effective length of the device, width, and thickness.« less

  4. Emerging leadership of surface micromachined MEMS for wavelength switching in telecommunications systems

    NASA Astrophysics Data System (ADS)

    Staple, Bevan D.; Muller, Lilac; Miller, David C.

    2003-01-01

    We introduce the Network Photonics" CrossWave as the first commercially-available, MEMS-based wavelength selective switch. The CrossWave combines the functionality of signal de-multiplexing, switching and re-multiplexing in a single all-optical operation using a dispersive element and 1-D MEMS. 1-D MEMS, where micromirrors are configured in a single array with a single mirror per wavelength, are fabricated in a standard surface micromachining process. In this paper we present three generations of micromirror designs. With proper design optimization and process improvements we have demonstrated exceptional mirror flatness (<16.2m-1 curvature), surface error (

  5. Finite element modeling of micromachined MEMS photon devices

    NASA Astrophysics Data System (ADS)

    Evans, Boyd M., III; Schonberger, D. W.; Datskos, Panos G.

    1999-09-01

    The technology of microelectronics that has evolved over the past half century is one of great power and sophistication and can now be extended to many applications (MEMS and MOEMS) other than electronics. An interesting application of MEMS quantum devices is the detection of electromagnetic radiation. The operation principle of MEMS quantum devices is based on the photoinduced stress in semiconductors, and the photon detection results from the measurement of the photoinduced bending. These devices can be described as micromechanical photon detectors. In this work, we have developed a technique for simulating electronic stresses using finite element analysis. We have used our technique to model the response of micromechanical photon devices to external stimuli and compared these results with experimental data. Material properties, geometry, and bimaterial design play an important role in the performance of micromechanical photon detectors. We have modeled these effects using finite element analysis and included the effects of bimaterial thickness coating, effective length of the device, width, and thickness.

  6. A spin transfer torque magnetoresistance random access memory-based high-density and ultralow-power associative memory for fully data-adaptive nearest neighbor search with current-mode similarity evaluation and time-domain minimum searching

    NASA Astrophysics Data System (ADS)

    Ma, Yitao; Miura, Sadahiko; Honjo, Hiroaki; Ikeda, Shoji; Hanyu, Takahiro; Ohno, Hideo; Endoh, Tetsuo

    2017-04-01

    A high-density nonvolatile associative memory (NV-AM) based on spin transfer torque magnetoresistive random access memory (STT-MRAM), which achieves highly concurrent and ultralow-power nearest neighbor search with full adaptivity of the template data format, has been proposed and fabricated using the 90 nm CMOS/70 nm perpendicular-magnetic-tunnel-junction hybrid process. A truly compact current-mode circuitry is developed to realize flexibly controllable and high-parallel similarity evaluation, which makes the NV-AM adaptable to any dimensionality and component-bit of template data. A compact dual-stage time-domain minimum searching circuit is also developed, which can freely extend the system for more template data by connecting multiple NM-AM cores without additional circuits for integrated processing. Both the embedded STT-MRAM module and the computing circuit modules in this NV-AM chip are synchronously power-gated to completely eliminate standby power and maximally reduce operation power by only activating the currently accessed circuit blocks. The operations of a prototype chip at 40 MHz are demonstrated by measurement. The average operation power is only 130 µW, and the circuit density is less than 11 µm2/bit. Compared with the latest conventional works in both volatile and nonvolatile approaches, more than 31.3% circuit area reductions and 99.2% power improvements are achieved, respectively. Further power performance analyses are discussed, which verify the special superiority of the proposed NV-AM in low-power and large-memory-based VLSIs.

  7. Critical issues for the application of integrated MEMS/CMOS technologies to inertial measurement units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, J.H.; Ellis, J.R.; Montague, S.

    1997-03-01

    One of the principal applications of monolithically integrated micromechanical/microelectronic systems has been accelerometers for automotive applications. As integrated MEMS/CMOS technologies such as those developed by U.C. Berkeley, Analog Devices, and Sandia National Laboratories mature, additional systems for more sensitive inertial measurements will enter the commercial marketplace. In this paper, the authors will examine key technology design rules which impact the performance and cost of inertial measurement devices manufactured in integrated MEMS/CMOS technologies. These design parameters include: (1) minimum MEMS feature size, (2) minimum CMOS feature size, (3) maximum MEMS linear dimension, (4) number of mechanical MEMS layers, (5) MEMS/CMOS spacing.more » In particular, the embedded approach to integration developed at Sandia will be examined in the context of these technology features. Presently, this technology offers MEMS feature sizes as small as 1 {micro}m, CMOS critical dimensions of 1.25 {micro}m, MEMS linear dimensions of 1,000 {micro}m, a single mechanical level of polysilicon, and a 100 {micro}m space between MEMS and CMOS. This is applicable to modern precision guided munitions.« less

  8. GaAs-based resonant tunneling diode (RTD) epitaxy on Si for highly sensitive strain gauge applications

    PubMed Central

    2013-01-01

    As a highly sensitive strain gauge element, GaAs-based resonant tunneling diode (RTD) has already been applied in microelectromechanical system (MEMS) sensors. Due to poor mechanical properties and high cost, GaAs-based material has been limited in applications as the substrate for MEMS. In this work, we present a method to fabricate the GaAs-based RTD on Si substrate. From the experimental results, it can be concluded that the piezoresistive coefficient achieved with this method reached 3.42 × 10−9 m2/N, which is about an order of magnitude higher than the Si-based semiconductor piezoresistors. PMID:23651496

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besse, Nicolas; Latu, Guillaume; Ghizzo, Alain

    In this paper we present a new method for the numerical solution of the relativistic Vlasov-Maxwell system on a phase-space grid using an adaptive semi-Lagrangian method. The adaptivity is performed through a wavelet multiresolution analysis, which gives a powerful and natural refinement criterion based on the local measurement of the approximation error and regularity of the distribution function. Therefore, the multiscale expansion of the distribution function allows to get a sparse representation of the data and thus save memory space and CPU time. We apply this numerical scheme to reduced Vlasov-Maxwell systems arising in laser-plasma physics. Interaction of relativistically strongmore » laser pulses with overdense plasma slabs is investigated. These Vlasov simulations revealed a rich variety of phenomena associated with the fast particle dynamics induced by electromagnetic waves as electron trapping, particle acceleration, and electron plasma wavebreaking. However, the wavelet based adaptive method that we developed here, does not yield significant improvements compared to Vlasov solvers on a uniform mesh due to the substantial overhead that the method introduces. Nonetheless they might be a first step towards more efficient adaptive solvers based on different ideas for the grid refinement or on a more efficient implementation. Here the Vlasov simulations are performed in a two-dimensional phase-space where the development of thin filaments, strongly amplified by relativistic effects requires an important increase of the total number of points of the phase-space grid as they get finer as time goes on. The adaptive method could be more useful in cases where these thin filaments that need to be resolved are a very small fraction of the hyper-volume, which arises in higher dimensions because of the surface-to-volume scaling and the essentially one-dimensional structure of the filaments. Moreover, the main way to improve the efficiency of the adaptive method is to increase the local character in phase-space of the numerical scheme, by considering multiscale reconstruction with more compact support and by replacing the semi-Lagrangian method with more local - in space - numerical scheme as compact finite difference schemes, discontinuous-Galerkin method or finite element residual schemes which are well suited for parallel domain decomposition techniques.« less

  10. SnO2-based memristors and the potential synergies of integrating memristors with MEMS

    NASA Astrophysics Data System (ADS)

    Zubia, David; Almeida, Sergio; Talukdar, Arka; Mireles, Jose; MacDonald, Eric

    2012-06-01

    Memristors, usually in the form metal/metal-oxide/metal, have attracted much attention due to their potential application for non-volatile memory. Their simple structure and ease of fabrication make them good candidates for dense memory with projections of 22 terabytes per wafer. Excellent switching times of ~10 ns, memory endurance of >109 cycles, and extrapolated retention times of >10 yrs have been reported. Interestingly, memristors use the migration of ions to change their resistance in response to charge flow, and can therefore measure and remember the amount of current that has flowed. This is similar to many MEMS devices in which the motion of mass is an operating principle of the device. Memristors are also similar to MEMS in the sense that they can both be resistant to radiation effects. Memristors are radiation tolerant since information is stored as a structural change and not as electronic charge. Functionally, a MEMS device's sensitivity to radiation is concomitant to the role that the dielectric layers play in the function of the device. This is due to radiation-induced trapped charge in the dielectrics which can alter device performance and in extreme cases cause failure. Although different material systems have been investigated for memristors, SnO2 has received little attention even though it demonstrates excellent electronic properties and a high resistance to displacement damage from radiation due to a large Frenkel defect energy (7 eV) compared its bandgap (3.6 eV). This talk discusses recent research on SnO2-based memristors and the potential synergies of integrating memristors with MEMS.

  11. Nonlinear dynamic modeling of a V-shaped metal based thermally driven MEMS actuator for RF switches

    NASA Astrophysics Data System (ADS)

    Bakri-Kassem, Maher; Dhaouadi, Rached; Arabi, Mohamed; Estahbanati, Shahabeddin V.; Abdel-Rahman, Eihab

    2018-05-01

    In this paper, we propose a new dynamic model to describe the nonlinear characteristics of a V-shaped (chevron) metallic-based thermally driven MEMS actuator. We developed two models for the thermal actuator with two configurations. The first MEMS configuration has a small tip connected to the shuttle, while the second configuration has a folded spring and a wide beam attached to the shuttle. A detailed finite element model (FEM) and a lumped element model (LEM) are proposed for each configuration to completely characterize the electro-thermal and thermo-mechanical behaviors. The nonlinear resistivity of the polysilicon layer is extracted from the measured current-voltage (I-V) characteristics of the actuator and the simulated corresponding temperatures in the FEM model, knowing the resistivity of the polysilicon at room temperature from the manufacture’s handbook. Both developed models include the nonlinear temperature-dependent material properties. Numerical simulations in comparison with experimental data using a dedicated MEMS test apparatus verify the accuracy of the proposed LEM model to represent the complex dynamics of the thermal MEMS actuator. The LEM and FEM simulation results show an accuracy ranging from a maximum of 13% error down to a minimum of 1.4% error. The actuator with the lower thermal load to air that includes a folded spring (FS), also known as high surface area actuator is compared to the actuator without FS, also known as low surface area actuator, in terms of the I-V characteristics, power consumption, and experimental static and dynamic responses of the tip displacement.

  12. Converting MEMS technology into profits

    NASA Astrophysics Data System (ADS)

    Bryzek, Janusz

    1998-08-01

    This paper discusses issues related to transitioning a company from the advanced technology development phase (with a particular focus on MEMS) to a profitable business, with emphasis on start-up companies. It includes several case studies from (primarily) NovaSensor MEMS development history. These case studies illustrate strategic problems with which advanced MEMS technology developers have to be concerned. Conclusions from these case studies could be used as checkpoints for future MEMS developers to increase probability of profitable operations. The objective for this paper is to share the author's experience from multiple MEMS start-ups to accelerate development of the MEMS market by focusing state- of-the-art technologists on marketing issues.

  13. Design and analysis of MEMS MWCNT/epoxy strain sensor using COMSOL

    NASA Astrophysics Data System (ADS)

    Sapra, Gaurav; Sharma, Preetika

    2017-07-01

    The design and performance of piezoresistive MEMS-based MWCNT/epoxy composite strain sensor using COMSOL Multiphysics Toolbox has been investigated. The proposed sensor design comprises su-8 based U-shaped cantilever beam with MWCNT/epoxy composite film as an active sensing element. A point load in microscale has been applied at the tip of the cantilever beam to observe its deflection in the proposed design. Analytical simulations have been performed to optimize various design parameters of the proposed sensor, which will be helpful at the time of fabrication.

  14. Damage assessment in multilayered MEMS structures under thermal fatigue

    NASA Astrophysics Data System (ADS)

    Maligno, A. R.; Whalley, D. C.; Silberschmidt, V. V.

    2011-07-01

    This paper reports on the application of a Physics of Failure (PoF) methodology to assessing the reliability of a micro electro mechanical system (MEMS). Numerical simulations, based on the finite element method (FEM) using a sub-domain approach was used to examine the damage onset due to temperature variations (e.g. yielding of metals which may lead to thermal fatigue). In this work remeshing techniques were employed in order to develop a damage tolerance approach based on the assumption that initial flaws exist in the multi-layered.

  15. AO corrected satellite imaging from Mount Stromlo

    NASA Astrophysics Data System (ADS)

    Bennet, F.; Rigaut, F.; Price, I.; Herrald, N.; Ritchie, I.; Smith, C.

    2016-07-01

    The Research School of Astronomy and Astrophysics have been developing adaptive optics systems for space situational awareness. As part of this program we have developed satellite imaging using compact adaptive optics systems for small (1-2 m) telescopes such as those operated by Electro Optic Systems (EOS) from the Mount Stromlo Observatory. We have focused on making compact, simple, and high performance AO systems using modern high stroke high speed deformable mirrors and EMCCD cameras. We are able to track satellites down to magnitude 10 with a Strehl in excess of 20% in median seeing.

  16. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.

    PubMed

    Wong, Kevin S K; Jian, Yifan; Cua, Michelle; Bonora, Stefano; Zawadzki, Robert J; Sarunic, Marinko V

    2015-02-01

    Wavefront sensorless adaptive optics optical coherence tomography (WSAO-OCT) is a novel imaging technique for in vivo high-resolution depth-resolved imaging that mitigates some of the challenges encountered with the use of sensor-based adaptive optics designs. This technique replaces the Hartmann Shack wavefront sensor used to measure aberrations with a depth-resolved image-driven optimization algorithm, with the metric based on the OCT volumes acquired in real-time. The custom-built ultrahigh-speed GPU processing platform and fast modal optimization algorithm presented in this paper was essential in enabling real-time, in vivo imaging of human retinas with wavefront sensorless AO correction. WSAO-OCT is especially advantageous for developing a clinical high-resolution retinal imaging system as it enables the use of a compact, low-cost and robust lens-based adaptive optics design. In this report, we describe our WSAO-OCT system for imaging the human photoreceptor mosaic in vivo. We validated our system performance by imaging the retina at several eccentricities, and demonstrated the improvement in photoreceptor visibility with WSAO compensation.

  17. Compact anhydrous HCl to aqueous HCl conversion system

    DOEpatents

    Grossman, M.W.; Speer, R.

    1993-06-01

    The present invention is directed to an inexpensive and compact apparatus adapted for use with a [sup 196]Hg isotope separation process and the conversion of anhydrous HCl to aqueous HCl without the use of air flow to carry the HCl vapor into the converter system.

  18. Study of the Use of Time-Mean Vortices to Generate Lift for MAV Applications

    DTIC Science & Technology

    2011-05-31

    microplate to in-plane resonance. Computational effort centers around optimization of a range of parameters (geometry, frequency, amplitude of oscillation, etc...issue involved. Towards this end, a suspended microplate was fabricated via MEMS technology and driven to in-plane resonance via Lorentz force...force to drive the suspended MEMS-based microplate to in-plane resonance. Computational effort centers around optimization of a range of parameters

  19. Microelectromechanical Systems Actuator Based Reconfigurable Printed Antenna

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor)

    2005-01-01

    A polarization reconfigurable patch antenna is disclosed. The antenna includes a feed element, a patch antenna element electrically connected to the feed element, and at least one microelectromechanical systems (MEMS) actuator, with a partial connection to the patch antenna element along an edge of the patch antenna element. The polarization of the antenna can be switched between circular polarization and linear polarization through action of the at least one MEMS actuator.

  20. Improved response time of flexible microelectromechanical sensors employing eco-friendly nanomaterials.

    PubMed

    Fan, Shicheng; Dan, Li; Meng, Lingju; Zheng, Wei; Elias, Anastasia; Wang, Xihua

    2017-11-09

    Flexible force/pressure sensors are of interest for academia and industry and have applications in wearable technologies. Most of such sensors on the market or reported in journal publications are based on the operation mechanism of probing capacitance or resistance changes of the materials under pressure. Recently, we reported the microelectromechanical (MEM) sensors based on a different mechanism: mechanical switches. Multiples of such MEM sensors can be integrated to achieve the same function of regular force/pressure sensors while having the advantages of ease of fabrication and long-term stability in operation. Herein, we report the dramatically improved response time (more than one order of magnitude) of these MEM sensors by employing eco-friendly nanomaterials-cellulose nanocrystals. For instance, the incorporation of polydimethysiloxane filled with cellulose nanocrystals shortened the response time of MEM sensors from sub-seconds to several milliseconds, leading to the detection of both diastolic and systolic pressures in the radial arterial blood pressure measurement. Comprehensive mechanical and electrical characterization of the materials and the devices reveal that greatly enhanced storage modulus and loss modulus play key roles in this improved response time. The demonstrated fast-response flexible sensors enabled continuous monitoring of heart rate and complex cardiovascular signals using pressure sensors for future wearable sensing platforms.

  1. Measurement of Young's modulus and residual stress of thin SiC layers for MEMS high temperature applications

    NASA Astrophysics Data System (ADS)

    Pabst, Oliver; Schiffer, Michael; Obermeier, Ernst; Tekin, Tolga; Lang, Klaus Dieter; Ngo, Ha-Duong

    2011-06-01

    Silicon carbide (SiC) is a promising material for applications in harsh environments. Standard silicon (Si) microelectromechanical systems (MEMS) are limited in operating temperature to temperatures below 130 °C for electronic devices and below 600 °C for mechanical devices. Due to its large bandgap SiC enables MEMS with significantly higher operating temperatures. Furthermore, SiC exhibits high chemical stability and thermal conductivity. Young's modulus and residual stress are important mechanical properties for the design of sophisticated SiC-based MEMS devices. In particular, residual stresses are strongly dependent on the deposition conditions. Literature values for Young's modulus range from 100 to 400 GPa, and residual stresses range from 98 to 486 MPa. In this paper we present our work on investigating Young's modulus and residual stress of SiC films deposited on single crystal bulk silicon using bulge testing. This method is based on measurement of pressure-dependent membrane deflection. Polycrystalline as well as single crystal cubic silicon carbide samples are studied. For the samples tested, average Young's modulus and residual stress measured are 417 GPa and 89 MPa for polycrystalline samples. For single crystal samples, the according values are 388 GPa and 217 MPa. These results compare well with literature values.

  2. Portable oral cancer detection using a miniature confocal imaging probe with a large field of view

    NASA Astrophysics Data System (ADS)

    Wang, Youmin; Raj, Milan; McGuff, H. Stan; Bhave, Gauri; Yang, Bin; Shen, Ting; Zhang, Xiaojing

    2012-06-01

    We demonstrate a MEMS micromirror enabled handheld confocal imaging probe for portable oral cancer detection, where a comparatively large field of view (FOV) was generated through the programmable Lissajous scanning pattern of the MEMS micromirror. Miniaturized handheld MEMS confocal imaging probe was developed, and further compared with the desktop confocal prototype under clinical setting. For the handheld confocal imaging system, optical design simulations using CODE VR® shows the lateral and axial resolution to be 0.98 µm and 4.2 µm, where experimental values were determined to be 3 µm and 5.8 µm, respectively, with a FOV of 280 µm×300 µm. Fast Lissajous imaging speed up to 2 fps was realized with improved Labview and Java based real-time imaging software. Properties such as 3D imaging through autofocusing and mosaic imaging for extended lateral view (6 mm × 8 mm) were examined for carcinoma real-time pathology. Neoplastic lesion tissues of giant cell fibroma and peripheral ossifying fibroma, the fibroma inside the paraffin box and ex vivo gross tissues were imaged by the bench-top and handheld imaging modalities, and further compared with commercial microscope imaging results. The MEMS scanner-based handheld confocal imaging probe shows great promise as a potential clinical tool for oral cancer diagnosis and treatment.

  3. A Highly Reliable and Cost-Efficient Multi-Sensor System for Land Vehicle Positioning.

    PubMed

    Li, Xu; Xu, Qimin; Li, Bin; Song, Xianghui

    2016-05-25

    In this paper, we propose a novel positioning solution for land vehicles which is highly reliable and cost-efficient. The proposed positioning system fuses information from the MEMS-based reduced inertial sensor system (RISS) which consists of one vertical gyroscope and two horizontal accelerometers, low-cost GPS, and supplementary sensors and sources. First, pitch and roll angle are accurately estimated based on a vehicle kinematic model. Meanwhile, the negative effect of the uncertain nonlinear drift of MEMS inertial sensors is eliminated by an H∞ filter. Further, a distributed-dual-H∞ filtering (DDHF) mechanism is adopted to address the uncertain nonlinear drift of the MEMS-RISS and make full use of the supplementary sensors and sources. The DDHF is composed of a main H∞ filter (MHF) and an auxiliary H∞ filter (AHF). Finally, a generalized regression neural network (GRNN) module with good approximation capability is specially designed for the MEMS-RISS. A hybrid methodology which combines the GRNN module and the AHF is utilized to compensate for RISS position errors during GPS outages. To verify the effectiveness of the proposed solution, road-test experiments with various scenarios were performed. The experimental results illustrate that the proposed system can achieve accurate and reliable positioning for land vehicles.

  4. A Highly Reliable and Cost-Efficient Multi-Sensor System for Land Vehicle Positioning

    PubMed Central

    Li, Xu; Xu, Qimin; Li, Bin; Song, Xianghui

    2016-01-01

    In this paper, we propose a novel positioning solution for land vehicles which is highly reliable and cost-efficient. The proposed positioning system fuses information from the MEMS-based reduced inertial sensor system (RISS) which consists of one vertical gyroscope and two horizontal accelerometers, low-cost GPS, and supplementary sensors and sources. First, pitch and roll angle are accurately estimated based on a vehicle kinematic model. Meanwhile, the negative effect of the uncertain nonlinear drift of MEMS inertial sensors is eliminated by an H∞ filter. Further, a distributed-dual-H∞ filtering (DDHF) mechanism is adopted to address the uncertain nonlinear drift of the MEMS-RISS and make full use of the supplementary sensors and sources. The DDHF is composed of a main H∞ filter (MHF) and an auxiliary H∞ filter (AHF). Finally, a generalized regression neural network (GRNN) module with good approximation capability is specially designed for the MEMS-RISS. A hybrid methodology which combines the GRNN module and the AHF is utilized to compensate for RISS position errors during GPS outages. To verify the effectiveness of the proposed solution, road-test experiments with various scenarios were performed. The experimental results illustrate that the proposed system can achieve accurate and reliable positioning for land vehicles. PMID:27231917

  5. MEMS and FOG Technologies for Tactical and Navigation Grade Inertial Sensors—Recent Improvements and Comparison

    PubMed Central

    Deppe, Olaf; Dorner, Georg; König, Stefan; Martin, Tim; Voigt, Sven; Zimmermann, Steffen

    2017-01-01

    In the following paper, we present an industry perspective of inertial sensors for navigation purposes driven by applications and customer needs. Microelectromechanical system (MEMS) inertial sensors have revolutionized consumer, automotive, and industrial applications and they have started to fulfill the high end tactical grade performance requirements of hybrid navigation systems on a series production scale. The Fiber Optic Gyroscope (FOG) technology, on the other hand, is further pushed into the near navigation grade performance region and beyond. Each technology has its special pros and cons making it more or less suitable for specific applications. In our overview paper, we present latest improvements at NG LITEF in tactical and navigation grade MEMS accelerometers, MEMS gyroscopes, and Fiber Optic Gyroscopes, based on our long-term experience in the field. We demonstrate how accelerometer performance has improved by switching from wet etching to deep reactive ion etching (DRIE) technology. For MEMS gyroscopes, we show that better than 1°/h series production devices are within reach, and for FOGs we present how limitations in noise performance were overcome by signal processing. The paper also intends a comparison of the different technologies, emphasizing suitability for different navigation applications, thus providing guidance to system engineers. PMID:28287483

  6. Benefits of combined GPS/GLONASS with low-cost MEMS IMUs for vehicular urban navigation.

    PubMed

    Angrisano, Antonio; Petovello, Mark; Pugliano, Giovanni

    2012-01-01

    The integration of Global Navigation Satellite Systems (GNSS) with Inertial Navigation Systems (INS) has been very actively researched for many years due to the complementary nature of the two systems. In particular, during the last few years the integration with micro-electromechanical system (MEMS) inertial measurement units (IMUs) has been investigated. In fact, recent advances in MEMS technology have made possible the development of a new generation of low cost inertial sensors characterized by small size and light weight, which represents an attractive option for mass-market applications such as vehicular and pedestrian navigation. However, whereas there has been much interest in the integration of GPS with a MEMS-based INS, few research studies have been conducted on expanding this application to the revitalized GLONASS system. This paper looks at the benefits of adding GLONASS to existing GPS/INS(MEMS) systems using loose and tight integration strategies. The relative benefits of various constraints are also assessed. Results show that when satellite visibility is poor (approximately 50% solution availability) the benefits of GLONASS are only seen with tight integration algorithms. For more benign environments, a loosely coupled GPS/GLONASS/INS system offers performance comparable to that of a tightly coupled GPS/INS system, but with reduced complexity and development time.

  7. BioMEMS and Lab-on-a-Chip Course Education at West Virginia University

    PubMed Central

    Liu, Yuxin

    2011-01-01

    With the rapid growth of Biological/Biomedical MicroElectroMechanical Systems (BioMEMS) and microfluidic-based lab-on-a-chip (LOC) technology to biological and biomedical research and applications, demands for educated and trained researchers and technicians in these fields are rapidly expanding. Universities are expected to develop educational plans to address these specialized needs in BioMEMS, microfluidic and LOC science and technology. A course entitled BioMEMS and Lab-on-a-Chip was taught recently at the senior undergraduate and graduate levels in the Department of Computer Science and Electrical Engineering at West Virginia University (WVU). The course focused on the basic principles and applications of BioMEMS and LOC technology to the areas of biomedicine, biology, and biotechnology. The course was well received and the enrolled students had diverse backgrounds in electrical engineering, material science, biology, mechanical engineering, and chemistry. Student feedback and a review of the course evaluations indicated that the course was effective in achieving its objectives. Student presentations at the end of the course were a highlight and a valuable experience for all involved. The course proved successful and will continue to be offered regularly. This paper provides an overview of the course as well as some development and future improvements. PMID:25586697

  8. Adaptive Inner-Loop Rover Control

    NASA Technical Reports Server (NTRS)

    Kulkarni, Nilesh; Ippolito, Corey; Krishnakumar, Kalmanje; Al-Ali, Khalid M.

    2006-01-01

    Adaptive control technology is developed for the inner-loop speed and steering control of the MAX Rover. MAX, a CMU developed rover, is a compact low-cost 4-wheel drive, 4-wheel steer (double Ackerman), high-clearance agile durable chassis, outfitted with sensors and electronics that make it ideally suited for supporting research relevant to intelligent teleoperation and as a low-cost autonomous robotic test bed and appliance. The design consists of a feedback linearization based controller with a proportional - integral (PI) feedback that is augmented by an online adaptive neural network. The adaptation law has guaranteed stability properties for safe operation. The control design is retrofit in nature so that it fits inside the outer-loop path planning algorithms. Successful hardware implementation of the controller is illustrated for several scenarios consisting of actuator failures and modeling errors in the nominal design.

  9. A Nonlinear Adaptive Filter for Gyro Thermal Bias Error Cancellation

    NASA Technical Reports Server (NTRS)

    Galante, Joseph M.; Sanner, Robert M.

    2012-01-01

    Deterministic errors in angular rate gyros, such as thermal biases, can have a significant impact on spacecraft attitude knowledge. In particular, thermal biases are often the dominant error source in MEMS gyros after calibration. Filters, such as J\\,fEKFs, are commonly used to mitigate the impact of gyro errors and gyro noise on spacecraft closed loop pointing accuracy, but often have difficulty in rapidly changing thermal environments and can be computationally expensive. In this report an existing nonlinear adaptive filter is used as the basis for a new nonlinear adaptive filter designed to estimate and cancel thermal bias effects. A description of the filter is presented along with an implementation suitable for discrete-time applications. A simulation analysis demonstrates the performance of the filter in the presence of noisy measurements and provides a comparison with existing techniques.

  10. PSPICE Hybrid Modeling and Simulation of Capacitive Micro-Gyroscopes

    PubMed Central

    Su, Yan; Tong, Xin; Liu, Nan; Han, Guowei; Si, Chaowei; Ning, Jin; Li, Zhaofeng; Yang, Fuhua

    2018-01-01

    With an aim to reduce the cost of prototype development, this paper establishes a PSPICE hybrid model for the simulation of capacitive microelectromechanical systems (MEMS) gyroscopes. This is achieved by modeling gyroscopes in different modules, then connecting them in accordance with the corresponding principle diagram. Systematic simulations of this model are implemented along with a consideration of details of MEMS gyroscopes, including a capacitance model without approximation, mechanical thermal noise, and the effect of ambient temperature. The temperature compensation scheme and optimization of interface circuits are achieved based on the hybrid closed-loop simulation of MEMS gyroscopes. The simulation results show that the final output voltage is proportional to the angular rate input, which verifies the validity of this model. PMID:29597284

  11. Image Registration for Stability Testing of MEMS

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess; LeMoigne, Jacqueline; Blake, Peter N.; Morey, Peter A.; Landsman, Wayne B.; Chambers, Victor J.; Moseley, Samuel H.

    2011-01-01

    Image registration, or alignment of two or more images covering the same scenes or objects, is of great interest in many disciplines such as remote sensing, medical imaging. astronomy, and computer vision. In this paper, we introduce a new application of image registration algorithms. We demonstrate how through a wavelet based image registration algorithm, engineers can evaluate stability of Micro-Electro-Mechanical Systems (MEMS). In particular, we applied image registration algorithms to assess alignment stability of the MicroShutters Subsystem (MSS) of the Near Infrared Spectrograph (NIRSpec) instrument of the James Webb Space Telescope (JWST). This work introduces a new methodology for evaluating stability of MEMS devices to engineers as well as a new application of image registration algorithms to computer scientists.

  12. MEMS Reliability Assurance Activities at JPL

    NASA Technical Reports Server (NTRS)

    Kayali, S.; Lawton, R.; Stark, B.

    2000-01-01

    An overview of Microelectromechanical Systems (MEMS) reliability assurance and qualification activities at JPL is presented along with the a discussion of characterization of MEMS structures implemented on single crystal silicon, polycrystalline silicon, CMOS, and LIGA processes. Additionally, common failure modes and mechanisms affecting MEMS structures, including radiation effects, are discussed. Common reliability and qualification practices contained in the MEMS Reliability Assurance Guideline are also presented.

  13. Design of a Base Station for MEMS CCR Localization in an Optical Sensor Network

    PubMed Central

    Park, Chan Gook; Jeon, Hyun Cheol; Kim, Hyoun Jin; Kim, Jae Yoon

    2014-01-01

    This paper introduces a design and implementation of a base station, capable of positioning sensor nodes using an optical scheme. The base station consists of a pulse laser module, optical detectors and beam splitter, which are mounted on a rotation-stage, and a Time to Digital Converter (TDC). The optical pulse signal transmitted to the sensor node with a Corner Cube Retro-reflector (CCR) is reflected to the base station, and the Time of Flight (ToF) data can be obtained from the two detectors. With the angle and flight time data, the position of the sensor node can be calculated. The performance of the system is evaluated by using a commercial CCR. The sensor nodes are placed at different angles from the base station and scanned using the laser. We analyze the node position error caused by the rotation and propose error compensation methods, namely the outlier sample exception and decreasing the confidence factor steadily using the recursive least square (RLS) methods. Based on the commercial CCR results, the MEMS CCR is also tested to demonstrate the compatibility between the base station and the proposed methods. The result shows that the localization performance of the system can be enhanced with the proposed compensation method using the MEMS CCR. PMID:24815681

  14. Design of a base station for MEMS CCR localization in an optical sensor network.

    PubMed

    Park, Chan Gook; Jeon, Hyun Cheol; Kim, Hyoun Jin; Kim, Jae Yoon

    2014-05-08

    This paper introduces a design and implementation of a base station, capable of positioning sensor nodes using an optical scheme. The base station consists of a pulse laser module, optical detectors and beam splitter, which are mounted on a rotation-stage, and a Time to Digital Converter (TDC). The optical pulse signal transmitted to the sensor node with a Corner Cube Retro-reflector (CCR) is reflected to the base station, and the Time of Flight (ToF) data can be obtained from the two detectors. With the angle and flight time data, the position of the sensor node can be calculated. The performance of the system is evaluated by using a commercial CCR. The sensor nodes are placed at different angles from the base station and scanned using the laser. We analyze the node position error caused by the rotation and propose error compensation methods, namely the outlier sample exception and decreasing the confidence factor steadily using the recursive least square (RLS) methods. Based on the commercial CCR results, the MEMS CCR is also tested to demonstrate the compatibility between the base station and the proposed methods. The result shows that the localization performance of the system can be enhanced with the proposed compensation method using the MEMS CCR.

  15. A Three-Dimensional Transonic, Potential Flow Computer Program, Its Conversion to IBM Fortran and Utilization

    DTIC Science & Technology

    1983-12-01

    MAIN OEG=NFGVB1.3266P //COPY PEOC EILE=, MEM = // EXEC PGM=IEBGENEB //SISPRINT DD SYSOUT=A //SYSIN DC DÖMMY //SYS0T1 DD...COE*,FILE=1, MEM =FL027 // EXEC COPY,FILE=2,HEM=A411IN // EXEC COEY,FILE=3, MEM =VWIN // EXEC COPY,FILE = 4, MEM =A411A01...EXEC C0EY,FILE=5,MEä=INTERE // EXEC COPY,FILE=6, MEM =A411PS // EXEC COEY,FILE=7, MEM =A411P1 // EXEC COPY,FILE

  16. Simple Fall Criteria for MEMS Sensors: Data Analysis and Sensor Concept

    PubMed Central

    Ibrahim, Alwathiqbellah; Younis, Mohammad I.

    2014-01-01

    This paper presents a new and simple fall detection concept based on detailed experimental data of human falling and the activities of daily living (ADLs). Establishing appropriate fall algorithms compatible with MEMS sensors requires detailed data on falls and ADLs that indicate clearly the variations of the kinematics at the possible sensor node location on the human body, such as hip, head, and chest. Currently, there is a lack of data on the exact direction and magnitude of each acceleration component associated with these node locations. This is crucial for MEMS structures, which have inertia elements very close to the substrate and are capacitively biased, and hence, are very sensitive to the direction of motion whether it is toward or away from the substrate. This work presents detailed data of the acceleration components on various locations on the human body during various kinds of falls and ADLs. A two-degree-of-freedom model is used to help interpret the experimental data. An algorithm for fall detection based on MEMS switches is then established. A new sensing concept based on the algorithm is proposed. The concept is based on employing several inertia sensors, which are triggered simultaneously, as electrical switches connected in series, upon receiving a true fall signal. In the case of everyday life activities, some or no switches will be triggered resulting in an open circuit configuration, thereby preventing false positive. Lumped-parameter model is presented for the device and preliminary simulation results are presented illustrating the new device concept. PMID:25006997

  17. Multilayered Microelectronic Device Package With An Integral Window

    DOEpatents

    Peterson, Kenneth A.; Watson, Robert D.

    2004-10-26

    A microelectronic package with an integral window mounted in a recessed lip for housing a microelectronic device. The device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can be formed of a low temperature co-fired ceramic (LTCC) or high temperature cofired ceramic (HTCC) multilayered material, with the integral window being simultaneously joined (e.g. co-fired) to the package body during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded and oriented so that a light-sensitive side is optically accessible through the window. The result is a compact, low profile package, having an integral window mounted in a recessed lip, that can be hermetically sealed.

  18. Light addressable potentiometric sensor with an array of sensing regions

    NASA Astrophysics Data System (ADS)

    Liang, Weiguo; Han, JingHong; Zhang, Hong; Chen, Deyong

    2001-09-01

    This paper describes the mechanism of light addressable poteniometric sensors (LAPS) from the viewpoints of Semiconductor Physics, and introduces the fabrication of a multi-parameter LAPS chip. The MEMS technology is applied to produce a matrix of sensing regions on the wafer. By doing that, the cross talk among these regions is reduced, and the precision of the LAPS is increased. An IR-LED matrix is used as the light source, and the flow-injection method is used to input samples. The sensor system is compact and highly integrated. The measure and control system is composed of a personal computer, a lock-in amplifier, a potentiostat, a singlechip system, and an addressing circuit. Some experiments have been done with this device. The results show that this device is very promising for practical use.

  19. Modeling high signal-to-noise ratio in a novel silicon MEMS microphone with comb readout

    NASA Astrophysics Data System (ADS)

    Manz, Johannes; Dehe, Alfons; Schrag, Gabriele

    2017-05-01

    Strong competition within the consumer market urges the companies to constantly improve the quality of their devices. For silicon microphones excellent sound quality is the key feature in this respect which means that improving the signal-to-noise ratio (SNR), being strongly correlated with the sound quality is a major task to fulfill the growing demands of the market. MEMS microphones with conventional capacitive readout suffer from noise caused by viscous damping losses arising from perforations in the backplate [1]. Therefore, we conceived a novel microphone design based on capacitive read-out via comb structures, which is supposed to show a reduction in fluidic damping compared to conventional MEMS microphones. In order to evaluate the potential of the proposed design, we developed a fully energy-coupled, modular system-level model taking into account the mechanical motion, the slide film damping between the comb fingers, the acoustic impact of the package and the capacitive read-out. All submodels are physically based scaling with all relevant design parameters. We carried out noise analyses and due to the modular and physics-based character of the model, were able to discriminate the noise contributions of different parts of the microphone. This enables us to identify design variants of this concept which exhibit a SNR of up to 73 dB (A). This is superior to conventional and at least comparable to high-performance variants of the current state-of-the art MEMS microphones [2].

  20. A New MEMS Gyroscope Used for Single-Channel Damping

    PubMed Central

    Zhang, Zengping; Zhang, Wei; Zhang, Fuxue; Wang, Biao

    2015-01-01

    The silicon micromechanical gyroscope, which will be introduced in this paper, represents a novel MEMS gyroscope concept. It is used for the damping of a single-channel control system of rotating aircraft. It differs from common MEMS gyroscopes in that does not have a drive structure, itself, and only has a sense structure. It is installed on a rotating aircraft, and utilizes the aircraft spin to make its sensing element obtain angular momentum. When the aircraft is subjected to an angular rotation, a periodic Coriolis force is induced in the direction orthogonal to both the angular momentum and the angular velocity input axis. This novel MEMS gyroscope can thus sense angular velocity inputs. The output sensing signal is exactly an amplitude-modulation signal. Its envelope is proportional to the input angular velocity, and the carrier frequency corresponds to the spin frequency of the rotating aircraft, so the MEMS gyroscope can not only sense the transverse angular rotation of an aircraft, but also automatically change the carrier frequency over the change of spin frequency, making it very suitable for the damping of a single-channel control system of a rotating aircraft. In this paper, the motion equation of the MEMS gyroscope has been derived. Then, an analysis has been carried to solve the motion equation and dynamic parameters. Finally, an experimental validation has been done based on a precision three axis rate table. The correlation coefficients between the tested data and the theoretical values are 0.9969, 0.9872 and 0.9842, respectively. These results demonstrate that both the design and sensing mechanism are correct. PMID:25942638

Top